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PREFACE

T he purpose of Statistics for Business and Economics is to give students, primarily those in the fields of
business, management and economics, a conceptual introduction to the field of statistics and its many

applications. The text is applications oriented and written with the needs of the non-mathematician in
mind. The mathematical prerequisite is knowledge of algebra.

Applications of data analysis and statistical methodology are an integral part of the organization and
presentation of the material in the text. The discussion and development of each technique are presented
in an application setting, with the statistical results providing insights to problem solution and decision-
making.

Although the book is applications oriented, care has been taken to provide sound methodological
development and to use notation that is generally accepted for the topic being covered. Hence, students
will find that this text provides good preparation for the study of more advanced statistical material. A
revised and updated bibliography to guide further study is included as an appendix.

The online platform introduces the student to the software packages MINITAB 16, SPSS 21 and
Microsoft® Office EXCEL 2010, and emphasizes the role of computer software in the application of
statistical analysis. MINITAB and SPSS are illustrated as they are two of the leading statistical software
packages for both education and statistical practice. EXCEL is not a statistical software package, but the wide
availability and use of EXCEL makes it important for students to understand the statistical capabilities of
this package. MINITAB, SPSS and EXCEL procedures are provided on the dedicated online platform so that
instructors have the flexibility of using as much computer emphasis as desired for the course.

THE EMEA EDITION

This is the 3rd EMEA edition of Statistics for Business and Economics. It is based on the 2nd EMEA
edition and the 11th United States (US) edition. The US editions have a distinguished history and
deservedly high reputation for clarity and soundness of approach, and we maintained the presentation
style and readability of those editions in preparing the international edition. We have replaced many of
the US-based examples, case studies and exercises with equally interesting and appropriate ones sourced
from a wider geographical base, particularly the UK, Ireland, continental Europe, South Africa and the
Middle East. We have also streamlined the book by moving four non-mandatory chapters, the software
section and exercise answers to the associated online platform. Other notable changes in this 3rd EMEA
edition are summarized here.

CHANGES IN THE 3RD EMEA EDITION

• Self-test exercises Certain exercises are identified as self-test exercises. Completely worked-out
solutions for those exercises are provided on the online platform that accompanies the text.
Students can attempt the self-test exercises and immediately check the solution to evaluate their
understanding of the concepts presented in the chapter.
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• Other content revisions The following additional content revisions appear in the new edition:

• New examples of times series data are provided in Chapter 1.

• Chapter 9 contains a revised introduction to hypothesis testing, with a better set of guidelines
for identifying the null and alternative hypotheses.

• Chapter 13 makes much more explicit the linkage between Analysis of Variance and
experimental design.

• Chapter 17 now includes coverage of the popular Holt’s linear exponential smoothing
methodology.

• The treatment of non-parametric methods in Chapter 18 has been revised and updated.

• Chapter 19 on index numbers (on the online platform) has been updated with current index
numbers.

• A number of case problems have been added or updated. These are in the chapters on
Descriptive Statistics, Discrete Probability Distributions, Inferences about Population Variances,
Tests of Goodness of Fit and Independence, Simple Linear Regression, Multiple Regression,
Regression Analysis: Model Building, Non-Parametric Methods, Index Numbers and Decision
Analysis. These case problems provide students with the opportunity to analyze somewhat larger
data sets and prepare managerial reports based on the results of the analysis.

• Each chapter begins with a Statistics in Practice article that describes an application of the
statistical methodology to be covered in the chapter. New to this edition are Statistics in Practice
articles for Chapters 2, 9, 10 and 11, with several other articles substantially updated and revised
for this new edition.

• New examples and exercises have been added throughout the book, based on real data and recent
reference sources of statistical information. We believe that the use of real data helps generate
more student interest in the material and enables the student to learn about both the statistical
methodology and its application.

• To accompany the new exercises and examples, data files are available on the online platform.
The data sets are available in MINITAB, SPSS and EXCEL formats. Data set logos are used in the
text to identify the data sets that are available on the online platform. Data sets for all case
problems as well as data sets for larger exercises are included.

• Software sections In the 3rd EMEA edition, we have updated the software sections to provide step-
by-step instructions for the latest versions of the software packages: MINITAB 16, SPSS 21 and
Microsoft® Office EXCEL 2010. The software sections have been relocated to the online platform.
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WALK-THROUGH TOUR

Learning Objectives We have set out clear learning

objectives at the start of each chapter in the text,

as is now common in texts in the UK and

elsewhere. These objectives summarize the core

content of each chapter in a list of key points.

Statistics in Practice Each chapter begins with a

Statistics in Practice article that describes an

application of the statistical methodology to be

covered in the chapter.

Exercises The exercises are split into two parts: Methods and

Applications. The Methods exercises require students to use the

formulae and make the necessary computations. The Applications

exercises require students to use the chapter material in real-world

situations. Thus, students first focus on the computational ‘nuts and

bolts’, then move on to the subtleties of statistical application and

interpretation. Answers to even-numbered exercises are provided on

the online platform, while a full set of answers are provided in the

lecturers’ Solutions Manual. Supplementary exercises are provided

on the textbook’s online platform. Self-test exercises are highlighted

throughout by the ‘COMPLETE SOLUTIONS’ icon and contain

fully-worked solutions on the online platform.

COMPLETE

SOLUTIONS



Notes Recent US editions have included marginal

and end-of-chapter notes.

We have not adopted this layout, but have

included the important material in the text itself.

Summaries Each chapter includes a summary to

remind students of what they have learnt so far and

offer a useful way to review for exams.

Data sets accompany text Over 200 data sets are available on the

online platform that accompanies the text. The data sets are available

in MINITAB, SPSS and EXCEL formats. Data set logos are used in the text

to identify the data sets that are available online. Data sets for all case

problems as well as data sets for larger exercises are also included on

the online platform.



Key terms Key terms are highlighted in the text,

listed at the end of each chapter and given a full

definition in the Glossary at the end of the textbook.

Key formulae Key formulae are listed at the end of

each chapter for easy reference.

Case problems The end-of-chapter case problems

provide students with the opportunity to analyse

somewhat larger data sets and prepare managerial

reports based on the results of the analysis.



To discover the dedicated instructor online

support resources accompanying this textbook,

instructors should register here for access:

Resources include:

Solutions Manual

ExamView Testbank

PowerPoint slides

Instructors can access the online student platform by registering

at or by speaking to their local

Cengage Learning EMEA representative.

Instructors can use the integrated Engagement Tracker to track students’

preparation and engagement. The tracking tool can be used to monitor progress of

the class as a whole, or for individual students.

Students can access the online platform using the unique personal access card included in the

front of the book.

The platform offers a range of interactive learning tools tailored to the third edition of Statistics for

Business and Economics, including:

• Interactive eBook

• Data files referred to in the text

• Answers to in-text exercises

• Software section

• Four additional chapters for further study

• Glossary, flashcards and more



1
Data and Statistics

CHAPTER CONTENTS

Statistics in Practice The Economist

1.1 Applications in business and economics

1.2 Data

1.3 Data sources

1.4 Descriptive statistics

1.5 Statistical inference

1.6 Computers and statistical analysis

1.7 Data mining

LEARNING OBJECTIVES After reading this chapter and doing the exercises, you should be able to:

1 Appreciate the breadth of statistical applications in

business and economics.

2 Understand the meaning of the terms elements, variables

and observations, as they are used in statistics.

3 Understand the difference between qualitative,

quantitative, cross-sectional and time series data.

4 Find out about data sources available for statistical

analysis both internal and external to the firm.

5 Appreciate how errors can arise in data.

6 Understand the meaning of descriptive statistics

and statistical inference.

7 Distinguish between a population and a sample.

8 Understand the role a sample plays in making

statistical inferences about the population.

F requently, we see the following kinds of statements in newspaper and magazine articles:

• The Ifo World Economic Climate Index fell again substantially in January 2009. The climate indicator stands
at 50.1 (1995 = 100); its historically lowest level since introduction in the early 1980s (CESifo, April 2009).

• The IMF projected the global economy would shrink 1.3 per cent in 2009 (Fin24, 23 April 2009).

• The Footsie finished the week on a winning streak despite shock figures that showed the economy has
contracted by almost 2 per cent already in 2009 (This is Money, 25 April 2009).

• China’s growth rate fell to 6.1 per cent in the year to the first quarter (The Economist, 16 April 2009).
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• GM receives further $2bn in loans (BBC News, 24 April 2009).

• Handset shipments to drop by 20 per cent (In-Stat, 2009).

The numerical facts in the preceding statements (50.1, 1.3 per cent, 2 per cent, 6.1 per cent, $2bn,
20 per cent) are called statistics. Thus, in everyday usage, the term statistics refers to numerical facts.
However, the field, or subject, of statistics involves much more than numerical facts. In a broad sense,
statistics is the art and science of collecting, analyzing, presenting and interpreting data. Particularly in
business and economics, the information provided by collecting, analyzing, presenting and interpreting
data gives managers and decision-makers a better understanding of the business and economic environ-
ment and thus enables them to make more informed and better decisions. In this text, we emphasize the
use of statistics for business and economic decision-making.

Chapter 1 begins with some illustrations of the applications of statistics in business and economics. In
Section 1.2 we define the term data and introduce the concept of a data set. This section also introduces
key terms such as variables and observations, discusses the difference between quantitative and categorical
data, and illustrates the uses of cross-sectional and time series data. Section 1.3 discusses how data can be
obtained from existing sources or through survey and experimental studies designed to obtain new data.
The important role that the Internet now plays in obtaining data is also highlighted. The use of data in
developing descriptive statistics and in making statistical inferences is described in Sections 1.4 and 1.5.
The last two sections of Chapter 1 outline respectively the role of computers in statistical analysis and
introduce the relatively new field of data mining.

STATISTICS IN PRACTICE

The Economist

Founded in 1843, The Economist is an interna-

tional weekly news and business magazine writ-

ten for top-level business executives and political

decision-makers. The publication aims to provide

readers with in-depth analyses of international poli-

tics, business news and trends, global economics

and culture.

The Economist is published by the Economist

Group – an international company employing nearly

1000 staff worldwide – with offices in London, Frank-

furt, Paris and Vienna; in New York, Boston and

Washington, DC; and in Hong Kong, mainland China,

Singapore and Tokyo.

Between 1998 and 2008 the magazine’s worldwide

circulation grew by 100 per cent – recently exceeding

180 000 in the UK, 230 000 in continental Europe,

780 000 plus copies in North America and nearly

130000 in the Asia-Pacific region. It is read in more

than 200 countries and with a readership of four million,

is one of the world’s most influential business publica-

tions. Along with the Financial Times, it is arguably one

of the two most successful print publications to be

introduced in the US market during the past decade.

Complementing The Economist brand within the

Economist Brand family, the Economist Intelligence

Unit provides access to a comprehensive database

of worldwide indicators and forecasts covering more

than 200 countries, 45 regions and eight key indus-

tries. The Economist Intelligence Unit aims to help

executives make informed business decisions

through dependable intelligence delivered online, in

print, in customized research as well as through con-

ferences and peer interchange.

Alongside the Economist Brand family, the Group

manages and runs the CFO and Government brand

families for the benefit of senior finance executives

and government decision-makers (in Brussels and

Washington respectively).

2 CHAPTER 1 DATA AND STATISTICS



1.1 APPLICATIONS IN BUSINESS AND ECONOMICS

In today’s global business and economic environment, anyone can access vast amounts of statistical
information. The most successful managers and decision-makers understand the information and know
how to use it effectively. In this section, we provide examples that illustrate some of the uses of statistics in
business and economics.

Accounting

Public accounting firms use statistical sampling procedures when conducting audits for their clients. For
instance, suppose an accounting firm wants to determine whether the amount of accounts
receivable shown on a client’s balance sheet fairly represents the actual amount of accounts receivable.
Usually the large number of individual accounts receivable makes reviewing and validating every account
too time-consuming and expensive. As common practice in such situations, the audit staff selects a subset
of the accounts called a sample. After reviewing the accuracy of the sampled accounts, the auditors draw
a conclusion as to whether the accounts receivable amount shown on the client’s balance sheet
is acceptable.

Finance

Financial analysts use a variety of statistical information to guide their investment recommendations. In
the case of stocks, the analysts review a variety of financial data including price/earnings ratios and
dividend yields. By comparing the information for an individual stock with information about the stock
market averages, a financial analyst can begin to draw a conclusion as to whether an individual stock is
over- or under-priced. Similarly, historical trends in stock prices can provide a helpful indication on when
investors might consider entering (or re-entering) the market. For example, Money Week (3 April 2009)
reported a Goldman Sachs analysis that indicated, because stocks were unusually cheap at the time, real
average returns of up to 6 per cent in the US and 7 per cent in Britain might be possible over the next
decade – based on long-term cyclically adjusted price/earnings ratios.

Marketing

Electronic scanners at retail checkout counters collect data for a variety of marketing research applica-
tions. For example, data suppliers such as ACNielsen purchase point-of-sale scanner data from grocery
stores, process the data and then sell statistical summaries of the data to manufacturers. Manufacturers
spend vast amounts per product category to obtain this type of scanner data. Manufacturers also purchase
data and statistical summaries on promotional activities such as special pricing and the use of in-store
displays. Brand managers can review the scanner statistics and the promotional activity statistics to gain a
better understanding of the relationship between promotional activities and sales. Such analyses often
prove helpful in establishing future marketing strategies for the various products.

Production

Today’s emphasis on quality makes quality control an important application of statistics in production. A
variety of statistical quality control charts are used to monitor the output of a production process. In
particular, an x-bar chart can be used to monitor the average output. Suppose, for example, that a
machine fills containers with 330g of a soft drink. Periodically, a production worker selects a sample of
containers and computes the average number of grams in the sample. This average, or x-bar value, is
plotted on an x-bar chart. A plotted value above the chart’s upper control limit indicates overfilling, and a
plotted value below the chart’s lower control limit indicates underfilling. The process is termed ‘in
control’ and allowed to continue as long as the plotted x-bar values fall between the chart’s upper and
lower control limits. Properly interpreted, an x-bar chart can help determine when adjustments are
necessary to correct a production process.
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Economics

Economists frequently provide forecasts about the future of the economy or some aspect of it. They use a
variety of statistical information in making such forecasts. For instance, in forecasting inflation rates,
economists use statistical information on such indicators as the Producer Price Index, the unemployment
rate and manufacturing capacity utilization. Often these statistical indicators are entered into computer-
ized forecasting models that predict inflation rates.

Applications of statistics such as those described in this section are an integral part of this text. Such
examples provide an overview of the breadth of statistical applications. To supplement these examples,
chapter-opening Statistics in Practice articles obtained from a variety of topical sources are used to
introduce the material covered in each chapter. These articles show the importance of statistics in a wide
variety of business and economic situations.

1.2 DATA

Data are the facts and figures collected, analyzed and summarized for presentation and interpretation. All
the data collected in a particular study are referred to as the data set for the study. Table 1.1 shows a
data set summarizing information for equity (share) trading at the 22 European Stock Exchanges in
March 2009.

T ABLE 1 . 1 European stock exchange monthly statistics domestic equity trading (electronic order book

transactions) March 2009

Total

Exchange Trades Turnover

Athens 599 192 2 009.8

Borsa Italiana 5 921 099 44 385.9

Bratislava 111 0.1

Bucharest 79 921 45.3

Budapest 298 871 1 089.6

Bulgarian 14 040 64.4

Cyprus 31 167 76.1

Deutsche Börse 7 642 241 86 994.5

Euronext 15 282 996 116 488

Irish 79 973 549.8

Ljublijana 11 172 35.6

London 16 539 588 114 283.6

Luxembourg 1 152 125

Malta 638 1.9

NASDAQ OMX Nordic 4 550 073 40 927.4

Oslo Bars 981 362 9 755.1

Prague 65 153 1 034.8

SIX Swiss 440 578 2 667.1

Spanish (BME) 2 799 329 60 387.6

SWX Europe n/a n/a

Warsaw 1 155 379 2 468.6

Wiener Borse 433 545 2 744

TOTAL 56 927 580 486 021.7

Source: European Stock Exchange monthly statistics (www.fese.be/en/?inc=art&id=3)

EXCHANGES

2009

4 CHAPTER 1 DATA AND STATISTICS



Elements, variables and observations

Elements are the entities on which data are collected. For the data set in Table 1.1, each individual
European exchange is an element; the element names appear in the first column. With 22 exchanges, the
data set contains 22 elements.

A variable is a characteristic of interest for the elements. The data set in Table 1.1 includes the
following three variables:

• Exchange: at which the equities were traded.

• Trades: number of trades during the month.

• Turnover: value of trades (€m) during the month.

Measurements collected on each variable for every element in a study provide the data. The set of
measurements obtained for a particular element is called an observation. Referring to Table 1.1, we see
that the set of measurements for the first observation (Athens Exchange) is 599 192 and 2009.8. The set of
measurements for the second observation (Borsa Italiana) is 5 921 099 and 44 385.9; and so on. A data set
with 22 elements contains 22 observations.

Scales of measurement

Data collection requires one of the following scales of measurement: nominal, ordinal, interval or ratio.
The scale of measurement determines the amount of information contained in the data and indicates the
most appropriate data summarization and statistical analyses.

When the data for a variable consist of labels or names used to identify an attribute of the
element, the scale of measurement is considered a nominal scale. For example, referring to the data
in Table 1.1, we see that the scale of measurement for the exchange variable is nominal because
Athens Exchange, Borsa Italiana … Wiener Börse are labels used to identify where the equities are
traded. In cases where the scale of measurement is nominal, a numeric code as well as non-numeric
labels may be used. For example, to facilitate data collection and to prepare the data for entry into a
computer database, we might use a numeric code by letting 1, denote the Athens Exchange, 2, the
Borsa Italiana … and 22, Wiener Börse. In this case the numeric values 1, 2, … 22 provide the labels
used to identify where the stock is traded. The scale of measurement is nominal even though the
data appear as numeric values.

The scale of measurement for a variable is called an ordinal scale if the data exhibit the
properties of nominal data and the order or rank of the data is meaningful. For example, Eastside
Automotive sends customers a questionnaire designed to obtain data on the quality of its automotive
repair service. Each customer provides a repair service rating of excellent, good or poor. Because the
data obtained are the labels – excellent, good or poor – the data have the properties of nominal data.
In addition, the data can be ranked, or ordered, with respect to the service quality. Data recorded as
excellent indicate the best service, followed by good and then poor. Thus, the scale of measurement
is ordinal. Note that the ordinal data can also be recorded using a numeric code. For example, we
could use 1 for excellent, 2 for good and 3 for poor to maintain the properties of ordinal data. Thus,
data for an ordinal scale may be either non-numeric or numeric.

The scale of measurement for a variable becomes an interval scale if the data show the properties
of ordinal data and the interval between values is expressed in terms of a fixed unit of measure. Interval
data are always numeric. Graduate Management Admission Test (GMAT) scores are an example of
interval-scaled data. For example, three students with GMAT scores of 620 550 and 470 can be ranked or
ordered in terms of best performance to poorest performance. In addition, the differences between the
scores are meaningful. For instance, student one scored 620 – 550 = 70 points more than student two,
while student two scored 550 – 470 = 80 points more than student three.

The scale of measurement for a variable is a ratio scale if the data have all the properties of interval
data and the ratio of two values is meaningful. Variables such as distance, height, weight and time use the
ratio scale of measurement. This scale requires that a zero value be included to indicate that nothing exists
for the variable at the zero point. For example, consider the cost of a car. A zero value for the cost would
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indicate that the car has no cost and is free. In addition, if we compare the cost of €30 000 for one car to
the cost of €15 000 for a second car, the ratio property shows that the first car is €30 000/€15 000 = two
times, or twice, the cost of the second car.

Categorical and quantitative data

Data can be further classified as either categorical or quantitative.Categorical data include labels or names used
to identify an attribute of each element. Categorical data use either the nominal or ordinal scale of measurement
andmay be non-numeric or numeric.Quantitative data require numeric values that indicate howmuch or how
many. Quantitative data are obtained using either the interval or ratio scale of measurement.

A categorical variable is a variable with categorical data, and a quantitative variable is a variable with
quantitative data. The statistical analysis appropriate for a particular variable depends upon whether the
variable is categorical or quantitative. If the variable is categorical, the statistical analysis is rather limited.
We can summarize categorical data by counting the number of observations in each category or by
computing the proportion of the observations in each category. However, even when the categorical data
use a numeric code, arithmetic operations such as addition, subtraction, multiplication and division do
not provide meaningful results. Section 2.1 discusses ways for summarizing categorical data.

On the other hand, arithmetic operations often provide meaningful results for a quantitative variable.
For example, for a quantitative variable, the data may be added and then divided by the number of
observations to compute the average value. This average is usually meaningful and easily interpreted. In
general, more alternatives for statistical analysis are possible when the data are quantitative. Section 2.2
and Chapter 3 provide ways of summarizing quantitative data.

Cross-sectional and time series data

For purposes of statistical analysis, distinguishing between cross-sectional data and time series data is
important. Cross-sectional data are data collected at the same or approximately the same point in time.
The data in Table 1.1 are cross-sectional because they describe the two variables for the 22 exchanges at
the same point in time. Time series data are data collected over several time periods. For example,
Figure 1.1 provides a graph of the wholesale price (US$) of crude oil per gallon for the period January
2008 and January 2012. It shows that starting around July 2008 the average price dipped sharply to less
than $2 per gallon. However, by November 2011 it had recovered to $3 per gallon since when it has
mostly hovered between $3.50 and $4 per gallon. Most of the statistical methods presented in this text
apply to cross-sectional rather than time series data.

Quantitative data that measure how many are discrete. Quantitative data that measure how much are
continuous because no separation occurs between the possible data values.

Price difference Forecast

U.S. Gasoline and Crude Oil Prices

dollars per gallon

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0.00

Jan 2008 Jan 2009

Crude oil price is composite refiner acquisition cost. Retail prices include state and federal

Jan 2010 Jan 2011 Jan 2012 Jan 2013

Retail regular gasoline

FIGURE 1.1

Wholesale price of

crude oil per gallon

(US$) 2008–2012

EIA (www.eia.doe.gov/)

Source: Short-Term Energy Outlook, November 2012
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1.3 DATA SOURCES

Data can be obtained from existing sources or from surveys and experimental studies designed to
collect new data.

Existing sources

In some cases, data needed for a particular application already exist. Companies maintain a variety of
databases about their employees, customers and business operations. Data on employee salaries, ages and
years of experience can usually be obtained from internal personnel records. Other internal records
contain data on sales, advertising expenditures, distribution costs, inventory levels and production
quantities. Most companies also maintain detailed data about their customers. Table 1.2 shows some of
the data commonly available from internal company records.

Organizations that specialize in collecting and maintaining data make available substantial amounts of
business and economic data. Companies access these external data sources through leasing arrangements
or by purchase. Dun & Bradstreet, Bloomberg and the Economist Intelligence Unit are three sources that
provide extensive business database services to clients. ACNielsen built successful businesses collecting
and processing data that they sell to advertisers and product manufacturers.

Data are also available from a variety of industry associations and special interest organizations. The
European Tour Operators, Association and European Travel Commission provide information on tourist
trends and travel expenditures by visitors to and from countries in Europe. Such data would be of interest
to firms and individuals in the travel industry. The Graduate Management Admission Council maintains
data on test scores, student characteristics and graduate management education programmes. Most of the
data from these types of sources are available to qualified users at a modest cost.

The Internet continues to grow as an important source of data and statistical information. Almost all
companies maintain websites that provide general information about the company as well as data on
sales, number of employees, number of products, product prices and product specifications. In addition, a
number of companies now specialize in making information available over the Internet. As a result, one
can obtain access to stock quotes, meal prices at restaurants, salary data and an almost infinite variety of
information. Government agencies are another important source of existing data. For instance, Eurostat
maintains considerable data on employment rates, wage rates, size of the labour force and union
membership. Table 1.3 lists selected governmental agencies and some of the data they provide. Most
government agencies that collect and process data also make the results available through a website. For
instance, the Eurostat has a wealth of data at its website, http://ec.europa.eu/eurostat. Figure 1.2 shows the
homepage for the Eurostat.

T ABLE 1 . 2 Examples of data available from internal company records

Source Some of the data typically available

Employee records Name, address, social security number, salary, number of vacation days,

number of sick days and bonus

Production records Part or product number, quantity produced, direct labour cost and

materials cost

Inventory records Part or product number, number of units on hand, reorder level, economic

order quantity and discount schedule

Sales records Product number, sales volume, sales volume by region and sales volume

by customer type

Credit records Customer name, address, phone number, credit limit and accounts

receivable balance

Customer profile Age, gender, income level, household size, address and preferences
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T ABLE 1 . 3 Examples of data available from selected European sources

Source Some of the data available

Europa rates (http://europa.eu) Travel, VAT (value added tax), euro exchange

employment, population and social conditions

Eurostat (http://epp.eurostat.ec.europa.eu/) Education and training, labour market, living

conditions and welfare

European Central Bank (www.ecb.int/) Monetary, financial markets, interest rate and

balance of payments statistics, unit labour costs,

compensation per employee, labour productivity,

consumer prices, construction prices

FIGURE 1.2

Eurostat homepage
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Statistical studies

Sometimes the data needed for a particular application are not available through existing sources. In such
cases, the data can often be obtained by conducting a statistical study. Statistical studies can be classified
as either experimental or observational.

In an experimental study, a variable of interest is first identified. Then one or more other variables are
identified and controlled so that data can be obtained about how they influence the variable of interest.
For example, a pharmaceutical firm might be interested in conducting an experiment to learn about how
a new drug affects blood pressure. Blood pressure is the variable of interest in the study. The dosage level
of the new drug is another variable that is hoped to have a causal effect on blood pressure. To obtain data
about the effect of the new drug, researchers select a sample of individuals. The dosage level of the new
drug is controlled, as different groups of individuals are given different dosage levels. Before and after data
on blood pressure are collected for each group. Statistical analysis of the experimental data can help
determine how the new drug affects blood pressure.

Non-experimental, or observational, statistical studies make no attempt to control the variables of
interest. A survey is perhaps the most common type of observational study. For instance, in a personal
interview survey, research questions are first identified. Then a questionnaire is designed and adminis-
tered to a sample of individuals. Some restaurants use observational studies to obtain data about their
customers’ opinions of the quality of food, service, atmosphere and so on. A questionnaire used by the
Lobster Pot Restaurant in Limerick City, Ireland, is shown in Figure 1.3. Note that the customers
completing the questionnaire are asked to provide ratings for five variables: food quality, friendliness of
service, promptness of service, cleanliness and management. The response categories of excellent, good,
satisfactory and unsatisfactory provide ordinal data that enable Lobster Pot’s managers to assess the
quality of the restaurant’s operation.

Managers wanting to use data and statistical analyses as an aid to decision-making must be aware of
the time and cost required to obtain the data. The use of existing data sources is desirable when data must
be obtained in a relatively short period of time.

The
LOBSTER

Pot
RESTAURANT

We are happy you stopped by the Lobster Pot Restaurant and want to make sure you will 

comments and suggestions are extremely important to us. Thank you!

come back. So, if you have a little time, we will really appreciate it if you will �ll out this card. Your

Server’s Name

tnellecxE Good Satisfactory Unsatisfactory

Food Quality 

Friendly Service 

Prompt Service 

Cleanliness 

Management 

Comments

What prompted your vist to us?

Please drop in suggestion box at entrance. Thank you.

FIGURE 1.3

Customer opinion questionnaire used by the Lobster Pot Restaurant, Limerick City, Ireland
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If important data are not readily available from an existing source, the additional time and cost
involved in obtaining the data must be taken into account. In all cases, the decision-maker should
consider the contribution of the statistical analysis to the decision-making process. The cost of data
acquisition and the subsequent statistical analysis should not exceed the savings generated by using the
information to make a better decision.

Data acquisition errors

Managers should always be aware of the possibility of data errors in statistical studies. Using erroneous
data can be worse than not using any data at all. An error in data acquisition occurs whenever the data
value obtained is not equal to the true or actual value that would be obtained with a correct procedure.
Such errors can occur in a number of ways. For example, an interviewer might make a recording error,
such as a transposition in writing the age of a 24-year-old person as 42, or the person answering an
interview question might misinterpret the question and provide an incorrect response.

Experienced data analysts take great care in collecting and recording data to ensure that errors are not
made. Special procedures can be used to check for internal consistency of the data. For instance, such
procedures would indicate that the analyst should review the accuracy of data for a respondent shown to
be 22 years of age but reporting 20 years of work experience. Data analysts also review data with
unusually large and small values, called outliers, which are candidates for possible data errors. In
Chapter 3 we present some of the methods statisticians use to identify outliers.

Errors often occur during data acquisition. Blindly using any data that happen to be available or using
data that were acquired with little care can result in misleading information and bad decisions. Thus,
taking steps to acquire accurate data can help ensure reliable and valuable decision-making information.

1.4 DESCRIPTIVE STATISTICS

Most of the statistical information in newspapers, magazines company reports and other publications
consists of data that are summarized and presented in a form that is easy for the reader to
understand. Such summaries of data, which may be tabular, graphical or numerical, are referred to as
descriptive statistics.

Refer again to the data set in Table 1.1 showing data on 22 European stock exchanges. Methods of
descriptive statistics can be used to provide summaries of the information in this data set. For example, a
tabular summary of the data for the six busiest exchanges by trade for the categorical variable exchange is
shown in Table 1.4. A graphical summary of the same data, called a bar graph, is shown in Figure 1.4.
These types of tabular and graphical summaries generally make the data easier to interpret. Referring to
Table 1.4 and Figure 1.4, we can see easily that the majority of trades are for the London exchange
(covering trading in Paris, Brussels, Amsterdam and Lisbon). On a percentage basis, 29.1 per cent of all
trades for the 22 European stock exchanges occur through London. Similarly 26.8 per cent occur for
Euronext and 13.4 per cent for Deutsche Börse. Note from Table 1.4 that 93 per cent of all trades take
place in just six of the 22 European exchanges.

T ABLE 1 . 4 Per cent frequencies for six busiest exchanges by trades

Exchange % of Trades

London 29.1

Euronext 26.8

Deutsche Börse 13.4

Borsa Italiana 10.4

NASDAQ OMX Nordic 8.0

Spanish (BME) 4.9

TOTAL 92.6
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A graphical summary of the data for the quantitative variable turnover for the exchanges, called a
histogram, is provided in Figure 1.5. The histogram makes it easy to see that the turnover ranges from
€0.0 to €120 000m, with the highest concentrations between €0 and €30 000m.

In addition to tabular and graphical displays, numerical descriptive statistics are used to summarize
data. The most common numerical descriptive statistic is the average, or mean. Using the data on the
variable turnover for the exchanges in Table 1.1, we can compute the average turnover by adding the
turnover for the 21 exchanges where turnover has been declared and dividing the sum by 21. Doing so
provides an average turnover of €23 144 million. This average demonstrates a measure of the central
tendency, or central location, of the data for that variable.

In a number of fields, interest continues to grow in statistical methods that can be used for developing
and presenting descriptive statistics. Chapters 1 and 3 devote attention to the tabular, graphical and
numerical methods of descriptive statistics.

1.5 STATISTICAL INFERENCE

Many situations require data for a large group of elements (individuals, companies, voters, house-
holds, products, customers and so on). Because of time, cost and other considerations, data can be
collected from only a small portion of the group. The larger group of elements in a particular study
is called the population, and the smaller group is called the sample. Formally, we use the following
definitions.
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The process of conducting a survey to collect data for the entire population is called a census. The
process of conducting a survey to collect data for a sample is called a sample survey. As one of its major
contributions, statistics uses data from a sample to make estimates and test hypotheses about the
characteristics of a population through a process referred to as statistical inference.

As an example of statistical inference, let us consider the study conducted by Electronica Nieves.
Nieves manufactures a high-intensity light bulb used in a variety of electrical products. In an attempt to
increase the useful life of the light bulb, the product design group developed a new light bulb filament. In
this case, the population is defined as all light bulbs that could be produced with the new filament. To
evaluate the advantages of the new filament, 200 bulbs with the new filament were manufactured and
tested. Data collected from this sample showed the number of hours each light bulb operated before the
filament burned out or the bulb failed. See Table 1.5.

Suppose Nieves wants to use the sample data to make an inference about the average hours of useful
life for the population of all light bulbs that could be produced with the new filament. Adding the 200
values in Table 1.5 and dividing the total by 200 provides the sample average lifetime for the light bulbs:
76 hours. We can use this sample result to estimate that the average lifetime for the light bulbs in the
population is 76 hours. Figure 1.6 provides a graphical summary of the statistical inference process for
Electronica Nieves.

T ABLE 1 . 5 Hours until failure for a sample of 200 light bulbs for the Electronica Nieves example

107 73 68 97 76 79 94 59 98 57

54 65 71 70 84 88 62 61 79 98

66 62 79 86 68 74 61 82 65 98

62 116 65 88 64 79 78 79 77 86

74 85 73 80 68 78 89 72 58 69

92 78 88 77 103 88 63 68 88 81

75 90 62 89 71 71 74 70 74 70

65 81 75 62 94 71 85 84 83 63

81 62 79 83 93 61 65 62 92 65

83 70 70 81 77 72 84 67 59 58

78 66 66 94 77 63 66 75 68 76

90 78 71 101 78 43 59 67 61 71

96 75 64 76 72 77 74 65 82 86

66 86 96 89 81 71 85 99 59 92

68 72 77 60 87 84 75 77 51 45

85 67 87 80 84 93 69 76 89 75

83 68 72 67 92 89 82 96 77 102

74 91 76 83 66 68 61 73 72 76

73 77 79 94 63 59 62 71 81 65

73 63 63 89 82 64 85 92 64 73

Sample

A sample is a subset of the population.

NIEVES

Population

A population is the set of all elements of interest in a particular study.
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Whenever statisticians use a sample to estimate a population characteristic of interest, they usually
provide a statement of the quality, or precision, associated with the estimate. For the Nieves example, the
statistician might state that the point estimate of the average lifetime for the population of new light bulbs
is 76 hours with a margin of error of ± four hours. Thus, an interval estimate of the average lifetime for all
light bulbs produced with the new filament is 72 hours to 80 hours. The statistician can also state how
confident he or she is that the interval from 72 hours to 80 hours contains the population average.

1.6 COMPUTERS AND STATISTICAL ANALYSIS

Because statistical analysis typically involves large amounts of data, analysts frequently use computer
software for this work. For instance, computing the average lifetime for the 200 light bulbs in the
Electronica Nieves example (see Table 1.5) would be quite tedious without a computer. To facilitate
computer usage, the larger data sets in this book are available on the website that accompanies the text. A
logo in the left margin of the text (e.g. Nieves) identifies each of these data sets. The data files are available
in MINITAB, SPSS and EXCEL formats. In addition, we provide instructions on the website for carrying
out many of the statistical procedures using MINITAB, SPSS and EXCEL.

1.7 DATA MINING

With the aid ofmagnetic card readers, bar code scanners, and point-of-sale terminals, most organizations obtain
large amounts of data on a daily basis. And, even for a small local restaurant that uses touch screen monitors to
enter orders and handle billing, the amount of data collected can be significant. For large retail companies, the
sheer volume of data collected is hard to conceptualize, and determining how to effectively use these data to
improveprofitability is a challenge. For example,mass retailers such asWal-Mart capturedata on20 to30million
transactions every day, telecommunication companies such asVodafone generated in 2011 an average of a billion
call records per day, and Visa processes 6800 payment transactions per second or approximately 600 million
transactions per day. Storing and managing the transaction data is a significant undertaking.

The term data warehousing is used to refer to the process of capturing, storing and maintaining the
data. Computing power and data collection tools have reached the point where it is now feasible to store
and retrieve extremely large quantities of data in seconds. Analysis of the data in the warehouse may
result in decisions that will lead to new strategies and higher profits for the organization.

The subject of data mining deals with methods for developing useful decision-making information
from large data bases. Using a combination of procedures from statistics, mathematics and computer
science, analysts ‘mine the data’ in the warehouse to convert it into useful information, hence the name

1. Population
consists of all bulbs
manufactured with
the new filament.
Average lifetime

is unknown.

2. A sample of
200 bulbs is

manufactured with
the new filament.

4. The sample average
is used to estimate the

population average.

3. The sample data provide
a sample average lifetime

of 76 hours per bulb.

FIGURE 1.6

The process of statistical

inference for the Electronica

Nieves example
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data mining. Data mining systems that are the most effective use automated procedures to extract
information from the data using only the most general or even vague queries by the user. And data
mining software automates the process of uncovering hidden predictive information that in the past
required hands-on analysis.

The major applications of data mining have been made by companies with a strong consumer focus, such
as retail businesses, financial organizations and communication companies. Data mining has been success-
fully used to help retailers such as Amazon and Barnes & Noble determine one or more related products
that customers who have already purchased a specific product are also likely to purchase. Then, when a
customer logs on to the company’s website and purchases a product, the website uses pop-ups to alert the
customer about additional products that the customer is likely to purchase. In another application, data
mining may be used to identify customers who are likely to spend more than €20 on a particular shopping
trip. These customers may then be identified as the ones to receive special email or regular mail discount
offers to encourage them to make their next shopping trip before the discount termination date.

Data mining is a technology that relies heavily on methodology such as statistics, clustering, decision
trees and rule induction. But it takes a creative integration of all these methods and computer science
technologies involving artificial intelligence and machine learning to make data mining effective. A
significant investment in time and money is required to implement commercial data mining software
packages developed by firms such as IBM SPSS and SAS. The statistical concepts introduced in this text
will be helpful in understanding the statistical methodology used by data mining software packages and
enable you to better understand the statistical information that is developed.

Because statistical models play an important role in developing predictive models in data mining,
many of the concerns that statisticians deal with in developing statistical models are also applicable. For
instance, a concern in any statistical study involves the issue of model reliability. Finding a statistical
model that works well for a particular sample of data does not necessarily mean that it can be reliably
applied to other data. One of the common statistical approaches to evaluating model reliability is to divide
the sample data set into two parts: a training data set and a test data set. If the model developed using the
training data is able to accurately predict values in the test data, we say that the model is reliable. One
advantage that data mining has over classical statistics is that the enormous amount of data available
allows the data mining software to partition the data set so that a model developed for the training data
set may be tested for reliability on other data. In this sense, the partitioning of the data set allows data
mining to develop models and relationships and then quickly observe if they are repeatable and valid with
new and different data. On the other hand, a warning for data mining applications is that with so much
data available, there is a danger of over-fitting the model to the point that misleading associations and
cause/effect conclusions appear to exist. Careful interpretation of data mining results and additional
testing will help avoid this pitfall.

Although statistical methods play an important role in data mining, both in terms of discovering
relationships in the data and predicting future outcomes, a thorough coverage of the topic is outside the
scope of this text.

EXERCISES

1. Discuss the differences between statistics as numerical facts and statistics as a discipline or field

of study.

2. Every year Condé Nast Traveler conducts an annual survey of subscribers to determine the best

new places to stay throughout the world. Table 1.6 shows the ten hotels that were most highly

ranked in their 2006 ‘hot list’ survey. Note that (daily) rates quoted are for double rooms and are

variously expressed in US dollars, British pounds or euros.

a. How many elements are in this data set?

b. How many variables are in this data set?

COMPLETE

SOLUTIONS
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c. Which variables are categorical and which variables are quantitative?

d. What type of measurement scale is used for each of the variables?

3. Refer to Table 1.6:

What is the average number of rooms for the ten hotels?

If 1 = US$1.3149 = £0.8986 compute the average room rate in euros.

What is the percentage of hotels located in Portugal?

What is the percentage of hotels with 20 rooms or fewer?

4. Audio systems are typically made up of an MP3 player, a mini disk player, a cassette player, a CD

player and separate speakers. The data in Table 1.7 show the product rating and retail price range

for a popular selection of systems. Note that the code Y is used to confirm when a player is

included in the system, N when it is not. Output power (watts) details are also provided (Kelkoo

Electronics 2006).

a. How many elements does this data set contain?

b. What is the population?

c. Compute the average output power for the sample.

5. Consider the data set for the sample of eight audio systems in Table 1.7.

a. How many variables are in the data set?

b. Which of the variables are quantitative and which are categorical?

c. What percentage of the audio systems has a four star rating or higher?

d. What percentage of the audio systems includes an MP3 player?

T ABLE 1 . 6 The ten best new hotels to stay in, in the world

Hot list

ranking

Name of

property Country Room rate

Number

of rooms

1 Amangalla, Galle Sri Lanka US$574 30

2 Amanwella, Tangalle Sri Lanka US$275 30

3 Bairro Alto Hotel, Lisbon Portugal 180 55

4 Basico, Playa Del Carmen Mexico US$166 15

5 Beit Al Mamlouka Syria £75 8

6 Brown’s Hotel, London England £347 117

7 Byblos Art Hotel Villa

Amista, Verona

Italy 270 60

8 Cavas Wine Lodge,

Mendoza

Argentina US$375 14

9 Convento Do Espinheiro

Heritage Hotel & Spa,

Evora

Portugal 213 59

10 Cosmopolitan, Toronto Canada £150 97

Source: Condé Nast Traveler, May 2006 (www.cntraveller.com/magazine/the-hot-list-2006)

HOTELS

COMPLETE

SOLUTIONS
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6. State whether each of the following variables is categorical or quantitative and indicate its

measurement scale.

a. Annual sales.

b. Soft drink size (small, medium, large).

c. Occupational classification (SOC 2000).

d. Earnings per share.

e. Method of payment (cash, cheque, credit card).

7. The Health & Wellbeing Survey ran over a three-week period (ending 19 October 2007) and 389

respondents took part. The survey asked the respondents to respond to the statement, ‘How would

you describe your own physical health at this time?’ (http://inform. glam.ac.uk/news/2007/10/

24/health-wellbeing-staff-survey-results/). Response categories were strongly agree, agree,

neither agree or disagree, disagree and strongly disagree.

a. What was the sample size for this survey?

b. Are the data categorical or quantitative?

c. Would it make more sense to use averages or percentages as a summary of the data for

this question?

d. Of the respondents, 57 per cent agreed with the statement. How many individuals provided this

response?

8. State whether each of the following variables is categorical or quantitative and indicate its

measurement scale.

a. Age.

b. Gender.

c. Class rank.

d. Make of car.

e. Number of people favouring closer European integration.

COMPLETE

SOLUTIONS

AUDIO-

SYSTEMS

T ABLE 1 . 7 A sample of eight audio systems

Brand and

model

Product

rating

(# of stars) Price (£)

MP3

player

Mini

disk

player

Cassette

player

CD

(watts)

player Output

Technics

SCEH790

1 320–400 Y N Y Y 360

Yamaha

M170

3 162–290 N N N Y 50

Panasonic

SCPM29

5 188 Y N Y Y 70

Pure Digital

DMX50

3 180–230 N N N Y 80

Sony

CMTNEZ3

5 60–100 Y N Y Y 30

Philips

FWM589

4 143–200 Y N N Y 400

Philips

MCM9

5 93–110 Y N Y Y 100

Samsung

MM-C6

5 100–130 Y N N Y 40

Source: Kelkoo (http://audiovisual.kelkoo.co.uk)
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9. Figure 1.7 provides a bar chart summarizing the actual earnings for Volkswagen for the years

2000 to 2008 (Source: Volkswagen AG Annual Reports 2001–2008).

a. Are the data categorical or quantitative?

b. Are the data times series or cross-sectional?

c. What is the variable of interest?

d. Comment on the trend in Volkswagen’s earnings over time. Would you expect to see an

increase or decrease in 2009?

10. The Hawaii Visitors’ Bureau collects data on visitors to Hawaii. The following questions were

among 16 asked in a questionnaire handed out to passengers during incoming airline flights.

This trip to Hawaii is my: 1st, 2nd, 3rd, 4th, etc.

The primary reason for this trip is: (ten categories including vacation, convention, honeymoon).

Where I plan to stay: (11 categories including hotel, apartment, relatives, camping).

Total days in Hawaii.

a. What is the population being studied?

b. Is the use of a questionnaire a good way to reach the population of passengers on incoming

airline flights?

c. Comment on each of the four questions in terms of whether it will provide categorical or

quantitative data.

11. A manager of a large corporation recommends a $10 000 raise be given to keep a valued

subordinate from moving to another company. What internal and external sources of data might

be used to decide whether such a salary increase is appropriate?

12. In a recent study of causes of death in men 60 years of age and older, a sample of 120 men

indicated that 48 died as a result of some form of heart disease.

a. Develop a descriptive statistic that can be used as an estimate of the percentage of men 60

years of age or older who die from some form of heart disease.

b. Are the data on cause of death categorical or quantitative?

c. Discuss the role of statistical inference in this type of medical research.

13. In 2007, 75.4 per cent of Economist readers had stayed in a hotel on business in the previous

12 months with 32.4 per cent of readers using first business class for travel.

a. What is the population of interest in this study?

b. Is class of travel a categorical or quantitative variable?

c. If a reader had stayed in a hotel on business in the previous 12 months, would this be classed

as a categorical or quantitative variable?

d. Does this study involve cross-sectional or time series data?

e. Describe any statistical inferences The Economist might make on the basis of the survey.
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SUMMARY

Statistics is the art and science of collecting, analyzing, presenting and interpreting data. Nearly every

college student majoring in business or economics is required to take a course in statistics. We began

the chapter by describing typical statistical applications for business and economics.

Data consist of the facts and figures that are collected and analyzed. A set of measurements

obtained for a particular element is an observation, Four scales of measurement used to obtain data

on a particular variable include nominal, ordinal, interval and ratio. The scale of measurement for a

variable is nominal when the data use labels or names to identify an attribute of an element. The scale

is ordinal if the data demonstrate the properties of nominal data and the order or rank of the data is

meaningful. The scale is interval if the data demonstrate the properties of ordinal data and the interval

between values is expressed in terms of a fixed unit of measure. Finally, the scale of measurement is

ratio if the data show all the properties of interval data and the ratio of two values is meaningful.

For purposes of statistical analysis, data can be classified as categorical or quantitative.

Categorical data use labels or names to identify an attribute of each element. Categorical data

use either the nominal or ordinal scale of measurement and may be non-numeric or numeric.

Quantitative data are numeric values that indicate how much or how many. Quantitative data use

either the interval or ratio scale of measurement. Ordinary arithmetic operations are meaningful only if

the data are quantitative. Therefore, statistical computations used for quantitative data are not always

appropriate for categorical data.

In Sections 1.4 and 1.5 we introduced the topics of descriptive statistics and statistical inference.

Definitions of the population and sample were provided and different types of descriptive statistics –

tabular, graphical and numerical – used to summarize data. The process of statistical inference uses data

obtained from a sample to make estimates or test hypotheses about the characteristics of a population.

The last two sections of the chapter provide information on the role of computers in statistical

analysis and a brief overview of the relative new field of data mining.

KEY TERMS

Categorical data

Categorical variable

Census

Cross-sectional data

Data

Data mining

Data set

Descriptive statistics

Elements

Interval scale

Nominal scale

Observation

Ordinal scale

Population

Quantitative data

Quantitative variable

Ratio scale

Sample

Sample survey

Statistical inference

Statistics

Time series data

Variable

ONLINE RESOURCES

For the data files and additional online resources for Chapter 1, go to the accompanying online platform.

(See the ‘About the Digital Resources’ page in the front of the book for more information on access.)
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2
Descriptive
Statistics: Tabular
and Graphical
Presentations

CHAPTER CONTENTS

Statistics in Practice Marks and Spencer: not just any statistical graphics

2.1 Summarizing qualitative data

2.2 Summarizing quantitative data

2.3 Cross-tabulations and scatter diagrams

LEARNING OBJECTIVES After studying this chapter and doing the exercises, you should be able

to construct and interpret several different types of tabular and graphical data summaries.

1 For single qualitative variables: frequency, relative

frequency and percentage frequency distributions;

bar charts and pie charts.

2 For single quantitative variables: frequency, relative

frequency and percentage frequency distributions;

cumulative frequency, relative cumulative frequency

and percentage cumulative frequency distributions;

dot plots, stem-and-leaf plots, histograms and

cumulative distribution plots (ogives).

3 For pairs of qualitative and quantitative data:

cross-tabulations, with row and column percentages.

4 For pairs of quantitative variables: scatter diagrams.

5 You should be able to give an example of

Simpson’s paradox and explain the relevance

of this paradox to the cross-tabulation of variables.

As explained in Chapter 1, data can be classified as either qualitative or quantitative. Qualitative data

use labels or names to identify categories of like items. Quantitative data are numerical values that
indicate how much or how many.

This chapter introduces tabular and graphical methods commonly used to summarize both qualitative
and quantitative data. Everyone is exposed to these types of presentation in annual reports (see Statistics
in Practice), newspaper articles and research studies. It is important to understand how they are prepared
and how they should be interpreted. We begin with methods for summarizing single variables. Section 2.3
introduces methods for summarizing the relationship between two variables.

Modern spreadsheet and statistical software packages provide extensive capabilities for summarizing
data and preparing graphical presentations. EXCEL, IBM SPSS and MINITAB are three widely available
packages. There are guides to some of their capabilities on the associated online platform.
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STATISTICS IN PRACTICE

Marks & Spencer: not just any

statistical graphics

Marks & Spencer has a company history going

back to 1884. The group is based in London,

but has offices across the UK as well as overseas.

Most people are likely to have come across its

promotional activities and its advertising slogan

‘Your M&S’. Marks & Spencer advertisements have

featured a long list of well-known faces, including

Twiggy, Erin O’Connor, David Beckham, Claudia

Schiffer, Rosie Huntington-Whiteley and Antonio

Banderas.

Marks & Spencer’s shares are traded on the

London Stock Exchange and it is a constituent of

the FTSE 100 Index. Like all public companies,

Marks & Spencer publishes an annual report. In the

annual report, alongside many photographs of its

ambassadors and models, there are pictures of a

different nature: statistical charts illustrating in par-

ticular the financial performance of the company.

The examples here are from Marks and Spencer’s

2013 Annual Report. First is a chart showing Marks

& Spencer’s governance framework, then a bar chart

showing the breakdown of Marks & Spencer’s inter-

national revenue, and finally a line graph showing

mystery shopper feedback.

We are exposed to statistical charts of this type

almost daily: in newspapers and magazines, on TV,

online and in business reports such as the Marks &

Spencer Annual Report. In this chapter, you will learn

about tabular and graphical methods of descriptive

statistics such as frequency distributions, bar

charts, histograms, stem-and-leaf displays, cross-

tabulations and others. The goal of these methods

is to summarize data so that they can be easily

understood and interpreted.

A window display showing an array of personalities who have modelled for Marks & Spencer
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For more on our Governance framework go to

marksandspencer.com/the company

             We are continuing to transform M&S into a more

internationally focused business and are making progress

against our target of increasing international sales by

£300 m to £500 m by 2013/14.

International revenue

£1,075.4 m
11/12  

12/13

11/12

10/11

09/10

10/11

09/10

£1,066.1 m
£1,075.4 m

£1,066.1 m

£1,077.3 m

£968.7 m

£1,007.3 m

£968.7 m
4.5%

             Mystery Shop scores remained high

this year at 81%. However, to help us be more

in touch with customers we plan to replace our

monthly Mystery Shop programme with a more

regular, in-depth customer satisfaction survey.

             As consumer’s shopping habits change, we

continue to evolve our space selectively. We expect the

planned opening of new space will add c.2% to

the UK in 2013/14.

UK Mystery Shopping scores Annual space growth

2.8%
85

11/12 12/13

80

Average score

81%

75
Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

Analysis

Analysis

Analysis

Group Board,

Audit,

Remuneration

and Nomination

Committees

Our Committees and Committee Chairmen
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2.1 SUMMARIZING QUALITATIVE DATA

Frequency distribution

We begin with a definition.

The following example demonstrates the construction and interpretation of a frequency

distribution for qualitative data. Audi, BMW, Mercedes, Opel and VW are five popular brands
of car in Germany. The data in Table 2.1 are for a sample of 50 new car purchases of these
five brands.

To construct a frequency distribution, we count the number of times each brand appears in Table 2.1.
VW appears 19 times, Mercedes appears 13 times and so on. These counts are summarized in the
frequency distribution in Table 2.2. The summary offers more insight than the original data. We see that
VW is the leader, Mercedes is second, Audi is third. Opel and BMW are tied for fourth.

Relative frequency and percentage frequency distributions

A frequency distribution shows the number (frequency) of items in each of several non-overlapping
classes. We are often interested in the proportion, or percentage, of items in each class. The relative
frequency of a class is the fraction or proportion of items belonging to a class. For a data set with n
observations, the relative frequency of each class is:

Frequency distribution

A frequency distribution is a tabular summary of data showing the number (frequency) of items in each of

several non-overlapping classes.

T ABLE 2 . 1 Data from a sample of 50 new car purchases

VW BMW Mercedes Audi VW

VW Mercedes Audi VW Audi

VW VW VW Audi Mercedes

VW VW Opel Opel BMW

VW Audi Mercedes Audi Mercedes

VW Mercedes Mercedes VW Mercedes

VW VW Mercedes Opel Mercedes

Mercedes BMW VW VW VW

BMW Opel Audi Opel Mercedes

VW Mercedes BMW VW Audi

T ABLE 2 . 2 Frequency distribution of new car purchases

Brand Frequency

Audi 8

BMW 5

Mercedes 13

Opel 5

VW 19

Total 50

CAR BRANDS
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The percentage frequency of a class is the relative frequency multiplied by 100.
A relative frequency distribution is a tabular summary showing the relative frequency for each class.

A percentage frequency distribution summarizes the percentage frequency for each class. Table 2.3
shows these distributions for the car purchase data. The relative frequency for VW is 19/50 = 0.38,
the relative frequency for Mercedes is 13/50 = 0.26 and so on. From the percentage frequency
distribution, we see that 38 per cent of the purchases were VW, 26 per cent were Mercedes and so
on. We can also note, for example, that 38 26 = 64 per cent of the purchases were of the top two
car brands.

Bar charts and pie charts

A bar chart, or bar graph, is a pictorial representation of a frequency, relative frequency, or percentage
frequency distribution. On one axis of the chart (usually the horizontal), we specify the labels for the
classes (categories) of data. A frequency, relative frequency or percentage frequency scale can be used for
the other axis of the chart (usually the vertical). Then, using a bar of fixed width drawn above each class
label, we make the length of the bar equal the frequency, relative frequency or percentage frequency of the
class. For qualitative data, the bars should be separated to emphasize the fact that each class is separate.
Figure 2.1 shows a bar chart of the frequency distribution for the 50 new car purchases.
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Relative frequency

Relative frequency of a class
Frequency of the class

n
(2 1)

T ABLE 2 . 3 Relative and percentage frequency distributions of new car purchases

Brand Relative frequency Percentage frequency

Audi 0.16 16

BMW 0.10 10

Mercedes 0.26 26

Opel 0.10 10

VW 0.38 38

Total 1.00 100
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A pie chart is another way of presenting relative frequency and percentage frequency distributions.
We first draw a circle to represent all the data. Then we subdivide the circle into sectors that correspond
to the relative frequency for each class. For example, because a circle contains 360 degrees and VW shows
a relative frequency of 0.38, the sector of the pie chart labelled VW consists of 0.38(360) = 136.8 degrees.
The sector of the pie chart labelled Mercedes consists of 0.26(360) = 93.6 degrees. Similar calculations for
the other classes give the pie chart in Figure 2.2. The numerical values shown for each sector can be
frequencies, relative frequencies or percentage frequencies.

Often the number of classes in a frequency distribution is the same as the number of categories in the data, as
for the car purchase data in this section. Data that included all car brands would requiremany categories,most of
whichwouldhave a small numberof purchases.Classeswith smaller frequencies canbegrouped intoanaggregate
class labelled ‘other’. Classes with frequencies of 5 per cent or less would most often be treated in this way.

In quality control applications, bar charts are used to summarize the most important causes of
problems. When the bars are arranged in descending order of height from left to right with the most
frequently occurring cause appearing first, the bar chart is called a Pareto diagram, named after its
founder, Vilfredo Pareto, an Italian economist.

Audi

16%

BMW

10%

Mercedes

26%Opel

10%

VW

38%

FIGURE 2.2

Pie chart of new car

purchases

EXERCISES

Methods

1. The response to a question has three alternatives: A, B and C. A sample of 120 responses provides

60 A, 24 B and 36 C. Construct the frequency and relative frequency distributions.

2. A partial relative frequency distribution is given below.

Class Relative frequency

A 0.22

B 0.18

C 0.40

D

a. What is the relative frequency of class D?

b. The total sample size is 200. What is the frequency of class D?

c. Construct the frequency distribution.

d. Construct the percentage frequency distribution.

3. A questionnaire provides 58 Yes, 42 No and 20 No-opinion answers.

a. In the construction of a pie chart, how many degrees would be in the sector of the pie showing the

Yes answers?

COMPLETE

SOLUTIONS
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b. How many degrees would be in the sector of the pie showing the No answers?

c. Construct a pie chart.

d. Construct a bar chart.

Applications

4. CEM4Mobile is a customer experience management company based in Finland. The company does

extensive market research in the mobile telecommunications field. Its research shows that the four

most popular mobile operating systems in Nordic countries are Apple iOS, Symbian OS, Android and

Nokia OS. A sample of 50 page loads from mobile browsing services follows.

Android Android Android Symbian Apple Apple Symbian Apple Apple Android

Android Symbian Android Apple Nokia Android Apple Apple Apple Nokia

Nokia Apple Symbian Apple Nokia Symbian Android Nokia Android Apple

Android Symbian Symbian Apple Android Android Apple Android Android Apple

Apple Nokia Symbian Symbian Android Android Apple Symbian Symbian Android

a. Are these data qualitative or quantitative?

b. Construct frequency and percentage frequency distributions.

c. Construct a bar chart and a pie chart.

d. On the basis of the sample, which mobile operating system was the most popular?

Which one was second?

5. A Wikipedia article listed the six most common last names in Belgium as (in alphabetical order):

Jacobs, Janssens, Maes, Mertens, Peeters and Willems. A sample of 50 individuals with one of these

last names provided the following data.

Peeters Peeters Willems Janssens Janssens Peeters Jacobs Maes Janssens Mertens

Jacobs Maes Peeters Willems Jacobs Maes Peeters Janssens Maes Maes

Peeters Maes Peeters Maes Janssens Janssens Mertens Jacobs Jacobs Peeters

Mertens Maes Peeters Janssens Willems Willems Peeters Janssens Willems Mertens

Jacobs Willems Peeters Janssens Mertens Janssens Peeters Mertens Mertens Janssens

Summarize the data by constructing the following:

a. Relative and percentage frequency distributions.

b. A bar chart.

c. A pie chart.

d. Based on these data, what are the three most common last names?

6. The flextime system at Electronics Associates allows employees to begin their working day at 7:00,

7:30, 8:00, 8:30 or 9:00 a.m. The following data represent a sample of the starting times selected by

the employees.

7:00 8:30 9:00 8:00 7:30 7:30 8:30 8:30 7:30 7:00

8:30 8:30 8:00 8:00 7:30 8:30 7:00 9:00 8:30 8:00

Summarize the data by constructing the following:

a. A frequency distribution.

b. A percentage frequency distribution.

c. A bar chart.

d. A pie chart.

e. What do the summaries tell you about employee preferences in the flextime system?

7. A Merrill Lynch Client Satisfaction Survey asked clients to indicate how satisfied they were with their

financial consultant. Client responses were coded 1 to 7, with 1 indicating ‘not at all satisfied’ and

COMPLETE

SOLUTIONS

NORDIC OS

BELGIUM

NAMES
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2.2 SUMMARIZING QUANTITATIVE DATA

Frequency distribution

As defined in Section 2.1, a frequency distribution is a tabular summary of data showing the number
(frequency) of items in each of several non-overlapping classes. This definition holds for quantitative as
well as qualitative data. However, with quantitative data there is usually more work involved in defining
the non-overlapping classes.

Consider the quantitative data in Table 2.4. These data show the time in days required to complete
year-end audits for a sample of 20 clients of Sanderson and Clifford, a small accounting firm. The data are
rounded to the nearest day. The three steps necessary to define the classes for a frequency distribution
with quantitative data are:

1 Determine the number of non-overlapping classes.

2 Determine the width of each class.

3 Determine the class limits.

We demonstrate these steps using the audit time data in Table 2.4.

Number of classes
Classes are formed by specifying ranges that will be used to group the data. As a general guideline, we
recommend using between 5 and 20 classes. For a small sample of data, as few as five or six classes may be
used to summarize the data. For larger samples, more classes are usually required. The aim is to use
enough classes to show the pattern of variation in the data, but not so many classes that some contain
very few data points. Because the sample in Table 2.4 is relatively small (n = 20), we chose to construct a
frequency distribution with five classes.

7 indicating ‘extremely satisfied’. The following data are from a sample of 60 responses for a

particular financial consultant.

5 7 6 6 7 5 5 7 3 6

7 7 6 6 6 5 5 6 7 7

6 6 4 4 7 6 7 6 7 6

5 7 5 7 6 4 7 5 7 6

6 5 3 7 7 6 6 6 6 5

5 6 6 7 7 5 6 4 6 6

a. Construct a frequency distribution and a relative frequency distribution for the data.

b. Construct a bar chart.

c. On the basis of your summaries, comment on the clients’ overall evaluation of the financial consultant.

T ABLE 2 . 4 Year-end audit times (in days)

12 14 19 18 15 15 18 17 20 27

22 23 22 21 33 28 14 18 16 13

AUDIT
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Width of the classes
The second step is to choose a width for the classes. As a general guideline, we recommend using the same
width for each class. This reduces the chance of inappropriate interpretations. The choices for the number
and the width of classes are not independent decisions. More classes means a smaller class width and vice
versa. To determine an approximate class width, we identify the largest and smallest data values. Then we
can use the following expression to determine the approximate class width.

The approximate width given by equation (2.2) can be rounded to a more convenient value. For
example, an approximate class width of 9.28 might be rounded to 10.

For the year-end audit times, the largest value is 33 and the smallest value is 12. We decided to
summarize the data with five classes, so equation (2.2) provides an approximate class width of (33 12)/
5 = 4.2. We decided to round up and use a class width of five days.

In practice, the number of classes and the appropriate class width are determined by trial and error.
Once a possible number of classes is chosen, equation (2.2) is used to find the approximate class width.
The process can be repeated for a different number of classes. Ultimately, the analyst uses judgement to
determine the number of classes and class width that provide a good summary of the data. Different
people may construct different, but equally acceptable, frequency distributions. The goal is to reveal the
natural grouping and variation in the data.

For the audit time data, after deciding to use five classes, each with a width of five days, the next task is
to specify the class limits for each of the classes.

Class limits
Class limits must be chosen so that each data item belongs to one and only one class. The lower class limit
identifies the smallest possible data value assigned to the class. The upper class limit identifies the largest
possible data value assigned to the class. In constructing frequency distributions for qualitative data, we
did not need to specify class limits because each data item naturally fell into a separate class (category).
But with quantitative data, class limits are necessary to determine where each data value belongs.

Using the audit time data, we selected ten days as the lower class limit and 14 days as the upper class
limit for the first class. This class is denoted 10–14 in Table 2.5. The smallest data value, 12, is included in
the 10–14 class. We then selected 15 days as the lower class limit and 19 days as the upper class limit
of the next class. We continued defining the lower and upper class limits to obtain a total of five classes:
10–14, 15–19, 20–24, 25–29 and 30–34. The largest data value, 33, is included in the 30–34 class. The
difference between the lower class limits of adjacent classes is the class width. Using the first two lower
class limits of 10 and 15, we see that the class width is 15 10 = 5.

A frequency distribution can now be constructed by counting the number of data values belonging
to each class. For example, the data in Table 2.5 show that four values (12, 14, 14 and 13) belong to the
10–14 class. The frequency for the 10–14 class is 4. Continuing this counting process for the 15–19,
20–24, 25–29 and 30–34 classes provides the frequency distribution in Table 2.5. Using this frequency
distribution, we can observe that:

1 The most frequently occurring audit times are in the class 15–19 days. Eight of the 20 audit times
belong to this class.

2 Only one audit required 30 or more days.

Other comments are possible, depending on the interests of the person viewing the frequency
distribution. The value of a frequency distribution is that it provides insights about the data not easily
obtained from the data in their original unorganized form.

Approximate class width

Largest data value Smallest data value

Number of classes
(2 2)
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The appropriate values for the class limits with quantitative data depend on the level of accuracy of the
data. For instance, with the audit time data, the limits used were integer values because the data were
rounded to the nearest day. If the data were rounded to the nearest one-tenth of a day (e.g. 12.3, 14.4), the
limits would be stated in tenths of days. For example, the first class would be 10.0–14.9. If the data were
rounded to the nearest one-hundredth of a day (e.g. 12.34, 14.45), the limits would be stated in
hundredths of days, e.g. the first class would be 10.00–14.99.

An open-ended class requires only a lower class limit or an upper class limit. For example, in the audit
time data, suppose two of the audits had taken 58 and 65 days. Rather than continuing with classes 35–39,
40–44, 45–49 and so on, we could simplify the frequency distribution to show an open-ended class of ‘35
or more’. This class would have a frequency count of 2. Most often the open-ended class appears at the
upper end of the distribution. Sometimes an open-ended class appears at the lower end of the distribution
and occasionally such classes appear at both ends.

Class midpoint
In some applications, we want to know the midpoints of the classes in a frequency distribution for
quantitative data. The class midpoint is the value halfway between the lower and upper class limits. For
the audit time data, the five class midpoints are 12, 17, 22, 27 and 32.

Relative frequency and percentage frequency distributions

We define the relative frequency and percentage frequency distributions for quantitative data in the same
way as for qualitative data. The relative frequency is simply the proportion of the observations belonging
to a class. With n observations,

Relative frequency of a class
Frequency of the class

n

The percentage frequency of a class is the relative frequency multiplied by 100.
Based on the class frequencies in Table 2.5 and with n = 20, Table 2.6 shows the relative frequency and

percentage frequency distributions for the audit time data. Note that 0.40 of the audits, or 40 per cent,
required from 15 to 19 days. Only 0.05 of the audits, or 5 per cent, required 30 or more days. Again,
additional interpretations and insights can be obtained by using Table 2.6.

T ABLE 2 . 5 Frequency distribution for the audit time data

Audit time (days) Frequency

10–14 4

15–19 8

20–24 5

25–29 2

30–34 1

Total 20

T ABLE 2 . 6 Relative and percentage frequency distributions for the audit time data

Audit time (days) Relative frequency Percentage frequency

10–14 0.20 20

15–19 0.40 40

20–24 0.25 25

25–29 0.10 10

30–34 0.05 5

Total 1.00 100
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Dot plot

One of the simplest graphical summaries of data is a dot plot. A horizontal axis shows the range of values
for the observations. Each data value is represented by a dot placed above the axis. Figure 2.3 is a dot plot
produced in MINITAB for the audit time data in Table 2.4. The three dots located above 18 on the
horizontal axis indicate that three audit times of 18 days occurred.

Dot plots show the details of the data and are useful for comparing data distributions for two or more
samples. For example, Figure 2.4 shows a MINITAB dot plot comparing the selling prices of houses for
two samples of houses: one in town locations and the other in village locations.

Histogram

A histogram is a chart showing quantitative data previously summarized in a frequency, relative
frequency or percentage frequency distribution. The variable of interest is placed on the horizontal axis
and the frequency, relative frequency or percentage frequency on the vertical axis. The frequency, relative
frequency or percentage frequency of each class is shown by drawing a rectangle whose base is
determined by the class limits on the horizontal axis and whose height is the corresponding frequency,
relative frequency or percentage frequency.

Figure 2.5 is a histogram for the audit time data. The class with the greatest frequency is shown by the
rectangle above the class 15–19 days. The height of the rectangle shows that the frequency of this class is 8. A
histogram for the relative or percentage frequency distribution of this datawould look the same as the histogram
in Figure 2.5 except that the vertical axis would be labelled with relative or percentage frequency values.

As Figure 2.5 shows, the adjacent rectangles of a histogram touch one another. This is the usual
convention for a histogram, unlike a bar chart. Because the classes for the audit time data are stated as
10–14, 15–19, 20–24 and so on, one-unit spaces of 14 to 15, 19 to 20, etc. would seem to be needed
between the classes. Eliminating the spaces in the histogram for the audit-time data helps show that, even
though the data are rounded to the nearest full day, all values between the lower limit of the first class and
the upper limit of the last class are possible.

One of the most important uses of a histogram is to provide information about the shape, or form, of a
distribution. Figure 2.6 contains four histograms constructed from relative frequency distributions. Panel
A shows the histogram for a set of data moderately skewed to the left. A histogram is skewed to the left, or
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negatively skewed, if its tail extends further to the left. A histogram like this might be seen for scores from
a relatively simple test. There are no scores above 100 per cent, most of the scores are above 70 per cent
and only a few really low scores occur. Panel B shows the histogram for a set of data moderately skewed
to the right. A histogram is skewed to the right, or positively skewed, if its tail extends further to the right.
An example of this type of histogram would be for data such as house values. A relatively small number of
expensive homes create the skewness in the right tail.

Panel C shows a symmetrical histogram. In a symmetrical histogram, the left tail mirrors the shape of
the right tail. Histograms for real data are never perfectly symmetrical, but for many applications may be
roughly symmetrical. Data for IQ scores, heights and weights of people and so on, lead to histograms that
are roughly symmetrical. Panel D shows a histogram highly skewed to the right (positively skewed). This
histogram was constructed from data on the amount of customer purchases over one day at a women’s
clothing store. Data from applications in business and economics often lead to histograms that are skewed
to the right: for instance, data on wealth, salaries, purchase amounts and so on.

Cumulative distributions

A variation of the frequency distribution that provides another tabular summary of quantitative data is
the cumulative frequency distribution. The cumulative frequency distribution uses the number of classes,
class widths and class limits adopted for the frequency distribution. However, rather than showing the
frequency of each class, the cumulative frequency distribution shows the number of data items with values
less than or equal to the upper class limit of each class. The first two columns of Table 2.7 show the
cumulative frequency distribution for the audit time data.
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Consider the class with the description ‘less than or equal to 24’. The cumulative frequency for this
class is simply the sum of the frequencies for all classes with data values less than or equal to 24. For the
frequency distribution in Table 2.5, the sum of the frequencies for classes 10–14, 15–19 and 20–24
indicates that 4 8 5 = 17 data values are less than or equal to 24. The cumulative frequency
distribution in Table 2.7 also shows that four audits were completed in 14 days or less and 19 audits were
completed in 29 days or less.

A cumulative relative frequency distribution shows the proportion of data items and a cumulative

percentage frequency distribution shows the percentage of data items with values less than or equal to
the upper limit of each class. The cumulative relative frequency distribution can be computed either by
summing the relative frequencies in the relative frequency distribution, or by dividing the cumulative
frequencies by the total number of items. Using the latter approach, we found the cumulative relative
frequencies in column 3 of Table 2.7 by dividing the cumulative frequencies in column 2 by the total
number of items (n = 20). The cumulative percentage frequencies were computed by multiplying the
cumulative relative frequencies by 100.

The cumulative relative and percentage frequency distributions show that 0.85 of the audits, or 85 per cent,
were completed in 24 days or less; 0.95 of the audits, or 95 per cent, were completed in 29 days or less and so on.

The last entry in a cumulative frequency distribution always equals the total number of observations.
The last entry in a cumulative relative frequency distribution always equals 1.00 and the last entry in a
cumulative percentage frequency distribution always equals 100.

Cumulative distribution plot (ogive)

A graph of a cumulative distribution, called an ogive, shows data values on the horizontal axis and either
the cumulative frequencies, the cumulative relative frequencies, or the cumulative percentage frequencies
on the vertical axis. Figure 2.7 illustrates a cumulative distribution plot or ogive for the cumulative
frequencies of the audit time data.

T ABLE 2 . 7 Cumulative frequency, cumulative relative frequency and cumulative percentage frequency

distributions for the audit time data

Audit time (days)

Cumulative

frequency

Cumulative relative

frequency

Cumulative percentage

frequency

Less than or equal to 14 4 0.20 20

Less than or equal to 19 12 0.60 60

Less than or equal to 24 17 0.85 85

Less than or equal to 29 19 0.95 95

Less than or equal to 34 20 1.00 100
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The ogive is constructed by plotting a point corresponding to the cumulative frequency of each class. Because
the classes for the audit time data are 10–14, 15–19, 20–24 and so on, one-unit gaps appear from14 to 15, 19 to 20
and soon.These gaps are eliminatedby plottingpoints halfwaybetween the class limits. So, 14.5 is used for the 10–
14class, 19.5 is used for the15–19 class andsoon.The ‘less thanor equal to14’ classwitha cumulative frequencyof
four is shownon theogive inFigure 2.7 by thepoint located at 14.5 on thehorizontal axis and4on the vertical axis.
The ‘less than or equal to 19’ class with a cumulative frequency of 12 is shown by the point located at 19.5 on the
horizontal axis and 12 on the vertical axis.Note that one additional point is plotted at the left endof the ogive. This
point starts the ogive by showing that nodata values fall below the 10–14 class. It is plotted at 9.5 on the horizontal
axis and 0 on the vertical axis. The plotted points are connected by straight lines to complete the ogive.

Exploratory data analysis: stem-and-leaf display

Exploratory data analysis techniques consist of simple arithmetic and easy-to-draw graphs that can be used
to summarize data quickly. One technique – referred to as a stem-and-leaf display – can be used to show both
the rank order and shape of a data set simultaneously. To illustrate the stem-and-leaf display, consider the data
in Table 2.8. These came from a 150-question aptitude test given to 50 individuals recently interviewed for a
position at Hawkins Manufacturing. The data indicate the number of questions answered correctly.

To construct a stem-and-leaf display, we first arrange the leading digits of each data value to the left of a
vertical line. To the right of the vertical line, on the line corresponding to the appropriate first digit, we record
the last digit for each data value as we pass through the observations in the order they were recorded.

6 9 8

7 2 3 6 3 6 5

8 6 2 3 1 1 0 4 5

9 7 2 2 6 2 1 5 8 8 5 4

10 7 4 8 0 2 6 6 0 6

11 2 8 5 9 3 5 9

12 6 8 7 4

13 2 4

14 1

Sorting the digits on each line into rank order is now relatively simple. This leads to the stem-and-leaf
display shown here.

6 8 9

7 2 3 3 5 6 6

8 0 1 1 2 3 4 5 6

9 1 2 2 2 4 5 5 6 7 8 8

10 0 0 2 4 6 6 6 7 8

11 2 3 5 5 8 9 9

12 4 6 7 8

13 2 4

14 1

The numbers to the left of the vertical line (6, 7, …, 14) form the stem, and each digit to the right of the
vertical line is a leaf. For example, the first row has a stem value of 6 and leaves of 8 and 9. It indicates
that two data values have a first digit of six. The leaves show that the data values are 68 and 69. Similarly,
the second row indicates that six data values have a first digit of 7. The leaves show that the data values
are 72, 73, 73, 75, 76 and 76. Rotating the page counter-clockwise onto its side provides a picture of the
data that is similar to a histogram with classes of 60–69, 70–79, 80–89 and so on.
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Although the stem-and-leaf display may appear to offer the same information as a histogram, it has
two primary advantages.

1 The stem-and-leaf display is easier to construct by hand for small data sets.

2 Within a class interval, the stem-and-leaf display provides more information than the histogram
because the stem-and-leaf shows the actual data.

Just as a frequency distribution or histogram has no absolute number of classes, neither does a stem-
and-leaf display have an absolute number of rows or stems. If we believe that our original stem-and-leaf
display condensed the data too much, we can stretch the display by using two stems for each leading digit
(using five stems for each leading digit is also a possibility). Using two stems for each leading digit, we
would place all data values ending in 0, 1, 2, 3 and 4 in one row and all values ending in 5, 6, 7, 8 and 9 in
a second row. The following display illustrates this approach. This stretched stem-and-leaf display is
similar to a frequency distribution with intervals of 65–69, 70–74, 75–79 and so on.

6 8 9
7 2 3 3
7 5 6 6
8 0 1 1 2 3 4
8 5 6
9 1 2 2 2 4
9 5 5 6 7 8 8

10 0 0 2 4
10 6 6 6 7 8
11 2 3
11 5 5 8 9 9
12 4
12 6 7 8
13 2 4
14 1

The preceding example shows a stem-and-leaf display for data with three digits. Stem-and-leaf displays
for data with more than three digits are possible. For example, consider the following data on the number
of burgers sold by a fast-food restaurant for each of 15 weeks.

1565 1852 1644 1766 1888 1912 2044 1812
1790 1679 2008 1852 1967 1954 1733

A stem-and-leaf display of these data follows.

Leaf unit = 10

15 6
16 4 7
17 3 6 9
18 1 5 5 8
19 1 5 6
20 0 4

T ABLE 2 . 8 Number of questions answered correctly on an aptitude test

112 72 69 97 107 73 92 76 86 73

126 128 118 127 124 82 104 132 134 83

92 108 96 100 92 115 76 91 102 81

95 141 81 80 106 84 119 113 98 75

68 98 115 106 95 100 85 94 106 119
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A single digit is used to define each leaf, and only the first three digits of each observation have been used to
construct the display. At the top of the display we have specified leaf unit = 10. Consider the first stem (15)
and its associated leaf (6). Combining these numbers gives 156. To reconstruct an approximation of the
original data value, we must multiply this number by 10, the value of the leaf unit: 156 10 = 1560.
Although it is not possible to reconstruct the exact data value from the display, using a single digit for each
leaf enables stem-and-leaf displays to be constructed for data having a large number of digits. Leaf units may
be 100, 10, 1, 0.1 and so on. Where the leaf unit is not shown on the display, it is assumed to equal 1.

EXERCISES

Methods

8. Consider the following data.

14 21 23 21 16 19 22 25 16 16

24 24 25 19 16 19 18 19 21 12

16 17 18 23 25 20 23 16 20 19

24 26 15 22 24 20 22 24 22 20

a. Construct a frequency distribution using classes of 12–14, 15–17, 18–20, 21–23 and 24–26.

b. Construct a relative frequency distribution and a percentage frequency distribution using the

classes in (a).

9. Consider the following frequency distribution. Construct a cumulative frequency distribution and a

cumulative relative frequency distribution.

Class Frequency

10–19 10

20–29 14

30–39 17

40–49 7

50–59 2

10. Construct a histogram and an ogive for the data in Exercise 9.

11. Consider the following data.

8.9 10.2 11.5 7.8 10.0 12.2 13.5 14.1 10.0 12.2

6.8 9.5 11.5 11.2 14.9 7.5 10.0 6.0 15.8 11.5

a. Construct a dot plot.

b. Construct a frequency distribution.

c. Construct a percentage frequency distribution.

12. Construct a stem-and-leaf display for the following data.

70 72 75 64 58 83 80 82 76 75 68 65 57 78 85 72

13. Construct a stem-and-leaf display for the following data.

11.3 9.6 10.4 7.5 8.3 10.5 10.0 9.3 8.1 7.7 7.5 8.4 6.3 8.8

FREQUENCY

COMPLETE

SOLUTIONS

COMPLETE

SOLUTIONS
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Applications

14. A doctor’s office staff studied the waiting times for patients who arrive at the office with a request

for emergency service. The following data with waiting times in minutes were collected over a

one-month period.

2 5 10 12 4 4 5 17 11 8 9 8 12 21 6 8 7 13 18 3

Use classes of 0–4, 5–9 and so on in the following:

a. Show the frequency distribution.

b. Show the relative frequency distribution.

c. Show the cumulative frequency distribution.

d. Show the cumulative relative frequency distribution.

e. What proportion of these patients wait nine minutes or less?

15. Data for the numbers of units produced by a production employee during the most recent 20 days

are shown here.

160 170 181 156 176 148 198 179 162 150

162 156 179 178 151 157 154 179 148 156

Summarize the data by constructing the following:

a. A frequency distribution.

b. A relative frequency distribution.

c. A cumulative frequency distribution.

d. A cumulative relative frequency distribution.

e. A cumulative distribution plot (ogive).

16. The closing prices of 40 company shares (in Kuwaiti dinar) follow.

44.00 0.80 69.00 226.00 68.00 51.00 265.00 130.00

172.00 202.00 52.00 134.00 81.00 50.00 550.00 28.50

13.00 435.00 218.00 270.00 52.00 108.00 248.00 0.45

188.00 800.00 59.00 65.00 355.00 410.00 102.00 174.00

136.00 34.00 64.00 660.00 122.00 62.00 290.00 90.00

a. Construct frequency and relative frequency distributions.

b. Construct cumulative frequency and cumulative relative frequency distributions.

c. Construct a histogram.

d. Using your summaries, make comments and observations about the price of shares.

17. The table below shows the estimated 2013 mid-year population of Kenya, by age group, rounded

to the nearest thousand (from the US Census Bureau International Data Base).

Age group Population (000s)

0–9 13 310

10–19 9 601

20–29 7 904

30–39 5 975

40–49 3 273

50–59 2 076

60–69 1 171

70–79 555

80 171

a. Construct a percentage frequency distribution.

b. Construct a cumulative percentage frequency distribution.

SHARES
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2.3 CROSS-TABULATIONS AND SCATTER DIAGRAMS

So far in this chapter, we have focused on methods for summarizing one variable at a time. Often a
manager or decision-maker requires tabular and graphical methods that will assist in the understanding
of the relationship between two variables. Cross-tabulation and scatter diagrams are two such methods.

Cross-tabulation

A cross-tabulation is a tabular summary of data for two variables. Consider the following data from a
consumer restaurant review, based on a sample of 300 restaurants in a large European city. Table 2.9
shows the data for the first five restaurants: the restaurant’s quality rating and typical meal price. Quality

c. Construct a cumulative distribution plot (ogive).

d. Using the ogive, estimate the age that divides the population into halves (you will learn in

Chapter 3 that this is called the median).

18. The Nielsen Home Technology Report provided information about home technology and its usage

by individuals aged 12 and older. The following data are the hours of personal computer usage

during one week for a sample of 50 individuals.

4.1 1.5 5.9 3.4 5.7 1.6 6.1 3.0 3.7 3.1 4.8 2.0 3.3

11.1 3.5 4.1 4.1 8.8 5.6 4.3 7.1 10.3 6.2 7.6 10.8 0.7

4.0 9.2 4.4 5.7 7.2 6.1 5.7 5.9 4.7 3.9 3.7 3.1 12.1

14.8 5.4 4.2 3.9 4.1 2.8 9.5 12.9 6.1 3.1 10.4

Summarize the data by constructing the following:

a. A frequency distribution (use a class width of three hours).

b. A relative frequency distribution.

c. A histogram.

d. A cumulative distribution plot (ogive).

e. Comment on what the data indicate about personal computer usage at home.

19. The daily high and low temperatures (in degrees Celsius) for 20 cities on one particular day follow.

City High Low City High Low

Athens 24 12 Melbourne 19 10

Bangkok 33 23 Montreal 18 11

Cairo 29 14 Paris 25 13

Copenhagen 18 4 Rio de Janeiro 27 16

Dublin 18 8 Rome 27 12

Havana 30 20 Seoul 18 10

Hong Kong 27 22 Singapore 32 24

Johannesburg 16 10 Sydney 20 13

London 23 9 Tokyo 26 15

Manila 34 24 Vancouver 14 6

a. Prepare a stem-and-leaf display for the high temperatures.

b. Prepare a stem-and-leaf display for the low temperatures.

c. Compare the stem-and-leaf displays from parts (a) and (b), and comment on the differences

between daily high and low temperatures.

d. Use the stem-and-leaf display from part (a) to determine the number of cities having a high

temperature of 25 degrees or above.

e. Provide frequency distributions for both high and low temperature data.

COMPLETE

SOLUTIONS

COMPUTER
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rating is a qualitative variable with categories ‘disappointing’, ‘good’ and ‘excellent’. Meal price is a
quantitative variable that ranges from €10 to €49.

A cross-tabulation of the data is shown in Table 2.10. The left and top margin labels define the classes
for the two variables. In the left margin, the row labels (disappointing, good and excellent) correspond
to the three classes of the quality rating variable. In the top margin, the column labels (€10–19, €20–29,
€30–39 and €40–49) correspond to the four classes of the meal price variable. Each restaurant in the
sample provides a quality rating and a meal price, and so is associated with a cell in one of the rows and
one of the columns of the cross-tabulation. For example, restaurant 5 has a good quality rating and a
meal price of €33. This restaurant belongs to the cell in row 2 and column 3 of Table 2.10. In
constructing a cross-tabulation, we simply count the number of restaurants that belong to each of
the cells in the cross-tabulation.

We see that the greatest number of restaurants in the sample (64) have a good rating and a meal price
in the €20–29 range. Only two restaurants have an excellent rating and a meal price in the €10–19 range.
In addition, note that the right and bottom margins of the cross-tabulation provide the frequency
distributions for quality rating and meal price separately. From the frequency distribution in the right
margin, we see the quality rating data showing 84 disappointing restaurants, 150 good restaurants and
66 excellent restaurants.

Dividing the totals in the right margin by the total for that column provides relative and percentage
frequency distributions for the quality rating variable.

Quality rating Relative frequency Percentage frequency

Disappointing 0.28 28
Good 0.50 50
Excellent 0.22 22
Total 1.00 100

We see that 28 per cent of the restaurants were rated disappointing, 50 per cent were rated good and
22 per cent were rated excellent.

T ABLE 2 . 9 Quality rating and meal price for 300 restaurants

Restaurant Quality rating Meal price ( )

1 Disappointing 18

2 Good 22

3 Disappointing 28

4 Excellent 38

5 Good 33

. . .

. . .

. . .

RESTAURANT

T ABLE 2 . 10 Cross-tabulation of quality rating and meal price for 300 restaurants

Meal price

Quality rating 10–19 20–29 30–39 40–49 Total

Disappointing 42 40 2 0 84

Good 34 64 46 6 150

Excellent 2 14 28 22 66

Total 78 118 76 28 300
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Dividing the totals in the bottom row of the cross-tabulation by the total for that row provides relative
and percentage frequency distributions for the meal price variable. In this case the values do not add
exactly to 100, because the values being summed are rounded. From the percentage frequency distribution
we quickly see that 26 per cent of the meal prices are in the lowest price class (€10–19), 39 per cent are in
the next higher class and so on.

Meal price Relative frequency Percentage frequency

€10–19 0.26 26
€20–29 0.39 39
€30–39 0.25 25
€40–49 0.09 9
Total 1.00 100

The frequency and relative frequency distributions constructed from the margins of a cross-tabulation
provide information about each of the variables individually, but they do not shed any light on the
relationship between the variables. The primary value of a cross-tabulation lies in the insight it offers
about this relationship. Converting the entries in a cross-tabulation into row percentages or column
percentages can provide the insight.

For row percentages, the results of dividing each frequency in Table 2.10 by its corresponding row total
are shown in Table 2.11. Each row of Table 2.11 is a percentage frequency distribution of meal price for
one of the quality rating categories. Of the restaurants with the lowest quality rating (disappointing), we
see that the greatest percentages are for the less expensive restaurants (50.0 per cent have €10–19 meal
prices and 47.6 per cent have €20–29 meal prices). Of the restaurants with the highest quality rating
(excellent), we see that the greatest percentages are for the more expensive restaurants (42.4 per cent have
€30–39 meal prices and 33.4 per cent have €40–49 meal prices). Hence, the cross-tabulation reveals that
higher meal prices are associated with the higher quality restaurants, and the lower meal prices are
associated with the lower quality restaurants.

Cross-tabulation is widely used for examining the relationship between two variables. The final reports
for many statistical studies include a large number of cross-tabulations. In the restaurant survey, the
cross-tabulation is based on one qualitative variable (quality rating) and one quantitative variable (meal
price). Cross-tabulations can also be constructed when both variables are qualitative and when both
variables are quantitative. When quantitative variables are used, we must first create classes for the
values of the variable. For instance, in the restaurant example we grouped the meal prices into four classes
(€10–19, €20–29, €30–39 and €40–49).

Simpson’s paradox

In many cases, a summary cross-tabulation showing how two variables are related has in effect been
aggregated across a third variable (or across more than one variable). If so, we must be careful in drawing
conclusions about the relationship between the two variables in the aggregated cross-tabulation. In some
cases the conclusions based upon the aggregated cross-tabulation can be completely reversed if we look at
the non-aggregated data, something known as Simpson’s paradox. To provide an illustration, we consider
an example involving the analysis of sales success for two sales executives in a mobile telephone company.

T ABLE 2 . 11 Row percentages for each quality rating category

Meal Price

Quality rating 10–19 20–29 30–39 40–49 Total

Disappointing 50.0 47.6 2.4 0.0 100

Good 22.7 42.7 30.6 4.0 100

Excellent 3.0 21.2 42.4 33.4 100
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The two sales executives are Aaron and Theo. They handle enquiries for renewal of two types of
mobile telephone agreement: pre-pay contracts and pay-as-you-go (PAYG) agreements. The cross-
tabulation below shows the outcomes for 200 enquiries each for Aaron and Theo, aggregated across
the two types of agreement. The cross-tabulation involves two variables: outcome (sale or no sale) and
sales executive (Aaron or Theo). It shows the number of sales and the number of no-sales for each
executive, along with the column percentages in parentheses next to each value.

Sales executive

Aaron Theo Total

Sales 82 (41%) 102 (51%) 184
No-sales 118 (59%) 98 (49%) 216

Total 200 (100%) 200 (100%) 400

The column percentages indicate that Aaron’s overall sales success rate was 41 per cent, compared
with Theo’s 51 per cent success rate, suggesting that Theo has the better sales performance. A problem
arises with this conclusion, however. The following cross-tabulations show the enquiries handled by
Aaron and Theo for the two types of agreement separately.

Pre-pay PAYG

Aaron Theo Total Aaron Theo Total

Sales 56 (35%) 18 (30%) 74 Sales 26 (65%) 84 (60%) 110
No-sales 104 (65%) 42 (70%) 146 No-sales 14 (35%) 56 (40%) 70
Total 160 (100%) 60 (100%) 220 Total 40 (100%) 140 (100%) 180

We see that Aaron achieved a 35 per cent success rate for pre-pay contracts and 65 per cent for PAYG
agreements. Theo had a 30 per cent success rate for pre-pay and 60 per cent for PAYG. This comparison
suggests that Aaron has a better success rate than Theo for both types of agreement, a result that
contradicts the conclusion reached when the data were aggregated across the two types of agreement.
This example illustrates Simpson’s paradox.

Note that for both sales executives the sales success rate was much higher for PAYG than for pre-pay
contracts. Because Theo handled a much higher proportion of PAYG enquiries than Aaron, the
aggregated data favoured Theo. When we look at the cross-tabulations for the two types of agreement
separately, however, Aaron shows the better record. Hence, for the original cross-tabulation, we see that
the type of agreement is a hidden variable that should not be ignored when evaluating the records of the
sales executives.

Because of Simpson’s paradox, we need to be especially careful when drawing conclusions using
aggregated data. Before drawing any conclusions about the relationship between two variables shown for
a cross-tabulation – or, indeed, any type of display involving two variables (like the scatter diagram
illustrated in the next section) – you should consider whether any hidden variable or variables could affect
the results.

Scatter diagram and trend line

A scatter diagram is a graphical presentation of the relationship between two quantitative variables,
and a trend line is a line that provides an approximation of the relationship. Consider the advertising/
sales relationship for a hi-fi equipment store. On ten occasions during the past three months, the
store used weekend television commercials to promote sales at its stores. The managers want to
investigate whether a relationship exists between the number of commercials shown and sales at the
store during the following week. Sample data for the ten weeks with sales in thousands of euros (€000s)
are shown in Table 2.12.
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Figure 2.8 shows the scatter diagram and the trend line* for the data in Table 2.12. The number of
commercials (x) is shown on the horizontal axis and the sales (y) are shown on the vertical axis. For
week 1, x = 2 and y = 50. A point with those coordinates is plotted on the scatter diagram. Similar points
are plotted for the other nine weeks. Note that during two of the weeks one commercial was shown,
during two of the weeks two commercials were shown and so on.

The completed scatter diagram in Figure 2.8 indicates a positive relationship between the number of
commercials and sales. Higher sales are associated with a higher number of commercials. The relationship
is not perfect in that all points are not on a straight line. However, the general pattern of the points and
the trend line suggest that the overall relationship is positive.

Some general scatter diagram patterns and the types of relationships they suggest are shown in
Figure 2.9. The top left panel depicts a positive relationship similar to the one for the number of
commercials and sales example. In the top right panel, the scatter diagram shows no apparent relation-
ship between the variables. The bottom panel depicts a negative relationship where y tends to decrease
as x increases.

T ABLE 2 . 12 Sample data for the hi-fi equipment store

Week Number of commercials Sales in 000s

1 2 50

2 5 57

3 1 41

4 3 54

5 4 54

6 1 38

7 5 63

8 3 48

9 4 59

10 2 46
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FIGURE 2.8

Scatter diagram and trend line

for the hi-fi equipment store

*
The equation of the trend line is y = 4.95x 36.15. The slope of the trend line is 4.95 and the y-intercept (the point where the line
intersects the y axis) is 36.15. We will discuss in detail the interpretation of the slope and y-intercept for a linear trend line in
Chapter 14 when we study simple linear regression.
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EXERCISES

Methods

20. The following data are for 30 observations involving two qualitative variables, X and Y. The

categories for X are A, B and C; the categories for Y are 1 and 2.

Observation X Y Observation X Y

1 A 1 16 B 2

2 B 1 17 C 1

3 B 1 18 B 1

4 C 2 19 C 1

5 B 1 20 B 1

6 C 2 21 C 2

7 B 1 22 B 1

8 C 2 23 C 2

9 A 1 24 A 1

10 B 1 25 B 1

11 A 1 26 C 2

12 B 1 27 C 2

13 C 2 28 A 1

14 C 2 29 B 1

15 C 2 30 B 2

CROSSTAB
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a. Construct a cross-tabulation for the data, with X as the row variable and Y as the column variable.

b. Calculate the row percentages.

c. Calculate the column percentages.

d. What is the relationship, if any, between X and Y?

21. The following 20 observations are for two quantitative variables.

Observation X Y Observation X Y

1 –22 22 11 37 48

2 33 49 12 34 29

3 2 8 13 9 18

4 29 16 14 33 31

5 13 10 15 20 16

6 21 28 16 −3 14

7 13 27 17 15 18

8 23 35 18 12 17

9 14 5 19 20 11

10 3 3 20 −7 22

a. Construct a scatter diagram for the relationship between X and Y.

b. What is the relationship, if any, between X and Y?

Applications

22. Recently, management at Oak Tree Golf Course received a few complaints about the condition of

the greens. Several players complained that the greens are too fast. Rather than react to the

comments of just a few, the Golf Association conducted a survey of 100 male and 100 female

golfers. The survey results are summarized here.

Male golfers Female golfers

Greens condition Greens condition

Handicap Too fast Fine Handicap Too fast Fine

Under 15 10 40 Under 15 1 9

15 or more 25 25 15 or more 39 51

a. Combine these two cross-tabulations into one with ‘male’, ‘female’ as the row labels and the

column labels ‘too fast’ and ‘fine’. Which group shows the highest percentage saying that the

greens are too fast?

b. Refer to the initial cross-tabulations. For those players with low handicaps (better players),

which group (male or female) shows the highest percentage saying the greens are too fast?

c. Refer to the initial cross-tabulations. For those players with higher handicaps, which group

(male or female) shows the highest percentage saying the greens are too fast?

d. What conclusions can you draw about the preferences of men and women concerning the

speed of the greens? Are the conclusions you draw from part (a) as compared with parts

(b) and (c) consistent? Explain any apparent inconsistencies.

23. The file ‘House Sales’ on the online platform contains data for a sample of 50 houses advertised

for sale in a regional UK newspaper. The first five rows of data are shown for illustration below.

COMPLETE

SOLUTIONS

SCATTER

COMPLETE

SOLUTIONS
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SUMMARY

A set of data, even if modest in size, is often difficult to interpret directly in the form in which it is

gathered. Tabular and graphical methods provide procedures for organizing and summarizing data so

that patterns are revealed and the data are more easily interpreted.

Price Location House type Bedrooms

Reception

rooms

Bedrooms +

receptions

Garage

capacity

234 995 Town Detached 4 2 6 1

319 000 Town Detached 4 2 6 1

154 995 Town Semi-detached 2 1 3 0

349 950 Village Detached 4 2 6 2

244 995 Town Detached 3 2 5 1

a. Prepare a cross-tabulation using sale price (rows) and house type (columns). Use classes of

100 000–199 999, 200 000–299 999, etc. for sale price.

b. Compute row percentages and comment on any relationship between the variables.

24. Refer to the data in Exercise 23.

a. Prepare a cross-tabulation using number of bedrooms and house type.

b. Prepare a frequency distribution for number of bedrooms.

c. Prepare a frequency distribution for house type.

d. How has the cross-tabulation helped in preparing the frequency distributions in parts

(b) and (c)?

25. The file ‘OECD 2012’ on the online platform contains data for 33 countries taken from the

website of the Organization for Economic Cooperation & Development in mid-2012. The two

variables are the Gini coefficient for each country and the percentage of children in the country

estimated to be living in poverty. The Gini coefficient is a widely used measure of income

inequality. It varies between 0 and 1, with higher coefficients indicating more inequality. The first

five rows of data are shown for illustration below.

Country Child poverty (%) Income inequality

Australia 14.0 0.336

Austria 7.9 0.261

Belgium 11.3 0.259

Canada 15.1 0.324

Czech Republic 8.4 0.256

a. Prepare a scatter diagram using the data on child poverty and income inequality.

b. Comment on the relationship, if any, between the variables.

ONLINE RESOURCES

For the data files, online summary, additional questions and answers, and software section for

Chapter 2, go to the accompanying online platform.

HOUSE

SALES

OECD 2012
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Figure 2.10 shows the tabular and graphical methods presented in this chapter.

Frequency distributions, relative frequency distributions, percentage frequency distributions, bar

charts and pie charts were presented as tabular and graphical procedures for summarizing qualitative

data. Frequency distributions, relative frequency distributions, percentage frequency distributions, dot

plots, histograms, cumulative frequency distributions, cumulative relative frequency distributions,

cumulative percentage frequency distributions and cumulative distribution plots (ogives) were pre-

sented as ways of summarizing quantitative data. A stem-and-leaf display provides an exploratory data

analysis technique that can be used to summarize quantitative data.

Cross-tabulation was presented as a tabular method for summarizing data for two variables. An

example of Simpson’s paradox was set out, to illustrate the care that must be taken when interpreting

relationships between two variables using aggregated data. The scatter diagram was introduced as a

graphical method for showing the relationship between two quantitative variables.

With large data sets, computer software packages are essential in constructing tabular and

graphical summaries of data. The software guides on the online platform show how EXCEL, IBM SPSS

and MINITAB can be used for this purpose.

KEY TERMS

Bar chart

Bar graph

Class midpoint

Cross-tabulation

Cumulative frequency distribution

Cumulative percentage frequency distribution

Cumulative relative frequency distribution

Dot plot

Exploratory data analysis

Frequency distribution

Histogram

Ogive
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FIGURE 2.10

Tabular and graphical methods for summarizing data
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Percentage frequency distribution

Pie chart

Qualitative data

Quantitative data

Relative frequency distribution

Scatter diagram

Simpson’s paradox

Stem-and-leaf display

Trend line

KEY FORMULAE

Relative frequency

Relative frequency of a class
Frequency of the class

n
(2 1)

Approximate class width

Largest data value Smallest data value

Number of classes
(2 2)

CASE PROBLEM

In The Mode Fashion Stores

In The Mode is a chain of women’s fashion stores. The

chain recently ran a promotion in which discount cou-

pons were sent to customers. Data collected for a

sample of 100 in-store credit card transactions during

a single day following the promotion are contained in

the file ‘Mode’ on the online platform. A portion of the

data set is shown below. A non-zero amount for the

discount variable indicates that the customer brought

in the promotional coupons and used them. For a very

few customers, the discount amount is actually

greater than the sales amount (see, for example,

customer 4). In The Mode’s management would like

to use this sample data to learn about its customer

base and to evaluate the promotion involving discount

coupons.

Managerial report

Use tables and charts to help management develop a

customer profile and to evaluate the promotional

campaign. At a minimum, your report should include

the following.

1. Percentage frequency distributions for key variables.

2. A bar chart or pie chart showing the percentage of

customer purchases possibly attributable to the

promotional campaign.

3. A cross-tabulation of type of customer (regular or

promotional) versus sales. Comment on any

similarities or differences present.

4. A scatter diagram of sales versus discount for only

those customers responding to the promotion.

Comment on any relationship apparent between

sales and discount.

5. A scatter diagram to explore the relationship

between sales and customer age.

Customer

Method of

payment Items Discount Sales Gender

Marital

status Age

1 Visa Debit 1 0.00 39.50 Male Married 32

2 Store Card 1 25.60 102.40 Female Married 36

3 Store Card 1 0.00 22.50 Female Married 32

4 Store Card 5 121.10 100.40 Female Married 28

5 Mastercard 2 0.00 54.00 Female Married 34

6 Mastercard 1 0.00 44.50 Female Married 44

7 Store Card 2 19.50 78.00 Female Married 30

8 Visa 1 0.00 22.50 Female Married 40

9 Store Card 2 22.48 56.52 Female Married 46

10 Store Card 1 0.00 44.50 Female Married 36

MODE
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3
Descriptive
Statistics:
Numerical
Measures

CHAPTER CONTENTS

Statistics in Practice TV audience measurement

3.1 Measures of location

3.2 Measures of variability

3.3 Measures of distributional shape, relative location and detecting outliers

3.4 Exploratory data analysis

3.5 Measures of association between two variables

3.6 The weighted mean and working with grouped data

LEARNING OBJECTIVES After studying this chapter and doing the exercises, you should be able

to calculate and interpret the following statistical measures that help to describe the central location,

variability and shape of data sets.

1 The mean, median and mode.

2 Percentiles (including quartiles), the range,

the interquartile range, the variance, the

standard deviation and the coefficient of

variation.

3 You should understand the concept of skewness

of distribution. You should be able to calculate

z-scores and understand their role in identifying

data outliers.

4 You should understand the role of Chebyshev’s

theorem and of the empirical rule in estimating the

spread of data sets.

5 Five-number summaries and box plots.

6 Scatter diagrams, covariance and Pearson’s

correlation coefficient.

7 Weighted means.

8 Estimates of mean and standard deviation for

grouped data.

In Chapter 2 we discussed tabular and graphical data summaries. In this chapter, we present several
numerical measures for summarizing data.
We start with numerical summary measures for a single variable. When a data set contains more than

one variable, the same numerical measures can be computed separately for each variable. However, in the
two-variable case we shall also examine measures of the relationship between the variables.
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We introduce numerical measures of location, dispersion, shape and association. If they are
computed for sample data, they are called sample statistics. If they are computed for data for a
whole population, they are called population parameters. In statistical inference, a sample statistic is
referred to as the point estimator of the corresponding population parameter. In Chapter 7 we shall
discuss in more detail the process of point estimation. In the guides on the associated online
platform, we show how EXCEL, IBM SPSS and MINITAB can be used to compute many of the
numerical measures described in the chapter.

3.1 MEASURES OF LOCATION

Mean

The most commonly used measure of location is the mean. The mean provides a measure of central
location for the data. If the data are from a sample, the mean is denoted by putting a bar over the data symbol,
e.g. x. If the data are from a population, the Greek letter μ (mu) is used to denote themean.When people refer
to the ‘average’ value, they are usually referring to the mean value.

STATISTICS IN PRACTICE

TV audience measurement

T elevision audience levels and audience share are

important issues for advertisers, sponsors and, in

the case of public service broadcasting, governments.

In recent years in many countries, the number of TV

channels available has increased substantially

because of the use of digital, satellite and cable

services. The Broadcasters’ Audience Research

Board (BARB) in the UK, for example, lists over 250

channels in its ‘multi-channel viewing summary’.

Technology also now allows viewers to ‘time-shift’

their viewing. Accurate audience measurement

thereby becomes a more difficult task.

The Handbook on Radio and Television Audience

Research
*

has a section on data analysis, in which

the author makes the point ‘most audience research

is quantitative’. He then goes on to describe the

various measures that are commonly used in this

field, including: ‘ratings’, ‘gross rating points’, ‘view-

ing share’, ‘viewing hours’ and ‘reach’. Many of the

measures involve the use of averages: for example,

‘average weekly viewing per person’.

BARB publishes viewing figures on its website,

www.barb.co.uk. Figures for the week ending 22 July

2012, for example, a week before the start of the

2012 London Olympics, showed that ‘average daily

reach’ for the lead public broadcasting channel BBC1

was just over 26 million viewers. This represented

about 45 per cent of the potential viewing audience.

Average weekly viewing for BBC1 was estimated at

slightly under five hours per person. Two weeks later,

with the 2012 Olympics in full swing and TV coverage

being provided by the BBC, average daily reach for

BBC1 had risen to 32 million viewers, and average

viewing time had more than doubled to over ten hours

per person.

In this chapter, you will learn how to compute and

interpret some of the statistical measures used in

reports such as those presented by BARB. You will

learn about the mean, median and mode, and about

other descriptive statistics such as the range, var-

iance, standard deviation, percentiles and correlation.

These numerical measures will assist in the under-

standing and interpretation of data.

*
Handbook on Radio and Television Audience Research, by Graham

Mytton, published by UNICEF/UNESCO/BBC World Service Training

Trust, web edition (2007).
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In statistical formulae, it is customary to denote the value of variable X for the first sample
observation by x1, for the second sample observation by x2 and so on. In general, the value of
variable X for the ith observation is denoted by xi. (As we shall see in Chapters 5 and 6, a common
convention in statistics is to name variables using capital letters, e.g. X, but to refer to specific values
of those variables using small letters, e.g. x.) For a sample with n observations, the formula for the
sample mean is as follows:

In equation (3.1), the numerator is the sum of the values of the n observations. That is:

∑xi x1 x2 … xn

The Greek letter Σ (upper case sigma) is the summation sign.
To illustrate the computation of a sample mean, consider the following class size data for a sample

of five university classes.

46 54 42 46 32

We use the notation x1, x2, x3, x4, x5 to represent the number of students in each of the five classes.

x1 46 x2 54 x3 42 x4 46 x5 32

To compute the sample mean, we can write:

x
∑xi
n

x1 x2 x3 x4 x5
n

46 54 42 46 32

5
44

The sample mean class size is 44 students.
Here is a second illustration. Suppose a university careers office has sent a questionnaire to a

sample of business school graduates requesting information on monthly starting salaries. Table 3.1
shows the data collected. The mean monthly starting salary for the sample of 12 business school
graduates is computed as:

x
∑xi
n

x1 x2 … x12
12

2020 2075 … 2040

12

24840

12
2070

Equation (3.1) shows how the mean is computed for a sample with n observations. The formula for
computing the mean of a population remains the same, but we use different notation to indicate that we
are working with the entire population. We denote the number of observations in a population by N, and
the population mean as μ.

Sample mean

x
xi
n

(3.1)

Population mean

xi
N

(3.2)

SALARY
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Median

The median is another measure of central location for a variable. The median is the value in the middle
when the data are arranged in ascending order (smallest value to largest value).

Let us compute the median class size for the sample of five university classes. We first arrange the data
in ascending order.

32 42 46 46 54

Because n = 5 is odd, the median is the middle value. This data set contains two observations with values
of 46 (the 3rd and 4th ordered observations). Each observation is treated separately when we arrange the
data in ascending order. The median class size is 46 students (the 3rd ordered observation).

Suppose we also compute the median starting salary for the 12 business school graduates in Table 3.1.
We first arrange the data in ascending order.

1955 1980 2020 2040 2040 2050 2060 2070 2075 2125 2165 2260

Middle two values

Because n = 12 is even, we identify the middle two values: 2050 and 2060. The median is the average of
these values:

Median
2050 2060

2
2055

Although the mean is the more commonly used measure of central location, in some situations the
median is preferred. The mean is influenced by extremely small and large data values. For example,
suppose one of the graduates (see Table 3.1) had a starting salary of €5000 per month (perhaps his/her
family owns the company). If we change the highest monthly starting salary in Table 3.1 from €2260 to
€5000, the sample mean changes from €2070 to €2298. The median of €2055, however, is unchanged,
because €2050 and €2060 are still the middle two values. With the extremely high starting salary included,
the median provides a more robust measure of central location than the mean. When a data set contains
extreme values, the median is often the preferred measure of central location.*

*

T ABLE 3 . 1 Monthly starting salaries for a sample of 12 business school graduates

Graduate Monthly starting salary ( ) Graduate Monthly starting salary ( )

1 2020 7 2050

2 2075 8 2165

3 2125 9 2070

4 2040 10 2260

5 1980 11 2060

6 1955 12 2040

Median

Arrange the data in ascending order.

a. For an odd number of observations, the median is the middle value.

b. For even number of observations, the median is the average of the two middle values.

*
Another measure sometimes used when extreme values are present is the trimmed mean. A percentage of the smallest and largest values are removed from a data
set, and the mean of the remaining values is computed. For example, to get the 5 per cent trimmed mean, the smallest 5 per cent and the largest 5 per cent of the
data values are removed, and the mean of the remaining values is computed. Using the sample with n = 12 starting salaries, 0.05(12) = 0.6. Rounding this value to 1
indicates that the 5 per cent trimmed mean would remove the smallest data value and the largest data value. The 5 per cent trimmed mean using the 10 remaining
observations is 2062.5.
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Mode

A third measure of location is the mode (although the mode does not necessarily measure central
location). The mode is defined as follows.

To illustrate the identification of the mode, consider the sample of five class sizes.
The only value that occurs more than once is 46. This value occurs twice and consequently is the

mode. In the sample of starting salaries for the business school graduates, the only monthly starting salary
that occurs more than once is €2040, and therefore this value is the mode for that data set.

Situations can arise for which the greatest frequency occurs at two or more different values. In these
instances more than one mode exists. If the data contain exactly two modes, we say that the data are
bimodal. If data contain more than two modes, we say that the data are multimodal. In multimodal cases
the modes are almost never reported, because listing three or more modes would not be particularly
helpful in describing a central location for the data.

The mode is an important measure of location for qualitative data. For example, the qualitative data set
in Table 2.2 resulted in the following frequency distribution for new car purchases.

Car brand Frequency

Audi 8
BMW 5
Mercedes 13
Opel 8
VW 19
Total 50

The mode, or most frequently purchased car brand, is VW. For this type of data it obviously makes no
sense to speak of the mean or median. The mode provides the information of interest, the most frequently
purchased car brand.

Percentiles

A percentile provides information about how the data are spread over the interval from the smallest
value to the largest value. For data that do not contain numerous repeated values, the pth percentile
divides the data into two parts: approximately p per cent of the observations have values less than the pth
percentile; approximately (100 p) per cent of the observations have values greater than the pth
percentile. The pth percentile is formally defined as follows.

Colleges and universities sometimes report admission test scores in terms of percentiles. For instance,
suppose an applicant obtains a raw score of 54 on the verbal portion of an admission test. It may not be
readily apparent how this student performed in relation to other students taking the same test. However,

Mode

The mode is the value that occurs with the greatest frequency.

Percentile

The pth percentile is a value such that at least p per cent of the observations are less than or equal to this

value and at least (100 p) per cent of the observations are greater than or equal to this value.
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if the raw score of 54 corresponds to the 70th percentile, we know that approximately 70 per cent of the
students scored lower than this individual and approximately 30 per cent of the students scored higher
than this individual.

The following procedure can be used to compute the pth percentile.

As an illustration, consider the 85th percentile for the starting salary data in Table 3.1.

1 Arrange the data in ascending order.

1955 1980 2020 2040 2040 2050 2060 2070 2075 2125 2165 2260

2

i
p

100
n

85

100
12 10 2

3 Because i is not an integer, round up. The position of the 85th percentile is the next integer greater
than 10.2: the 11th position.

Returning to the data, we see that the 85th percentile is the data value in the 11th position, or 2165.

As another illustration of this procedure, consider the calculation of the 50th percentile for the starting
salary data. Applying step 2, we obtain:

i
p

100
n

50

100
12 6

Because i is an integer, step 3(b) states that the 50th percentile is the average of the sixth and seventh
data values; that is (2050 2060)/2 = 2055. Note that the 50th percentile is also the median.

Quartiles

For the purposes of describing data distribution, it is often useful to consider the values that divide the
data set into four parts, with each part containing approximately one-quarter (25 per cent) of the
observations. Figure 3.1 shows a data distribution divided into four parts. The division points are referred
to as the quartiles and are defined as:

Q1 = first quartile, or 25th percentile

Q2 = second quartile, or 50th percentile (also the median)

Q3 = third quartile, or 75th percentile

Calculating the pth percentile

1. Arrange the data in ascending order (smallest value to largest value).

2. Compute an index i

i
p

100
n

where p is the percentile of interest and n is the number of observations.

3. a. If i is not an integer, round up. The next integer greater than i denotes the position of the pth

percentile.

b. If i is an integer, the pth percentile is the average of the values in positions i and i 1.
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The starting salary data are again arranged in ascending order. We have already identified Q2, the
second quartile (median), as 2055.

1955 1980 2020 2040 2040 2050 2060 2070 2075 2125 2165 2260

The computations of quartiles Q1 and Q3 use the rule for finding the 25th and 75th percentiles.
For Q1:

i
p

100
n

25

100
12 3

Because i is an integer, step 3(b) indicates that the first quartile, or 25th percentile, is the average of the
third and fourth data values; hence:

Q1 2020 2040 2 2030

For Q3:

i
p

100
n

75

100
12 9

Again, because i is an integer, step 3(b) indicates that the third quartile, or 75th percentile, is the
average of the ninth and tenth data values; hence:

Q3 2075 2125 2 2100

1955 1980 2020 2040
Q1 2030

2040 2050 2060
Q2 2055

Median

2070 2075 2125
Q3 2100

2165 2260

We defined the quartiles as the 25th, 50th and 75th percentiles. Hence we computed the quartiles in
the same way as percentiles. However, other conventions are sometimes used to compute quartiles. The
actual values reported for quartiles may vary slightly depending on the convention used. Nevertheless, the
objective in all cases is to divide the data into four approximately equal parts.

25%

Q1

First Quartile
(25th percentile)

Second Quartile
(50th percentile)

(median)

Third Quartile
(75th percentile)

Q2 Q3

25% 25% 25%

FIGURE 3.1

Location of the quartiles

EXERCISES

Methods

1. Consider a sample with data values of 10, 20, 12, 17 and 16. Compute the mean and median.

2. Consider a sample with data values of 10, 20, 21, 17, 16 and 12. Compute the mean and median.

3. Consider a sample with data values of 27, 25, 20, 15, 30, 34, 28 and 25. Compute the 20th,

25th, 65th and 75th percentiles.
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4. Consider a sample with data values of 53, 55, 70, 58, 64, 57, 53, 69, 57, 68 and 53. Compute

the mean, median and mode.

Applications

5. A sample of 30 Irish engineering graduates had the following starting salaries. Data are in

thousands of euros.

36.8 34.9 35.2 37.2 36.2 35.8 36.8 36.1 36.7 36.6

37.3 38.2 36.3 36.4 39.0 38.3 36.0 35.0 36.7 37.9

38.3 36.4 36.5 38.4 39.4 38.8 35.4 36.4 37.0 36.4

a. What is the mean starting salary?

b. What is the median starting salary?

c. What is the mode?

d. What is the first quartile?

e. What is the third quartile?

6. The following data were obtained for the number of minutes spent listening to recorded music for a

sample of 30 individuals on one particular day.

88.3 4.3 4.6 7.0 9.2 0.0 99.2 34.9 81.7 0.0

85.4 0.0 17.5 45.0 53.3 29.1 28.8 0.0 98.9 64.5

4.4 67.9 94.2 7.6 56.6 52.9 145.6 70.4 65.1 63.6

a. Compute the mean.

b. Compute the median.

c. Compute the first and third quartiles.

d. Compute and interpret the 40th percentile.

7. miniRank (www.minirank.com) rates the popularity of websites in most countries of the world,

using a points system. The 25 most popular sites in South Africa as listed in July 2012 were as

follows (the points scores have been rounded to one decimal place):

Website Points Website Points

http://www.intoweb.co.za 253.1 www.dweb.co.za 118.2

http://www.weathersa.co.za 252.3 dweb.co.za 108.5

www.etraffic.co.za 212.4 www.webworx.org.za 107.6

www.gov.za 167.0 www.bacchus.co.za 105.2

www.intowebtraining.co.za 164.6 www.services.gov.za 103.3

www.capewebdesign.co.za 161.7 www.info.gov.za 102.2

www.saweather.co.za, 153.3 www.sars.co.za 95.6

www.web-inn.co.za 136.8 www.sars.gov.za 93.8

www.searchengine.co.za 136.1 www.mwebbusiness.co.za 93.6

www.saweather.co.za 133.6 www.dti.gov.za, 84.0

www.iol.co.za 132.5 www.jdconsulting.co.za 82.2

www.tradepage.co.za 128.6 www.linx.co.za 81.0

www.proudlysa.co.za 126.9

a. Compute the mean and median.

b. Do you think it would be better to use the mean or the median as the measure of central

location for these data? Explain.

c. Compute the first and third quartiles.

d. Compute and interpret the 85th percentile.

RSA WWW

COMPLETE

SOLUTIONS

ENGSAL

MUSIC

COMPLETE

SOLUTIONS
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3.2 MEASURES OF VARIABILITY

In addition to measures of location, it is often desirable to consider measures of variability, or dispersion.
For example, suppose you are a purchaser for a large manufacturing firm and you regularly place orders
with two different suppliers. After several months of operation, you find that the mean number of days
required to fill orders is ten days for both of the suppliers. The histograms summarizing the number of
working days required to fill orders from the suppliers are shown in Figure 3.2. Although the mean
number of days is ten for both suppliers, do the two suppliers demonstrate the same degree of reliability
in terms of making deliveries on schedule? Note the dispersion, or variability, in delivery times indicated
by the histograms. Which supplier would you prefer?

For most firms, receiving materials and supplies on schedule is important. The seven- or eight-day
deliveries shown for J.C. Clark Distributors might be viewed favourably. However, a few of the slow 13- to
15-day deliveries could be disastrous in terms of keeping a workforce busy and production on schedule.
This example illustrates a situation in which the variability in the delivery times may be an overriding
consideration in selecting a supplier. For most purchasing agents, the lower variability shown for Dawson
Supply would make Dawson the preferred supplier.

We turn now to a discussion of some commonly used measures of variability.

Range

The simplest measure of variability is the range.

8. Following is a sample of age data for individuals working from home by ‘telecommuting’.

18 54 20 46 25 48 53 27 26 37

40 36 42 25 27 33 28 40 45 25

a. Compute the mean and the mode.

b. Suppose the median age of the population of all adults is 35.5 years. Use the median age of

the preceding data to comment on whether the at-home workers tend to be younger or older

than the population of all adults.

c. Compute the first and third quartiles.

d. Compute and interpret the 32nd percentile.
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FIGURE 3.2

Historical data showing the number of days required to fill orders
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Refer to the data on starting salaries for business school graduates in Table 3.1. The largest starting
salary is 2260 and the smallest is 1955. The range is 2260 1955 = 305.

Although the range is the easiest of the measures of variability to compute, it is seldom used as the only
measure. The range is based on only two of the observations and so is highly influenced by extreme
values. Suppose one of the graduates received a starting salary of €5000 per month. In this case, the range
would be 5000 1955 = 3045 rather than 305. This would not be especially descriptive of the variability
in the data because 11 of the 12 starting salaries are relatively closely grouped between 1955 and 2165.

Interquartile range

A measure of variability that overcomes the dependency on extreme values is the interquartile range

(IQR). This measure of variability is simply the difference between the third quartile, Q3, and the first
quartile, Q1. In other words, the interquartile range is the range for the middle 50 per cent of the data.

For the data on monthly starting salaries, the quartiles are Q3 = 2100 and Q1 = 2030. The interquartile
range is 2100 2030 = 70.

Variance

The variance is a measure of variability that uses all the data. The variance is based on the difference
between the value of each data value and the mean. This difference is called a deviation about the mean.
For a sample, a deviation about the mean is written (xi x ). For a population, it is written (xi μ). In
the computation of the variance, the deviations about the mean are squared.

If the data are for a population, the average of the squared deviations is called the population variance. The
population variance is denoted by the Greek symbol σ

2
(sigma squared). For a population of N observations

and with μ denoting the population mean, the definition of the population variance is as follows:

In most statistical applications, the data being analyzed are for a sample. When we compute a sample
variance, we are often interested in using it to estimate the population variance σ

2
. Although a detailed

explanation is beyond the scope of this text, it can be shown that if the sum of the squared deviations
about the sample mean is divided by n 1, not by n, the resulting sample variance provides an unbiased
estimate of the population variance (a formal definition of unbiasedness is given in Chapter 7).

Population variance

σ2
∑ xi μ 2

N
(3.4)

Range

Range = Largest value – Smallest value

Interquartile range

IQR Q3 Q1 (3.3)
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For this reason, the sample variance, denoted by s
2
, is defined as follows:

Consider the data on class size for the sample of five university classes (Section 3.1). A summary of the
data, including the computation of the deviations about the mean and the squared deviations about the
mean, is shown in Table 3.2. The sum of squared deviations about the mean is ∑ xi x 2 256. Hence,
with n 1 = 4, the sample variance is:

s2
∑ xi x 2

n 1

256

4
64

The units associated with the sample variance can cause confusion. Because the values summed in the
variance calculation, (xi − x)

2
, are squared, the units associated with the sample variance are also squared.

For instance, the sample variance for the class size data is s
2
= 64 (students)

2
. The squared units make it

difficult to obtain an intuitive understanding and interpretation of the variance. We recommend that you
think of the variance as a measure useful in comparing the amount of variability for two or more
comparable variables. The one with the larger variance will show the greater variability.

As another illustration, consider the starting salaries in Table 3.1 for the 12 business school graduates.
In Section 3.1, we showed that the sample mean starting salary was 2070. The computation of the sample
variance (s

2
= 6754.5) is shown in Table 3.3.

In Tables 3.2 and 3.3 we show both the sum of the deviations about the mean and the sum of the
squared deviations about the mean. Note that in both tables, ∑ xi − x 0. The positive deviations and
negative deviations cancel each other, causing the sum of the deviations about the mean to equal zero. For
any data set, the sum of the deviations about the mean will always equal zero.

An alternative formula for the computation of the sample variance:

s2
∑x2i nx2

n 1

where:

∑x2i x21 x22 … x2n

Standard deviation

The standard deviation is defined to be the positive square root of the variance. Following the
notation we adopted for a sample variance and a population variance, we use s to denote the sample
standard deviation and σ to denote the population standard deviation.

Sample variance

s2
xi x 2

n 1
(3.5)

T ABLE 3 . 2 Computation of deviations and squared deviations about the mean for the class size data

Number of students

in class (xi)

Mean class size

(x)

Deviation about the

mean (xi x)

Squared deviation about

the mean (xi x)
2

46 44 2 4

54 44 10 100

42 44 2 4

46 44 2 4

32 44 12 144

Totals 0 256

(xi x̄) (xi x̄)
2
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The standard deviation is derived from the variance as shown in equations (3.6) and (3.7).

Recall that the sample variance for the sample of class sizes in five university classes is s
2
= 64. Hence

the sample standard deviation is:

s 64 8

For the data on starting salaries, the sample standard deviation is:

s 6754 5 82 2

What is gained by converting the variance to its corresponding standard deviation? Recall that the
units associated with the variance are squared. For example, the sample variance for the starting salary
data of business school graduates is s

2
= 6754.5 (€)

2
. Because the standard deviation is the square root of

the variance, the units are euros for the standard deviation, s = €82.2. In other words, the standard
deviation is measured in the same units as the original data. The standard deviation is therefore more
easily compared to the mean and other statistics measured in the same units as the original data.

Coefficient of variation

In some situations we may be interested in a descriptive statistic that indicates how large the standard
deviation is relative to the mean. This measure is called the coefficient of variation and is usually
expressed as a percentage.

Standard deviation

Population standard deviation σ σ2 (3.6)

Sample standard deviation s s2 (3.7)

T ABLE 3 . 3 Computation of the sample variance for the starting salary data

Monthly

salary (xi) Sample mean (x̄)

Deviation about

the mean (xi x̄)

Squared deviation about

the mean (xi x̄)
2

2020 207 50 2 500

2075 207 5 25

2125 207 55 3 025

2040 207 30 900

1980 207 90 8 100

1955 207 115 13 225

2050 207 20 400

2165 207 95 9 025

2070 207 0 0

2260 207 190 36 100

2060 207 10 100

2040 207 30 900

Totals 0 74 300

Using equation (3.5)

s2 ∑ xi x 2

n 1

74 300

11
6754 5
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For the class size data, we found a sample mean of 44 and a sample standard deviation of 8. The
coefficient of variation is (8/44) 100% = 18.2%. The coefficient of variation tells us that the sample
standard deviation is 18.2 per cent of the value of the sample mean. For the starting salary data with a
sample mean of 2070 and a sample standard deviation of 82.2, the coefficient of variation, (82.2/2070)
100% = 4.0%, tells us the sample standard deviation is only 4.0 per cent of the value of the sample mean.
In general, the coefficient of variation is a useful statistic for comparing the variability of variables that
have different standard deviations and different means.

EXERCISES

Methods

9. Consider a sample with data values of 10, 20, 12, 17 and 16. Calculate the range and

interquartile range.

10. Consider a sample with data values of 10, 20, 12, 17 and 16. Calculate the variance and

standard deviation.

11. Consider a sample with data values of 27, 25, 20, 15, 30, 34, 28 and 25. Calculate the range,

interquartile range, variance and standard deviation.

Applications

12. The goals scored in six handball matches were 41, 34, 42, 45, 35 and 37. Using these data as a

sample, compute the following descriptive statistics.

a. Range.

b. Variance.

c. Standard deviation.

d. Coefficient of variation.

13. Dinner bill amounts for set menus at a Dubai restaurant, Al Khayam, show the following frequency

distribution. The amounts are in AED (Emirati Dirham). Compute the mean, variance and standard

deviation.

Dinner bill (AED) Frequency

30 2

40 6

50 4

60 4

70 2

80 2

Total 20

COMPLETE

SOLUTIONS

COMPLETE

SOLUTIONS

Coefficient of variation

Standard deviation

Mean
100 (3.8)
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3.3 MEASURES OF DISTRIBUTIONAL SHAPE, RELATIVE
LOCATION AND DETECTING OUTLIERS

We described several measures of location and variability for data distributions. It is also often important
to have a measure of the shape of a distribution. In Chapter 2 we noted that a histogram offers an
excellent graphical display showing the shape of a distribution. An important numerical measure of the
shape of a distribution is skewness.

Distributional shape

Four histograms constructed from relative frequency distributions are shown in Figure 3.3. The histo-
grams in Panels A and B are moderately skewed. The one in Panel A is skewed to the left: its skewness
is –0.85 (negative skewness). The histogram in Panel B is skewed to the right: its skewness is 0.85
(positive skewness). The histogram in Panel C is symmetrical: its skewness is zero. The histogram in Panel
D is highly skewed to the right: its skewness is 1.62. The formula used to compute skewness is somewhat
complex.* However, the skewness can be easily computed using statistical software (see the software
guides on the online platform).

14. The following data were used to construct the histograms of the number of days required to fill

orders for Dawson Supply and for J.C. Clark Distributors (see Figure 3.2).

Dawson Supply days for delivery: 11 10 9 10 11 11 10 11 10 10

Clark Distributors days for delivery: 8 10 13 7 10 11 10 7 15 12

Use the range and standard deviation to support the previous observation that Dawson Supply

provides the more consistent and reliable delivery times.

15. Police records show the following numbers of daily crime reports for a sample of days during the

winter months and a sample of days during the summer months.

Winter: 18 20 15 16 21 20 12 16 19 20

Summer: 28 18 24 32 18 29 23 38 28 18

a. Compute the range and interquartile range for each period.

b. Compute the variance and standard deviation for each period.

c. Compute the coefficient of variation for each period.

d. Compare the variability of the two periods.

16. A production department uses a sampling procedure to test the quality of newly produced items.

The department employs the following decision rule at an inspection station: if a sample of 14

items has a variance of more than 0.005, the production line must be shut down for repairs.

Suppose the following data have just been collected:

3.43 3.45 3.43 3.48 3.52 3.50 3.39

3.48 3.41 3.38 3.49 3.45 3.51 3.50

Should the production line be shut down? Why or why not?

CRIME

*
The formula for the skewness of sample data is:

Skewness
n

n 1 n 2

xi x

s

3
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For a symmetrical distribution, the mean and the median are equal. When the data are positively
skewed, the mean will usually be greater than the median. When the data are negatively skewed, the mean
will usually be less than the median. The data used to construct the histogram in Panel D are customer
purchases at a women’s fashion store. The mean purchase amount is €77.60 and the median purchase
amount is €59.70. The few large purchase amounts pull up the mean, but the median remains unaffected.
The median provides a better measure of typical values when the data are highly skewed.

z-Scores

In addition to measures of location, variability and shape for a data set, we are often also interested in the
relative location of data items within a data set. Such measures can help us determine whether a particular
item is close to the centre of a data set or far out in one of the tails.

By using both the mean and standard deviation, we can determine the relative location of any
observation. Suppose we have a sample of n observations, with the values denoted by x1, x2, …, xn.
Assume the sample mean x, and the sample standard deviation s are already computed. Associated with
each value xi is a value called its z-score. Equation (3.9) shows how the z-score is computed for each xi.
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FIGURE 3.3

Histograms showing the skewness for four distributions

z-score

zi
xi − x

s
(3.9)

where zi = the z-score for xi, x = the sample mean, s = the sample standard deviation.
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The z-score is often called the standardized value or the standard score. The z-score, zi, represents the
number of standard deviations xi is from the mean x. For example, z1 = 1.2 would indicate that x1 is 1.2
standard deviations higher than the sample mean. Similarly, z2 = 0.5 would indicate that x2 is 0.5, or
1/2, standard deviation lower than the sample mean. Data values above the mean have a z-score greater
than zero. Data values below the mean have a z-score less than zero. A z-score of zero indicates that the
data value is equal to the sample mean.

The z-score is a measure of the relative location of the observation in a data set. Hence, observations in
two different data sets with the same z-score can be said to have the same relative location in terms of
being the same number of standard deviations from the mean.

The z-scores for the class size data are computed in Table 3.4. Recall the previously computed sample
mean, x 44, and sample standard deviation, s = 8. The z-score of 1.50 for the fifth observation shows
it is farthest from the mean: it is 1.50 standard deviations below the mean.

Chebyshev’s theorem

Chebyshev’s theorem enables us to make statements about the proportion of data values that lie within a
specified number of standard deviations of the mean.

Some of the implications of this theorem, with z = 2, 3 and 4 standard deviations, follow:

• At least 75 per cent of the data values must be within z = 2 standard deviations of the mean.

• At least 89 per cent of the data values must be within z = 3 standard deviations of the mean.

• At least 94 per cent of the data values must be within z = 4 standard deviations of the mean.

Suppose that the mid-term test scores for 100 students in a university business statistics course had a
mean of 70 and a standard deviation of 5. How many students had test scores between 60 and 80? How
many students had test scores between 58 and 82?

For the test scores between 60 and 80, we note that 60 is two standard deviations below the mean and
80 is two standard deviations above the mean. Using Chebyshev’s theorem, we see that at least 75 per cent
of the observations must have values within two standard deviations of the mean. Hence, at least 75 per
cent of the students must have scored between 60 and 80.

For the test scores between 58 and 82, we see that (58 70)/5 = 2.4, i.e. 58 is 2.4 standard deviations
below the mean. Similarly, (82 70)/5 = 2.4, so 82 is 2.4 standard deviations above the mean. Applying
Chebyshev’s theorem with z = 2.4, we have:

T ABLE 3 . 4 z-scores for the class size data

Number of students

in class (xi)

Deviation about the mean

(xi x)
z-score

xi x

s

46 2 2/8 = 0.25

54 10 10/8 = 1.25

42 2 −2/8 = –0.25

46 2 2/8 = 0.25

32 −12 12/8 = –1.50

Chebyshev’s theorem

At least (1 1/z
2
) 100% of the data values must be within z standard deviations of the mean, where z is

any value greater than 1.
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1
1

z2
1

1

2 4 2
0 826

At least 82.6 per cent of the students must have test scores between 58 and 82.

Empirical rule

Chebyshev’s theorem applies to any data set, regardless of the shape of the distribution. It could be used,
for example, with any of the skewed distributions in Figure 3.3. In many practical applications, however,
data sets exhibit a symmetrical mound-shaped or bell-shaped distribution like the one shown in
Figure 3.4. When the data are believed to approximate this distribution, the empirical rule can be used
to determine the percentage of data values that must be within a specified number of standard deviations
of the mean. The empirical rule is based on the normal probability distribution, which will be discussed in
Chapter 6. The normal distribution is used extensively throughout this book.

For example, the empirical rule allows us to say that approximately 95 per cent of the data values will
be within two standard deviations of the mean (Chebyshev’s theorem allows us to conclude only that at
least 75 per cent of the data values will be in that interval).

Consider liquid detergent cartons being filled automatically on a production line. Filling weights
frequently have a bell-shaped distribution. If the mean filling weight is 500 grams and the standard
deviation is 7 grams, we can use the empirical rule to draw the following conclusions:

• Approximately 68 per cent of the filled cartons will have weights between 493 and 507 grams (that
is, within one standard deviation of the mean).

• Approximately 95 per cent of the filled cartons will have weights between 486 and 514 grams (that
is, within two standard deviations of the mean).

• Almost all filled cartons will have weights between 479 and 521 grams (that is, within three
standard deviations of the mean).

FIGURE 3.4

A symmetrical mound-shaped or

bell-shaped distribution

Empirical rule

For data with a bell-shaped distribution:

Approximately 68 per cent of the data values will be within one standard deviation of the mean.

Approximately 95 per cent of the data values will be within two standard deviations of the mean.

Almost all of the data values will be within three standard deviations of the mean.
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Detecting outliers

Sometimes a data set will have one or more observations with unusually large or unusually small values.
These extreme values are called outliers. Experienced statisticians take steps to identify outliers and then
review each one carefully. An outlier may be a data value that has been incorrectly recorded. If so, it can
be corrected before further analysis. An outlier may also be from an observation that was incorrectly
included in the data set. If so, it can be removed. Finally, an outlier may be an unusual data value that has
been recorded correctly and belongs in the data set. In such cases it should remain.

Standardized values (z-scores) can be used to identify outliers. The empirical rule allows us to conclude
that, for data with a bell-shaped distribution, almost all the data values will be within three standard
deviations of the mean. Hence, we recommend treating any data value with a z-score less than 3 or
greater than 3 as an outlier, if the sample is small or moderately sized. Such data values can then be
reviewed for accuracy and to determine whether they belong in the data set.

Refer to the z-scores for the class size data in Table 3.4. The z-score of 1.50 shows the fifth class size
is furthest from the mean. However, this standardized value is well within the 3 to 3 guideline for
outliers. Hence, the z-scores give no indication that outliers are present in the class size data.

EXERCISES

Methods

17. Consider a sample with data values of 10, 20, 12, 17 and 16. Calculate the z-score for each of

the five observations.

18. Consider a sample with a mean of 500 and a standard deviation of 100. What are the z-scores for

the following data values: 520, 650, 500, 450 and 280?

19. Consider a sample with a mean of 30 and a standard deviation of 5. Use Chebyshev’s theorem to

determine the percentage of the data within each of the following ranges.

a. 20 to 40

b. 15 to 45

c. 22 to 38

d. 18 to 42

e. 12 to 48

20. Suppose the data have a bell-shaped distribution with a mean of 30 and a standard deviation of

5. Use the empirical rule to determine the percentage of data within each of the following ranges.

a. 20 to 40

b. 15 to 45

c. 25 to 35

Applications

21. The results of a survey of 1154 adults showed that on average adults sleep 6.9 hours per day

during the working week. Suppose that the standard deviation is 1.2 hours.

a. Use Chebyshev’s theorem to calculate the percentage of individuals who sleep between

4.5 and 9.3 hours per day.

b. Use Chebyshev’s theorem to calculate the percentage of individuals who sleep between

3.9 and 9.9 hours per day.

c. Assume that the number of hours of sleep follows a bell-shaped distribution. Use the empirical

rule to calculate the percentage of individuals who sleep between 4.5 and 9.3 hours per day. How

does this result compare to the value that you obtained using Chebyshev’s theorem in part (a)?

COMPLETE

SOLUTIONS
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3.4 EXPLORATORY DATA ANALYSIS

In Chapter 2 we introduced the stem-and-leaf display as an exploratory data analysis technique. In this
section we continue exploratory data analysis by considering five-number summaries and box plots.

Five-number summary

In a five-number summary the following five numbers are used to summarize the data.

1 Smallest value (minimum).

2 First quartile (Q1).

3 Median (Q2).

22. Suppose that IQ scores have a bell-shaped distribution with a mean of 100 and a standard

deviation of 15.

a. What percentage of people have an IQ score between 85 and 115?

b. What percentage of people have an IQ score between 70 and 130?

c. What percentage of people have an IQ score of more than 130?

d. A person with an IQ score greater than 145 is considered a genius. Does the empirical rule

support this statement? Explain.

23. Suppose the average charge for a seven-day hire of an economy-class car in Kuwait City is KWD

(Kuwaiti dinar) 75.00, and the standard deviation is KWD20.00.

a. What is the z-score for a seven-day hire charge of KWD56.00?

b. What is the z-score for a seven-day hire charge of KWD153.00?

c. Interpret the z-scores in parts (a) and (b). Comment on whether either should be considered

an outlier.

24. Consumer Review posts reviews and ratings of a variety of products on the Internet. The following

is a sample of 20 speaker systems and their ratings, on a scale of 1 to 5, with 5 being best.

Speaker Rating Speaker Rating

Infinity Kappa 6.1 4.00 ACI Sapphire III 4.67

Allison One 4.12 Bose 501 Series 2.14

Cambridge Ensemble II 3.82 DCM KX-212 4.09

Dynaudio Contour 1.3 4.00 Eosone RSF1000 4.17

Hsu Rsch. HRSW12V 4.56 Joseph Audio RM7si 4.88

Legacy Audio Focus 4.32 Martin Logan Aerius 4.26

26 Mission 73li 4.33 Omni Audio SA 12.3 2.32

PSB 400i 4.50 Polk Audio RT12 4.50

Snell Acoustics D IV 4.64 Sunfire True Subwoofer 4.17

Thiel CS1.5 4.20 Yamaha NS-A636 2.17

a. Compute the mean and the median.

b. Compute the first and third quartiles.

c. Compute the standard deviation.

d. The skewness of this data is 1.67. Comment on the shape of the distribution.

e. What are the z-scores associated with Allison One and Omni Audio?

f. Do the data contain any outliers? Explain.

COMPLETE

SOLUTIONS

SPEAKERS
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4 Third quartile (Q3).

5 Largest value (maximum).

The easiest way to construct a five-number summary is to first place the data in ascending order. Then
it is easy to identify the smallest value, the three quartiles and the largest value. The monthly starting
salaries shown in Table 3.1 for a sample of 12 business school graduates are repeated here in ascending
order.

1955 1980 2020 2040
Q1 2030

2040 2050 2060
Q2 2055

Median

2070 2075 2125
Q3 2100

2165 2260

The median of 2055 and the quartiles Q1 = 2030 and Q3 = 2100 were computed in Section 3.1. The
smallest value is 1955 and the largest value is 2260. Hence the five-number summary for the salary data is
1955, 2030, 2055, 2100, 2260. Approximately one-quarter, or 25 per cent, of the observations are between
adjacent numbers in a five-number summary.

Box plot

A box plot is a slightly elaborated graphical version of the five-number summary. Figure 3.5 shows the
construction of a box plot for the monthly starting salary data.

1 A box is drawn with the ends of the box located at the first and third quartiles. For the salary data,
Q1 = 2030 and Q3 = 2100. This box contains the middle 50 per cent of the data.

2 A vertical line is drawn in the box at the location of the median (2055 for the salary data).

3 By using the interquartile range, IQR = Q3 Q1, limits are located. The limits for the box plot are
1.5(IQR) below Q1 and 1.5(IQR) above Q3. For the salary data, IQR = Q3 Q1 = 2100 2030 = 70.
Hence, the limits are 2030 1.5(70) = 1925 and 2100 1.5(70) = 2205. Data outside these limits are
considered outliers.

4 The dashed lines in Figure 3.5 are called whiskers. The whiskers are drawn from the ends of the box
to the smallest and largest values inside the limits computed in step 3. Hence the whiskers end at
salary values of 1955 and 2165.

5 Finally, the location of each outlier is shown with a symbol, often *. In Figure 3.5 we see one outlier,
2260. (Note that box plots do not necessarily identify the same outliers as identifying z-scores less
than 3 or greater than 3.)

Figure 3.5 includes the upper and lower limits, to show how these limits are computed and where
they are located for the salary data. Although the limits are always computed, they are not generally
drawn on the box plots. The MINITAB box plots in Figure 3.6 illustrate the usual appearance, and also
demonstrate that box plots are an excellent graphical tool for making comparisons amongst two or
more groups.

1800 1900

Lower
Limit

Median

IQR

Upper
Limit

Outlier

2000 2100 2200

*

2300

Q1
Q3

1.5 (IQR)1.5 (IQR)

FIGURE 3.5

Box plot of the starting salary

data with lines showing the

lower and upper limits
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Figure 3.6 compares monthly starting salaries for a sample of 111 graduates, by major discipline. The
major is shown on the horizontal axis and each box plot is arranged vertically above the relevant major
label. The box plots in Figure 3.6 indicate that, for example:

• The highest median salary is in Accounting, the lowest in Management.

• Accounting salaries show the highest variation.

• There are high salary outliers for Accounting, Finance and Marketing.

EXERCISES

Methods

25. Consider a sample with data values of 27, 25, 20, 15, 30, 34, 28 and 25. Provide the five-

number summary for the data.

26. Construct a box plot for the data in Exercise 25.

27. Prepare the five-number summary and the box plot for the following data: 5, 15, 18, 10, 8, 12,

16, 10, 6.

28. A data set has a first quartile of 42 and a third quartile of 50. Compute the lower and upper limits

for the corresponding box plot. Should a data value of 65 be considered an outlier?

Applications

29. Annual sales, in millions of dollars, for 21 pharmaceutical companies follow.

8 408 1 374 1 872 8 879 2 459 11 413 608

14 138 6 452 1 850 2 818 1 356 10 498 7 478

4 019 4 341 739 2 127 3 653 5 794 8 305
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Major

FIGURE 3.6

Box plot of monthly

salary
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a. Provide a five-number summary.

b. Compute the lower and upper limits (for the box plot).

c. Do the data contain any outliers?

d. Johnson & Johnson’s sales are the largest on the list at $14 138 million. Suppose a data entry

error (a transposition) had been made and the sales had been entered as $41 138 million.

Would the method of detecting outliers in part (c) identify this problem and allow for correction

of the data entry error?

e. Construct a box plot.

30. A goal of management is to help their company earn as much as possible relative to the capital

invested. One measure of success is return on equity – the ratio of net income to stockholders’

equity. Return on equity percentages are shown here for 25 companies.

9.0 19.6 22.9 41.6 11.4 15.8 52.7 17.3 12.3 5.1

17.3 31.1 9.6 8.6 11.2 12.8 12.2 14.5 9.2 16.6

5.0 30.3 14.7 19.2 6.2

a. Provide a five-number summary.

b. Compute the lower and upper limits (for the box plot).

c. Do the data contain any outliers? How would this information be helpful to a financial analyst?

d. Construct a box plot.

31. In 2008, stock markets around the world lost value. The website www.owneverystock.com listed

the following percentage falls in stock market indices between the start of the year and the

beginning of October.

Country % Fall Country % Fall

New Zealand 27.05 Brazil 39.59

Canada 27.30 Japan 39.88

Switzerland 28.42 Sweden 40.35

Mexico 29.99 Egypt 41.57

Australia 31.95 Singapore 41.60

Korea 32.18 Italy 42.88

United Kingdom 32.37 Belgium 43.70

Spain 32.69 India 44.16

Malaysia 32.86 Hong Kong 44.52

Argentina 36.83 Netherlands 44.61

France 37.71 Norway 46.98

Israel 37.84 Indonesia 47.13

Germany 37.85 Austria 50.06

Taiwan 38.79 China 60.24

a. What are the mean and median percentage changes for these countries?

b. What are the first and third quartiles?

c. Do the data contain any outliers? Construct a box plot.

d. What percentile would you report for Belgium?

COMPLETE

SOLUTIONS

STOCK 2008

EQUITY
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3.5 MEASURES OF ASSOCIATION BETWEEN
TWO VARIABLES

We have examined numerical methods used to summarize one variable at a time. Often a manager or
decision-maker is interested in the relationship between two variables. In this section we present
covariance and correlation as descriptive measures of the relationship between two variables.

We begin by reconsidering the hi-fi equipment store discussed in Section 2.3. The store’s manager
wants to determine the relationship between the number of weekend television commercials shown and
the sales at the store during the following week. Sample data with sales expressed in €000s were given
in Table 2.12, and are repeated here in the first three columns of Table 3.5. It shows ten observations
(n = 10), one for each week.

The scatter diagram in Figure 3.7 shows a positive relationship, with higher sales (vertical axis)
associated with a greater number of commercials (horizontal axis). The scatter diagram suggests that a
straight line could be used as an approximation of the relationship. In the following discussion, we
introduce covariance as a descriptive measure of the linear association between two variables.

T ABLE 3 . 5 Calculations for the sample covariance

Week

Number of

commercials xi

Sales volume

( 000s) yi xi − x̄ yi − ȳ (xi − x̄)(yi − ȳ)

1 2 50 1 −1 1

2 5 57 2 6 12

3 1 41 2 10 20

4 3 54 0 3 0

5 4 54 1 3 3

6 1 38 2 13 26

7 5 63 2 12 24

8 3 48 0 −3 0

9 4 59 1 8 8

10 2 46 1 −5 5

Totals 30 510 0 0 99
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65FIGURE 3.7

Scatter diagram for the

hi-fi equipment store
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Covariance

For a sample of size n with the observations (x1, y1), (x2, y2) and so on, the sample covariance is defined
as follows:

This formula pairs each xi with a corresponding yi. We then sum the products obtained by multiplying
the deviation of each xi from its sample mean x by the deviation of the corresponding yi from its sample
mean y. This sum is then divided by n 1.

To measure the strength of the linear relationship between the number of commercials X and the sales
volume Y in the hi-fi equipment store problem, we use equation (3.10) to compute the sample covariance.
The calculations in Table 3.5 show the computation of ∑(xi x )(yi y ). Note that x = 30/10 = 3 and
y = 510/10 = 51. Using equation (3.10), we obtain a sample covariance of:

sXY
∑ xi x yi y

n 1

99

10 − 1
11

The formula for computing the covariance of a population of size N is similar to equation (3.10), but
we use different notation to indicate that we are working with the entire population.

In equation (3.11) we use the notation μX for the population mean of X and μY for the population
mean of Y. The population covariance σXY is defined for a population of size N.

Interpretation of the covariance

To aid in the interpretation of the sample covariance, consider Figure 3.8. It is the same as the scatter
diagram of Figure 3.7 with a vertical dashed line at x 3 and a horizontal dashed line at y 51. The lines
divide the graph into four quadrants. Points in quadrant I correspond to xi greater than x and yi greater
than y . Points in quadrant II correspond to xi less than x and yi greater than y and so on. Hence, the value
of (xi x)(yi y) is positive for points in quadrants I and III, negative for points in quadrants II and IV .

If the value of sXY is positive, the points with the greatest influence on sXY are in quadrants I and III.
Hence, a positive value for sXY indicates a positive linear association between X and Y; that is, as the value
of X increases, the value of Y increases. If the value of sXY is negative, however, the points with the
greatest influence are in quadrants II and IV. Hence, a negative value for sXY indicates a negative linear
association between X and Y; that is, as the value of X increases, the value of Y decreases. Finally, if the
points are evenly distributed across all four quadrants, the value sXY will be close to zero, indicating no
linear association between X and Y. Figure 3.9 shows the values of sXY that can be expected with three
different types of scatter diagrams.

Population covariance

σXY
xi μX yi μY

N
(3.11)

Sample covariance

sXY xi x yi y

n 1
(3.10)
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Referring again to Figure 3.8, we see that the scatter diagram for the hi-fi equipment store follows the
pattern in the top panel of Figure 3.9. As we expect, the value of the sample covariance indicates a positive
linear relationship with sXY = 11.

From the preceding discussion, it might appear that a large positive value for the covariance indicates a
strong positive linear relationship and that a large negative value indicates a strong negative linear
relationship. However, one problem with using covariance as a measure of the strength of the linear
relationship is that the value of the covariance depends on the units of measurement for X and Y. For
example, suppose we are interested in the relationship between height X and weight Y for individuals.
Clearly the strength of the relationship should be the same whether we measure height in metres or
centimetres (or feet). Measuring the height in centimetres, however, gives us much larger numerical
values for (xi − x) than when we measure height in metres. Hence, with height measured in centimetres,
we would obtain a larger value for the numerator ∑ xi x yi y in equation (3.10) – and hence a larger
covariance – when in fact the relationship does not change. The correlation coefficient is measure of the
relationship between two variables that is not affected by the units of measurement for X and Y.

Correlation coefficient

For sample data, the Pearson product moment correlation coefficient is defined as follows:

Equation (3.12) shows that the Pearson product moment correlation coefficient for sample data
(commonly referred to more simply as the sample correlation coefficient) is computed by dividing the
sample covariance by the product of the sample standard deviation of X and the sample standard
deviation of Y.
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Partitioned scatter
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Pearson product moment correlation coefficient: sample data

rXY
sXY
sXsY

(3.12)

where:

rXY = sample correlation coefficient

sXY = sample covariance

sX = sample standard deviation of X

sY = sample standard deviation of Y
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Let us now compute the sample correlation coefficient for the hi-fi equipment store. Using the data in
Table 3.5, we can compute the sample standard deviations for the two variables.

sX
∑ xi x 2

n 1

20

9
1 49

sY
∑ yi y 2

n 1

566

9
7 93

Now, because sXY = 11, the sample correlation coefficient equals:

rXY
sXY
sXsY

11

1 49 7 93
0 93

x

y

x

y

x

y

sXY positive:

(X and Y are positively

linearly related)

sXY approximately 0:

(X and Y are not

linearly related)

sXY negative:

(X and Y are negatively

linearly related)

FIGURE 3.9

Interpretation of sample covariance
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The formula for computing the correlation coefficient for a population, denoted by the Greek letter
ρXY (ρ is rho, pronounced ‘row’, to rhyme with ‘go’), follows.

The sample correlation coefficient rXY provides an estimate of the population correlation
coefficient ρXY.

Interpretation of the correlation coefficient

First let us consider a simple example that illustrates the concept of a perfect positive linear relationship.
The scatter diagram in Figure 3.10 depicts the relationship between X and Y based on the following
sample data.

xi yi

5 10
10 30
15 50

The straight line drawn through the three points shows a perfect linear relationship between X and Y.
In order to apply equation (3.12) to compute the sample correlation we must first compute sXY, sX and
sY. Some of the computations are shown in Table 3.6.

Pearson product moment correlation coefficient: population data

ρXY
σXY
σXσY

(3.13)

where:

ρXY = population correlation coefficient

σXY = population covariance

σX = population standard deviation for X

σY = population standard deviation for Y

5

10

20

30

40

50

10 15
x

yFIGURE 3.10

Scatter diagram depicting a perfect positive linear

relationship
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Using the results in Table 3.6, we find:

sXY
∑ xi x yi y

n 1

200

2
100

sX
∑ xi x 2

n 1

50

2
5

sY
∑ yi y 2

n 1

800

2
20

rXY
sXY
sXsY

100

5 20
1

We see that the value of the sample correlation coefficient is 1.
In general, it can be shown that if all the points in a data set fall on a positively sloped straight line, the

value of the sample correlation coefficient is 1. That is, a sample correlation coefficient of 1 corresponds
to a perfect positive linear relationship between X and Y. If the points in the data set fall on a straight line
with a negative slope, the value of the sample correlation coefficient is 1. That is, a sample correlation
coefficient of 1 corresponds to a perfect negative linear relationship between X and Y.

Suppose that a data set indicates a positive linear relationship between X and Y but that the relation-
ship is not perfect. The value of rXY will be less than 1, indicating that the points in the scatter diagram
are not all on a straight line. As the points deviate more and more from a perfect positive linear
relationship, the value of rXY becomes closer and closer to zero. A value of rXY equal to zero indicates
no linear relationship between X and Y, and values of rXY near zero indicate a weak linear relationship.

For the data involving the hi-fi equipment store, recall that rXY = 0.93. Therefore, we conclude that a
strong positive linear relationship occurs between the number of commercials and sales. More specifically,
an increase in the number of commercials is associated with an increase in sales.

In closing, we note that correlation provides a measure of linear association and not necessarily
causation. A high correlation between two variables does not mean that one variable causes the other. For
instance, we may find that a restaurant’s quality rating and its typical meal price are positively correlated.
However, increasing the meal price will not cause quality to increase.

EXERCISES

Methods

32. Five observations taken for two variables follow.

xi 4 6 11 3 16

yi 50 50 40 60 30

COMPLETE

SOLUTIONS

T ABLE 3 . 6 Computations used in calculating the sample correlation coefficient

xi yi xi − x (xi− x)
2

yi− y (yi− y)
2

(xi− x)(yi− y)

5 10 5 25 20 400 100

10 30 0 0 0 0 0

15 50 5 25 20 400 100

Totals 30 90 0 50 0 800 200

x = 10 y = 10
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a. Construct a scatter diagram with the xi values on the horizontal axis.

b. What does the scatter diagram developed in part (a) indicate about the relationship between

the two variables?

c. Compute and interpret the sample covariance.

d. Compute and interpret the sample correlation coefficient.

33. Five observations taken for two variables follow.

xi 6 11 15 21 27

yi 6 9 6 17 12

a. Construct a scatter diagram for these data.

b. What does the scatter diagram indicate about a relationship between X and Y?

c. Compute and interpret the sample covariance.

d. Compute and interpret the sample correlation coefficient.

Applications

34. Below are return on investment figures (%) and current ratios (current assets/current liabilities)

for 15 German companies, for the year 2011 (file G_Comp on the online platform).

Company Return on investment (%) Current ratio

Adidas 8.15 1.50

BASF 14.66 1.64

Bayer 6.37 1.50

BMW 5.98 1.04

Continental 7.15 1.06

Daimler 5.70 1.11

Deutsche Bank 0.25 0.82

Deutsche Telekom 2.46 0.65

Fresenius 9.10 1.34

Henkel 9.16 1.58

Linde 5.60 0.89

SAP 20.53 1.54

Siemens 8.87 1.21

Tui 1.53 0.65

Volkswagen 7.46 1.05

a. Construct a scatter diagram with current ratio on the horizontal axis.

b. Is there any relationship between return on investment and current ratio? Explain.

c. Compute and interpret the sample covariance.

d. Compute and interpret the sample correlation coefficient.

e. What does the sample correlation coefficient tell you about the relationship between return on

investment and current ratio?

35. Stock markets across the Eurozone tend to have mutual influences on each other. The index

levels of the German DAX index and the French CAC 40 index for ten weeks beginning with 4 June

2012 are shown below (file ‘DAX_CAC’ on the online platform).

Date DAX CAC 40

04-Jun-12 6130.82 3051.69

11-Jun-12 6229.41 3087.62

18-Jun-12 6263.25 3090.90 DAX_CAC

G_COMP
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3.6 THE WEIGHTED MEAN AND WORKING
WITH GROUPED DATA

In Section 3.1, we presented the mean as one of the most important measures of central location. The
formula for the mean of a sample with n observations is re-stated as follows.

x
∑xi
n

x1 x2 xn
n

(3.14)

In this formula, each xi is given equal importance or weight. Although this practice is most common, in
some instances the mean is computed by giving each observation a weight that reflects its importance.
A mean computed in this manner is referred to as a weighted mean. The weighted mean is computed
as follows:

For sample data, equation (3.15) provides the weighted sample mean. For population data, μ replaces x
and equation (3.15) provides the weighted population mean.

As an example of the need for a weighted mean, consider the following sample of five purchases of a
raw material over the past three months. Note that the cost per kilogram has varied from €2.80 to €3.40
and the quantity purchased has varied from 500 to 2750 kilograms.

Purchase Cost per kilogram (€) Number of kilograms

1 3.00 1200
2 3.40 500
3 2.80 2750
4 2.90 1000
5 3.25 800

Date DAX CAC 40

25-Jun-12 6416.28 3196.65

02-Jul-12 6410.11 3168.79

09-Jul-12 6557.10 3180.81

16-Jul-12 6630.02 3193.89

23-Jul-12 6689.40 3280.19

30-Jul-12 6865.66 3374.19

06-Aug-12 6967.95 3453.28

a. Compute the sample correlation coefficient for these data.

b. Are they poorly correlated, or do they have a close association?

Weighted mean

x
wixi
wi

(3.15)

where:
xi value of observation i

wi weight for observation i
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Suppose a manager asked for information about the mean cost per kilogram of the raw material.
Because the quantities ordered vary, we must use the formula for a weighted mean. The five cost-per-
kilogram values are x1 = 3.00, x2 = 3.40, … etc. The weighted mean cost per kilogram is found by
weighting each cost by its corresponding quantity. The weights are w1 = 1200, w2 = 500, … etc. Using
equation (3.15), the weighted mean is calculated as follows:

x
∑wixi
∑wi

1200 3 00 500 3 40 2750 2 80 1000 2 90 800 3 25

1200 500 2750 1000 800

18 500

6250
2 96

The weighted mean computation shows that the mean cost per kilogram for the raw material is €2.96.
Note that using equation (3.14) rather than the weighted mean formula would have provided misleading
results. In this case, the mean of the five cost-per-kilogram values is (3.00 3.40 2.80 2.90 3.25)/5 =
15.35/5 = €3.07, which overstates the actual mean cost per kilogram purchased.

When observations vary in importance, the analyst must choose the weight that best reflects the
importance of each observation in the determination of the mean, in the context of the particular
application.

Grouped data

In most cases, measures of location and variability are computed by using the individual data values.
Sometimes, however, data are available only in a grouped or frequency distribution form. We show how
the weighted mean formula can be used to obtain approximations of the mean, variance and standard
deviation for grouped data.

Recall from Section 2.2 the frequency distribution of times in days required to complete year-end
audits for the small accounting firm of Sanderson and Clifford. It is shown again in the first two columns
of Table 3.7 (n = 20 clients). Based on this frequency distribution, what is the sample mean audit time?

To compute the mean using only the grouped data, we treat the midpoint of each class as being
representative of the items in the class. Let Mi denote the midpoint for class i and let fi denote the
frequency of class i. The weighted mean formula (3.15) is then used with the data values denoted as Mi

and the weights given by the frequencies fi. In this case, the denominator of equation (3.15) is the sum of
the frequencies, which is the sample size n. That is, Σfi = n.

Hence, the equation for the sample mean for grouped data is as follows in equation (3.16).

With the class midpoints, Mi, halfway between the class limits, the first class of 10–14 in Table 3.7 has
a midpoint at (10 14)/2 = 12. The five class midpoints and the weighted mean computation for the
audit time data are summarized in Table 3.7. The sample mean audit time is 19 days.

