

Software Quality

IEEE Press Editorial Board
Ekram Hossain, Editor in Chief

Giancarlo Fortino
David Alan Grier
Donald Heirman
Xiaoou Li

Andreas Molisch
Saeid Nahavandi
Ray Perez
Jeffrey Reed

Linda Shafer
Mohammad Shahidehpour
Sarah Spurgeon
Ahmet Murat Tekalp

About IEEE Computer Society
IEEE Computer Society is the world’s leading computing membership organization
and the trusted information and career-development source for a global workforce of
technology leaders including: professors, researchers, software engineers, IT pro
fessionals, employers, and students. The unmatched source for technology information,
inspiration, and collaboration, the IEEE Computer Society is the source that computing
professionals trust to provide high-quality, state-of-the-art information on an on-
demand basis. The Computer Society provides a wide range of forums for top minds to
come together, including technical conferences, publications, and a comprehensive
digital library, unique training webinars, professional training, and the TechLeader
Training Partner Program to help organizations increase their staff’s technical knowl
edge and expertise, as well as the personalized information tool myComputer. To find
out more about the community for technology leaders, visit http://www.computer.org.

IEEE/Wiley Partnership
The IEEE Computer Society and Wiley partnership allows the CS Press authored book
program to produce a number of exciting new titles in areas of computer science, com
puting, and networking with a special focus on software engineering. IEEE Computer
Society members continue to receive a 15% discount on these titles when purchased
through Wiley or at wiley.com/ieeecs.

To submit questions about the program or send proposals, please contact Mary Hatcher,
Editor, Wiley-IEEE Press: Email: mhatcher@wiley.com, Telephone: 201-748-6903,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774.

http://www.computer.org
mailto:mhatcher@wiley.com
http://wiley.com/ieeecs

Software Quality
Concepts and Practice

Daniel Galin

This edition first published 2018
 2018 the IEEE Computer Society, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this
title is available at http://www.wiley.com/go/permissions.

The rights of Daniel Galin to be identified as the author of this work have been asserted in accordance
with law.

Registered Office
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley
products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some
content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
While the publisher and authors have used their best efforts in preparing this work, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this work
and specifically disclaim all warranties, including without limitation any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives, written sales materials or promotional statements for this work. The fact that an
organization, website, or product is referred to in this work as a citation and/or potential source of
further information does not mean that the publisher and authors endorse the information or services
the organization, website, or product may provide or recommendations it may make. This work is sold
with the understanding that the publisher is not engaged in rendering professional services. The advice
and strategies contained herein may not be suitable for your situation. You should consult with a
specialist where appropriate. Further, readers should be aware that websites listed in this work may
have changed or disappeared between when this work was written and when it is read. Neither the
publisher nor authors shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Galin, Daniel, author.

Title: Software quality : concepts and practice / by Daniel Galin.

Description: Hoboken, NJ : John Wiley & Sons, 2017. | Includes

bibliographical references and index. |

Identifiers: LCCN 2017039554 (print) | LCCN 2017044698 (ebook) | ISBN
9781119134503 (pdf) | ISBN 9781119134510 (epub) | ISBN 9781119134497
(cloth)

Subjects: LCSH: Computer software–Quality control.
Classification: LCC QA76.76.Q35 (ebook) | LCC QA76.76.Q35 G35 2017 (print) |
DDC 005.3028/7–dc23

LC record available at https://lccn.loc.gov/2017039554

Cover Design: Wiley
Cover Images: (Codes) © Degui Adil/EyeEm/Gettyimages; (Three Checks) © NuStock/Gettyimages

Set in 10/12pt TimesLTStd-Roman by Thomson Digital, Noida, India
Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/permissions
http://www.wiley.com
https://lccn.loc.gov/2017039554

To my beloved family,
Amira, Michal, Yoav, Guy and Maayan.

I love all of them.