To compute the variance for grouped data, we use a slightly altered version of the formula for the
variance given in equation (3.5). The squared deviations of the data about the sample mean x were
written xi x 2. However, with grouped data, the values are not known. In this case, we treat the class
midpoint, Mi, as being representative of the xi values in the corresponding class.

Sample mean for grouped data

x
f iMi

n
(3.16)

where

Mi = the midpoint for class i

fi = the frequency for class i

n = the sample size
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The squared deviations about the sample mean, xi x 2, are replaced by Mi x 2. Then, just as we
did with the sample mean calculations for grouped data, we weight each value by the frequency of the
class, fi. The sum of the squared deviations about the mean for all the data is approximated by
∑f i Mi x 2.

The term n 1 rather than n appears in the denominator in order to make the sample variance an
unbiased estimator of the population variance. The following formula is used to obtain the sample
variance for grouped data.

The calculation of the sample variance for audit times based on the grouped data from Table 3.7 is
shown in Table 3.8. The sample variance is 30. The standard deviation for grouped data is simply the
square root of the variance for grouped data. For the audit time data, the sample standard deviation is
s 30 5 48.

Note that formulae (3.16) and (3.17) are for a sample. Population summary measures are computed
similarly in equations (3.18) and (3.19).

T ABLE 3 . 8 Computation of the sample variance of audit times for grouped data

Audit time

(days)

Class

midpoint (Mi)

Frequency

(fi)

Deviation

(Mi x )

Squared

deviation

(Mi x 2) fi Mi x)
2

10–14 12 4 7 49 196

15–19 17 8 2 4 32

20–24 22 5 3 9 45

25–29 27 2 8 64 128

30–34 32 1 13 169 169

Total 20 570

fi Mi x 2

Sample variance
fi Mi x 2

n 1

570

19
30

Sample variance for grouped data

s2
f i Mi x 2

n 1
(3.17)

T ABLE 3 . 7 Computation of the sample mean audit time for grouped data

Audit time (days) Frequency (fi) Class midpoint (Mi) fiMi

10–14 4 12 48

15–19 8 17 136

20–24 5 22 110

25–29 2 27 54

30–34 1 32 32

Totals 20 380

Sample mean x
fiMi

n

180

20
19 days
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Population mean for grouped data

μ
∑fiMi

N
(3.18)

Population variance for grouped data

σ2
∑fi Mi μ 2

N
(3.19)

EXERCISES

Methods

36. Consider the following data and corresponding weights.

xi Weight

3.2 6

2.0 3

2.5 2

5.0 8

a. Compute the weighted mean.

b. Compute the sample mean of the four data values without weighting. Note the difference in

the results provided by the two computations.

37. Consider the sample data in the following frequency distribution.

Class Midpoint Frequency

3–7 5 4

8–12 10 7

13–17 15 9

18–22 20 5

a. Compute the sample mean.

b. Compute the sample variance and sample standard deviation.

Applications

38. The assessment for a statistics module comprises a multiple-choice test, a data analysis project,

an EXCEL test and a written examination. Scores for Jil and Ricardo on the four components are

show below.

Assessment Jil Ricardo

Multiple-choice test 80% 48%

Data analysis project 60% 78%

EXCEL test 62% 60%

Written examination 57% 53%

COMPLETE

SOLUTIONS
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SUMMARY

In this chapter we introduced several descriptive statistics that can be used to summarize the location,

variability and shape of a data distribution. The measures introduced in this chapter summarize the data

in terms of numerical values. When the numerical values obtained are for a sample, they are called

sample statistics. When the numerical values obtained are for a population, they are called population

parameters. In statistical inference, the sample statistic is referred to as the point estimator of the

population parameter. Some of the notation used for sample statistics and population parameters follow.

Sample statistic Population parameter

Mean x µ

Variance s
2 2

Standard deviation s

Covariance sXY XY

Correlation rXY XY

As measures of central location, we defined the mean, median and mode. Then the concept of

percentiles was used to describe other locations in the data set. Next, we presented the range,

interquartile range, variance, standard deviation and coefficient of variation as measures of variability

or dispersion. Our primary measure of the shape of a data distribution was the skewness. Negative

values indicate a data distribution skewed to the left. Positive values indicate a data distribution

a. Calculate weighted mean scores (%) for Jil and Ricardo assuming the respective weightings for

the four components are 20, 20, 30, 30.

b. Calculate weighted mean scores (%) for Jil and Ricardo assuming the respective weightings for

the four components are 10, 25, 15, 50.

39. A petrol station recorded the following frequency distribution for the number of litres of petrol sold

per car in a sample of 680 cars.

Petrol (litres) Frequency

1–15 74

16–30 192

31–45 280

46–60 105

61–75 23

76–90 6

Total 680

Compute the mean, variance and standard deviation for these grouped data. If the petrol station

expects to serve petrol to about 120 cars on a given day, estimate the total number of litres of

petrol that will be sold.

ONLINE RESOURCES

For the data files, online summary, additional questions and answers, and software section for

Chapter 3, go to the online platform.
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skewed to the right. We showed how to calculate z-scores, and indicated how they can be used to

identify outlying observations. We then described how the mean and standard deviation could be

used, applying Chebyshev’s theorem and the empirical rule, to provide more information about the

distribution of data and to identify outliers.

In Section 3.4 we showed how to construct a five-number summary and a box plot to provide

simultaneous information about the location, variability and shape of the distribution.

Section 3.5 introduced covariance and the correlation coefficient as measures of association

between two variables.

In Section 3.6, we showed how to compute a weighted mean and how to calculate a mean,

variance and standard deviation for grouped data.

KEY TERMS

Box plot

Chebyshev’s theorem

Coefficient of variation

Correlation coefficient

Covariance

Empirical rule

Five-number summary

Grouped data

Interquartile range (IQR)

Mean

Median

Mode

Outlier

Percentile

Point estimator

Population parameter

Quartiles

Range

Sample statistic

Skewness

Standard deviation

Variance

Weighted mean

z-score

KEY FORMULAE

Sample mean

x
∑xi
n

(3.1)

Population mean

μ
∑xi
N

(3.2)

Interquartile range

IQR Q3 Q1 (3.3)
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Population variance

σ2
∑ xi μ 2

N
(3.4)

Sample variance

s2
∑ xi x 2

n 1
(3.5)

Standard deviation

Population standard deviation σ σ2 (3.6)

Sample standard deviation s s2 (3.7)

Coefficient of variation

Standard deviation

Mean
100 (3.8)

z-score

zi
xi x

s
(3.9)

Sample covariance

sXY ∑ xi x yi y

n 1
(3.10)

Population covariance

σXY
∑ xi μX yi μY

N
(3.11)
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Pearson product moment correlation coefficient: sample data

rXY
sXY
sXsY

(3.12)

Pearson product moment correlation coefficient: population data

ρXY
σXY
σXσY

(3.13)

Weighted mean

x
∑wixi
∑wi

(3.15)

Sample mean for grouped data

x
∑fiMi

n
(3.16)

Sample variance for grouped data

s2
∑fi Mi x 2

n 1
(3.17)

Population mean for grouped data

μ
∑fiMi

N
(3.18)

Population variance for grouped data

σ2
∑fi Mi μ 2

N
(3.19)
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CASE PROBLEM 1

Company Profiles

The file ‘Companies 2012’ on the online platform

contains a data set compiled mid-year 2012. It com-

prises figures relating to samples of companies

whose shares are traded on the stock exchanges in

Germany, France, South Africa and Israel. The data

contained in the file are:

Name of company.

Country of stock exchange where the shares are

traded.

Return on shareholders’ funds in 2011 (%).

Profit margin in 2011 (%).

Return on total assets in 2011 (%).

Current ratio, 2011.

Solvency ratio, 2011.

Price/earnings ratio, 2011.

The first few rows of data are shown below.

Company

name Country

Return on

share holders’

funds,

2011 (%)

Profit

margin

2011 (%)

Return on total

assets 2011

(%)

Curent ratio,

2011

Solvency

ratio, 2011

Price/

earnings

ratio, 2011

Adidas AG Germany 17.40 6.85 8.15 1.50 46.81 15.72

Allianz SE Germany 10.79 6.99 0.77 7.15 11.92

Altana AG Germany 3.32 3.28 2.28 2.40 68.77 200.13

BASF SE Germany 37.16 11.90 14.66 1.64 39.46 7.96

Bayer AG Germany 17.50 9.04 6.37 1.50 36.41 16.47

BWW AG Germany 27.31 10.69 5.98 1.04 21.91 6.52

Commerz

bank

Germany 2.04 4.09 0.08 0.41 3.75 8.92

Continental

AG

Germany 26.05 6.06 7.15 1.06 27.44 7.71

Daimler AG Germany 21.32 7.84 5.70 1.11 26.75 6.35

Deutsche

Bank AG

Germany 9.86 16.16 0.25 0.82 2.53 6.23

Managerial report

1. Produce summaries for each of the numerical

vari-ables in the file using suitable descriptive

statistics. For each variable, identify outliers as

well as summarizing the overall characteristics of

the data distribution.

2. Investigate whether there are any differences bet-

ween countries in average profit margin. Similarly,

investigate whether there are differences

between countries in average current ratio and

in average price/earnings ratio.

3. Investigate whether there is any relationship bet-

ween return on investment and current ratio.

Similarly, investigate whether there is any

relationship between return on investment and

price/earnings ratio.

The Johannesburg Stock Exchange

COMPANIES

2012
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CASE PROBLEM 2

Chocolate Perfection Website Transactions

Chocolate Perfection manufactures and sells qual-

ity chocolate products in Dubai. Two years ago the

company developed a website and began selling its

products over the Internet. Website sales have

exceeded the company’s expectations, and man-

agement is now considering strategies to increase

sales even further. To learn more about the website

customers, a sample of 50 Chocolate Perfection

transactions was selected from the previous

month’s sales. Data showing the day of the week

each transaction was made, the type of browser the

customer used, the time spent on the website, the

number of website pages viewed and the amount

spent by each of the 50 customers are contained in

the file named ‘Shoppers’. Amount spent is in

United Arab Emirates dirham (AED). (One Euro is

around five AED.) A portion of the data is shown

below.

Customer Day Browser Time (min) Pages Viewed Amount Spent (AED)

1 Mon Internet Explorer 12.0 4 200.09

2 Wed Other 19.5 6 348.28

3 Mon Internet Explorer 8.5 4 97.92

4 Tue Firefox 11.4 2 164.16

5 Wed Internet Explorer 11.3 4 243.21

6 Sat Firefox 10.5 6 248.83

7 Sun Internet Explorer 11.4 2 132.27

8 Fri Firefox 4.3 6 205.37

9 Wed Firefox 12.7 3 260.35

Chocolate Perfection would like to use the sample

data to determine if online shoppers who spend more

time and view more pages also spend more money

during their visit to the website. The company would

also like to investigate the effect that the day of the

week and the type of browser has on sales.

Managerial report

Use the methods of descriptive statistics to learn

about the customers who visit the Chocolate Perfec-

tion website. Include the following in your report:

1. Graphical and numerical summaries for the length

of time the shopper spends on the website, the

number of pages viewed and the mean amount

spent per transaction. Discuss what you learn

about Chocolate Perfection’s online shoppers

from these numerical summaries.

2. Summarize the frequency, the total amount spent

and the mean amount spent per transaction for

each day of week. What observations can you

make about Chocolate Perfection’s business

based on the day of the week? Discuss.

3. Summarize the frequency, the total amount spent

and the mean amount spent per transaction for

each type of browser. What observations can you

make about Chocolate Perfection’s business,

based on the type of browser? Discuss.

4. Construct a scatter diagram and compute the sam-

ple correlation coefficient to explore the relationship

between the time spent on the website and the

amount spent. Use the horizontal axis for the time

spent on the website. Discuss.

5. Construct a scatter diagram and compute the sample

correlation coefficient to explore the relationship

between the number of website pages viewed and

the amount spent. Use the horizontal axis for the

number of website pages viewed. Discuss.

6. Construct a scatter diagram and compute the sam-

ple correlation coefficient to explore the

relationship between the time spent on the

website and the number of pages viewed. Use

the horizontal axis to represent the number of

pages viewed. Discuss.

SHOPPERS
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4
Introduction To
Probability

CHAPTER CONTENTS

Statistics in Practice Combating junk email

4.1 Experiments, counting rules and assigning probabilities

4.2 Events and their probabilities

4.3 Some basic relationships of probability

4.4 Conditional probability

4.5 Bayes’ theorem

LEARNING OBJECTIVES After reading this chapter and doing the exercises, you should be able to:
1 Appreciate the role probability information

plays in the decision-making process.

2 Understand probability as a numerical

measure of the likelihood of occurrence.

3 Appreciate the three methods commonly

used for assigning probabilities and

understand when they should be used.

4 Use the laws that are available for

computing the probabilities of events.

5 Understand how new information can be used

to revise initial (prior) probability

estimates using Bayes’ theorem.

M anagers often base their decisions on an analysis of uncertainties such as the following:

1 What are the chances that sales will decrease if we increase prices?

2 What is the likelihood a new assembly method will increase productivity?

3 How likely is it that the project will be finished on time?

4 What is the chance that a new investment will be profitable?

Probability is a numerical measure of the likelihood that an event will occur. Thus, probabilities can be
used as measures of the degree of uncertainty associated with the four events previously listed. If
probabilities are available, we can determine the likelihood of each event occurring.

86



Probability values are always assigned on a scale from 0 to 1. A probability near zero indicates an event
is unlikely to occur; a probability near 1 indicates an event is almost certain to occur. Other probabilities
between 0 and 1 represent degrees of likelihood that an event will occur. For example, if we consider the
event ‘rain tomorrow’, we understand that when the weather report indicates ‘a near-zero probability of
rain’, it means almost no chance of rain. However, if a 0.90 probability of rain is reported, we know that
rain is likely to occur. A 0.50 probability indicates that rain is just as likely to occur as not. Figure 4.1
depicts the view of probability as a numerical measure of the likelihood of an event occurring.

Probability:
0 0.5

Increasing Likelihood of Occurrence

The occurrence of the event is
just as likely as it is unlikely

1.0

FIGURE 4.1

Probability as a

numerical measure of

the likelihood of an

event occurring

STATISTICS IN PRACTICE

Combating junk email

Junk email remains a major Internet scourge. In April

2012 it was estimated 77.2 per cent of electronic

mail worldwide was spam (unsolicited commercial

email).1 In 2011, India, Russia and Vietnam accounted

for more than 30 per cent of it.2 In the past, spam has

been inextricably linked to the spread of malware on the

Web and indeed a significant proportion of spam was

botnet-generated. Spam is often associated with porn –

the notorious Facebook attack in 2011 being entirely in

keeping with this growing phenomenon.3 Spam is time-

consuming to deal with and an increasing brake on

further email take-up and usage.

Various initiatives have been undertaken to help

counter the problem. However, determining which mes-

sages are ‘good’ and which are ‘spam’ is difficult to

establish even with the most sophisticated spam filters

(spam-busters). One of the earliest and most effective

techniques for dealing with spam is the adaptive Naïve

Bayes’ method which exploits the probability relationship

P spam message
P message spam P spam

P message

where P message P message spam P spam

P message good P good

Here:

P(spam) is the prior probability a message is

spam based on past experience,

P(message | spam) is estimated from a training

corpus (a set of messages known to be good or

spam) on the (naïve) assumption that every word in

the message is independent of every other so that:

P(message | spam) P(first word | spam)

P(second word | spam) ...

P(last word | spam)

Similarly:

P(message | good) P(first word | good)

P(second word | good) ...

P(last word | good)

Advantages of Naïve Bayes are its simplicity and ease

of implementation. Indeed it is often found to be very

effective – even compared to methods based on more

complex modelling procedures.

1www.kaspersky.co.uk/about/news/spam/2012/Spam_in_April_
2012_Junk_Mail_Gathers_Pace_in_the_US
2www.cisco.com/en/US/prod/collateral/vpndevc/security_annual_
report_2011.pdf
3http://mashable.com/2011/11/15/facebook-spam-porn/
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4.1 EXPERIMENTS, COUNTING RULES AND ASSIGNING
PROBABILITIES

We define an experiment as a process that generates well-defined outcomes. On any single repetition of
an experiment, one and only one of the possible experimental outcomes will occur. Several examples of
experiments and their associated outcomes follow.

By specifying all possible experimental outcomes, we identify the sample space for an experiment.

An experimental outcome is also called a sample point to identify it as an element of the sample space.
Consider the first experiment in the preceding table – tossing a coin. The upward face of the coin – a

head or a tail – determines the experimental outcomes (sample points). If we let S denote the sample
space, we can use the following notation to describe the sample space.

S Head, Tail

The sample space for the second experiment in the table – selecting a part for inspection – can be
described as follows

S Defective, Non-defective

Both of the experiments just described have two experimental outcomes (sample points). However,
suppose we consider the fourth experiment listed in the table – rolling a die. The possible experimental
outcomes, defined as the number of dots appearing on the upward face of the die, are the six points in the
sample space for this experiment.

S 1, 2, 3, 4, 5, 6

Counting rules, combinations and permutations

Being able to identify and count the experimental outcomes is a necessary step in assigning probabilities.
We now discuss three useful counting rules.

Multiple-step experiments
The first counting rule applies to multiple-step experiments. Consider the experiment of tossing two
coins. Let the experimental outcomes be defined in terms of the pattern of heads and tails appearing on
the upward faces of the two coins. How many experimental outcomes are possible for this experiment?

Sample space

The sample space for an experiment is the set of all experimental outcomes.

Experiment Experimental outcomes

Toss a coin Head, tail
Select a part for inspection Defective, non-defective
Conduct a sales call Purchase, no purchase
Role a die 1, 2, 3, 4, 5, 6
Play a football game Win, lose, draw
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The experiment of tossing two coins can be thought of as a two-step experiment in which step 1 is the tossing
of the first coin and step 2 is the tossing of the second coin. If we use H to denote a head and T to denote a
tail, (H, H) indicates the experimental outcome with a head on the first coin and a head on the second coin.
Continuing this notation, we can describe the sample space (S) for this coin-tossing experiment as follows:

S H, H , H, T , T, H , T , T

Thus, we see that four experimental outcomes are possible. In this case, we can easily list all of the
experimental outcomes.

The counting rule for multiple-step experiments makes it possible to determine the number of
experimental outcomes without listing them.

Viewing the experiment of tossing two coins as a sequence of first tossing one coin (n1 2) and then
tossing the other coin (n2 2), we can see from the counting rule that there are 2 2 4 distinct
experimental outcomes. They are S {(H, H), (H, T), (T, H), (T, T)}. The number of experimental
outcomes in an experiment involving tossing six coins is 2 2 2 2 2 2 64.

A tree diagram is a graphical representation that helps in visualizing a multiple-step experiment.
Figure 4.2 shows a tree diagram for the experiment of tossing two coins. The sequence of steps moves from
left to right through the tree. Step 1 corresponds to tossing the first coin, and step 2 corresponds to tossing
the second coin. For each step, the two possible outcomes are head or tail. Note that for each possible
outcome at step 1 two branches correspond to the two possible outcomes at step 2. Each of the points on the
right end of the tree corresponds to an experimental outcome. Each path through the tree from the leftmost
node to one of the nodes at the right side of the tree corresponds to a unique sequence of outcomes.

Let us now see how the counting rule for multiple-step experiments can be used in the analysis of a
capacity expansion project for Kristof Projects Limited (KPL). KPL is starting a project designed to
increase the generating capacity of one of its plants in southern Norway. The project is divided into two
sequential stages or steps: stage 1 (design) and stage 2 (construction). Even though each stage will be
scheduled and controlled as closely as possible, management cannot predict beforehand the exact time
required to complete each stage of the project. An analysis of similar construction projects revealed
possible completion times for the design stage of two, three or four months and possible completion times
for the construction stage of six, seven or eight months.

A counting rule for multiple-step experiments

If an experiment can be described as a sequence of k steps with n1 possible outcomes on the first step,

n2 possible outcomes on the second step and so on, then the total number of experimental outcomes

is given by:

n1 n2 … nk

Step 1
First Coin

Step 2
Second Coin

Head

Head

Tail

Tail

Tail

Head

Experimental
Outcome

(Sample Point)

(H, H )

(H, T)

(T, H )

(T, T)

FIGURE 4.2

Tree diagram for the

experiment of tossing

two coins
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In addition, because of the critical need for additional electrical power, management set a goal of ten
months for the completion of the entire project.

Because this project has three possible completion times for the design stage (step 1) and three possible
completion times for the construction stage (step 2), the counting rule for multiple-step experiments
can be applied here to determine a total of 3 3 9 experimental outcomes. To describe the experimental
outcomes, we use a two-number notation; for instance, (2, 6) indicates that the design stage is completed in
twomonths and the construction stage is completed in six months. This experimental outcome results in a total
of 2 6 8 months to complete the entire project. Table 4.1 summarizes the nine experimental outcomes
for the KPL problem. The tree diagram in Figure 4.3 shows how the nine outcomes (sample points) occur.

The counting rule and tree diagram help the project manager identify the experimental outcomes
and determine the possible project completion times. We see that the project will be completed in
8 to 12 months, with six of the nine experimental outcomes providing the desired completion time of
ten months or less. Even though identifying the experimental outcomes may be helpful, we need to
consider how probability values can be assigned to the experimental outcomes before making an
assessment of the probability that the project will be completed within the desired ten months.

Combinations
A second useful counting rule allows one to count the number of experimental outcomes when the
experiment involves selecting n objects from a (usually larger) set of N objects. It is called the counting
rule for combinations.

T ABLE 4 . 1 Experimental outcomes (sample points) for the KPL project

Completion time (months)

Stage 1

Design

Stage 2

Construction

Notation for

experimental outcome

Total project

completion time (months)

2 6 (2, 6) 8

2 7 (2, 7) 9

2 8 (2, 8) 10

3 6 (3, 6) 9

3 7 (3, 7) 10

3 8 (3, 8) 11

4 6 (4, 6) 10

4 7 (4, 7) 11

4 8 (4, 8) 12

Counting rule for combinations

The number of combinations of N objects taken n at a time is:

NCn

N
n

N

n N n
where:

N N N − 1 N − 2 … 2 1
n n n − 1 n − 2 … 2 1

and, by definition:

0 1
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The notation ! means factorial: for example, 5 factorial is 5! 5 4 3 2 1 120.
Consider a quality control procedure in which an inspector randomly selects two of five parts to test

for defects. In a group of five parts, how many combinations of two parts can be selected? The counting
rule in equation (4.1) shows that with N 5 and n 2, we have:

5C2
5
2

5 4 3 2 1

2 1 3 2 1

120

12
10 (4.1)

Thus, ten outcomes are possible for the experiment of randomly selecting two parts from a group of five.
If we label the five parts as A, B, C, D and E, the ten combinations or experimental outcomes can be
identified as AB, AC, AD, AE, BC, BD, BE, CD, CE and DE.

As another example, consider that the Spanish Lotto 6–49 system uses the random selection of six
integers from a group of 49 to determine the weekly lottery winner. The counting rule for combinations,
equation (4.1), can be used to determine the number of ways six different integers can be selected from a
group of 49.

49
6

49

6 49 6

49

6 43

49 48 47 46 45 44

6 5 4 3 2 1
13 983 816

The counting rule for combinations tells us that more than 13 million experimental outcomes are possible
in the lottery drawing. An individual who buys a lottery ticket has one chance in 13 983 816 of winning.

Permutations
A third counting rule that is sometimes useful is the counting rule for permutations. It allows one to
compute the number of experimental outcomes when n objects are to be selected from a set of N objects
where the order of selection is important. The same n objects selected in a different order is considered a
different experimental outcome.

Step 1
Design

Step 2
Construction

7 mo.

3 mo.

4
 m

o.

8 mo.

2
 m

o.

Experimental
Outcome

(Sample Point)
Total Project

Completion Time

(2, 6)
6 mo.

7 mo.

8 mo.

6 mo.

7 mo.

8 mo.

6 mo.

8 months

(2, 7) 9 months

(2, 8) 10 months

(3, 6) 9 months

(3, 7) 10 months

(3, 8) 11 months

(4, 6) 10 months

(4, 7) 11 months

(4, 8) 12 months

FIGURE 4.3

Tree diagram for the KPL

project
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The counting rule for permutations closely relates to the one for combinations; however, an experi-
ment results in more permutations than combinations for the same number of objects because every
selection of n objects can be ordered in n! different ways.

As an example, consider again the quality control process in which an inspector selects two of five
parts to inspect for defects. How many permutations may be selected? The counting rule in equation (4.2)
shows that with N 5 and n 2, we have:

5P2

5

5 2

5

3

5 4 3 2 1

3 2 1

120

6
20 (4.2)

Thus, 20 outcomes are possible for the experiment of randomly selecting two parts from a group
of five when the order of selection must be taken into account. If we label the parts A, B, C, D and E,
the 20 permutations are AB, BA, AC, CA, AD, DA, AE, EA, BC, CB, BD, DB, BE, EB, CD, DC, CE, EC,
DE and ED.

Assigning probabilities

Now let us see how probabilities can be assigned to experimental outcomes. The three approaches most
frequently used are the classical, relative frequency and subjective methods. Regardless of the method
used, two basic requirements for assigning probabilities must be met.

The classical method of assigning probabilities is appropriate when all the experimental outcomes are equally
likely. If n experimental outcomes are possible, a probability of 1/n is assigned to each experimental outcome.
When using this approach, the two basic requirements for assigning probabilities are automatically satisfied.

For example, consider the experiment of tossing a fair coin: the two experimental outcomes – head and
tail – are equally likely. Because one of the two equally likely outcomes is a head, the probability of
observing a head is 1/2 or 0.50. Similarly, the probability of observing a tail is also 1/2 or 0.50.

As another example, consider the experiment of rolling a die. It would seem reasonable to conclude
that the six possible outcomes are equally likely, and hence each outcome is assigned a probability of 1/6.
If P(1) denotes the probability that one dot appears on the upward face of the die, then P(1) 1/6.
Similarly, P(2) 1/6, P(3) 1/6, P(4) 1/6, P(5) 1/6 and P(6) 1/6. Note that these probabilities

Counting rule for permutations

The number of permutations of N objects taken at n is given by:

NPn n
N
n

N

N n

Basic requirements for assigning probabilities

1. The probability assigned to each experimental outcome must be between 0 and 1, inclusively. If we

let Ei denote the ith experimental outcome and P(Ei) its probability, then this requirement can be

written as:

0 ≤ P Ei ≤ 1 for all i (4.3)

2. The sum of the probabilities for all the experimental outcomes must equal 1.0. For n experimental

outcomes, this requirement can be written as:

P E1 P E2 … P En 1 (4.4)
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satisfy the two basic requirements of equations (4.3) and (4.4) because each of the probabilities is greater
than or equal to zero and they sum to 1.0.

The relative frequency method of assigning probabilities is appropriate when data are available to
estimate the proportion of the time the experimental outcome will occur if the experiment is repeated a
large number of times. As an example, consider a study of waiting times in the X-ray department for a
local hospital. A clerk recorded the number of patients waiting for service at 9:00 a.m. on 20 successive
days, and obtained the following results.

These data show that on two of the 20 days, zero patients were waiting for service; on five of
the days, one patient was waiting for service and so on. Using the relative frequency method, we
would assign a probability of 2/20 0.10 to the experimental outcome of zero patients waiting for
service, 5/20 0.25 to the experimental outcome of one patient waiting, 6/20 0.30 to two patients
waiting, 4/20 0.20 to three patients waiting and 3/20 0.15 to four patients waiting. As with the
classical method, using the relative frequency method automatically satisfies the two basic requirements
of equations (4.3) and (4.4).

The subjective method of assigning probabilities is most appropriate when one cannot realistically
assume that the experimental outcomes are equally likely and when little relevant data are available.
When the subjective method is used to assign probabilities to the experimental outcomes, we may use any
information available, such as our experience or intuition. After considering all available information, a
probability value that expresses our degree of belief (on a scale from 0 to 1) that the experimental outcome
will occur, is specified. Because subjective probability expresses a person’s degree of belief, it is personal.
Using the subjective method, different people can be expected to assign different probabilities to the same
experimental outcome.

The subjective method requires extra care to ensure that the two basic requirements of equations (4.3)
and (4.4) are satisfied. Regardless of a person’s degree of belief, the probability value assigned to each
experimental outcome must be between 0 and 1, inclusive, and the sum of all the probabilities for the
experimental outcomes must equal 1.0.

Consider the case in which Tomas and Margit Elsbernd make an offer to purchase a house. Two
outcomes are possible:

E1 their offer is accepted

E2 their offer is rejected

Margit believes that the probability their offer will be accepted is 0.8; thus, Margit would
set P(E1) 0.8 and P(E2) 0.2. Tomas, however, believes that the probability that their offer will be
accepted is 0.6; hence, Tomas would set P(E1) 0.6 and P(E2) 0.4. Note that Tomas’ probability estimate
for E1 reflects a greater pessimism that their offer will be accepted.

Both Margit and Tomas assigned probabilities that satisfy the two basic requirements. The
fact that their probability estimates are different emphasizes the personal nature of the subjective
method.

Even in business situations where either the classical or the relative frequency approach can be applied,
managers may want to provide subjective probability estimates. In such cases, the best probability
estimates often are obtained by combining the estimates from the classical or relative frequency approach
with subjective probability estimates.

Number waiting
Number of days outcome

occurred

0 2
1 5
2 6
3 4
4 3

Total = 20
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Probabilities for the KPL project

To perform further analysis on the KPL project, we must develop probabilities for each of the nine
experimental outcomes listed in Table 4.1. On the basis of experience and judgement, management
concluded that the experimental outcomes were not equally likely. Hence, the classical method of
assigning probabilities could not be used. Management then decided to conduct a study of the completion
times for similar projects undertaken by KPL over the past three years. The results of a study of 40 similar
projects are summarized in Table 4.2.

After reviewing the results of the study, management decided to employ the relative frequency method
of assigning probabilities. Management could have provided subjective probability estimates, but felt that
the current project was quite similar to the 40 previous projects. Thus, the relative frequency method was
judged best.

In using the data in Table 4.2 to compute probabilities, we note that outcome (2, 6) – stage 1 completed
in two months and stage 2 completed in six months – occurred six times in the 40 projects. We can use
the relative frequency method to assign a probability of 6/40 0.15 to this outcome. Similarly, outcome
(2, 7) also occurred in six of the 40 projects, providing a 6/40 0.15 probability. Continuing in this
manner, we obtain the probability assignments for the sample points of the KPL project shown in Table 4.3.

T ABLE 4 . 2 Completion results for 40 KPL projects

Completion times (months)
Number of past

projects having these

completion times

Stage 1

Design

Stage 2

Construction Sample point

2 6 (2, 6) 6

2 7 (2, 7) 6

2 8 (2, 8) 2

3 9 (3, 6) 4

3 7 (3, 7) 8

3 8 (3, 8) 2

4 6 (4, 6) 2

4 7 (4, 7) 4

4 8 (4, 8) 6

Total 40

T ABLE 4 . 3 Probability assignments for the KPL project based on the relative frequency method

Sample point Project completion time Probability of sample point

(2, 6) 8 months P(2, 6) 6/40 0.15

(2, 7) 9 months P(2, 7) 6/40 0.15

(2, 8) 10 months P(2, 8) 2/40 0.05

(3, 6) 9 months P(3, 6) 4/40 0.10

(3, 7) 10 months P(3, 7) 8/40 0.20

(3, 8) 11 months P(3, 8) 2/40 0.05

(4, 6) 10 months P(4, 6) 2/40 0.05

(4, 7) 11 months P(4, 7) 4/40 0.10

(4, 8) 12 months P(4, 8) 6/40 0.15

Total 1.00
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Note that P(2, 6) represents the probability of the sample point (2, 6), P(2, 7) represents the probability of
the sample point (2, 7) and so on.

EXERCISES

Methods

1. An experiment has three steps with three outcomes possible for the first step, two outcomes

possible for the second step and four outcomes possible for the third step. How many

experimental outcomes exist for the entire experiment?

2. How many ways can three items be selected from a group of six items? Use the letters A, B, C, D, E

and F to identify the items, and list each of the different combinations of three items.

3. How many permutations of three items can be selected from a group of six? Use the letters A, B, C,

D, E and F to identify the items, and list each of the permutations of items B, D and F.

4. Consider the experiment of tossing a coin three times.

a. Develop a tree diagram for the experiment.

b. List the experimental outcomes.

c. What is the probability for each experimental outcome?

5. Suppose an experiment has five equally likely outcomes: E1, E2, E3, E4, E5. Assign probabilities to

each outcome and show that the requirements in equations (4.3) and (4.4) are satisfied. What

method did you use?

6. An experiment with three outcomes has been repeated 50 times, and it was learned that E1

occurred 20 times, E2 occurred 13 times and E3 occurred 17 times. Assign probabilities to the

outcomes. What method did you use?

7. A decision-maker subjectively assigned the following probabilities to the four outcomes of an

experiment: P(E1) 0.10, P(E2) 0.15, P(E3) 0.40 and P(E4) 0.20. Are these probability

assignments valid? Explain.

8. Applications for zoning changes in a large metropolitan city go through a two-step process: a review

by the planning commission and a final decision by the city council. At step 1 the planning

commission reviews the zoning change request and makes a positive or negative recommendation

concerning the change. At step 2 the city council reviews the planning commission’s

recommendation and then votes to approve or to disapprove the zoning change. Suppose the

developer of an apartment complex submits an application for a zoning change. Consider the

application process as an experiment.

a. How many sample points are there for this experiment? List the sample points.

b. Construct a tree diagram for the experiment.

9. A total of 11 Management students, four International Management and American Business

Studies (IMABS) and eight International Management and French Studies (IMF) students have

volunteered to take part in an inter-university tournament.

a. How many different ways can a team consisting of eight Management students, two IMABS and

five IMF students be selected?

b. If after the team has been selected, one Management, one IMABS and two IMF students are

found to be suffering from glandular fever and are unable to play, what is the probability that the

team will not have to be changed?

COMPLETE

SOLUTIONS

COMPLETE

SOLUTIONS

COMPLETE

SOLUTIONS
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4.2 EVENTS AND THEIR PROBABILITIES

In the introduction to this chapter we used the term eventmuch as it would be used in everyday language.
Then, in Section 4.1 we introduced the concept of an experiment and its associated experimental
outcomes or sample points. Sample points and events provide the foundation for the study of probability.
We must now introduce the formal definition of an event as it relates to sample points. Doing so will
provide the basis for determining the probability of an event.

For example, let us return to the KPL project and assume that the project manager is interested in the
event that the entire project can be completed in ten months or less. Referring to Table 4.3, we see that

10. A company that franchises coffee houses conducted taste tests for a new coffee product. Four

blends were prepared, then randomly chosen individuals were asked to taste the blends and

state which one they liked best. Results of the taste test for 100 individuals are given.

a. Define the experiment being conducted. How many times was it repeated?

b. Prior to conducting the experiment, it is reasonable to assume preferences for the four blends

are equal. What probabilities would you assign to the experimental outcomes prior to

conducting the taste test? What method did you use?

c. After conducting the taste test, what probabilities would you assign to the experimental

outcomes? What method did you use?

11. A company that manufactures toothpaste is studying five different package designs. Assuming

that one design is just as likely to be selected by a consumer as any other design, what selection

probability would you assign to each of the package designs? In an actual experiment, 100

consumers were asked to pick the design they preferred. The following data were obtained. Do

the data confirm the belief that one design is just as likely to be selected as another? Explain.

Blend Number choosing

1 20

2 30

3 35

4 15

Design times Number of preferred

1 5

2 15

3 30

4 40

5 10

Event

An event is a collection of sample points.

COMPLETE

SOLUTIONS
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six sample points – (2, 6), (2, 7), (2, 8), (3, 6), (3, 7) and (4, 6) – provide a project completion time of
ten months or less. Let C denote the event that the project is completed in ten months or less; we write

C 2, 6 , 2, 7 , 2, 8 , 3, 6 , 3, 7 , 4, 6

Event C is said to occur if any one of these six sample points appears as the experimental outcome.
Other events that might be of interest to KPL management include the following:

L The event that the project is completed in less than ten months

M The event that the project is completed in more than ten months

Using the information in Table 4.3, we see that these events consist of the following sample points:

L 2, 6 , 2, 7 , 3, 6

M 3, 8 , 4, 7 , 4, 8

A variety of additional events can be defined for the KPL project, but in each case the event must be
identified as a collection of sample points for the experiment.

Given the probabilities of the sample points shown in Table 4.3, we can use the following definition to
compute the probability of any event that KPL management might want to consider.

Using this definition, we calculate the probability of a particular event by adding the probabilities of
the sample points (experimental outcomes) that make up the event. We can now compute the probability
that the project will take ten months or less to complete. Because this event is given by C {(2, 6), (2, 7),
(2, 8), (3, 6), (3, 7), (4, 6)}, the probability of event C, denoted P(C), is given by:

P C P 2, 6 P 2, 7 P 2, 8 P 3, 6 P 3, 7 P 4, 6
0 15 0 15 0 05 0 10 0 20 0 05 0 70

Similarly, because the event that the project is completed in less than ten months is given by L {(2, 6),
(2, 7), (3, 6)}, the probability of this event is given by:

P L P 2, 6 P 2, 7 3, 6
0 15 0 15 0 10 0 40

Finally, for the event that the project is completed in more than ten months, we have M {(3, 8), (4, 7),
(4, 8)} and thus:

P M P 3, 8 P 4, 7 4, 8
0 05 0 10 0 15 0 30

Using these probability results, we can now tell KPL management that there is a 0.70 probability that
the project will be completed in ten months or less, a 0.40 probability that the project will be completed in
less than ten months, and a 0.30 probability that the project will be completed in more than ten months.
This procedure of computing event probabilities can be repeated for any event of interest to the KPL
management.

Any time that we can identify all the sample points of an experiment and assign probabilities to each,
we can compute the probability of an event using the definition. However, in many experiments the large
number of sample points makes the identification of the sample points, as well as the determination of
their associated probabilities, extremely cumbersome, if not impossible. In the remaining sections of this
chapter, we present some basic probability relationships that can be used to compute the probability of an
event without knowledge of all the sample point probabilities.

Probability of an event

The probability of any event is equal to the sum of the probabilities of the sample points for the event.
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EXERCISES

Methods

12. An experiment has four equally likely outcomes: E1, E2, E3 and E4.

a. What is the probability that E2 occurs?

b. What is the probability that any two of the outcomes occur (e.g. E1 or E3)?

c. What is the probability that any three of the outcomes occur (e.g. E1 or E2 or E4)?

13. Consider the experiment of selecting a playing card from a deck of 52 playing cards. Each card

corresponds to a sample point with a 1/52 probability.

a. List the sample points in the event an ace is selected.

b. List the sample points in the event a club is selected.

c. List the sample points in the event a face card (jack, queen or king) is selected.

d. Find the probabilities associated with each of the events in parts (a), (b) and (c).

14. Consider the experiment of rolling a pair of dice. Suppose that we are interested in the sum of the face

values showing on the dice.

a. How many sample points are possible? (Hint: Use the counting rule for multiple-step experiments.)

b. List the sample points.

c. What is the probability of obtaining a value of 7?

d. What is the probability of obtaining a value of 9 or greater?

e. Because each roll has six possible even values (2, 4, 6, 8, 10 and 12) and only five possible odd values

(3, 5, 7, 9 and 11), the dice should show even values more often than odd values. Do you agree with

this statement? Explain.

f. What method did you use to assign the probabilities requested?

Applications

15. Refer to the KPL sample points and sample point probabilities in Tables 4.2 and 4.3.

a. The design stage (stage 1) will run over budget if it takes four months to complete. List the sample

points in the event the design stage is over budget.

b. What is the probability that the design stage is over budget?

c. The construction stage (stage 2) will run over budget if it takes eight months to complete.

List the sample points in the event the construction stage is over budget.

d. What is the probability that the construction stage is over budget?

e. What is the probability that both stages are over budget?

16. Suppose that a manager of a large apartment complex provides the following subjective probability

estimates about the number of vacancies that will exist next month.

Vacancies Probability

0 0.10

1 0.15

2 0.30

3 0.20

4 0.15

5 0.10

Provide the probability of each of the following events.

a. No vacancies.

b. At least four vacancies.

c. Two or fewer vacancies.

COMPLETE

SOLUTIONS
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4.3 SOME BASIC RELATIONSHIPS OF PROBABILITY

Complement of an event

Given an event A, the complement of A is defined to be the event consisting of all sample points that are
not in A. The complement of A is denoted by A. Figure 4.4 is a diagram, known as a Venn diagram, which
illustrates the concept of a complement. The rectangular area represents the sample space for the
experiment and as such contains all possible sample points. The circle represents event A and contains
only the sample points that belong to A. The shaded region of the rectangle contains all sample points not
in event A, and is by definition the complement of A.

In any probability application, either event A or its complement A must occur. Therefore, we have:

P A P A 1

Solving for P(A), we obtain the following result.

Equation (4.5) shows that the probability of an event A can be computed easily if the probability of its
complement, P(A), is known.

As an example, consider the case of a sales manager who, after reviewing sales reports, states that
80 per cent of new customer contacts result in no sale. By allowing A to denote the event of a sale
and A to denote the event of no sale, the manager is stating that P(A) 0.80. Using equation (4.5),
we see that:

P A 1 − P A 1 − 0 80 0 20

We can conclude that a new customer contact has a 0.20 probability of resulting in a sale.
In another example, a purchasing agent states a 0.90 probability that a supplier will send a shipment

that is free of defective parts. Using the complement, we can conclude that there is a 1 0.90 0.10
probability that the shipment will contain defective parts.

17. When three marksmen take part in a shooting contest, their chances of hitting the target are 1/2,

1/3 and 1/4 respectively. If all three marksmen fire at it simultaneously

a. What is the chance that one and only one bullet will hit the target?

b. What is the chance that two marksmen will hit the target (and therefore one will not)?

c. What is the chance that all three marksmen will hit the target?

Computing probability using the complement

P A 1 P A (4.5)

Sample Space S

Complement

of Event A

AEvent A

FIGURE 4.4

Complement of event A is

shaded
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Addition law

The addition law is helpful when we are interested in knowing the probability that at least one of two
events occurs. That is, with events A and B we are interested in knowing the probability that event A or
event B or both occur.

Before we present the addition law, we need to discuss two concepts related to the combination of
events: the union of events and the intersection of events. Given two events A and B, the union of A and B is
defined as follows.

The Venn diagram in Figure 4.5 depicts the union of events A and B. Note that the two circles contain
all the sample points in event A as well as all the sample points in event B.

The fact that the circles overlap indicates that some sample points are contained in both A and B.
The definition of the intersection of A and B follows.

The Venn diagram depicting the intersection of events A and B is shown in Figure 4.6. The area where the
two circles overlap is the intersection; it contains the sample points that are in both A and B.

Union of two events

The union of A and B is the event containing all sample points belonging to A or B or both. The union is

denoted by A B.

Intersection of two events

Given two events A and B, the intersection of A and B is the event containing the sample points belonging

to both A and B. The intersection is denoted by A B.

Sample Space S

Event BEvent A

FIGURE 4.5

Union of events A and B is

shaded

Sample Space S

Event BEvent A

FIGURE 4.6

Intersection of events A and B is

shaded
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The addition law provides a way to compute the probability that event A or event B or both occur. In
other words, the addition law is used to compute the probability of the union of two events. The addition
law is written as follows in equation (4.6).

To understand the addition law intuitively, note that the first two terms in the addition law, P(A) P(B),
account for all the sample points in A B. However, because the sample points in the intersection A B are
in both A and B, when we compute P(A) P(B), we are in effect counting each of the sample points inA B
twice. We correct for this over-counting by subtracting P(A B).

As an example of an application of the addition law, consider the case of a small assembly plant with
50 employees. Each worker is expected to complete work assignments on time and in such a way that the
assembled product will pass a final inspection. On occasion, some of the workers fail to meet the
performance standards by completing work late or assembling a defective product. At the end of a
performance evaluation period, the production manager found that five of the 50 workers completed
work late, six of the 50 workers assembled a defective product and two of the 50 workers both completed
work late and assembled a defective product.

Let:

L the event that the work is completed

D the event that the assembled product is defective

The relative frequency information leads to the following probabilities:

P L
5

50
0 10

P D
6

50
0 12

P L D
2

50
0 04

After reviewing the performance data, the production manager decided to assign a poor performance
rating to any employee whose work was either late or defective; thus the event of interest is L D. What is
the probability that the production manager assigned an employee a poor performance rating?

Using equation (4.6), we have:

P L D P L P D P L D
0 10 0 12 0 04 0 18

This calculation tells us that there is a 0.18 probability that a randomly selected employee received a poor
performance rating.

As another example of the addition law, consider a recent study conducted by the personnel manager
of a major computer software company. The study showed that 30 per cent of the employees who left the
firm within two years did so primarily because they were dissatisfied with their salary, 20 per cent left
because they were dissatisfied with their work assignments and 12 per cent of the former employees
indicated dissatisfaction with both their salary and their work assignments. What is the probability that an
employee who leaves within two years does so because of dissatisfaction with salary, dissatisfaction with
the work assignment or both?

Let:

S the event that the employee leaves because of salary

W the event that the employee leaves because of work assignment

Addition law

P A B P A P B − P A B (4.6)
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We have P(S) 0.30, P(W) 0.20 and P(S W) 0.12. Using equation (4.6) we have

P S P W P S W 0 30 0 20 0 12 0 38

We find a 0.38 probability that an employee leaves for salary or work assignment reasons.
Before we conclude our discussion of the addition law, let us consider a special case that arises for

mutually exclusive events.

Events A and B are mutually exclusive if, when one event occurs, the other cannot occur. Thus, a
requirement for A and B to be mutually exclusive is that their intersection must contain no sample points.
The Venn diagram depicting two mutually exclusive events A and B is shown in Figure 4.7. In this
case P(A B) = 0 and the addition law can be written as follows.

Addition law for mutually exclusive events

P A B P A P B

Sample Space S

Event BEvent A

FIGURE 4.7

Mutually exclusive events

EXERCISES

Methods

18. Suppose that we have a sample space with five equally likely experimental outcomes: E1, E2, E3,

E4, E5. Let:

A {E1, E2}

B {E3, E4}

C {E2, E3, E5}

a. Find P(A), P(B) and P(C).

b. Find P(A B). Are A and B mutually exclusive?

c. Find A, C, P(A) and P(C).

d. Find A B and P(A B).

e. Find P(B C).

Mutually exclusive events

Two events are said to be mutually exclusive if the events have no sample points in common.
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4.4 CONDITIONAL PROBABILITY

Often, the probability of an event is influenced by whether a related event already occurred. Suppose we
have an event A with probability P(A). If we obtain new information and learn that a related event,
denoted by B, already occurred, we will want to take advantage of this information by calculating a new
probability for event A. This new probability of event A is called a conditional probability and is written
P(A | B). We use the notation | to indicate that we are considering the probability of event A given the
condition that event B has occurred. Hence, the notation P(A | B) reads ‘the probability of A given B’.

Consider the situation of the promotion status of male and female police officers of a regional police
force in France. The police force consists of 1200 officers: 960 men and 240 women. Over the past two
years, 324 officers on the police force received promotions. The specific breakdown of promotions for
male and female officers is shown in Table 4.4.

After reviewing the promotion record, a committee of female officers raised a discrimination case
on the basis that 288 male officers had received promotions but only 36 female officers had received
promotions.

19. Suppose that we have a sample space S {E1, E2, E3, E4, E5, E6, E7}, where E1, E2, … , E7

denote the sample points. The following probability assignments apply: P(E1) 0.05, P

(E2) 0.20, P(E3) 0.20, P(E4) 0.25, P(E5) 0.15, P(E6) 0.10, and P(E7) 0.05.

Let:

A {E1, E2}

B {E3, E4 ]

C {E2, E3, E5}

a. Find P(A), P(B), and P(C).

b. Find A B and P(A B).

c. Find A B and P(A B).

d. Are events A and C mutually exclusive?

e. Find B and P(B).

Applications

20. A survey of magazine subscribers showed that 45.8 per cent rented a car during the past

12 months for business reasons, 54 per cent rented a car during the past 12 months for

personal reasons and 30 per cent rented a car during the past 12 months for both

business and personal reasons.

a. What is the probability that a subscriber rented a car during the past 12 months for business

or personal reasons?

b. What is the probability that a subscriber did not rent a car during the past 12 months for

either business or personal reasons?

T ABLE 4 . 4 Promotion status of police officers over the past two years

Men Women Total

Promoted 288 36 324

Not promoted 672 204 876

Totals 960 240 1200
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The police administration argued that the relatively low number of promotions for female officers was
due not to discrimination, but to the fact that relatively few females are members of the police force. Let
us show how conditional probability could be used to analyze the discrimination charge.

Let:

M event an officer is a man

W event an officer is a woman

A event an officer is promoted

A event an officer is not promoted

Dividing the data values in Table 4.4 by the total of 1200 officers enables us to summarize the available
information with the following probability values.

P(M A) 288/1200 0.24 probability that a randomly selected officer is a man and is
promoted

P(M A) 672/1200 0.56 probability that a randomly selected officer is a man and not
promoted

P(W A) 36/1200 0.03 probability that a randomly selected officer is a woman and is
promoted

P(W A) 204/1200 0.17 probability that a randomly selected officer is a woman and is
not promoted

Because each of these values gives the probability of the intersection of two events, the probabilities are
called joint probabilities. Table 4.5 is referred to as a joint probability table.

The values in the margins of the joint probability table provide the probabilities of each event
separately. That is, P(M) 0.80, P(W) 0.20, P(A) 0.27 and P(A) 0.73. These probabilities are
referred to as marginal probabilities because of their location in the margins of the joint probability table.
We note that the marginal probabilities are found by summing the joint probabilities in the correspond-
ing row or column of the joint probability table. For instance, the marginal probability of being promoted
is P(A) P(M A) P(W A) 0.24 0.03 0.27. From the marginal probabilities, we see that
80 per cent of the force is male, 20 per cent of the force is female, 27 per cent of all officers received
promotions and 73 per cent were not promoted.

Consider the probability that an officer is promoted given that the officer is a man. In conditional
probability notation, we are attempting to determine P(A | M). By definition, P(A | M) tells us that we are
concerned only with the promotion status of the 960 male officers. Because 288 of the 960 male officers
received promotions, the probability of being promoted given that the officer is a man is 288/960 0.30.
In other words, given that an officer is a man, that officer has a 30 per cent chance of receiving a
promotion over the past two years.

T ABLE 4 . 5 Joint probability table for promotions

Joint probabilities 

appear in the body 

of the table Men (M) Women (W ) Totals

Promoted (A) 0.24 0.03 0.27

Not Promoted ( A) 0.56 0.17 0.73

Totals 0.80 0.20 1.00

Marginal probabilities

appear in the margins

of the table.
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This procedure was easy to apply because the values in Table 4.4 show the number of officers in each
category. We now want to demonstrate how conditional probabilities such as P(A | M) can be computed
directly from related event probabilities rather than the frequency data of Table 4.4.

We have shown that P(A M) 288/960 0.30. Let us now divide both the numerator and
denominator of this fraction by 1200, the total number of officers in the study.

P A M
288

960

288 1200

960 1200

0 24

0 80
0 30

We now see that the conditional probability P(A M) can be computed as 0.24/0.80. Refer to the
joint probability table (Table 4.5). Note in particular that 0.24 is the joint probability of A and M;
that is, P(A M) 0.24. Also note that 0.80 is the marginal probability that a randomly selected
officer is a man; that is, P(M) 0.80. Thus, the conditional probability P(A M) can be computed
as the ratio of the joint probability P(A M) to the marginal probability P(M).

P A M
P A M

P M

0 24

0 80
0 30

The fact that conditional probabilities can be computed as the ratio of a joint probability to a
marginal probability provides the following general formula (equations (4.7) and (4.8)) for conditional
probability calculations for two events A and B.

The Venn diagram in Figure 4.8 is helpful in obtaining an intuitive understanding of conditional
probability. The circle on the right shows that event B has occurred; the portion of the circle that overlaps
with event A denotes the event (A B). We know that, once event B has occurred, the only way that we
can also observe event A is for the event (A B) to occur. Thus, the ratio P(A B)/P(B) provides the
conditional probability that we will observe event A given that event B has already occurred.

Conditional probability

P A B
P A B

P B
(4.7)

or

P B A
P A B

P A
(4.8)

Event B

Event A � B

Event A

FIGURE 4.8

Conditional probability
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Let us return to the issue of discrimination against the female officers. The marginal probability in
row 1 of Table 4.5 shows that the probability of promotion of an officer is P(A) 0.27 (regardless of
whether that officer is male or female). However, the critical issue in the discrimination case involves the
two conditional probabilities P(A | M) and P(A | W). That is, what is the probability of a promotion
given that the officer is a man, and what is the probability of a promotion given that the officer is
a woman? If these two probabilities are equal, a discrimination argument has no basis because the
chances of a promotion are the same for male and female officers. However, a difference in the two
conditional probabilities will support the position that male and female officers are treated differently in
promotion decisions.

We already determined that P(A |M) = 0.30. Let us now use the probability values in Table 4.5 and the
basic relationship of conditional probability in equation (4.7) to compute the probability that an officer is
promoted given that the officer is a woman; that is, P(A | W). Using equation (4.7), with W replacing B,
we obtain:

P A W
P A W

P W

0 03

0 20
0 15

What conclusion do you draw? The probability of a promotion given that the officer is a man is 0.30,
twice the 0.15 probability of a promotion given that the officer is a woman. Although the use of
conditional probability does not in itself prove that discrimination exists in this case, the conditional
probability values support the argument presented by the female officers.

Independent events

In the preceding illustration, P(A) 0.27, P(A | M) 0.30 and P(A | W) 0.15. We see that the
probability of a promotion (event A) is affected or influenced by whether the officer is a man or a woman.
Particularly, because P(A | M) P(A), we would say that events A and M are dependent events. That is,
the probability of event A (promotion) is altered or affected by knowing that event M (the officer is a
man) exists. Similarly, with P(A | W) P(A), we would say that events A and W are dependent events.
However, if the probability of event A is not changed by the existence of eventM – that is, P(A |M) P(A) – we
would say that events A and M are independent events. This situation leads to the following definition of the
independence of two events.

Multiplication law

Whereas the addition law of probability is used to compute the probability of a union of two events, the
multiplication law is used to compute the probability of the intersection of two events. The multiplication
law is based on the definition of conditional probability. Using equations (4.7) and (4.8) and solving for
P(A B), we obtain the multiplication law, as in equations (4.11) and (4.12).

Independent events

Two events A and B are independent if

P A B P A (4.9)

or

P B A P B (4.10)
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To illustrate the use of the multiplication law, consider a newspaper circulation department where
it is known that 84 per cent of the households in a particular neighbourhood subscribe to the daily
edition of the paper. If we let D denote the event that a household subscribes to the daily edition,
P(D) 0.84. In addition, it is known that the probability that a household that already holds a daily
subscription also subscribes to the Sunday edition (event S) is 0.75; that is, P(S | D) 0.75.

What is the probability that a household subscribes to both the Sunday and daily editions of the
newspaper? Using the multiplication law, we compute the desired P(S D) as

P S D P D P S D 0 84 0 75 0 63

We now know that 63 per cent of the households subscribe to both the Sunday and daily editions.
Before concluding this section, let us consider the special case of the multiplication law when the

events involved are independent. Recall that events A and B are independent whenever P(A | B) P(A) or
P(B | A) P(B). Hence, using equations (4.11) and (4.12) for the special case of independent events, we
obtain the following multiplication law (equation (4.13)).

To compute the probability of the intersection of two independent events, we simply multiply the
corresponding probabilities. Note that the multiplication law for independent events provides another
way to determine whether A and B are independent. That is, if P(A B) P(A)P(B), then A and B are
independent; if P(A B) P(A)P(B), then A and B are dependent.

As an application of the multiplication law for independent events, consider the situation of a service
station manager who knows from past experience that 80 per cent of the customers use a credit card when they
purchase petrol.What is the probability that thenext two customers purchasingpetrolwill each use a credit card?
If we let

A the event that the first customer uses a credit card

B the event that the second customer uses a credit card

then the event of interest is A B. Given no other information, we can reasonably assume that A and B
are independent events. Thus

P A B P A P B 0 80 0 80 0 64

To summarize this section, we note that our interest in conditional probability is motivated by the fact
that events are often related. In such cases, we say the events are dependent and the conditional
probability formulae in equations (4.7) and (4.8) must be used to compute the event probabilities. If
two events are not related, they are independent; in this case neither event’s probability is affected by
whether the other event occurred.

Multiplication law for independent events

P A B P A P B (4.13)

Multiplication law

P A B P A P B A (4.11)

or

P A B P B P A B (4.12)
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EXERCISES

Methods

21. Suppose that we have two events, A and B, with P(A) 0.50, P(B) 0.60 and P(A B) 0.40.

a. Find P(A | B).

b. Find P(B | A).

c. Are A and B independent? Why or why not?

22. Assume that we have two events, A and B, that are mutually exclusive. Assume further that we know

P(A) 0.30 and P(B) 0.40.

a. What is P(A B)?

b. What is P(A | B)?

c. A student in statistics argues that the concepts of mutually exclusive events and independent

events are really the same, and that if events are mutually exclusive they must be independent.

Do you agree with this statement? Use the probability information in this problem to justify your

answer.

d. What general conclusion would you make about mutually exclusive and independent events given

the results of this problem?

Applications

23. A Paris nightclub obtains the following data on the age and marital status of 140 customers.

Marital status

Age Single Married

Under 30 77 14

30 or over 28 21

a. Develop a joint probability table for these data.

b. Use the marginal probabilities to comment on the age of customers attending the club.

c. Use the marginal probabilities to comment on the marital status of customers attending the club.

d. What is the probability of finding a customer who is single and under the age of 30?

e. If a customer is under 30, what is the probability that he or she is single?

f. Is marital status independent of age? Explain, using probabilities.

24. A slot machine in Melbourne has a hold facility. A gambler experiments with this to see if their

success rate is higher when they use ‘hold’ compared to when they do not.

The results from 120 plays can be summarized as follows.

Win Lose

Hold 14 36

Not hold 10 60

What is the probability that the gambler:

a. Holds?

b. Wins?

c. Wins given that they held?

d. Held and lost?

e. Held given that they won?
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4.5 BAYES’ THEOREM

In the discussion of conditional probability, we indicated that revising probabilities when new informa-
tion is obtained is an important phase of probability analysis. Often, we begin the analysis with initial or
prior probability estimates for specific events of interest. Then, from sources such as a sample, a special
report or a product test, we obtain additional information about the events. Given this new information,
we update the prior probability values by calculating revised probabilities, referred to as posterior

probabilities. Bayes’ theorem provides a means for making these probability calculations. The steps in
this probability revision process are shown in Figure 4.9.

As an application of Bayes’ theorem, consider a manufacturing firm that receives shipments of parts
from two different suppliers. Let A1 denote the event that a part is from supplier 1 and A2 denote the
event that a part is from supplier 2. Currently, 65 per cent of the parts purchased by the company are
from supplier 1 and the remaining 35 per cent are from supplier 2. Hence, if a part is selected at random,
we would assign the prior probabilities P(A1) 0.65 and P(A2) 0.35.

The quality of the purchased parts varies with the source of supply. Historical data suggest that the
quality ratings of the two suppliers are as shown in Table 4.6.

25. A sample of convictions and compensation orders issued at a number of Manx courts was followed

up to see whether the offender had paid the compensation to the victim. Details by gender of

offender are as follows:

Offender

gender

Payment outcome

Paid in full Part paid Nothing paid

Male 754 62 61

Female 157 7 6

a. What is the probability that no compensation was paid?

b. What is the probability that the offender was not male given that compensation was part

paid?

26. A purchasing agent in Haifa placed rush orders for a particular raw material with two different

suppliers, A and B. If neither order arrives in four days, the production process must be shut

down until at least one of the orders arrives. The probability that supplier A can deliver the

material in four days is 0.55. The probability that supplier B can deliver the material in four

days is 0.35.

a. What is the probability that both suppliers will deliver the material in four days? Because two

separate suppliers are involved, we are willing to assume independence.

b. What is the probability that at least one supplier will deliver the material in four days?

c. What is the probability that the production process will be shut down in four days because of a

shortage of raw material (that is, both orders are late)?

COMPLETE

SOLUTIONS

Prior

Probabilities

New

Information

Application

of Bayes’

Theorem

Posterior

Probabilities

FIGURE 4.9

Probability revision

using Bayes’

theorem
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If we let G denote the event that a part is good and B denote the event that a part is bad, the
information in Table 4.6 provides the following conditional probability values:

1 0 98 1 0 02

2 0 95 2 0 05

The tree diagram in Figure 4.10 depicts the process of the firm receiving a part from one of the two
suppliers and then discovering that the part is good or bad as a two-step experiment. We see that four
experimental outcomes are possible: two correspond to the part being good and two correspond to the
part being bad.

Each of the experimental outcomes is the intersection of two events, so we can use the multiplication
rule to compute the probabilities. For instance:

P A1 G P A1 G P A1 P G A1 0 05

The process of computing these joint probabilities can be depicted in what is called a probability tree
(see Figure 4.11). From left to right through the tree, the probabilities for each branch at step 1 are prior
probabilities and the probabilities for each branch at step 2 are conditional probabilities. To find the
probabilities of each experimental outcome, we simply multiply the probabilities on the branches leading
to the outcome. Each of these joint probabilities is shown in Figure 4.11 along with the known
probabilities for each branch.

Suppose now that the parts from the two suppliers are used in the firm’s manufacturing process and
that a machine breaks down because it attempts to process a bad part. Given the information that the part
is bad, what is the probability that it came from supplier 1 and what is the probability that it came from
supplier 2? With the information in the probability tree (Figure 4.11), Bayes’ theorem can be used to
answer these questions.

Letting B denote the event that the part is bad, we are looking for the posterior probabilities P(A1 | B)
and P(A2 | B). From the law of conditional probability, we know that:

P A1 B
P A1 B

P B
(4.14)

T ABLE 4 . 6 Historical quality levels of two suppliers

Percentage good parts Percentage bad parts

Supplier 1 98 2

Supplier 2 95 5

Note: Step 1 shows that the part comes from one of two suppliers,
 and Step 2 shows whether the part is good or bad.

Step 1
Supplier

Step 2
Condition

Experimental
Outcome

(A1, G)

A1

G

B

G

B

A2
(A2, G)

(A1, B)

(A2, B)

FIGURE 4.10

Tree diagram for two-supplier

example
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Referring to the probability tree, we see that:

P A1 B P A1 P B A1 (4.15)

To find P(B), we note that event B can occur in only two ways: (A1 B) and (A2 B). Therefore,
we have:

P B P A1 B P A2 B
P A1 P B A1 P A2 P B A2

(4.16)

Substituting from equations (4.15) and (4.16) into equation (4.14) and writing a similar result for
P(A2 | B), we obtain Bayes’ theorem for the case of two events.

In addition, using equation (4.18), we find P(A2 | B).

P A2 B
0 35 0 05

0 65 0 02 0 35 0 05

0175

0 0130 0 0175

0 0175

0 0305
0 5738

Step 1
Supplier

Step 2
Condition

Probability of Outcome

P(A1)

P(G| A1) P(A1 � G) =  P(A1)P(G| A1) =  0.6370

P(A1 � B) =  P(A1)P(B| A1) =  0.0130

P(A2 � G) =  P(A2)P(G| A2) =  0.3325

P(A2 � B) =  P(A2)P(B| A2) =  0.0175

P(B| A1)

P(G| A2)

P(B| A2)

P(A2)

0.65

0.98

0.02

0.95

0.05

0.35

FIGURE 4.11

Probability tree for

two-supplier example

Bayes’ theorem (two-event case)

P A1 B
P A1 P B A1

P A1 P B A1 P A2 P B A2
(4.17)

P A2 B
P A2 P B A1

P A1 P B A1 P A2 P B A2
(4.18)

Using equation (4.17) and the probability values provided in the example, we have

P A1 B
P A1 P B A1

P A1 P B A1 P A2 P B A2

0 65 0 02

0 65 0 02 0 35 0 05

0 0130

0 0130 0 0175

0 0130

0 0305
0 4262
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Note that in this application we started with a probability of 0.65 that a part selected at random was
from supplier 1. However, given information that the part is bad, the probability that the part is from
supplier 1 drops to 0.4262. In fact, if the part is bad, it has better than a 50–50 chance that it came from
supplier 2; that is, P(A2 | B) 0.5738.

Bayes’ theorem is applicable when the events for which we want to compute posterior probabilities are
mutually exclusive and their union is the entire sample space.* For the case of n mutually exclusive events
A1, A2, … , An, whose union is the entire sample space, Bayes’ theorem can be used to compute any
posterior probability P(Ai | B) as shown in equation (4.19).

With prior probabilities P(A1), P(A2), … , P(An) and the appropriate conditional probabilities P(B | A1),
P(B | A2), … , P(B | An), equation (4.19) can be used to compute the posterior probability of the events
A1, A2, … , An.

Tabular approach

A tabular approach is helpful in conducting the Bayes’ theorem calculations. Such an approach is
shown in Table 4.7 for the parts supplier problem. The computations shown there are done in the
following steps.

Step 1 Prepare the following three columns:
Column 1 – The mutually exclusive events Ai for which posterior probabilities are desired.
Column 2 – The prior probabilities P(Ai) for the events.
Column 3 – The conditional probabilities P(B | Ai) of the new information B given each event.

Step 2 In column 4, compute the joint probabilities P(Ai B) for each event and the new information B
by using the multiplication law. These joint probabilities are found by multiplying the prior
probabilities in column 2 by the corresponding conditional probabilities in column 3: that is,
P(Ai B) P(Ai)P(B | Ai).

Bayes’ theorem

P Ai B
P Ai P B Ai

P A1 P B A1 P A2 P B A2 P An P B An
(4.19)

T ABLE 4 . 7 Tabular approach to Bayes’ theorem calculations for the two-supplier problem

(1) (2) (3) (4) (5)

Events

Ai

Prior

probabilities

P(Ai)

Conditional

probabilities

P(B | Ai)

Joint

probabilities

P(Ai B)

Posterior

probabilities

P(Ai | B)

A1 0.65 0.02 0.0130 0.0130/0.0305 0.4262

A2 0.35 0.05 0.0175 0.0175/0.0305 0.5738

P(B) 0.0305 1.0000

*
If the union of events is the entire sample space, the events are said to be collectively exhaustive.

112 CHAPTER 4 INTRODUCTION TO PROBABILITY



Step 3 Sum the joint probabilities in column 4. The sum is the probability of the new information,
P(B). Thus we see in Table 4.7 that there is a 0.0130 probability that the part came from supplier
1 and is bad and a 0.0175 probability that the part came from supplier 2 and is bad. Because
these are the only two ways in which a bad part can be obtained, the sum 0.0130 0.0175 shows
an overall probability of 0.0305 of finding a bad part from the combined shipments of the
two suppliers.

Step 4 In column 5, compute the posterior probabilities using the basic relationship of
conditional probability.

P Ai B
P Ai B

P B

Note that the joint probabilities P(Ai B) are in column (4) and the probability P(B)
is the sum of column (4).

EXERCISES

Methods

27. The prior probabilities for events A1 and A2 are P(A1) 0.40 and P(A2) 0.60. It is also known that

P(A1 A2) 0. Suppose P(B | A1) 0.20 and P(B | A2) 0.05.

a. Are A1 and A2 mutually exclusive? Explain.

b. Compute P(A1 B) and P(A2 B).

c. Compute P(B).

d. Apply Bayes’ theorem to compute P(A1 | B) and P(A2 | B).

28. The prior probabilities for events A1, A2 and A3 are P(A1) 0.20, P(A2) 0.50 and P(A3) 0.30.

The conditional probabilities of event B given A1, A2 and A3 are P(B | A1) 0.50, P(B | A2) 0.40

and P(B | A3) 0.30.

a. Compute P(B A1), P(B A2) and P(B A3).

b. Apply Bayes’ theorem, equation (4.19), to compute the posterior probability P(A2 | B).

c. Use the tabular approach to applying Bayes’ theorem to compute P(A1 | B), P(A2 | B) and P(A3 | B).

Applications

29. Records show that for every 100 items produced in a factory during the day shift, two are defective

and for every 100 items produced during the night shift, four are defective. What is the prior

probability of the bid being successful (that is, prior to the request for additional information)?

a. If during a 24-hour period, 2000 items are produced during the day and 800 at night, what is the

probability that an item picked at random from the output over 24 hours came from the night shift

if it was defective?

30. A company is about to sell to a new client. It knows from past experience that there is a real

possibility that the client may default on payment. As a precaution the company checks with a

consultant on the likelihood of the client defaulting in this case and is given an estimate of

20 per cent. Sometimes the consultant gets it wrong. Your own experience of the consultant is that

he is correct 70 per cent of the time when he predicts that the client will default but that 20 per cent

of clients who he believes will not default actually do.

a. What is the probability that the new client will not default?

COMPLETE

SOLUTIONS

BAYES’ THEOREM 113



31. In 2011, there were 1901 fatalities recorded on Britain’s roads, 60 of which were for children

(Department of Transport, 2012). Correspondingly, serious injuries totalled 23 122 of which

20 770 were for adults.

a. What is the probability of a serious injury given the victim was a child?

b. What is the probability that the victim was an adult given a fatality occurred?

32. The following cross-tabulation shows industry type and price/earnings (P/E) ratio for 100

companies in the consumer products and banking industries.

P/E ratio

Industry 5–9 10–14 15–19 20–24 25–29 Total

Consumer 4 10 18 10 8 50

Banking 14 14 12 6 4 50

Total 18 24 30 16 12 100

a. What is the probability that a company had a P/E greater than 9 and belonged to the consumer

industry?

b. What is the probability that a company with a P/E in the range 15–19 belonged to the banking

industry?

33. A large investment advisory service has a number of analysts who prepare detailed studies of

individual companies. On the basis of these studies the analysts make ‘buy’ or ‘sell’

recommendations on the companies’ shares. The company classes an excellent analyst as one

who will be correct 80 per cent of the time, a good analyst as who will be correct 60 per cent of

the time and a poor analyst who will be correct 40 per cent of the time.

Two years ago, the advisory service hired Mr Smith who came with considerable experience

from the research department of another firm. At the time he was hired it was thought that the

probability was 0.90 that he was an excellent analyst, 0.09 that he was a good analyst and 0.01

that he was a poor analyst. In the past two years he has made ten recommendations of which

only three have been correct.

Assuming that each recommendation is an independent event what probability would you assign to

Mr Smith being:

a. An excellent analyst?

b. A good analyst?

c. A poor analyst?

34. An electronic component is produced by four production lines in a manufacturing operation. The

components are costly, are quite reliable and are shipped to suppliers in 50-component lots.

Because testing is destructive, most buyers of the components test only a small number before

deciding to accept or reject lots of incoming components. All four production lines usually only

produce 1 per cent defective components which are randomly dispersed in the output.

Unfortunately, production line 1 suffered mechanical difficulty and produced 10 per cent

defectives during the month of April. This situation became known to the manufacturer after the

components had been shipped. A customer received a lot in April and tested five components.

Two failed. What is the probability that this lot came from production line 1?

ONLINE RESOURCES

For the data files, additional online summary, questions and answers for Chapter 4, visit the

online platform.
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SUMMARY

In this chapter we introduced basic probability concepts and illustrated how probability analysis can be

used to provide helpful information for decision-making. We described how probability can be interpreted

as a numerical measure of the likelihood that an event will occur and reviewed classical, relative

frequency and subjective methods for deriving probabilities. In addition, we saw that the probability of

an event can be computed either by summing the probabilities of the experimental outcomes (sample

points) comprising the event or by using the relationships established by the addition, conditional

probability, and multiplication laws of probability. For cases in which new information is available, we

showed how Bayes’ theorem can be used to obtain revised or posterior probabilities.

KEY TERMS

Addition law

Basic requirements for assigning probabilities

Bayes’ theorem

Classical method

Complement of A

Conditional probability

Event

Experiment

Independent events

Intersection of A and B

Joint probability

Marginal probability

Multiplication law

Mutually exclusive events

Posterior probabilities

Prior probabilities

Probability

Relative frequency method

Sample point

Sample space

Subjective method

Tree diagram

Union of A and B

Venn diagram

KEY FORMULAE

Counting rule for combinations

NCn

N
n

N

n N n
(4.1)

Counting rule for permutations

NPn n
N
n

N

N n
(4.2)

Computing probability using the complement

P A 1 P A (4.5)

Addition law

P A B P A P B P A B (4.6)
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Conditional probability

P A B
P A B

P B
(4.7)

P B A
P A B

P A
(4.8)

Multiplication law

P A B P B P A B (4.11)

P A B P A P B A (4.12)

Multiplication law for independent events

P A B P A P B (4.13)

Bayes’ theorem

P Ai B
P Ai P B Ai

P A1 P B A1 P A2 P B A2 P An P B An
(4.19)

CASE PROBLEM

BAC and the Alcohol Test

In 2005, 6.7 per cent of accidents with injuries in

Austria were caused by drunk drivers. The police in

Wachau, Austria, a region which is famous for its wine

production, is interested in buying equipment for test-

ing drivers’ blood alcohol levels. The law in Austria

requires that the driver’s licence be withdrawn if the

driver is found to have more than 0.05 per cent BAC

(blood alcohol concentration).

Due to the large number of factors that come into

play regarding the consumption and reduction (burn

off) rates of different people, there is no blood alcohol

calculator that is 100 per cent accurate. Factors

include the sex (male/female) of the drinker, differing

metabolism rates, various health issues and the com-

bination of medications being taken, drinking fre-

quency, amount of food in the stomach and small

intestine and when it was eaten, elapsed time and

many others. The best that can be done is a rough

estimate of the BAC level based on known inputs.

There are three types of equipment available with

the following conditions:

1. The Saliva Screen is a disposable strip which can

be used once – this is the cheapest method.

2. The Alcometer™ is an instrument attached to a

container into which the driver breathes, with the

Alcometer™ then measuring the BAC concen-

tration through an analysis of the driver’s breath.

The draw-back to the Alcometer
TM

is that it can

only detect the alcohol level correctly if it is used

within two hours of alcohol consumption. It is less

effective if used beyond this two-hour period.
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Type

False

positive

False

negative

Saliva Screen 0.020 0.03

Alcometer™ 0.015 0.02

Intoximeter 0.020 0.01

3. The Intoximeter is the most expensive of the three

and it works through a blood sample of the driver.

The advantage for this is that it can test the BAC

up to 12 hours after alcohol consumption. False

positive is the situation where the test indicates a

high BAC level in a driver that actually does not

have such a level. The false negative is when the

test indicates a low level of BAC when the driver is

actually highly intoxicated.

Police records show that the percentage of dri-

vers (late night) that drink heavily and drive, ranges

between 6 per cent on weekdays and 10 per cent on

the weekend.

Managerial report

Carry out an appropriate probability analysis of this

information on behalf of the police and advise them

accordingly. (Note that it would be particularly helpful

if you could assess the effectiveness of the different

equipment types separately for weekdays and

Case problem provided by Dr Ibrahim Wazir, Webster

University, Vienna
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5
Discrete
Probability
Distributions

CHAPTER CONTENTS

Statistics in Practice Improving the performance reliability of combat aircraft

5.1 Random variables

5.2 Discrete probability distributions

5.3 Expected value and variance

5.4 Binomial probability distribution

5.5 Poisson probability distribution

5.6 Hypergeometric probability distribution

LEARNING OBJECTIVES After reading this chapter and doing the exercises you should be able to:

1 Understand the concepts of a random variable

and a probability distribution.

2 Distinguish between discrete and continuous

random variables.

3 Compute and interpret the expected value, variance

and standard deviation for a discrete random

variable.

4 Compute and work with probabilities involving

a binomial probability distribution.

5 Compute and work with probabilities involving a

Poisson probability distribution.

6 Know when and how to use the hypergeometric

probability distribution.

In this chapter we continue the study of probability by introducing the concepts of random variables
and probability distributions. The focus of this chapter is discrete probability distributions. Three

special discrete probability distributions – the binomial, Poisson and hypergeometric – are covered.

5.1 RANDOM VARIABLES

In Chapter 4 we defined the concept of an experiment and its associated experimental outcomes.
A random variable provides a means for describing experimental outcomes using numerical values.
Random variables must assume numerical values.
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Random variable

A random variable is a numerical description of the outcome of an experiment.

In effect, a random variable associates a numerical value with each possible experimental outcome. The
particular numerical value of the random variable depends on the outcome of the experiment. A random
variable can be classified as being either discrete or continuous depending on the numerical values it assumes.

STATISTICS IN PRACTICE

Improving the performance reliability

of combat aircraft

Modern combat aircraft are expensive to acquire

and maintain. In today’s post-Cold War world

the emphasis is therefore on deploying as few aircraft

as are required and for these to be made to perform

as reliably as possible in conflict and peace-keeping

situations. Different strategies have been considered

by manufacturers for improving the performance relia-

bility of aircraft. One such is to reduce the incidence

of faults per flying hour to improve the aircraft’s

survival time. For example, the Tornado averages

800 faults per 1000 flying hours but if this rate could

be halved, the mean operational time between faults

would double. Another strategy is to build ‘redun-

dancy’ into the design. In practice this would involve

the aircraft carrying additional engines which would

only come into use if one of the operational engines

failed. To determine the number of additional engines

required, designers have relied on the Poisson distri-

bution. Calculations based on this distribution show

that an aircraft with two engines would need at least

four redundant engines to achieve a target

maintenance-free operating period (MFOP) of

150 hours. Given that each engine weighs over a

tonne, occupies a space of at least 2m
3

and costs

some 3m, clearly this has enormous implications for

those wishing to pursue this solution further.

Source: Kumar U D, Knezivic J and Crocker (1999)

Maintenance-free operating period –an alternative measure

to MTBF and failure rate for specifying reliability. Reliability

Engineering & System Safety Vol 64 pp 127–131.
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Discrete random variables

A random variable that may assume either a finite number of values or an infinite sequence of values such
as 0, 1, 2, … is referred to as a discrete random variable. For example, consider the experiment of an
accountant taking the chartered accountancy (CA) examination.

The examination has four parts. We can define a random variable as X the number of parts of the
CA examination passed. It is a discrete random variable because it may assume the finite number of
values 0, 1, 2, 3 or 4.

As another example of a discrete random variable, consider the experiment of cars arriving at a
tollbooth. The random variable of interest is X the number of cars arriving during a one-day
period. The possible values for X come from the sequence of integers 0, 1, 2 and so on. Hence, X is a
discrete random variable assuming one of the values in this infinite sequence. Although the out-
comes of many experiments can naturally be described by numerical values, others cannot. For
example, a survey question might ask an individual to recall the message in a recent television
commercial. This experiment would have two possible outcomes: the individual cannot recall the
message and the individual can recall the message.

We can still describe these experimental outcomes numerically by defining the discrete random
variable X as follows: let X 0 if the individual cannot recall the message and X 1 if the
individual can recall the message. The numerical values for this random variable are arbitrary (we
could use 5 and 10), but they are acceptable in terms of the definition of a random variable –
namely, X is a random variable because it provides a numerical description of the outcome of the
experiment.

Table 5.1 provides some additional examples of discrete random variables. Note that in each
example the discrete random variable assumes a finite number of values or an infinite sequence of
values such as 0, 1, 2, …. These types of discrete random variables are discussed in detail in this
chapter.

Continuous random variables

A random variable that may assume any numerical value in an interval or collection of intervals is called a
continuous random variable. Experimental outcomes based on measurement scales such as time, weight,
distance and temperature can be described by continuous random variables. For example, consider an
experiment of monitoring incoming telephone calls to the claims office of a major insurance company.
Suppose the random variable of interest is X the time between consecutive incoming calls in minutes.
This random variable may assume any value in the interval X 0. Actually, an infinite number of values
are possible for X, including values such as 1.26 minutes, 2.751 minutes, 4.3333 minutes and so on. As
another example, consider a 90-kilometre section of the A8 Autobahn in Germany.

T ABLE 5 . 1 Examples of discrete random variables

Experiment Random variable (X)

Possible values for the random

variable

Contact five customers Number of customers who

place an order

0, 1, 2, 3, 4, 5

Inspect a shipment of

50 radios

Number of defective radios 0, 1, 2, …, 49, 50

Operate a restaurant for

one day

Number of customers 0, 1, 2, 3, …

Sell a car Gender of the customer 0 if male; 1 if female
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For an emergency ambulance service located in Stuttgart, we might define the random variable as
X number of kilometres to the location of the next traffic accident along this section of the A8. In
this case, X would be a continuous random variable assuming any value in the interval 0 ≤ X ≤ 90.
Additional examples of continuous random variables are listed in Table 5.2. Note that each example
describes a random variable that may assume any value in an interval of values. Continuous random
variables and their probability distributions will be the topic of Chapter 6.

EXERCISES

Methods

1. Consider the experiment of tossing a coin twice.

a. List the experimental outcomes.

b. Define a random variable that represents the number of heads occurring on the two tosses.

c. Show what value the random variable would assume for each of the experimental outcomes.

d. Is this random variable discrete or continuous?

2. Consider the experiment of a worker assembling a product.

a. Define a random variable that represents the time in minutes required to assemble the product.

b. What values may the random variable assume?

c. Is the random variable discrete or continuous?

Applications

3. Three students have interviews scheduled for summer employment. In each case the interview

results in either an offer for a position or no offer. Experimental outcomes are defined in terms of

the results of the three interviews.

a. List the experimental outcomes.

b. Define a random variable that represents the number of offers made. Is the random variable

continuous?

c. Show the value of the random variable for each of the experimental outcomes.

4. Suppose we know home mortgage rates for 12 Danish lending institutions. Assume that the

random variable of interest is the number of lending institutions in this group that offers a 30-year

fixed rate of 1.5 per cent or less. What values may this random variable assume?

T ABLE 5 . 2 Examples of continuous random variables

Experiment Random variable (X)

Possible values for the

random variable

Operate a bank Time between customer arrivals X 0 in minutes

Fill a soft drink can

(max 350g)

Number of grams 0 X 350

Construct a new

library

Percentage of project complete after

six months

0 X 100

Test a new chemical

process

Temperature when the desired reaction

takes place (min 65°C; max 100°C)

65 X 100

COMPLETE

SOLUTIONS

COMPLETE

SOLUTIONS
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5.2 DISCRETE PROBABILITY DISTRIBUTIONS

The probability distribution for a random variable describes how probabilities are distributed over the
values of the random variable. For a discrete random variable X, the probability distribution is defined by
a probability function, denoted by p(x) p(X x) for all possible values, x. The probability function
provides the probability for each value of the random variable. Consider the sales of cars at DiCarlo
Motors in Sienna, Italy. Over the past 300 days of operation, sales data show 54 days with no cars sold,
117 days with one car sold, 72 days with two cars sold, 42 days with three cars sold, 12 days with four cars
sold and three days with five cars sold. Suppose we consider the experiment of selecting a day of operation
at DiCarlo Motors and define the random variable of interest as X the number of cars sold during a
day. From historical data, we know X is a discrete random variable that can assume the values 0, 1, 2, 3, 4
or 5. In probability function notation, p(0) provides the probability of 0 cars sold, p(1) provides the
probability of one car sold and so on. Because historical data show 54 of 300 days with no cars sold, we
assign the value 54/300 0.18 to p(0), indicating that the probability of no cars being sold during a day is
0.18. Similarly, because 117 of 300 days had one car sold, we assign the value 117/300 0.39 to p(1),
indicating that the probability of exactly one car being sold during a day is 0.39. Continuing in this way
for the other values of the random variable, we compute the values for p(2), p(3), p(4) and p(5) as shown
in Table 5.3, the probability distribution for the number of cars sold during a day at DiCarlo Motors.

A primary advantage of defining a random variable and its probability distribution is that once the
probability distribution is known, it is relatively easy to determine the probability of a variety of events
that may be of interest to a decision-maker. For example, using the probability distribution for DiCarlo
Motors, as shown in Table 5.3, we see that the most probable number of cars sold during a day is one with
a probability of p(1) 0.39. In addition, there is a p(3) p(4) p(5) 0.14 0.04 0.01 0.19
probability of selling three or more cars during a day. These probabilities, plus others the decision-maker
may ask about, provide information that can help the decision-maker understand the process of selling cars
at DiCarlo Motors.

In the development of a probability function for any discrete random variable, the following two
conditions must be satisfied.

5. To perform a certain type of blood analysis, lab technicians must perform two procedures. The first

procedure requires either one or two separate steps, and the second procedure requires either one, two

or three steps.

a. List the experimental outcomes associated with performing the blood analysis.

b. If the random variable of interest is the total number of steps required to do the complete

analysis (both procedures), show what value the random variable will assume for each of the

experimental outcomes.

6. Listed is a series of experiments and associated random variables. In each case, identify the

values that the random variable can assume and state whether the random variable is discrete or

continuous.

Experiment Random variable (X)

a. Take a 20-question examination. Number of questions answered correctly.

b. Observe cars arriving at a tollbooth

for one hour.

Number of cars arriving at tollbooth.

c. Audit 50 tax returns. Number of returns containing errors.

d. Observe an employee’s work. Number of non-productive hours in an

eight-hour workday.

e. Weigh a shipment of goods. Number of kilograms.

COMPLETE

SOLUTIONS
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Required conditions for a discrete probability function are shown in equations (5.1) and (5.2).

p x 0 (5.1)

∑p x 1 (5.2)

Table 5.3 shows that the probabilities for the random variable X satisfy equation (5.1); p(x) is
greater than or equal to 0 for all values of x. In addition, because the probabilities sum to 1, equation (5.2)
is satisfied. Thus, the DiCarlo Motors probability function is a valid discrete probability function.

We can also present probability distributions graphically. In Figure 5.1 the values of the random
variable X for DiCarlo Motors are shown on the horizontal axis and the probability associated with these
values is shown on the vertical axis. In addition to tables and graphs, a formula that gives the probability
function, p(x), for every value of X x is often used to describe probability distributions. The simplest
example of a discrete probability distribution given by a formula is the discrete uniform probability

distribution. Its probability function is defined by equation (5.3).

Discrete uniform probability function

p x 1 n (5.3)

where

n the number of values the random variable may assume

T ABLE 5 . 3 Probability distribution for the number of cars sold during a day at DiCarlo Motors

x p(x)

0 0.18

1 0.39

2 0.24

3 0.14

4 0.04

5 0.01

Total 1.00

0
0.00

0.10

0.20

P
ro

b
a
b

il
it

y

Number of Cars Sold During a Day

0.30

0.40

p(x)

x
1 2 3 4 5

FIGURE 5.1

Graphical representation of the

probability distribution for the number

of cars sold during a day at DiCarlo

Motors
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For example, suppose that for the experiment of rolling a die we define the random variable X to be the
number of dots on the upward face. There are n 6 possible values for the random variable; X 1, 2, 3,
4, 5, 6. Thus, the probability function for this discrete uniform random variable is:

p(x) 1/6 x 1, 2, 3, 4, 5, 6

The possible values of the random variable and the associated probabilities are shown.

x p(x)

1 1/6
2 1/6
3 1/6
4 1/6
5 1/6
6 1/6

As another example, consider the random variable X with the following discrete probability distribution.

x p(x)

1 1/10
2 2/10
3 3/10
4 4/10

This probability distribution can be defined by the formula:

p x
x

10
for x 1, 2, 3 or 4

Evaluating p(x) for a given value of the random variable will provide the associated probability. For
example, using the preceding probability function, we see that p(2) 2/10 provides the probability that
the random variable assumes a value of 2. The more widely used discrete probability distributions
generally are specified by formulae. Three important cases are the binomial, Poisson and hypergeometric
distributions; these are discussed later in the chapter.

EXERCISES

Methods

7. The probability distribution for the random variable X follows.

x p(x)

20 0.20

25 0.15

30 0.25

35 0.40

a. Is this probability distribution valid? Explain.
b. What is the probability that X = 30?

c. What is the probability that X is less than or equal to 25?

d. What is the probability that X is greater than 30?
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Applications

8. The following data were collected by counting the number of operating rooms in use at a general

hospital over a 20-day period. On three of the days only one operating room was used, on five of

the days two were used, on eight of the days three were used and on four days all four of the

hospital’s operating rooms were used.

a. Use the relative frequency approach to construct a probability distribution for the number of

operating rooms in use on any given day.

b. Draw a graph of the probability distribution.

c. Show that your probability distribution satisfies the required conditions for a valid discrete

probability distribution.

9. Table 5.4 summarizes the joint probability distribution for the percentage monthly return

for two ordinary shares 1 and 2. In the case of share 1, the per cent return X has

historically been –1, 0 or 1. Correspondingly, for share 2, the per cent return Y has been –2,

0 or 2.

a. Determine E(Y), E(X) Var(X) and Var(Y).

b. Determine the correlation coefficient between X and Y.

c. What do you deduce from b?

10. A technician services mailing machines at companies in the Berne area. Depending on the type of

malfunction, the service call can take 1, 2, 3 or 4 hours. The different types of malfunctions occur

at about the same frequency.

a. Develop a probability distribution for the duration of a service call.

b. Draw a graph of the probability distribution.

c. Show that your probability distribution satisfies the conditions required for a discrete

probability function.

d. What is the probability a service call will take three hours?

e. A service call has just come in, but the type of malfunction is unknown. It is 3:00 p.m. and

service technicians usually finish work at 5:00 p.m. What is the probability the service

technician will have to work overtime to fix the machine today?

11. A college admissions tutor subjectively assessed a probability distribution for X, the number of

entering students, as follows.

T ABLE 5 . 4 Per cent monthly return probabilities for shares 1 and 2

share 2

%

Monthly return −2

Y

0 2

−1 0.1 0.1 0.0

share 1 X 0 0.1 0.2 0.0

1 0.0 0.1 0.4

COMPLETE

SOLUTIONS

COMPLETE

SOLUTIONS
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5.3 EXPECTED VALUE AND VARIANCE

Expected value

The expected value, or mean, of a random variable is a measure of the central location for the random
variable. The formula for the expected value of a discrete random variable X follows in equation (5.4).

Expected value of a discrete random variable

E X μ ∑xp x (5.4)

x p(x)

1000 0.15

1100 0.20

1200 0.30

1300 0.25

1400 0.10

a. Is this probability distribution valid? Explain.

b. What is the probability of 1200 or fewer entering students?

12. A psychologist determined that the number of sessions required to obtain the trust of a new

patient is either 1, 2 or 3. Let X be a random variable indicating the number of sessions required

to gain the patient’s trust. The following probability function has been proposed.

p x
x

6
for x 1, 2 or 3

a. Is this probability function valid? Explain.
b. What is the probability that it takes exactly two sessions to gain the patient’s trust?

c. What is the probability that it takes at least two sessions to gain the patient’s trust?

13. The following table is a partial probability distribution for the MRA Company’s projected profits

(X = profit in 000s) for the first year of operation (the negative value denotes a loss).

x p(x)

100 0.10

0 0.20

50 0.30

100 0.25

150 0.10

200

a. What is the proper value for p(200)? What is your interpretation of this value?

b. What is the probability that MRA will be profitable?

c. What is the probability that MRA will make at least 100 000?

COMPLETE

SOLUTIONS
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Both the notations E(X) and µ are used to denote the expected value of a random variable. Equation
(5.4) shows that to compute the expected value of a discrete random variable, we must multiply each
value of the random variable by the corresponding probability p(x) and then add the resulting products.
Using the DiCarlo Motors car sales example from Section 5.2, we show the calculation of the expected
value for the number of cars sold during a day in Table 5.5. The sum of the entries in the xp(x) column
shows that the expected value is 1.50 cars per day. We therefore know that although sales of 0, 1, 2, 3, 4 or
5 cars are possible on any one day, over time DiCarlo can anticipate selling an average of 1.50 cars per
day. Assuming 30 days of operation during a month, we can use the expected value of 1.50 to forecast
average monthly sales of 30(1.50) 45 cars.

Variance

Even though the expected value provides the mean value for the random variable, we often need a
measure of variability, or dispersion. Just as we used the variance in Chapter 3 to summarize the
variability in data, we now use variance to summarize the variability in the values of a random variable.
The formula for the variance of a discrete random variable follows in equation (5.5).

Variance of a discrete random variable

Var X 2
Σ x 2p x (5.5)

As equation (5.5) shows, an essential part of the variance formula is the deviation, x µ, which
measures how far a particular value of the random variable is from the expected value, or mean, µ. In
computing the variance of a random variable, the deviations are squared and then weighted by the
corresponding value of the probability function. The sum of these weighted squared deviations for all
values of the random variable is referred to as the variance. The notations Var(X) and σ

2
are both used to

denote the variance of a random variable.
The calculation of the variance for the probability distribution of the number of cars sold during a day

at DiCarlo Motors is summarized in Table 5.6. We see that the variance is 1.25. The standard deviation,
σ, is defined as the positive square root of the variance. Thus, the standard deviation for the number of
cars sold during a day is:

1 25 1 118

T ABLE 5 . 5 Calculation of the expected value for the number of cars sold during a day at DiCarlo Motors

x p(x) xp(x)

0 0.18 0 (0.18) 0.00

1 0.39 1 (0.39) 0.39

2 0.24 2 (0.24) 0.48

3 0.14 3 (0.14) 0.42

4 0.04 4 (0.04) 0.16

5 0.01 5 0 01 0 05
1 50

E X μ xp x
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The standard deviation is measured in the same units as the random variable (σ = 1.118 cars) and
therefore is often preferred in describing the variability of a random variable. The variance σ

2
is measured

in squared units and is thus more difficult to interpret.

EXERCISES

Methods

14. The following table provides a probability distribution for the random variable X.

x p(x)

3 0.25

6 0.50

9 0.25

a. Compute E(X), the expected value of X.

b. Compute
2
, the variance of X.

c. Compute , the standard deviation of X.

15. The following table provides a probability distribution for the random variable Y.

y p(y)

2 0.20

4 0.30

7 0.40

8 0.10

a. Compute E(Y).
b. Compute Var(Y) and .

T ABLE 5 . 6 Calculation of the variance for the number of cars sold during a day at DiCarlo Motors

x x (x )
2

p(x) (x )
2
p(x)

0 0 1.50 1.50 2.25 0.18 2.25 0.18 0.4050

1 1 1.50 0.50 0.25 0.39 0.25 0.39 0.0975

2 2 1.50 0.50 0.25 0.24 0.25 0.24 0.0600

3 3 1.50 1.50 2.25 0.14 2.25 0.14 0.3150

4 4 1.50 2.50 6.25 0.04 6.25 0.04 0.2500

5 5 1.50 3.50 12.25 0.01 12.25 0.01 0.1225

1.2500

2 x − μ 2p x
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Applications

16. Odds in horse race betting are defined as follows: 3/1 (three to one against) means a horse is

expected to win once for every three times it loses; 3/2 means two wins out of five races; 4/5

(five to four on) means five wins for every four defeats, etc.

a. Translate the above odds into ‘probabilities’ of victory.

b. In the 2.45 race at L’Arc de Triomphe the odds for the five runners were:

Phillipe Bois 1/1

Gallante Effor 5/2

Satin Noir 11/2

Victoire Antheme 9/1

Comme Rambleur 16/1

Calculate the ‘probabilities’ and their sum.

c. How much would a bookmaker expect to profit in the long run at such odds if it is assumed

each horse is backed equally? (Hint: Assume the true probabilities are proportional to the

‘probabilities’ just calculated and consider the payouts corresponding to a notional 1 wager

being placed on each horse.)

d. What would the bookmaker’s expected profit have been if horses had been backed in line with

the true probabilities?

17. A certain machinist works an eight-hour shift. An efficiency expert wants to assess the value of

this machinist where value is defined as value added minus the machinist’s labour cost. The

value added for the work the machinist does is 30 per item and the machinist earns 16 per

hour. From past records, the machinist’s output per shift is known to have the following

probability distribution:

Output/shift Probability

5 0.2

6 0.4

7 0.3

8 0.1

a. What is the expected monetary value of the machinist to the company per shift?
b. What is the corresponding variance value?

18. A company is contracted to finish a 100 000 project by 31 December. If it does not complete on

time a penalty of 8000 per month (or part of a month) is incurred. The company estimates that if

it continues alone there will be a 40 per cent chance of completing on time and that the project

may be one, two, three or four months late with equal probability.

Subcontractors can be hired by the firm at a cost of 18 000. If the subcontractors are hired

then the probability that the company completes on time is doubled. If the project is still late it

will now be only one or two months late with equal probability.

a. Determine the expected profit when

i. subcontractors are not used

ii. subcontractors are used

b. Which is the better option for the company?
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5.4 BINOMIAL PROBABILITY DISTRIBUTION

The binomial probability distribution is a discrete probability distribution that provides many applica-
tions. It is associated with a multiple-step experiment that we call the binomial experiment.

A binomial experiment

A binomial experiment exhibits the following four properties.

Properties of a binomial experiment

1. The experiment consists of a sequence of n identical trials.

2. Two outcomes are possible on each trial. We refer to one outcome as a success and the other outcome as a

failure.

3. The probability of a success, denoted by π, does not change from trial to trial. Consequently, the

probability of a failure, denoted by 1 π, does not change from trial to trial.

4. The trials are independent.

19. The following probability distributions of job satisfaction scores for a sample of information

systems (IS) senior executives and IS middle managers range from a low of 1 (very dissatisfied)

to a high of 5 (very satisfied).

Probability

Job satisfaction score IS senior executives IS middle managers

1 0.05 0.04

2 0.09 0.10

3 0.03 0.12

4 0.42 0.46

5 0.41 0.28

a. What is the expected value of the job satisfaction score for senior executives?
b. What is the expected value of the job satisfaction score for middle managers?

c. Compute the variance of job satisfaction scores for executives and middle managers.

d. Compute the standard deviation of job satisfaction scores for both probability distributions.

e. Compare the overall job satisfaction of senior executives and middle managers.

20. The demand for a product of Cobh Industries varies greatly from month to month. The probability distribution

in the following table, based on the past two years of data, shows the company’s monthly demand.

Unit demand Probability

300 0.20

400 0.30

500 0.35

600 0.15

a. If the company bases monthly orders on the expected value of the monthly demand, what

should Cobh’s monthly order quantity be for this product?
b. Assume that each unit demanded generates 70 in revenue and that each unit ordered costs

50. How much will the company gain or lose in a month if it places an order based on your

answer to part (a) and the actual demand for the item is 300 units?

COMPLETE

SOLUTIONS
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If properties 2, 3 and 4 are present, we say the trials are generated by a Bernoulli process. If, in
addition, property 1 is present, we say we have a binomial experiment. Figure 5.2 depicts one possible
sequence of successes and failures for a binomial experiment involving eight trials.

In a binomial experiment, our interest is in the number of successes occurring in the n trials. If we let X
denote the number of successes occurring in the n trials, we see that X can assume the values of 0, 1, 2,
3, …, n. Because the number of values is finite, X is a discrete random variable. The probability
distribution associated with this random variable is called the binomial probability distribution. For
example, consider the experiment of tossing a coin five times and on each toss observing whether the coin
lands with a head or a tail on its upward face. Suppose we want to count the number of heads appearing
over the five tosses. Does this experiment show the properties of a binomial experiment? What is the
random variable of interest? Note that:

1 The experiment consists of five identical trials; each trial involves the tossing of one coin.

2 Two outcomes are possible for each trial: a head or a tail. We can designate head a success and tail a
failure.

3 The probability of a head and the probability of a tail are the same for each trial, with π 0.5 and
1 π 0.5.

4 The trials or tosses are independent because the outcome on any one trial is not affected by what
happens on other trials or tosses.

Thus, the properties of a binomial experiment are satisfied. The random variable of interest is X the
number of heads appearing in the five trials. In this case, X can assume the values of 0, 1, 2, 3, 4 or 5.

As another example, consider an insurance salesperson who visits ten randomly selected families. The
outcome associated with each visit is classified as a success if the family purchases an insurance policy and
a failure if the family does not. From past experience, the salesperson knows the probability that a
randomly selected family will purchase an insurance policy is 0.10. Checking the properties of a binomial
experiment, we observe that:

1 The experiment consists of ten identical trials; each trial involves contacting one family.

2 Two outcomes are possible on each trial: the family purchases a policy (success) or the family does
not purchase a policy (failure).

3 The probabilities of a purchase and a non-purchase are assumed to be the same for each sales call,
with π 0.10 and 1 π 0.90.

4 The trials are independent because the families are randomly selected.

Because the four assumptions are satisfied, this example is a binomial experiment. The random
variable of interest is the number of sales obtained in contacting the ten families. In this case, X can
assume the values of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10.

Property 3 of the binomial experiment is called the stationarity assumption and is sometimes confused
with property 4, independence of trials. To see how they differ, consider again the case of the salesperson
calling on families to sell insurance policies. If, as the day wore on, the salesperson got tired and lost
enthusiasm, the probability of success (selling a policy) might drop to 0.05, for example, by the tenth call.

Property 1:  The experiment consists of

 n =  8 identical trials.

Property 2:  Each trial results in either

 success (S) or failure (F).

Outcomes

Trials 1 2 3 4 5 6 7 8

S F F S S F S S

FIGURE 5.2

One possible

sequence of

successes and

failures for an

eight-day trial

binomial

experiment
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In such a case, property 3 (stationarity) would not be satisfied, and we would not have a binomial
experiment. Even if property 4 held – that is, the purchase decisions of each family were made
independently – it would not be a binomial experiment if property 3 was not satisfied.

In applications involving binomial experiments, a special mathematical formula, called the binomial
probability function, can be used to compute the probability of x successes in the n trials. We will show in
the context of an illustrative problem how the formula can be developed.

Marrine clothing store problem

Let us consider the purchase decisions of the next three customers who enter the Marrine Clothing Store.
On the basis of past experience, the store manager estimates the probability that any one customer will
make a purchase is 0.30. What is the probability that two of the next three customers will make a
purchase?

Using a tree diagram (Figure 5.3), we see that the experiment of observing the three customers each
making a purchase decision has eight possible outcomes. Using S to denote success (a purchase) and F to
denote failure (no purchase), we are interested in experimental outcomes involving two successes in the
three trials (purchase decisions). Next, let us verify that the experiment involving the sequence of three
purchase decisions can be viewed as a binomial experiment. Checking the four requirements for a
binomial experiment, we note that:

1 The experiment can be described as a sequence of three identical trials, one trial for each of the
three customers who will enter the store.

2 Two outcomes – the customer makes a purchase (success) or the customer does not make a
purchase (failure) – are possible for each trial.

3 The probability that the customer will make a purchase (0.30) or will not make a purchase (0.70) is
assumed to be the same for all customers.

4 The purchase decision of each customer is independent of the decisions of the other customers.

Hence, the properties of a binomial experiment are present.

First
Customer

S F

S

S (S, S, S)

(S, S, F)

(S, F, S)

(S, F, F)

(F, S, S)

(F, S, F)

(F, F, S)

(F, F, F)

3

2

2

1

2

1

1

0

F

S

F

S

F

S

F

S

F

S =  Purchase
F =  No purchase
x =  Number of customers making a purchase

F

Second
Customer

Third
Customer

Experimental
Outcome Value of x

FIGURE 5.3

Tree diagram for

the Marrine

Clothing Store

problem
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The number of experimental outcomes resulting in exactly x successes in n trials can be computed
using the following formula.*

Number of experimental outcomes providing exactly x successes in n trials

n
x

n

x n x
(5.6)

where

n n n 1 n 2 2 1

and, by definition,

0 1

Now let us return to the Marrine Clothing Store experiment involving three customer purchase
decisions. Equation (5.6) can be used to determine the number of experimental outcomes involving
two purchases; that is, the number of ways of obtaining X 2 successes in the n 3 trials. From equation
(5.6) we have:

n
x

3
2

3

2 3 2

3 2 1

2 1 1

6

2
3

Equation (5.6) shows that three of the experimental outcomes yield two successes. From Figure 5.3 we see
these three outcomes are denoted by (S, S, F), (S, F, S) and (F, S, S). Using equation (5.6) to determine
how many experimental outcomes have three successes (purchases) in the three trials, we obtain:

n
x

3
3

3

3 3 2

3 2 1

3 2 1 1

6

6
1

From Figure 5.3 we see that the one experimental outcome with three successes is identified by (S, S, S).
We know that equation (5.6) can be used to determine the number of experimental outcomes that

result in X successes. If we are to determine the probability of x successes in n trials, however, we must
also know the probability associated with each of these experimental outcomes. Because the trials of a
binomial experiment are independent, we can simply multiply the probabilities associated with each trial
outcome to find the probability of a particular sequence of successes and failures.

The probability of purchases by the first two customers and no purchase by the third customer,
denoted (S, S, F), is given by:

ππ 1 π

With a 0.30 probability of a purchase on any one trial, the probability of a purchase on the first two trials
and no purchase on the third is given by:

0 30 0 30 0 70 0 302 0 70 0 063

*This formula, introduced in Chapter 4, determines the number of combinations of n objects selected x at a time.
For the binomial experiment, this combinatorial formula provides the number of experimental outcomes (sequences
of n trials) resulting in x successes.
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Two other experimental outcomes also result in two successes and one failure. The probabilities for all
three experimental outcomes involving two successes follow.

Trial outcomes

1st customer 2nd customer 3rd customer
Experimental
outcome

Probability of
experimental outcome

Purchase Purchase No purchase (S, S, F) ππ(1 π) π
2
(1 π)

= (0.30)
2
(0.70) 0.063

Purchase No purchase Purchase (S, F, S) π(1 π)π π
2
(1 π)

= (0.30)
2
(0.70) 0.063

No purchase Purchase Purchase (F, S, S) (1 π)ππ π
2
(1 π)

= (0.30)
2
(0.70) 0.063

Observe that all three experimental outcomes with two successes have exactly the same probability. This
observation holds in general. In any binomial experiment, all sequences of trial outcomes yielding
x successes in n trials have the same probability of occurrence.

The probability of each sequence of trials yielding X successes in n trials follows in equation (5.7).

Probability of a particular sequence of trial outcomes πx 1 π n x
(5.7)

with X successes in n trials

For the Marrine Clothing Store, this formula shows that any experimental outcome with two successes
has a probability of π

2
(1 π)

(3 2)
π
2
(1 π)

1
(0.30)

2
(0.70)

1
0.063. Combining equations (5.6)

and (5.7) we obtain the following binomial probability function.

Binomial probability function

p x
n
x

πx 1 π n x (5.8)

where p(x) the probability of x successes in n trials

n the number of trials

n

x

n

x n x

π the probability of a success on any one trail

1 π the probability of a failure on any one trail

In the Marrine Clothing Store example, we can use this function to compute the probability that no
customer makes a purchase, exactly one customer makes a purchase, exactly two customers make a
purchase and all three customers make a purchase. The calculations are summarized in Table 5.7, which
gives the probability distribution of the number of customers making a purchase. Figure 5.4 is a graph of
this probability distribution.

The binomial probability function can be applied to any binomial experiment. If we are satisfied that a
situation demonstrates the properties of a binomial experiment and if we know the values of n and π, we
can use equation (5.8) to compute the probability of x successes in the n trials.

If we consider variations of the Marrine experiment, such as ten customers rather than three entering
the store, the binomial probability function given by equation (5.8) is still applicable.
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Suppose we have a binomial experiment with n 10, x 4 and π 0.30. The probability of making
exactly four sales to ten customers entering the store is:

p 4
10

4 6
0 30 4 0 70 6 0 2001

Using tables of binomial probabilities

Tables have been developed that give the probability of x successes in n trials for a binomial experiment.
The tables are generally easy to use and quicker than equation (5.8). Table 5 of Appendix B provides such
a table of binomial probabilities. To use this table, we must specify the values of n, π and x for the
binomial experiment of interest. For example, the probability of x 3 successes in a binomial experiment
with n 10 and π 0.40 can be seen to be 0.2150. You can use equation (5.8) to verify that you would
obtain the same answer if you used the binomial probability function directly.

Now let us use the same table to verify the probability of four successes in ten trials for the Marrine
Clothing Store problem. Note that the value of p(4) 0.2001 can be read directly from the table of
binomial probabilities, with n 10, x 4 and π 0.30.

Even though the tables of binomial probabilities are relatively easy to use, it is impossible to have tables
that show all possible values of n and π that might be encountered in a binomial experiment. However,
with today’s calculators, using equation (5.8) to calculate the desired probability is not difficult,
especially if the number of trials is not large. In the exercises, you should practice using equation (5.8)
to compute the binomial probabilities unless the problem specifically requests that you use the binomial
probability table.

T ABLE 5 . 7 Probability distribution for the number of customers making a purchase

x p(x)

0 3
0 3

0 30 0 0 70 3 0 343

1 3
1 2

0 30 1 0 70 2 0 441

2 3
2 1

0 30 2 0 70 1 0 189

3 3
3 0

0 30 3 0 70 0 0 027
1 000

0
0.00

0.10

0.20

P
ro

b
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b
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Number of Customers Making a Purchase

0.30

0.40

0.50

p(x)

x
1 2 3

FIGURE 5.4

Graphical representation of

the probability distribution

for the number of customers

making a purchase
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Statistical software packages such as MINITAB, SPSS and spreadsheet packages such as EXCEL also
provide a capability for computing binomial probabilities. Consider the Marrine Clothing Store example
with n 10 and π 0.30. Figure 5.5 shows the binomial probabilities generated by MINITAB for all
possible values of x. Note that these values are the same as those found in the π 0.30 column of
Table 5.5 of Appendix B. At the end of the chapter, details are given on how to generate the output in
Figure 5.5 using first MINITAB, then EXCEL and finally SPSS.

Expected value and variance for the binomial distribution

In Section 5.3 we provided formulae for computing the expected value and variance of a discrete random
variable. In the special case where the random variable has a binomial distribution with a known number
of trials n and a known probability of success π, the general formulae for the expected value and variance
can be simplified. The results follow.

Expected value and variance for the binomial distribution

E X μ nπ (5.9)

Var X 2 nπ 1 π (5.10)

For the Marrine Clothing Store problem with three customers, we can use equation (5.9) to compute
the expected number of customers who will make a purchase.

E X nπ 3 0 30 0 9

Suppose that for the next month the Marrine Clothing Store forecasts 1000 customers will enter the
store. What is the expected number of customers who will make a purchase? The answer is µ nπ
1000 0.3 300. Thus, to increase the expected number of purchases, Marrine must induce more
customers to enter the store and/or somehow increase the probability that any individual customer will
make a purchase after entering.

For the Marrine Clothing Store problem with three customers, we see that the variance and standard
deviation for the number of customers who will make a purchase are:

2 nπ 1 π 3 0 3 0 7 0 63

0 063 0 79

For the next 1000 customers entering the store, the variance and standard deviation for the number of
customers who will make a purchase are:

2 nπ 1 π 1000 0 3 0 7 210

210 14 49

x

0
1
2
3
4
5

6
7
8
9

10

P (  X  =   x  )

0. 028248
0. 121061
0. 233474
0. 266828
0. 200121
0. 102919

0. 036757
0. 009002
0. 001447
0. 000138
0. 000006

FIGURE 5.5

MINITAB output showing binomial

probabilities for the Marrine Clothing

Store problem
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EXERCISES

Methods

21. Consider a binomial experiment with two trials and = 0.4.

a. Draw a tree diagram for this experiment (see Figure 5.3).

b. Compute the probability of one success, p(1).

c. Compute p(0).

d. Compute p(2).

e. Compute the probability of at least one success.

f. Compute the expected value, variance and standard deviation.

22. Consider a binomial experiment with n = 10 and = 0.10.

a. Compute p(0).

b. Compute p(2).

c. Compute P(x 2).

d. Compute P(x 1).

e. Compute E(X).

f. Compute Var(X) and .

23. Consider a binomial experiment with n = 20 and = 0.70.

a. Compute p(12).

b. Compute p(16).

c. Compute P(X 16).

d. Compute P(X 15).

e. Compute E(X).

f. Compute Var(X) and .

Applications

24. When a new machine is functioning properly, only 3 per cent of the items produced are defective.

Assume that we will randomly select two parts produced on the machine and that we are

interested in the number of defective parts found.

a. Describe the conditions under which this situation would be a binomial experiment.

b. Draw a tree diagram similar to Figure 5.3 showing this problem as a two-trial experiment.

c. How many experimental outcomes result in exactly one defect being found?

d. Compute the probabilities associated with finding no defects, exactly one defect and two

defects.

25. It takes at least nine votes from a 12-member jury to convict a defendant. Suppose that the

probability that a juror votes a guilty person innocent is 0.2 whereas the probability that the juror

votes an innocent person guilty is 0.1.

a. If each juror acts independently and 65 per cent of defendants are guilty, what is the

probability that the jury renders a correct decision.

b. What percentage of defendants is convicted?

26. A firm bills its accounts at a 1 per cent discount for payment within ten days and the full amount

is due after ten days. In the past 30 per cent of all invoices have been paid within ten days. If the

firm sends out eight invoices during the first week of January, what is the probability that:

a. No one receives the discount?

b. Everyone receives the discount?

c. No more than three receive the discount?

d. At least two receive the discount?
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5.5 POISSON PROBABILITY DISTRIBUTION

In this section we consider a discrete random variable that is often useful in estimating the number of
occurrences over a specified interval of time or space. For example, the random variable of interest might
be the number of arrivals at a car wash in one hour, the number of repairs needed in ten kilometres of
highway, or the number of leaks in 100 kilometres of pipeline.

If the following two properties are satisfied, the number of occurrences is a random variable described
by the Poisson probability distribution.

Properties of a Poisson experiment

1. The probability of an occurrence is the same for any two intervals of equal length.

2. The occurrence or non-occurrence in any interval is independent of the occurrence or non-occurrence in

any other interval.

The Poisson probability function is defined by equation (5.11).

Poisson probability function

p x
μxe μ

x!
(5.11)

where

p x the probability of x occurrences in an interval

μ expected value or mean number of occurrences in an interval

e 2 71828

Before we consider a specific example to see how the Poisson distribution can be applied, note that the
number of occurrences, x, has no upper limit. It is a discrete random variable that may assume an infinite
sequence of values (x 0, 1, 2, …).

An example involving time intervals

Suppose that we are interested in the number of arrivals at the payment kiosk of a car park during a
15-minute period on weekday mornings. If we can assume that the probability of a car arriving is the
same for any two time periods of equal length and that the arrival or non-arrival of a car in any time
period is independent of the arrival or non-arrival in any other time period, the Poisson probability
function is applicable. Suppose these assumptions are satisfied and an analysis of historical data shows

27. In a game of ‘Chuck a luck’ a player bets on one of the numbers 1 to 6. Three dice are then rolled

and if the number bet by the player appears i times (i = 1, 2, 3) the player then wins i units. On the

other hand if the number bet by the player does not appear on any of the dice the player loses 1

unit. If x is the player’s winnings in the game, what is the expected value of X?
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that the average number of cars arriving in a 15-minute period of time is ten; in this case, the following
probability function applies:

p x
10xe 10

x

The random variable here is X number of cars arriving in any 15-minute period.
If management wanted to know the probability of exactly five arrivals in 15 minutes, we would set

X 5 and thus obtain:

Probability of exactly five arrivals in 15 minutes p 5
105e 10

5
0 0378

Although this probability was determined by evaluating the probability function with µ 10 and x 5, it
is often easier to refer to a table for the Poisson distribution. The table provides probabilities for specific
values of x and µ. We include such a table as Table 7 of Appendix B. Note that to use the table of Poisson
probabilities, we need know only the values of x and µ. From this table we see that the probability of five
arrivals in a 15-minute period is found by locating the value in the row of the table corresponding to x
5 and the column of the table corresponding to µ 10. Hence, we obtain p(5) 0.0378.

In the preceding example, the mean of the Poisson distribution is µ 10 arrivals per 15-minute
period. A property of the Poisson distribution is that the mean of the distribution and the variance of the
distribution are equal. Thus, the variance for the number of arrivals during 15-minute periods is σ

2
10.

The standard deviation is:

10 3 16

Our illustration involves a 15-minute period, but other time periods can be used. Suppose we want to
compute the probability of one arrival in a three-minute period. Because ten is the expected number of arrivals
in a 15-minute period, we see that 10/15 2/3 is the expected number of arrivals in a one-minute period and
that 2/3 3 minutes 2 is the expected number of arrivals in a three-minute period. Thus, the probability of
x arrivals in a three-minute time period with µ 2 is given by the following Poisson probability function.

p x
2xe 2

x

The probability of one arrival in a three-minute period is calculated as follows:

Probability of exactly one arrival in three minutes P 1
21e 2

1
0 2707

Earlier we computed the probability of five arrivals in a 15-minute period; it was 0.0378. Note that the
probability of one arrival in a three-minute period (0.2707) is not the same. When computing a Poisson
probability for a different time interval, we must first convert the mean arrival rate to the time period of
interest and then compute the probability.

An example involving length or distance intervals

Consider an application not involving time intervals in which the Poisson distribution is useful. Suppose
we are concerned with the occurrence of major defects in a highway, one month after resurfacing. We will
assume that the probability of a defect is the same for any two highway intervals of equal length and that
the occurrence or non-occurrence of a defect in any one interval is independent of the occurrence or non-
occurrence of a defect in any other interval. Hence, the Poisson distribution can be applied.

Suppose that major defects one month after resurfacing occur at the average rate of two per kilometre.
Let us find the probability of no major defects in a particular three-kilometre section of the highway.
Because we are interested in an interval with a length of three kilometres, µ 2 defects/kilometre
3 kilometres 6 represents the expected number of major defects over the three-kilometre section of
highway. Using equation (5.11), the probability of no major defects is p(0) 6

0
e

6
/0! 0.0025. Thus,

it is unlikely that no major defects will occur in the three-kilometre section. Equivalently there is a
1 0.0025 0.9975 probability of at least one major defect in the three-kilometre highway section.
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5.6 HYPERGEOMETRIC PROBABILITY DISTRIBUTION

The hypergeometric probability distribution is closely related to the binomial distribution. The two
probability distributions differ in two key ways. With the hypergeometric distribution, the trials are not
independent; and the probability of success changes from trial to trial.

In the usual notation for the hypergeometric distribution, r denotes the number of elements in the
population of size N labelled success, and N r denotes the number of elements in the population
labelled failure. The hypergeometric probability function is used to compute the probability that in a
random selection of n elements, selected without replacement, we obtain x elements labelled success and
n x elements labelled failure. For this outcome to occur, we must obtain x successes from the r

EXERCISES

Methods

28. Consider a Poisson distribution with µ = 3.

a. Write the appropriate Poisson probability function.

b. Compute p(2).

c. Compute p(1).

d. Compute P(X 2).

29. Consider a Poisson distribution with a mean of two occurrences per time period.

a. Write the appropriate Poisson probability function.

b. What is the expected number of occurrences in three time periods?

c. Write the appropriate Poisson probability function to determine the probability of x

occurrences in three time periods.

d. Compute the probability of two occurrences in one time period.

e. Compute the probability of six occurrences in three time periods.

f. Compute the probability of five occurrences in two time periods.

Applications

30. A certain process produces 100m long rolls of high quality silk. In order to assess quality a 10m

sample is taken from the end of each roll and inspected for blemishes. The number of blemishes

in each sample is thought to follow a Poisson distribution with an average of two blemishes per

10m sample.

a. What is the probability that there will be more than seven blemishes if a 30m sample is

taken?

31. During the period of time that a local university takes phone-in registrations, calls come in at the

rate of one every two minutes.

a. What is the expected number of calls in one hour?

b. What is the probability of three calls in five minutes?

c. What is the probability of no calls in a five-minute period?

32. Airline passengers arrive randomly and independently at the passenger-screening facility at a

major international airport. The mean arrival rate is ten passengers per minute.

a. Compute the probability of no arrivals in a one-minute period.

b. Compute the probability that three or fewer passengers arrive in a one-minute period.

c. Compute the probability of no arrivals in a 15-second period.

d. Compute the probability of at least one arrival in a 15-second period.

COMPLETE

SOLUTIONS
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successes in the population and n x failures from the N r failures. The following hypergeometric
probability function provides p(x), the probability of obtaining x successes in a sample of size n.

Hypergeometric probability function

p x

r
x

N r
n x

N
n

(5.12)

where

p x probability of x successes in n trials

n number of trials

N number of elements in the population

r number of elements in the population labelled success

Note that represents the number of ways a sample of size n can be selected from a population of

size N; represents the number of ways that x successes can be selected from a total of r successes in

the population; and represents the number of ways that n x failures can be selected from a

total of N r failures in the population.
To illustrate the computations involved in using equation (5.12), consider the following quality control

application. Electric fuses produced by Warsaw Electric are packaged in boxes of 12 units each. Suppose
an inspector randomly selects three of the 12 fuses in a box for testing. If the box contains exactly five
defective fuses, what is the probability that the inspector will find exactly one of the three fuses defective?
In this application, n 3 and N 12. With r 5 defective fuses in the box the probability of finding x
1 defective fuse is:

p 1

5
1

7
2

12
3

5

1 4

7

2 3
12

3 9

5 21

220
0 4733

Now suppose that we wanted to know the probability of finding at least one defective fuse. The easiest
way to answer this question is to first compute the probability that the inspector does not find any
defective fuses. The probability of x 0 is:

p 0

5
0

7
3

12
3

5

0 5

7

3 4
12

3 9

1 35

220
0 1591

With a probability of zero defective fuses p(0) 0.1591, we conclude that the probability of finding at
least one defective fuse must be 1 0.1591 0.8409. Thus, there is a reasonably high probability that the
inspector will find at least one defective fuse.
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The mean and variance of a hypergeometric distribution are as follows.

Expected value for the hypergeometric distribution

E x μ n
r

N
(5.13)

Variance for the hypergeometric distribution

Var X 2 n
r

N
1

r

N

N n

N 1
(5.14)

In the preceding example n 3, r 5, and N 12. Thus, the mean and variance for the number of
defective fuses is:

μ n
r

N
3

5

12
1 25

2 n
r

N
1

r

N

N n

N 1
3

5

12
1

5

12

12 3

12 1
0 60

The standard deviation is:

0 60 0 77

EXERCISES

Methods

33. Suppose N = 10 and r = 3. Compute the hypergeometric probabilities for the following values of

n and x.

a. n = 4, x = 1.

b. n = 2, x = 2.

c. n = 2, x = 0.

d. n = 4, x = 2.

34. Suppose N = 15 and r = 4. What is the probability of x = 3 for n = 10?

Applications

35. Blackjack, or Twenty-one as it is frequently called, is a popular gambling game played in Monte

Carlo casinos. A player is dealt two cards. Face cards (jacks, queens and kings) and tens have a

COMPLETE

SOLUTIONS
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SUMMARY

A random variable provides a numerical description of the outcome of an experiment. The probability

distribution for a random variable describes how the probabilities are distributed over the values the

random variable can assume. A variety of examples are used to distinguish between discrete and

continuous random variables. For any discrete random variable X, the probability distribution is defined

by a probability function, denoted by p(x) p(X x), which provides the probability associated with

each value of the random variable. From the probability function, the expected value, variance and

standard deviation for the random variable can be computed and relevant interpretations of these

terms are provided.

Particular attention was devoted to the binomial distribution which can be used to determine the

probability of x successes in n trials whenever the experiment has the following properties:

1 The experiment consists of a sequence of n identical trials.

2 Two outcomes are possible on each trial, one called success and the other failure.

3 The probability of a success π does not change from trial to trial. Consequently, the

probability of failure, 1 π, does not change from trial to trial.

4 The trials are independent.

point value of ten. Aces have a point value of one or 11. A 52-card deck contains 16 cards with a

point value of ten (jacks, queens, kings and tens) and four aces.

a. What is the probability that both cards dealt are aces or ten-point cards?

b. What is the probability that both of the cards are aces?

c. What is the probability that both of the cards have a point value of ten?

d. A blackjack is a ten-point card and an ace for a value of 21. Use your answers to parts (a), (b)

and (c) to determine the probability that a player is dealt a blackjack. (Hint: Part (d) is not a

hypergeometric problem. Develop your own logical relationship as to how the hypergeometric

probabilities from parts (a), (b) and (c) can be combined to answer this question.)

36. A company plans to select a team of five students from Gulf University for a business game

competition from a pool of 18 undergraduates. Nine are from the second-year management

course, five are third-year management and the remainder are from outside the management

school. What is the probability that:

a. All five team members are second-year management?

b. No students from outside the management school are selected?

37. Manufactured parts are shipped in lots of 15 items. Four parts are randomly drawn from each lot

and tested and the lot is considered acceptable if no defectives are among the four tested.

a. What is the probability that the shipment will be rejected?

ONLINE RESOURCES

For the data files, additional online summary, questions, answers and the software section for this

chapter, go to the online platform.
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Formulae were also presented for the probability function, mean and variance of the binomial

distribution.

The Poisson distribution can be used to determine the probability of obtaining x occurrences over

an interval of time or space. The necessary assumptions for the Poisson distribution to apply in a

given situation are that:

1 The probability of an occurrence of the event is the same for any two intervals of equal length.

2 The occurrence or non-occurrence of the event in any interval is independent of the

occurrence or non-occurrence of the event in any other interval.

A third discrete probability distribution, the hypergeometric, was introduced in Section 5.6. Like

the binomial, it is used to compute the probability of x successes in n trials. But, in contrast to the

binomial, the probability of success changes from trial to trial.

KEY TERMS

Binomial experiment

Binomial probability distribution

Binomial probability function

Continuous random variable

Discrete random variable

Discrete uniform probability distribution

Expected value

Hypergeometric probability distribution

Hypergeometric probability function

Poisson probability distribution

Poisson probability function

Probability distribution

Probability function

Random variable

Standard deviation

Variance

KEY FORMULAE

Discrete uniform probability function

p x 1 n (5.3)

where
n the number of values the random variable may assume

Expected value of a discrete random variable

E X μ ∑xp x (5.4)

Variance of a discrete random variable

Var X 2
∑ x μ 2p x (5.5)

Number of experimental outcomes providing exactly x successes in n trials

n
x

n

x n x
(5.6)
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Binomial probability function

p x
n
x

π2 1 π n x (5.8)

Expected value for the binomial distribution

E X μ nπ (5.9)

Variance for the binomial distribution

Var X 2 nπ 1 π (5.10)

Poisson probability function

p x
μxe μ

x!
(5.11)

Hypergeometric probability function

p x

r
x

N r
n x

N
n

(5.12)

Expected value for the hypergeometric distribution

E x μ n
r

N
(5.13)

Variance for the hypergeometric distribution

Var X 2 n
r

N
1

r

N

N n

N 1
(5.14)

CASE PROBLEM 1

Adapting a Bingo Game

Gaming Machines International (GMI) is investigating

the adaptation of one of its bingo machine formats to

allow for a bonus game facility. With the existing

setup, the player has to select seven numbers from

the series 1 to 80. Fifteen numbers are then drawn

randomly from the 80 available and prizes awarded,

according to how many of the 15 coincide with the

player’s selection, as follows:

Number of ‘hits’ Payoff

0 0

1 0

2 0

3 1

4 10

5 100

6 1 000

7 100 000

With the new ‘two ball bonus draw’ feature, players

effectively have the opportunity to improve their prize

by buying an extra two balls. Note, however, that the
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bonus draw is only expected to be available to players

who have scored 2, 3, 4 or 5 hits in the main game.

Managerial report

1. Determine the probability characteristics of GMI’s

original bingo game and calculate the player’s

expected payoff.

2. Derive corresponding probability details for the

proposed bonus game. What is the probability of

the player scoring:

a. 0 hits

b. 1 hit

c. 2 hits

with the extra two balls?

3. Use the results obtained from two to revise the

probability distribution found for one. Hence

calculate the player’s expected payoff in the

enhanced game. Comment on how much the

player might be charged for the extra gamble.

CASE PROBLEM 2

European Airline Overbooking

EU Regulation 261/2004 sets the minimum levels of

passenger compensation for denied boarding due to

overbooking, and extends its coverage to include flight

cancellations and long delays. It is estimated that the

annual cost to airlines over and above existing compen-

sation will total 560 million for all EU airlines:

Compensation for overbooking affects around

250000 passengers (0.1 per cent of total).

Higher compensation rates will add 96 million

to airline costs.

At an estimated 283 million and 176 million

respectively, compensation for long delays and

cancellation threaten to add most additional

costs incurred by European airlines. The cost to

a medium-sized European airline has been

estimated at 40 million a year. That represents

around 20 per cent of 2004 operating profits.

EA is a small, short-range airline headquartered in

Vienna. It has a fleet of small Fokker planes with a

capacity of 80 passengers each. They do not have

different classes in their planes. In planning for their

financial obligations, EA has requested a study of the

chances of ‘bumping’ passengers they have to con-

sider for their overbooking strategy. The airline

reports a historical ‘no shows’ history of 10 per cent

to 12 per cent. Compensation has been set at

250 per passenger denied boarding.

Managerial report

Write a report giving the airline some scenarios of

their options. Consider scenarios according to their

policy of the number of bookings/plane: 80, 85,

89, etc.

1. What percentage of the time should they estimate

that their passengers will find a seat when they

show up?

2. What percentage of the time some passengers

may not find a seat?

3. In each case you consider, find the average

amount of loss per plane they have to take into

account.
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6
Continuous
Probability
Distributions

CHAPTER CONTENTS

Statistics in Practice Assessing the effectiveness of new medical procedures

6.1 Uniform probability distribution

6.2 Normal probability distribution

6.3 Normal approximation of binomial probabilities

6.4 Exponential probability distribution

LEARNING OBJECTIVES After reading this chapter and doing the exercises, you should be able to:

1 Understand the difference between how

probabilities are computed for discrete and

continuous random variables.

2 Compute probability values for a continuous

uniform probability distribution and be able to

compute the expected value and variance for

such a distribution.

3 Compute probabilities using a normal probability

distribution. Understand the role of the standard

normal distribution in this process.

4 Use the normal distribution to approximate binomial

probabilities.

5 Compute probabilities using an exponential probability

distribution.

6 Understand the relationship between the Poisson and

exponential probability distributions.

In this chapter we turn to the study of continuous random variables. Specifically, we discuss three
continuous probability distributions: the uniform, the normal and the exponential. A fundamental

difference separates discrete and continuous random variables in terms of how probabilities are
computed. For a discrete random variable, the probability function p(x) provides the probability that
the random variable assumes a particular value. With continuous random variables the counterpart of the
probability function is the probability density function, denoted by f(x). The difference is that the
probability density function does not directly provide probabilities. However, the area under the graph
of f(x) corresponding to a given interval does provide the probability that the continuous random variable
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X assumes a value in that interval. So when we compute probabilities for continuous random variables we
are computing the probability that the random variable assumes any value in an interval.

One of the implications of the definition of probability for continuous random variables is that the
probability of any particular value of the random variable is zero, because the area under the graph of f(x)
at any particular point is zero. In Section 6.1 we demonstrate these concepts for a continuous random
variable that has a uniform distribution.

Much of the chapter is devoted to describing and showing applications of the normal distribution. The
main importance of normal distribution is its extensive use in statistical inference. The chapter closes with
a discussion of the exponential distribution.

STATISTICS IN PRACTICE

Assessing the effectiveness of new

medical procedures

C linical trials are a vital and commercially very

important application of statistics, typically invol-

ving the random assignment of patients to two experi-

mental groups. One group receives the treatment of

interest, the second a placebo (a dummy treatment

that has no effect). To assess the evidence that the

probability of success with the treatment will be better

than that with the placebo, frequencies a, b, c and d

can be collected for a predetermined number of trials

according to the following two-way table:

Treatment Placebo

Success a b

Failure c d

and the quantity (‘log odds ratio’) X log (a/c/b/d)

calculated. Clearly the larger the value of X obtained

the greater the evidence that the treatment is better

than the placebo.

In the particular case that the treatment has no

effect, the distribution of X can be shown to align very

closely to a normal distribution with a mean of zero:

Thus, as values of X fall increasingly to the right of the

zero mean this should signify stronger and stronger

support for the belief in the treatment’s relative effec-

tiveness.

Intriguingly, this formulation was adapted by

Copas (2005) to cast doubt on the findings of a

recent study linking passive smoking to an increased

risk of lung cancer.

Source: Copas, John (2005) ‘The downside of publication’.

Significance Vol. 2 Issue 4 pp. 154–157.

x

0

A participant takes part in a new drugs trial
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6.1 UNIFORM PROBABILITY DISTRIBUTION

Consider the random variable X representing the flight time of an aeroplane travelling from Graz to
Stansted. Suppose the flight time can be any value in the interval from 120 minutes to 140 minutes. Because
the random variableX can assume any value in that interval,X is a continuous rather than a discrete random
variable. Let us assume that sufficient actual flight data are available to conclude that the probability of a
flight time within any one-minute interval is the same as the probability of a flight time within any other
one-minute interval contained in the larger interval from 120 to 140 minutes. With every one-minute
interval being equally likely, the random variable X is said to have a uniform probability distribution.

If x is any number lying in the range that the random variable X can take then the probability density
function, which defines the uniform distribution for the flight-time random variable, is:

f x
1 20 for 120 x 140

0 elsewhere

Figure 6.1 is a graph of this probability density function. In general, the uniform probability density
function for a random variable X is defined by the following formula.

Uniform probability density function

f x

1

b a
for α x b

0 elsewhere

(6.1)

For the flight-time random variable, a 120 and b 140.
As noted in the introduction, for a continuous random variable, we consider probability only in terms

of the likelihood that a random variable assumes a value within a specified interval. In the flight time
example, an acceptable probability question is: What is the probability that the flight time is between
120 and 130 minutes? That is, what is P(120 X 130)? Because the flight time must be between 120
and 140 minutes and because the probability is described as being uniform over this interval, we feel
comfortable saying P(120 X 130) 0.50. In the following subsection we show that this probability
can be computed as the area under the graph of f(x) from 120 to 130 (see Figure 6.2).

f (x)

1

20

120 125 130

Flight Time in Minutes

135 140
x

FIGURE 6.1

Uniform probability density

function for flight time

f (x)

1
20

120 125

P(120 ≤ X ≤ 130) =  Area =  1 /20(10) =  10/20 =  0.50

130

Flight Time in Minutes

135 140
x

10

FIGURE 6.2

Area provides probability of

flight time between 120 and

130 minutes
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Area as a measure of probability

Let us make an observation about the graph in Figure 6.2. Consider the area under the graph of f(x) in the
interval from 120 to 130. The area is rectangular, and the area of a rectangle is simply the width
multiplied by the height. With the width of the interval equal to 130 120 10 and the height equal
to the value of the probability density function f(x) 1/20, we have area width height 10 1/20

10/20 0.50.
What observation can you make about the area under the graph of f(x) and probability? They are identical!

Indeed, this observation is valid for all continuous random variables. Once a probability density function f(x) is
identified, the probability that X takes a value x between some lower value x1 and some higher value x2 can be
found by computing the area under the graph of f(x) over the interval from x1 to x2.

Given the uniform distribution for flight time and using the interpretation of area as probability, we
can answer any number of probability questions about flight times. For example, what is the probability
of a flight time between 128 and 136 minutes? The width of the interval is 136 128 8. With the
uniform height of f(x) 1/20, we see that P(128 X 136) 8 1/20 0.40. Note that P(120 X
140) 20 1/20 1; that is, the total area under the graph of f(x) is equal to 1. This property holds for
all continuous probability distributions and is the analogue of the condition that the sum of the
probabilities must equal 1 for a discrete probability function. For a continuous probability density
function, we must also require that f(x) 0 for all values of x. This requirement is the analogue of the
requirement that p(x) 0 for discrete probability functions.

Two major differences stand out between the treatment of continuous random variables and the
treatment of their discrete counterparts.

1 We no longer talk about the probability of the random variable assuming a particular value.
Instead, we talk about the probability of the random variable assuming a value within some given
interval.

2 The probability of the random variable assuming a value within some given interval from x1 to x2 is
defined to be the area under the graph of the probability density function between x1 and x2. It
implies that the probability of a continuous random variable assuming any particular value exactly
is zero, because the area under the graph of f(x) at a single point is zero.

The calculation of the expected value and variance for a continuous random variable is analogous to
that for a discrete random variable. However, because the computational procedure involves integral
calculus, we leave the derivation of the appropriate formulae to more advanced texts.

For the uniform continuous probability distribution introduced in this section, the formulae for the
expected value and variance are:

E X
a b

2

Var X
b a 2

12

In these formulae, a is the smallest value and b is the largest value that the random variable may
assume.

Applying these formulae to the uniform distribution for flight times from Graz to Stansted, we
obtain:

E X
120 140

2
130

Var X
140 120 2

12
33 33

The standard deviation of flight times can be found by taking the square root of the variance. Thus,
5.77 minutes.
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EXERCISES

Methods

1. The random variable X is known to be uniformly distributed between 1.0 and 1.5.

a. Show the graph of the probability density function.

b. Compute P(X 1.25).

c. Compute P(1.0 X 1.25).

d. Compute P(1.20 X 1.5).

2. The random variable X is known to be uniformly distributed between 10 and 20.

a. Show the graph of the probability density function.

b. Compute P(X 15).

c. Compute P(12 X 18).

d. Compute E(X).

e. Compute Var(X).

Applications

3. A continuous random variable X has probability density function:

f x kx 0 x 2

0 otherwise

a. Determine the value of k.

b. Find E(X) and Var(X).

c. What is the probability that X is greater than three standard deviations above the mean?

d. Find the distribution function F(X) and hence the median of X.

4. Most computer languages include a function that can be used to generate random numbers. In

EXCEL, the RAND function can be used to generate random numbers between 0 and 1. If we let X

denote a random number generated using RAND, then X is a continuous random variable with the

following probability density function.

f x
1 for 0 x 1

0 elsewhere

a. Graph the probability density function.

b. What is the probability of generating a random number between 0.25 and 0.75?

c. What is the probability of generating a random number with a value less than or equal to 0.30?

d. What is the probability of generating a random number with a value greater than 0.60?

5. Let X denote the number of bricks a bricklayer will lay in an hour and assume that X takes values in

the range 150 to 200 inclusively with equal probability (i.e. has a discrete uniform distribution). If a

certain project is 170 bricks short of completion and a further project is waiting to be started as

soon as this one is finished, what is the probability that:

a. The bricklayer will start the second project within the hour?

b. More than 25 bricks will have been laid on the second project at the end of the next hour?

c. The first project will be more than ten bricks short of completion at the end of the next hour?

d. The bricklayer will lay exactly 175 bricks during the next hour?

COMPLETE

SOLUTIONS
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6.2 NORMAL PROBABILITY DISTRIBUTION

The most important probability distribution for describing a continuous random variable is the normal

probability distribution. The normal distribution has been used in a wide variety of practical applications
in which the random variables are heights and weights of people, test scores, scientific measurements,
amounts of rainfall and so on. It is also widely used in statistical inference, which is the major topic of the
remainder of this book. In such applications, the normal distribution provides a description of the likely
results obtained through sampling.

Normal curve

The form, or shape, of the normal distribution is illustrated by the bell-shaped normal curve in
Figure 6.3. The probability density function that defines the bell-shaped curve of the normal distribution
follows.

6. The label on a bottle of liquid detergent shows contents to be 12 grams per bottle. The production

operation fills the bottle uniformly according to the following probability density function.

f x
8 for 11 975 x 12 100

0 elsewhere

a. What is the probability that a bottle will be filled with between 12 and 12.05 grams?
b. What is the probability that a bottle will be filled with 12.02 or more grams?

c. Quality control accepts a bottle that is filled to within 0.02 grams of the number of grams

shown on the container label. What is the probability that a bottle of this liquid detergent will fail

to meet the quality control standard?

7. Suppose we are interested in bidding on a piece of land and we know there is one other bidder.

The seller announced that the highest bid in excess of 10 000 will be accepted. Assume that

the competitor’s bid X is a random variable that is uniformly distributed between 10 000 and

15 000.

a. Suppose you bid 12 000. What is the probability that your bid will be accepted?

b. Suppose you bid 14 000. What is the probability that your bid will be accepted?

c. What amount should you bid to maximize the probability that you get the property?

d. Suppose you know someone who is willing to pay you 16 000 for the property. Would you

consider bidding less than the amount in part (c)? Why or why not?

Mean

x

Standard Deviation 

FIGURE 6.3

Bell-shaped curve for the normal distribution
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Normal probability density function

f x
1

2π
e x μ 1 2σ2 (6.2)

where

µ mean

standard deviation

π 3.14159

e 2.71828

We make several observations about the characteristics of the normal distribution:

1 The entire family of normal distributions is differentiated by its mean µ and its standard deviation .

2 The highest point on the normal curve is at the mean, which is also the median and mode of
the distribution.

3 The mean of the distribution can be any numerical value: negative, zero or positive. Three normal
distributions with the same standard deviation but three different means ( 10, 0 and 20) are shown
here.

x
200−10

4 The normal distribution is symmetric, with the shape of the curve to the left of the mean a mirror
image of the shape of the curve to the right of the mean. The tails of the curve extend to infinity in
both directions and theoretically never touch the horizontal axis. Because it is symmetric, the
normal distribution is not skewed; its skewness measure is zero.

5 The standard deviation determines how flat and wide the curve is. Larger values of the standard
deviation result in wider, flatter curves, showing more variability in the data. Two normal
distributions with the same mean but with different standard deviations are shown here.

x

= 10

= 5
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6 Probabilities for the normal random variable are given by areas under the curve. The total area
under the curve for the normal distribution is 1. Because the distribution is symmetric, the area
under the curve to the left of the mean is 0.50 and the area under the curve to the right of the mean
is 0.50.

7 The percentage of values in some commonly used intervals are:

a. 68.3 per cent of the values of a normal random variable are within plus or minus one
standard deviation of its mean.

b. 95.4 per cent of the values of a normal random variable are within plus or minus two
standard deviations of its mean.

c. 99.7 per cent of the values of a normal random variable are within plus or minus three
standard deviations of its mean.

Figure 6.4 shows properties (a), (b) and (c) graphically.

Standard normal probability distribution

A random variable that has a normal distribution with a mean of zero and a standard deviation of one is
said to have a standard normal probability distribution. The letter Z is commonly used to designate
this particular normal random variable. Figure 6.5 is the graph of the standard normal distribution. It has
the same general appearance as other normal distributions, but with the special properties of µ 0
and 1.

Standard normal density function

f z
1

2
e x1 2

Because µ 0 and 1, the formula for the standard normal probability density function is a simpler
version of equation (6.2).

x
− 3 − 1 + 1 + 3

+ 2− 2

99.7%

95.4%

68.3%

FIGURE 6.4

Areas under the curve for any normal distribution

z

 =  1

0

FIGURE 6.5

The standard normal distribution
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As with other continuous random variables, probability calculations with any normal distribution are
made by computing areas under the graph of the probability density function. Thus, to find the
probability that a normal random variable is within any specific interval, we must compute the area
under the normal curve over that interval.

For the standard normal distribution, areas under the normal curve have been computed and are
available in tables that can be used to compute probabilities. Such a table appears on the two pages inside
the front cover of the text. The table on the left-hand page contains areas, or cumulative probabilities,
for z values less than or equal to the mean of zero. The table on the right-hand page contains areas,
or cumulative probabilities, for z values greater than or equal to the mean of zero.

The three types of probabilities we need to compute include (1) the probability that the standard
normal random variable Z will be less than or equal to a given value; (2) the probability that Z will take a
value between two given values; and (3) the probability that Z will be greater than or equal to a given
value. To see how the cumulative probability table for the standard normal distribution can be used to
compute these three types of probabilities, let us consider some examples.

We start by showing how to compute the probability that Z is less than or equal to 1.00; that is,
P(Z 1.00). This cumulative probability is the area under the normal curve to the left of z 1.00
in the following graph.

z
10

P(Z ≤ 1.00)

Refer to the right-hand page of the standard normal probability table inside the front cover of the text.
The cumulative probability corresponding to z 1.00 is the table value located at the intersection of the
row labelled 1.0 and the column labelled .00. First we find 1.0 in the left column of the table and then find
.00 in the top row of the table. By looking in the body of the table, we find that the 1.0 row and the .00
column intersect at the value of 0.8413; thus, P(Z 1.00) 0.8413. The following excerpt from the
probability table shows these steps.

.

.

.

.

.

.

Z .00 .01 .02

.9 .8159 .8186 .8212

P(Z ≤ 1.00)

.8665 .8686.86431.1

.8869 .8888.88491.2

.8438 .8461.84131.0
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To illustrate the second type of probability calculation we show how to compute the probability that Z
is in the interval between 0.50 and 1.25; that is, P( 0.50 Z 1.25). The following graph shows this
area, or probability.

z
0−.50 1.25

P(Z <  −0.50)

P(−0.50 ≤ Z ≤ 1.25)

Three steps are required to compute this probability. First, we find the area under the normal curve to
the left of z 1.25. Second, we find the area under the normal curve to the left of z 0.50. Finally,
we subtract the area to the left of z 0.50 from the area to the left of z 1 to find P( 0.5 Z 1.25).

To find the area under the normal curve to the left of z 1.25, we first locate the 1.2 row in the
standard normal probability table and then move across to the .05 column. Because the table value in the
1.2 row and the .05 column is 0.8944, P(Z 1.25) 0.8944. Similarly, to find the area under the curve to
the left of z 0.50 we use the left-hand page of the table to locate the table value in the 0.5 row
and the .00 column; with a table value of 0.3085, P(Z 0.50) 0.3085. Thus, P( 0.50 Z 1.25)
P(Z 1.25) P(Z 0.50) 0.8944 0.3085 0.5859.

Let us consider another example of computing the probability that Z is in the interval between two
given values. Often it is of interest to compute the probability that a normal random variable assumes a
value within a certain number of standard deviations of the mean. Suppose we want to compute the
probability that the standard normal random variable is within one standard deviation of the mean; that
is, P( 1.00 Z 1.0).

To compute this probability we must find the area under the curve between 1.0 and 1.00. Earlier
we found that P(Z 1.00) 0.8413. Referring again to the table inside the front cover of the book, we
find that the area under the curve to the left of z 1.00 is 0.1587, so P(Z 1.00) 0.1587. Therefore
P( 1.00 Z 1.00) P(Z 1.00) P(Z 1.00) 0.8413 0.1587 0.6826. This probability is
shown graphically in the following figure.

z
0−1.00 1.00

P(−1.00 ≤ Z ≤ 1.00)
=  0.8413 − 0.1587 =  0.6826

P(Z ≤ −1.00)
=  0.1587

To illustrate how to make the third type of probability computation, suppose we want to compute the
probability of obtaining a z value of at least 1.58; that is, P(Z 1.58). The value in the z 1.5 row and
the .08 column of the cumulative normal table is 0.9429; thus, P(Z 1.58) 0.9429. However, because
the total area under the normal curve is 1, P(Z 1.58) 1 0.9429 0.0571. This probability is shown
in the following figure.
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+ 2
z

+ 10−1−2

P(Z ≥ 1.58)
=  1.0000 − 0.9429 =  0.0571

P(Z <  1.58) =  −0.9429

In the preceding illustrations, we showed how to compute probabilities given specified z values. In
some situations, we are given a probability and are interested in working backward to find the corre-
sponding z value. Suppose we want to find a z value such that the probability of obtaining a larger z value
is 0.10. The following figure shows this situation graphically.

+ 2
z

+ 10

What is this z value?

−1−2

Probability =  .10

This problem is the inverse of those in the preceding examples. Previously, we specified the z value of
interest and then found the corresponding probability, or area. In this example, we are given the
probability, or area, and asked to find the corresponding z value. To do so, we use the standard normal
probability table somewhat differently.

Cumulative probability value
closest to 0.9000

.06 .07 .08 .09z

.8554 .8577 .8599 .86211.0

.8810 .8830.8790.87701.1

.9162 .9177.9147.91311.3

.9306 .9319.9292.92791.4

.

.

.

.

.

.

.8997 .9015.8980.89621.2

Recall that the standard normal probability table gives the area under the curve to the left of a
particular z value. We have been given the information that the area in the upper tail of the curve is 0.10.
Hence, the area under the curve to the left of the unknown z value must equal 0.9000. Scanning the body
of the table, we find 0.8997 is the cumulative probability value closest to 0.9000. The section of the table
providing this result is shown above. Reading the z value from the left-most column and the top row of
the table, we find that the corresponding z value is 1.28. Thus, an area of approximately 0.9000 (actually
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0.8997) will be to the left of z 1.28.* In terms of the question originally asked, the probability is
approximately 0.10 that the z value will be larger than 1.28.*

The examples illustrate that the table of areas for the standard normal distribution can be used to find
probabilities associated with values of the standard normal random variable Z. Two types of questions can
be asked. The first type of question specifies a value, or values, for z and asks us to use the table to
determine the corresponding areas, or probabilities.

The second type of question provides an area, or probability, and asks us to use the table to determine
the corresponding z value. Thus, we need to be flexible in using the standard normal probability table to
answer the desired probability question. In most cases, sketching a graph of the standard normal
distribution and shading the appropriate area or probability helps to visualize the situation and aids in
determining the correct answer.

Computing probabilities for any normal distribution

The reason for discussing the standard normal distribution so extensively is that probabilities for all
normal distributions are computed by using the standard normal distribution. That is, when we have a
normal distribution with any mean µ and any standard deviation , we answer probability questions
about the distribution by first converting to the standard normal distribution. Then we can use the
standard normal probability table and the appropriate z values to find the desired probabilities.
The formula used to convert any normal random variable X with mean µ and standard deviation to
the standard normal distribution follows as equation (6.3).

Converting to the standard normal distribution

Z
X μ

(6.3)

A value of X equal to the mean µ results in z (µ µ )/ 0. Thus, we see that a value of X equal to
the mean µ of X corresponds to a value of Z at the mean 0 of Z. Now suppose that x is one standard
deviation greater than the mean; that is, x µ . Applying equation (6.3), we see that the
corresponding z value [(µ ) µ ]/ / 1. Thus, a value of X that is one standard deviation
above the mean µ of X corresponds to a z value 1. In other words, we can interpret Z as the number of
standard deviations that the normal random variable X is from its mean µ.

To see how this conversion enables us to compute probabilities for any normal distribution, suppose we
have a normal distribution with µ 10 and 2. What is the probability that the random variable X is
between 10 and 14? Using equation (6.3) we see that at x 10, z (x µ)/ (10 10)/2 0 and that at
x 14, z (14 10)/2 4/2 2. Thus, the answer to our question about the probability of X being between
10 and 14 is given by the equivalent probability that Z is between 0 and 2 for the standard normal distribution.

In other words, the probability that we are seeking is the probability that the random variable X is between
its mean and two standard deviations greater than the mean. Using z 2.00 and standard normal probability
table, we see that P(Z 2) 0.9772. Because P(Z 0) 0.5000 we can compute P(0.00 Z 2.00)
P(Z 2) P(Z 0) 0.9772 0.5000 0.4772. Hence the probability thatX is between 10 and 14 is 0.4772.

Greer Tyre Company problem

We turn now to an application of the normal distribution. Suppose the Greer Tyre Company just developed a
new steel-belted radial tyre that will be sold through a national chain of discount stores. Because the tyre is a
new product, Greer’s managers believe that the kilometres guarantee offered with the tyre will be an

* We could use interpolation in the body of the table to get a better approximation of the z value that corresponds to an
area of 0.9000. Doing so provides one more decimal place of accuracy and yields a z value of 1.282. However, in most

practical situations, sufficient accuracy is obtained by simply using the table value closest to the desired probability.
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important factor in the acceptance of the product. Before finalizing the kilometres guarantee policy, Greer’s
managers want probability information about the number of kilometres the tyres will last.

From actual road tests with the tyres, Greer’s engineering group estimates the mean number of
kilometres the tyre will last is µ 36 500 kilometres and that the standard deviation is 5000. In
addition, the data collected indicate a normal distribution is a reasonable assumption. What percentage of
the tyres can be expected to last more than 40 000 kilometres?

In other words, what is the probability that the number of kilometres the tyre lasts will exceed 40 000? This
question can be answered by finding the area of the darkly shaded region in Figure 6.6. At x 40 000, we have

Z
X μ

σ

40 000 36 500

5000

3500

5000
0 70

Refer now to the bottom of Figure 6.6. We see that a value of x 40 000 on the Greer Tyre normal
distribution corresponds to a value of z 0.70 on the standard normal distribution. Using the standard
normal probability table, we see that the area to the left of z 0.70 is 0.7580. Referring again to
Figure 6.6, we see that the area to the left of x 40 000 on the Greer Tyre normal distribution is the
same. Thus, 1.000 0.7580 0.2420 is the probability that X will exceed 40 000. We can conclude that
about 24.2 per cent of the tyres will last longer than 40 000 kilometres.

Let us now assume that Greer is considering a guarantee that will provide a discount on replacement
tyres if the original tyres do not exceed the number of kilometres stated in the guarantee. What should the
guaranteed number of kilometres be if Greer wants no more than 10 per cent of the tyres to be eligible for
the discount guarantee? This question is interpreted graphically in Figure 6.7.

x

z

 =  5000

 =  36 500

0

Note: z =  0 corresponds
 to x =   =  36 500

Note: z =  0.70 corresponds
 to x =  40 000

0.70

P(X ≥ 40 000) =  ?

40 000

FIGURE 6.6

Greer Tyre Company kilometres

distribution

x

 =  5000

 =  36 500 Guarantee mileage =  ?

10% of tyres eligible

for discount guarantee

FIGURE 6.7

Greer's discount guarantee
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According to Figure 6.7, the area under the curve to the left of the unknown guaranteed number of
kilometers must be 0.10. So we must find the z value that cuts off an area of 0.10 in the left tail of a
standard normal distribution. Using the standard normal probability table, we see that z 1.28 cuts off
an area of 0.10 in the lower tail.

Hence z 1.28 is the value of the standard normal variable corresponding to the desired number
of kilometres guarantee on the Greer Tyre normal distribution. To find the value of X corresponding to
z 1.28, we have:

z
x μ

σ
1 28

x μ 1 28σ

x μ 1 28σ

With µ 36 500 and 5000,

x 36 500 1.28 5000 30 100

Thus, a guarantee of 30 100 kilometres will meet the requirement that approximately 10 per cent of the
tyres will be eligible for the guarantee. Perhaps, with this information, the firm will set its tyre kilometres
guarantee at 30 000 kilometres.

Again, we see the important role that probability distributions play in providing decision-making
information. Namely, once a probability distribution is established for a particular application, it can be
used quickly and easily to obtain probability information about the problem. Probability does not
establish a decision recommendation directly, but it provides information that helps the decision-maker
better understand the risks and uncertainties associated with the problem. Ultimately, this information
may assist the decision-maker in reaching a good decision.

EXERCISES

Methods

8. Using Figure 6.4 as a guide, sketch a normal curve for a random variable X that has a mean of µ 100 and

a standard deviation of 10. Label the horizontal axis with values of 70, 80, 90, 100, 110, 120 and 130.

9. A random variable is normally distributed with a mean of µ 50 and a standard deviation of 5.

a. Sketch a normal curve for the probability density function. Label the horizontal axis with values of

35, 40, 45, 50, 55, 60 and 65. Figure 6.4 shows that the normal curve almost touches the

horizontal axis at three standard deviations below and at three standard deviations above the

mean (in this case at 35 and 65).

b. What is the probability the random variable will assume a value between 45 and 55?

c. What is the probability the random variable will assume a value between 40 and 60?

10. Draw a graph for the standard normal distribution. Label the horizontal axis at values of 3, 2, 1,

0, 1, 2 and 3. Then use the table of probabilities for the standard normal distribution to compute the

following probabilities.

a. P(0 Z 1).

b. P(0 Z 1.5).

c. P(0 Z 2).

d. P(0 Z 2.5).

11. Given that Z is a standard normal random variable, compute the following probabilities.

a. P( 1 Z 0).

b. P( 1.5 Z 0).

c. P( 2 Z 0).

d. P( 2.5 Z 0).

e. P( 3 Z 0).
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12. Given that Z is a standard normal random variable, compute the following probabilities.

a. P(0 Z 0.83).

b. P( 1.57 Z 0).

c. P(Z > 0.44).

d. P(Z 0.23).

e. P(Z 1.20).

f. P(Z 0.71).

13. Given that Z is a standard normal random variable, compute the following probabilities.

a. P( 1.98 Z 0.49).

b. P(0.52 Z 1.22).

c. P( 1.75 Z 1.04).

14. Given that Z is a standard normal random variable, find z for each situation.

a. The area between 0 and z is 0.4750.

b. The area between 0 and z is 0.2291.

c. The area to the right of z is 0.1314.

d. The area to the left of z is 0.6700.

15. Given that Z is a standard normal random variable, find z for each situation.

a. The area to the left of z is 0.2119.

b. The area between z and z is 0.9030.

c. The area between z and z is 0.2052.

d. The area to the left of z is 0.9948.

e. The area to the right of z is 0.6915.

16. Given that Z is a standard normal random variable, find z for each situation.

a. The area to the right of z is 0.01.

b. The area to the right of z is 0.025.

c. The area to the right of z is 0.05.

d. The area to the right of z is 0.10.

Applications

17. Attendance at a rock concert is normally distributed with a mean of 28 000 persons and a standard

deviation of 4000 persons. What is the probability, that:

a. more than 28 000 persons will attend?

b. less than 14 000 persons will attend?

c. between 17 000 and 25 000 persons will attend?

d. Suppose the number who actually attended was X and the probability of achieving this level of

attendance or higher was found to be 5 per cent. What is X?

18. The holdings of clients of a successful online stockbroker are normally distributed with a mean of

£20 000 and standard deviation of £1500. To increase its business, the stockbroker is looking to

email special promotions to the top 20 per cent of its clientele based on the value of their holdings.

What is the minimum holding of this group?

19. A company has been involved in developing a new pesticide. Tests show that the average proportion,

p, of insects killed by administration of x units of the insecticide is given by p = P(X x) where the

probability P(X x) relates to a normal distribution with unknown mean and standard deviation.

a. Given that x 10 when p 0.4 and that x 15 when p 0.9, determine the dose that will be

lethal to 50 per cent of the insect population on average.

b. If a dose of 17.5 units is administered to each of 100 insects, how many will be expected to die?

COMPLETE

SOLUTIONS

COMPLETE

SOLUTIONS
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6.3 NORMAL APPROXIMATION OF BINOMIAL
PROBABILITIES

In Chapter 5, Section 5.4 we presented the discrete binomial distribution. Recall that a binomial
experiment consists of a sequence of n identical independent trials with each trial having two possible
outcomes: a success or a failure. The probability of a success on a trial is the same for all trials and is
denoted by π (Greek pi). The binomial random variable is the number of successes in the n trials, and
probability questions pertain to the probability of x successes in the n trials. When the number of trials
becomes large, evaluating the binomial probability function by hand or with a calculator is difficult. In
addition, the binomial tables in Appendix B do not include values of n greater than 20. Hence, when we
encounter a binomial distribution problem with a large number of trials, we may want to approximate the
binomial distribution. In cases where the number of trials is greater than 20, nπ 5, and n(1 π) 5,
the normal distribution provides an easy-to-use approximation of binomial probabilities.

When using the normal approximation to the binomial, we set µ nπ and σ π 1 π in the
definition of the normal curve. Let us illustrate the normal approximation to the binomial by supposing
that a particular company has a history of making errors in 10 per cent of its invoices. A sample of
100 invoices has been taken, and we want to compute the probability that 12 invoices contain errors.
That is, we want to find the binomial probability of 12 successes in 100 trials.

In applying the normal approximation to the binomial, we set µ nπ 100 0.1 10 and
σ 1 100 0 1 0 9 3. A normal distribution with µ 10 and 3 is shown in
Figure 6.8.

Recall that, with a continuous probability distribution, probabilities are computed as areas under the
probability density function. As a result, the probability of any single value for the random variable is
zero. Thus to approximate the binomial probability of 12 successes, we must compute the area under the
corresponding normal curve between 11.5 and 12.5. The 0.5 that we add and subtract from 12 is called a
continuity correction factor. It is introduced because a continuous distribution is being used to
approximate a discrete distribution. Thus, P(X 12) for the discrete binomial distribution is approxi-
mated by P(11.5 X 12.5) for the continuous normal distribution.

Converting to the standard normal distribution to compute P(11.5 X 12.5), we have:

z
x μ

σ

12 5 10 0

3
0 83 at X 12 5

And:

z
x μ

σ

11 5 10 0

3
0 50 at X 11 5

x

 =  3

P(11.5 ≤ X ≤ 12.5)

 =  10 12.5

11.5

FIGURE 6.8

Normal approximation to a

binomial probability distribution

with n 100 and 0.10

showing the probability of

12 errors
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Using the standard normal probability table, we find that the area under the curve (in Figure 6.8) to
the left of 12.5 is 0.7967. Similarly, the area under the curve to the left of 11.5 is 0.6915. Therefore, the
area between 11.5 and 12.5 is 0.7967 0.6915 0.1052. The normal approximation to the probability of
12 successes in 100 trials is 0.1052.

For another illustration, suppose we want to compute the probability of 13 or fewer errors in the
sample of 100 invoices. Figure 6.9 shows the area under the normal curve that approximates this
probability. Note that the use of the continuity correction factor results in the value of 13.5 being used
to compute the desired probability. The z value corresponding to x 13.5 is:

z
13 5 10 0

3
1 17

The standard normal probability table shows that the area under the standard normal curve to the left of
1.17 is 0.8790. The area under the normal curve approximating the probability of 13 or fewer errors is
given by the heavily shaded portion of the graph in Figure 6.9.

Probability
of 13 or fewer errors

is 0.8790

10 13.5
x

FIGURE 6.9

Normal approximation to a binomial

probability distribution with n 100

and 0.10 showing the probability

of 13 or fewer errors

EXERCISES

Methods

20. A binomial probability distribution has 0.20 and n 100.

a. What is the mean and standard deviation?

b. Is this a situation in which binomial probabilities can be approximated by the normal probability

distribution? Explain.

c. What is the probability of exactly 24 successes?

d. What is the probability of 18 to 22 successes?

e. What is the probability of 15 or fewer successes?

21. Assume a binomial probability distribution has 0.60 and n 200.

a. What is the mean and standard deviation?

b. Is this a situation in which binomial probabilities can be approximated by the normal probability

distribution? Explain.

c. What is the probability of 100 to 110 successes?

d. What is the probability of 130 or more successes?

e. What is the advantage of using the normal probability distribution to approximate the binomial

probabilities? Use part (d) to explain the advantage.

COMPLETE

SOLUTIONS
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6.4 EXPONENTIAL PROBABILITY DISTRIBUTION

The exponential probability distribution may be used for random variables such as the time between
arrivals at a car wash, the time required to load a truck, the distance between major defects in a highway
and so on. The exponential probability density function follows.

Exponential probability density function

f x
1

μ
e x for x 0 μ 0 (6.4)

As an example of the exponential distribution, suppose that X the time it takes to load a truck at the
Schips loading dock follows such a distribution. If the mean, or average, time to load a truck is 15 minutes
(µ 15), the appropriate probability density function is:

f x
1

15
e x 15

Figure 6.10 is the graph of this probability density function.

Computing probabilities for the exponential distribution

As with any continuous probability distribution, the area under the curve corresponding to an interval
provides the probability that the random variable assumes a value in that interval. In the Schips loading
dock example, the probability that loading a truck will take six minutes or less (X 6) is defined to be the
area under the curve in Figure 6.10 from x 0 to x 6.

Applications

22. A hotel in Nice has 120 rooms. In the spring months, hotel room occupancy is approximately

75 per cent.

a. What is the probability that at least half of the rooms are occupied on a given day?

b. What is the probability that 100 or more rooms are occupied on a given day?

c. What is the probability that 80 or fewer rooms are occupied on a given day?

P(X ≤ 6)

f (x)

0.07

0.05

0.03

0.01

0 6 12 18

Loading Time

24
x

P(6 ≤ X ≤ 18)

FIGURE 6.10

Exponential distribution for the Schips

loading dock example
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Similarly, the probability that loading a truck will take 18 minutes or less (X 18) is the area under the
curve from x 0 to x 18. Note also that the probability that loading a truck will take between six
minutes and 18 minutes (6 X 18) is given by the area under the curve from x 6 to x 18.

To compute exponential probabilities such as those just described, we use the following formula
(equation (6.5)). It provides the cumulative probability of obtaining a value for the exponential random
variable of less than or equal to some specific value denoted by x0.

Exponential distribution: cumulative probabilities

P X x0 1 e x0 (6.5)

For the Schips loading dock example, X loading time and µ 15, which gives us:

P X x0 1 e x0 15

Hence, the probability that loading a truck will take six minutes or less is:

P(X 6) 1 e
6/15

0.3297

Figure 6.11 shows the area or probability for a loading time of six minutes or less. Using equation (6.5),
we calculate the probability of loading a truck in 18 minutes or less:

P(X 18) 1 e
18/15

0.6988

Thus, the probability that loading a truck will take between six minutes and 18 minutes is equal to
0.6988 0.3297 0.3691. Probabilities for any other interval can be computed similarly.

In the preceding example, the mean time it takes to load a truck is µ 15 minutes. A property of the
exponential distribution is that the mean of the distribution and the standard deviation of the distribution
are equal. Thus, the standard deviation for the time it takes to load a truck is 15 minutes. The
variance is

2
(15)

2
225.

0 5 10
0

0.01

0.02

0.03

0.04

0.05

0.06

P(x ≤ 6) =  0.3297

0.07

f(x)

15 20 25 30

Loading Time

35 40 45
x

FIGURE 6.11

Probability of a loading time of

six minutes of less
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Relationship between the Poisson and exponential distributions

In Chapter 5, Section 5.5 we introduced the Poisson distribution as a discrete probability distribution that
is often useful in examining the number of occurrences of an event over a specified interval of time or
space. Recall that the Poisson probability function is:

p x
μxe μ

x

where:
µ expected value or mean number of occurrences over a specified interval.

The continuous exponential probability distribution is related to the discrete Poisson distribution. If
the Poisson distribution provides an appropriate description of the number of occurrences per interval,
the exponential distribution provides a description of the length of the interval between occurrences.

To illustrate this relationship, suppose the number of cars that arrive at a car wash during one hour is
described by a Poisson probability distribution with a mean of ten cars per hour. The Poisson probability
function that gives the probability of X arrivals per hour is:

p x
10xe 10

x

Because the average number of arrivals is ten cars per hour, the average time between cars arriving is:

1 hour

10 cars
0 1 hour car

Thus, the corresponding exponential distribution that describes the time between the arrivals has a mean
of µ 0.1 hour per car; as a result, the appropriate exponential probability density function is:

f x
1

0 1
e x 0 1 10e 10x

EXERCISES

Methods

23. Consider the following exponential probability density function.

f x
1

8
e x 2 for x 0

a. Find P(X 6).
b. Find P(X 4).

c. Find P(X 6).

d. Find P(4 X 6).

24. Consider the following exponential probability density function.

f x
1

3
e x 3 for x 0

a. Write the formula for P(X x0).
b. Find P(X 2).

c. Find P(X 3).

d. Find P(X 5).

e. Find P(2 X 5).
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SUMMARY

This chapter extended the discussion of probability distributions to the case of continuous random

variables. The major conceptual difference between discrete and continuous probability distributions

involves the method of computing probabilities. With discrete distributions, the probability function

p(x) provides the probability that the random variable X assumes various values. With continuous

distributions, the probability density function f(x) does not provide probability values directly.

Instead, probabilities are given by areas under the curve or graph of f(x). Three continuous probability

distributions – the uniform, normal and exponential distributions were the particular focus – with

detailed examples showing how probabilities could be straightforwardly computed. In addition,

relationships between the binomial and normal distributions and Poisson and exponential distribution

were established and related probability results, exploited.

Applications

25. In a parts store in Mumbai, customers arrive randomly. The cashier's service time is random but

it is estimated it takes an average of 30 seconds to serve each customer.

a. What is the probability a customer must wait more than two minutes for service?

b. Suppose average service time is reduced to 25 seconds. How does this affect the calculation

for (a) above?

26. The time between arrivals of vehicles at a particular intersection follows an exponential

probability distribution with a mean of 12 seconds.

a. Sketch this exponential probability distribution.

b. What is the probability that the arrival time between vehicles is 12 seconds or less?

c. What is the probability that the arrival time between vehicles is six seconds or less?

d. What is the probability of 30 or more seconds between vehicle arrivals?

27. According to Barron’s 1998 Primary Reader Survey, the average annual number of investment

transactions for a subscriber is 30 (www.barronsmag.com, 28 July 2000). Suppose the number

of transactions in a year follows the Poisson probability distribution.

a. Show the probability distribution for the time between investment transactions.

b. What is the probability of no transactions during the month of January for a particular

subscriber?

c. What is the probability that the next transaction will occur within the next half month for a

particular subscriber?

ONLINE RESOURCES

For the data files, additional online summary, questions, answers and the software section for this

chapter, go to the online platform.

COMPLETE

SOLUTIONS
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KEY TERMS

Continuity correction factor

Exponential probability distribution

Normal probability distribution

Probability density function

Standard normal probability distribution

Uniform probability distribution

KEY FORMULAE

Uniform Probability Density Function

f x

1

b a
for a X b

0 elsewhere

(6.1)

Normal Probability Density Function

f x
1

σ 2π
e x 2 2σ2 (6.2)

Converting to the Standard Normal Distribution

Z
X −

(6.3)

Exponential Probability Density Function

f x
1
e x for x 0 0 (6.4)

Exponential Distribution: Cumulative Probabilities

p X x0 1 e x0 (6.5)

CASE PROBLEM 1

Prix-Fischer Toys

Prix-Fischer Toys sells a variety of new and innovative

children’s toys. Management learned that the pre-

holiday season is the best time to introduce a new

toy, because many families use this time to look for

new ideas for December holiday gifts. When Prix-

Fischer discovers a new toy with good market poten-

tial, it chooses an October market entry date.

In order to get toys in its stores by October, Prix-

Fischer places one-time orders with its manufac-

turers in June or July of each year. Demand for chil-

dren’s toys can be highly volatile. If a new toy catches

on, a sense of shortage in the market place often

increases the demand to high levels and large profits

can be realized. However, new toys can also flop,

leaving Prix-Fischer stuck with high levels of inventory

that must be sold at reduced prices. The most impor-

tant question the company faces is deciding how

many units of a new toy should be purchased to meet

anticipated sales demand. If too few are purchased,

sales will be lost; if too many are purchased, profits

will be reduced because of low prices realized in

clearance sales.

For the coming season, Prix-Fischer plans to intro-

duce a new talking bear product called Chattiest

Teddy. As usual, Prix-Fischer faces the decision of

how many Chattiest Teddy units to order for the com-

ing holiday season. Members of the management
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team suggested order quantities of 15 000, 18 000,

24 000 or 28 000 units. The wide range of order

quantities suggested, indicate considerable dis-

agreement concerning the market potential. The pro-

duct management team asks you for an analysis of

the stock-out probabilities for various order quanti-

ties, an estimate of the profit potential, and to help

make an order quantity recommendation.

Prix-Fischer expects to sell Chattiest Teddy for

24 based on a cost of 16 per unit. If inventory

remains after the holiday season, Prix-Fischer will sell

all surplus inventory for 5 per unit. After reviewing

the sales history of similar products, Prix-Fischer’s

senior sales forecaster predicted an expected

demand of 20 000 units with a 0.90 probability

that demand would be between 10 000 units and

30 000 units.

Managerial report

Prepare a managerial report that addresses the fol-

lowing issues and recommends an order quantity for

the Chattiest Teddy product.

1. Use the sales forecaster’s prediction to describe

a normal probability distribution that can be used

to approximate the demand distribution. Sketch

the distribution and show its mean and standard

deviation.

2. Compute the probability of a stock-out for the

order quantities suggested by members of the

management team.

3. Compute the projected profit for the order

quantities suggested by the management team

under three scenarios: worst case in which

sales 10 000 units, most likely case in

which sales 20 000 units, and best case in

which sales 30 000 units.

4. One of Prix-Fischer’s managers felt that the profit

potential was so great that the order quantity

should have a 70 per cent chance of meeting

demand and only a 30 per cent chance of any

stock-outs. What quantity would be ordered under

this policy, and what is the projected profit under

the three sales scenarios?

5. Provide your own recommendation for an order

quantity and note the associated profit

projections. Provide a rationale for your

recommendation.

CASE PROBLEM 2

Queuing patterns in a retail furniture store

The assistant manager of one of the larger stores in a

retail chain selling furniture and household appli-

ances has recently become interested in using quan-

titative techniques in the store operation. To help

resolve a longstanding queuing problem, data have

been collected on the time between customer arrivals

and the time that a given number of customers were

in a particular store department. Relevant details are

summarized in Tables 6.1 and 6.2 respectively. Cor-

responding data on service times per customer are

tabulated in Table 6.3.
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In order to arrive at an appropriate solution strategy

for the department’s queuing difficulties, the manager

has come to you for advice on possible statistical

patterns that might apply to this information.

1. By plotting the arrival and service patterns shown

in Tables 6.1 and 6.3, show that they can each be

reasonably represented by an exponential

distribution.

2. If mean arrival rate for the queuing system

here and µ, the mean service rate for each

channel, estimate the mean arrival time (1/λ)

and mean service time (1/ ) respectively.

3. If k the number of service channels and the

mean service time for the system (store) is

greater than the mean arrival rate (i.e. k > λ)

then the following formulae can be shown to apply

to the system ‘in the steady state’ subject to

certain additional mathematical assumptions.1

a. The probability there are no customers in the

system

p 0
1

k−1
n−0

λ μ n

n

λ μ k

k

kμ

kμ−λ

b. The average number of customers in the queue

Lq
λ μ kλμ

k − 1 kμ − λ 2
p 0

c. The average number of customers in the store

L Lq
λ

μ

d. The average time a customer spends in the

queue

wq
Lq

λ

T ABLE 6 . 3 Service time (from a sample of 31)

Service time

(in minutes) Frequency

Less than 1 5

1 2 7

2 3 6

3 4 4

4 5 2

5 6 3

6 7 1

7 8 1

8 9 1

9 10 0

More than 10 1

T ABLE 6 . 1 Time between arrivals (during a four-

hour period)

Time between

arrivals (in minutes) Frequency

0.0 0.2 31

0.2 0.4 32

0.4 0.6 23

0.6 0.8 21

0.8 1.0 19

1.0 1.2 11

1.2 1.4 14

1.4 1.6 8

1.6 1.8 6

1.8 2.0 9

2.0 2.2 6

2.2 2.4 4

2.4 2.6 5

2.6 2.8 4

2.8 3.0 4

3.0 3.2 3

More than 3.2 10

T ABLE 6 . 2 Time that n customers were in the

department (during a four-hour period)

Number of

customers, n Time (in minutes)

0 16.8

1 35.5

2 52

3 49

4 29.3

5 18.8

6 13.6

7 9.6

8 5.8

More than 8 9.6

1
The queue has two or more channels; the mean service rate μ is
the same for each channel; arrivals wait in a single queue and
then move to the first open channel for service; the queue
discipline is first-come, first-served (FCFS).
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e. The average time a customer spends in the store

W Wq
1

μ

f. The probability of n customers in the system

p n
λ μ n

n
p 0 for n k

p n
λ μ n

k k n−k
p 0 for n k

According to this model, what is the smallest value

that k can take? If this is the number of channels that

the retailer currently operates, estimate the above

operating characteristics for the store. How would

these values change if the k channels were increased

by one or two extra channels? Discuss what factors

might influence the retailer in arriving at an appropri-

ate value of k.
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7
Sampling and
Sampling
Distributions

CHAPTER CONTENTS

Statistics in Practice Copyright and Public Lending Right

7.1 The EAI sampling problem

7.2 Simple random sampling

7.3 Point estimation

7.4 Introduction to sampling distributions

7.5 Sampling distribution of X

7.6 Sampling distribution of P

LEARNING OBJECTIVES After studying this chapter and doing the exercises, you should be able to:

1 Explain the terms simple random sample,

sampling with replacement and sampling

without replacement.

2 Select a simple random sample

from a finite population using random

number tables.

3 Explain the terms parameter,

statistic, point estimator and

unbiasedness.

4 Identify relevant point estimators for a population

mean, population standard deviation and

population proportion.

5 Explain the term sampling distribution.

6 Describe the form and characteristics

of the sampling distribution:

6.1 of the sample mean, when the sample

size is large or when the population

is normal.

6.2 of the sample proportion when the

sample size is large.

In Chapter 1, we defined the terms element, population and sample:

• An element is the entity on which data are collected.

• A population is the set of all the elements of interest in a study.

• A sample is a subset of the population.
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The reason we sample is to collect data to make an inference and answer a research question about a
population. Numerical characteristics of a population (e.g. population mean, population standard devia-
tion) are called parameters. Numerical characteristics of a sample (e.g. sample mean, sample standard
deviation) are called sample statistics. Primary purposes of statistical inference are to make estimates
and test hypotheses about population parameters using sample statistics.

Here are two situations in which samples provide estimates of population parameters:

1 A European car tyre manufacturer developed a new tyre designed to provide an increase in tyre
lifetime. To estimate the mean lifetime (in kilometres or miles) of the new tyre, the manufacturer

STATISTICS IN PRACTICE

Copyright and Public Lending Right

How would you feel if the size of your income was

determined each year by a random sampling

procedure? This is the situation that often exists, for

at least part of annual income, for musicians and

other artists who receive copyright payments for the

performance or broadcasting of their work. Even in

this 21st–century world of large databases and

sophisticated communication, it is not always poss-

ible, or it is too costly, to maintain 100 per cent

checks on what is being broadcast over TV, radio

and the Internet, so an alternative is to sample.

In a similar vein, many book authors receive pay-

ments through a Public Lending Right (PLR) scheme.

This is particularly so for authors of fiction, or of

popular non-fiction, whose books are available for

loan in public libraries. A PLR scheme is intended to

compensate authors for potential loss of income

because their books are available in public libraries,

and are therefore borrowed rather than bought by

readers. The website www.plrinternational.com listed

30 countries in mid-2012 with established PLR

schemes. All except Australia, Canada and New

Zealand were in Europe.

The UK PLR scheme was set up in 1979. From the

outset, it was decided that it would be too costly to try

and collect data from all libraries in the UK. Data on

lending are collected from a sample of libraries. Simi-

lar decisions have been made in many of the other

countries that operate PLR schemes. The current UK

sample is reckoned to cover about 15 per cent of all

library authorities in the UK (there are over 200). The

PLR scheme in Finland, as another example, is

estimated to cover about 10 per cent of all library

loans.

The examples from copyright and PLR are cases

where the sampling schemes involved can influence

the income of individuals – the copyright holders or

authors. The website for the UK PLR scheme acknowl-

edges, for example, that authors of books with a

‘local interest’ – local history, say – are likely to

qualify for PLR payments only if the library sample

for the year contains library authorities in the relevant

geographical area.

Companies and governments often make impor-

tant decisions based on sample data. This chapter

examines the basis and practicalities of scientific

sampling.
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selected a sample of 120 new tyres for testing. The test results provided a sample mean of 56 000
kilometres (35 000 miles). Therefore, an estimate of the mean tyre lifetime for the population of new
tyres was 56 000 kilometres.

2 Members of an African government were interested in estimating the proportion of registered
voters likely to support a proposal for constitutional reform to be put to the electorate in a national
referendum. The time and cost associated with contacting every individual in the population of
registered voters were prohibitive. A sample of 5000 registered voters was therefore selected, and
2810 of the 5000 voters indicated support for the proposal. An estimate of the proportion of the
population of registered voters supporting the proposal was 2810/5000 = 0.562.

These two examples illustrate some of the reasons why samples are used. In the tyre lifetime example,
collecting the data on tyre life involves wearing out each tyre tested. Clearly it is not feasible to test every
tyre in the population. A sample is the only realistic way to obtain the tyre lifetime data. In the example
involving the referendum, contacting every registered voter in the population is in principle possible, but
the time and cost are prohibitive. Consequently, a sample of registered voters is preferred.

It is important to realize that sample results provide only estimates of the values of the population
characteristics, because the sample contains only a portion of the population. A sample mean provides an
estimate of a population mean, and a sample proportion provides an estimate of a population proportion.
Some estimation error can be expected. This chapter provides the basis for determining how large the
estimation error might be. With proper sampling methods, the sample results will provide ‘good’
estimates of the population parameters.

Let us define some of the terms used in sampling. The sampled population is the population from
which the sample is drawn, and a sampling frame is a list of the elements from which the sample will be
selected. In the second example above, the sampled population is all registered voters in the country, and
the sampling frame is the list of all registered voters. Because the number of registered voters is finite, this
is an illustration of sampling from a finite population. In Section 7.2, we consider how a simple random
sample can be selected from a finite population.

The sampled population for the tyre lifetime example is more difficult to define. The sample of 120
tyres was obtained from a production process at a particular point in time. We can think of the sampled
population as the conceptual population of all tyres that could be made by the production process under
similar conditions to those prevailing at the time of sampling. In this context, the sampled population is
considered infinite, making it impossible to construct a sampling frame. In Section 7.2, we consider how
to select a random sample in such a situation.

We first show how simple random sampling can be used to select a sample from finite and from
infinite populations. We then show how data from a simple random sample can be used to compute
estimates of a population mean, a population standard deviation, and a population proportion. In
addition, we introduce the important concept of a sampling distribution. Knowledge of the appropriate
sampling distribution enables us to make statements about how close the sample estimates might be to
the corresponding population parameters.

7.1 THE EAI SAMPLING PROBLEM

The head of personnel services for E-Applications & Informatics plc (EAI) has been given the task of
constructing a profile of the company’s 2500 managers. The characteristics to be identified include the mean
annual salary and the proportion of managers who have completed the company’s management training
programme. The 2500 managers are the population for this study. We can find the annual salary and training
programme status for each individual by referring to the firm’s personnel records. The data file containing
this information for all 2500 managers in the population is on the online platform, in the file ‘EAI’.

Using the EAI data set and the formulae from Chapter 3, we calculate the population mean and the
population standard deviation for the annual salary data.

Population mean €51 800

Population standard deviation €4000

EAI
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The data set shows that 1500 of the 2500 managers completed the training programme. Let π denote
the proportion of the population that completed the training programme: π = 1500/2500 = 0.60.
The population mean annual salary (µ = €51 800), the population standard deviation of annual salary
(σ = €4000), and the population proportion that completed the training programme (π = 0.60) are
parameters of the population of EAI managers.

Now, suppose the necessary information on all the EAI managers was not readily available in the
company’s database. How can the head of personnel services obtain estimates of the population para-
meters by using a sample of managers, rather than all 2500 managers in the population? Suppose a
sample of 30 managers will be used. Clearly, the time and the cost of constructing a profile would be
substantially less for 30 managers than for the entire population. If the head of personnel could be assured
that a sample of 30 managers would provide adequate information about the population of 2500
managers, working with a sample would be preferable to working with the entire population. Often the
cost of collecting information from a sample is substantially less than from a population, especially when
personal interviews must be conducted to collect the information.

First we consider how we can identify a sample of 30 managers.

7.2 SIMPLE RANDOM SAMPLING

Several methods can be used to select a sample from a population. One important method is simple

random sampling. The definition of a simple random sample and the process of selecting such a sample
depend on whether the population is finite or infinite. We first consider sampling from a finite population,
because the EAI sampling problem involves a finite population of 2500 managers.

Sampling from a finite population

One procedure for selecting a simple random sample from a finite population is to choose the elements
for the sample one at a time in such a way that, at each step, each of the elements remaining in the
population has the same probability of being selected.

To select a simple random sample from the population of EAI managers, we first assign each manager
a number. We can assign the managers the numbers 1 to 2500 in the order their names appear in the EAI
personnel file. Next, we refer to the table of random numbers shown in Table 7.1. Using the first row of
the table, each digit, 6, 3, 2, …, is a random digit with an equal chance of occurring. The random numbers
in the table are shown in groups of five for readability. Because the largest number in the population list,
2500, has four digits, we shall select random numbers from the table in groups of four digits. We may
start the selection of random numbers anywhere in the table and move systematically in a direction of our
choice. We shall use the first row of Table 7.1 and move from left to right. The first seven four-digit
random numbers are

6327 1599 8671 7445 1102 1514 1807

These four-digit numbers are equally likely, because the numbers in the table are random.We use them to give
each manager in the population an equal chance of being included in the random sample.

The first number, 6327, is greater than 2500. We discard it because it does not correspond to one of the
numbered managers in the population. The second number, 1599, is between 1 and 2500.

Simple random sample (finite population)

A simple random sample of size n from a finite population of size N is a sample selected such that each

possible sample of size n has the same probability of being selected.
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So the first manager selected for the random sample is number 1599 on the list of EAI managers.
Continuing this process, we ignore the numbers 8671 and 7445 (greater than 2500) before identifying
managers numbered 1102, 1514 and 1807 to be included in the random sample. This process continues
until the simple random sample of 30 EAI managers has been obtained.

It is possible that a random number already used may appear again in the table before the sample of 30
EAI managers has been fully selected. Because we do not want to select a manager more than once, any
previously used random numbers are ignored. Selecting a sample in this manner is referred to as
sampling without replacement. If we selected a sample such that previously used random numbers are
acceptable, and specific managers could be included in the sample two or more times, we would be
sampling with replacement. Sampling with replacement is a valid way of identifying a simple random
sample, but sampling without replacement is used more often. When we refer to simple random
sampling, we shall assume that the sampling is without replacement.

Computer-generated random numbers can also be used to implement the random sample
selection process. EXCEL, MINITAB and IBM SPSS all provide functions for generating random
numbers.

The number of different simple random samples of size n that can be selected from a finite population
of size N is:

N

n N n

N!, (N - n)! and n! are the factorial computations discussed in Chapter 4. For the EAI problem with
N = 2500 and n = 30, this expression can be used to show that approximately 2.75 10

69
different simple

random samples of 30 EAI managers can be selected.

T ABLE 7 . 1 Random numbers

63271 59986 71744 51102 15141 80714 58683 93108 13554 79945

88547 09896 95436 79115 08303 01041 20030 63754 08459 28364

55957 57243 83865 09911 19761 66535 40102 26646 60147 15702

46276 87453 44790 67122 45573 84358 21625 16999 13385 22782

55363 07449 34835 15290 76616 67191 12777 21861 68689 03263

69393 92785 49902 58447 42048 30378 87618 26933 40640 16281

13186 29431 88190 04588 38733 81290 89541 70290 40113 08243

17726 28652 56836 78351 47327 18518 92222 55201 27340 10493

36520 64465 05550 30157 82242 29520 69753 72602 23756 54935

81628 36100 39254 56835 37636 02421 98063 89641 64953 99337

84649 48968 75215 75498 49539 74240 03466 49292 36401 45525

63291 11618 12613 75055 43915 26488 41116 64531 56827 30825

70502 53225 03655 05915 37140 57051 48393 91322 25653 06543

06426 24771 59935 49801 11082 66762 94477 02494 88215 27191

20711 55609 29430 70165 45406 78484 31639 52009 18873 96927

41990 70538 77191 25860 55204 73417 83920 69468 74972 38712

72452 36618 76298 26678 89334 33938 95567 29380 75906 91807

37042 40318 57099 10528 09925 89773 41335 96244 29002 46453

53766 52875 15987 46962 67342 77592 57651 95508 80033 69828

90585 58955 53122 16025 84299 53310 67380 84249 25348 04332

32001 96293 37203 64516 51530 37069 40261 61374 05815 06714

62606 64324 46354 72157 67248 20135 49804 09226 64419 29457

10078 28073 85389 50324 14500 15562 64165 06125 71353 77669

91561 46145 24177 15294 10061 98124 75732 00815 83452 97355

13091 98112 53959 79607 52244 63303 10413 63839 74762 50289
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Sampling from an infinite population

In some situations, the population is either infinite, or so large that for practical purposes it must be
treated as infinite. For example, suppose that a fast-food restaurant would like to obtain a profile of its
customers by selecting a simple random sample of customers and asking each customer to complete a
short questionnaire. The ongoing process of customer visits to the restaurant can be viewed as coming
from an infinite population. In practice, a population is usually considered infinite if it involves an
ongoing process that makes listing or counting every element in the population impossible. The definition
of a simple random sample from an infinite population follows.

For the example of a simple random sample of customers at a fast-food restaurant, any customer who
comes into the restaurant will satisfy the first requirement. The second requirement will be satisfied if a
sample selection procedure is devised to select the items independently and thereby avoid any selection
bias that gives higher selection probabilities to certain types of customers. Selection bias would occur if,
for instance, five consecutive customers selected were all friends who arrived together. We might expect
these customers to exhibit similar profiles. Selection bias can be avoided by ensuring that the selection of a
particular customer does not influence the selection of any other customer. In other words, the customers
must be selected independently.

Infinite populations are often associated with an ongoing process that operates continuously
over time. For example, parts being manufactured on a production line, transactions occurring at a
bank, telephone calls arriving at a technical support centre and customers entering stores
may all be viewed as coming from an infinite population. In such cases, an effective sampling
procedure will ensure that no selection bias occurs and that the sample elements are selected
independently.

Simple random sample (infinite population)

A simple random sample from an infinite population is a sample selected such that the following conditions

are satisfied:

1. Each element selected comes from the population.

2. Each element is selected independently.

EXERCISES

Methods

1. Consider a finite population with five elements labelled A, B, C, D and E. Ten possible simple

random samples of size 2 can be selected.

a. List the ten samples beginning with AB, AC and so on.

b. Using simple random sampling, what is the probability that each sample of size 2 is

selected?

c. Assume random number 1 corresponds to A, random number 2 corresponds to B, and so

on. List the simple random sample of size 2 that will be selected by using the random

digits 8 0 5 7 5 3 2.
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7.3 POINT ESTIMATION

We return to the EAI problem. A simple random sample of 30 managers and the corresponding data on
annual salary and management training programme participation are shown in Table 7.2. The notation
x1, x2 and so on is used to denote the annual salary of the first manager in the sample, the annual salary
of the second manager in the sample and so on. Completion of the management training programme is
indicated by Yes in the relevant column.

To estimate the value of a population parameter, we compute a corresponding characteristic of the
sample, referred to as a sample statistic. For example, to estimate the population mean µ and the
population standard deviation σ for the annual salary of EAI managers, we use the data in Table 7.2 to
calculate the corresponding sample statistics: the sample mean and the sample standard deviation. Using
the formulae from Chapter 3, the sample mean is:

x
∑xi
n

1 554 420

30
51 814 €

2. Assume a finite population has 350 elements. Using the last three digits of each of the following

five-digit random numbers (601, 022, 448, …), determine the first four elements that will be

selected for the simple random sample.

98601 73022 83448 02147 34229 27553 84147 93289 14209

Applications

3. The EURO STOXX 50 share index is calculated using data for 50 blue-chip companies from 12

Eurozone countries. Assume you want to select a simple random sample of five companies

from the EURO STOXX 50 list. Use the last three digits in column 9 of Table 7.1, beginning

with 554. Read down the column and identify the numbers of the five companies that would

be selected.

4. A student union is interested in estimating the proportion of students who favour a mandatory

‘pass–fail’ grading policy for optional courses. A list of names and addresses of the 645 students

enrolled during the current semester is available from the registrar’s office. Using three-digit

random numbers in row 10 of Table 7.1 and moving across the row from left to right, identify the

first ten students who would be selected using simple random sampling. The three-digit random

numbers begin with 816, 283 and 610.

5. Assume that we want to identify a simple random sample of 12 of the 372 doctors practising in a

particular city. The doctors’ names are available from the local health authority. Use the eighth

column of five-digit random numbers in Table 7.1 to identify the 12 doctors for the sample. Ignore

the first two random digits in each five-digit grouping of the random numbers. This process begins

with random number 108 and proceeds down the column of random numbers.

6. Indicate whether the following populations should be considered finite or infinite.

a. All registered voters in Ireland.

b. All television sets that could be produced by the Johannesburg factory of the TV-M Company.

c. All orders that could be processed by a mail-order firm.

d. All emergency telephone calls that could come into a local police station.

e. All components that Fibercon plc produced on the second shift on 17 February 2013.

COMPLETE

SOLUTIONS

COMPLETE

SOLUTIONS
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and the sample standard deviation is:

s
∑ xi x 2

n 1

325 009 260

29
3348 €

To estimate π, the proportion of managers in the population who completed the management training
programme, we use the corresponding sample proportion. Let m denote the number of managers in the
sample who completed the management training programme. The data in Table 7.2 show that m = 19. So,
with a sample size of n = 30, the sample proportion is:

p
m

n

19

30
0 63

These computations are an example of the statistical procedure called point estimation. We refer to the
sample mean as the point estimator of the population mean µ, the sample standard deviation as the point
estimator of the population standard deviation σ , and the sample proportion as the point estimator of the
population proportion π. The numerical value obtained for the sample mean, sample standard deviation or
sample proportion is called a point estimate. For the simple random sample of 30 EAI managers shown in
Table 7.2, €51 814 is the point estimate of µ, €3348 is the point estimate of σ and 0.63 is the point estimate of π.

T ABLE 7 . 2 Annual salary and training programme status for a simple random sample of 30 EAI managers

Annual salary ( )

Management

training

programme Annual salary ( )

Management

training

programme

x1 = 49 094.30 Yes x16 = 51 766.00 Yes

x2 = 53 263.90 Yes x17 = 52 541.30 No

x3 = 49 643.50 Yes x18 = 44 980.00 Yes

x4 = 49 894.90 Yes x19 = 51 932.60 Yes

x5 = 47 621.60 No x20 = 52 973.00 Yes

x6 = 55 924.00 Yes x21 = 45 120.90 Yes

x7 = 49 092.30 Yes x22 = 51 753.00 Yes

x8 = 51 404.40 Yes x23 = 54 391.80 No

x9 = 50 957.70 Yes x24 = 50 164.20 No

x10 = 55 109.70 Yes x25 = 52 973.60 No

x11 = 45 922.60 Yes x26 = 50 241.30 No

x12 = 57 268.40 No x27 = 52 793.90 No

x13 = 55 688.80 Yes x28 = 50 979.40 Yes

x14 = 51 564.70 No x29 = 55 860.90 Yes

x15 = 56 188.20 No x30 = 57 309.10 No

T ABLE 7 . 3 Summary of point estimates obtained from a simple random sample of 30 EAI managers

Population parameter Parameter value Point estimator Point estimate

Population mean annual

salary

= 51 800 Sample mean annual

salary

x = 51 814

Population standard

deviation for annual

salary

= 4 000 Sample standard

deviation for annual

salary

s = 3 348

Population proportion who

have completed the

management training

programme

= 0.60 Sample proportion who

have completed the

management

training programme

p = 0.63

POINT ESTIMATION 179



Table 7.3 summarizes the sample results and compares the point estimates to the actual values of the
population parameters.

The point estimates in Table 7.3 differ somewhat from the corresponding population parameters.
This difference is to be expected because a sample, rather than a census of the entire population, is
being used to obtain the point estimates. In the next chapter, we shall show how to construct an
interval estimate in order to provide information about how close the point estimate is to the
population parameter.

Practical advice

The subject matter of most of the rest of the book is statistical inference. Point estimation is a form of
statistical inference. We use a sample statistic to make an inference about a population parameter. When
making inferences about a population based on a sample, it is important to have a close correspondence
between the sampled population and the target population. The target population is the population we
want to make inferences about, while the sampled population is the population from which the sample is
actually taken. In this section, we have described the process of drawing a simple random sample from the
population of EAI managers and making point estimates of characteristics of that same population. So the
sampled population and the target population are identical, which is the desired situation. But in other
cases, it is not as easy to obtain a close correspondence between the sampled and target populations.

Consider the case of a theme park selecting a sample of its customers to learn about characteristics such as
age and time spent at the park. Suppose all the sample elements were selected on a day when park attendance
was restricted to employees of a large company. Then the sampled population would be composed of
employees of that company and members of their families. If the target population we wanted to make
inferences about were typical park customers over a typical summer, then there might be a substantial
difference between the sampled population and the target population. In such a case, we would question the
validity of the point estimates being made. The park management would be in the best position to know
whether a sample taken on a particular day was likely to be representative of the target population.

In summary, whenever a sample is used to make inferences about a population, we should make sure
that the study is designed so that the sampled population and the target population are in close
agreement. Good judgement is a necessary ingredient of sound statistical practice.

EXERCISES

Methods

7. The following data are from a simple random sample.

5 8 10 7 10 14

a. Calculate a point estimate of the population mean.

b. Calculate a point estimate of the population standard deviation.

8. A survey question for a sample of 150 individuals yielded 75 Yes responses, 55 No responses and

20 No Opinion responses.

a. Calculate a point estimate of the proportion in the population who respond Yes.

b. Calculate a point estimate of the proportion in the population who respond No.

Applications

9. A simple random sample of five months of sales data provided the following information:

Month: 1 2 3 4 5

Units sold: 94 100 85 94 92

COMPLETE

SOLUTIONS
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7.4 INTRODUCTION TO SAMPLING DISTRIBUTIONS

For the simple random sample of 30 EAI managers in Table 7.2, the point estimate of µ is x = €51 814 and
the point estimate of π is p = 0.63. Suppose we select another simple random sample of 30 EAI managers
and obtain the following point estimates:

Sample mean: x €52 670

Sample proportion: p 0 70

Note that different values of the sample mean and sample proportion were obtained. A second simple
random sample of 30 EAI managers cannot be expected to provide exactly the same point estimates as the
first sample.

Now, suppose we repeat the process of selecting a simple random sample of 30 EAI managers over and
over again, each time computing the values of the sample mean and sample proportion. Table 7.4
contains a portion of the results obtained for 500 simple random samples, and Table 7.5 shows the

a. Calculate a point estimate of the population mean number of units sold per month.

b. Calculate a point estimate of the population standard deviation.

10. The data set Mutual Fund contains data on a sample of 40 mutual funds. These were randomly

selected from 283 funds featured in Business Week. Use the data set to answer the following

questions.

a. Compute a point estimate of the proportion of the Business Week mutual funds that are load

funds.

b. Compute a point estimate of the proportion of the funds that are classified as high risk.

c. Compute a point estimate of the proportion of the funds that have a below-average risk rating.

11. In a YouGov opinion poll for the Financial Times in late June 2012, during the ‘Euro crisis’, a

sample of 1033 German adults was asked ‘If there were a referendum tomorrow on Germany’s

membership of the single currency, the euro, how would you vote?’ The responses were:

To stay in the single currency 444

To bring back the Deutschmark 424

Would not vote 72

Don’t know 93

Calculate point estimates of the following population parameters:

a. The proportion of all adults who would vote to stay in the single currency.

b. The proportion of all adults who vote to bring back the Deutschmark.

c. The proportion of all adults who would not vote or don’t know.

12. Many drugs used to treat cancer are expensive. Business Week reported on the cost per

treatment of Herceptin, a drug used to treat breast cancer. Typical treatment costs (in dollars) for

Herceptin are provided by a simple random sample of ten patients.

4376 5578 2717 4920 4495

4798 6446 4119 4237 3814

a. Calculate a point estimate of the mean cost per treatment with Herceptin.

b. Calculate a point estimate of the standard deviation of the cost per treatment with Herceptin.

MUTUAL

FUND

COMPLETE

SOLUTIONS
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frequency and relative frequency distributions for the 500 values. Figure 7.1 shows the relative frequency
histogram for the values.

In Chapter 5 we defined a random variable as a numerical description of the outcome of an
experiment. If we consider selecting a simple random sample as an experiment, the sample mean is a
numerical description of the outcome of the experiment. So, the sample mean is a random variable.
In accordance with the naming conventions for random variables described in Chapters 5 and
Chapter 6 (i.e. use of capital letters for names of random variables), we denote this random variable
X . Just like other random variables, X has a mean or expected value, a standard deviation and a
probability distribution. Because the various possible values of X are the result of different simple
random samples, the probability distribution of X is called the sampling distribution of X . Knowl-
edge of this sampling distribution will enable us to make probability statements about how close the
sample mean is to the population mean µ.

Let us return to Figure 7.1. We would need to enumerate every possible sample of 30 managers and
compute each sample mean to completely determine the sampling distribution of X . However, the
histogram of 500 x values gives an approximation of this sampling distribution. From the approximation
we observe the bell-shaped appearance of the distribution. We note that the largest concentration of the x
values and the mean of the 500 x values are near the population mean µ = €51 800. We shall describe the
properties of the sampling distribution of X more fully in the next section.

The 500 values of the sample proportion are summarized by the relative frequency histogram in
Figure 7.2. As in the case of the sample mean, the sample proportion is a random variable, which we
denote P. If every possible sample of size 30 were selected from the population and if a value p were
computed for each sample, the resulting distribution would be the sampling distribution of P. The relative
frequency histogram of the 500 sample values in Figure 7.2 provides a general idea of the appearance of
the sampling distribution of P.

T ABLE 7 . 4 Values x and p from 500 simple random samples of 30 EAI managers

Sample number Sample mean (x) Sample proportion (p)

1 51 814 0.63

2 52 670 0.70

3 51 780 0.67

4 51 588 0.53

500 51 752 0.50

T ABLE 7 . 5 Frequency distribution of X values from 500 simple random samples of 30 EAI managers

Mean annual salary ( ) Frequency Relative frequency

49 500.00–49 999.99 2 0.004

50 000.00–50 499.99 16 0.032

50 500.00–50 999.99 52 0.104

51 000.00–51 499.99 101 0.202

51 500.00–51 999.99 133 0.266

52 000.00–52 499.99 110 0.220

52 500.00–52 999.99 54 0.108

53 000.00–53 499.99 26 0.052

53 500.00–53 999.99 6 0.012

Totals 500 1.000
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In practice, we select only one simple random sample from the population for estimating population
characteristics. We repeated the sampling process 500 times in this section simply to illustrate that many
different samples are possible and that the different samples generate a variety of values x and p for the
sample statistics X and P. The probability distribution of any particular sample statistic is called the
sampling distribution of the statistic. In Section 7.5 we show the characteristics of the sampling distribu-
tion of X . In Section 7.6 we show the characteristics of the sampling distribution of P. The ability to
understand the material in subsequent chapters depends heavily on the ability to understand and use the
sampling distributions presented in this chapter.

7.5 SAMPLING DISTRIBUTION OF X

This section describes the properties of the sampling distribution of X . Just as with other probability
distributions we have studied, the sampling distribution of X has an expected value or mean, a standard
deviation and a characteristic shape or form. We begin by considering the expected value of X .
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Expected value of X

Consider the X values generated by the various possible simple random samples. The mean of all these
values is known as the expected value of E(X). Let X represent the expected value of X, and µ represent
the mean of the population from which we are selecting a simple random sample. It can be shown that
with simple random sampling, E(X) and µ are equal.

In Section 7.1 we saw that the mean annual salary for the population of EAI managers is µ = 51 800. So
according to equation (7.1), the mean of all possible sample means for the EAI study is also €51 800.

When the expected value of a point estimator equals the population parameter, we say the point
estimator is an unbiased estimator of the population parameter.

Figure 7.3 shows the cases of unbiased and biased point estimators. In the illustration showing the
unbiased estimator, the mean of the sampling distribution is equal to the value of the population
parameter. The estimation errors balance out in this case, because sometimes the value of the point
estimator may be less than θ and other times it may be greater than θ.

In the case of a biased estimator, the mean of the sampling distribution is less than or greater than the
value of the population parameter. In the illustration in Panel B of Figure 7.3, E(Q) is greater than θ; the
sample statistic has a high probability of overestimating the value of the population parameter. The
amount of the bias is shown in the figure.

Equation (7.1) shows that X is an unbiased estimator of the population mean µ.

Sampling distribution of X

The sampling distribution of X is the probability distribution of all possible values of the sample mean.

Unbiasedness

The sample statistic Q is an unbiased estimator of the population parameter θ if

E Q θ

where E(Q) is the expected value of the sample statistic Q.

Expected value of X

E X (7.1)
where

E X the expected value of X

the mean of the population from which the sample is selected
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Standard deviation of X

It can be shown that with simple random sampling, the standard deviation of X depends on whether the
population is finite or infinite. We use the following notation.

X the standard deviation of X

the standard deviation of the population

n the sample size

N the population size

In comparing the two formulae in (7.2), we see that the factor N n N 1 is required for the
finite population case but not for the infinite population case. This factor is commonly referred to as the
finite population correction factor. In many practical sampling situations, we find that the population
involved, although finite, is ‘large’, whereas the sample size is relatively ‘small’. In such cases the finite
population correction factor is close to 1. As a result, the difference between the values of the standard
deviation of X for the finite and infinite population cases becomes negligible. Then, X n becomes
a good approximation to the standard deviation of X even though the population is finite. This
observation leads to the following general guideline, or rule of thumb, for computing the standard
deviation of X .

Sampling distribution
of Q

Parameter  is not located at the
mean of the sampling distribution;

E(Q) ≠  

Parameter  is located at the
mean of the sampling distribution;

E(Q) =  

Bias

Sampling distribution
of Q

Q Q
E(Q)

Panel A: Unbiased Estimator Panel B: Biased EstimatorFIGURE 7.3

Examples of

unbiased and

biased point

estimators

Standard deviation of X

Finite population Infinite population

X

N −n

N − 1 n X n

(7.2)

Use the following expression to compute the standard deviation of X

X n
(7.3)

whenever:

1. The population is infinite; or

2. The population is finite and the sample size is less than or equal to 5 per cent of the population size; that

is, n / N ≤ 0.05.
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In cases where n/N > 0.05, the finite population version of formula (7.2) should be used in the
computation of X . Unless otherwise noted, throughout the text we shall assume that the population size
is ‘large’, n/N ≤ 0.05, and expression (7.3) can be used to compute X .

To compute X , we need to know σ, the standard deviation of the population. To further emphasize
the difference between X and σ, we refer to X as the standard error of the mean. The term standard
error is used throughout statistical inference to refer to the standard deviation of a point estimator. Later
we shall see that the value of the standard error of the mean is helpful in determining how far the sample
mean may be from the population mean.

We return to the EAI example and compute the standard error of the mean associated with simple
random samples of 30 EAI managers. In Section 7.1 we saw that the standard deviation of annual salary
for the population of 2500 EAI managers is σ = 4000. In this case, the population is finite, with N = 2500.
However, with a sample size of 30, we have n/N = 30/2500 = 0.012. Because the sample size is less than 5
per cent of the population size, we can ignore the finite population correction factor and use equation
(7.3) to compute the standard error.

X n

4000

30
730 3

Form of the sampling distribution of X

The preceding results concerning the expected value and standard deviation for the sampling distribution of X
are applicable for any population. The final step in identifying the characteristics of the sampling distribution of
X is to determine the form or shape of the sampling distribution. We shall consider two cases: (1) the
population has a normal distribution; and (2) the population does not have a normal distribution.

Population has a normal distribution
In many situations it is reasonable to assume that the population from which we are sampling has a
normal, or nearly normal, distribution. When the population has a normal distribution, the sampling
distribution of X is normally distributed for any sample size.

Population does not have a normal distribution
When the population fromwhich we are selecting a simple random sample does not have a normal distribution,
the central limit theorem is helpful in identifying the shape of the sampling distribution of X .

Figure 7.4 shows how the central limit theorem works for three different populations. Each column
refers to one of the populations. The top panel of the figure shows that none of the populations is
normally distributed. When the samples are of size 2, we see that the sampling distribution begins to
take on an appearance different from that of the population distribution. For samples of size 5, we see
all three sampling distributions beginning to take on a bell-shaped appearance. Finally, the samples of
size 30 show all three sampling distributions to be approximately normally distributed. For sufficiently
large samples, the sampling distribution of X can be approximated by a normal distribution. How large
must the sample size be before we can assume that the central limit theorem applies? Studies of the sampling
distribution of X for a variety of populations and a variety of sample sizes have indicated that, for most
applications, the sampling distribution of X can be approximated by a normal distribution whenever the sample
size is 30 or more.

Central limit theorem

In selecting simple random samples of size n from a population, the sampling distribution of the sample

mean X can be approximated by a normal distribution as the sample size becomes large.
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The theoretical proof of the central limit theorem requires independent observations in the sample.
This condition is met for infinite populations and for finite populations where sampling is done with
replacement. Although the central limit theorem does not directly address sampling without replacement
from finite populations, general statistical practice applies the findings of the central limit theorem when
the population size is large.

Sampling distribution of X for the EAI problem

For the EAI problem, we previously showed that E X = €51 800 and X = €730.3 At this point, we do
not have any information about the population distribution; it may or may not be normally distributed. If
the population has a normal distribution, the sampling distribution of X is normally distributed.

Values of X Values of X Values of X

Values of X Values of X Values of X

Values of X Values of X Values of X

Values of X Values of X Values of X

Population
distribution

Sampling
distribution

of X
(n =  2)

Sampling
distribution

of X
(n =  5)

Sampling
distribution

of X
(n =  30)

Population I Population II Population III

FIGURE 7.4

Illustration of the central limit theorem for three populations
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If the population does not have a normal distribution, the simple random sample of 30 managers and
the central limit theorem enable us to conclude that the sampling distribution can be approximated by a
normal distribution. In either case, we can proceed with the conclusion that the sampling distribution can
be described by the normal distribution shown in Figure 7.5.

Practical value of the sampling distribution of X

We are interested in the sampling distribution of X because it can be used to provide probability
information about the difference between the sample mean and the population mean. Suppose the head
of personnel services believes the sample mean will be an acceptable estimate if it is within €500 of the
population mean. It is not possible to guarantee that the sample mean will be within €500 of the
population mean. Indeed, Table 7.5 and Figure 7.1 show that some of the 500 sample means differed
by more than €2000 from the population mean. So we must think of the head of personnel’s request in
probability terms. What is the probability that the sample mean computed using a simple random sample
of 30 EAI managers will be within €500 of the population mean?

We can answer this question using the sampling distribution of X . Refer to Figure 7.5. With
μ = €51 800, the personnel manager wants to know the probability that X is between €51 300 and
€52 300. The darkly shaded area of the sampling distribution shown in Figure 7.5 gives this
probability. Because the sampling distribution is normally distributed, with mean 51 800 and
standard error of the mean 730.3, we can use the table of areas for the standard normal distribution
to find the area or probability. At X = 51 300 we have

z
51300 51800

730 3
0 68

Referring to the standard normal distribution table, we find the cumulative probability for
z = 0.68 is 0.2483. Similar calculations for X = 52 300 show a cumulative probability for z = 0.68
of 0.7517. So the probability that the sample mean is between 51 300 and 52300 is 0.7517 0.2483 =
0.5034.

These computations show that a simple random sample of 30 EAI managers has a 0.5034
probability of providing a sample mean that is within €500 of the population mean. Hence, there is
a 1 0.5034 = 0.4966 probability that the difference between X and µ will be more than €500. In
other words, a simple random sample of 30 EAI managers has a roughly 50/50 chance of providing a
sample mean within the allowable €500. Perhaps a larger sample size should be considered. We
explore this possibility by considering the relationship between the sample size and the sampling
distribution of X .

Sampling distribution of X

Area =  0.2517 Area =  0.2517

51 300 51 800 52 300
x

E(X )

= =x
n 30

4000
=  70.3

FIGURE 7.5

Sampling distribution of X for the mean annual salary of a simple random sample of 30 EAI managers, and the

probability of X being within 500 of the population mean
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Relationship between sample size and the sampling distribution of X

Suppose that in the EAI sampling problem we select a simple random sample of 100 EAI managers
instead of the 30 originally considered. Intuitively, it would seem that with more sample data, the sample
mean based on n = 100 should provide a better estimate of the population mean than the sample mean
based on n = 30. To see how much better, let us consider the relationship between the sample size and the
sampling distribution of X .

First note that E X = μ, i.e. X is an unbiased estimator of µ, regardless of the sample size n. However,
the standard error of the mean, X , is related to the square root of the sample size. The value of X

decreases when the sample size increases. With n = 30, the standard error of the mean for the EAI
problem is 730.3. With the increase in the sample size to n = 100, the standard error of the mean
decreases to:

X n

4000

100
400

The sampling distributions of X with n = 30 and n = 100 are shown in Figure 7.6. Because the
sampling distribution with n = 100 has a smaller standard error, the values of X have less variation and
tend to be closer to the population mean than the values of X with n = 30.

We can use the sampling distribution of X for n = 100 to compute the probability that a simple
random sample of 100 EAI managers will provide a sample mean within €500 of the population mean.
Because the sampling distribution is normal, with mean 51 800 and standard error of the mean 400, we
can use the standard normal distribution table to find the area or probability. At X = 51 300 (Figure 7.7),
we have:

z
51 300 51 800

400
1 25

Referring to the standard normal probability distribution table, we find a cumulative probability for
z = 1.25 of 0.1056. With a similar calculation for X = 52 300, we see that the probability of the sample
mean being between 51 300 and 52 300 is 0.8944 0.1056 = 0.7888. By increasing the sample size from 30
to 100 EAI managers, we have increased the probability of obtaining a sample mean within €500 of the
population mean from 0.5034 to 0.7888.

The important point in this discussion is that as the sample size is increased, the standard error of the
mean decreases. As a result, the larger sample size provides a higher probability that the sample mean is
within a specified distance of the population mean.

51 800

With n =  30,
 x =  730.3

With n =  100,
 x =  400

x

FIGURE 7.6

A comparison of the sampling distributions of X for simple random samples of n = 30 and n = 100

EAI managers
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In presenting the sampling distribution of X for the EAI problem, we have taken advantage of the fact
that the population mean µ = 51 800 and the population standard deviation σ = 4000 were known.
However, usually the values µ and σ that are needed to determine the sampling distribution of X will be
unknown. In Chapter 8 we shall show how the sample mean X and the sample standard deviation S are
used when µ and σ are unknown.

Sampling distribution
of X with n =  100

Area =  0.3944 Area =  0.3944

51 300

51 800

52 300

X =  400

x

FIGURE 7.7

The probability of a sample mean being

within 500 of the population mean

when a simple random sample of 100

EAI managers is used

EXERCISES

Methods

13. A population has a mean of 200 and a standard deviation of 50. A simple random sample of size

100 will be taken and the sample mean will be used to estimate the population mean.

a. What is the expected value of X?

b. What is the standard deviation of X?

c. Sketch the sampling distribution of X .

d. What does the sampling distribution of X show?

14. A population has a mean of 200 and a standard deviation of 50. Suppose a simple random

sample of size 100 is selected and is used to estimate µ.

a. What is the probability that the sample mean will be within ±5 of the population mean?

b. What is the probability that the sample mean will be within ±10 of the population mean?

15. Assume the population standard deviation is = 25. Compute the standard error of the mean, X,

for sample sizes of 50, 100, 150 and 200. What can you say about the size of the standard error

of the mean as the sample size is increased?

16. Suppose a simple random sample of size 50 is selected from a population with X = 25. Find the

value of the standard error of the mean in each of the following cases (use the finite population

correction factor if appropriate).

a. The population size is infinite.

b. The population size is N = 50 000.

c. The population size is N = 5000.

d. The population size is N = 500.

COMPLETE

SOLUTIONS
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Applications

17. Refer to the EAI sampling problem. Suppose a simple random sample of 60 managers is used.

a. Sketch the sampling distribution of X when simple random samples of size 60 are used.

b. What happens to the sampling distribution of X if simple random samples of size 120 are

used?

c. What general statement can you make about what happens to the sampling distribution of X

as the sample size is increased? Does this generalization seem logical? Explain.

18. In the EAI sampling problem (see Figure 7.5), we showed that for n = 30, there was a 0.5034

probability of obtaining a sample mean within ± 500 of the population mean.

a. What is the probability that X is within 500 of the population mean if a sample of size 60 is used?

b. Answer part (a) for a sample of size 120.

19. The Automobile Association gave the average price of unleaded petrol in Sweden as 14.63

Swedish krona (SK) per litre in June 2012. Assume this price is the population mean, and that the

population standard deviation is = 1 SK.

a. What is the probability that the mean price for a sample of 30 petrol stations is within 0.25 SK

of the population mean?

b. What is the probability that the mean price for a sample of 50 petrol stations is within 0.25 SK

of the population mean?

c. What is the probability that the mean price for a sample 100 petrol stations is within 0.25 SK

of the population mean?

d. Would you recommend a sample size of 30, 50 or 100 to have at least a 0.95 probability that

the sample mean is within 0.25 SK of the population mean?

20. According to Golf Digest, the average score for male golfers is 95 and the average score for

female golfers is 106. Use these values as population means. Assume that the population

standard deviation is = 14 strokes for both men and women. A simple random sample of 30

male golfers and another simple random sample of 45 female golfers are taken.

a. Sketch the sampling distribution of X for male golfers.

b. What is the probability that the sample mean is within three strokes of the population mean

for the sample of male golfers?

c. What is the probability that the sample mean is within three strokes of the population mean

for the sample of female golfers?

d. In which case is the probability higher (b or c)? Why?

21. A researcher reports survey results by stating that the standard error of the mean is 20. The

population standard deviation is 500.

a. How large was the sample?

b. What is the probability that the point estimate was within ± 25 of the population mean?

22. To estimate the mean age for a population of 4000 employees in a large company in Kuwait City,

a simple random sample of 40 employees is selected.

a. Would you use the finite population correction factor in calculating the standard error of the

mean? Explain.

b. If the population standard deviation is = 8.2, compute the standard error both with and

without the finite population correction factor. What is the rationale for ignoring the finite

population correction factor whenever n/N 0.05?

c. What is the probability that the sample mean age of the employees will be within ± two years

of the population mean age?

COMPLETE

SOLUTIONS
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7.6 SAMPLING DISTRIBUTION OF P

The sample proportion P is a point estimator of the population proportion π. The formula for computing
the sample proportion is:

p
m

n

where:

m the number of elements in the sample that possess the characteristic of interest
n sample size

The sample proportion P is a random variable and its probability distribution is called the sampling
distribution of P.

To determine how close the sample proportion is to the population proportion π, we need to
understand the properties of the sampling distribution of P: the expected value of P, the standard
deviation of P and the shape of the sampling distribution of P.

Expected value of P

The expected value of P, the mean of all possible values of P, is equal to the population proportion π. P is
an unbiased estimator of π.

In Section 7.1 we noted that π = 0.60 for the EAI population, where π is the proportion of the
population of managers who participated in the company’s management training programme. The
expected value of P for the EAI sampling problem is therefore 0.60.

Standard deviation of P

Just as we found for the standard deviation of X , the standard deviation of P depends on whether the
population is finite or infinite.

Sampling distribution of P

The sampling distribution of P is the probability distribution of all possible values of the sample proportion P.

Expected value of P

E P π (7.4)where:

E P the expected value of P
π the population proportion
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Comparing the two formulae in (7.5), we see that the only difference is the use of the finite population
correction factor N n N 1 .

As was the case with the sample mean, the difference between the expressions for the finite population
and the infinite population becomes negligible if the size of the finite population is large in comparison to
the sample size. We follow the same rule of thumb that we recommended for the sample mean. That is, if
the population is finite with n/N ≤ 0.05, we shall use P π 1 π n.

However, if the population is finite with n/N > 0.05, the finite population correction factor should be
used. Again, unless specifically noted, throughout the text we shall assume that the population size is large
in relation to the sample size and so the finite population correction factor is unnecessary.

In Section 7.5 we used the term standard error of the mean to refer to the standard deviation of X .
We stated that in general the term standard error refers to the standard deviation of a point estimator.
Accordingly, for proportions we use standard error of the proportion to refer to the standard deviation
of P.

Let us now return to the EAI example and compute the standard error of the proportion associated
with simple random samples of 30 EAI managers. For the EAI study we know that the population
proportion of managers who participated in the management training programme is π = 0.60. With
n/N = 30/2500 = 0.012, we can ignore the finite population correction factor when we compute the
standard error of the proportion. For the simple random sample of 30 managers, σP is:

P
π 1 π

n

0 60 1 0 60

30
0 0894

Form of the sampling distribution of P

The sample proportion is p = m/n. For a simple random sample from a large population, the value of m is a
binomial random variable indicating the number of elements in the sample with the characteristic of interest.
Because n is a constant, the probability of each value of m/n is the same as the binomial probability of m,
which means that the sampling distribution of P is also a discrete probability distribution.

In Chapter 6 we showed that a binomial distribution can be approximated by a normal distribution
whenever the sample size is large enough to satisfy the following two conditions: nπ ≥ 5 and n(1 π) ≥ 5.
Assuming these two conditions are satisfied, the probability of m in the sample proportion, p = m/n, can
be approximated by a normal distribution. And because n is a constant, the sampling distribution of P can
also be approximated by a normal distribution. This approximation is stated as follows:

In practical applications, when an estimate of a population proportion is needed, we find that sample
sizes are almost always large enough to permit the use of a normal approximation for the sampling
distribution of P.

Standard deviation of P

Finite population Infinite population

P
N n

N 1

π 1 π

n
P

π 1 π

n

(7.5)

The sampling distribution of P can be approximated by a normal distribution whenever nπ ≥ 5 and n(1 π) ≥ 5.
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Recall that for the EAI sampling problem the population proportion of managers who participated in
the training programme is π = 0.60. With a simple random sample of size 30, we have nπ = 30(0.60) = 18
and n(1 – π) = 30(0.40) = 12. Consequently, the sampling distribution of P can be approximated by the
normal distribution shown in Figure 7.8.

Practical value of the sampling distribution of P

The practical value of the sampling distribution of P is that it can be used to provide probability
information about the difference between the sample proportion and the population proportion. For
instance, suppose that in the EAI problem the head of personnel services wants to know the probability of
obtaining a value of P that is within 0.05 of the population proportion of EAI managers who participated
in the training programme. That is, what is the probability of obtaining a sample with a sample
proportion P between 0.55 and 0.65? The darkly shaded area in Figure 7.8 shows this probability. Using
the fact that the sampling distribution of P can be approximated by a normal distribution with a mean of
0.60 and a standard error of the proportion of P = 0.0894, we find that the standard normal random
variable corresponding to p = 0.55 has a value of z = (0.55 0.60)/0.0894 = 0.56. Referring to the
standard normal distribution table, we see that the cumulative probability for z = 0.56 is 0.2877.
Similarly, for p = 0.56 we find a cumulative probability of 0.7123. Hence, the probability of selecting a
sample that provides a sample proportion P within 0.05 of the population proportion π is
0.7123 0.2877 = 0.4246.

If we consider increasing the sample size to n = 100, the standard error of the proportion becomes:

P
0 60 1 0 60

100
0 049

The probability of the sample proportion being within 0.05 of the population proportion can now be
calculated, again using the standard normal distribution table to find the area or probability. At p = 0.55,
we have z = (0.55 0.60)/0.049 = 1.02. Referring to the standard normal distribution table, we see that
the cumulative probability for z = 1.02 is 0.1539. Similarly, at p = 0.65 the cumulative probability is
0.8461. Hence, if the sample size is increased from 30 to 100, the probability that the sample proportion is
within 0.05 of the population proportion π will increase to 0.8461 0.1539 = 0.6922.

Area =  0.2123 Area =  0.2123

0.55 0.60 0.65

E(P)

p

Sampling distribution of P

P
 =  0.0894

FIGURE 7.8

Sampling distribution of P for the proportion of EAI managers who participated in the management training

programme
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EXERCISES

Methods

23. A simple random sample of size 100 is selected from a population with = 0.40.

a. What is the expected value of P?

b. What is the standard error of P?

c. Sketch the sampling distribution of P.

24. Assume that the population proportion is 0.55. Compute the standard error of the sample

proportion, P, for sample sizes of 100, 200, 500 and 1000. What can you say about the size of

the standard error of the proportion as the sample size is increased?

25. The population proportion is 0.30. What is the probability that a sample proportion will be within

±0.04 of the population proportion for each of the following sample sizes?

a. n = 100.

b. n = 200.

c. n = 500.

d. n = 1000.

e. What is the advantage of a larger sample size?

Applications

26. The Chief Executive Officer of Dunkley Distributors plc believes that 30 per cent of the firm’s

orders come from first-time customers. A simple random sample of 100 orders will be used to

estimate the proportion of first-time customers.

a. Assume that the CEO is correct and = 0.30. Describe the sampling distribution of the

sample proportion P for this study?

b. What is the probability that the sample proportion P will be between 0.20 and 0.40?

c. What is the probability that the sample proportion P will be between 0.25 and 0.35?

27. Eurostat reported that, in 2011, 64 per cent of households in Spain had Internet access. Use a

population proportion = 0.64 and assume that a sample of 300 households will be selected.

a. Sketch the sampling distribution of P, the sample proportion of households that have Internet

access.

b. What is the probability that the sample proportion P will be within ±0.03 of the population

proportion?

c. Answer part (b) for sample sizes of 600 and 1000.

28. Advertisers contract with Internet service providers and search engines to place ads on websites.

They pay a fee based on the number of potential customers who click on their ads. Unfortunately,

click fraud – i.e. someone clicking on an ad solely for the purpose of driving up advertising

revenue – has become a problem. Forty per cent of advertisers claim they have been a victim of

click fraud. Suppose a simple random sample of 380 advertisers is taken to learn about how they

are affected by this practice. Assume the population proportion = 0.40.

a. What is the probability the sample proportion will be within ±0.04 of the population proportion

experiencing click fraud?

b. What is the probability the sample proportion will be greater than 0.45?

29. In April 2012, a Gallup poll amongst a sample of 1074 Egyptian adults reported that 58 per cent

thought it would be a bad thing if the military remained involved in politics after the presidential

COMPLETE

SOLUTIONS
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SUMMARY

In this chapter we presented the concepts of simple random sampling and sampling distributions.

Simple random sampling was defined for sampling without replacement and sampling with

replacement. We demonstrated how a simple random sample can be selected and how the sample

data can be used to calculate point estimates of population parameters.

Point estimators such as X and P are random variables. The probability distribution of such a

random variable is called a sampling distribution. In particular, we described the sampling distribu-

tions of the sample mean X and the sample proportion P. We stated that E(X ) = and E(P) = , i.e.

they are unbiased estimators of the respective parameters. After giving the standard deviation or

standard error formulae for these estimators, we described the conditions necessary for the sampling

distributions of and P to follow normal distributions. Finally, we gave examples of how these normal

sampling distributions can be used to calculate the probability of X or P being within any given

distance of or respectively.

election. Assume that the population proportion was = 0.58, and that P is the sample

proportion in a sample of n = 1074.

a. Sketch the sampling distribution of P.

b. What is the probability that P will be within plus or minus 0.02 of .

c. Answer part (b) for sample of 2000 adults.

30. A market research firm conducts telephone surveys with a 40 per cent historical response rate.

What is the probability that in a new sample of 400 telephone numbers, at least 150 individuals

will cooperate and respond to the questions? In other words, what is the probability that the

sample proportion will be at least 150/400 = 0.375?

31. Lura Jafari is a successful sales representative for a major publisher of university textbooks.

Historically, Lura secures a book adoption on 25 per cent of her sales calls. Assume that her

sales calls for one month are taken as a sample of all possible sales calls, and that a statistical

analysis of the data estimates the standard error of the sample proportion to be 0.0625.

a. How large was the sample used in this analysis? That is, how many sales calls did Lura make

during the month?

b. Let P indicate the sample proportion of book adoptions obtained during the month. Sketch the

sampling distribution P.

c. Using the sampling distribution of P, compute the probability that Lura will obtain book

adoptions on 30 per cent or more of her sales calls during a one-month period.

COMPLETE

SOLUTIONS

ONLINE RESOURCES

For the data files, online summary, additional questions and answers, and software section for

Chapter 7, go to the online platform.
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KEY TERMS

Central limit theorem

Finite population correction factor

Parameter

Point estimate

Point estimator

Sample statistic

Sampled population

Sampling distribution

Sampling frame

Sampling with replacement

Sampling without replacement

Simple random sampling

Standard error

Target population

Unbiasedness

KEY FORMULAE

Expected value of X

E X (7.1)

Standard deviation of X (standard error)

Finite population Infinite population

X

N n

N 1 n X n

(7.2)

Expected value of P

E P π (7.4)

Standard deviation of P (standard error)

Finite population Infinite population

P
N n

N 1

π 1 π

n
P

π 1 π

n

(7.5)
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8
Interval
Estimation

CHAPTER CONTENTS

Statistics in Practice How accurate are opinion polls and market research surveys?

8.1 Population mean: known

8.2 Population mean: unknown

8.3 Determining the sample size

8.4 Population proportion

LEARNING OBJECTIVES After reading this chapter and doing the exercises, you should be able to:

1 Explain the purpose of an interval

estimate of a population parameter.

2 Explain the terms margin of error, confidence

interval, confidence level and confidence coefficient.

3 Construct confidence intervals for a population

mean:

3.1 When the population standard deviation

is known, using the normal distribution.

3.2 When the population standard deviation is

unknown, using the t distribution.

4 Construct large-sample confidence intervals

for a population proportion.

5 Calculate the sample size required to construct

a confidence interval with a given margin of

error for a population mean, when the

population standard deviation is known.

6 Calculate the sample size required to

construct a confidence interval with a given

margin of error for a population proportion.

In Chapter 7, we stated that a point estimator is a sample statistic used to estimate a population
parameter. For example, the sample mean is a point estimator of the population mean, and the sample

proportion is a point estimator of the population proportion. Because a point estimator cannot be
expected to provide the exact value of the population parameter, an interval estimate is often computed,
by adding and subtracting a margin of error.
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The purpose of an interval estimate is to provide information about how close the point estimate might
be to the value of the population parameter. In relatively simple cases, the general form of an interval
estimate is:

Point estimate Margin of error

In this chapter we show how to compute interval estimates of a population mean µ and a population
proportion π. The interval estimates have the same general form:

Population mean: x Margin of error

Population proportion : p Margin of error

The sampling distributions of X and P play key roles in computing these interval estimates.

8.1 POPULATION MEAN: KNOWN

To construct an interval estimate of a population mean, either the population standard deviation or the
sample standard deviation s must be used to compute the margin of error. Although is rarely known
exactly, historical data sometimes permit us to obtain a good estimate of the population standard
deviation prior to sampling. In such cases, the population standard deviation can be considered known

STATISTICS IN PRACTICE

How accurate are opinion polls and

market research surveys?

IPSOS and ICM Research are two large, global mar-

ket research and opinion polling companies.

IPSOS has its global headquarters in Paris, ICM

Research is based in London.

In July 2012, IPSOS released a report covering

opinion surveys in 24 countries across the globe,

entitled IPSOS Global @dvisory: The Economic Pulse

of the World. About eighteen and a half thousand

interviews were conducted over the 24 countries.

Interviewees were asked to assess the economic

situation in their home country: as either ‘Very good’,

or ‘Somewhat good’, or ‘Somewhat bad’ or ‘Very bad’.

In Spain, 78 per cent of respondents described

the economic situation as very bad. This compared

with 25 per cent of respondents in Great Britain,

15 per cent in South Africa, only 3 per cent in

Germany and just 2 per cent in Sweden.

But how accurate are estimates like these based

on sample evidence?

The issue of survey accuracy and margin of error

features on the ICM website, www.icmresearch.co.uk.

On one page, there is an interactive ‘ready-reckoner’

that will calculate the margin of error for any given

percentage result, like those above, and for any

given sample size. For example, in respect of the

78 per cent of 1012 respondents in Spain who

considered the economic situation to be very bad,

the ICM ready-reckoner calculates the ‘accuracy at

95 per cent confidence level’ to be plus or minus

2.6 percentage points. In other words, this implies

we can be 95 per cent confident that the percentage

of all adults in Spain who thought the economic

situation was very bad was between 75.4 per cent

and 80.6 per cent. By comparison, for the corre-

sponding figure of 15 per cent in South Africa, where

the sample size was 506, ICM’s ready-reckoner

gives the margin of error at the 95 per cent confi-

dence level as plus or minus 3.1 per cent.

In this chapter, you will learn the basis for these

margins of error, the confidence level of 95 per cent

associated with them, and the calculations that

underlie the ICM’s ready-reckoner.
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for practical purposes. We refer to such cases as the known case. In this section we show how a simple
random sample can be used to construct an interval estimate of a population mean for the known case.

Consider the monthly customer service survey conducted by CJW Limited, who has a website for
taking customer orders and providing follow-up service. The company prides itself on providing easy
online ordering, timely delivery and prompt response to customer enquiries. Good customer service is
critical to the company’s ongoing success.

CJW’s quality assurance team uses a customer service survey to measure satisfaction with its website
and online customer service. Each month, the team sends a questionnaire to a random sample of
customers who placed an order or requested service during the previous month. The questionnaire asks
customers to rate their satisfaction with such things as ease of placing orders, timely delivery, accurate
order filling and technical advice. The team summarizes each customer’s questionnaire by computing an
overall satisfaction score x that ranges from 0 (worst possible score) to 100 (best possible score). A sample
mean customer satisfaction score is then computed.

The sample mean satisfaction score provides a point estimate of the mean satisfaction score µ for the
population of all CJW customers. With this regular measure of customer service, CJW can promptly take
corrective action if a low satisfaction score results. The company conducted this satisfaction survey for a
number of months, and consistently obtained an estimate near 12 for the standard deviation of satisfac-
tion scores. Based on these historical data, CJW now assumes a known value of 12 for the population
standard deviation. The historical data also indicate that the population of satisfaction scores follows an
approximately normal distribution.

During the most recent month, the quality assurance team surveyed 100 customers (n 100) and
obtained a sample mean satisfaction score of x 72. This provides a point estimate of the population
mean satisfaction score µ. We show how to compute the margin of error for this estimate and construct
an interval estimate of the population mean.

Margin of error and the interval estimate

In Chapter 7 we showed that the sampling distribution of the sample mean X can be used to compute the
probability that X will be within a given distance of µ. In the CJW example, the historical data show that
the population of satisfaction scores is normally distributed with a standard deviation of 12. So, using
what we learned in Chapter 7, we can conclude that the sampling distribution of X follows a normal
distribution with a standard error of:

σX σ n 12 100 1 2

This sampling distribution is shown in Figure 8.1.*
Using the table of cumulative probabilities for the standard normal distribution, we find that 95 per cent

of the values of any normally distributed random variable are within 1.96 standard deviations of the
mean. So, 95 per cent of the X values must be within 1 96σX of the mean µ. In the CJW example,
we know that the sampling distribution of X is normal with a standard error of σX 1 2. Because

1 96σX 1 96 1 2 2 35, we conclude that 95 per cent of all X values obtained using a sample
size of n 100 will be within 2.35 units of the population mean µ. See Figure 8.1.

We said above that the general form of an interval estimate of the population mean µ is x margin of
error. For the CJW example, suppose we set the margin of error equal to 2.35 and compute the interval
estimate of µ using x 2 35. To provide an interpretation for this interval estimate, let us consider the
values of x 2 35 that could be obtained if we took three different simple random samples, each
consisting of 100 CJW customers.

The first sample mean might turn out to have the value shown as x 1 in Figure 8.1. In this case, the
interval formed by subtracting 2.35 from x 1 and adding 2.35 to x 1 includes the population mean µ.

CJW

*The population of satisfaction scores has a normal distribution, so we can conclude that the sampling distribution of

X is a normal distribution. If the population did not have a normal distribution, we could rely on the central limit

theorem, and the sample size of n 100, to conclude that the sampling distribution of X is approximately normal. In

either case, the sampling distribution would appear as shown in Figure 8.1.
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Now consider what happens if the second sample mean turns out to have the value shown as x2 in
Figure 8.1. Although x2 differs from x1, we see that the interval formed by x 2 2 35 also includes the
population mean µ. However, consider what happens if the third sample mean turns out to have the value
shown as x3 in Figure 8.1. In this case, because x3 falls in the upper tail of the sampling distribution and is
further than 2.35 units from µ, the interval x3 2 35 does not include the population mean µ.

Any sample mean that is within the darkly shaded region of Figure 8.1 will provide an interval estimate
that contains the population mean µ. Because 95 per cent of all possible sample means are in the darkly
shaded region, 95 per cent of all intervals formed by subtracting 2.35 from x and adding 2.35 to x will
include the population mean µ.

The general form of an interval estimate of a population mean for the known case is:

Interval estimate of a population mean: known

x z 2
n

(8.1)

where (1 α) is the confidence coefficient and zα/2 is the z value providing an area α/2 in the upper tail of

the standard normal probability distribution.

Let us use expression (8.1) to construct a 95 per cent confidence interval for the CJW problem. For a
95 per cent confidence interval, the confidence coefficient is (1 α) 0.95 and so α 0.05. As we saw
above, an area of α/2 0.05/2 0.025 in the upper tail gives z0.025 1.96. With the CJW sample mean
x 72, 12 and a sample size n 100, we obtain:

72 1 96
12

100
72 2 35

The specific interval estimate of µ based on the data from the most recent month is 72 2.35 69.65,
to 72 2.35 74.35. Because 95 per cent of all the intervals constructed using x 2 35 will contain the
population mean, we say that we are 95 per cent confident that the interval 69.65 to 74.35 includes
the population mean µ. We say that this interval has been established at the 95 per cent confidence level.
The value 0.95 is referred to as the confidence coefficient, and the interval 69.65 to 74.35 is called the
95 per cent confidence interval.

n 100

12
 
X =  =  =  1.2

1.96  X1.96  X

2.35

The population mean 

2.35

Intervals based on x ± 2.35

Sampling distribution of X

(note that the interval based on

x3 does not include )

x3

x2

x1

95% of all

X values

FIGURE 8.1

Sampling distribution of the

sample mean satisfaction

score from simple random

samples of 100 customers,

also showing the location of

sample means that are

within 2.35 units of , and

intervals calculated from

selected sample means at

locations x1, x2 and x3.
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Although a 95 per cent confidence level is frequently used, other confidence levels such as 90 per cent
and 99 per cent may be considered. Values of zα/2 for the most commonly used confidence levels are
shown in Table 8.1. Using these values and expression (8.1), the 90 per cent confidence interval for the
CJW problem is:

72 1 645
12

100
72 1 97

At 90 per cent confidence, the margin of error is 1.97 and the confidence interval is 72 1.97 70.03, to
72 1.97 73.97. Similarly, the 99 per cent confidence interval is:

72 2 576
12

100
72 3 09

At 99 per cent confidence, the margin of error is 3.09 and the confidence interval is 72 3.09 68.93, to
72 3.09 75.09.

Comparing the results for the 90 per cent, 95 per cent and 99 per cent confidence levels, we see that, in
order to have a higher degree of confidence, the margin of error and consequently the width of the
confidence interval must be larger.

Practical advice

If the population follows a normal distribution, the confidence interval provided by expression (8.1) is
exact. Therefore, if expression (8.1) were used repeatedly to generate 95 per cent confidence intervals,
95 per cent of the intervals generated (in the long run) would contain the population mean. If the
population does not follow a normal distribution, the confidence interval provided by expression (8.1)
will be approximate. In this case, the quality of the approximation depends on both the distribution of the
population and the sample size.

In most applications, a sample size of n ≥ 30 is adequate when using expression (8.1) to construct an
interval estimate of a population mean. If the population is not normally distributed but is roughly
symmetrical, sample sizes as small as 15 can be expected to provide good approximate confidence
intervals. With smaller sample sizes, expression (8.1) should be used only if the analyst believes, or is
willing to assume, that the population distribution is at least approximately normal.

EXERCISES

Methods

1. A simple random sample of 40 items results in a sample mean of 25. The population standard

deviation is 5.

a. What is the value of the standard error of the mean, ?

b. At 95 per cent confidence, what is the margin of error for estimating the population mean?

T ABLE 8 . 1 Values of z /2 for the most commonly used confidence levels

Confidence level /2 z /2

90% 0.10 0.05 1.645

95% 0.05 0.025 1.960

99% 0.01 0.005 2.576
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8.2 POPULATION MEAN: UNKNOWN

If a good estimate of the population standard deviation cannot be obtained prior to sampling, we must
use the sample standard deviation s to estimate . This is the unknown case. When s is used to estimate
, the margin of error and the interval estimate for the population mean are based on a probability

distribution known as the t distribution. Although the mathematical development of the t distribution is
based on the assumption of a normal distribution for the population from which we are sampling,
research shows that the t distribution can be successfully applied in many situations where the population
deviates from normal. Later in this section we provide guidelines for using the t distribution if the
population is not normally distributed.

The t distribution is a family of similar probability distributions, with a specific t distribution
depending on a parameter known as the degrees of freedom.

2. A simple random sample of 50 items from a population with 6 results in a sample mean of 32.

a. Construct a 90 per cent confidence interval for the population mean.

b. Construct a 95 per cent confidence interval for the population mean.

c. Construct a 99 per cent confidence interval for the population mean.

3. A simple random sample of 60 items results in a sample mean of 80. The population standard

deviation is 15.

a. Compute the 95 per cent confidence interval for the population mean.

b. Assume that the same sample mean was obtained from a sample of 120 items. Construct a

95 per cent confidence interval for the population mean.

c. What is the effect of a larger sample size on the interval estimate?

4. A 95 per cent confidence interval for a population mean was reported to be 152 to 160. If 15,

what sample size was used in this study?

Applications

5. In an effort to estimate the mean amount spent per customer for dinner at a Johannesburg

restaurant, data were collected for a sample of 49 customers. Assume a population standard

deviation of 40 South African rand (ZAR).

a. At 95 per cent confidence, what is the margin of error?

b. If the sample mean is ZAR186, what is the 95 per cent confidence interval for the population

mean?

6. A survey of small businesses with websites found that the average amount spent on a site was

11 500 per year. Given a sample of 60 businesses and a population standard deviation of

4000, what is the margin of error in estimating the population mean spend per year?

Use 95 per cent confidence.

7. A survey of 750 university students found they were paying on average 108 per week in

accommodation costs. Assume the population standard deviation for weekly accommodation

costs is 22.

a. Construct a 90 per cent confidence interval estimate of the population mean.

b. Construct a 95 per cent confidence interval estimate of the population mean.

c. Construct a 99 per cent confidence interval estimate of the population mean.

d. Discuss what happens to the width of the confidence interval as the confidence level is

increased. Does this result seem reasonable? Explain.

COMPLETE

SOLUTIONS

COMPLETE

SOLUTIONS
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The t distribution with one degree of freedom is unique, as is the t distribution with two degrees of
freedom with three degrees of freedom and so on. As the number of degrees of freedom increases, the
difference between the t distribution and the standard normal distribution becomes smaller and smaller.
Figure 8.2 shows t distributions with ten and 20 degrees of freedom and their relationship to the standard
normal probability distribution. Note that, the higher the degrees of freedom, the lower is the variability,
and the greater the resemblance to the standard normal distribution. Note also that the mean of the t
distribution is zero.

We place a subscript on t to indicate the area in the upper tail of the t distribution. For example, just as
we used z0.025 to indicate the z value providing a 0.025 area in the upper tail of a standard normal
distribution, we will use t0.025 to indicate a 0.025 area in the upper tail of a t distribution. So, in general,
the notation tα/2 will represent a t value with an area of α/2 in the upper tail of the t distribution.
See Figure 8.3.

Table 2 of Appendix B is a table for the t distribution. Each row in the table corresponds to a separate t
distribution with the degrees of freedom shown. For example, for a t distribution with ten degrees of
freedom, t0.025 2.228. Similarly, for a t distribution with 20 degrees of freedom, t0.025 2.086. As the
degrees of freedom continue to increase, t0.025 approaches z0.025 1.96. The standard normal distribu-
tion z values can be found in the infinite degrees of freedom row (labelled ∞) of the t distribution table. If
the degrees of freedom exceed 100, the infinite degrees of freedom row can be used to approximate the
actual t value. In other words, for more than 100 degrees of freedom, the standard normal z value
provides a good approximation to the t value.

William Sealy Gosset, writing under the name ‘Student’, was the originator of the t distribution.
Gosset, an Oxford graduate in mathematics, worked for the Guinness Brewery in Dublin, Ireland. The
distribution is sometimes referred to as ‘Student’s t distribution’.

0 t /2
t

/2

FIGURE 8.3

t distribution with /2 area of probability in

the upper tail

0
z, t

Standard normal distribution

t distribution (20 degrees of freedom)

t distribution (10 degrees of freedom)

FIGURE 8.2

Comparison of the standard

normal distribution with t

distributions having 10 and

20 degrees of freedom
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Margin of error and the interval estimate

In Section 8.1 we showed that an interval estimate of a population mean for the known case is:

x zα 2
σ

n

To compute an interval estimate of µ for the unknown case, the sample standard deviation s is used to
estimate and zα/2 is replaced by the t distribution value tα/2. The margin of error is then α 2 , and
the general expression for an interval estimate of a population mean when is unknown is:

Interval estimate of a population mean: unknown

x t 2

s

n
(8.2)

where s is the sample standard deviation, (1 α) is the confidence coefficient, and tα/2 is the t value

providing an area of α/2 in the upper tail of the t distribution with n 1 degrees of freedom*.

Consider a study designed to estimate the mean credit card debt for a defined population of households.
A sample of n 85 households provided the credit card balances in the file ‘Balance’ on the online
platform. The first few rows of this data set are shown in the EXCEL screenshot in Figure 8.4 below. For this
situation, no previous estimate of the population standard deviation is available. As a consequence, the
sample data must be used to estimate both the population mean and the population standard deviation.

FIGURE 8.4

First few data rows and

summary statistics for credit

card balances

BALANCE

*The reason the number of degrees of freedom associated with the t value in expression (8.2) is n 1 concerns the
use of s as an estimate of the population standard deviation. The expression for the sample standard deviation is

∑ 2 1 . Degrees of freedom refers to the number of independent pieces of information
that go into the computation of ∑ 2. The n pieces of information involved in computing
∑ 2 are as follows: 1 2

… . In Section 3.2 we indicated that ∑ 0.
Hence, only n 1 of the values are independent; that is, if we know n 1 of the values, the
remaining value can be determined exactly by using the condition that ∑ 0. So n 1 is the
number of degrees of freedom associated with ∑ 2 and hence the number of degrees of freedom
for the t distribution in expression (8.2).
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Using the data in the ‘Balance’ file, we compute the sample mean x 5900 € and the sample
standard deviation s 3058 (€).

With 95 per cent confidence and n 1 84 degrees of freedom, Table 2 in Appendix B gives
t0.025 1.989. We can now use expression (8.2) to compute an interval estimate of the population mean:

5900 1 989
3058

85
5900 660

The point estimate of the population mean is €5900, the margin of error is €660, and the 95 per cent
confidence interval is 5900 660 €5240 to 5900 660 €6560. We are 95 per cent confident that
the population mean credit card balance for all households in the defined population is between €5240
and €6560.

The procedures used by MINITAB, EXCEL and IBM SPSS to construct confidence intervals for a
population mean are described in the software guides on the online platform.

Practical advice

If the population follows a normal distribution, the confidence interval provided by expression (8.2) is
exact and can be used for any sample size. If the population does not follow a normal distribution, the
confidence interval provided by expression (8.2) will be approximate. In this case, the quality of the
approximation depends on both the distribution of the population and the sample size.

In most applications, a sample size of n ≥ 30 is adequate when using expression (8.2) to construct an
interval estimate of a population mean. However, if the population distribution is highly skewed or
contains outliers, the sample size should be 50 or more. If the population is not normally distributed but
is roughly symmetrical, sample sizes as small as 15 can be expected to provide good approximate
confidence intervals. With smaller sample sizes, expression (8.2) should only be used if the analyst is
confident that the population distribution is at least approximately normal.

Using a small sample

In the following example we construct an interval estimate for a population mean when the sample size is
small. An understanding of the distribution of the population becomes a factor in deciding whether the
interval estimation procedure provides acceptable results.

Scheer Industries is considering a new computer-assisted program to train maintenance employees to
do machine repairs. To fully evaluate the program, the director of manufacturing requested an estimate of
the population mean time required for maintenance employees to complete the training.

A sample of 20 employees is selected, with each employee in the sample completing the training
program. Data on the training time in days for the 20 employees are shown in Table 8.2. A histogram of
the sample data appears in Figure 8.5. What can we say about the distribution of the population based on
this histogram? First, the sample data do not support with certainty the conclusion that the distribution of
the population is normal, but we do not see any evidence of skewness or outliers. Therefore, using the
guidelines in the previous subsection, we conclude that an interval estimate based on the t distribution
appears acceptable for the sample of 20 employees.

T ABLE 8 . 2 Training time in days for a sample of 20 Scheer Industries employees

52 59 54 42

44 50 42 48

55 54 60 55

44 62 62 57

45 46 43 56
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We compute the sample mean and sample standard deviation as follows:

x
∑xi
n

1030

20
51 5 days

s
∑ xi x 2

n 1

889

20 1
6 84 days

For a 95 per cent confidence interval, we use Table 2 from Appendix B and n 1 19 degrees of
freedom to obtain t0.025 2.093. Expression (8.2) provides the interval estimate of the population mean:

51 5 2 093
6 84

20
51 5 3 2

The point estimate of the population mean is 51.5 days. The margin of error is 3.2 days and the 95 per
cent confidence interval is 51.5 3.2 48.3 days to 51.5 3.2 54.7 days.

Using a histogram of the sample data to learn about the distribution of a population is rarely
conclusive, but in many cases it provides the only information available. The histogram, along with
judgement on the part of the analyst, can often be used to decide if expression (8.2) can be used to
construct the interval estimate.

Summary of interval estimation procedures

We provided two approaches to computing the margin of error and constructing an interval estimate of a
population mean. For the known case, and the standard normal distribution are used in expression
(8.1). For the unknown case, the sample standard deviation s and the t distribution are used in
expression (8.2).

A summary of the interval estimation procedures for the two cases is shown in Figure 8.6. In most
applications, a sample size of n ≥ 30 is adequate. If the population has a normal or approximately normal
distribution, however, smaller sample sizes may be used. For the unknown case a sample size of n ≥ 50
is recommended if the population distribution is believed to be highly skewed or has outliers.
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FIGURE 8.5

Histogram of training times for the Scheer

Industries sample
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Can the population
standard deviation 
be assumed known?

Yes No

Use the sample
standard deviation

s to estimate 

σ Known Case σ Unknown Case

x ± z /2
n

Use
x ± t /2

n

s
Use

FIGURE 8.6

Summary of interval

estimation procedures for a

population mean

EXERCISES

Methods

8. For a t distribution with 16 degrees of freedom, find the area, or probability, in each region.

a. To the right of 2.120.

b. To the left of 1.337.

c. To the left of 1.746.

d. To the right of 2.583.

e. Between 2.120 and 2.120.

f. Between 1.746 and 1.746.

9. Find the t value(s) for each of the following cases.

a. Upper-tail area of 0.025 with 12 degrees of freedom.

b. Lower-tail area of 0.05 with 50 degrees of freedom.

c. Upper-tail area of 0.01 with 30 degrees of freedom.

d. Where 90 per cent of the area falls between these two t values with 25 degrees of freedom.

e. Where 95 per cent of the area falls between these two t values with 45 degrees of freedom.

10. The following sample data are from a normal population: 10, 8, 12, 15, 13, 11, 6, 5.

a. What is the point estimate of the population mean?

b. What is the point estimate of the population standard deviation?

c. With 95 per cent confidence, what is the margin of error for the estimation of the population

mean?

d. What is the 95 per cent confidence interval for the population mean?

COMPLETE

SOLUTIONS
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11. A simple random sample with n = 54 provided a sample mean of 22.5 and a sample standard

deviation of 4.4.

a. Construct a 90 per cent confidence interval for the population mean.

b. Construct a 95 per cent confidence interval for the population mean.

c. Construct a 99 per cent confidence interval for the population mean.

d. What happens to the margin of error and the confidence interval as the confidence level is

increased?

Applications

12. Sales personnel for Emirates Distributors submit weekly reports listing the customer contacts

made during the week. A sample of 65 weekly reports showed a sample mean of 19.5 customer

contacts per week. The sample standard deviation was 5.2. Provide 90 per cent and 95 per cent

confidence intervals for the population mean number of weekly customer contacts for the sales

personnel.

13. Consumption of alcoholic beverages by young women of drinking age is of concern in the UK and

some other European countries. Annual consumption data (in litres) are shown below for a sample

of 20 European young women.

266 82 199 174 97

170 222 115 130 169

164 102 113 171 0

93 0 93 110 130

Assuming the population is distributed roughly symmetrically, construct a 95 per cent confidence

interval for the mean annual consumption of alcoholic beverages by young European women.

14. The International Air Transport Association (IATA) surveys business travellers to develop quality

ratings for international airports. The maximum possible rating is 10. Suppose a simple random

sample of business travellers is selected and each traveller is asked to provide a rating for Kuwait

International Airport. The ratings obtained from the sample of 50 business travellers follow.

Construct a 95 per cent confidence interval estimate of the population mean rating for Kuwait

International.

2 1 8 7 3 1 8 1 7 9 2 9 10 9 7 8 9

1 0 3 0 1 6 2 3 1 6 8 7 7 7 7 7 1

2 5 2 1 2 2 0 2 2 7 0 8 7 0 2 8

15. Suppose a survey of 40 first-time home buyers finds that the mean of annual household income is

40 000 and the sample standard deviation is 15 300.

a. At 95 per cent confidence, what is the margin of error for estimating the population mean

household income?

b. What is the 95 per cent confidence interval for the population mean annual household income

for first-time home buyers?

16. A sample of 30 fast-food restaurants including McDonald’s and Burger King were visited. During

each visit, the customer went to the drive-through and ordered a basic meal such as a burger,

fries and drink. The time between pulling up to the order kiosk and receiving the filled order was

recorded. The times in minutes for the 30 visits are as follows:

0.9 1.0 1.2 2.2 1.9 3.6 2.8 5.2 1.8 2.1 6.8 1.3 3.0 4.5 2.8

2.3 2.7 5.7 4.8 3.5 2.6 3.3 5.0 4.0 7.2 9.1 2.8 3.6 7.3 9.0

ALCOHOL

IATA

FASTFOOD

COMPLETE

SOLUTIONS
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8.3 DETERMINING THE SAMPLE SIZE

We commented earlier on the role of the sample size in providing good approximate confidence intervals
when the population is not normally distributed. In this section, we focus on another aspect of the sample
size issue. We describe how to choose a sample size large enough to provide a desired margin of error. To
understand how this process is done, we return to the known case presented in Section 8.1. Using
expression (8.1), the interval estimate is α 2σ . We see that zα/2, the population standard
deviation , and the sample size n combine to determine the margin of error. Once we select a confidence
coefficient 1 α, zα/2 can be determined. Then, if we have a value for , we can determine the sample
size n needed to provide any desired margin of error. Let E the desired margin of error.

E zα 2
σ

n

Solving for , we have:

n
zα 2σ

E

Squaring both sides of this equation, we obtain the following expression for the sample size.

Sample size for an interval estimate of a population mean

n
zα 2

2σ2

E2
(8.3)

This sample size provides the desired margin of error at the chosen confidence level.
In equation (8.3), E is the acceptable margin of error, and the value of zα/2 follows directly from the

confidence level to be used. Although user preference must be considered, 95 per cent confidence is the
most frequently chosen value (z0.025 1.96). Equation (8.3) can be used to provide a good sample size
recommendation. However, the analyst should use judgement in deciding whether the recommendation
given by equation (8.3) needs adjustment.

a. Provide a point estimate of the population mean drive-through time at fast-food restaurants.

b. At 95 per cent confidence, what is the margin of error?

c. What is the 95 per cent confidence interval estimate of the population mean?

d. Discuss skewness that may be present in this population. What suggestion would you make

for a repeat of this study?

17. A survey by Accountemps asked a sample of 200 executives to provide data on the number of

minutes per day office workers waste trying to locate mislabelled, misfiled or misplaced items.

Data consistent with this survey are contained in the data set ‘ActTemps’.

a. Use ‘ActTemps’ to develop a point estimate of the number of minutes per day office workers

waste trying to locate mislabelled, misfiled or misplaced items.

b. What is the sample standard deviation?

c. What is the 95 per cent confidence interval for the mean number of minutes wasted per day?

ACTTEMPS
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Use of equation (8.3) requires a value for the population standard deviation . However, even if is
unknown, we can use equation (8.3) provided we have a preliminary or planning value for . In practice,
one of the following procedures can be chosen:

1 Use an estimate of the population standard deviation computed from data of previous studies as the
planning value for .

2 Use a pilot study to select a preliminary sample. The sample standard deviation from the
preliminary sample can be used as the planning value for .

3 Use judgement or a ‘best guess’ for the value of . For example, we might begin by estimating the
largest and smallest data values in the population. The difference between the largest and smallest
values provides an estimate of the range for the data. The range divided by four is often suggested as
a rough approximation of the standard deviation and hence an acceptable planning value for .

Consider the following example. A travel organization would like to conduct a study to estimate the
population mean daily rental cost for a family car in Ireland. The director specifies that the population
mean daily rental cost be estimated with a margin of error of €2 and a 95 per cent level of confidence. A
previous study some years before had found a mean cost of approximately €80 per day for renting a
family car, with a standard deviation of about €10.

The director specified a desired margin of error of E 2, and the 95 per cent level of confidence
indicates z0.025 1.96. We only need a planning value for the population standard deviation to
compute the required sample size. Using €10 (from the previous study) as the planning value for , we
obtain:

n
zα 2

2σ2

E2

1 96 2 10 2

2 2
96 04

The sample size for the new study needs to be at least 96.04 family car rentals in order to satisfy the
director’s €2 margin-of-error requirement. In cases where the computed n is not an integer, we usually
round up to the next integer value, in this case 97. Here, the sample size might be rounded for
convenience to 100.

EXERCISES

Methods

18. How large a sample should be selected to provide a 95 per cent confidence interval with a margin

of error of 10? Assume that the population standard deviation is 40.

19. The range for a set of data is estimated to be 36.

a. What is the planning value for the population standard deviation?

b. At 95 per cent confidence, how large a sample would provide a margin of error of 3?

c. At 95 per cent confidence, how large a sample would provide a margin of error of 2?

Applications

20. Refer to the Scheer Industries example in Section 8.2. Use 6.82 days as a planning value for the

population standard deviation.

a. Assuming 95 per cent confidence, what sample size would be required to obtain a margin of

error of 1.5 days?

b. If the precision statement was made with 90 per cent confidence, what sample size would be

required to obtain a margin of error of two days?

COMPLETE

SOLUTIONS
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8.4 POPULATION PROPORTION

We said earlier that the general form of an interval estimate of a population proportion π is: p margin
of error. The sampling distribution of the sample proportion of plays a key role in computing the margin
of error for this interval estimate.

In Chapter 7 we said that the sampling distribution of the sample proportion P can be approximated
by a normal distribution whenever nπ 5 and n(1 π) 5. Figure 8.7 shows the normal approximation
of the sampling distribution of P. The mean of the sampling distribution of P is the population proportion
π, and the standard error of P is:

σP
π 1 π

n
(8.4)

If we choose zα/2 P as the margin of error in an interval estimate of a population proportion, we know
that 100(1 α) per cent of the intervals generated will contain the true population proportion. But P

cannot be used directly in the computation of the margin of error because π will not be known; π is what
we are trying to estimate. So, p is substituted for π and the margin of error for an interval estimate of a
population proportion is given by:

Margin of error zα 2
p 1 p

n
(8.5)

21. Suppose you are interested in estimating the average cost of staying for one night in a double

room in a three-star hotel in France (outside Paris). Using 30.00 as the planning value for the

population standard deviation, what sample size is recommended for each of the following

cases? Use 3 as the desired margin of error.

a. A 90 per cent confidence interval estimate of the population mean cost.

b. A 95 per cent confidence interval estimate of the population mean cost.

c. A 99 per cent confidence interval estimate of the population mean cost.

d. When the desired margin of error is fixed, what happens to the sample size as the

confidence level is increased? Would you recommend a 99 per cent confidence level be

used? Discuss.

22. Suppose the price/earnings (P/E) ratios for stocks listed on a European Stock Exchange have a

mean value of 35 and a standard deviation of 18. We want to estimate the population mean P/E

ratio for all stocks listed on the exchange. How many stocks should be included in the sample if

we want a margin of error of 3? Use 95 per cent confidence.

23. Fuel consumption tests are conducted for a particular model of car. If a 98 per cent confidence

interval with a margin of error of 0.2 litres per 100km is desired, how many cars should be used

in the test? Assume that preliminary tests indicate the standard deviation is 0.5 litres per

100km.

24. In developing patient appointment schedules, a medical centre wants to estimate the mean time

that a staff member spends with each patient. How large a sample should be taken if the desired

margin of error is two minutes at a 95 per cent level of confidence? How large a sample should be

taken for a 99 per cent level of confidence? Use a planning value for the population standard

deviation of eight minutes.

COMPLETE

SOLUTIONS
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The general expression for an interval estimate of a population proportion is:

Interval estimate of a population proportion

p zα 2
p 1 p

n
(8.6)

where 1 α is the confidence coefficient and zα/2 is the z value providing an area of α/2 in the upper tail of

the standard normal distribution.

Consider the following example. A national survey of 900 women golfers was conducted to learn how
women golfers view their treatment at golf courses. (The data are available in the file ‘TeeTimes’ on the
companion online platform.) The survey found that 396 of the women golfers were satisfied with the
availability of tee times. So, the point estimate of the proportion of the population of women golfers who
are satisfied is 396/900 0.44. Using expression (8.6) and a 95 per cent confidence level,

p zα 2
p 1 p

n
0 44 1 96

0 44 1 0 44

900
0 44 0 0324

The margin of error is 0.0324 and the 95 per cent confidence interval estimate of the population
proportion is 0.408 to 0.472. Using percentages, the survey results enable us to state with 95 per cent
confidence that between 40.8 per cent and 47.2 per cent of all women golfers are satisfied with the
availability of tee times.

Determining the sample size

The rationale for the sample size determination in constructing interval estimates of π is similar to the
rationale used in Section 8.3 to determine the sample size for estimating a population mean.

Previously in this section we said that the margin of error associated with an interval estimate of a
population proportion is α 2 1 . The margin of error is based on the values of zα/2, the sample
proportion p, and the sample size n. Larger sample sizes provide a smaller margin of error and better
precision. Let E denote the desired margin of error:

E zα 2
p 1 p

n

n

(1− )
P =

p
p

/2 /2

z /2  Pz /2 P

FIGURE 8.7

Normal approximation of the

sampling distribution of P

TEETIMES
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Solving this equation for n provides a formula for the sample size that will provide a margin of error
of size E:

n
zα 2

2p 1 p

E2

However, we cannot use this formula to compute the sample size because p will not be known until after
we select the sample. What we need, then, is a planning value for p. Using p* to denote the planning value
for p, the following formula can be used to compute the sample size.

Sample size for an interval estimate of a population proportion

n
zα 2

2p 1 p

E2
(8.7)

In practice, the planning value can be chosen by one of the following procedures:

1 Use the sample proportion from a previous sample of the same or similar units.

2 Use a pilot study to select a preliminary sample. The sample proportion from this sample can be
used as the planning value.

3 Use judgement or a ‘best guess’ for the value of p*.

4 If none of the preceding alternatives apply, use a planning value of p* 0.50.

Let us return to the survey of women golfers and assume that the company is interested in conducting
a new survey to estimate the current proportion of the population of women golfers who are satisfied with
the availability of tee times. How large should the sample be if the survey director wants to estimate
the population proportion with a margin of error of 0.025 at 95 per cent confidence? With E 0.025 and
zα/2 1.96, we need a planning value p* to answer the sample size question. Using the previous survey
result of p 0.44 as the planning value p*, equation (8.7) shows that:

n
zα 2

2p 1 p

E2

1 96 2 0 44 1 0 44

0 025 2
1514 5

The sample size must be at least 1514.5 women golfers to satisfy the margin of error requirement.
Rounding up to the next integer value indicates that a sample of 1515 women golfers is recommended to
satisfy the margin of error requirement.

The fourth alternative suggested for selecting a planning value p* is to use p* 0.50. This value of p* is
frequently used when no other information is available. To understand why, note that the numerator of
equation (8.7) shows that the sample size is proportional to the quantity p*(1 p*). A larger value for this
quantity will result in a larger sample size. Table 8.3 gives some possible values of p*(1 p*). Note that
the largest value occurs when p* 0.50. So, in case of any uncertainty about an appropriate planning
value, we know that p* 0.50 will provide the largest sample size recommendation. If the sample
proportion turns out to be different from the 0.50 planning value, the margin of error will be smaller than
anticipated. In effect, we play it safe by recommending the largest possible sample size.

In the survey of women golfers example, a planning value of p* 0.50 would have provided the
sample size:

n
zα 2

2p 1 p

E2

1 96 2 0 5 1 0 5

0 025 2
1536 6

A slightly larger sample size of 1537 women golfers would be recommended.
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T ABLE 8 . 3 Some possible values for p*(1 p*)

p* p*(1 p*)

0.10 (0.10)(0.90) 0.09

0.30 (0.30)(0.70) 0.21

0.40 (0.40)(0.60) 0.24

0.50 (0.50)(0.50) 0.25 Largest value for p*(1 − p*)

0.60 (0.60)(0.40) 0.24

0.70 (0.70)(0.30) 0.21

0.90 (0.90)(0.10) 0.09

EXERCISES

Methods

25. A simple random sample of 400 individuals provides 100 Yes responses.

a. What is the point estimate of the proportion of the population that would provide Yes

responses?

b. What is your estimate of the standard error of the sample proportion?

c. Compute a 95 per cent confidence interval for the population proportion.

26. A simple random sample of 800 elements generates a sample proportion p = 0.70.

a. Provide a 90 per cent confidence interval for the population proportion.

b. Provide a 95 per cent confidence interval for the population proportion.

27. In a survey, the planning value for the population proportion is p* = 0.35. How large a sample

should be taken to provide a 95 per cent confidence interval with a margin of error of 0.05?

28. At 95 per cent confidence, how large a sample should be taken to obtain a margin of error of 0.03

for the estimation of a population proportion? Assume that past data are not available for

developing a planning value for p.

Applications

29. A survey of 611 office workers investigated telephone answering practices, including how often

each office worker was able to answer incoming telephone calls and how often incoming

telephone calls went directly to voice mail. A total of 281 office workers indicated that they never

need voice mail and are able to take every telephone call.

a. What is the point estimate of the proportion of the population of office workers who are able to

take every telephone call?

b. At 90 per cent confidence, what is the margin of error?

c. What is the 90 per cent confidence interval for the proportion of the population of office

workers who are able to take every telephone call?

30. The French market research and polling company CSA carried out surveys to investigate job

satisfaction among professionally qualified employees of private companies. A total of 629

COMPLETE

SOLUTIONS
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professionals were involved in the surveys, of whom 195 said that they were dissatisfied with their

employer’s recognition of their professional experience.

a. What is the point estimate of the proportion of the population of employees who were

dissatisfied with their employer’s recognition of their professional experience?

b. At 95 per cent confidence, what is the margin of error?

c. What is the 95 per cent confidence interval for the proportion of the population of employees

who were dissatisfied with their employer’s recognition of their professional experience?

31. In a sample of 162 companies, 104 reported profits that beat prior estimates, 29 matched

estimates and 29 fell short of prior estimates.

a. What is the point estimate of the proportion that fell short of estimates?

b. Determine the margin of error and provide a 95 per cent confidence interval for the proportion

that fell short of estimates.

c. How large a sample is needed if the desired margin of error is 0.05?

32. In early December 2008, the Palestinian Center for Policy and Survey Research carried out an

opinion poll among adults in the West Bank and Gaza Strip. Respondents were asked their opinion

about the chance of an independent Palestinian state being established alongside Israel in the

next five years. Among the 1270 respondents, 34.6 per cent felt there was no chance of this

happening.

a. Provide a 95 per cent confidence interval for the population proportion of adults who thought

there was no chance of an independent Palestinian state being established alongside Israel in

the next five years.

b. Provide a 99 per cent confidence interval for the population proportion of adults who thought

there was no chance of an independent Palestinian state being established alongside Israel in

the next five years.

c. What happens to the margin of error as the confidence is increased from 95 per cent to

99 per cent?

33. In a survey conducted by ICM Research in the UK, 710 out of 1000 adults interviewed said that, if

there were to be a referendum, they would vote for the UK not to join the European currency (the

euro). What is the margin of error and what is the interval estimate of the population proportion of

British adults who would vote for the UK not to join the European currency? Use 95 per cent

confidence.

34. A well-known bank credit card firm wishes to estimate the proportion of credit card holders who

carry a non-zero balance at the end of the month and incur an interest charge. Assume that the

desired margin of error is 0.03 at 98 per cent confidence.

COMPLETE

SOLUTIONS

a. How large a sample should be selected if it is anticipated that roughly 70 per cent of the firm’s

cardholders carry a non-zero balance at the end of the month?

b. How large a sample should be selected if no planning value for the proportion could be

specified?

ONLINE RESOURCES

For the data files, additional online summary, questions, answers and software section go to

the accompanying online platform.
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SUMMARY

In this chapter we introduced the idea of an interval estimate of a population parameter. A point

estimator may or may not provide a good estimate of a population parameter. The use of an interval

estimate provides a measure of the precision of an estimate. A common form of interval estimate is a

confidence interval.

We presented methods for computing confidence intervals of a population mean and a population

proportion. Both are of the form: point estimate margin of error. The confidence interval has a

confidence coefficient associated with it.

We presented interval estimates for a population mean for two cases. In the known case,

historical data or other information is used to make an estimate of prior to taking a sample. Analysis

of new sample data then proceeds based on the assumption that is known. In the unknown case,

the sample data are used to estimate both the population mean and the population standard

deviation. In the known case, the interval estimation procedure is based on the assumed value of

and the use of the standard normal distribution. In the unknown case, the interval estimation

procedure uses the sample standard deviation s and the t distribution.

In both cases the quality of the interval estimates obtained depends on the distribution of the

population and the sample size. Practical advice about the sample size necessary to obtain good

approximations was included in Sections 8.1 and 8.2.

The general form of the interval estimate for a population proportion is p margin of error. In

practice, the sample sizes used for interval estimates of a population proportion are generally large.

Consequently, the interval estimation procedure is based on the standard normal distribution.

We explained how the expression for margin of error can be used to calculate the sample size

required to achieve a desired margin of error at a given level of confidence. We did this for two cases:

estimating a population mean when the population standard deviation is known, and estimating a

population proportion.

KEY TERMS

Confidence coefficient

Confidence interval

Confidence level

Degrees of freedom

Interval estimate

Margin of error

known

unknown

t distribution

KEY FORMULAE

Interval estimate of a population mean: known

x zα 2
σ

n
(8.1)

Interval estimate of a population mean: unknown

x tα 2
s

n
(8.2)
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Sample size for an interval estimate of a population mean

n
zα 2

2
σ
2

E2
(8.3)

Interval estimate of a population proportion

p zα 2
p 1 p

n
(8.6)

Sample size for an interval estimate of a population proportion

n
zα 2

2p 1 p

E2
(8.7)

CASE PROBLEM 1

International bank

The manager of a city-centre branch of a well-

known international bank commissioned a custo-

mer satisfaction survey. The survey investigated

three areas of customer satisfaction: their experi-

ence waiting for service at a till, their experience

being served at the till and their experience of self-

service facilities at the branch. Within each of

these categories, respondents to the survey were

asked to give ratings on a number of aspects of

the bank’s service. These ratings were then

summed to give an overall satisfaction rating in

each of the three areas of service. The summed

ratings are scaled such that they lie between 0

and 100, with 0 representing extreme dissatisfac-

tion and 100 representing extreme satisfaction.

The data file for this case study (‘IntnlBank’ on

the online platform) contains the 0–100 ratings

for the three areas of service, together with parti-

culars of respondents’ gender and whether they

would recommend the bank to other people (a

simple Yes/No response was required to this

question). A table containing the first few rows of

the data file is shown.

Waiting Service Self-service Gender Recommend

55 65 50 male no

50 80 88 male no

30 40 44 male no

65 60 69 male yes

55 65 63 male no

40 60 56 male no

15 65 38 male yes

45 60 56 male no

55 65 75 male no

50 50 69 male yes

Managerial report

1. Use descriptive statistics to summarize each of the

five variables in the data file (the three service

ratings, customer gender and customer recom-

mendation).

2. Calculate a 95 per cent confidence interval esti-

mate of the mean service rating for the population

of customers of the branch, for each of the three

service areas. Provide a managerial interpretation

of each interval estimate.

3. Calculate a 95 per cent confidence interval est-

imate of the proportion of the branch’s cus-

tomers who would recommend the bank, and

a 95 per cent confidence interval estimate ofINTNLBANK
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the proportion of the branch’s customers who

are female. Provide a managerial interpretation

of each interval estimate.

4. Suppose the branch manager required an estim-

ate of the percentage of branch customers who

would recommend the branch within a margin of

error of 3 percentage points. Using 95 per cent

confidence, how large should the sample size be?

5. Suppose the branch manager required an estim-

ate of the percentage of branch customers who

are female within a margin of error of 5 percentage

points. Using 95 per cent confidence, how large

should the sample size be?

CASE PROBLEM 2

Consumer Knowhow

Consumer Knowhow is a consumer research organi-

zation that conducts surveys designed to evaluate a

wide variety of products and services available to

consumers. In one particular study, Consumer Know-

how looked at consumer satisfaction with the per-

formance of cars produced by a major European

manufacturer. A questionnaire sent to owners of

one of the manufacturer’s family cars revealed sev-

eral complaints about early transmission problems.

To learn more about the transmission failures, Con-

sumer Knowhow used a sample of transmission

repairs provided by a transmission repair firm located

near the manufacturing plant. The data in the file

‘Repairs’ are the kilometres driven for 50 cars at

the time of transmission failure.

Managerial report

1. Use appropriate descriptive statistics to

summarize the transmission failure data.

2. Construct a 95 per cent confidence interval for

the mean number of kilometres driven until

transmission failure for the population of cars

with transmission failure. Provide a managerial

interpretation of the interval estimate.

3. Discuss the implication of your statistical findings

in relation to the proposition that some owners

of the cars experienced early transmission

failures.

4. How many repair records should be sampled if the

research company wants the population mean

number of kilometres driven until transmission

failure to be estimated with a margin of error of

5000 kilometres? Use 95 per cent confidence.

5. What other information would you like to gather to

evaluate the transmission failure problem more

fully?

REPAIRS
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9
Hypothesis Tests

CHAPTER CONTENTS

Statistics in Practice Hypothesis testing in business research

9.1 Developing null and alternative hypotheses

9.2 Type I and Type II errors

9.3 Population mean: known

9.4 Population mean: unknown

9.5 Population proportion

9.6 Hypothesis testing and decision-making

9.7 Calculating the probability of Type II errors

9.8 Determining the sample size for hypothesis tests about a population mean

LEARNING OBJECTIVES After studying this chapter and doing the exercises, you should be able to:

1 Set up appropriate null and alternative

hypotheses for testing research hypotheses,

and for testing the validity of a claim.

2 Give an account of the logical steps involved in

a statistical hypothesis test.

3 Explain the meaning of the terms null

hypothesis, alternative hypothesis, Type I error,

Type II error, level of significance, p-value and

critical value in statistical hypothesis testing.

4 Construct and interpret hypothesis tests for a

population mean:

4.1 When the population standard deviation is

known.

4.2 When the population standard deviation

is unknown.

5 Construct and interpret hypothesis tests for a

population proportion.

6 Explain the relationship between the

construction of hypothesis tests and confidence

intervals.

7 Calculate the probability of a Type II

error for a hypothesis test of a population

mean when the population standard deviation is

known.

8 Estimate the sample size required for a

hypothesis test of a population mean when the

population standard deviation is known.
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In Chapters 7 and 8 we showed how a sample could be used to construct point and interval estimates of
population parameters. In this chapter we continue the discussion of statistical inference by showing

how hypothesis testing can be used to determine whether a statement about the value of a population
parameter should or should not be rejected.

In hypothesis testing we begin by making a tentative assumption about a population parameter. This
tentative assumption is called the null hypothesis and is denoted by H0. We then define another
hypothesis, called the alternative hypothesis, which is the opposite of what is stated in the null
hypothesis. We denote the alternative hypothesis by H1. The hypothesis testing procedure uses data
from a sample to assess the two competing statements indicated by H0 and H1.

This chapter shows how hypothesis tests can be conducted about a population mean and a population
proportion. We begin by providing examples of approaches to formulating null and alternative
hypotheses.

STATISTICS IN PRACTICE

Hypothesis testing in business

research

T he British Journal of Management (BJM) is one of

the most highly rated academic journals globally

in the field of management. It is published quarterly,

and contains articles giving accounts of the latest

research in the field. Any particular issue typically

shows an authorship with wide geographic spread.

For example, the June 2011 issue contained nine

articles written by researchers from Germany, Switzer-

land, Italy, UK, Lebanon, Australia and Canada. The

research topics addressed included links between

work/home culture and employee well-being, atti-

tudes towards corporate social responsibility, age dis-

crimination in recruitment and assessment of

research quality in UK universities.

Of the nine articles in the June 2011 BJM issue,

seven reported research based on quantitative metho-

dology. The other two featured qualitative research. All

of the seven quantitative papers featured both descrip-

tive statistics and extensive use of inferential statistics.

The main tool in regard to the inferential results reported

was the statistical hypothesis test. Between them, the

seven articles reported a total of over 400 statistical

hypothesis tests. In other words, most of these articles

involved over 50 hypothesis tests per article. The BJM

is not unusual in this respect. Similar results would be

found if other academic journals in business were exam-

ined, as indeed academic journals in economics,

finance, psychology and many other fields.

Many of the hypothesis tests in the BJM articles

were those described in Chapters 10 to 18 of this

book. In the present chapter, we set the scene by

setting out the logic of statistical hypothesis testing,

and illustrating the logic by describing several simple

hypothesis tests.
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9.1 DEVELOPING NULL AND ALTERNATIVE HYPOTHESES

It is not always obvious how the null and alternative hypotheses should be formulated. Care must be
taken to structure the hypotheses appropriately so that the hypothesis testing conclusion provides the
information the researcher or decision maker wants. The context of the situation is very important in
determining how the hypotheses should be stated. All hypothesis testing applications involve collecting a
sample and using the sample results to provide evidence for drawing a conclusion. Good questions to
consider when formulating the null and alternative hypotheses are: What is the purpose of collecting the
sample? What conclusions are we hoping to make?

In the chapter introduction, we stated that the null hypothesis H0 is a tentative assumption about a
population parameter such as a population mean or a population proportion. The alternative hypothesis
H1 states the opposite (or complement) of the null hypothesis. In some situations it is easier to identify
the alternative hypothesis first and then develop the null hypothesis. In other situations it is easier to
identify the null hypothesis first and then develop the alternative hypothesis. We shall illustrate these
situations in the following examples.

The alternative hypothesis as a research hypothesis

Many applications of hypothesis testing involve an attempt to gather evidence in support of a research
hypothesis. In these situations, it is often best to begin with the alternative hypothesis and make it the
conclusion that the researcher hopes to support. Consider a particular model of car that currently attains
an average fuel consumption of seven litres of fuel per 100 kilometres of driving. A product research
group develops a new fuel injection system specifically designed to decrease the fuel consumption. To
evaluate the new system, several will be manufactured, installed in cars and subjected to research-
controlled driving tests. Here the product research group is looking for evidence to conclude that the
new system decreases the mean fuel consumption. In this case, the research hypothesis is that the new fuel
injection system will provide a mean litres-per-100 km rating below 7; that is, µ 7. As a general
guideline, a research hypothesis should be stated as the alternative hypothesis. Hence, the appropriate null
and alternative hypotheses for the study are:

H0 μ 7

H1 μ 7

If the sample results lead to the conclusion to reject H0, the inference can be made that H1: µ 7 is
true. The researchers have the statistical support to state that the new fuel injection system decreases the
mean litres of fuel consumed per 100km. The production of cars with the new fuel injection system
should be considered. However, if the sample results lead to the conclusion that H0 cannot be rejected,
the researchers cannot conclude that the new fuel injection system is better than the current system.
Production of cars with the new fuel injection system on the basis of improved fuel consumption cannot
be justified. Perhaps more research and further testing can be conducted.

The conclusion that the research hypothesis is true is made if the sample data provide sufficient evidence
to show that the null hypothesis can be rejected.

Successful companies stay competitive by developing new products, new methods, new systems and
the like, that are better than those currently available. Before adopting something new, it is desirable to do
research to determine if there is statistical support for the conclusion that the new approach is indeed
better. In such cases, the research hypothesis is stated as the alternative hypothesis. For example, a new
teaching method is developed that is believed to be better than the current method. The alternative
hypothesis is that the new method is better. The null hypothesis is that the new method is no better than
the old method. A new sales force bonus plan is developed in an attempt to increase sales. The alternative
hypothesis is that the new bonus plan increases sales. The null hypothesis is that the new bonus plan does
not increase sales. A new drug is developed with the goal of lowering blood pressure more than
an existing drug. The alternative hypothesis is that the new drug lowers blood pressure more than the
existing drug. The null hypothesis is that the new drug does not provide lower blood pressure than
the existing drug. In each case, rejection of the null hypothesis H0 provides statistical support for the
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research hypothesis. We will see many examples of hypothesis tests in research situations such as these
throughout this chapter and in the remainder of the text.

The null hypothesis as an assumption to be challenged

Of course, not all hypothesis tests involve research hypotheses. In the following discussion we consider
applications of hypothesis testing where we begin with a belief or an assumption that a statement about
the value of a population parameter is true. We will then use a hypothesis test to challenge the assumption
and determine if there is statistical evidence to conclude that the assumption is incorrect. In these
situations, it is helpful to develop the null hypothesis first. The null hypothesis H0 expresses the belief
or assumption about the value of the population parameter. The alternative hypothesis H1 is that the
belief or assumption is incorrect.

As an example, consider the situation of a soft drinks manufacturer. The label on the bottle states that
it contains 1.5 litres. We consider the label correct provided the population mean filling volume for the
bottles is at least 1.5 litres. Without any reason to believe otherwise, we would give the manufacturer the
benefit of the doubt and assume that the statement on the label is correct. So, in a hypothesis test about
the population mean volume per bottle, we would begin with the assumption that the label is correct and
state the null hypothesis as µ 1.5. The challenge to this assumption would imply that the label is
incorrect and the bottles are being underfilled. This challenge would be stated as the alternative hypoth-
esis μ 1.5. The null and alternative hypotheses are:

H0 μ 1 5

H1 μ 1 5

A trading standards office (TSO) with the responsibility for validating manufacturing labels could
select a sample of soft drinks bottles, compute the sample mean filling weight and use the sample results
to test the preceding hypotheses. If the sample results lead to the conclusion to reject H0, the inference
that H1: μ 1.5 is true can be made. With this statistical support, the TSO is justified in concluding that
the label is incorrect and underfilling of the bottles is occurring. Appropriate action to force the
manufacturer to comply with labelling standards would be considered. However, if the sample results
indicate H0 cannot be rejected, the assumption that the manufacturer’s labelling is correct cannot be
rejected. With this conclusion, no action would be taken.

A manufacturer’s product information is usually assumed to be true and stated as the null hypothesis.
The conclusion that the information is incorrect can be made if the null hypothesis is rejected.

Let us now consider a variation of the soft drink bottle filling example by viewing the same
situation from the manufacturer’s point of view. The bottle-filling operation has been designed to fill
soft drink bottles with 1.5 litres as stated on the label. The company does not want to underfill the
containers because that could result in an underfilling complaint from customers or, perhaps, a TSO.
However, the company does not want to overfill containers either because putting more soft drink than
necessary into the containers would be an unnecessary cost. The company’s goal would be to adjust the
bottle-filling operation so that the population mean filling weight per bottle is 1.5 litres as specified on the
label.

Although this is the company’s goal, from time to time any production process can get out of
adjustment. If this occurs in our example, underfilling or overfilling of the soft drink bottles will occur.
In either case, the company would like to know about it in order to correct the situation by re-adjusting
the bottle-filling operation to the designed 1.5 litres. In a hypothesis testing application, we would again
begin with the assumption that the production process is operating correctly and state the null hypothesis
as μ = 1.5 litres. The alternative hypothesis that challenges this assumption is that μ 1.5, which indicates
either overfilling or underfilling is occurring. The null and alternative hypotheses for the manufacturer’s
hypothesis test are:

H0 μ 1 5

H1 μ 1 5
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Suppose that the soft drink manufacturer uses a quality control procedure to periodically select a sample
of bottles from the filling operation and computes the sample mean filling volume per bottle. If the
sample results lead to the conclusion to reject H0, the inference is made that H1: μ 1.5 is true. We
conclude that the bottles are not being filled properly and the production process should be adjusted to
restore the population mean to 1.5 litres per bottle. However, if the sample results indicate H0 cannot
be rejected, the assumption that the manufacturer’s bottle filling operation is functioning properly cannot be
rejected. In this case, no further action would be taken and the production operation would continue to run.

The two preceding forms of the soft drink manufacturing hypothesis test show that the null and
alternative hypotheses may vary depending upon the point of view of the researcher or decision maker.
To correctly formulate hypotheses it is important to understand the context of the situation and structure
the hypotheses to provide the information the researcher or decision maker wants.

Summary of forms for null and alternative hypotheses

The hypothesis tests in this chapter involve one of two population parameters: the population mean and
the population proportion. Depending on the situation, hypothesis tests about a population parameter
may take one of three forms: two include inequalities in the null hypothesis, the third uses only an
equality in the null hypothesis. For hypothesis tests involving a population mean, we let µ0 denote the
hypothesized value and choose one of the following three forms for the hypothesis test.

H0 μ μ0
H1 μ μ0

H0 μ μ0
H1 μ μ0

H0 μ μ0
H1 μ μ0

For reasons that will be clear later, the first two forms are called one-tailed tests. The third form is called a
two-tailed test.

In many situations, the choice of H0 and H1 is not obvious and judgement is necessary to select the
proper form. However, as the preceding forms show, the equality part of the expression (either , or =)
always appears in the null hypothesis. In selecting the proper form of H0 and H1, keep in mind that the
alternative hypothesis is often what the test is attempting to establish. Hence, asking whether the user
is looking for evidence to support µ µ0, µ µ0 or µ µ0 will help determine H1. The following
exercises are designed to provide practice in choosing the proper form for a hypothesis test involving a
population mean.

EXERCISES

1. The manager of the Costa Resort Hotel stated that the mean weekend guest bill is 600 or less.

A member of the hotel’s accounting staff noticed that the total charges for guest bills have been

increasing in recent months. The accountant will use a sample of weekend guest bills to test the

manager’s claim.

a. Which form of the hypotheses should be used to test the manager’s claim? Explain.

H0 600

H1 600

H0 600

H1 600

H0 600

H1 600

b. What conclusion is appropriate when H0 cannot be rejected?

c. What conclusion is appropriate when H0 can be rejected?

2. The manager of a car dealership is considering a new bonus plan designed to increase sales volume.

Currently, the mean sales volume is 14 cars per month. The manager wants to conduct a research

study to see whether the new bonus plan increases sales volume. To collect data on the plan, a

sample of sales personnel will be allowed to sell under the new bonus plan for a one-month period.

a. Formulate the null and alternative hypotheses most appropriate for this research situation.

b. Comment on the conclusion when H0 cannot be rejected.

c. Comment on the conclusion when H0 can be rejected.

COMPLETE

SOLUTIONS
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9.2 TYPE I AND TYPE II ERRORS

The null and alternative hypotheses are competing statements about the population. Either the null
hypothesis H0 is true or the alternative hypothesis H1 is true, but not both. Ideally the hypothesis testing
procedure should lead to the acceptance of H0 when H0 is true and the rejection of H0 when H1 is true.
Unfortunately, the correct conclusions are not always possible. Because hypothesis tests are based on
sample information, we must allow for the possibility of errors. Table 9.1 illustrates the two kinds of
errors that can be made in hypothesis testing.

The first row of Table 9.1 shows what can happen if the conclusion is to accept H0. If H0 is true, this
conclusion is correct. However, if H1 is true, we make a Type II error; that is, we accept H0 when it is false.
The second row of Table 9.1 shows what can happen if the conclusion is to reject H0. If H0 is true, we
make a Type I error; that is, we reject H0 when it is true. However, if H1 is true, rejecting H0 is correct.

Recall the hypothesis testing illustration discussed in Section 9.1 in which a product research group
developed a new fuel injection system designed to decrease the fuel consumption of a particular car. With
the current model achieving an average of seven litres of fuel per 100km, the hypothesis test was
formulated as follows.

H0 μ 7
H1 μ 7

The alternative hypothesis, H1: µ 7, indicates that the researchers are looking for sample evidence to
support the conclusion that the population mean fuel consumption with the new fuel injection system is
less than 7.

In this application, the Type I error of rejecting H0 when it is true corresponds to the researchers
claiming that the new system reduces fuel consumption (µ 7) when in fact the new system is no better
than the current system.

3. A production line operation is designed to fill cartons with laundry detergent to a mean weight of

0.75kg. A sample of cartons is periodically selected and weighed to determine whether underfilling

or overfilling is occurring. If the sample data lead to a conclusion of underfilling or overfilling, the

production line will be shut down and adjusted to obtain proper filling.

a. Formulate the null and alternative hypotheses that will help in deciding whether to shut down

and adjust the production line.

b. Comment on the conclusion and the decision when H0 cannot be rejected.

c. Comment on the conclusion and the decision when H0 can be rejected.

4. Because of high production-changeover time and costs, a director of manufacturing must convince

management that a proposed manufacturing method reduces costs before the new method can be

implemented. The current production method operates with a mean cost of 320 per hour. A

research study will measure the cost of the new method over a sample production period.

a. Formulate the null and alternative hypotheses most appropriate for this study.

b. Comment on the conclusion when H0 cannot be rejected.

c. Comment on the conclusion when H0 can be rejected.

T ABLE 9 . 1 Errors and correct conclusions in hypothesis testing

Population condition

H0 true H1 true

Conclusion Accept H0 Correct conclusion Type II error

Reject H0 Type I error Correct conclusion
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In contrast, the Type II error of accepting H0 when it is false corresponds to the researchers
concluding that the new system is no better than the current system (µ 7) when in fact the new
system reduces fuel consumption.

For the fuel consumption hypothesis test, the null hypothesis is H0: µ 7. Suppose the null hypothesis
is true as an equality; that is, µ 7. The probability of making a Type I error when the null hypothesis is
true as an equality is called the level of significance. This is an important concept. For the fuel efficiency
hypothesis test, the level of significance is the probability of rejecting H0: µ 7 when µ 7.

Level of significance

The level of significance is the probability of making a Type I error when the null hypothesis is true as an

equality.

The Greek symbol (alpha) is used to denote the level of significance. In practice, the person
conducting the hypothesis test specifies the level of significance. By selecting , that person is controlling
the probability of making a Type I error. If the cost of making a Type I error is high, small values of are
preferred. If the cost of making a Type I error is not too high, larger values of are typically used.
Common choices for are 0.05 and 0.01. Applications of hypothesis testing that only control for the
Type I error are often called significance tests. Most applications of hypothesis testing are of this type.

Althoughmost applications of hypothesis testing control for the probability ofmaking a Type I error, they
do not always control for the probability of making a Type II error. Hence, if we decide to accept H0, we
cannot determine how confident we can be with that decision. Because of the uncertainty associated with
making a Type II error, statisticians often recommend that we use the statement ‘do not rejectH0’ instead of
‘acceptH0’. Using the statement ‘do not rejectH0’ carries the recommendation to withhold both judgement
and action. In effect, by not directly accepting H0, the statistician avoids the risk of making a Type II error.
Whenever the probability of making a Type II error has not been determined and controlled, we will not
make the statement ‘acceptH0’. In such cases, the two conclusions possible are: do not reject H0 or reject H0.

Although controlling for a Type II error in hypothesis testing is not common, it can be done. In
Sections 9.7 and 9.8 we shall illustrate procedures for determining and controlling the probability of
making a Type II error. If proper controls have been established for this error, action based on the ‘accept
H0’ conclusion can be appropriate.

EXERCISES

5. The label on a container of yoghurt claims that the yoghurt contains an average of one gram of fat

or less. Answer the following questions for a hypothesis test that could be used to test the claim

on the label.

a. Formulate the appropriate null and alternative hypotheses.

b. What is the Type I error in this situation? What are the consequences of making this error?

c. What is the Type II error in this situation? What are the consequences of making this error?

6. Carpetland salespersons average 5000 per week in sales. The company’s chief executive officer

(CEO) proposes a remuneration plan with new selling incentives. The CEO hopes that the results of

a trial selling period will enable them to conclude that the remuneration plan increases the average

sales per salesperson.

a. Formulate the appropriate null and alternative hypotheses.

b. What is the Type I error in this situation? What are the consequences of making this error?

c. What is the Type II error in this situation? What are the consequences of making this error?

COMPLETE

SOLUTIONS
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9.3 POPULATION MEAN: KNOWN

In this section we show how to conduct a hypothesis test about a population mean for the known case,
i.e. where historical data and/or other information are available that enable us to obtain a good estimate of
the population standard deviation prior to sampling. The methods presented in this section are exact if
the sample is selected from a population that is normally distributed. In cases where it is not reasonable to
assume the population is normally distributed, these methods are still applicable if the sample size is large
enough. We provide some practical advice concerning the population distribution and the sample size at
the end of this section.

One-tailed test

One-tailed tests about a population mean take one of the following two forms.

Lower-tail test Upper-tail test

H0 μ μ0 H0 μ μ0
H1 μ μ0 H1 μ μ0

Consider an example. Trading Standards Offices (TSOs) periodically conduct statistical studies to test the
claims that manufacturers make about their products. For example, suppose the label on a large bottle of
Cola states that the bottle contains three litres of Cola. European legislation acknowledges that the
bottling process cannot guarantee exactly three litres of Cola in each bottle, even if the mean filling
volume for the population of all bottles filled is three litres per bottle. However, if the population mean
filling volume is at least three litres per bottle, the rights of consumers will be protected. The legislation
interprets the label information on a large bottle of Cola as a claim that the population mean filling weight
is at least three litres per bottle. We shall show how a TSO can check the claim by conducting a lower-tail
hypothesis test.

The first step is to formulate the null and alternative hypotheses for the test. If the population mean
filling volume is at least three litres per bottle, the manufacturer’s claim is correct. This establishes the null
hypothesis for the test. However, if the population mean weight is less than three litres per bottle, the
manufacturer’s claim is incorrect. This establishes the alternative hypothesis. With µ denoting the
population mean filling volume, the null and alternative hypotheses are as follows:

H0 μ 3

H1 μ 3

Note that the hypothesized value of the population mean is µ0 3. If the sample data indicate that H0
cannot be rejected, the statistical evidence does not support the conclusion that a labelling violation has
occurred. Hence, no action should be taken against the manufacturer. However, if the sample data
indicate H0 can be rejected, we shall conclude that the alternative hypothesis, H1: µ 3, is true. In this
case a conclusion of underfilling and a charge of a labelling violation against the manufacturer would
be justified.

7. Suppose a new production method will be implemented if a hypothesis test supports the

conclusion that the new method reduces the mean operating cost per hour.

a. State the appropriate null and alternative hypotheses if the mean cost for the current

production method is 320 per hour.

b. What is the Type I error in this situation? What are the consequences of making this error?

c. What is the Type II error in this situation? What are the consequences of making this error?
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Suppose a sample of 36 bottles is selected and the sample mean is computed as an estimate of the
population mean µ. If the value of the sample mean is less than three litres, the sample results will cast
doubt on the null hypothesis. What we want to know is how much less than three litres the sample mean
must be before we would be willing to declare the difference significant and risk making a Type I error by
falsely accusing the manufacturer of a labelling violation. A key factor in addressing this issue is the value
the decision-maker selects for the level of significance.

As noted in the preceding section, the level of significance, denoted by , is the probability of making a
Type I error by rejecting H0 when the null hypothesis is true as an equality. The decision-maker must
specify the level of significance. If the cost of making a Type I error is high, a small value should be chosen
for the level of significance. If the cost is not high, a larger value is more appropriate. Suppose that in the
Cola bottling study, the TSO made the following statement: ‘If the manufacturer is meeting its weight
specifications at µ 3, I would like a 99 per cent chance of not taking any action against the
manufacturer. Although I do not want to accuse the manufacturer wrongly of underfilling, I am willing
to risk a 1 per cent chance of making such an error.’ From the TSO’s statement, we set the level of
significance for the hypothesis test at 0.01. Hence, we must design the hypothesis test so that the
probability of making a Type I error when µ 3 is 0.01.

For the Cola bottling study, by developing the null and alternative hypotheses and specifying the level
of significance for the test, we carry out the first two steps required in conducting every hypothesis test.
We are now ready to perform the third step of hypothesis testing: collect the sample data and compute
the value of an appropriate test statistic.

Test statistic
For the Cola bottling study, previous Trading Standards tests show that the population standard deviation
can be assumed known with a value of 0.18. In addition, these tests also show that the population of
filling weights can be assumed to have a normal distribution. From the study of sampling distributions in
Chapter 7 we know that if the population from which we are sampling is normally distributed, the
sampling distribution of the sample mean will also be normal in shape. Hence, for the Cola bottling study,
the sampling distribution of X is normal. With a known value of 0.18 and a sample size of n 36,
Figure 9.1 shows the sampling distribution of X when the null hypothesis is true as an equality; that is,
when µ µ0 3. In constructing sampling distributions for hypothesis tests, it is assumed that H0 is
satisfied as an equality. Note that the standard error of is given by:

X n 0 18 36 0 03

Because X has a normal sampling distribution, the sampling distribution of:

Z
X μ0

X

X 3

0 03

is a standard normal distribution. A value z 1 means that x is one standard error below the mean, a
value z 2 means that x is two standard errors below the mean, and so on. We can use the standard
normal distribution table to find the lower-tail probability corresponding to any z value. For instance,
the standard normal table shows that the cumulative probability for z 3.00 is 0.0014.

Sampling

distribution of X 

x
0 =  3

n 36

0.18
 x =   =    =  0.03

FIGURE 9.1

Sampling distribution of X− for the Cola

bottling study when the null hypothesis is

true as an equality ( 3)
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This is the probability of obtaining a value that is three or more standard errors below the mean. As a
result, the probability of obtaining a value x that is 3 or more standard errors below the hypothesized
population mean µ0 3 is also 0.0014. Such a result is unlikely if the null hypothesis is true.

For hypothesis tests about a population mean for the known case, we use the standard normal
random variable Z as a test statistic to determine whether x deviates from the hypothesized value µ0
enough to justify rejecting the null hypothesis. The test statistic used in the known case is as follows
(note that X n).

Test statistic for hypothesis tests about a population mean: known

z
x μ0

n
(9.1)

The key question for a lower-tail test is: How small must the test statistic z be before we choose to
reject the null hypothesis? Two approaches can be used to answer this question.

The first approach uses the value z from expression (9.1) to compute a probability called a p-value. The
p-value measures the support provided by the sample for the null hypothesis, and is the basis for
determining whether the null hypothesis should be rejected given the level of significance. The second
approach requires that we first determine a value for the test statistic called the critical value. For a lower-
tail test, the critical value serves as a benchmark for determining whether the value of the test statistic is
small enough to reject the null hypothesis. We begin with the p-value approach.

p-value approach
The p-value approach has become the preferred method of determining whether the null hypothesis can
be rejected, especially when using computer software packages such as MINITAB, IBM SPSS and EXCEL.
We begin with a formal definition for a p-value.

p-value

The p-value is a probability, computed using the test statistic, that measures the degree to which the sample

supports the null hypothesis.

Because a p-value is a probability, it ranges from 0 to 1. A small p-value indicates a sample result that is
unusual given the assumption that H0 is true. Small p-values lead to rejection of H0, whereas large
p-values indicate the null hypothesis should not be rejected.

First, we use the value of the test statistic to compute the p-value. The method used to compute a p-value
depends on whether the test is lower-tail, upper-tail, or a two-tailed test. For a lower tail test, the p-value is
the probability of obtaining a value for the test statistic at least as small as that provided by the sample. To
compute the p-value for the lower tail test in the known case, we find the area under the standard normal
curve to the left of the test statistic. After computing the p-value, we then decide whether it is small enough
to reject the null hypothesis. As we will show, this involves comparing it to the level of significance.

We now illustrate the p-value approach by computing the p-value for the Cola bottling lower-tail test.
Suppose the sample of 36 Cola bottles provides a sample mean of x 2 92 litres. Is x 2 92 small
enough to cause us to reject H0? Because this test is a lower-tail test, the p-value is the area under the
standard normal curve to the left of the test statistic. Using x 2 92, 0.18 and n 36, we compute
the value z of the test statistic:

z
x μ0

n

2 92 3

0 18 36
2 67

COLA
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The p-value is the probability that the test statistic Z is less than or equal to 2.67 (the area under the
standard normal curve to the left of z 2.67).

Using the standard normal distribution table, we find that the cumulative probability for z 2.67
is 0.00382. Figure 9.2 shows that x 2 92 corresponds to z 2.67 and a p-value 0.0038. This
p-value indicates a small probability of obtaining a sample mean of x 2 92 or smaller when
sampling from a population with µ 3. This p-value does not provide much support for the null
hypothesis, but is it small enough to cause us to reject H0? The answer depends upon the level of
significance for the test.

As noted previously, the TSO selected a value of 0.01 for the level of significance. The selection of
0.01 means that the TSO is willing to accept a probability of 0.01 of rejecting the null

hypothesis when it is true as an equality (µ0 3). The sample of 36 bottles in the Cola bottling
study resulted in a p-value 0.0038, which means that the probability of obtaining a value of
x 2 92 or less when the null hypothesis is true as an equality is 0.0038. Because 0.0038 is less than

0.01 we reject H0. Therefore, we find sufficient statistical evidence to reject the null hypothesis
at the 0.01 level of significance.

We can now state the general rule for determining whether the null hypothesis can be rejected when
using the p-value approach. For a level of significance , the rejection rule using the p-value approach is
as follows:

Rejection rule using p-value

Reject H0 if p-value

In the Cola bottling test, the p-value of 0.0038 resulted in the rejection of the null hypothesis. The
basis for rejecting H0 is a comparison of the p-value to the level of significance ( 0.01) specified by the
TSO. However, the observed p-value of 0.0038 means that we would reject H0 for any value 0.0038.
For this reason, the p-value is also called the observed level of significance or the attained level of
significance.

0.03

X − 3
Z =

x

x =  2.92
0 =  3

Sampling distribution of X
n

 x =   =  0.03

z

Sampling distribution of

p- value =  0.0038

z =  –2.67 0

FIGURE 9.2

p-value for the Cola bottling study

when x− 2.92 and z 2.67
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Different decision-makers may express different opinions concerning the cost of making a Type I error
and may choose a different level of significance. By providing the p-value as part of the hypothesis testing
results, another decision-maker can compare the reported p-value to their own level of significance and
possibly make a different decision with respect to rejecting H0. The smaller the p-value, the greater the
evidence against H0, and the more the evidence in favour of H1. Here are some guidelines statisticians
suggest for interpreting small p-values:

• Less than 0.01 – Very strong evidence to conclude H1 is true.

• Between 0.01 and 0.05 – Moderately strong evidence to conclude H1 is true.

• Between 0.05 and 0.10 – Weak evidence to conclude H1 is true.

• Greater than 0.10 – Insufficient evidence to conclude H1 is true.

Critical value approach
For a lower-tail test, the critical value is the value of the test statistic that corresponds to an area of (the
level of significance) in the lower tail of the sampling distribution of the test statistic. In other words, the
critical value is the largest value of the test statistic that will result in the rejection of the null hypothesis.
Let us return to the Cola bottling example and see how this approach works.

In the known case, the sampling distribution for the test statistic Z is a standard normal distribution.
Therefore, the critical value is the value of the test statistic that corresponds to an area of 0.01 in the
lower tail of a standard normal distribution. Using the standard normal distribution table, we find that
z 2.33 gives an area of 0.01 in the lower tail (see Figure 9.3). So if the sample results in a value of the
test statistic that is less than or equal to 2.33, the corresponding p-value will be less than or equal to
0.01; in this case, we should reject the null hypothesis. Hence, for the Cola bottling study the critical value
rejection rule for a level of significance of 0.01 is:

Reject H0 if z 2.33

In the Cola bottling example, x 2 92 and the test statistic is z 2.67. Because z 2.67 2.33,
we can reject H0 and conclude that the Cola manufacturer is under-filling bottles.

We can generalize the rejection rule for the critical value approach to handle any level of significance.
The rejection rule for a lower-tail test follows.

Rejection rule for a lower-tail test: critical value approach

Reject H0 if z z

where z is the critical value; that is, the z value that provides an area of in the lower tail of the standard

normal distribution.

n

z =  −2.33
z

 =  0.01

 / 

X − 0
Z =

Sampling

distribution of

0

FIGURE 9.3

Critical value for the Cola bottling

hypothesis test
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The p-value approach and the critical value approach will always lead to the same rejection
decision. That is, whenever the p-value is less than or equal to , the value of the test statistic will
be less than or equal to the critical value. The advantage of the p-value approach is that the p-value
tells us how statistically significant the results are (the observed level of significance). If we use the
critical value approach, we only know that the results are significant at the stated level of
significance .

Computer procedures for hypothesis testing provide the p-value, so it is rapidly becoming the
preferred method of doing hypothesis tests. If you do not have access to a computer, you may prefer
to use the critical value approach. For some probability distributions it is easier to use statistical tables to
find a critical value than to use the tables to compute the p-value. This topic is discussed further in the
next section.

At the beginning of this section, we said that one-tailed tests about a population mean take one of the
following two forms:

Lower-tail test Upper-tail test

H0 μ μ0 H0 μ μ0
H1 μ μ0 H1 μ μ0

We used the Cola bottling study to illustrate how to conduct a lower-tail test. We can use the same
general approach to conduct an upper-tail test. The test statistic is still computed using equation (9.1).
But, for an upper-tail test, the p-value is the probability of obtaining a value for the test statistic at least as
large as that provided by the sample. To compute the p-value for the upper-tail test in the known case,
we must find the area under the standard normal curve to the right of the test statistic. Using the critical
value approach causes us to reject the null hypothesis if the value of the test statistic is greater than or
equal to the critical value z . In other words, we reject H0 if z z .

Two-tailed test

In hypothesis testing, the general form for a two-tailed test about a population mean is as follows:

H0 μ μ0

H1 μ μ0

In this subsection we show how to conduct a two-tailed test about a population mean for the known
case. As an illustration, we consider the hypothesis testing situation facing MaxFlight, a manufacturer of
golf equipment who use a high technology manufacturing process to produce golf balls with an average
driving distance of 295 metres. Sometimes the process gets out of adjustment and produces golf balls with
average distances different from 295 metres. When the average distance falls below 295 metres, the
company worries about losing sales because the golf balls do not provide as much distance as advertised.
However, some of the national golfing associations impose equipment standards for professional compe-
tition and when the average driving distance exceeds 295 metres, MaxFlight’s golf balls may be rejected
for exceeding the overall distance standard concerning carry and roll.

MaxFlight’s quality control programme involves taking periodic samples of 50 golf balls to monitor the
manufacturing process. For each sample, a hypothesis test is done to determine whether the process has
fallen out of adjustment. Let us formulate the null and alternative hypotheses. We begin by assuming that
the process is functioning correctly; that is, the golf balls being produced have a mean driving distance of
295 metres. This assumption establishes the null hypothesis. The alternative hypothesis is that the mean
driving distance is not equal to 295 yards. The null and alternative hypotheses for the MaxFlight
hypothesis test are as follows:

H0 μ 295

H1 μ 295
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If the sample mean is significantly less than 295 metres or significantly greater than 295 metres, we will
reject H0. In this case, corrective action will be taken to adjust the manufacturing process. On the other
hand, if X does not deviate from the hypothesized mean µ0 295 by a significant amount, H0 will not be
rejected and no action will be taken to adjust the manufacturing process.

The quality control team selected 0.05 as the level of significance for the test. Data from previous
tests conducted when the process was known to be in adjustment show that the population standard
deviation can be assumed known with a value of 12. With a sample size of n 50, the standard error
of the sample mean is:

X n

12

50
1 7

Because the sample size is large, the central limit theorem (see Chapter 7) allows us to conclude that the
sampling distribution of X can be approximated by a normal distribution. Figure 9.4 shows the sampling
distribution of X for the MaxFlight hypothesis test with a hypothesized population mean of µ0 295.

Suppose that a sample of 50 golf balls is selected and that the sample mean is 297.6 metres. This
sample mean suggests that the population mean may be larger than 295 metres. Is this value x 297 6
sufficiently larger than 295 to cause us to reject H0 at the 0.05 level of significance? In the previous section
we described two approaches that can be used to answer this question: the p-value approach and the
critical value approach.

p-value approach
The p-value is a probability that measures the degree of support provided by the sample for the null
hypothesis. For a two-tailed test, values of the test statistic in either tail show a lack of support for the
null hypothesis. For a two-tailed test, the p-value is the probability of obtaining a value for the test statistic
at least as unlikely as that provided by the sample. Let us compute the p-value for the MaxFlight
hypothesis test.

First, we compute the value of the test statistic. For the known case, the test statistic Z is a standard
normal random variable. Using equation (9.1) with x 297 6, the value of the test statistic is:

z
x 0

n

297 6 295

12 50
1 53

Now we find the probability of obtaining a value for the test statistic at least as unlikely as z 1.53.
Clearly values 1.53 are at least as unlikely. But, because this is a two-tailed test, values 1.53 are also
at least as unlikely as the value of the test statistic provided by the sample. Referring to Figure 9.5, we see
that the two-tailed p-value in this case is given by P(Z 1.53) P(Z 1.53). Because the normal curve
is symmetrical, we can compute this probability by finding the area under the standard normal curve to
the left of z 1.53 and doubling it. The table of cumulative probabilities for the standard normal
distribution shows that the area to the left of z 1.53 is 0.0630. Doubling this, we find the p-value for
the MaxFlight two-tailed hypothesis test is 2(0.0630) 0.126.

Sampling
distribution of X 

x
0 =  295

n 50

12
 x =   =    =  1.7

FIGURE 9.4

Sampling distribution of X− for the MaxFlight

hypothesis test

GOLFTEST
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Next we compare the p-value to the level of significance . With 0.05, we do not reject H0 because
the p-value 0.126 0.05. Because the null hypothesis is not rejected, no action will be taken to adjust
the MaxFlight manufacturing process.

The computation of the p-value for a two-tailed test may seem a bit confusing as compared to the
computation of the p-value for a one-tailed test. But it can be simplified by following these three steps:

1 Compute the value of the test statistic z.

2 If the value of the test statistic is in the upper tail (z 0), find the area under the standard normal
curve to the right of z. If the value of the test statistic is in the lower tail, find the area under the
standard normal curve to the left of z.

3 Double the tail area, or probability, obtained in step 2 to obtain the p-value.

In practice, the computation of the p-value is done automatically when using computer software such
as MINITAB, IBM SPSS and EXCEL.

Critical value approach
Now let us see how the test statistic can be compared to a critical value to make the hypothesis testing
decision for a two-tailed test. Figure 9.6 shows that the critical values for the test will occur in both the
lower and upper tails of the standard normal distribution. With a level of significance of 0.05, the
area in each tail beyond the critical values is /2 0.05/2 0.025. Using the table of probabilities for the
standard normal distribution, we find the critical values for the test statistic are z0.025 1.96 and
z0.025 1.96. Using the critical value approach, the two-tailed rejection rule is:

Reject H0 if z 1.96 or if z 1.96

Because the value of the test statistic for the MaxFlight study is z 1.53, the statistical evidence will not
permit us to reject the null hypothesis at the 0.05 level of significance.

1.53–1.53 0

P(Z ≤ – 1.53) =  0.0630

p- value =  2(0.0630) =  0.1260

P(Z ≥ 1.53) =  0.0630

z

FIGURE 9.5

p-value for the MaxFlight

hypothesis text

–1.96 1.960

Area =  0.025

z

Area =  0.025

Reject H0 Reject H0

FIGURE 9.6

Critical values for the MaxFlight

hypothesis test
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Summary and practical advice

We presented examples of a lower-tail test and a two-tailed test about a population mean. Based upon these
examples, we can now summarize the hypothesis testing procedures about a populationmean for the known
case as shown in Table 9.2. Note that µ0 is the hypothesized value of the population mean. The hypothesis
testing steps followed in the two examples presented in this section are common to every hypothesis test.

Steps of hypothesis testing

Step 1 Formulate the null and alternative hypotheses.
Step 2 Specify the level of significance .
Step 3 Collect the sample data and compute the value of the test statistic.

p-value approach

Step 4 Use the value of the test statistic to compute the p-value.
Step 5 Reject H0 if the p-value .

Critical value approach

Step 4 Use the level of significance to determine the critical value and the rejection rule.
Step 5 Use the value of the test statistic and the rejection rule to determine whether to reject H0.

Practical advice about the sample size for hypothesis tests is similar to the advice we provided about the
sample size for interval estimation in Chapter 8. In most applications, a sample size of n 30 is adequate
when using the hypothesis testing procedure described in this section. In cases where the sample size is less
than 30, the distribution of the population from which we are sampling becomes an important considera-
tion. If the population is normally distributed, the hypothesis testing procedure that we described is exact
and can be used for any sample size. If the population is not normally distributed but is at least roughly
symmetrical, sample sizes as small as 15 can be expected to provide acceptable results. With smaller sample
sizes, the hypothesis testing procedure presented in this section should only be used if the analyst believes,
or is willing to assume, that the population is at least approximately normally distributed.

Relationship between interval estimation and hypothesis testing

We close this section by discussing the relationship between interval estimation and hypothesis testing.
In Chapter 8 we showed how to construct a confidence interval estimate of a population mean. For the

T ABLE 9 . 2 Summary of hypothesis tests about a population mean: known case

Lower-tail test Upper-tail test Two-tailed test

Hypotheses H : H : H :

H1: < H1: > H1:

Test statistic z
x 0

n
z

x 0

n
z

x 0

n

Rejection rule: Reject H if Reject H if Reject H if

p-value approach p-value p-value p-value

Rejection rule:

critical value approach

Reject H if

z –z

Reject H if

z z

Reject H if

z –z /2 or if z z /2
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known case, the confidence interval estimate of a population mean corresponding to a 1 confidence
coefficient is given by:

x zα 2
n

(9.2)

Doing a hypothesis test requires us first to formulate the hypotheses about the value of a population
parameter. In the case of the population mean, the two-tailed test takes the form:

H0: µ µ0
H1: µ µ0

where µ0 is the hypothesized value for the population mean. Using the two-tailed critical value approach,
we do not reject H0 for values of the sample mean that are within z /2 and z /2 standard errors of µ0.
Hence, the do-not-reject region for the sample mean in a two-tailed hypothesis test with a level of
significance of is given by:

μ0 zα 2
n

(9.3)

A close look at expression (9.2) and expression (9.3) provides insight about the relationship between
the estimation and hypothesis testing approaches to statistical inference. Both procedures require the
computation of the values z /2 and n. Focusing on , we see that a confidence coefficient of (1 )
for interval estimation corresponds to a level of significance of in hypothesis testing. For example, a
95 per cent confidence interval corresponds to a 0.05 level of significance for hypothesis testing.
Furthermore, expressions (9.2) and (9.3) show that, because zα 2 n is the plus or minus value for both
expressions, if x is in the do-not-reject region defined by (9.3), the hypothesized value µ0 will be in the
confidence interval defined by (9.2). Conversely, if the hypothesized value µ0 is in the confidence interval
defined by (9.2), the sample mean will be in the do-not-reject region for the hypothesis H0: µ µ0 as
defined by (9.3). These observations lead to the following procedure for using a confidence interval to
conduct a two-tailed hypothesis test.

A confidence interval approach to testing a hypothesis of the form

H0: µ µ0
H1: µ µ0

1. Select a simple random sample from the population and use the value of the sample mean to construct

the confidence interval for the population mean µ.

x zα 2
n

2. If the confidence interval contains the hypothesized value µ0, do not reject H0. Otherwise, reject H0.

We return to the MaxFlight hypothesis test, which resulted in the following two-tailed test:

H0 μ 295

H1 μ 295

To test this hypothesis with a level of significance of 0.05, we sampled 50 golf balls and found a sample
mean distance of x 297 6 yards. The population standard deviation is 12. Using these results with
z0.025 1.96, we find that the 95 per cent confidence interval estimate of the population mean is:

x zα 2
n

297 6 1 96
12

50
297 6 3 3

236 CHAPTER 9 HYPOTHESIS TESTS



This finding enables the quality control manager to conclude with 95 per cent confidence that the mean
distance for the population of golf balls is between 294.3 and 300.9 metres. Because the hypothesized
value for the population mean, µ0 295, is in this interval, the conclusion from the hypothesis test is that
the null hypothesis, H0: µ 295, cannot be rejected.

Note that this discussion and example pertain to two-tailed hypothesis tests about a population mean.
The same confidence interval and two-tailed hypothesis testing relationship exists for other population
parameters. The relationship can also be extended to one-tailed tests about population parameters. Doing
so, however, requires the construction of one-sided confidence intervals.

EXERCISES

Note to student: Some of the exercises ask you to use the p-value approach and others ask you to use

the critical value approach. Both methods will provide the same hypothesis testing conclusion. We

provide exercises with both methods to give you practice using both. In later sections and in following

chapters, we will generally emphasize the p-value approach as the preferred method, but you may

select either based on personal preference.

Methods

8. Consider the following hypothesis test:

H0 20

H1 20

A sample of 50 gave a sample mean of 19.4. The population standard deviation is 2.

a. Compute the value of the test statistic.

b. What is the p-value?

c. Using = 0.05, what is your conclusion?

d. What is the rejection rule using the critical value? What is your conclusion?

9. Consider the following hypothesis test:

H0 15

H1 15

A sample of 50 provided a sample mean of 14.15. The population standard deviation is 3.

a. Compute the value of the test statistic.

b. What is the p-value?

c. At = 0.05, what is your conclusion?

d. What is the rejection rule using the critical value? What is your conclusion?

10. Consider the following hypothesis test:

H0 50

H1 50

A sample of 60 is used and the population standard deviation is 8. Use the critical value

approach to state your conclusion for each of the following sample results. Use = 0.05.

a. x− 52.5.

b. x− 51.0.

c. x− 51.8.

COMPLETE

SOLUTIONS
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Applications

11. Suppose that the mean length of the working week for a population of workers has been

previously reported as 39.2 hours. We would like to take a current sample of workers to see

whether the mean length of a working week has changed from the previously reported 39.2 hours.

a. State the hypotheses that will help us determine whether a change occurred in the mean

length of a working week.

b. Suppose a current sample of 112 workers provided a sample mean of 38.5 hours. Use a

population standard deviation = 4.8 hours. What is the p-value?

c. At = 0.05, can the null hypothesis be rejected? What is your conclusion?

d. Repeat the preceding hypothesis test using the critical value approach.