Contents

Preface xvii

Acknowledgments xxi

About the Author xxiii

Guides for Special Groups of Readers xxv

PART I INTRODUCTION 1

1. SQA – DEFINITIONS AND CONCEPTS

1.1 Software quality and software quality assurance – definitions 3
1.2 What is a software product? 5
1.3 The principles of SQA 7
1.4 Software errors, faults, and failures 7
1.5 The causes of software errors 11
1.6 Software quality assurance versus software quality control 16
1.7 Software quality engineering and software engineering 17

Summary 18
Selected bibliography 20
Review questions 20
Topics for discussion 21

2. SOFTWARE QUALITY FACTORS (ATTRIBUTES) 23

2.1 Complaints from the City Computer Club members – an introductory
mini case 23

2.2 The need for comprehensive software quality requirements 24
2.3 McCall’s classic model for software quality factors 25
2.4 The ISO/IEC 25010 model and other alternative models of software

quality factors 33
2.5 Software compliance with quality factors 38

Summary 41
Selected bibliography 42
Review questions 43
Topics for discussion 44

vii

3

viii Contents

3. THE SOFTWARE QUALITY CHALLENGES 45

3.1 Introduction 45
3.2 The uniqueness of software quality assurance 45
3.3 Software development, maintenance, and SQA environment 49

Summary 55
Review questions 56
Topics for discussion 56

4. ORGANIZATION FOR ASSURING SOFTWARE QUALITY 58

4.1 Introduction 58
4.2 Top management’s quality assurance activities 59
4.3 Department managers with direct responsibilities for quality 63
4.4 Project management responsibilities for quality 65
4.5 The SQA unit and its associated players in the SQA system 66
4.6 The associated players in the SQA system 71

Summary 74
Selected bibliography 77
Review questions 77
Topics for discussion 79

5. THE SQAWORLD – AN OVERVIEW 81

5.1 First area: introductory topics (Part I of the book) 81
5.2 Second area: SQA process implementation activities

(Part II of the book) 83
5.3 Third area: product assurance activities for conformance

(Part III of the book) 87
5.4 Fourth area: process assurance activities for conformance

(Part IV of the book) 91
5.5 Fifth area: additional tools and methods supporting software

quality (Part V of the book) 96
5.6 Sixth area: Appendices (Part VI of the book) 99
5.7 The SQA Hall of Fame 103

PART II SQA PROCESS IMPLEMENTATION ACTIVITIES 105

6. ESTABLISHING SQA PROCESSES AND THEIR COORDINATION
WITH RELEVANT SOFTWARE PROCESSES

6.1 Establishing SQA processes 107
6.2 Coordinating SQA processes with related software processes 108

Summary 109

107

Contents ix

Selected bibliography 110
Review questions 110
Topics for discussion 110

7. SQA PLAN AND PROJECT PLAN 111

7.1 Introduction 111
7.2 The process of preparing an SQA plan 112
7.3 The SQAP elements 112
7.4 The process of preparing a project plan 116
7.5 Jack thanks his department manager – a mini case 117
7.6 The elements of the project plan 119
7.7 Project plans for small projects and for internal projects 130

Summary 134
Selected bibliography 136
Review questions 136
Topics for discussion 138
Appendix 7.A: Risk management activities and measures 139

8. PREPROJECT PROCESS – CONTRACT REVIEW

8.1 The CFV project completion celebration – an introductory
mini case 141

8.2 Introduction 142
8.3 The contract review process and its stages 143
8.4 Contract review evaluation subjects 146
8.5 Implementation of a contract review 149
8.6 Contract reviews for internal projects 151

Summary 153
Selected bibliography 154
Review questions 154
Topics for discussion 155
Appendix 8.A: Proposal draft review 157
Appendix 8.B: Contract draft review 161

9. COST OF SOFTWARE QUALITY

9.1 This time the budget was approved – an introductory mini case 162
9.2 Objectives of cost of software quality measurement 164
9.3 The classic model of cost of software quality 166
9.4 The scope of the cost of software quality – industry figures 170
9.5 An extended model for cost of software quality 171
9.6 Application of a cost of software quality system 175
9.7 Problems in application of CoSQ measurements 179

Summary 181

141

162

x Contents

Selected bibliography 183
Review questions 184
Topics for discussion 186

10. THE EFFECTIVENESS AND COST OF A V&V PLAN – THE
SQA MODEL 189

10.1 The data required for the SQA model 189
10.2 The SQA model 191
10.3 Application of the SQA model for comparing V&V plans 195

Summary 198
Selected bibliography 199
Review questions 199
Topics for discussion 199