12. Suppose the national mean sales price for new two-bedroom houses is £181 900. A sample

of 40 new two-bedroom house sales in the north-east of England showed a sample mean of

£166 400. Use a population standard deviation of £33 500.

a. Formulate the null and alternative hypotheses that can be used to determine whether

the sample data support the conclusion that the population mean sales price for new

two-bedroom houses in the north-east is less than the national mean of £181 900.

b. What is the value of the test statistic?

c. What is the p-value?

d. At = 0.01, what is your conclusion?

13. Fowler Marketing Research bases charges to a client on the assumption that telephone surveys

can be completed in a mean time of 15 minutes or less per interview. If a longer mean interview

time is necessary, a premium rate is charged. Suppose a sample of 35 interviews shows a

sample mean of 17 minutes. Use = 4 minutes. Is the premium rate justified?

a. Formulate the null and alternative hypotheses for this application.

b. Compute the value of the test statistic.

c. What is the p-value?

d. At = 0.01, what is your conclusion?

14. CCN and ActMedia provided a television channel targeted to individuals waiting in supermarket

checkout lines. The channel showed news, short features and advertisements. The length of the

programme was based on the assumption that the population mean time a shopper stands in a

supermarket checkout line is eight minutes. A sample of actual waiting times will be used to test

this assumption and determine whether actual mean waiting time differs from this standard.

a. Formulate the hypotheses for this application.

b. A sample of 120 shoppers showed a sample mean waiting time of eight and a half minutes.

Assume a population standard deviation = 3.2 minutes. What is the p-value?

c. At = 0.05, what is your conclusion?

d. Compute a 95 per cent confidence interval for the population mean. Does it support your

conclusion?

15. During the global economic upheavals in late 2008, research companies affiliated to the

Worldwide Independent Network of Market Research carried out polls in 17 countries to assess

people’s views on the economic outlook. One of the questions asked respondents to rate their

trust in their government’s management of the financial situation, on a 0 to 10 scale (10 being

maximum trust). Suppose the worldwide population mean on this trust question was 5.2, and we

are interested in the question of whether the population mean in Germany was different from this

worldwide mean.

COMPLETE

SOLUTIONS
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9.4 POPULATION MEAN: UNKNOWN

In this section we describe how to do hypothesis tests about a population mean for the unknown case.
In this case, the sample must be used to compute estimates of both µ (estimated by x) and (estimated by
s). The steps of the hypothesis testing procedure are the same as those for the known case described in
Section 9.3. But, with unknown, the computation of the test statistic and p-value are a little different.
For the known case, the sampling distribution of the test statistic has a standard normal distribution.
For the unknown case, the sampling distribution of the test statistic has slightly more variability because
the sample is used to compute estimates of both µ and .

In Chapter 8, Section 8.2 we showed that an interval estimate of a population mean for the unknown
case is based on a probability distribution known as the t distribution. Hypothesis tests about a population
mean for the unknown case are also based on the t distribution. The test statistic has a t distribution
with n 1 degrees of freedom.

Test statistic for hypothesis tests about a population mean: unknown

t
x μ0
s n

(9.4)

In Chapter 8 we said that the t distribution is based on an assumption that the population from which
we are sampling has a normal distribution. However, research shows that this assumption can be relaxed
considerably when the sample size is large enough. We provide some practical advice concerning the
population distribution and sample size at the end of the section.

a. State the hypotheses that could be used to address this question.

b. In the Germany survey, respondents gave the government a mean trust score of 4.0.

Suppose the sample size in Germany was 1050, and the population standard deviation score

was = 2.9. What is the 95 per cent confidence interval estimate of the population mean

trust score for Germany?

c. Use the confidence interval to conduct a hypothesis test. Using = 0.05, what is your

conclusion?

16. A production line operates with a mean filling weight of 500 grams per container. Overfilling or

underfilling presents a serious problem and when detected requires the operator to shut down the

production line to readjust the filling mechanism. From past data, a population standard deviation

= 25 grams is assumed. A quality control inspector selects a sample of 30 items every hour

and at that time makes the decision of whether to shut down the line for readjustment. The level

of significance is = 0.05.

a. State the hypotheses in the hypothesis test for this quality control application.

b. If a sample mean of 510 grams were found, what is the p-value? What action would you

recommend?

c. If a sample mean of 495 grams were found, what is the p-value? What action would you

recommend?

d. Use the critical value approach. What is the rejection rule for the preceding hypothesis testing

procedure? Repeat parts (b) and (c). Do you reach the same conclusion?
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One-tailed test

Consider an example of a one-tailed test about a population mean for the unknown case. A travel
magazine wants to classify international airports according to the mean rating given by business
travellers. A rating scale from 0 to 10 will be used, and airports with a population mean rating greater
than seven will be designated as superior service airports. The magazine staff surveyed a sample of
60 business travellers at each airport. Suppose the sample for Abu Dhabi International Airport provided a
sample mean rating of x 7 25 and a sample standard deviation of s 1.052. Do the data indicate that
Abu Dhabi should be designated as a superior service airport?

We want to construct a hypothesis test for which the decision to reject H0 will lead to the conclusion
that the population mean rating for Abu Dhabi International Airport is greater than seven. Accordingly,
an upper-tail test with H1: µ 7 is required. The null and alternative hypotheses for this upper-tail test
are as follows:

H0 μ 7

H1 μ 7

We will use 0.05 as the level of significance for the test.
Using expression (9.4) with x 7 25, s 1.052 and n 60, the value of the test statistic is:

t
x μ0
s n

7 25 7

1 052 60
1 84

The sampling distribution of t has n 1 60 1 59 degrees of freedom. Because the test is an
upper-tail test, the p-value is the area under the curve of the t distribution to the right of t 1.84.

The t distribution table in most textbooks will not contain sufficient detail to determine the exact
p-value, such as the p-value corresponding to t 1.84. For instance, using Table 2 in Appendix B, the
t distribution with 59 degrees of freedom provides the following information.

Area in upper tail 0.20 0.10 0.05 0.025 0.01 0.005

t value (59 df) 0.848 1.296 1.671 2.001 2.391 2.662

t 1.84

We see that t 1.84 is between 1.671 and 2.001. Although the table does not provide the exact p-
value, the values in the ‘Area in upper tail’ row show that the p-value must be less than 0.05 and
greater than 0.025. With a level of significance of 0.05, this placement is all we need to know to
make the decision to reject the null hypothesis and conclude that Abu Dhabi should be classified as
a superior service airport. Computer packages such as MINITAB, IBM SPSS and EXCEL can easily
determine the exact p-value associated with the test statistic t 1.84. Each of these packages will
show that the p-value is 0.035 for this example. A p-value 0.035 0.05 leads to the rejection of
the null hypothesis and to the conclusion Abu Dhabi should be classified as a superior service
airport.

The critical value approach can also be used to make the rejection decision. With 0.05 and the
t distribution with 59 degrees of freedom, t0.05 1.671 is the critical value for the test. The rejection rule
is therefore:

Reject H0 if t 1.671

With the test statistic t 1.84 1.671, H0 is rejected and we can conclude that Abu Dhabi can be
classified as a superior service airport.

AIRRATING
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Two-tailed test

To illustrate a two-tailed test about a population mean for the unknown case, consider the hypothesis
testing situation facing Mega Toys. The company manufactures and distributes its products through
more than 1000 retail outlets. In planning production levels for the coming winter season, Mega Toys
must decide how many units of each product to produce prior to knowing the actual demand at the
retail level. For this year’s most important new toy, Mega Toys’ marketing director is expecting demand
to average 40 units per retail outlet. Prior to making the final production decision based on this
estimate, Mega Toys decided to survey a sample of 25 retailers to gather more information about the
demand for the new product. Each retailer was provided with information about the features of the new
toy along with the cost and the suggested selling price. Then each retailer was asked to specify an
anticipated order quantity.

With µ denoting the population mean order quantity per retail outlet, the sample data will be used to
conduct the following two-tailed hypothesis test:

H0 μ 40

H1 μ 40

If H0 cannot be rejected, Mega Toys will continue its production planning based on the marketing
director’s estimate that the population mean order quantity per retail outlet will be µ 40 units.
However, if H0 is rejected, Mega Toys will immediately re-evaluate its production plan for the product.
A two-tailed hypothesis test is used because Mega Toys wants to re-evaluate the production plan if the
population mean quantity per retail outlet is less than anticipated or greater than anticipated. Because no
historical data are available (it is a new product), the population mean and the population standard
deviation must both be estimated using x and s from the sample data.

The sample of 25 retailers provided a mean of x 37 4 and a standard deviation of s 11.79 units.
Before going ahead with the use of the t distribution, the analyst constructed a histogram of the sample
data in order to check on the form of the population distribution. The histogram of the sample data
showed no evidence of skewness or any extreme outliers, so the analyst concluded that the use of the t
distribution with n 1 24 degrees of freedom was appropriate. Using equation (9.4) with x 37 4
µ0 40, s 11.79, and n 25, the value of the test statistic is:

t
x μ0
s n

37 4 40

11 79 25
1 10

Because this is a two-tailed test, the p-value is two times the area under the curve for the t distribution
to the left of t 1.10. Using Table 2 in Appendix B, the t distribution table for 24 degrees of freedom
provides the following information.

Area in upper tail 0.20 0.10 0.05 0.025 0.01 0.005

t value (24 df) 0.858 1.318 1.711 2.064 2.492 2.797

t 1.10

The t distribution table only contains positive t values. Because the t distribution is symmetrical,
however, we can find the area under the curve to the right of t 1.10 and double it to find the p-value.
We see that t 1.10 is between 0.858 and 1.318. From the ‘Area in upper tail’ row, we see that the area in
the tail to the right of t 1.10 is between 0.20 and 0.10. Doubling these amounts, we see that the p-value
must be between 0.40 and 0.20. With a level of significance of 0.05, we now know that the p-value is
greater than . Therefore, H0 cannot be rejected. There is insufficient evidence to conclude that Mega
Toys should change its production plan for the coming season. Using MINITAB, IBM SPSS or EXCEL,
we find that the exact p-value is 0.282. Figure 9.7 shows the two areas under the curve of the t distribution
corresponding to the exact p-value.

ORDERS
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The test statistic can also be compared to the critical value to make the two-tailed hypothesis testing
decision. With 0.05 and the t distribution with 24 degrees of freedom, t0.025 2.064 and t0.025
2.064 are the critical values for the two-tailed test. The rejection rule using the test statistic is:

Reject H0 if t 2.064 or if t 2.064

Based on the test statistic t 1.10, H0 cannot be rejected. This result indicates that Mega Toys should
continue its production planning for the coming season based on the expectation that µ 40 or do
further investigation amongst its retailers.

Summary and practical advice

Table 9.3 provides a summary of the hypothesis testing procedures about a population mean for the
unknown case. The key difference between these procedures and the ones for the known case are that

s is used, instead of , in the computation of the test statistic. For this reason, the test statistic follows the
t distribution.

The applicability of the hypothesis testing procedures of this section is dependent on the distribution
of the population being sampled and the sample size. When the population is normally distributed, the
hypothesis tests described in this section provide exact results for any sample size. When the population is
not normally distributed, the procedures are approximations. Nonetheless, we find that sample sizes
greater than 50 will provide good results in almost all cases. If the population is approximately normal,
small sample sizes (e.g. n 15) can provide acceptable results. In situations where the population cannot
be approximated by a normal distribution, sample sizes of n 15 will provide acceptable results as long
as the population is not significantly skewed and does not contain outliers. If the population is
significantly skewed or contains outliers, samples sizes approaching 50 are a good idea.

1.10–1.10 0

P(T  ≤ – 1.10) =  0.141

p- value =  2(0.141) =  0.282

P(T  ≥ 1.10) =  0.141

t

FIGURE 9.7

Area under the curve in both

tails provides the p-value

T ABLE 9 . 3 Summary of hypothesis tests about a population mean: unknown case

Lower-tail test Upper-tail test Two-tailed test

Hypotheses H0 μ μ0 H0 μ μ0 H0 μ μ0
H1 μ μ0 H1 μ μ0 H1 μ μ0

Test statistic
t

x μ0
s n

t
x μ0
s n

t
x μ0
s n

Rejection rule: Reject H if Reject H if Reject H if

p-value approach p-value p-value p-value

Rejection rule: Reject H if Reject H if Reject H if

critical value approach t – t t t t – t /2 or if t t /2
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EXERCISES

Methods

17. Consider the following hypothesis test:

H0 12

H1 12

A sample of 25 provided a sample mean x− 14 and a sample standard deviation s = 4.32.

a. Compute the value of the test statistic.

b. What does the t distribution table (Table 2 in Appendix B) tell you about the p-value?

c. At = 0.05, what is your conclusion?

d. What is the rejection rule using the critical value? What is your conclusion?

18. Consider the following hypothesis test:

H0 18

H1 18

A sample of 48 provided a sample mean x− 17 and a sample standard deviation s = 4.5.

a. Compute the value of the test statistic.

b. What does the t distribution table (Table 2 in Appendix B) tell you about the p-value?

c. At = 0.05, what is your conclusion?

d. What is the rejection rule using the critical value? What is your conclusion?

19. Consider the following hypothesis test:

H0 45

H1 45

A sample of size 36 is used. Using = 0.01, identify the p-value and state your conclusion for

each of the following sample results.

a. x 44 and s 5.2.

b. x 43 and s 4.6.

c. x 46 and s 5.0.

Applications

20. Grolsch lager, like some of its competitors, can be bought in handy 300ml bottles. If a bottle such

as Grolsch is marked as containing 300ml, legislation requires that the production batch from

which the bottle came must have a mean fill volume of at least 300ml.

a. Formulate hypotheses that could be used to determine whether the mean fill volume for a

production batch satisfies the legal requirement of being at least 300ml.

b. Suppose you take a random sample of 30 bottles from a lager-bottling production line and find

that the mean fill for the sample of 30 bottles is 299.5ml, with a sample standard deviation of

1.9ml. What is the p-value?

c. At = 0.01, what is your conclusion?

21. Consider a daily TV programme – like the 10 o’clock news – that over the last calendar year had a

mean daily audience of 4.0 million viewers. Assume that for a sample of 40 days during the

current year, the daily audience was 4.15 million viewers with a sample standard deviation of

0.45 million viewers.

COMPLETE

SOLUTIONS

COMPLETE

SOLUTIONS
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9.5 POPULATION PROPORTION

In this section we show how to do a hypothesis test about a population proportion . Using 0 to denote
the hypothesized value for , the three forms for a hypothesis test are as follows.

H0 0

H1 0

H0 0

H1 0

H0 0

H1 0

The first form is a lower-tail test, the second form is an upper-tail test, and the third form is a two-tailed test.

a. If the TV management company would like to test for a change in mean viewing audience,

what statistical hypotheses should be set up?

b. What is the p-value?

c. Select your own level of significance. What is your conclusion?

22. A popular pastime amongst football fans is participation in ‘fantasy football’ competitions.

Participants choose a squad of players and a manager, with the objective of increasing the

valuation of the squad over the season. Suppose that at the start of the competition, the mean

valuation of all available strikers was £4.7 million per player.

a. Formulate the null and alternative hypotheses that could be used by a football pundit to

determine whether mid-fielders have a higher mean valuation than strikers.

b. Suppose a random sample of 30 mid-fielders from the available list had a mean valuation at

the start of the competition of £5.80 million with a sample standard deviation of £2.46 million.

On average, by how much did the valuation of mid-fielders exceed that of strikers?

c. At = 0.05, what is your conclusion?

23. Most new models of car sold in the European Union have to undergo an official test for fuel

consumption. The test is in two parts: an urban cycle and an extra-urban cycle. The urban cycle is

carried out under laboratory conditions, over a total distance of 4km at an average speed of 19km

per hour. Consider a new car model for which the official fuel consumption figure for the urban

cycle is published as 11.8 litres of fuel per 100km. A consumer affairs organization is interested

in examining whether this published figure is truly indicative of urban driving.

a. State the hypotheses that would enable the consumer affairs organization to conclude that

the model’s fuel consumption is more than the published 11.8 litres per 100km.

b. A sample of 50 mileage tests with the new model of car showed a sample mean of 12.10 litres

per 100km and a sample standard deviation of 0.92 litre per 100km. What is the p-value?

c. What conclusion should be drawn from the sample results? Use = 0.01.

d. Repeat the preceding hypothesis test using the critical value approach.

24. SuperScapes specializes in custom-designed landscaping for residential areas. The estimated

labour cost associated with a particular landscaping proposal is based on the number of

plantings of trees, shrubs and so on to be used for the project. For cost-estimating purposes,

managers use two hours of labour time for the planting of a medium-sized tree. Actual times from

a sample of ten plantings during the past month follow (times in hours).

1.7 1.5 2.6 2.2 2.4 2.3 2.6 3.0 1.4 2.3

With a 0.05 level of significance, test to see whether the mean tree-planting time differs from two

hours.

a. State the null and alternative hypotheses.

b. Compute the sample mean.

c. Compute the sample standard deviation.

d. What is the p-value?

e. What is your conclusion?
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Hypothesis tests about a population proportion are based on the difference between the sample
proportion p and the hypothesized population proportion 0. The methods used to do the hypothesis
test are similar to those used for hypothesis tests about a population mean. The only difference is that we
use the sample proportion and its standard error to compute the test statistic. The p-value approach or
the critical value approach is then used to determine whether the null hypothesis should be rejected.

Consider an example involving a situation faced by Aspire gymnasium. Over the past year, 20 per cent
of the users of Aspire were women. In an effort to increase the proportion of women users, Aspire
implemented a special promotion designed to attract women. One month afterwards, the gym manager
requested a statistical study to determine whether the proportion of women users at Aspire had increased.
An upper-tail test with H1: 0.20 is appropriate, because the objective of the study is to determine
whether the proportion of women users increased The null and alternative hypotheses for the Aspire
hypothesis test are as follows:

H0 0 20

H1 0 20

If H0 can be rejected, the test results will give statistical support for the conclusion that the proportion of
women users increased and the promotion was beneficial. The gym manager specified that a level of
significance of 0.05 be used in carrying out this hypothesis test.

The next step of the hypothesis testing procedure is to select a sample and compute the value of an
appropriate test statistic. We begin with a general discussion of how to compute the value of the test
statistic for any form of a hypothesis test about a population proportion. The sampling distribution of P,
the point estimator of the population parameter , is the basis for constructing the test statistic.

When the null hypothesis is true as an equality, the expected value of P equals the hypothesized value

0; that is, E(P) 0. The standard error of P is given by:

P
0 1 0

n

In Chapter 7 we said that if n 5 and n(1 ) 5, the sampling distribution of P can be approximated
by a normal distribution.* Under these conditions, which usually apply in practice, the quantity:

Z
P 0

P
(9.5)

has a standard normal probability distribution, with P 0 1 0 n. Expression (9.5) gives the test
statistic used to do hypothesis tests about a population proportion.

Test statistic for hypothesis tests about a population proportion

z
p 0

0 1 0

n

(9.6)

We can now compute the test statistic for the Aspire hypothesis test. Suppose a random
sample of 400 gym users was selected and that 100 of the users were women.

WOMENGYM

*In most applications involving hypothesis tests of a population proportion, sample sizes are large enough to use the
normal approximation. The exact sampling distribution of P is discrete with the probability for each value of P given
by the binomial distribution. So hypothesis testing is more complicated for small samples when the normal
approximation cannot be used.
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The proportion of women users in the sample is p 100/400 0.25. Using expression (9.6), the value
of the test statistic is:

z
p 0

0 1 0

n

0 25 0 20

0 20 1 0 20

400

0 05

0 02
2 50

Because the Aspire hypothesis test is an upper-tail test, the p-value is the probability that Z is greater
than or equal to z 2.50. That is, it is the area under the standard normal curve to the right of z 2.50.
Using the table of cumulative probabilities for the standard normal distribution, we find that the p-value
for the Aspire test is therefore (1 0.9938) 0.0062. Figure 9.8 shows this p-value calculation.

Recall that the gym manager specified a level of significance of 0.05. A p-value 0.0062 0.05 gives
sufficient statistical evidence to rejectH0 at the0.05 level of significance. The test provides statistical support for
the conclusion that the special promotion increased the proportion of women users at the Aspire gymnasium.

The decision whether to reject the null hypothesis can also be made using the critical value approach.
The critical value corresponding to an area of 0.05 in the upper tail of a standard normal distribution is
z0.05 1.645. Hence, the rejection rule using the critical value approach is to reject H0 if z 1.645.
Because z 2.50 1.645, H0 is rejected.

Again, we see that the p-value approach and the critical value approach lead to the same hypothesis
testing conclusion, but the p-value approach provides more information. With a p-value 0.0062, the
null hypothesis would be rejected for any level of significance greater than or equal to 0.0062.

Summary of hypothesis tests about a population proportion

The procedure used to conduct a hypothesis test about a population proportion is similar to the procedure
used to conduct a hypothesis test about a population mean. Although we only illustrated how to conduct a
hypothesis test about a population proportion for an upper-tail test, similar procedures can be used for lower-
tail and two-tailed tests. Table 9.4 provides a summary of the hypothesis tests about a population proportion.

0 2.5
z

p- value =  P(Z  ≥ 2.50) =  0.0062

FIGURE 9.8

Calculation of the

p-value for the Aspire

hypothesis

T ABLE 9 . 4 Summary of hypothesis tests about a population proportion

Lower-tail test Upper-tail test Two-tailed test

Hypotheses H0 0 H0 0 H0 0

H1 0 H1 0 H1 0

Test statistic
z

p 0

0 1 0

n

z
p 0

0 1 0

n

z
p 0

0 1 0

n

Rejection rule: Reject H if Reject H if Reject H if

p-value approach p-value p-value p-value

Rejection rule:

critical value

approach

Reject H

if z z

Reject H

if z z

Reject H if

z z /2

or if z z /2
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EXERCISES

Methods

25. Consider the following hypothesis test:

H0 0 20

H1 0 20

A sample of 400 provided a sample proportion p 0.175.

a. Compute the value of the test statistic.

b. What is the p-value?

c. At 0.05, what is your conclusion?

d. What is the rejection rule using the critical value? What is your conclusion?

26. Consider the following hypothesis test:

H0 0 75

H1 0 75

A sample of 300 items was selected. At 0.05, compute the p-value and state your conclusion

for each of the following sample results.

a. p 0.68.

b. p 0.72.

c. p 0.70.

d. p 0.77.

Applications

27. An airline promotion to business travellers is based on the assumption that at least two-thirds of

business travellers use a laptop computer on overnight business trips.

a. State the hypotheses that can be used to test the assumption.

b. What is the sample proportion from an American Express sponsored survey that found 355 of

546 business travellers use a laptop computer on overnight business trips?

c. What is the p-value?

d. Use 0.05. What is your conclusion?

28. Eagle Outfitters is a chain of stores specializing in outdoor clothing and camping gear. It is

considering a promotion that involves sending discount coupons to all their credit card customers

by direct mail. This promotion will be considered a success if more than 10 per cent of those

receiving the coupons use them. Before going nationwide with the promotion, coupons were sent

to a sample of 100 credit card customers.

a. Formulate hypotheses that can be used to test whether the population proportion of those

who will use the coupons is sufficient to go national.

b. The file ‘Eagle’ contains the sample data. Compute a point estimate of the population

proportion.

c. Use 0.05 to conduct your hypothesis test. Should Eagle go national with the promotion?

29. In an IPSOS South Africa opinion poll in May 2012, a sample of adult South Africans were asked

their opinions about the performance of the president, Jacob Zuma. One of the response options

was the view that the president was performing ‘well’.

a. Formulate the hypotheses that can be used to help determine whether more than 50 per cent

of the adult population believe the president was performing well.

b. Suppose that, of the 3565 respondents to the poll, 2140 expressed the view that the

president was performing well. What is the sample proportion? What is the p-value?

c. At 0.01, what is your conclusion?

EAGLE
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9.6 HYPOTHESIS TESTING AND DECISION-MAKING

In the previous sections of this chapter we have illustrated hypothesis testing applications that are
considered significance tests. After formulating the null and alternative hypotheses, we selected a sample
and computed the value of a test statistic and the associated p-value. We then compared the p-value to
a controlled probability of Type I error, , which is called the level of significance for the test. If p-value

, we concluded ‘reject H0’ and declared the results significant; otherwise, we made the conclusion ‘do
not reject H0’. With a significance test, we control the probability of making the Type I error, but not the
Type II error. Consequently, we recommended the conclusion ‘do not reject H0’ rather than ‘accept H0’
because the latter puts us at risk of making the Type II error of accepting H0 when it is false. With the
conclusion ‘do not reject H0’, the statistical evidence is considered inconclusive and is usually an
indication to postpone a decision or action until further research and testing can be undertaken.

However, if the purpose of a hypothesis test is to make a decision when H0 is true and a different
decision when H1 is true, the decision-maker may want to, and in some cases be forced to, take action
with both the conclusion do not reject H0 and the conclusion reject H0. If this situation occurs,
statisticians generally recommend controlling the probability of making a Type II error. With the
probabilities of both the Type I and Type II error controlled, the conclusion from the hypothesis test is
either to accept H0 or reject H0. In the first case, H0 is concluded to be true, while in the second case, H1 is
concluded true. Thus, a decision and appropriate action can be taken when either conclusion is reached.

A good illustration of this situation is lot-acceptance sampling, a topic we will discuss in more depth in
Chapter 20 (on the online platform). For example, a quality control manager must decide to accept a

30. A study by Consumer Reports showed that 64 per cent of supermarket shoppers believe supermarket

brands to be as good as national name brands. To investigate whether this result applies to its own

product, the manufacturer of a national name-brand ketchup asked a sample of shoppers whether

they believed that supermarket ketchup was as good as the national brand ketchup.

a. Formulate the hypotheses that could be used to determine whether the percentage of

supermarket shoppers who believe that the supermarket ketchup was as good as the national

brand ketchup differed from 64 per cent.

b. If a sample of 100 shoppers showed 52 stating that the supermarket brand was as good as

the national brand, what is the p-value?

c. At 0.05, what is your conclusion?

d. Should the national brand ketchup manufacturer be pleased with this conclusion? Explain.

31. Microsoft Outlook is the most widely used email manager. A Microsoft executive claims that

Microsoft Outlook is used by at least 75 per cent of Internet users. A sample of Internet users will

be used to test this claim.

a. Formulate the hypotheses that can be used to test the claim.

b. A Merrill Lynch study reported that Microsoft Outlook is used by 72 per cent of Internet users.

Assume that the report was based on a sample size of 300 Internet users. What is the p-

value?

c. At 0.05, should the executive’s claim of at least 75 per cent be rejected?

32. In the elections in Greece in mid-June 2012, the centre-right New Democracy party polled 29.66

per cent of the vote. About a month before the election, a Public Issue opinion poll had estimated

the proportion of support for each party. Did New Democracy’s support change during the last

month of the election campaign?

a. Formulate the null and alternative hypotheses.

b. Suppose the Public Issue opinion poll in May had a random sample of 1200 potential voters,

and that 26.0 per cent expressed support for New Democracy. What is the p-value?

c. Using 0.05, what is your conclusion?

COMPLETE

SOLUTIONS
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shipment of batteries from a supplier or to return the shipment because of poor quality. Assume that
design specifications require batteries from the supplier to have a mean useful life of at least 120 hours.
To evaluate the quality of an incoming shipment, a sample of 36 batteries will be selected and tested. On
the basis of the sample, a decision must be made to accept the shipment of batteries or to return it to the
supplier because of poor quality. Let µ denote the mean number of hours of useful life for batteries in
the shipment. The null and alternative hypotheses about the population mean follow.

H0 μ 120

H1 μ 120

If H0 is rejected, the alternative hypothesis is concluded to be true. This conclusion indicates that the
appropriate action is to return the shipment to the supplier. However, if H0 is not rejected, the decision-
maker must still determine what action should be taken. Therefore, without directly concluding that H0 is
true, but merely by not rejecting it, the decision-maker will have made the decision to accept the shipment
as being of satisfactory quality.

In such decision-making situations, it is recommended that the hypothesis testing procedure be
extended to control the probability of making a Type II error. Knowledge of the probability of making
a Type II error will be helpful because a decision will be made and action taken when we do not reject H0,
In Sections 9.7 and 9.8 we explain how to compute the probability of making a Type II error and how the
sample size can be adjusted to help control the probability of making a Type II error.

9.7 CALCULATING THE PROBABILITY OF TYPE II ERRORS

In this section we show how to calculate the probability of making a Type II error for a hypothesis test
about a population mean. We illustrate the procedure by using the lot-acceptance example described in
Section 9.6. The null and alternative hypotheses about the mean number of hours of useful life for a
shipment of batteries are H0: µ 120 and H1: µ 120. If H0 is rejected, the decision will be to return the
shipment to the supplier because the mean hours of useful life are less than the specified 120 hours. If H0
is not rejected, the decision will be to accept the shipment.

Suppose a level of significance of 0.05 is used to conduct the hypothesis test. The test statistic in
the known case is:

z
x μ0

n

x 120

n

Based on the critical value approach and z0.05 1.645, the rejection rule for the lower-tail test is to reject
H0 if z 1.645. Suppose a sample of 36 batteries will be selected and based upon previous testing the
population standard deviation can be assumed known with a value of 12 hours. The rejection rule
indicates that we will reject H0 if:

z
x 120

12 36
1 645

Solving for x in the preceding expression indicates that we will reject H0 if:

x 120 1 645
12

36
116 71

Rejecting H0 when x 116 71 means we will accept the shipment whenever x 116 71. We are now
ready to compute probabilities associated with making a Type II error. We make a Type II error whenever
the true shipment mean is less than 120 hours and we decide to accept H0: µ 120. To compute the
probability of making a Type II error, we must therefore select a value of µ less than 120 hours. For
example, suppose the shipment is considered to be of poor quality if the batteries have a mean life of µ
112 hours. If µ 112, what is the probability of accepting H0: µ 120 and hence committing a Type II
error? This probability is the probability that the sample mean x is greater than 116.71 when µ 112.
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Figure 9.9 shows the sampling distribution of the sample mean when the mean is µ 112. The shaded
area in the upper tail gives the probability of obtaining x 116 71. Using the standard normal distribu-
tion, we see that at x 116 71:

z
x μ0

n

116 71 112

12 36
2 36

The standard normal distribution table shows that with z 2.36, the area in the upper tail is 1 0.0909
0.0091. Denoting the probability of making a Type II error as , we see if µ 112, 0.0091. If the

mean of the population is 112 hours, the probability of making a Type II error is only 0.0091.
We can repeat these calculations for other values of µ less than 120. Doing so will show a different

probability of making a Type II error for each value of µ. For example, suppose the shipment of batteries
has a mean useful life of µ 115 hours. Because we will accept H0 whenever x 116 71 the z value for
µ 115 is given by:

z
x μ0

n

116 71 115

12 36
0 86

From the standard normal distribution table, we find that the area in the upper tail of the standard
normal distribution for z 0.86 is 1 0.8051 0.1949. The probability of making a Type II error is

0.1949 when the true mean is µ 115.
In Table 9.5 we show the probability of making a Type II error for a number of values of µ less than

120. Note that as µ increases towards 120, the probability of making a Type II error increases towards an
upper bound of 0.95. However, as µ decreases to values further below 120, the probability of making a
Type II error diminishes. This pattern is what we should expect. When the true population mean µ is
close to the null hypothesis value of µ 120, the probability is high that we will make a Type II error.
However, when the true population mean µ is far below the null hypothesis value of 120, the probability is
low that we will make a Type II error.

x
112 116.71

36

12
 x  =       = 2

 =  0.0091

Accept H02.36  x

FIGURE 9.9

Probability of a Type II error when 112

T ABLE 9 . 5 Probability of making a Type II error for the lot-acceptance hypothesis test

Value of
z
116 71 μ

12 36

Probability of a

Type II error ( ) Power (1 )

112 2.36 0.0091 0.9909

114 1.36 0.0869 0.9131

115 0.86 0.1949 0.8051

116.71 0.00 0.5000 0.5000

117 0.15 0.5596 0.4404

118 0.65 0.7422 0.2578

119.999 1.645 0.9500 0.0500
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The probability of correctly rejecting H0 when it is false is called the power of the test. For any
particular value of µ, the power is 1 ; that is, the probability of correctly rejecting the null hypothesis is
1 minus the probability of making a Type II error. Values of power are also listed in Table 9.5. On the
basis of these values, the power associated with each value of µ is shown graphically in Figure 9.10. Such a
graph is called a power curve. Note that the power curve extends over the values of µ for which the null
hypothesis is false. The height of the power curve at any value of µ indicates the probability of correctly
rejecting H0 when H0 is false. Another graph, called the operating characteristic curve, is sometimes used
to provide information about the probability of making a Type II error. The operating characteristic curve
shows the probability of accepting H0 and thus provides for the values of µ where the null hypothesis is
false. The probability of making a Type II error can be read directly from this graph.

In summary, the following step-by-step procedure can be used to compute the probability of making a
Type II error in hypothesis tests about a population mean.

1 Formulate the null and alternative hypotheses.

2 Use the level of significance and the critical value approach to determine the critical value and the
rejection rule for the test.

3 Use the rejection rule to solve for the value of the sample mean corresponding to the critical value
of the test statistic.

4 Use the results from step 3 to state the values of the sample mean that lead to the acceptance of H0.
These values define the acceptance region for the test.

5 Use the sampling distribution of X for a value of µ satisfying the alternative hypothesis, and the
acceptance region from step 4, to compute the probability that the sample mean will be in the
acceptance region. This probability is the probability of making a Type II error at the chosen value of µ.
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lot-acceptance hypothesis test

EXERCISES

Methods

33. Consider the following hypothesis test.

H0 10

H1 10

The sample size is 120 and the population standard deviation is assumed known, = 5. Use

= 0.05.

a. If the population mean is 9, what is the probability that the sample mean leads to the

conclusion do not reject H0?
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b. What type of error would be made if the actual population mean is 9 and we conclude that H0:

µ 10 is true?

c. What is the probability of making a Type II error if the actual population mean is 8?

34. Consider the following hypothesis test.

H0 20

H1 20

A sample of 200 items will be taken and the population standard deviation is = 10. Use = 0.05.

Compute the probability of making a Type II error if the population mean is:

a. µ = 18.0.

b. µ = 22.5.

c. µ = 21.0.

Applications

35. Fowler Marketing Research bases charges to a client on the assumption that telephone survey

interviews can be completed within 15 minutes or less. If more time is required, a premium rate is

charged. With a sample of 35 interviews, a population standard deviation of four minutes, and a

level of significance of 0.01, the sample mean will be used to test the null hypothesis H0: µ 15.

a. What is your interpretation of the Type II error for this problem? What is its impact on the firm?

b. What is the probability of making a Type II error when the actual mean time is µ = 17 minutes?

c. What is the probability of making a Type II error when the actual mean time is µ = 18 minutes?

d. Sketch the general shape of the power curve for this test.

36. Refer to Exercise 35. Assume the firm selects a sample of 50 interviews and repeat parts (b) and

(c). What observation can you make about how increasing the sample size affects the probability

of making a Type II error?

37. Young Adult magazine states the following hypotheses about the mean age of its subscribers.

H0 28

H1 28

a. What would it mean to make a Type II error in this situation?

b. The population standard deviation is assumed known at = 6 years and the sample size is 100.

With = 0.05, what is the probability of accepting H0 for µ equal to 26, 27, 29 and 30?

c. What is the power at µ = 26? What does this result tell you?

38. Sparr Investments specializes in tax-deferred investment opportunities for its clients. Recently Sparr

offered a payroll deduction investment scheme for the employees of a particular company. Sparr

estimates that the employees are currently averaging 100 or less per month in tax-deferred

investments. A sample of 40 employees will be used to test Sparr’s hypothesis about the current

level of investment activity among the population of employees. Assume the employee monthly tax-

deferred investment amounts have a standard deviation of 75 and that a 0.05 level of significance

will be used in the hypothesis test.

a. What would it mean to make a Type II error in this situation?

b. What is the probability of the Type II error if the actual mean employee monthly investment is

120?

c. What is the probability of the Type II error if the actual mean employee monthly investment is

130?

d. Assume a sample size of 80 employees is used and repeat parts (b) and (c).

COMPLETE

SOLUTIONS
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9.8 DETERMINING THE SAMPLE SIZE FOR HYPOTHESIS
TESTS ABOUT A POPULATION MEAN

Consider a hypothesis test about the value of a population mean. The level of significance specified by the
user determines the probability of making a Type I error for the test. By controlling the sample size, the
user can also control the probability of making a Type II error. Let us show how a sample size can be
determined for the following lower-tail test about a population mean.

H0 μ μ0

H1 μ μ0

The upper panel of Figure 9.11 is the sampling distribution of x when H0 is true with µ µ0. For a
lower-tail test, the critical value of the test statistic is denoted z . In the upper panel of the figure the
vertical line, labelled c, is the corresponding value of x. Note that, if we reject H0 when x c the
probability of a Type I error will be . With z representing the z value corresponding to an area of in
the upper tail of the standard normal distribution, we compute c using the following formula:

c μ0 zα
n

(9.7)

The lower panel of Figure 9.11 is the sampling distribution of X when the alternative hypothesis is true
with µ µ1 µ0. The shaded region shows , the probability of a Type II error if the null hypothesis is
accepted when x c. With z representing the z value corresponding to an area of in the upper tail of
the standard normal distribution, we compute c using the following formula:

c μ1 zβ
n

(9.8)

We wish to select a value for c so that when we reject or do not reject H0, the probability of a Type I error
is equal to the chosen value of and the probability of a Type II error is equal to the chosen value of .

x

c

c

Note:

Reject H0

H0:  ≥ 0

H1:  < 0

0

x

1

Sampling distribution
of X when
H0 is true and  =  0

Sampling distribution

of X when

H0 is false and 1 <  0

 x  =        =  2
36

FIGURE 9.11

Determining the

sample size for

specified levels of

the Type I ( ) and

Type II ( ) errors)
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Therefore, both equations (9.7) and (9.8) must provide the same value for c. Hence, the following equation
must be true.

μ0 zα
n

μ1 zβ
n

To determine the required sample size, we first solve for n as follows.

μ0 μ1 zα
n

zβ
n

zα zβ

n

and:

n
zα zβ

μ0 μ1

Squaring both sides of the expression provides the following sample size formula for a one-tailed
hypothesis test about a population mean.

Sample size for a one-tailed hypothesis test about a population mean

n
zα zβ

2 2

μ0 μ1
2

(9.9)

z = z value giving an area of in the upper tail of a standard normal distribution.
z = z value giving an area of in the upper tail of a standard normal distribution.

= the population standard deviation.
µ0 = the value of the population mean in the null hypothesis.
µ1 = the value of the population mean used for the Type II error.

Although the logic of equation (9.9) was developed for the hypothesis test shown in Figure 9.11, it holds
for any one-tailed test about a population mean. Note that in a two-tailed hypothesis test about a
population mean, z /2 is used instead of z in equation (9.9).

Let us return to the lot-acceptance example from Sections 9.6 and 9.7. The design specification for the
shipment of batteries indicated a mean useful life of at least 120 hours for the batteries. Shipments were
rejected if H0: µ 120 was rejected. Let us assume that the quality control manager makes the following
statements about the allowable probabilities for the Type I and Type II errors:

Type I error statement: If the mean life of the batteries in the shipment is µ 120, I am willing to risk
an 0.05 probability of rejecting the shipment.

Type II error statement: If the mean life of the batteries in the shipment is five hours under the
specification (i.e. µ 115), I am willing to risk a 0.10 probability of accepting the shipment.

Statements about the allowable probabilities of both errors must be made before the sample size can be
determined. These statements are based on the judgement of the manager. Someone else might specify
different restrictions on the probabilities.

In the example, 0.05 and 0.10. Using the standard normal probability distribution, we have
z0.05 1.645 and z0.10 1.28. From the statements about the error probabilities, we note that µ0 120
and µ1 115. The population standard deviation was assumed known at 12. By using equation (9.9),
we find that the recommended sample size for the lot-acceptance example is:

n
1 645 1 28 2 12 2

120 115 2
49 3

Rounding up, we recommend a sample size of 50.
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Because both the Type I and Type II error probabilities have been controlled at allowable levels with
n 50, the quality control manager is now justified in using the accept H0 and reject H0 statements for
the hypothesis test. The accompanying inferences are made with allowable probabilities of making Type I
and Type II errors.

We can make three observations about the relationship among , and the sample size n.

1 Once two of the three values are known, the other can be computed.

2 For a given level of significance , increasing the sample size will reduce .

3 For a given sample size, decreasing will increase , whereas increasing will decrease .

The third observation should be kept in mind when the probability of a Type II error is not being
controlled. It suggests that one should not choose unnecessarily small values for the level of significance
. For a given sample size, choosing a smaller level of significance means more exposure to a Type II

error. Inexperienced users of hypothesis testing often think that smaller values of are always better.
They are better if we are concerned only about making a Type I error. However, smaller values of have
the disadvantage of increasing the probability of making a Type II error.

EXERCISES

Methods

39. Consider the following hypothesis test.

H0 10

H1 10

The sample size is 120 and the population standard deviation is 5. Use = 0.05. If the actual

population mean is 9, the probability of a Type II error is 0.2912. Suppose the researcher wants

to reduce the probability of a Type II error to 0.10 when the actual population mean is 9. What

sample size is recommended?

40. Consider the following hypothesis test.

H0 20

H1 20

The population standard deviation is 10. Use = 0.05. How large a sample should be taken if

the researcher is willing to accept a 0.05 probability of making a Type II error when the actual

population mean is 22?

Applications

41. A special industrial battery must have a mean life of at least 400 hours. A hypothesis test is to be

conducted with a 0.02 level of significance. If the batteries from a particular production run have

an actual mean use life of 385 hours, the production manager wants a sampling procedure that

only 10 per cent of the time would show erroneously that the batch is acceptable. What sample

size is recommended for the hypothesis test? Use 30 hours as an estimate of the population

standard deviation.

42. Young Adult magazine states the following hypotheses about the mean age of its subscribers.

H0 28

H1 28

If the manager conducting the test will permit a 0.15 probability of making a Type II error when the

true mean age is 29, what sample size should be selected? Assume = 6 and a 0.05 level of

significance.

COMPLETE

SOLUTIONS
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SUMMARY

Hypothesis testing uses sample data to determine whether a statement about the value of a popula-

tion parameter should or should not be rejected. The hypotheses are two competing statements about

a population parameter. One is called the null hypothesis (H0), and the other is called the alternative

hypothesis (H1). In Section 9.1 we provided guidelines for formulating hypotheses for situations

frequently encountered in practice.

In all hypothesis tests, a relevant test statistic is calculated using sample data. The test statistic

can be used to compute a p-value for the test. A p-value is a probability that measures the degree of

support provided by the sample for the null hypothesis. If the p-value is less than or equal to the level

of significance , the null hypothesis can be rejected.

Conclusions can also be drawn by comparing the value of the test statistic to a critical value. For

lower-tail tests, the null hypothesis is rejected if the value of the test statistic is less than or equal to

the critical value. For upper-tail tests, the null hypothesis is rejected if the value of the test statistic is

greater than or equal to the critical value. Two-tailed tests consist of two critical values: one in the

lower tail of the sampling distribution and one in the upper tail. In this case, the null hypothesis is

rejected if the value of the test statistic is less than or equal to the critical value in the lower tail or

greater than or equal to the critical value in the upper tail.

We illustrated the relationship between hypothesis testing and interval construction in Section 9.3.

When historical data or other information provides a basis for assuming that the population

standard deviation is known, the hypothesis testing procedure is based on the standard normal

distribution. When is unknown, the sample standard deviation s is used to estimate and the

hypothesis testing procedure is based on the t distribution.

In the case of hypothesis tests about a population proportion, the hypothesis testing procedure

uses a test statistic based on the standard normal distribution.

Extensions of hypothesis testing procedures to include an analysis of the Type II error were also

presented. In Section 9.7 we showed how to compute the probability of making a Type II error. In

Section 9.8 we showed how to determine a sample size that will control for both the probability of

making a Type I error and a Type II error.

43. H0: µ = 120 and H1: µ 120 are used to test whether a bath soap production process is meeting

the standard output of 120 bars per batch. Use a 0.05 level of significance for the test and a

planning value of 5 for the standard deviation.

a. If the mean output drops to 117 bars per batch, the firm wants to have a 98 per cent chance

of concluding that the standard production output is not being met. How large a sample should

be selected?

b. With your sample size from part (a), what is the probability of concluding that the process is

operating satisfactorily for each of the following actual mean outputs: 117, 118, 119, 121,

122 and 123 bars per batch? That is, what is the probability of a Type II error in each case?

ONLINE RESOURCES

For the data files, online summary, additional questions and answers, and software section for

Chapter 9, go to the online platform.
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KEY TERMS

Alternative hypothesis

Critical value

Level of significance

Null hypothesis

One-tailed test

p-value

Power

Power curve

Test statistic

Two-tailed test

Type I error

Type II error

KEY FORMULAE

Test statistic for hypothesis tests about a population mean: known

z
x μ0

n
(9.1)

Test statistic for hypothesis tests about a population mean: unknown

t
x μ0
s n

(9.4)

Test statistic for hypothesis tests about a population proportion

z
p 0

0 1 0

n

(9.6)

Sample size for a one-tailed hypothesis test about a population mean

n
zα zβ

2 2

μ0 μ1
2

(9.9)

In a two-tailed test, replace z with z /2.

CASE PROBLEM 1

Quality Associates

Quality Associates, a consulting firm, advises its cli-

ents about sampling and statistical procedures that

can be used to control their manufacturing pro-

cesses. In one particular application, a client gave

Quality Associates a sample of 800 observations

taken during a time in which that client’s process

was operating satisfactorily. The sample standard

deviation for these data was 0.21; hence, with so
The components of an electronic product are tested
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much data, the population standard deviation

was assumed to be 0.21. Quality Associates then

suggested that random samples of size 30 be

taken periodically to monitor the process on an

ongoing basis. By analyzing the new samples, the

client could quickly learn whether the process

was operating satisfactorily. When the process

was not operating satisfactorily, corrective action

could be taken to eliminate the problem. The

design specification indicated the mean for the

process should be 12. The hypothesis test sug-

gested by Quality Associates follows.

H0 μ 12

H1 μ 12

Corrective action will be taken any time H0 is

rejected.

The data set ‘Quality’ on the online platform

contains data from four samples, each of size

30, collected at hourly intervals during the first

day of operation of the new statistical control

procedure.

Managerial report

1. Do a hypothesis test for each sample at the

0.01 level of significance and determine

what action, if any, should be taken. Provide

the test statistic and p-value for each test.

2. Compute the standard deviation for each of

the four samples. Does the assumption of

0.21 for the population standard deviation

appear reasonable?

3. Compute limits for the sample mean X− around

µ = 12 such that, as long as a new sample

mean is within those limits, the process will be

considered to be operating satisfactorily. If X−

exceeds the upper limit or if is below the lower

limit, corrective action will be taken. These

limits are referred to as upper and lower

control limits for quality control purposes.

4. Discuss the implications of changing the

level of significance to a larger value. What

mistake or error could increase if the level of

significance is increased?

CASE PROBLEM 2

Ethical behaviour of business students at

the World Academy

During the global recession of 2008 and 2009,

there were many accusations of unethical beha-

viour by bank directors, financial managers and

other corporate officers. At that time, an article

appeared that suggested part of the reason for

such unethical business behaviour may stem

from the fact that cheating has become more

prevalent among business students (Chronicle

of Higher Education, February 10, 2009). The

article reported that 56 per cent of business

students admitted to cheating at some time

during their academic career as compared to

47 per cent of non-business students.

Cheating has been a concern of the dean of

the Faculty of Business at the World Academy for

several years. Some faculty members believe

that cheating is more widespread at the World

Academy than at other universities, while other

faculty members think that cheating is not a

major problem in the Academy. To resolve some

of these issues, the dean commissioned a study

to assess the current ethical behaviour of busi-

ness students at the World Academy. As part of

this study, an anonymous exit survey was admi-

nistered to a sample of 90 business students

from this year’s graduating class. Responses to

the following questions were used to obtain data

regarding three types of cheating.

During your time at the World Academy, did

you ever present work copied off the Internet as

your own?

Yes No

During your time at the World Academy, did you

ever copy answers off another student’s exam?

Yes No

During your time at the World Academy, did you

ever collaborate with other students on projects

that were supposed to be completed individually?

Yes No

Any student who answered Yes to one or more of

these questions was considered to have been

involved in some type of cheating. A portion of

QUALITY
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the data collected follows. The complete data set

is in the file named ‘World Academy’ on the

accompanying online platform.

Student

Copied

from

Internet

Copied

on

exam

Collaborated

on Individual

project Gender

1 No No No Female

2 No No No Male

3 Yes No Yes Male

4 Yes Yes No Male

5 No No Yes Male

6 Yes No No Female

. . . . .

. . . . .

. . . . .

88 No No No Male

89 No Yes Yes Male

90 No No No Female

Managerial report

Prepare a report for the dean of the faculty that

summarizes your assessment of the nature of

cheating by business students at the World Acad-

emy. Be sure to include the following items in your

report.

1. Use descriptive statistics to summarize the

data and comment on your findings.

2. Develop 95 per cent confidence intervals for

the proportion of all students, the proportion of

male students and the proportion of female

students who were involved in some type of

cheating.

3. Conduct a hypothesis test to determine if the

proportion of business students at the World

Academy who were involved in some type of

cheating is less than that of business

students at other institutions as reported by

the Chronicle of Higher Education.

4. Conduct a hypothesis test to determine if the

proportion of business students at the World

Academy who were involved in some form of

cheating is less than that of non-business

students at other institutions as reported by

the Chronicle of Higher Education.

5. What advice would you give to the dean based

up-on your analysis of the data?

WORLD

ACADEMY
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10
Statistical
Inference about
Means and
Proportions with
Two Populations

CHAPTER CONTENTS

Statistics in Practice How your name affects your buying behaviour

10.1 Inferences about the difference between two population means: 1 and 2 known

10.2 Inferences about the difference between two population means: 1 and 2 unknown

10.3 Inferences about the difference between two population means: matched samples

10.4 Inferences about the difference between two population proportions

LEARNING OBJECTIVES After studying this chapter and doing the exercises, you should be able to:

1 Construct and interpret confidence intervals and

hypothesis tests for the difference between two

population means, given independent samples

from the two populations:

1.1 When the standard deviations of the two

populations are known.

1.2 When the standard deviations of the two

populations are unknown.

2 Construct and interpret confidence intervals and

hypothesis tests for the difference between two

population means, given matched samples from

the two populations.

3 Construct and interpret confidence intervals and

hypothesis tests for the difference between two

population proportions, given independent samples

from the two populations.

In Chapters 8 and 9 we showed how to construct interval estimates and do hypothesis tests for situations
involving a single population mean or a single population proportion. In this chapter we extend our

discussion by showing how interval estimates and hypothesis tests can be constructed when the difference
between two population means or two population proportions is of prime importance. For example, we may
want to construct an interval estimate of the difference between the mean starting salary for a population of
men and the mean starting salary for a population of women. Or wemay want to conduct a hypothesis test to
determine whether there is any difference between the proportion of defective parts in a population of parts
produced by supplier A and the proportion of defective parts in a population of parts produced by supplier B.
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We begin by showing how to construct interval estimates and do hypothesis tests for the difference
between two population means when the population standard deviations are assumed known.

10.1 INFERENCES ABOUT THE DIFFERENCE BETWEEN
TWO POPULATION MEANS: 1 AND 2 KNOWN

Let 1 denote the mean of population 1 and 2 denote the mean of population 2. We focus on inferences
about the difference between the means: 1 2. We select a simple random sample of n1 units from
population 1 and a second simple random sample of n2 units from population 2. The two samples, taken
separately and independently, are referred to as independent simple random samples. In this section, we
assume the two population standard deviations, 1 and 2, are known prior to collecting the samples. We
refer to this situation as the 1 and 2 known case. In the following example we show how to compute a
margin of error and construct an interval estimate of the difference between the two population means
when 1 and 2 are known.

STATISTICS IN PRACTICE

How your name affects your buying

behaviour

In an article in the Journal of Consumer Research in

2011, two researchers reported results of studies

on a phenomenon they called the ‘last name effect’.

In the consumer behaviour field, acquisition timing

refers to the speed with which consumers respond

to opportunities to acquire goods or services – for

instance, opportunities to get discounts or free

offers, to acquire new technology or to replace con-

sumer goods with new models. The researchers

hypothesized that people with family names starting

with a letter near the end of the alphabet would react

more quickly to such opportunities than people with

names beginning with a letter near the beginning of

the alphabet.

Their reasoning was that, during childhood, people

with names near the beginning of the alphabet

tend to develop a relatively laid-back approach to

‘queuing’ opportunities, because their name often

gives them an advantage in situations where queuing

is arranged on an alphabetical basis. On the other

hand, people with names near the end of the alpha-

bet tend to be more proactive, to counteract the

disadvantage they experience in alphabetically

queued situations.

One of the studies reported in the Journal of Con-

sumer Research measured the acquisition timing, or

reaction time, of a sample of MBA students to an

email offer of free tickets to a basketball game. The

mean reaction time of respondents with a family

name beginning with one of the last nine letters of

the alphabet was 19.38 minutes, compared to 25.08

minutes for respondents whose name began with one

of the first nine letters of the alphabet. This differ-

ence was found to be statistically significant, using a

statistical hypothesis test known as an independent-

samples t test. This result offered support for the

researchers’ hypothesis.

In this chapter, you will learn how to construct

interval estimates and do hypothesis tests about

mean and proportions with two populations. The

independent-samples t test used in the consumer

behaviour research is an example of such a test.
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Interval estimation of 1 – 2

Suppose a retailer such as Currys (selling TVs, DVD players, computers, photographic equipment and so
on) operates two stores in Dublin, Ireland. One store is in the inner city and the other is in an out-of-
town shopping centre. The regional manager noticed that products selling well in one store do not always
sell well in the other. The manager believes this may be attributable to differences in customer demo-
graphics at the two locations. Customers may differ in age, education, income and so on. Suppose
the manager asks us to investigate the difference between the mean ages of the customers who shop at
the two stores.

Let us define population 1 as all customers who shop at the inner-city store and population 2 as all
customers who shop at the out-of-town store.

1 mean age of population 1

2 mean age of population 2

The difference between the two population means is 1 2. To estimate 1 2, we shall select a
simple random sample of n1 customers from population 1 and a simple random sample of n2 customers
from population 2. We then compute the two sample means.

x1 sample mean age for the simple random sample of n1 inner-city customers
x2 sample mean age for the simple random sample of n2 out-of-town customers

The point estimator of the difference between the two populations is the difference between the sample
means.

Point estimator of the difference between two population means

X1 X2 (10.1)

Figure 10.1 provides an overview of the process used to estimate the difference between two population
means based on two independent simple random samples.

Population 1
Inner-city Store Customers

µ 1 = mean age of inner-city
customers

Two Independent Simple Random Samples

µ 2 = mean age of out-of-town
customers

µ 1 – µ 2 = difference between the mean ages

x1 – x2 = Point estimate of µ 1 – µ 2

Simple random sample of

n1 inner-city store customers

Simple random sample of

n2 out-of-town store customers

Population 2
Out-of-town Store Customers

x1 = sample mean age for the
inner-city store customers

x2 = sample mean age for the out-of-town
store customers

FIGURE 10.1

Estimating the

difference between

two population means
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As with other point estimators, the point estimator X1 X2 has a standard error that describes the
variation in the sampling distribution of the estimator. With two independent simple random samples,
the standard error of X1 X2 is as follows:

Standard error of X1 X2

X1 X2

2
1

n1

2
2

n2
(10.2)

If both populations have a normal distribution, or if the sample sizes are large enough to use a normal
approximation for the sampling distributions of X1 and X2, the sampling distribution of X1 X2 will be
normal, with a mean of 1 2.

As we showed in Chapter 8, an interval estimate is given by a point estimate a margin of error. In
the case of estimation of the difference between two population means, an interval estimate will take the
form (x1 x2) margin of error. When the sampling distribution of X1 X2 is a normal distribution, we
can write the margin of error as follows:

Margin of error z 2 X1 X2
z 2

2
1

n1

2
2

n2
(10.3)

Therefore the interval estimate of the difference between two population means is as follows:

Interval estimate of the difference between two population means: 1 and 2 known

x1 x2 z 2

2
1

n1

2
2

n2
(10.4)

where 1 is the confidence coefficient.

We return to the example of the Dublin retailer. Based on data from previous customer demographic
studies, the two population standard deviations are known, 1 = 9 years and 2 = 10 years. The data
collected from the two independent simple random samples of the retailer’s customers provided the
following results:

Inner-city store Out-of-town store

Sample size n1 36 n2 49
Sample mean x1 40 years x2 35 years

Using expression (10.1), we find that the point estimate of the difference between the mean ages of the
two populations is x1 x2 40 35 5 years. We estimate that the customers at the inner-city store
have a mean age five years greater than the mean age of the out-of-town customers. We can now use
expression (10.4) to compute the margin of error and provide the interval estimate of 1 2. Using 95
per cent confidence and z /2 = z0.025 = 1.96, we have:

x1 x2 zα 2

2
1

n1

2
2

n2
40 35 1 96

9 2

36

10 2

49
5 4 1

The margin of error is 4.1 years and the 95 per cent confidence interval estimate of the difference between
the two population means is 5 4.1 = 0.9 years to 5 4.1 = 9.1 years.
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Hypothesis tests about 1 – 2

Let us consider hypothesis tests about the difference between two population means. Using D0 to denote
the hypothesized difference between 1 and 2, the three forms for a hypothesis test are as follows:

H0 1 2 D0 H0 1 2 D0 H0 1 2 D0

H1 1 2 D0 H1 1 2 D0 H1 1 2 D0

In most applications, D0 = 0. Using the two-tailed test as an example, when D0 = 0 the null hypothesis is
H0: 1 2 = 0, i.e. the null hypothesis is that 1 and 2 are equal. Rejection of H0 leads to the
conclusion that H1: 1 2 ≠ 0 is true, i.e. 1 and 2 are not equal.

The steps for doing hypothesis tests presented in Chapter 9 are applicable here. We must choose a level
of significance, compute the value of the test statistic and find the p-value to determine whether the null
hypothesis should be rejected. With two independent simple random samples, we showed that the point
estimator X1 X2 has a standard error X1 X2 given by expression (10.2), and the distribution of
X1 X2 can be described by a normal distribution. In this case, the test statistic for the difference
between two population means when 1 and 2 are known is as follows.

Test statistic for hypothesis tests about 1 – 2: 1 and 2 known

z
x1 x2 D0

2
1

n1

2
2

n2

(10.5)

Here is an example. As part of a study to evaluate differences in education quality between two training
centres, a standardized examination is given to individuals trained at the centres. The difference between
the mean examination scores is used to assess quality differences between the centres. The population
means for the two centres are as follows:

1 the mean examination score for the population of individuals trained at centre A

2 the mean examination score for the population of individuals trained at centre B

We begin with the tentative assumption that no difference exists between the average training quality
provided at the two centres. Hence, in terms of the mean examination scores, the null hypothesis is that

1 2 = 0. If sample evidence leads to the rejection of this hypothesis, we shall conclude that the mean
examination scores differ for the two populations. This conclusion indicates a quality differential between
the two centres and suggests that a follow-up study investigating the reason for the differential may be
warranted. The null and alternative hypotheses for this two-tailed test are written as follows:

H0 1 2 0

H1 1 2 0

The standardized examination given previously in a variety of settings always resulted in an examination score
standard deviation near ten points. We shall use this information to assume that the population standard
deviations are known with 1 = 10 and 2 = 10. An = 0.05 level of significance is specified for the study.

Independent simple random samples of n1 = 30 individuals from training centre A and n2 40
individuals from training centre B are taken. The respective sample means are x1 82 and x2 78. Do
these data suggest a difference between the population means at the two training centres? To help answer
this question, we compute the test statistic using equation (10.5):

z
x1 x2 D0

2
1

n1

2
2

n2

82 78 0

10 2

30

10 2

40

1 66

EXAMSCORES
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Next we compute the p-value for this two-tailed test. Because the test statistic z is in the upper tail, we
first compute the area under the curve to the right of z = 1.66. Using the standard normal distribution
table, the cumulative probability for z = 1.66 is 0.9515, so the area in the upper tail of the distribution is
1 0.9515 = 0.0485. Because this test is a two-tailed test, we must double the tail area: p-value =
2(0.0485) = 0.0970. Following the usual rule to reject H0 if p-value ≤ , we see that the p-value of 0.0970
does not allow us to reject H0 at the 0.05 level of significance. The sample results do not provide sufficient
evidence to conclude that the training centres differ in quality.

In this chapter we shall use the p-value approach to hypothesis testing as described in Chapter 9.
However, if you prefer, the test statistic and the critical value rejection rule may be used. With = 0.05
and z /2 = z0.025 = 1.96, the rejection rule using the critical value approach would be to reject H0 if z ≤
1.96 or if z ≥ 1.96. With z = 1.66, we reach the same ‘do not reject H0’ conclusion.
In the preceding example, we demonstrated a two-tailed hypothesis test about the difference between

two population means. Lower-tail and upper-tail tests can also be considered. These tests use the same
test statistic as given in equation (10.5). The procedure for computing the p-value and the rejection rules
for these one-tailed tests are the same as those presented in Chapter 9.

Practical advice

In most applications of the interval estimation and hypothesis testing procedures presented in this
section, random samples with n1 ≥ 30 and n2 ≥ 30 are adequate. In cases where either or both sample
sizes are less than 30, the distributions of the populations become important considerations. In general,
with smaller sample sizes, it is more important for the analyst to be satisfied that the distributions of the
two populations are at least approximately normal.

EXERCISES

Methods

1. Consider the following results for two independent random samples taken from two populations.

Sample 1 Sample 2

n1 50 n2 35

x1 13.6 x2 11.6

1 2.2 2 3.0

a. What is the point estimate of the difference between the two population means?

b. Construct a 90 per cent confidence interval for the difference between the two population

means.

c. Construct a 95 per cent confidence interval for the difference between the two population

means.

2. Consider the following hypothesis test.

H0 1 2 0

H1 1 2 0

COMPLETE

SOLUTIONS
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The following results are for two independent samples taken from the two populations.

Sample 1 Sample 2

n1 40 n2 50

x1 25.2 x2 22.8

1 5.2 2 6.0

a. What is the value of the test statistic?

b. What is the p-value?

c. With = 0.05, what is your hypothesis testing conclusion?

3. Consider the following hypothesis test.

H0 1 2 0

H1 1 2 0

The following results are for two independent samples taken from the two populations.

Sample 1 Sample 2

n1 80 n2 70

x1 104 x2 106

1 8.4 2 7.6

a. What is the value of the test statistic?

b. What is the p-value?

c. With = 0.05, what is your hypothesis testing conclusion?

Applications

4. A study of wage differentials between men and women reported that one of the reasons wages for

men are higher than wages for women is that men tend to have more years of work experience than

women. Assume that the following sample summaries show the years of experience for each

group.

Men Women

n1 100 n2 85

x1 14.9 years x2 10.3 years

1 5.2 years 2 3.8 years

a. What is the point estimate of the difference between the two population means?

b. At 95 per cent confidence, what is the margin of error?

c. What is the 95 per cent confidence interval estimate of the difference between the two

population means?

5. The Dublin retailer age study (used as an example above) provided the following data on the ages

of customers from independent random samples taken at the two store locations.

Inner-city store Out-of-town store

n1 36 n2 49

x1 40 years x2 35 years

1 9 years 2 10 years
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10.2 INFERENCES ABOUT THE DIFFERENCE BETWEEN
TWO POPULATION MEANS: 1 AND 2 UNKNOWN

In this section we extend the discussion of inferences about 1 2 to the case when the two population
standard deviations, 1 and 2, are unknown. In this case, we use the sample standard deviations, s1 and
s2, to estimate the unknown 1 and 2 . The interval estimation and hypothesis testing procedures are
based on the t distribution rather than the standard normal distribution.

Interval estimation of 1 2

The Union Bank is conducting a study designed to identify differences between cheque account practices
by customers at two of its branches. A simple random sample of 28 cheque accounts is selected from the
Northern Branch and an independent simple random sample of 22 cheque accounts is selected from the
Eastern Branch. The current cheque account balance is recorded for each of the accounts. A summary of
the account balances follows:

Northern Eastern

Sample size n1 28 n2 22
Sample mean x1 €1025 x2 €910
Sample standard deviation s1 €150 s2 €125

The Union Bank would like to estimate the difference between the mean cheque account balances
maintained by the population of Northern customers and the population of Eastern customers. In
Section 10.1, we provided the following interval estimate for the case when the population standard
deviations, 1 and 2, are known:

x1 x2 z 2

2
1

n1

2
2

n2

With 1 and 2 unknown, we shall use the sample standard deviations s1 and s2 to estimate 1 and 2
and replace z /2 with t /2. As a result, the interval estimate of the difference between two population
means is given by the following expression:

a. State the hypotheses that could be used to detect a difference between the population mean

ages at the two stores.

b. What is the value of the test statistic?

c. What is the p-value?

d. At = 0.05, what is your conclusion?

6. Consider the following results from a survey looking at how much people spend on gifts on

Valentine’s Day (14 February). The average expenditure of 40 males was 135.67, and the

average expenditure of 30 females was 68.64. Based on past surveys, the standard deviation for

males is assumed to be 35, and the standard deviation for females is assumed to be 20. Do

male and female consumers differ in the average amounts they spend?

a. What is the point estimate of the difference between the population mean expenditure for

males and the population mean expenditure for females?

b. At 99 per cent confidence, what is the margin of error?

c. Construct a 99 per cent confidence interval for the difference between the two population

means.

CHEQACCT
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Interval estimate of the difference between two population means: 1 and 2 unknown

x1 x2 t 2
s21
n1

s22
n2

(10.6)

where 1 is the confidence coefficient.

In this expression, the use of the t distribution is an approximation, but it provides excellent results
and is relatively easy to use. The only difficulty in using expression (10.6) is determining the appropriate
degrees of freedom for t /2. Statistical software packages compute the appropriate degrees of freedom
automatically. The formula used is as follows:

Degrees of freedom for the t distribution using two independent random samples

df

s21
n1

s22
n2

2

1

n1 1

s21
n1

2
1

n2 1

s22
n2

2 (10.7)

We return to the Union Bank example. The sample data show n1 28, x1 €1025 and s1 €150 for
the Northern Branch, and n2 22, x2 €910 and s2 €125 for the Eastern Branch. The calculation for
degrees of freedom for t /2 is as follows:

df

s21
n1

s22
n2

2

1

n1 1

s21
n1

2
1

n2 1

s22
n2

2

150 2

28

125 2

22

2

1

28 1

150 2

22

2
1

22 1

125 2

22

2 47 8

We round the non-integer degrees of freedom down to 47 to provide a larger t-value and a
more conservative interval estimate. Using the t distribution table with 47 degrees of freedom, we find
t0.025 2.012. Using expression (10.6), we construct the 95 per cent confidence interval estimate of
the difference between the two population means as follows:

x1 x2 tα 2
s21
n1

s22
n2

1025 910 2 012
150 2

28

125 2

22
115 78

The point estimate of the difference between the population mean cheque account balances at the two
branches is €115. The margin of error is €78, and the 95 per cent confidence interval estimate of the
difference between the two population means is 115 78 €37 to 115 78 €193.

The computation of the degrees of freedom (equation (10.7)) is cumbersome if you are doing the
calculation by hand, but it is easily implemented with a computer software package. Note that the terms

s1
2
/n1 and s2

2
/n2 appear in both expression (10.6) and in (10.7). These need to be computed only once in

order to evaluate both (10.6) and (10.7).
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Hypothesis tests about 1 – 2

Let us now consider hypothesis tests for 1 2 when the population standard deviations 1 and 2 are
unknown. Letting D0 denote the hypothesized value for 1 2, Section 10.1 showed that the test
statistic used for the case where 1 and 2 are known is as follows. The test statistic, z, follows the
standard normal distribution:

z
x1 x2 D0

2
1

n1

2
2

n2

When 1 and 2 are unknown, we use s1 as an estimator of 1 and s2 as an estimator of 2. Substituting these
sample standard deviations for 1 and 2 gives the following test statistic when 1 and 2 are unknown.

Test statistic for hypothesis tests about 1 – 2: 1 and 2 unknown

t
x1 x2 D0

s21
n1

s22
n2

(10.8)

The degrees of freedom for t are given by equation (10.7).

Consider an example involving a new computer software package developed to help systems analysts
reduce the time required to design, develop and implement an information system. To evaluate the
benefits of the new software package, a random sample of 24 systems analysts is selected. Each analyst is
given specifications for a hypothetical information system. Then 12 of the analysts are instructed to
produce the information system by using current technology. The other 12 analysts are trained in the use
of the new software package and then instructed to use it to produce the information system.

This study involves two populations: a population of systems analysts using the current technology
and a population of systems analysts using the new software package. In terms of the time required to
complete the information system design project, the population means are as follows:

1 the mean project completion time for systems analysts using the current technology

2 the mean project completion time for systems analysts using the new software package

The researcher in charge of the new software evaluation project hopes to show that the new software
package will provide a shorter mean project completion time, i.e. the researcher is looking for evidence to
conclude that 2 is less than 1. In this case, 1 2 will be greater than zero. The research hypothesis

1 2 > 0 is stated as the alternative hypothesis. The hypothesis test becomes:

H0 1 2 0

H1 1 2 0

We shall use 0.05 as the level of significance. Suppose that the 24 analysts complete the study with
the results shown in Table 10.1.

Using the test statistic in equation (10.8), we have:

t
x1 x2 D0

s21
n1

s22
n2

325 286 0

40 2

12

44 2

12

2 27

SOFTWARE

TEST
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Computing the degrees of freedom using equation (10.7), we have:

df

s21
n1

s22
n2

2

1

n1 1

s21
n1

2
1

n2 1

s22
n2

2

40 2

12

44 2

12

2

1

12 1

40 2

12

2
1

12 1

44 2

12

2 21 8

Rounding down, we shall use a t distribution with 21 degrees of freedom. This row of the t distribution
table is as follows:

Area in upper tail 0.20 0.10 0.05 0.025 0.01 0.005

t value (21 df) 0.859 1.323 1.721 2.080 2.518 2.831

t 2.27

With an upper-tail test, the p-value is the area in the upper tail to the right of t 2.27. From the above
results, we see that the p-value is between 0.025 and 0.01. Hence, the p-value is less than 0.05 and H0
is rejected. The sample results enable the researcher to conclude that 1 2 > 0 or 1 > 2. The research
study supports the conclusion that the new software package provides a smaller population mean
completion time.

Practical advice

The interval estimation and hypothesis testing procedures presented in this section are robust and can be
used with relatively small sample sizes. In most applications, equal or nearly equal sample sizes such that
the total sample size n1 n2 is at least 20 can be expected to provide very good results even if the
populations are not normal. Larger sample sizes are recommended if the distributions of the populations
are highly skewed or contain outliers. Smaller sample sizes should only be used if the analyst is satisfied
that the distributions of the populations are at least approximately normal.

Another approach sometimes used to make inferences about the difference between two population
means when 1 and 2 are unknown is based on the assumption that the two population standard

T ABLE 10 . 1 Completion time data and summary statistics for the software testing study

Current technology New software

300 274

280 220

344 308

385 336

372 198

360 300

288 315

321 258

376 318

290 310

301 332

283 263

Summary statistics

Sample size n1 12 n2 12

Sample mean x1 325 hours x2 286 hours

Sample standard deviation s1 40 s2 44
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deviations are equal. You will find this approach as an option in MINITAB, IBM SPSS and EXCEL.
Under the assumption of equal population variances, the two sample standard deviations are combined to
provide the following ‘pooled’ sample variance s

2
:

s2
n1 1 s21 n2 1 s22

n1 n2 2

The t test statistic becomes:

t
x1 x2 D0

s
1

n1

1

n2

and has n1 n2 2 degrees of freedom. At this point, the computation of the p-value and the
interpretation of the sample results are identical to the procedures discussed earlier in this section. A
difficulty with this procedure is that the assumption of equal population standard deviations is usually
difficult to verify. Unequal population standard deviations are frequently encountered. Using the pooled
procedure may not provide satisfactory results especially if the sample sizes n1 and n2 are quite different.
The t procedure that we presented in this section does not require the assumption of equal population
standard deviations and can be applied whether the population standard deviations are equal or not. It is
a more general procedure and is recommended for most applications.

EXERCISES

Methods

7. Consider the following results for independent random samples taken from two populations.

Sample 1 Sample 2

n1 20 n2 30

x1 22.5 x2 20.1

s1 2.5 s2 4.8

a. What is the point estimate of the difference between the two population means?

b. What are the degrees of freedom for the t distribution?

c. At 95 per cent confidence, what is the margin of error?

d. What is the 95 per cent confidence interval for the difference between the two population

means?

8. Consider the following hypothesis test.

H0 1 2 0

H1 1 2 0

The following results are from independent samples taken from two populations.

Sample 1 Sample 2

n1 35 n2 40

x1 13.6 x2 10.1

s1 5.2 s2 8.5

COMPLETE

SOLUTIONS
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a. What is the value of the test statistic?

b. What are the degrees of freedom for the t distribution?

c. What is the p-value?

d. At 0.05, what is your conclusion?

9. Consider the following data for two independent random samples taken from two normal

populations.

Sample 1 10 7 13 7 9 8

Sample 2 8 7 8 4 6 9

a. Compute the two sample means.

b. Compute the two sample standard deviations.

c. What is the point estimate of the difference between the two population means?

d. What is the 90 per cent confidence interval estimate of the difference between the two

population means?

Applications

10. The International Air Transport Association surveyed business travellers to determine ratings of

various international airports. The maximum possible score was ten. Suppose 50 business

travellers were asked to rate airport L and 50 other business travellers were asked to rate airport

M. The rating scores follow.

Airport L

10 9 6 7 8 7 9 8 10 7 6 5 7 3 5 6 8 7 10 8 4 7 8 6 9

9 5 3 1 8 9 6 8 5 4 6 10 9 8 3 2 7 9 5 3 10 3 5 10 8

Airport M

6 4 6 8 7 7 6 3 3 8 10 4 8 7 8 7 5 9 5 8 4 3 8 5 5

4 4 4 8 4 5 6 2 5 9 9 8 4 8 9 9 5 9 7 8 3 10 8 9 6

Construct a 95 per cent confidence interval estimate of the difference between the mean ratings

of the airports L and M.

11. Suppose independent random samples of 15 unionized women and 20 non-unionized women in a

skilled manufacturing job provide the following hourly wage rates ( ).

Union workers

22.40 18.90 16.70 14.05 16.20 20.00 16.10 16.30 19.10 16.50

18.50 19.80 17.00 14.30 17.20

Non-union workers

17.60 14.40 16.60 15.00 17.65 15.00 17.55 13.30 11.20 15.90

19.20 11.85 16.65 15.20 15.30 17.00 15.10 14.30 13.90 14.50

a. What is the point estimate of the difference between mean hourly wages for the two

populations?

b. Develop a 95 per cent confidence interval estimate of the difference between the two

population means.

c. Does there appear to be any difference in the mean wage rate for these two groups? Explain.

12. The Scholastic Aptitude Test (SAT) is a commonly used entrance qualification for university.

Consider the research hypothesis that students whose parents had attained a higher level of

AIRPORTS

UNION
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education would on average score higher on the SAT. SAT verbal scores for independent samples

of students follow. The first sample shows the SAT verbal test scores for students whose parents

are college graduates with a bachelor’s degree. The second sample shows the SAT verbal test

scores for students whose parents are high school graduates but do not have a college degree.

Students’ parents

College grads High school grads

485 487 442 492

534 533 580 478

650 526 479 425

554 410 486 485

550 515 528 390

572 578 524 535

497 448

592 469

a. Formulate the hypotheses that can be used to determine whether the sample data support

the hypothesis that students show a higher population mean verbal score on the SAT if their

parents attained a higher level of education.

b. What is the point estimate of the difference between the means for the two populations?

c. Compute the p-value for the hypothesis test.

d. At = 0.05, what is your conclusion?

13. Periodically, Merrill Lynch customers are asked to evaluate Merrill Lynch financial consultants

and services. Higher ratings on the client satisfaction survey indicate better service, with 7 the

maximum service rating. Independent samples of service ratings for two financial consultants in

the Dubai office are summarized here. Consultant A has ten years of experience while consultant

B has one year of experience. Use = 0.05 and test to see whether the consultant with more

experience has the higher population mean service rating.

Consultant A Consultant B

n1 16 n2 10

x1 6.82 x2 6.25

s1 0.64 s2 0.75

a. State the null and alternative hypotheses.

b. Compute the value of the test statistic.

c. What is the p-value?

d. What is your conclusion?

14. Safegate Foods is redesigning the checkouts in its supermarkets throughout the country and is

considering two designs. Tests on customer checkout times conducted at two stores where the

two new systems have been installed result in the following summary of the data.

System A System B

n1 120 n2 100

x1 4.1 minutes x2 3.4 minutes

s1 2.2 minutes s2 1.5 minutes

COMPLETE

SOLUTIONS
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10.3 INFERENCES ABOUT THE DIFFERENCE
BETWEEN TWO POPULATION MEANS: MATCHED SAMPLES

Suppose employees at a manufacturing company can use two different methods to perform a production
task. To maximize production output, the company wants to identify the method with the smaller
population mean completion time. Let 1 denote the population mean completion time for production
method 1 and 2 denote the population mean completion time for production method 2. With no
preliminary indication of the preferred production method, we begin by tentatively assuming that the
two production methods have the same population mean completion time. The null hypothesis is
H0: 1 2 0. If this hypothesis is rejected, we can conclude that the population mean completion

Test at the 0.05 level of significance to determine whether the population mean checkout times

of the two systems differ. Which system is preferred?

15. Samples of final examination scores for two statistics classes with different instructors provided

the following results.

Instructor A Instructor B

n1 12 n2 15

x1 72 x2 76

s1 8 s2 10

With = 0.05, test whether these data are sufficient to conclude that the population mean

grades for the two classes differ.

16. Educational testing companies provide tutoring, classroom learning and practice tests in an

effort to help students perform better on tests such as the Scholastic Aptitude Test (SAT).

The test preparation companies claim that their courses will improve SAT score performances

by an average of 120 points. A researcher is uncertain of this claim and believes that

120 points may be an overstatement in an effort to encourage students to take the test

preparation course. In an evaluation study of one test preparation service, the researcher collects

SAT score data for 35 students who took the test preparation course and 48 students who did

not take the course.

Course No course

Sample mean 1058 983

Sample standard deviation 90 105

a. Formulate the hypotheses that can be used to test the researcher’s belief that the

improvement in SAT scores may be less than the stated average of 120 points.

b. Use = 0.05 and the data above. What is your conclusion?

c. What is the point estimate of the improvement in the average SAT scores provided by the

test preparation course? Provide a 95 per cent confidence interval estimate of the

improvement.

d. What advice would you have for the researcher after seeing the confidence interval?
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times differ. In this case, the method providing the smaller mean completion time would be recom-
mended. The null and alternative hypotheses are written as follows:

H0 1 2 0

H1 1 2 0

In choosing the sampling procedure that will be used to collect production time data and test the
hypotheses, we consider two alternative designs. One is based on independent samples and the other is
based on matched samples.

1 Independent sample design: A simple random sample of workers is selected and each worker in the
sample uses method 1. A second independent simple random sample of workers is selected and
each worker in this sample uses method 2. The test of the difference between population means is
based on the procedures in Section 10.2.

2 Matched sample design: One simple random sample of workers is selected. Each worker first
uses one method and then uses the other method. The order of the two methods is assigned
randomly to the workers, with some workers performing method 1 first and others performing
method 2 first. Each worker provides a pair of data values, one value for method 1 and another
value for method 2.

In the matched sample design the two production methods are tested under similar conditions (i.e.
with the same workers). Hence this design often leads to a smaller sampling error than the independent
sample design. The primary reason is that in a matched sample design, variation between workers is
eliminated because the same workers are used for both production methods.

Let us demonstrate the analysis of a matched sample design by assuming it is the method used to test
the difference between population means for the two production methods. A random sample of six
workers is used. The data on completion times for the six workers are given in Table 10.2. Note that each
worker provides a pair of data values, one for each production method. Also note that the last column
contains the difference in completion times di for each worker in the sample.

The key to the analysis of the matched sample design is to realize that we consider only the column of
differences. Therefore, we have six data values (0.6, 0.2, 0.5, 0.3, 0.0, 0.6) that will be used to analyze the
difference between population means of the two production methods.

Let d the mean of the difference values for the population of workers. With this notation, the null
and alternative hypotheses are rewritten as follows:

H0 d 0

H1 d 0

If H0 is rejected, we can conclude that the population mean completion times differ. The d notation is a
reminder that the matched sample provides difference data. The sample mean and sample
standard deviation for the six difference values in Table 10.2 follow.

T ABLE 10 . 2 Task completion times for a matched sample design

Worker

Completion time for

Method 1 (minutes)

Completion time for

Method 2 (minutes)

Difference in

completion times (di)

1 6.0 5.4 0.6

2 5.0 5.2 0.2

3 7.0 6.5 0.5

4 6.2 5.9 0.3

5 6.0 6.0 0.0

6 6.4 5.8 0.6

MATCHED
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Other than the use of the d notation, the formulae for the sample mean and sample standard deviation
are the same ones used previously in the text.

d
∑di
n

1 8

8
0 30

sd
∑ di d 2

n 1

0 56

5
0 335

With the small sample of n 6 workers, we need to make the assumption that the population of
differences has a normal distribution. This assumption is necessary so that we may use the t distribution
for hypothesis testing and interval estimation procedures. Sample size guidelines for using the t distribu-
tion were presented in Chapters 8 and 9. Based on this assumption, the following test statistic has a t
distribution with n 1 degrees of freedom.

Test statistic for hypothesis test involving matched samples

t
d d

sd n
(10.9)

Let us use equation (10.9) to test the hypotheses H0: d 0 and H1: d ≠ 0, using 0.05. Substituting
the sample results d 0.30, sd 0.335 and n 6 into equation (10.9), we compute the value of the test
statistic.

t
d d

sd n

0 30 0

0 335 6
2 20

Now let us compute the p-value for this two-tailed test. Because t 2.20 > 0, the test statistic is in the
upper tail of the t distribution. With t 2.20, the area in the upper tail to the right of the test statistic can
be found by using the t distribution table with degrees of freedom n 1 6 1 5. Information
from the five degrees of freedom row of the t distribution table is as follows:

Area in upper tail 0.20 0.10 0.05 0.025 0.01 0.005

t value (5 df) 0.920 1.476 2.015 2.571 3.365 4.032

t 2.20

We see that the area in the upper tail is between 0.05 and 0.025. Because this test is a two-tailed test,
we double these values to conclude that the p-value is between 0.10 and 0.05. This p-value is greater than

0.05, so the null hypothesis H0: d 0 is not rejected. MINITAB, EXCEL and IBM SPSS show the
p-value as 0.080.

In addition we can obtain an interval estimate of the difference between the two population means by
using the single population methodology of Chapter 8. At 95 per cent confidence, the calculation follows:

d t0 025
sd

n
0 30 2 527

0 335

6
0 30 0 35

The margin of error is 0.35 and the 95 per cent confidence interval for the difference between the
population means of the two production methods is 0.05 minutes to 0.65 minutes.

In the example presented in this section, workers performed the production task with first one method
and then the other method. This example illustrates a matched sample design in which each sampled
element (worker) provides a pair of data values. It is also possible to use different but ‘similar’ elements to
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provide the pair of data values. For example, a worker at one location could be matched with a similar
worker at another location (similarity based on age, education, gender, experience, etc.). The pairs of
workers would provide the difference data that could be used in the matched sample analysis. A matched
sample procedure for inferences about two population means generally provides better precision than the
independent samples approach, therefore it is the recommended design. However, in some applications
matching is not feasible, or perhaps the time and cost associated with matching are excessive. In such
cases, the independent samples design should be used.

EXERCISES

Methods

17. Consider the following hypothesis test.

H0 d 0

H1 d 0

The following data are from matched samples taken from two populations.

Population

Element 1 2

1 21 20

2 28 26

3 18 18

4 20 20

5 26 24

a. Compute the difference value for each element.

b. Compute d.

c. Compute the standard deviation sd.

d. Conduct a hypothesis test using = 0.05. What is your conclusion?

18. The following data are from matched samples taken from two populations.

Population

Element 1 2

1 11 8

2 7 8

3 9 6

4 12 7

5 13 10

6 15 15

7 15 14

a. Compute the difference value for each element.

b. Compute d.

c. Compute the standard deviation sd.

d. What is the point estimate of the difference between the two population means?

e. Provide a 95 per cent confidence interval for the difference between the two population means.

COMPLETE

SOLUTIONS
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Applications

19. In recent years, a growing array of entertainment options has been competing for consumer time.

Researchers used a sample of 15 individuals and collected data on the hours per week spent

watching cable television and hours per week spent listening to the radio.

Individual Television Radio Individual Television Radio

1 22 25 9 21 21

2 8 10 10 23 23

3 25 29 11 14 15

4 22 19 12 14 18

5 12 13 13 14 17

6 26 28 14 16 15

7 22 23 15 24 23

8 19 21

a. What is the sample mean number of hours per week spent watching cable television? What is

the sample mean number of hours per week spent listening to radio? Which medium has the

greater usage?

b. Use a 0.05 level of significance and test for a difference between the population mean usage

for cable television and radio. What is the p-value?

20. A market research firm used a sample of individuals to rate the purchase potential of a particular

product before and after the individuals saw a new television commercial about the product. The

purchase potential ratings were based on a 0 to 10 scale, with higher values indicating a higher

purchase potential. The null hypothesis stated that the mean rating ‘after’ would be less than or

equal to the mean rating ‘before’. Rejection of this hypothesis would show that the commercial

improved the mean purchase potential rating. Use 0.05 and the following data to test the

hypothesis and comment on the value of the commercial.

Purchase rating Purchase rating

Individual After Before Individual After Before

1 6 5 5 3 5

2 6 4 6 9 8

3 7 7 7 7 5

4 4 3 8 6 6

21. Figures on profit margins (%) for 2010 and 2011 are given below for a sample of large French

companies. Use the data to comment on differences between profit margins in the two years.

Profit margin (%)

Company 2010 2011

BNP Paribus 29.74 23.43

Carrefour 1.29 –1.50

Danone 14.64 12.59

Lafarge 8.83 4.42

L’Oréal 16.17 17.03

Michelin 8.69 9.63

Pernod-Ricard 16.43 17.94

Renault 8.61 6.17

Thales –2.90 4.61

Vinci 8.04 7.87

TVRADIO
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10.4 INFERENCES ABOUT THE DIFFERENCE BETWEEN
TWO POPULATION PROPORTIONS

Let π1 denote the proportion for population 1 and π2 denote the proportion for population 2. We next
consider inferences about the difference between the two population proportions: π1 π2. We shall select
two independent random samples consisting of n1 units from population 1 and n2 units from population 2.

Interval estimation of 1 – 2

An accountancy firm specializing in the preparation of income tax returns is interested in comparing the
quality of work at two of its regional offices. The firm will be able to estimate the proportion of erroneous
returns by randomly selecting samples of tax returns prepared at each office and verifying their accuracy.
The difference between these proportions is of particular interest:

π1 proportion of erroneous returns for population 1 (office 1)

π2 proportion of erroneous returns for population 2 (office 2)

P1 sample proportion for a simple random sample from population 1

P2 sample proportion for a simple random sample from population 2

The difference between the two population proportions is given by π1 π2. The point estimator of
π1 π2 is as follows:

Point estimator of the difference between two population proportions

P1 P2 (10.10)

a. Use = 0.05 and test for any difference between the population mean profit margins in 2010

and 2011. What is the p-value? What is your conclusion?

b. What is the point estimate of the difference between the two mean profit margins?

c. At 95 per cent confidence, what is the margin of error for the estimate in part (b)?

22. A survey was made of Book-of-the-Month Club members to ascertain whether members spend

more time watching television than they do reading. Assume a sample of 15 respondents

provided the following data on weekly hours of television watching and weekly hours of reading.

Using a 0.05 level of significance, can you conclude that Book-of-the-Month Club members spend

more hours per week watching television than reading?

Respondent Television Reading Respondent Television Reading

1 10 6 9 4 7

2 14 16 10 8 8

3 16 8 11 16 5

4 18 10 12 5 10

5 15 10 13 8 3

6 14 8 14 19 10

7 10 14 15 11 6

8 12 14

PROFITS

TVREAD
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The point estimator of the difference between two population proportions is the difference between the
sample proportions of two independent simple random samples.

As with other point estimators, the point estimator P1 P2 has a sampling distribution that reflects
the possible values of P1 P2 if we repeatedly took two independent random samples. The mean of this
sampling distribution is π1 π2 and the standard error of P1 P2 is as follows:

Standard error of P1 – P2

P1 P2
1 1 1

n1

2 1 2

n2
(10.11)

If the sample sizes are large enough that n1π1, n1(1 π1), n2π2 and n2(1 π2) are all greater than or
equal to five, the sampling distribution of P1 P2 can be approximated by a normal distribution.

As we showed previously, an interval estimate is given by a point estimate a margin of error. In the
estimation of the difference between two population proportions, an interval estimate will take the form
p1 p2 margin of error. With the sampling distribution of P1 P2 approximated by a normal
distribution, we would like to use z /2 P1 P2 as the margin of error. However, P1 P2 given by
equation (10.11) cannot be used directly because the two population proportions, π1 and π2, are
unknown. Using the sample proportion p1 to estimate π1 and the sample proportion p2 to estimate π2,
the margin of error is as follows:

Margin of error z 2
p1 1 p1

n1

p2 1 p2

n2
(10.12)

The general form of an interval estimate of the difference between two population proportions is as
follows:

Interval estimate of the difference between two population proportions

p1 p2 z 2
p1 1 p1

n1

p2 1 p2

n2
(10.13)

where 1 is the confidence coefficient.

Returning to the tax returns example, we find that independent simple random samples from the two
offices provide the following information:

Office 1 Office 2

n1 250 n1 300
Number of returns with errors 35 Number of returns with errors 27

The sample proportions for the two offices are:

p1
35

250
0 14 p2

27

300
0 09

The point estimate of the difference between the proportions of erroneous tax returns for the two
populations is p1 p2 0.14 0.09 0.05. We estimate that Office 1 has a 0.05, or 5 percentage
points, greater error rate than Office 2.

TAXPREP
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Expression (10.13) can now be used to provide a margin of error and interval estimate of the difference
between the two population proportions. Using a 90 per cent confidence interval with z /2 z0.05
1.645, we have:

p1 p2 z 2
p1 1 p1

n1

p2 1 p2

n2

0 14 0 09 1 645
0 14 1 0 14

250

0 09 1 0 09

300
0 05 0 045

The margin of error is 0.045, and the 90 per cent confidence interval is 0.005 to 0.095.

Hypothesis tests about 1 – 2

Let us now consider hypothesis tests about the difference between the proportions of two populations.
The three forms for a hypothesis test are as follows:

H0 1 2 0 H0 1 2 0 H0 1 2 0
H1 1 2 0 H1 1 2 0 H1 1 2 0

When we assume H0 is true as an equality, we have π1 π2 0, which is the same as saying that the
population proportions are equal, π1 π2. The test statistic is based on the sampling distribution of the
point estimator P1 P2.

In expression (10.11), we showed that the standard error of P1 P2 is given by:

P1 P2
1 1 1

n1

2 1 2

n2

Under the assumption that H0 is true as an equality, the population proportions are equal and π1 π2 π.
In this case, P1 − P2 becomes:

Standard error of P1 – P2 when 1 2

P1 P2

1

n1

1

n2
1

1

n1

1

n2
(10.14)

With π unknown, we pool, or combine, the point estimates from the two samples (p1 and p2) to obtain a
single point estimate of π as follows:

Pooled estimate of when 1 2

p
n1p1 n2p2

n1 n2
(10.15)

This pooled estimate of is a weighted average of p1 and p2.
Substituting p for π in equation (10.14), we obtain an estimate of P1 P2 , which is used in the test

statistic. The general form of the test statistic for hypothesis tests about the difference between two
population proportions is the point estimator divided by the estimate of P1 P2 .
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Test statistic for hypothesis tests about 1 – 2

z
p1 p2

p 1 p
1

n1

1

n2

(10.16)

This test statistic applies to large sample situations where n1π1, n1(1 π1), n2π2 and n2(1 π2) are all
greater than or equal to five.

Let us return to the tax returns example and assume that the firm wants to use a hypothesis test to
determine whether the error proportions differ between the two offices. A two-tailed test is required. The
null and alternative hypotheses are as follows:

H0 1 2 0

H1 1 2 0

If H0 is rejected, the firm can conclude that the error rates at the two offices differ. We shall use 0.10
as the level of significance.

The sample data previously collected showed p1 0.14 for the n1 250 returns sampled at Office 1
and p2 0.09 for the n2 300 returns sampled at Office 2. The pooled estimate of π is:

p
n1p1 n2p2

n1 n2

250 0 14 300 0 09

20 300
0 1127

Using this pooled estimate and the difference between the sample proportions, the value of the test
statistic is as follows:

z
p1 p2

p 1 p
1

n1

1

n2

0 14 0 09

0 1127 1 0 1127
1

250

1

300

1 85

To compute the p-value for this two-tailed test, we first note that z 1.85 is in the upper tail of the
standard normal distribution. Using the standard normal distribution table, we find the area in the upper
tail for z 1.85 is 1 0.9678 0.0322. Doubling this area for a two-tailed test, we find the p-value
2(0.0322) 0.0644. With the p-value less than 0.10, H0 is rejected at the 0.10 level of significance.
The firm can conclude that the error rates differ between the two offices. This hypothesis test conclusion
is consistent with the earlier interval estimation results that showed the interval estimate of the difference
between the population error rates at the two offices to be 0.005 to 0.095, with Office 1 having the higher
error rate.

EXERCISES

Methods

23. Consider the following results for independent samples taken from two populations.

Sample 1 Sample 2

n1 400 n2 300

p1 0.48 p2 0.36
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a. What is the point estimate of the difference between the two population proportions?

b. Construct a 90 per cent confidence interval for the difference between the two population

proportions.

c. Construct a 95 per cent confidence interval for the difference between the two population

proportions.

24. Consider the hypothesis test

H0 1 2 0

H1 1 2 0

The following results are for independent samples taken from the two populations.

Sample 1 Sample 2

n1 200 n2 300

p1 0.22 p2 0.10

a. What is the p-value?

b. With = 0.05, what is your hypothesis testing conclusion?

Applications

25. In November and December 2008, research companies affiliated to the Worldwide Independent

Network of Market Research carried out polls in 17 countries to assess people’s views on the

economic outlook. In the Canadian survey, conducted by Léger Marketing, 61 per cent of the sample

of 1511 people thought the economic situation would worsen over the next three months. In the UK

survey, conducted by ICM Research, 78 per cent of the sample of 1050 felt that economic

conditions would worsen over that period. Provide a 95 per cent confidence interval estimate for the

difference between the population proportions in the two countries. What is your interpretation of the

interval estimate?

26. In the results of the NUS 2011/12 Student Experience Research, it was reported that 34.3 per cent

of students studying Business (n = 2171) said a main reason for choosing their course was that the

course was well-regarded by potential employers. The corresponding figure amongst students

studying Maths and Computer Science (n = 1180) was 28.1 per cent. Construct a 95 per cent

confidence interval for the difference between the proportion of Business students who gave this as

main reason and the proportion of Maths and Computer Science students who did likewise.

27. In a test of the quality of two television commercials, each commercial was shown in a separate test

area six times over a one-week period. The following week a telephone survey was conducted to

identify individuals who had seen the commercials. Those individuals were asked to state the

primary message in the commercials. The following results were recorded.

Commercial A Commercial B

Number who saw commercial 150 200

Number who recalled message 63 60

a. Use = 0.05 and test the hypothesis that there is no difference in the recall proportions for the

two commercials.

b. Compute a 95 per cent confidence interval for the difference between the recall proportions for

the two populations.

COMPLETE

SOLUTIONS
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SUMMARY

In this chapter we discussed procedures for constructing interval estimates and doing hypothesis

tests involving two populations. First, we showed how to make inferences about the difference

between two population means when independent simple random samples are selected. We consid-

ered the case where the population standard deviations, 1 and 2, could be assumed known. The

standard normal distribution z was used to develop the interval estimate and served as the test

statistic for hypothesis tests. We then considered the case where the population standard deviations

were unknown and estimated by the sample standard deviations s1 and s2. In this case,

the t distribution was used to develop the interval estimate and served as the test statistic for

hypothesis tests.

Inferences about the difference between two population means were then discussed for the

matched sample design. In the matched sample design each element provides a pair of data values,

one from each population. The difference between the paired data values is then used in the

statistical analysis. The matched sample design is generally preferred to the independent sample

design, when it is feasible, because the matched-samples procedure often improves the precision of

the estimate.

Finally, interval estimation and hypothesis testing about the difference between two population

proportions were discussed. Statistical procedures for analyzing the difference between two popula-

tion proportions are similar to the procedures for analyzing the difference between two population

means.

28. In the UNITE 2007 Student Experience Report, it was reported that 49 per cent of 1600 student

respondents in UK universities considered the academic reputation of the university an important

factor in their choice of university. In the 2012 Student Experience Report, 343 out of 488

respondents considered academic reputation to be important. Test the hypothesis 1 2 = 0

with = 0.05. What is the p-value. What is your conclusion?

29. A large car insurance company selected samples of single and married male policyholders and

recorded the number who made an insurance claim over the preceding three-year period.

Single policyholders Married policyholders

n1 400 n2 900

Number making claims 76 Number making claims 90

a. Use = 0.05 and test to determine whether the claim rates differ between single and married

male policyholders.

b. Provide a 95 per cent confidence interval for the difference between the proportions for the

two populations.

ONLINE RESOURCES

For the data files, online summary, additional questions and answers, and software section for

Chapter 10, go to the online platform.

COMPLETE

SOLUTIONS
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KEY TERMS

Independent samples

Matched samples

Pooled estimator of

KEY FORMULAE

Point estimator of the difference between two population means

X1 X2 (10.1)

Standard error of X 1 X 2

X1
− X2

2
1

n1

2
2

n2
(10.2)

Interval estimate of the difference between two population means: 1 and 2 known

x1 x2 z 2

2
1

n1

2
2

n2
(10.4)

Test statistic for hypothesis tests about 1 – 2: 1 and 2 known

z
x1 x2 D0

2
1

n1

2
2

n2

(10.5)

Interval estimate of the difference between two population means: 1 and 2 unknown

x1 x2 t 2
s21
n1

s22
n2

(10.6)

Degrees of freedom for the t distribution using two independent random samples

df

s21
n1

s22
n2

2

1

n1 1

s21
n1

2
1

n2 1

s22
n2

2 (10.7)

Test statistic for hypothesis tests about 1 – 2: 1 and 2 unknown

t
x1 x2 D0

s21
n1

s22
n2

(10.8)
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Test statistic for hypothesis test involving matched samples

t
d d

sd n
(10.9)

Point estimator of the difference between two population proportions

P1 P2 (10.10)

Standard error of P1 – P2

P1 P2
1 1 1

n1

2 1 2

n2
(10.11)

Interval estimate of the difference between two population proportions

p1 p2 z 2
p1 1 p1

n1

p2 1 p2

n2
(10.13)

Standard error of P1 – P2 when 1 2

P1 P2

1

n1

1

n2
1

1

n1

1

n2
(10.14)

Pooled estimate of when 1 2

p
n1p1 n2p2

n1 n2
(10.15)

Test statistic for hypothesis tests about 1 – 2

z
p1 p2

p 1 p
1

n1

1

n2

(10.16)

CASE PROBLEM

Par Products

Par Products is a major manufacturer of golf equipment.

Management believes that Par’s market share could be

increased with the introduction of a cut-resistant,

longer-lasting golf ball. Therefore, the research group

at Par has been investigating a new golf ball coating

designed to resist cuts and provide a more durable ball.

The tests with the coating have been promising.

One of the researchers voiced concern about the

effect of the new coating on driving distances. Par

would like the new cut-resistant ball to offer driving

distances comparable to those of the current-model
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golf ball. To compare the driving distances for the

two balls, 40 balls of both the new and current

models were subjected to distance tests. The test-

ing was performed with a mechanical hitting

machine so that any difference between the mean

distances for the two models could be attributed to

a difference in the two models. The results of the

tests, with distances measured to the nearest

metre, are available on the online platform, in the

file ‘Golf’.

Model Model Model Model

Current New Current New Current New Current New

264 277 270 272 263 274 281 283

261 269 287 259 264 266 274 250

267 263 289 264 284 262 273 253

272 266 280 280 263 271 263 260

258 262 272 274 260 260 275 270

283 251 275 281 283 281 267 263

258 262 265 276 255 250 279 261

266 289 260 269 272 263 274 255

259 286 278 268 266 278 276 263

270 264 275 262 268 264 262 279

Managerial report

1. Formulate and present the rationale for a hypo-

thesis test that Par could use to compare the

driving distances of the current and new golf balls.

2. Analyze the data to provide the hypothesis test

conclusion. What is the p-value for your test?

What is your recommendation for Par Products?

3. Provide descriptive statistical summaries of the

data for each model.

4. What is the 95 per cent confidence interval for the

population mean of each model, and what is the

95 per cent confidence interval for the difference

between the means of the two populations?

5. Do you see a need for larger sample sizes and

more testing with the golf balls? Discuss.

GOLF
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11
Inferences about
Population
Variances

CHAPTER CONTENTS

Statistics in Practice The behaviour of financial markets: do we like Mondays?

11.1 Inferences about a population variance

11.2 Inferences about two population variances

LEARNING OBJECTIVES After studying this chapter and doing the exercises, you should be able to:

1 Construct confidence intervals for a population

standard deviation or population variance, using

the chi-squared distribution.

2 Conduct and interpret the results of hypothesis

tests for a population standard deviation or

population variance, using the chi-squared

distribution.

3 Conduct and interpret the results of hypothesis tests

to compare two population standard deviations or

population variances, using the F distribution.

In the preceding four chapters we examined methods of statistical inference involving population means
and population proportions. In this chapter we extend the discussion to inferences about population

variances.
In many manufacturing processes, controlling the process variance is extremely important for main-

taining quality. Consider the production process of filling containers with a liquid detergent product, for
example. The filling mechanism is adjusted so the mean filling weight is 500 grams per container. In
addition, the variance of the filling weights is critical. Even with the filling mechanism properly adjusted
for the mean of 500 grams, we cannot expect every container to contain exactly 500 grams. By selecting a
sample of containers, we can compute a sample variance for the number of grams placed in a container.
This value will serve as an estimate of the variance for the population of containers being filled by the
production process. If the sample variance is modest, the production process will be continued. However,
if the sample variance is excessive, overfilling and underfilling may be occurring, even though the mean is
correct at 500 grams. In this case, the filling mechanism will be re-adjusted in an attempt to reduce the
filling variance for the containers.
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STATISTICS IN PRACTICE

The behaviour of financial markets:

do we like Mondays?

In recent years, in the wake of financial and banking

crises in several countries, there has been severe

questioning in the media about the behaviour of finan-

cial markets. Academic interest in this area is more

long-standing. Over several decades there have been

many published research studies examining whether

various markets are ‘perfect’ (in an economic sense),

and probing the existence of possible anomalies in

the markets. Part of the motivation for the interest is

the possibility that the existence of anomalies pro-

vides opportunities for investors.

One of the anomalies or effects that has been

extensively examined is the so-called ‘day of the week’

effect – do markets behave differently on Mondays, for

example, compared to Fridays? If a trader is trying to

make profits by investing on the basis of daily move-

ments in selected markets, are some days a better bet

than others? A simple Google search will quickly reveal

at least a dozen pieces of academic and professional

research on this question over the last few years,

published in a range of economics and finance jour-

nals, and covering markets in a variety of locations:

Greece, Turkey, several central European countries,

South Africa, Nigeria, Kuwait, India, Thailand, Muscat

and Australia. Some of these studies find evidence for

a day of the week effect, others do not.

Most of the studies looked for evidence of differ-

ences in average performance on different days of

the week, as well as for differences in volatility

(i.e. variability) on different days of the week. As an

illustration of the possibilities, the IBM SPSS boxplot

shown here charts the daily percentage changes

(from opening level to closing level) in the CAC 40

share index (Paris Stock Exchange), for about five and

a half years from 2007 to 2012. The plot gives an

impression of higher variability on Mondays and Wed-

nesdays, and shows Tuesdays as having marginally

the highest average (median).

The previous chapter in this text looked at meth-

ods for examining differences between two mean

values. The present chapter turns to estimation and

testing of standard deviations and variances.
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Day
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In the first section we consider inferences about the variance of a single population. Subsequently, we
shall discuss procedures that can be used to make inferences comparing the variances of two populations.

11.1 INFERENCES ABOUT A POPULATION VARIANCE

Recall that sample variance is calculated as follows:

s2
∑ xi x 2

n 1
(11.1)

The sample variance (S
2
) is a point estimator of the population variance

2
. To make inferences about

2
,

the sampling distribution of the quantity (n 1)S
2
/
2
can be used, under appropriate circumstances.

Sampling distribution of (n – 1)S
2
/
2

When a simple random sample of size n is selected from a normal population, the sampling distribution of

n 1 S2

2
(11.2)

has a chi-squared distribution with n 1 degrees of freedom.

Figure 11.1 shows some possible forms of the sampling distribution of (n 1)S
2
/
2
. Because the

sampling distribution is a chi-squared distribution, under the conditions described above, we can use this
distribution to construct interval estimates and do hypothesis tests about a population variance. Tables of
areas or probabilities are readily available for the chi-squared distribution.

Interval estimation

Suppose we are interested in estimating the population variance for the production filling process
described above. A sample of 20 containers is taken and the sample variance for the filling quantities is
found to be s

2
= 2.50 (in appropriate units). However, we cannot expect the variance of a sample of 20

containers to provide the exact value of the variance for the population of containers filled by the
production process. Our interest is in constructing an interval estimate for the population variance.

The Greek letter chi is χ, so chi-squared is often denoted χ
2
. We shall use the notation χ2α to denote the

value for the chi-squared distribution that gives an area or probability of α to the right of the χ2α value. For
example, in Figure 11.2 the chi-squared distribution with 19 degrees of freedom is shown, with
χ20 025 32 852 indicating that 2.5 per cent of the chi-squared values are to the right of 32.852,
and χ20 975 8 907 indicating that 97.5 per cent of the chi-squared values are to the right of 8.907.

0 5 10 15 20 25

2

(n – 1)s2

With 2 degrees of freedom

With 5 degrees of freedom

With 10 degrees of freedom

FIGURE 11.1

Examples of the sampling

distribution of (n 1)S
2
/

2
(chi-

squared distribution)
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Refer to Table 3 of Appendix B and verify that these chi-squared values with 19 degrees of freedom are
correct (19th row of the table).

From Figure 11.2 we see that 0.95, or 95 per cent, of the chi-squared values are between χ20 975 and
χ20 025. That is, there is a 0.95 probability of obtaining a χ

2
value such that:

χ20 975 χ2 χ20 025

We stated in expression (11.2) that the random variable (n 1)S
2
/
2
follows a chi-squared distribu-

tion, therefore we can substitute (n 1)s
2
/
2
for χ

2
and write:

χ20 975

n 1 s2

2
χ20 025 (11.3)

Expression (11.3) provides the basis for an interval estimate because 95 per cent of all possible values for
(n 1)S

2
/
2
will be in the interval χ20 975 to χ20 025. We now need to do some algebraic manipulations with

expression (11.3) to construct an interval estimate for the population variance
2
. Using the leftmost

inequality in expression (11.3), we have:

χ20 975
n 1 s2

2

So:

χ20 975
2 n 1 s2

or:

2 n 1 s2

χ20 975
(11.4)

Doing similar algebraic manipulations with the rightmost inequality in expression (11.3) gives:

n 1 s2

χ20 025

2 (11.5)

Expressions (11.4) and (11.5) can be combined to provide:

n 1 s2

χ20 025

2 n 1 s2

χ20 975

(11.6)

Because expression (11.3) is true for 95 per cent of the (n 1)s
2
/
2
values, expression (11.6) provides a 95

per cent confidence interval estimate for the population variance
2
.

We return to the problem of providing an interval estimate for the population variance of filling
quantities. The sample of 20 containers provided a sample variance of s

2
= 2.50. With a sample size of 20,

0 8.907 32.852

0.0250.025

0.975
2

0.025
2

0.95 of the

possible
2 values

2

FIGURE 11.2

A chi-squared distribution with 19

degrees of freedom
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we have 19 degrees of freedom. As shown in Figure 11.2, we have already determined that χ20 975 8 907
and χ20 025 32 852. Using these values in expression (11.6) provides the following interval estimate for
the population variance.

19 2 50

32 852
2 19 2 50

8 907

or

1 45 2 5 33

Taking the square root of these values provides the following 95 per cent confidence interval for the
population standard deviation.

1 20 2 31

Because χ20 975 8 907 and χ20 025 32 852 were used, the interval estimate has a 0.95 confidence
coefficient. Extending expression (11.6) to the general case of any confidence coefficient, we have the
following interval estimate of a population variance.

Interval estimate of a population variance

n 1 s2

χ2α 2

2 n 1 s2

χ21 α 2

(11.7)

where the χ
2
values are based on a chi-squared distribution with n 1 degrees of freedom and where 1 α is

the confidence coefficient.

Hypothesis testing

Using 2
0 to denote the hypothesized value for the population variance, the three forms for a hypothesis

test about a population variance are as follows:

H0
2 2

0

H1
2 2

0

H0
2 2

0

H1
2 2

0

H0
2 2

0

H1
2 2

0

These three forms are similar to the three forms we used to do one-tailed and two-tailed hypothesis tests
about population means and proportions in Chapters 9 and 10.

Hypothesis tests about a population variance use the hypothesized value for the population variance
and the sample variance s

2
to compute the value of a χ

2
test statistic. Assuming that the population has a

normal distribution, the test statistic is:

Test statistic for hypothesis tests about a population variance

χ2
n 1 s2

2
0

(11.8)

where χ
2
has a chi-squared distribution with n 1 degrees of freedom.

After computing the value of the χ
2
test statistic, either the p-value approach or the critical value approach

may be used to determine whether the null hypothesis can be rejected.
Here is an example. The EuroBus Company wants to promote an image of reliability by encouraging

its drivers to maintain consistent schedules. The company would like arrival times at bus stops to have
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low variability. The company standard specifies an arrival time variance of four or less when arrival times
are measured in minutes.

The following hypothesis test is formulated to help the company determine whether the arrival time
population variance is excessive.

H0
2 4

H1
2 4

In tentatively assuming H0 is true, we are assuming the population variance of arrival times is within the
company guideline. We reject H0 if the sample evidence indicates that the population variance exceeds
the guideline. In this case, follow-up steps should be taken to reduce the population variance. We conduct
the hypothesis test using a level of significance of α = 0.05.

Suppose a random sample of 24 bus arrivals taken at a city-centre bus stop provides a sample variance
of s

2
= 4.9. Assuming the population distribution of arrival times is approximately normal, the value of

the test statistic is as follows:

χ2
n− 1 s2

2
0

24− 1 4 9

4
28 18

The chi-squared distribution with n 1 = 24 1 = 23 degrees of freedom is shown in Figure 11.3.
Because this is an upper-tail test, the area under the curve to the right of the test statistic χ

2
= 28.18 is the

p-value for the test.
Like the t distribution table, the chi-squared distribution table does not contain sufficient detail to

enable us to determine the p-value exactly. However, we can use the chi-squared distribution table to
obtain a range for the p-value. For example, using Table 3 of Appendix B, we find the following
information for a chi-squared distribution with 23 degrees of freedom.

Area in upper tail 0.10 0.05 0.025 0.01

χ
2
value (23 df) 32.007 35.172 38.076 41.638

χ
2
= 28.18

Because χ
2
= 28.18 is less than 32.007, the area in the upper tail (the p-value) is greater than 0.10. With

the p-value > α = 0.05, we cannot reject the null hypothesis. The sample does not support the conclusion
that the population variance of the arrival times is excessive.

Because of the difficulty of determining the exact p-value directly from the chi-squared distribution
table, a computer software package such as IBM SPSS, MINITAB or EXCEL is helpful.

The guides on the online platform describe the procedures showing that with 23 degrees of freedom,
χ
2
= 28.18 provides a p-value = 0.2091.

p- value

28.18

2

2

(n – 1)s2
2

 =  

FIGURE 11.3

Chi-squared distribution for the EuroBus example
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As with other hypothesis testing procedures, the critical value approach can also be used to draw the
conclusion. With = 0.05, χ20 05 provides the critical value for the upper-tail hypothesis test. Using
Table 3 of Appendix B and 23 degrees of freedom, χ20 05 = 35.172. Consequently, the rejection rule for the
bus arrival time example is as follows:

Reject H0 if χ2 35 172

Because the value of the test statistic is χ
2
= 28.18, we cannot reject the null hypothesis.

In practice, upper-tail tests as presented here are the most frequently encountered tests about a
population variance. In situations involving arrival times, production times, filling weights, part dimensions
and so on, low variances are desirable, whereas large variances are unacceptable. With a statement about the
maximum allowable population variance, we can test the null hypothesis that the population variance is less
than or equal to the maximum allowable value against the alternative hypothesis that the population
variance is greater than the maximum allowable value. With this test structure, corrective action will be
taken whenever rejection of the null hypothesis indicates the presence of an excessive population variance.

As we saw with population means and proportions, other forms of hypothesis test can be done. We
demonstrate a two-tailed test about a population variance by considering a situation faced by a car driver
licensing authority. Historically, the variance in test scores for individuals applying for driving licences
has been

2
= 100. A new examination with a new style of test questions has been developed. Admin-

istrators of the licensing authority would like the variance in the test scores for the new examination to
remain at the historical level. To evaluate the variance in the new examination test scores, the following
two-tailed hypothesis test has been proposed:

H0
2 100

H1
2 100

Rejection of H0 will indicate that a change in the variance has occurred and suggest that some questions
in the new examination may need revision to make the variance of the new test scores similar to the
variance of the old test scores.

A sample of 30 applicants for driving licences is given the new version of the examination. The sample
provides a sample variance s

2
= 162. We shall use a level of significance = 0.05 to do the hypothesis test.

The value of the chi-squared test statistic is as follows:

χ2
n 1 s2

2
0

30 1 162

100
46 98

Now, let us compute the p-value. Using Table 3 of Appendix B and n 1 = 30 1 = 29 degrees of
freedom, we find the following:

Area in upper tail 0.10 0.05 0.025 0.01

χ
2
value (29 df) 39.087 42.557 45.722 49.588

χ
2
= 46.98

The value of the test statistic χ
2
= 46.98 gives an area between 0.025 and 0.01 in the upper tail of

the chi-squared distribution. Doubling these values shows that the two-tailed p-value is between 0.05
and 0.02. IBM SPSS, EXCEL or MINITAB can be used to show the exact p-value = 0.0374. With
p-value α = 0.05, we reject H0 and conclude that the new examination test scores have a population
variance different from the historical variance of

2
= 100.

A summary of the hypothesis testing procedures for a population variance is shown in Table 11.1.
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T ABLE 11 . 1 Summary of hypothesis tests about a population variance

Lower-tail test Upper-tail test Two-tailed test

Hypotheses H0
2 2

0 H0
2 2

0 H0
2 2

0

H1
2 2

0 H1
2 2

0 H1
2 2

0

Test statistic
χ2

n 1 s2

2
0

χ2
n 1 s2

2
0

χ2
n 1 s2

2
0

Rejection rule: p-value

approach

Reject H0 if p-value Reject H0 if p-value Reject H0 if

p-value

Rejection rule: critical value

approach

Reject H0 if

χ2 χ21 α

Reject H0 if

χ2 χ2α

Reject H0 if

χ2 χ21 α 2

or if

χ2 χ2α 2

EXERCISES

Methods

1. Find the following chi-squared distribution values from Table 3 of Appendix B.

a. χ20 05 with df = 5.

b. χ20 025 with df = 15.

c. χ20 975 with df = 20.

d. χ20 01 with df = 10.

e. χ20 95 with df = 18.

2. A sample of 20 items provides a sample standard deviation of five.

a. Compute a 90 per cent confidence interval estimate of the population variance.

b. Compute a 95 per cent confidence interval estimate of the population variance.

c. Compute a 95 per cent confidence interval estimate of the population standard deviation.

3. A sample of 16 items provides a sample standard deviation of 9.5. Test the following hypotheses

using = 0.05. What is your conclusion? Use both the p-value approach and the critical value

approach.

H0
2 50

H1
2 50

Applications

4. The variance in drug weights is critical in the pharmaceutical industry. For a specific drug, with

weights measured in grams, a sample of 18 units provided a sample variance of s
2

= 0.36.

a. Construct a 90 per cent confidence interval estimate of the population variance for the weight of

this drug.

b. Construct a 90 per cent confidence interval estimate of the population standard deviation.
COMPLETE

SOLUTIONS
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5. The table below shows estimated P/E ratios for December 2012, for a sample of eight companies

listed on the Tel Aviv stock exchange (Source: Bloomberg, July 2012).

Company P/E ratio

Avner Oil Exploration 37.69

Bank Hapoalim BM 6.59

Cellcom Israel Ltd 5.30

Delek Group Ltd 14.53

Nice Systems Ltd 14.46

Partner Communications Co. Ltd 5.09

Paz Oil Co. Ltd 16.13

Teva Pharmaceutical 7.29

a. Compute the sample variance and sample standard deviation for these data.

b. What is the 95 per cent confidence interval for the population variance?

c. What is the 95 per cent confidence interval for the population standard deviation?

6. Because of staffing decisions, managers of the Worldview Hotel are interested in the variability in

the number of rooms occupied per day during a particular season of the year. A sample of 20 days

of operation shows a sample mean of 290 rooms occupied per day and a sample standard

deviation of 30 rooms.

a. What is the point estimate of the population variance?

b. Provide a 90 per cent confidence interval estimate of the population variance.

c. Provide a 90 per cent confidence interval estimate of the population standard deviation.

7. The CAC 40 is a share index based on the price movements of shares quoted on the Paris stock

exchange. The figures below are the quarterly percentage returns for a tracker fund linked to the

CAC 40, over the period January 2007 to June 2012.

1st quarter 2nd quarter 3rd quarter 4th quarter

2007 6.27 –3.51 1.68 –16.73

2008 2.60 12.09 20.61 –14.72

2009 6.25 8.43 5.29 3.65

2010 2.07 –4.55 5.23 4.49

2011 2.53 –10.57 –11.71 1.72

2012 –2.60 –1.12

a. Compute the mean, variance and standard deviation for the quarterly returns.

b. Financial analysts often use standard deviation of percentage returns as a measure of risk for

stocks and mutual funds. Construct a 95 per cent confidence interval for the population

standard deviation of quarterly returns for the CAC 40 tracker fund.

8. In the file ‘Travel’ on the online platform, there are estimated daily living costs (in euros) for a

businessman travelling to 20 major cities. The estimates include a single room at a four-star hotel,

beverages, breakfast, taxi fares and incidental costs.

a. Compute the sample mean.

b. Compute the sample standard deviation.

c. Compute a 95 per cent confidence interval for the population standard deviation.

CAC40

COMPLETE

SOLUTIONS
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City Daily living cost City Daily living cost

Bangkok 242.87 Madrid 283.56

Bogota 260.93 Mexico City 212.00

Bombay 139.16 Milan 284.08

Cairo 194.19 Paris 436.72

Dublin 260.76 Rio de Janeiro 240.87

Frankfurt 355.36 Seoul 310.41

Hong Kong 346.32 Tel Aviv 223.73

Johannesburg 165.37 Toronto 181.25

Lima 250.08 Warsaw 238.20

London 326.76 Washington, DC 250.61

9. Gold Fields Ltd is a South African mining company quoted on several stock exchanges, including

NASDAQ Dubai. To analyze the risk, or volatility, associated with investing in Gold Fields Ltd shares,

a sample of the monthly percentage return for 12 months was taken using the NASDAQ prices.

The returns for the last six months of 2011 and the first six months of 2012 are shown here.

Month (2012) Return (%) Month (2011) Return (%)

January –5.26 July 10.25

February –6.45 August 6.24

March 9.66 September 0.72

April 9.66 October 8.15

May –7.06 November 12.13

June –9.03 December 0.58

a. Compute the sample variance and sample standard deviation monthly return for Gold Fields,

as measures of volatility.

b. Construct a 95 per cent confidence interval for the population variance.

c. Construct a 95 per cent confidence interval for the population standard deviation.

10. Part variability is critical in the manufacturing of ball bearings. Large variances in the size of the

ball bearings cause bearing failure and rapid wear. Production standards call for a maximum

variance of 0.0025 when the bearing sizes are measured in millimetres. A sample of 15 bearings

shows a sample standard deviation of 0.066 mm.

a. Use = 0.10 to determine whether the sample indicates that the maximum acceptable

variance is being exceeded.

b. Compute a 90 per cent confidence interval estimate for the variance of the ball bearings in the

population.

11. Suppose that any investment with an annualized standard deviation of percentage returns greater

than 20 per cent is classified as ‘high-risk’. The annualized standard deviation of percentage

returns for the MSCI Emerging Markets index, based on a sample of size 36, is 25.2 per cent.

Construct a hypothesis test that can be used to determine whether an investment based on the

movements in the MSCI index would be classified as ‘high-risk’. With a 0.05 level of significance,

what is your conclusion?

12. A sample standard deviation for the number of passengers taking a particular airline flight is 8. A 95

per cent confidence interval estimate of the population standard deviation is 5.86 passengers to

12.62 passengers.

a. Was a sample size of 10 or 15 used in the statistical analysis?

b. Suppose the sample standard deviation of s = 8 was based on a sample of 25 flights. What

change would you expect in the confidence interval for the population standard deviation?

Compute a 95 per cent confidence interval estimate of with a sample size of 25.

TRAVEL
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11.2 INFERENCES ABOUT TWO POPULATION VARIANCES

In some statistical applications we may want to compare the variances in product quality resulting from
two different production processes, the variances in assembly times for two assembly methods or the
variances in temperatures for two heating devices. In making comparisons about the two population
variances, we shall be using data collected from two independent random samples, one from population 1
and another from population 2. The two sample variances s21 and s22 will be the basis for making inferences
about the two population variances 2

1 and 2
2. Whenever the variances of two normal populations are

equal 2
1

2
2 , the sampling distribution of the ratio of the two sample variances is as follows.

Sampling distribution of S
2
1/S
2
2 when

2
1

2
2

When independent simple random samples of sizes n1 and n2 are selected from two normal populations with

equal variances, the sampling distribution of:

S21
S22

(11.9)

has an F distribution with n1 1 degrees of freedom for the numerator and n2 1 degrees of freedom for

the denominator. S21 is the sample variance for the random sample of n1 items from population 1, and S22 is

the sample variance for the random sample of n2 items from population 2.

Figure 11.4 is a graph of the F distribution with 20 degrees of freedom for both the numerator and
denominator. As can be seen from this graph, F values can never be negative, and the F distribution is not
symmetrical. The shape of any particular F distribution depends on its numerator and denominator
degrees of freedom.

We shall use Fα to denote the value of F that gives an area or probability of α in the upper tail of the
distribution. For example, as noted in Figure 11.4, F0.05 identifies the upper tail area of 0.05 for an F
distribution with 20 degrees of freedom for both the numerator and for the denominator. The specific
value of F0.05 can be found by referring to the F distribution table, Table 4 of Appendix B. Using 20
degrees of freedom for the numerator, 20 degrees of freedom for the denominator and the row
corresponding to an area of 0.05 in the upper tail, we find F0.05 = 2.12. Note that the table can be used
to find F values for upper tail areas of 0.10, 0.05, 0.025 and 0.01.

We now show how the F distribution can be used to do a hypothesis test about the equality of two
population variances. The hypotheses are stated as follows:

H0
2
1

2
2

H1
2
1

2
2

0.0 1.5 2.12 3.0
F

0.05

F0.05

FIGURE 11.4

F distribution with 20 degrees of freedom

for the numerator and 20 degrees of

freedom for the denominator
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We make the tentative assumption that the population variances are equal. If H0 is rejected, we will draw
the conclusion that the population variances are not equal.

The hypothesis test requires two independent random samples, one from each population. The two
sample variances are then computed. We refer to the population providing the larger sample variance as
population 1. A sample size of n1 and a sample variance of s21 correspond to population 1, and a sample size
of n2 and a sample variance of s22 correspond to population 2. Based on the assumption that both
populations have a normal distribution, the ratio of sample variances provides the following F test statistic.

Test statistic for hypothesis tests about population variances with
2
1

2
2

F
S21
S22

(11.10)

Denoting the population with the larger sample variance as population 1, the test statistic has an F

distribution with n1 1 degrees of freedom for the numerator and n2 1 degrees of freedom for the

denominator.

Because the F test statistic is constructed with the larger sample variance in the numerator, the value of
the test statistic will be in the upper tail of the F distribution. Therefore, the F distribution table (Table 4
of Appendix B) need only provide upper-tail areas or probabilities.

We now consider an example. New Century Schools is renewing its school bus service contract for the
coming year and must select one of two bus companies, the Red Bus Company or the Route One Company.
We shall assume that the two companies have similar performance for average punctuality (i.e. mean arrival
time) and use the variance of the arrival times as a primary measure of the quality of the bus service. Low
variance values indicate the more consistent and higher quality service. If the variances of arrival times
associated with the two services are equal, New Century Schools’ managers will select the company offering
the better financial terms. However, if the sample data on bus arrival times for the two companies indicate a
significant difference between the variances, the administrators may want to give special consideration to
the company with the better or lower variance service. The appropriate hypotheses follow.

H0
2
1

2
2

H1
2
1

2
2

If H0 can be rejected, the conclusion of unequal service quality is appropriate. We shall use a level of
significance of α = 0.10 to do the hypothesis test. A sample of 26 arrival times for the Red Bus service
provides a sample variance of 48 and a sample of 16 arrival times for the Route One service provides a
sample variance of 20. Because the Red Bus sample provided the larger sample variance, we shall denote
Red Bus as population 1. Using equation (11.10), the value of the test statistic is:

F
s21
s22

48

20
2 40

The corresponding F distribution has n1 1 = 26 1 = 25 numerator degrees of freedom and
n2 1 = 16 1 = 15 denominator degrees of freedom. As with other hypothesis testing procedures, we
can use the p-value approach or the critical value approach to reach a conclusion. Table 4 of Appendix B
shows the following areas in the upper tail and corresponding F values for an F distribution with
25 numerator degrees of freedom and 15 denominator degrees of freedom.

Area in upper tail 0.10 0.05 0.025 0.01

F value (df1 = 25, df2 = 15) 1.89 2.28 2.69 3.28

F = 2.40

SCHOOL

BUS
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Because F = 2.40 is between 2.28 and 2.69, the area in the upper tail of the distribution is between
0.05 and 0.025. Since this is a two-tailed test, we double the upper-tail area, which results in a p-value
between 0.10 and 0.05. For this test, we selected α = 0.10 as the level of significance, which gives us a p-value
< α = 0.10. Hence, the null hypothesis is rejected. This finding leads to the conclusion that the two
bus services differ in terms of arrival time variances. The recommendation is that the New Century Schools’
managers give special consideration to the better or lower variance service offered by the Route One
Company.

We can use EXCEL, MINITAB or IBM SPSS to show that the test statistic F = 2.40 provides a two-
tailed p-value = 0.0811. With 0.0811 < α = 0.10, the null hypothesis of equal population variances is
rejected.

To use the critical value approach to do the two-tailed hypothesis test at the α = 0.10 level of
significance, we select critical values with an area of α/2 = 0.10/2 = 0.05 in each tail of the distribution.
Because the value of the test statistic computed using equation (11.10) will always be in the upper tail, we
only need to determine the upper-tail critical value. From Table 4 of Appendix B, we see that F0.05 = 2.28.
So, even though we use a two-tailed test, the rejection rule is stated as follows:

Reject H0 if F 2 28

Because the test statistic F = 2.40 is greater than 2.28, we reject H0 and conclude that the two bus services
differ in terms of arrival time variances.

One-tailed tests involving two population variances are also possible. In this case, we use the F
distribution to determine whether one population variance is significantly greater than the other. If we
are using tables of the F distribution to compute the p-value or determine the critical value, a one-tailed
hypothesis test about two population variances will always be formulated as an upper-tail test:

H0
2
1

2
2

H1
2
1

2
2

This form of the hypothesis test always places the p-value and the critical value in the upper tail of the F
distribution. As a result, only upper-tail F values will be needed, simplifying both the computations and
the table for the F distribution.

As an example of a one-tailed test, consider a public opinion survey. Samples of 31 men and 41 women
were used to study attitudes about current political issues. The researcher conducting the study wants to
test to see if women show a greater variation in attitude on political issues than men. In the form of the
one-tailed hypothesis test given previously, women will be denoted as population 1 and men will be
denoted as population 2. The hypothesis test will be stated as follows:

H0
2
women

2
men

H1
2
women

2
men

T ABLE 11 . 2 Summary of hypothesis tests about two population variances

Upper-tail test Two-tailed test

Hypotheses H0
2
1

2
2

H1
2
1

2
2

H0
2
1

2
2

H1
2
1

2
2

Note: Population 1 has the larger sample variance

Test statistic
F

S21

S22
F

S21

S22

Rejection rule: Reject H0 if Reject H0 if

p-value approach p-value p-value

Rejection rule: Reject H0 if Reject H0 if

critical value approach F F F F /2
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Rejection of H0 will give the researcher the statistical support necessary to conclude that women show a
greater variation in attitude on political issues.

With the sample variance for women in the numerator and the sample variance formen in the denominator,
the F distribution will have n1 1 = 41 1 = 40 numerator degrees of freedom and n2 1 = 31 1 = 30
denominator degrees of freedom.We shall use a level of significance α = 0.05 for the hypothesis test. The survey
results provide a sample variance of s21 = 120 for women and a sample variance of s22 = 80 for men. The test
statistic is as follows:

F
s21
s22

120

80
1 50

Referring to Table 4 in Appendix B, we find that an F distribution with 40 numerator degrees of
freedom and 30 denominator degrees of freedom has F0.10 = 1.57. Because the test statistic F = 1.50 is less
than 1.57, the area in the upper tail must be greater than 0.10. Hence, we can conclude that the p-value is
greater than 0.10. Using MINITAB, IBM SPSS or EXCEL provides a p-value = 0.1256. Because the p-value
> α = 0.05, H0 cannot be rejected. Hence, the sample results do not support the conclusion that women
show greater variation in attitude on political issues than men.

Table 11.2 provides a summary of hypothesis tests about two population variances. Research confirms
that the F distribution is sensitive to the assumption of normal populations. The F distribution should not
be used unless it is reasonable to assume that both populations are at least approximately normally
distributed.

EXERCISES

Methods

13. Find the following F distribution values from Table 4 of Appendix B.

a. F0.05 with degrees of freedom 5 and 10.

b. F0.025 with degrees of freedom 20 and 15.

c. F0.01 with degrees of freedom 8 and 12.

d. F0.10 with degrees of freedom 10 and 20.

14. A sample of 16 items from population 1 has a sample variance s2
1 = 5.8 and a sample of 21 items

from population 2 has a sample variance s2
2 = 2.4. Test the following hypotheses at the 0.05 level

of significance.

H0
2
1

2
2

H1
2
1

2
2

a. What is your conclusion using the p-value approach?

b. Repeat the test using the critical value approach.

15. Consider the following hypothesis test.

H0
2
1

2
2

H1
2
1

2
2

a. What is your conclusion if n1 = 21, s2
1 = 8.2, n2 = 26, s2

2 = 4.0? Use = 0.05 and the p-value

approach.

b. Repeat the test using the critical value approach.

COMPLETE

SOLUTIONS

INFERENCES ABOUT TWO POPULATION VARIANCES 301



Applications

16. Most individuals are aware of the fact that the average annual repair cost for a car depends on its

age. A researcher is interested in finding out whether the variance of the annual repair costs also

increases with the age of the car. A sample of 26 cars that were eight years old showed a sample

standard deviation for annual repair costs of £170 and a sample of 25 cars that were four years

old showed a sample standard deviation for annual repair costs of £100.

a. Suppose the research hypothesis is that the variance in annual repair costs is larger for the

older cars. State the null and alternative hypotheses for an appropriate hypothesis test.

b. At a 0.01 level of significance, what is your conclusion? What is the p-value? Discuss the

reasonableness of your findings.

17. On the basis of data provided by a salary survey, the variance in annual salaries for seniors in

accounting firms is approximately 2.1 and the variance in annual salaries for managers in

accounting firms is approximately 11.1. The salary data were provided in thousands of euros.

Assuming that the salary data were based on samples of 25 seniors and 26 managers, test the

hypothesis that the population variances in the salaries are equal. At a 0.05 level of significance,

what is your conclusion?

18. For a sample of 100 days in 2012, the euro to US dollars and the British pound to euro exchange

rates were recorded. The sample means were 1.2852 US$/ and 1.2294 /£. The respective

sample standard deviations were 0.03565 US$/ and 0.02290 /£. Do a hypothesis test to

determine whether there is a difference in variability between the two exchange rates. Use = 0.05

as the level of significance. Discuss briefly whether the comparison you have made is a ‘fair’ one.

19. Two new assembly methods are tested and the variances in assembly times are reported. Use

= 0.10 and test for equality of the two population variances.

Method A Method B

Sample size n1 = 31 n2 = 25

Sample variation s
2
1 = 25 s

2
2 = 12

20. A research hypothesis is that the variance of stopping distances of cars on wet roads is greater

than the variance of stopping distances of cars on dry roads. In the research study, 16 cars

travelling at the same speeds are tested for stopping distances on wet roads and 16 cars are

tested for stopping distances on dry roads. On wet roads, the standard deviation of stopping

distances is ten metres. On dry roads, the standard deviation is five metres.

a. At a 0.05 level of significance, do the sample data justify the conclusion that the variance in

stopping distances on wet roads is greater than the variance in stopping distances on dry

roads? What is the p-value?

b. What are the implications of your statistical conclusions in terms of driving safety

recommendations?

21. The grade point averages of 352 students who completed a college course in financial

accounting have a standard deviation of 0.940. The grade point averages of 73 students who

dropped out of the same course have a standard deviation of 0.797. Do the data indicate a

difference between the variances of grade point averages for students who completed a financial

accounting course and students who dropped out? Use a 0.05 level of significance.

Note: F0.025 with 351 and 72 degrees of freedom is 1.466.

COMPLETE

SOLUTIONS
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SUMMARY

In this chapter we presented statistical procedures that can be used to make inferences about

population variances. In the process we introduced two new probability distributions: the chi-squared

distribution and the F distribution. The chi-squared distribution can be used as the basis for interval

estimation and hypothesis tests about the variance of a normal population.

We illustrated the use of the F distribution in hypothesis tests about the variances of two normal

populations. With independent simple random samples of sizes n1 and n2 selected from two normal

populations with equal variances, the sampling distribution of the ratio of the two sample variances

has an F distribution with n1 1 degrees of freedom for the numerator and n2 1 degrees of freedom

for the denominator.

KEY FORMULAE

Interval estimate of a population variance

n 1 s2

χ2 2

2 n 1 s2

χ21 2

(11.7)

Test statistic for hypothesis tests about a population variance

χ2
n 1 s2

2
0

(11.8)

Test statistic for hypothesis tests about population variances with 2
1

2
2

F
S21
S22

(11.10)

22. The variance in a production process is an important measure of the quality of the process. A

large variance often signals an opportunity for improvement in the process by finding ways to

reduce the process variance. The file ‘Bags’ on the online platform contains data for two

machines that fill bags with powder. The file has 25 bag weights for Machine 1 and 22 bag

weights for Machine 2. Conduct a statistical test to determine whether there is a significant

difference between the variances in the bag weights for the two machines. Use a 0.05 level of

significance. What is your conclusion? Which machine, if either, provides the greater opportunity

for quality improvements?

ONLINE RESOURCES

For the data files, online summary, additional questions and answers, and the software section for

Chapter 11, visit the online platform.

BAGS
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CASE PROBLEM

Recovery from the global economic problems

of 2008–09

In 2008, particularly in the latter part of the year,

there were global economic problems, including

banking crises in a number of countries, clear indi-

cations of economic recession and increased stock

market volatility. Since then, governments across

Europe have been trying to lift their economies out of

recession.

One method of measuring volatility in stock mar-

kets is to calculate the standard deviation of percen-

tage changes in stock market prices or share index

levels (e.g. daily percentage changes orweekly percen-

tage changes). Although this is a relatively unsophisti-

cated method, it is the first operational definition

offered for the concept of ‘volatility’ in many texts on

finance.

The data in the file ‘Share indices 2008–2012’

(on the online platform) are samples of daily per-

centage changes in four well-known stock market

indices for two 12-month periods: one from mid-

2008 to mid-2009, and the other from mid-2011

to mid-2012. The four indices are the FTSE 100

(London Stock Exchange, UK), the DAX 40 (Frank-

furt Stock Exchange, Germany), the Athens Com-

posite Index (Athens Stock Exchange, Greece) and

the TA 100 (Tel Aviv Stock Exchange, Israel).

Have stock markets become less volatile than

during the problems of 2008–09? The report you

are asked to prepare below should be focused

particularly on the question of whether the stock

markets showed greater volatility in 2008–09 than

in 2011–12.

Analyst’s report

1. Use appropriate descriptive statistics to

summarize the daily percentage change data for

each index in 2008–09 and 2011–12. What

similarities or differences do you observe from

the sample data?

2. Use the methods of Chapter 10 to comment on

any difference between the population mean

daily percentage change in each index for

2008–09 versus 2011–12. Discuss your

findings.

3. Compute the standard deviation of the daily

percentage changes for each share index, for

2008–09 and for 2011–12. For each share

index, do a hypothesis test to examine the

equality of population variances in 2008–09 and

2011–12. Discuss your findings.

4. What conclusions can you reach about any

differences between 2008–09 and 2011–12?

SHARE

INDICES

2008-2012
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12
Tests of Goodness
of Fit and
Independence

CHAPTER CONTENTS

Statistics in Practice Pan-European and National lotteries

12.1 Goodness of fit test: a multinomial population

12.2 Test of independence

12.3 Goodness of fit test: Poisson and normal distributions

LEARNING OBJECTIVES After studying this chapter and doing the exercises, you should be able

to construct and interpret the results of goodness of fit tests, using the chi-squared distribution, for

several situations:

1 A multinomial population with given probabilities.

2 A test of independence in a two-way contingency

table.

3 A Poisson distribution.

4 A normal distribution.

In Chapter 11 we showed how the chi-squared distribution could be used in estimation and in
hypothesis tests about a population variance. In the present chapter, we introduce two additional

hypothesis testing procedures, both based on the use of the chi-squared distribution. Like other hypoth-
esis testing procedures, these tests compare sample results with those expected when the null hypothesis is
true.

In the following section we introduce a goodness of fit test for a multinomial population. Later we
discuss the test for independence using contingency tables and then show goodness of fit tests for the
Poisson and normal distributions.

12.1 GOODNESS OF FIT TEST: A MULTINOMIAL POPULATION

Suppose each element of a population is assigned to one, and only one, of several classes or categories.
Such a population is a multinomial population. The multinomial distribution can be thought of as an
extension of the binomial distribution to three or more categories of outcomes. On each trial of a
multinomial experiment, one and only one of the outcomes occurs. Each trial of the experiment is
assumed to be independent of all others, and the probabilities of the outcomes remain the same at each
trial.
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As an example, consider a market share study being conducted by Scott Market Research. Over the
past year market shares stabilized at 30 per cent for company A, 50 per cent for company B and 20 per
cent for company C. Recently company C developed a ‘new and improved’ product to replace its current
offering in the market. Company C retained Scott Market Research to assess whether the new product will
alter market shares.

In this case, the population of interest is a multinomial population. Each customer is classified as
buying from company A, company B or company C. So we have a multinomial population with three
possible outcomes. We use the following notation:

A market share for company A

B market share for company B

C market share for company C

Scott Market Research will conduct a sample survey and find the sample proportion preferring each
company’s product. A hypothesis test will then be done to assess whether the new product will lead to a
change in market shares. The null and alternative hypotheses are:

H0 A 0 30 B 0 50 and C 0 20

H1 The population proportions are not A 0 30 B 0 50 and C 0 20

STATISTICS IN PRACTICE

Pan-European and National lotteries

E very week, hundreds of millions of people across

Europe pay to take a small gamble, in the hope of

becoming an instant millionaire, by buying one or

more tickets in a national lottery or a pan-European

lottery. Since its inception in 2004, average sales in

the EuroMillions lottery have topped 60 million tickets

per draw (draws are held twice each week). The com-

petitor EuroJackpot lottery, which started in 2012,

expected sales of over 50 million tickets per draw.

The European Lotteries association reported the

2011 revenues of its members as over 80 billion.

The precise details of the game, or gamble, differ

from lottery to lottery, but the general principle is that

each ticket buyer chooses several numbers from a pre-

scribed set. The jackpot winner (or winners) is the ticket

holder whose chosen numbers exactly match those

picked out from the full set by a ‘randomizing device’

on the day the lottery is decided. For example, in the UK

Lotto game, and in several others around Europe, six

numbers are chosen from the set 1 to 49. The random-

izing device is usually a sophisticated (and TV-friendly)

piece of machinery that thoroughly mixes a set of num-

bered balls and picks out balls one by one. The objec-

tive is to give each ball an equal probability of being

picked, so that every possible combination of numbers

has equal probability.

Checks are periodically made to provide assurance

on this principle of fairness. The checks are usually

made by an independent body. For example, the Cen-

tre for the Study of Gambling at the University of

Salford, UK reported to the National Lotteries Com-

mission in January 2010 on the randomness of the

EuroMillions draws. In the report, comparisons were

made between the actual frequencies with which indi-

vidual balls have been drawn and the frequencies

expected assuming fairness or randomness. In statis-

tical parlance, these are known as goodness of fit

tests, more specifically as chi-squared tests.

In this chapter you will learn how chi-squared tests

like those in the EuroMillions report are done.
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If the sample results lead to the rejection of H0, Scott Market Research will have evidence that the
introduction of the new product may affect market shares.

The market research firm has used a consumer panel of 200 customers for the study, in which each
individual is asked to specify a purchase preference for one of three alternatives: company A’s product,
company B’s product and company C’s new product. This is equivalent to a multinomial experiment with
200 trials. The 200 responses are summarized here.

Observed frequency

Company A’s product Company B’s product Company C’s new product

48 98 54

We now do a goodness of fit test to assess whether the sample of 200 customer purchase preferences
is consistent with the null hypothesis. The goodness of fit test is based on a comparison of the sample of
observed results with the expected results under the assumption that the null hypothesis is true. The next
step is therefore to compute expected purchase preferences for the 200 customers under the assumption
that πA = 0.30, πB = 0.50 and πC = 0.20. The expected frequency for each category is found by
multiplying the sample size of 200 by the hypothesized proportion for the category.

Expected frequency

Company A’s product Company B’s product Company C’s new product

200(0.30) = 60 200(0.50) = 100 200(0.20) = 40

The goodness of fit test now focuses on the differences between the observed frequencies and the
expected frequencies. Large differences between observed and expected frequencies cast doubt on the
assumption that the hypothesized proportions or market shares are correct. Whether the differences
between the observed and expected frequencies are ‘large’ or ‘small’ is a question answered with the aid of
the following test statistic.

Test statistic for goodness of fit

χ2
k

i 1

f i ei
2

ei
(12.1)

where

fi = observed frequency for category i

ei = expected frequency for category i

k = the number of categories

Note: The test statistic has a chi-squared distribution with k 1 degrees of freedom provided the expected

frequencies are five or more for all categories.

In the Scott Market Research example we use the sample data to test the hypothesis that the multinomial
population has the proportions πA = 0.30, πB = 0.50 and πC = 0.20. We shall use level of significance
α = 0.05. The computation of the chi-squared test statistic is shown in Table 12.1, giving χ

2
= 7.34.

We shall reject the null hypothesis if the differences between the observed and expected frequencies are
large, which in turn will result in a large value for the test statistic. Hence the goodness of fit test will
always be an upper-tail test. With k 1 = 3 1 = 2 degrees of freedom, the chi-squared table (Table 3 of
Appendix B) provides the following (an introduction to the chi-squared distribution and the use of the
chi-squared table were presented in Section 11.1).
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Area in upper tail 0.10 0.05 0.025 0.01

χ
2
value (2 df) 4.605 5.991 7.378 9.210

χ
2
= 7.34

The test statistic χ
2
= 7.34 is between 5.991 and 7.378 (very close to 7.378), so the corresponding

upper-tail area or p-value must be between 0.05 and 0.025 (very close to 0.025). With p-value α = 0.05, we
reject H0 and conclude that the introduction of the new product by company C may alter the current
market share structure. MINITAB, IBM SPSS or EXCEL can be used to show that χ

2
= 7.34 gives a p-value

= 0.0255 (see the software guides on the online platform).
Instead of using the p-value, we could use the critical value approach to draw the same conclusion.

With α = 0.05 and 2 degrees of freedom, the critical value for the test statistic is χ
2
= 5.991. The upper tail

rejection rule becomes:

Reject H0 if χ2 5 991

With χ
2
= 7.34 5.991, we reject H0. The p-value approach and critical value approach provide the same

conclusion.
Although the test itself does not directly tell us about how market shares may change, we can compare

the observed and expected frequencies descriptively to get an idea of the change in market structure. We
see that the observed frequency of 54 for company C is larger than the expected frequency of 40. Because
the latter was based on current market shares, the larger observed frequency suggests that the new
product will have a positive effect on company C’s market share. Similar comparisons for the other two
companies suggest that company C’s gain in market share will hurt company A more than company B.

Here are the steps for doing a goodness of fit test for a hypothesized multinomial population
distribution.

Multinomial distribution goodness of fit test: a summary

1. State the null and alternative hypotheses.

H0 The population follows a multinomial distribution with specified probabilities for each
of the k categories

H1: The population does not follow a multinomial distribution with the specified probabilities
for each of the k categories

T ABLE 12 . 1 Computation of the chi-squared test statistic for the Scott Market Research market share

study

Hypothesized

proportion

Observed

frequency

(fi)

Expected

frequency

(ei)

Difference

(fi ei)

Squared

difference

(fi ei)
2

Squared

difference

divided by

expected

frequency

(fi ei)
2
/ei

Company A 0.30 48 60 12 144 2.40

Company B 0.50 98 100 −2 4 0.04

Company C 0.20 54 40 14 196 4.90

Total 200 χ
2

= 7.34

ONLINE

308 CHAPTER 12 TESTS OF GOODNESS OF FIT AND INDEPENDENCE



2. Select a random sample and record the observed frequencies fi for each category.

3. Assume the null hypothesis is true and determine the expected frequency ei in each category by

multiplying the category probability by the sample size.

4. Compute the value of the test statistic.

5. Rejection rule:

p-value approach: Reject H0 if p-value ≤ α

Critical value approach: Reject H0 if χ
2

χ
2

where α is the level of significance for the test and there are k 1 degrees of freedom.

EXERCISES

Methods

1. Test the following hypotheses using the χ
2

goodness of fit test.

COMPLETE

SOLUTIONS

H0 A 0 40 B 0 40 C 0 20

H1 The population proportions are not A 0 40 B 0 40 C 0 20

A sample of size 200 yielded 60 in category A, 120 in category B and 20 in category C. Use

= 0.01 and test to see whether the proportions are as stated in H0.

a. Use the p-value approach.

b. Repeat the test using the critical value approach.

2. Suppose we have a multinomial population with four categories: A, B, C and D. The null hypothesis

is that the proportion of items is the same in every category, i.e.

H0 A B C D 0 25

A sample of size 300 yielded the following results.

A: 85 B: 95 C: 50 D: 70

Use = 0.05 to determine whether H0 should be rejected. What is the p-value?

Applications

3. One of the questions on Business Week’s Subscriber Study was, ‘When making investment

purchases, do you use full service or discount brokerage firms?’ Survey results showed that 264

respondents use full service brokerage firms only, 255 use discount brokerage firms only and 229

use both full service and discount firms. Use = 0.10 to determine whether there are any

differences in preference among the three service choices.

4. How well do airline companies serve their customers? A study by Business Week showed the

following customer ratings: 3 per cent excellent, 28 per cent good, 45 per cent fair and 24 per cent

poor. In a follow-up study of service by telephone companies, assume that a sample of 400 adults

found the following customer ratings: 24 excellent, 124 good, 172 fair and 80 poor. Taking the

figures from the Business Week study as ‘population’ values, is the distribution of the customer

ratings for telephone companies different from the distribution of customer ratings for airline

companies? Test with = 0.01. What is your conclusion?

5. In setting sales quotas, the marketing manager of a multinational company makes the assumption

that order potentials are the same for each of four sales territories in the Middle East. A sample of

200 sales follows. Should the manager’s assumption be rejected? Use = 0.05.
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12.2 TEST OF INDEPENDENCE

Another important application of the chi-squared distribution involves testing for the independence of two
qualitative (categorical) variables. Consider a study conducted by the Millenium Brewery, which manufac-
tures and distributes three types of beer: pilsner, export and dark beer. In an analysis of the market segments
for the three beers, the firm’s market research group raised the question of whether preferences for the three
beers differ between male and female beer drinkers. If beer preference is independent of gender, a single
advertising campaign will be initiated for all of theMillennium beers. However, if beer preference depends on
the gender of the beer drinker, the firm will tailor its promotions to different target markets.

A test of independence addresses the question of whether the beer preference (pilsner, export or dark)
is independent of the gender of the beer drinker (male, female). The hypotheses for this test are:

H0 Beer preference is independent of the gender of the beer drinker
H1 Beer preference is not independent of the gender of the beer drinker

Table 12.2 can be used to describe the situation. The population under study is all male and female beer
drinkers. A sample can be selected from this population and each individual asked to state his or her preference
among the threeMillennium beers. Every individual in the samplewill be classified in one of the six cells in the
table. For example, an individual may be a male preferring export (cell (1,2)), a female preferring pilsner (cell
(2,1)), a female preferring dark beer (cell (2,3)) and so on.

Sales territories

1 2 3 4

60 45 59 36

6. A community park will open soon in a large European city. A sample of 210 individuals are asked to

state their preference for when they would most like to visit the park. The sample results follow.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

20 30 30 25 35 20 50

In developing a staffing plan, should the park manager plan on the same number of individuals

visiting the park each day? Support your conclusion with a statistical test. Use = 0.05.

7. The results of ComputerWorld’sAnnual Job Satisfaction Survey showed that 28 per cent of information

systems (IS) managers are very satisfied with their job, 46 per cent are somewhat satisfied, 12 per

cent are neither satisfied or dissatisfied, 10 per cent are somewhat dissatisfied and 4 per cent are

very dissatisfied. Suppose that a sample of 500 computer programmers yielded the following results.

Category Number of respondents

Very satisfied 105

Somewhat satisfied 235

Neither 55

Somewhat dissatisfied 90

Very dissatisfied 15

Taking the ComputerWorld figures as ‘population’ values, use = 0.05 and test to determine whether

the job satisfaction for computer programmers is different from the job satisfaction for IS managers.
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Because we have listed all possible combinations of beer preference and gender – in other words, listed
all possible contingencies – Table 12.2 is called a contingency table. The test of independence is
sometimes referred to as a contingency table test.

Suppose a simple random sample of 150 beer drinkers is selected. After tasting each beer, the
individuals in the sample are asked to state their first-choice preference. The cross-tabulation in Table 12.3
summarizes the responses. The data for the test of independence are collected in terms of counts or
frequencies for each cell or category. Of the 150 individuals in the sample, 20 were men favouring pilsner,
40 were men favouring export, 20 were men favouring dark beer and so on. The data in Table 12.3 are the
observed frequencies for the six classes or categories.

If we can determine the expected frequencies under the assumption of independence between beer
preference and gender of the beer drinker, we can use the chi-squared distribution to determine whether
there is a significant difference between observed and expected frequencies.

Expected frequencies for the cells of the contingency table are based on the following rationale. We
assume the null hypothesis of independence between beer preference and gender of the beer drinker is
true. Then we note that in the entire sample of 150 beer drinkers, a total of 50 prefer pilsner, 70 prefer
export and 30 prefer dark beer. In terms of fractions, 50/150 of the beer drinkers prefer pilsner, 70/150
prefer export and 30/150 prefer dark beer. If the independence assumption is valid, these fractions must
be applicable to both male and female beer drinkers. So we would expect the sample of 80 male beer
drinkers to contain (50/150)80 = 26.67 who prefer pilsner, (70/150)80 = 37.33 who prefer export, and
(30/150)80 = 16 who prefer dark beer. Application of the same fractions to the 70 female beer drinkers
provides the expected frequencies shown in Table 12.4.

T ABLE 12 . 3 Sample results for beer preferences of male and female beer drinkers (observed frequencies)

Beer preference

Gender Pilsner Export Dark Total

Male 20 40 20 80

Female 30 30 10 70

Total 50 70 30 150

T ABLE 12 . 2 Contingency table for beer preference and gender of beer drinker

Beer preference

Gender Pilsner Export Dark

Male cell(1,1) cell(1,2) cell(1,3)

Female cell(2,1) cell(2,2) cell(2,3)

T ABLE 12 . 4 Expected frequencies if beer preference is independent of the gender of the beer drinker

Beer preference

Gender Pilsner Export Dark Total

Male 26.67 37.33 16.00 80

Female 23.33 32.67 14.00 70

Total 50.00 70.00 30.00 150
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Let eij denote the expected frequency for the contingency table category in row i and column j.
With this notation, consider the expected frequency calculation for males (row i = 1) who prefer lager
(column j = 2): that is, expected frequency e12. The argument above showed that:

e12
70

150
80 37 33

This expression can be written slightly differently as:

e12
70

150
80

80 70

150
37 33

Note that the 80 in the expression is the total number of males (row 1 total), 70 is the total number of
individuals who prefer export (column 2 total) and 150 is the total sample size. Hence, we see that:

e12
Row 1 Total Column 2 Total

Sample Size

Generalization of this expression shows that the following formula provides the expected frequencies for a
contingency table in the test of independence.

Expected frequencies for contingency tables under the assumption of independence

eij
Row i Total Column j Total

Sample Size
(12.2)

Using this formula for male beer drinkers who prefer dark beer, we find an expected frequency of
e13 = (80)(30)/(150) = 16.00, as shown in Table 12.4. Use equation (12.2) to verify the other
expected frequencies shown in Table 12.4.

The test procedure for comparing the observed frequencies of Table 12.3 with the expected frequencies
of Table 12.4 is similar to the goodness of fit calculations made in Section 12.1. Specifically, the χ

2
value

based on the observed and expected frequencies is computed as follows.

Test statistic for independence

χ2

i j

fij eij
2

eij
(12.3)

where

fij observed frequency for contingency table category in row i and column j
eij expected frequency for contingency table category in row i and column j

on the assumption of independence

Note: With n rows and m columns in the contingency table, the test statistic has a chi-squared distribution

with (n 1)(m 1) degrees of freedom provided that the expected frequencies are five or more for all

categories.

The double summation in equation (12.3) is used to indicate that the calculation must be made for all the
cells in the contingency table.
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The expected frequencies are five or more for each category. We therefore proceed with the computation of
the chi-squared test statistic, as shown in Table 12.5. We see that the value of the test statistic is χ

2
= 6.12.

The number of degrees of freedom for the appropriate chi-squared distribution is computed by
multiplying the number of rows minus one by the number of columns minus one. With two rows and
three columns, we have (2 1)(3 1) = 3 degrees of freedom. Just like the test for goodness of fit, the test
for independence rejects H0 if the differences between observed and expected frequencies provide a large
value for the test statistic. So the test for independence is also an upper-tail test. Using the chi-squared
table (Table 3 of Appendix B), we find that the upper-tail area or p-value at χ

2
= 6.12 is between 0.025 and

0.05. At the 0.05 level of significance, p-value α = 0.05. We reject the null hypothesis of independence and
conclude that beer preference is not independent of the gender of the beer drinker.

Computer software packages such as IBM SPSS, MINITAB and EXCEL can simplify the computations
for a test of independence and provide the p-value for the test (see the software guides on the online
platform). In the Millennium Brewery example, EXCEL, MINITAB or IBM SPSS shows p-value = 0.0468.

The test itself does not tell us directly about the nature of the dependence between beer preference and
gender, but we can compare the observed and expected frequencies descriptively to get an idea. Refer to
Tables 12.3 and 12.4. Male beer drinkers have higher observed than expected frequencies for both export
and dark beer, whereas female beer drinkers have a higher observed than expected frequency only for
pilsner. These observations give us insight about the beer preference differences between male and female
beer drinkers.

Here are the steps in a contingency table test of independence.

Test of independence: a summary

1. State the null and alternative hypotheses.

H0 the column variable is independent of the row variable
H1 the column variable is not independent of the row variable

2. Select a random sample and record the observed frequencies for each cell of the contingency table.

3. Use equation (12.2) to compute the expected frequency for each cell.

4. Use equation (12.3) to compute the value of the test statistic.

5. Rejection rule:

p-value approach: Reject H0 if p-value ≤ α

Critical value approach: Reject H0 if χ2 χ2

T ABLE 12 . 5 Computation of the chi-squared test statistic for determining whether beer preference is

independent of the gender of the beer drinker

Gender

Beer

preference

Observed

frequency

(fij)

Expected

frequency

(eij)

Difference

(fij eij)

Squared

difference

(fij eij)
2

Squared

difference

divided by

expected

frequency

(fij eij)
2
/eij

Male Pilsner 20 26.67 6.67 44.44 1.67

Male Export 40 37.33 2.67 7.11 0.19

Male Dark 20 16.00 4.00 16.00 1.00

Female Pilsner 30 23.33 6.67 44.44 1.90

Female Export 30 32.67 2.67 7.11 0.22

Female Dark 10 14.00 4.00 16.00 1.14

Total 150 χ
2

= 6.12
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where α is the level of significance for the test, with n rows and m columns providing (n 1) (m 1)

degrees of freedom.

Note: The test statistic for the chi-squared tests in this chapter requires an expected frequency of five or

more for each category. When a category has fewer than five, it is often appropriate to combine two

adjacent rows or columns to obtain an expected frequency of five or more in each category.

EXERCISES

Methods

8. The following 2 3 contingency table contains observed frequencies for a sample of 200. Test for

independence of the row and column variables using the χ
2

test with = 0.05.

COMPLETE

SOLUTIONS

Column variable

Row variable A B C

P 20 44 50

Q 30 26 30

9. The following 3 3 contingency table contains observed frequencies for a sample of 240. Test for

independence of the row and column variables using the χ
2

test with = 0.05.

Column variable

Row variable A B C

P 20 30 20

Q 30 60 25

R 10 15 30

Applications

10. One of the questions on the Business Week Subscriber Study was, ‘In the past 12 months, when

travelling for business, what type of airline ticket did you purchase most often?’ The data

obtained are shown in the following contingency table.

Type of flight

Type of ticket Domestic flights International flights

First class 29 22

Business class 95 121

Economy class 518 135

Using = 0.05, test for the independence of type of flight and type of ticket. What is your

conclusion?
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11. First-destination jobs for Business and Engineering graduates are classified by industry as shown

in the following table.

Industry

Degree major Oil Chemical Electrical Computer

Business 30 15 15 40

Engineering 30 30 20 20

Test for independence of degree major and industry type, using = 0.01.

COMPLETE

SOLUTIONS

12. Businesses are increasingly placing orders online. The Performance Measurement Group

collected data on the rates of correctly filled electronic orders by industry. Assume a sample of

700 electronic orders provided the following results.

Industry

Order Pharmaceutical Consumer Computers Telecommunications

Correct 207 136 151 178

Incorrect 3 4 9 12

a. Test whether order fulfillment is independent of industry. Use = 0.05. What is your

conclusion?

b. Which industry has the highest percentage of correctly filled orders?

13. Three suppliers provide the following data on defective parts.

Part quality

Supplier Good Minor defect Major defect

A 90 3 7

B 170 18 7

C 135 6 9

Using = 0.05, test for independence between supplier and part quality. What does the result of

your analysis tell the purchasing department?

14. A sample of parts taken in a machine shop in Karachi provided the following contingency table

data on part quality by production shift.

Shift Number good Number defective

First 368 32

Second 285 15

Third 176 24

Test the hypothesis that part quality is independent of the production shift, using = 0.05. What

is your conclusion?

15. Visa studied how frequently consumers of various age groups use plastic cards (debit and credit

cards) when making purchases. Sample data for 300 customers show the use of plastic cards by

four age groups.
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12.3 GOODNESS OF FIT TEST: POISSON AND NORMAL
DISTRIBUTIONS

In general, the chi-squared goodness of fit test can be used with any hypothesized probability distribution.
In this section we illustrate for cases in which the population is hypothesized to have a Poisson or a
normal distribution. The goodness of fit test follows the same general procedure as in Section 12.1.

Poisson distribution

Consider the arrival of customers at the Mediterranean Food Market. Because of recent staffing problems,
the Mediterranean’s managers asked a local consultancy to assist with the scheduling of checkout
assistants. After reviewing the checkout operation, the consultancy will make a recommendation for a
scheduling procedure. The procedure, based on a mathematical analysis of waiting times, is applicable
only if the number of customers arriving during a specified time period follows the Poisson distribution.
Therefore, before the scheduling process is implemented, data on customer arrivals must be collected and
a statistical test done to see whether an assumption of a Poisson distribution for arrivals is reasonable.

We define the arrivals at the store in terms of the number of customers entering the store during five-
minute intervals. The following null and alternative hypotheses are appropriate:

H0 The number of customers entering the store during five-minute intervals has a Poisson
probability distribution

H1 The number of customers entering the store during five-minute intervals does not have a
Poisson distribution

Age group

Payment 18–24 25–34 35–44 45 and over

Plastic 21 27 27 36

Cash or Cheque 21 36 42 90

a. Test for the independence between method of payment and age group. What is the p-value?

Using = 0.05, what is your conclusion?

b. If method of payment and age group are not independent, what observation can you make

about how different age groups use plastic to make purchases?

c. What implications does this study have for companies such as Visa and MasterCard?

16. The following cross-tabulation shows industry type and P/E ratio for 100 companies in the

consumer products and banking industries.

P/E ratio

Industry 5–9 10–14 15–19 20–24 25–29 Total

Consumer 4 10 18 10 8 50

Banking 14 14 12 6 4 50

Total 18 24 30 16 12 100

Does there appear to be a relationship between industry type and P/E ratio? Support your

conclusion with a statistical test using = 0.05.
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If a sample of customer arrivals provides insufficient evidence to reject H0, the Mediterranean will
proceed with the implementation of the consultancy’s scheduling procedure. However, if the sample leads
to the rejection of H0, the assumption of the Poisson distribution for the arrivals cannot be made and
other scheduling procedures will be considered.

To test the assumption of a Poisson distribution for the number of arrivals during weekday morning
hours, a store assistant randomly selects a sample, n = 128, of five-minute intervals during weekday
mornings over a three-week period. For each five-minute interval in the sample, the store assistant
records the number of customer arrivals. The store assistant then summarizes the data by counting the
number of five-minute intervals with no arrivals, the number of five-minute intervals with one arrival and
so on. These data are summarized in Table 12.6.

To do the goodness of fit test, we need to consider the expected frequency for each of the ten
categories, under the assumption that the Poisson distribution of arrivals is true. The Poisson probability
function, first introduced in Chapter 5, is:

p X x
μxe μ

x
(12.4)

In this function, µ represents the mean or expected number of customers arriving per five-minute period,
X is a random variable indicating the number of customers arriving during a five-minute period and
p(X = x) is the probability that exactly x customers will arrive in a five-minute interval.

To use (12.4), we must obtain an estimate of μ, the mean number of customer arrivals during a five-
minute time period. The sample mean for the data in Table 12.6 provides this estimate. With no
customers arriving in two five-minute time periods, one customer arriving in eight five-minute time
periods and so on, the total number of customers who arrived during the sample of 128 five-minute time
periods is given by 0(2) 1(8) 2(10) 9(6) = 640. The 640 customer arrivals over the sample of
128 periods provide an estimated mean arrival rate of 640/128 = 5 customers per five-minute period.
With this value for the mean of the distribution, an estimate of the Poisson probability function for the
Mediterranean Food Market is:

p X x
5xe 5

x
(12.5)

This probability function can be evaluated for different values x to determine the probability associated
with each category of arrivals. These probabilities, which can also be found in Table 7 of Appendix B, are
given in Table 12.7. For example, the probability of zero customers arriving during a five-minute interval
is p(0) = 0.0067, the probability of one customer arriving during a five-minute interval is p(1) = 0.0337
and so on. As we saw in Section 12.1, the expected frequencies for the categories are found by multiplying
the probabilities by the sample size.

T ABLE 12 . 6 Observed frequency of the Mediterranean’s customer arrivals for a sample of 128 five-minute

time periods

Number of customers arriving Observed frequency

0 2

1 8

2 10

3 12

4 18

5 22

6 22

7 16

8 12

9 6

Total 128
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For example, the expected number of periods with zero arrivals is given by (0.0067)(128) = 0.86, the
expected number of periods with one arrival is given by (0.0337)(128) = 4.31 and so on.

In Table 12.7, four of the categories have an expected frequency less than five. This condition violates
the requirements for use of the chi-squared distribution. However, adjacent categories can be combined to
satisfy the ‘at least five’ expected frequency requirement. In particular, we shall combine 0 and 1 into a
single category, and then combine 9 with ‘10 or more’ into another single category. Table 12.8 shows the
observed and expected frequencies after combining categories.

As in Section 12.1, the goodness of fit test focuses on the differences between observed and expected
frequencies, fi ei. The calculations are shown in Table 12.8. The value of the test statistic is χ

2
= 10.96.

In general, the chi-squared distribution for a goodness of fit test has k p 1 degrees of freedom, where k
is the number of categories and p is the number of population parameters estimated from the sample data.

T ABLE 12 . 8 Observed and expected frequencies for the Mediterranean’s customer arrivals after

combining categories, and computation of the chi-squared test statistic

Number of

customers

arriving (x)

Observed

frequency (fi)

Expected

frequency (ei)

Difference

(fi ei)

Squared

difference

(fi ei)
2

Squared

difference

divided by

expected

frequency

(fi ei)
2
/ei

0 or 1 10 5.17 4.83 23.28 4.50

2 10 10.78 0.78 0.61 0.06

3 12 17.97 5.97 35.62 1.98

4 18 22.46 4.46 19.89 0.89

5 22 22.46 0.46 0.21 0.01

6 22 18.72 3.28 10.78 0.58

7 16 13.37 2.63 6.92 0.52

8 12 8.36 3.64 13.28 1.59

9 or more 6 8.72 2.72 7.38 0.85

Total 128 128.00 χ
2

= 10.96

T ABLE 12 . 7 Expected frequency of Mediterranean’s customer arrivals, assuming a Poisson distribution

with µ = 5

Number of

customers arriving (x)

Poisson

probability p(x)

Expected number of five-minute

time periods with x arrivals, 128p(x)

0 0.0067 0.86

1 0.0337 4.31

2 0.0842 10.78

3 0.1404 17.97

4 0.1755 22.46

5 0.1755 22.46

6 0.1462 18.71

7 0.1044 13.36

8 0.0653 8.36

9 0.0363 4.65

10 or more 0.0318 4.07

Total 128.00
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Table 12.8 shows k = 9 categories. Because the sample data were used to estimate the mean of the Poisson
distribution, p = 1. Hence, there are k p 1 = 9 1 1 = 7 degrees of freedom.

Suppose we test the null hypothesis with a 0.05 level of significance. We need to determine the p-value
for the test statistic χ

2
= 10.96 by finding the area in the upper tail of a chi-squared distribution with seven

degrees of freedom. Using Table 3 of Appendix B, we find that χ
2
= 10.96 provides an area in the upper

tail greater than 0.10. So we know that the p-value is greater than 0.10. MINITAB, IBM SPSS or EXCEL
shows p-value = 0.1403. With p-value α = 0.10, we cannot reject H0. The assumption of a Poisson
probability distribution for weekday morning customer arrivals cannot be rejected. As a result, the
Mediterranean’s management may proceed with the consulting firm’s scheduling procedure for weekday
mornings.

Poisson distribution goodness of fit test: a summary

1. State the null and alternative hypotheses.

H0 The population has a Poisson distribution
H1 The population does not have a Poisson distribution

2. Select a random sample and

a. Record the observed frequency fi for each value of the Poisson random variable.

b. Compute the mean number of occurrences.

3. Compute the expected frequency of occurrences ei for each value of the Poisson random variable.

Multiply the sample size by the Poisson probability of occurrence for each value of the Poisson random

variable. If there are fewer than five expected occurrences for some values, combine adjacent values and

reduce the number of categories as necessary.

4. Compute the value of the test statistic.

χ2
k

i 1

f j ej
2

ej

5. Rejection rule:

p-value approach: Reject H0 if p-value ≤ α

Critical value approach: Reject H0 if χ
2

χ
2
α

where α is the level of significance for the test, and there are k 2 degrees of freedom.

Normal distribution

A goodness of fit test for a normal distribution can also be based on the use of the chi-squared
distribution. It is similar to the procedure for the Poisson distribution. In particular, observed frequencies
for several categories of sample data are compared to expected frequencies under the assumption that the
population has a normal distribution. Because the normal distribution is continuous, we must modify the
way the categories are defined and how the expected frequencies are computed.

Consider the job applicant test data for Pharmaco plc, listed in Table 12.9. Pharmaco hires approxi-
mately 400 new employees annually for its four plants located in Europe and the Middle East. The
personnel director asks whether a normal distribution applies for the population of test scores. If such a
distribution can be used, the distribution would be helpful in evaluating specific test scores; that is, scores
in the upper 20 per cent, lower 40 per cent and so on, could be identified quickly. Hence, we want to test
the null hypothesis that the population of test scores has a normal distribution.
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We first use the data in Table 12.9 to calculate estimates of the mean and standard deviation of the
normal distribution that will be considered in the null hypothesis. We use the sample mean and the
sample standard deviation as point estimators of the mean and standard deviation of the normal
distribution. The calculations follow.

x
∑xi
n

3421

50
68 42

s
∑ xi x 2

n 1

5310 04

49
10 41

Using these values, we state the following hypotheses about the distribution of the job applicant test
scores.

H0 The population of test scores has a normal distribution with mean 68 42 and
standard deviation 10 41

H1 The population of test scores does not have a normal distribution with mean 68 42 and
standard deviation 10 41

Now we look at how to define the categories for a goodness of fit test involving a normal distribution.
For the discrete probability distribution in the Poisson distribution test, the categories were readily
defined in terms of the number of customers arriving, such as 0, 1, 2 and so on. However, with the
continuous normal probability distribution, we must use a different procedure for defining the categories.
We need to define the categories in terms of intervals of test scores.

Recall the rule of thumb for an expected frequency of at least five in each interval or category. We
define the categories of test scores such that the expected frequencies will be at least five for each category.
With a sample size of 50, one way of establishing categories is to divide the normal distribution into ten
equal-probability intervals (see Figure 12.1). With a sample size of 50, we would expect five outcomes in
each interval or category and the rule of thumb for expected frequencies would be satisfied.

When the normal probability distribution is assumed, the standard normal distribution tables can be
used to determine the category boundaries. First consider the test score cutting off the lowest 10 per cent
of the test scores. From Table 1 of Appendix B we find that the z value for this test score is 1.28.
Therefore, the test score x = 68.42 1.28 (10.41) = 55.10 provides this cut-off value for the lowest 10 per
cent of the scores. For the lowest 20 per cent, we find z = 0.84 and so x = 68.42 0.84(10.41) = 59.68.
Working through the normal distribution in that way provides the following test score values.

Lower 10%: 68.42 1.28(10.41) = 55.10
Lower 20%: 68.42 0.84(10.41) = 59.68
Lower 30%: 68.42 0.52(10.41) = 63.01
Lower 40%: 68.42 0.25(10.41) = 65.82

Mid-score: 68.42 0(10.41) = 68.42
Upper 40%: 68.42 0.25(10.41) = 71.02
Upper 30%: 68.42 0.52(10.41) = 73.83
Upper 20%: 68.42 0.84(10.41) = 77.16
Upper 10%: 68.42 1.28(10.41) = 81.74

These cutoff or interval boundary points are identified on the graph in Figure 12.1.

T ABLE 12 . 9 Pharmaco employee aptitude test scores for 50 randomly chosen job applicants

71 65 54 93 60 86 70 70 73 73

55 63 56 62 76 54 82 79 76 68

53 58 85 80 56 61 64 65 62 90

69 76 79 77 54 64 74 65 65 61

56 63 80 56 71 79 84 66 61 61

PHARMACO
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We can now return to the sample data of Table 12.9 and determine the observed frequencies for the
categories. The results are in Table 12.10. The goodness of fit calculations now proceed exactly as before.
Namely, we compare the observed and expected results by computing a χ

2
value. The computations are

also shown in Table 12.10. We see that the value of the test statistic is χ
2
= 7.2.

To determine whether the computed χ
2
value of 7.2 is large enough to reject H0, we need to refer to the

appropriate chi-squared distribution tables. Using the rule for computing the number of degrees of
freedom for the goodness of fit test, we have k p − 1 = 10 2 1 = 7 degrees of freedom based on k =
10 categories and p = 2 parameters (mean and standard deviation) estimated from the sample data.

Suppose we do the test with a 0.10 level of significance. To test this hypothesis, we need to determine
the p-value for the test statistic χ

2
= 7.2 by finding the area in the upper tail of a chi-squared distribution

with 7 degrees of freedom. Using Table 3 of Appendix B, we find that χ
2
= 7.2 provides an area in the

upper tail greater than 0.10. So we know that the p-value is greater than 0.10. EXCEL, IBM SPSS or
MINITAB shows p-value = 0.4084.
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FIGURE 12.1

Normal distribution for the

Pharmaco example with ten

equal-probability intervals

T ABLE 12 . 10 Observed and expected frequencies for Pharmaco job applicant test scores, and compu-

tation of the chi-squared test statistic

Test

score

interval

Observed

frequency

(fi)

Expected

frequency

(ei)

Difference

(fi ei)

Squared

difference

(fi ei)
2

Squared difference

divided by expected

frequency (fi ei)
2
/ei

Less than 55.10 5 5 0 0 0.0

55.10 to 59.67 5 5 0 0 0.0

59.68 to 63.00 9 5 4 16 3.2

63.01 to 65.81 6 5 1 1 0.2

65.82 to 68.41 2 5 3 9 1.8

68.42 to 71.01 5 5 0 0 0.0

71.02 to 73.82 2 5 3 9 1.8

73.83 to 77.15 5 5 0 0 0.0

77.16 to 81.73 5 5 0 0 0.0

81.74 and over 6 5 1 1 0.2

Total 50 50 χ
2

= 7.2
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With p-value α = 0.10, the hypothesis that the probability distribution for the Pharmaco job
applicant test scores is a normal distribution cannot be rejected. The normal distribution may be applied
to assist in the interpretation of test scores.

A summary of the goodness fit test for a normal distribution follows.

Normal distribution goodness of fit test: a summary

1. State the null and alternative hypotheses.

H0 The population has a normal distribution
H1 The population does not have a normal distribution

2. Select a random sample and

a. Compute the sample mean and sample standard deviation.

b. Define intervals of values so that the expected frequency is at least five for each interval. Using equal

probability intervals is a good approach.

c. Record the observed frequency of data values fi in each interval defined.

3. Compute the expected number of occurrences ei for each interval of values defined in step 2(b). Multiply

the sample size by the probability of a normal random variable being in the interval.

4. Compute the value of the test statistic.

χ2
k

i 1

f j ej
2

ej

5. Rejection rule:

p-value approach: Reject H0 if p-value ≤ α

Critical value approach: Reject H0 if χ
2

χ
2
α

where α is the level of significance for the test, and there are k 3 degrees of freedom.

EXERCISES

Methods

17. The following data are believed to have come from a normal distribution. Use a goodness of fit

test with = 0.05 to test this claim.

17 23 22 24 19 23 18 22 20 13 11 21 18 20 21

21 18 15 24 23 23 43 29 27 26 30 28 33 23 29

18. Data on the number of occurrences per time period and observed frequencies follow. Use a

goodness of fit test with = 0.05 to see whether the data fit a Poisson distribution.
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Number of occurrences Observed frequency

0 39

1 30

2 30

3 18

4 3

Applications

19. The number of incoming phone calls to a small call centre in Mumbai, during one-minute intervals,

is believed to have a Poisson distribution. Use = 0.10 and the following data to test the

assumption that the incoming phone calls follow a Poisson distribution.

Number of incoming phone calls

during a one-minute interval Observed frequency

0 15

1 31

2 20

3 15

4 13

5 4

6 2

Total 100

COMPLETE

SOLUTIONS

20. The weekly demand for a particular product in a white-goods store is thought to be normally

distributed. Use a goodness of fit test and the following data to test this assumption.

Use = 0.10. The sample mean is 24.5 and the sample standard deviation is 3.0.

18 20 22 27 22 25 22 27 25 24

26 23 20 24 26 27 25 19 21 25

26 25 31 29 25 25 28 26 28 24

21. A random sample of final examination grades for a college course in Middle-East studies

follows.

55 85 72 99 48 71 88 70 59 98

80 74 93 85 74 82 90 71 83 60

95 77 84 73 63 72 95 79 51 85

76 81 78 65 75 87 86 70 80 64

Using = 0.05, determine whether a normal distribution should be rejected as being

representative of the population’s distribution of grades.

22. The number of car accidents per day in a particular city is believed to have a Poisson distribution.

A sample of 80 days during the past year gives the following data. Do these data support the belief

that the number of accidents per day has a Poisson distribution? Use = 0.05.

Number of accidents Observed frequency (days)

0 34

1 25

2 11

3 7

4 3

COMPLETE

SOLUTIONS
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SUMMARY

The purpose of a goodness of fit test is to determine whether a hypothesized probability distribution

can be used as a model for a particular population of interest. The computations for the goodness of

fit test involve comparing observed frequencies from a sample with expected frequencies when the

hypothesized probability distribution is assumed true. A chi-squared distribution is used to determine

whether the differences between observed and expected frequencies are large enough to reject the

hypothesized probability distribution.

In this chapter we introduced the goodness of fit test for a multinomial distribution. A test of

independence for two variables is an extension of the methodology used in the goodness of fit test for

a multinomial population. A contingency table is used to set out the observed and expected frequen-

cies. Then a chi-squared value is computed.

We also illustrated the goodness of fit test for Poisson and normal distributions.

KEY TERMS

Contingency table

Goodness of fit test

Multinomial population

KEY FORMULAE

Test statistic for goodness of fit

χ2
k

i 1

fj ej
2

ej
(12.1)

Expected frequencies for contingency tables under the assumption of independence

eij
Row i Total Column j Total

Sample Size
(12.2)

Test statistic for independence

χ2

i j

fij eij
2

eij
(12.3)

ONLINE RESOURCES

For the data files, online summary, additional questions and answers, and software section,

go to the online platform.
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CASE PROBLEM 1

Evaluation of Management School website

pages

A group of MSc students at an international university

conducted a survey to assess the students’ views

regarding the web pages of the university’s Manage-

ment School. Among the questions in the survey

were items that asked respondents to express

agreement or disagreement with the following state-

ments.

1. The Management School web pages are attractive

for prospective students.

2. I find it easy to navigate the Management School

web pages.

3. There is up-to-date information about courses on

the Management School web pages.

4. If I were to recommend the university to someone

else, I would suggest that they go to the

Management School web pages.

Responses were originally given on a five-point scale,

but in the data file on the online platform (‘Web

Pages’), the responses have been re-coded as binary

variables. For each questionnaire item, those who

agreed or agreed strongly with the statement have

been grouped into one category (Agree). Those who

disagreed, disagreed strongly, were indifferent or

opted for a ‘Don’t know’ response, have been

grouped into a second category (Don’t Agree). The

data file also contains particulars of respondent gen-

der and level of study (undergraduate or postgrad-

uate). The first few rows of the data file are shown

below.

Managerial report

1. Use descriptive statistics to summarize the data

from this study. What are your preliminary

conclusions about the independence of the

response (Agree or Don’t Agree) and gender for

each of the four items? What are your preliminary

conclusions about the independence of the

response (Agree or Don’t Agree) and level of

study for each of the four items?

2. With regard to each of the four items, test for the

independence of the response (Agree or Don’t

Agree) and gender. Use = 0.05.

3. With regard to each of the four items, test for the

independence of the response (Agree or Don’t

Agree) and level of study. Use = 0.05.

4. Does it appear that views regarding the web

pages are consistent for students of both genders

and both levels of study? Explain.

Gender Study level Attractiveness Navigation Up-to-date Referrals

Female Undergraduate Don’t Agree Agree Agree Agree

Female Undergraduate Agree Agree Agree Agree

Male Undergraduate Don’t Agree Don’t Agree Don’t Agree Don’t Agree

Male Undergraduate Agree Agree Agree Agree

Male Undergraduate Agree Agree Agree Agree

Female Undergraduate Don’t Agree Don’t Agree Agree Agree

Male Undergraduate Don’t Agree Agree Agree Agree

Male Undergraduate Agree Agree Agree Agree

Male Undergraduate Don’t Agree Agree Agree Agree

Male Undergraduate Don’t Agree Don’t Agree Don’t Agree Agree

WEB

PAGES
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CASE PROBLEM 2

Checking for randomness in Lotto draws

In the main Lotto game of the UK National Lottery, six

balls are randomly selected from a set of balls num-

bered 1, 2, …, 49. The file ‘Lotto’ on the online

platform contains details of the numbers drawn in

the main Lotto game from January 2007 up to early

July 2012 (Wednesdays and Saturdays each week).

The first few rows of the data file are shown below.

In addition to showing the six numbers drawn in the

game each time, and the order in which they were

drawn, the file also gives details of the day on which

the draw took place, the machine that was used to

do the draw, and the set of balls that was used.

A number of similar machines are used for the

draws: Sapphire, Amethyst, etc., and eight sets of

balls are used.

Analyst’s report

1. Use an appropriate hypothesis test to assess

whether there is any evidence of non-randomness

in the first ball drawn. Similarly, test for non-

randomness in the second ball drawn, third ball

drawn, …, sixth ball drawn.

2. Use an appropriate hypothesis test to assess

whether there is any evidence of non-randomness

overall in the drawing of the 49 numbers

(regardless of the order of selection).

3. Use an appropriate hypothesis test to assess

whether there is evidence of any dependence

between the numbers drawn and the day on

which the draw is made.

4. Use an appropriate hypothesis test to assess

whether there is evidence of any dependence

between the numbers drawn and the machine on

which the draw is made.

5. Use an appropriate hypothesis test to assess

whether there is evidence of any dependence

between the numbers drawn and the set of balls

that is used.

No. Day DD MMM YYYY N1 N2 N3 N4 N5 N6 Machine Set

1732 Sat 28 Jul 2012 7 10 22 29 43 44 Guinevere 1

1731 Wed 25 Jul 2012 8 14 15 22 41 48 Lancelot 3

1730 Sat 21 Jul 2012 5 14 20 40 41 42 Lancelot 2

1729 Wed 18 Jul 2012 11 26 34 38 40 46 Guinevere 4

1728 Sat 14 Jul 2012 13 27 29 42 43 46 Guinevere 4

1727 Wed 11 Jul 2012 12 19 28 29 38 49 Guinevere 1

1726 Sat 7 Jul 2012 5 22 23 30 33 45 Guinevere 4

1725 Wed 4 Jul 2012 3 9 14 19 34 38 Guinevere 3

1724 Sat 30 Jun 2012 1 18 19 24 30 38 Guinevere 6

1723 Wed 27 Jun 2012 10 22 29 39 46 47 Guinevere 4

LOTTO

326 CHAPTER 12 TESTS OF GOODNESS OF FIT AND INDEPENDENCE



13
Experimental
Design and
Analysis of
Variance

CHAPTER CONTENTS

Statistics in Practice Product customization and manufacturing trade-offs

13.1 An introduction to experimental design and analysis of variance

13.2 Analysis of variance and the completely randomized design

13.3 Multiple comparison procedures

13.4 Randomized block design

13.5 Factorial experiments

LEARNING OBJECTIVES After reading this chapter and doing the exercises, you should be able to:

1 Understand the basics of experimental design

and how the analysis of variance procedure can

be used to determine if the means of more than

two populations are equal.

2 Know the assumptions necessary to use the

analysis of variance procedure.

3 Understand the use of the F distribution in

performing the analysis of variance procedure.

4 Know how to set up an ANOVA table and

interpret the entries in the table.

5 Use output from computer software packages to

solve analysis of variance problems.

6 Know how to use Fisher’s least significant difference

(LSD) procedure and Fisher’s LSD with the Bonferroni

adjustment to conduct statistical comparisons

between pairs of population means.

7 Understand the difference between a completely

randomized design, a randomized block design and

factorial experiments.

8 Know the definition of the following terms:

comparisonwise Type I error rate; experimentwise

Type I error rate; factor; level; treatment; partitioning;

blocking; main effect; interaction; replication.

In Chapter 1 we stated that statistical studies can be classified as either experimental or observational. In
an experimental statistical study, an experiment is conducted to generate the data. An experiment begins

with identifying a variable of interest. Then one or more other variables, thought to be related, are identified
and controlled, and data are collected about how those variables influence the variable of interest.
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In an observational study, data are usually obtained through sample surveys and not a controlled
experiment. Good design principles are still employed, but the rigorous controls associated with an
experimental statistical study are often not possible.

For instance, in a study of the relationship between smoking and lung cancer the researcher cannot
assign a smoking habit to subjects. The researcher is restricted to simply observing the effects of smoking
on people who already smoke and the effects of not smoking on people who do not already smoke.

In this chapter we introduce three types of experimental designs: a completely randomized design, a
randomized block design and a factorial experiment. For each design we show how a statistical procedure
called analysis of variance (ANOVA) can be used to analyze the data available. ANOVA can also be used
to analyze the data obtained through an observation study. For instance, we will see that the ANOVA
procedure used for a completely randomized experimental design also works for testing the equality of
three or more population means when data are obtained through an observational study. In the following
chapters we will see that ANOVA plays a key role in analyzing the results of regression studies involving
both experimental and observational data.

In the first section, we introduce the basic principles of an experimental study and show how they are
employed in a completely randomized design. In the second section, we then show how ANOVA can be
used to analyze the data from a completely randomized experimental design. In later sections we discuss
multiple comparison procedures and two other widely used experimental designs: the randomized block
design and the factorial experiment.

13.1 AN INTRODUCTION TO EXPERIMENTAL DESIGN
AND ANALYSIS OF VARIANCE

As an example of an experimental statistical study, let us consider the problem facing the Chemitech
company. Chemitech developed a new filtration system for municipal water supplies.

STATISTICS IN PRACTICE

Product customization and

manufacturing trade-offs

T he analysis of variance technique was used

recently in a study to investigate trade-offs between

product customization and other manufacturing priori-

ties. A total of 102 UK manufacturers from eight indus-

trial sectors were involved in the research. Three levels

of customization were considered: full customization

where customer input was incorporated at the product

design or fabrication stages; partial customization with

customer input incorporated into product assembly or

delivery stages and standard products which did not

incorporate any customer input at all.

The impact of customization was considered

against four competitive imperatives – cost, quality,

delivery and volume flexibility.

It was found that customization had a significant

effect on delivery (both in terms of speed and lead

times); also on manufacturers’ costs – although not

design, component, delivery and servicing costs.

The findings suggest that customization is not

cost-free and that the advent of mass customization

is unlikely to see the end of trade-offs with other key

priorities.

Source: Squire, B., Brown, S., Readman, J. and Bessant, J.

(2005) ‘The impact of mass customization on manufactur-

ing trade-offs’. Production and Operations Management

Journal 15(1): 10–21
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The components for the new filtration system will be purchased from several suppliers, and Chemitech
will assemble the components at its plant in North Saxony. The industrial engineering group is
responsible for determining the best assembly method for the new filtration system. After considering
a variety of possible approaches, the group narrows the alternatives to three: method A, method B and
method C. These methods differ in the sequence of steps used to assemble the system. Managers at
Chemitech want to determine which assembly method can produce the greatest number of filtration
systems per week.

In the Chemitech experiment, assembly method is the independent variable or factor. Because three
assembly methods correspond to this factor, we say that three treatments are associated with this
experiment; each treatment corresponds to one of the three assembly methods. The Chemitech problem
is an example of a single-factor experiment; it involves one qualitative factor (method of assembly). More
complex experiments may consist of multiple factors; some factors may be qualitative and others may be
quantitative.

The three assembly methods or treatments define the three populations of interest for the Chemitech
experiment. One population is all Chemitech employees who use assembly method A, another is those
who use method B and the third is those who use method C. Note that for each population the dependent
or response variable is the number of filtration systems assembled per week, and the primary statistical
objective of the experiment is to determine whether the mean number of units produced per week is the
same for all three populations (methods).

Suppose a random sample of three employees is selected from all assembly workers at the Chemitech
production facility. In experimental design terminology, the three randomly selected workers are the
experimental units. The experimental design that we will use for the Chemitech problem is called a
completely randomized design. This type of design requires that each of the three assembly methods or
treatments be assigned randomly to one of the experimental units or workers. For example, method A
might be randomly assigned to the second worker, method B to the first worker and method C to the
third worker. The concept of randomization, as illustrated in this example, is an important principle of all
experimental designs.

Note that this experiment would result in only one measurement or number of units assembled for
each treatment. To obtain additional data for each assembly method, we must repeat or replicate the basic
experimental process. Suppose, for example, that instead of selecting just three workers at random we
selected 15 workers and then randomly assigned each of the three treatments to five of the workers.
Because each method of assembly is assigned to five workers, we say that five replicates have been
obtained. The process of replication is another important principle of experimental design. Figure 13.1
shows the completely randomized design for the Chemitech experiment.

Employees at the plant in
North Saxony

Random sample of 15 employees
is selected for the experiment

Each of the three assembly methods
is randomly assigned to five employees

Method A
n1 =  5

Method B
n2 =  5

Method C
n3 =  5

FIGURE 13.1

Completely randomized design

for evaluating the Chemitech

assembly method experiment
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Data collection

Once we are satisfied with the experimental design, we proceed by collecting and analyzing the data. In
the Chemitech case, the employees would be instructed in how to perform the assembly method assigned
to them and then would begin assembling the new filtration systems using that method. After this
assignment and training, the number of units assembled by each employee during one week is as shown
in Table 13.1. The sample means, sample variances and sample standard deviations for each assembly
method are also provided. Therefore, the sample mean number of units produced using method A is 62;
the sample mean using method B is 66; and the sample mean using method C is 52. From these data,
method B appears to result in higher production rates than either of the other methods.

The real issue is whether the three sample means observed are different enough for us to conclude that
the means of the populations corresponding to the three methods of assembly are different. To write this
question in statistical terms, we introduce the following notation.

1 mean number of units produced per week using method A

2 mean number of units produced per week using method B

3 mean number of units produced per week using method C

Although we will never know the actual values of μ1, μ2 and μ3, we want to use the sample means to
test the following hypotheses.

H0 1 2 3

H1 Not all population means are equal

As we will demonstrate shortly, analysis of variance (ANOVA) is the statistical procedure used to
determine whether the observed differences in the three sample means are large enough to reject H0.

Assumptions for analysis of variance

Three assumptions are required to use analysis of variance.

1 For each population, the response variable is normally distributed. Implication: In the
Chemitech experiment the number of units produced per week (response variable) must be
normally distributed for each assembly method.

2 The variance of the response variable, denoted 2, is the same for all of the populations.
Implication: In the Chemitech experiment, the variance of the number of units produced per week
must be the same for each assembly method.

3 The observations must be independent. Implication: In the Chemitech experiment, the number of
units produced per week for each employee must be independent of the number of units produced
per week for any other employee.

T ABLE 13 . 1 Number of units produced by 15 workers

Method

A B C

58 58 48

64 69 57

55 71 59

66 64 47

67 68 49

Sample mean 62 66 52

Sample variance 27.5 26.5 31.0

Sample standard deviation 5.244 5.148 5.568

CHEMITECH
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Analysis of variance: a conceptual overview

If the means for the three populations are equal, we would expect the three sample means to be close
together. In fact, the closer the three sample means are to one another, the more evidence we have for the
conclusion that the population means are equal. Alternatively, the more the sample means differ,
the more evidence we have for the conclusion that the population means are not equal. In other words,
if the variability among the sample means is ‘small’ it supports H0; if the variability among the sample
means is ‘large’ it supports H1.

If the null hypothesis, H0: μ1 = μ2 = μ3, is true, we can use the variability among the sample means to
develop an estimate of 2. First, note that if the assumptions for analysis of variance are satisfied, each
sample will have come from the same normal distribution with mean µ and variance 2. Recall from
Chapter 7 that the sampling distribution of the sample mean x for a simple random sample of size n from
a normal population will be normally distributed with mean µ and variance 2/n. Figure 13.2 illustrates
such a sampling distribution.

Therefore, if the null hypothesis is true, we can think of each of the three sample means, x1 62,
x2 66 and x3 52 from Table 13.1, as values drawn at random from the sampling distribution shown
in Figure 13.2. In this case, the mean and variance of the three x values can be used to estimate the mean
and variance of the sampling distribution. When the sample sizes are equal, as in the Chemitech
experiment, the best estimate of the mean of the sampling distribution of x is the mean or average of
the sample means. Thus, in the Chemitech experiment, an estimate of the mean of the sampling
distribution of x is (62 66 52)/3 = 60. We refer to this estimate as the overall sample mean.
An estimate of the variance of the sampling distribution of x, 2

x, is provided by the variance of the three
sample means:

s2x
62 60 2 66 60 2 52 60 2

3 1

104

2
52

Because 2
x =

2/n, solving for 2 gives:

2 n 2
X

Hence,

Estimate of 2 n Estimate of 2
X

ns2
X

5 52 260

The result, ns2
X

260, is referred to as the between-treatments estimate of 2.
The between-treatments estimate of 2 is based on the assumption that the null hypothesis is true. In this

case, each sample comes from the same population, and there is only one sampling distribution of X . To
illustrate what happens when H0 is false, suppose the population means all differ. Note that because the
three samples are from normal populations with different means, they will result in three different sampling
distributions. Figure 13.3 shows that, in this case, the sample means are not as close together as they were
when H0 was true. Therefore, s

2
X
will be larger, causing the between-treatments estimate of 2 to be larger.

x n
=

Sample means are ‘close
together’ because there is only

one sampling distribution
when H0 is true

x3 x2 x1

 2
 2

FIGURE 13.2

Sampling distribution of X given H0

is true
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In general, when the population means are not equal, the between-treatments estimate will over-
estimate the population variance 2.

The variation within each of the samples also has an effect on the conclusion we reach in analysis of
variance. When a simple random sample is selected from each population, each of the sample variances
provides an unbiased estimate of 2. Hence, we can combine or pool the individual estimates of 2 into
one overall estimate. The estimate of 2 obtained in this way is called the pooled or within-treatments
estimate of 2. Because each sample variance provides an estimate of 2 based only on the variation
within each sample, the within-treatments estimate of 2 is not affected by whether the population means
are equal.

When the sample sizes are equal, the within-treatments estimate of 2 can be obtained by computing
the average of the individual sample variances. For the Chemitech experiment we obtain:

Within-treatments estimate of 2 27 5 26 5 31 0

3

85

3
28 33

In the Chemitech experiment, the between-treatments estimate of 2 (260) is much larger
than the within-treatments estimate of 2 (28.33). In fact, the ratio of these two estimates is
260/28.33 = 9.18. Recall, however, that the between-treatments approach provides a good estimate
of 2 only if the null hypothesis is true; if the null hypothesis is false, the between-treatments
approach overestimates 2. The within-treatments approach provides a good estimate of 2 in either
case. Therefore, if the null hypothesis is true, the two estimates will be similar and their ratio will be
close to 1. If the null hypothesis is false, the between-treatments estimate will be larger than the
within-treatments estimate, and their ratio will be large. In the next section we will show how large
this ratio must be to reject H0.

In summary, the logic behind ANOVA is based on the development of two independent estimates of the
common population variance 2. One estimate of 2 is based on the variability among the sample means
themselves, and the other estimate of 2 is based on the variability of the data within each sample. By
comparing these two estimates of 2, we will be able to determine whether the population means are equal.

13.2 ANALYSIS OF VARIANCE AND THE COMPLETELY
RANDOMIZED DESIGN

In this section we show how analysis of variance can be used to test for the equality of k population means
for a completely randomized design. The general form of the hypotheses tested is:

H0 1 2 … k

H1 Not all population means are equal

Sample means come from
different sampling distributions

and are not as close together when
H0 is false

3 2 1x3 x2 x1

FIGURE 13.3

Sampling distribution of X

given H0 is false
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Where:

j mean of the jth population

We assume that a simple random sample of size nj has been selected from each of the k populations or
treatments. For the resulting sample data, let:

xij value of observation i for treatment j

nj number of observations for treatment j

x j sample mean for treatment j

s2j sample variance for treatment j

sj sample standard deviation for treatment j

The formulae for the sample mean and sample variance for treatment j are as follows:

Testing for the Equality of k Population means sample mean for Treatment j

x j

nj

i 1

xij

nj
(13.1)

Sample Variance for Treatment j

s2j

nj

i 1

xij x j
2

nj 1
(13.2)

The overall sample mean, denoted , is the sum of all the observations divided by the total number of

observations. That is,

Overall Sample Mean

x

k

j 1

nj

i 1

xij

nT
(13.3)

where:

n
T

n1 n2 … nk (13.4)

If the size of each sample is n, nT = kn; in this case equation (13.3) reduces to:

x

k

j 1

nj

i 1

xij

kn

k

j 1

nj

i 1

xij n

k

k

j 1

xj

k
(13.5)

In other words, whenever the sample sizes are the same, the overall sample mean is just the average of the
k sample means.

Because each sample in the Chemitech experiment consists of n = 5 observations, the overall sample mean
can be computed by using equation (13.5). For the data in Table 13.1 we obtained the following result.

x
62 66 52

3
60

If the null hypothesis is true ( 1 2 3 ), the overall sample mean of 60 is the best estimate of the
population mean µ.
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Between-treatments estimate of population variance

In the preceding section, we introduced the concept of a between-treatments estimate of 2 and showed
how to compute it when the sample sizes were equal. This estimate of 2 is called the mean square due to
treatments and is denoted MSTR. The general formula for computing MSTR is:

MSTR

k

j 1

nj x j x 2

k 1
(13.6)

The numerator in equation (13.6) is called the sum of squares due to treatments and is denoted SSTR. The
denominator, k 1, represents the degrees of freedom associated with SSTR. Hence, the mean square due
to treatments can be computed using the following formula.

Mean square due to treatments

MSTR
SSTR

k 1
(13.7)

where:

SSTR
k

j 1

nj xj x 2 (13.8)

If H0 is true, MSTR provides an unbiased estimate of 2. However, if the means of the k populations
are not equal, MSTR is not an unbiased estimate of 2; in fact, in that case, MSTR should
overestimate 2.

For the Chemitech data in Table 13.1, we obtain the following results.

SSTR
k

j 1

nj x j x 2 5 62 60 2 5 66 60 2 5 52 60 2 520

MSTR
SSTR

k 1

520

2
260

Within-treatments estimate of population variance

Earlier we introduced the concept of a within-treatments estimate of 2 and showed how to compute it
when the sample sizes were equal. This estimate of 2 is called the mean square due to error and is
denoted MSE. The general formula for computing MSE is:

MSE

k

j 1

nj 1 s2j

nT k
(13.9)

The numerator in equation (13.9) is called the sum of squares due to error and is denoted SSE. The
denominator of MSE is referred to as the degrees of freedom associated with SSE. Hence, the formula for
MSE can also be stated as follows.

Mean square due to error

MSE
SSE

nT k
(13.10)
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where:

SSE
k

j 1

nj 1 s2j (13.11)

Note that MSE is based on the variation within each of the treatments; it is not influenced by whether the
null hypothesis is true. Therefore, MSE always provides an unbiased estimate of 2.

For the Chemitech data in Table 13.1 we obtain the following results.

SSE
k

j 1

nj 1 s2j 5 1 27 5 5 1 26 5 5 1 31 340

MSE
SSE

nT k

340

15 3

340

12
28 33

Comparing the variance estimates: the F test

If the null hypothesis is true, MSTR and MSE provide two independent, unbiased estimates of 2. Based
on the material covered in Chapter 11 we know that, for normal populations, the sampling distribution of
the ratio of two independent estimates of 2 follows an F distribution. Hence, if the null hypothesis is true
and the ANOVA assumptions are valid, the sampling distribution of MSTR/MSE is an F distribution with
numerator degrees of freedom equal to k 1 and denominator degrees of freedom equal to nT k. In
other words, if the null hypothesis is true, the value of MSTR/MSE should appear to have been selected
from this F distribution.

However, if the null hypothesis is false, the value of MSTR/MSE will be inflated because MSTR
overestimates 2. Hence, we will reject H0 if the resulting value of MSTR/MSE appears to be too large to
have been selected from an F distribution with k 1 numerator degrees of freedom and nT k
denominator degrees of freedom. Because the decision to reject H0 is based on the value of MSTR/
MSE, the test statistic used to test for the equality of k population means is as follows.

Test statistic for the equality of k population means

F
MSTR

MSE
(13.12)

The test statistic follows an F distribution with k 1 degrees of freedom in the numerator and nT k
degrees of freedom in the denominator.

Let us return to the Chemitech experiment and use a level of significance 0 05 to conduct the
hypothesis test. The value of the test statistic is:

F
MSTR

MSE

260

28 33
9 18

The numerator degrees of freedom is k 1 = 3 1 = 2 and the denominator degrees of freedom is
nT k = 15 3 = 12. Because we will only reject the null hypothesis for large values of the test statistic,
the p-value is the upper tail area of the F distribution to the right of the test statistic F = 9.18. Figure 13.4
shows the sampling distribution of F = MSTR/MSE, the value of the test statistic, and the upper tail area
that is the p-value for the hypothesis test.

From Table 4 of Appendix B we find the following areas in the upper tail of an F distribution with two
numerator degrees of freedom and 12 denominator degrees of freedom.

ANALYSIS OF VARIANCE AND THE COMPLETELY RANDOMIZED DESIGN 335



Area in Upper Tail .10 .05 .025 .01

F Value (df1 = 2, df2 = 12) 2.81 3.89 5.10 6.93
F = 9.18

Because F = 9.18 is greater than 6.93, the area in the upper tail at F = 9.18 is less than .01. Therefore,
the p-value is less than .01. MINITAB, EXCEL or SPSS can be used to show that the exact p-value is
.004. With p-value ≤ 0 05, H0 is rejected. The test provides sufficient evidence to conclude that the
means of the three populations are not equal. In other words, analysis of variance supports the conclusion
that the population mean number of units produced per week for the three assembly methods are not
equal.

As with other hypothesis testing procedures, the critical value approach may also be used. With
0 05, the critical F value occurs with an area of 0.05 in the upper tail of an F distribution with two

and 12 degrees of freedom. From the F distribution table, we find F.05 = 3.89. Hence, the appropriate
upper tail rejection rule for the Chemitech experiment is:

Reject H0 if F 3 89

With F = 9.18, we reject H0 and conclude that the means of the three populations are not equal.
A summary of the overall procedure for testing for the equality of k population means follows.

Test for the equality of k population means

H0 1 2 … k

H1 Not all population means are equal

Test statistic

F
MSTR

MSE

Rejection rule

p-value approach: Reject H0 if p-value

Critical value approach: Reject H0 if F F

where the value of is based on an F distribution with k 1 numerator degrees of freedom and nT k

denominator degrees of freedom.

p- value

F =  9.18
MSTR/MSE

Sampling distribution
of MSTR/MSE

FIGURE 13.4

Computation of p-value

using the sampling

distribution of MSTR/

MSE
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ANOVA table

The results of the preceding calculations can be displayed conveniently in a table referred to as the analysis
of variance or ANOVA table. The general form of the ANOVA table for a completely randomized design is
shown in Table 13.2; Table 13.3 is the corresponding ANOVA table for the Chemitech experiment. The
sum of squares associated with the source of variation referred to as ‘Total’ is called the total sum of squares
(SST). Note that the results for the Chemitech experiment suggest that SST = SSTR SSE, and that the
degrees of freedom associated with this total sum of squares is the sum of the degrees of freedom associated
with the sum of squares due to treatments and the sum of squares due to error.

We point out that SST divided by its degrees of freedom nT 1 is nothing more than the overall
sample variance that would be obtained if we treated the entire set of 15 observations as one data set.
With the entire data set as one sample, the formula for computing the total sum of squares, SST, is:

Total sum of squares

SST
k

j 1

nj

i 1

xij x 2 (13.13)

It can be shown that the results we observed for the analysis of variance table for the Chemitech
experiment also apply to other problems. That is,

Partitioning of sum of squares

SST SSTR SSE (13.14)

In other words, SST can be partitioned into two sums of squares: the sum of squares due to treatments
and the sum of squares due to error.

T ABLE 13 . 3 Analysis of variance table for the Chemitech experiment

Source of

variation

Degrees of

freedom Sum of squares Mean square F p-value

Treatments 2 520 260.00 9.18 .004

Error 12 340 28.33

Total 14 860

T ABLE 13 . 2 ANOVA table for a completely randomized design

Source Degrees Sum Mean

of variation of freedom of squares square F p-value

Treatments k 1 SSTR
MSTR

SSTR

k 1

MSTR

MSE

Error nT k SSE MSE
SSE

nT k
Total nT 1 SST
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Note also that the degrees of freedom corresponding to SST, nT 1, can be partitioned into the
degrees of freedom corresponding to SSTR, k 1, and the degrees of freedom corresponding to SSE,
nT k. The analysis of variance can be viewed as the process of partitioning the total sum of squares and
the degrees of freedom into their corresponding sources: treatments and error. Dividing the sum of
squares by the appropriate degrees of freedom provides the variance estimates, the F value, and the
p-value used to test the hypothesis of equal population means.

Computer results for analysis of variance

Using statistical computer packages, analysis of variance computations with large sample sizes or a large
number of populations can be performed easily. Appendices 13.1–13.3 show the steps required to use
MINITAB, EXCEL and SPSS to perform the analysis of variance computations. In Figure 13.5 we show
output for the Chemitech experiment obtained using MINITAB. The first part of the computer output
contains the familiar ANOVA table format.

Note that following the ANOVA table the computer output contains the respective sample sizes, the
sample means and the standard deviations. In addition, MINITAB provides a figure that shows individual
95 per cent confidence interval estimates of each population mean. In developing these confidence
interval estimates, MINITAB uses MSE as the estimate of 2. Therefore, the square root of MSE provides
the best estimate of the population standard deviation . This estimate of on the computer output is
Pooled StDev; it is equal to 5.323. To provide an illustration of how these interval estimates are developed,
we will compute a 95 per cent confidence interval estimate of the population mean for method A.

From our study of interval estimation in Chapter 8, we know that the general form of an interval
estimate of a population mean is:

x t 2
s

n
(13.15)

where s is the estimate of the population standard deviation . Because the best estimate of is provided
by the Pooled StDev, we use a value of 5.323 for s in expression (13.15). The degrees of freedom for the
t value is 12, the degrees of freedom associated with the error sum of squares. Hence, with t.025 = 2.179
we obtain:

62 2 179
5 323

5
62 5 19

Therefore, the individual 95 per cent confidence interval for method A goes from 62 5.19 = 56.81 to
62 5.19 = 67.19. Because the sample sizes are equal for the Chemitech experiment, the individual
confidence intervals for methods B and C are also constructed by adding and subtracting 5.19 from each
sample mean.

FIGURE 13.5

MINITAB output for the Chemitech experiment analysis of variance
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Therefore, in the figure provided by MINITAB we see that the widths of the confidence intervals are
the same.

Testing for the equality of k population means: an observational study

National Computer Products (NCP) manufactures printers and fax machines at plants located in Ayr,
Dusseldorf and Stockholm. To measure how much employees at these plants know about quality
management, a random sample of six employees was selected from each plant and the employees selected
were given a quality awareness examination. The examination scores for these 18 employees are shown in
Table 13.4. The sample means, sample variances and sample standard deviations for each group are also
provided. Managers want to use these data to test the hypothesis that the mean examination score is the
same for all three plants.

We define population 1 as all employees at the Ayr plant, population 2 as all employees at the
Dusseldorf plant and population 3 as all employees at the Stockholm plant. Let

1 mean examination score for population 1

2 mean examination score for population 2

3 mean examination score for population 3

Although we will never know the actual values of µ1, µ2 and µ3, we want to use the sample results to test
the following hypotheses.

H0 1 2 3

H1 Not all population means are equal

Note that the hypothesis test for the NCP observational study is exactly the same as the hypothesis test for
the Chemitech experiment. Indeed, the same analysis of variance methodology we used to analyze the
Chemitech experiment can also be used to analyze the data from the NCP observational study.

Even though the same ANOVA methodology is used for the analysis, it is worth noting how the
NCP observational statistical study differs from the Chemitech experimental statistical study. The
individuals who conducted the NCP study had no control over how the plants were assigned to individual
employees. That is, the plants were already in operation and a particular employee worked at one of the
three plants. All that NCP could do was to select a random sample of six employees from each plant and
administer the quality awareness examination. To be classified as an experimental study, NCP would have
had to be able to randomly select 18 employees and then assign the plants to each employee in a random
fashion.

T ABLE 13 . 4 Examination scores for 18 employees

Plant 1 Ayr Plant 2 Dusseldorf Plant 3 Stockholm

85 71 59

75 75 64

82 73 62

76 74 69

71 69 75

85 82 67

Sample mean 79 74 66

Sample variance 34 20 32

Sample standard deviation 5.83 4.47 5.66
NCP
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EXERCISES

Methods

1. The following data are from a completely randomized design.

Treatment

A B C

162 142 126

142 156 122

165 124 138

145 142 140

148 136 150

174 152 128

Sample mean 156 142 134

Sample variance 164.4 131.2 110.4

a. Compute the sum of squares between treatments.

b. Compute the mean square between treatments.

c. Compute the sum of squares due to error.

d. Compute the mean square due to error.

e. Set up the ANOVA table for this problem.

f. At the = 0.05 level of significance, test whether the means for the three treatments are equal.

2. In a completely randomized design, seven experimental units were used for each of the five levels

of the factor. Complete the following ANOVA table.

Source of

variation

Sum of

squares

Degrees of

freedom Mean square F p-value

Treatments 300

Error

Total 460

3. Refer to Exercise 2.

a. What hypotheses are implied in this problem?

b. At the = 0.05 level of significance, can we reject the null hypothesis in part (a)? Explain.

4. In an experiment designed to test the output levels of three different treatments, the following

results were obtained: SST = 400, SSTR = 150, nT = 19. Set up the ANOVA table and test for any

significant difference between the mean output levels of the three treatments. Use 05

5. In a completely randomized design, 12 experimental units were used for the first treatment, 15 for

the second treatment and 20 for the third treatment. Complete the following analysis of variance.

At a 0.05 level of significance, is there a significant difference between the treatments?

Source of

variation

Sum of

squares

Degrees of

freedom Mean square F p-value

Treatments 1200

Error

Total 1800
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6. Develop the analysis of variance computations for the following completely randomized design. At

0 05, is there a significant difference between the treatment means?

Treatment

A B C

136 107 92

120 114 82

113 125 85

107 104 101

131 107 89

114 109 117

129 97 110

102 114 120

104 98

89 106

xj 119 107 100

s2
j 146.86 96.44 173.78

Applications

7. To test whether the mean time needed to mix a batch of material is the same for machines

produced by three manufacturers, the Jacobs Chemical Company obtained the following data on

the time (in minutes) needed to mix the material. Use these data to test whether the population

mean times for mixing a batch of material differ for the three manufacturers. Use = 0.05.

Manufacturer

1 2 3

20 28 20

26 26 19

24 31 23

22 27 22

8. Managers at all levels of an organization need adequate information to perform their respective

tasks. One study investigated the effect the source has on the dissemination of information. In this

particular study the sources of information were a superior, a peer and a subordinate. In each case,

a measure of dissemination was obtained, with higher values indicating greater dissemination of

information. Use = 0.05 and the following data to test whether the source of information

significantly affects dissemination. What is your conclusion, and what does it suggest about the

use and dissemination of information?

Superior Peer Subordinate

8 6 6

5 6 5

4 7 7

6 5 4

6 3 3

7 4 5

5 7 7

5 6 5

EXER6
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9. A study investigated the perception of corporate ethical values among individuals specializing in

marketing. Use = 0.05 and the following data (higher scores indicate higher ethical values) to

test for significant differences in perception among the three groups.

Marketing managers Marketing research Advertising

6 5 6

5 5 7

4 4 6

5 4 5

6 5 6

4 4 6

10. A study reported in the Journal of Small Business Management concluded that self-employed

individuals experience higher job stress than individuals who are not self-employed. In this

study job stress was assessed with a 15-item scale designed to measure various aspects of

ambiguity and role conflict. Ratings for each of the 15 items were made using a scale with 1–5

response options ranging from strong agreement to strong disagreement. The sum of the

ratings for the 15 items for each individual surveyed is between 15 and 75, with higher values

indicating a higher degree of job stress. Suppose that a similar approach, using a 20-item scale

with 1–5 response options, was used to measure the job stress of individuals for 15 randomly

selected property agents, 15 architects and 15 stockbrokers. The results obtained follow.

Property agent Architect Stockbroker

81 43 65

48 63 48

68 60 57

69 52 91

54 54 70

62 77 67

76 68 83

56 57 75

61 61 53

65 80 71

64 50 54

69 37 72

83 73 65

85 84 58

75 58 58

Use = 0.05 to test for any significant difference in job stress among the three professions.

11. Four different paints are advertised as having the same drying time. To check the manufacturer’s

claims, five samples were tested for each of the paints. The time in minutes until the paint

was dry enough for a second coat to be applied was recorded. The following data were obtained.

Paint 1 Paint 2 Paint 3 Paint 4

128 144 133 150

137 133 143 142

135 142 137 135

124 146 136 140

141 130 131 153

PAINT

COMPLETE

SOLUTIONS

COMPLETE

SOLUTIONS
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13.3 MULTIPLE COMPARISON PROCEDURES

When we use analysis of variance to test whether the means of k populations are equal, rejection of the
null hypothesis allows us to conclude only that the population means are not all equal. In some cases we
will want to go a step further and determine where the differences among means occur. The purpose of
this section is to show how multiple comparison procedures can be used to conduct statistical compar-
isons between pairs of population means.

Fisher’s LSD

Suppose that analysis of variance provides statistical evidence to reject the null hypothesis of equal
population means. In this case, Fisher’s least significant difference (LSD) procedure can be used to
determine where the differences occur. To illustrate the use of Fisher’s LSD procedure in making pairwise
comparisons of population means, recall the Chemitech experiment introduced in Section 13.1. Using
analysis of variance, we concluded that the mean number of units produced per week are not the same for
the three assembly methods. In this case, the follow-up question is: We believe the assembly methods
differ, but where do the differences occur? That is, do the means of populations 1 and 2 differ? Or those of
populations 1 and 3? Or those of populations 2 and 3?

In Chapter 10 we presented a statistical procedure for testing the hypothesis that the means of two
populations are equal. With a slight modification in how we estimate the population variance, Fisher’s
LSD procedure is based on the t test statistic presented for the two-population case. The following details
summarize Fisher’s LSD procedure.

At the = 0.05 level of significance, test to see whether the mean drying time is the same for

each type of paint.

12. The Consumer Reports’ Restaurant Customer Satisfaction Survey is based upon 148 599 visits to

full-service restaurant chains (Consumer Reports website). One of the variables in the study is

meal price, the average amount paid per person for dinner and drinks, minus the tip. Suppose a

reporter for the Sun Coast Times thought that it would be of interest to their readers to conduct a

similar study for restaurants located on the Grand Strand section in Myrtle Beach, South Carolina.

The reporter selected a sample of eight seafood restaurants, eight Italian restaurants and eight

steakhouses. The following data show the meal prices ($) obtained for the 24 restaurants

sampled. Use = 0.05 to test whether there is a significant difference among the mean meal

price for the three types of restaurants.

Italian Seafood Steakhouse

$12 $16 $24

13 18 19

15 17 23

17 26 25

18 23 21

20 15 22

17 19 27

24 18 31

GRANDSTRAND
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Fisher’s LSD procedure

H0 i j

H1 i j

Test statistic

t
x i xj

MSE
1

ni

1

nj

(13.16)

Rejection rule

p-value approach Reject H0 if p-value

Critical value Reject H0 if t –t 2 or t t 2

where the value of 2 is based on a t distribution with nT k degrees of freedom.

Let us now apply this procedure to determine whether there is a significant difference between the
means of population 1 (method A) and population 2 (method B) at the 0 05 level of significance.
Table 13.1 showed that the sample mean is 62 for method A and 66 for method B. Table 13.3 showed that
the value of MSE is 28.33; it is the estimate of 2 and is based on 12 degrees of freedom. For the
Chemitech data the value of the test statistic is:

t
62 66

28 33
1

5

1

5

1 19

Because we have a two-tailed test, the p-value is two times the area under the curve for the
t distribution to the left of t = 1.19. Using Table 2 in Appendix B, the t distribution table for 12
degrees of freedom provides the following information.

Area in Upper Tail .20 .10 .05 .025 .01 .005
t Value (12 df) .873 1.356 1.782 2.179 2.681 3.055

t = 1.19

The t distribution table only contains positive t values. Because the t distribution is symmetric, however,
we can find the area under the curve to the right of t = 1.19 and double it to find the p-value
corresponding to t = –1.19. We see that t = 1.19 is between .20 and .10. Doubling these amounts, we
see that the p-value must be between .40 and .20. EXCEL or MINITAB can be used to show that the exact
p-value is .2571. Because the p-value is greater than 0 05, we cannot reject the null hypothesis.
Hence, we cannot conclude that the population mean number of units produced per week for method A
is different from the population mean for method B.

Many practitioners find it easier to determine how large the difference between the sample means must
be to reject H0. In this case the test statistic is x i x j and the test is conducted by the following procedure.

Fisher’s LSD procedure based on the test statistic x i x j

H0 i j

H1 i j

Test statistic

xi xj

344 CHAPTER 13 EXPERIMENTAL DESIGN AND ANALYSIS OF VARIANCE



Rejection rule at a level of significance

RejectH0 if xi xj LSD

where

LSD t 2 MSE
1

ni

1

nj
(13.17)

For the Chemitech experiment the value of LSD is:

LSD 2 179 28 33
1

5

1

5
7 34

Note that when the sample sizes are equal, only one value for LSD is computed. In such cases we can simply
compare the magnitude of the difference between any two sample means with the value of LSD. For example,
the difference between the sample means for population 1 (method A) and population 3 (method C) is
62 52 = 10. This difference is greater than LSD = 7.34, which means we can reject the null hypothesis that
the population mean number of units produced per week for method A is equal to the population mean for
method C. Similarly, with the difference between the sample means for populations 2 and 3 of 66 52 = 14 >
7.34, we can also reject the hypothesis that the populationmean formethod B is equal to the populationmean
for method C. In effect, our conclusion is that methods A and B both differ from method C.

Fisher’s LSD can also be used to develop a confidence interval estimate of the difference between the
means of two populations. The general procedure follows.

Confidence interval estimate of the difference between two population means using

Fisher’s LSD procedure

x i x j LSD (13.18)

where:

LSD t 2 MSE
1

ni

1

nj
(13.19)

and 2 is based on a t distribution with nT k degrees of freedom.

If the confidence interval in expression (13.18) includes the value zero, we cannot reject the hypothesis that
the two population means are equal. However, if the confidence interval does not include the value zero, we
conclude that there is a difference between the population means. For the Chemitech experiment, recall that
LSD = 7.34 (corresponding to t.025 = 2.179). Therefore, a 95 per cent confidence interval estimate of the
difference between the means of populations 1 and 2 is 62 66 ± 7.34 = –4 ± 7.34 = –11.34 to 3.34; because
this interval includes zero, we cannot reject the hypothesis that the two population means are equal.

Type I error rates

We began the discussion of Fisher’s LSD procedure with the premise that analysis of variance gave us
statistical evidence to reject the null hypothesis of equal population means. We showed how Fisher’s LSD
procedure can be used in such cases to determine where the differences occur. Technically, it is referred to
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as a protected or restricted LSD test because it is employed only if we first find a significant F value by
using analysis of variance. To see why this distinction is important in multiple comparison tests, we need
to explain the difference between a comparisonwise Type I error rate and an experimentwise Type I error
rate.

In the Chemitech experiment we used Fisher’s LSD procedure to make three pairwise comparisons.

Test 1 Test 2 Test 3

H0 1 2 H0 1 3 H0 2 3

H1 1 2 H1 1 3 H1 2 3

In each case, we used a level of significance of 0 05 Therefore, for each test, if the null hypothesis is
true, the probability that we will make a Type I error is 0 05 hence, the probability that we will not
make a Type I error on each test is 1 0.05 = 0.95. In discussing multiple comparison procedures we
refer to this probability of a Type I error ( 0 05) as the comparisonwise Type I error rate;
comparisonwise Type I error rates indicate the level of significance associated with a single pairwise
comparison.

Let us now consider a slightly different question. What is the probability that in making three
pairwise comparisons, we will commit a Type I error on at least one of the three tests? To answer this
question, note that the probability that we will not make a Type I error on any of the three tests is (0.95)
(0.95)(0.95) = 0.8574.* Therefore, the probability of making at least one Type I error is 1 0.8574 =
.1426. When we use Fisher’s LSD procedure to make all three pairwise comparisons, the Type I error
rate associated with this approach is not 0.05, but actually 0.1426; we refer to this error rate as the
overall or experimentwise Type I error rate. To avoid confusion, we denote the experimentwise Type I
error rate as EW .

The experimentwise Type I error rate gets larger for problems with more populations. For example, a
problem with five populations has ten possible pairwise comparisons. If we tested all possible pairwise
comparisons by using Fisher’s LSD with a comparisonwise error rate of 0 05, the experimentwise
Type I error rate would be 1 (1 0.05)

10
= .40. In such cases, practitioners look to alternatives that

provide better control over the experimentwise error rate.
One alternative for controlling the overall experimentwise error rate, referred to as the Bonferroni

adjustment, involves using a smaller comparisonwise error rate for each test. For example, if we want to
test C pairwise comparisons and want the maximum probability of making a Type I error for the overall
experiment to be EW, we simply use a comparisonwise error rate equal to EW/C. In the Chemitech
experiment, if we want to use Fisher’s LSD procedure to test all three pairwise comparisons with a
maximum experimentwise error rate of EW 0 05, we set the comparisonwise error rate to be

05 3 017. For a problem with five populations and ten possible pairwise comparisons, the
Bonferroni adjustment would suggest a comparisonwise error rate of 0.05/10 = 0.005. Recall from our
discussion of hypothesis testing in Chapter 9 that for a fixed sample size, any decrease in the probability
of making a Type I error will result in an increase in the probability of making a Type II error, which
corresponds to accepting the hypothesis that the two population means are equal when in fact they are
not equal. As a result, many practitioners are reluctant to perform individual tests with a low compar-
isonwise Type I error rate because of the increased risk of making a Type II error.

Several other procedures, such as Tukey’s procedure and Duncan’s multiple range test, have been
developed to help in such situations. However, there is considerable controversy in the statistical
community as to which procedure is ‘best.’ The truth is that no one procedure is best for all types of
problems.

*
The assumption is that the three tests are independent, and hence the joint probability of the three events can be
obtained by simply multiplying the individual probabilities. In fact, the three tests are not independent because MSE
is used in each test; therefore, the error involved is even greater than that shown.
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EXERCISES

Methods

13. The following data are from a completely randomized design.

Treatment Treatment Treatment

A B C

32 44 33

30 43 36

30 44 35

26 46 36

32 48 40

Sample mean 30 45 36

Sample variance 6.00 4.00 6.50

a. At the = 0.05 level of significance, can we reject the null hypothesis that the means of the

three treatments are equal?

b. Use Fisher’s LSD procedure to test whether there is a significant difference between the

means for treatments A and B, treatments A and C and treatments B and C. Use = .05.

c. Use Fisher’s LSD procedure to develop a 95 per cent confidence interval estimate of the

difference between the means of treatments A and B.

14. The following data are from a completely randomized design. In the following calculations, use = .05.

Treatment Treatment Treatment

1 2 3

63 82 69

47 72 54

54 88 61

40 66 48

xj 51 77 58

s2
j 96.67 97.34 81.99

a. Use analysis of variance to test for a significant difference among the means of the three

treatments.

b. Use Fisher’s LSD procedure to determine which means are different.

Applications

15. To test whether the mean time needed to mix a batch of material is the same for machines

produced by three manufacturers, the Jacobs Chemical Company obtained the following data on

the time (in minutes) needed to mix the material.

Manufacturer

1 2 3

20 28 20

26 26 19

24 31 23

22 27 22

COMPLETE

SOLUTIONS
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13.4 RANDOMIZED BLOCK DESIGN

This far we have considered the completely randomized experimental design. Recall that to test for a
difference among treatment means, we computed an F value by using the ratio:

a. Use these data to test whether the population mean times for mixing a batch of material differ

for the three manufacturers. Use = .05.

b. At the = 0.05 level of significance, use Fisher’s LSD procedure to test for the equality of

the means for manufacturers 1 and 3. What conclusion can you draw after carrying out this

test?

16. Refer to Exercise 15. Use Fisher’s LSD procedure to develop a 95 per cent confidence interval

estimate of the difference between the means for manufacturer 1 and manufacturer 2.

17. The following data are from an experiment designed to investigate the perception of corporate

ethical values among individuals specializing in marketing (higher scores indicate higher ethical

values).

Marketing managers Marketing research Advertising

6 5 6

5 5 7

4 4 6

5 4 5

6 5 6

4 4 6

a. Use = 0.05 to test for significant differences in perception among the three groups.

b. At the = 0.05 level of significance, we can conclude that there are differences in the

perceptions for marketing managers, marketing research specialists and advertising

specialists. Use the procedures in this section to determine where the differences occur. Use

= .05.

18. To test for any significant difference in the number of hours between breakdowns for four

machines, the following data were obtained.

Machine 1 Machine 2 Machine 3 Machine 4

6.4 8.7 11.1 9.9

7.8 7.4 10.3 12.8

5.3 9.4 9.7 12.1

7.4 10.1 10.3 10.8

8.4 9.2 9.2 11.3

7.3 9.8 8.8 11.5

a. At the = 0.05 level of significance, what is the difference, if any, in the population mean

times among the four machines?

b. Use Fisher’s LSD procedure to test for the equality of the means for machines 2 and 4. Use a

0.05 level of significance.

19. Refer to Exercise 18. Use the Bonferroni adjustment to test for a significant difference between

all pairs of means. Assume that a maximum overall experiment wise error rate of 0.05 is desired.

COMPLETE

SOLUTIONS
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F test statistic

F
MSTR

MSE
(13.20)

A problem can arise whenever differences due to extraneous factors (ones not considered in the experi-
ment) cause the MSE term in this ratio to become large. In such cases, the F value in equation (13.20) can
become small, signalling no difference among treatment means when in fact such a difference exists.

In this section we present an experimental design known as a randomized block design. Its purpose is
to control some of the extraneous sources of variation by removing such variation from the MSE term.
This design tends to provide a better estimate of the true error variance and leads to a more powerful
hypothesis test in terms of the ability to detect differences among treatment means. To illustrate, let us
consider a stress study for air traffic controllers.

Air traffic controller stress test

A study measuring the fatigue and stress of air traffic controllers resulted in proposals for modification
and redesign of the controller’s work station. After consideration of several designs for the work station,
three specific alternatives are selected as having the best potential for reducing controller stress. The key
question is: To what extent do the three alternatives differ in terms of their effect on controller stress? To
answer this question, we need to design an experiment that will provide measurements of air traffic
controller stress under each alternative.

In a completely randomized design, a random sample of controllers would be assigned to each work
station alternative. However, controllers are believed to differ substantially in their ability to handle
stressful situations. What is high stress to one controller might be only moderate or even low stress to
another. Hence, when considering the within-group source of variation (MSE), we must realize that this
variation includes both random error and error due to individual controller differences. In fact, managers
expected controller variability to be a major contributor to the MSE term.

One way to separate the effect of the individual differences is to use a randomized block design. Such a
design will identify the variability stemming from individual controller differences and remove it from
the MSE term. The randomized block design calls for a single sample of controllers. Each controller in the
sample is tested with each of the three work station alternatives. In experimental design terminology, the
work station is the factor of interest and the controllers are the blocks. The three treatments or populations
associated with the work station factor correspond to the three work station alternatives. For simplicity,
we refer to the work station alternatives as system A, system B and system C.

The randomized aspect of the randomized block design is the random order in which the treatments
(systems) are assigned to the controllers. If every controller were to test the three systems in the same
order, any observed difference in systems might be due to the order of the test rather than to true
differences in the systems.

To provide the necessary data, the three work station alternatives were installed at the Berlin Control
Centre. Six controllers were selected at random and assigned to operate each of the systems. A follow-up
interview and a medical examination of each controller participating in the study provided a measure of
the stress for each controller on each system. The data are reported in Table 13.5.

Table 13.6 is a summary of the stress data collected. In this table we include column totals (treatments)
and row totals (blocks) as well as some sample means that will be helpful in making the sum of squares
computations for the ANOVA procedure. Because lower stress values are viewed as better, the sample
data seem to favour system B with its mean stress rating of 13. However, the usual question remains: Do
the sample results justify the conclusion that the population mean stress levels for the three systems
differ? That is, are the differences statistically significant? An analysis of variance computation similar to
the one performed for the completely randomized design can be used to answer this statistical question.

AIRTRAFFIC
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ANOVA procedure

The ANOVA procedure for the randomized block design requires us to partition the sum of squares total
(SST) into three groups: sum of squares due to treatments (SSTR), sum of squares due to blocks (SSBL)
and sum of squares due to error (SSE). The formula for this partitioning follows.

SST SSTR SSBL SSE (13.21)

This sum of squares partition is summarized in the ANOVA table for the randomized block design as
shown in Table 13.7. The notation used in the table is:

k the number of treatments
b the number of blocks
nT the total sample size nT kb

Note that the ANOVA table also shows how the nT 1 total degrees of freedom are partitioned such
that k 1 degrees of freedom go to treatments, b 1 go to blocks and (k 1)(b 1) go to the error
term. The mean square column shows the sum of squares divided by the degrees of freedom, and
F = MSTR/MSE is the F ratio used to test for a significant difference among the treatment means. The
primary contribution of the randomized block design is that, by including blocks, we remove the
individual controller differences from the MSE term and obtain a more powerful test for the stress
differences in the three work station alternatives.

T ABLE 13 . 6 Summary of stress data for the air traffic controller stress test

Treatments

System A System B System C

Row or

block totals Block means

Controller 1 15 15 18 48 x1 48 3 16 0

Controller 2 14 14 14 42 x2 42 3 14 0

Blocks Controller 3 10 11 15 36 x3 36 3 12 0

Controller 4 13 12 17 42 x4 42 3 14 0

Controller 5 16 13 16 45 x5 45 3 15 0

Controller 6 13 13 13 39 x6 39 3 13 0

Column or

Treatment totals 81 78 93 252
x

252

18
14 0

Treatment means x 1
81

6

13 5

x 2
78

6

13 0

x 3
93

6

15 5

T ABLE 13 . 5 A randomized block design for the air traffic controller stress test

Treatments

System A System B System C

Controller 1 15 15 18

Controller 2 14 14 14

Blocks Controller 3 10 11 15

Controller 4 13 12 17

Controller 5 16 13 16

Controller 6 13 13 13
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Computations and conclusions

To compute the F statistic needed to test for a difference among treatment means with a randomized
block design, we need to compute MSTR and MSE. To calculate these two mean squares, we must first
compute SSTR and SSE; in doing so, we will also compute SSBL and SST. To simplify the presentation, we
perform the calculations in four steps. In addition to k, b and nT as previously defined, the following
notation is used.

xij value of the observation corresponding to treatment j in block i

x j sample mean of the jth treatment

x i sample mean for the ith block

x overall sample mean

Step 1. Compute the total sum of squares (SST).

SST
b

i 1

k

j 1

xij − x
2

(13.22)

Step 2. Compute the sum of squares due to treatments (SSTR).

SSTR b
k

j 1

x j − x
2

(13.23)

Step 3. Compute the sum of squares due to blocks (SSBL).

SSBL k
b

i 1

x i − x
2

(13.24)

Step 4. Compute the sum of squares due to error (SSE).

SSE SST SSTR SSBL (13.25)

For the air traffic controller data in Table 13.6, these steps lead to the following sums of squares.

Step 1. SST = (15 14)
2

(15 14)
2

(18 14)
2

… (13 14)
2
= 70

Step 2. SSTR = [(13.5 –14)
2

(13.0 –14)
2

(15.5 14)
2
] = 21

Step 3. SSBL = 3[(16 –14)
2

(14 14)
2

(12 14)
2

(14 14)
2

(15 14)
2

(13 14)
2
] = 30

Step 4. SSE = 70 21 30 = 19

T ABLE 13 . 7 ANOVA table for the randomized block design with k treatments and b blocks

Source of variation Degrees of freedom Sum of squares Mean square F

Treatments k 1 SSTR
MSTR

SSTR

k 1

MSTR

MSE

Blocks b 1 SSBL MSBL
SSBL

b 1

Error (k 1)( b 1) SSE MSE
SSE

k 1 b 1

Total nT 1 SST
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These sums of squares divided by their degrees of freedom provide the corresponding mean square values
shown in Table 13.8.

Let us use a level of significance 0 05 to conduct the hypothesis test. The value of the test
statistic is:

F
MSTR

MSE

10 5

1 9
5 53

The numerator degrees of freedom is k 1 = 3 1 = 2 and the denominator degrees of freedom is
(k 1)(b 1) = (3 1)(6 1) = 10. Because we will only reject the null hypothesis for large values of
the test statistic, the p-value is the area under the F distribution to the right of F = 5.53. From Table 4
of Appendix B we find that with the degrees of freedom 2 and 10, F = 5.53 is between F.025 = 5.46 and
F.01 = 7.56. As a result, the area in the upper tail, or the p-value, is between .01 and .025. Alternatively, we
can use or MINITAB, EXCEL or SPSS to show that the exact p-value for F = 5.53 is 0.024. With p-value

0 05, we reject the null hypothesis H0: µ1 = µ2 = µ3 and conclude that the population mean stress
levels differ for the three work station alternatives.

Some general comments can be made about the randomized block design. The experimental
design described in this section is a complete block design; the word ‘complete’ indicates that each block
is subjected to all k treatments. That is, all controllers (blocks) were tested with all three systems
(treatments). Experimental designs in which some but not all treatments are applied to each block are
referred to as incomplete block designs. A discussion of incomplete block designs is beyond the scope of
this text.

Because each controller in the air traffic controller stress test was required to use all three systems, this
approach guarantees a complete block design. In some cases, however, blocking is carried out with
‘similar’ experimental units in each block. For example, assume that in a pretest of air traffic controllers,
the population of controllers was divided into groups ranging from extremely high-stress individuals to
extremely low-stress individuals.

The blocking could still be accomplished by having three controllers from each of the stress classifica-
tions participate in the study. Each block would then consist of three controllers in the same stress group.
The randomized aspect of the block design would be the random assignment of the three controllers in
each block to the three systems.

Finally, note that the ANOVA table shown in Table 13.7 provides an F value to test for treatment
effects but not for blocks. The reason is that the experiment was designed to test a single factor – work
station design. The blocking based on individual stress differences was conducted to remove such
variation from the MSE term. However, the study was not designed to test specifically for individual
differences in stress.

Some analysts compute F = MSB/MSE and use that statistic to test for significance of the blocks. Then
they use the result as a guide to whether the same type of blocking would be desired in future
experiments. However, if individual stress difference is to be a factor in the study, a different experimental
design should be used. A test of significance on blocks should not be performed as a basis for a conclusion
about a second factor.

T ABLE 13 . 8 ANOVA table for the air traffic controller stress test

Source of variation

Sum of

squares

Degrees of

freedom

Mean

square F p-value

Treatments 2 21 10.5 10.5/1.9 = 5.53 .024

Blocks 5 30 6.0

Error 10 19 1.9

Total 17 70
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EXERCISES

Methods

20. Consider the experimental results for the following randomized block design. Make the

calculations necessary to set up the analysis of variance table.

Treatments

A B C

1 10 9 8

2 12 6 5

Blocks 3 18 15 14

4 20 18 18

5 8 7 8

Use 0 05 to test for any significant differences.

21. The following data were obtained for a randomized block design involving five treatments and

three blocks: SST = 430, SSTR = 310, SSBL = 85. Set up the ANOVA table and test for any

significant differences. Use 05

22. An experiment has been conducted for four treatments with eight blocks. Complete the following

analysis of variance table.

Source of variation Degrees of freedom Sum of squares Mean square F

Treatments 900

Blocks 400

Error

Total 1800

Use = 0.05 to test for any significant differences.

Applications

23. A car dealer, AfricaDrive, conducted a test to determine if the time in minutes needed to complete

a minor engine tune-up depends on whether a computerized engine analyzer or an electronic

analyzer is used. Because tune-up time varies among compact, intermediate and full-sized cars,

the three types of cars were used as blocks in the experiment. The data obtained follow.

Analyzer

Car Computerized Electronic

Compact 50 42

Intermediate 55 44

Full-sized 63 46

Use = 0.05 to test for any significant differences.

24. A textile mill produces a silicone proofed fabric for making into rainwear. The chemist in charge

thinks that a silicone solution of about 12 per cent strength should yield a fabric with maximum

COMPLETE

SOLUTIONS
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13.5 FACTORIAL EXPERIMENT

The experimental designs we have considered thus far enable us to draw statistical conclusions about one
factor. However, in some experiments we want to draw conclusions about more than one variable or
factor. A factorial experiment is an experimental design that allows simultaneous conclusions about two
or more factors. The term factorial is used because the experimental conditions include all possible
combinations of the factors. For example, for a levels of factor A and b levels of factor B, the experiment
will involve collecting data on ab treatment combinations. In this section we will show the analysis for a
two-factor factorial experiment. The basic approach can be extended to experiments involving more than
two factors.

As an illustration of a two-factor factorial experiment, we will consider a study involving the Graduate
Management Admissions Test (GMAT), a standardized test used by graduate schools of business to
evaluate an applicant’s ability to pursue a graduate programme in that field. Scores on the GMAT range
from 200 to 800, with higher scores implying higher aptitude.

In an attempt to improve students’ performance on the GMAT, a major Spanish university is
considering offering the following three GMAT preparation programmes.

waterproofing index. He also suspected there may be some batch to batch variation because of

slight differences in the cloth. To allow for this possibility five different strengths of solution were

used on each of the three different batches of fabric. The following values of waterproofing index

were obtained:

[Strength of silicone solution (%)]

6 9 12 15 18

1 20.8 20.6 22.0 22.6 20.9

Fabric 2 19.4 21.2 21.8 23.9 22.4

3 19.9 21.1 22.7 22.7 22.1

Using = 0.05, carry out an appropriate test of these data and comment on the chemist’s

original beliefs.

25. An important factor in selecting software for word-processing and database management systems

is the time required to learn how to use the system. To evaluate three file management systems,

a firm designed a test involving five word-processing operators. Because operator variability was

believed to be a significant factor, each of the five operators was trained on each of the three file

management systems. The data obtained follow.

System

Operator A B C

1 6 16 24

2 9 17 22

3 4 13 19

4 3 12 18

5 8 17 22

Use = 0.05 to test for any difference in the mean training time (in hours) for the three systems.
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1 A three-hour review session covering the types of questions generally asked on the GMAT.

2 A one-day programme covering relevant exam material, along with the taking and grading of a
sample exam.

3 An intensive ten-week course involving the identification of each student’s weaknesses and the
setting up of individualized programmes for improvement.

Hence, one factor in this study is the GMAT preparation programme, which has three treatments: three-
hour review, one-day programme and ten-week course. Before selecting the preparation programme to
adopt, further study will be conducted to determine how the proposed programmes affect GMAT scores.

The GMAT is usually taken by students from three colleges: the College of Business, the College of
Engineering and the College of Arts and Sciences. Therefore, a second factor of interest in the experiment
is whether a student’s undergraduate college affects the GMAT score. This second factor, undergraduate
college, also has three treatments: business, engineering and arts and sciences. The factorial design for this
experiment with three treatments corresponding to factor A, the preparation programme, and three
treatments corresponding to factor B, the undergraduate college, will have a total of 3 3 = 9 treatment
combinations. These treatment combinations or experimental conditions are summarized in Table 13.9.

Assume that a sample of two students will be selected corresponding to each of the nine treatment
combinations shown in Table 13.9: two business students will take the three-hour review, two will take
the one-day programme and two will take the ten-week course. In addition, two engineering students and
two arts and sciences students will take each of the three preparation programmes. In experimental design
terminology, the sample size of two for each treatment combination indicates that we have two replica-

tions. Additional replications and a larger sample size could easily be used, but we elect to minimize the
computational aspects for this illustration.

This experimental design requires that six students who plan to attend graduate school be randomly
selected from each of the three undergraduate colleges. Then two students from each college should be
assigned randomly to each preparation programme, resulting in a total of 18 students being used in the
study.

Assume that the randomly selected students participated in the preparation programmes and then
took the GMAT. The scores obtained are reported in Table 13.10.

T ABLE 13 . 9 Nine treatment combinations for the two-factor GMAT experiment

Factor B: College

Business Engineering Arts and Sciences

Factor A: Three-hour review 1 2 3

Preparation One-day programme 4 5 6

Programme ten-week course 7 8 9

T ABLE 13 . 10 GMAT scores for the two-factor experiment

Factor B: College

Business Engineering Arts and Sciences

Three-hour review 500 540 480

Factor A: 580 460 400

Preparation One-day programme 460 560 420

Programme 540 620 480

ten-week course 560 600 480

600 580 410
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The analysis of variance computations with the data in Table 13.10 will provide answers to the
following questions:

• Main effect (factor A): Do the preparation programmes differ in terms of effect on GMAT scores?

• Main effect (factor B): Do the undergraduate colleges differ in terms of effect on GMAT scores?

• Interaction effect (factors A and B): Do students in some colleges do better on one type of
preparation programme whereas others do better on a different type of preparation programme?

The term interaction refers to a new effect that we can now study because we used a factorial
experiment. If the interaction effect has a significant impact on the GMAT scores, we can conclude that
the effect of the type of preparation programme depends on the undergraduate college.

ANOVA procedure

The ANOVA procedure for the two-factor factorial experiment requires us to partition the sum of
squares total (SST) into four groups: sum of squares for factor A (SSA), sum of squares for factor B (SSB),
sum of squares for interaction (SSAB) and sum of squares due to error (SSE). The formula for this
partitioning follows.

SST SSA SSB SSAB SSE (13.26)

The partitioning of the sum of squares and degrees of freedom is summarized in Table 13.11. The
following notation is used.

a number of levels of factor A
b number of levels of factor B
r number of replications
nT total number of observations taken in the experiment nT abr

Computations and conclusions

To compute the F statistics needed to test for the significance of factor A, factor B and interaction, we
need to compute MSA, MSB, MSAB and MSE. To calculate these four mean squares, we must first
compute SSA, SSB, SSAB and SSE; in doing so we will also compute SST. To simplify the presentation, we
perform the calculations in five steps. In addition to a, b, r and nT as previously defined, the following
notation is used.

T ABLE 13 . 11 ANOVA table for the two-factor factorial experiment with r replications

Source of

variation

Degrees of

freedom

Sum of

squares Mean square F

Factor A a 1 SSA
MSA

SSA

a 1

MSA

MSE

Factor B b 1 SSB MSB
SSB

b 1

MSB

MSE

Interaction (a 1)(b 1) SSAB MSAB
SSAB

a 1 b 1

MSAB

MSE

Error ab(r 1) SSE MSE
SSE

ab r 1

Total nT 1 SST
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xijk observation corresponding to the kth replicate taken from treatment i

of factor A and treatment j of factor B

xi sample mean for the observations in treatment i factor A

x j sample mean for the observations in treatment j factor B

xij sample mean for the observations corresponding to the combination of treatment i factor A

and treatment j factor B

x overall sample mean of all nT observations

Step 1 Compute the total sum of squares.

SST
a

i 1

b

j 1

r

k 1

xijk x 2
(13.27)

Step 2 Compute the sum of squares for factor A.

SSA br
a

i 1

xi x 2
(13.28)

Step 3 Compute the sum of squares for factor B.

SSB ar
b

j 1

x j x 2
(13.29)

Step 4 Compute the sum of squares for interaction.

SSAB r
a

i 1

b

j 1

xij xi x j x 2
(13.30)

Step 5 Compute the sum of squares due to error.

SSE SST SSA SSB SSAB (13.31)

Table 13.12 reports the data collected in the experiment and the various sums that will help us with the
sum of squares computations. Using equations (13.27) through (13.31), we calculate the following sums
of squares for the GMAT two-factor factorial experiment.

Step 1 SST = (500 515)
2

(580 515)
2

(540 515)
2

… (410 515)
2
= 82 450

Step 2 SSA = (3)(2)[(493.33 515)
2

(513.33 515)
2

(538.33 515)
2
] = 6100

Step 3 SSB = (3)(2)[(540 515)
2

(560 515)
2

(445 515)
2
] = 45 300

Step 4 SSAB = 2[(540 493.33 540 515)
2

(500 493.33 560 515)
2

…
(445 538.33 445 515)

2
] = 11 200

Step 5 SSE = 82 450 6100 45 300 11 200 = 19 850

These sums of squares divided by their corresponding degrees of freedom provide the appropriate mean
square values for testing the two main effects (preparation programme and undergraduate college) and
the interaction effect.

Because of the computational effort involved in any modest- to large-size factorial experiment, the
computer usually plays an important role in performing the analysis of variance computations shown
above and in the calculation of the p-values used to make the hypothesis testing decisions. Figure 13.6
shows the MINITAB output for the analysis of variance for the GMAT two-factor factorial experiment.
Let us use the MINITAB output and a level of significance 0 05 to conduct the hypothesis tests for
the two-factor GMAT study. The p-value used to test for significant differences among the three
preparation programmes (factor A) is 0.299.
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T ABLE 13 . 12 GMAT summary data for the two-factor experiment

Factor B: College

Treatment

combination totals

Business Engineering Arts and Sciences Row totals Factor A means

Three-hour review 500 540 480

580 460 400

1080 1000 880

s 2960 x1

2960

6
493 33

x11
1080

2
540 x12

1000

2
500 x13

880

2
440

Factor A:

Preparation

programme

One-day

programme

460 560 420

540 620 480

1000 1180 900

3080 x2

3080

6
513 33

x21
1000

2
500 x22

1180

2
590 x23

900

2
450

10-week course 560 600 480

600 580 410

1160 1180 890

3230 x3

3230

6
538 33

x31
1160

2
580 x32

1180

2
590 x33

890

2
445

Column totals 3240 3360 2670 9270 Overall total

Factor B means x1
3240

6
540 x2

3360

6
560 x3

2670

6
445 x

9270

18
515

3
5
8

C
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Because the p-value = 0.299 is greater than 0 05, there is no significant difference in the mean
GMAT test scores for the three preparation programmes. However, for the undergraduate college effect,
the p-value = 0.005 is less than 0 05; thus, there is a significant difference in the mean GMAT test
scores among the three undergraduate colleges. Finally, because the p-value of 0.350 for the interaction
effect is greater than 0 05, there is no significant interaction effect. Therefore, the study provides no
reason to believe that the three preparation programmes differ in their ability to prepare students from
the different colleges for the GMAT.

Undergraduate college was found to be a significant factor. Checking the calculations in Table 13.12, we
see that the sample means are: business students x1 540 = 540, engineering students x2 560 = 560,
and arts and sciences students x3 445 = 445. Tests on individual treatment means can be
conducted; yet after reviewing the three sample means, we would anticipate no difference in prepara-
tion for business and engineering graduates. However, the arts and sciences students appear to be
significantly less prepared for the GMAT than students in the other colleges. Perhaps this observation
will lead the university to consider other options for assisting these students in preparing for the
Graduate Management Admission Test.

FIGURE 13.6

MINITAB output for the GMAT

two-factor design

EXERCISES

Methods

26. A factorial experiment involving two levels of factor A and three levels of factor B resulted in the

following data.

Factor B

Level 1 Level 2 Level 3

135 90 75

Level 1 165 66 93

Factor A

125 127 120

Level 2 95 105 136

Test for any significant main effects and any interaction. Use = .05.

27. The calculations for a factorial experiment involving four levels of factor A, three levels of factor B,

and three replications resulted in the following data: SST = 280, SSA = 26, SSB = 23, SSAB =

175. Set up the ANOVA table and test for any significant main effects and any interaction effect.

Use = .05.

COMPLETE

SOLUTIONS
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Applications

28. A mail-order catalogue firm designed a factorial experiment to test the effect of the size of a

magazine advertisement and the advertisement design on the number of catalogue requests

received (data in thousands). Three advertising designs and two different size advertisements

were considered. The data obtained follow. Use the ANOVA procedure for factorial designs to test

for any significant effects due to type of design, size of advertisement or interaction. Use 05

Size of advertisement

Small Large

A 8 12

12 8

Design B 22 26

14 30

C 10 18

18 14

29. An amusement park studied methods for decreasing the waiting time (minutes) for rides by

loading and unloading riders more efficiently. Two alternative loading/unloading methods have

been proposed. To account for potential differences due to the type of ride and the possible

interaction between the method of loading and unloading and the type of ride, a factorial

experiment was designed. Use the following data to test for any significant effect due to the

loading and unloading method, the type of ride and interaction. Use = .05.

Type of ride

Roller-coaster Screaming Demon Log Flume

Method 1 41 52 50

43 44 46

Method 2 49 50 48

51 46 44

30. As part of a study designed to compare hybrid and similarly equipped conventional vehicles,

Consumer Reports tested a variety of classes of hybrid and all-gas model cars and sport utility

vehicles (SUVs). The following data show the miles-per-gallon rating Consumer Reports obtained

for two hybrid small cars, two hybrid mid-size cars, two hybrid small SUVs and two hybrid mid-

sized SUVs; also shown are the miles per gallon obtained for eight similarly equipped

conventional models (Consumer Reports, October 2008).

Make/Model Class Type MPG

Honda Civic Small car Hybrid 37

Honda Civic Small car Conventional 28

Toyota Prius Small car Hybrid 44

Toyota Corolla Small car Conventional 32

Chevrolet Malibu Mid-size car Hybrid 27

Chevrolet Malibu Mid-size car Conventional 23

Nissan Altima Mid-size car Hybrid 32

Nissan Altima Mid-size car Conventional 25
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SUMMARY

In this chapter we showed how analysis of variance can be used to test for differences among means

of several populations or treatments. We introduced the completely randomized design, the rando-

mized block design and the two-factor factorial experiment. The completely randomized design and the

randomized block design are used to draw conclusions about differences in the means of a single

factor. The primary purpose of blocking in the randomized block design is to remove extraneous

sources of variation from the error term. Such blocking provides a better estimate of the true error

variance and a better test to determine whether the population or treatment means of the factor differ

significantly.

We showed that the basis for the statistical tests used in analysis of variance and experimental

design is the development of two independent estimates of the population variance 2. In the single-

factor case, one estimator is based on the variation between the treatments; this estimator provides

an unbiased estimate of 2 only if the means µ1, µ2,…, µk are all equal. A second estimator of 2 is

based on the variation of the observations within each sample; this estimator will always provide an

unbiased estimate of 2. By computing the ratio of these two estimators (the F statistic) we developed

a rejection rule for determining whether to reject the null hypothesis that the population or treatment

means are equal. In all the experimental designs considered, the partitioning of the sum of squares

and degrees of freedom into their various sources enabled us to compute the appropriate values for

the analysis of variance calculations and tests. We also showed how Fisher’s LSD procedure and the

Bonferroni adjustment can be used to perform pairwise comparisons to determine which means are

different.

ONLINE RESOURCES

For the data files, additional online summary, questions, answers and software section go to the

online platform.

Ford Escape Small SUV Hybrid 27

Ford Escape Small SUV Conventional 21

Saturn Vue Small SUV Hybrid 28

Saturn Vue Small SUV Conventional 22

Lexus RX Mid-size SUV Hybrid 23

Lexus RX Mid-size SUV Conventional 19

Toyota Highlander Mid-size SUV Hybrid 24

Toyota Highlander Mid-size SUV Conventional 18

At the = 0.05. level of significance, test for significant effects due to class, type and interaction. HYBRIDTEST
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KEY TERMS

ANOVA table

Blocking

Comparisonwise Type I error rate

Completely randomized design

Experimental units

Experimentwise Type I error rate

Factor

Factorial experiments

Interaction

Multiple comparison procedures

Partitioning

Randomized block design

Replications

Response variable

Single-factor experiment

Treatment

KEY FORMULAE

Completely randomized design Sample mean for treatment j

x j

nj

i 1

xij

nj

(13.1)

Sample variance for treatment j

s2j

ni

i 1

xij x j
2

nj 1
(13.2)

Overall sample mean

x

k

j 1

nj

i 1

xij

nT

(13.3)

nT n1 n2 nk (13.4)

Mean square due to treatments

MSTR
SSTR

k 1
(13.7)

Sum of squares due to treatments

SSTR
k

j 1

nj x j x
2

(13.8)

Mean square due to error

MSE
SSE

nT k
(13.10)
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Sum of squares due to error

SSE
k

j 1

nj 1 s2j (13.11)

Test statistic for the equality of k population means

F
MSTR

MSE
(13.12)

Total sum of squares

SST
k

j 1

nj

i 1

xij x 2 (13.13)

Partitioning of sum of squares

SST SSTR SSE (13.14)

Multiple comparison procedures Test statistic for Fisher’s LSD procedure

t
xi xj

MSE
1

ni

1

nj

(13.16)

Fisher’s LSD

LSD ta 2 MSE
1

ni

1

nj

(13.17)

Randomized block design Total sum of squares

SST
b

i 1

k

j 1

xij x
2

(13.22)

Sum of squares due to treatments

SSTR b
k

j 1

x j x
2

(13.23)

Sum of squares due to blocks

SSBL k
b

i 1

xi x
2

(13.24)

Sum of squares due to error

SSE SST SSTR SSBL (13.25)

Factorial experiments Total sum of squares

SST
a

i 1

b

j 1

r

k 1

xijk x
2

(13.27)
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Sum of squares for factor A

SSA br
a

i 1

xi x
2

(13.28)

Sum of squares for factor B

SSB ar
b

j 1

x j x
2

(13.29)

Sum of squares for interaction

SSAB r
a

i 1

b

j 1

xij xi x j x
2

(13.30)

Sum of squares for error

SSE SST SSA SSB SSAB (13.31)

CASE PROBLEM

Product design testing

An engineering manager has been designated the

task of evaluating a commercial device subject to

marked variations in temperature. Three different

types of component are being considered for the

device. When the device is manufactured and is

shipped to the field, the manager has no control over

the temperature extremes that the device will

encounter, but knows from experience that tempera-

ture is an important factor in relation to the compo-

nent’s life. Notwithstanding this, temperature can be

controlled in the laboratory for the purposes of the

test.

The engineering manager arranges for all three

components to be tested at the temperature levels:

10°C, 20°C and 50°C – as these temperature

levels are consistent with the product end-use envir-

onment. Four components are tested for each combi-

nation of type and temperature, and all 36 tests are

run in random order. The resulting observed compo-

nent life data are presented in Table 1.

DEVICE

A product component is tested for its capability of

enduring extreme heat
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T ABLE 1 Component lifetimes (000s of hours)

Temperature (ºC)

Type –10 20 50

1 3.12 3.70 0.82 0.96 0.48 1.68

1.80 4.32 1.92 1.80 1.97 1.39

2 3.60 4.51 3.02 2.93 0.60 1.68

3.82 3.02 2.54 2.76 1.39 1.08

3 3.31 2.64 4.18 2.88 2.30 2.50

4.03 3.84 3.60 3.34 1.97 1.44

Managerial report

1. What are the effects of the chosen factors on the life of the component?

2. Do any components have a consistently long life regardless of temperature?

3. What recommendation would you make to the engineering manager?
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14
Simple Linear
Regression

CHAPTER CONTENTS

Statistics in Practice Foreign direct investment (FDI) in China

14.1 Simple linear regression model

14.2 Least squares method

14.3 Coefficient of determination

14.4 Model assumptions

14.5 Testing for significance

14.6 Using the estimated regression equation for estimation and prediction

14.7 Computer solution

14.8 Residual analysis: validating model assumptions

14.9 Residual analysis: autocorrelation

14.10 Residual analysis: outliers and influential observations

LEARNING OBJECTIVES After reading this chapter and doing the exercises, you should be able to:

1 Understand how regression analysis can be used

to develop an equation that estimates

mathematically how two variables are related.

2 Understand the differences between the

regression model, the regression equation and the

estimated regression equation.

3 Know how to fit an estimated regression equation

to a set of sample data based upon the least

squares method.

4 Determine how good a fit is provided by the

estimated regression equation and compute the

sample correlation coefficient from the regression

analysis output.

5 Understand the assumptions necessary for

statistical inference and be able to test for a

significant relationship.

6 Know how to develop confidence interval

estimates of the mean value of Y and an individual

value of Y for a given value of X.

7 Learn how to use a residual plot to make a judgement

as to the validity of the regression assumptions,

recognize outliers and identify influential observations.

8 Use the Durbin–Watson test to test for autocorrelation.

9 Know the definition of the following terms:

independent and dependent variable; simple

linear regression; regression model; regression

equation and estimated regression equation;

scatter diagram; coefficient of determination;

standard error of the estimate; confidence

interval; prediction interval; residual plot;

standardized residual plot; outlier; influential

observation; leverage.
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Managerial decisions are often based on the relationship between two or more variables. For example,
after considering the relationship between advertising expenditures and sales, a marketing manager

might attempt to predict sales for a given level of advertising expenditure. In another case, a public utility
might use the relationship between the daily high temperature and the demand for electricity to predict
electricity usage on the basis of next month’s anticipated daily high temperatures. Sometimes a manager
will rely on intuition to judge how two variables are related. However, if data can be obtained, a statistical
procedure called regression analysis can be used to develop an equation showing how the variables are
related.

STATISTICS IN PRACTICE

Foreign direct investment (FDI) in China

In a recent study by Kingston Business School,

regression modelling was used to investigate pat-

terns of FDI in China as well as to assess the parti-

cular potential of the autonomous region of Guangxi

in south-west China as an FDI attractor. A variety of

simple models were developed based on positive

correlations between gross domestic product (GDP)

and FDI in provinces using data collected from official

statistical sources.

Estimated regression equations obtained were as

follows:

y 1 1m 21 7x 1990–1993

y 2 1m 8 9x 1995–1998

y 3 3m 14 6x 2000–2003

where: y estimated GDP

x FDI

across all provinces.

In terms of FDI per capita, Guangxi has been

ranked around 27 of 31 over the last ten years or

so. FDI is a key driver of economic growth in mod-

ern China. But clearly Guangxi needs to improve its

ranking if it is to be able to compete effectively

with the more successful eastern coastal provinces

and great municipalities.

Source: Foster, M. J. (2002) ‘On evaluation of FDI’s: Princi-

ples, actualities and possibilities’. International Journal of

Management and Decision-Making 3(1): 67–82
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In regression terminology, the variable being predicted is called the dependent variable. The variable
or variables being used to predict the value of the dependent variable are called the independent

variables. For example, in analyzing the effect of advertising expenditures on sales, a marketing
manager’s desire to predict sales would suggest making sales the dependent variable. Advertising
expenditure would be the independent variable used to help predict sales. In statistical notation,
Y denotes the dependent variable and X denotes the independent variable.

In this chapter we consider the simplest type of regression analysis involving one independent variable
and one dependent variable in which the relationship between the variables is approximated by a straight
line. It is called simple linear regression. Regression analysis involving two or more independent
variables is called multiple regression analysis; multiple regression and cases involving curvilinear relation-
ships are covered in Chapters 15 and 16.

14.1 SIMPLE LINEAR REGRESSION MODEL

Armand’s Pizza Parlours is a chain of Italian food restaurants located in northern Italy. Armand’s most
successful locations are near college campuses. The managers believe that quarterly sales for these
restaurants (denoted by Y) are related positively to the size of the student population (denoted by X);
that is, restaurants near campuses with a large student population tend to generate more sales than those
located near campuses with a small student population. Using regression analysis, we can develop an
equation showing how the dependent variable Y is related to the independent variable X.

Regression model and regression equation

In the Armand’s Pizza Parlours example, the population consists of all the Armand’s restaurants.
For every restaurant in the population, there is a value x of X (student population) and a correspond-

ing value y of Y (quarterly sales). The equation that describes how Y is related to x and an error term is
called the regression model. The regression model used in simple linear regression follows.

Simple linear regression model

Y 0 1x (14.1)

β0 and β1 are referred to as the parameters of the model, and ε (the Greek letter epsilon) is a random
variable referred to as the error term. The error term ε accounts for the variability in Y that cannot be
explained by the linear relationship between X and Y.

The population of all Armand’s restaurants can also be viewed as a collection of subpopulations, one
for each distinct value of X. For example, one subpopulation consists of all Armand’s restaurants
located near college campuses with 8000 students; another subpopulation consists of all Armand’s
restaurants located near college campuses with 9000 students and so on. Each subpopulation has a
corresponding distribution of Y values. Thus, a distribution of Y values is associated with restaurants
located near campuses with 8000 students a distribution of Y values is associated with restaurants
located near campuses with 9000 students and so on. Each distribution of Y values has its own mean or
expected value. The equation that describes how the expected value of Y – denoted by E(Y) or
equivalently E(Y | X = x) – is related to x is called the regression equation. The regression equation
for simple linear regression follows.
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Simple linear regression equation

E Y 0 1x (14.2)

The graph of the simple linear regression equation is a straight line; β0 is the y-intercept of the
regression line; β1 is the slope and E(Y) is the mean or expected value of Y for a given value of X.

Examples of possible regression lines are shown in Figure 14.1. The regression line in Panel A shows
that the mean value of Y is related positively to X, with larger values of E(Y) associated with larger values
of X. The regression line in Panel B shows the mean value of Y is related negatively to X, with smaller
values of E(Y) associated with larger values of X. The regression line in Panel C shows the case in which
the mean value of Y is not related to X; that is, the mean value of Y is the same for every value of X.

Estimated regression equation

If the values of the population parameters β0 and β1 were known, we could use equation (14.2) to
compute the mean value of Y for a given value of X. In practice, the parameter values are not known, and
must be estimated using sample data. Sample statistics (denoted b0 and b1) are computed as estimates of
the population parameters β0 and β1. Substituting the values of the sample statistics b0 and b1 for β0 and
β1 in the regression equation, we obtain the estimated regression equation. The estimated regression
equation for simple linear regression follows.

Estimated simple linear regression equation

ŷ b0 b1x (14.3)

The graph of the estimated simple linear regression equation is called the estimated regression line; b0
is the y intercept and b1 is the slope. In the next section, we show how the least squares method can be
used to compute the values of b0 and b1 in the estimated regression equation.

In general, ŷ is the point estimator of E(Y), the mean value of Y for a given value of X. Thus,
to estimate the mean or expected value of quarterly sales for all restaurants located near campuses with
10 000 students, Armand’s would substitute the value of 10 000 for X in equation (14.3).

Intercept

Intercept

E(Y) E(Y) E(Y)

xx x

Intercept

Regression line

Regression line

Regression line

Panel A:

Positive Linear Relationship

Panel B:

Negative Linear Relationship

Panel C:

No Relationship

Slope 

is positive

Slope 

is negative
Slope is 0

FIGURE 14.1

Possible regression lines in simple linear regression
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In some cases, however, Armand’s may be more interested in predicting sales for one particular
restaurant. For example, suppose Armand’s would like to predict quarterly sales for the restaurant located
near Cabot College, a school with 10 000 students.

As it turns out, the best estimate of Y for a given value of X is also provided by ŷ. Thus, to predict
quarterly sales for the restaurant located near Cabot College, Armand’s would also substitute the value of
10 000 for X in equation (14.3). Because the value of ŷ provides both a point estimate of E(Y) and an
individual value of Y for a given value of X, we will refer to ŷ simply as the estimated value of y.

Figure 14.2 provides a summary of the estimation process for simple linear regression.

14.2 LEAST SQUARES METHOD

The least squares method is a procedure for using sample data to find the estimated regression equation.
To illustrate the least squares method, suppose data were collected from a sample of ten Armand’s Pizza
Parlour restaurants located near college campuses. For the ith observation or restaurant in the sample, xi
is the size of the student population (in thousands) and yi is the quarterly sales (in thousands of euros).
The values of xi and yi for the ten restaurants in the sample are summarized in Table 14.1. We see
that restaurant 1, with x1 = 2 and y1 = 58, is near a campus with 2000 students and has quarterly sales of
€58 000. Restaurant 2, with x2 = 6 and y2 = 105, is near a campus with 6000 students and has quarterly
sales of €105 000. The largest sales value is for restaurant 10, which is near a campus with 26 000 students
and has quarterly sales of €202 000.

Figure 14.3 is a scatter diagram of the data in Table 14.1. Student population is shown on the
horizontal axis and quarterly sales are shown on the vertical axis. Scatter diagrams for regression
analysis are constructed with the independent variable X on the horizontal axis and the dependent
variable Y on the vertical axis. The scatter diagram enables us to observe the data graphically and to draw
preliminary conclusions about the possible relationship between the variables.

What preliminary conclusions can be drawn from Figure 14.3? Quarterly sales appear to be higher at
campuses with larger student populations. In addition, for these data the relationship between the size of
the student population and quarterly sales appears to be approximated by a straight line; indeed, a
positive linear relationship is indicated between X and Y.

Regression Model

Estimated Regression

Equation

Sample Statistics

Sample Data:

x y

x1 y1

x2 y2

xn

b0 and b1

b0, b1

y =  b0 +  b1

yn

. .

.

.

.

.

Regression Equation

Unknown Parameters

provide estimates of

y =  + x+

E(y) =  + x

and 

, 

FIGURE 14.2

The estimation process in simple

linear regression

ARMANDS
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We therefore choose the simple linear regression model to represent the relationship between quarterly
sales and student population. Given that choice, our next task is to use the sample data in Table 14.1 to
determine the values of b0 and b1 in the estimated simple linear regression equation. For the ith
restaurant, the estimated regression equation provides:

ŷi b0 b1xi (14.4)

where:

y i estimated value of quarterly sales €000s for the ith restaurant

b0 of the estimated regression line

b1 the slope of the estimated regression line

xi size of the student population 000s for the ith restaurant

Every restaurant in the sample will have an observed value of sales yi and an estimated value of sales ŷi.
For the estimated regression line to provide a good fit to the data, we want the differences between the
observed sales values and the estimated sales values to be small.

The least squares method uses the sample data to provide the values of b0 and b1 that minimize the sum
of the squares of the deviations between the observed values of the dependent variable yi and the estimated
values of the dependent variable. The criterion for the least squares method is given by expression (14.5).
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FIGURE 14.3

Scatter diagram of student population

and quarterly sales for Armand’s Pizza

Parlours

T ABLE 14 . 1 Student population and quarterly sales data for ten Armand’s Pizza Parlours

Restaurant i Student population (000s) xi Quarterly sales ( yi)

1 2 58

2 6 105

3 8 88

4 8 118

5 12 117

6 16 137

7 20 157

8 20 169

9 22 149

10 26 202
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Least squares criterion

Min ∑ yi –ŷi
2 (14.5)

where:
yi observed value of the dependent variable for the i th observation
ŷi estimated value of the dependent variable for the i th observation

Differential calculus can be used to show that the values of b0 and b1 that minimize expression (14.5)
can be found by using equations (14.6) and (14.7).

Slope and y-intercept for the estimated regression equation*

b1
∑ xi x yi y

∑ x x 2
(14.6)

b0 y b1x (14.7)

where:
xi value of the independent variable for the ith observation
Yi value of the dependent variable for the ith observation
x mean value for the independent variable
y total number of observations
n total number of observations

Some of the calculations necessary to develop the least squares estimated regression equation for Armand’s
Pizza Parlours are shown in Table 14.2. With the sample of ten restaurants, we have n = 10 observations.
Because equations (14.6) and (14.7) require x and y we begin the calculations by computing x and y.

x
∑ xi
n

140

10
14

y
∑ yi
n

1300

10
130

Using equations (14.6) and (14.7) and the information in Table 14.2, we can compute the slope and
intercept of the estimated regression equation for Armand’s Pizza Parlours. The calculation of the slope
(b1) proceeds as follows.

b1
∑ xi x yi y
∑ xi x 2

2840

568
5

*An alternative formula for b1 is:

b1

∑ xi yi − ∑ xi ∑ yi n

∑ x2 − ∑ xi
2 n

This form of equation (14.6) is often recommended when using a calculator to compute b1.
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The calculation of the y intercept (b0) follows.

b0 y b1x
130 5 14
60

Thus, the estimated regression equation is:

ŷ 60 5x

Figure 14.4 shows the graph of this equation on the scatter diagram.
The slope of the estimated regression equation (b1 = 5) is positive, implying that as student population

increases, sales increase. In fact, we can conclude (based on sales measured in €000s and student
population in 000s) that an increase in the student population of 1000 is associated with an increase of
€5000 in expected sales; that is, quarterly sales are expected to increase by €5 per student.

If we believe the least squares estimated regression equation adequately describes the relationship
between X and Y, it would seem reasonable to use the estimated regression equation to predict the value
of Y for a given value of X.
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ŷ = 60 + 5x

T ABLE 14 . 2 Calculations for the least squares estimated regression equation for Armand’s Pizza Parlours

Restaurant i xi yi xi x yi y (xi x )(yi y ) (xi x
2
)

1 2 58 12 72 864 144

2 6 105 8 25 200 64

3 8 88 6 42 252 36

4 8 118 6 12 72 36

5 12 117 2 13 26 4

6 16 137 2 7 14 4

7 20 157 6 27 162 36

8 20 169 6 39 234 36

9 22 149 8 19 152 64

10 26 202 12 72 864 144

Totals 140 1300 2840 568

xi yi xi x yi y xi x 2
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For example, if we wanted to predict quarterly sales for a restaurant to be located near a campus with
16 000 students, we would compute:

ŷ 60 5 16 140

Therefore, we would predict quarterly sales of €140 000 for this restaurant. In the following sections we
will discuss methods for assessing the appropriateness of using the estimated regression equation for
estimation and prediction.

EXERCISES

Methods

1. Given are five observations for two variables, X and Y.

xi 1 2 3 4 5

yi 3 7 5 11 14

a. Develop a scatter diagram for these data.

b. What does the scatter diagram developed in part (a) indicate about the relationship between

the two variables?

c. Try to approximate the relationship between X and Y by drawing a straight line through the data.

d. Develop the estimated regression equation by computing the values of b0 and b1 using

equations (14.6) and (14.7).

e. Use the estimated regression equation to predict the value of Y when X = 4.

2. Given are five observations for two variables, X and Y.

COMPLETE

SOLUTIONS

xi 2 3 5 8

yi 25 25 20 16

a. Develop a scatter diagram for these data.

b. What does the scatter diagram developed in part (a) indicate about the relationship between

the two variables?

c. Try to approximate the relationship between X and Y by drawing a straight line through the data.

d. Develop the estimated regression equation by computing the values of b0 and b1 using

equations (14.6) and (14.7).

e. Use the estimated regression equation to predict the value of Y when X = 6.

3. Given are five observations collected in a regression study on two variables.

xi 2 4 5 7 8

yi 2 3 2 6 4

a. Develop a scatter diagram for these data.

b. Develop the estimated regression equation for these data.

c. Use the estimated regression equation to predict the value of Y when X = 4.

Applications

4. The following data were collected on the height (cm) and weight (kg) of women swimmers.

Height 173 163 157 165 168

Weight 60 49 46 52 58

a. Develop a scatter diagram for these data with height as the independent variable.

b. What does the scatter diagram developed in part (a) indicate about the relationship between

the two variables?

DOWS & P
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c. Try to approximate the relationship between height and weight by drawing a straight line through

the data.

d. Develop the estimated regression equation by computing the values of b0 and b1.

e. If a swimmer’s height is 160cm, what would you estimate their weight to be?

5. The Dow Jones Industrial Average (DJIA) and the Standard & Poor’s 500 (S&P) indexes are both

used as measures of overall movement in the stock market. The DJIA is based on the price

movements of 30 large companies; the S&P 500 is an index composed of 500 stocks. Some say

the S&P 500 is a better measure of stock market performance because it is broader based. The

closing prices for the DJIA and the S&P 500 for ten weeks, beginning with 11 February 2009, follow

(http://uk.finance.yahoo.com, 21 April 2009).

Date DJIA S&P

11 Feb 09 7939.53 833.74

18 Feb 09 7555.63 788.42

25 Feb 09 7270.89 764.90

03 Mar 09 6726.02 696.33

10 Mar 09 6926.49 719.60

17 Mar 09 7395.70 778.12

24 Mar 09 7660.21 806.12

31 Mar 09 7608.92 797.87

07 Apr 09 7789.56 815.55

14 Apr 09 7920.18 841.50

a. Develop a scatter diagram for these data with DJIA as the independent variable.

b. Develop the least squares estimated regression equation.

c. Suppose the closing price for the DJIA is 8000. Estimate the closing price for the S&P 500.

6. The following table shows the observations of transportation time and distance for a sample of ten

rail shipments made by a motor parts supplier.

Delivery time (days) Distance (kilometres)

5 210

7 290

6 350

11 480

8 490

11 730

12 780

8 850

15 920

12 1010

a. Develop a scatter diagram for these data with distance as the independent variable.

b. Develop an estimated regression equation that can be used to predict delivery time given the

distance.

c. Use the estimated regression equation to predict delivery time for a customer situated 600

miles from the company.
COMPLETE

SOLUTIONS
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14.3 COEFFICIENT OF DETERMINATION

For the Armand’s Pizza Parlours example, we developed the estimated regression equation ŷ = 60 5x to
approximate the linear relationship between the size of student population X and quarterly sales Y. A
question now is: How well does estimated regression equation fit the data? In this section, we show that
coefficient of determination provides a measure of the goodness of fit for the estimated regression
equation.

For the ith observation, the difference between the observed value of the dependent variable, yi, and
the estimated value of the dependent variable, ŷi, is called the ith residual. The ith residual represents the
error in using yi to estimate ŷi. Thus, for the ith observation, the residual is yi – ŷi. The sum of squares of
these residuals or errors is the quantity that is minimized by the least squares method. This quantity, also
known as the sum of squares due to error, is denoted by SSE.

Sum of squares due to error

SSE ∑ yi – ŷi
2

(14.8)

The value of SSE is a measure of the error in using the least squares regression equation to estimate the
values of the dependent variable in the sample.

In Table 14.3 we show the calculations required to compute the sum of squares due to error for the
Armand’s Pizza Parlours example. For instance, for restaurant 1 the values of the independent and
dependent variables are x1 = 2 and y1 = 58. Using the estimated regression equation, we find that the
estimated value of quarterly sales for restaurant 1 is ŷ1 60 5 2 70 Thus, the error in using
y1 – ŷ1 58 70 12. The squared error, ( 12)

2
= 144, is shown in the last column of Table 14.3.

After computing and squaring the residuals for each restaurant in the sample, we sum them to
obtain SSE = 1530. Thus, SSE = 1530 measures the error in using the estimated regression equation
ŷ1 60 5x to predict sales.

Now suppose we are asked to develop an estimate of quarterly sales without knowledge of the size of the
student population. Without knowledge of any related variables, we would use the sample mean as an
estimate of quarterly sales at any given restaurant. Table 14.2 shows that for the sales data, ∑yi = 1300. Hence,
themean value of quarterly sales for the sample of tenArmand’s restaurants is y = ∑y/n = 1300/10 = 130.

T ABLE 14 . 3 Calculation of SSE for Armand’s Pizza Parlours

Restaurant

i

xi = Student

population

(000s)

yi = Quarterly

sales ( 000s)

Predicted

sales

ŷi =

60 + 5ixi

Error

yi – ŷi

Squared

error

(yi – ŷi
2)

1 2 58 70 12 144

2 6 105 90 15 225

3 8 88 100 12 144

4 8 118 100 18 324

5 12 117 120 3 9

6 16 137 140 3 9

7 20 157 160 3 9

8 20 169 160 9 81

9 22 149 170 21 441

10 26 202 190 12 144

SSE = 1530
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In Table 14.4 we show the sum of squared deviations obtained by using the sample mean y= 130 to estimate
the value of quarterly sales for each restaurant in the sample. For the ith restaurant in the sample, the difference
yi – y provides a measure of the error involved in using y to estimate sales. The corresponding sum of squares,
called the total sum of squares, is denoted SST.

Total sum of squares

SST ∑ y1 – ŷ
2

(14.9)

The sum at the bottom of the last column in Table 14.4 is the total sum of squares for Armand’s Pizza
Parlours; it is SST = 15 730.

In Figure 14.5 we show the estimated regression line ŷi 60 5x and the line corresponding to
y 130. Note that the points cluster more closely around the estimated regression line than they do
about the line y 130.
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T ABLE 14 . 4 Computation of the total sum of squares for Armand’s Pizza Parlours

Restaurant i

xi = Student

population (000s)

yi = Quarterly

sales ( 000s)

Deviation

yi y

Squared deviation

yi y
2

1 2 58 72 5 184

2 6 105 25 625

3 8 88 42 1 764

4 8 118 12 144

5 12 117 13 169

6 16 137 7 49

7 20 157 27 729

8 20 169 39 1 521

9 22 149 19 361

10 26 202 72 5 184

SST = 15 730
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For example, for the tenth restaurant in the sample we see that the error is much larger when y 130
is used as an estimate of y10 than when ŷi 60 5 26 190 is used. We can think of SST as a measure
of how well the observations cluster about the y line and SSE as a measure of how well the observations
cluster about the ŷ line.

To measure how much the ŷ values on the estimated regression line deviate from y, another sum of
squares is computed. This sum of squares, called the sum of squares due to regression, is denoted SSR.

Sum of squares due to regression

SSR ∑ ŷi y 2 (14.10)

From the preceding discussion, we should expect that SST, SSR and SSE are related. Indeed, the
relationship among these three sums of squares provides one of the most important results in statistics.

Relationship among SST, SSR and SSE

SST SSR SSE (14.11)
where:

SST total sum of squares
SSR sum of squares due to regression
SSE sum of squares due to error

Equation (14.11) shows that the total sum of squares can be partitioned into two components, the
regression sum of squares and the sum of squares due to error. Hence, if the values of any two of these
sum of squares are known, the third sum of squares can be computed easily. For instance, in the
Armand’s Pizza Parlours example, we already know that SSE = 1530 and SST = 15 730; therefore, solving
for SSR in equation (14.11), we find that the sum of squares due to regression is

SSR SST SSE 15 730 1530 14 200

Now let us see how the three sums of squares, SST, SSR and SSE, can be used to provide a measure of the
goodness of fit for the estimated regression equation. The estimated regression equation would provide
a perfect fit if every value of the dependent variable yi happened to lie on the estimated regression line.
In this case, yi ŷi would be zero for each observation, resulting in SSE = 0. Because SST = SSR SSE, we
see that for a perfect fit SSR must equal SST and the ratio (SSR/SST) must equal one. Poorer fits will result
in larger values for SSE. Solving for SSE in equation (14.11), we see that SSE = SST SSR. Hence, the largest
value for SSE (and hence the poorest fit) occurs when SSR = 0 and SSE = SST. The ratio SSR/SST, which will
take values between zero and one, is used to evaluate the goodness of fit for the estimated regression
equation. This ratio is called the coefficient of determination and is denoted by r2.

Coefficient of determination

r2
SSR

SST
(14.12)
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For the Armand’s Pizza Parlours example, the value of the coefficient of determination is

r2
SSR

SST

14 200

15 730
0 9027

When we express the coefficient of determination as a percentage, r
2
can be interpreted as the percentage

of the total sum of squares that can be explained by using the estimated regression equation. For
Armand’s Pizza Parlours, we can conclude that 90.27 per cent of the total sum of squares can be
explained by using the estimated regression equation ŷ = 60 5x to predict quarterly sales. In other
words, 90.27 per cent of the variability in sales can be explained by the linear relationship between the size
of the student population and sales. We should be pleased to find such a good fit for the estimated
regression equation.

Correlation coefficient

In Chapter 3 we introduced the correlation coefficient as a descriptive measure of the strength of linear
association between two variables, X and Y. Values of the correlation coefficient are always between
1 and 1. A value of 1 indicates that the two variables X and Y are perfectly related in a positive linear

sense. That is, all data points are on a straight line that has a positive slope. A value of 1 indicates that
X and Y are perfectly related in a negative linear sense, with all data points on a straight line that has a
negative slope. Values of the correlation coefficient close to zero indicate that X and Y are not linearly
related.

In Section 3.5 we presented the equation for computing the sample correlation coefficient. If a
regression analysis has already been performed and the coefficient of determination r

2
computed, the

sample correlation coefficient can be computed as follows.

Sample correlation coefficient

rXY sign of bi Coefficient of determination
sign ofbi r2

(14.13)

where:

b1 the slope of the estimated regression equation ŷ b0 b1x

The sign for the sample correlation coefficient is positive if the estimated regression equation has a
positive slope b1 0 and negative if the estimated regression equation has a negative slope b1 0 .

For the Armand’s Pizza Parlour example, the value of the coefficient of determination correspond-
ing to the estimated regression equation ŷ 60 5x is 0.9027. Because the slope of the estimated
regression equation is positive, equation (14.13) shows that the sample correlation coefficient is
= 0 9027 0.9501.

With a sample correlation coefficient of rXY = 0.9501, we would conclude that a strong positive linear
association exists between X and Y.

In the case of a linear relationship between two variables, both the coefficient of determination and the
sample correlation coefficient provide measures of the strength of the relationship. The coefficient of
determination provides a measure between zero and one whereas the sample correlation coefficient
provides a measure between 1 and 1. Although the sample correlation coefficient is restricted to a
linear relationship between two variables, the coefficient of determination can be used for nonlinear
relationships and for relationships that have two or more independent variables. Thus, the coefficient of
determination provides a wider range of applicability.
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EXERCISES

Methods

7. The data from Exercise 1 follow.

xi 1 2 3 4 5

yi 3 7 5 11 14

The estimated regression equation for these data is ŷ = 0.20 2.60x.

a. Compute SSE, SST and SSR using equations (14.8), (14.9) and (14.10).

b. Compute the coefficient of determination r
2
. Comment on the goodness of fit.

c. Compute the sample correlation coefficient.

8. The data from Exercise 2 follow.

xi 2 3 5 1 8

yi 25 25 20 30 16

The estimated regression equation for these data is ŷ = 30.33 − 1.88x.

a. Compute SSE, SST and SSR.

b. Compute the coefficient of determination r
2
. Comment on the goodness of fit.

c. Compute the sample correlation coefficient.

9. The data from Exercise 3 follow.

xi 2 4 5 7 8

yi 2 3 2 6 4

The estimated regression equation for these data is ŷ = 0.75 + 0.51x. What percentage of the

total sum of squares can be accounted for by the estimated regression equation? What is the

value of the sample correlation coefficient?

Applications

10. The estimated regression equation for the data in Exercise 5 can be shown to be ŷ = −75.586 +

0.115x. What percentage of the total sum of squares can be accounted for by the estimated

regression equation?

Comment on the goodness of fit. What is the sample correlation coefficient?

11. An investment manager studying haulage companies calculates for a random sample of six such

firms, the percentage capital investment in vehicles and the profit before tax as a percentage of

turnover with the following results:

% Capital investment, vehicles 37 47 10 22 41 25

% Profit 14 21 -5 16 19 8

a. Calculate the coefficient of determination. What percentage of the variation in total cost can

be explained by production volume?

b. Carry out a linear regression analysis for the data.

c. Hence estimate the percentage profit when the percentage capital investment, vehicles is

(i) 30%.

(ii) 90%.

COMPLETE

SOLUTIONS
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14.4 MODEL ASSUMPTIONS

We saw in the previous section that the value of the coefficient of determination (r2) is a measure of the
goodness of fit of the estimated regression equation. However, even with a large value of r2, the estimated
regression equation should not be used until further analysis of the appropriateness of the assumed model
has been conducted. An important step in determining whether the assumed model is appropriate
involves testing for the significance of the relationship. The tests of significance in regression analysis
are based on the following assumptions about the error term ε.

Assumptions about the error term in the regression model

Y 0 1x

1. The error term 0 is a random variable with a mean or expected value of zero; that is, E(ε) = 0.

Implication: β0 and β1 are constants, therefore 0 0 and 1 1; thus, for a given value x of

X, the expected value of Y is:

E Y 0 1x (14.14)

As we indicated previously, equation (14.14) is referred to as the regression equation.

2. The variance of ε, denoted by 2, is the same for all values of X

Implication: The variance of Y about the regression line equals 2 and is the same for all values of X.

3. The values of ε are independent.

Implication: The value of ε for a particular value of X is not related to the value of ε for any other value of

X; thus, the value of Y for a particular value of X is not related to the value of for any other value of X.

12. PC World provided details for ten of the most economical laser printers (PC World, April 2009).

The following data show the maximum printing speed in pages per minute (ppm) and the price (in

euros including 15 per cent value added tax) for each printer.

Name Speed (ppm) Price ( )

Brother HL 2035 18 61.35

HP Laserjet P1005 15 70.13

Samsung ML-1640 16 77.39

HP Laserjet P1006 17 82.93

Brother HL-2140 22 92.34

Brother DCP7030 22 96.04

HP Laserjet P1009 16 99.52

HP Laserjet P1505 24 119.10

Samsung 4300 18 121.64

Epson EPL-6200 Mono 20 133.53

a. Develop the estimated regression equation with speed as the independent variable.

b. Compute r
2
. What percentage of the variation in cost can be explained by the printing speed?

c. What is the sample correlation coefficient between speed and price? Does it reflect a strong

or weak relationship between printing speed and cost?
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4. The error term ε is a normally distributed random variable.

Implication: Because Y is a linear function of ε, Y is also a normally distributed random variable.

Figure 14.6 illustrates the model assumptions and their implications; note that in this graphical
interpretation, the value of E(Y) changes according to the specific value of X considered. However,
regardless of the X value, the probability distribution of ε and hence the probability distributions of Y are
normally distributed, each with the same variance. The specific value of the error ε at any particular point
depends on whether the actual value of Y is greater than or less than E(Y).

At this point, we must keep in mind that we are also making an assumption or hypothesis about the
form of the relationship between X and Y. That is, we assume that a straight line represented by 0 1x is
the basis for the relationship between the variables. We must not lose sight of the fact that some other
model, for instance Y 0 1x

2 may turn out to be a better model for the underlying relationship.

14.5 TESTING FOR SIGNIFICANCE

In a simple linear regression equation, the mean or expected value of E Y 0 1x. If the value of
E Y 0 0 x 0. In this case, the mean value of Y does not depend on the value of X and hence
we would conclude that X and Y are not linearly related. Alternatively, if the value of β1 is not equal to
zero, we would conclude that the two variables are related. Thus, to test for a significant regression
relationship, we must conduct a hypothesis test to determine whether the value of β1 is zero. Two tests are
commonly used. Both require an estimate of 2, the variance of ε in the regression model.

E(Y) =  + x

β

E(Y) when

   X =  30

Note: The Y distributions have the 

           same shape at each X value.
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   X =  0
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Estimate of
2

From the regression model and its assumptions we can conclude that 2 also represents the variance of
the Y values about the regression line. Recall that the deviations of the Y values about the estimated
regression line are called residuals. Thus, SSE, the sum of squared residuals, is a measure of the variability
of the actual observations about the estimated regression line. The mean square error (MSE) provides the
estimate of 2; it is SSE divided by its degrees of freedom.

With ŷi b0 b1xi, SSE can be written as:

SSE Σ y1 ŷ 2
Σ y1 b0 b1xi

2

Every sum of squares is associated with a number called its degrees of freedom. Statisticians have shown
that SSE has n 2 degrees of freedom because two parameters (β0 and β1) must be estimated to compute
SSE. Thus, the mean square is computed by dividing SSE by n 2. MSE provides an unbiased estimator
of 2. Because the value of MSE provides an estimate of 2, the notation s

2
is also used.

Mean square error (estimate of
2
)

s2 MSE
SSE

n 2
(14.15)

In Section 14.3 we showed that for the Armand’s Pizza Parlours example, SSE = 1530; hence,

s2 MSE
1530

8
191 25

provides an unbiased estimate of 2.
To estimate σ we take the square root of s

2
. The resulting value, s, is referred to as the standard error of

the estimate.

Standard error of estimate

s MSE
SSE

n 2
(14.16)

For the Armand’s Pizza Parlours example, s MSE 191 25 13 829. In the following discus-
sion, we use the standard error of the estimate in the tests for a significant relationship between X and Y.

t test

The simple linear regression model is Y 0 1x . If X and Y are linearly related, we must have β1 ≠ 0.
The purpose of the t test is to see whether we can conclude that β1 ≠ 0.

We will use the sample data to test the following hypotheses about the parameter β1.

H0 1 0
H1 1 ≠ 0

If H0 is rejected, we will conclude that β1 ≠ 0 and that a statistically significant relationship exists
between the two variables. However, if H0 cannot be rejected, we will have insufficient evidence to
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conclude that a significant relationship exists. The properties of the sampling distribution of b1, the least
squares estimator of β1, provide the basis for the hypothesis test.

First, let us consider what would happen if we used a different random sample for the same regression
study. For example, suppose that Armand’s Pizza Parlours used the sales records of a different sample of
ten restaurants. A regression analysis of this new sample might result in an estimated regression equation
similar to our previous estimated regression equation ŷ 60 5x. However, it is doubtful that we would
obtain exactly the same equation (with an intercept of exactly 60 and a slope of exactly 5). Indeed, b0 and
b1, the least squares estimators, are sample statistics with their own sampling distributions. The properties
of the sampling distribution of b1 follow.

Sampling distribution of b1

Expected value E(b1) = β1
Standard deviation

b1
∑ xi x 2

(14.17)

Distribution form

Normal

Note that the expected value of b1 is equal to β1, so b1 is an unbiased estimator of β1. As we do not know
the value of σ, so we estimate σb1 by sb1 where sb1is derived by substituting s for σ in equation (14.17):

Estimated standard deviation of b1

sb1
s

∑ xi x 2
(14.18)

For Armand’s Pizza Parlours, s = 13.829. Hence, using ∑ xi x 2 = 568 as shown in Table 14.2, we have:

sb1
13 829

568
0 5803

as the estimated standard deviation of b1.
The t test for a significant relationship is based on the fact that the test statistic:

b1 1

sb1

follows a t distribution with n 2 degrees of freedom. If the null hypothesis is true, then β1 = 0
and t = b1/sb1.

Let us conduct this test of significance for Armand’s Pizza Parlours at the α = 0.01 level of significance.
The test statistic is:

t
b1
sb1

5

0 5803
8 62

The t distribution table shows that with n 2 = 10 2 = 8 degrees of freedom, t = 3.355 provides an area
of 0.005 in the upper tail. Thus, the area in the upper tail of the t distribution corresponding to the test
statistic t = 8.62 must be less than 0.005. Because this test is a two-tailed test, we double this value to
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conclude that the p-value associated with t = 8.62 must be less than 2(0.005) = 0.01. MINITAB, SPSS or
EXCEL show the p-value = 0.000. Because the p-value is less than α = 0.01, we reject H0 and conclude
that β1 is not equal to zero. This evidence is sufficient to conclude that a significant relationship exists
between student population and quarterly sales. A summary of the t test for significance in simple linear
regression follows.

t test for significance in simple linear regression

H0 1 0
H1 1 0

Test statistic

t
b1

sb1
(14.19)

Rejection rule

p-value approach: Reject H0 if p-value ≤

Critical value approach: Reject H0 if t ≤ − t /2 or if t ≥ t /2

where t /2 is based on a t distribution with n − 2 degrees of freedom.

Confidence interval for 1

The form of a confidence interval for β1 is as follows:

b1 t 2sb1

The point estimator is b1 and the margin of error is t 2sb1 . The confidence coefficient associated with
this interval is 1 α, and tα/2 is the t value providing an area of α /2 in the upper tail of a t distribution
with n 2 degrees of freedom. For example, suppose that we wanted to develop a 99 per cent confidence
interval estimate of β1 for Armand’s Pizza Parlours. From Table 2 of Appendix B we find that the t value
corresponding to α = 0.01 and n 2 = 10 2 = 8 degrees of freedom is t0.005 = 3.355. Thus, the 99 per
cent confidence interval estimate of β1 is:

b1 t 2sb1 5 3 355 0 5803 5 1 95

or 3.05 to 6.95.
In using the t test for significance, the hypotheses tested were:

H0 1 0
H1 1 0

At the α = 0.01 level of significance, we can use the 99 per cent confidence interval as an alternative for
drawing the hypothesis testing conclusion for the Armand’s data. Because 0, the hypothesized value of β1,
is not included in the confidence interval (3.05 to 6.95), we can reject H0 and conclude that a significant
statistical relationship exists between the size of the student population and quarterly sales. In general,
a confidence interval can be used to test any two-sided hypothesis about β1. If the hypothesized value of
β1 is contained in the confidence interval, do not reject H0. Otherwise, reject H0.

F test

An F test, based on the F probability distribution, can also be used to test for significance in regression.
With only one independent variable, the F test will provide the same conclusion as the t test; that is, if the
t test indicates β1 ≠ 0 and hence a significant relationship, the F test will also indicate a significant
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relationship.* But with more than one independent variable, only the F test can be used to test for an
overall significant relationship.

The logic behind the use of the F test for determining whether the regression relationship is statistically
significant is based on the development of two independent estimates of 2. We explained howMSE provides
an estimate of 2. If the null hypothesisH0 1 0 is true, the sum of squares due to regression, SSR, divided
by its degrees of freedom provides another independent estimate of 2. This estimate is called themean square
due to regression, or simply the mean square regression, and is denoted MSR. In general,

MSR
SSR

Regression degrees of freedom

For the models we consider in this text, the regression degrees of freedom is always equal to the
number of independent variables in the model:

Mean square regression

MSR
SSR

Number of independent variables
(14.20)

Because we consider only regression models with one independent variable in this chapter, we have
MSR = SSR/1 = SSR. Hence, for Armand’s Pizza Parlours, MSR = SSR = 14 200.

If the null hypothesis (H0 1 0) is true, MSR and MSE are two independent estimates of 2 and the
sampling distribution of MSR/MSE follows an F distribution with numerator degrees of freedom equal to
one and denominator degrees of freedom equal to n 2. Therefore, when β1 = 0, the value of MSR/MSE
should be close to one. However, if the null hypothesis is false (β1 ≠ 0), MSR will overestimate 2 and the
value of MSR/MSE will be inflated; thus, large values of MSR/MSE lead to the rejection of H0 and the
conclusion that the relationship between X and Y is statistically significant.

Let us conduct the F test for the Armand’s Pizza Parlours example. The test statistic is:

F
MSR

MSE

14 200

191 25
74 25

The F distribution table (Table 4 of Appendix B) shows that with one degree of freedom in the denominator
and n 2 = 10 2 = 8 degrees of freedom in the denominator, F = 11.26 provides an area of 0.01 in the upper
tail. Thus, the area in the upper tail of the F distribution corresponding to the test statistic F = 74.25 must be
less than 0.01. Thus, we conclude that the p-value must be less than 0.01. MINITAB, SPSS or EXCEL show
the p-value = 0.000. Because the p-value is less than α = 0.01, we reject H0 and conclude that a significant
relationship exists between the size of the student population and quarterly sales. A summary of the F test for
significance in simple linear regression follows.

F test for significance in simple linear regression

H0 1 0
H1 1 0

*In fact F = t
2
for a simple regression model.
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Test statistic

F
MSR

MSE
(14.21)

Rejection rule

p-value approach: Reject H0 if p-value ≤ α

Critical value approach: Reject H0 if F ≥ Fα

where Fα is based on a F distribution with one degree of freedom in the numerator and n − 2 degrees of

freedom in the denominator.

In Chapter 13 we covered analysis of variance (ANOVA) and showed how an ANOVA table could be
used to provide a convenient summary of the computational aspects of analysis of variance. A similar
ANOVA table can be used to summarize the results of the F test for significance in regression. Table 14.5
is the general form of the ANOVA table for simple linear regression. Table 14.6 is the ANOVA table with
the F test computations performed for Armand’s Pizza Parlours. Regression, Error and Total are the
labels for the three sources of variation, with SSR, SSE and SST appearing as the corresponding sum of
squares in column 3. The degrees of freedom, 1 for SSR, n 2 for SSE and n 1 for SST, are shown
in column 2. Column 4 contains the values of MSR and MSE and column 5 contains the value of
F = MSR/MSE. Almost all computer printouts of regression analysis include an ANOVA table summary
and the F test for significance.

Some cautions about the interpretation of significance tests

Rejecting the null hypothesis H0 1 0 and concluding that the relationship between X and Y is
significant does not enable us to conclude that a cause-and-effect relationship is present between X and
Y. Concluding a cause-and-effect relationship is warranted only if the analyst can provide some type of
theoretical justification that the relationship is in fact causal. In the Armand’s Pizza Parlours example, we
can conclude that there is a significant relationship between the size of the student population X and
quarterly sales Y; moreover, the estimated regression equation ŷ = 60 5x provides the least squares
estimate of the relationship. We cannot, however, conclude that changes in student population X
cause changes in quarterly sales Y just because we identified a statistically significant relationship. The
appropriateness of such a cause-and-effect conclusion is left to supporting theoretical justification and
to good judgement on the part of the analyst. Armand’s managers felt that increases in the student
population were a likely cause of increased quarterly sales.

T ABLE 14 . 5 General form of the ANOVA table for simple linear regression

Source of variation Degrees of freedom Sum of squares Mean square F

Regression 1 SSR
MSR

SSR

I

MSR

MSE

Error n − 2 SSE MSE
SSE

n 2

Total n − 1 SST
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Thus, the result of the significance test enabled them to conclude that a cause-and-effect relationship
was present.

In addition, just because we are able to reject H0 1 0 and demonstrate statistical significance does
not enable us to conclude that the relationship between X and Y is linear. We can state only that X and Y
are related and that a linear relationship explains a significant portion of the variability in Y over the
range of values for X observed in the sample. Figure 14.7 illustrates this situation. The test for significance
calls for the rejection of the null hypothesis H0 1 0 and leads to the conclusion that X and Y are
significantly related, but the figure shows that the actual relationship between X and Y is not linear.
Although the linear approximation provided by ŷ = b0 b1x is good over the range of X values observed
in the sample, it becomes poor for X values outside that range.

Given a significant relationship, we should feel confident in using the estimated regression
equation for predictions corresponding to X values within the range of the X values observed in
the sample. For Armand’s Pizza Parlours, this range corresponds to values of X between 2 and 26.
Unless other reasons indicate that the model is valid beyond this range, predictions outside the
range of the independent variable should be made with caution. For Armand’s Pizza Parlours,
because the regression relationship has been found significant at the 0.01 level, we should feel
confident using it to predict sales for restaurants where the associated student population is
between 2000 and 26 000.

T ABLE 14 . 6 ANOVA table for the Armand’s Pizza Parlours problem

Source of

variation

Degrees of

freedom

Sum of

squares Mean square F

Regression 1 14 200 14 200

1
14 200

14 200

191 25
74 2

Error 8 1 530 1 530

8
191 25

Total 9 15 730

y

x

Smallest
X value

Largest
X value

Range of X
values observed

Actual
relationship

y =  b0 +  b1x^

FIGURE 14.7

Example of a linear approximation

of a nonlinear relationship
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EXERCISES

Methods

13. The data from Exercise 1 follow.

xi 1 2 3 4 5

yi 3 7 5 11 14

a. Compute the mean square error using equation (14.15).

b. Compute the standard error of the estimate using equation (14.16).

c. Compute the estimated standard deviation of b1 using equation (14.18).

d. Use the t test to test the following hypotheses ( = 0.05):

H0 1 0

H1 1 0

e. Use the F test to test the hypotheses in part (d) at a 0.05 level of significance. Present the

results in the analysis of variance table format.

14. The data from Exercise 2 follow.

xi 2 3 5 1 8

yi 25 25 20 30 16

a. Compute the mean square error using equation (14.15).

b. Compute the standard error of the estimate using equation (14.16).

c. Compute the estimated standard deviation of b1 using equation (14.18).

d. Use the t test to test the following hypotheses ( = 0.05):

H0 1 0

H1 1 0

e. Use the F test to test the hypotheses in part (d) at a 0.05 level of significance. Present the

results in the analysis of variance table format.

15. The data from Exercise 3 follow.

xi 2 4 5 7 8

yi 2 3 2 6 4

a. What is the value of the standard error of the estimate?

b. Test for a significant relationship by using the t test. Use = 0.05.

c. Use the F test to test for a significant relationship. Use = 0.05. What is your conclusion?

Applications

16. The Supplies Office of a local authority is reviewing its policy for the replacement of photocopiers.

For the ten photocopiers in use within the local authority, the number of breakdowns during the

past year has been recorded.

Photocopier A B C D E F G H I J

No. of breakdowns 11 9 13 10 18 13 15 8 16 10

Age (years) 6 4 6 2 9 4 8 1 7 3

The Supplies Offices wishes to determine how the number of breakdowns depends upon the age of

the photocopier.

Use = 0.05 to test whether number of breakdowns is significantly related to the age. Show the

ANOVA table. What is your conclusion?
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14.6 USING THE ESTIMATED REGRESSION EQUATION
FOR ESTIMATION AND PREDICTION

When using the simple linear regression model we are making an assumption about the relationship
between X and Y. We then use the least squares method to obtain the estimated simple linear regression
equation. If a significant relationship exists between X and Y, and the coefficient of determination shows
that the fit is good, the estimated regression equation should be useful for estimation and prediction.

Point estimation

In the Armand’s Pizza Parlours example, the estimated regression equation ŷ = 60 5x provides an
estimate of the relationship between the size of the student population X and quarterly sales Y. We can
use the estimated regression equation to develop a point estimate of either the mean value of Y or
an individual value of Y corresponding to a given value of X. For instance, suppose Armand’s managers
want a point estimate of the mean quarterly sales for all restaurants located near college campuses with
10 000 students. Using the estimated regression equation ŷ = 60 5x, we see that for X = 10 (or 10 000
students), ŷ = 60 5(10) = 110. Thus, a point estimate of the mean quarterly sales for all restaurants
located near campuses with 10 000 students is €110 000.

Now suppose Armand’s managers want to predict sales for an individual restaurant located near Cabot
College, a school with 10 000 students. Then, as the point estimate for an individual value of Y is the same
as the point estimate for the mean value of Y we would predict quarterly sales of ŷ = 60 5(10) = 110 or
€110 000 for this one restaurant.

Interval estimation

Point estimates do not provide any information about the precision associated with an estimate. For that
we must develop interval estimates much like those in Chapters 10 and 11 The first type of interval
estimate, a confidence interval, is an interval estimate of the mean value of Y for a given value of X. The
second type of interval estimate, a prediction interval, is used whenever we want an interval estimate of
an individual value of Y for a given value of X. The point estimate of the mean value of Y is the same as
the point estimate of an individual value of Y. But the interval estimates we obtain for the two cases are
different. The margin of error is larger for a prediction interval.

Confidence interval for the mean value of Y

The estimated regression equation provides a point estimate of the mean value of Y for a given value of X.
In developing the confidence interval, we will use the following notation.

xp the particular or given value of the independent variableX
Yp the dependent variable Y corresponding to the given xp

E Yp the mean or expected value of the dependent variable Yp corresponding to the given xp
ŷp b0 b1xp the point estimate of E Yp whenX xp

17. Refer to Exercise 12 where the data were used to determine whether the price of a printer is

related to the speed for plain text printing (PC World, April 2009). Does the evidence indicate a

significant relationship between printing speed and price? Conduct the appropriate statistical test

and state your conclusion. Use = 0.05.

PRINTERS

2009
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Using this notation to estimate the mean sales for all Armand’s restaurants located near a campus with
10 000 students, we have xp = 10, and E(Yp) denotes the unknown mean value of sales for all restaurants
where xp = 10. The point estimate of E(Yp) is given by ŷp 60 5 10 110.

In general, we cannot expect ŷp to equal E(Yp) exactly. If we want to make an inference about how
close ŷp is to the true mean value E(Yp), we will have to estimate the variance of ŷp. The formula for
estimating the variance of ŷp given xp, denoted by s

2
yp is:

s2ŷ2p s2
1

n

xp x 2

∑ xi x 2

The general expression for a confidence interval follows.

Confidence interval for E(Yp)

ŷp t 2s
1

n

xp x 2

∑ xi x 2
(14.22)

where the confidence coefficient is 1 α and tα/2 is based on a t distribution with n 2 degrees of freedom.

Using expression (14.22) to develop a 95 per cent confidence interval of the mean quarterly sales for all
Armand’s restaurants located near campuses with 10 000 students, we need the value of t for α /2 = 0.025
and n 2 = 10 2 = 8 degrees of freedom. Using Table 2 of Appendix B, we have t0.025 = 2.306. Thus,
with ŷp = 110, the 95 per cent confidence interval estimate is:

ŷp t 2s
1

n

xp x 2

∑ xi x 2

110 2 306 13 829
1

10

10 14 2

568

110 11 415

In euros, the 95 per cent confidence interval for the mean quarterly sales of all restaurants near campuses
with 10 000 students is €110 000 ± €11 415. Therefore, the 95 per cent confidence interval for the mean
quarterly sales when the student population is 10 000 is €98 585 to €121 415.

Note that the estimated standard deviation of ŷp is smallest when xp x so that the quantity
xp x 0 In this case, the estimated standard deviation of ŷp becomes:

s
1

n

xp x 2

∑ xi x 2
s

1

n

This result implies that the best or most precise estimate of the mean value of Y occurs when xp x.
But, the further xp is from xp x the larger xp x becomes and thus the wider confidence intervals will
be for the mean value of Y. This pattern is shown graphically in Figure 14.8.

Prediction interval for an individual value of Y

Suppose that instead of estimating the mean value of sales for all Armand’s restaurants located near
campuses with 10 000 students, we want to estimate the sales for an individual restaurant located near
Cabot College, a school with 10 000 students.
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As noted previously, the point estimate of yp, the value of Y corresponding to the given xp, is provided
by the estimated regression equation ŷp b0 b1xp. For the restaurant at Cabot College, we have xp = 10
and a corresponding predicted quarterly sales of ŷp 60 5 10 110 or €110 000.

Note that this value is the same as the point estimate of the mean sales for all restaurants located near
campuses with 10 000 students.

To develop a prediction interval, we must first determine the variance associated with using ŷp as an
estimate of an individual value of Y when X = xp. This variance is made up of the sum of the following
two components.
1 The variance of individual Y values about the mean E(Yp), an estimate of which is given by s

2
.

2 The variance associated with using ŷp to estimate E(Yp), an estimate of which is given by:

s2yp s2
1

n

xp x 2

∑ xi x 2

Thus the formula for estimating the variance of an individual value of Yp, is:

s2 s2
yp

s2 s2
1

n

xp x 2

∑ xi x 2
s2 1

1

n

xp x 2

∑ xi x 2

The general expression for a prediction interval follows.

Prediction interval for yp

ŷp t 2S 1
1

n

xp x 2

∑ xi x 2
(14.23)

where the confidence coefficient is 1 α and tα/2 is based on a t distribution with n 2 degrees of freedom.
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Thus the 95 per cent prediction interval of sales for one specific restaurant located near a campus with
10 000 students is:

ŷp t 2s 1
1

n

xp x 2

∑ xi x 2

110 2 306 13 829 1
1

10

10 14 2

568

110 33 875

In euros, this prediction interval is €110 000 ± €33 875 or €76 125 to €143 875. Note that the prediction interval
for an individual restaurant located near a campus with 10 000 students is wider than the confidence interval for
the mean sales of all restaurants located near campuses with 10 000 students. The difference reflects the fact that
we are able to estimate the mean value of Y more precisely than we can an individual value of Y.

Both confidence interval estimates and prediction interval estimates are most precise when the value of
the independent variable is xp x. The general shapes of confidence intervals and the wider prediction
intervals are shown together in Figure 14.9.
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EXERCISES

Methods

18. The data from Exercise 1 follow.

xi 1 2 3 4 5

yi 3 7 5 11 14

a. Use expression (14.22) to develop a 95 per cent confidence interval for the expected value of

Y when X = 4.

b. Use expression (14.23) to develop a 95 per cent prediction interval for Y when X = 4. COMPLETE

SOLUTIONS
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14.7 COMPUTER SOLUTION

Performing the regression analysis computations without the help of a computer can be quite time
consuming. In this section we discuss how the computational burden can be minimized by using a
computer software package such as MINITAB.

We entered Armand’s student population and sales data into a MINITAB worksheet. The independent
variable was named Pop and the dependent variable was named Sales to assist with interpretation of the

19. The data from Exercise 2 follow.

xi 2 3 5 1 8

yi 25 25 20 30 16

a. Estimate the standard deviation of yp when X = 3.

b. Develop a 95 per cent confidence interval for the expected value of Y when X = 3.

c. Estimate the standard deviation of an individual value of Y when X = 3.

d. Develop a 95 per cent prediction interval for Y when X = 3.

20. The data from Exercise 3 follow.

xi 2 4 5 7 8

yi 2 3 2 6 4

Develop the 95 per cent confidence and prediction intervals when X = 3. Explain why these two

intervals are different.

Applications

21. A company that manufactures ballpoint pens has a cost function of the form:

T T0 kx2

where T0 is a constant value linked to the production method used and x is the quantity of pens (in

thousands) manufactured. During the last year, the total costs of the company were recorded as

follows (where pens were recorded in thousands and costs are recorded in 000s)

Month # of pens (x) Total cost (T)

Jan. 5.5 80.1

Feb. 4.2 80.4

Mar. 6.4 58.0

Apr. 3.3 90.1

May 7.2 47.2

Jun. 8.6 27.0

Jul. 9.2 17.4

Aug. 3.9 82.8

Sep. 6.8 53.8

Oct. 8.3 33.1

Nov. 5.9 63.2

Dec. 8.2 32.8

a. Derive least squares estimates of T0 and k.

b. Hence determine a 95 per cent interval estimate of Total Cost when 6000 pens are

manufactured.
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computer output. Using MINITAB, we obtained the printout for Armand’s Pizza Parlours shown in
Figure 14.10.* The interpretation of this printout follows.

1 MINITAB prints the estimated regression equation as Sales = 60.0 5.00Pop.

2 A table is printed that shows the values of the coefficients b0 and b1, the standard deviation of each
coefficient, the t value obtained by dividing each coefficient value by its standard deviation, and the
p-value associated with the t test. Because the p-value is zero (to three decimal places), the sample
results indicate that the null hypothesis (H0 1 0) should be rejected. Alternatively, we could
compare 8.62 (located in the t-ratio column) to the appropriate critical value. This procedure for the
t test was described in Section 14.5.

3 MINITAB prints the standard error of the estimate, s = 13.83, as well as information about the
goodness of fit. Note that ‘R-sq = 90.3 per cent’ is the coefficient of determination expressed as a
percentage. The value ‘R-sq(adj) = 89.1 per cent’ is discussed in Chapter 15.

4 The ANOVA table is printed below the heading Analysis of Variance. MINITAB uses the label
Residual Error for the error source of variation. Note that DF is an abbreviation for degrees of
freedom and that MSR is given as 14 200 and MSE as 191.

The ratio of these two values provides the F value of 74.25 and the corresponding p-value of
0.000. Because the p-value is zero (to three decimal places), the relationship between Sales and Pop
is judged statistically significant.

5 The 95 per cent confidence interval estimate of the expected sales and the 95 per cent prediction
interval estimate of sales for an individual restaurant located near a campus with 10 000 students are
printed below the ANOVA table. The confidence interval is (98.58, 121.42) and the prediction
interval is (76.12, 143.88) as we showed in Section 14.6.

EXERCISES

Applications

22. The commercial division of the Supreme real estate firm in Cyprus is conducting a regression

analysis of the relationship between X, annual gross rents (in thousands of euros), and Y, selling

price (in thousands of euros) for apartment buildings. Data were collected on several properties

recently sold and the following computer selective output was obtained.

a. How many apartment buildings were in the sample?

b. Write the estimated regression equation.

c. What is the value of sb0?

d. Use the F statistic to test the significance of the relationship at a 0.05 level of significance.

e. Estimate the selling price of an apartment building with gross annual rents of 50 000.

*The MINITAB steps necessary to generate the output are given in the software section on the online platform.

COMPLETE

SOLUTIONS
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14.8 RESIDUAL ANALYSIS: VALIDATINGMODEL ASSUMPTIONS

As we noted previously, the residual for observation i is the difference between the observed value of the
dependent variable (yi) and the estimated value of the dependent variable (ŷi).

Residual for observation i

yi ŷi (14.24)
where:

yi is the observed value of the dependent variable
ŷi is the estimated value of the dependent variable

23. Following is a portion of the computer output for a regression analysis relating Y = maintenance

expense (euros per month) to X = usage (hours per week) of a particular brand of computer terminal.

a. Write the estimated regression equation.

b. Use a t test to determine whether monthly maintenance expense is related to usage at the

0.05 level of significance.

c. Use the estimated regression equation to predict mean monthly maintenance expense for any

terminal that is used 25 hours per week.

24. A regression model relating X, number of salespersons at a branch office, to Y, annual sales at

the office (in thousands of euros) provided the following computer output from a regression

analysis of the data.

a. Write the estimated regression equation.

b. How many branch offices were involved in the study?

c. Compute the F statistic and test the significance of the relationship at a 0.05 level of significance.

d. Predict the annual sales at the Marseilles branch office. This branch employs 12 salespersons.
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In other words, the ith residual is the error resulting from using the estimated regression equation to
predict the value of the dependent variable. The residuals for the Armand’s Pizza Parlours example are
computed in Table 14.7. The observed values of the dependent variable are in the second column and the
estimated values of the dependent variable, obtained using the estimated regression equation ŷ = 60 5x,
are in the third column. An analysis of the corresponding residuals in the fourth column will help
determine whether the assumptions made about the regression model are appropriate.

Recall that for the Armand’s Pizza Parlours example it was assumed the simple linear regression model
took the form:

Y 0 1x (14.25)

In other words we assumed quarterly sales (Y) to be a linear function of the size of the student population (X)
plus an error term ε. In Section 14.4 we made the following assumptions about the error term ε.

1 E(ε) = 0.

2 The variance of ε, denoted by 2, is the same for all values of X.

3 The values of ε are independent.

4 The error term ε has a normal distribution.

These assumptions provide the theoretical basis for the t test and the F test used to determine
whether the relationship between X and Y is significant, and for the confidence and prediction
interval estimates presented in Section 14.6. If the assumptions about the error term ε appear
questionable, the hypothesis tests about the significance of the regression relationship and the
interval estimation results may not be valid.

The residuals provide the best information about ε; hence an analysis of the residuals is an important
step in determining whether the assumptions for ε are appropriate. Much of residual analysis is based on
an examination of graphical plots. In this section, we discuss the following residual plots.

1 A plot of the residuals against values of the independent variable X.

2 A plot of residuals against the predicted values ŷ of the dependent variable.

3 A standardized residual plot.

4 A normal probability plot.

Residual plot against X

A residual plot against the independent variable X is a graph in which the values of the independent
variable are represented by the horizontal axis and the corresponding residual values are represented by
the vertical axis. A point is plotted for each residual.

T ABLE 14 . 7 Residuals for Armand’s Pizza Parlour

Student population xi Sales yi Estimated sales ŷi = 60 – 5xi Residuals yi– ŷi

2 58 70 12

6 105 90 15

8 88 100 12

8 118 100 18

12 117 120 3

16 137 140 3

20 157 160 3

20 169 160 9

22 149 170 21

26 202 190 12
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The first coordinate for each point is given by the value of xi and the second coordinate is given by the
corresponding value of the residual yi ŷi. For a residual plot against X with the Armand’s Pizza Parlours
data from Table 14.7, the coordinates of the first point are (2, 12), corresponding to x1 = 2 and
y1 ŷ1 12 the coordinates of the second point are (6, 15), corresponding to x2 = 6 and y2 ŷ2 = 15
and so on. Figure 14.11 shows the resulting residual plot.

Before interpreting the results for this residual plot, let us consider some general patterns that might be
observed in any residual plot. Three examples appear in Figure 14.12.

If the assumption that the variance of ε is the same for all values of X and the assumed regression
model is an adequate representation of the relationship between the variables, the residual plot should
give an overall impression of a horizontal band of points such as the one in Panel A of Figure 14.12.
However, if the variance of ε is not the same for all values of X for example, if variability about the
regression line is greater for larger values of X – a pattern such as the one in Panel B of Figure 14.12 could
be observed. In this case, the assumption of a constant variance of ε is violated. Another possible residual
plot is shown in Panel C. In this case, we would conclude that the assumed regression model is not an
adequate representation of the relationship between the variables. A curvilinear regression model or
multiple regression model should be considered.

Now let us return to the residual plot for Armand’s Pizza Parlours shown in Figure 14.11. The
residuals appear to approximate the horizontal pattern in Panel A of Figure 14.12. Hence, we conclude
that the residual plot does not provide evidence that the assumptions made for Armand’s regression
model should be challenged. At this point, we are confident in the conclusion that Armand’s simple linear
regression model is valid.

Experience and good judgement are always factors in the effective interpretation of residual plots.
Seldom does a residual plot conform precisely to one of the patterns in Figure 14.12. Yet analysts who
frequently conduct regression studies and frequently review residual plots become adept at understanding
the differences between patterns that are reasonable and patterns that indicate the assumptions of the
model should be questioned. A residual plot provides one technique to assess the validity of the
assumptions for a regression model.