11. SQA RECORDS AND DOCUMENTATION CONTROL

11.1 Jeff’s troubles – an introductory mini-case 200
11.2 Introduction 201
11.3 Objectives of documentation control processes 203
11.4 The implementation of documentation control 203

Summary 207
Selected bibliography 208
Review questions 208
Topics for discussion 209

PART III PRODUCT ASSURANCE ACTIVITIES FOR
CONFORMANCE 211

12. EVALUATION OF PRODUCTS FOR CONFORMANCE

12.1 Introduction 213
12.2 The evaluation of project plans for conformance 214
12.3 The evaluation of project’s software products for

conformance 215
12.4 Evaluation of project products for acceptability by the

customer 216
12.5 The evaluation of project’s operation phase products for

conformance 216
12.6 The evaluation of software product by measurements 217

Summary 218
Selected bibliography 219
Review questions 219
Topics for discussion 220

200

213

Contents xi

13. REVIEWS 222

13.1 Introduction 222
13.2 The happy design review – an introductory mini case 224
13.3 Formal design reviews (DRS) 225
13.4 Peer reviews 231
13.5 Expert opinions 244

Summary 247
Selected bibliography 248
Review questions 248
Topics for discussion 250
Appendix 13.A: DR report form 252
Appendix 13.B: Inspection session findings report form 253
Appendix 13.C: Inspection session summary report 254

14. SOFTWARE TESTING

14.1 Introduction 255
14.2 Joe decided to skip in-process testing – an introductory

mini-case 259
14.3 Software testing strategies 260
14.4 Requirement-driven software testing 272
14.5 Planning of the testing process 280
14.6 Designing the testing process 286
14.7 Implementation of the testing process 287
14.8 Automated testing 289
14.9 Alpha and beta site testing programs 301
14.10 Code review activities for the programming and testing phases 303

Summary 304
Selected bibliography 310
Review questions 312
Topics for discussion 314

15. ASSURING SOFTWARE QUALITY CONFORMANCE FOR
OPERATION SERVICES 318

15.1 Introduction 318
15.2 HR Software’s success – an introductory mini case 321
15.3 The foundations of high-quality operation services 324
15.4 Software maintenance maturity model – a model for the operation

phase 329
15.5 Managerial processes of software operation quality assurance 329

Summary 341
Selected bibliography 342
Review questions 343
Topics for discussion 344

255

xii Contents

16. SOFTWARE PRODUCT QUALITY METRICS 346

16.1 What are software quality metrics? – an introduction 346
16.2 Implementation of software quality metrics 349
16.3 Product metrics and their classification 352
16.4 Software product size metrics 353
16.5 Software product attribute metrics 356

Summary 362
Selected bibliography 364
Review questions 366
Topics for discussion 367
Appendix 16.A: FSM method implementation 370

17. PROCEDURES ANDWORK INSTRUCTIONS

17.1 Introduction – the need for procedures and work instructions 375
17.2 Superbox pays $9000 in damages due to failing support center – a

mini case 376
17.3 Procedures and work instructions and their conceptual

hierarchy 378
17.4 Procedures and procedure manuals 378
17.5 Work instructions 382
17.6 Procedures and work instructions: preparation, implementation, and

updating 382
Summary 385
Selected bibliography 386
Review questions 386
Topics for discussion 387
Appendix 17.A: Design review procedure 389

PART IV PROCESS ASSURANCE ACTIVITIES FOR
CONFORMANCE 393

18. EVALUATION OF PROCESSES AND DEVELOPMENT
ENVIRONMENT FOR CONFORMANCE 395

18.1 Introduction 395
18.2 The evaluation of life cycle processes and plans for

conformance 396
18.3 The evaluation of the required environment for conformance 397
18.4 The evaluation of subcontractor processes for conformance 398
18.5 The evaluation of software process by measurements 399
18.6 The assessment of staff skills and knowledge 400

Summary 401

375

Contents xiii

Selected bibliography 401
Review questions 402
Topics for discussion 402

19. IMPROVEMENT PROCESSES – CORRECTIVE AND
PREVENTIVE ACTIONS 404

19.1 The “3S” development team – revisited – an introductory
mini case 404

19.2 Introduction 406
19.3 The corrective and preventive actions process 407
19.4 Organization for preventive and corrective actions 416