Residual plot against ŷ

Another residual plot represents the predicted value of the dependent variable ŷ on the horizontal axis
and the residual values on the vertical axis. A point is plotted for each residual. The first coordinate for
each point is given by ŷi and the second coordinate is given by the corresponding value of the ith residual
yi ŷi. With the Armand’s data from Table 14.7, the coordinates of the first point are (70, 12),
corresponding to ŷ1 70 and y1 ŷ1 12; the coordinates of the second point are (90, 15) and so
on. Figure 14.13 provides the residual plot. Note that the pattern of this residual plot is the same as the
pattern of the residual plot against the independent variable X.
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It is not a pattern that would lead us to question the model assumptions. For simple linear regression,
both the residual plot against X and the residual plot against ŷ provide the same pattern. For multiple
regression analysis, the residual plot against ŷ is more widely used because of the presence of more than
one independent variable.

Standardized residuals

Many of the residual plots provided by computer software packages use a standardized version of the
residuals. As demonstrated in preceding chapters, a random variable is standardized by subtracting its
mean and dividing the result by its standard deviation. With the least squares method, the mean of the
residuals is zero. Thus, simply dividing each residual by its standard deviation provides the standardized

residual.
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It can be shown that the standard deviation of residual i depends on the standard error of the estimate s
and the corresponding value of the independent variable xi.

Note that equation (14.26) shows that the standard deviation of the ith residual depends on xi because
of the presence of hi in the formula.†Once the standard deviation of each residual is calculated, we can
compute the standardized residual by dividing each residual by its corresponding standard deviation.

Standard deviation of the i th residual*

sy1 yi
s l hi (14.26)

where:

sy−ŷ = the standard deviation of residual i

s = the standard error of the estimate

hi
1

n

xi x 2

∑ xi x 2
(14.27)

Standardized residual for observation i

yi yi
syi yi

(14.28)

Table 14.8 shows the calculation of the standardized residuals for Armand’s Pizza Parlours. Recall that
previous calculations showed s = 13.829. Figure 14.14 is the plot of the standardized residuals against the
independent variable X.
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Plot of the residuals

against the predicted

values ŷ for Armand’s

Pizza Parlours

†hi is referred to as the leverage of observation i. Leverage will be discussed further when we consider influential
observations in Section 14.9.
*This equation actually provides an estimate of the standard deviation of the ith residual, because s is used instead of .
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The standardized residual plot can provide insight about the assumption that the error term ε has a
normal distribution. If this assumption is satisfied, the distribution of the standardized residuals should
appear to come from a standard normal probability distribution.*

Thus, when looking at a standardized residual plot, we should expect to see approximately 95 per cent
of the standardized residuals between 2 and 2. We see in Figure 14.14 that for the Armand’s example
all standardized residuals are between 2 and 2. Therefore, on the basis of the standardized residuals,
this plot gives us no reason to question the assumption that ε has a normal distribution.

Because of the effort required to compute the estimated values ŷ, the residuals, and the standardized
residuals, most statistical packages provide these values as optional regression output. Hence, residual
plots can be easily obtained. For large problems computer packages are the only practical means for
developing the residual plots discussed in this section.

Normal probability plot

Another approach for determining the validity of the assumption that the error term has a normal
distribution is the normal probability plot. To show how a normal probability plot is developed, we
introduce the concept of normal scores.

Suppose ten values are selected randomly from a normal probability distribution with a mean of zero
and a standard deviation of one, and that the sampling process is repeated over and over with the values
in each sample of ten ordered from smallest to largest. For now, let us consider only the smallest value in
each sample. The random variable representing the smallest value obtained in repeated sampling is called
the first-order statistic.

Statisticians show that for samples of size ten from a standard normal probability distribution, the
expected value of the first-order statistic is –1.55. This expected value is called a normal score. For the
case with a sample of size n = 10, there are ten order statistics and ten normal scores (see Table 14.9). In
general, a data set consisting of n observations will have n order statistics and hence n normal scores.

Let us now show how the ten normal scores can be used to determine whether the standardized
residuals for Armand’s Pizza Parlours appear to come from a standard normal probability distribution.
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Plot of the standardized
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*Because s is used instead of in equation (14.26), the probability distribution of the standardized residuals is not
technically normal. However, in most regression studies, the sample size is large enough that a normal approximation
is very good.
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We begin by ordering the ten standardized residuals from Table 14.8. The ten normal scores and the
ordered standardized residuals are shown together in Table 14.10. If the normality assumption is satisfied,
the smallest standardized residual should be close to the smallest normal score, the next smallest
standardized residual should be close to the next smallest normal score and so on. If we were to develop
a plot with the normal scores on the horizontal axis and the corresponding standardized residuals on the
vertical axis, the plotted points should cluster closely around a 45-degree line passing through the origin if
the standardized residuals are approximately normally distributed. Such a plot is referred to as a normal
probability plot.

Figure 14.15 is the normal probability plot for the Armand’s Pizza Parlours example. Judgement is
used to determine whether the pattern observed deviates from the line enough to conclude that the
standardized residuals are not from a standard normal probability distribution. In Figure 14.15, we see
that the points are grouped closely about the line. We therefore conclude that the assumption of the error
term having a normal probability distribution is reasonable. In general, the more closely the points are
clustered about the 45-degree line, the stronger the evidence supporting the normality assumption. Any
substantial curvature in the normal probability plot is evidence that the residuals have not come from a
normal distribution. Normal scores and the associated normal probability plot can be obtained easily
from statistical packages such as MINITAB.

T ABLE 14 . 8 Computation of standardized residuals for Armand’s Pizza Parlours

i xi xi x (xi x)2
xi x 2

xi x 2 hi Syi yi y1– ŷ1

Standardized

residual

1 2 12 144 0.2535 0.3535 11.1193 12 1.0792

2 6 8 64 0.1127 0.2127 12.2709 15 1.2224

3 8 6 36 0.0634 0.1634 12.6493 12 0.9487

4 8 6 36 0.0634 0.1634 12.6493 18 1.4230

5 12 2 4 0.0070 0.1070 13.0682 3 0.2296

6 16 2 4 0.0070 0.1070 13.0682 3 0.2296

7 20 6 36 0.0634 0.1634 12.6493 3 0.2372

8 20 6 36 0.0634 0.1634 12.6493 9 0.7115

9 22 8 64 0.1127 0.2127 12.2709 21 1.7114

10 26 12 144 0.2535 0.3535 11.1193 12 1.0792

Total 568

Note: The values of the residuals were computed in Table 14.7.

T ABLE 14 . 9 Normal scores for n = 10

Order statistic Normal score

1 1.55

2 1.00

3 0.65

4 0.37

5 0.12

6 0.12

7 0.37

8 0.65

9 1.00

10 1.55
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14.9 RESIDUAL ANALYSIS: AUTOCORRELATION

In the last section we showed how residual plots can be used to detect violations of assumptions about the
error term ε in the regression model. In many regression studies, particularly involving data collected over
time, a special type of correlation among the error terms can cause problems; it is called serial correlation

or autocorrelation. In this section we show how the Durbin–Watson test can be used to detect significant
autocorrelation.

Autocorrelation and the Durbin–Watson test

Often, the data used for regression studies in business and economics are collected over time. It is not
uncommon for the value of Y at time t, denoted by yt, to be related to the value of Y at previous time
periods. In such cases, we say autocorrelation (also called serial correlation) is present in the data. If the
value of Y in time period t is related to its value in time period t 1, first-order autocorrelation is present.
If the value of Y in time period t is related to the value of Y in time period t 2, second-order
autocorrelation is present and so on.

T ABLE 14 . 10 Normal scores and ordered standardized residuals for Armand’s Pizza Parlours

Ordered normal scores Standardized residuals

1.55 1.7114

1.00 1.0792

0.65 0.9487

0.37 0.2372

0.12 0.2296

0.12 0.2296

0.37 0.7115

0.65 1.0792

1.00 1.2224

1.55 1.4230
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Normal probability plot for

Armand’s Pizza Parlours
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When autocorrelation is present, one of the assumptions of the regression model is violated: the error
terms are not independent. In the case of first-order autocorrelation, the error at time t, denoted εt, will be
related to the error at time period t 1, denoted εt 1. Two cases of first-order autocorrelation are
illustrated in Figure 14.16. Panel A is the case of positive autocorrelation; panel B is the case of negative
autocorrelation. With positive autocorrelation we expect a positive residual in one period to be followed
by a positive residual in the next period, a negative residual in one period to be followed by a negative
residual in the next period and so on. With negative autocorrelation, we expect a positive residual in one
period to be followed by a negative residual in the next period, then a positive residual and so on. When
autocorrelation is present, serious errors can be made in performing tests of statistical significance based
upon the assumed regression model. It is therefore important to be able to detect autocorrelation and take
corrective action. We will show how the Durbin–Watson statistic can be used to detect first-order
autocorrelation.

Suppose the values of ε are not independent but are related in the following manner:

First-order autocorrelation

t ρ t 1 zt (14.29)

where ρ is a parameter with an absolute value less than one and zt is a normally and independently
distributed random variable with a mean of zero and a variance of 2. From equation (14.29) we see that
if ρ = 0, the error terms are not related, and each has a mean of zero and a variance of 2. In this case,
there is no autocorrelation and the regression assumptions are satisfied. If ρ > 0, we have positive
autocorrelation; if ρ < 0, we have negative autocorrelation. In either of these cases, the regression
assumptions about the error term are violated.

The Durbin–Watson test for autocorrelation uses the residuals to determine whether ρ = 0. To simplify
the notation for the Durbin–Watson statistic, we denote the ith residual by et = yt ŷt. The Durbin–
Watson test statistic is computed as follows.

Durbin–Watson test statistic

d
∑
n

t 2
et et 1

2

∑
n

t 1
e2

(14.30)

00

Panel B. Negative Autocorrelation

tt

Panel A. Positive Autocorrelation

Time Time

yt – yt
^yt – yt

^FIGURE 14.16

Two data sets with

first-order

autocorrelation
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If successive values of the residuals are close together (positive autocorrelation), the value of the
Durbin–Watson test statistic will be small. If successive values of the residuals are far apart (negative
autocorrelation), the value of the Durbin–Watson statistic will be large.

The Durbin–Watson test statistic ranges in value from zero to four, with a value of two indicating no
autocorrelation is present. Durbin and Watson developed tables that can be used to determine when their
test statistic indicates the presence of autocorrelation. Table 14 in Appendix B shows lower and upper
bounds (dL and dU) for hypothesis tests using α = 0.05, α = 0.025 and α = 0.01; n denotes the number of
observations.

The null hypothesis to be tested is always that there is no autocorrelation.

H0 ρ 0

The alternative hypothesis to test for positive autocorrelation is:

H1 ρ 0

The alternative hypothesis to test for negative autocorrelation is:

H1 ρ 0

A two-sided test is also possible. In this case the alternative hypothesis is:

H1 ρ 0

Figure 14.17 shows how the values of dL and dU in Table 7.0 in Appendix B are used to test for
autocorrelation.

Panel A illustrates the test for positive autocorrelation. If d < dL, we conclude that positive auto-
correlation is present. If dL ≤ d ≤ dU, we say the test is inconclusive. If d > dU, we conclude that there is
no evidence of positive autocorrelation.

Inconclusive No evidence of positive autocorrelation

0 dL

dL

dU

dU 4 – dU 4 – dL

2

Panel A. Test for Positive Autocorrelation

No evidence of negative autocorrelation Inconclusive

Negative
auto-

correlation 

2 4

Panel B. Test for Negative Autocorrelation

No evidence of
autocorrelation

0

Panel C. Two-sided Test for Autocorrelation

Positive
auto-

correlation

dL dU 4 – dU 4 – dL2 4

Positive
auto-

correlation
Inconclusive

Negative
auto-

correlation 
Inconclusive

FIGURE 14.17

Hypothesis test for

autocorrelation using the

Durbin–Watson test
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Panel B illustrates the test for negative autocorrelation. If d > 4 dL, we conclude that negative
autocorrelation is present. If 4 dU ≤ d ≤ 4 dL, we say the test is inconclusive. If d < 4 dU, we
conclude that there is no evidence of negative autocorrelation.

Note: Entries in Table 7.0 in Appendix B are the critical values for a one-tailed Durbin–Watson test for
autocorrelation. For a two-tailed test, the level of significance is doubled.

Panel C illustrates the two-sided test. If d < dL or d > 4 dL, we reject H0 and conclude that
autocorrelation is present. If dL ≤ d ≤ dU or 4 dU ≤ d ≤ 4 dL, we say the test is inconclusive. If dU ≤ d
≤ 4 dU, we conclude that there is no evidence of autocorrelation.

If significant autocorrelation is identified, we should investigate whether we omitted one or more
key independent variables that have time-ordered effects on the dependent variable. If no such
variables can be identified, including an independent variable that measures the time of the
observation (for instance, the value of this variable could be one for the first observation, two for
the second observation and so on) will sometimes eliminate or reduce the autocorrelation. When
these attempts to reduce or remove autocorrelation do not work, transformations on the dependent
or independent variables can prove helpful; a discussion of such transformations can be found in
more advanced texts on regression analysis.

Note that the Durbin–Watson tables list the smallest sample size as 15. The reason is that the test is
generally inconclusive for smaller sample sizes; in fact, many statisticians believe the sample size should
be at least 50 for the test to produce worthwhile results.

EXERCISES

Methods

25. Given are data for two variables, X and Y.

xi 6 11 15 18 20

yi 6 8 12 20 30

a. Develop an estimated regression equation for these data.

b. Compute the residuals.

c. Develop a plot of the residuals against the independent variable X. Do the assumptions about

the error terms seem to be satisfied?

d. Compute the standardized residuals.

e. Develop a plot of the standardized residuals against ŷ. What conclusions can you draw from

this plot?

26. The following data were used in a regression study.

COMPLETE

SOLUTIONS

Observation xi yi Observation xi yi

1 2 4 6 7 6

2 3 5 7 7 9

3 4 4 8 8 5

4 5 6 9 9 11

5 7 4

a. Develop an estimated regression equation for these data.

b. Construct a plot of the residuals. Do the assumptions about the error term seem to be

satisfied?
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14.10 RESIDUAL ANALYSIS: OUTLIERS AND INFLUENTIAL
OBSERVATIONS

In Section 14.8 we showed how residual analysis could be used to determine when violations of
assumptions about the regression model occur. In this section, we discuss how residual analysis can be
used to identify observations that can be classified as outliers or as being especially influential in
determining the estimated regression equation. Some steps that should be taken when such observations
occur are discussed.

Detecting outliers

Figure 14.18 is a scatter diagram for a data set that contains an outlier, a data point (observation) that
does not fit the trend shown by the remaining data. Outliers represent observations that are suspect and
warrant careful examination. They may represent erroneous data; if so, the data should be corrected. They
may signal a violation of model assumptions; if so, another model should be considered. Finally, they may
simply be unusual values that occurred by chance. In this case, they should be retained.

To illustrate the process of detecting outliers, consider the data set in Table 14.11; Figure 14.19 is a
scatter diagram. Except for observation 4 x4 3 y4 75 , a pattern suggesting a negative linear
relationship is apparent. Indeed, given the pattern of the rest of the data, we would expect y4 to be much
smaller and hence would identify the corresponding observation as an outlier. For the case of simple
linear regression, one can often detect outliers by simply examining the scatter diagram.

Applications

27. A doctor has access to historical data as follows:

Vehicles per 100 population Road death per 100000 population

Great Britain 31 14

Belgium 32 29

Denmark 30 22

France 47 32

Germany 30 25

Irish Republic 19 20

Italy 36 21

Netherlands 40 22

Canada 47 30

USA 58 35

a. First identifying the X and Y variables appropriately, use the method of least squares to

develop a straight line approximation of the relationship between the two variables.

b. Test whether vehicles and road deaths are related at a 0.05 level of significance.

c. Prepare a residual plot of y y versus y . Use the result from part (a) to obtain the values of y .

d. What conclusions can you draw from residual analysis? Should this model be used, or should

we look for a better one?

28. Refer to Exercise 6, where an estimated regression equation relating years of experience and

annual sales was developed.

a. Compute the residuals and construct a residual plot for this problem.

b. Do the assumptions about the error terms seem reasonable in light of the residual plot?
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The standardized residuals can also be used to identify outliers. If an observation deviates greatly from the
pattern of the rest of the data (e.g. the outlier in Figure 14.18), the corresponding standardized residual will be
large in absolute value. Many computer packages automatically identify observations with standardized
residuals that are large in absolute value.

y

Outlier

x

FIGURE 14.18

A data set with an outlier

y

80
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20

x
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FIGURE 14.19

Scatter diagram for outlier data set

T ABLE 14 . 11 Data set illustrating the effect of an outlier

xi yi

1 45

1 55

2 50

3 75

3 40

3 45

4 30

4 35

5 25

6 15
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In Figure 14.20 we show the MINITAB output from a regression analysis of the data in Table 14.11.
The next to last line of the output shows that the standardized residual for observation 4 is 2.67.
MINITAB identifies any observation with a standardized residual of less than 2 or greater than 2
as an unusual observation; in such cases, the observation is printed on a separate line with an R next to
the standardized residual, as shown in Figure 14.20. With normally distributed errors, standardized
residuals should be outside these limits approximately 5 per cent of the time.

In deciding how to handle an outlier, we should first check to see whether it is a valid observation. Perhaps
an error was made in initially recording the data or in entering the data into the computer file. For example,
suppose that in checking the data for the outlier in Table 14.11, we find an error; the correct value for
observation 4 is x4 = 3, y4 = 30. Figure 14.21 is the MINITAB output obtained after correction of the value of
y4. We see that using the incorrect data value substantially affected the goodness of fit. With the correct data,
the value of R-sq increased from 49.7 per cent to 83.8 per cent and the value of b0 decreased from 64.958 to
59.237. The slope of the line changed from 7.331 to 6.949. The identification of the outlier enabled us to
correct the data error and improve the regression results.

FIGURE 14.20

MINITAB output for regression

analysis of the outlier data set

FIGURE 14.21

MINITAB output for the revised

outlier data set
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Detecting influential observations

Sometimes one or more observations exert a strong influence on the results obtained. Figure 14.22 shows
an example of an influential observation in simple linear regression. The estimated regression line has a
negative slope. However, if the influential observation were dropped from the data set, the slope of the
estimated regression line would change from negative to positive and the y-intercept would be smaller.
Clearly, this one observation is much more influential in determining the estimated regression line than
any of the others; dropping one of the other observations from the data set would have little effect on the
estimated regression equation.

Influential observations can be identified from a scatter diagram when only one independent variable
is present. An influential observation may be an outlier (an observation with a Y value that deviates
substantially from the trend), it may correspond to an X value far away from its mean (e.g. see
Figure 14.22), or it may be caused by a combination of the two (a somewhat off-trend Y value and a
somewhat extreme X value).

Because influential observations may have such a dramatic effect on the estimated regression equation,
they must be examined carefully. We should first check to make sure that no error was made in collecting
or recording the data. If an error occurred, it can be corrected and a new estimated regression equation
can be developed. If the observation is valid, we might consider ourselves fortunate to have it. Such a
point, if valid, can contribute to a better understanding of the appropriate model and can lead to a better
estimated regression equation. The presence of the influential observation in Figure 14.22, if valid, would
suggest trying to obtain data on intermediate values of X to understand better the relationship between
X and Y.

Observations with extreme values for the independent variables are called high leverage points. The
influential observation in Figure 14.22 is a point with high leverage. The leverage of an observation is
determined by how far the values of the independent variables are from their mean values. For the single-
independent-variable case, the leverage of the ith observation, denoted hi, can be computed by using
equation (14.31).

Leverage of observation i

hi
1

n

xi x 2

∑ xi x 2
(14.31)

From the formula, it is clear that the farther xi is from its mean x, the higher the leverage of
observation i.

y

x

Influential
observation

FIGURE 14.22

A data set with an influential observation
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Many statistical packages automatically identify observations with high leverage as part of the standard
regression output. As an illustration of how the MINITAB statistical package identifies points with high
leverage, let us consider the data set in Table 14.12.

From Figure 14.23, a scatter diagram for the data set in Table 14.12, it is clear that observation 7 (X =
70, Y = 100) is an observation with an extreme value of X. Hence, we would expect it to be identified as a
point with high leverage. For this observation, the leverage is computed by using equation (14.31) as
follows.

h7
1

n

x7 x 2

∑ xi x 2

1

7

70 24 286 2

2621 43
0 94

For the case of simple linear regression, MINITAB identifies observations as having high leverage if
hi > 6/n; for the data set in Table 14.12, 6/n = 6/7 = 0.86. Because h7 = 0.94 > 0.86, MINITAB will
identify observation 7 as an observation whose X value gives it large influence. Figure 14.24 shows
the MINITAB output for a regression analysis of this data set. Observation 7 (X= 70, Y = 100) is
identified as having large influence; it is printed on a separate line at the bottom, with an X in the
right margin.

Influential observations that are caused by an interaction of large residuals and high leverage can
be difficult to detect. Diagnostic procedures are available that take both into account in determining
when an observation is influential. One such measure, called Cook’s D statistic, will be discussed in
Chapter 15.

T ABLE 14 . 12 Data set with a high leverage observation

xi yi

10 125

10 130

15 120

20 115

20 120

25 110

70 100

y

130.00

120.00

110.00

100.00

25.00 40.00 55.00 70.00 85.00
x

Observation with
high leverage

10.00

FIGURE 14.23

Scatter diagram for the data set

with a high leverage observation
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FIGURE 14.24

MINITAB output for the data

set with a high leverage

observation

EXERCISES

Methods

29. Consider the following data for two variables, X and Y.

xi 135 110 130 145 175 160 120

yi 145 100 120 120 130 130 110

a. Compute the standardized residuals for these data. Do there appear to be any outliers in the

data? Explain.

b. Plot the standardized residuals against ŷ. Does this plot reveal any outliers?

c. Develop a scatter diagram for these data. Does the scatter diagram indicate any outliers in

the data? In general, what implications does this finding have for simple linear regression?

30. Consider the following data for two variables, X and Y.

xi 4 5 7 8 10 12 12 22

yi 12 14 16 15 18 20 24 19

a. Compute the standardized residuals for these data. Do there appear to be any outliers in the

data? Explain.

b. Compute the leverage values for these data. Do there appear to be any influential

observations in these data? Explain.

c. Develop a scatter diagram for these data. Does the scatter diagram indicate any influential

observations? Explain.

COMPLETE

SOLUTIONS
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SUMMARY

In this chapter we showed how regression analysis can be used to determine how a dependent

variable Y is related to an independent variable X. In simple linear regression, the regression model is

Y 0 1x . The simple linear regression equation E(ŷ) = 0 1x describes how the mean or

expected value of Y is related to X. We used sample data and the least squares method to develop the

estimated regression equation ŷ = b0 + b1x for a given value x of X. In effect, b0 and b1 are the sample

statistics used to estimate the unknown model parameters 0 and 1.

The coefficient of determination was presented as a measure of the goodness of fit for the

estimated regression equation; it can be interpreted as the proportion of the variation in the

dependent variable Y that can be explained by the estimated regression equation. We reviewed

correlation as a descriptive measure of the strength of a linear relationship between two vari-

ables.

The assumptions about the regression model and its associated error term ŷ were discussed, and

t and F tests, based on those assumptions, were presented as a means for determining whether the

relationship between two variables is statistically significant. We showed how to use the estimated

regression equation to develop confidence interval estimates of the mean value of Y and prediction

interval estimates of individual values of Y.

The chapter concluded with a section on the computer solution of regression problems and two

sections on the use of residual analysis to validate the model assumptions and to identify outliers and

influential observations.

KEY TERMS

ANOVA table

Autocorrelation

Coefficient of determination

Confidence interval

Correlation coefficient

Dependent variable

Durbin–Watson test

Estimated regression equation

High leverage points

Independent variable

Influential observation

ith residual

Least squares method

Mean square error (MSE)

Normal probability plot

Outlier

Prediction interval

Regression equation

Regression model

Residual analysis

Residual plot

Scatter diagram

Serial correlation

Simple linear regression

Standard error of the estimate

Standardized residual

ONLINE RESOURCES

For data files, additional online summary, questions, answers and software section, please go to

the online platform.
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KEY FORMULAE

Simple linear regression model

Y 0 1x (14.1)

Simple linear regression equation

E Y 0 1x (14.2)

Estimated simple linear regression equation

ŷ b0 b1x (14.3)

Least squares criterion

MinΣ yi ŷi
2

(14.5)

Slope and y-intercept for the estimated regression equation

b1
∑ xi x yi y

∑ x x 2
(14.6)

b0 y b1x (14.7)

Sum of squares due to error

SSE Σ yi ŷi
2

(14.8)

Total sum of squares

SST Σ yi y 2 (14.9)

Sum of squares due to regression

SSR Σ ŷi y 2 (14.10)

Relationship among SST SSR and SSE

SST SSR SSE (14.11)

Coefficient of determination

r2
SSR

SST
(14.12)
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Sample correlation coefficient

rXY sign of bi Coefficient of determination
sign ofbi r2

(14.13)

Mean square error (estimate of s
2
)

s2 MSE
SSE

n 2
(14.15)

Standard error of the estimate

s MSE
SSE

n 2
(14.16)

Standard deviation of b1

b1
∑ Xi X 2

(14.17)

Estimated standard deviation of b1

sb1
s

∑ xi x 2
(14.18)

t test statistic

t
b1
sb1

(14.19)

Mean square regression

MSR
SSR

Number of independent variables
(14.20)

F test statistic

F
MSR

MSE
(14.21)

Confidence interval for E(Yp)

ŷp t 2s
1

n

xp x 2

∑ xi x 2
(14.22)

Prediction interval for Yp

ŷp t 2s
1

n

xp x 2

∑ xi x 2
(14.23)
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Residual for observation i

yi ŷi (14.24)

Standard deviation of the ith residual

sy1 yi
s l hi (14.26)

Standardized residual for observation i

yi ŷi
sy ŷ

(14.28)

First-order autocorrelation

t ρ t zt (14.29)

Durbin–Watson test statistic

d
∑
n

t 2
et et 1

2

∑
n

t 1
e2t

(14.30)

Leverage of observation i

hi
1

n

xi x 2

∑ xi x 2
(14.31)

CASE PROBLEM 1

Investigating the relationship between weight

loss and triglyceride level reduction
†

Epidemiological studies have shown that there is a

relationship between raised blood levels of triglycer-

ide and coronary heart disease but it is not certain

how important a risk factor triglycerides are. It is

believed that exercise and lower consumption of fatty

acids can help to reduce triglyceride levels.*

In 1998 Knoll Pharmaceuticals received authoriza-

tion to market sibutramine for the treatment of obesity in

the US. One of their suite of studies involved 35 obese

patients who followed a treatment regime comprising a

combination of diet, exercise and drug treatment.

Each patient’s weight and triglyceride level were

recorded at the start (known as baseline) and at week

eight. The information recorded for each patient was:

†
Source: STARS (www.stars.ac.uk).

*Triglycerides are lipids (fats) which are formed from glycerol and fatty acids. They can be absorbed into the body

from food intake, particularly from fatty food, or produced in the body itself when the uptake of energy (food) exceeds

the expenditure (exercise). Triglycerides provide the principal energy store for the body. Compared with

carbohydrates or proteins, triglycerides produce a substantially higher number of calories per gram.
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Patient ID.

Weight at baseline (kg).

Weight at week 8 (kg).

Triglyceride level at baseline (mg/dl).

Triglyceride level at week 8 (mg/dl).

Triglyceride

The results are shown below.

Managerial report

1. Are weight loss and triglyceride level

reduction (linearly) correlated?

2. Is there a linear relationship between weight

loss and triglyceride level reduction?

3. How can a more detailed regression analysis

be undertaken?

Patient

ID

Weight

at

baseline

Weight

at

week 8

Triglyceride

level at

baseline

Triglyceride

level at

week 8

201 84.0 82.4 90 131

202 88.8 87.0 137 82

203 87.0 81.8 182 152

204 84.5 80.4 72 72

205 69.4 69.0 143 126

206 104.7 102.0 96 157

207 90.0 87.6 115 88

208 89.4 86.8 124 123

209 95.2 92.8 188 255

210 108.1 100.9 167 87

211 93.9 90.2 143 213

212 83.4 75.0 143 102

213 104.4 102.9 276 313

214 103.7 95.7 84 84

215 99.2 99.2 142 135

216 95.6 88.5 64 114

217 126.0 123.2 226 152

218 103.7 95.5 199 120

219 133.1 130.8 212 156

220 85.0 80.0 268 250

221 83.8 77.9 111 107

222 104.5 98.3 132 117

223 76.8 73.2 165 96

224 90.5 88.9 57 63

225 106.9 103.7 163 131

226 81.5 78.9 111 54

227 96.5 94.9 300 241

228 103.0 97.2 192 124

229 127.5 124.7 176 215

230 103.2 102.0 146 138

231 113.5 115.0 446 795

232 107.0 99.2 232 63

233 106.0 103.5 255 204

234 114.9 105.3 187 144

235 103.4 96.0 154 96

TRIGLYCERID
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CASE PROBLEM 2

Measuring stock market risk

One measure of the risk or volatility of an individual

stock is the standard deviation of the total return

(capital appreciation plus dividends) over several per-

iods of time. Although the standard deviation is easy

to compute, it does not take into account the extent

to which the price of a given stock varies as a func-

tion of a standard market index, such as the S&P

500. As a result, many financial analysts prefer to

use another measure of risk referred to as beta.

Betas for individual stocks are determined by sim-

ple linear regression. The dependent variable is the

total return for the stock and the independent vari-

able is the total return for the stock market.* For this

Case Problem we will use the S&P 500 index as the

measure of the total return for the stock market, and

an estimated regression equation will be developed

using monthly data. The beta for the stock is the

slope of the estimated regression equation (b1).

The data contained in the file named ‘Beta’ provides

the total return (capital appreciation plus dividends)

over 36 months for eight widely traded common

stocks and the S&P 500.

Beta

The value of beta for the stock market will always be

1; thus, stocks that tend to rise and fall with the

stock market will also have a beta close to 1. Betas

greater than 1 indicate that the stock is more volatile

than the market, and betas less than 1 indicate that

the stock is less volatile than the market. For

instance, if a stock has a beta of 1.4, it is 40 per

cent more volatile than the market, and if a stock has

a beta of .4, it is 60 per cent less volatile than the

market.

Managerial report

You have been assigned to analyze the risk charac-

teristics of these stocks. Prepare a report that

includes but is not limited to the following items.

a. Compute descriptive statistics for each stock and

the S&P 500. Comment on your results. Which

stocks are the most volatile?

b. Compute the value of beta for each stock. Which

of these stocks would you expect to perform best

in an up market? Which would you expect to hold

their value best in a down market?

c. Comment on how much of the return for the

individual stocks is explained by the market.

The Frankfurt Stock Exchange

BETA
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CASE PROBLEM 3

Can we detect dyslexia?

Data were collected on 34 pre-school children and

then in follow-up tests (on the same children) three

years later when they were seven years old.

Scores were obtained from a variety of tests on all

the children at age four when they were at nursery

school. The tests were:

Knowledge of vocabulary, measured by the British

Picture Vocabulary Test (BPVT) in three versions –

as raw scores, standardized scores and percentile

norms.

Another vocabulary test – non-word repetition.

Motor skills, where the children were scored on

the time in seconds to complete five different peg

board tests.

Knowledge of prepositions, scored as the number

correct out of ten.

Three tests on the use of rhyming, scored as the

number correct out of ten.

Three years later the same children were given a

reading test, from which a reading deficiency was calcu-

lated as Reading Age – Chronological Age (in months),

this being known as Reading Age Deficiency (RAD). The

children were then classified into ‘poor’ or ‘normal’ read-

ers, depending on their RAD scores. Poor reading ability

is taken as an indication of potential dyslexia.

One purpose of this study is to identify which of

the tests at age four might be used as predictors of

poor reading ability, which in turn is a possible indica-

tion of dyslexia.

Data

The data set ‘Dyslexia’ contains 18 variables:

•Child Code an identification number for each

child (1–34)

•Sex m for male, f for female

The BPVT scores:

BPVT raw the raw score

BPVT std the standardized score

BPVT % norm cumulative percentage scores

Non-wd repn score for non-word repetition

Scores in motor skills:

•Pegboard set1 to

Pegboard set5

the time taken to

complete each test

•Mean child’s average over the

pegboard tests

•Preps score knowledge of prepositions

(6–10)

Scores in rhyming tests (2–10):

•Rhyme set1

•Rhyme set2

•Rhyme set3

•RAD

•Poor/Normal RAD scores, categorized as

1 = normal, 2 = poor

Details for ten records from the dataset are shown

below.

Child

code Sex

BPVT

raw

BPVT

std

BPVT %

norm

Non-wd

repn

Pegboard

set1

Pegboard

set2

Pegboard

set3

Pegboard

set4

Pegboard

set5

1 m 29 88 22 15 20.21 28.78 28.04 20.00 24.37

2 m 21 77 6 11 26.34 26.20 20.35 28.25 20.87

3 m 50 107 68 17 21.13 19.88 17.63 16.25 19.76

4 m 23 80 9 5 16.46 16.47 16.63 14.16 17.25

5 f 35 91 28 13 17.88 15.13 17.81 18.41 15.99

6 m 36 97 42 16 20.41 18.64 17.03 16.69 14.47

7 f 47 109 72 25 21.31 18.06 28.00 21.88 18.03

8 m 32 92 30 12 14.57 14.22 13.47 12.29 18.38

9 f 38 101 52 14 22.07 22.69 21.19 22.72 20.62

10 f 44 105 63 15 16.40 14.48 13.83 17.59 34.68

DYSLEXIA
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Child

code Mean

Preps

score

Rhyme

set1

Rhyme

set2

Rhyme

set3 RAD

Poor/

normal

1 24.3 6 5 5 5 6.50 P

2 24.4 9 3 3 4 7.33 P

3 18.9 10 9 8 * 49.33 N

4 16.2 7 4 6 4 11.00 P

5 17.0 10 10 6 6 2.67 N

6 17.5 10 6 5 5 8.33 P

7 21.5 8 9 10 10 26.33 N

8 14.6 10 8 6 3 9.00 N

9 21.9 9 10 10 7 2.67 N

10 19.4 10 7 8 4 9.67 N

Managerial report

1. Is there a (linear) relationship between scores

in tests at ages four and seven?

2. Can we predict RAD from scores at age four?
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15
Multiple
Regression

CHAPTER CONTENTS

Statistics in Practice Jura

15.1 Multiple regression model

15.2 Least squares method

15.3 Multiple coefficient of determination

15.4 Model assumptions

15.5 Testing for significance

15.6 Using the estimated regression equation for estimation and prediction

15.7 Qualitative independent variables

15.8 Residual analysis

15.9 Logistic regression

LEARNING OBJECTIVES After reading this chapter and doing the exercises you should be able to:

1 Understand how multiple regression analysis

can be used to develop relationships involving

one dependent variable and several

independent variables.

2 Interpret the coefficients in a multiple regression

analysis.

3 Appreciate the background assumptions

necessary to conduct statistical tests involving

the hypothesized regression model.

4 Understand the role of computer packages in

performing multiple regression analysis.

5 Interpret and use computer output to develop

the estimated regression equation.

6 Determine how good a fit is provided by the estimated

regression equation.

7 Test the significance of the regression equation.

8 Understand how multicollinearity affects multiple

regression analysis.

9 Understand how residual analysis can be used to

make a judgement as to the appropriateness of the

model, identify outliers and determine which

observations are influential.

10 Understand how logistic regression is used for

regression analyses involving a binary dependent

variable.
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In Chapter 14 we presented simple linear regression and demonstrated its use in developing an
estimated regression equation that describes the relationship between two variables. Recall that the

variable being predicted or explained is called the dependent variable and the variable being used to
predict or explain the dependent variable is called the independent variable. In this chapter we
continue our study of regression analysis by considering situations involving two or more indepen-
dent variables. This subject area, called multiple regression analysis, enables us to consider more
than one potential predictor and thus obtain better estimates than are possible with simple linear
regression.

STATISTICS IN PRACTICE

Jura

Jura is a large island (380 sq km) off the South

West of Scotland, famous for its malt whisky and

the large deer population that wander the quartz

mountains (‘the Paps’) that dominate the landscape.

With a population of a mere 461 it has one of the

lowest population densities of any place in the UK.

Currently Jura is only accessible via the adjoining

island, Islay, which has three ferry services a day –

crossings taking about two hours. However, because

Jura is only four miles from the mainland it has been

suggested that a direct car ferry taking less than half

an hour would be preferable and more economical

than existing provisions.

In exploring the case for an alternative service,

Riddington (1996) arrives at a number of alternative

mathematical formulations that essentially reduce to

multiple regression analysis. In particular, using his-

torical data that also encompasses other inner Heb-

ridean islands of Arran, Bute, Mull and Skye, he

obtains the estimated binary logistic regression

model:

The ferry to Jura

Loge

Q1it

Q2it

6 48 0 89
P1it

P2it

0 129
F1it

F2it

6 18
J1it

J2it

where:

Q1it Q2it is the number of cars travelling by

route 1 relative to the number travelling

by route 2 to island i in year t

P1it P2it is the relative price between route 1

and route 2 to i in year t

F1it F2it is the relative frequency between

route 1 and route 2 to i in year t

J1it J2it is the relative journey time

between route 1 and route 2 to i in year t

Based on appropriate economic assumptions he

estimates from this that some 132 000 passengers

and 38 000 cars would use the new service each year

rising over time. Initially this would yield a revenue

of £426 000. Allowing for annual running costs of

£322 000, the resultant gross profit would therefore

be of the order of £100 000.

Source: Riddington, Geoff (1996) How many for the ferry

boat? OR Insight Vol. 9:2: 26–32
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15.1 MULTIPLE REGRESSION MODEL

Multiple regression analysis is the study of how a dependent variable Y is related to two or more
independent variables. In the general case, we will use p to denote the number of independent variables.

Regression model and regression equation

The concepts of a regression model and a regression equation introduced in the preceding chapter are
applicable in the multiple regression case. The equation that describes how the dependent variable Y is
related to the independent variables X1, X2, … Xp and an error term is called the multiple regression

model. We begin with the assumption that the multiple regression model takes the following form.

Multiple regression model

Y 0 1x1 2x2 …
pxp (15.1)

where X1 = x1, X2 = x2, …, Xp = xp

In the multiple regression model, β0, β1, …, βp, are the parameters and ε (the Greek letter epsilon) is a
random variable. A close examination of this model reveals that Y is a linear function of x1, x2, …, xp (the

0 1x1 2x2 …
pxp part) plus an error term ε. The error term accounts for the variability in Y

that cannot be explained by the linear effect of the p independent variables.
In Section 15.4 we will discuss the assumptions for the multiple regression model and ε. One of the

assumptions is that the mean or expected value of ε is zero. A consequence of this assumption is that the
mean or expected value of Y, denoted E(Y), is equal to 0 1x1 2x2 …

pxp. The equation that
describes how the mean value of Y is related to x1, x2, … xp is called the multiple regression equation.

Multiple regression equation

E Y 0 1x1 2x2 …
pxp (15.2)

Estimated multiple regression equation

If the values of β0, β1, …, βp were known, equation (15.2) could be used to compute the mean value of
Y at given values of x1, x2, … xp. Unfortunately, these parameter values will not, in general, be known
and must be estimated from sample data. A simple random sample is used to compute sample statistics
b0, b1, …, bp that are used as the point estimators of the parameters β0, β1, …, βp. These sample statistics
provide the following estimated multiple regression equation.

Estimated multiple regression equation

y b0 b1x1 b2x2 … bpxp (15.3)

where:
b0 b1 … bp are the estimates of 0 1 … p

y estimated value of the dependent variable
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The estimation process for multiple regression is shown in Figure 15.1.

15.2 LEAST SQUARES METHOD

In Chapter 14 we used the least squares method to develop the estimated regression equation that best
approximated the straight line relationship between the dependent and independent variables. This same
approach is used to develop the estimated multiple regression equation. The least squares criterion is
restated as follows.

Least squares criterion

min Σ yi y i
2

(15.4)

where:

yi observed value of the dependent variable for the ith observation

y i
estimated value of the dependent variable for the ith observation

The estimated values of the dependent variable are computed by using the estimated multiple regression
equation,

y b0 b1x1 b2x2 … bpxp

As expression (15.4) shows, the least squares method uses sample data to provide the values of b0, b1, …, bp
that make the sum of squared residuals {the deviations between the observed values of the dependent
variable (yi) and the estimated values of the dependent variable ŷi} a minimum.

In Chapter 14 we presented formulae for computing the least squares estimators b0 and b1 for the
estimated simple linear regression equation ŷ = b0 b1x. With relatively small data sets, we were able to
use those formulae to compute b0 and b1 by manual calculations. In multiple regression, however, the

Multiple Regression

Model

Sample Data:

Multiple Regression Equation

Y =  β 0 
+ β 1 x1 + β 2 x2 + .... + β

p xp + ε
 x 1       x 2   

....     x
p      y

E(Y) =  β 0 
+ β 1 x1 + β 2 x2 + ... + β p xp 

y =  b0 
+ b1 x1 + b2 x2 + ... + bp xp 

 β 0.β 1.β 2 ..., β p are

unknown parameters

 b0.b1.b2 ..., bp are

sample statisties

 Compute the Estimated
Multiple Regression

Equation

 β 0.β 1.β 2 ..., β p 

 b0 .b1.b2 ..., bp

provide the estimates of

. .

. .

. .

. .

. .

. .

FIGURE 15.1

The estimation

process for

multiple regression
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presentation of the formulae for the regression coefficients b0, b1, …, bp involves the use of matrix algebra
and is beyond the scope of this text. Therefore, in presenting multiple regression, we focus on how
computer software packages can be used to obtain the estimated regression equation and other informa-
tion. The emphasis will be on how to interpret the computer output rather than on how to make the
multiple regression computations.

An example: Eurodistributor Company

As an illustration of multiple regression analysis, we will consider a problem faced by the Eurodistributor
Company, an independent distribution company in the Netherlands. A major portion of Eurodistributor’s
business involves deliveries throughout its local area. To develop better work schedules, the company’s
managers want to estimate the total daily travel time for their drivers.

Initially the managers believed that the total daily travel time would be closely related to the distance
travelled in making the daily deliveries. A simple random sample of ten driving assignments provided the
data shown in Table 15.1 and the scatter diagram shown in Figure 15.2. After reviewing this scatter
diagram, the managers hypothesized that the simple linear regression model Y = β0 β1x1 + ε could
be used to describe the relationship between the total travel time (Y) and the distance travelled (X1).
To estimate the parameters β0 and β1, the least squares method was used to develop the estimated
regression equation.

y b0 b1x1 (15.5)

T ABLE 15 . 1 Preliminary data for Eurodistributor

Driving assignment X1 = Distance travelled (kilometres) Y = Travel time (hours)

1 100 9.3

2 50 4.8

3 100 8.9

4 100 6.5

5 50 4.2

6 80 6.2

7 75 7.4

8 65 6.0

9 90 7.6

10 90 6.1
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Scatterplot of Total Travel  Time (hours) vs Distance

4
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Distance

50 60 90 100

FIGURE 15.2

Scatter diagram of preliminary data

for Eurodistributor
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In Figure 15.3, we show the MINITAB computer output from applying simple linear regression to the
data in Table 15.1. The estimated regression equation is:

y 1 27 0 0678x1

At the 0.05 level of significance, the F value of 15.81 and its corresponding p-value of 0.004 indicate that
the relationship is significant; that is, we can reject H0: β1 = 0 because the p-value is less than α = 0.05.
Thus, we can conclude that the relationship between the total travel time and the distance travelled is
significant; longer travel times are associated with more distance. With a coefficient of determination
(expressed as a percentage) of R-sq = 66.4 per cent, we see that 66.4 per cent of the variability in travel
time can be explained by the linear effect of the distance travelled. This finding is fairly good, but the
managers might want to consider adding a second independent variable to explain some of the remaining
variability in the dependent variable.

In attempting to identify another independent variable, the managers felt that the number of
deliveries could also contribute to the total travel time. The Eurodistributor data, with the number of
deliveries added, are shown in Table 15.2.

EURO

DISTRIBUTOR

FIGURE 15.3

MINITAB output for

Eurodistributor with one

independent variable

T ABLE 15 . 2 Data for Eurodistributor with distance (X1) and number of deliveries (X2) as

the independent variables

Driving

assignment

X1 = Distance travelled

(kilometres)

X2 = Number of

deliveries

Y = Travel time

(hours)

1 100 4 9.3

2 50 3 4.8

3 100 4 8.9

4 100 2 6.5

5 50 2 4.2

6 80 2 6.2

7 75 3 7.4

8 65 4 6.0

9 90 3 7.6

10 90 2 6.1
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The MINITAB computer solution with both distance (X1) and number of deliveries (X2) as indepen-
dent variables is shown in Figure 15.4. The estimated regression equation is:

y 0 869 0 0611x1 0 923x2 (15.6)

In the next section we will discuss the use of the coefficient of multiple determination in measuring
how good a fit is provided by this estimated regression equation. Before doing so, let us examine more
carefully the values of b1 = 0.0611 and b2 = 0.923 in equation (15.6).

Note on interpretation of coefficients

One observation can be made at this point about the relationship between the estimated regression
equation with only the distance as an independent variable and the equation that includes the number of
deliveries as a second independent variable. The value of b1 is not the same in both cases. In simple linear
regression, we interpret b1 as an estimate of the change in Y for a one-unit change in the independent
variable. In multiple regression analysis, this interpretation must be modified somewhat. That is, in
multiple regression analysis, we interpret each regression coefficient as follows: bi represents an estimate
of the change in Y orresponding to a one-unit change in Xi when all other independent variables are held
constant.

In the Eurodistributor example involving two independent variables, b1 = 0.0611. Thus, 0.0611 hours
is an estimate of the expected increase in travel time corresponding to an increase of one kilometre in the
distance travelled when the number of deliveries is held constant. Similarly, because b2 = 0.923, an
estimate of the expected increase in travel time corresponding to an increase of one delivery when the
distance travelled is held constant is 0.923 hours.

FIGURE 15.4

MINITAB output for

Eurodistributor with two

independent variables
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EXERCISES

Note to student: The exercises involving data in this and subsequent sections were designed to be

solved using a computer software package.

Methods

1. The estimated regression equation for a model involving two independent variables and ten

observations follows.

y 29 1270 0 5906x1 0 4980x2

a. Interpret b1 and b2 in this estimated regression equation.

b. Estimate Y when X1 = 180 and X2 = 310.

2. Consider the following data for a dependent variable Y and two independent variables, X1 and X2.

x1 x2 y

30 12 94

47 10 108

25 17 112

51 16 178

40 5 94

51 19 175

74 7 170

36 12 117

59 13 142

76 16 211

a. Develop an estimated regression equation relating Y to X1. Estimate Y if X1 = 45.

b. Develop an estimated regression equation relating Y to X2. Estimate Y if X2 = 15.

c. Develop an estimated regression equation relating Y to X1 and X2. Estimate Y if X1 = 45 and

X2 = 15.

3. In a regression analysis involving 30 observations, the following estimated regression equation

was obtained.

y 17 6 03 8x1 2 3x2 7 6x3 2 7x4

a. Interpret b1, b2 b3 and b4 in this estimated regression equation.

b. Estimate Y when X1 = 10, X2 = 5, X3 = 1 and X4 = 2.

Applications

4. The stack loss plant data of Brownlee (1965) contains 21 days of measurements from a plant’s

oxidation of ammonia to nitric acid. The nitric oxide pollutants are captured in an absorption tower.

Details of variables are as follows:

Y = LOSS = ten times the percentage of ammonia going into the plant that escapes from the

absorption column.

X1 = AIRFLOW = Rate of operation of the plant.

X2 = TEMP = Cooling water temperature in the absorption tower.

X3 = ACID = Acid concentration of circulating acid minus 50 times.

COMPLETE

SOLUTIONS
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The following estimated regression equation relating LOSS to AIRFLOW and TEMP was given.

y 50 359 0 671x1 1 295x2

a. Estimate sales resulting from an AIRFLOW of 60 and a TEMP of 20.

b. Interpret b1 and b2 in this estimated regression equation.

5. The owner of Toulon Theatres would like to estimate weekly gross revenue as a function of

advertising expenditures. Historical data for a sample of eight weeks follow.

Weekly gross revenue

( 000s)

Television advertising

( 000s)

Newspaper advertising

( 000s)

96 5.0 1.5

90 2.0 2.0

95 4.0 1.5

92 2.5 2.5

95 3.0 3.3

94 3.5 2.3

94 2.5 4.2

94 3.0 2.5

a. Develop an estimated regression equation with the amount of television advertising as the

independent variable.

b. Develop an estimated regression equation with both television advertising and newspaper

advertising as the independent variables.

c. Is the estimated regression equation coefficient for television advertising expenditures the

same in part (a) and in part (b)? Interpret the coefficient in each case.

d. What is the estimate of the weekly gross revenue for a week when 3500 is spent on television

advertising and 1800 is spent on newspaper advertising?

6. The following table gives the annual return, the safety rating (0 = riskiest, 10 = safest), and the

annual expense ratio for 20 foreign funds.

Annual

safety rating

Expense

ratio (%)

Annual

return (%)

Accessor Int’l Equity ‘Adv’ 7.1 1.59 49

Aetna ‘I’ International 7.2 1.35 52

Amer Century Int’l Discovery ‘Inv’ 6.8 1.68 89

Columbia International Stock 7.1 1.56 58

Concert Inv ‘A’ Int’l Equity 6.2 2.16 131

Dreyfus Founders Int’l Equity ‘F’ 7.4 1.80 59

Driehaus International Growth 6.5 1.88 99

Excelsior ‘Inst’ Int’l Equity 7.0 0.90 53

Julius Baer International Equity 6.9 1.79 77

Marshall International Stock ‘Y’ 7.2 1.49 54

MassMutual Int’l Equity ‘S’ 7.1 1.05 57

Morgan Grenfell Int’l Sm Cap ‘Inst’ 7.7 1.25 61

New England ‘A’ Int’l Equity 7.0 1.83 88

Pilgrim Int’l Small Cap ‘A’ 7.0 1.94 122

Republic International Equity 7.2 1.09 71

Sit International Growth 6.9 1.50 51

Smith Barney ‘A’ Int’l Equity 7.0 1.28 60
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15.3 MULTIPLE COEFFICIENT OF DETERMINATION

In simple linear regression we showed that the total sum of squares can be partitioned into two
components: the sum of squares due to regression and the sum of squares due to error.

The same procedure applies to the sum of squares in multiple regression.

Relationship among SST, SSR and SSE

SST SSR SSE (15.7)

where:

SST = total sum of squares = Σ (yi y )
2

SSR = sum of squares due to regression = Σ (ŷi y )
2

SSE = sum of squares due to error = Σ (yi ŷi)
2

Because of the computational difficulty in computing the three sums of squares, we rely on computer
packages to determine those values. The analysis of variance part of the MINITAB output in Figure 15.4
shows the three values for the Eurodistributor problem with two independent variables: SST = 23.900,
SSR = 21.601 and SSE = 2.299. With only one independent variable (distance travelled), the MINITAB
output in Figure 15.3 shows that SST = 23.900, SSR = 15.871 and SSE = 8.029. The value of SST is the
same in both cases because it does not depend on ŷ but SSR increases and SSE decreases when a second
independent variable (number of deliveries) is added. The implication is that the estimated multiple
regression equation provides a better fit for the observed data.

In Chapter 14, we used the coefficient of determination, R
2
= SSR/SST, to measure the goodness of fit for

the estimated regression equation. The same concept applies to multiple regression. The term multiple

coefficient of determination indicates that we are measuring the goodness of fit for the estimated multiple
regression equation. The multiple coefficient of determination, denoted R

2
, is computed as follows.

Multiple coefficient of determination

R2 SSR

SST
(15.8)

Annual

safety rating

Expense

ratio (%)

Annual

return (%)

State St Research ‘S’ Int’l Equity 7.1 1.65 50

Strong International Stock 6.5 1.61 93

Vontobel International Equity 7.0 1.50 47

a. Develop an estimated regression equation relating the annual return to the safety rating and

the annual expense ratio.

b. Estimate the annual return for a firm that has a safety rating of 7.5 and annual expense ratio

of 2.FORFUNDS
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The multiple coefficient of determination can be interpreted as the proportion of the variability in the
dependent variable that can be explained by the estimated multiple regression equation. Hence, when
multiplied by 100, it can be interpreted as the percentage of the variability in Y that can be explained by
the estimated regression equation.

In the two-independent-variable Eurodistributor example, with SSR = 21.601 and SST = 23.900,
we have:

R2 21 601

23 900
0 904

Therefore, 90.4 per cent of the variability in travel time Y is explained by the estimated multiple
regression equation with distance and number of deliveries as the independent variables. In Figure 15.4,
we see that the multiple coefficient of determination is also provided by the MINITAB output; it is
denoted by R-sq = 90.4 per cent.

Figure 15.3 shows that the R-sq value for the estimated regression equation with only one independent
variable, distance travelled (X1), is 66.4 per cent. Thus, the percentage of the variability in travel times that
is explained by the estimated regression equation increases from 66.4 per cent to 90.4 per cent when
number of deliveries is added as a second independent variable. In general, R

2
increases as independent

variables are added to the model.
Many analysts prefer adjusting R

2
for the number of independent variables to avoid overestimating the

impact of adding an independent variable on the amount of variability explained by the estimated
regression equation. With n denoting the number of observations and p denoting the number of
independent variables, the adjusted multiple coefficient of determination is computed as follows.

Adjusted multiple coefficient of determination

adjR2 1 1 R2 n 1

n p 1
(15.9)

For the Eurodistributor example with n = 10 and p = 2, we have:

adjR2 1 1 0 904
10 1

10 2 1
0 88

Therefore, after adjusting for the two independent variables, we have an adjusted multiple coefficient of
determination of 0.88. This value, allowing for rounding, corresponds with the value in the MINITAB
output in Figure 15.4 of R-sq(adj) = 87.6 per cent.

EXERCISES

Methods

7. In Exercise 1, the following estimated regression equation based on ten observations was

presented.

y 29 1270 0 5906x1 0 4980x2

The values of SST and SSR are 6724.125 and 6216.375, respectively.

a. Find SSE.

b. Compute R
2
.

c. Compute adj R
2
.

d. Comment on the goodness of fit.
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15.4 MODEL ASSUMPTIONS

In Section 15.1 we introduced the following multiple regression model.

Multiple regression model

Y 0 1x1 2x2 …
pxp (15.10)

8. In Exercise 2, ten observations were provided for a dependent variable Y and two independent

variables X1 and X2; for these data SST = 15 182.9 and SSR = 14 052.2.

a. Compute R
2
.

b. Compute adj R
2
.

c. Does the estimated regression equation explain a large amount of the variability in

the data? Explain.

9. In Exercise 3, the following estimated regression equation based on 30 observations was

presented.

y 17 6 3 8x1 2 3x2 7 6x3 2 7x4

The values of SST and SSR are 1805 and 1760, respectively.

a. Compute R
2
.

b. Compute adj R
2
.

c. Comment on the goodness of fit.

Applications

10. In Exercise 4, the following estimated regression equation relating LOSS (Y) to AIRFLOW (X1) and

TEMP (X2) was given.

y 50 359 0 671x1 1 295x2

For these data SST = 2069.238 and SSR = 1880.443.

a. For the estimated regression equation given, compute R
2
.

b. Compute adj R
2
.

c. Does the model appear to explain a large amount of variability in the data? Explain.

11. In Exercise 5, the owner of Toulon Theatres used multiple regression analysis to predict gross

revenue (Y) as a function of television advertising (X1) and newspaper advertising (X2). The

estimated regression equation was

y 83 2 2 29x1 1 30x2

The computer solution provided SST = 25.5 and SSR = 23.435.

a. Compute and interpret R
2

and adj R
2
.

b. When television advertising was the only independent variable, R
2

= 0.653 and adj R
2

=

0.595. Do you prefer the multiple regression results? Explain.

TOULON

EXER2

COMPLETE

SOLUTIONS
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The assumptions about the error term ε in the multiple regression model parallel those for the simple
linear regression model.

Assumptions about the error term in the multiple regression model

Y 0 1x1 x2 …
pxp

1. The error ε is a random variable with mean or expected value of zero; that is, E(ε) = 0. Implication: For

given values of X1, X2, … Xp, the expected, or average, value of Y is given by:

E Y 0 1x1 2x2 …
pxp (15.11)

Equation (15.11) is the multiple regression equation we introduced in Section 15.1. In this equation, E(Y)

represents the average of all possible values of Y that might occur for the given values of X1, X2, …, Xp.

2. The variance of ε is denoted by σ
2
and is the same for all values of the independent variables

X1, X2, …, Xp.

Implication: The variance of Y about the regression line equals σ
2
and is the same for all values of

X1, X2, …, Xp.

3. The values of ε are independent.

Implication: The size of the error for a particular set of values for the independent variables is not related

to the size of the error for any other set of values.

4. The error ε is a normally distributed random variable reflecting the deviation between the Y value and the

expected value of Y given by 0 1 1 2 2 … .

Implication: Because β0, β1, …, βp are constants for the given values of x1, x2, … xp, the dependent

variable Y is also a normally distributed random variable.

To obtain more insight about the form of the relationship given by equation (15.11), consider the
following two-independent-variable multiple regression equation.

E Y 0 1x1 2x2

The graph of this equation is a plane in three-dimensional space. Figure 15.5 provides an example of such
a graph. Note that the value of ε shown is the difference between the actual Y value and the expected value
of y, E(Y), when X1 = x1* and X2 = x2*.

In regression analysis, the term response variable is often used in place of the term dependent variable.
Furthermore, since the multiple regression equation generates a plane or surface, its graph is called a
response surface.

Plane corresponding
to E(Y)=  β0 +  β1x1 +  β2x2

 β0 

y

x2

x2*

x1*

(x1*, x2*)
x1

Point corresponding to

X1 =  x1* and X2 =  x2*

Value of Y when

X1 =  x1* and X2 =  x2*

E(Y) when

X1 =  x1* and X2 =  x2*∋

FIGURE 15.5

Graph of the regression

equation for multiple regression

analysis with two independent

variables
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15.5 TESTING FOR SIGNIFICANCE

In this section we show how to conduct significance tests for a multiple regression relationship.
The significance tests we used in simple linear regression were a t test and an F test. In simple

linear regression, both tests provide the same conclusion: that is, if the null hypothesis is rejected, we
conclude that the slope parameter β1 ≠ 0. In multiple regression, the t test and the F test have different
purposes.

1 The F test is used to determine whether a significant relationship exists between the dependent
variable and the set of all the independent variables; we will refer to the F test as the test for
overall significance.

2 If the F test shows an overall significance, the t test is used to determine whether each of the
individual independent variables is significant. A separate t test is conducted for each of the
independent variables in the model; we refer to each of these t tests as a test for individual
significance.

In the material that follows, we will explain the F test and the t test and apply each to the Eurodistributor
Company example.

F test

Given the multiple regression model defined in (15.1)

Y 0 1x1 2x2 …
pxp

the hypotheses for the F test can be written as follows:

H0 1 2 …… p 0
H1 One or more of the parameters is not equal to zero

If H0 is rejected, the test gives us sufficient statistical evidence to conclude that one or more of the
parameters is not equal to zero and that the overall relationship between Y and the set of independent
variables X1, X2, … Xp is significant. However, if H0 cannot be rejected, we deduce there is not sufficient
evidence to conclude that a significant relationship is present.

Before confirming the steps involved in performing the F test, it might be helpful if we first review the
concept of mean square. A mean square is a sum of squares divided by its corresponding degrees of
freedom. In the multiple regression case, the total sum of squares has n 1 degrees of freedom, the
sum of squares due to regression (SSR) has p degrees of freedom, and the sum of squares due to error has
n p 1 degrees of freedom. Hence, the mean square due to regression (MSR) is:

Mean square regression

MSR
SSR

p
(15.12)

and:

Mean square error

MSE s2
SSE

n p 1
(15.13)
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As has already been acknowledged in Chapter 14, MSE provides an unbiased estimate of σ
2
, the variance

of the error term ε. If H0: β1 = β2 = …… = βp = 0 is true, MSR also provides an unbiased estimate of σ
2
,

and the value of MSR/MSE should be close to 1. However, if H0 is false, MSR overestimates σ
2
and the

value of MSR/MSE becomes larger. To determine how large the value of MSR/MSE must be to reject H0,
we make use of the fact that if H0 is true and the assumptions about the multiple regression model are
valid, the sampling distribution of MSR/MSE is an F distribution with p degrees of freedom in the
numerator and n p 1 in the denominator. A summary of the F test for significance in multiple
regression follows.

F test for overall significance

H0 1 2 … p 0
H1 One or more of the parameters is not equal to zero

Test statistic

F
MSR

MSE
(15.14)

Rejection rule

p-value approach: Reject H0 if p-value ≤ α

Critical value approach: Reject H0 if F ≥ Fα

where Fα is based on an F distribution with p degrees of freedom in the numerator and n p 1 degrees of

freedom in the denominator.

Applying the F test to the Eurodistributor Company multiple regression problem with two indepen-
dent variables, the hypotheses can be written as follows.

H0 1 2 0
H1 1 and or 2 is not equal to zero

Figure 15.6 shows the MINITAB output for the multiple regression model with distance (X1) and
number of deliveries (X2) as the two independent variables. In the analysis of variance part of the output,
we see that MSR = 10.8 and MSE = 0.328. Using equation (15.14), we obtain the test statistic.

F
10 8

0 328
32 9

Note that the F value on the MINITAB output is F = 32.88; the value we calculated differs because we
used rounded values for MSR and MSE in the calculation. Using α = 0.01, the p-value = 0.000 in the last
column of the analysis of variance table (Figure 15.6) indicates that we can reject H0: β1 = β2 = 0 because
the p-value is less than α = 0.01. Alternatively, Table 4 of Appendix B shows that with two degrees of
freedom in the numerator and seven degrees of freedom in the denominator, F0.01 = 9.55. With 32.9 >
9.55, we reject H0: β1 = β2 = 0 and conclude that a significant relationship is present between travel time
Y and the two independent variables, distance and number of deliveries.

As noted previously, the mean square error provides an unbiased estimate of σ
2
, the variance of the

error term ε. Referring to Figure 15.6, we see that the estimate of σ
2
is MSE = 0.328. The square root of

MSE is the estimate of the standard deviation of the error term. As defined in Section 14.5, this standard
deviation is called the standard error of the estimate and is denoted s. Hence, we have
s MSE 0 328 0 573. Note that the value of the standard error of the estimate appears in the
MINITAB output in Figure 15.6.

Table 15.3 is the general analysis of variance (ANOVA) table that provides the F test results for a
multiple regression model.
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The value of the F test statistic appears in the last column and can be compared to Fα with p degrees of
freedom in the numerator and n p 1 degrees of freedom in the denominator to make the hypothesis
test conclusion.

By reviewing the MINITAB output for Eurodistributor Company in Figure 15.6, we see that
MINITAB’s analysis of variance table contains this information. In addition, MINITAB provides the
p-value corresponding to the F test statistic.

t test

If the F test shows that the multiple regression relationship is significant, a t test can be conducted to
determine the significance of each of the individual parameters. The t test for individual significance
follows.

t test for individual significance

For any parameter βi
H0 i 0
H1 i 0

Test statistic

t
bi

sbi
(15.15)

FIGURE 15.6

MINITAB output for

Eurodistributor with two

independent variables,

distance (X1) and number of

deliveries (X2)

T ABLE 15 . 3 ANOVA table for a multiple regression model with p independent variables

Source Degrees of freedom Sum of squares Mean square F

Regression p SSR
MSR

SSR

p
F

MSR

MSE

Error n − p − 1 SSE
MSE

SSE

n p l
Total n 1 SST
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Rejection rule

p-value approach: Reject H0 if p-value ≤ α

Critical value approach: Reject H0 if t ≤ tα/2 or if t ≥ tα/2
where tα/2 is based on a t distribution with n p 1 degrees of freedom.

In the test statistic, sbi is the estimate of the standard deviation of bi. The value of sbi will be provided by
the computer software package.

Let us conduct the t test for the Eurodistributor regression problem. Refer to the section of Figure 15.6
that shows the MINITAB output for the t-ratio calculations. Values of b1, b2, sb2 and sb2 are as follows.

b1 = 0.061135 sb1
= 0.009888

b2 = 0.9234 sb2
= 0.2211

Using equation (15.15), we obtain the test statistic for the hypotheses involving parameters β1 and β2.

t 0 061135 0 009888 6 18
t 0 9234 0 2211 4 18

Note that both of these t-ratio values and the corresponding p-values are provided by the MINITAB
output in Figure 15.6. Using α = 0.01, the p-values of 0.000 and 0.004 from the MINITAB output
indicate that we can reject H0: β1 = 0 and H0: β2 = 0. Hence, both parameters are statistically
significant. Alternatively, Table 2 of Appendix B shows that with n p 1 = 10 2 1 = 7 degrees
of freedom, t0.005 = 3.499. With 6.18 > 3.499, we reject H0: β1 = 0. Similarly, with 4.18 > 3.499, we
reject H0: β2 = 0.

Multicollinearity

In multiple regression analysis, multicollinearity refers to the correlation among the independent vari-
ables. We used the term independent variable in regression analysis to refer to any variable being used to
predict or explain the value of the dependent variable. The term does not mean, however, that the
independent variables themselves are independent in any statistical sense. On the contrary, most
independent variables in a multiple regression problem are correlated to some degree with one another.
For example, in the Eurodistributor example involving the two independent variables X1 (distance) and
X2 (number of deliveries), we could treat the distance as the dependent variable and the number of
deliveries as the independent variable to determine whether those two variables are themselves related.
We could then compute the sample correlation coefficient to determine the extent to which the variables
are related. Doing so yields:

Pearson correlation of Distance and Deliveries 0 162

which suggests only a small degree of linear association exists between the two variables. The implication
from this would be that multicollinearity is not a problem for the data. If however the association had
been more pronounced the resultant multicollinearity might seriously have jeopardized the estimation of
the model.

To provide a better perspective of the potential problems of multicollinearity, let us consider a
modification of the Eurodistributor example. Instead of X2 being the number of deliveries, let X2 denote
the number of litres of petrol consumed. Clearly, X1 (the distance) and X2 are related; that is, we know
that the number of litres of petrol used depends on the distance travelled. Hence, we would conclude
logically that X1 and X2 are highly correlated independent variables.

Assume that we obtain the equation y b0 b1x1 b2x2 and find that the F test shows the
relationship to be significant. Then suppose we conduct a t test on β1 to determine whether β1 = 0,
and we cannot reject H0: β1 = 0. Does this result mean that travel time is not related to distance? Not
necessarily. What it probably means is that with X2 already in the model, X1 does not make a significant
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contribution to determining the value of Y. This interpretation makes sense in our example; if we know
the amount of petrol consumed, we do not gain much additional information useful in predicting Y by
knowing the distance. Similarly, a t test might lead us to conclude β2 = 0 on the grounds that, with X1 in
the model, knowledge of the amount of petrol consumed does not add much.

One useful way of detecting multicollinearity is to calculate the variance inflation factor (VIF) for each
independent variable (Xj) in the model. The VIF is defined as:

Variance inflation factor

VIF Xj

1

1 R2
j

(15.16)

where R2
j is the coefficient of determination obtained when Xj (j = 1, 2, …, p) is regressed on all remaining

independent variables in the model. If Xj is not correlated with other predictors R2
j 0 and VIF ≈ 1.

Correspondingly, if R2
j is close to 1 the VIF will be very large. Typically VIF values of ten or more are

regarded as problematic.
For the Eurodistributor data, the VIF for X1 (and also X2 by symmetry) would be:

VIF Xj
1

1 0 1622
1 027

signifying, as before, there is no problem with multicollinearity.
To summarize, for t tests associated with testing for the significance of individual parameters, the

difficulty caused by multicollinearity is that it is possible to conclude that none of the individual
parameters are significantly different from zero when an F test on the overall multiple regression equation
indicates there is a significant relationship. This problem is avoided, however, when little correlation
among the independent variables exists.

If possible, every attempt should be made to avoid including independent variables that are highly
correlated. In practice, however, strict adherence to this policy is not always possible. When decision-
makers have reason to believe substantial multicollinearity is present, they must realize that separating the
effects of the individual independent variables on the dependent variable is difficult.

EXERCISES

Methods

12. In Exercise 1, the following estimated regression equation based on ten observations was

presented.

y 29 1270 0 5906x1 0 4980x2

Here SST = 6724.125, SSR = 6216.375, sb1
0 0813 and sb2

0 0567

a. Compute MSR and MSE.

b. Compute F and perform the appropriate F test. Use = 0.05.

c. Perform a t test for the significance of 1. Use = 0.05.

d. Perform a t test for the significance of 2. Use = 0.05.

13. Refer to the data presented in Exercise 2. The estimated regression equation for these data is

y 18 4 2 01x1 4 74x2

EXER2
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15.6 USING THE ESTIMATED REGRESSION EQUATION
FOR ESTIMATION AND PREDICTION

The procedures for estimating the mean value of Y and predicting an individual value of Y in multiple
regression are similar to those in regression analysis involving one independent variable. First, recall that
in Chapter 14 we showed that the point estimate of the expected value of Y for a given value of X was the
same as the point estimate of an individual value of Y. In both cases, we used ŷ = b0 b1x as the point
estimate.

Here SST = 15 182.9, SSR = 14 052.2, sb1
0 2471 and sb2

0 9484

a. Test for a significant relationship among X1, X2 and Y. Use = 0.05.

b. Is 1 significant? Use = 0.05.

c. Is 2 significant? Use = 0.05.

14. The following estimated regression equation was developed for a model involving two

independent variables.

y 40 7 8 63x1 2 71x2

After X2 was dropped from the model, the least squares method was used to obtain an estimated

regression equation involving only X1 as an independent variable.

y 42 0 9 01x1

a. Give an interpretation of the coefficient of X1 in both models.

b. Could multicollinearity explain why the coefficient of X1 differs in the two models? If so, how?

Applications

15. In Exercise 4, the following estimated regression equation relating LOSS (Y) to AIRFLOW (X1) and

TEMP (X2) was given.

y 50 359 0 671x1 1 295x2

For these data SST = 2069.238 and SSR = 1880.443.

Compute SSE, MSE and MSR.

a. Use an F test and a 0.05 level of significance to determine whether there is a relationship

among the variables.

16. Refer to Exercise 5.

a. Use = 0.01 to test the hypotheses

H0 1 2 0

H1 1 and or 2is not equal to zero

for the model Y = 0 1x1 2x2 , where:

X1 television advertising 1000s

X2 newspaper advertising 1000s

b. Use = 0.05 to test the significance of 1. Should X1 be dropped from the model?

c. Use = 0.05 to test the significance of 2. Should X2 be dropped from the model?

COMPLETE

SOLUTIONS
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In multiple regression we use the same procedure. That is, we substitute the given values of X1, X2, … Xp
into the estimated regression equation and use the corresponding value of ŷ as the point estimate. Suppose
that for the Eurodistributor example we want to use the estimated regression equation involving X1
(distance) and X2 (number of deliveries) to develop two interval estimates:

1 A confidence interval of the mean travel time for all trucks that travel 100 kilometres and make two
deliveries.

2 A prediction interval of the travel time for one specific truck that travels 100 kilometres and makes
two deliveries.

Using the estimated regression equation ŷ = 0.869 0.0611x1 0.923x2 with X1 = 100 and X2 = 2,
we obtain the following value of ŷ.

y 0 869 0 0611 100 0 923 2 7 09

Hence, the point estimate of travel time in both cases is approximately seven hours.
To develop interval estimates for the mean value of Y and for an individual value of Y, we use a

procedure similar to that for regression analysis involving one independent variable.
The formulae required are beyond the scope of the text, but computer packages for multiple

regression analysis will often provide confidence intervals once the values of X1, X2, … Xp are specified
by the user. In Table 15.4 we show the 95 per cent confidence and prediction intervals for the
Eurodistributor example for selected values of X1 and X2; these values were obtained using MINITAB.
Note that the interval estimate for an individual value of Y is wider than the interval estimate for the
expected value of Y. This difference simply reflects the fact that for given values of X1 and X2 we can
estimate the mean travel time for all trucks with more precision than we can predict the travel time for
one specific truck.

T ABLE 15 . 4 The 95 per cent confidence and prediction intervals for Eurodistributor

Confidence interval Prediction interval

Value of X1 Value of X2 Lower limit Upper limit Lower limit Upper limit

50 2 3.146 4.924 2.414 5.656

50 3 4.127 5.789 3.368 6.548

50 4 4.815 6.948 4.157 7.607

100 2 6.258 7.926 5.500 8.683

100 3 7.385 8.645 6.520 9.510

100 4 8.135 9.742 7.362 10.515

EXERCISES

Methods

17. In Exercise 1, the following estimated regression equation based on ten observations was

presented.

y 29 1270 0 5906x1 0 4980x2

a. Develop a point estimate of the mean value of Y when X1 = 180 and X2 = 310.

b. Develop a point estimate for an individual value of Y when X1 = 180 and X2 = 310.
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15.7 QUALITATIVE INDEPENDENT VARIABLES

Thus far, the examples we considered involved quantitative independent variables such as distance
travelled and number of deliveries. In many situations, however, we must work with qualitative inde-

pendent variables such as gender (male, female), method of payment (cash, credit card, cheque) and so
on. The purpose of this section is to show how qualitative variables are handled in regression analysis. To
illustrate the use and interpretation of a qualitative independent variable, we will consider a problem
facing the managers of Johansson Filtration.

An example: Johansson Filtration

Johansson Filtration provides maintenance service for water-filtration systems throughout southern
Denmark. Customers contact Johansson with requests for maintenance service on their water-filtration
systems. To estimate the service time and the service cost, Johansson’s managers wish to predict the repair
time necessary for each maintenance request. Hence, repair time in hours is the dependent variable.
Repair time is believed to be related to two factors: the number of months since the last maintenance
service and the type of repair problem (mechanical or electrical). Data for a sample of ten service calls are
reported in Table 15.5.

Let Y denote the repair time in hours and X1 denote the number of months since the last maintenance
service. The regression model that uses only X1 to predict Y is:

Y 0 1x1 ε

Using MINITAB to develop the estimated regression equation, we obtained the output shown in
Figure 15.7. The estimated regression equation is:

y 2 15 0 304x1 (15.17)

18. Refer to the data in Exercise 2. The estimated regression equation for those data is

y 18 4 2 01x1 4 74x2

a. Develop a 95 per cent confidence interval for the mean value of Y when X1 = 45 and X2 = 15.

b. Develop a 95 per cent prediction interval for Y when X1 = 45 and X2 = 15.

Applications

19. In Exercise 5, the owner of Toulon Theatres used multiple regression analysis to predict gross

revenue (Y) as a function of television advertising (X1) and newspaper advertising (X2). The

estimated regression equation was

y 83 2 2 29x1 1 30x2

a. What is the gross revenue expected for a week when 3500 is spent on television advertising

(X1 = 3.5) and 1800 is spent on newspaper advertising (X2 = 1.8)?

b. Provide a 95 per cent confidence interval for the mean revenue of all weeks with the

expenditures listed in part (a).

c. Provide a 95 per cent prediction interval for next week’s revenue, assuming that the

advertising expenditures will be allocated as in part (a).

JOHANSSON

EXER2

TOULON
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At the 0.05 level of significance, the p-value of 0.016 for the t (or F) test indicates that the number of
months since the last service is significantly related to repair time. R-sq = 53.4 per cent indicates that X1
alone explains 53.4 per cent of the variability in repair time.

To incorporate the type of failure into the regression model, we define the following variable.

X2 0 if the type of repair is mechanical
X2 1 if the type of repair is electrical

In regression analysis X2 is called a dummy variable or indicator variable. Using this dummy variable, we
can write the multiple regression model as:

Y 0 1x1 2x2 ε

Table 15.6 is the revised data set that includes the values of the dummy variable. Using MINITAB and the
data in Table 15.6, we can develop estimates of the model parameters. The MINITAB output in
Figure 15.8 shows that the estimated multiple regression equation is:

y 0 93 0 388x1 1 26x2 (15.18)

T ABLE 15 . 5 Data for the Johansson Filtration example

Service call Months since last service Type of repair Repair time in hours

1 2 electrical 2.9

2 6 mechanical 3.0

3 8 electrical 4.8

4 3 mechanical 1.8

5 2 electrical 2.9

6 7 electrical 4.9

7 9 mechanical 4.2

8 8 mechanical 4.8

9 4 electrical 4.4

10 6 electrical 4.5

FIGURE 15.7

MINITAB output for

Johansson Filtration with

months since last service

(X1) as the independent

variable
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At the 0.05 level of significance, the p-value of 0.001 associated with the F test (F = 21.36) indicates that
the regression relationship is significant. The t test part of the printout in Figure 15.8 shows that both
months since last service (p-value = 0.000) and type of repair (p-value = 0.005) are statistically significant.
In addition, R-sq = 85.9 per cent and R-sq(adj) = 81.9 per cent indicate that the estimated regression
equation does a good job of explaining the variability in repair times. Thus, equation (15.18) should prove
helpful in estimating the repair time necessary for the various service calls.

Interpreting the parameters

The multiple regression equation for the Johansson Filtration example is:

E Y 0 1x1 2x2 (15.19)

T ABLE 15 . 6 Data for the Johansson Filtration example with type of repair indicated by a dummy variable

(X2 = 0 for mechanical; X2 = 1 for electrical)

Customer Months since last service (X1) Type of repair (X2) Repair time in hours (Y)

1 2 1 2.9

2 6 0 3.0

3 8 1 4.8

4 3 0 1.8

5 2 1 2.9

6 7 1 4.9

7 9 0 4.2

8 8 0 4.8

9 4 1 4.4

10 6 1 4.5

FIGURE 15.8

MINITAB output for

Johansson Filtration with

months since last service

(X1) and type of repair (X2) as

the independent variables
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To understand how to interpret the parameters β0, β1 and β2 when a qualitative variable is present,
consider the case when X2 = 0 (mechanical repair). Using E(Y | mechanical) to denote the mean or
expected value of repair time given a mechanical repair, we have:

E Y mechanical 0 1x1 2 0 0 1x1 (15.20)

Similarly, for an electrical repair (X2 = 1), we have:

E Y electrical 0 1x1 2 1 0 1x1 2

0 2 1x1
(15.21)

Comparing equations (15.20) and (15.21), we see that the mean repair time is a linear function of X1 for
both mechanical and electrical repairs. The slope of both equations is β1, but the y-intercept differs. The
y-intercept is β0 in equation (15.20) for mechanical repairs and (β0 β2) in equation (15.21) for electrical
repairs. The interpretation of β2 is that it indicates the difference between the mean repair time for an
electrical repair and the mean repair time for a mechanical repair.

If β2 is positive, the mean repair time for an electrical repair will be greater than that for a
mechanical repair; if β2 is negative, the mean repair time for an electrical repair will be less than that
for a mechanical repair. Finally, if β2 = 0, there is no difference in the mean repair time between electrical
and mechanical repairs and the type of repair is not related to the repair time.

Using the estimated multiple regression equation ŷ = 0.93 0.388x1 1.26x2, we see that 0.93 is the
estimate of β0 and 1.26 is the estimate of β2. Thus, when X2 = 0 (mechanical repair):

y 0 93 0 388x1 (15.22)

and when X2 = 1 (electrical repair):

y 0 93 0 388x1 1 26 1
2 19 0 388x1

(15.23)

In effect, the use of a dummy variable for type of repair provides two equations that can be used to predict
the repair time, one corresponding to mechanical repairs and one corresponding to electrical repairs. In
addition, with b2 = 1.26, we learn that, on average, electrical repairs require 1.26 hours longer than
mechanical repairs.

Figure 15.9 is the plot of the Johansson data from Table 15.6. Repair time in hours (Y) is represented
by the vertical axis and months since last service (X1) is represented by the horizontal axis. A data point
for a mechanical repair is indicated by an M and a data point for an electrical repair is indicated by an E.
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M =  mechanical repair
E =  electrical repair

FIGURE 15.9

Scatter diagram for the

Johansson Filtration repair

data from Table 15.6
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Equations (15.22) and (15.23) are plotted on the graph to show graphically the two equations that can be
used to predict the repair time, one corresponding to mechanical repairs and one corresponding to
electrical repairs.

More complex qualitative variables

Because the qualitative variable for the Johansson Filtration example had two levels (mechanical and
electrical), defining a dummy variable with zero indicating a mechanical repair and one indicating an
electrical repair was easy. However, when a qualitative variable has more than two levels, care must be
taken in both defining and interpreting the dummy variables. As we will show, if a qualitative variable has
k levels, k 1 dummy variables are required, with each dummy variable being coded as 0 or 1.

For example, suppose a manufacturer of copy machines organized the sales territories for a particular
area into three regions: A, B and C. The managers want to use regression analysis to help predict the
number of copiers sold per week. With the number of units sold as the dependent variable, they are
considering several independent variables (the number of sales personnel, advertising expenditures and so
on). Suppose the managers believe sales region is also an important factor in predicting the number
of copiers sold. Because sales region is a qualitative variable with three levels, A, B and C, we will need
3 1 = 2 dummy variables to represent the sales region. Each variable can be coded 0 or 1 as follows.

X1
1 if sales region B
0 otherwise

X2
1 if sales region C
0 otherwise

With this definition, we have the following values of X1 and X2.

Region X1 X2

A 0 0

B 1 0

C 0 1

Observations corresponding to region A would be coded X1 = 0, X2 = 0; observations corresponding
to region B would be coded X1 = 1, X2 = 0; and observations corresponding to region C would be coded
X1 = 0, X2 = 1.

The regression equation relating the expected value of the number of units sold, E(Y), to the dummy
variables would be written as:

E Y 0 1x1 2x2

To help us interpret the parameters β0, β1 and β2, consider the following three variations of the regression
equation.

E Y region A 0 1 0 2 0 0

E Y region B 0 1 1 2 0 0 1

E Y region C 0 1 0 2 1 0 2

Therefore, β0 is the mean or expected value of sales for region A; β1 is the difference between the mean
number of units sold in region B and the mean number of units sold in region A; and β2 is the difference
between the mean number of units sold in region C and the mean number of units sold in region A.

Two dummy variables were required because sales region is a qualitative variable with three levels.
But the assignment of X1 = 0, X2 = 0 to indicate region A, X1 = 1, X2 = 0 to indicate region B, and X1 = 0,
X2 = 1 to indicate region C was arbitrary. For example, we could have chosen X1 = 1, X2 = 0 to indicate
region A, X1 = 0, X2 = 0 to indicate region B, and X1 = 0, X2 = 1 to indicate region C. In that case, β1
would have been interpreted as the mean difference between regions A and B and β2 as the mean
difference between regions C and B.

QUALITATIVE INDEPENDENT VARIABLES 445



EXERCISES

Methods

20. Consider a regression study involving a dependent variable Y, a quantitative independent variable

X1 and a qualitative variable with two levels (level 1 and level 2).

a. Write a multiple regression equation relating X1 and the qualitative variable to Y.

b. What is the expected value of Y corresponding to level 1 of the qualitative variable?

c. What is the expected value of Y corresponding to level 2 of the qualitative variable?

d. Interpret the parameters in your regression equation.

21. Consider a regression study involving a dependent variable Y, a quantitative independent variable

X1, and a qualitative independent variable with three possible levels (level 1, level 2 and level 3).

a. How many dummy variables are required to represent the qualitative variable?

b. Write a multiple regression equation relating X1 and the qualitative variable to Y.

c. Interpret the parameters in your regression equation.

Applications

22. Management proposed the following regression model to predict the effect of physical exercise

on pulse in an experiment involving 92 participants:

Y 0 1x1 2x2 3x3

where:

Y Pulse 2 second pulse reading taken at end of experiment

x1 Pulse 1 initial resting pulse reading

x2 Ran 1 if individual ran on the spot for one minute 2 if they did not

this was decided randomly

x3 Sex 1 if male 2 if female

The following estimated regression equation was developed using MINITAB:

y 42 62 0 812x1 20 1x2 7 8x3

a. What is the amount of the expected value of Pulse 2 attributable to x3?
b. Predict Pulse 2 for a female who ran on the spot for one minute and had an initial pulse

reading of 70 bpm.

c. Predict Pulse 2 for a male who did not run on the spot for one minute and had an initial pulse

reading of 60 bpm.

23. Refer to the Johansson Filtration problem introduced in this section. Suppose that in addition to

information on the number of months since the machine was serviced and whether a mechanical

or an electrical failure had occurred, the managers obtained a list showing which engineer

performed the service. The revised data follow.

Repair time in hours Months since last service Type of repair Engineer

2.9 2 Electrical Heinz Kolb

3.0 6 Mechanical Heinz Kolb

4.8 8 Electrical Wolfgang Linz

1.8 3 Mechanical Heinz Kolb

2.9 2 Electrical Heinz Kolb

4.9 7 Electrical Wolfgang Linz

4.2 9 Mechanical Wolfgang Linz

REPAIR

COMPLETE

SOLUTIONS
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Repair time in hours Months since last service Type of repair Engineer

4.8 8 Mechanical Wolfgang Linz

4.4 4 Electrical Wolfgang Linz

4.5 6 Electrical Heinz Kolb

a. Ignore for now the months since the last maintenance service (X1) and the engineer who

performed the service. Develop the estimated simple linear regression equation to predict the

repair time (Y) given the type of repair (X2). Recall that X2 = 0 if the type of repair is

mechanical and 1 if the type of repair is electrical.

b. Does the equation that you developed in part (a) provide a good fit for the observed data?

Explain.

c. Ignore for now the months since the last maintenance service and the type of repair

associated with the machine. Develop the estimated simple linear regression equation to

predict the repair time given the engineer who performed the service. Let X3 = 0 if Heinz Kolb

performed the service and X3 = 1 if Wolfgang Linz performed the service.

d. Does the equation that you developed in part (c) provide a good fit for the observed data? Explain.

24. In a multiple regression analysis by McIntyre (1994), Tar, Nicotine and Weight are considered as

possible predictors of carbon monoxide (CO) content for 25 different brands of cigarette. Details

of variables and data follow.

Brand The cigarette brand

Tar The tar content (in mg)

Nicotine The nicotine content (in mg)

Weight The weight (in g)

CO The carbon monoxide (CO) content (in mg)

Brand Tar Nicotine Weight CO

Alpine 14.1 0.86 .9853 13.6

Benson & Hedges 16.0 1.06 1.0938 16.6

Bull Durham 29.8 2.03 1.1650 23.5

Camel Lights 8.0 0.67 0.9280 10.2

Carlton 4.1 0.40 0.9462 5.4

Chesterfield 15.0 1.04 0.8885 15.0

Golden Lights 8.8 0.76 1.0267 9.0

Kent 12.4 0.95 0.9225 12.3

Kool 16.6 1.12 0.9372 16.3

L&M 14.9 1.02 0.8858 15.4

Lark Lights 13.7 1.01 0.9643 13.0

Marlboro 15.1 0.90 0.9316 14.4

Merit 7.8 0.57 0.9705 10.0

Multi Filter 11.4 0.78 1.1240 10.2

Newport Lights 9.0 0.74 0.8517 9.5

Now 1.0 0.13 0.7851 1.5

Old Gold 17.0 1.26 0.9186 18.5

Pall Mall Light 12.8 1.08 1.0395 12.6

Raleigh 15.8 0.96 0.9573 17.5

Salem Ultra 4.5 0.42 0.9106 4.9

Tareyton 14.5 1.01 1.0070 15.9

True 7.3 0.61 0.9806 8.5

Viceroy Rich Light 8.6 0.69 0.9693 10.6

Virginia Slims 15.2 1.02 0.9496 13.9

Winston Lights 12.0 0.82 1.1184 14.9

QUALITATIVE INDEPENDENT VARIABLES 447



15.8 RESIDUAL ANALYSIS

In Chapter 14 we pointed out that standardized residuals were frequently used in residuals plots and in
the identification of outliers. The general formula for the standardized residual for observation i follows.

Standardized residual for observation i

yi y i
syi y i

(15.24)

where:

syi yi
the standard deviation of residual i

a. Examine correlations between variables in the study and hence assess the possibility of

problems of multicollinearity affecting any subsequent regression model involving

independent variables Tar and Nicotine.

b. Thus develop an estimated multiple regression equation using an appropriate number of the

independent variables featured in the study.

c. Are your predictors statistically significant? Use = 0.05. What explanation can you give for

the results observed?

25. The data below (Dunn, 2007) come from a study investigating a new method of measuring body

composition. Body fat percentage, age and gender is given for 18 adults aged between 23 and 61.

Age Percent.Fat Gender

23 9.5 M

23 27.9 F

27 7.8 M

27 17.8 M

39 31.4 F

41 25.9 F

45 27.4 M

49 25.2 F

50 31.1 F

53 34.7 F

53 42 F

54 29.1 F

56 32.5 F

57 30.3 F

58 33 F

58 33.8 F

60 41.1 F

61 34.5 F

a. Develop an estimated regression equation that relates Age and Gender to Percent.Fat.

b. Is Age a significant factor in predicting Percent.Fat? Explain. Use = 0.05.

c. What is the estimated body fat percentage for a female aged 45?BODYFAT

CIGARETTES
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The general formula for the standard deviation of residual i is defined as follows.

Standard deviation of residual i

syi yi
s l h1 (15.25)

where:

s standard error of the estimate
hi leverage of observation i

The leverage of an observation is determined by how far the values of the independent variables are
from their means. The computation of hi, sy1 yi

and hence the standardized residual for observation i in
multiple regression analysis is too complex to be done by hand. However, the standardized residuals can
be easily obtained as part of the output from statistical software packages. Table 15.7 lists the predicted
values, the residuals and the standardized residuals for the Eurodistributor example presented previously
in this chapter; we obtained these values by using the MINITAB statistical software package. The
predicted values in the table are based on the estimated regression equation:

y 0 869 0 0611x1 0 923x2

The standardized residuals and the predicted values of Y from Table 15.7 are used in the standardized
residual plot in Figure 15.10.

This standardized residual plot does not indicate any unusual abnormalities. Also, all of the standar-
dized residuals are between 2 and 2; hence, we have no reason to question the assumption that the
error term ε is normally distributed. We conclude that the model assumptions are reasonable.

A normal probability plot also can be used to determine whether the distribution of ε appears to be
normal. The procedure and interpretation for a normal probability plot were discussed in Section 14.8.
The same procedure is appropriate for multiple regression. Again, we would use a statistical software
package to perform the computations and provide the normal probability plot.

Detecting outliers

An outlier is an observation that is unusual in comparison with the other data; in other words, an outlier
does not fit the pattern of the other data. In Chapter 14 we showed an example of an outlier and discussed
how standardized residuals can be used to detect outliers.

T ABLE 15 . 7 Residuals and standardized residuals for the Eurodistributor regression analysis

Distance

travelled (X1)

Deliveries

(X2)

Travel

time (Y)

Predicted

value (y)

Residual

(y y)

Standardized

residual

100 4 9.3 8.93846 0.361540 0.78344

50 3 4.8 4.95830 0.158305 0.34962

100 4 8.9 8.93846 0.038460 0.08334

100 2 6.5 7.09161 0.591609 1.30929

50 2 4.2 4.03488 0.165121 0.38167

80 2 6.2 5.86892 0.331083 0.65431

75 3 7.4 6.48667 0.913330 1.68917

65 4 6.0 6.79875 0.798749 1.77372

90 3 7.6 7.40369 0.196311 0.36703

90 2 6.1 6.48026 0.380263 0.77639
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MINITAB classifies an observation as an outlier if the value of its standardized residual is less than
2 or greater than 2. Applying this rule to the standardized residuals for the Eurodistributor example

(see Table 15.7), we do not detect any outliers in the data set.
In general, the presence of one or more outliers in a data set tends to increase s, the standard error of

the estimate, and hence increase sy1 yi
, the standard deviation of residual i. Because sy1 yi

appears in the
denominator of the formula for the standardized residual (15.24), the size of the standardized residual will
decrease as s increases.

As a result, even though a residual may be unusually large, the large denominator in expression (15.24)
may cause the standardized residual rule to fail to identify the observation as being an outlier. We can
circumvent this difficulty by using a form of standardized residuals called studentized deleted residuals.

Studentized deleted residuals and outliers

Suppose the ith observation is deleted from the data set and a new estimated regression equation is
developed with the remaining n 1 observations. Let s(i) denote the standard error of the estimate based
on the data set with the ith observation deleted. If we compute the standard deviation of residual i (15.25)
using s(i) instead of s, and then compute the standardized residual for observation i (15.24) using the
revised value, the resulting standardized residual is called a studentized deleted residual.

If the ith observation is an outlier, s(i) will be less than s. The absolute value of the ith studentized
deleted residual therefore will be larger than the absolute value of the standardized residual. In this sense,
studentized deleted residuals may detect outliers that standardized residuals do not detect. Many
statistical software packages provide an option for obtaining studentized deleted residuals. Using MINI-
TAB, we obtained the studentized deleted residuals for the Eurodistributor example; the results are
reported in Table 15.8. The t distribution can be used to determine whether the studentized deleted
residuals indicate the presence of outliers. Recall that p denotes the number of independent variables and
n denotes the number of observations. Hence, if we delete the ith observation, the number of observations
in the reduced data set is n 1; in this case the error sum of squares has (n 1) p 1 degrees of
freedom. For the Eurodistributor example with n = 10 and p = 2, the degrees of freedom for the error sum
of squares with the ith observation deleted is 9 2 1 = 6. At a 0.05 level of significance, the t
distribution (Table 2 of Appendix B) shows that with six degrees of freedom, t0.025 = 2.447. If the value of
the ith studentized deleted residual is less than 2.447 or greater than 2.447, we can conclude that the
ith observation is an outlier. The studentized deleted residuals in Table 15.8 do not exceed those limits;
therefore, we conclude that outliers are not present in the data set.
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Standardized residual plot for

the Eurodistributor multiple

regression analysis
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Influential observations

In Chapter 14, Section 14.9 we discussed how the leverage of an observation can be used to identify
observations for which the value of the independent variable may have a strong influence on the
regression results. As we acknowledged, the leverage (hi) of an observation, measures how far the values
of the independent variables are from their mean values. The leverage values are easily obtained as part
of the output from statistical software packages. MINITAB computes the leverage values and uses the
rule of thumb:

hi 3 p 1 n

to identify influential observations. For the Eurodistributor example with p = 2 independent variables
and n = 10 observations, the critical value for leverage is 3(2 1)/10 = 0.9. The leverage values for the
Eurodistributor example obtained by using MINITAB are reported in Table 15.9. As hi does not exceed
0.9, no influential observations in the data set are detected.

Using Cook’s distance measure to identify influential observations

A problem that can arise in using leverage to identify influential observations is that an observation can
be identified as having high leverage and not necessarily be influential in terms of the resulting estimated
regression equation.

T ABLE 15 . 8 Studentized deleted residuals for Eurodistributor

Distance

travelled (X1)

Deliveries

(X2)

Travel time

(Y)

Standardized

residual

Studentized deleted

residual

100 4 9.3 0.78344 0.75938

50 3 4.8 0.34962 0.32654

100 4 8.9 0.08334 0.0772

100 2 6.5 1.30929 1.39494

50 2 4.2 0.38167 0.35709

80 2 6.2 0.65431 0.62519

75 3 7.4 1.68917 2.03187

65 4 6.0 1.77372 2.21314

90 3 7.6 0.36703 0.34312

90 2 6.1 0.77639 0.7519

T ABLE 15 . 9 Leverage and Cook’s distance measures for Eurodistributor

Distance

travelled (X1) Deliveries (X2) Travel time (Y) Leverage (hi) Cook’s D (Di)

100 4 9.3 0.351704 0.110994

50 3 4.8 0.375863 0.024536

100 4 8.9 0.351704 0.001256

100 2 6.5 0.378451 0.347923

50 2 4.2 0.430220 0.036663

80 2 6.2 0.220557 0.040381

75 3 7.4 0.110009 0.117561

65 4 6.0 0.382657 0.650029

90 3 7.6 0.129098 0.006656

90 2 6.1 0.269737 0.074217
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For example, Table 15.10 shows a data set consisting of eight observations and their corresponding
leverage values (obtained by using MINITAB). Because the leverage for the eighth observation is
0.91 > 0.75 (the critical leverage value), this observation is identified as influential. Before reaching any
final conclusions, however, let us consider the situation from a different perspective.

Figure 15.11 shows the scatter diagram and the estimated regression equation corresponding to the
data set in Table 15.10. We used MINITAB to develop the following estimated regression equation for
these data.

y 18 2 1 39x

T ABLE 15 . 10 Data set illustrating potential problem using the leverage criterion

xi yi Leverage hi

1 18 0.204170

1 21 0.204170

2 22 0.164205

3 21 0.138141

4 23 0.125977

4 24 0.125977

5 26 0.127715

15 39 0.909644

The estimated regression

equation with all the data is

Note: If the point (15, 39) is deleted,

          the estimated regression

          equation is y =  18.1 +  1.42x

y

y =  18.2 +  1.39x
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FIGURE 15.11

Scatter diagram for the data set

in Table 15.10
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The straight line in Figure 15.11 is the graph of this equation. Now, let us delete the observation
X = 15, Y = 39 from the data set and fit a new estimated regression equation to the remaining seven
observations; the new estimated regression equation is:

y 18 1 1 42x

We note that the y-intercept and slope of the new estimated regression equation are not fundamentally
different from the values obtained by using all the data. Although the leverage criterion identified the
eighth observation as influential, this observation clearly had little influence on the results obtained. Thus,
in some situations using only leverage to identify influential observations can lead to wrong conclusions.

Cook’s distance measure uses both the leverage of observation i, hi and the residual for observation i,
(yi ŷi), to determine whether the observation is influential.

Cook’s distance measure

Di
yi yi

2 hi

p 1 s2 l hi 2
(15.26)

where:

Di Cook’s distance measure for observation i
yi y i the residual for observation i

hi the leverage for observation i

p the number of independent variables

s the standard error of the estimate

The value of Cook’s distance measure will be large and indicate an influential observation if the
residual or the leverage is large. As a rule of thumb, values of Di > 1 indicate that the ith observation is
influential and should be studied further. The last column of Table 15.9 provides Cook’s distance measure
for the Eurodistributor problem as given by MINITAB. Observation 8 with Di = 0.650029 has the most
influence. However, applying the rule Di > 1, we should not be concerned about the presence of
influential observations in the Eurodistributor data set.

EXERCISES

Methods

26. Data for two variables, X and Y, follow.

xi 1 2 3 4 5

yi 3 7 5 11 14

a. Develop the estimated regression equation for these data.

b. Plot the standardized residuals versus y. Do there appear to be any outliers in these data?

Explain.

c. Compute the studentized deleted residuals for these data. At the 0.05 level of significance,

can any of these observations be classified as an outlier? Explain.

COMPLETE

SOLUTIONS
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27. Data for two variables, X and Y, follow.

xi 22 24 26 28 40

yi 12 21 31 35 70

a. Develop the estimated regression equation for these data.

b. Compute the studentized deleted residuals for these data. At the 0.05 level of significance,

can any of these observations be classified as an outlier? Explain.

c. Compute the leverage values for these data. Do there appear to be any influential

observations in these data? Explain.

d. Compute Cook’s distance measure for these data. Are any observations influential? Explain.

Applications

28. Data collected by Montgomery and Peck (see Hawkins, 1991) concern the three variables:

Y, the time taken to service a vending machine, X1, the number of items stocked by the machine

and X2, the distance travelled to reach it.

X1 X2 Y

7 560 16.68

3 220 11.5

3 340 12.03

4 80 14.88

6 150 13.75

7 330 18.11

2 110 8

7 210 17.83

30 1460 79.24

5 605 21.5

16 688 40.33

10 215 21

4 255 13.5

6 462 19.75

9 448 24

10 776 29

6 200 15.35

7 132 19

3 36 9.5

17 770 35.1

10 140 17.9

26 810 52.32

9 450 18.75

8 635 19.83

4 150 10.75

a. Find an estimated regression equation relating the time taken to service a vending machine to

the number of items stocked by the machine and the distance travelled to reach it.

b. Plot the standardized residuals against y. Does the residual plot support the assumptions

about ? Explain.

c. Check for any outliers in these data. What are your conclusions?

d. Are there any influential observations? Explain.
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29. Data (Tufte, 1974) on male deaths per million in 1950 for lung cancer (Y) and per capita cigarette

consumption in 1930 (X) are given below:

Country y x Country y x

Ireland 58 220 Norway 90 250

Sweden 115 310 Canada 150 510

Denmark 165 380 Australia 170 455

USA 190 1280 Holland 245 460

Switzerland 250 530 Finland 350 1115

GB 465 1145

Results from a simple regression analysis of this information are as follows:

Carry out any further statistical tests you deem appropriate, otherwise comment on the effectiveness

of the linear modes.

CIGARETTES
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15.9 LOGISTIC REGRESSION

In many regression applications the dependent variable may only assume two discrete values. For
instance, a bank might like to develop an estimated regression equation for predicting whether a person
will be approved for a credit card. The dependent variable can be coded as Y = 1 if the bank approves the
request for a credit card and Y = 0 if the bank rejects the request for a credit card. Using logistic
regression we can estimate the probability that the bank will approve the request for a credit card given a
particular set of values for the chosen independent variables.

Consider an application of logistic regression involving a direct mail promotion being used by Stamm
Stores. Stamm owns and operates a national chain of women’s fashion stores. Five thousand copies of an
expensive four-colour sales catalogue have been printed, and each catalogue includes a coupon that
provides a €50 discount on purchases of €200 or more.

The catalogues are expensive and Stamm would like to send them to only those customers who have
the highest probability of making a €200 purchase using the discount coupons.

Management thinks that annual spending at Stamm Stores and whether a customer has a Stamm
credit card are two variables that might be helpful in predicting whether a customer who receives the
catalogue will use the coupon to make a €200 purchase. Stamm conducted a pilot study using a random
sample of 50 Stamm credit card customers and 50 other customers who do not have a Stamm credit card.
Stamm sent the catalogue to each of the 100 customers selected. At the end of a test period, Stamm noted
whether the customer made a purchase (coded 1 if the customer made a purchase and 0 if not). The
sample data for the first ten catalogue recipients are shown in Table 15.11. The amount each customer
spent last year at Stamm is shown in thousands of euros and the credit card information has been coded
as 1 if the customer has a Stamm credit card and 0 if not. In the Purchase column a 1 is recorded if the
sampled customer used the €50 discount coupon to make a purchase of €200 or more.

We might think of building a multiple regression model using the data in Table 15.11 to help Stamm
predict whether a catalogue recipient will make a purchase. We would use Annual spending and Stamm
Card as independent variables and Purchase as the dependent variable.

Because the dependent variable may only assume the values of 0 or 1, however, the ordinary multiple
regression model is not applicable. This example shows the type of situation for which logistic regression
was developed. Let us see how logistic regression can be used to help Stamm predict which type of
customer is most likely to take advantage of their promotion.

Logistic regression equation

In many ways logistic regression is like ordinary regression. It requires a dependent variable, Y, and one
or more independent variables. In multiple regression analysis, the mean or expected value of Y, is
referred to as the multiple regression equation.

E Y 0 1x1 2x2 …
pxp (15.27)

T ABLE 15 . 11 Sample data for Stamm Stores

Customer Annual spending ( 000s) Stamm card Purchase

1 2.291 1 0

2 3.215 1 0

3 2.135 1 0

4 3.924 0 0

5 2.528 1 0

6 2.473 0 1

7 2.384 0 0

8 7.076 0 0

9 1.182 1 1

10 3.345 0 0
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In logistic regression, statistical theory as well as practice has shown that the relationship between E(Y)
and X1, X2, … Xp is better described by the following nonlinear equation.

Logistic regression equation

E Y
e 0 1x1 2x2 … pxp

1 e 0 1x1 2x2 … pxp
(15.28)

If the two values of the dependent variable Y are coded as 0 or 1, the value of E(Y) in equation (15.28)
provides the probability that Y = 1 given a particular set of values for the independent variables X1, X2, … Xp.
Because of the interpretation of E(Y) as a probability, the logistic regression equation is often written as
follows.

Interpretation of E(Y) as a probability in logistic regression

E Y P y 1 x1 x2 … xp (15.29)

To provide a better understanding of the characteristics of the logistic regression equation, suppose the
model involves only one independent variable X and the values of the model parameters are β0 = 7 and
β1 = 3. The logistic regression equation corresponding to these parameter values is:

E Y P Y 1 x
e 0 1x

1 e 0 1x

e 7 3x

1 e 7 3x
(15.30)

Figure 15.12 shows a graph of equation (15.30). Note that the graph is S-shaped. The value of E(Y) ranges
from 0 to 1, with the value of E(Y) gradually approaching 1 as the value of X becomes larger and the value
of E(Y) approaching 0 as the value of X becomes smaller. Note also that the values of E(Y), representing
probability, increase fairly rapidly as X increases from 2 to 3. The fact that the values of E(Y) range from 0
to 1 and that the curve is S-shaped makes equation (15.30) ideally suited to model the probability the
dependent variable is equal to 1.

Estimating the logistic regression equation

In simple linear and multiple regression the least squares method is used to compute b0, b1, …, bp as
estimates of the model parameters (β0, β1, …, βp). The nonlinear form of the logistic regression equation
makes the method of computing estimates more complex and beyond the scope of this text. We will use
computer software to provide the estimates. The estimated logistic regression equation is:

Estimated logistic regression equation

y estimate of P Y 1 x1 x2 … xp
eb0 b1x1 b2x2 … bpxp

1 eb0 b1x1 b2x2 … bpxp
(15.31)
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Here ŷ provides an estimate of the probability that Y = 1, given a particular set of values for the
independent variables.

Let us now return to the Stamm Stores example. The variables in the study are defined as follows:

Y
0 if the customer made no purchase during the test period
1 if the customer made a purchase during the test period

X1 annual spending at Stamm Stores €000s

X2
0 if the customer does not have a Stamm credit card
1 if the customer has a Stamm credit card

Therefore, we choose a logistic regression equation with two independent variables.

E Y
e 0 1x1 2x2 … pxp

1 e 0 1x1 2x2 … pxp
(15.32)

Using the sample data (see Table 15.11), MINITAB’s binary logistic regression procedure was used to
compute estimates of the model parameters β0, β1 and β2. A portion of the output obtained is shown in
Figure 15.13. We see that b0 = 2.1464, b1 = 0.3416 and b2 = 1.0987. Thus, the estimated logistic
regression equation is:

y
eb0 b1x1 … bpxp

1 eb0 b1x1 … bpxp

e 2 1464 0 3416x1 1 0987x2

1 e 2 1464 0 3416x1 1 0987x2
(15.33)

We can now use equation (15.33) to estimate the probability of making a purchase for a particular
type of customer. For example, to estimate the probability of making a purchase for customers that
spend €2000 annually and do not have a Stamm credit card, we substitute X1 = 2 and X2 = 0 into
equation (15.33).

y
e 2 1464 0 3416 2 1 0987 0

1 e 2 1464 0 3416 2 1 0987 0

e 1 4632

1 e 1 4632

0 2315

1 2315
0 1880

Value of Independent Variable ( X)

0

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5

E
(
Y

)

FIGURE 15.12

Logistic regression equation

for 0 = 7 and 1 = 3

FIGURE 15.13

Partial logistic regression

output for the Stamm Stores

example
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Thus, an estimate of the probability of making a purchase for this particular group of customers is
approximately 0.19. Similarly, to estimate the probability of making a purchase for customers that spent
€2000 last year and have a Stamm credit card, we substitute X1 = 2 and X2 = 1 into equation (15.33).

y
e 2 1464 0 3416 2 1 0987 1

1 e 2 1464 0 3416 2 1 0987 1

e 0 3645

1 e 0 3645

0 6945

1 6945
0 4099

Thus, for this group of customers, the probability of making a purchase is approximately 0.41. It appears
that the probability of making a purchase is much higher for customers with a Stamm credit card. Before
reaching any conclusions, however, we need to assess the statistical significance of our model.

Testing for significance

Testing for significance in logistic regression is similar to testing for significance in multiple regression.
First we conduct a test for overall significance. For the Stamm Stores example, the hypotheses for the test
of overall significance follow:

H0 1 2 0
H1 1 and or 2 is not equal to zero

The test for overall significance is based upon the value of a G test statistic. This is commonly referred
to as the ‘Deviance Statistic’. If the null hypothesis is true, the sampling distribution of G follows a
chi-square distribution with degrees of freedom equal to the number of independent variables in the
model. Although the computation of G is beyond the scope of this book, the value of G and its
corresponding p-value are provided as part of MINITAB’s binary logistic regression output. Referring
to the last line in Figure 15.13, we see that the value of G is 13.628, its degrees of freedom are 2, and its
p-value is 0.001. Thus, at any level of significance α ≥ 0.001, we would reject the null hypothesis and
conclude that the overall model is significant.

If the G test shows an overall significance, a z test can be used to determine whether each of the
individual independent variables is making a significant contribution to the overall model. For the
independent variables Xi, the hypotheses are:

H0 i 0
H1 i 0

If the null hypothesis is true, the value of the estimated coefficient divided by its standard error follows a
standard normal probability distribution. The column labelled Z in the MINITAB output contains the
values of zi = bi /sbi for each of the estimated coefficients and the column labelled p contains the
corresponding p-values. The zi ratio is also known as a ‘Wald Statistic’. Suppose we use α = 0.05 to test for
the significance of the independent variables in the Stamm model. For the independent variable X1 the
z value is 2.66 and the corresponding p-value is 0.008. Thus, at the 0.05 level of significance we can reject
H0: β1 = 0. In a similar fashion we can also reject H0: β2 = 0 because the p-value corresponding to z = 2.47
is 0.013. Hence, at the 0.05 level of significance, both independent variables are statistically significant.

Managerial use

We now use the estimated logistic regression equation to make a decision recommendation concerning
the Stamm Stores catalogue promotion. For Stamm Stores, we already computed:

P Y 1 X1 2 X2 1 0 4099 and P Y 1 X1 2 X2 0 0 1880

These probabilities indicate that for customers with annual spending of €2000 the presence of a Stamm
credit card increases the probability of making a purchase using the discount coupon. In Table 15.12 we
show estimated probabilities for values of annual spending ranging from €1000 to €7000 for both
customers who have a Stamm credit card and customers who do not have a Stamm credit card. How
can Stamm use this information to better target customers for the new promotion?
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Suppose Stamm wants to send the promotional catalogue only to customers who have a 0.40 or higher
probability of making a purchase. Using the estimated probabilities in Table 15.12, Stamm promotion
strategy would be:

Customers who have a Stamm credit card: Send the catalogue to every customer that spent
€2000 or more last year.

Customers who do not have a Stamm credit card: Send the catalogue to every customer that
spent €6000 or more last year.

Looking at the estimated probabilities further, we see that the probability of making a purchase for
customers who do not have a Stamm credit card, but spend €5000 annually is 0.3921. Thus, Stamm may
want to consider revising this strategy by including those customers who do not have a credit card as long
as they spent €5000 or more last year.

Interpreting the logistic regression equation

Interpreting a regression equation involves relating the independent variables to the business question
that the equation was developed to answer. With logistic regression, it is difficult to interpret the relation
between the independent variables and the probability that Y = 1 directly because the logistic regression
equation is nonlinear. However, statisticians have shown that the relationship can be interpreted
indirectly using a concept called the odds ratio.

The odds in favour of an event occurring is defined as the probability the event will occur divided by
the probability the event will not occur. In logistic regression the event of interest is always Y = 1. Given a
particular set of values for the independent variables, the odds in favour of Y = 1 can be calculated
as follows:

Odds
P Y 1 X1 X2 … Xy

P Y 0 X1 X2 … Xy

P Y 1 X1 X2 … Xy

1 P Y 1 X1 X2 … Xy
(15.34)

…

The odds ratio measures the impact on the odds of a one-unit increase in only one of the independent
variables. The odds ratio is the odds that Y = 1 given that one of the independent variables has been
increased by one unit (odds1) divided by the odds that Y = 1 given no change in the values for the
independent variables (odds0).

Odds ratio

Odds ratio
Odds1
Odds0

(15.35)

For example, suppose we want to compare the odds of making a purchase for customers who spend
€2000 annually and have a Stamm credit card (X1 = 2 and X2 = 1) to the odds of making a purchase for

T ABLE 15 . 12 Estimated probabilities for Stamm Stores

Annual spending

1000 2000 3000 4000 5000 6000 7000

Credit card Yes 0.3305 0.4099 0.4943 0.5790 0.6593 0.7314 0.7931

No 0.1413 0.1880 0.2457 0.3143 0.3921 0.4758 0.5609
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customers who spend €2000 annually and do not have a Stamm credit card (X1 = 2 and X2 = 0). We are
interested in interpreting the effect of a one-unit increase in the independent variable X2. In this case:

Odds1
P Y 1 X1 2 X2 1

1 P Y 1 X1 2 X2 1

and:

Odds0
P Y 1 X1 2 X2 0

1 P Y 1 X1 2 X2 0

Previously we showed that an estimate of the probability that Y = 1 given X1 = 2 and X2 = 1 is 0.4099, and
an estimate of the probability that Y = 1 given X1 = 2 and X2 = 0 is 0.1880. Thus,

Estimate of odds1
0 4099

1 0 4099
0 6946

and:

Estimate of odds0
0 1880

1 0 1880
0 2315

The estimated odds ratio is:

Estimate odds ratio
0 6946

0 2315
3 00

Thus, we can conclude that the estimated odds in favour of making a purchase for customers who spent
€2000 last year and have a Stamm credit card are three times greater than the estimated odds in favour of
making a purchase for customers who spent €2000 last year and do not have a Stamm credit card.

The odds ratio for each independent variable is computed while holding all the other independent
variables constant. But it does not matter what constant values are used for the other independent
variables. For instance, if we computed the odds ratio for the Stamm credit card variable (X2) using
€3000, instead of €2000, as the value for the annual spending variable (X1), we would still obtain the same
value for the estimated odds ratio (3.00). Thus, we can conclude that the estimated odds of making a
purchase for customers who have a Stamm credit card are three times greater than the estimated odds of
making a purchase for customers who do not have a Stamm credit card.

The odds ratio is standard output for logistic regression software packages. Refer to the MINITAB
output in Figure 15.13. The column with the heading Odds Ratio contains the estimated odds ratios for
each of the independent variables. The estimated odds ratio for X1 is 1.41 and the estimated odds ratio for
X2 is 3.00. We already showed how to interpret the estimated odds ratio for the binary independent
variable X2. Let us now consider the interpretation of the estimated odds ratio for the continuous
independent variable X1.

The value of 1.41 in the Odds Ratio column of the MINITAB output tells us that the estimated odds in
favour of making a purchase for customers who spent €3000 last year is 1.41 times greater than the
estimated odds in favour of making a purchase for customers who spent €2000 last year. Moreover, this
interpretation is true for any one-unit change in X1.

For instance, the estimated odds in favour of making a purchase for someone who spent €5000 last
year is 1.41 times greater than the odds in favour of making a purchase for a customer who spent €4000
last year. But suppose we are interested in the change in the odds for an increase of more than one unit
for an independent variable. Note that X1 can range from 1 to 7. The odds ratio as printed by the
MINITAB output does not answer this question.

To answer this question we must explore the relationship between the odds ratio and the regression
coefficients.

A unique relationship exists between the odds ratio for a variable and its corresponding regression
coefficient. For each independent variable in a logistic regression equation it can be shown that:

Odds ratio ebi
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To illustrate this relationship, consider the independent variable X1 in the Stamm example. The
estimated odds ratio for X1 is:

Estimated odds ratio eb1 e0 3416 1 41

Similarly, the estimated odds ratio for X2 is:

Estimated odds ratio eb2 e1 0987 3 00

This relationship between the odds ratio and the coefficients of the independent variables makes it easy to
compute estimates of the odds ratios once we develop estimates of the model parameters. Moreover, it
also provides us with the ability to investigate changes in the odds ratio of more than or less than one unit
for a continuous independent variable.

The odds ratio for an independent variable represents the change in the odds for a one unit change in
the independent variable holding all the other independent variables constant. Suppose that we want to
consider the effect of a change of more than one unit, say c units. For instance, suppose in the Stamm
example that we want to compare the odds of making a purchase for customers who spend €5000
annually (X1 = 5) to the odds of making a purchase for customers who spend €2000 annually (X1 = 2). In
this case c = 5 2 = 3 and the corresponding estimated odds ratio is:

ecb e3 0 3416 e1 0248 2 79

This result indicates that the estimated odds of making a purchase for customers who spend €5000
annually is 2.79 times greater than the estimated odds of making a purchase for customers who
spend €2000 annually. In other words, the estimated odds ratio for an increase of €3000 in annual
spending is 2.79.

In general, the odds ratio enables us to compare the odds for two different events. If the value of
the odds ratio is 1, the odds for both events are the same. Thus, if the independent variable we are
considering (such as Stamm credit card status) has a positive impact on the probability of the event
occurring, the corresponding odds ratio will be greater than 1. Most logistic regression software
packages provide a confidence interval for the odds ratio. The MINITAB output in Figure 15.13
provides a 95 per cent confidence interval for each of the odds ratios. For example, the point estimate
of the odds ratio for X1 is 1.41 and the 95 per cent confidence interval is 1.09 to 1.81. Because the
confidence interval does not contain the value of 1, we can conclude that X1, has a significant effect
on the odds ratio. Similarly, the 95 per cent confidence interval for the odds ratio for X2 is 1.25
to 7.17. Because this interval does not contain the value of 1, we can also conclude that X2 has a
significant effect on the odds ratio.

Logit transformation

An interesting relationship can be observed between the odds in favour of Y = 1 and the exponent for e in
the logistic regression equation. It can be shown that:

ln odds 0 1x1 2x2 …
pxp

This equation shows that the natural logarithm of the odds in favour of Y = 1 is a linear function of the
independent variables. This linear function is called the logit. We will use the notation g(x1, x2, … xp) to
denote the logit.

Logit

g x1 x2 … xp 0 1x1 2x2 …
pxp (15.36)
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Substituting g(x1, x2, … xp) for 0 1x1 2x2 …
pxp in equation (15.28), we can write the logistic

regression equation as:

E Y
eg x1 x2 xp

1 eg x1 x2 xp
(15.37)

Once we estimate the parameters in the logistic regression equation, we can compute an estimate of
the logit. Using ĝ (x1, x2 … xp) to denote the estimated logit, we obtain:

Estimated logit

g x1 x2 … xp b0 b1x1 b2x2 … bpxp (15.38)

Therefore, in terms of the estimated logit, the estimated regression equation is:

y
eb0 b1x1 b2x2 … bpxp

1 eb0 b1x1 b2x2 … bpxp

eg x1 x2 … xp

1 eg x1 x2 … xp

For the Stamm Stores example, the estimated logit is:

g x1 x2 2 1464 0 3416x1 1 0987x2

and the estimated regression equation is:

y
eg x1 x2

1 eg x1 x2

e 2 1464 0 3416x1 1 0987x2

1 e 2 1464 0 3416x1 1 0987x2

Therefore, because of the unique relationship between the estimated logit and the estimated logistic
regression equation, we can compute the estimated probabilities for Stamm Stores by dividing eg x1 x2

by 1 eg x1 x2

EXERCISES

Applications

30. Refer to the Stamm Stores example introduced in this section. The dependent variable is coded

as Y = 1 if the customer makes a purchase and 0 if not.

Suppose that the only information available to help predict whether the customer will make a

purchase is the customer’s credit card status, coded as X = 1 if the customer has a Stamm credit

card and X = 0 if not.

a. Write the logistic regression equation relating X to Y.

b. What is the interpretation of E(Y) when X = 0?

c. For the Stamm data in Table 15.11, use MINITAB to compute the estimated logit.

d. Use the estimated logit computed in part (c) to compute an estimate of the probability of

making a purchase for customers who do not have a Stamm credit card and an estimate of

the probability of making a purchase for customers who have a Stamm credit card.

e. What is the estimate of the odds ratio? What is its interpretation?

COMPLETE

SOLUTIONS
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31. In Table 15.12 we provided estimates of the probability of a purchase in the Stamm Stores

catalogue promotion. A different value is obtained for each combination of values for the

independent variables.

a. Compute the odds in favour of a purchase for a customer with annual spending of 4000 who

does not have a Stamm credit card (X1 = 4, X2 = 0).

b. Use the information in Table 15.12 and part (a) to compute the odds ratio for the Stamm

credit card variable X2 holding annual spending constant at X1 = 4.

c. In the text, the odds ratio for the credit card variable was computed using the information in

the 2000 column of Table 15.12. Did you get the same value for the odds ratio in part (b)?

32. Community Bank would like to increase the number of customers who use payroll direct deposit.

Management is considering a new sales campaign that will require each branch manager to call

each customer who does not currently use payroll direct deposit. As an incentive to sign up for

payroll direct deposit, each customer contacted will be offered free banking for two years.

Because of the time and cost associated with the new campaign, management would like to

focus their efforts on customers who have the highest probability of signing up for payroll direct

deposit. Management believes that the average monthly balance in a customer’s current account

may be a useful predictor of whether the customer will sign up for direct payroll deposit. To

investigate the relationship between these two variables, Community Bank tried the new

campaign using a sample of 50 current account customers that do not currently use payroll direct

deposit. The sample data show the average monthly current account balance (in hundreds of

euros) and whether the customer contacted signed up for payroll direct deposit (coded 1 if the

customer signed up for payroll direct deposit and 0 if not). The data are contained in the data set

named ‘Bank’ on the companion online platform; a portion of the data follows.

Customer X Monthly balance Y Direct deposit

1 1.22 0

2 1.56 0

3 2.10 0

4 2.25 0

5 2.89 0

6 3.55 0

7 3.56 0

8 3.65 1

48 18.45 1

49 24.98 0

50 26.05 1

a. Write the logistic regression equation relating X to Y.

b. For the Community Bank data, use MINITAB to compute the estimated logistic regression

equation.

c. Conduct a test of significance using the G test statistic. Use = 0.05.

d. Estimate the probability that customers with an average monthly balance of 1000 will sign

up for direct payroll deposit.

e. Suppose Community Bank only wants to contact customers who have a 0.50 or higher

probability of signing up for direct payroll deposit. What is the average monthly balance

required to achieve this level of probability?

f. What is the estimate of the odds ratio? What is its interpretation?

BANK
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SUMMARY

In this chapter, we introduced multiple regression analysis as an extension of simple linear regression

analysis presented in Chapter 14. Multiple regression analysis enables us to understand how a

dependent variable is related to two or more independent variables. The regression equation

E Y 0 1x1 2x2 … pxp shows that the expected value or mean value of the dependent

variable Y is related to the values of the independent variables X1, X2, …, Xp. Sample data and the

least squares method are used to develop the estimated regression equation

y b0 b1x1 b2x2 … bpxp. In effect b0, b1, b2, …, bp are sample statistics used to estimate

the unknown model parameters 0, 1, 2, …, p Computer printouts were used throughout the

chapter to emphasize the fact that statistical software packages are the only realistic means of

performing the numerous computations required in multiple regression analysis.

The multiple coefficient of determination was presented as a measure of the goodness of fit of

the estimated regression equation. It determines the proportion of the variation of Y that can be

explained by the estimated regression equation. The adjusted multiple coefficient of determination is

a similar measure of goodness of fit that adjusts for the number of independent variables and thus

avoids overestimating the impact of adding more independent variables. Model assumptions for

multiple regression are shown to parallel those for simple regression analysis.

33. Prior to the Challenger tragedy on 28 January 1986, after each launch of the space shuttle the

solid rocket boosters were recovered from the ocean and inspected. Of the previous 24 shuttle

launches, seven had incidents of damage to the joints, 16 had no incidents of damage and one

was unknown because the boosters were not recovered after launch.

In trying to explain the damage to joints it was thought that temperature at the time of launch

could be a contributing factor.

For the data that follow, a 1 represents damage to field joints, and a 0 represents no damage.

Temp Damage Temp Damage Temp Damage

66 0 57 1 70 0

70 1 63 1 81 0

69 0 70 1 76 0

68 0 78 0 79 0

67 0 67 0 75 1

72 0 53 1 76 0

73 0 67 0 58 1

70 0 75 0

a. Fit a logistic regression model to these data and obtain a plot of the data and fitted curve.

b. Conduct a test of significance using the G test statistic. Use = 0.05.

c. Estimate the probability of damage for a temperature of 50.

d. What is the estimate of the odds ratio? How would you interpret it?

ONLINE RESOURCES

For data files, additional online summary, questions, answers and software section visit the online

platform.

SHUTTLE
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An F test and a t test were presented as ways of determining statistically whether the relationship

among the variables is significant. The F test is used to determine whether there is a significant

overall relationship between the dependent variable and the set of all independent variables. The t

test is used to determine whether there is a significant relationship between the dependent variable

and an individual independent variable given the other independent variables in the regression model.

Correlation among the independent variables, known as multicollinearity, was discussed.

The section on qualitative independent variables showed how dummy variables can be used to

incorporate qualitative data into multiple regression analysis. The section on residual analysis showed

how residual analysis can be used to validate the model assumptions, detect outliers and identify

influential observations. Standardized residuals, leverage, studentized deleted residuals and Cook’s

distance measure were discussed. The chapter concluded with a section on how logistic regression

can be used to model situations in which the dependent variable may only assume two values.

KEY TERMS

Adjusted multiple coefficient of determination

Cook’s distance measure

Dummy variable

Estimated logistic regression equation

Estimated logit

Estimated multiple regression equation

Influential observation

Least squares method

Leverage

Logistic regression equation

Logit

Multicollinearity

Multiple coefficient of determination

Multiple regression analysis

Multiple regression equation

Multiple regression model

Odds in favour of an event occurring

Odds ratio

Outlier

Qualitative independent variable

Studentized deleted residuals

Variance inflation factor

KEY FORMULAE

Multiple regression model

Y 0 1x1 2x2 … pxp ε (15.1)

Multiple regression equation

E Y 0 1x1 2x2 … pxp (15.2)

Estimated multiple regression equation

y b0 b1x1 b2x2 … bpxp (15.3)

Least squares criterion

min Σ yi y i
2

(15.4)
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Relationship among SST, SSR and SSE

SST SSR SSE (15.7)

Multiple coefficient of determination

R2 SSR

SST
(15.8)

Adjusted multiple coefficient of determination

adj R2 1 1 R2 n 1

n p 1
(15.9)

Mean square regression

MSR
SSR

P
(15.12)

Mean square error

MSE s2
SSE

n p 1
(15.13)

F test statistic

F
MSR

MSE
(15.14)

t test statistic

t
bi
sbi

(15.15)

Variance Inflation Factor

VIF Xj
1

1 R2
j

(15.16)

Standardized residual for observation i

yi yi

Syi y i

(15.24)

Standard deviation of residual i

Syi y i s l hj (15.25)
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Cook’s distance measure

Di
yi y i

2hi

p 1 s2 l hi 2
(15.26)

Logistic regression equation

E Y
e 0 1x1 2x2 … pxp

1 e 0 1x1 2x2 … pxp
(15.28)

Interpretation of E(Y) as a probability in logistic regression

E Y P Y 1 x1 x2 …xp (15.29)

Estimated logistic regression equation

y estimate of P Y 1 x1 x2 …xp
eb0 b1x1 b2x2 … bpxp

1 eb0 b1x1 b2x2 … bpxp
(15.31)

Odds ratio

Odds ratio
odds1

odds0
(15.35)

Logit

g x1 x2 … xp 0 1x1 2x2 … pxp (15.36)

Estimated logits

g x1 x2 … xp b0 b1x1 b2x2 … bpxp (15.38)

CASE PROBLEM

P/E ratios

Valuation is one of the most important aspects of

business. Frequently, although an absolute valuation

(e.g. $100 million) would be desirable, relative valua-

tion (e.g. company A is better than Company B) is

enough for investment decision-making. When decid-

ing to perform a relative valuation, it is necessary to

decide on what attributes to compare; of the many The Frankfurt Stock Exchange
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possibilities, Price-to-Earnings ratios (PEs) are per-

haps the most frequently used. This ratio typically

is calculated using data on a per share basis:

PE ratio
Market price per share

Earnings per share

Other things being equal, the higher the price-to-

earnings ratio, the higher the expected future

income relative to the reported income.

Managerial report

A portfolio manager in a leading brokerage firm

has asked you to develop a model that can help

them to allocate funds between the various inter-

national markets. Theoretically, the job is easy –

invest in undervalued markets and sell any assets

in overvalued markets. PE ratios can be used to

identify over-/undervalued markets.

Three variables thought to influence the PE

ratio are:

1. Price-to-Book Value (PBV)
1

2. Return on Equity (ROE)
2

3. The Effective Tax Rate (Tax)
3

Formulate and estimate a multiple regression

model using the data provided. In your report,

you should help the manager understand each of

the estimated regression coefficients, the stan-

dard error of estimate, and the co-efficient of

determination.

Data are available in a file called ‘Funds’ on

the online platform. Below is a part of the table.

Criteria for inclusion: Publicly traded firms with $ market cap > $ 50 million

Country Number of firms PE PBV Return on Equity Effective Tax Rate

Argentina 43 14.10 1.67 –11.48% 10.30%

Australia 419 28.93 4.78 11.32% 22.37%

Austria 68 41.81 2.00 7.54% 22.41%

1
A ratio used to compare a stock's market value to its book value. It is calculated by dividing the current closing price of

the stock by the latest quarter's book value (book value is simply total assets minus intangible assets and liabilities).

A lower PBV ratio could mean that the stock is undervalued. However, it could also mean that something is

fundamentally wrong with the company.
2

Essentially, ROE reveals how much profit a company generates with the money shareholders have invested in it. The

ROE is useful for comparing the profitability of a company to that of other firms in the same industry. Investors usually

look for companies with ROEs that are high and growing.
3

Actual income tax paid divided by net taxable income before taxes.

FUNDS
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16
Regression
Analysis: Model
Building

CHAPTER CONTENTS

Statistics in Practice Selecting a university

16.1 General linear model

16.2 Determining when to add or delete variables

16.3 Analysis of a larger problem

16.4 Variable selection procedures

LEARNING OBJECTIVES After reading this chapter and doing the exercises, you should be able to:

1 Appreciate how the general linear model can be used

to model problems involving curvilinear relationships.

2 Understand the concept of interaction and how it can

be accounted for in the general linear model.

3 Understand how an F test can be used to determine

when to add or delete one or more variables.

4 Appreciate the complexities involved in solving

larger regression analysis problems.

5 Understand how variable selection procedures can

be used to choose a set of independent variables

for an estimated regression equation.

Model building in regression analysis is the process of developing an estimated regression
equation that describes the relationship between a dependent variable and one or more

independent variables. The major issues in model building are finding an effective functional form
of the relationship and selecting the independent variables to be included in the model. In
Section 16.1 we establish the framework for model building by introducing the concept of a general
linear model. Section 16.2, which provides the foundation for the more sophisticated computer-
based procedures, introduces a general approach for determining when to add or delete independent
variables. In Section 16.3 we consider a larger regression problem involving eight independent
variables and 25 observations; this problem is used to illustrate the variable selection procedures
presented in Section 16.4, including stepwise regression, the forward selection procedure, the back-
ward elimination procedure and best-subsets regression.

470



16.1 GENERAL LINEAR MODEL

Suppose we collected data for one dependent variable Y and k independent variables X1, X2, … Xk. Our
objective is to use these data to develop an estimated regression equation that provides the best relation-
ship between the dependent and independent variables. As a general framework for developing more
complex relationships among the independent variables we introduce the concept of the general linear

model involving p independent variables.

General linear model

Y 0 1z1 2z2 … PzP ε (16.1)

In equation (16.1), each of the independent variables Zj (where j 1, 2, …, p) is a function of X1,
X2, …, Xk (the variables for which data are collected). In some cases, each Zj may be a function of only
one X variable. The simplest case is when we collect data for just one variable X1 and want to estimate Y
by using a straight-line relationship. In this case Z1 X1 and equation (16.1) becomes:

Y 0 1x1 ε (16.2)

STATISTICS IN PRACTICE

Selecting a university

T o demonstrate an application of their new deci-

sion analysis methodology, Sutton and Green

(2002) consider a school-leaver, Jenny, who is hop-

ing to go to university. Before applying, however, she

wishes to prioritize alternatives from the 97 choices

available. She undertakes an analysis based on the

nine classifications used in The Times Good Univer-

sity Guide (2000) to construct the 2000 League

Table, a section of which is summarized below.

Jenny’s priorities vary by each of these variables

but on degree quality she is not so impressed by how

students perform at university overall so much as the

amount of ‘gain’ that takes place for a given intake

standard. Having noted that degree quality (Deg) is

related to entry standards, she therefore estimated

the effect of this using a polynomial regression ana-

lysis and then removed it to create a new variable

‘degree quality gain’ which was used instead of Deg.

The relevant equation was as follows:

University T R As St L Fac Deg Des Com

Aberdeen 86 66 72 53 70 78 76 95 86

Abertay Dundee 76 23 30 50 72 62 59 86 90

Aberystwyth 81 61 60 38 68 78 66 88 93

Anglia 76 20 42 47 61 67 66 86 80

Aston 87 58 70 42 69 79 74 96 93

Bangor 81 53 55 44 72 71 59 90 93

Bath 82 81 82 50 84 94 80 93 96

Birmingham 89 73 82 57 68 79 78 94 94

Bournemouth 63 19 43 50 62 62 52 89 87

Bradford 68 67 58 40 67 84 55 90 89

where T denotes teaching quality, R, research assessment, As, ‘A’ level examination points (required for entry),
St, student-staff ratio, L, library and computing facilities spending and Fac, student facilities spending.
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Equation (16.2) is the simple linear regression model introduced in Chapter 14 with the exception that
the independent variable is labelled X1 instead of X. In the statistical modelling literature, this model is
called a simple first-order model with one predictor variable.

Modelling curvilinear relationships

More complex types of relationships can be modelled with equation (16.1). To illustrate, let us consider
the problem facing Reynard Ltd, a manufacturer of industrial scales and laboratory equipment.
Managers at Reynard want to investigate the relationship between length of employment of their
salespeople and the number of electronic laboratory scales sold. Table 16.1 gives the number of scales
sold by 15 randomly selected salespeople for the most recent sales period and the number of months
each salesperson has been employed by the firm. Figure 16.1 is the scatter diagram for these data. The
scatter diagram indicates a possible curvilinear relationship between the length of time employed and
the number of units sold. Before considering how to develop a curvilinear relationship for Reynard, let
us consider the MINITAB output in Figure 16.2 corresponding to a simple first-order model; the
estimated regression is:

Sales 111 2 38 Months

where:

Sales number of electronic laboratory scales sold

Months the number of months the salesperson has been employed

Figure 16.3 is the corresponding standardized residual plot. Although the computer output shows that
the relationship is significant (p-value 0.000) and that a linear relationship explains a high percentage

Degree quality gain,

DQG Deg 0 0047As2 0 0088As 43 8

Similarly she developed new variables in place of

Des (subsequent employment), and Com (course

completion), ‘removing’ the effects of entry stan-

dards from Com, and degree quality from Des, as

follows:

Destination gain DG Des 0 246Deg 74 1

Completion gain CG Com 0 292As 69 3

These decision variables were then later com-

bined with the other original variables, to create the

function:

Relative Value 0 00218T 0 00182 St

DQG L Fac 0 0011 R As CG DG

which could then be used to represent Jenny’s

distinctive outlook.

Sources: Sutton, P.P. and Green, R.H. (2002) ‘A data

envelope approach to decision analysis’. J. Opl. Res. Soc.

53: 1215–1224. The Times, the Good University Guide 14

April 2000

King’s College, The University of Aberdeen
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of the variability in sales (R-sq 78.1 per cent), the standardized residual plot suggests that a curvilinear
relationship is needed.

To account for the curvilinear relationship, we set Z1 X1 and Z2 X2
1 in equation (16.1) to obtain

the model:

Y 0 1x1 2x
2
1 ε (16.3)

This model is called a second-order model with one predictor variable. To develop an estimated regression
equation corresponding to this second-order model, the statistical software package we are using needs the
original data in Table 16.1, as well as the data corresponding to adding a second independent variable that is
the square of the number of months the employee has been with the firm. In Figure 16.4 we show the
MINITAB output corresponding to the second-order model; the estimated regression equation is:

Sales 45 3 6 34 Months 0 0345 MonthsSq

where:

MonthsSq the square of the number of months the salesperson has been employed

T ABLE 16 . 1 Data for the Reynard example

Months employed Scales sold

41 275

106 296

76 317

104 376

22 162

12 150

85 367

111 308

40 189

51 235

9 83

12 112

6 67

56 325

19 189

Scatterplot of Sales vs Months

Months
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FIGURE 16.1

Scatter diagram for the

Reynard example

REYNARD
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Figure 16.5 is the corresponding standardized residual plot. It shows that the previous curvilinear
pattern has been removed. At the 0.05 level of significance, the computer output shows that the
overall model is significant (p-value for the F test is 0.000); note also that the p-value corresponding
to the t-ratio for MonthsSq (p-value 0.002) is less than 0.05, and hence we can conclude that
adding MonthsSq to the model involving Months is significant. With an R-sq(adj) value of
88.6 per cent, we should be pleased with the fit provided by this estimated regression equation.
More important, however, is seeing how easy it is to handle curvilinear relationships in regression
analysis.

Clearly, many types of relationships can be modelled by using equation (16.1). The regression
techniques with which we have been working are definitely not limited to linear, or straight-line,
relationships. In multiple regression analysis the word linear in the term ‘general linear model’ refers
only to the fact that β0, β1,… , βp all have exponents of 1; it does not imply that the relationship between
Y and the Xis is linear. Indeed, in this section we have seen one example of how equation (16.1) can be
used to model a curvilinear relationship.

FIGURE 16.2

MINITAB output for the

Reynard example: first-order

model

S
ta

n
d

a
rd

iz
e

d
 R

e
s

id
u

a
l
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(response is Sales)
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FIGURE 16.3

Standardized residual plot for

the Reynard example: first-

order model
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Interaction

To provide an illustration of interaction and what it means, let us review the regression study conducted
by Veneto Care for one of its new shampoo products. Two factors believed to have the most influence on
sales are unit selling price and advertising expenditure.

To investigate the effects of these two variables on sales, prices of €2.00, €2.50 and €3.00 were paired
with advertising expenditures of €50 000 and €100 000 in 24 test markets. See Figure 16.6.

The unit sales (in thousands) that were observed are reported in Table 16.2. See Figure 16.6.
Table 16.3 is a summary of these data. Note that the mean sales corresponding to a price of €2.00 and

an advertising expenditure of €50 000 is 461 000, and the mean sales corresponding to a price of €2.00
and an advertising expenditure of €100 000 is 808 000. Hence, with price held constant at €2.00,
the difference in mean sales between advertising expenditures of €50 000 and €100 000 is 808 000
461 000 347 000 units.

FIGURE 16.4

MINITAB output for the

Reynard example: second-

order model
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FIGURE 16.5

Standardized residual plot for

the Reynard example:

second-order model
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When the price of the product is €2.50, the difference in mean sales is 646 000 364 000 282 000
units. Finally, when the price is €3.00, the difference in mean sales is 375 000 332 000 43 000
units. Clearly, the difference in mean sales between advertising expenditures of €50 000 and €100 000
depends on the price of the product. In other words, at higher selling prices, the effect of increased
advertising expenditure diminishes. These observations provide evidence of interaction between the
price and advertising expenditure variables (Figure 16.6).

When interaction between two variables is present, we cannot study the effect of one variable on the
response Y independently of the other variable. In other words, meaningful conclusions can be developed
only if we consider the joint effect that both variables have on the response.

To account for the effect of interaction, we will use the following regression model.

Y 0 1x1 2x2 3x1x2 ε (16.4)

where:

Y unit sales 000s
X1 price €
X2 advertising expenditure €000s

Note that equation (16.4) reflects Veneto’s belief that the number of units sold depends linearly on selling
price and advertising expenditure (accounted for by the β1x1 and β2x2 terms), and that there is
interaction between the two variables (accounted for by the β3x1x2 term).

To develop an estimated regression equation, a general linear model involving three independent
variables (Z1, Z2 and Z3) was used.

Y 0 1z1 2z2 3z3 ε (16.5)

T ABLE 16 . 2 Data for the Veneto Care example

Price

Advertising expenditure

( 000s)

Sales

(000s) Price

Advertising expenditure

( 000s)

Sales

(000s)

2.00 50 478 2.00 100 810

2.50 50 373 2.50 100 653

3.00 50 335 3.00 100 345

2.00 50 473 2.00 100 832

2.50 50 358 2.50 100 641

3.00 50 329 3.00 100 372

2.00 50 456 2.00 100 800

2.50 50 360 2.50 100 620

3.00 50 322 3.00 100 390

2.00 50 437 2.00 100 790

2.50 50 365 2.50 100 670

3.00 50 342 3.00 100 393

T ABLE 16 . 3 Mean unit sales (1000s) for the Veneto Care example

Price

2.00 2.50 3.00

Advertising 50 000 461 364 332

Expenditure 100 000 808 646 375

Mean sales of 808 000 units when price 2.00 and advertising expenditure 100 000
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where:
z1 x1
z2 x2
z3 x1x2

Figure 16.7 is the MINITAB output corresponding to the interaction model for the Veneto Care example.
The resulting estimated regression equation is:

Sales 276 175 Price 19 7 AdvExp 6 08 PriceAdv

where:
Sales unit sales 000s
Price price of the product €

AdvExp advertising expenditure €000s
PriceAdv interaction term Price times AdvExp

Because the model is significant (p-value for the F test is 0.000) and the p-value corresponding to the t test
for PriceAdv is 0.000, we conclude that interaction is significant given the linear effect of the price of the
product and the advertising expenditure. Thus, the regression results show that the effect of advertising
expenditure on sales depends on the price.

Transformations involving the dependent variable

In showing how the general linear model can be used to model a variety of possible relationships between
the independent variables and the dependent variable, we have focused attention on transformations
involving one or more of the independent variables. Often it is worthwhile to consider transformations
involving the dependent variable Y. As an illustration of when we might want to transform the dependent
variable, consider the data in Table 16.4, which shows the kilometres-per-litre ratings and weights (kg)
for 12 cars.
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FIGURE 16.6

Mean unit sales (1000s) as a

function of selling price and

advertising expenditure
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The scatter diagram in Figure 16.8 indicates a negative linear relationship between these two variables.
Therefore, we use a simple first-order model to relate the two variables. The MINITAB output is shown in
Figure 16.9; the resulting estimated regression equation is:

KPL 19 8 0 00907 Weight

where:

KPL kilometres-per-litre rating
Weight weight of the car in kilograms

T ABLE 16 . 4 Kilometres-per-litre ratings and weights for 12 cars

Weight Kilometres per litre

1038 10.2

958 10.3

989 12.1

1110 9.9

919 11.8

1226 9.3

1205 8.5

955 10.8

1463 6.4

1457 6.9

1636 5.1

1310 7.4

FIGURE 16.7

MINITAB output for the

Veneto Care example
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The model is significant (p-value for the F test is 0.000) and the fit is very good (R-sq 93.6 per cent).
However, we note in Figure 16.9 that observation 3 is identified as having a large standardized residual.

Figure 16.10 is the standardized residual plot corresponding to the first-order model. The pattern we
observe does not look like the horizontal band we should expect to find if the assumptions about the error
term are valid. Instead, the variability in the residuals appears to increase as the value of increases. In
other words, we see the wedge-shaped pattern referred to in Chapters 14 and 15 as being indicative of a
nonconstant variance. We are not justified in reaching any conclusions about the statistical significance of
the resulting estimated regression equation when the underlying assumptions for the tests of significance
do not appear to be satisfied.

Often the problem of non-constant variance can be corrected by transforming the dependent variable
to a different scale.

K
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13 Scatterplot of KPL vs Weight
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FIGURE 16.8

Scatter diagram for the

kilometres-per-litre problem

FIGURE 16.9

MINITAB output for the

kilometres-per-litre problem
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For instance, if we work with the logarithm of the dependent variable instead of the original dependent
variable, the effect will be to compress the values of the dependent variable and thus diminish the effects
of non-constant variance.

Most statistical packages provide the ability to apply logarithmic transformations using either the base
10 (common logarithm) or the base e 2.71828 … (natural logarithm). We applied a natural logarithmic
transformation to the kilometres-per-litre data and developed the estimated regression equation relating
weight to the natural logarithm of kilometres-per-litre. The regression results obtained by using the
natural logarithm of kilometres-per-litre as the dependent variable, labelled LogeKPL in the output, are
shown in Figure 16.11; Figure 16.12 is the corresponding standardized residual plot.

Looking at the residual plot in Figure 16.12, we see that the wedge-shaped pattern has now disappeared.
Moreover, none of the observations are identified as having a large standardized residual. The model with
the logarithm of kilometres per litre as the dependent variable is statistically significant and provides an
excellent fit to the observed data. Hence, we would recommend using the estimated regression equation:

Loge KPL 3 49 0 00110 Weight

To estimate the kilometres-per-litre rating for an car that weighs 1500 kilograms, we first develop an
estimate of the logarithm of the kilometres-per-litre rating.

Loge KPL 3 49 0 00110 1500 1 84
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Standardized residual plot

for the kilometres-per-litre

problem

FIGURE 16.11

MINITAB output for the

kilometres-per-litre problem:

logarithmic transformation
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The kilometres-per-litre estimate is obtained by finding the number whose natural logarithm is 1.84.
Using a calculator with an exponential function, or raising e to the power 1.84, we obtain 6.2 kilometres
per litre.

Another approach to problems of non-constant variance is to use 1/Y as the dependent variable
instead of Y. This type of transformation is called a reciprocal transformation. For instance, if the
dependent variable is measured in kilometres per litre, the reciprocal transformation would result in a
new dependent variable whose units would be 1/(kilometres per litre) or litres per kilometre. In general,
there is no way to determine whether a logarithmic transformation or a reciprocal transformation will
perform better without actually trying each of them.

Nonlinear models that are intrinsically linear

Models in which the parameters (β0, β1, …, βp) have exponents other than 1 are called nonlinear models.
The exponential model involves the following regression equation.

E Y 0
x
1 (16.6)

This model is appropriate when the dependent variable Y increases or decreases by a constant percentage,
instead of by a fixed amount, as X increases.

As an example, suppose sales for a product Y are related to advertising expenditure X (in thousands of
euros) according to the following exponential model.

E Y 500 1 2 x

Thus: for X 1, E(Y) 500(1.2)1 600; for X 2, E(Y) 500(1.2)2 720; and for X 3, E(Y)
500(1.2)3 864. Note that E(Y) is not increasing by a constant amount in this case, but by a constant
percentage; the percentage increase is 20 per cent.

We can transform this nonlinear model to a linear model by taking the logarithm of both sides of
equation (16.6).

log E Y log 0 x log 1 (16.7)

Now if we let y’ log E(Y), β0’ log β0, and β1’ log β1, we can rewrite equation (16.7) as:

y’ 0’ 1’x (16.8)

It is clear that the formulae for simple linear regression can now be used to develop estimates of β’0 and
β’1. Denoting the estimates as b0’ and b1’ leads to the following estimated regression equation.

y’ b0’ b1’x (16.9)
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To obtain predictions of the original dependent variable Y given a value of X, we would first substitute
the value of X into equation (16.8) and compute y. The antilog of y would be the prediction of Y, or the
expected value of Y.

Many nonlinear models cannot be transformed into an equivalent linear model. However, such models
have had limited use in business and economic applications. Furthermore, the mathematical background
needed for study of such models is beyond the scope of this text.

EXERCISES

Methods

1. Consider the following data for two variables, X and Y.

x 22 24 26 30 35 40

y 12 21 33 35 40 36

a. Develop an estimated regression equation for the data of the form y = b0 b1x.

b. Use the results from part (a) to test for a significant relationship between X and Y.

Use = 0.05.

c. Develop a scatter diagram for the data. Does the scatter diagram suggest an estimated

regression equation of the form y = b0 b1x b2x
2
? Explain.

d. Develop an estimated regression equation for the data of the form y = b0 b1x b2x
2
.

e. Refer to part (d). Is the relationship between X, X
2

and Y significant? Use = 0.05.

f. Predict the value of Y when X = 25.

COMPLETE

SOLUTIONS

2. Consider the following data for two variables, X and Y.

x 9 32 18 15 26

y 10 20 21 16 22

a. Develop an estimated regression equation for the data of the form y = b0 b1x. Comment on

the adequacy of this equation for predicting Y.

b. Develop an estimated regression equation for the data of the form y = b0 b1x b2x
2
.

Comment on the adequacy of this equation for predicting Y.

c. Predict the value of Y when X = 20.

3. Consider the following data for two variables, X and Y.

x 2 3 4 5 7 7 7 8 9

y 4 5 4 6 4 6 9 5 11

a. Does there appear to be a linear relationship between X and Y? Explain.

b. Develop the estimated regression equation relating X and Y.

c. Plot the standardized residuals versus for the estimated regression equation developed in part

(b). Do the model assumptions appear to be satisfied? Explain.

d. Perform a logarithmic transformation on the dependent variable Y. Develop an estimated

regression equation using the transformed dependent variable. Do the model assumptions

appear to be satisfied by using the transformed dependent variable? Does a reciprocal

transformation work better in this case? Explain.

Applications

4. The table below lists the total estimated numbers of AIDS cases, by year of diagnosis from 1999 to

2003 in the United States. (Source: US Dept of Health and Human Services, Centers for Disease

Control and Prevention, HIV/AIDS Surveillance, 2003.)
COMPLETE

SOLUTIONS
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Year AIDS cases

1999 41 356

2000 41 267

2001 40 833

2002 41 289

2003 43 171

a. Plot the data, letting x = 0 correspond to the year 1998,

Find a linear y b0 b1x that models the data,

b. Plot the function on the graph with the data and determine how well the graph fits the data.

5. In working further with the problem of Exercise 4, statisticians suggested the use of the following

curvilinear estimated regression equation.

y b0 b1x b2x2

a. Use the data of Exercise 4 to determine estimated regression equation.
b. Use = 0.01 to test for a significant relationship.

6. An international study of life expectancy by Ross (1994) covers variables:

LifeExp Life expectancy in years

People.per.TV Average number of people per TV

LifeExp.Male Male life expectancy in years

LifeExp.Female Female life expectancy in years

With data details as follows:

LifeExp People.per.TV People.per.Dr LifeExp.Male LifeExp.Female

Argentina 70.5 4 370 74 67

Bangladesh 53.5 315 6 166 53 54

Brazil 65 4 684 68 62

Canada 76.5 1.7 449 80 73

China 70 8 643 72 68

Colombia 71 5.6 1 551 74 68

Egypt 60.5 15 616 61 60

Ethiopia 51.5 503 36 660 53 50

France 78 2.6 403 82 74

Germany 76 2.6 346 79 73

India 57.5 44 2 471 58 57

Indonesia 61 24 7 427 63 59

Iran 64.5 23 2 992 65 64

Italy 78.5 3.8 233 82 75

Japan 79 1.8 609 82 76

Kenya 61 96 7 615 63 59

Korea.North 70 90 370 73 67

Korea.South 70 4.9 1 066 73 67

Mexico 72 6.6 600 76 68

Morocco 64.5 21 4 873 66 63

Burma 54.5 592 3 485 56 53

Pakistan 56.5 73 2 364 57 56
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LifeExp People.per.TV People.per.Dr LifeExp.Male LifeExp.Female

Peru 64.5 14 1 016 67 62

Philippines 64.5 8.8 1 062 67 62

Poland 73 3.9 480 77 69

Romania 72 6 559 75 69

Russia 69 3.2 259 74 64

South.Africa 64 11 1 340 67 61

Spain 78.5 2.6 275 82 75

Sudan 53 23 12 550 54 52

Taiwan 75 3.2 965 78 72

Tanzania 52.5 NA 25 229 55 50

Thailand 68.5 11 4 883 71 66

Turkey 70 5 1 189 72 68

Ukraine 70.5 3 226 75 66

UK 76 3 611 79 73

USA 75.5 1.3 404 79 72

Venezuela 74.5 5.6 576 78 71

Vietnam 65 29 3 096 67 63

Zaire 54 NA 23 193 56 52

(Note that the average number of people per TV is not given for Tanzania and Zaire.)

a. Develop scatter diagrams for these data, treating LifeExp as the dependent variable.

b. Does a simple linear model appear to be appropriate? Explain.

c. Estimate simple regression equations for the data accordingly. Which do you prefer and why?

7. To assess the reliability of computer media, Choice magazine (www.choice.com.au) has obtained

data by:

price (AU$) Paid in April 2005

pack the number of disks in the pack

media one of CD (CD), DVD (DVD-R) or DVDRW (DVD+/-RW)

with details as follows:

Price Pack Media Price Pack Media

0.48 50 CD 1.85 10 DVD

0.60 25 CD 0.72 25 DVD

0.64 25 CD 2.28 10 DVD

0.50 50 CD 2.34 5 DVD

0.89 10 CD 2.40 10 DVD

0.89 10 CD 1.49 5 DVD

1.20 10 CD 3.60 5 DVDRW

1.30 10 CD 5.00 10 DVDRW

1.29 10 CD 2.79 5 DVDRW

0.50 10 CD 2.79 10 DVDRW

0.57 50 DVD 4.37 5 DVDRW

2.60 10 DVD 1.50 10 DVDRW

1.59 10 DVD 2.50 5 DVDRW

1.85 10 DVD 3.90 10 DVDRW

a. Develop scatter diagrams for these data with pack and media as potential independent

variables.

b. Does a simple or multiple linear regression model appear to be appropriate?

c. Develop an estimated regression equation for the data you believe will best explain the

relationship between these variables.

LIFE

EXPECTANCY

MEDIA
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16.2 DETERMINING WHEN TO ADD OR DELETE VARIABLES

To illustrate the use of this F statistic, let us return to the Eurodistributor data introduced in Chapter 15.
Recall that the managers were trying to develop a regression model to predict total daily travel time for
trucks using two independent variables: distance travelled (X1) and number of deliveries (X2). With one
model using only X1 as an independent variable the error sum of squares was found to be 8.029. For the
second, however, using both X1 and X2, the error sum of squares was 2.299. The question is, did the
addition of the second independent variable X2 result in a significant reduction in the error sum of
squares?

Using formula 16.14 with n 10, q 1 and p 2 it is easily shown the test statistic is:

F

8 029 2 299

1
2 299

7

17 47

which is statistically significant since 17.47 F0.05 (1, 7) 5.59.

8. In Europe the number of Internet users varies widely from country to country. In 1999, 44.3 per

cent of all Swedes used the Internet, while in France the audience was less than 10 per cent. The

disparities are expected to persist even though Internet usage is expected to grow dramatically

over the next several years. The following table shows the number of Internet users in 1999 and in

2011 for selected European countries. (www.internetworldstats.com/top25.htm)

% Internet users

1999 2011

Austria 12.6 74.8

Belgium 24.2 81.4

Denmark 40.4 89.0

Finland 40.9 88.6

France 9.7 77.2

Germany 15.0 82.7

Ireland 12.1 66.8

Netherlands 18.6 89.5

Norway 38.0 97.2

Spain 7.4 65.6

Sweden 44.3 92.9

Switzerland 28.1 84.2

UK 23.6 84.5

a. Develop a scatter diagram of the data using the 1999 Internet user percentage as the

independent variable. Does a simple linear regression model appear to be appropriate?

Discuss.

b. Develop an estimated multiple regression equation with X = the number of 1999 Internet users

and X
2

as the two independent variables.

c. Consider the nonlinear relationship shown by equation (16.6). Use logarithms to develop an

estimated regression equation for this model.

d. Do you prefer the estimated regression equation developed in part (b) or part (c)? Explain.

INTERNET

2011
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Use of p-values

Note also that the p-value associated with F(1, 7) 17.47 is 0.004. As this is less than 0.05 we can
conclude once again that the addition of the second independent variable is statistically significant. In
general p-values cannot be looked up directly from tables of the F distribution, but can be straightfor-
wardly obtained using computer software packages, such as MINITAB, SPSS or EXCEL.

General case

Consider the following multiple regression model involving q independent variables, where q < p.

Y 0 1x1 2x2 qxq (16.10)

If we add variables Xq 1,Xq, …, Xp to this model, we obtain a model involving p independent variables.

Y 0 1x1 2x2 …
qxq

q 1xq 1 q 2xq 2
…

pxp
(16.11)

To test whether the addition of Xq 1,Xq, …, Xp is statistically significant, the null and alternative
hypotheses can be stated as follows.

H0 q 1 q 2
…

p 0

H1: One or more of the parameters is not equal to zero

The following F statistic provides the basis for testing whether the additional independent variables are
statistically significant.

F test statistic for adding or deleting p q variables

F

SSE x1,x2, , xq SSE x1,x2, xq,xq 1, xp

p q

SSE x1,x2, , xq,xq 1, xp

n p 1

(16.12)

This computed F value is then compared with F , the table value with p q numerator degrees of
freedom and n p 1 denominator degrees of freedom. If F > F we reject H0 and conclude that the set
of additional independent variables is statistically significant.

Many students find equation (16.12) somewhat complex. To provide a simpler description of this
F ratio, we can refer to the model with the smaller number of independent variables as the reduced model
and the model with the larger number of independent variables as the full model. If we let SSE (reduced)
denote the error sum of squares for the reduced model and SSE (full) denote the error sum of squares for
the full model, we can write the numerator of (16.12) as:

SSE reduced SSE full

number of extra terms
(16.13)

Note that ‘number of extra terms’ denotes the difference between the number of independent variables in
the full model and the number of independent variables in the reduced model. The denominator of
equation (16.12) is the error sum of squares for the full model divided by the corresponding degrees of
freedom; in other words, the denominator is the mean square error for the full model. Denoting the mean
square error for the full model as MSE(full) enables us to write it as:

F

SSE reduced SSE full

number of extra terms

MSE full
(16.14)
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EXERCISES

Methods

9. In a regression analysis involving 27 observations, the following estimated regression equation

was developed.

y 25 2 5 5x1

For this estimated regression equation SST = 1550 and SSE = 520.

a. At = 0.05, test whether X1 is significant.

Suppose that variables X2 and X3 are added to the model and the following regression

equation is obtained.

y 16 3 2 3x1 12 1x2 5 8x3

For this estimated regression equation SST = 1550 and SSE = 100.

b. Use an F test and a 0.05 level of significance to determine whether X2 and X3 contribute

significantly to the model.

10. In a regression analysis involving 30 observations, the following estimated regression equation

was obtained.

y 17 6 3 8x1 2 3x2 7 6x3 2 7x4

For this estimated regression equation SST = 1805 and SSR = 1760.

a. At = 0.05, test the significance of the relationship among the variables.

Suppose variables X1 and X4 are dropped from the model and the following estimated

regression equation is obtained.

y 11 1 3 6x2 8 1x3

For this model SST = 1805 and SSR = 1705.

a. Compute SSE(x1, x2, x3, x4).

b. Compute SSE(x2, x3).

c. Use an F test and a 0.05 level of significance to determine whether X1 and X4 contribute

significantly to the model.