Summary 417
Selected bibliography 418
Review questions 418
Topics for discussion 419

20. SOFTWARE PROCESS ASSURANCE ACTIVITIES FOR
EXTERNAL PARTICIPANTS

20.1 Introduction 421
20.2 The Pharmax tender – a mini case 424
20.3 Benefits and risks of introducing external performers 427
20.4 Benefits and risks of using readymade software 430
20.5 QA activities for assuring external performers’ process quality 432
20.6 QA activities for assuring quality of readymade software 438

Summary 441
Selected bibliography 444
Review questions 445
Topics for discussion 446

21. SOFTWARE PROCESS QUALITY METRICS 448

21.1 Software process metrics – an introduction 448
21.2 North against South –who’ll win this time round? – a mini case 450
21.3 Software development process metrics 452
21.4 Software operation process metrics 460
21.5 Software maintenance process metrics 462
21.6 Management process metrics 466
21.7 Limitations of software metrics 467

Summary 470
Selected bibliography 471
Review questions 472
Topics for discussion 473

421

xiv Contents

22. SOFTWARE CHANGE CONTROL PROCESSES 476

22.1 Introduction 476
22.2 How a well-planned project lost over half a million dollars – a mini

case 477
22.3 The process of handling an SCR 479
22.4 The SCC function in the organization 481
22.5 Software quality assurance activities related to software change

control 482
Summary 482
Selected bibliography 483
Review questions 483
Topics for discussion 484

23. STAFF SKILLS AND KNOWLEDGE – TRAINING AND
CERTIFICATION

23.1 Introduction 486
23.2 Surprises for the “3S” development team – an introductory mini

case 487
23.3 The objectives of training 488
23.4 The staff training process for software development 489
23.5 The training process for the SQA function team 493
23.6 The objectives of certification 495
23.7 The certification process 495

Summary 501
Selected bibliography 503
Review questions 503
Topics for discussion 504

PART V ADDITIONAL TOOLS AND METHODS SUPPORTING
SOFTWARE QUALITY 507

24. TEMPLATES AND CHECKLISTS 509

24.1 Introduction 509
24.2 Templates 509
24.3 The organizational framework for implementing templates 511
24.4 Checklists 514
24.5 The organizational framework for implementing checklists 516

Summary 518
Selected bibliography 519
Review questions 519
Topics for discussion 520

486

Contents xv

25. CONFIGURATION MANAGEMENT 522

25.1 Introduction 522
25.2 Software configuration items 523
25.3 Release of software configuration versions 526
25.4 Documentation of software configuration versions 531
25.5 Configuration management planning 532
25.6 Provision of SCM information services 534
25.7 Computerized tools for performing configuration management

tasks 535
25.8 The software configuration management function in the

organization 536
25.9 Software quality assurance activities related to SCM 537

Summary 539
Selected bibliography 541
Review questions 542
Topics for discussion 542

26. CASE TOOLS AND IDEs – IMPACTON SOFTWAREQUALITY 544

26.1 What is a CASE tool? 544
26.2 The classic CASE tool 546
26.3 IDE CASE tools 548
26.4 Real CASE tools 550
26.5 The contribution of CASE tools to software quality 554

Summary 556
Selected bibliography 557
Review questions 559
Topics for discussion 559

PART VI APPENDICES 561

APPENDIX A: SOFTWARE DEVELOPMENT AND QUALITY
ASSURANCE PROCESS STANDARDS

A.1 Introduction – standards and their use 563
A.2 IEEE Std. 730-2014 Standard for software quality assurance 566
A.3 ISO/IEC Std. 12207-2008: system and software

engineering – software life cycle processes 570
A.4 IEEE Std. 1012-2012 systems and software verification

and validation 574
Summary 579
Selected bibliography 581
Review questions 582
Topics for discussion 583

563

xvi Contents

APPENDIX B: SOFTWARE QUALITY MANAGEMENT
STANDARDS AND MODELS 585

B.1 ABC Software Ltd – an unnecessary loss – a mini-case 585
B.2 The scope of quality management standards 587
B.3 Software quality management standards as SPI standards 589
B.4 ISO/IEC 90003 590
B.5 Capability maturity CMMI models – assessment methodology 597
B.6 The SPICE project and the ISO/IEC 15504 software process

assessment standard 602
B.7 Additional software quality management standards 609

Summary 611
Selected bibliography 613
Review questions 615
Topics for discussion 616

APPENDIX C: PROJECT PROGRESS CONTROL 617

C.1 Introduction 617
C.2 Finally, a successful project – a mini case 619
C.3 The components of project progress control 621
C.4 Progress control of distributed and globally distributed software

development projects 623
C.5 Progress control of internal projects and external participants 624
C.6 Implementation of project progress control 625
C.7 Computerized tools for software progress control 626

Summary 631
Selected bibliography 632
Review questions 633
Topics for discussion 634

APPENDIX D: FROM SDLC TO AGILE – PROCESSES AND
QUALITY ASSURANCE ACTIVITIES 635

D.1 The classical software development models 636
D.2 The object-oriented model 645
D.3 The incremental delivery model 649
D.4 The staged model 652
D.5 The Agile methodology models 652

Summary 660
Selected bibliography 662
Review questions 663
Topics for discussion 664

Author Index 667
Subject Index 673

Preface

The following software “glitches” seem very real:

• Thousands of the US students in numerous cities around the United States
had just taken their examination. Tired and excited, they pressed the submit
button only to find that their answers could not be uploaded with the soft
ware (purchased specifically for this purpose). As expected, the anger, utter
frustration, and disappointment of the students turned into a flood of law
suits against the exam software company.

• More than 24 inmates from a US jail were wrongly released, among them
were prisoners jailed for violent crimes. The faulty release was caused by
the erroneous release of documents that were produced by a new software
system recently implemented to manage the institute’s records. According
to the spokesman of the county jail, the mistake was due to glitches in the
software, which caused the misprocessing of a number of input documents.
The early detection of the software failure prevented a much higher num
ber of faulty inmate releases.

• A software failure in an income tax collection system caused millions of
citizens to use the wrong tax code in the income tax site program. This
mistake caused many people to pay less than required, and many to pay
more than required. Unfortunately, it took a whole year to identify the fail
ure. Naturally, the inevitable happened, and the income tax department
now faces innumerable filings for tax returns. Only when these return pro
cedures have concluded, will the income tax department be able to estimate
the total damage caused by the software failure.

The above are just a sample of glitches that happen every day. These soft
ware failures have the potential to cause substantial damages. Every single one of
them could have been eliminated, or practically eliminated, if only the software
project teams would have performed appropriate software quality assurance pro
cesses, and SQA professionals would have carried out properly the required pro
cess coordination, follow-up, and evaluation tasks. These software quality
assurance processes, and many more, are the contents of my book Software Qual
ity: Concepts and Practice.

xvii

xviii Preface

The book structure

The book is structured in six parts that follow the IEEE Std. 730:2014 outline:

Part I: Introduction – Presents definitions and topics associated with software
quality.

Part II: SQA Process Implementation Activities –Dedicated to software qual
ity assurance activities of the SQA function, and includes establish
ing the SQA processes in the organization, planning the SQA
activities, and the application of software quality costs.

Part III: Product Assurance Activities for Conformance – Deals with evalua
tion and product quality measurement.

Part IV: Process Assurance Activities for Conformance – Discusses process
quality evaluation and measurement, process improvements, and
also the assessment of staff skills and knowledge and the required
training.

Part V: Additional Tools and Methods Supporting Software Quality – Pres
ents configuration management, CASE tools, and the topic of tem
plates and checklists – all of significant contribution to achieve
software quality requirements.

Part VI: Appendices – Presents basic software quality and software engineer
ing topics associated with SQA: software engineering and SQA
standards and models and project progress control. This part also
includes a review of software development methodologies and pro
cesses, and their quality assurance activities.

Unique features of this book

The following key features of this book are of special importance:

a. A broad view of SQA. The book delves extensively into the SQA subject
matter and covers issues much beyond the classic boundaries of custom-
made software development by large established software houses. It dedi
cates significant attention to issues related to in-house software develop
ment, subcontractors, suppliers of readymade software, and other external
participants in the software development process, and also covers small
software projects.

b. An up-to-date wide range coverage of SQA and SQA-related topics.
The book provides comprehensive coverage on a wide range of SQA and
SQA-related subjects, and includes topics that are rarely discussed in
SQA texts. These include procedures and work instructions, tools and
supporting techniques such as templates and checklists, documentation
control, staff certification, and cost of software quality.