Applications

11. In an experiment involving measurements of heat production (calories) at various body

masses (kgs) and work levels (calories/hour) on a stationary bike, the following results were

obtained:

Body mass (M) Work level (W) Heat production (H)

43.7 19 177

43.7 43 279

43.7 56 346

54.6 13 160

54.6 19 193

54.6 56 335

55.7 13 169

55.7 26 212

55.7 34.5 244

55.7 43 285

COMPUTER

SOLUTIONS

COMPUTER

SOLUTIONS
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Body mass (M) Work level (W) Heat production (H)

58.8 13 181

58.8 43 298

60.5 19 212

60.5 43 317

60.5 56 347

61.9 13 186

61.9 19 216

61.9 34.5 265

61.9 43 306

61.9 56 348

66.7 13 209

66.7 43 324

66.7 56 352

a. Develop an estimated regression equation that can be used to predict heat production for a

given body mass and work level.

b. Consider adding an independent variable to the model developed in part (a) for the interaction

between body mass and work level. Develop an estimated regression equation using these

three independent variables.

c. At a 0.05 level of significance, test to see whether the addition of the interaction

term contributes significantly to the estimated regression equation developed in

part (a).

12. Failure data obtained in the course of the development of a silver-zinc battery for a NASA

programme were analyzed by Sidik, Leibecki and Bozek in 1980. Relevant variables were as

follows:

x1 charge rate (amps):

x2 discharge rate (amps)

x3 depth of discharge (% of rated ampere – hours)

x4 temperature (°C)

x5 end of charge voltage (volts)

y cycles to failure

Adopting ln(Y) as the response variable, a number of regression models were estimated for the data

using MINITAB:

Regression Analysis: lny versus x1, x2, x3, x4, x5

The regression equation is:

Iny 63 7 – 0 459 x1 – 0 327 x2 – 0 0111 x3 0 116 x4 33 8 x5

Predictor Coef SE Coef T P VIF

Constant –63.68 51.18 –1.24 0.234

x1 –0.4593 0.5493 –0.84 0.417 1.1

x2 –0.3267 0.1761 –1.85 0.085 1.0

x3 –0.01113 0.01699 –0.66 0.523 1.1

x4 0.11577 0.02499 4.63 0.000 1.0

x5 33.81 25.59 1.32 0.208 1.0

S = 1.070 R-Sq = 66.3% R-Sq(adj) = 54.3%

MUSCLE
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Analysis of Variance

Source DF SS MS F P

Regression 5 31.578 6.316 5.52 0.005

Residual Error 14 16.032 1.145

Total 19 47.610

Source DF Seq SS

x1 1 1.464

x2 1 4.512

x3 1 0.291

x4 1 23.311

x5 1 1.999

Unusual Observations

Obs x1 Iny Fit StDev Fit Residual St Resid

1 0.38 4.615 6.708 0.651 –2.093 –2.46R

R denotes an observation with a large standardized residual Durbin–Watson statistic = 1.72

Regression Analysis: lny versus x4

The regression equation is:

Iny 1 78 0 114 x4

Predictor Coef SE Coef T P

Constant 1.7777 0.5660 3.14 0.006

x4 0.11395 0.02597 4.39 0.000

S = 1.130 R-Sq = 51.7% R-Sq(adj) = 49.0%

Analysis of Variance

Source DF SS MS F P

Regression 1 24.607 24.607 19.26 0.000

Residual Error 18 23.002 1.278

Total 19 47.610

Unusual Observations

Ob x4 Iny Fit StDev Fit Residual St Resid

12 10.0 0.693 2.917 0.353 –2.224 97

R denotes an observation with a large standardized residual.

a. Explain this computer output, carrying out any additional tests you think necessary or

appropriate.

b. Is the first model significantly better than the second?

c. Which model do you prefer and why?
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EMISSIONS

13. A section of MINITAB output from an analysis of data relating to truck exhaust emissions under

different atmospheric conditions (Hare and Bradow, 1977) is as follows:

Variables used in this analysis are defined as follows:

nox Nitrous oxides, NO and NO2, (grams/km)

humi Humidity (grains H2O/lbm dry air)

temp Temperature (°F)

HT humi temp

a. Provide a descriptive summary of this information, carrying out any further calculations or

statistical tests you think relevant or necessary.
b. It has been argued that the inclusion of quadratic terms

HH = humi humi

TT = temp temp

on the right-hand side of the model will lead to a significantly improved R-square outcome.
Details of the revised analysis are shown below. Is the claim justified?

490 CHAPTER 16 REGRESSION ANALYSIS: MODEL BUILDING



16.3 ANALYSIS OF A LARGER PROBLEM

In introducing multiple regression analysis, we used the Eurodistributor example extensively. The small
size of this problem was an advantage in exploring introductory concepts, but would make it difficult to
illustrate some of the variable selection issues involved in model building. To provide an illustration of the
variable selection procedures discussed in the next section, we introduce a data set consisting of
25 observations on eight independent variables. Permission to use these data was provided by Dr David
W. Cravens of the Department of Marketing at Texas Christian University. Consequently, we refer to the
data set as the Cravens data.*

*For details see David W. Cravens, Robert B. Woodruff and Joe C. Stamper, ‘Analytical Approach for Evaluating Sales

Territory Performance’, Journal of Marketing, 36 (January 1972): 31–37. Copyright © 1972 American Marketing

Association.
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The Cravens data are for a company that sells products in several sales territories, each of which is
assigned to a single sales representative. A regression analysis was conducted to determine whether a
variety of predictor (independent) variables could explain sales in each territory. A random sample of 25
sales territories resulted in the data in Table 16.5; the variable definitions are given in Table 16.6.

As a preliminary step, let us consider the sample correlation coefficients between each pair of variables.
Figure 16.13 is the correlation matrix obtained using MINITAB. Note that the sample correlation
coefficient between Sales and Time is 0.623, between Sales and Poten is 0.598 and so on.

Looking at the sample correlation coefficients between the independent variables, we see that the
correlation between Time and Accounts is 0.758 and significant; hence, if Accounts were used as an
independent variable, Time would not add much more explanatory power to the model. Recall that
inclusion of highly correlated independent variables, as discussed in the Section 15.4 on multicollinearity,
can cause problems for the model. If possible, then, we should avoid including both Time and Accounts
in the same regression model. The sample correlation coefficient of 0.549 between Change and Rating is
also significant (p-value < 0.05) and this may also prove problematic.

Looking at the sample correlation coefficients between Sales and each of the independent variables can
give us a quick indication of which independent variables are, by themselves, good predictors. We see that
the single best predictor of Sales is Accounts, because it has the highest sample correlation coefficient
(0.754). Recall that for the case of one independent variable, the square of the sample correlation
coefficient is the coefficient of determination.

Thus, Accounts can explain (0.754)
2
(100), or 56.85 per cent, of the variability in Sales. The next most

important independent variables are Time, Poten and AdvExp, each with a sample correlation coefficient
of approximately 0.6.

CRAVENS

T ABLE 16 . 5 Cravens data

Sales Time Poten AdvExp Share Change Accounts Work Rating

3669.88 43.10 74065.1 4582.9 2.51 0.34 74.86 15.05 4.9

3473.95 108.13 58117.3 5539.8 5.51 0.15 107.32 19.97 5.1

2295.10 13.82 21118.5 2950.4 10.91 0.72 96.75 17.34 2.9

4675.56 186.18 68521.3 2243.1 8.27 0.17 195.12 13.40 3.4

6125.96 161.79 57805.1 7747.1 9.15 0.50 180.44 17.64 4.6

2134.94 8.94 37806.9 402.4 5.51 0.15 104.88 16.22 4.5

5031.66 365.04 50935.3 3140.6 8.54 0.55 256.10 18.80 4.6

3367.45 220.32 35602.1 2086.2 7.07 0.49 126.83 19.86 2.3

6519.45 127.64 46176.8 8846.2 12.54 1.24 203.25 17.42 4.9

4876.37 105.69 42053.2 5673.1 8.85 0.31 119.51 21.41 2.8

2468.27 57.72 36829.7 2761.8 5.38 0.37 116.26 16.32 3.1

2533.31 23.58 33612.7 1991.8 5.43 0.65 142.28 14.51 4.2

2408.11 13.82 21412.8 1971.5 8.48 0.64 89.43 19.35 4.3

2337.38 13.82 20416.9 1737.4 7.80 1.01 84.55 20.02 4.2

4586.95 86.99 36272.0 10694.2 10.34 0.11 119.51 15.26 5.5

2729.24 165.85 23093.3 8618.6 5.15 0.04 80.49 15.87 3.6

3289.40 116.26 26878.6 7747.9 6.64 0.68 136.58 7.81 3.4

2800.78 42.28 39572.0 4565.8 5.45 0.66 78.86 16.00 4.2

3264.20 52.84 51866.1 6022.7 6.31 0.10 136.58 17.44 3.6

3453.62 165.04 58749.8 3721.1 6.35 0.03 138.21 17.98 3.1

1741.45 10.57 23990.8 861.0 7.37 1.63 75.61 20.99 1.6

2035.75 13.82 25694.9 3571.5 8.39 0.43 102.44 21.66 3.4

1578.00 8.13 23736.3 2845.5 5.15 0.04 76.42 21.46 2.7

4167.44 58.44 34314.3 5060.1 12.88 0.22 136.58 24.78 2.8

2799.97 21.14 22809.5 3552.0 9.14 0.74 88.62 24.96 3.9

492 CHAPTER 16 REGRESSION ANALYSIS: MODEL BUILDING



Although there are potential multicollinearity problems, let us consider developing an estimated
regression equation using all eight independent variables. The MINITAB computer package provided
the results in Figure 16.14. The eight-variable multiple regression model has an adjusted coefficient of
determination of 88.3 per cent. Note, however, that the p-values for the t tests of individual parameters
show that only Poten, AdvExp and Share are significant at the 0.05 level, given the effect of all the
other variables. Hence, we might be inclined to investigate the results that would be obtained if we used
just those three variables. Figure 16.15 shows the MINITAB results obtained for the estimated regression
equation with those three variables. We see that the estimated regression equation has an adjusted
coefficient of determination of 82.7 per cent, which, although not quite as good as that for the eight-
independent-variable estimated regression equation, is high.

How can we find an estimated regression equation that will do the best job given the data available? One
approach is to compute all possible regressions. That is, we could develop eight one-variable estimated
regression equations (each of which corresponds to one of the independent variables), 28 two-variable
estimated regression equations (the number of combinations of eight variables taken two at a time), and so on.

T ABLE 16 . 6 Variable definitions for the Cravens data

Variable Definition

Sales Total sales credited to the sales representative

Time Length of time employed in months

Poten Market potential; total industry sales in units for the sales territory*

AdvExp Advertising expenditure in the sales territory

Share Market share; weighted average for the past four years

Change Change in the market share over the previous four years

Accounts Number of accounts assigned to the sales representative*

Work Workload; a weighted index based on annual purchases and concentrations of accounts

Rating Sales representative overall rating on eight performance dimensions; an aggregate rating

on a 1 7 scale

* These data were coded to preserve confidentiality.

FIGURE 16.13

Sample correlation

coefficients for the

Cravens data
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In all, for the Cravens data, 255 different estimated regression equations involving one or more
independent variables would have to be fitted to the data.

With the excellent computer packages available today, it is possible to compute all possible regressions.
But doing so involves a great amount of computation and requires the model builder to review a large
volume of computer output, much of which is associated with obviously poor models. Statisticians prefer
a more systematic approach to selecting the subset of independent variables that provide the best
estimated regression equation. In the next section, we introduce some of the more popular approaches.

16.4 VARIABLE SELECTION PROCEDURES

In this section we discuss four variable selection procedures: stepwise regression, forward selection, back-
ward elimination and best-subsets regression. Given a data set with several possible independent variables, we
can use these procedures to identify which independent variables provide the best model. The first three
procedures are iterative; at each step of the procedure a single independent variable is added or deleted and
the new model is evaluated.

FIGURE 16.14

MINITAB output for the model involving all eight independent variables
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The process continues until a stopping criterion indicates that the procedure cannot find a better
model. The last procedure (best subsets) is not a one-variable-at-a-time procedure; it evaluates regression
models involving different subsets of the independent variables.

In the stepwise regression, forward selection and backward elimination procedures, the criterion for
selecting an independent variable to add or delete from the model at each step is based on the F statistic
introduced in Section 16.2.

Stepwise regression

Based on this statistic, the stepwise regression procedure begins each step by determining whether any of
the variables already in the model should be removed. If none of the independent variables can be
removed from the model, the procedure checks to see whether any of the independent variables that are
not currently in the model can be entered.

Because of the nature of the stepwise regression procedure, an independent variable can enter the
model at one step, be removed at a subsequent step, and then enter the model at a later step. The
procedure stops when no independent variables can be removed from or entered into the model.

Figure 16.16 shows the results obtained by using the MINITAB stepwise regression procedure for the
Cravens data using values of 0.05 for Alpha to remove and 0.05 for Alpha to enter. (These are the
technical settings used by the software for deciding whether an independent variable should be
removed or entered into the model.) The stepwise procedure terminated after four steps. The estimated
regression equation identified by the MINITAB stepwise regression procedure is:

y − 1441 93 9 2 Accounts 0 175 AdvExp 0 0382 Poten 190 Share

Note also in Figure 16.16 that s MSE MSE has been reduced from 881 with the best one variable
model (using Accounts) to 454 after four steps. The value of R-sq has been increased from 56.85 per cent
to 90.04 per cent, and the recommended estimated regression equation has an R-sq(adj) value of
88.05 per cent.

FIGURE 16.15

MINITAB output for the model

involving Poten, AdvExp and

Share
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Forward selection

The forward selection procedure starts with no independent variables. It adds variables one at a time
using the same procedure as stepwise regression for determining whether an independent variable should
be entered into the model. However, the forward selection procedure does not permit a variable to be
removed from the model once it has been entered.

The estimated regression equation obtained using MINITAB’s forward selection procedure is:

y −1441 93 9 2 Accounts 0 175 AdvExp 0 0382 Poten 190 Share

Thus, for the Cravens data, the forward selection procedure leads to the same estimated regression
equation as the stepwise procedure.

Backward elimination

The backward elimination procedure begins with a model that includes all the independent variables. It
then deletes one independent variable at a time using the same procedure as stepwise regression.
However, the backward elimination procedure does not permit an independent variable to be re-entered
once it has been removed.

The estimated regression equation obtained using MINITAB’s backward elimination procedure for the
Cravens data is:

y −1312 3 8 Time 0 0444 Poten 0 152 AdvExp 259 share

FIGURE 16.16

MINITAB stepwise regression

output for the Cravens data
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Comparing the estimated regression equation identified using the backward elimination procedure to the
estimated regression equation identified using the forward selection procedure, we see that three
independent variables – AdvExp, Poten and Share – are common to both. However, the backward
elimination procedure has included Time instead of Accounts.

Forward selection and backward elimination are the two extremes of model building; the forward
selection procedure starts with no independent variables in the model and adds independent variables
one at a time, whereas the backward elimination procedure starts with all independent variables in the
model and deletes variables one at a time. The two procedures may lead to the same estimated regression
equation. It is possible, however, for them to lead to two different estimated regression equations, as we saw
with the Cravens data. Deciding which estimated regression equation to use remains a topic for discussion.
Ultimately, the analyst’s judgement must be applied. The best-subsets model-building procedure we discuss
next provides additional model-building information to be considered before a final decision is made.

Best-subsets regression

Stepwise regression, forward selection and backward elimination are approaches to choosing the regres-
sion model by adding or deleting independent variables one at a time. None of them guarantees that the
best model for a given number of variables will be found. Hence, these one-variable-at-a-time methods
are properly viewed as heuristics for selecting a good regression model.

Some software packages use a procedure called best-subsets regression that enables the user to find,
given a specified number of independent variables, the best regression model. MINITAB has such a
procedure. Figure 16.17 is a portion of the computer output obtained by using the best-subsets procedure
for the Cravens data set.

This output identifies the two best one-variable estimated regression equations, the two best two-variable
equations, the two best three-variable equations and so on. The criterion used in determining which estimated
regression equations are best for any number of predictors is the value of the coefficient of determination
(R-sq). For instance, Accounts, with an R-sq 56.8 per cent, provides the best estimated regression equation
using only one independent variable; AdvExp and Accounts, with an R-sq 77.5 per cent, provides the
best estimated regression equation using two independent variables; and Poten, AdvExp and Share, with an
R-sq 84.9 per cent, provides the best estimated regression equation with three independent variables.

FIGURE 16.17

Portion of MINITAB best-

subsets regression output
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For the Cravens data, the adjusted coefficient of determination (R-sq(adj)) 89.4 per cent is largest
for the model with six independent variables: Time, Poten, AdvExp, Share, Change and Accounts.
However, the best model with four independent variables (Poten, AdvExp, Share, Accounts) has an
adjusted coefficient of determination almost as high (88.1 per cent). All other things being equal, a
simpler model with fewer variables is usually preferred.

Making the final choice

The analysis performed on the Cravens data to this point is good preparation for choosing a final model,
but more analysis should be conducted before the final choice is made. As we noted in Chapters 14 and
15, a careful analysis of the residuals should be undertaken. We want the residual plot for the chosen
model to resemble approximately a horizontal band. Let us assume the residuals are not a problem and
that we want to use the results of the best-subsets procedure to help choose the model.

The best-subsets procedure shows us that the best four-variable model contains the independent
variables Poten, AdvExp, Share and Accounts. This result also happens to be the four-variable model
identified with the stepwise regression procedure. Note also that the S and R-sq(adj) results are virtually
identical between the two models. Also there is very little difference between the corresponding R-sq
values.

EXERCISES

Applications

14. Brownlee (1965)
1

presents stack loss data for a chemical plant involving 21 observations on four

variables, namely:

Airflow: Flow of cooling air

Temp: Cooling Water Inlet Temperature

Acid: Concentration of acid [per 1000, minus 500]

Loss: Stack loss (the dependent variable) is 10 times the percentage of the ingoing ammonia

to the plant that escapes from the absorption column unabsorbed; that is, an (inverse)

measure of the over-all efficiency of the plant

Loss Airflow Temp Acid

42 80 27 89

37 80 27 88

37 75 25 90

28 62 24 87

18 62 22 87

18 62 23 87

19 62 24 93

20 62 24 93

15 58 23 87

14 58 18 80

14 58 18 89

13 58 17 88

11 58 18 82

1
Brownlee, K.A. (1960, 2nd ed. 1965) Statistical Theory and Methodology in Science and Engineering.

New York: Wiley. pp. 491–500

COMPLETE

SOLUTIONS
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Loss Airflow Temp Acid

12 58 19 93

8 50 18 89

7 50 18 86

8 50 19 72

8 50 19 79

9 50 20 80

15 56 20 82

15 70 20 91

Develop an estimated regression equation that can be used to predict loss. Briefly discuss the

process you used to develop a recommended estimated regression equation for these data.

15. A sales executive is interested in predicting sales of a newly released record (Field, 2005).

Details are available for 200 individual past recordings as follows:

airplay = number of times a record is played on Radio 1

sales = record sales (thousands)

advert = advertising budget (£000s)

attract = attractiveness rating (1–10) of recording act

Selective modelling details using MINITAB are given below:

Correlations: adverts, sales, airplay, attract

adverts sales airplay

sales 0.578

0.000

airplay 0.102 0.599

0.151 0.000

attract 0.081 0.326 0.182

0.256 0.000 0.010

Cell Contents: Pearson correlation

P-Value

Stepwise Regression: sales versus adverts, airplay, attract

Alpha to Enter: 0.15 Alpha to Remove: 0.15

Response is sales on three predictors, with N = 200

Step 1 2 3

Constant 84.87 41.12 -26.61

airplay 3.94 3.59 3.37

T-value 10.52 12.51 12.12

P-value 0.000 0.000 0.000

adverts 0.0869 0.0849

T-value 11.99 12.26

P-value 0.000 0.000
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attract 11.1

T-value 4.55

P-value 0.000

S 64.8 49.4 47.1

R-sq 35.87 62.93 66.47

R-sq(adj) 35.55 62.55 65.95

Mallows Cp 178.8 22.7 4.0

Regression Analysis: sales versus adverts, airplay, attract

The regression equation is:

sales = −26.6 + 0.0849 adverts + 3.37 airplay + 11.1 attract

Predictor Coef SE Coef T P VIF

Constant −26.61 17.35 −1.53 0.127

adverts 0.084885 0.006923 12.26 0.000 1.015

airplay 3.3674 0.2778 12.12 0.000 1.043

attract 11.086 2.438 4.55 0.000 1.038

S = 47.0873 R-sq = 66.5% R-sq(adj) = 66.0%

Analysis of Variance

Source DF SS MS F P

Regression 3 861377 287126 129.50 0.000

Residual Error 196 434575 2217

Total 199 1295952

Source DF Seq SS

adverts 1 433688

airplay 1 381836

attract 1 45853

Unusual Observations

Obs adverts sales Fit SE Fit Residual St Resid

1 10 330.00 229.92 10.23 100.08 2.18R

2 986 120.00 228.95 4.21 –108.95 –2.32R

7 472 70.00 91.87 14.21 –21.87 –0.49 X

10 174 300.00 200.47 5.85 99.53 2.13R

12 611 70.00 114.81 11.92 –44.81 –0.98 X

47 103 40.00 154.97 5.90 –114.97 –2.46R

52 406 190.00 92.60 8.05 97.40 2.10R

55 1542 190.00 304.12 7.61 –114.12 –2.46R

61 579 300.00 201.19 3.44 98.81 2.10R

68 57 70.00 180.42 5.90 –110.42 –2.36R

100 1000 250.00 152.71 7.85 97.29 2.10R

138 30 60.00 81.34 14.79 –21.34 –0.48 X

164 9 120.00 241.32 9.34 –121.32 –2.63R

169 146 360.00 215.87 6.79 144.13 3.09R
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Obs adverts sales Fit SE Fit Residual St Resid

181 179 70.00 63.65 14.33 6.35 0.14 X

184 2272 320.00 326.06 12.97 –6.06 –0.13 X

200 786 110.00 207.21 7.07 –97.21 –2.09R

R denotes an observation with a large standardized residual.

X denotes an observation whose X value gives it large leverage.

Durbin–Watson statistic = 1.94982

Best Subsets Regression: sales versus adverts, airplay, attract

Response is sales

a a a

d i t

v r t

e p r

r l a

Mallows t a c

Vars R-sq R-sq(adj) Cp S s y t

1 35.9 35.5 178.8 64.787 X

1 33.5 33.1 192.9 65.991 X

2 62.9 62.6 22.7 49.383 X X

2 41.3 40.7 149.0 62.129 X X

3 66.5 66.0 4.0 47.087 X X X

a. How would you interpret this information?

b. Which of the various models shown here do you favour and why?

16. In a study of car ownership in 24 countries, data (OECD, 1982) have been collected on the

following variables:

ao cars per person

pop population (millions)

den population density

gdp per capita income ($)

pr petrol price (cents per litre)

con petrol consumption (tonnes per car per year)

tr bus and rail use (passenger km per person)

Selective results from a linear modelling analysis (ao is the dependent variable) are as follows:

OECDCARS
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a. Which of the various model options considered here do you prefer and why?

b. Corresponding stepwise output from MINITAB terminates after two stages, gdp being the first

independent variable selected and pr the second. How does this latest information reconcile

with that summarized earlier?

c. Does it alter in any way, your inferences for (a)? If so, why, and if not, why not?

17. In an analysis of the effects of rainfall, temperature and time of exposure on the ret loss of flax,

the following MINITAB output has been obtained:

(Note: X1 = Mean daily rainfall (0.01 inches per day))

X2 = Retting period (days)

X3 = Mean maximum daily temperature (°F)

Y = per cent ret loss of flax

Regression Analysis: y versus x1, x2, x3

The regression equation is

y = 10.8 + 1.81 x1 + 0.109 x2 + 0.0926 x3

Predictor Coef SE Coef T P VIF

Constant 10.819 7.258 1.49 0.150

x1 1.8101 0.5451 3.32 0.003 1.2

x2 0.10887 0.05858 1.86 0.076 1.5

x3 0.09263 0.09296 1.00 0.329 1.7

S = 2.197 R-sq = 42.3% R-sq(adj) = 34.7%
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Analysis of Variance

SOURCE DF SS MS F P

Regression 3 81.285 27.095 5.61 0.005

Error 23 111.045 4.828

Total 26 192.330

SOURCE DF SEQ SS

x1 1 37.060

x2 1 39.430

x3 1 4.795

Unusual Observations

Obs. x1 y Fit SE Fit Residual St. Resid

21 4.80 29.500 34.004 1.013 −4.504 −2.31R

24 5.40 38.900 34.050 0.890 4.850 2.41R

R denotes an obs. with a large st. resid.

Durbin–Watson statistic = 1.64

Stepwise Regression: y versus x1, x2, x3

Stepwise regression of y on three predictors, with N 27

STEP 1 2

CONSTANT 27.39 16.42

x1 1.36 1.59

T-RATIO 2.44 3.20

x2 0.141

T-RATIO 2.86

S 2.49 2.20

R-SQ 19.27 39.77

Best Subsets Regression: y versus x1, x2, x3

Best Subsets

Regression of y

Adj. x x x

Vars R-sq R-sq C-p s 1 2 3

1 19.3 16.0 9.2 2.4921 X

1 14.1 10.7 11.2 2.5700 X

2 39.8 34.8 3.0 2.1970 X X

2 33.6 28.1 5.5 2.3069 X X

3 42.3 34.7 4.0 2.1973 X X X

a. How would you interpret this information?

b. Confirm details of any tests you carry out to support your inferences.

c. Which is your preferred model of those covered here?

18. A senior police manager is reviewing manpower allocation of police officers to a number of

geographical districts which fall under their responsibility (Wisniewski, 2002). Detailed

regression analysis results have been obtained involving the following variables:
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Crimes number of reported crimes

Officers number of full-time equivalent police officers

Support number of civilian support staff

Unemployment unemployment rate (%) for the area

Retired percentage of the local population who are retired

Selected MINITAB output is given below:

POLICE
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SUMMARY

In this chapter we discussed several concepts used by model builders in identifying the best

estimated regression equation. First, we introduced the concept of a general linear model to show

how the methods discussed in Chapters 14 and 15 could be extended to handle curvilinear

If a new variable total staff = Officers Support is created and a further analysis undertaken, the

following results are obtained.

a. Explain this computer output, carrying out any additional tests you think necessary or

appropriate.

b. Is the last model a significant improvement on the corresponding two predictor model (best

subsets option with R
2

= 81.3 per cent) for which details were summarized earlier?

c. Which of the various models shown do you prefer and why?

ONLINE RESOURCES

For the associated date files, additional online summary, questions and answers, visit the online
platform.
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relationships and interaction effects. Then we discussed how transformations involving the depen-

dent variable could be used to account for problems such as non-constant variance in the error term.

In many applications of regression analysis, a large number of independent variables are

considered. We presented a general approach based on an F statistic for adding or deleting

variables from a regression model. We then introduced a larger problem involving 25 observations

and eight independent variables. We saw that one issue encountered in solving larger problems is

finding the best subset of the independent variables. To help in that task, we discussed several

variable selection procedures: stepwise regression, forward selection, backward elimination and

best-subsets regression.

KEY TERMS

General linear model

Interaction

Variable selection procedures

KEY FORMULAE

General linear model

Y 0 1Z1 2Z2 … pZp (16.1)

F test statistic for adding or deleting p–q variables

F

SSE x1, x2, , xq SSE x1, x2, xq,xq 1,… , xp

p q

SSE x1, x2, ,xq, xq 1,… , xp

n p 1

(16.12)

CASE PROBLEM 1

House prices

The data relate to bungalow and two-story homes

located in ten selected neighbourhoods of Canada.

Each home was listed and sold individually through

the Multiple Listing System.

Apart from the dependent variable list price, basic

house descriptive variables were categorized into two

groups as shown in Table 1, which cover house

attributes and lot attributes.

Managerial report

Use the methods presented in this and previous

chapters to analyze this data set. Present a summary

of your analysis, including key statistical results, con-

clusions and recommendations, in a managerial

report. Include any appropriate technical material

(computer output, residual plots, etc.) in an appendix

HOMESALES
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T ABLE 1 Definition of variables

Variable Definition

House attributes

STYLE 1 if bungalow, 2 if two storey

R Number of rooms

B Number of bathrooms

BR Number of bedrooms

S Living area (square meters)

A Age (years)

BAS Basement (from 1 (open) to 3 (finished))

G Number of garage space

ATT Dummy variable, 1 if attached, 0 detached

F Number of fireplaces (woodburning)

C

Lot attributes

LOTS

CO

CUL

LA

E

Z0

Z1

Z2

Z3

Z4

Z5

Z6

Z7

Z8

Z9

TIME

Number of chattels (appliances e.g. stove, fridge, etc.)

Lot size (square metres)

1 if corner lot, 0 otherwise

1 if cul-de-sac, 0 otherwise

1 if lane behind, 0 otherwise

Exposure of yard (N, NE, E = 1, otherwise 0)

Dummy variable represents zone 0

Dummy variable represents zone 1

Dummy variable represents zone 2

Dummy variable represents zone 3

Dummy variable represents zone 4

Dummy variable represents zone 5

Dummy variable represents zone 6

Dummy variable represents zone 7

Dummy variable represents zone 8

Dummy variable represents zone 9

Month of sale

CASE PROBLEM 2

Treating obesity*

Obesity is a major health risk throughout Europe and

the USA, leading to a number of possibly life-

threatening diseases. Developing a successful treat-

ment for obesity is therefore important, as a reduc-

tion in weight can greatly reduce the risk of illness. A

sustained weight loss of 5–10 per cent of initial body

weight reduces the health risks associated with obe-

sity. Diet and exercise are useful in weight control but

may not always be successful in the long term. An

integrated programme of diet, exercise and drug

treatment may be beneficial for obese patients.

The study

In 1998 Knoll Pharmaceuticals received authoriza-

tion to market sibutramine for the treatment of

obesity in the USA. One of their suite of studies*Source: STARS (www.stars.ac.uk)
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OBESITY

involved 37 obese patients who followed a treat-

ment regime comprising a combination of diet,

exercise and drug treatment. Patients taking part

in this study were healthy adults (aged 18 to 65

years) and were between 30 per cent and 80 per

cent above their ideal body weight. Rigorous

criteria were defined to ensure that only

otherwise-healthy individuals took part.

Patients received either the new drug or pla-

cebo for an eight-week period and body weight

was recorded at the start (week 0, also known

as baseline) and at week eight. The information

recorded for each patient was:

Age (years)

Gender (F: female, M: male)

Height (cm)

Family history of obesity? (N: no, Y: yes)

Missing for patient number 134

Motivation rating (1: some, 2: moderate, 3:

great)

Number of previous weight loss attempts

Age of onset of obesity (1: 11 years,

2: 12–17 years, 3: 18–65 years)

Weight at week 0 (kg)

Weight at week 8 (kg)

Treatment group (1 = placebo, 2 = new drug)

Results are shown below for a selection of

ten of the 37 patients that took part in the

study:

Age Gender Height

Family

history?

Motivation

rating

Previous

weight loss

attempts

Age of

onset

Weight at

week 0

Weight at

week 8

Treatment

group

40 F 170 N 2 1 3 83.4 75.0 2

50 F 164 Y 2 5 2 102.2 96.3 1

39 F 154 Y 2 1 3 84.0 82.6 1

40 F 169 Y 1 7 3 103.7 95.7 2

44 F 169 N 2 1 1 99.2 99.2 2

44 M 177 Y 2 2 2 126.0 123.2 2

38 M 171 Y 1 1 1 103.7 95.5 2

42 M 175 N 2 4 3 117.9 117.0 1

53 M 177 Y 2 3 3 112.4 111.8 1

52 F 166 Y 1 3 3 85.0 80.0 2

Clinical trials

The study is an example of a clinical trial com-

monly used to assess the effectiveness of a

new treatment. Clinical trials are subject to

rigorous controls to ensure that individuals

are not unnecessarily put at risk and that they

are fully informed and give their consent to

take part in the study. As giving any patient a

treatment may have a psychological effect,

many studies compare a new drug with a

dummy treatment (placebo) where, to avoid

bias, neither the patient nor the doctor record-

ing information knows whether the patient is on

the new treatment or placebo as the tablets/

capsules look identical; this approach is known

as double-blinding. Bias could also occur if

the treatment given to a patient was based on

their characteristics; for example, if the more-

overweight patients were given the new treat-

ment rather than the placebo they would have a

greater chance of weight loss. To avoid such

bias the decision as to which individuals will

receive the new treatment or placebo must be

made using a process known as randomization.

Using this approach each individual has the

same chance of being given either the new treat-

ment or the placebo.

508 CHAPTER 16 REGRESSION ANALYSIS: MODEL BUILDING



Managerial report

1. Use the methods presented in this and previous

chapters to analyze this data set. The priority is to

use regression modelling to help determine which

variables most influence weight loss. The

treatment group variable is a particular concern

in this respect.

2. Present a summary of your analysis, including key

statistical results, conclusions and

recommendations, in a managerial report.

Include any appropriate technical material

(computer output, residual plots, etc.) in an

appendix.
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17
Time Series
Analysis and
Forecasting

CHAPTER CONTENTS

Statistics in Practice Asylum applications

17.1 Time series patterns

17.2 Forecast accuracy

17.3 Moving averages and exponential smoothing

17.4 Trend projection

17.5 Seasonality and trend

17.6 Time series decomposition

LEARNING OBJECTIVES After reading this chapter and doing the exercises you should be able to:

1 Understand that the long-run success of an

organization is often closely related to how well

management is able to predict future aspects of

the operation.

2 Know the various components of a time series.

3 Use smoothing techniques such as moving

averages and exponential smoothing.

4 Use either least squares or the Holt’s smoothing

method to identify the trend component of a time

series.

5 Understand how the classical time series model

can be used to explain the pattern or behaviour

of the data in a time series and to develop a

forecast for the time series.

6 Be able to determine and use seasonal indices

for a time series.

7 Know how regression models can be used in

forecasting.

8 Know the definition of the following terms:

time series;

forecast;

trend component;

cyclical component;

seasonal component;

irregular component;

mean squared error;

moving averages;

weighted moving averages;

smoothing constants;

seasonal constant.
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The purpose of this chapter is to provide an introduction to time series analysis and forecasting.
Suppose we are asked to provide quarterly forecasts of sales for one of our company’s products over

the coming one-year period. Production schedules, raw material purchasing, inventory policies and sales
quotas will all be affected by the quarterly forecasts we provide. Consequently, poor forecasts may result
in poor planning and increased costs for the company. How should we go about providing the quarterly
sales forecasts? Good judgement, intuition and an awareness of the state of the economy may give us a
rough idea or ‘feeling’ of what is likely to happen in the future, but converting that feeling into a number
that can be used as next year’s sales forecast is difficult.

Forecasting methods can be classified as qualitative or quantitative. Qualitative methods generally
involve the use of expert judgement to develop forecasts. Such methods are appropriate when historical
data on the variable being forecast are either not applicable or unavailable. Quantitative forecasting
methods can be used when (1) past information about the variable being forecast is available, (2) the
information can be quantified and (3) it is reasonable to assume that the pattern of the past will continue
into the future. In such cases, a forecast can be developed using a time series method or a causal method.
We will focus exclusively on quantitative forecasting methods in this chapter.

If the historical data are restricted to past values of the variable to be forecast, the forecasting procedure is
called a time series method and the historical data are referred to as a time series. The objective of time series
analysis is to discover a pattern in the historical data or time series and then extrapolate the pattern into the
future; the forecast is based solely on past values of the variable and/or on past forecast errors.

Causal forecasting methods are based on the assumption that the variable we are forecasting has a
cause–effect relationship with one or more other variables. In the discussion of regression analysis in
Chapters 14, 15 and 16, we showed how one or more independent variables could be used to predict the
value of a single dependent variable. Looking at regression analysis as a forecasting tool, we can view the
time series value that we want to forecast as the dependent variable. Hence, if we can identify a good set of
related independent, or explanatory variables, we may be able to develop an estimated regression equation
for predicting or forecasting the time series. For instance, the sales for many products are influenced by
advertising expenditures, so regression analysis may be used to develop an equation showing how sales
and advertising are related. Once the advertising budget for the next period is determined, we could

STATISTICS IN PRACTICE

Asylum applications

Asylum applications to the UK have been a major

concern for the authorities for a number of years

(Langham, 2005). In the autumn of 2002 the monthly

rate of applicants seeking political asylum in the UK

exceeded 7500 for the first time in history. Respond-

ing to charges that immigration was running out of

control, the Labour government of the time introduced

a series of initiatives with the aim of drastically redu-

cing the numbers of asylum seekers coming into the

country. The effect of these was dramatic, the number

of asylum applications halving between October 2002

and September 2003. In a report* commissioned by

the Home Office subsequently, relevant datasets were

checked and analyzed using regression (trend) and

correlation analysis to see if the reduction in the num-

ber of asylum applications had had a significant

impact on other forms of migration. Although no clear

connection was found it was accepted that reasons for

migration were extremely complex. The report also

recognized that government measures to manage

down the intake of asylum seekers had played a part

in reducing the number of asylum applications.

Source: Langham, Alison (2005) Asylum and migration: A

review of Home Office statistics. Significance, Vol 2 Issue 2

pp 78–80.

*Can be obtained from: www.nao.org.uk
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substitute this value into the equation to develop a prediction or forecast of the sales volume for that
period. Note that if a time series method were used to develop the forecast, advertising expenditures
would not be considered; that is, a time series method would base the forecast solely on past sales.

By treating time as the independent variable and the time series as a dependent variable, regression
analysis can also be used as a time series method. To help differentiate the application of regression analysis
in these two cases, we use the terms cross-sectional regression and time series regression. Thus, time series
regression refers to the use of regression analysis when the independent variable is time. Because our focus
in this chapter is on time series methods, we leave the discussion of the application of regression analysis as
a causal forecasting method to more advanced texts on forecasting.

17.1 TIME SERIES PATTERNS

A time series is a sequence of observations on a variable measured at successive points in time or over
successive periods of time. The measurements may be taken every hour, day, week, month or year, or at
any other regular interval.* The pattern of the data is an important factor in understanding how the time
series has behaved in the past. If such behaviour can be expected to continue in the future, we can use the
past pattern to guide us in selecting an appropriate forecasting method.

To identify the underlying pattern in the data, a useful first step is to construct a time series plot. A
time series plot is a graphical presentation of the relationship between time and the time series variable;
time is on the horizontal axis and the time series values are shown on the vertical axis. Let us review some
of the common types of data patterns that can be identified when examining a time series plot.

Horizontal pattern

A horizontal pattern exists when the data fluctuate around a constant mean. To illustrate a time series
with a horizontal pattern, consider the 12 weeks of data in Table 17.1. These data show the number of
litres of petrol sold by a petrol distributor in Sitges, Spain over the past 12 weeks. The average value or
mean for this time series is 19.25 or 19 250 litres per week. Figure 17.1 shows a time series plot for these
data. Note how the data fluctuate around the sample mean of 19 250 litres. Although random variability is
present, we would say that these data follow a horizontal pattern.

PETROL

T ABLE 17 . 1 Petrol sales time series

Week Sales (000s of litres)

1 17

2 21

3 19

4 23

5 18

6 16

7 20

8 18

9 22

10 20

11 15

12 22

*We limit our discussion to time series in which the values of the series are recorded at equal intervals. Cases in which

the observations are made at unequal intervals are beyond the scope of this text.
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The term stationary time series* is used to denote a time series whose statistical properties are
independent of time. In particular this means that:

1 The process generating the data has a constant mean.

2 The variability of the time series is constant over time.

A time series plot for a stationary time series will always exhibit a horizontal pattern. But simply
observing a horizontal pattern is not sufficient evidence to conclude that the time series is stationary.
More advanced texts on forecasting discuss procedures for determining if a time series is stationary and
provide methods for transforming a time series that is not stationary into a stationary series.

Changes in business conditions can often result in a time series that has a horizontal pattern shifting to
a new level. For instance, suppose the petrol distributor signs a contract with the Guardia Civil to provide
petrol for police cars located in northern Spain. With this new contract, the distributor expects to see a
major increase in weekly sales starting in week 13. Table 17.2 shows the number of litres of petrol sold for
the original time series and for the ten weeks after signing the new contract. Figure 17.2 shows the
corresponding time series plot. Note the increased level of the time series beginning in week 13. This
change in the level of the time series makes it more difficult to choose an appropriate forecasting method.
Selecting a forecasting method that adapts well to changes in the level of a time series is an important
consideration in many practical applications.

Trend pattern

Although time series data generally exhibit random fluctuations, a time series may also show gradual
shifts or movements to relatively higher or lower values over a longer period of time. If a time series
plot exhibits this type of behaviour, we say that a trend pattern exists. A trend is usually the result of
long-term factors such as population increases or decreases, changing demographic characteristics of the
population, technology, and/or consumer preferences.
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FIGURE 17.1

Petrol sales time series plot

*For a formal definition of stationarity see G.E.P. Box, G.M. Jenkins and G.C. Reinsell (1994), Time Series Analysis:

Forecasting and Control, 3rd ed. Englewood Cliffs, NJ: Prentice Hall, p. 23.
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To illustrate a time series with a trend pattern, consider the time series of bicycle sales for a particular
manufacturer over the past ten years, as shown in Table 17.3 and Figure 17.3. Note that 21 600 bicycles
were sold in year one, 22 900 were sold in year two and so on. In year 10, the most recent year, 31 400
bicycles were sold. Visual inspection of the time series plot shows some up and down movement over the
past ten years, but the time series also seems to have a systematically increasing or upward trend.
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T ABLE 17 . 2 Petrol sales time series after obtaining the contract with the Guardia Civil

Week Sales (000s of litres)

1 17

2 21

3 19

4 23

5 18

6 16

7 20

8 18

9 22

10 20

11 15

12 22

13 31

14 34

15 31

16 33

17 28

18 32

19 30

20 29

21 34

22 33
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The trend for the bicycle sales time series appears to be linear and increasing over time, but sometimes
a trend can be described better by other types of patterns. For instance, the data in Table 17.4 and the
corresponding time series plot in Figure 17.4 show the sales for a cholesterol drug since the company won
government approval for it ten years ago. The time series increases in a nonlinear fashion; that is, the rate
of change of revenue does not increase by a constant amount from one year to the next.
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FIGURE 17.3

Bicycle sales time series plot

T ABLE 17 . 3 Bicycle sales time series

Year Sales (’000s)

1 21.6

2 22.9

3 25.5

4 21.9

5 23.9

6 27.5

7 31.5

8 29.7

9 28.6

10 31.4

T ABLE 17 . 4 Cholesterol revenue time series ( millions)

Year Revenue

1 23.1

2 21.3

3 27.4

4 34.6

5 33.8

6 43.2

7 59.5

8 64.4

9 74.2

10 99.3

BICYCLE
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In fact, the revenue appears to be growing in an exponential fashion. Exponential relationships such as
this are appropriate when the percentage change from one period to the next is relatively constant.

Seasonal pattern

The trend of a time series can be identified by analyzing multiyear movements in historical data. Seasonal
patterns are recognized by seeing the same repeating patterns over successive periods of time. For example,
a manufacturer of swimming pools expects low sales activity in the fall and winter months, with peak sales
in the spring and summer months. Manufacturers of snow removal equipment and heavy clothing,
however, expect just the opposite yearly pattern. Not surprisingly, the pattern for a time series plot that
exhibits a repeating pattern over a one-year period due to seasonal influences is called a seasonal pattern.
While we generally think of seasonal movement in a time series as occurring within one year, time series
data can also exhibit seasonal patterns of less than one year in duration. For example, daily traffic volume
shows within-the-day ‘seasonal’ behaviour, with peak levels occurring during rush hours, moderate flow
during the rest of the day and early evening, and light flow from midnight to early morning.

As an example of a seasonal pattern, consider the number of umbrellas sold at a clothing store over the
past five years. Table 17.5 shows the time series and Figure 17.5 shows the corresponding time series plot.
The time series plot does not indicate any long-term trend in sales. In fact, unless you look carefully at the
data, you might conclude that the data follow a horizontal pattern. But closer inspection of the time series
plot reveals a regular pattern in the data. That is, the first and third quarters have moderate sales, the
second quarter has the highest sales, and the fourth quarter tends to have the lowest sales volume. Thus,
we would conclude that a quarterly seasonal pattern is present.

Trend and seasonal pattern

Some time series include a combination of a trend and seasonal pattern. For instance, the data in
Table 17.6 and the corresponding time series plot in Figure 17.6 show television set sales for a particular
manufacturer over the past four years. Clearly, an increasing trend is present. But, Figure 17.6 also
indicates that sales are lowest in the second quarter of each year and increase in quarters 3 and 4. Thus,
we conclude that a seasonal pattern also exists for television set sales. In such cases we need to use a
forecasting method that has the capability to deal with both trend and seasonality.

Cyclical pattern

A cyclical pattern exists if the time series plot shows an alternating sequence of points below and above
the trend line lasting more than one year. Many economic time series exhibit cyclical behaviour with
regular runs of observations below and above the trend line. Often, the cyclical component of a time series
is due to multiyear business cycles.
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For example, periods of moderate inflation followed by periods of rapid inflation can lead to time
series that alternate below and above a generally increasing trend line (e.g. a time series for housing costs).
Business cycles are extremely difficult, if not impossible, to forecast. As a result, cyclical effects are often
combined with long-term trend effects and referred to as trend-cycle effects. In this chapter we do not
deal with cyclical effects that may be present in the time series.

Selecting a forecasting method

The underlying pattern in the time series is an important factor in selecting a forecasting method. Thus, a
time series plot should be one of the first things developed when trying to determine what forecasting method
to use. If we see a horizontal pattern, then we need to select a method appropriate for this type of pattern.

T ABLE 17 . 5 Umbrella sales time series

Year Quarter Sales

1 1 125

2 153

3 106

4 88

2 1 118

2 161

3 133

4 102

3 1 138

2 144

3 113

4 80

4 1 109

2 137

3 125

4 109

5 1 130

2 165

3 128

4 96

UMBRELLA

S
a

le
s

60

80

100

120

160

140

40

20

0

180

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Year 1 Year 2 Year 3 Year 4

1 2 3 4

Year 5

Year/Quarter

FIGURE 17.5

Umbrella sales time series plot
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Similarly, if we observe a trend in the data, then we need to use a forecasting method that has the
capability to handle trend effectively. The next two sections illustrate methods that can be used in
situations where the underlying pattern is horizontal; in other words, no trend or seasonal effects are
present. We then consider methods appropriate when trend and/or seasonality are present in the data.

17.2 FORECAST ACCURACY

In this section we begin by developing forecasts for the petrol time series shown in Table 17.1 using the
simplest of all the forecasting methods: an approach that uses the most recent week’s sales volume as the
forecast for the next week. For instance, the distributor sold 17 thousand litres of petrol in week 1; this
value is used as the forecast for week 2. Next, we use 21, the actual value of sales in week 2, as the forecast
for week 3 and so on.
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T ABLE 17 . 6 Quarterly television set sales time series

Year Quarter Sales (000s)

1 1 4.8

2 4.1

3 6.0

4 6.5

2 1 5.8

2 5.2

3 6.8

4 7.4

3 1 6.0

2 5.6

3 7.5

4 7.8

4 1 6.3

2 5.9

3 8.0

4 8.4

TVSALES
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T ABLE 17 . 7 Computing forecasts and measures of forecast accuracy using the most recent value as the forecast for the next period

Week

Time series

value Forecast

Forecast

error

Absolute value of

forecast error

Squared

forecast error

Percentage

error

Absolute value of

percentage error

1 17

2 21 17 4 4 16 19.05 19.05

3 19 21 –2 2 4 –10.53 10.53

4 23 19 4 4 16 17.39 17.39

5 18 23 –5 5 25 –27.78 27.78

6 16 18 –2 2 4 –12.50 12.50

7 20 16 4 4 16 20.00 20.00

8 18 20 –2 2 4 –11.11 11.11

9 22 18 4 4 16 18.18 18.18

10 20 22 –2 2 4 –10.00 10.00

11 15 20 –5 5 25 –33.33 33.33

12 22 15 7 7 49 31.82 31.82

Totals 5 41 179 1.19 211.69
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The forecasts obtained for the historical data using this method are shown in Table 17.7 in the column
labelled Forecast. Because of its simplicity, this method is often referred to as a naive forecasting method.

How accurate are the forecasts obtained using this naive forecasting method? To answer this question
we will introduce several measures of forecast accuracy. These measures are used to determine how well a
particular forecasting method is able to reproduce the time series data that are already available. By
selecting the method that has the best accuracy for the data already known, we hope to increase the
likelihood that we will obtain better forecasts for future time periods.

The key concept associated with measuring forecast accuracy is forecast error, defined as:

Forecast Error Actual Value − Forecast

For instance, because the distributor actually sold 21 thousand litres of petrol in week 2 and the forecast,
using the sales volume in week 1, was 17 thousand litres, the forecast error in week 2 is:

Forecast Error in week 2 21 − 17 4

The fact that the forecast error is positive indicates that in week 2 the forecasting method underestimated
the actual value of sales. Next, we use 21, the actual value of sales in week 2, as the forecast for week 3.
Since the actual value of sales in week 3 is 19, the forecast error for week 3 is 19 – 21 = –2. In this case, the
negative forecast error indicates that in week 3 the forecast overestimated the actual value. Thus, the
forecast error may be positive or negative, depending on whether the forecast is too low or too high. A
complete summary of the forecast errors for this naive forecasting method is shown in Table 17.7 in the
column labelled forecast error.

A simple measure of forecast accuracy is the mean or average of the forecast errors. Table 17.7 shows that
the sum of the forecast errors for the petrol sales time series is 5; thus, the mean or average forecast error is
5/11 = 0.45. Note that although the petrol time series consists of 12 values, to compute the mean error we
divided the sum of the forecast errors by 11 because there are only 11 forecast errors. Because the mean
forecast error is positive, the method is under-forecasting; in other words, the observed values tend to be
greater than the forecasted values. Because positive and negative forecast errors tend to offset one another, the
mean error is likely to be small; thus, the mean error is not a very useful measure of forecast accuracy.

The mean absolute error, denoted MAE, is a measure of forecast accuracy that avoids the problem of
positive and negative forecast errors offsetting one another. As you might expect given its name, MAE is
the average of the absolute values of the forecast errors. Table 17.7 shows that the sum of the absolute
values of the forecast errors is 41; thus,

MAE average of the absolute value of forecast errors
41

11
3 73

Another measure that avoids the problem of positive and negative forecast errors offsetting each other is
obtained by computing the average of the squared forecast errors. This measure of forecast accuracy, referred
to as the mean squared error, is denoted MSE. From Table 17.7, the sum of the squared errors is 179; hence,

MSE average of the sum of squared forecast errors
179

11
16 27

The size of MAE and MSE depends upon the scale of the data. As a result, it is difficult to make
comparisons for different time intervals, such as comparing a method of forecasting monthly petrol sales
to a method of forecasting weekly sales, or to make comparisons across different time series. To make
comparisons like these we need to work with relative or percentage error measures. The mean absolute

percentage error, denoted MAPE, is such a measure. To compute MAPE we must first compute the
percentage error for each forecast. For example, the percentage error corresponding to the forecast of 17
in week 2 is computed by dividing the forecast error in week 2 by the actual value in week 2 and
multiplying the result by 100. For week 2 the percentage error is computed as follows:

percentage error for week 2
4

21
100 19 05
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Thus, the forecast error for week 2 is 19.05 per cent of the observed value in week 2. A complete
summary of the percentage errors is shown in Table 17.7 in the column labelled percentage error. In the
next column, we show the absolute value of the percentage error.

Table 17.7 shows that the sum of the absolute values of the percentage errors is 211.69; thus,

MAPE average of the absolute value of percentage forecast errors
211 69

11
19 24

Summarizing, using the naive (most recent observation) forecasting method, we obtained the following
measures of forecast accuracy:

MAE 3 73
MSE 16 27
MAPE 19 24%

These measures of forecast accuracy simply measure how well the forecasting method is able to
forecast historical values of the time series. Now, suppose we want to forecast sales for a future time
period, such as week 13. In this case the forecast for week 13 is 22, the actual value of the time series in
week 12. Is this an accurate estimate of sales for week 13? Unfortunately, there is no way to address the
issue of accuracy associated with forecasts for future time periods. But, if we select a forecasting method
that works well for the historical data, and we think that the historical pattern will continue into the
future, we should obtain results that will ultimately be shown to be good.

Before closing this section, let’s consider another method for forecasting the petrol sales time series in
Table 17.1. Suppose we use the average of all the historical data available as the forecast for the next
period. We begin by developing a forecast for week 2. Since there is only one historical value available
prior to week 2, the forecast for week 2 is just the time series value in week 1; thus, the forecast for week 2
is 17 thousand litres of petrol. To compute the forecast for week 3, we take the average of the sales values
in weeks 1 and 2. Thus,

Forecast for week 3
17 21

2
19

Similarly, the forecast for week 4 is:

Forecast for week 4
17 21 19

3
19

The forecasts obtained using this method for the petrol time series are shown in Table 17.8 in the column
labelled forecast. Using the results shown in Table 17.8, we obtained the following values of MAE, MSE
and MAPE:

MAE
26 81

11
2 44

MSE
89 07

11
8 10

MAPE
141 34

11
12 85

We can now compare the accuracy of the two forecasting methods we have considered in this section
by comparing the values of MAE, MSE and MAPE for each method.

Naive method Average of past values

MAE 3.73 2.44
MSE 16.27 8.10
MAPE 19.24% 12.85%

For every measure, the average of past values provides more accurate forecasts than using the most recent
observation as the forecast for the next period. In general, if the underlying time series is stationary, the
average of all the historical data will always provide the best results.

FORECAST ACCURACY 521



T ABLE 17 . 8 Computing forecasts and measures of forecast accuracy using the average of all the historical data as the forecast for the next period

Week

Time series

value Forecast

Forecast

error

Absolute value of

forecast error

Squared

forecast error

Percentage

error

Absolute value of

percentage error

1 17

2 21 17.00 4.00 4.00 16.00 19.05 19.05

3 19 19.00 0.00 0.00 0.00 0.00 0.00

4 23 19.00 4.00 4.00 16.00 17.39 17.39

5 18 20.00 –2.00 2.00 4.00 –11.11 11.11

6 16 19.60 –3.60 3.60 12.96 –22.50 22.50

7 20 19.00 1.00 1.00 1.00 5.00 5.00

8 18 19.14 –1.14 1.14 1.31 –6.35 6.35

9 22 19.00 3.00 3.00 9.00 13.64 13.64

10 20 19.33 0.67 0.67 0.44 3.33 3.33

11 15 19.40 –4.40 4.40 19.36 –29.33 29.33

12 22 19.00 3.00 3.00 9.00 13.64 13.64

Totals 4.53 26.81 89.07 2.76 141.34
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But suppose that the underlying time series is not stationary. In Section 17.1 we mentioned that changes
in business conditions can often result in a time series that has a horizontal pattern shifting to a new level.
We discussed a situation in which the petrol distributor signed a contract with the Guardia Civil to provide
petrol for police cars located in northern Spain. Table 17.2 shows the number of litres of petrol sold for the
original time series and the ten weeks after signing the new contract, and Figure 17.2 shows the correspond-
ing time series plot. Note the change in level in week 13 for the resulting time series. When a shift to a new
level like this occurs, it takes a long time for the forecasting method that uses the average of all the historical
data to adjust to the new level of the time series. But, in this case, the simple naive method adjusts very
rapidly to the change in level because it uses the most recent observation available as the forecast.

Measures of forecast accuracy are important factors in comparing different forecasting methods, but
we have to be careful not to rely upon them too heavily. Good judgement and knowledge about business
conditions that might affect the forecast also have to be carefully considered when selecting a method.
And historical forecast accuracy is not the only consideration, especially if the time series is likely to
change in the future.

In the next section we will introduce more sophisticated methods for developing forecasts for a time
series that exhibits a horizontal pattern. Using the measures of forecast accuracy developed here, we will
be able to determine if such methods provide more accurate forecasts than we obtained using the simple
approaches illustrated in this section. The methods that we will introduce also have the advantage of
adapting well in situations where the time series changes to a new level. The ability of a forecasting
method to adapt quickly to changes in level is an important consideration, especially in short-term
forecasting situations.

EXERCISES

Methods

1. Consider the following time series data.

Week 1 2 3 4 5 6

Value 18 13 16 11 17 14

Using the naive method (most recent value) as the forecast for the next week, compute the following

measures of forecast accuracy.

a. Mean absolute error.

b. Mean squared error.

c. Mean absolute percentage error.

d. What is the forecast for week 7?

2. Refer to the time series data in Exercise 1. Using the average of all the historical data as a forecast

for the next period, compute the following measures of forecast accuracy.

a. Mean absolute error.

b. Mean squared error.

c. Mean absolute percentage error.

d. What is the forecast for week 7?

3. Exercises 1 and 2 used different forecasting methods. Which method appears to provide the more

accurate forecasts for the historical data? Explain.

COMPLETE

SOLUTIONS
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17.3 MOVING AVERAGES AND EXPONENTIAL SMOOTHING

In this section we discuss three forecasting methods that are appropriate for a time series with a
horizontal pattern: moving averages, weighted moving averages and exponential smoothing. These
methods also adapt well to changes in the level of a horizontal pattern such as we saw with the extended
petrol sales time series (Table 17.2 and Figure 17.2). However, without modification they are not
appropriate when significant trend, cyclical or seasonal effects are present. Because the objective of each
of these methods is to ‘smooth out’ the random fluctuations in the time series, they are referred to as
smoothing methods. These methods are easy to use and generally provide a high level of accuracy for
short-range forecasts, such as a forecast for the next time period.

Moving averages

The moving averages method uses the average of the most recent k data values in the time series as the
forecast for the next period. Mathematically, a moving average forecast of order k is as follows:

Moving average forecast of order k

Ft 1
∑ most recent k data values

k

Yt Yt 1 Yt k 1

k
(17.1)

where
Ft 1 forecast of the times series for period t 1
Yt actual value of the time series in period t

The term moving is used because every time a new observation becomes available for the time series, it
replaces the oldest observation in the equation and a new average is computed. As a result, the average
will change, or move, as new observations become available.

To illustrate the moving averages method, let us return to the petrol sales data in Table 17.1 and
Figure 17.1. The time series plot in Figure 17.1 indicates that the petrol sales time series has a horizontal
pattern. Thus, the smoothing methods of this section are applicable.

To use moving averages to forecast a time series, we must first select the order, or number of time series
values, to be included in the moving average. If only the most recent values of the time series are considered
relevant, a small value of k is preferred. If more past values are considered relevant, then a larger value of k is
better. As mentioned earlier, a time series with a horizontal pattern can shift to a new level over time. A
moving average will adapt to the new level of the series and resume providing good forecasts in k periods.
Thus, a smaller value of k will track shifts in a time series more quickly. But larger values of k will be more
effective in smoothing out the random fluctuations over time. So managerial judgement based on an
understanding of the behaviour of a time series is helpful in choosing a good value for k.

4. Consider the following time series data.

Month 1 2 3 4 5 6 7

Value 24 13 20 12 19 23 15

a. Compute MSE using the most recent value as the forecast for the next period. What is the

forecast for month 8?

b. Compute MSE using the average of all the data available as the forecast for the next period.

What is the forecast for month 8?

c. Which method appears to provide the better forecast?
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To illustrate how moving averages can be used to forecast petrol sales, we will use a three-week moving
average (k = 3). We begin by computing the forecast of sales in week 4 using the average of the time series
values in weeks 1–3.

F4 average of weeks 1 3
17 21 19

3
19

Thus, the moving average forecast of sales in week 4 is 19 or 19 000 litres of petrol. Because the actual
value observed in week 4 is 23, the forecast error in week 4 is 23 – 19 = 4.

Next, we compute the forecast of sales in week 5 by averaging the time series values in weeks 2–4.

F5 average of weeks 2 4
21 19 23

3
21

Hence, the forecast of sales in week 5 is 21 and the error associated with this forecast is 18 − 21 = −3. A complete
summary of the three-week moving average forecasts for the petrol sales time series is provided in Table 17.9.
Figure 17.7 shows the original time series plot and the three-week moving average forecasts. Note how the
graph of the moving average forecasts has tended to smooth out the random fluctuations in the time series.

To forecast sales in week 13, the next time period in the future, we simply compute the average of the
time series values in weeks 10, 11, and 12.

F13 average of weeks 10 12
20 15 22

3
19

Thus, the forecast for week 13 is 19 or 19 000 litres of petrol.

Forecast accuracy
In Section 17.2 we discussed three measures of forecast accuracy: MAE, MSE andMAPE. Using the three-week
moving average calculations in Table 17.9, the values for these three measures of forecast accuracy are:

MAE
24

9
2 67

MSE
92

9
10 22

MAPE
129 21

9
14 36%

In Section 17.2 we also showed that using the most recent observation as the forecast for the next week
(a moving average of order k = 1) resulted in values of MAE = 3.73, MSE = 16.27 and MAPE = 19.24%.
Thus, in each case the three-week moving average approach provided more accurate forecasts than simply
using the most recent observation as the forecast.

To determine if a moving average with a different order k can provide more accurate forecasts, we
recommend using trial and error to determine the value of k that minimizes MSE. For the petrol sales
time series, it can be shown that the minimum value of MSE corresponds to a moving average of order
k = 6 with MSE = 6.79. If we are willing to assume that the order of the moving average that is best for the
historical data will also be best for future values of the time series, the most accurate moving average
forecasts of petrol sales can be obtained using a moving average of order k = 6.

Weighted moving averages

With the moving averages method, each observation in the moving average calculation receives the same
weight. One variation, known as weighted moving averages, involves selecting a different weight for each data
value and then computing a weighted average of themost recent k values as the forecast. Inmost cases, themost
recent observation receives the most weight, and the weight decreases for older data values. Let us use the petrol
sales time series to illustrate the computation of a weighted three-weekmoving average.We assign a weight of 3/
6 to themost recent observation, a weight of 2/6 to the secondmost recent observation and a weight of 1/6 to the
third most recent observation. Using this weighted average, our forecast for week 4 is computed as follows:

Forecast for week 4 1
6 17 2

6 21 3
6 19 19 33

Note that for the weighted moving average method the sum of the weights is equal to 1.
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T ABLE 17 . 9 Summary of three-week moving average calculations

Week

Time series

value Forecast

Forecast

error

Absolute value of

forecast error

Squared

forecast error

Percentage

error

Absolute value of

percentage error

1 17

2 21

3 19

4 23 19 4 4 16 17.39 17.39

5 18 21 –3 3 9 –16.67 16.67

6 16 20 –4 4 16 –25.00 25.00

7 20 19 1 1 1 5.00 5.00

8 18 18 0 0 0 0.00 0.00

9 22 18 4 4 16 18.18 18.18

10 20 20 0 0 0 0.00 0.00

11 15 20 –5 5 25 –33.33 33.33

12 22 19 3 3 9 13.64 13.64

Totals 0 24 92 –20.79 129.21
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Forecast accuracy
To use the weighted moving averages method, we must first select the number of data values to be
included in the weighted moving average and then choose weights for each of the data values. In general,
if we believe that the recent past is a better predictor of the future than the distant past, larger weights
should be given to the more recent observations. However, when the time series is highly variable,
selecting approximately equal weights for the data values may be best. The only requirement in selecting
the weights is that their sum must equal 1. To determine whether one particular combination of number
of data values and weights provides a more accurate forecast than another combination, we recommend
using MSE as the measure of forecast accuracy. That is, if we assume that the combination that is best for
the past will also be best for the future, we would use the combination of number of data values and
weights that minimizes MSE for the historical time series to forecast the next value in the time series.

Exponential smoothing

Exponential smoothing also uses a weighted average of past time series values as a forecast; it is a special
case of the weighted moving averages method in which we select only one weight – the weight for the
most recent observation. The weights for the other data values are computed automatically and become
smaller as the observations move farther into the past. The exponential smoothing equation follows.

Exponential smoothing forecast

Ft 1 αYt 1 α Ft (17.2)

where:

Ft 1 forecast of the time series for period t 1
Yt actual value of the time series in period t
Ft forecast of the time series for period t
α smoothing constant 0 α 1
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Equation (17.2) shows that the forecast for period t 1 is a weighted average of the actual value in
period t and the forecast for period t. The weight given to the actual value in period t is the smoothing

constant α and the weight given to the forecast in period t is 1 – α. It turns out that the exponential
smoothing forecast for any period is actually a weighted average of all the previous actual values of the time
series. Let us illustrate by working with a time series involving only three periods of data: Y1, Y2 and Y3.

To initiate the calculations, we let F1 equal the actual value of the time series in period 1; that is,
F1 = Y1. Hence, the forecast for period 2 is:

F2 αY1 1 α F1
αY1 1 α Y1

Y1

We see that the exponential smoothing forecast for period 2 is equal to the actual value of the time series
in period 1.

The forecast for period 3 is:

F3 αY2 1 α F2 αY2 1 α Y1

Finally, substituting this expression for F3 in the expression for F4, we obtain:

F4 αY3 1 α F3
αY3 1 α αY2 1 α Y1

αY3 1 α αY2 1 α 2Y1

We now see that F4 is a weighted average of the first three time series values. The sum of the coefficients,
or weights, for Y1, Y2 and Y3 equals 1. A similar argument can be made to show that, in general, any
forecast Ft 1 is a weighted average of all the previous time series values.

Despite the fact that exponential smoothing provides a forecast that is a weighted average of all
previous observations, past data do not all need to be saved to compute the forecast for the next period. In
fact, equation (17.2) shows that once the value for the smoothing constant α is selected, only two pieces of
information are needed to compute the forecast Ft 1: Yt, the actual value of the time series in period t,
and Ft, the forecast for period t.

To illustrate the exponential smoothing approach, let us again consider the petrol sales time series in
Table 17.1 and Figure 17.1. As indicated previously, to start the calculations we set the exponential
smoothing forecast for period 2 equal to the actual value of the time series in period 1. Thus, with Y1 = 17,
we set F2 = 17 to initiate the computations. Referring to the time series data in Table 17.1, we find an
actual time series value in period 2 of Y2 = 21. Thus, period 2 has a forecast error of 21–17 = 4.

Continuing with the exponential smoothing computations using a smoothing constant of α = 0.2, we
obtain the following forecast for period 3:

F3 0 2Y2 0 8F2 0 2 21 0 8 17 17 8

Once the actual time series value in period 3, Y3 = 19, is known, we can generate a forecast for period 4
as follows:

F4 0 2Y3 0 8F3 0 2 19 0 8 17 8 18 04

Continuing the exponential smoothing calculations, we obtain the weekly forecast values shown in
Table 17.10. Note that we have not shown an exponential smoothing forecast or a forecast error for week
1 because no forecast was made. For week 12, we have Y12 = 22 and F12 = 18.48. We can we use this
information to generate a forecast for week 13.

F13 0 2Y12 0 8F12 0 2 22 0 8 18 48 19 18

Thus, the exponential smoothing forecast of the amount sold in week 13 is 19.18, or 19 180 litres of petrol.
With this forecast, the firm can make plans and decisions accordingly.
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Figure 17.8 shows the time series plot of the actual and forecast time series values. Note in particular
how the forecasts ‘smooth out’ the irregular or random fluctuations in the time series.

Forecast accuracy
In the preceding exponential smoothing calculations, we used a smoothing constant of α = 0.2. Although any
value of α between 0 and 1 is acceptable, some values will yield better forecasts than others. Insight into
choosing a good value for α can be obtained by rewriting the basic exponential smoothing model as follows:

Ft 1 αYt 1 α Ft (17.3)

Ft 1 αYt Ft αFt

Ft 1 Ft α Yt Ft
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T ABLE 17 . 10 Summary of the exponential smoothing forecasts and forecast errors for the petrol sales

time series with smoothing constant = 0.2

Week Time series value Forecast Forecast error Squared forecast error

1 17

2 21 17.00 4.00 16.00

3 19 17.80 1.20 1.44

4 23 18.04 4.96 24.60

5 18 19.03 –1.03 1.06

6 16 18.83 –2.83 8.01

7 20 18.26 1.74 3.03

8 18 18.61 –0.61 0.37

9 22 18.49 3.51 12.32

10 20 19.19 0.81 0.66

11 15 19.35 –4.35 18.92

12 22 18.48 3.52 12.39

Totals 10.92 98.80

MOVING AVERAGES AND EXPONENTIAL SMOOTHING 529



Thus, the new forecast Ft 1 is equal to the previous forecast Ft plus an adjustment, which is the
smoothing constant α times the most recent forecast error, Yt – Ft. That is, the forecast in period t 1
is obtained by adjusting the forecast in period t by a fraction of the forecast error. If the time series
contains substantial random variability, a small value of the smoothing constant is preferred. The reason
for this choice is that if much of the forecast error is due to random variability, we do not want to
overreact and adjust the forecasts too quickly. For a time series with relatively little random variability,
forecast errors are more likely to represent a change in the level of the series. Thus, larger values of the
smoothing constant provide the advantage of quickly adjusting the forecasts; this allows the forecasts to
react more quickly to changing conditions.

The criterion we will use to determine a desirable value for the smoothing constant α is the same as the
criterion we proposed for determining the order or number of periods of data to include in the moving
averages calculation. That is, we choose the value of α that minimizes the MSE. A summary of the MSE
calculations for the exponential smoothing forecast of petrol sales with α = 0.2 is shown in Table 17.10.
Note that there is one less squared error term than the number of time periods because we had no past
values with which to make a forecast for period 1. The value of the sum of squared forecast errors is 98.80;
hence MSE = 98.80/11 = 8.98. Would a different value of α provide better results in terms of a lower MSE
value? Perhaps the most straightforward way to answer this question is simply to try another value for α
We will then compare its mean squared error with the MSE value of 8.98 obtained by using a smoothing
constant of α = 0.2.

The exponential smoothing results with α = 0.3 are shown in Table 17.11. The value of the sum of
squared forecast errors is 102.83; hence MSE = 102.83/11 = 9.35. With MSE = 9.35, we see that, for the
current data set, a smoothing constant of α = 0.3 results in less forecast accuracy than a smoothing
constant of α = 0.2. Thus, we would be inclined to prefer the original smoothing constant of α = 0.2.
Using a trial-and-error calculation with other values of α , we can find a ‘good’ value for the smoothing
constant. This value can be used in the exponential smoothing model to provide forecasts for the future.
At a later date, after new time series observations are obtained, we analyze the newly collected time
series data to determine whether the smoothing constant should be revised to provide better forecasting
results.

T ABLE 17 . 11 Summary of the exponential smoothing forecasts and forecast errors for the petrol sales

time series with smoothing constant = 0.3

Week Time series value Forecast Forecast error Squared forecast error

1 17

2 21 17.00 4.00 16.00

3 19 18.20 0.80 0.64

4 23 18.44 4.56 20.79

5 18 19.81 –1.81 3.28

6 16 19.27 –3.27 10.69

7 20 18.29 1.71 2.92

8 18 18.80 –0.80 0.64

9 22 18.56 3.44 11.83

10 20 19.59 0.41 0.17

11 15 19.71 –4.71 22.18

12 22 18.30 3.70 13.69

Totals 8.03 102.83
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EXERCISES

Methods

5. Consider the following time series data.

Week 1 2 3 4 5 6

Value 18 13 16 11 17 14

a. Construct a time series plot. What type of pattern exists in the data?

b. Develop the three-week moving average forecasts for this time series. Compute MSE and a

forecast for week 7.

c. Use = 0.2 to compute the exponential smoothing forecasts for the time series. Compute MSE

and a forecast for week 7.

d. Compare the three-week moving average approach with the exponential smoothing approach

using = 0.2. Which appears to provide more accurate forecasts based on MSE? Explain.

e. Use a smoothing constant of = 0.4 to compute the exponential smoothing forecasts. Does a

smoothing constant of 0.2 or 0.4 appear to provide more accurate forecasts based on MSE?

Explain.

6. Consider the following time series data.

Month 1 2 3 4 5 6 7

Value 24 13 20 12 19 23 15

Construct a time series plot. What type of pattern exists in the data?

a. Develop the three-week moving average forecasts for this time series. Compute MSE and a

forecast for week 8.

b. Use = 0.2 to compute the exponential smoothing forecasts for the time series. Compute MSE

and a forecast for week 8.

c. Compare the three-week moving average approach with the exponential smoothing approach

using = 0.2. Which appears to provide more accurate forecasts based on MSE?

d. Use a smoothing constant of = 0.4 to compute the exponential smoothing forecasts. Does a

smoothing constant of 0.2 or 0.4 appear to provide more accurate forecasts based on MSE?

Explain.

7. Refer to the petrol sales time series data in Table 17.1.

a. Compute four-week and five-week moving averages for the time series.

b. Compute the MSE for the four-week and five-week moving average forecasts.

c. What appears to be the best number of weeks of past data (three, four or five) to use in the

moving average computation? Recall that MSE for the three-week moving average is 10.22.

8. Refer again to the petrol sales time series data in Table 17.1.

a. Using a weight of 1/2 for the most recent observation, 1/3 for the second most recent

observation, and 1/6 for third most recent observation, compute a three-week weighted moving

average for the time series.

b. Compute the MSE for the weighted moving average in part (a). Do you prefer this weighted

moving average to the unweighted moving average? Remember that the MSE for the

unweighted moving average is 10.22.

c. Suppose you are allowed to choose any weights as long as they sum to 1. Could you always find

a set of weights that would make the MSE at least as small for a weighted moving average than

for an unweighted moving average? Why or why not?

PETROL
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9. With the petrol time series data from Table 17.1, show the exponential smoothing forecasts

using = 0.1.

a. Applying the MSE measure of forecast accuracy, would you prefer a smoothing constant of

= 0.1 or = 0.2 for the petrol sales time series?

b. Are the results the same if you apply MAE as the measure of accuracy?

c. What are the results if MAPE is used?

10. With a smoothing constant of = 0.2, equation (17.2) shows that the forecast for week 13 of the

petrol sales data from Table 17.1 is given by F13 = 0.2Y12 0.8F12. However, the forecast for

week 12 is given by F12 = 0.2Y11 0.8F11. Thus, we could combine these two results to show

that the forecast for week 13 can be written:

F13 0 2Y12 0 8 0 2Y11 0 8F11 0 2Y12 0 16Y11 0 64F11

a. Making use of the fact that F11 = 0.2Y10 0.8F10 (and similarly for F10 and F9), continue to

expand the expression for F13 until it is written in terms of the past data values Y12, Y11, Y10,

Y9, Y8, and the forecast for period 8.

b. Refer to the coefficients or weights for the past values Y12, Y11, Y10, Y9, Y8. What

observation can you make about how exponential smoothing weights past data values in

arriving at new forecasts? Compare this weighting pattern with the weighting pattern of the

moving averages method.

Applications

11. For SIS Cargo Services in Dubai, the monthly percentages of all shipments received on time over

the past 12 months are 80, 82, 84, 83, 83, 84, 85, 84, 82, 83, 84 and 83.

a. Construct a time series plot. What type of pattern exists in the data?

b. Compare the three-month moving average approach with the exponential smoothing approach

for = 0.2. Which provides more accurate forecasts using MSE as the measure of forecast

accuracy?

c. What is the forecast for next month?

12. The values of Austrian building contracts (in millions of euros) for a 12-month period follow.

240 350 230 260 280 320 220 310 240 310 240 230

a. Construct a time series plot. What type of pattern exists in the data?

b. Compare the three-month moving average approach with the exponential smoothing forecast

using = 0.2. Which provides more accurate forecasts based on MSE?

c. What is the forecast for the next month?

13. The following data represent indices for the seasonally adjusted merchandise trade volumes for

New Zealand from 2005–2008.

Year Quarter Index Year Quarter Index

2005 Mar 999 2007 Mar 1046

Jun 998 Jun 1057

Sep 981 Sep 1052

Dec 1007 Dec 1157

2006 Mar 993 2008 Mar 1111

Jun 1004 Jun 1068

Sep 1062 Sep 1043

Dec 1005

COMPLETE

SOLUTIONS
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17.4 TREND PROJECTION

We present three forecasting methods in this section that are appropriate for time series exhibiting a
trend pattern. First, we show how simple linear regression can be used to forecast a time series with a
linear trend. We then illustrate how to develop forecasts using Holt’s linear exponential smoothing, an
extension of single exponential smoothing that uses two smoothing constants: one to account for the level
of the time series and a second to account for the linear trend in the data. Finally, we show how the curve-
fitting capability of regression analysis can also be used to forecast time series with a curvilinear or
nonlinear trend.

Linear trend regression

In Section 17.1 we used the bicycle sales time series in Table 17.3 and Figure 17.3 to illustrate a time series
with a trend pattern. Let us now use this time series to illustrate how simple linear regression can be used
to forecast a time series with a linear trend. The data for the bicycle time series are repeated in Table 17.12
and Figure 17.9.

Although the time series plot in Figure 17.9 shows some up and down movement over the past ten
years, we might agree that the linear trend line shown in Figure 17.10 provides a reasonable approxima-
tion of the long-run movement in the series. We can use the methods of simple linear regression (see
Chapter 14) to develop such a linear trend line for the bicycle sales time series.

In Chapter 14, the estimated regression equation describing a straight-line relationship between an
independent variable x and a dependent variable y is written as:

y b0 b1x

where ŷ is the estimated or predicted value of y. To emphasize the fact that in forecasting the
independent variable is time, we will replace x with t and ŷ with Tt to emphasize that we are estimating
the trend for a time series. Thus, for estimating the linear trend in a time series we will use the following
estimated regression equation.

T ABLE 17 . 12 Bicycle sales time series

Year Sales (000s)

1 21.6

2 22.9

3 25.5

4 21.9

5 23.9

6 27.5

7 31.5

8 29.7

9 28.6

10 31.4

a. Compute three- and four-quarter moving averages for this time series. Which moving average

provides the better forecast for the fourth quarter of 2008?

b. Plot the data. Do you think the exponential smoothing model would be appropriate for

forecasting in this case?
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Linear trend equation

Tt b0 b1t (17.4)
where:

Tt linear trend forecast in period t
b0 intercept of the linear trend line
b1 slope of the linear trend line
t time period

In equation (17.4), the time variable begins at t = 1 corresponding to the first time series observation (year
1 for the bicycle sales time series) and continues until t = n corresponding to the most recent time series
observation (year 10 for the bicycle sales time series). Thus the bicycle sales time series t = 1 corresponds
to the oldest time series value and t = 10 corresponds to the most recent year.
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Formulae for computing the estimated regression coefficients (b1 and b0) in equation (17.4) follow.

Computing the slope and intercept for a linear trend*

b1 ∑
n

t 1
t t Yt Y

∑
n

t 1
t t 2

(17.5)

b0 Y b1t (17.6)
where:

Yt value of the time series in period t
n number of time periods number of observations
Y average value of the time series
t average value of t

This form of equation (17.5) is often recommended when using a calculator to compute b1.
To compute the linear trend equation for the bicycle sales time series, we begin the calculations by

computing and using the information in Table 17.12.

t
∑
n

t 1
t

n

55

10
5 5

Y
∑
n

t 1
Yt

n

264 5

10
26 45

Using these values, and the information in Table 17.13, we can compute the slope and intercept of the
trend line for the bicycle sales time series.

b1

∑
n

t 1
t t Yt Y

∑
n

t 1
t t 2

90 75

82 5
1 1

b0 Y b1t 26 45 1 1 5 5 20 4

Therefore, the linear trend equation is:

Tt 20 4 1 1t

The slope of 1.1 indicates that over the past ten years the firm experienced an average growth in sales of
about 1100 units per year. If we assume that the past ten-year trend in sales is a good indicator of the
future, this trend equation can be used to develop forecasts for future time periods. For example,
substituting t = 11 into the equation yields next year’s trend projection or forecast, T11.

T11 20 4 1 1 11 32 5

*An alternate formula for b1 is:

bi

∑
n

t 1
tYt ∑

n

t 1
∑
n

t 1
Yt n

∑
n

t 1
t2 ∑

n

t 1
t

2

n
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Thus, using trend projection, we would forecast sales of 32 500 bicycles next year.
To compute the accuracy associated with the trend projection forecasting method, we will use the

MSE. Table 17.14 shows the computation of the sum of squared errors for the bicycle sales time series.
Thus, for the bicycle sales time series,

MSE
∑
n

t 1
Yt Ft

2

n

30 7

10
3 07

Because linear trend regression in forecasting uses the same regression analysis procedure introduced
in Chapter 14, we can use the standard regression analysis procedures in MINITAB or EXCEL to perform
the calculations. Figure 17.11 shows the computer output for the bicycle sales time series obtained using
MINITAB’s regression analysis module.

In Figure 17.11 the value of MSE in the ANOVA table is:

MSE
Sum of Squares Due to Error

Degrees of Freedom

30 7

8
3 837

This value of MSE differs from the value of MSE that we computed previously because the sum of squared
errors is divided by 8 instead of 10; thus, MSE in the regression output is not the average of the
squared forecast errors.

T ABLE 17 . 13 Summary of linear trend calculations for the bicycle sales time series

t Y1 t t Y1 Y t t Y1 Y t t 2

1 21.6 –4.5 –4.85 21.825 20.25

2 22.9 –3.5 –3.55 12.425 12.25

3 25.5 –2.5 –0.95 2.375 6.25

4 21.9 –1.5 –4.55 6.825 2.25

5 23.9 –0.5 –2.55 1.275 0.25

6 27.5 0.5 1.05 0.525 0.25

7 31.5 1.5 5.05 7.575 2.25

8 29.7 2.5 3.25 8.125 6.25

9 28.6 3.5 2.15 7.525 12.25

10 31.4 4.5 4.95 22.275 20.25

Totals 55 264.5 90.750 82.50

T ABLE 17 . 14 Summary of the linear trend forecasts and forecast errors for the bicycle sales time series

Year Sales (000s) Yt Forecast Tt Forecast error Squared forecast error

1 21.6 21.5 0.1 0.01

2 22.9 22.6 0.3 0.09

3 25.5 23.7 1.8 3.24

4 21.9 24.8 –2.9 8.41

5 23.9 25.9 –2.0 4.00

6 27.5 27.0 0.5 0.25

7 31.5 28.1 3.4 11.56

8 29.7 29.2 0.5 0.25

9 28.6 30.3 –1.7 2.89

10 31.4 31.4 0.0 0.00

Total 30.70
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Most forecasting packages, however, compute MSE by taking the average of the squared errors. Thus,
when using time series packages to develop a trend equation, the value of MSE that is reported may differ
slightly from the value you would obtain using a general regression approach. For instance, in Fig-
ure 17.12, we show the graphical portion of the computer output obtained using MINITAB’s Trend
Analysis time series procedure. Note that MSD = 3.07 is the average of the squared forecast errors.
(MSD in MINITAB’s Trend Analysis output is the mean squared deviation and equates to MSE defined
earlier.).

Holt’s linear exponential smoothing

Charles Holt developed a version of exponential smoothing that can be used to forecast a time series with
a linear trend. Recall that the exponential smoothing procedure discussed in Section 17.3 uses the
smoothing constant to ‘smooth out’ the randomness or irregular fluctuations in a time series; and,
forecasts for time period t 1 are obtained using the equation:

Ft 1 αYt 1 α Ft

FIGURE 17.11

MINITAB regression output for the bicycle sales time series

The regression equation is

Y = 20.4 + 1.10 t

Predictor Coef SE Coef T p

Constant 20.400 1.338 15.24 0.000

t 1.1000 0.2157 5.10 0.001

S = 1.95895 R-sq = 76.5% R-sq(adj) = 73.5%

Analysis of Variance

SOURCE DF SS MS F p

Regression 1 99.825 99.825 26.01 0.001

Residual Error 8 30.700 3.837

Total 9 130.525
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Forecasts for Holt’s linear exponential smoothing method are obtained using two smoothing constants, α
and β, and three equations.

Equations for Holt’s linear exponential smoothing

Lt αYt 1 α Lt 1 bt 1 (17.7)

bt Lt Lt 1 1 bt 1 (17.8)

Ft k Lt btk (17.9)

where:

Lt estimate of the level of the time series in period t
bt estimate of the slope of the time series in period t
α smoothing constant for the level of the time series

smoothing constant for the slope of the time series
Ft k forecast for k periods ahead

k the number of periods ahead to be forecast

Let us apply Holt’s method to the bicycle sales time series in Table 17.12 using α = 0.1 and β = 0.2. To
get the method started, we need values for L1, the estimate of the level of the time series in year 1, and b1,
the estimate of the slope of the time series in year 1. A commonly used approach is to set L1 = Y1 and
b1 = Y2 – Y1. Using this start up procedure, we obtain:

L1 Y1 21 6
b1 Y2 Y1 22 9 21 6 1 3

Using equation (17.9) with k = 1, the forecast of sales in year 2 is F2 = L1 b1 = 21.6 1.3(1) = 22.9.
Then we move on using equations (17.7) to (17.9) to compute estimates of the level and trend for year 2
as well as a forecast for year 3.

First we use equation (17.7) and the smoothing constant α = 0.1 to compute an estimate of the level of
the time series in year 2.

L2 0 1 22 9 0 9 21 6 1 3 22 9

Note that 21.6 1.3 is the forecast of sales for year 2. Thus, the estimate of the level of the time series in
year 2 obtained using equation (17.7) is simply a weighted average of the observed value in year 2 (using a
weight of = 0.1) and the forecast for year 2 (using a weight of 1 – α = 1 – 0.1 = 0.9). In general, large
values of place more weight on the observed value (Yt), whereas smaller values place more weight on the
forecasted value (Lt – 1 b t –1).

Next we use equation (17.8) and the smoothing constant β = 0.2 to compute an estimate of the slope of
the time series in year 2.

b2 0 2 22 9 21 6 1 0 2 1 3 1 3

The estimate of the slope of the time series in year 2 is a weighted average of the difference in the
estimated level of the time series between year 2 and year 1 (using a weight of β = 0.2) and the estimate of
the slope in year 1 (using a weight of 1 – β = 1 – 0.2 = 0.8). In general, higher values of β place more
weight on the difference between the estimated levels, whereas smaller values place more weight on the
estimate of the slope from the last period.

Using the estimates of L2 and b2 just obtained, the forecast of sales for year 3 is computed using
equation (17.9):

F3 L2 b2 22 9 1 3 1 24 2

The other calculations are made in a similar manner and are shown in Table 17.15. The sum of the
squared forecast errors is 39.678; hence MSE = 39.678/9 = 4.41.

538 CHAPTER 17 TIME SERIES ANALYSIS AND FORECASTING



Will different values for the smoothing constants and β provide more accurate forecasts? To answer
this question we would have to try different combinations of and , to determine if a combination can
be found that will provide a value of MSE lower than 4.41, the value we obtained using smoothing
constants = 0.1 and β = 0.2. Searching for good values of and β can be done by trial and error or using
more advanced statistical software packages that have an option for selecting the optimal set of smoothing
constants.

Note that the estimate of the level of the time series in year 10 is L1 = 32.220 and the estimate of
the slope in year 10 is b1 = 1.171. If we assume that the past ten-year trend in sales is a good indicator
of the future, equation (17.9) can be used to develop forecasts for future time periods. For example,
substituting t = 11 into equation (17.9) yields next year’s trend projection or forecast, F11.

F11 L10 b10 1 32 220 1 171 33 391

Thus, using Holt’s linear exponential smoothing we would forecast sales of 33 391 bicycles next year.

Nonlinear trend regression

The use of a linear function to model trend is common. However, as we discussed previously, sometimes
time series have a curvilinear or nonlinear trend. As an example, consider the annual revenue in millions
of dollars for a cholesterol drug for the first ten years of sales. Table 17.16 shows the time series and
Figure 17.13 shows the corresponding time series plot. For instance, revenue in year 1 was $23.1 million;
revenue in year 2 was $21.3 million; and so on. The time series plot indicates an overall increasing or
upward trend. But, unlike the bicycle sales time series, a linear trend does not appear to be appropriate.
Instead, a curvilinear function appears to be needed to model the long-term trend.

Quadratic trend equation
A variety of nonlinear functions can be used to develop an estimate of the trend for the cholesterol
time series. For instance, consider the following quadratic trend equation:

Tt b0 b1t b2t
2 (17.10)

For the cholesterol time series, t = 1 corresponds to year 1, t = 2 corresponds to year 2 and so on.
The general linear model discussed in Section 16.1 can be used to compute the values of b0, b1 and

b2. There are two independent variables, year and year squared, and the dependent variable is the
sales revenue in millions of dollars. Thus, the first observation is 1, 1, 23.1; the second observation is
2, 4, 21.3; the third observation is 3, 9, 27.4; and so on. Figure 17.14 shows the MINITAB multiple
regression output for the quadratic trend model.

T ABLE 17 . 15 Summary calculations for Holt’s linear exponential smoothing for the bicycle sales time

series using = 0.1 and = 0.2

Year

Sales

(000s)

Yt

Estimated

level Lt

Estimated

trend bt

Forecast

Ft

Forecast

error

Squared

forecast

error

1 21.6 21.600 1.300

2 22.9 22.900 1.300 22.900 0.000 0.000

3 25.5 24.330 1.326 24.200 1.300 1.690

4 21.9 25.280 1.251 25.656 –3.756 14.108

5 23.9 26.268 1.198 26.531 –2.631 6.924

6 27.5 27.470 1.199 27.466 0.034 0.001

7 31.5 28.952 1.256 28.669 2.831 8.016

8 29.7 30.157 1.245 30.207 –0.507 0.257

9 28.6 31.122 1.189 31.402 –2.802 7.851

10 31.4 32.220 1.171 32.311 –0.911 0.830

Total 36.678

CHOLESTEROL
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T ABLE 17 . 16 Cholesterol revenue time series ($ millions)

Year (t) Revenue ($ millions)

1 23.1

2 21.3

3 27.4

4 34.6

5 33.8

6 43.2

7 59.5

8 64.4

9 74.2

10 99.3
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Cholesterol revenue times series

plot ($ millions)

FIGURE 17.14

MINITAB quadratic trend regression output for the bicycle sales time series

The regression equation is

Revenue = 24.2 – 2.11 Year + 0.922 YearSq

Predictor Coef SE Coef T p

Constant 24.182 4.676 5.17 0.001

Year –2.106 1.953 –1.08 0.317

YearSq 0.9216 0.1730 5.33 0.001

S = 3.97578 R-Sq = 98.1% R-Sq(adj) = 97.6%

Analysis of Variance

SOURCE DF SS MS F p

Regression 2 5770.1 2885.1 182.52 0.000

Residual Error 7 110.6 15.8

Total 9 5880.8
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The estimated regression equation is:

Revenue $ millions 24 2 – 2 11 Year 0 922 YearSq

where:

Year 1 2 3 … 10
YearSq 1 4 9 … 100

Using the standard multiple regression procedure requires us to compute the values for year squared as a
second independent variable. Alternatively, we can use MINITAB’s Time Series – Trend Analysis
procedure to provide the same results. It does not require developing values for year squared and is easier
to use. We recommend using this approach when solving exercises that involve using quadratic trends.

Exponential trend equation
Another alternative that can be used to model the nonlinear pattern exhibited by the cholesterol time series is
to fit an exponential model to the data. For instance, consider the following exponential trend equation:

Tt b0 b1
t

(17.11)

To better understand this exponential trend equation, suppose b0 = 20 and b1 = 1.2. Then, for t = 1, T1 =
20(1.2)

1
= 24; for t = 2, T2 = 20(1.2)

2
= 28.8; and for t = 3, T3 = 20(1.2)

3
= 34.56. Note that Tt is not

increasing by a constant amount as in the case of the linear trend model, but by a constant percentage; the
percentage increase is 20 per cent.

MINITAB has the capability in its time series module to compute an exponential trend equation and it
can then be used for forecasting. Unfortunately, EXCEL does not have this capability. But, in Chapter 16,
Section 16.1, we do describe how, by taking logarithms of the terms in equation (17.11), the general linear
model methodology can be used to compute an exponential trend equation.

MINITAB’s time series module is quite easy to use to develop an exponential trend equation. There is
no need to deal with logarithms and use regression analysis to compute the exponential trend equation. In
Figure 17.15, we show the graphical portion of the computer output obtained using MINITAB’s Trend
Analysis time series procedure to fit an exponential trend equation.

Linear trend regression is based upon finding the estimated regression equation that minimizes the
sum of squared forecast errors and therefore MSE. So, we would expect linear trend regression to
outperform Holt’s linear exponential smoothing in terms of MSE. For example, for the bicycle sales time
series, the value of MSE using linear trend regression is 3.07 as compared to a value of 3.97 using Holt’s
linear exponential smoothing. Linear trend regression also provides a more accurate forecast using the
MAE measure of forecast accuracy; for the bicycle sales time series, linear trend regression results in a
value of MAE of 1.32 versus a value of 1.67 using Holt’s linear method.
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However, based on MAPE, Holt’s linear exponential smoothing (MAPE = 5.07%) outperforms linear
trend regression (6.42%). Hence, for the bicycle sales time series, deciding which method provides the
more accurate forecasts depends upon which measure of forecast accuracy is used.

EXERCISES

Methods

14. Consider the following time series data.

COMPLETE

SOLUTIONS

t 1 2 3 4 5

Yt 6 11 9 14 15

a. Construct a time series plot. What type of pattern exists in the data?

b. Develop the linear trend equation for this time series.

c. What is the forecast for t = 6?

15. Refer to the time series in Exercise 14. Use Holt’s linear exponential smoothing method with =

0.3 and = 0.5 to develop a forecast for t = 6.

16. Consider the following time series.

t 1 2 3 4 5 6 7

Yt 120 110 100 96 94 92 88

a. Construct a time series plot. What type of pattern exists in the data?

b. Develop the linear trend equation for this time series.

c. What is the forecast for t = 8?

17. Consider the following time series.

t 1 2 3 4 5 6 7

Yt 82 60 44 35 30 29 35

a. Construct a time series plot. What type of pattern exists in the data?

b. Using MINITAB or EXCEL, develop the quadratic trend equation for the time series.

c. What is the forecast for t = 8?

Applications

COMPLETE

SOLUTIONS

18. Car sales at Perez Motors provided the following ten-year time series.

Year Sales Year Sales

1 400 6 260

2 390 7 300

3 320 8 320

4 340 9 340

5 270 10 370
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17.5 SEASONALITY AND TREND

In this section we show how to develop forecasts for a time series that has a seasonal pattern. To the
extent that seasonality exists, we need to incorporate it into our forecasting models to ensure accurate
forecasts. We begin by considering a seasonal time series with no trend and then discuss how to model
seasonality with trend.

Plot the time series and comment on the appropriateness of a linear trend. What type of

functional form do you believe would be most appropriate for the trend pattern of this time series?

19. Numbers of overseas visitors to Ireland (000s) estimated by the Central Statistics Office for the

years 2001–2007 are as follows:

2001 2002 2003 2004 2005 2006 2007

5990 6065 6369 6574 6977 7709 8012

a. Graph the data and assess its suitability for linear trend projection.

b. Use a linear trend projection to forecast this time series for 2008–2009.

GDP

20. GDP (Singapore $) for 1990–2007 are tabulated below (Statistics Singapore, 2009).

Year S$ Year S$

1990 66 778 1999 140 022

1991 74 570 2000 159 840

1992 80 984 2001 153 398

1993 93 971 2002 158 047

1994 107 957 2003 162 288

1995 119 470 2004 184 508

1996 130 502 2005 199 375

1997 142 341 2006 216 995

1998 137 902 2007 243 169

a. Graph this time series. Does a linear trend appear to be present?

b. Develop a linear trend equation for this time series.

c. Use the trend equation to estimate the GDP for the years 2008–2010.

21. Gross revenue data (in millions of euros) for Hispanic Airlines for a ten-year period follow.

Year Revenue Year Revenue

1 2428 6 4264

2 2951 7 4738

3 3533 8 4460

4 3618 9 5318

5 3616 10 6915

a. Develop a linear trend equation for this time series. Comment on what the equation tells

about the gross revenue for Hispanic Airlines for the ten-year period.

b. Provide the forecasts for gross revenue for years 11 and 12.

COMPLETE

SOLUTIONS
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Seasonality without trend

As an example, consider the number of umbrellas sold at a clothing store over the past five years.
Table 17.17 shows the time series and Figure 17.16 shows the corresponding time series plot. The time
series plot does not indicate any long-term trend in sales. In fact, unless you look carefully at the data, you
might conclude that the data follow a horizontal pattern and that single exponential smoothing could be
used to forecast sales. But closer inspection of the time series plot reveals a pattern in the data. That is, the
first and third quarters have moderate sales, the second quarter has the highest sales and the fourth
quarter tends to be the lowest quarter in terms of sales volume. Thus, we would conclude that a quarterly
seasonal pattern is present.

T ABLE 17 . 17 Umbrella sales time series

Year Quarter Sales

1 1 125

2 153

3 106

4 88

2 1 118

2 161

3 133

4 102

3 1 138

2 144

3 113

4 80

4 1 109

2 137

3 125

4 109

5 1 130

2 165

3 128

4 96
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In Chapter 15 we showed how dummy variables can be used to deal with categorical independent
variables in a multiple regression model. We can use the same approach to model a time series with a
seasonal pattern by treating the season as a categorical variable. Recall that when a categorical variable has
k levels, k – 1 dummy variables are required. So, if there are four seasons, we need three dummy variables.
For instance, in the umbrella sales time series season is a categorical variable with four levels: quarter 1,
quarter 2, quarter 3 and quarter 4. Thus, to model the seasonal effects in the umbrella time series we need
4 – 1 = 3 dummy variables. The three dummy variables can be coded as follows:

Qtr1
1 if Quarter 1
0 otherwise

Qtr2
1 if Quarter 2
0 otherwise

Qtr3
1 if Quarter 3
0 otherwise

Using Ŷ to denote the estimated or forecasted value of sales, the general form of the estimated
regression equation relating the number of umbrellas sold to the quarter the sales take place follows:

y b0 b1 Qtr1 b2 Qtr2 b3 Qtr3

Table 17.18 is the umbrella sales time series with the coded values of the dummy variables shown. Using
the data in Table 17.18 and MINITAB’s regression procedure, we obtained the computer output shown in
Figure 17.17. The estimated multiple regression equation obtained is:

Sales 95 0 29 0 Qtr1 57 0 Qtr2 26 0 Qtr3

We can use this equation to forecast quarterly sales for next year.

Quarter 1 : Sales 95 0 29 0 1 57 0 0 26 0 0 124
Quarter 2 : Sales 95 0 29 0 0 57 0 1 26 0 0 152
Quarter 3 : Sales 95 0 29 0 0 57 0 0 26 0 1 121
Quarter 4 : Sales 95 0 29 0 0 57 0 1 26 0 0 95

It is interesting to note that we could have obtained the quarterly forecasts for next year simply by
computing the average number of umbrellas sold in each quarter, as shown in the following table.

T ABLE 17 . 18 Umbrella sales time series with dummy variables

Year Quarter Qtr1 Qtr2 Qtr3 Sales

1 1 1 0 0 125

2 0 1 0 153

3 0 0 1 106

4 0 0 0 88

2 1 1 0 0 118

2 0 1 0 161

3 0 0 1 133

4 0 0 0 102

3 1 1 0 0 138

2 0 1 0 144

3 0 0 1 113

4 0 0 0 80

4 1 1 0 0 109

2 0 1 0 137

3 0 0 1 125

4 0 0 0 109

5 1 1 0 0 130

2 0 1 0 165

3 0 0 1 128

4 0 0 0 96
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Year Quarter 1 Quarter 2 Quarter 3 Quarter 4

1 125 153 106 88
2 118 161 133 102
3 138 144 113 80
4 109 137 125 109
5 130 165 128 96

Average 124 152 121 95

Nonetheless, the regression output shown in Figure 17.17 provides additional information that can be
used to assess the accuracy of the forecast and determine the significance of the results. And, for more
complex types of problem situations, such as dealing with a time series that has both trend and seasonal
effects, this simple averaging approach will not work.

Seasonality and trend

Let us now extend the regression approach to include situations where the time series contains both a seasonal
effect and a linear trend by showing how to forecast the quarterly television set sales time series introduced in
Section 17.1. The data for the television set time series are shown in Table 17.19.

FIGURE 17.17

MINITAB regression output for the umbrella sales time series

The regression equation is

Sales = 95.0 + 29.0 Qtr1 + 57.0 Qtr2 + 26.0 Qtr3

Predictor Coef SE Coef T P

Constant 95.000 5.065 18.76 0.000

Qtr1 29.000 7.162 4.05 0.001

Qtr2 57.000 7.162 7.96 0.000

Qtr3 26.000 7.162 3.63 0.002

T ABLE 17 . 19 Television set sales time series

Year Quarter Sales (’000s)

1 1 4.8

2 4.1

3 6.0

4 6.5

2 1 5.8

2 5.2

3 6.8

4 7.4

3 1 6.0

2 5.6

3 7.5

4 7.8

4 1 6.3

2 5.9

3 8.0

4 8.4

TVSALES
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The time series plot in Figure 17.18 indicates that sales are lowest in the second quarter of each year and
increase in quarters 3 and 4. Thus, we conclude that a seasonal pattern exists for television set sales. But the
time series also has an upward linear trend that will need to be accounted for in order to develop accurate
forecasts of quarterly sales. This is easily handled by combining the dummy variable approach for
seasonality with the time series regression approach we discussed in Section 17.3 for handling linear trend.

The general form of the estimated multiple regression equation for modelling both the quarterly
seasonal effects and the linear trend in the television set time series is as follows:

yt b0 b1 Qtr1 b2 Qtr2 b3 Qtr3 b4t

where:

yt estimate or forecast of sales in period t

Qtr1 1 if time period t corresponds to the first quarter of the year; 0 otherwise

Qtr2 1 if time period t corresponds to the second quarter of the year; 0 otherwise

Qtr3 1 if time period t corresponds to the third quarter of the year; 0 otherwise

t time period

Table 17.20 is the revised television set sales time series that includes the coded values of the dummy
variables and the time period t. Using the data in Table 17.20, and MINITAB’s regression procedure, we
obtained the computer output shown in Figure 17.19. The estimated multiple regression equation is:

Sales 6 07 – 1 36 Qtr1 – 2 03 Qtr2 – 0 304 Qtr3 – 0 146t (17.12)

We can now use equation (17.12) to forecast quarterly sales for next year. Next year is year 5 for the
television set sales time series; that is, time periods 17, 18, 19 and 20.

Forecast for Time Period 17 (Quarter 1 in Year 5):

Sales 6 07 – 1 36 1 – 2 03 0 – 0 304 0 0 146 17 7 19

Forecast for Time Period 18 (Quarter 2 in Year 5):

Sales 6 07 – 1 36 0 – 2 03 1 – 0 304 0 0 146 18 6 67

Forecast for Time Period 19 (Quarter 3 in Year 5):

Sales 6 07 – 1 36 0 – 2 03 0 – 0 304 1 0 146 19 8 54
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Forecast for Time Period 20 (Quarter 4 in Year 5):

Sales 6 07 – 1 36 0 – 2 03 0 – 0 304 0 0 146 20 8 99

Thus, accounting for the seasonal effects and the linear trend in television set sales, the estimates of
quarterly sales in year 5 are 7190, 6670, 8540 and 8990.

The dummy variables in the estimated multiple regression equation actually provide four estimated
multiple regression equations, one for each quarter. For instance, if time period t corresponds to quarter
1, the estimate of quarterly sales is:

Quarter 1 : Sales 6 07 – 1 36 1 – 2 03 0 – 0 304 0 0 146t 4 71 0 146t

Similarly, if time period t corresponds to quarters 2, 3 and 4, the estimates of quarterly sales are:

Quarter 2 : Sales 6 07 1 36 0 – 2 03 1 – 0 304 0 0 146t 4 04 0 146t
Quarter 3 : Sales 6 07 1 36 0 – 2 03 0 – 0 304 1 0 146t 5 77 0 146t
Quarter 4 : Sales 6 07 1 36 0 – 2 03 0 – 0 304 0 0 146t 6 07 0 146t

The slope of the trend line for each quarterly forecast equation is 0.146, indicating a growth in sales of about
146 sets per quarter. The only difference in the four equations is that they have different intercepts. For

T ABLE 17 . 20 Television set sales time series with dummy variables and time period

Year Quarter Qtr1 Qtr2 Qtr3 Period Sales (000s)

1 1 1 0 0 1 4.8

2 0 1 0 2 4.1

3 0 0 1 3 6.0

4 0 0 0 4 6.5

2 1 1 0 0 5 5.8

2 0 1 0 6 5.2

3 0 0 1 7 6.8

4 0 0 0 8 7.4

3 1 1 0 0 9 6.0

2 0 1 0 10 5.6

3 0 0 1 11 7.5

4 0 0 0 12 7.8

4 1 1 0 0 13 6.3

2 0 1 0 14 5.9

3 0 0 1 15 8.0

4 0 0 0 16 8.4

FIGURE 17.9

MINITAB regression output for the umbrella sales time series

The regression equation is

Sales (1000s) = 6.07 – 1.36 Qtr1 – 2.03 Qtr2 – 0.304

Qtr3 + 0.146 Period

Predictor Coef SE Coef T P

Constant 6.0688 0.1625 37.35 0.000

Qtr1 –1.3631 0.1575 –8.66 0.000

Qtr2 –2.0337 0.1551 –13.11 0.000

Qtr3 –0.3044 0.1537 –1.98 0.073

Period 0.14562 0.01211 12.02 0.000
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instance, the intercept for the quarter 1 equation is 4.71 and the intercept for the quarter 4 equation is 6.07.
Thus, sales in quarter 1 are 4.71 – 6.07 = –1.36 or 1360 sets less than in quarter 4. In other words, the estimated
regression coefficient for Qtr1 in equation (17.12) provides an estimate of the difference in sales between
quarter 1 and quarter 4. Similar interpretations can be provided for –2.03, the estimated regression coefficient
for dummy variable Qtr2, and –0.304, the estimated regression coefficient for dummy variable Qtr3.

Models based on monthly data

In the preceding television set sales example, we showed how dummy variables can be used to account
for the quarterly seasonal effects in the time series. Because there were four levels for the categorical
variable season, three dummy variables were required. However, many businesses use monthly rather
than quarterly forecasts. For monthly data, season is a categorical variable with 12 levels and thus 12 – 1 = 11
dummy variables are required. For example, the 11 dummy variables could be coded as follows:

Month1
1 if January
0 otherwise

Month2
1 if February
0 otherwise

Month11
1 if November
0 otherwise

Other than this change, the multiple regression approach for handling seasonality remains the same.

EXERCISES

Methods

22. Consider the following time series.

Quarter Year 1 Year 2 Year 3

1 71 68 62

2 49 41 51

3 58 60 53

4 78 81 72

a. Construct a time series plot. What type of pattern exists in the data?

b. Use the following dummy variables to develop an estimated regression equation to account

for seasonal effects in the data: Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0

otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise.

c. Compute the quarterly forecasts for next year.

23. Consider the following time series data.

Quarter Year 1 Year 2 Year 3

1 4 6 7

2 2 3 6

3 3 5 6

4 5 7 8

COMPLETE

SOLUTIONS
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a. Construct a time series plot. What type of pattern exists in the data?

b. Use the following dummy variables to develop an estimated regression equation to account for

any seasonal and linear trend effects in the data: Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1

if Quarter 2, 0 otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise.

c. Compute the quarterly forecasts for next year

Applications

24. The quarterly sales data (number of copies sold) for a college textbook over the past three years

follow.

Quarter Year 1 Year 2 Year 3

1 1690 1800 1850

2 940 900 1100

3 2625 2900 2930

4 2500 2360 2615

a. Construct a time series plot. What type of pattern exists in the data?

b. Use the following dummy variables to develop an estimated regression equation to account

for any seasonal effects in the data: Qtr1 = 1 if Quarter 1, 0 otherwise; Qtr2 = 1 if Quarter 2, 0

otherwise; Qtr3 = 1 if Quarter 3, 0 otherwise.

c. Compute the quarterly forecasts for next year.

d. Let t = 1 to refer to the observation in quarter 1 of year 1; t = 2 to refer to the observation in

quarter 2 of year 1; … and t = 12 to refer to the observation in quarter 4 of year 3. Using the

dummy variables defined in part (b) and t, develop an estimated regression equation to

account for seasonal effects and any linear trend in the time series. Based upon the seasonal

effects in the data and linear trend, compute the quarterly forecasts for next year.

25. Air pollution control specialists in northern Poland monitor the amount of ozone, carbon dioxide and

nitrogen dioxide in the air on an hourly basis. The hourly time series data exhibit seasonality, with

the levels of pollutants showing patterns that vary over the hours in the day. On July 15, 16 and 17,

the following levels of nitrogen dioxide were observed for the 12 hours from 6:00 a.m. to 6:00 p.m.

July 15: 25 28 35 50 60 60 40 35 30 25 25 20

July 16: 28 30 35 48 60 65 50 40 35 25 20 20

July 17: 35 42 45 70 72 75 60 45 40 25 25 25

a. Construct a time series plot. What type of pattern exists in the data?

b. Use the following dummy variables to develop an estimated regression equation to account

for the seasonal effects in the data.

Hour1 = 1 if the reading was made between 6:00 a.m. and 7:00 a.m.; 0 otherwise.

Hour2 = 1 if the reading was made between 7:00 a.m. and 8:00 a.m.; 0 otherwise.

Hour11 = 1 if the reading was made between 4:00 p.m. and 5:00 p.m.; 0 otherwise.

Note that when the values of the 11 dummy variables are equal to 0, the observation corresponds

to the 5:00 p.m. to 6:00 p.m. hour.

c. Using the estimated regression equation developed in part (a), compute estimates of the

levels of nitrogen dioxide for July 18.

d. Let t = 1 to refer to the observation in hour 1 on July 15; t = 2 to refer to the observation in hour

2 of July 15; 0… and t = 36 to refer to the observation in hour 12 of July 17. Using the dummy

variables defined in part (b) and t, develop an estimated regression equation to account for

seasonal effects and any linear trend in the time series. Based upon the seasonal effects in the

data and linear trend, compute estimates of the levels of nitrogen dioxide for July 18.

POLLUTION
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17.6 TIME SERIES DECOMPOSITION

In this section we turn our attention to what is called time series decomposition. Time series decomposition
can be used to separate or decompose a time series into seasonal, trend and irregular components. While this
method can be used for forecasting, its primary applicability is to obtain a better understanding of the time
series. Many business and economic time series are maintained and published by agencies such as Eurostat
and the OECD. These agencies use time series decomposition to create deseasonalized time series.

Understanding what is really going onwith a time series often depends upon the use of deseasonalized data.
For instance, wemight be interested in learningwhether electrical power consumption is increasing in our area.
Suppose we learn that electric power consumption in September is down 3 per cent from the previous month.
Care must be exercised in using such information, because whenever a seasonal influence is present, such
comparisons may be misleading if the data have not been deseasonalized. The fact that electric power
consumption is down 3 per cent from August to September might be only the seasonal effect associated with
a decrease in the use of air conditioning and not because of a long-term decline in the use of electric power.
Indeed, after adjusting for the seasonal effect, wemight even find that the use of electric power increased.Many
other time series, such as unemployment statistics, home sales and retail sales, are subject to strong seasonal
influences. It is important to deseasonalize such data before making a judgement about any long-term trend.

Time series decomposition methods assume that Yt, the actual time series value at period t, is a function of
three components: a trend component; a seasonal component; and an irregular or error component. How
these three components are combined to generate the observed values of the time series depends upon
whether we assume the relationship is best described by an additive or a multiplicative model.

An additive decomposition model takes the following form:

Yt Trendt Seasonalt Irregulart (17.13)

where:
Trendt trend value at time period t

Seasonalt seasonal value at time period t
Irregulart irregular value at time period t

In an additive model the values for the three components are simply added together to obtain the actual
time series value Yt. The irregular or error component accounts for the variability in the time series that
cannot be explained by the trend and seasonal components.

An additivemodel is appropriate in situations where the seasonal fluctuations do not depend upon the level
of the time series. The regression model for incorporating seasonal and trend effects in Section 17.5 is an
additivemodel. If the sizes of the seasonal fluctuations in earlier time periods are about the same as the sizes of
the seasonal fluctuations in later time periods, an additive model is appropriate. However, if the seasonal
fluctuations change over time, growing larger as the sales volume increases because of a long-term linear trend,
then a multiplicative model should be used. Many business and economic time series follow this pattern.

A multiplicative decomposition model takes the following form:

Yt Trendt Seasonalt Irregulart (17.14)

where:
Trendt trend value at time period t

Seasonalt seasonal index at time period t
Irregulart irregular index at time period t

In this model, the trend and seasonal and irregular components are multiplied to give the value of the
time series. Trend is measured in units of the item being forecast. However, the seasonal and irregular
components are measured in relative terms, with values above 1.00 indicating effects above the trend and
values below 1.00 indicating effects below the trend.

Because this is the method most often used in practice, we will restrict our discussion of time series
decomposition to showing how to develop estimates of the trend and seasonal components for a multi-
plicative model. As an illustration we will work with the quarterly television set sales time series introduced in
Section 17.5; the quarterly sales data are shown in Table 17.19 and the corresponding time series plot is
presented in Figure 17.18. After demonstrating how to decompose a time series using the multiplicative
model, we will show how the seasonal indices and trend component can be recombined to develop a forecast.
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Calculating the seasonal indices

Figure 17.18 indicates that sales are lowest in the second quarter of each year and increase in quarters 3 and 4.
Thus, we conclude that a seasonal pattern exists for the television set sales time series. The computational
procedure used to identify each quarter’s seasonal influence begins by computing a moving average to remove
the combined seasonal and irregular effects from the data, leaving us with a time series that contains only
trend and any remaining random variation not removed by the moving average calculations.

Because we are working with a quarterly series, we will use four data values in each moving average.
The moving average calculation for the first four quarters of the television set sales data is:

First moving average
4 8 4 1 6 0 6 5

4

21 4

4
5 35

Note that the moving average calculation for the first four quarters yields the average quarterly sales over
year 1 of the time series. Continuing the moving average calculations, we next add the 5.8 value for the first
quarter of year 2 and drop the 4.8 for the first quarter of year 1. Thus, the second moving average is:

Second moving average
4 1 6 0 6 5 5 8

4

22 4

4
5 60

Similarly, the third moving average calculation is (6.0 6.5 5.8 5.2)/4 = 5.875.
Before we proceed with the moving average calculations for the entire time series, let us return to the

first moving average calculation, which resulted in a value of 5.35. The 5.35 value is the average quarterly
sales volume for year 1. As we look back at the calculation of the 5.35 value, associating 5.35 with the
‘middle’ of the moving average group makes sense. Note, however, that with four quarters in the moving
average, there is no middle period. The 5.35 value really corresponds to period 2.5, the last half of quarter
2 and the first half of quarter 3. Similarly, if we go to the next moving average value of 5.60, the middle
period corresponds to period 3.5, the last half of quarter 3 and the first half of quarter 4.

The two moving average values we computed do not correspond directly to the original quarters of the
time series. We can resolve this difficulty by computing the average of the two moving averages. Since the
centre of the first moving average is period 2.5 (half a period or quarter early) and the centre of the
second moving average is period 3.5 (half a period or quarter late), the average of the two moving
averages is centred at quarter 3, exactly where it should be. This moving average is referred to as a centred
moving average. Thus, the centred moving average for period 3 is (5.35 5.60)/2 = 5.475. Similarly, the
centred moving average value for period 4 is (5.60 5.875)/2 = 5.738. Table 17.21 shows a complete
summary of the moving average and centred moving average calculations for the television set sales data.

What do the centred moving averages in Table 17.21 tell us about this time series? Figure 17.20 shows
a time series plot of the actual time series values and the centred moving average values. Note particularly
how the centred moving average values tend to ‘smooth out’ both the seasonal and irregular fluctuations
in the time series. The centred moving averages represent the trend in the data and any random variation
that was not removed by using moving averages to smooth the data.

By dividing each side of equation (17.14) by the trend component Tt, we can identify the combined
seasonal-irregular effect in the time series.

Yt

Trendt

Trendt Seasonalt Irregulart
Trendt

Seasonalt Irregulart

For example, the third quarter of year 1 shows a trend value of 5.475 (the centred moving average). So
6.0/5.475 = 1.096 is the combined seasonal-irregular value. Table 17.22 summarizes the seasonal-irregular
(‘detrended’) values for the entire time series.

Consider the seasonal-irregular values for the third quarter: 1.096, 1.075 and 1.109. Seasonal-irregular
values greater than 1.00 indicate effects above the trend estimate and values below 1.00 indicate effects
below the trend estimate. Thus, the three seasonal-irregular values for quarter 3 show an above-average
effect in the third quarter. Since the year-to-year fluctuations in the seasonal-irregular values are primarily
due to random error, we can average the computed values to eliminate the irregular influence and obtain
an estimate of the third-quarter seasonal influence.
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Seasonal effect of quarter 3
1 096 1 075 1 109

3
1 09

We refer to 1.09 as the seasonal index for the third quarter. Table 17.23 summarizes the calculations
involved in computing the seasonal indices for the television set sales time series. The seasonal indices for
the four quarters are 0.93, 0.84, 1.09 and 1.14.

Interpretation of the seasonal indices in Table 17.23 provides some insight about the seasonal
component in television set sales. The best sales quarter is the fourth quarter, with sales averaging 14
per cent above the trend estimate. The worst, or slowest, sales quarter is the second quarter; its seasonal
index of 0.84 shows that the sales average is 16 per cent below the trend estimate. The seasonal
component corresponds clearly to the intuitive expectation that television viewing interest and thus
television purchase patterns tend to peak in the fourth quarter because of the coming winter season and
reduction in outdoor activities. The low second-quarter sales reflect the reduced interest in television
viewing due to the spring and pre-summer activities of potential customers.

T ABLE 17 . 21 Centred moving average calculations for the television set sales time series

Year Quarter Sales (000s) Four-quarter

moving average

Centred moving

average

1 1 4.8

1 2 4.1 5.350

1 3 6.0 5.600 5.475

1 4 6.5 5.875 5.738

2 1 5.8 6.075 5.975

2 2 5.2 6.300 6.188

2 3 6.8 6.350 6.325

2 4 7.4 6.450 6.400

3 1 6.0 6.625 6.538

3 2 5.6 6.725 6.675

3 3 7.5 6.800 6.763

3 4 7.8 6.875 6.838

4 1 6.3 7.000 6.938

4 2 5.9 7.150 7.075

4 3 8.0

4 4 8.4
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Quarterly television set sales time

series and centred moving average
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One final adjustment is sometimes necessary in obtaining the seasonal indices. Because the multi-
plicative model requires that the average seasonal index equal 1.00, the sum of the four seasonal indices in
Table 17.23 must equal 4.00. In other words, the seasonal effects must even out over the year. The average
of the seasonal indices in our example is equal to 1.00, and hence this type of adjustment is not necessary.
In other cases, a slight adjustment may be necessary. To make the adjustment, multiply each seasonal
index by the number of seasons divided by the sum of the unadjusted seasonal indices. For instance, for
quarterly data, multiply each seasonal index by 4/(sum of the unadjusted seasonal indices). Some of the
exercises will require this adjustment to obtain the appropriate seasonal indices.

Deseasonalizing the time series

A time series that has had the seasonal effects removed is referred to as a deseasonalized time series,
and the process of using the seasonal indices to remove the seasonal effects from a time series is referred
to as deseasonalizing the time series. Using a multiplicative decomposition model, we deseasonalize a time
series by dividing each observation by its corresponding seasonal index.

By dividing each time series observation (Yt) in equation (17.14) by its corresponding seasonal index,
the resulting data show only trend and random variability (the irregular component). The deseasonalized
time series for television set sales is summarized in Table 17.24. A graph of the deseasonalized time series
is shown in Figure 17.21.

T ABLE 17 . 23 Seasonal index calculations for the television set sales time series

Quarter Seasonal-irregular values Seasonal index

1 0.971 0.918 0.908 0.93

2 0.840 0.839 0.834 0.84

3 1.096 1.075 1.109 1.09

4 1.133 1.156 1.141 1.14

T ABLE 17 . 22 Seasonal irregular values for the television set sales time series

Year Quarter Sales (000s) Centred moving average Seasonal-irregular value

1 1 4.8

1 2 4.1

1 3 6.0 5.475 1.096

1 4 6.5 5.738 1.133

2 1 5.8 5.975 0.971

2 2 5.2 6.188 0.840

2 3 6.8 6.325 1.075

2 4 7.4 6.400 1.156

3 1 6.0 6.538 0.918

3 2 5.6 6.675 0.839

3 3 7.5 6.763 1.109

3 4 7.8 6.838 1.141

4 1 6.3 6.938 0.908

4 2 5.9 7.075 0.834

4 3 8.0

4 4 8.4
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Using the deseasonalized time series to identify trend

The graph of the deseasonalized television set sales time series shown in Figure 17.21 appears to have an
upward linear trend. To identify this trend, we will fit a linear trend equation to the deseasonalized time
series using the same method shown in Section 17.4. The only difference is that we will be fitting a trend
line to the deseasonalized data instead of the original data.

Recall that for a linear trend the estimated regression equation can be written as:

Tt b0 b1t

where:

Tt linear trend forecast in period t
b0 intercept of the linear trend line
b1 slope of the trend line
t time period
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Deseasonalized television set

sales time series

T ABLE 17 . 24 Deseasonalized values for the television set sales time series

Year Quarter Time period Sales

(000s)

Seasonal

index

Deseasonalized

sales

1 1 1 4.8 0.93 5.16

2 2 4.1 0.84 4.88

3 3 6.0 1.09 5.50

4 4 6.5 1.14 5.70

2 1 5 5.8 0.93 6.24

2 6 5.2 0.84 6.19

3 7 6.8 1.09 6.24

4 8 7.4 1.14 6.49

3 1 9 6.0 0.93 6.45

2 10 5.6 0.84 6.67

3 11 7.5 1.09 6.88

4 12 7.8 1.14 6.84

4 1 13 6.3 0.93 6.77

2 14 5.9 0.84 7.02

3 15 8.0 1.09 7.34

4 16 8.4 1.14 7.37
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In Section 17.4 we provided formulae for computing the values of b0 and b1. To fit a linear trend line
to the deseasonalized data in Table 17.24, the only change is that the deseasonalized time series values are
used instead of the observed values Yt in computing b0 and b1.

Figure 17.22 shows the computer output obtained using MINITAB’s regression analysis procedure to
estimate the trend line for the deseasonalized television set time series. The estimated linear trend
equation is:

Deseasonalized sales 5 10 0 148 t

The slope of 0.148 indicates that over the past 16 quarters, the firm averaged a deseasonalized growth in sales
of about 148 sets per quarter. If we assume that the past 16-quarter trend in sales data is a reasonably good
indicator of the future, this equation can be used to develop a trend projection for future quarters. For
example, substituting t = 17 into the equation yields next quarter’s deseasonalized trend projection, T17.

T17 5 10 0 148 17 7 616

Thus, using the deseasonalized data, the linear trend forecast for next quarter (period 17) is 7616
television sets. Similarly, the deseasonalized trend forecasts for the next three quarters (periods 18, 19
and 20) are 7764, 7912 and 8060 television sets, respectively.

Seasonal adjustments

The final step in developing the forecast when both trend and seasonal components are present is to use
the seasonal indices to adjust the deseasonalized trend projections. Returning to the television set sales
example, we have a deseasonalized trend projection for the next four quarters. Now we must adjust the
forecast for the seasonal effect. The seasonal index for the first quarter of year 5 (t = 17) is 0.93, so we
obtain the quarterly forecast by multiplying the deseasonalized forecast based on trend (T17 = 7616) by
the seasonal index (0.93). Thus, the forecast for the next quarter is 7616(0.93) = 7083.

FIGURE 17.22

MINITAB regression output for the deseasonalized television set sales time series

The regression equation is

Deseasonalized Sales = 5.10 + 0.148 Period

Predictor Coef SE Coef T P

Constant 5.1050 0.1133 45.07 0.000

Period 0.14760 0.01171 12.60 0.000

S = 0.215985 R-Sq = 91.9% R-Sq(adj) = 91.3%

Analysis of Variance

Source DF SS MS F P

Regression 1 7.4068 7.4068 158.78 0.000

Residual Error 14 0.6531 0.0466

Total 15 8.0599

T ABLE 17 . 25 Quarterly forecasts for the television set sales time series

Year Quarter Deseasonalized trend forecast Seasonal

index

Quarterly forecast

5 1 7616 0.93 (7616)(0.93) = 7083

2 7764 0.84 (7764)(0.84) = 6522

3 7912 1.09 (7912)(1.09) = 8624

4 8060 1.14 (8060)(1.14) = 9188
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Table 17.25 shows the quarterly forecast for quarters 17 through 20. The high-volume fourth quarter
has a 9188-unit forecast, and the low-volume second quarter has a 6522-unit forecast.

Models based on monthly data

In the preceding television set sales example, we used quarterly data to illustrate the computation of
seasonal indices. However, many businesses use monthly rather than quarterly forecasts. In such cases,
the procedures introduced in this section can be applied with minor modifications. First, a 12-month
moving average replaces the four-quarter moving average; second, 12 monthly seasonal indices, rather
than four quarterly seasonal indices, must be computed. Other than these changes, the computational and
forecasting procedures are identical.

Cyclical component

Mathematically, the multiplicative model of equation (17.14) can be expanded to include a cyclical
component.

Yt Trendt Cyclicalt Seasonalt Irregulart (17.15)

The cyclical component, like the seasonal component, is expressed as a percentage of trend. As
mentioned in Section 17.1, this component is attributable to multiyear cycles in the time series. It is
analogous to the seasonal component, but over a longer period of time. However, because of the length of
time involved, obtaining enough relevant data to estimate the cyclical component is often difficult.
Another difficulty is that cycles usually vary in length. Because it is so difficult to identify and/or separate
cyclical effects from long-term trend effects, in practice these effects are often combined and referred to as
a combined trend-cycle component. We leave further discussion of the cyclical component to specialized
texts on forecasting methods.

EXERCISES

Methods

26. Consider the following time series data.

Quarter Year 1 Year 2 Year 3

1 4 6 7

2 2 3 6

3 3 5 6

4 5 7 8

a. Construct a time series plot. What type of pattern exists in the data?

b. Show the four-quarter and centred moving average values for this time series.

c. Compute seasonal indices and adjusted seasonal indices for the four quarters.

27. Refer to Exercise 26.

a. Deseasonalize the time series using the adjusted seasonal indices computed in (c) of

Exercise 26.

b. Using MINITAB or EXCEL, compute the linear trend regression equation for the deseasonalized

data.

c. Compute the deseasonalized quarterly trend forecast for Year 4.

d. Use the seasonal indices to adjust the deseasonalized trend forecasts computed in (c).

COMPLETE

SOLUTIONS
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Applications

28. The quarterly sales data (number of copies sold) for a college textbook over the past three years

follow.

COMPLETE

SOLUTIONS

WEB file text sales

Quarter Year 1 Year 2 Year 3

1 1690 1800 1850

2 940 900 1100

3 2625 2900 2930

4 2500 2360 2615

a. Construct a time series plot. What type of pattern exists in the data?

b. Show the four-quarter and centred moving average values for this time series.

c. Compute the seasonal and adjusted seasonal indices for the four quarters.

d. When does the publisher have the largest seasonal index? Does this result appear

reasonable? Explain.

e. Deseasonalize the time series.

f. Compute the linear trend equation for the deseasonalized data and forecast sales using the

linear trend equation.

g. Adjust the linear trend forecasts using the adjusted seasonal indices computed in (c).

29. Quarterly sales data for the number of houses sold over the past four years or so by a national

chain are as follows:

Year Ql Q2 Q3 Q4

1 200 212 229 207

2 195 204 216 202

3 201 209 221 205

4 208 217 231 213

5 218

a. Decompose the series into trend, seasonal and random components using a multiplicative

model.

b. Hence derive forecasts of the number of houses that will be sold in the next four quarters.

c. Comment on the quality of your modelling results.

30. The following table shows the number of passengers per quarter (in thousands) who flew with MBI

Junior for the first quarter of this year and the three years preceding:

Year Q1 Q2 Q3 Q4

1 44 92 156 68

2 60 112 180 80

3 64 124 200 104

4 76

a. Decompose the series into trend, seasonal and random components using an additive model.

b. Hence derive forecasts of the passenger numbers in the next four quarters.

c. Comment on the quality of your modelling.
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SUMMARY

This chapter provided an introduction to the basic methods of time series analysis and forecasting.

First, we showed that the underlying pattern in the time series can often be identified by constructing a

time series plot. Several types of data patterns can be distinguished, including a horizontal pattern, a

trend pattern and a seasonal pattern. The forecasting methods we have discussed are based on which

of these patterns are present in the time series.

For a time series with a horizontal pattern, we showed how moving averages and exponential

smoothing can be used to develop a forecast. The moving averages method consists of computing an

average of past data values and then using that average as the forecast for the next period. In the

exponential smoothing method, a weighted average of past time series values is used to compute a

forecast. These methods also adapt well when a horizontal pattern shifts to a different level and

resumes a horizontal pattern.

An important factor in determining what forecasting method to use involves the accuracy of the

method. We discussed three measures of forecast accuracy: mean absolute error (MAE), mean

squared error (MSE) and mean absolute percentage error (MAPE). Each of these measures is designed

to determine how well a particular forecasting method is able to reproduce the time series data that

are already available. By selecting a method that has the best accuracy for the data already known, we

hope to increase the likelihood that we will obtain better forecasts for future time periods.

For time series that have only a long-term linear trend, we showed how simple time series regression

can be used to make trend projections. We also discussed how an extension of single exponential

smoothing, referred to as Holt’s linear exponential smoothing, can be used to forecast a time series with

a linear trend. For a time series with a curvilinear or nonlinear trend, we showed how multiple regression

can be used to fit a quadratic trend equation or an exponential trend equation to the data.

For a time series with a seasonal pattern, we showed how the use of dummy variables in a

multiple regression model can be used to develop an estimated regression equation with seasonal

31. The data below relates to the UK and show the number of marriages (000s) over a recent four-

year period.

Year Quarter Marriages Year Quarter Marriages

1 1 52.9 3 1 41.7

2 114.3 2 100.5

3 138.7 3 138.5

4 62.7 4 60.9

2 1 45.6 4 1 41.7

2 101.9 2 100.5

3 146.2 3 138.5

4 62.3 4 60.9

a. Using the decomposition method, forecast marriages for the next four quarters in the series.

ONLINE RESOURCES

For the associated date files, additional online summary, questions and answers and software

section for Chapter 17, visit the online platform.
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effects. We then extended the regression approach to include situations where the time series

contains both a seasonal and a linear trend effect by showing how to combine the dummy variable

approach for handling seasonality with the time series regression approach for handling linear trend.

In the last section of the chapter we showed how time series decomposition can be used to separate

or decompose a time series into seasonal and trend components and then to deseasonalize the time

series. We showed how to compute seasonal indices for a multiplicative model, how to use the seasonal

indices to deseasonalize the time series and how to use regression analysis on the deseasonalized data

to estimate the trend component. The final step in developing a forecast when both trend and seasonal

components are present is to use the seasonal indices to adjust the trend projections.

KEY TERMS

Additive decomposition model

Cyclical pattern

Causal forecasting methods

Deseasonalized time series

Exponential smoothing

Forecast

Forecast error

Horizontal pattern

Irregular component

Linear exponential smoothing

Mean absolute error (MAE)

Mean absolute percentage error (MAPE)

Mean squared error (MSE)

Moving averages

Multiplicative decomposition model

Seasonal pattern

Smoothing constant

Stationary time series

Time series

Time series decomposition

Time series plot

Trend pattern

Weighted moving averages

KEY FORMULAE

Moving average forecast of order k

Ft 1
∑ most recent k data values

k

Yt Yt 1 Yt k 1

k
(17.1)

Exponential smoothing forecast

Ft 1 αYt 1 α Ft (17.2)

Linear trend equation

Tt b0 b1t (17.4)

where

b1

∑
n

t 1
t t Yt Y

∑
n

t 1
t t 2

(17.5)

b0 Y b1t (17.6)
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Holt’s linear exponential smoothing

Lt αYt 1 α Lt 1 bt 1 (17.7)

bt Lt Lt 1 1 bt 1 (17.8)

Ft k Lt btk (17.9)

Quadratic trend equation

Tt b0 b1t b2t
2 (17.10)

Exponential trend equation

Tt b0 b1
t (17.11)

Additive decomposition model

Yt Trendt Seasonalt Irregulart (17.13)

Multiplicative decomposition model

Yt Trendt Seasonalt Irregulart (17.27)

CASE PROBLEM 1

Forecasting food and beverage sales

The Vesuvius Restaurant near Naples, Italy, is owned

and operated by Luigi Marconi. The restaurant has

just completed its third year of operation. During that

time, Luigi sought to establish a reputation for

the restaurant as a high-quality dining establishment

that specializes in fresh seafood. Through the efforts

of Luigi and his staff, his restaurant has become one

of the best and fastest growing restaurants in the

area.

Luigi believes that, to plan for the growth of the

restaurant in the future, he needs to develop a sys-

tem that will enable him to forecast food and bever-

age sales by month for up to one year in advance.

Luigi compiled the following data (in thousands of

euros) on total food and beverage sales for the three

years of operation.

Managerial report

Perform an analysis of the sales data for the Vesu-

vius Restaurant. Prepare a report for Luigi that sum-

marizes your findings, forecasts and recommenda-

tions. Include the following:

1. A graph of the time series.

2. An analysis of the seasonality of the data.

Indicate the seasonal indices for each month, and

comment on the high and low seasonal sales

months. Do the seasonal indices make intuitive

sense? Discuss.

3. A forecast of sales for January through December

of the fourth year.

TIME SERIES DECOMPOSITION 561



Month First year Second year Third year

January 242 263 282

February 235 238 255

March 232 247 265

April 178 193 205

May 184 193 210

June 140 149 160

July 145 157 166

August 152 161 174

September 110 122 126

October 130 130 148

November 152 167 173

December 206 230 235

4. Recommendations as to when the system that

you develop should be updated to account for new

sales data.

5. Any detailed calculations of your analysis in the

appendix of your report.

Assume that January sales for the fourth year turn out

to be 295 000. What was your forecast error? If this

error is large, Luigi may be puzzled about the differ-

ence between your forecast and the actual sales

value. What can you do to resolve his uncertainty in

the forecasting procedure?

VESUVIUS

CASE PROBLEM 2

Allocating patrols to meet future demand for

vehicle rescue

The data below summarize actual monthly demands

for RAC rescue services over a five-year time period.

(The Royal Automobile Club is one of the major motor-

ing organizations that offer emergency breakdown

cover in the UK.)

To meet the national demand for its services in

the coming year, the RAC’s human resources plan-

ning department forecasts the number of members

expected, using historical data and market forecasts.

It then predicts the average number of breakdowns
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and number of rescue calls expected, by referring to

the probability of a member’s vehicle breaking down

each year. In 2003, an establishment of approxi-

mately 1400 patrols was available to deal with the

expected workload. Note that this figure had to be

reviewed monthly since it was an average for the year

and did not take into account, fluctuations in demand

‘in different seasons’.

Monthly demand for RAC rescue services 1999–

2003

Year

Month 2003 2002 2001 2000 1999

January 270 093 248 658 253 702 220 332 241 489

February 216 050 210 591 216 575 189 223 193 794

March 211 154 208 969 220 903 188 950 206 068

April 194 909 191 840 191 415 196 343 191 359

May 200 148 194 654 190 436 189 627 179 592

June 195 608 189 892 175 512 177 653 183 712

July 208 493 203 275 193 900 182 219 193 306

August 215 145 213 357 197 628 190 538 199 947

September 200 477 196 811 183 912 183 481 191 231

October 216 821 225 182 213 909 214 009 198 514

November 222 128 244 498 219 336 239 104 202 219

December 250 866 257 704 246 780 254 041 254 217

Managerial report

1. By undertaking an appropriate statistical analysis

of the information provided, describe how you

would advise the RAC on its patrol allocation in

2004.

2. State your assumptions.

3. Comment on the validity of your results or

otherwise.

RAC
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18
Non-Parametric
Methods

CHAPTER CONTENTS

Statistics in Practice Coffee lovers’ preferences: Costa, Starbucks and Caffè Nero

18.1 Sign test

18.2 Wilcoxon signed-rank test

18.3 Mann–Whitney–Wilcoxon test

18.4 Kruskal–Wallis test

18.5 Rank correlation

LEARNING OBJECTIVES After studying this chapter and doing the exercises, you should be able to:

1 Explain the essential differences between

parametric and non-parametric methods

of inference.

2 Recognize the circumstances when it is

appropriate to apply the following non-

parametric statistical procedures;

calculate the appropriate sample

statistics; use these statistics to carry out

a hypothesis test; interpret the results.

2.1 Sign test.

2.2 Wilcoxon signed-rank test.

2.3 Mann–Whitney–Wilcoxon test.

2.4 Kruskal–Wallis test.

2.5 Spearman rank correlation.

The inferential methods presented previously in the text are generally known as parametric methods.
These methods begin with an assumption about the distribution of the population, which is often that

the population has a normal distribution. Based on this assumption, statisticians are able to derive the
sampling distribution that can be used to make inferences about one or more parameters of the
population, such as the population mean µ or the population standard deviation σ. For example, in
Chapter 9 we presented a method for making an inference about a population mean based on an
assumption that the population had a normal distribution with unknown parameters µ and σ. Using
the sample standard deviation s to estimate the population standard deviation σ, the test statistic for
making an inference about the population mean was shown to have a t distribution. As a result, the
t distribution was used to compute confidence intervals and do hypothesis tests about the mean of a
normally distributed population.
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STATISTICS IN PRACTICE

Coffee lovers’ preferences: Costa,

Starbucks and Caffè Nero

A few years ago, Costa Coffee ran a vigorous

promotional campaign in the UK under the head-

line SORRY STARBUCKS THE PEOPLE HAVE

VOTED. The by-line was ‘In head-to-head tests, seven

out of ten coffee lovers preferred Costa cappuccino

to Starbucks’. At the bottom of the advertisements

(some were nearly full-page in broadsheet news-

papers), the small print noted that 70 per cent of

respondents who identified themselves as coffee

lovers preferred Costa cappuccino, and that the total

sample size of coffee lovers was 174.

The market research behind the claim was carried

out by an independent market research organization,

Tangible Branding Limited, in three UK towns (High

Wycombe, Glasgow and Sheffield). Each participant

was asked to undertake a two-way blind tasting test:

either Costa versus Starbucks or Costa versus Caffè

Nero. ‘Runners’ transported the coffees to the tast-

ing venue from nearby coffee houses. The order of

tasting was rotated. Over the three tasting venues,

the total Costa versus Starbucks sample was of

size 166, and the Costa versus Caffè Nero sample

was 168.

In the Costa versus Caffè Nero comparisons,

64 per cent of tasters preferred Costa. In the Costa

versus Starbucks tests, 66 per cent preferred

Costa. Among self-identified ‘coffee lovers’,

69 per cent preferred the Costa coffee to Caffè

Nero coffee, and 72 per cent preferred Costa to

Starbucks. Among Caffè Nero regulars, 72 per cent

expressed a preference for Costa’s cappuccino,

while 67 per cent of Starbucks regulars preferred

Costa’s cappuccino. The Costa website noted that

‘All results are significant at the 95 per cent con-

fidence level’.

The data on which the results are based are quali-

tative data: a simple expression of preference

between two options. The kind of statistical test

needed for data such as these is known as a non-

parametric test. Non-parametric tests are the subject

of the present chapter. The chapter begins with a

discussion of the sign test, a test particularly appro-

priate for the research situation described by Costa

in its advertising.
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In this chapter we present non-parametric methods that can be used to make inferences about a
population without requiring an assumption about the specific form of the population distribution. For
this reason, these non-parametric methods are also called distribution-free methods.

Most of the statistical methods referred to as parametric methods require quantitative data, whereas
non-parametric methods allow inferences based sometimes on categorical data, and sometimes on either
ranked or quantitative data. In the first section of the chapter, we show how the binomial distribution can
be used (as a sampling distribution) to make an inference about a population median. In the following
three sections, we show how rank-ordered data are used in non-parametric tests about two or more
populations. In the final section, we use rank-ordered data to compute the rank correlation for two
variables.

18.1 SIGN TEST

The sign test is a versatile non-parametric method for hypothesis testing that uses the binomial
distribution with π 0.50 as the sampling distribution. It does not require an assumption about the
distribution of the population. In this section we present two applications of the sign test: one involving a
hypothesis test about a population median and one involving a matched-sample test about the difference
between two populations.

Hypothesis test about a population median

In Chapter 9 we described hypothesis tests about a population mean. In this section we show how the sign
test can be used to do a hypothesis test about a population median. If we consider a population where no
data value is exactly equal to the median, the median divides the population such that 50 per cent of the
values are greater than the median and 50 per cent of the values are less than the median. When a
population distribution is skewed, the median is often preferred over the mean as the best measure of
central location for the population. The sign test provides a non-parametric procedure for testing a
hypothesis about the value of a population median.

To demonstrate the sign test, we consider the weekly sales of MotherEarth Potato Snacks by the
Lineker chain of convenience stores. Lineker’s management decided to stock the new product on the basis
of the manufacturer’s estimate that median sales would be €450 per week per store. After stocking the
product for three months, Lineker’s management requested the following hypothesis test regarding the
population median weekly sales.

H0 Median 450
H1 Median 450

Data showing one-week sales at 12 randomly selected Lineker’s stores are in Table 18.1.
In the sign test, we compare each sample observation to the hypothesized value of the population

median. If the observation is greater than the hypothesized value, we record a plus sign ‘ .’ If the
observation is less than the hypothesized value, we record a minus sign ‘–’.

T ABLE 18 . 1 Lineker sample data for the sign test about the population median weekly sales

Store ID One-week sales ( ) Sign Store ID One-week sales ( ) Sign

56 485 63 474

19 562 39 662

93 499 21 492

36 415 – 84 380 –

128 860 102 515

12 426 – 44 721
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If an observation is exactly equal to the hypothesized value, the observation is eliminated from the
sample and the analysis proceeds with the smaller sample size, using only the observations where a plus
sign or a minus sign has been recorded. The conversion of the sample data to either a plus sign or a minus
sign gives the non-parametric method its name: the sign test.

Consider the sample data in Table 18.1. The first observation, 485, is greater than the hypothesized
median 450; a plus sign is recorded. The second observation, 562, is greater than the hypothesized median
450; a plus sign is recorded. Continuing with the 12 observations in the sample provides the plus and
minus signs as shown in Table 18.1. Note that there are nine plus signs and three minus signs.

Assigning the plus signs and minus signs has made the situation a binomial distribution application. The
sample size n 12 is the number of trials. There are two possible outcomes per trial, a plus sign or aminus sign,
and the trials are independent. Let π denote the probability of a plus sign. If the population median is 450, π
would equal 0.50 as there should be 50 per cent plus signs and 50 per cent minus signs in the population. So, in
terms of the binomial probability π, the sign test hypotheses regarding the population median:

H0 Median 450
H1 Median 450

are converted to the following hypotheses about the binomial probability π.

H0 0 50
H1 0 50

If H0 is not rejected, we cannot conclude that π is different from 0.50 and so we cannot conclude that the
population median is different from 450. However, if H0 is rejected, we can conclude that π is not equal to
0.50 and that the population median is not equal to 450.

With n 12 stores or trials and π 0.50, we use Table 5 in Appendix B to obtain the binomial
probabilities for the number of plus signs under the assumption H0 is true. Figure 18.1 shows a graphical
representation of this binomial distribution.

We now use the binomial distribution to test the hypothesis about the population median. We shall
use a 0.10 level of significance for the test. Since the observed number of plus signs for the sample data
(nine) is in the upper tail of the binomial distribution, we begin by computing the probability of obtaining
nine or more plus signs, i.e. the probability of nine, ten, 11 or 12 plus signs. Adding these probabilities, we
have 0.0537 0.0161 0.0029 0.0002 0.0729. Since we are using a two-tailed hypothesis test, this
upper-tail probability is doubled to obtain the p-value 2(0.0729) 0.1548. With p-value > α, we cannot
reject H0. In terms of the binomial probability π, we cannot reject H0: π 0.50, and so we cannot reject
the hypothesis that the population median is €450.
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FIGURE 18.1

Binomial sampling distribution for the number of plus signs when n 12 and 0.50
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In this example, the hypothesis test was formulated as a two-tailed test. One-tailed sign tests about a
population median are also possible. For example, suppose the test had been formulated as an upper-tail
test with the following null and alternative hypotheses:

H0 Median 450
H1 Median 450

The appropriate p-value is the binomial probability that the number of plus signs is greater than or
equal to nine found in the sample. This one-tailed p-value would have been 0.0537 0.0161 0.0029
0.0002 0.0729.

The application we have just described makes use of the binomial distribution with π 0.50. The
binomial probabilities provided in Table 5 of Appendix B can be used to compute the p-value when the
sample size is 20 or less. With larger sample sizes, we can use a computer program such as EXCEL,
MINITAB or SPSS to calculate the binomial probabilities. Alternatively, we can rely on the normal
distribution approximation of the binomial distribution to compute the p-value. A large-sample applica-
tion of the sign test is illustrated next.

Suppose that one year ago the median price of a new home was €236 000. However, a current
downturn in the economy prompts an estate agent to use sample data on recent home sales to determine
if the population median price of a new home is less today than it was a year ago. The hypothesis test
about the population median price of a new home is as follows:

H0 Median 236 000
H1 Median 236 000

We will use a 0.05 level of significance to do this test.
A random sample of 61 recent new home sales found 22 homes sold for more than €236 000, 38 homes

sold for less than €236 000 and one home sold for €236 000. After deleting the home that sold for the
hypothesized median price of €236 000, the sign test continues with 22 plus signs, 38 minus signs and a
sample of 60 homes.

The null hypothesis that the population median is greater than or equal to €236 000 is expressed by the
binomial distribution hypothesisH0: π ≥ 0.50. If H0 were true as an equality, we would expect 0.50(60) 30
homes to have a plus sign. The sample result showing 22 plus signs is in the lower tail of the binomial
distribution. So the p-value is the probability of 22 or fewer plus signs when π 0.50. Although it is possible
to compute the exact binomial probabilities for 0, 1, 2 … to 22 and sum these probabilities, we will use the
normal distribution approximation of the binomial distribution to make this computation easier. For this
approximation, the mean and standard deviation of the normal distribution are as follows.

Normal approximation of the sampling distribution of the number of plus signs for H0: 0.50.

Mean: 0 50n (18.1)

Standard deviation 0 25n (18.2)

Distribution form: approximately normal for n > 20.

Using equations (18.1) and (18.2) with n 60 homes and π 0.50, the sampling distribution of the
number of plus signs can be approximated by a normal distribution with:

0 50n 0 50 60 30

0 25n 0 25 60 3 783

We now use this distribution to approximate the binomial probability of 22 or fewer plus signs.
Remember that the binomial probability distribution is discrete and the normal probability distribution is
continuous. To take account of this, the binomial probability of 22 is computed by the normal probability
interval 21.5 to 22.5. The 0.5 added to and subtracted from 22 is called the continuity correction factor.

HOMESALES
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To compute the p-value for 22 or fewer plus signs we use the normal distribution with μ 30 and σ 3.873
to compute the probability that the normal random variable, X, has a value less than or equal to 22.5:

p-value P X 22 5 P Z
22 5 30

3 873
P Z 1 94

Using the normal probability distribution table, we see that the cumulative probability for z –1.94
provides the p-value 0.0262. With 0.0262 < 0.05 we reject the null hypothesis and conclude that the
median price of a new home is less than the €236 000 median price a year ago.

Hypothesis test with matched samples

In Chapter 10 we introduced a matched-sample experimental design where each of n experimental units
provided a pair of observations, one from population 1 and one from population 2. Using quantitative
data and assuming that the differences between the pairs of matched observations were normally
distributed, the t distribution was used to make an inference about the difference between the means of
the two populations.

In the following example we use the non-parametric sign test to analyze matched-sample data. Unlike
the t distribution procedure, which required quantitative data and the assumption that the differences
were normally distributed, the sign test enables us to analyze categorical as well as quantitative data and
requires no assumption about the distribution of the differences. This type of matched-sample design
occurs in market research when a sample of n potential customers is asked to compare two brands of a
product such as coffee, soft drinks or detergents (see Statistics in Practice at the beginning of the chapter).
Without obtaining a quantitative measure of each individual’s preference for the brands, each individual
is asked to state a brand preference. Consider the following example.

Sunny Vale Farms produces an orange juice product marketed under the name Citrus Delight. A
competitor produces an orange juice product known as Tropical Orange. In a study of consumer
preferences for the two brands, 14 individuals were given unmarked samples of each product. The brand
each individual tasted first was selected randomly. After tasting the two products, the individuals were
asked to state a preference for one of the two brands. The purpose of the study is to determine whether
consumers in general prefer one product over the other.

If the individual selected Citrus Delight as the more preferred, a plus sign was recorded. If the
individual selected Tropical Orange as the more preferred, a minus sign was recorded. If the individual
was unable to express a difference in preference for the two products, no sign was recorded. The data for
the 14 individuals in the study are shown in Table 18.2.

Deleting the two individuals who could not express a preference for either brand, the data have been
converted to a sign test with two plus signs and ten minus signs for the n 12 individuals who could
express a preference for one of the two brands. Letting π indicate the proportion of the population of
customers who prefer Citrus Delight orange juice, we want to test the hypotheses that there is no
difference between the preferences for the two brands as follows:

H0: 0 50
H1: 0 50

T ABLE 18 . 2 Preference data for the Sunny Vale Farms taste test

Individual Preference Sign Individual Preference Sign

1 Tropical Orange – 8 Tropical Orange –

2 Tropical Orange – 9 Tropical Orange –

3 Citrus Valley 10 No Preference

4 Tropical Orange – 11 Tropical Orange –

5 Tropical Orange – 12 Citrus Valley

6 No Preference 13 Tropical Orange –

7 Tropical Orange – 14 Tropical Orange –
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If H0 cannot be rejected, we shall have no evidence indicating a difference in preference for the two
brands of orange juice. However, if H0 can be rejected, we can conclude that the consumer preferences are
different for the two brands. In that case, the brand selected by the greater number of consumers can be
considered the preferred brand. We shall use a 0.05 level of significance.

We conduct the sign test exactly as we did earlier in this section. The sampling distribution for the
number of plus signs is a binomial distribution with π 0.50 and n 12. Using Table 5 in Appendix B
we obtain the binomial probabilities for the number of plus signs (the same ones shown in Figure 18.1).
Under the assumption H0 is true, we would expect 0.50n 0.50(12) 6 plus signs. With only two plus
signs in the sample, the results are in the lower tail of the binomial distribution. To compute the p-value
for this two-tailed test, we first compute the probability of two or fewer plus signs and then double this
value. Using the binomial probabilities of 0, 1 and 2 shown in Figure 18.1, the p-value is 2(0.0002
0.0029 0.0161) 0.0384. With 0.0384 < 0.05, we reject H0. The taste test provides evidence that
consumer preference differs significantly for the two brands of orange juice. We would advise Sunny Vale
Farms of this result and conclude that the competitor’s Tropical Orange product is the more preferred.
Sunny Vale Farms can then pursue a strategy to address this issue.

As with other uses of the sign test, one-tailed tests may be used depending upon the application. Also, as
the sample size becomes large, the normal distribution approximation of the binomial distribution will ease
the computations as shown earlier in this section. While the Sunny Vale Farms sign test for matched
samples used categorical preference data, the sign test for matched samples can be used with quantitative
data as well. This would be particularly helpful if the paired differences are not normally distributed and are
skewed. In this case a positive difference is assigned a plus sign, a negative difference is assigned a negative
sign, and a zero difference is removed from the sample. The sign test computations proceed as before.

EXERCISES

Methods

1. The following table lists the preferences indicated by ten individuals in taste tests involving two

brands of a product. A plus indicates a preference for Brand A over Brand B.

Individual Brand A versus Brand B Individual Brand A versus Brand B

1 6

2 7

3 8

4 9

5 10

With = 0.05, test for a significant difference in the preferences for the two brands.

2. The following hypothesis test is to be conducted.

H0: Median 150

H1: Median 150

A sample of size 30 yields 22 cases in which a value greater than 150 is obtained, three cases in

which a value of exactly 150 is obtained, and five cases in which a value less than 150 is obtained.

Conduct the hypothesis test using = 0.01.

Applications

3. A poll asked 1253 adults a series of questions about the state of the economy and their children’s

future. One question was, ‘Do you expect your children to have a better life than you have had,

a worse life or a life about as good as yours?’ The responses were 34 per cent better, 29 per cent

COMPLETE

SOLUTIONS
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18.2 WILCOXON SIGNED-RANK TEST

The Wilcoxon signed-rank test is a non-parametric procedure for analyzing data from a matched-sample
experiment. The test uses quantitative data but does not require the assumption that the differences
between the paired observations are normally distributed. It requires only the assumption that the
differences between the paired observations have a symmetrical distribution, and examines whether the
population differences are centred on the value zero (i.e. have a mean or median equal to zero). We
demonstrate the Wilcoxon signed-rank test with the following example.

worse, 33 per cent about the same and 4 per cent not sure. Use the sign test and a 0.05 level of

significance to determine whether more adults feel their children will have a better future than feel

their children will have a worse future. What is your conclusion?

4. Previous research by SNL Securities suggested that stock splits in the banking industry tended to

increase the value of an individual’s stock holding. Assume that of a sample of 20 recent stock

splits, 14 led to an increase in value, four led to a decrease in value and two resulted in no change.

Suppose a sign test is to be used to determine whether stock splits continue to be beneficial for

holders of bank stocks.

a. What are the null and alternative hypotheses?

b. With = 0.05, what is your conclusion?

5. An opinion survey asked the following question regarding a proposed educational policy. ‘Do you

favour or oppose providing tax-funded vouchers or tax deductions to parents who send their

children to private fee-paying schools?’ Of the 2010 individuals surveyed, 905 favoured the

support, 1045 opposed the support and 60 offered no opinion. Do the data indicate a significant

tendency towards favouring or opposing the proposed policy? Use a 0.05 level of significance.

6. Suppose a national survey in France has shown that the median annual income adults say would

make their dreams come true is 152 000. Suppose further that, of a sample of 225 individuals in

Calais, 122 individuals report that the amount of income needed to make their dreams come true

is less than 152 000 and 103 report that the amount needed is more than 152 000. Test the

null hypothesis that the median amount of annual income needed to make dreams come true in

Calais is 152 000. Use = 0.05. What is your conclusion?

7. The median number of part-time employees at fast-food restaurants in a particular city was known

to be 15 last year. The city council thinks the use of part-time employees may have increased this

year. A sample of nine fast-food restaurants showed that more than 15 part-time employees

worked at seven of the restaurants, one restaurant had exactly 15 part-time employees and one

had fewer than 15 part-time employees. Test at = 0.05 to see whether the median number of

part-time employees has increased.

8. Land Registry figures for late 2011 show the median selling price of houses in England as

£185 000. Assume that the following data were obtained for sales of houses in Greater

Manchester and in Oxfordshire.

Greater than

£185 000

Equal to

£185000

Less than

£185 000

Greater Manchester 11 2 32

Oxfordshire 27 1 13

a. Is the median selling price in Greater Manchester lower than the national median of £185 000?

Use a statistical test with = 0.05 to support your conclusion.

b. Is the median selling price in Oxfordshire higher than the national median of £185 000? Use a

statistical test with = 0.05 to support your conclusion.

COMPLETE

SOLUTIONS
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Suppose a manufacturing firm is attempting to determine whether two production methods differ in
task completion time. A sample of 11 workers was selected, and each worker completed a production task
using each of the two production methods. The production method that each worker used first was
selected randomly. Each worker in the sample therefore provided a pair of observations, as shown in the
first three columns of Table 18.3. A positive difference in task completion times (column 4 of Table 18.3)
indicates that method 1 required more time, and a negative difference in times indicates that method 2
required more time. Do the data indicate that the methods are significantly different in terms of task
completion times?

In effect, we have two populations of task completion times, one population associated with each
method. The following hypotheses will be tested.

H0 The populations are identical
H1 The populations are not identical

If H0 cannot be rejected, we will not have evidence to conclude that the task completion times differ
for the two methods. However, if H0 can be rejected, we will conclude that the two methods differ in task
completion time.

The first step of the Wilcoxon signed-rank test requires a ranking of the absolute values of the differences
between the two methods. We discard any differences of zero and then rank the remaining absolute
differences from lowest to highest. Tied differences are assigned the average ranking of their positions.
The ranking of the absolute values of differences is shown in the sixth column of Table 18.3. Note that the
difference of zero for worker 8 is discarded from the rankings. Then the smallest absolute difference of 0.1 is
assigned the rank of 1. This ranking of absolute differences continues with the largest absolute difference of
0.9 assigned the rank of 10. The tied absolute differences for workers 3 and 5 are assigned the average rank
of 3.5 and the tied absolute differences for workers 4 and 10 are assigned the average rank of 5.5.

Once the ranks of the absolute differences have been determined, the ranks are given the sign of the
original difference in the data. For example, the 0.1 difference for worker 7, which was assigned the rank
of 1, is given the value of 1 because the observed difference between the two methods was positive. The
0.2 difference (worker 2), which was assigned the rank of 2, is given the value of 2 because the observed
difference between the two methods was negative for worker 2. The complete list of signed ranks, as well
as their sum, is shown in the last column of Table 18.3.

The null hypothesis is identical population distributions of task completion times for the two methods.
In that case, we would expect the positive ranks and the negative ranks to cancel each other, so that the
sum of the signed rank values would be approximately zero. Hence, the test for significance in the
Wilcoxon signed-rank test involves determining whether the computed sum of signed ranks ( 44 in our
example) is significantly different from zero.

T ABLE 18 . 3 Production task completion times (minutes) and ranking of absolute differences

Method

Worker 1 2 Difference

Absolute value

of difference Rank

Signed rank

1 10.2 9.5 0.7 0.7 8.0 8.0

2 9.6 9.8 –0.2 0.2 2.0 –2.0

3 9.2 8.8 0.4 0.4 3.5 3.5

4 10.6 10.1 0.5 0.5 5.5 5.5

5 9.9 10.3 –0.4 0.4 3.5 –3.5

6 10.2 9.3 0.9 0.9 10.0 10.0

7 10.6 10.5 0.1 0.1 1.0 1.0

8 10.0 10.0 0.0 0.0 – –

9 11.2 10.6 0.6 0.6 7.0 7.0

10 10.7 10.2 0.5 0.5 5.5 5.5

11 10.6 9.8 0.8 0.8 9.0 9.0

Sum of signed ranks 44.0
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Let T denote the sum of the signed-rank values. The procedure assumes that the distribution of
differences between matched pairs is symmetrical, but not necessarily normal in shape. It can be shown
that if the two populations are identical and the number of matched pairs of data is ten or more, the
sampling distribution of T can be approximated by a normal distribution as follows.

Sampling distribution of T for identical populations

Mean: T 0 (18.3)

Standard deviation : T
n n 1 2n 1

6
(18.4)

Distribution form: approximately normal provided n ≥ 10.

For the example, we have n 10 after discarding the observation with the difference of zero (worker 8).
Using equation (18.4), we have:

Standard deviation : T
10 11 21

6
19 62

We shall use a 0.05 level of significance to draw a conclusion. With the sum of the signed-rank values T
44, we calculate the following value for the test statistic.

z
T T

T

44 0

19 62
2 24

Using the standard normal distribution table and z 2.24, we find the two-tailed p-value 2(1 0.9875)
0.025. With p-value < α 0.05, we reject H0 and conclude that the two populations are not identical and
that the methods differ in task completion time. Method 2’s shorter completion times for eight of the
workers lead us to conclude that method 2 is the preferred production method.

EXERCISES

Applications

9. Two fuel additives are tested on family cars to determine their effect on litres of fuel consumed per

100 kilometres travelled. Test results for 12 cars follow. Each car was tested with both fuel

additives. Use = 0.05 and the Wilcoxon signed-rank test to see whether there is a significant

difference in the additives.

Additive Additive

Car 1 2 Car 1 2

1 7.02 7.82 7 8.74 8.21

2 6.00 6.49 8 7.62 9.43

3 6.41 6.26 9 6.46 7.05

4 7.37 8.28 10 5.83 6.68

5 6.65 6.65 11 6.09 6.20

6 5.70 5.93 12 5.65 5.96
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10. A sample of ten men was used in a study to test the effects of a relaxant on the time required to

fall asleep for male adults. Data for ten participants showing the number of minutes required to

fall asleep with and without the relaxant follow. Use a 0.05 level of significance to determine

whether the relaxant reduces the time required to fall asleep. What is your conclusion?

Participant

Without

relaxant

With

relaxant Participant

Without

relaxant

With

relaxant

1 15 10 6 7 5

2 12 10 7 8 10

3 22 12 8 10 7

4 8 11 9 14 11

5 10 9 10 9 6

11. A test was conducted of two overnight mail delivery services. Two samples of identical deliveries

were set up so that both delivery services were notified of the need for a delivery at the same

time. The hours required to make each delivery follow. Do the data shown suggest a difference in

the delivery times for the two services? Use a 0.05 level of significance for the test.

Service

Delivery 1 2

1 24.5 18.0

2 26.0 25.5

3 28.0 32.0

4 21.0 20.0

5 18.0 19.5

6 36.0 28.0

7 25.0 29.0

8 21.0 22.0

9 24.0 23.5

10 26.0 29.5

11 31.0 30.0

12. Ten test-market cities in France were selected as part of a market research study designed to

evaluate the effectiveness of a particular advertising campaign. The sales in euros for each city

were recorded for the week prior to the promotional programme. Then the campaign was

conducted for two weeks and new sales data were collected for the week immediately after the

campaign. The two sets of sales data (in thousands of euros) follow.

City Pre-campaign sales Post-campaign sales

Bordeaux 130 160

Strasbourg 100 105

Nantes 120 140

St Etienne 95 90

Lyon 140 130

Rennes 80 82

Le Havre 65 55

Amiens 90 105

Toulouse 140 152

Marseilles 125 140

Use = 0.05. What conclusion would you draw about the value of the advertising programme?

COMPLETE

SOLUTIONS
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18.3 MANN–WHITNEY–WILCOXON TEST

In Chapter 10 we introduced a procedure for doing a hypothesis test about the difference between the
means of two populations using two independent samples: one from population 1 and one from
population 2. This parametric test required quantitative data and the assumption that both populations
had a normal distribution. In the case where the population standard deviations σ1 and σ2 were unknown,
the sample standard deviations s1 and s2 provided estimates of σ1 and σ2 and the t distribution was used
to make an inference about the difference between the means of the two populations.

In this section we present another non-parametric method that can be used to determine whether a
difference exists between two populations. This test, unlike the signed-rank test, is not based on matched
samples. Two independent samples are used, one from each population. The test was developed jointly by
Mann and Whitney and by Wilcoxon. It is sometimes called the Mann–Whitney test and sometimes the
Wilcoxon rank-sum test. The Mann–Whitney and Wilcoxon versions of this test are equivalent. We refer
to it as the Mann–Whitney–Wilcoxon (MWW) test.

The MWW test does not require interval data nor the assumption that the populations are normally
distributed. The only requirement of the MWW test is that the measurement scale for the data is at least
ordinal. The MWW test examines whether the two populations are identical:

H0: The two populations are identical
H1: The two populations are not identical

If H0 is rejected, we are using the test to conclude that the populations are not identical and that
population 1 tends to provide either smaller or larger values than population 2.

We shall first illustrate the MWW test using small samples with rank-ordered data. This will give you
an understanding of how the rank-sum statistic is computed and how it is used to determine whether to
reject the null hypothesis that the two populations are identical. Later in the section, we will introduce a
large-sample approximation based on the normal distribution that will simplify the calculations required
by the MWW test.

Consider on-the-job performance ratings for employees at a CineMax 20-screen multiplex. During an
employee performance review, the multiplex manager rated all 35 employees from best (highest rating of
35) to worst (lowest rating of 1). Knowing that the part-time employees were primarily university and
senior school students, the multiplex manager asked if there was evidence of a difference in performance
for university students compared to senior school students. In terms of the population of university
students and the population of senior school students who could be considered for employment at the
multiplex, the hypotheses were stated as follows:

H0: University and senior school student populations are identical in terms of performance
H0: University and senior school student populations are not identical in terms of performance

We will use a 0.05 level of significance for this test.
We begin by selecting a random sample of four university students and a random sample of five senior

school students working at the CineMax multiplex (these sample numbers are chosen arbitrarily for
illustrative purposes). The multiplex manager’s performance rating based on all 35 employees was
recorded for each of these employees, as shown in Table 18.4. The first university student selected was
given a rating of 21, the university student selected was given a rating of 33 and so on.

The next step in the MWW procedure is to rank the combined samples from low to high. Since there is
a total of nine students, we rank the performance rating data in Table 18.4 from 1 to 9. The lowest value
of 4 for senior school student 3 receives a rank of 1 and the second lowest value of 11 for senior school
student 5 receives a rank of 2. The highest value of 33 for university student 2 receives a rank of 9. The
combined-sample ranks for all nine students are shown in Table 18.4.

Next we sum the ranks for each sample as shown in Table 18.4. The MWW procedure may use the
sum of the ranks for either sample. In our application of the MWW test we will follow the common
practice of using the first sample, which is the sample of four university students. The sum of ranks for
the first sample will be the test statistic W for the MWW test. This sum, as shown in Table 18.4, is
W 6 9 3 8 26.
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Let us consider why the sum of the ranks will help us select between the two hypotheses: H0, the two
populations are identical and H1, the two populations are not identical. Letting U denote a university
student and S denote a senior school student, suppose the ranks of the nine students had the following
order with the four university students having the four lowest ranks.

Rank 1 2 3 4 5 6 7 8 9
Student U U U U S S S S S

This permutation or ordering separates the two samples, with the university students all having a lower
rank than the senior school students. This is a strong indication that the two populations are not identical.
The sum of ranks for the college students in this case is W 1 2 3 4 10.

Now consider a ranking where the four university students have the four highest ranks.

Rank 1 2 3 4 5 6 7 8 9
Student S S S S S U U U U

This permutation or ordering separates the two samples again, but this time the university students all
have a higher rank than the senior school students. This is another strong indication that the two populations
are not identical. The sum of ranks for the university students in this case is W 6 7 8 9 30.
So we see that the sum of the ranks for the university students must be between 10 and 30. Values of W
near 10 imply that university students have lower ranks than the senior school students, whereas values
of W near 30 imply that university students have higher ranks than the senior school students. Either of
these extremes would signal the two populations are not identical. However, if the two populations are
identical, we would expect a mix in the ordering of the U’s and S’s so that the sum of ranks W is closer to
the average of the two extremes, or nearer to (10 30)/2 20.

Evaluation of the exact sampling distribution of the W statistic is not straightforward, and needs a
computer program. However, there are published tables of critical values, such as those in Table 8 of
Appendix B for cases in which both sample sizes are less than or equal to ten. In that table, n1 refers to the
sample size corresponding to the sample whose rank sum is being used in the test. The value of WL is
read directly from the table and the value of WU is computed from equation (18.5).

WU n1 n1 n2 1 WL (18.5)

The null hypothesis of identical populations should be rejected only if W is strictly less than WL or
strictly greater than WU.

Using Table 8 of Appendix B with a 0.05 level of significance, we see that the lower-tail critical value
for the MWW statistic with n1 4 (university students) and n2 5 (senior school students) is WL 12.
The upper-tail critical value for the MWW statistic computed by using equation (18.5) is:

WU 4 4 5 1 12 28

T ABLE 18 . 4 Ranks for the nine students in the CineMax combined samples

University

student

Manager’s

performance

rating Rank

Senior

school

student

Manager’s

performance

rating Rank

1 21 6 1 18 5

2 33 9 2 16 4

3 13 3 3 4 1

4 28 8 4 27 7

Sum of ranks 26 5 11 2

Sum of ranks 19
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The MWW decision rule indicates that the null hypothesis of identical populations can be rejected if the
sum of the ranks for the first sample (university students) is less than 12 or greater than 28. The rejection
rule can be written as:

Reject H0 if W 12 or if W 28

Referring to Table 18.4, we see that W 26. The MWW test conclusion is that we cannot reject the null
hypothesis that the populations of university and senior school students are identical. The sample of four
university students and the sample of five senior school students did not provide statistical evidence to
conclude there is a difference between the two populations. Further study with larger samples should be
considered before drawing a final conclusion.

As noted above, the exact sampling distribution of the W statistic is not straightforward to evaluate.
Some statistical programs are able to do this and give an exact p-value. For example, IBM SPSS includes
exact versions of several non-parametric methods. For the CineMax employee ratings illustration, SPSS
gives a two-tailed p-value of 0.190 (confirming our conclusion that we do not have sufficient evidence to
reject H0).

Most applications of the MWW test involve larger sample sizes than shown in this first example. For
such applications, a large-sample approximation of the sampling distribution of W based on the normal
distribution can be used. We will use the same combined-sample ranking procedure that we used in the
previous example but will use the normal distribution approximation to compute the p-value and draw
the conclusion rather than using the tables of critical values for W. We illustrate the large sample case by
considering a situation at People’s Bank.

People’s Bank has two branch offices. Data collected from two independent simple random samples,
one from each branch, are given in Table 18.5 (the rankings in this table are explained below). What do
the data indicate regarding the hypothesis that the populations of current account balances at the two
branch banks are identical?

The first step in the MWW test is to rank the combined data from the lowest to the highest
values. Using the combined set of 22 observations in Table 18.5, we find the lowest data value of
€750 (sixth item of sample 2) and assign to it a rank of 1. Continuing the ranking gives us the
following list.

Balance (€) Item Assigned rank

750 6th of sample 2 1
800 5th of sample 2 2
805 7th of sample 1 3
850 2nd of sample 2 4
:

1195 4th of sample 1 21
1200 3rd of sample 1 22

In ranking the combined data, we may find that two or more data values are the same. In that case, the
tied values are given the average ranking of their positions in the combined data set. For example, the
balance of €945 (eighth item of sample 1) will be assigned the rank of 11. However, the next two values in
the data set are tied with values of €950 (see the sixth item of sample 1 and the fourth item of sample 2).
These two values would be assigned ranks of 12 and 13 if they were distinct, so they are both assigned the
rank of 12.5. The next data value of €955 is then assigned the rank of 14. Table 18.5 shows the assigned
rank of each observation.

The next step in the MWW test is to sum the ranks for each sample. The sums are given in Table 18.5.
The test procedure can be based on the sum of the ranks for either sample. We use the sum of the ranks
for the sample from branch 1. So, for this example, W 169.5.

Given that the sample sizes are n1 12 and n2 10, we can use the normal approximation to the
sampling distribution of the rank sum T. The appropriate sampling distribution is given by the following
expressions.
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Sampling distribution of W for identical populations

Mean:
W

0 5n1 n1 n2 1 (18.6)

Standard deviation :
W

n1n2 n1 n2 1

12
(18.7)

Distribution form: approximately normal provided n1 ≥ 10 and n2 ≥ 10.

For branch 1, we have:

W 0 5 12 12 10 1 138

W
12 10 12 10 1

12
15 17

We shall use a 0.05 level of significance to draw a conclusion. With the sum of the ranks for branch 1,
W 169.5, we calculate the following value for the test statistic.

z
W W

W

169 5 138

15 17
2 08

Using the standard normal distribution table and z 2.08, we find the two-tailed p-value
2(1 0.9812) 0.0376. With p-value < α 0.05, we reject H0 and conclude that the two populations
are not identical; that is, the populations of current account balances at the branch banks are not the
same. The evidence suggests that the balances at branch 1 tend to be higher (and therefore be assigned
higher ranks) than the balances at branch 2.

In summary, the Mann–Whitney–Wilcoxon rank-sum test consists of the following steps to determine
whether two independent random samples are selected from identical populations:

1 Rank the combined sample observations from lowest to highest, with tied values being assigned the
average of the tied rankings.

2 Compute W, the sum of the ranks for the first sample.

T ABLE 18 . 5 Cheque account balances for two branches of People’s Bank, and combined ranking of

the data

Branch 1 Branch 2

Account Balance ( ) Rank Account Balance ( ) Rank

1 1095 20 1 885 7

2 955 14 2 850 4

3 1200 22 3 915 8

4 1195 21 4 950 12.5

5 925 9 5 800 2

6 950 12.5 6 750 1

7 805 3 7 865 5

8 945 11 8 1000 16

9 875 6 9 1050 18

10 1055 19 10 935 10

11 1025 17 Sum of ranks 83.5

12 975 15

Sum of ranks 169.5
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3 In the large-sample case, make the test for significant differences between the two populations by
using the observed value of W and comparing it with the sampling distribution of W for identical
populations using equations (18.6) and (18.7). The value of the standardized test statistic z and the
p-value provide the basis for deciding whether to reject H0. In the small-sample case, use Table 9 in
Appendix B to find the critical values for the test.

The parametric statistical tests described in Chapter 10 test the equality of two population means.
When we reject the hypothesis that the means are equal, we conclude that the populations differ in their
means. When we reject the hypothesis that the populations are identical by using the MWW test, we
cannot state how they differ. The populations could have different means, different medians, different
variances or different forms. Nonetheless, if we believe that the populations are the same in every aspect
but the means, a rejection of H0 by the non-parametric method implies that the means differ.

EXERCISES

Applications

13. Two fuel additives are being tested to determine their effect on petrol consumption. Seven cars

were tested with additive 1 and nine cars were tested with additive 2. The following data show the

litres of fuel used per 100 kilometres with the two additives. Use = 0.05 and the MWW test to

see whether there is a significant difference in petrol consumption for the two additives.

Additive 1 Additive 2

8.20 7.52

7.69 7.94

7.41 6.62

8.47 6.71

7.75 6.41

7.58 7.52

8.06 7.14

6.80

6.99

14. A company’s price/earnings (P/E) ratio is the company’s current stock price divided by the latest

12 months’ earnings per share. Listed below are the P/E ratios for a sample of ten Japanese and

twelve US companies. Is the difference in P/E ratios between the two countries significant? Use

the MWW test and = 0.01 to support your conclusion.

Japan US

Company P/E ratio Company P/E ratio

Sumitomo Corp. 153 Gannet 19

Kinden 21 Motorola 24

Heiwa 18 Schlumberger 24

NCR Japan 125 Oracle Systems 43

Suzuki Motor 31 Gap 22

Fuji Bank 213 Winn-Dixie 14

Sumitomo Chemical 64 Ingersoll-Rand 21

Seibu Railway 666 American Electric Power 14

Shiseido 33 Hercules 21

Toho Gas 68 Times Mirror 38

WellPoint Health 15

Northern States Power 14

COMPLETE

SOLUTIONS
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18.4 KRUSKAL–WALLIS TEST

The MWW test in Section 18.3 can be used to test whether two populations are identical. Kruskal and
Wallis extended the test to the case of three or more populations. The hypotheses for the Kruskal–Wallis

test with k ≥ 3 populations can be written as follows.

H0: All k populations are identical
H1: Not all k populations are identical

The Kruskal–Wallis test is based on the analysis of independent random samples from each of the k
populations.

In Chapter 13 we showed that analysis of variance (ANOVA) can be used to test for the equality of
means among three or more populations. The ANOVA procedure requires interval- or ratio-level data

15. Samples of annual starting salaries for individuals entering the public accounting and financial

planning professions follow. Annual salaries are shown in thousands of euros.

Public accountant Public accountant Financial planner Financial planner

45.2 50.0 44.0 48.6

53.8 45.9 44.2 44.7

51.3 54.5 48.1 48.9

53.2 52.0 50.9 46.8

49.2 46.9 46.9 43.9

a. Using = 0.05, test the hypothesis that there is no difference between the starting annual

salaries of public accountants and financial planners. What is your conclusion?

b. What are the sample mean annual salaries for the two professions?

16. A confederation of house builders provided data on the cost (in £) of the most popular home re-

modelling projects. Use the Mann–Whitney–Wilcoxon test to see whether it can be concluded that

the cost of kitchen re-modelling differs from the cost of master bedroom re-modelling. Use a 0.05

level of significance.

Kitchen Master bedroom

13 200 6 000

5 400 10 900

10 800 14 400

9 900 12 800

7 700 14 900

11 000 5 800

7 700 12 600

4 900 9 000

9 800

11 600

17. The gap between the earnings of men and women with equal education is narrowing in many

countries but has not closed. Sample data from the United Arab Emirates for seven men and

seven women with Bachelor’s degrees are as follows. Data of monthly earnings are shown in

thousands of Dirham.

Men 12.2 30.2 18.1 24.9 15.3 20.0 22.1

Women 17.8 14.2 11.2 16.2 10.3 19.0 9.9

a. What is the median salary for men? For women?

b. Use = 0.05 and conduct the hypothesis test for identical populations. What is your conclusion?
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and the assumption that the k populations are normally distributed. The non-parametric Kruskal–Wallis
test can be used with ordinal data as well as with interval or ratio data. In addition, the Kruskal–Wallis
test does not require the assumption of normally distributed populations. We demonstrate the Kruskal–
Wallis test by using it in an employee selection application.

Williams Manufacturing hires employees for its management staff from three local colleges. Recently
the company’s personnel department began collecting and reviewing annual performance ratings in an
attempt to determine whether there are differences in performance among the managers hired from these
colleges. Performance rating data are available from independent samples of seven employees from
college A, six employees from college B and seven employees from college C. These data are summarized
in Table 18.6; the overall performance rating of each manager is given on a 0–100 scale, with 100 being
the highest possible performance rating (the rankings are explained below).

Suppose we want to test whether the three populations are identical in terms of performance
evaluations. We shall use a 0.05 level of significance. The Kruskal–Wallis test statistic, which is based
on the sum of ranks for each of the samples, can be computed as follows.

Kruskal–Wallis test statistic

W
12

nT nT 1
∑
k

i 1

R2
i

ni
3 nT 1 (18.8)

where:
k the number of populations
ni the number of items in sample i
nT Σni total number of items in all samples
Ri sum of the ranks for sample i

Kruskal and Wallis were able to show that, under the null hypothesis that the populations are identical,
the sampling distribution of W can be approximated by a chi-squared distribution with k 1 degrees of
freedom. This approximation is generally acceptable if each of the sample sizes is greater than or equal to
five. The null hypothesis of identical populations will be rejected if the test statistic is large. As a result, the
procedure uses an upper-tail test.

To compute the W statistic for our example, we first rank all 20 data items. The lowest data value of 15
from college B sample receives a rank of 1, whereas the highest data value of 95 from college A sample receives
a rank of 20. The ranks and the sums of the ranks for the three samples are given in Table 18.6. Note that we
assign the average rank to tied items;* for example, the data values of 60, 70, 80 and 90 had ties.

The sample sizes are:

n1 7 n2 6 n3 7

and:

nT Σni 7 6 7 20

We compute the W statistic by using equation (18.8).

W
12

20 21

95 2

7

27 2

6

88 2

7
3 20 1 8 92

We can now use the chi-squared distribution table (Table 3 of Appendix B) to determine the p-value for
the test. Using k 1 3 1 2 degrees of freedom, we find χ

2
7.378 has an area of 0.025 in the upper tail of

the distribution and χ
2

9.21 has an area of 0.01 in the upper tail. ForW 8.92, between 7.378 and 9.21, the
area in the upper tail is between 0.025 and 0.01. Because it is an upper tail test, we can conclude that the
p-value is between 0.025 and 0.01. (A calculation inMINITAB, IBMSPSS or EXCEL shows p-value 0.0116.)

*If numerous tied ranks are observed, equation (18.8) must be modified. The modified formula is given in

W. J. Conover (1999) Practical Non parametric Statistics, 3rd ed. Wiley.
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Because p-value < α 0.05, we reject H0 and conclude that the three populations are not identical.
Manager performance differs significantly depending on the college attended. Furthermore, because the
performance ratings are lowest for college B, it would be reasonable for the company to either cut back
recruiting from college B or at least evaluate its graduates more thoroughly.

T ABLE 18 . 6 Performance evaluation ratings for 20 Williams employees

College A Rank College B Rank College C Rank

25 3 60 9 50 7

70 12 20 2 70 12

60 9 30 4 60 9

85 17 15 1 80 15.5

95 20 40 6 90 18.5

90 18.5 35 5 70 12

80 15.5 75 14

Sum of ranks 95 27 88

EXERCISES

Applications

18. Three college admission test preparation programmes are being evaluated. The scores obtained

by a sample of 20 people who used the test preparation programmes provided the following data.

Use the Kruskal–Wallis test to determine whether there is a significant difference among the

three test preparation programmes. Use = 0.01.

Programme

A B C

540 450 600

400 540 630

490 400 580

530 410 490

490 480 590

610 370 620

550 570

19. Forty-minute workouts of one of the following activities three days a week may lead to a loss of

weight. The following sample data show the number of calories burned during 40-minute workouts

for three different activities. Do these data indicate differences in the amount of calories burned

for the three activities? Use a 0.05 level of significance. What is your conclusion?

Swimming Tennis Cycling

408 415 385

380 485 250

425 450 295

400 420 402

427 530 268

COMPLETE

SOLUTIONS
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18.5 RANK CORRELATION

The Pearson product-moment correlation coefficient (see Chapter 3, Section 3.5 and Chapter 14, Section
14.3) is a measure of the linear association between two variables for which interval or ratio data are
available. In this section, we consider the Spearman rank-correlation coefficient rS, which is a measure of
association between two variables applicable when only ordinal data are available.

Spearman rank-correlation coefficient

rS 1
6∑d2i

n n2 1
(18.9)

where:
n the number of items or individuals being ranked
xi the rank of item i with respect to one variable
yi the rank of item i with respect to the second variable
di xi yi

Suppose a company wants to determine whether individuals who were expected at the time of
employment to be better salespersons actually turn out to have better sales records. To investigate this
question, the personnel manager carefully reviewed the original job interview summaries, academic
records and letters of recommendation for ten current members of the firm’s sales force. After the review,
the personnel manager ranked the ten individuals in terms of their potential for success, basing the
assessment solely on the information available at the time of employment. Then a list was obtained of the
number of units sold by each salesperson over the first two years.

20. Condé Nast Traveler magazine conducts an annual survey of its readers in order to rate the top 80

cruise ships in the world. With 100 the highest possible rating, the overall ratings for a sample of

ships from the Holland America, Princess and Royal Caribbean cruise lines are shown here. Use

the Kruskal–Wallis test with = 0.05 to determine whether the overall ratings among the three

cruise lines differ significantly.

Holland America Princess Royal Caribbean

Ship Rating Ship Rating Ship Rating

Amsterdam 84.5 Coral 85.1 Adventure 84.8

Maasdam 81.4 Dawn 79.0 Jewel 81.8

Ooterdam 84.0 Island 83.9 Mariner 84.0

Volendam 78.5 Princess 81.1 Navigator 85.9

Westerdam 80.9 Star 83.7 Serenade 87.4

21. Course-evaluation ratings for four instructors follow. Use the Kruskal–Wallis procedure with =

0.05 to test for a significant difference in teaching abilities.

Instructor Course-evaluation rating

Black 88 80 79 68 96 69

Jennings 87 78 82 85 99 99 85 94 81

Swanson 88 76 68 82 85 82 84 83

Wilson 80 85 56 71 89 87
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On the basis of actual sales performance, a second ranking of the ten salespersons was carried out.
Table 18.7 gives the relevant data and the two rankings. In the ranking of potential, rank 1 means lowest
potential, rank 2 next lowest and so on. The statistical question is whether there is agreement between the
ranking of potential at the time of employment and the ranking based on the actual sales performance
over the first two years.

The computations for the Spearman rank-correlation coefficient are summarized in Table 18.7. We see
that the rank-correlation coefficient is a positive 0.73. The Spearman rank-correlation coefficient ranges
from 1.0 to 1.0 and its interpretation is similar to that of the Pearson correlation coefficient, in that
positive values near 1.0 indicate a strong association between the rankings; as one rank increases, the
other rank increases. Rank correlations near 1.0 indicate a strong negative association between the
rankings; as one rank increases, the other rank decreases. The value rS 0.73 indicates a positive
correlation between potential and actual performance. Individuals ranked high on potential tend to rank
high on performance.

At this point, we may want to use the sample results to make an inference about the population rank
correlation ρS. To do this, we test the following hypotheses.

H0: ρS 0
H1: ρS 0

Under the null hypothesis of no rank correlation (ρS 0), the rankings are independent, and the
sampling distribution of rS is as follows.

Sampling distribution of rS

Mean: rS 0 (18.10)

Standard deviation : rS

1

n 1
(18.11)

Distribution form: approximately normal provided n ≥ 10.

T ABLE 18 . 7 Sales potential and actual two-year sales data for ten salespeople, and computation of the

Spearman rank-correlation coefficient

Salesperson

xi Ranking

of potential

Two-year

sales (units)

yi Ranking

of sales

performance di xi yi di
2

A 9 400 10 1 1

B 7 360 8 1 1

C 4 300 6 2 4

D 10 295 5 5 25

E 5 280 4 1 1

F 8 350 7 1 1

G 1 200 1 0 0

H 2 260 3 1 1

I 3 220 2 1 1

J 6 385 9 3 9

di
2=44

rS 1
6 d2

i

n n2 1
1

6 44

10 100 1
0 73
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The sample rank-correlation coefficient for sales potential and sales performance is rS 0.73. From
equation (18.10) we have rS

0 and from (18.11) we have:

rS 1 10 1 0 33

Using the test statistic, we have:

z
rS rS

rS

0 73 0

0 33
2 20

Using the standard normal distribution table and z 2.20, we find the p-value 2(1 0.9861)
0.0278. With a 0.05 level of significance, p-value < α 0.05 leads to the rejection of the hypothesis that
the rank correlation is zero. We can conclude that there is a positive rank correlation between sales
potential and sales performance.

EXERCISES

Methods

22. Consider the following set of rankings for a sample of ten elements.

Element xi yi Element xi yi

1 10 8 6 2 7

2 6 4 7 8 6

3 7 10 8 5 3

4 3 2 9 1 1

5 4 5 10 9 9

a. Compute the Spearman rank-correlation coefficient for the data.

b. Use = 0.05 and test for significant rank correlation. What is your conclusion?

23. Consider the following two sets of rankings for six items.

Case One Case Two

Item First ranking Second ranking Item First ranking Second ranking

A 1 1 A 1 6

B 2 2 B 2 5

C 3 3 C 3 4

D 4 4 D 4 3

E 5 5 E 5 2

F 6 6 F 6 1

Note that in the first case the rankings are identical, whereas in the second case the rankings are

exactly opposite. What value should you expect for the Spearman rank-correlation coefficient for

each of these cases? Explain. Calculate the rank-correlation coefficient for each case.

Applications

24. The following two lists show how ten IT companies ranked in a national survey, in terms of

reputation and percentage of respondents who said they would purchase the company’s shares.

A positive rank correlation is anticipated because it seems reasonable to expect that a company

with a higher reputation would be a more desirable purchase.

COMPLETE

SOLUTIONS
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Company Reputation Probable purchase

Microsoft 1 3

Intel 2 4

Dell 3 1

Lucent 4 2

Texas Instruments 5 9

Cisco Systems 6 5

Hewlett-Packard 7 10

IBM 8 6

Motorola 9 7

Yahoo 10 8

a. Compute the rank correlation between reputation and probable purchase.

b. Test for a significant positive rank correlation. What is the p-value?

c. At = 0.05, what is your conclusion?

25. A student organization surveyed both recent graduates and current students to obtain information

on the quality of teaching at a particular university. An analysis of the responses provided the

following teaching-ability rankings. Do the rankings given by the current students agree with the

rankings given by the recent graduates? Use = 0.10 and test for a significant rank correlation.

Ranking by

Professor Current students Recent graduates

A 4 6

B 6 8

C 8 5

D 3 1

E 1 2

F 2 3

G 5 7

H 10 9

J 7 4

K 9 10

26. A sample of 15 students received the following rankings on mid-term and final examinations in a

statistics course.

Rank Rank Rank

Mid-term Final Mid-term Final Mid-term Final

1 4 6 2 11 14

2 7 7 5 12 15

3 1 8 12 13 11

4 3 9 6 14 10

5 8 10 9 15 13

Compute the Spearman rank-correlation coefficient for the data and test for a significant

correlation, with = 0.10.
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SUMMARY

In this chapter we presented several statistical procedures that are classified as non-parametric

methods. Because non-parametric methods can be applied to ordinal and in some cases nominal

data, as well as interval and ratio data, and because they require less restrictive population distribu-

tion assumptions, they expand the class of problems that can be subjected to statistical analysis.

The sign test is a non-parametric procedure for identifying differences between two populations

when the data available are nominal data. In the small-sample case, the binomial probability distribu-

tion can be used to determine the critical values for the sign test; in the large-sample case, a normal

approximation can be used. The Wilcoxon signed-rank test is a procedure for analyzing matched-

sample data whenever interval- or ratio-scaled data are available for each matched pair. The procedure

tests the hypothesis that the two populations being considered are identical. The procedure assumes

that the distribution of differences between matched pairs is symmetrical, but not necessarily normal

in shape.

The Mann–Whitney–Wilcoxon test is a non-parametric method for testing for a difference between

two populations based on two independent random samples. Tables were presented for the small-

sample case, and a normal approximation was provided for the large-sample case. The Kruskal–Wallis

test extends the Mann–Whitney–Wilcoxon test to the case of three or more populations. The Kruskal-

Wallis test is the non-parametric analogue of the parametric ANOVA for differences among population

means.

We introduced the Spearman rank-correlation coefficient as a measure of association for two

ordinal or rank-ordered sets of items.

KEY TERMS

Distribution–free methods

Kruskal–Wallis test

Mann–Whitney–Wilcoxon (MWW) test

Non-parametric methods

Parametric methods

Sign test

Spearman rank-correlation coefficient

Wilcoxon signed-rank test

KEY FORMULAE

Sign test (large-sample case)

Mean 0 50n (18.1)

Standard deviation: 0 25n (18.2)

ONLINE RESOURCES

For the data sets, online summary, additional questions and answers, and the software section

for Chapter 18, visit the online platform.

RANK CORRELATION 587



Wilcoxon signed-rank test

Mean T 0 (18.3)

Standard deviation : T
n n 1 2n 1

6
(18.4)

Mann–Whitney–Wilcoxon test (large-sample)

Mean: T 0 5n1 n1 n2 1 (18.6)

Standard deviation : T
n1n2 n1 n2 1

12
(18.7)

Kruskal–Wallis test statistic

W
12

nT nT 1
∑
k

i 1

R2
i

ni
3 nT 1 (18.8)

Spearman rank-correlation coefficient

rS 1
6∑d2i

n n2 1
(18.9)

Sampling distribution of rS in test for significant rank correlation

Mean: rS 0 (18.10)

Standard deviation : rS

1

n 1
(18.11)

CASE PROBLEM

Company profiles II

The file ‘Companies 2012’ on the online platform

contains a data set compiled mid-year 2012. It com-

prises figures relating to samples of companies

whose shares are traded on the stock exchanges in

Germany, France, South Africa and Israel. The data

contained in the file are:

Name of company

Country of stock exchange where the shares are

traded

Return on shareholders’ funds in 2011 (%)

Profit margin in 2011 (%)

Return on total assets in 2011 (%)

Current ratio, 2011

Solvency ratio, 2011

Price/earnings ratio, 2011
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The first few rows of data are shown below.

Company name Country

Return on

share holders’

funds, 2011

(%)

Profit

margin,

2011 (%)

Return on

total assets,

2011 (%)

Current

ratio,

2011

Solvency

ratio,

2011

Price/

earnings

ratio, 2011

Adidas AG Germany 17.40 6.85 8.15 1.50 46.81 15.72

Allianz SE Germany 10.79 6.99 0.77 7.15 11.92

Altana AG Germany 3.32 3.28 2.28 2.40 68.77 200.13

BASF SE Germany 37.16 11.90 14.66 1.64 39.46 7.96

Bayer AG Germany 17.50 9.04 6.37 1.50 39.41 16.47

BMW AG Germany 27.31 10.69 5.98 1.04 21.91 6.52

Commerzbank Germany 2.04 4.09 0.08 0.41 3.75 8.92

Continental AG Germany 26.05 6.06 7.15 1.06 27.44 7.71

Daimler AG Germany 21.32 7.84 5.70 1.11 26.75 6.35

Deutsche Bank AG Germany 9.86 16.16 0.25 0.82 2.53 6.23

Analyst’s report

Using non-parametric methods of testing, investigate the following:

1. Is there any evidence of differences between the companies traded on the five different stock exchanges in

respect of the return on shareholders’ funds, in respect of the profit margins and in respect of the price/

earnings ratios?

2. Is there any evidence of differences between the companies traded on the French and German stock

markets in respect of the distribution of current ratios and solvency ratios?

3. Is there any evidence of a relationship between return on shareholders’ funds and profit margin?

4. Is there any evidence of a relationship between return on total assets and solvency ratio?

5. Is there any evidence of a relationship between return on total assets and price/earnings ratio?
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APPENDIX B
Tables

T ABLE 1 Cumulative Probabilities for the Standard Normal Distribution

Cumulative

probability

0z

Entries in the table give the area under the curve to the left of the z value. For example, for z = –.85,

the cumulative probability is .1977.

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

−3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010

−2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014

−2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019

−2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026

−2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036

−2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048

−2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064

−2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084

−2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110

−2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143

−2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183

−1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

−1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294

−1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367

−1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455

−1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559

−1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681

−1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823

−1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985

−1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170

−1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379

−.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611

−.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867

−.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148

−.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451

−.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776

−.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121

−.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483

−.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859

−.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247

−.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
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T ABLE 1 (Continued)

Cumulative

probability

0 z

Entries in the table give the area under the curve to the left of the z value. For example, for z = 1.25, the cumulative probability

is .8944.

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9913

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9986 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
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T ABLE 2 t distribution

Area or

probability

0 t 

Entries in the table give t values for an area or probability in the upper tail of the t distribution. For example, with ten degrees of

freedom and 0.05 area in the upper tail, t.05 = 1.812.

Degrees of Area in upper tail

freedom
.20 .10 .05 .025 .01 .005

1 1.376 3.078 6.314 12.706 31.821 63.656

2 1.061 1.886 2.920 4.303 6.965 9.925

3 .978 1.638 2.353 3.182 4.541 5.841

4 .941 1.533 2.132 2.776 3.747 4.604

5 .920 1.476 2.015 2.571 3.365 4.032

6 .906 1.440 1.943 2.447 3.143 3.707

7 .896 1.415 1.895 2.365 2.998 3.499

8 .889 1.397 1.860 2.306 2.896 3.355

9 .883 1.383 1.833 2.262 2.821 3.250

10 .879 1.372 1.812 2.228 2.764 3.169

11 .876 1.363 1.796 2.201 2.718 3.106

12 .873 1.356 1.782 2.179 2.681 3.055

13 .870 1.350 1.771 2.160 2.650 3.012

14 .868 1.345 1.761 2.145 2.624 2.977

15 .866 1.341 1.753 2.131 2.602 2.947

16 .865 1.337 1.746 2.120 2.583 2.921

17 .863 1.333 1.740 2.110 2.567 2.898

18 .862 1.330 1.734 2.101 2.552 2.878

19 .861 1.328 1.729 2.093 2.539 2.861

20 .860 1.325 1.725 2.086 2.528 2.845

21 .859 1.323 1.721 2.080 2.518 2.831

22 .858 1.321 1.717 2.074 2.508 2.819

23 .858 1.319 1.714 2.069 2.500 2.807

24 .857 1.318 1.711 2.064 2.492 2.797

25 .856 1.316 1.708 2.060 2.485 2.787

26 .856 1.315 1.706 2.056 2.479 2.779

27 .855 1.314 1.703 2.052 2.473 2.771

28 .855 1.313 1.701 2.048 2.467 2.763

29 .854 1.311 1.699 2.045 2.462 2.756
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T ABLE 2 (Continued)

Degrees of Area in upper tail

freedom
.20 .10 .05 .025 .01 .005

30 .854 1.310 1.697 2.042 2.457 2.750

31 .853 1.309 1.696 2.040 2.453 2.744

32 .853 1.309 1.694 2.037 2.449 2.738

33 .853 1.308 1.692 2.035 2.445 2.733

34 .852 1.307 1.691 2.032 2.441 2.728

35 .852 1.306 1.690 2.030 2.438 2.724

36 .852 1.306 1.688 2.028 2.434 2.719

37 .851 1.305 1.687 2.026 2.431 2.715

38 .851 1.304 1.686 2.024 2.429 2.712

39 .851 1.304 1.685 2.023 2.426 2.708

40 .851 1.303 1.684 2.021 2.423 2.704

41 .850 1.303 1.683 2.020 2.421 2.701

42 .850 1.302 1.682 2.018 2.418 2.698

43 .850 1.302 1.681 2.017 2.416 2.695

44 .850 1.301 1.680 2.015 2.414 2.692

45 .850 1.301 1.679 2.014 2.412 2.690

46 .850 1.300 1.679 2.013 2.410 2.687

47 .849 1.300 1.678 2.012 2.408 2.685

48 .849 1.299 1.677 2.011 2.407 2.682

49 .849 1.299 1.677 2.010 2.405 2.680

50 .849 1.299 1.676 2.009 2.403 2.678

51 .849 1.298 1.675 2.008 2.402 2.676

52 .849 1.298 1.675 2.007 2.400 2.674

53 .848 1.298 1.674 2.006 2.399 2.672

54 .848 1.297 1.674 2.005 2.397 2.670

55 .848 1.297 1.673 2.004 2.396 2.668

56 .848 1.297 1.673 2.003 2.395 2.667

57 .848 1.297 1.672 2.002 2.394 2.665

58 .848 1.296 1.672 2.002 2.392 2.663

59 .848 1.296 1.671 2.001 2.391 2.662

60 .848 1.296 1.671 2.000 2.390 2.660

61 .848 1.296 1.670 2.000 2.389 2.659

62 .847 1.295 1.670 1.999 2.388 2.657

63 .847 1.295 1.669 1.998 2.387 2.656

64 .847 1.295 1.669 1.998 2.386 2.655

65 .847 1.295 1.669 1.997 2.385 2.654

66 .847 1.295 1.668 1.997 2.384 2.652

67 .847 1.294 1.668 1.996 2.383 2.651

68 .847 1.294 1.668 1.995 2.382 2.650

69 .847 1.294 1.667 1.995 2.382 2.649

(continued)
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T ABLE 2 (Continued)

Degrees of Area in upper tail

freedom
.20 .10 .05 .025 .01 .005

70 .847 1.294 1.667 1.994 2.381 2.648

71 .847 1.294 1.667 1.994 2.380 2.647

72 .847 1.293 1.666 1.993 2.379 2.646

73 .847 1.293 1.666 1.993 2.379 2.645

74 .847 1.293 1.666 1.993 2.378 2.644

75 .846 1.293 1.665 1.992 2.377 2.643

76 .846 1.293 1.665 1.992 2.376 2.642

77 .846 1.293 1.665 1.991 2.376 2.641

78 .846 1.292 1.665 1.991 2.375 2.640

79 .846 1.292 1.664 1.990 2.374 2.639

80 .846 1.292 1.664 1.990 2.374 2.639

81 .846 1.292 1.664 1.990 2.373 2.638

82 .846 1.292 1.664 1.989 2.373 2.637

83 .846 1.292 1.663 1.989 2.372 2.636

84 .846 1.292 1.663 1.989 2.372 2.636

85 .846 1.292 1.663 1.988 2.371 2.635

86 .846 1.291 1.663 1.988 2.370 2.634

87 .846 1.291 1.663 1.988 2.370 2.634

88 .846 1.291 1.662 1.987 2.369 2.633

89 .846 1.291 1.662 1.987 2.369 2.632

90 .846 1.291 1.662 1.987 2.368 2.632

91 .846 1.291 1.662 1.986 2.368 2.631

92 .846 1.291 1.662 1.986 2.368 2.630

93 .846 1.291 1.661 1.986 2.367 2.630

94 .845 1.291 1.661 1.986 2.367 2.629

95 .845 1.291 1.661 1.985 2.366 2.629

96 .845 1.290 1.661 1.985 2.366 2.628

97 .845 1.290 1.661 1.985 2.365 2.627

98 .845 1.290 1.661 1.984 2.365 2.627

99 .845 1.290 1.660 1.984 2.364 2.626

100 .845 1.290 1.660 1.984 2.364 2.626

.842 1.282 1.645 1.960 2.326 2.576
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T ABLE 3 Chi-squared distribution

χ
α

Area or

probability

2

Entries in the table give values, where is the area or probability in the upper tail of the chi-squared distribution. For

example, with ten degrees of freedom and 0.01 area in the upper tail, 2
0 01=23.209

Area in upper tail
Degrees of freedom

.995 .99 .975 .95 .90 .10 .05 .025 .01 .005

1 .000 .000 .001 .004 .016 2.706 3.841 5.024 6.635 7.879

2 .010 .020 .051 .103 .211 4.605 5.991 7.378 9.210 10.597

3 .072 .115 .216 .352 .584 6.251 7.815 9.348 11.345 12.838

4 .207 .297 .484 .711 1.064 7.779 9.488 11.143 13.277 14.860

5 .412 .554 .831 1.145 1.610 9.236 11.070 12.832 15.086 16.750

6 .676 .872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548

7 .989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278

8 1.344 1.647 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955

9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757

12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300

13 3.565 4.107 5.009 5.892 7.041 19.812 22.362 24.736 27.688 29.819

14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319

15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267

17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718

18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156

19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582

20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997

21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401

22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796

23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181

24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.558

25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928

26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290

27 11.808 12.878 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645

(continued)
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T ABLE 3 (Continued)

Area in upper tail
Degrees of freedom

.995 .99 .975 .95 .90 .10 .05 .025 .01 .005

28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.994

29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.335

30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672

35 17.192 18.509 20.569 22.465 24.797 46.059 49.802 53.203 57.342 60.275

40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766

45 24.311 25.901 28.366 30.612 33.350 57.505 61.656 65.410 69.957 73.166

50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490

55 31.735 33.571 36.398 38.958 42.060 68.796 73.311 77.380 82.292 85.749

60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952

65 39.383 41.444 44.603 47.450 50.883 79.973 84.821 89.177 94.422 98.105

70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215

75 47.206 49.475 52.942 56.054 59.795 91.061 96.217 100.839 106.393 110.285

80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321

85 55.170 57.634 61.389 64.749 68.777 102.079 107.522 112.393 118.236 122.324

90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299

95 63.250 65.898 69.925 73.520 77.818 113.038 118.752 123.858 129.973 134.247

100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.170
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T ABLE 4 F distribution

Area or

probability

0 Fα

Entries in the table give F values, where is the area or probability in the upper tail of the F distribution. For example, with four numerator degrees of freedom,

eight denominator degrees of freedom, and 0.05 area in the upper tail, F.05 = 3.84.

Denominator

degrees of

freedom

Area

in

upper

tail

Numerator degrees of freedom

1 2 3 4 5 6 7 8 9 10 15 20 25 30 40 60 100 1000

1 .10 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19 61.22 61.74 62.05 62.26 62.53 62.79 63.01 63.30

.05 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 245.95 248.02 249.26 250.10 251.14 252.20 253.04 254.19

.025 647.79 799.48 864.15 899.60 921.83 937.11 948.20 956.64 963.28 968.63 984.87 993.08 998.09 1001.40 1005.60 1009.79 1013.16 1017.76

.01 4052.18 4999.34 5403.53 5624.26 5763.96 5858.95 5928.33 5980.95 6022.40 6055.93 6156.97 6208.66 6239.86 6260.35 6286.43 6312.97 6333.92 6362.80

2 .10 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49

.05 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.43 19.45 19.46 19.46 19.47 19.48 19.49 19.49

.025 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.43 39.45 39.46 39.46 39.47 39.48 39.49 39.50

.01 98.50 99.00 99.16 99.25 99.30 99.33 99.36 99.38 99.39 99.40 99.43 99.45 99.46 99.47 99.48 99.48 99.49 99.50

3 .10 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.20 5.18 5.17 5.17 5.16 5.15 5.14 5.13

.05 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.70 8.66 8.63 8.62 8.59 8.57 8.55 8.53

.025 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 1447 14.42 14.25 14.17 14.12 14.08 14.04 13.99 13.96 13.91

.01 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 26.87 26.69 26.58 26.50 26.41 26.32 26.24 26.14

4 .10 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76

.05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63

.025 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.66 8.56 8.50 8.46 8.41 8.36 8.32 8.26

.01 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.20 14.02 13.91 13.84 13.75 13.65 13.58 13.47

(continued)
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T ABLE 4 (Continued)

Denominator

degrees of

freedom

Area

in

upper

tail

Numerator degrees of freedom

1 2 3 4 5 6 7 8 9 10 15 20 25 30 40 60 100 1000

5 .10 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.324 3.21 3.19 3.17 3.16 3.14 3.13 3.11

.05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.62 4.56 4.52 4.50 4.46 4.43 4.41 4.37

.025 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.43 6.33 6.27 6.23 6.18 6.12 6.08 6.02

.01 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.72 9.55 9.45 9.38 9.29 9.20 9.13 9.03

6 .10 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.87 2.84 2.81 2.80 2.78 2.76 2.75 2.72

.05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.94 3.87 3.83 3.81 3.77 3.74 3.71 3.67

.025 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.27 5.17 5.11 5.07 5.01 4.96 4.92 4.86

.01 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.56 7.40 7.30 7.23 7.14 7.06 6.99 6.89

7 .10 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.63 2.59 2.57 2.56 2.54 2.51 2.50 2.47

.05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.51 3.44 3.40 3.38 3.34 3.30 3.27 3.23

.025 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.57 4.47 4.40 4.36 4.31 4.25 4.21 4.15

.01 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.31 6.16 6.06 5.99 5.91 5.82 5.75 5.66

8 .10 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.30

.05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.22 3.15 3.11 3.08 3.04 3.01 2.97 2.93

.025 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.10 4.00 3.94 3.89 3.84 3.78 3.74 3.68

.01 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.52 5.36 5.26 5.20 5.12 5.03 4.96 4.87

9 .10 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.34 2.30 2.27 2.25 2.23 2.21 2.19 2.16

.05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.01 2.94 2.89 2.86 2.83 2.79 2.76 2.71

.025 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.77 3.67 3.60 3.56 3.51 3.45 3.40 3.34

.01 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 4.96 4.81 4.71 4.65 4.57 4.48 4.41 4.32

10 .10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.24 2.20 2.17 2.16 2.13 2.11 2.09 2.06

.05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.85 2.77 2.73 2.70 2.66 2.62 2.59 2.54

.025 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.52 3.42 3.35 3.31 3.26 3.20 3.15 3.09

.01 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.56 4.41 4.31 4.25 4.17 4.08 4.01 3.92

11 .10 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.17 2.12 2.10 2.08 2.05 2.03 2.01 1.98

.05 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.72 2.65 2.60 2.57 2.53 2.49 2.46 2.41

.025 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.33 3.23 3.16 3.12 3.06 3.00 2.96 2.89

.01 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.25 4.10 4.01 3.94 3.86 3.78 3.71 3.61
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T ABLE 4 (Continued)

Denominator

degrees of

freedom

Area

in

upper

tail

Numerator degrees of freedom

1 2 3 4 5 6 7 8 9 10 15 20 25 30 40 60 100 1000

12 .10 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.10 2.06 2.03 2.01 1.99 1.96 1.94 1.91

.05 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.62 2.54 2.50 2.47 2.43 2.38 2.35 2.30

.025 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.18 3.07 3.01 2.96 2.91 2.85 2.80 2.73

.01 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.01 3.86 3.76 3.70 3.62 3.54 3.47 3.37

13 .10 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85

.05 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.53 2.46 2.41 2.38 2.34 2.30 2.26 2.21

.025 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.05 2.95 2.88 2.84 2.78 2.72 2.67 2.60

.01 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.82 3.66 3.57 3.51 3.43 3.34 3.27 3.18

14 .10 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.01 1.96 1.93 1.99 1.89 1.86 1.83 1.80

.05 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.46 2.39 2.34 2.31 2.27 2.22 2.19 2.14

.025 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 2.95 2.84 2.78 2.73 2.67 2.61 2.56 2.50

.01 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.66 3.51 3.41 3.35 3.27 3.18 3.11 3.02

15 .10 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 1.97 1.92 1.89 1.87 1.85 1.82 1.79 1.76

.05 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.40 2.33 2.28 2.25 2.20 2.16 2.12 2.07

.025 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.86 2.76 2.69 2.64 2.59 2.52 2.47 2.40

.01 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.52 3.37 3.28 3.21 3.13 3.05 2.98 2.88

16 .10 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 1.94 1.89 1.86 1.84 1.81 1.78 1.76 1.72

.05 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.35 2.28 2.23 2.19 2.15 2.11 2.07 2.02

.025 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.79 2.68 2.61 2.57 2.51 2.45 2.40 2.32

.01 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.41 3.26 3.16 3.10 3.02 2.93 2.86 2.76

17 .10 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.91 1.86 1.83 1.81 1.78 1.75 1.73 1.69

.05 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.31 2.23 2.18 2.15 2.10 2.06 2.02 1.97

.025 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.72 2.62 2.55 2.50 2.44 2.38 2.33 2.26

.01 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.31 3.16 3.07 3.00 2.92 2.83 2.76 2.66

18 .10 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.89 1.84 1.80 1.78 1.75 1.72 1.70 1.66

.05 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.27 2.19 2.14 2.11 2.06 2.02 1.98 1.92

.025 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.67 2.56 2.49 2.44 2.38 2.32 2.27 2.20

.01 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.23 3.08 2.98 2.92 2.84 2.75 2.68 2.58

19 .10 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.86 1.81 1.78 1.76 1.73 1.70 1.67 1.64

.05 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.23 2.16 2.11 2.07 2.03 1.98 1.94 1.88

.025 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.62 2.51 2.44 2.39 2.33 2.27 2.22 2.14

.01 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.15 3.00 2.91 2.84 2.76 2.67 2.60 2.50

(continued)
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T ABLE 4 (Continued)

Denominator

degrees of

freedom

Area

in

upper

tail

Numerator degrees of freedom

1 2 3 4 5 6 7 8 9 10 15 20 25 30 40 60 100 1000

20 .10 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.84 1.79 1.76 1.74 1.71 1.68 1.65 1.61

.05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.20 2.12 2.07 2.04 1.99 1.95 1.91 1.85

.025 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.57 2.46 2.40 2.35 2.29 2.22 2.17 2.09

.01 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.09 2.94 2.84 2.78 2.69 2.61 2.54 2.43

21 .10 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.83 1.78 1.74 1.72 1.69 1.66 1.63 1.59

.05 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.18 2.10 2.05 2.01 1.96 1.92 1.88 1.82

.025 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.53 2.42 2.36 2.31 2.25 2.18 2.13 2.05

.01 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.03 2.88 2.79 2.72 2.64 2.55 2.48 2.37

22 .10 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.81 1.76 1.73 1.70 1.67 1.64 1.61 1.57

.05 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.15 2.07 2.02 1.98 1.94 1.89 1.85 1.79

.025 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.50 2.39 2.32 2.27 2.21 2.14 2.09 2.01

.01 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 2.98 2.83 2.73 2.67 2.58 2.50 2.42 2.32

23 .10 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89 1.80 1.74 1.71 1.69 1.66 1.62 1.59 1.55

.05 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.13 2.05 2.00 1.96 1.91 1.86 1.82 1.76

.025 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 2.47 2.36 2.29 2.24 2.18 2.11 2.06 1.98

.01 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 2.93 2.78 2.69 2.62 2.54 2.45 2.37 2.27

24 .10 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.78 1.73 1.70 1.67 1.64 1.61 1.58 1.54

.05 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.11 2.03 1.97 1.94 1.89 1.84 1.80 1.74

.025 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.44 2.33 2.26 2.21 2.15 2.08 2.02 1.94

.01 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 2.89 2.74 2.64 2.58 2.49 2.40 2.33 2.22

25 .10 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.77 1.72 1.68 1.66 1.63 1.59 1.56 1.52

.05 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.09 2.01 1.96 1.92 1.87 1.82 1.78 1.72

.025 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.41 2.30 2.23 2.18 2.12 2.05 2.00 1.91

.01 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.85 2.70 2.60 2.54 2.45 2.36 2.29 2.18

26 .10 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.76 1.71 1.67 1.65 1.61 1.58 1.55 1.51

.05 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.07 1.99 1.94 1.90 1.85 1.80 1.76 1.70

.025 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 2.39 2.28 2.21 2.16 2.09 2.03 1.97 1.89

.01 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.81 2.66 2.57 2.50 2.42 2.33 2.25 2.14

27 .10 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85 1.75 1.70 1.66 1.64 1.60 1.57 1.54 1.50

.05 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.06 1.97 1.92 1.88 1.84 1.79 1.74 1.68

.025 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57 2.36 2.25 2.18 2.13 2.07 2.00 1.94 1.86

.01 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.78 2.63 2.54 2.47 2.38 2.29 2.22 2.11
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T ABLE 4 (Continued)

Denominator

degrees of

freedom

Area

in

upper

tail

Numerator degrees of freedom

1 2 3 4 5 6 7 8 9 10 15 20 25 30 40 60 100 1000

28 .10 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.74 1.69 1.65 1.63 1.59 1.56 1.53 1.48

.05 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.04 1.96 1.91 1.87 1.82 1.77 1.73 1.66

.025 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 2.34 2.23 2.16 2.11 2.05 1.98 1.92 1.84

.01 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.75 2.60 2.51 2.44 2.35 2.26 2.19 2.08

29 .10 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83 1.73 1.68 1.64 1.62 1.58 1.55 1.52 1.47

.05 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.03 1.94 1.89 1.85 1.81 1.75 1.71 1.65

.025 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59 2.53 2.32 2.21 2.14 2.09 2.03 1.96 1.90 1.82

.01 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.73 2.57 2.48 2.41 2.33 2.23 2.16 2.05

30 .10 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.72 1.67 1.63 1.61 1.57 1.54 1.51 1.46

.05 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.01 1.93 1.88 1.84 1.79 1.74 1.70 1.63

.025 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.31 2.20 2.12 2.07 2.01 1.94 1.88 1.80

.01 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.70 2.55 2.45 2.39 2.30 2.21 2.13 2.02

40 .10 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.66 1.61 1.57 1.54 1.51 1.47 1.43 1.38

.05 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 1.92 1.84 1.78 1.74 1.69 1.64 1.59 1.52

.025 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.18 2.07 1.99 1.94 1.88 1.80 1.74 1.65

.01 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.52 2.37 2.27 2.20 2.11 2.02 1.94 1.82

60 .10 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.60 1.54 1.50 1.48 1.44 1.40 1.36 1.30

.05 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.84 1.75 1.69 1.65 1.59 1.53 1.48 1.40

.025 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.06 1.94 1.87 1.82 1.74 1.67 1.60 1.49

.01 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.35 2.20 2.10 2.03 1.94 1.84 1.75 1.62

100 .10 2.76 2.36 2.14 2.00 1.91 1.83 1.78 1.73 1.69 1.66 1.56 1.49 1.45 1.42 1.38 1.34 1.29 1.22

.05 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.77 1.68 1.62 1.57 1.52 1.45 1.39 1.30

.025 5.18 3.83 3.25 2.92 2.70 2.54 2.42 2.32 2.24 2.18 1.97 1.85 1.77 1.71 1.64 1.56 1.48 1.36

.01 6.90 4.82 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.22 2.07 1.97 1.89 1.80 1.69 1.60 1.45

1000 .10 2.71 2.31 2.09 1.95 1.85 1.78 1.72 1.68 1.64 1.61 1.49 1.43 1.38 1.35 1.30 1.25 1.20 1.08

.05 3.85 3.00 2.61 2.38 2.22 2.11 2.02 1.95 1.89 1.84 1.68 1.58 1.52 1.47 1.41 1.33 1.26 1.11

.025 5.04 3.70 3.13 2.80 2.58 2.42 2.30 2.20 2.13 2.06 1.85 1.72 1.64 1.58 1.50 1.41 1.32 1.13

.01 6.66 4.63 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34 2.06 1.90 1.79 1.72 1.61 1.50 1.38 1.16
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T ABLE 5 Binomial probabilities

Entries in the table give the probability of x successes in n trials of a binomial experiment, where is the probability of a

success on one trial. For example, with six trials and = 0.05, the probability of two successes is 0.0305.

n x .01 .02 .03 .04 .05 .06 .07 .08 .09

2 0 .9801 .9604 .9409 .9216 .9025 .8836 .8649 .8464 .8281

1 .0198 .0392 .0582 .0768 .0950 .1128 .1302 .1472 .1638

2 .0001 .0004 .0009 .0016 .0025 .0036 .0049 .0064 .0081

3 0 .9703 .9412 .9127 .8847 .8574 .8306 .8044 .7787 .7536

1 .0294 .0576 .0847 .1106 .1354 .1590 .1816 .2031 .2236

2 .0003 .0012 .0026 .0046 .0071 .0102 .0137 .0177 .0221

3 .0000 .0000 .0000 .0001 .0001 .0002 .0003 .0005 .0007

4 0 .9606 .9224 .8853 .8493 .8145 .7807 .7481 .7164 .6857

1 .0388 .0753 .1095 .1416 .1715 .1993 .2252 .2492 .2713

2 .0006 .0023 .0051 .0088 .0135 .0191 .0254 .0325 .0402

3 .0000 .0000 .0001 .0002 .0005 .0008 .0013 .0019 .0027

4 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

5 0 .9510 .9039 .8587 .8154 .7738 .7339 .6957 .6591 .6240

1 .0480 .0922 .1328 .1699 .2036 .2342 .2618 .2866 .3086

2 .0010 .0038 .0082 .0142 .0214 .0299 .0394 .0498 .0610

3 .0000 .0001 .0003 .0006 .0011 .0019 .0030 .0043 .0060

4 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0003

5 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

6 0 .9415 .8858 .8330 .7828 .7351 .6899 .6470 .6064 .5679

1 .0571 .1085 .1546 .1957 .2321 .2642 .2922 .3164 .3370

2 .0014 .0055 .0120 .0204 .0305 .0422 .0550 .0688 .0833

3 .0000 .0002 .0005 .0011 .0021 .0036 .0055 .0080 .0110

4 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0005 .0008

5 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

6 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

7 0 .9321 .8681 .8080 .7514 .6983 .6485 .6017 .5578 .5168

1 .0659 .1240 .1749 .2192 .2573 .2897 .3170 .3396 .3578

2 .0020 .0076 .0162 .0274 .0406 .0555 .0716 .0886 .1061

3 .0000 .0003 .0008 .0019 .0036 .0059 .0090 .0128 .0175

4 .0000 .0000 .0000 .0001 .0002 .0004 .0007 .0011 .0017

5 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

6 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

8 0 .9227 .8508 .7837 .7214 .6634 .6096 .5596 .5132 .4703

1 .0746 .1389 .1939 .2405 .2793 .3113 .3370 .3570 .3721

2 .0026 .0099 .0210 .0351 .0515 .0695 .0888 .1087 .1288

3 .0001 .0004 .0013 .0029 .0054 .0089 .0134 .0189 .0255

4 .0000 .0000 .0001 .0002 .0004 .0007 .0013 .0021 .0031

5 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0002

6 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
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T ABLE 5 (Continued)

n x .01 .02 .03 .04 .05 .06 .07 .08 .09

7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

9 0 .9135 .8337 .7602 .6925 .6302 .5730 .5204 .4722 .4279

1 .0830 .1531 .2116 .2597 .2985 .3292 .3525 .3695 .3809

2 .0034 .0125 .0262 .0433 .0629 .0840 .1061 .1285 .1507

3 .0001 .0006 .0019 .0042 .0077 .0125 .0186 .0261 .0348

4 .0000 .0000 .0001 .0003 .0006 .0012 .0021 .0034 .0052

5 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0005

6 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

10 0 .9044 .8171 .7374 .6648 .5987 .5386 .4840 .4344 .3894

1 .0914 .1667 .2281 .2770 .3151 .3438 .3643 .3777 .3851

2 .0042 .0153 .0317 .0519 .0746 .0988 .1234 .1478 .1714

3 .0001 .0008 .0026 .0058 .0105 .0168 .0248 .0343 .0452

4 .0000 .0000 .0001 .0004 .0010 .0019 .0033 .0052 .0078

5 .0000 .0000 .0000 .0000 .0001 .0001 .0003 .0005 .0009

6 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

12 0 .8864 .7847 .6938 .6127 .5404 .4759 .4186 .3677 .3225

1 .1074 .1922 .2575 .3064 .3413 .3645 .3781 .3837 .3827

2 .0060 .0216 .0438 .0702 .0988 .1280 .1565 .1835 .2082

3 .0002 .0015 .0045 .0098 .0173 .0272 .0393 .0532 .0686

4 .0000 .0001 .0003 .0009 .0021 .0039 .0067 .0104 .0153

5 .0000 .0000 .0000 .0001 .0002 .0004 .0008 .0014 .0024

6 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0003

7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

15 0 .8601 .7386 .6333 .5421 .4633 .3953 .3367 .2863 .2430

1 .1303 .2261 .2938 .3388 .3658 .3785 .3801 .3734 .3605

2 .0092 .0323 .0636 .0988 .1348 .1691 .2003 .2273 .2496

3 .0004 .0029 .0085 .0178 .0307 .0468 .0653 .0857 .1070

4 .0000 .0002 .0008 .0022 .0049 .0090 .0148 .0223 .0317

5 .0000 .0000 .0001 .0002 .0006 .0013 .0024 .0043 .0069

6 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0006 .0011

7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

(continued)
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T ABLE 5 (Continued)

n x .01 .02 .03 .04 .05 .06 .07 .08 .09

11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

18 0 .8345 .6951 .5780 .4796 .3972 .3283 .2708 .2229 .1831

1 .1517 .2554 .3217 .3597 .3763 .3772 .3669 .3489 .3260

2 .0130 .0443 .0846 .1274 .1683 .2047 .2348 .2579 .2741

3 .0007 .0048 .0140 .0283 .0473 .0697 .0942 .1196 .1446

4 .0000 .0004 .0016 .0044 .0093 .0167 .0266 .0390 .0536

5 .0000 .0000 .0001 .0005 .0014 .0030 .0056 .0095 .0148

6 .0000 .0000 .0000 .0000 .0002 .0004 .0009 .0018 .0032

7 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0005

8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

20 0 .8179 .6676 .5438 .4420 .3585 .2901 .2342 .1887 .1516

1 .1652 .2725 .3364 .3683 .3774 .3703 .3526 .3282 .3000

2 .0159 .0528 .0988 .1458 .1887 .2246 .2521 .2711 .2818

3 .0010 .0065 .0183 .0364 .0596 .0860 .1139 .1414 .1672

4 .0000 .0006 .0024 .0065 .0133 .0233 .0364 .0523 .0703

5 .0000 .0000 .0002 .0009 .0022 .0048 .0088 .0145 .0222

6 .0000 .0000 .0000 .0001 .0003 .0008 .0017 .0032 .0055

7 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0005 .0011

8 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002

9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

20 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
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T ABLE 5 (Continued)

n x .10 .15 .20 .25 .30 .35 .40 .45 .50

2 0 .8100 .7225 .6400 .5625 .4900 .4225 .3600 .3025 .2500

1 .1800 .2550 .3200 .3750 .4200 .4550 .4800 .4950 .5000

2 .0100 .0225 .0400 .0625 .0900 .1225 .1600 .2025 .2500

3 0 .7290 .6141 .5120 .4219 .3430 .2746 .2160 .1664 .1250

1 .2430 .3251 .3840 .4219 .4410 .4436 .4320 .4084 .3750

2 .0270 .0574 .0960 .1406 .1890 .2389 .2880 .3341 .3750

3 .0010 .0034 .0080 .0156 .0270 .0429 .0640 .0911 .1250

4 0 .6561 .5220 .4096 .3164 .2401 .1785 .1296 .0915 .0625

1 .2916 .3685 .4096 .4219 .4116 .3845 .3456 .2995 .2500

2 .0486 .0975 .1536 .2109 .2646 .3105 .3456 .3675 .3750

3 .0036 .0115 .0256 .0469 .0756 .1115 .1536 .2005 .2500

4 .0001 .0005 .0016 .0039 .0081 .0150 .0256 .0410 .0625

5 0 .5905 .4437 .3277 .2373 .1681 .1160 .0778 .0503 .0312

1 .3280 .3915 .4096 .3955 .3602 .3124 .2592 .2059 .1562

2 .0729 .1382 .2048 .2637 .3087 .3364 .3456 .3369 .3125

3 .0081 .0244 .0512 .0879 .1323 .1811 .2304 .2757 .3125

4 .0004 .0022 .0064 .0146 .0284 .0488 .0768 .1128 .1562

5 .0000 .0001 .0003 .0010 .0024 .0053 .0102 .0185 .0312

6 0 .5314 .3771 .2621 .1780 .1176 .0754 .0467 .0277 .0156

1 .3543 .3993 .3932 .3560 .3025 .2437 .1866 .1359 .0938

2 .0984 .1762 .2458 .2966 .3241 .3280 .3110 .2780 .2344

3 .0146 .0415 .0819 .1318 .1852 .2355 .2765 .3032 .3125

4 .0012 .0055 .0154 .0330 .0595 .0951 .1382 .1861 .2344

5 .0001 .0004 .0015 .0044 .0102 .0205 .0369 .0609 .0938

6 .0000 .0000 .0001 .0002 .0007 .0018 .0041 .0083 .0156

7 0 .4783 .3206 .2097 .1335 .0824 .0490 .0280 .0152 .0078

1 .3720 .3960 .3670 .3115 .2471 .1848 .1306 .0872 .0547

2 .1240 .2097 .2753 .3115 .3177 .2985 .2613 .2140 .1641

3 .0230 .0617 .1147 .1730 .2269 .2679 .2903 .2918 .2734

4 .0026 .0109 .0287 .0577 .0972 .1442 .1935 .2388 .2734

5 .0002 .0012 .0043 .0115 .0250 .0466 .0774 .1172 .1641

6 .0000 .0001 .0004 .0013 .0036 .0084 .0172 .0320 .0547

7 .0000 .0000 .0000 .0001 .0002 .0006 .0016 .0037 .0078

8 0 .4305 .2725 .1678 .1001 .0576 .0319 .0168 .0084 .0039

1 .3826 .3847 .3355 .2670 .1977 .1373 .0896 .0548 .0312

2 .1488 .2376 .2936 .3115 .2965 .2587 .2090 .1569 .1094

3 .0331 .0839 .1468 .2076 .2541 .2786 .2787 .2568 .2188

4 .0046 .0185 .0459 .0865 .1361 .1875 .2322 .2627 .2734

5 .0004 .0026 .0092 .0231 .0467 .0808 .1239 .1719 .2188

6 .0000 .0002 .0011 .0038 .0100 .0217 .0413 .0703 .1094

7 .0000 .0000 .0001 .0004 .0012 .0033 .0079 .0164 .0313

8 .0000 .0000 .0000 .0000 .0001 .0002 .0007 .0017 .0039

(continued)
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T ABLE 5 (Continued)

n x .10 .15 .20 .25 .30 .35 .40 .45 .50

9 0 .3874 .2316 .1342 .0751 .0404 .0207 .0101 .0046 .0020

1 .3874 .3679 .3020 .2253 .1556 .1004 .0605 .0339 .0176

2 .1722 .2597 .3020 .3003 .2668 .2162 .1612 .1110 .0703

3 .0446 .1069 .1762 .2336 .2668 .2716 .2508 .2119 .1641

4 .0074 .0283 .0661 .1168 .1715 .2194 .2508 .2600 .2461

5 .0008 .0050 .0165 .0389 .0735 .1181 .1672 .2128 .2461

6 .0001 .0006 .0028 .0087 .0210 .0424 .0743 .1160 .1641

7 .0000 .0000 .0003 .0012 .0039 .0098 .0212 .0407 .0703

8 .0000 .0000 .0000 .0001 .0004 .0013 .0035 .0083 .0176

9 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0008 .0020

10 0 .3487 .1969 .1074 .0563 .0282 .0135 .0060 .0025 .0010

1 .3874 .3474 .2684 .1877 .1211 .0725 .0403 .0207 .0098

2 .1937 .2759 .3020 .2816 .2335 .1757 .1209 .0763 .0439

3 .0574 .1298 .2013 .2503 .2668 .2522 .2150 .1665 .1172

4 .0112 .0401 .0881 .1460 .2001 .2377 .2508 .2384 .2051

5 .0015 .0085 .0264 .0584 .1029 .1536 .2007 .2340 .2461

6 .0001 .0012 .0055 .0162 .0368 .0689 .1115 .1596 .2051

7 .0000 .0001 .0008 .0031 .0090 .0212 .0425 .0746 .1172

8 .0000 .0000 .0001 .0004 .0014 .0043 .0106 .0229 .0439

9 .0000 .0000 .0000 .0000 .0001 .0005 .0016 .0042 .0098

10 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010

12 0 .2824 .1422 .0687 .0317 .0138 .0057 .0022 .0008 .0002

1 .3766 .3012 .2062 .1267 .0712 .0368 .0174 .0075 .0029

2 .2301 .2924 .2835 .2323 .1678 .1088 .0639 .0339 .0161

3 .0853 .1720 .2362 .2581 .2397 .1954 .1419 .0923 .0537

4 .0213 .0683 .1329 .1936 .2311 .2367 .2128 .1700 .1208

5 .0038 .0193 .0532 .1032 .1585 .2039 .2270 .2225 .1934

6 .0005 .0040 .0155 .0401 .0792 .1281 .1766 .2124 .2256

7 .0000 .0006 .0033 .0115 .0291 .0591 .1009 .1489 .1934

8 .0000 .0001 .0005 .0024 .0078 .0199 .0420 .0762 .1208

9 .0000 .0000 .0001 .0004 .0015 .0048 .0125 .0277 .0537

10 .0000 .0000 .0000 .0000 .0002 .0008 .0025 .0068 .0161

11 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 .0029

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002

15 0 .2059 .0874 .0352 .0134 .0047 .0016 .0005 .0001 .0000

1 .3432 .2312 .1319 .0668 .0305 .0126 .0047 .0016 .0005

2 .2669 .2856 .2309 .1559 .0916 .0476 .0219 .0090 .0032

3 .1285 .2184 .2501 .2252 .1700 .1110 .0634 .0318 .0139

4 .0428 .1156 .1876 .2252 .2186 .1792 .1268 .0780 .0417

5 .0105 .0449 .1032 .1651 .2061 .2123 .1859 .1404 .0916

6 .0019 .0132 .0430 .0917 .1472 .1906 .2066 .1914 .1527

7 .0003 .0030 .0138 .0393 .0811 .1319 .1771 .2013 .1964

8 .0000 .0005 .0035 .0131 .0348 .0710 .1181 .1647 .1964

10 .0000 .0000 .0001 .0007 .0030 .0096 .0245 .0515 .0916
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T ABLE 5 (Continued)

n x .10 .15 .20 .25 .30 .35 .40 .45 .50

11 .0000 .0000 .0000 .0001 .0006 .0024 .0074 .0191 .0417

12 .0000 .0000 .0000 .0000 .0001 .0004 .0016 .0052 .0139

13 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 .0032

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

18 0 .1501 .0536 .0180 .0056 .0016 .0004 .0001 .0000 .0000

1 .3002 .1704 .0811 .0338 .0126 .0042 .0012 .0003 .0001

2 .2835 .2556 .1723 .0958 .0458 .0190 .0069 .0022 .0006

3 .1680 .2406 .2297 .1704 .1046 .0547 .0246 .0095 .0031

4 .0700 .1592 .2153 .2130 .1681 .1104 .0614 .0291 .0117

5 .0218 .0787 .1507 .1988 .2017 .1664 .1146 .0666 .0327

6 .0052 .0301 .0816 .1436 .1873 .1941 .1655 .1181 .0708

7 .0010 .0091 .0350 .0820 .1376 .1792 .1892 .1657 .1214

8 .0002 .0022 .0120 .0376 .0811 .1327 .1734 .1864 .1669

9 .0000 .0004 .0033 .0139 .0386 .0794 .1284 .1694 .1855

10 .0000 .0001 .0008 .0042 .0149 .0385 .0771 .1248 .1669

11 .0000 .0000 .0001 .0010 .0046 .0151 .0374 .0742 .1214

12 .0000 .0000 .0000 .0002 .0012 .0047 .0145 .0354 .0708

13 .0000 .0000 .0000 .0000 .0002 .0012 .0045 .0134 .0327

14 .0000 .0000 .0000 .0000 .0000 .0002 .0011 .0039 .0117

15 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0009 .0031

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0006

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

20 0 .1216 .0388 .0115 .0032 .0008 .0002 .0000 .0000 .0000

1 .2702 .1368 .0576 .0211 .0068 .0020 .0005 .0001 .0000

2 .2852 .2293 .1369 .0669 .0278 .0100 .0031 .0008 .0002

3 .1901 .2428 .2054 .1339 .0716 .0323 .0123 .0040 .0011

4 .0898 .1821 .2182 .1897 .1304 .0738 .0350 .0139 .0046

5 .0319 .1028 .1746 .2023 .1789 .1272 .0746 .0365 .0148

6 .0089 .0454 .1091 .1686 .1916 .1712 .1244 .0746 .0370

7 .0020 .0160 .0545 .1124 .1643 .1844 .1659 .1221 .0739

8 .0004 .0046 .0222 .0609 .1144 .1614 .1797 .1623 .1201

9 .0001 .0011 .0074 .0271 .0654 .1158 .1597 .1771 .1602

10 .0000 .0002 .0020 .0099 .0308 .0686 .1171 .1593 .1762

11 .0000 .0000 .0005 .0030 .0120 .0336 .0710 .1185 .1602

12 .0000 .0000 .0001 .0008 .0039 .0136 .0355 .0727 .1201

13 .0000 .0000 .0000 .0002 .0010 .0045 .0146 .0366 .0739

14 .0000 .0000 .0000 .0000 .0002 .0012 .0049 .0150 .0370

15 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0049 .0148

16 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0046

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0011

18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002

19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

20 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

APPENDIX B TABLES 609



T ABLE 6 Poisson probabilities

Entries in the table give the probability of x occurrences for a Poisson process with a mean . For example, when = 2.5, the

probability of four occurrences is .1336.

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 .9048 .8187 .7408 .6703 .6065 .5488 .4966 .4493 .4066 .3679

1 .0905 .1637 .2222 .2681 .3033 .3293 .3476 .3595 .3659 .3679

2 .0045 .0164 .0333 .0536 .0758 .0988 .1217 .1438 .1647 .1839

3 .0002 .0011 .0033 .0072 .0126 .0198 .0284 .0383 .0494 .0613

4 .0000 .0001 .0002 .0007 .0016 .0030 .0050 .0077 .0111 .0153

5 .0000 .0000 .0000 .0001 .0002 .0004 .0007 .0012 .0020 .0031

6 .0000 .0000 .0000 .0000 .0000 .0000 .0001 0002 .0003 .0005

7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

x 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 .3329 .3012 .2725 .2466 .2231 .2019 .1827 .1653 .1496 .1353

1 .3662 .3614 .3543 .3452 .3347 .3230 .3106 .2975 .2842 .2707

2 .2014 .2169 .2303 .2417 .2510 .2584 .2640 .2678 .2700 .2707

3 .0738 .0867 .0998 .1128 .1255 .1378 .1496 .1607 .1710 .1804

4 .0203 .0260 .0324 .0395 .0471 .0551 .0636 .0723 .0812 .0902

5 .0045 .0062 .0084 .0111 .0141 .0176 .0216 .0260 .0309 .0361

6 .0008 .0012 .0018 .0026 .0035 .0047 .0061 .0078 .0098 .0120

7 .0001 .0002 .0003 .0005 .0008 .0011 .0015 .0020 .0027 .0034

8 .0000 .0000 .0001 .0001 .0001 .0002 .0003 .0005 .0006 .0009

9 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002

x 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

0 .1225 .1108 .1003 .0907 .0821 .0743 .0672 .0608 .0550 .0498

1 .2572 .2438 .2306 .2177 .2052 .1931 .1815 .1703 .1596 .1494

2 .2700 .2681 .2652 .2613 .2565 .2510 .2450 .2384 .2314 .2240

3 .1890 .1966 .2033 .2090 .2138 .2176 .2205 .2225 .2237 .2240

4 .0992 .1082 .1169 .1254 .1336 .1414 .1488 .1557 .1622 .1680

5 .0417 .0476 .0538 .0602 .0668 .0735 .0804 .0872 .0940 .1008

6 .0146 .0174 .0206 .0241 .0278 .0319 .0362 .0407 .0455 .0504

7 .0044 .0055 .0068 .0083 .0099 .0118 .0139 .0163 .0188 .0216

8 .0011 .0015 .0019 .0025 .0031 .0038 .0047 .0057 .0068 .0081

9 .0003 .0004 .0005 .0007 .0009 .0011 .0014 .0018 .0022 .0027

10 .0001 .0001 .0001 .0002 .0002 .0003 .0004 .0005 .0006 .0008

11 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0002

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
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T ABLE 6 (Continued)

x 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

0 .0450 .0408 .0369 .0344 .0302 .0273 .0247 .0224 .0202 .0183

1 .1397 .1304 .1217 .1135 .1057 .0984 .0915 .0850 .0789 .0733

2 .2165 .2087 .2008 .1929 .1850 .1771 .1692 .1615 .1539 .1465

3 .2237 .2226 .2209 .2186 .2158 .2125 .2087 .2046 .2001 .1954

4 .1734 .1781 .1823 .1858 .1888 .1912 .1931 .1944 .1951 .1954

5 .1075 .1140 .1203 .1264 .1322 .1377 .1429 .1477 .1522 .1563

6 .0555 .0608 .0662 .0716 .0771 .0826 .0881 .0936 .0989 .1042

7 .0246 .0278 .0312 .0348 .0385 .0425 .0466 .0508 .0551 .0595

8 .0095 .0111 .0129 .0148 .0169 .0191 .0215 .0241 .0269 .0298

9 .0033 .0040 .0047 .0056 .0066 .0076 .0089 .0102 .0116 .0132

10 .0010 .0013 .0016 .0019 .0023 .0028 .0033 .0039 .0045 .0053

11 .0003 .0004 .0005 .0006 .0007 .0009 .0011 .0013 .0016 .0019

12 .0001 .0001 .0001 .0002 .0002 .0003 .0003 .0004 .0005 .0006

13 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0002 .0002

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

x 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

0 .0166 .0150 .0136 .0123 .0111 .0101 .091 .0082 .0074 .0067

1 .0679 .0630 .0583 .0540 .0500 .0462 .0427 .0395 .0365 .0337

2 .1393 .1323 .1254 .1188 .1125 .1063 .1005 .0948 .0894 .0842

3 .1904 .1852 .1798 .1743 .1687 .1631 .1574 .1517 .1460 .1404

4 .1951 .1944 .1933 .1917 .1898 .1875 .1849 .1820 .1789 .1755

5 .1600 .1633 .1662 .1687 .1708 .1725 .1738 .1747 .1753 .1755

6 .1093 .1143 .1191 .1237 .1281 .1323 .1362 .1398 .1432 .1462

7 .0640 .0686 .0732 .0778 .0824 .0869 .0914 .0959 .1002 .1044

8 .0328 .0360 .0393 .0428 .0463 .0500 .0537 .0575 .0614 .0653

9 .0150 .0168 .0188 .0209 .0232 .0255 .0280 .0307 .0334 .0363

10 .0061 .0071 .0081 .0092 .0104 .0118 .0132 .0147 .0164 .0181

11 .0023 .0027 .0032 .0037 .0043 .0049 .0056 .0064 .0073 .0082

12 .0008 .0009 .0011 .0014 .0016 .0019 .0022 .0026 .0030 .0034

13 .0002 .0003 .0004 .0005 .0006 .0007 .0008 .0009 .0011 .0013

14 .0001 .0001 .0001 .0001 .0002 .0002 .0003 .0003 .0004 .0005

15 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0002

x 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0

0 .0061 .0055 .0050 .0045 .0041 .0037 .0033 .0030 .0027 .0025

1 .0311 .0287 .0265 .0244 .0225 .0207 .0191 .0176 .0162 .0149

2 .0793 .0746 .0701 .0659 .0618 .0580 .0544 .0509 .0477 .0446

3 .1348 .1293 .1239 .1185 .1133 .1082 .1033 .0985 .0938 .0892

4 .1719 .1681 .1641 .1600 .1558 .1515 .1472 .1428 .1383 .1339

(continued)
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T ABLE 6 (Continued)

x 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0

5 .1753 .1748 .1740 .1728 .1714 .1697 .1678 .1656 .1632 .1606

6 .1490 .1515 .1537 .1555 .1571 .1587 .1594 .1601 .1605 .1606

7 .1086 .1125 .1163 .1200 .1234 .1267 .1298 .1326 .1353 .1377

8 .0692 .0731 .0771 .0810 .0849 .0887 .0925 .0962 .0998 .1033

9 .0392 .0423 .0454 .0486 .0519 .0552 .0586 .0620 .0654 .0688

10 .0200 .0220 .0241 .0262 .0285 .0309 .0334 .0359 .0386 .0413

11 .0093 .0104 .0116 .0129 .0143 .0157 .0173 .0190 .0207 .0225

12 .0039 .0045 .0051 .0058 .0065 .0073 .0082 .0092 .0102 .0113

13 .0015 .0018 .0021 .0024 .0028 .0032 .0036 .0041 .0046 .0052

14 .0006 .0007 .0008 .0009 .0011 .0013 .0015 .0017 .0019 .0022

15 .0002 .0002 .0003 .0003 .0004 .0005 .0006 .0007 .0008 .0009

16 .0001 .0001 .0001 .0001 .0001 .0002 .0002 .0002 .0003 .0003

17 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001

x 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0

0 .0022 .0020 .0018 .0017 .0015 .0014 .0012 .0011 .0010 .0009

1 .0137 .0126 .0116 .0106 .0098 .0090 .0082 .0076 .0070 .0064

2 .0417 .0390 .0364 .0340 .0318 .0296 .0276 .0258 .0240 .0223

3 .0848 .0806 .0765 .0726 .0688 .0652 .0617 .0584 .0552 .0521

4 .1294 .1249 .1205 .1162 .1118 .1076 .1034 .0992 .0952 .0912

5 .1579 .1549 .1519 .1487 .1454 .1420 .1385 .1349 .1314 .1277

6 .1605 .1601 .1595 .1586 .1575 .1562 .1546 .1529 .1511 .1490

7 .1399 .1418 .1435 .1450 .1462 .1472 .1480 .1486 .1489 .1490

8 .1066 .1099 .1130 .1160 .1188 .1215 .1240 .1263 .1284 .1304

9 .0723 .0757 .0791 .0825 .0858 .0891 .0923 .0954 .0985 .1014

10 .0441 .0469 .0498 .0528 .0558 .0588 .0618 .0649 .0679 .0710

11 .0245 .0265 .0285 .0307 .0330 .0353 .0377 .0401 .0426 .0452

12 .0124 .0137 .0150 .0164 .0179 .0194 .0210 .0227 .0245 .0264

13 .0058 .0065 .0073 .0081 .0089 .0098 .0108 .0119 .0130 .0142

14 .0025 .0029 .0033 .0037 .0041 .0046 .0052 .0058 .0064 .0071

15 .0010 .0012 .0014 .0016 .0018 .0020 .0023 .0026 .0029 .0033

16 .0004 .0005 .0005 .0006 .0007 .0008 .0010 .0011 .0013 .0014

17 .0001 .0002 .0002 .0002 .0003 .0003 .0004 .0004 .0005 .0006

18 .0000 .0001 .0001 .0001 .0001 .0001 .0001 .0002 .0002 .0002

19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001
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T ABLE 6 (Continued)

x 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0

0 .0008 .0007 .0007 .0006 .0006 .0005 .0005 .0004 .0004 .0003

1 .0059 .0054 .0049 .0045 .0041 .0038 .0035 .0032 .0029 .0027

2 .0208 .0194 .0180 .0167 .0156 .0145 .0134 .0125 .0116 .0107

3 .0492 .0464 .0438 .0413 .0389 .0366 .0345 .0324 .0305 .0286

4 .0874 .0836 .0799 .0764 .0729 .0696 .0663 .0632 .0602 .0573

5 .1241 .1204 .1167 .1130 .1094 .1057 .1021 .0986 .0951 .0916

6 .1468 .1445 .1420 .1394 .1367 .1339 .1311 .1282 .1252 .1221

7 .1489 .1486 .1481 .1474 .1465 .1454 .1442 .1428 .1413 .1396

8 .1321 .1337 .1351 .1363 .1373 .1382 .1388 .1392 .1395 .1396

9 .1042 .1070 .1096 .1121 .1144 .1167 .1187 .1207 .1224 .1241

10 .0740 .0770 .0800 .0829 .0858 .0887 .0914 .0941 .0967 .0993

11 .0478 .0504 .0531 .0558 .0585 .0613 .0640 .0667 .0695 .0722

12 .0283 .0303 .0323 .0344 .0366 .0388 .0411 .0434 .0457 .0481

13 .0154 .0168 .0181 .0196 .0211 .0227 .0243 .0260 .0278 .0296

14 .0078 .0086 .0095 .0104 .0113 .0123 .0134 .0145 .0157 .0169

15 .0037 .0041 .0046 .0051 .0057 .0062 .0069 .0075 .0083 .0090

16 .0016 .0019 .0021 .0024 .0026 .0030 .0033 .0037 .0041 .0045

17 .0007 .0008 .0009 .0010 .0012 .0013 .0015 .0017 .0019 .0021

18 .0003 .0003 .0004 .0004 .0005 .0006 .0006 .0007 .0008 .0009

19 .0001 .0001 .0001 .0002 .0002 .0002 .0003 .0003 .0003 .0004

20 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0002

21 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

x 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0

0 .0003 .0003 .0002 .0002 .0002 .0002 .0002 .0002 .0001 .0001

1 .0025 .0023 .0021 .0019 .0017 .0016 .0014 .0013 .0012 .0011

2 .0100 .0092 .0086 .0079 .0074 .0068 .0063 .0058 .0054 .0050

3 .0269 .0252 .0237 .0222 .0208 .0195 .0183 .0171 .0160 .0150

4 .0544 .0517 .0491 .0466 .0443 .0420 .0398 .0377 .0357 .0337

5 .0882 .0849 .0816 .0784 .0752 .0722 .0692 .0663 .0635 .0607

6 .1191 .1160 .1128 .1097 .1066 .1034 .1003 .0972 .0941 .0911

7 .1378 .1358 .1338 .1317 .1294 .1271 .1247 .1222 .1197 .1171

8 .1395 .1392 .1388 .1382 .1375 .1366 .1356 .1344 .1332 .1318

9 .1256 .1269 .1280 .1290 .1299 .1306 .1311 .1315 .1317 .1318

10 .1017 .1040 .1063 .1084 .1104 .1123 .1140 .1157 .1172 .1186

11 .0749 .0776 .0802 .0828 .0853 .0878 .0902 .0925 .0948 .0970

12 .0505 .0530 .0555 .0579 .0604 .0629 .0654 .0679 .0703 .0728

(continued)
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T ABLE 6 (Continued)

x 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0

13 .0315 .0334 .0354 .0374 .0395 .0416 .0438 .0459 .0481 .0504

14 .0182 .0196 .0210 .0225 .0240 .0256 .0272 .0289 .0306 .0324

15 .0098 .0107 .0116 .0126 .0136 .0147 .0158 .0169 .0182 .1094

16 .0050 .0055 .0060 .0066 .0072 .0079 .0086 .0093 .0101 .0109

17 .0024 .0026 .0029 .0033 .0036 .0040 .0044 .0048 .0053 .0058

18 .0011 .0012 .0014 .0015 .0017 .0019 .0021 .0024 .0026 .0029

19 .0005 .0005 .0006 .0007 .0008 .0009 .0010 .0011 .0012 .0014

20 .0002 .0002 .0002 .0003 .0003 .0004 .0004 .0005 .0005 .0006

21 .0001 .0001 .0001 .0001 .0001 .0002 .0002 .0002 .0002 .0003

22 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0001 .0001

x 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10

0 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0000

1 .0010 .0009 .0009 .0008 .0007 .0007 .0006 .0005 .0005 .0005

2 .0046 .0043 .0040 .0037 .0034 .0031 .0029 .0027 .0025 .0023

3 .0140 .0131 .0123 .0115 .0107 .0100 .0093 .0087 .0081 .0076

4 .0319 .0302 .0285 .0269 .0254 .0240 .0226 .0213 .0201 .0189

5 .0581 .0555 .0530 .0506 .0483 .0460 .0439 .0418 .0398 .0378

6 .0881 .0851 .0822 .0793 .0764 .0736 .0709 .0682 .0656 .0631

7 .1145 .1118 .1091 .1064 .1037 .1010 .0982 .0955 .0928 .0901

8 .1302 .1286 .1269 .1251 .1232 .1212 .1191 .1170 .1148 .1126

9 .1317 .1315 .1311 .1306 .1300 .1293 .1284 .1274 .1263 .1251

10 .1198 .1210 .1219 .1228 .1235 .1241 .1245 .1249 .1250 .1251

11 .0991 .1012 .1031 .1049 .1067 .1083 .1098 .1112 .1125 .1137

12 .0752 .0776 .0799 .0822 .0844 .0866 .0888 .0908 .0928 .0948

13 .0526 .0549 .0572 .0594 .0617 .0640 .0662 .0685 .0707 .0729

14 .0342 .0361 .0380 .0399 .0419 .0439 .0459 .0479 .0500 .0521

15 .0208 .0221 .0235 .0250 .0265 .0281 .0297 .0313 .0330 .0347

16 .0118 .0127 .0137 .0147 .0157 .0168 .0180 .0192 .0204 .0217

17 .0063 .0069 .0075 .0081 .0088 .0095 .0103 .0111 .0119 .0128

18 .0032 .0035 .0039 .0042 .0046 .0051 .0055 .0060 .0065 .0071

19 .0015 .0017 .0019 .0021 .0023 .0026 .0028 .0031 .0034 .0037

20 .0007 .0008 .0009 .0010 .0011 .0012 .0014 .0015 .0017 .0019

21 .0003 .0003 .0004 .0004 .0005 .0006 .0006 .0007 .0008 .0009

22 .0001 .0001 .0002 .0002 .0002 .0002 .0003 .0003 .0004 .0004

23 .0000 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0002 .0002

24 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001
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T ABLE 6 (Continued)

x 11 12 13 14 15 16 17 18 19 20

0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

1 .0002 .0001 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

2 .0010 .0004 .0002 .0001 .0000 .0000 .0000 .0000 .0000 .0000

3 .0037 .0018 .0008 .0004 .0002 .0001 .0000 .0000 .0000 .0000

4 .0102 .0053 .0027 .0013 .0006 .0003 .0001 .0001 .0000 .0000

5 .0224 .0127 .0070 .0037 .0019 .0010 .0005 .0002 .0001 .0001

6 .0411 .0255 .0152 .0087 .0048 .0026 .0014 .0007 .0004 .0002

7 .0646 .0437 .0281 .0174 .0104 .0060 .0034 .0018 .0010 .0005

8 .0888 .0655 .0457 .0304 .0194 .0120 .0072 .0042 .0024 .0013

9 .1085 .0874 .0661 .0473 .0324 .0213 .0135 .0083 .0050 .0029

10 .1194 .1048 .0859 .0663 .0486 .0341 .0230 .0150 .0095 .0058

11 .1194 .1144 .1015 .0844 .0663 .0496 .0355 .0245 .0164 .0106

12 .1094 .1144 .1099 .0984 .0829 .0661 .0504 .0368 .0259 .0176

13 .0926 .1056 .1099 .1060 .0956 .0814 .0658 .0509 .0378 .0271

14 .0728 .0905 .1021 .1060 .1024 .0930 .0800 .0655 .0514 .0387

15 .0534 .0724 .0885 .0989 .1024 .0992 .0906 .0786 .0650 .0516

16 .0367 .0543 .0719 .0866 .0960 .0992 .0963 .0884 0.772 .0646

17 .0237 .0383 .0550 .0713 .0847 .0934 .0963 .0936 .0863 .0760

18 .0145 .0256 .0397 .0554 .0706 .0830 .0909 .0936 .0911 .0844

19 .0084 .0161 .0272 .0409 .0557 .0699 .0814 .0887 .0911 .0888

20 .0046 .0097 .0177 .0286 .0418 .0559 .0692 .0798 .0866 .0888

21 .0024 .0055 .0109 .0191 .0299 .0426 .0560 .0684 .0783 .0846

22 .0012 .0030 .0065 .0121 .0204 .0310 .0433 .0560 .0676 .0769

23 .0006 .0016 .0037 .0074 .0133 .0216 .0320 .0438 .0559 .0669

24 .0003 .0008 .0020 .0043 .0083 .0144 .0226 .0328 .0442 .0557

25 .0001 .0004 .0010 .0024 .0050 .0092 .0154 .0237 .0336 .0446

26 .0000 .0002 .0005 .0013 .0029 .0057 .0101 .0164 .0246 .0343

27 .0000 .0001 .0002 .0007 .0016 .0034 .0063 .0109 .0173 .0254

28 .0000 .0000 .0001 .0003 .0009 .0019 .0038 .0070 .0117 .0181

29 .0000 .0000 .0001 .0002 .0004 .0011 .0023 .0044 .0077 .0125

30 .0000 .0000 .0000 .0001 .0002 .0006 .0013 .0026 .0049 .0083

31 .0000 .0000 .0000 .0000 .0001 .0003 .0007 .0015 .0030 .0054

32 .0000 .0000 .0000 .0000 .0001 .0001 .0004 .0009 .0018 .0034

33 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0005 .0010 .0020

34 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0006 .0012

35 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0007

36 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0004

37 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002

38 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

39 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
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T ABLE 7 Critical values for the Durbin–Watson test for autocorrelation

Entries in the table give the critical values for a one-tailed Durbin–Watson test for autocorrelation. For a two-tailed test, the level

of significance is doubled.

Significance points of dL and dU: = .05

Number of independent variables

k 1 2 3 4 5

n dL dU dL dU dL dU dL dU dL dU

15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21

16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93 0.62 2.15

17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.67 2.10

18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87 0.71 2.06

19 1.18 1.40 1.08 1.53 0.97 1.68 0.86 1.85 0.75 2.02

20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99

21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96

22 1.24 1.43 1.15 1.54 1.05 1.66 1.96 1.80 0.86 1.94

23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92

24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90

25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89

26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.88

27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.01 1.86

28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85

29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84

30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83

31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83

32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82

33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81

34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81

35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80

36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.73 1.18 1.80

37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80

38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79

39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79

40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79

45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78

50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77

55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.38 1.77

60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77

65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77

70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77

75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77

80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77

85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.77

90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78

95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78

100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78

(continued)
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T ABLE 7 (Continued)

Significance points of dL and dU: = .05

Number of independent variables

k 1 2 3 4 5

n dL dU dL dU dL dU dL dU dL dU

15 0.95 1.23 0.83 1.40 0.71 1.61 0.59 1.84 0.48 2.09

16 0.98 1.24 0.86 1.40 0.75 1.59 0.64 1.80 0.53 2.03

17 1.01 1.25 0.90 1.40 0.79 1.58 0.68 1.77 0.57 1.98

18 1.03 1.26 0.93 1.40 0.82 1.56 0.72 1.74 0.62 1.93

19 1.06 1.28 0.96 1.41 0.86 1.55 0.76 1.72 0.66 1.90

20 1.08 1.28 0.99 1.41 0.89 1.55 0.79 1.70 0.70 1.87

21 1.10 1.30 1.01 1.41 0.92 1.54 0.83 1.69 0.73 1.84

22 1.12 1.31 1.04 1.42 0.95 1.54 0.86 1.68 0.77 1.82

23 1.14 1.32 1.06 1.42 0.97 1.54 0.89 1.67 0.80 1.80

24 1.16 1.33 1.08 1.43 1.00 1.54 0.91 1.66 0.83 1.79

25 1.18 1.34 1.10 1.43 1.02 1.54 0.94 1.65 0.86 1.77

26 1.19 1.35 1.12 1.44 1.04 1.54 0.96 1.65 0.88 1.76

27 1.21 1.36 1.13 1.44 1.06 1.54 0.99 1.64 0.91 1.75

28 1.22 1.37 1.15 1.45 1.08 1.54 1.01 1.64 0.93 1.74

29 1.24 1.38 1.17 1.45 1.10 1.54 1.03 1.63 0.96 1.73

30 1.25 1.38 1.18 1.46 1.12 1.54 1.05 1.63 0.98 1.73

31 1.26 1.39 1.20 1.47 1.13 1.55 1.07 1.63 1.00 1.72

32 1.27 1.40 1.21 1.47 1.15 1.55 1.08 1.63 1.02 1.71

33 1.28 1.41 1.22 1.48 1.16 1.55 1.10 1.63 1.04 1.71

34 1.29 1.41 1.24 1.48 1.17 1.55 1.12 1.63 1.06 1.70

35 1.30 1.42 1.25 1.48 1.19 1.55 1.13 1.63 1.07 1.70

36 1.31 1.43 1.26 1.49 1.20 1.56 1.15 1.63 1.09 1.70

37 1.32 1.43 1.27 1.49 1.21 1.56 1.16 1.62 1.10 1.70

38 1.33 1.44 1.28 1.50 1.23 1.56 1.17 1.62 1.12 1.70

39 1.34 1.44 1.29 1.50 1.24 1.56 1.19 1.63 1.13 1.69

40 1.35 1.45 1.30 1.51 1.25 1.57 1.20 1.63 1.15 1.69

45 1.39 1.48 1.34 1.53 1.30 1.58 1.25 1.63 1.21 1.69

50 1.42 1.50 1.38 1.54 1.34 1.59 1.30 1.64 1.26 1.69

55 1.45 1.52 1.41 1.56 1.37 1.60 1.33 1.64 1.30 1.69

60 1.47 1.54 1.44 1.57 1.40 1.61 1.37 1.65 1.33 1.69

65 1.49 1.55 1.46 1.59 1.43 1.62 1.40 1.66 1.36 1.69

70 1.51 1.57 1.48 1.60 1.45 1.63 1.42 1.66 1.39 1.70

75 1.53 1.58 1.50 1.61 1.47 1.64 1.45 1.67 1.42 1.70

80 1.54 1.59 1.52 1.62 1.49 1.65 1.47 1.67 1.44 1.70

85 1.56 1.60 1.53 1.63 1.51 1.65 1.49 1.68 1.46 1.71

90 1.57 1.61 1.55 1.64 1.53 1.66 1.50 1.69 1.48 1.71

95 1.58 1.62 1.56 1.65 1.54 1.67 1.52 1.69 1.50 1.71

100 1.59 1.63 1.57 1.65 1.55 1.67 1.53 1.70 1.51 1.72

(continued)
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T ABLE 7 (Continued)

Significance points of dL and dU: = .01

Number of independent variables

k 1 2 3 4 5

n dL dU dL dU dL dU dL dU dL dU

15 0.81 1.07 0.70 1.25 0.59 1.46 0.49 1.70 0.39 1.96

16 0.84 1.09 0.74 1.25 0.63 1.44 0.53 1.66 0.44 1.90

17 0.87 1.10 0.77 1.25 0.67 1.43 0.57 1.63 0.48 1.85

18 0.90 1.12 0.80 1.26 0.71 1.42 0.61 1.60 0.52 1.80

19 0.93 1.13 0.83 1.26 0.74 1.41 0.65 1.58 0.56 1.77

20 0.95 1.15 0.86 1.27 0.77 1.41 0.68 1.57 0.60 1.74

21 0.97 1.16 0.89 1.27 0.80 1.41 0.72 1.55 0.63 1.71

22 1.00 1.17 0.91 1.28 0.83 1.40 0.75 1.54 0.66 1.69

23 1.02 1.19 0.94 1.29 0.86 1.40 0.77 1.53 0.70 1.67

24 1.04 1.20 0.96 1.30 0.88 1.41 0.80 1.53 0.72 1.66

25 1.05 1.21 0.98 1.30 0.90 1.41 0.83 1.52 0.75 1.65

26 1.07 1.22 1.00 1.31 0.93 1.41 0.85 1.52 0.78 1.64

27 1.09 1.23 1.02 1.32 0.95 1.41 0.88 1.51 0.81 1.63

28 1.10 1.24 1.04 1.32 0.97 1.41 0.90 1.51 0.83 1.62

29 1.12 1.25 1.05 1.33 0.99 1.42 0.92 1.51 0.85 1.61

30 1.13 1.26 1.07 1.34 1.01 1.42 0.94 1.51 0.88 1.61

31 1.15 1.27 1.08 1.34 1.02 1.42 0.96 1.51 0.90 1.60

32 1.16 1.28 1.10 1.35 1.04 1.43 0.98 1.51 0.92 1.60

33 1.17 1.29 1.11 1.36 1.05 1.43 1.00 1.51 0.94 1.59

34 1.18 1.30 1.13 1.36 1.07 1.43 1.01 1.51 0.95 1.59

35 1.19 1.31 1.14 1.37 1.08 1.44 1.03 1.51 0.97 1.59

36 1.21 1.32 1.15 1.38 1.10 1.44 1.04 1.51 0.99 1.59

37 1.22 1.32 1.16 1.38 1.11 1.45 1.06 1.51 1.00 1.59

38 1.23 1.33 1.18 1.39 1.12 1.45 1.07 1.52 1.02 1.58

39 1.24 1.34 1.19 1.39 1.14 1.45 1.09 1.52 1.03 1.58

40 1.25 1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58

45 1.29 1.38 1.24 1.42 1.20 1.48 1.16 1.53 1.11 1.58

50 1.32 1.40 1.28 1.45 1.24 1.49 1.20 1.54 1.16 1.59

55 1.36 1.43 1.32 1.47 1.28 1.51 1.25 1.55 1.21 1.59

60 1.38 1.45 1.35 1.48 1.32 1.52 1.28 1.56 1.25 1.60

65 1.41 1.47 1.38 1.50 1.35 1.53 1.31 1.57 1.28 1.61

70 1.43 1.49 1.40 1.52 1.37 1.55 1.34 1.58 1.31 1.61

75 1.45 1.50 1.42 1.53 1.39 1.56 1.37 1.59 1.34 1.62

80 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62

85 1.48 1.53 1.46 1.55 1.43 1.58 1.41 1.60 1.39 1.63

90 1.50 1.54 1.47 1.56 1.45 1.59 1.43 1.61 1.41 1.64

95 1.51 1.55 1.49 1.57 1.47 1.60 1.45 1.62 1.42 1.64

100 1.52 1.56 1.50 1.58 1.48 1.60 1.46 1.63 1.44 1.65

This table is reprinted by permission of Oxford University Press on behalf of The Biometrika Trustees from J. Durbin and G. S. Watson, ‘Testing for serial

correlation in least square regression II’, Biometrika 38 (1951), 159–178.
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T ABLE 8 TL Values for the Mann–Whitney–Wilcoxon test

Reject the hypothesis of identical populations if the sum of the ranks for the n1 items is less than the value TL shown in the

following table or if the sum of the ranks for the n1 items is greater than the value TU where:

TU n1(n1 + n2 + 1) – TL

= 0.10 n2

n1 2 3 4 5 6 7 8 9 10

2 3 3 3 4 4 4 5 5 5

3 6 7 7 8 9 9 10 11 11

4 10 11 12 13 14 15 16 17 18

5 16 17 18 20 21 22 24 25 27

6 22 24 25 27 29 30 32 34 36

7 29 31 33 35 37 40 42 44 46

8 38 40 42 45 47 50 52 55 57

9 47 50 52 55 58 61 64 67 70

10 57 60 63 67 70 73 76 80 83

= 0.05 n2

n1 2 3 4 5 6 7 8 9 10

2 3 3 3 3 3 3 4 4 4

3 6 6 6 7 8 8 9 9 10

4 10 10 11 12 13 14 15 15 16

5 15 16 17 18 19 21 22 23 24

6 21 23 24 25 27 28 30 32 33

7 28 30 32 34 35 37 39 41 43

8 37 39 41 43 45 47 50 52 54

9 46 48 50 53 56 58 61 63 66

10 56 59 61 64 67 70 73 76 79
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T ABLE 9 Critical values for the studentized range

= .05

Degrees

of

freedom

Number of populations

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 18.0 27.0 32.8 37.1 40.4 43.1 45.4 47.4 49.1 50.6 52.0 53.2 54.3 55.4 56.3 57.2 58.0 58.8 59.6

2 6.08 8.33 9.80 10.9 11.7 12.4 13.0 13.5 14.0 14.4 14.7 15.1 15.4 15.7 15.9 16.1 16.4 16.6 16.8

3 4.50 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46 9.72 9.95 10.2 10.3 10.5 10.7 10.8 11.0 11.1 11.2

4 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 8.03 8.21 8.37 8.52 8.66 8.79 8.91 9.03 9.13 9.23

5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17 7.32 7.47 7.60 7.72 7.83 7.93 8.03 8.12 8.21

6 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65 6.79 6.92 7.03 7.14 7.24 7.34 7.43 7.51 7.59

7 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.43 6.55 6.66 6.76 6.85 6.94 7.02 7.10 7.17

8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18 6.29 6.39 6.48 6.57 6.65 6.73 6.80 6.87

9 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87 5.98 6.09 6.19 6.28 6.36 6.44 6.51 6.58 6.64

10 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72 5.83 5.93 6.03 6.11 6.19 6.27 6.34 6.40 6.47

11 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71 5.81 5.90 5.98 6.06 6.13 6.20 6.27 6.33

12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 5.51 5.61 5.71 5.80 5.88 5.95 6.02 6.09 6.15 6.21

13 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53 5.63 5.71 5.79 5.86 5.93 5.99 6.05 6.11

14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46 5.55 5.64 5.71 5.79 5.85 5.91 5.97 6.03

15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31 5.40 5.49 5.57 5.65 5.72 5.78 5.85 5.90 5.96

16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26 5.35 5.44 5.52 5.59 5.66 5.73 5.79 5.84 5.90

17 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21 5.31 5.39 5.47 5.54 5.61 5.67 5.73 5.79 5.84

18 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.17 5.27 5.35 5.43 5.50 5.57 5.63 5.69 5.74 5.79

19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14 5.23 5.31 5.39 5.46 5.53 5.59 5.65 5.70 5.75

20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11 5.20 5.28 5.36 5.43 5.49 5.55 5.61 5.66 5.71

24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.10 5.18 5.25 5.32 5.38 5.44 5.49 5.55 5.59

30 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92 5.00 5.08 5.15 5.21 5.27 5.33 5.38 5.43 5.47

40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82 4.90 4.98 5.04 5.11 5.16 5.22 5.27 5.31 5.36

60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73 4.81 4.88 4.94 5.00 5.06 5.11 5.15 5.20 5.24

120 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.64 4.71 4.78 4.84 4.90 4.95 5.00 5.04 5.09 5.13

2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55 4.62 4.68 4.74 4.80 4.85 4.89 4.93 4.97 5.01

6
2
0

A
P
P
E
N
D
IX
B
T
A
B
L
E
S



T ABLE 9 (Continued)

= .05

Degrees

of

freedom

Number of populations

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 90.0 135.0 164.0 186.0 202.0 216.0 227.0 237.0 246.0 253.0 260.0 266.0 272.0 277.0 282.0 286.0 290.0 294.0 298.0

2 14.0 19.0 22.3 24.7 26.6 28.2 29.5 30.7 31.7 32.6 33.4 34.1 34.8 35.4 36.0 36.5 37.0 37.5 37.9

3 8.26 10.6 12.2 13.3 14.2 15.0 15.6 16.2 16.7 17.1 17.5 17.9 18.2 18.5 18.8 19.1 19.3 19.5 19.8

4 6.51 8.12 9.17 9.96 10.6 11.1 11.5 11.9 12.3 12.6 12.8 13.1 13.3 13.5 13.7 13.9 14.1 14.2 14.4

5 5.70 6.97 7.80 8.42 8.91 9.32 9.67 9.97 10.2 10.5 10.7 10.9 11.1 11.2 11.4 11.6 11.7 11.8 11.9

6 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30 9.49 9.65 9.81 9.95 10.1 10.2 10.3 10.4 10.5

7 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55 8.71 8.86 9.00 9.12 9.24 9.35 9.46 9.55 9.65

8 4.74 5.63 6.20 6.63 6.96 7.24 7.47 7.68 7.87 8.03 8.18 8.31 8.44 8.55 8.66 8.76 8.85 8.94 9.03

9 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.32 7.49 7.65 7.78 7.91 8.03 8.13 8.23 8.32 8.41 8.49 8.57

10 4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7.36 7.48 7.60 7.71 7.81 7.91 7.99 8.07 8.15 8.22

11 4.39 5.14 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13 7.25 7.36 7.46 7.56 7.65 7.73 7.81 7.88 7.95

12 4.32 5.04 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94 7.06 7.17 7.26 7.36 7.44 7.52 7.59 7.66 7.73

13 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79 6.90 7.01 7.10 7.19 7.27 7.34 7.42 7.48 7.55

14 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66 6.77 6.87 6.96 7.05 7.12 7.20 7.27 7.33 7.39

15 4.17 4.83 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55 6.66 6.76 6.84 6.93 7.00 7.07 7.14 7.20 7.26

16 4.13 4.78 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46 6.56 6.66 6.74 6.82 6.90 6.97 7.03 7.09 7.15

17 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38 6.48 6.57 6.66 6.73 6.80 6.87 6.94 7.00 7.05

18 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31 6.41 6.50 6.58 6.65 6.72 6.79 6.85 6.91 6.96

19 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25 6.34 6.43 6.51 6.58 6.65 6.72 6.78 6.84 6.89

20 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19 6.29 6.37 6.45 6.52 6.59 6.65 6.71 6.76 6.82

24 3.96 4.54 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02 6.11 6.19 6.26 6.33 6.39 6.45 6.51 6.56 6.61

30 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85 5.93 6.01 6.08 6.14 6.20 6.26 6.31 6.36 6.41

40 3.82 4.37 4.70 4.93 5.11 5.27 5.39 5.50 5.60 5.69 5.77 5.84 5.90 5.96 6.02 6.07 6.12 6.17 6.21

60 3.76 4.28 4.60 4.82 4.99 5.13 5.25 5.36 5.45 5.53 5.60 5.67 5.73 5.79 5.84 5.89 5.93 5.98 6.02

120 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.38 5.44 5.51 5.56 5.61 5.66 5.71 5.75 5.79 5.83

3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23 5.29 5.35 5.40 5.45 5.49 5.54 5.57 5.61 5.65

Reprinted by permission of Oxford University Press on behalf of The Biometrika Trustees from Biometrika Tables for Statisticians, E. S. Pearson and H. O. Hartley, Vol. 1, 3rd ed., 1966, pp. 176–177.
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GLOSSARY

Acceptance criterion The maximum number of defective items

that can be found in the sample and still indicate an

acceptable lot.

Acceptance sampling A statistical method in which the number

of defective items found in a sample is used to determine

whether a lot should be accepted or rejected.

Addition law A probability law used to compute the probability of

the union of two events. It is P(A B) = P(A) P(B) P(A B).

For mutually exclusive events, P(A B) = 0; in this case the

addition law reduces to P(A B) = P(A) P(B).

Additive decomposition model In an additive model the values

for the Trend, Seasonal and Irregular components are

simply added together to obtain the actual time series

value, Yt.

Adjusted multiple coefficient of determination A measure of the

goodness of fit of the estimated multiple regression equation

that adjusts for the number of independent variables in the

model and thus avoids overestimating the impact of adding

more independent variables.

Aggregate price index A composite price index based on the

prices of a group of items.

Alternative hypothesis The hypothesis concluded to be true if

the null hypothesis is rejected.

ANOVA table A table used to summarize the analysis of

variance computations and results. It contains columns

showing the source of variation, the sum of squares,

the degrees of freedom, the mean square and the

F value(s).

Assignable causes Variations in process outputs that are

due to factors such as machine tools wearing out,

incorrect machine settings, poor-quality raw materials,

operator error and so on. Corrective action should be

taken when assignable causes of output variation are

detected.

Autocorrelation Correlation in the errors that arises when the

error terms at successive points in time are related.

Bar graph, Bar chart A graphical device for depicting qualitative

data that have been summarized in a frequency, relative

frequency or percentage frequency distribution.

Basic requirements for assigning probabilities Two

requirements that restrict the manner in which probability

assignments can be made: (1) for each experimental

outcome Ei we must have 0 P(Ei) 1; (2) considering

all experimental outcomes, we must have

P E1 P E2 P En 1 0.

Bayes’ theorem A theorem that enables the use of sample

information to revise prior probabilities.

Binomial experiment An experiment having the four properties

stated at the beginning of Section 5.4.

Binomial probability distribution A probability distribution

showing the probability of x successes in n trials of binomial

experiments.

Binomial probability function The function used to compute

binomial probabilities.

Blocking The process of using the same or similar experimental

units for all treatments. The purpose of blocking is to remove

a source of variation from the error term and hence provide a

more powerful test for a difference in population or treatment

means.

Bound on the sampling error A number added to and subtracted

from a point estimate to create an approximate 95 per cent

confidence interval. It is given by two times the standard error

of the point estimator.

Box plot A graphical summary of data based on a five-number

summary.

Branch Lines showing the alternatives from decision nodes and

the outcomes from chance nodes.

Categorical data Non-numeric data which include labels or

names used to identify an attribute of each element of

a data set.

Categorical variable A variable with categorical data.

Causal forecasting methods Forecasting methods that relate a

time series to other variables that are believed to explain or

cause its behaviour.

Census A survey to collect data on the entire population.

Central limit theorem A theorem that enables one to use the

normal probability distribution to approximate the sampling

distribution of X when the sample size is large.

Chance event An uncertain future event affecting the

consequence, or payoff, associated with a decision.

Chance nodes Nodes indicating points where an uncertain event

will occur.

Chebyshev’s theorem A theorem that can be used to make

statements about the proportion of data values that must be

within a specified number of standard deviations of the

mean.

Class midpoint The value halfway between the lower and upper

class limits in a frequency distribution.

Classical method A method of assigning probabilities that is

appropriate when all the experimental outcomes are equally

likely.

Cluster sampling A probabilistic method of sampling in which

the population is first divided into clusters and then one

or more clusters are selected for sampling. In single-

stage cluster sampling, every element in each selected

cluster is sampled; in two-stage cluster sampling, a

sample of the elements in each selected cluster is

collected.
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Coefficient of determination A measure of the goodness of fit of

the estimated regression equation. It can be interpreted as

the proportion of the variability in the dependent variable y

that is explained by the estimated regression equation.

Coefficient of variation A measure of relative variability

computed by dividing the standard deviation by the mean and

multiplying by 100.

Common causes Normal or natural variations in process outputs

that are due purely to chance. No corrective action is necessary

when output variations are due to common causes.

Comparisonwise Type I error rate The probability of a Type I

error associated with a single pairwise comparison.

Complement of A The event consisting of all sample points that

are not in A.

Completely randomized design An experimental design in which

the treatments are randomly assigned to the experimental units.

Conditional probability The probability of an event given that

another event already occurred. The conditional probability of

A given B is P(A | B) = P(A B)/P(B).

Confidence coefficient The confidence level expressed as a

decimal value. For example, 0.95 is the confidence

coefficient for a 95 per cent confidence level.

Confidence interval The interval estimate of the mean value of Y

for a given value of X.

Confidence level The confidence associated with an interval

estimate. For example, if an interval estimation procedure

provides intervals such that 95 per cent of the intervals

formed using the procedure will include the population

parameter, the interval estimate is said to be constructed at

the 95 per cent confidence level.

Consequence The result obtained when a decision alternative is

chosen and a chance event occurs. A measure of the

consequence is often called a payoff.

Consumer Price Index A price index that uses the price changes

in a market basket of consumer goods and services to

measure the changes in consumer prices over time.

Consumer’s risk The risk of accepting a poor-quality lot; a Type II

error.

Contingency table A frequency table resulting from the cross-

classification of two or more categorical variables.

Continuity correction factor A value of 0.5 that is added to or

subtracted from a value of X when the continuous normal

distribution is used to approximate the discrete binomial

distribution.

Continuous random variable A random variable that may

assume any numerical value in an interval or collection of

intervals.

Control chart A graphical tool used to help determine whether a

process is in control or out of control.

Convenience sampling A non-probabilistic method of sampling

whereby elements are selected on the basis of convenience.

Cook’s distance measure A measure of the influence of an

observation based on both the leverage of observation i and

the residual for observation i.

Correlation coefficient A measure of association between two

variables that takes on values between 1 and 1. Values

near 1 indicate a strong positive relationship, values near

1 indicate a strong negative relationship. Values near zero

indicate the lack of a relationship. Pearson’s product-moment

correlation coefficient measures linear association between

two variables.

Covariance A measure of linear association between two

variables. Positive values indicate a positive relationship;

negative values indicate a negative relationship.

Critical value A value that is compared with the test statistic to

determine whether H0 should be rejected.

Cross-sectional data Data collected at the same or

approximately the same point in time.

Cross-tabulation A tabular summary of data for two variables.

The classes for one variable are represented by the rows; the

classes for the other variable are represented by the

columns.

Cumulative frequency distribution A tabular summary of

quantitative data showing the number of items with values

less than or equal to the upper class limit of each class.

Cumulative percentage frequency distribution A tabular

summary of quantitative data showing the percentage of

items with values less than or equal to the upper class limit

of each class.

Cumulative relative frequency distribution A tabular summary

of quantitative data showing the fraction or proportion of

items with values less than or equal to the upper class limit

of each class.

Cyclical component The component of the time series that

results in periodic above-trend and below-trend behaviour of

the time series lasting more than one year.

Cyclical pattern One that shows an alternating sequence of

points below and above a trend line lasting more than one

year.

Data The facts and figures collected, analyzed and summarized

for presentation and interpretation.

Data mining The process of converting data in a warehouse into

useful information using a combination of procedures from

statistics, mathematics and computer science.

Data set All the data collected in a particular study.

Decision nodes Nodes indicating points where a decision is

made.

Decision strategy A strategy involving a sequence of decisions

and chance outcomes to provide the optimal solution to a

decision problem.

Decision tree A graphical representation of the decision problem

that shows the sequential nature of the decision-making

process.

Degrees of freedom A parameter of the t distribution. When the t

distribution is used in the computation of an interval estimate

of a population mean, the appropriate t distribution has n 1

degrees of freedom, where n is the size of the simple random

sample. (Also a parameter of the 2 distribution.)

Dependent variable The variable that is being predicted or

explained. It is denoted by Y.

Descriptive statistics Tabular, graphical and numerical

summaries of data.

Deseasonalized time series A time series from which the effect

of season has been removed by dividing each original time

series observation by the corresponding seasonal index.

Discrete random variable A random variable that may assume

either a finite number of values or an infinite sequence of

values.

Discrete uniform probability distribution A probability

distribution for which each possible value of the random

variable has the same probability.

Distribution-free methods Statistical methods that make no

assumption about the distributional form of the population.

Dot plot A graphical device that summarizes data by the number

of dots above each data value on the horizontal axis.

Dummy variable A variable used to model the effect of

qualitative independent variables. A dummy variable may

take only the value zero or one.
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Durbin–Watson test A test to determine whether first-order

correlation is present.

Element The entity on which data are collected.

Empirical rule A rule that can be used to approximate the

percentage of data values that are within one, two and three

standard deviations of the mean for data that exhibit a bell-

shaped distribution.

Estimated logistic regression equation The estimate of the

logistic regression equation based on sample data: that is

y = estimate of

P Y 1 x1 x2 …xp
e 1x1 … pxp

1 e 0 1x1 … pxp

Estimated logit An estimate of the logit based on sample data:

that is,

g x1 x2 … xp b0 b1x1 b2 x2 bp xp

Estimated multiple regression equation The estimate of the

multiple regression equation based on sample data and the

least squares method: it is

y b0 b1 x1 b2 x2 bp xp

Estimated regression equation The estimate of the regression

equation developed from sample data by using the least

squares method. For simple linear regression, the estimated

regression equation is

y b0 b1x

Event A collection of sample points.

Expected value A measure of the central location of a random

variable. For a chance node, it is the weighted average of the

payoffs. The weights are the state-of-nature probabilities.

Expected value approach An approach to choosing a decision

alternative that is based on the expected value of each

decision alternative. The recommended decision alternative

is the one that provides the best expected value.

Expected value of perfect information (EVPI) The expected

value of information that would tell the decision-maker exactly

which state of nature is going to occur (i.e. perfect information).

Expected value of sample information (EVSI) The difference

between the expected value of an optimal strategy based on

sample information and the ‘best’ expected value without any

sample information.

Experiment A process that generates well-defined outcomes.

Experimental units The objects of interest in the experiment.

Experimentwise Type I error rate The probability of making a

Type I error on at least one of several pairwise comparisons.

Exploratory data analysis Methods that use simple arithmetic

and easy-to-draw graphs to summarize data quickly.

Exponential probability distribution A continuous probability

distribution that is useful in computing probabilities for the

time it takes to complete a task.

Exponential smoothing A forecasting technique that uses a

weighted average of past time series values as the forecast.

Factor Another word for the independent variable of interest.

Factorial experiment An experimental design that allows

statistical conclusions about two or more factors.

Finite population correction factor The term N n N 1

that is used in the formulae for X and P when a finite

population, rather than an infinite population, is being

sampled. The generally accepted rule of thumb is to ignore

the finite population correction factor whenever n/N 0.05.

Five-number summary An exploratory data analysis technique

that uses five numbers to summarize the data: smallest

value, first quartile, median, third quartile and largest value.

Forecast A prediction of future values of a time series.

Forecast error The forecast error is the difference between the

actual value of a time series and its forecast.

Frame A list of the sampling units for a study. The sample is

drawn by selecting units from the frame.

Frequency distribution A tabular summary of data showing the

number (frequency) of items in each of several non-

overlapping classes.

General linear model A model of the form Y 0 1 z1

2 z2 p zp , where each of the independent

variables zj (j = 1,2, …, p) is a function of

x1, x2, …, xk, the variables for which data have been

collected.

Goodness of fit test A statistical test conducted to determine

whether to reject a hypothesized probability distribution for a

population.

Grouped data Data available in class intervals as summarized

by a frequency distribution. Individual values of the original

data are not available.

High leverage points Observations with extreme values for the

independent variables.

Histogram A graphical presentation of a frequency distribution,

relative frequency distribution or percentage frequency

distribution of quantitative data, constructed by placing the

class intervals on the horizontal axis and the frequencies,

relative frequencies or percentage frequencies on the

vertical axis.

Horizontal pattern A horizontal pattern exists when the data

fluctuate around a constant mean.

Hypergeometric probability distribution A probability

distribution showing the probability of x successes in n trials

from a population with r successes and N r failures.

Hypergeometric probability function The function used to

compute hypergeometric probabilities.

Independent events Two events A and B where P(A | B) = P(A) or

P(B | A) = P(B); that is, the events have no influence on each

other.

Independent samples Where, e.g., two groups of workers are

selected and each group uses a different method to collect

production time data.

Independent variable The variable that is doing the predicting or

explaining. It is denoted by X.

Influential observation An observation that has a strong

influence or effect on the regression results.

Interaction The effect of two independent variables acting

together.

Interquartile range (IQR) A measure of variability, defined to be

the difference between the third and first quartiles.

Intersection of A and B The event containing the sample

points belonging to both A and B. The intersection is denoted

A B.

Interval estimate An estimate of a population parameter that

provides an interval believed to contain the value of the

parameter.

Interval scale The scale of measurement for a variable if the

data demonstrate the properties of ordinal data and the

interval between values is expressed in terms of a fixed unit

of measure. Interval data are always numeric.

Irregular component The component of the time series that

reflects the random variation of the time series values

beyond what can be explained by the trend, cyclical and

seasonal components.

ith residual The difference between the observed value of the

dependent variable and the value predicted using the
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estimated regression equation; for the ith observation the ith

residual is yi yi.

Joint probability The probability of two events both occurring;

that is, the probability of the intersection of two events.

Judgement sampling A non-probabilistic method of sampling

whereby element selection is based on the judgement of the

person doing the study.

Kruskal–Wallis test A non-parametric test for identifying

differences among three or more populations on the basis of

independent samples.

Laspeyres’ price index A weighted aggregate price index in

which the weight for each item is its base-period quantity.

Least squares method The method used to develop the

estimated regression equation. It minimizes the sum of

squared residuals (the deviations between the observed

values of the dependent variable, y, and the estimated values

of the dependent variable, yi).

Level of significance The probability of making a Type I error

when the null hypothesis is true as an equality.

Leverage A measure of how far the values of the independent

variables are from their mean values.

Linear exponential smoothing This is a version of exponential

smoothing that can be used to forecast a time series with a

linear trend.

Logistic regression equation The mathematical equation

relating E(Y), the probability that Y = 1, to the values of the

independent variables: that is,

E Y P Y 1 x1 x2 …xp

e 0 1x1 … pxp

1 e 0 1x1 … pxp

Logit The natural logarithm of the odds in favour of Y = 1: that is,

g(x1, x2, … xp) = 0 1x1 2x2 pxp

Lot A group of items such as incoming shipments of raw

materials or purchased parts as well as finished goods from

final assembly.

Mann–Whitney–Wilcoxon (MWW) test A non-parametric

statistical test for identifying differences between two

populations based on the analysis of two independent

samples.

Margin of error The value added to and subtracted from a point

estimate in order to construct an interval estimate of a

population parameter.

Marginal probability The values in the margins of a joint

probability table that provide the probabilities of each event

separately.

Matched samples Where, e.g., only a sample of workers

is selected and each worker uses first one and then the

other method, with each worker providing a pair of data

values.

Mean A measure of central location computed by summing the

data values and dividing by the number of observations.

Mean absolute error (MAE) The average of the absolute

forecast errors.

Mean absolute percentage error (MAPE) The average of the

ratios of absolute forecast errors to actual values expressed

as a percentage.

Mean squared error (MSE) A measure of the accuracy of a

forecasting method. This measure is the average of the sum

of the squared differences between the forecast values and

the actual time series values.

Median A measure of central location provided by the value in

the middle when the data are arranged in ascending order.

Mode A measure of location, defined as the value that occurs

with greatest frequency.

Moving averages A method of forecasting or smoothing a time

series that uses the average of the most recent n data values

in the time series as the forecast for the next period.

Multicollinearity The term used to describe the correlation

among the independent variables.

Multinomial population A population in which each element is

assigned to one and only one of several categories. The

multinomial distribution extends the binomial distribution

from two to three or more outcomes.

Multiple coefficient of determination A measure of the

goodness of fit of the estimated multiple regression

equation. It can be interpreted as the proportion of the

variability in the dependent variable that is explained by the

estimated regression equation.

Multiple comparison procedures Statistical procedures that can

be used to conduct statistical comparisons between pairs of

population means.

Multiple regression analysis Regression analysis involving two

or more independent variables.

Multiple regression equation The mathematical equation

relating the expected value or mean value of the dependent

variable to the values of the independent variables; that is

E Y 0 1x1 2x2 pxp

Multiple regression model The mathematical equation that

describes how the dependent variable Y is related to the

independent variables x1, x2, … xp and an error term .

Multiple sampling plan A form of acceptance sampling in which

more than one sample or stage is used. On the basis of the

number of defective items found in a sample, a decision will

be made to accept the lot, reject the lot or continue

sampling.

Multiplication law A probability law used to compute the

probability of the intersection of two events. It is P(A B) =

P(B)P(A | B) or P(A B) = P(A)P(B | A). For independent events

it reduces to P(A B) = P(A) P(B).

Multiplicative decomposition model In an multiplicative model

the values for the trend, seasonal and irregular components

are simply multiplied together to obtain the actual time series

value.

Mutually exclusive events Events that have no sample points in

common: that is, A B is empty and P(A B) = O.

Node An intersection or junction point of an influence diagram or

a decision tree.

Nominal scale The scale of measurement for a variable

when the data use labels or names to identify an

attribute of an element. Nominal data may be non-numeric

or numeric.

Non-parametric methods Statistical methods that require

relatively few assumptions about the population probability

distributions and about the level of measurement. These

methods can be applied when nominal or ordinal data are

available.

Non-probabilistic sampling Any method of sampling for which

the probability of selecting a sample of any given

configuration cannot be computed.

Non-sampling error All types of errors other than sampling error,

such as measurement error, interviewer error and processing

error.

Normal probability distribution A continuous probability

distribution. Its probability density function is bell shaped and

determined by its mean µ and standard deviation .

Normal probability plot A graph of the standardized residuals

plotted against values of the normal scores. This plot helps
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determine whether the assumption that the error term has a

normal probability distribution appears to be valid.

np chart A control chart used to monitor the quality of the output

of a process in terms of the number of defective items.

Null hypothesis The hypothesis tentatively assumed true in the

hypothesis testing procedure.

Observation The set of measurements obtained for a particular

element.

Odds in favour of an event occurring The probability the event

will occur divided by the probability the event will not occur.

Odds ratio The odds that Y = 1 given that one of the independent

variables increased by one unit (odds1) divided by the odds

that Y = 1 given no change in the values for the independent

variables (oddso): that is, Odds ratio = odds1/oddso.

Ogive A graph of a cumulative distribution.

One-tailed test A hypothesis test in which rejection of the null

hypothesis occurs for values of the test statistic in one tail of

its sampling distribution.

Operating characteristic curve A graph showing the probability

of accepting the lot as a function of the percentage defective

in the lot. This curve can be used to help determine whether a

particular acceptance sampling plan meets both the

producer’s and the consumer’s risk requirements.

Ordinal scale The scale of measurement for a variable if the

data exhibit the properties of nominal data and the order or

rank of the data is meaningful. Ordinal data may be non-

numeric or numeric.

Outlier A data point or observation that does not fit the pattern

shown by the remaining data, often unusually small or

unusually large.

p chart A control chart used when the quality of the output of

a process is measured in terms of the proportion defective.

p-value A probability, computed using the test statistic, that

measures the support (or lack of support) provided by the

sample for the null hypothesis. For a lower tail test, the

p-value is the probability of obtaining a value for the test

statistic at least as small as that provided by the sample.

For an upper tail test, the p-value is the probability of

obtaining a value for the test statistic at least as large

as that provided by the sample. For a two-tailed test,

the p-value is the probability of obtaining a value for the

test statistic at least as unlikely as that provided by

the sample.

Paasche price index A weighted aggregate price index in which

the weight for each item is its current-period quantity.

Parameter A numerical characteristic of a population, such as a

population mean µ, a population standard deviation , a

population proportion and so on.

Parametric methods Statistical methods that begin with an

assumption about the distributional shape of the population.

This is often that the population follows a normal distribution.

Partitioning The process of allocating the total sum of squares

and degrees of freedom to the various components.

Payoff A measure of the consequence of a decision such as

profit, cost or time. Each combination of a decision

alternative and a state of nature has an associated payoff

(consequence).

Payoff table A tabular representation of the payoffs for a

decision problem.

Percentage frequency distribution A tabular summary of data

showing the percentage of items in each of several non-

overlapping classes.

Percentile A value such that at least p per cent of the

observations are less than or equal to this value and at least

(100 p) per cent of the observations are greater than or

equal to this value. The 50th percentile is the median.

Pie chart A graphical device for presenting data summaries

based on subdivision of a circle into sectors that correspond

to the relative frequency for each class.

Point estimate The value of a point estimator used in a

particular instance as an estimate of a population parameter.

Point estimator The sample statistic, such as X, S or P, that

provides the point estimate of the population parameter.

Poisson probability distribution A probability distribution

showing the probability of x occurrences of an event over a

specified interval of time or space.

Poisson probability function The function used to compute

Poisson probabilities.

Pooled estimator of A weighted average of P1 and P2.

Population The set of all elements of interest in a particular study.

Population parameter A numerical value used as a summary

measure for a population (e.g. the population mean µ, the

population variance 2 and the population standard

deviation ).

Posterior probabilities Revised probabilities of events based on

additional information.

Posterior (revised) probabilities The probabilities of the states

of nature after revising the prior probabilities based on

sample information.

Power The probability of correctly rejecting H0 when it is false.

Power curve A graph of the probability of rejecting H0 for all

possible values of the population parameter not satisfying

the null hypothesis. The power curve provides the probability

of correctly rejecting the null hypothesis.

Prediction interval The interval estimate of an individual value of

Y for a given value of X.

Price relative A price index for a given item that is computed by

dividing a current unit price by a base-period unit price and

multiplying the result by 100.

Prior probabilities The probabilities of the states of nature prior

to obtaining sample information.

Probabilistic sampling Any method of sampling for which the

probability of each possible sample can be computed.

Probability A numerical measure of the likelihood that an event

will occur.

Probability density function A function used to compute

probabilities for a continuous random variable. The area

under the graph of a probability density function over an

interval represents probability.

Probability distribution A description of how the probabilities are

distributed over the values of the random variable.

Probability function A function, denoted by p(x), that provides

the probability that X assumes a particular value for a

discrete random variable.

Producer Price Index A price index designed to measure

changes in prices of goods sold in primary markets (i.e. first

purchase of a commodity in non-retail markets).

Producer’s risk The risk of rejecting a good-quality lot; a Type I

error.

Qualitative data Labels or names used to identify an attribute of

each element. Qualitative data use either the nominal or

ordinal scale of measurement and may be non-numeric or

numeric.

Qualitative independent variable An independent variable with

qualitative data.

Qualitative variable A variable with qualitative data.

Quality control A series of inspections and measurements that

determine whether quality standards are being met.
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Quantitative data Numerical values that indicate how much or

how many of something.

Quantitative variable A variable with quantitative data.

Quantity index An index designed to measure changes in

quantities over time.

Quartiles The 25th, 50th and 75th percentiles, referred to as

the first quartile, the second quartile (median) and third

quartile, respectively. The quartiles can be used to divide a

data set into four parts, with each part containing

approximately 25 per cent of the data.

R chart A control chart used when the quality of the output of a

process is measured in terms of the range of a variable.

Random variable A numerical description of the outcome of an

experiment.

Randomized block design An experimental design employing

blocking.

Range A measure of variability, defined to be the largest value

minus the smallest value.

Ratio scale The scale of measurement for a variable if the data

demonstrate all the properties of interval data and the ratio of

two values is meaningful. Ratio data are always numeric.

Regression equation The equation that describes how the mean

or expected value of the dependent variable is related to

the independent variable; in simple linear regression, E(Y) =

0 1x

Regression model The equation describing how Y is related to X

and an error term; in simple linear regression, the regression

model is y = 0 1x

Relative frequency distribution A tabular summary of data

showing the fraction or proportion of data items in each of

several non-overlapping classes.

Relative frequency method A method of assigning probabilities

that is appropriate when data are available to estimate the

proportion of the time the experimental outcome will occur if

the experiment is repeated a large number of times.

Replications The number of times each experimental condition

is repeated in an experiment.

Residual analysis The analysis of the residuals used

to determine whether the assumptions made about

the regression model appear to be valid. Residual

analysis is also used to identify outliers and influential

observations.

Residual plot Graphical representation of the residuals that can

be used to determine whether the assumptions made about

the regression model appear to be valid.

Response variable Another term for dependent variable.

Sample A subset of the population.

Sample information New information obtained through research

or experimentation that enables an updating or revision of the

state-of-nature probabilities.

Sample point An element of the sample space. A sample point

represents an experimental outcome.

Sample space The set of all experimental outcomes.

Sample statistic A numerical value used as a summary

measure for a sample (e.g. the sample mean X, the sample

variance S2 and the sample standard deviation S).

Sample survey A survey to collect data on a sample.

Sampled population The population from which the sample is

taken.

Sampling distribution A probability distribution consisting of all

possible values of a sample statistic.

Sampling error The error that occurs because a sample, and not

the entire population, is used to estimate a population

parameter.

Sampling frame A list of the sampling units for a study. The

sample is drawn by selecting units from the sampling frame.

Sampling unit The units selected for sampling. A sampling unit

may include several elements.

Sampling with replacement Once an element has been included

in the sample, it is returned to the population. A previously

selected element can be selected again and therefore may

appear in the sample more than once.

Sampling without replacement Once an element has been

included in the sample, it is removed from the population and

cannot be selected a second time.

Scatter diagram A graphical presentation of the relationship

between two quantitative variables. One variable is shown on

the horizontal axis and the other variable is shown on the

vertical axis.

Seasonal component The component of the time series that

shows a periodic pattern over one year or less.

Seasonal pattern The same repeating pattern in observations

over successive periods of time.

Serial correlation Same as autocorrelation.

(sigma) known The condition existing when historical data or

other information provide a good estimate or value for the

population standard deviation prior to taking a sample. The

interval estimation procedure uses this known value of in

computing the margin of error.

(sigma) unknown The condition existing when no good basis

exists for estimating the population standard deviation

prior to taking the sample. The interval estimation procedure

uses the sample standard deviation S in computing the

margin of error.

Sign test A non-parametric statistical test for identifying

differences between two populations based on the analysis

of nominal data.

Simple linear regression Regression analysis involving one

independent variable and one dependent variable in which

the relationship between the variables is approximated by a

straight line.

Simple random sampling Finite population: a sample selected

such that each possible sample of size n has the same

probability of being selected. Infinite population: a sample

selected such that each element comes from the same

population and the elements are selected independently.

Simpson’s paradox Conclusions drawn from two or more

separate cross-tabulations that can be reversed when the

data are aggregated into a single cross-tabulation.

Single-factor experiment An experiment involving only one

factor with k populations or treatments.

Skewness A measure of the shape of a data distribution. Data

skewed to the left result in negative skewness; a symmetrical

data distribution results in zero skewness; and data skewed

to the right result in positive skewness.

Smoothing constant A parameter of the exponential smoothing

model that provides the weight given to the most recent time

series value in the calculation of the forecast value.

Spearman rank-correlation coefficient A correlation measure

based on rank-ordered data for two variables.

Standard deviation A measure of variability computed by taking

the positive square root of the variance.

Standard error The standard deviation of a point estimator.

Standard error of the estimate The square root of the mean

square error, denoted by s. It is the estimate of , the

standard deviation of the error term .

Standard normal probability distribution A normal distribution

with a mean of zero and a standard deviation of one.
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Standardized residual The value obtained by dividing a residual

by its standard deviation.

States of nature The possible outcomes for chance events that

affect the payoff associated with a decision alternative.

Stationary time series One whose statistical properties are

independent of time.

Statistical inference The process of using data obtained from a

sample to make estimates or test hypotheses about the

characteristics of a population.

Statistics The art and science of collecting, analyzing,

presenting and interpreting data.

Stem-and-leaf display An exploratory data analysis technique

that simultaneously rank orders quantitative data and

provides insight about the shape of the distribution.

Stratified random sampling A probabilistic method of selecting

a sample in which the population is first divided into strata

and a simple random sample is then taken from each stratum.

Studentized deleted residuals Standardized residuals that are

based on a revised standard error of the estimate obtained by

deleting observation i from the data set and then performing

the regression analysis and computations.

Subjective method A method of assigning probabilities on the

basis of judgement.

Systematic sampling A method of choosing a sample by

randomly selecting the first element and then selecting every

kth element thereafter.

t distribution A family of probability distributions that can be

used to develop an interval estimate of a population mean

whenever the population standard deviation is unknown

and is estimated by the sample standard deviation s.

Target population The population about which inferences are

made.

Test statistic A statistic whose value helps determine whether a

null hypothesis can be rejected.

Time series A set of observations on a variable measured at

successive points in time or over successive periods of time.

Time series data Data collected over several time periods.

Time series decomposition This technique can be used to

separate or decompose a time series into seasonal, trend

and irregular components.

Time series plot A graphical presentation of the relationship

between time and the time series variable; time is on the

horizontal axis and the time series values are shown on the

vertical axis.

Treatments Different levels of a factor.

Tree diagram A graphical representation that helps in visualizing

a multiple-step experiment.

Trend The long-run shift or movement in the time series

observable over several periods of time.

Trend line A line that provides an approximation of the

relationship between two variables.

Trend pattern Gradual shifts or movements to relatively higher

or lower values over a longer period of time.

Two-tailed test A hypothesis test in which rejection of the null

hypothesis occurs for values of the test statistic in either tail

of its sampling distribution.

Type I error The error of rejecting H0 when it is true.

Type II error The error of accepting H0 when it is false.

Unbiasedness A property of a point estimator that is present

when the expected value of the point estimator is equal to the

population parameter it estimates.

Uniform probability distribution A continuous probability

distribution for which the probability that the random variable

will assume a value in any interval is the same for each

interval of equal length.

Union of A and B The event containing all sample points

belonging to A or B or both. The union is denoted A B.

Variable A characteristic of interest for the elements.

Variable selection procedures Methods for selecting a subset of

the independent variables for a regression model.

Variance A measure of variability based on the squared

deviations of the data values about the mean.

Variance inflation factor A measure of how correlated an

independent variable is with all other independent predictors

in a multiple regression model.

Venn diagram A graphical representation for showing

symbolically the sample space and operations involving

events in which the sample space is represented by a

rectangle and events are represented as circles within the

sample space.

Weighted aggregate price index A composite price index in

which the prices of the items in the composite are weighted

by their relative importance.

Weighted mean The mean obtained by assigning each

observation a weight that reflects its importance.

Weighted moving averages A method of forecasting or

smoothing a time series by computing a weighted average of

past data values. The sum of the weights must equal one.

Wilcoxon signed-rank test A non-parametric statistical test for

identifying differences between two populations based on the

analysis of two matched or paired samples.

x chart A control chart used when the quality of the output of a

process is measured in terms of the mean value of a variable

such as a length, weight, temperature and so on.

z-score A value computed by dividing the deviation about the

mean xi x by the standard deviation s. A z-score is referred

to as a standardized value and denotes the number of

standard deviations xi is from the mean.
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accounting 3
acquisition timing 261
addition law 100–2, 115
additive decomposition models 551
air traffic controllers 349
airline bookings 146
alcohol tests 116–17
alternative hypothesis 222–3, 224
analysis of variance (ANOVA) 328–39

assumptions 330
completely randomized design 332–9
computer results 338–9
factorial experiments 356
randomized block design 350–1
tables 337–8, 387

asylum applications 511
autocorrelation 403–6

banking 218–19
bar charts 23
Bayes’ theorem 109–13, 116
bingo machines 145–6
binomial experiments 130–2
binomial probability distribution 130–6, 145, 162–3

table 604–9
binomial probability function 132–5, 145
binomial probability tables 135–6
blood alcohol concentration 116–17
box plots 66–7
British Journal of Management 221
business research 221
business students 258–9
buying behaviour 261

Caffè Nero 565
categorical data 6
categorical variables 6

causal forecasting methods 511–12
censuses 12
central limit theorem 186–7
cheating 258–9
Chebyshev’s theorem 62–3
China 367
chi-squared distribution 290–5, 307, 310–13,

318–19, 321, 581
table 597–8

classes in frequency distributions 26–8, 45
clinical trials 148
coefficient of determination 376–9
coefficient of variation 58–9, 82
coffee 565
combat aircraft 119
combinations 90–1
company profiles 588–9
comparisonwise Type I error rate 346
complements 99, 115
completely randomized design 329, 332–9
conditional probability 103–7, 116
consumer research 219
contingency table tests 310–14
continuity correction factor 162
continuous probability distributions 147–71
continuous random variables 120–1
Cook’s distance measure 451–3
copyright 173
correlation coefficient 379
correlation coefficients 71–4, 83
Costa Coffee 565
counting rules 88–92, 115
covariance 70–1, 82
Cravens data 491–4
cross-sectional data 6
cross-tabulations 36–8
cumulative frequency distributions 30–2
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curvilinear relationships 472–4
cyclical components 557
cyclical patterns 516–17

data 4–6
data analysis, exploratory 32–4, 65–7
data errors 10
data mining 13–14
data sets 13
data sources 7–10
decision making 248–9
degrees of freedom 203–4
descriptive statistics 10–11
deseasonalized time series 554–6
discrete probability distributions 118–46
discrete random variables 120, 126–8, 144
discrete uniform probability distribution 123–4,

144
distributional shape, measures of 60–1
distribution-free methods 564–85
dot plots 29
Durbin-Watson test 403–6

table 616–18
dyslexia 419–20

economic forecasts 4
The Economist 2
elements 5
empirical rule 63
estimated multiple regression equation 423
estimated regression equation 369–70, 390–3, 439–40
ethical behaviour 258–9
events 96–7

independent 106
mutually exclusive 102

expected values
binomial probability distribution 136
hypergeometric probability distribution 142
random variables 126–7
sample mean 184
sample proportion 192
and variance 126–8

experimental design 328–61
completely randomized design 329, 332–46
data collection 330
factorial experiments 354–9
multiple comparison procedures 343–6
randomized block design 348–52

experiments 88
experimentwise Type I error rate 346

exploratory data analysis 32–4, 65–7
exponential probability density function 164
exponential probability distribution 164–6
exponential smoothing 527–30
exponential trend equation 541–2

F distribution 298–301, 335–6, 386–7
table 599–603

F test 335–6, 385–7, 434–6
factorial experiments 354–9
fashion stores 45
FDI (foreign direct investment) 367
financial analysts 3
financial markets 289
finite population correction factor 185
Fisher’s least significant difference (LSD) procedure

343–6
five-number summaries 65–6
food and beverage sales 561–2
forecast accuracy 518–23
forecast error 520
forecasting methods 517–18

causal 511–12
foreign direct investment (FDI) 367
formulae

addition law 115
additive decomposition model 551
adjusted multiple coefficient of determination

431
approximate class width 45
assumptions about the error term e in the

regression model 381–2
assumptions about the error term in the

multiple regression model 433
Bayes’ theorem 116
binomial distribution 136, 145
binomial probability function 134, 145
coefficient of determination 378
coefficient of variation 82
complements 115
computing the slope and intercept for a linear

trend 535
conditional probability 116
confidence interval for E(Yp) 391
Cook’s distance measure 453
correlation coefficient 83
counting rules 115
covariance 82
degrees of freedom for the t distribution using

two independent random samples 268
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discrete random variables 120, 144
discrete uniform probability distribution 123, 144
Durbin-Watson test statistic 404
estimated logistic regression equation 457
estimated logit 463
estimated multiple regression equation 423
estimated simple linear regression

equation 369
estimated standard deviation of b1 384
expected frequencies for contingency tables

under the assumption of independence 312
expected value of sample mean 184
expected value of sample proportion 192
exponential distribution cumulative

probabilities 165
exponential probability density function 164
exponential smoothing forecast 527
exponential trend equation 541–2
F test for overall significance 435
F test for significance in simple linear

regression 386–7
F test statistic 349
F test statistic for adding or deleting p-q

variables 486
factorial experiments total sum of squares

363
first-order autocorrelation 404
Fisher’s LSD procedure 344–5
general linear model 471
grouped data 83
Holt’s linear exponential smoothing 538
hypergeometric probability distribution 141–2
independent events 116
interpretation of E(Y) as a probability in logistic

regression 457
interval estimate of a population mean 205
interval estimate of a population

proportion 213
interval estimate of a population variance 292
interval estimate of the difference between two

population means 263, 268
interval estimate of the difference between two

population proportions 280
Kruskal-Wallis test statistic 581
least squares criterion 372, 424
leverage of observation i 410
linear trend equation 534
logistic regression equation 457
logit 462
mean square due to error 334–5

mean square due to treatments 334
mean square error 383, 434
mean square regression 386, 434
moving average forecast of order k 524
multiple coefficient of determination 430
multiple regression equation 423
multiple regression model 423, 432
multiplication law 116
multiplicative decomposition model 551
normal approximation of the sampling

distribution of the number of plus signs for
H0 568

normal probability density function 153
number of experimental outcomes providing

exactly x successes in n trials 133, 144
odds ratio 460
overall sample mean 333
partitioning of sum of squares 337
Pearson product moment correlation coefficient

83
point estimator of the difference between two

population means 262
point estimator of the difference between two

population proportions 279
Poisson probability distribution 138
pooled estimate of population proportions 281
population variance 82
prediction interval for yp 392
quadratic trend equation 539–41
relative frequency of a class 45
residual for observation i 396
sample correlation coefficient 379
sample size interval estimate of a population

mean 210
sample size interval estimate of a population

proportion 214
sample size one-tailed hypothesis test about a

population mean 254
sample variance 82
sample variance for treatment j 333
sampling distribution of b1 384
sampling distribution of rS 584
sampling distribution of (n − 1)S2/σ2 290
sampling distribution of T for identical

populations 573
sampling distribution of two population

variances 298
sampling distribution of W for identical

populations 578
sign test (large-sample case) 587
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simple linear regression equation 369
simple linear regression model 368
skewness of sample data 60
slope and y-intercept for the estimated

regression equation 372
Spearman rank-correlation coefficient 583
standard deviation 82
standard deviation of residual i 449
standard deviation of sample mean 185
standard deviation of sample proportion 193
standard deviation of the i th residual 400
standard error 197
standard error of difference between two

population means 263
standard error of the difference between two

population proportions 280, 281
standard error of the estimate 383
standard normal distribution 158
standard normal probability function 154
standardized residual for observation i 400, 448
sum of squares due to blocks 351
sum of squares due to error 351, 376
sum of squares due to regression 378
sum of squares due to treatments 351
sum of squares for factor A 364
sum of squares for factor B 364
sum of squares for interaction 364
t test for individual significance 436–7
t test for significance in simple linear

regression 385
test statistic for goodness of fit 307
test statistic for hypothesis test involving

matched samples 276
test statistic for hypothesis tests about a

population mean 229, 239
test statistic for hypothesis tests about a

population proportion 245
test statistic for hypothesis tests about a

population variance 292
test statistic for hypothesis tests about the

difference between two population
means 264, 269

test statistic for hypothesis tests about the
difference between two population
proportions 282

test statistic for hypothesis tests about two
population variances 299

test statistic for independence 312
test statistic for the equality of k population

means 335

testing for the equality of k population means
sample mean for treatment j 333

total sum of squares 337, 351
unbiasedness 184
uniform probability density function 149
variance inflation factor 438
weighted mean 83
z-score 82

frequency distributions 22–3, 26–8
furniture stores 169–71

general linear model 471–82
GMAT (Graduate Management Admissions Test)

354–6
golf equipment 286–7
goodness of fit tests 305–9

normal probability distribution 319–22
Poisson probability distribution 316–19

Graduate Management Admissions Test 354–6
grouped data 77–9, 83

histograms 29–30
Holt’s linear exponential smoothing 537–9
horizontal patterns 512
house prices 506–7
hypergeometric probability distribution 140–2
hypothesis testing 221–56

critical value approach 234
decision making 248–9
difference between two population means 264–5,

269–70
differences between two population proportions

281–2
errors 225–6, 249–51
interval estimation 235–7
population mean 227–42

sample size 253–5
population proportion 244–6
population variances 292–4
p-value approach 233–4
steps of 235
type II errors 249–51

independence tests 310–14
independent events 106, 116
influential observations 451
interaction 475–7
interquartile range 56
interval estimation 198–214

difference between two population means 262–3,
267–8
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differences between two population proportions
279–81

hypothesis testing 235–7
population mean 203–7
population proportion 212–14
population variances 290–2

interval scales 5
IQR (interquartile range) 56
ith residual 376

Johansson Filtration 441–5
joint probabilities 104
junk email 87
Jura 422

Kristof Projects Limited (KPL) 89–90, 94–5
Kruskal-Wallis test 580–2

least squares method 370–4, 423–7
level of significance 226
light bulbs 12
linear exponential smoothing 537–9
linear regression

multiple see multiple regression
simple see simple linear regression

linear trend regression 533–7
location, measures of 48–53
logistic regression 456–63
logit transformation 462–3
lotteries 306, 326

MAE (mean absolute error) 520
Management School website pages 325
Mann-Whitney-Wilcoxon test 575–9

table 619
manufacturing controls 257–8
MAPE (mean absolute percentage error) 520
margin of error 205–6
marginal probabilities 104
market research surveys 199
marketing 3
Marks & Spencer 20–1
Marrine Clothing Store 132–6
matched samples 274–7
mean, 48–9 see also expected values

mean absolute error 520
mean absolute percentage error 520
mean squared error 334–5, 520
measures of distributional shape 60–1
measures of location 48–53

measures of relative location 61–3
measures of variability 55–9
median 50
mode 51
moving averages 524–7
MSE (mean square due to error) 334–5, 520
multicollinearity 437–8
multinomial populations 305–9
multiple coefficient of determination 430–1
multiple comparison procedures 343–6
multiple regression 422–63

estimated regression equation 439–40
least squares method 423–7
model 423–4

assumptions 432–3
multicollinearity 437–8
multiple coefficient of determination 430–1
qualitative independent variables 441–5
residual analysis 448–53
significance tests 434–8

multiplication law 106–7, 116
multiplicative decomposition models 551
mutually exclusive events 102
MWW (Mann-Whitney-Wilcoxon test) 575–9

table 619

Naïve Bayes’ method 87
nominal scales 5
nonlinear models 481–2
nonlinear trend regression 539–42
non-parametric methods 564–85
normal curve 152–4
normal probability distribution 152–60, 319–22

cumulative probabilities table 592–3
normal probability plots 401–2
null hypothesis 223–4
obesity 507–9

observations 5
ogives 31–2
opinion polls 199
ordinal scales 5
outliers 64

partitioning 338
P/E ratios 468–9
Pearson product moment correlation coefficient

71–4, 83
percentage frequency distributions 23, 28
percentiles 51–2
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permutations 91–2
pie charts 24
point estimation 178–80
Poisson probability distribution 138–9, 166,

316–19
table 610–15

pooled estimate of population proportions 281
population mean

differences between two 261–77
hypothesis testing 227–42

sample size 253–5
interval estimation 203–7
matched samples 274–7
one-tailed tests 227–32, 240
testing for the equality of k 339
two-tailed tests 232–4, 241–2

population proportion
differences between two 279–82
hypothesis testing 244–6
interval estimation 212–14
pooled estimate of 281

population variance 56, 82, 288–304
between-treatments estimate of 334, 335–6
hypothesis testing 292–4
interval estimation 290–2
two 298–301
within-treatments estimate of 334–6

populations 11–12
power curves 251
price/earnings ratios 468–9
probability

addition law 100–2, 115
area as a measure of 150
assignment 92–5
Bayes’ theorem 109–13, 116
binomial distribution 130–6
combinations 90–1, 115
complements 99, 115
conditional 103–7, 116
continuous distributions 147–71
counting rules 88–92, 115
density function 147–8
discrete distributions 118–46
events 96–7
experiments 88–90
exponential distribution 164–6
hypergeometric distribution 140–2
independent events 106, 116
meaning of 86–7
multiplication law 106–7, 116

multi-step experiments 88–90
mutually exclusive events 102
normal distribution 152–60
permutations 91–2, 115
Poisson distribution 138–9, 166
random variables 118–21, 126–8
standard normal distribution 154–8
uniform distribution 149–50

probability density function 147–8
product customization 328
product design testing 364–5
Public Lending Rights 173
p-value 233–4

quadratic trend equation 539–41
qualitative data 22–4
qualitative independent variables 441–5
quality control 3
quantitative data

cumulative frequency distributions 30–2
dot plots 29
exploratory data analysis 32–4
frequency distributions 26–8
histograms 29–30
meaning of 6
ogives 31–2
percentage frequency distributions 28
relative frequency distributions 28
stem-and-leaf displays 32–4
summarizing 26–34

quantitative variables 6
quartiles 52–3
queuing 169–71

RAC (Royal Automobile Club) 562–3
random variables 118–28
randomized block design 348–52
range 55–6
rank correlation 583–5
ratio scales 5–6
regression analysis see also multiple regression simple

linear regression model building 470–98
variable addition/deletion 485–6
variable selection procedures 494–8

regression equation 368–9
estimated 369–70, 390–3, 439–40

relative frequency distributions 22–3, 28
relative location, measures of 61–3
residual analysis 396–412, 448–53

autocorrelation 403–6
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influential observations 410–11
outliers 407–9

residual plots 397–9
Royal Automobile Club 562–3

sample data, skewness of 60
sample mean 49

expected value 184
sampling distribution of 183–90
standard deviation 185–6

sample points 88
sample proportion 192–4
sample size 210–11, 213–14, 253–5
sample space 88
sample surveys 12
sample variance 57, 82
sampled populations 174, 175–7
samples 11–12
sampling 173–81
sampling distributions 181–94
sampling frames 174
sampling procedures 257–8
satisfaction surveys 218–19
scales of measurement 5–6
scatter diagrams 39–40, 370
seasonal adjustments 556–7
seasonal indices 552–4, 557
seasonal patterns 516
seasonality 543–9
serial correlation 403–6
sign test 566–70
significance tests 226, 382–8, 434–8
simple linear regression 367–412

coefficient of determination 376–9
computer solution 394–5
correlation coefficient 379
estimated regression equation 369–70, 390–3
F test 385–7
least squares method 370–4
model 368–70

assumptions 381–2
residual analysis 396–412
significance tests 382–8
t test for significance 385

simple random sampling 175–7
Simpson’s paradox 38–9
skewness, of sample data 60
spam 87
Spearman rank-correlation coefficient 583–5
SSE (sum of squares due to error) 334–5

standard deviation 57–8, 82, 185–6, 193
standard error 186, 197
standard normal probability

distribution 154–8
cumulative probabilities table 592–3

standard normal probability function 154
standard score 61–2
standardized residuals 399–401
standardized value 61–2
Starbucks 565
stationary time series 513
statistical analysis 13
statistical inference 11–13, 180
statistical studies 9–10
statistics

meaning of 2
uses of 3–4

stem-and-leaf displays 32–4
stock market indices 304
stock market risk 418
studentized deleted residuals 450

table 620–1
sum of squares due to error 334–5

t distribution 203–4
table 594–6

t test
multiple regression 436–7
simple linear regression 383–5

tables
binomial probability distribution 604–9
chi-squared distribution 597–8
Durbin-Watson test 616–18
F distribution 599–603
Mann-Whitney-Wilcoxon test 619
normal probability distribution 592–3
Poisson probability distribution 610–15
standard normal probability distribution 592–3
studentized deleted residuals 620–1
t distribution 594–6

target populations 180
television audience measurement 48
time series 512
time series data 6
time series decomposition 551–7
time series patterns 512–18
time series plots 512
toys 168–9
tree diagrams 89–90
trend lines 39–40
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trend patterns 513–16
trend projection 533–42
triglyceride level reduction 416–17
TV audience measurement 48
type I error rates 345–6

unbiasedness 184
uniform probability density function 149
uniform probability distribution 149–50
universities 471–2

variability, measures of 55–9
variable selection procedures 494–8
variables 5
variance 56–7

analysis of see analysis of variance

binomial probability distribution 136
and expected values 126–8
hypergeometric probability distribution 142
random variables 127–8

variance inflation factor 438
vehicle rescue 562–3
Venn diagrams 99
VIF (variance inflation factor) 438

website pages 325
weight loss 416–17
weighted mean 76–7, 83
weighted moving averages 526–7
Wilcoxon signed-rank test 571–3

z-scores 61–2, 82
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