Preface xix

c. A comprehensive discussion of new technology and methodology
topics. The text covers extensively the current SQA topics, and discusses
the impact of new software development methodologies, computerized
SQA tools, and international SQA standards.

d. A thorough presentation of the SQA function. and its tasks Establishes
the SQA processes, planning, coordinating, follow-up, reviewing and
evaluation of SQA processes performed by software process teams and
others.

e. Special emphasis on the SQA plan and project plan topics. The pro
cesses of preparing and updating the plans and their implementation are
discussed in detail.

f. Special attention is given to SQA implementation issues.

g. Throughout the book a focus is placed on implementation issues in spe
cialized chapter sections, examples, implementation tips and topics for
discussion. Consistent structure in each chapter:

A mini case study at the beginning followed by subject matter that
includes examples, summary, selected bibliography, review questions,
and topics for discussion – the book is tailor-made for semester classes in
software engineering programs, and should prove to be very useful as a
textbook for many different courses.

h. An Instructor’s Guide

The author’s former book on SQA

The author’s former book Software Quality Assurance: From Theory to Imple
mentation, (Addison-Wesley, 2004) had a wide readership and was also adopted
as a textbook for a variety of courses in numerous faculties at higher education
institutes and professional training and hi-tech upskill courses around the world.

The current book differs from the previous (2004) book mainly in the follow
ing ways:

• The book’s topics themselves and their coverage have been updated
according to technological and methodological developments.

• New topics have been added to the already wide variety of subjects cov
ered by the 2004 book.

• The subject of SQA function has received substantially more attention, and
the book provides a thorough presentation of the SQA function and its
tasks.

• The structure of the book now follows the IEEE Std. 730: 2014 outline.

• The readability of the book has been improved, notably by the many mini
cases that open the chapters.

xx Preface

The book’s audience

The book is intended to address challenges faced by a wide audience interested in
software quality assurance. The five main audience types are as follows:

• University and college students

• Software engineering practitioners, naturally involved in quality issues of
software development and maintenance

• Practitioners of software quality assurance

• Vocational training course – students and lecturers

• Managers of software development departments, project managers, and
others

Special interest groups of readers

• Readers interested in the ISO 9000-3 Standard.
• Readers interested in the ASQ Certified software quality engineers
(CSQE) body of knowledge.

• Readers interested in the QAI (Quality Assurance Institute) CSQA CBOK
(Certified Software Quality Analyst common body of knowledge).

Readers of both interest groups will find comprehensive discussions on both
topics throughout the book.

The Instructor’s Guide

An Instructor’s Guide that includes PowerPoint presentations for each of the
book’s chapters has been prepared by the author.

The guide is available to instructors who have adopted the book for a course.
It can be obtained by sending an email to ieeeproposals@wiley.com

mailto:ieeeproposals@wiley.com

Acknowledgments

I would like to take this opportunity to express my heartfelt gratitude to all those
who helped me write this book. This book has benefited from practical experience
gained from consulting projects, and greatly from interactions with students
throughout numerous sessions and courses. I have not listed all the names here,
albeit I am grateful to each and every one of them.

I owe many thanks to my reviewers for their important comments that con
tributed greatly to this book.

Special thanks to Ms. Mary Hatcher, Editor at Wiley-IEEE Press for her
cooperation, guidance, and valuable advice throughout the writing and publishing
process. I would also like to express my appreciation and thanks to Victoria Brad
shaw, Vishnu Narayanan, and Melissa Yanuzzi at Wiley, as well as Abhishek
Sarkari at Thomson Digital typesetter, responsible for production of this book.

I wish to express my appreciation to Lisa Harel, who edited my drafts with
devotion and contributed substantially to their readability and accuracy.

Finally, I wish to express my gratitude to my family: my wife, Amira Galin,
who is a constant source of inspiration, has always encouraged scientific thinking
and is a role model, and my daughter, Michal, and my son, Yoav, for their contin
uous support, important comments on the book’s drafts, and for always believing.

xxi

About the Author

Dr. Daniel Galin received his BSc in Industrial and Management Engineering,
and his MSc and DSc in Operations Research from the Faculty of Industrial
Engineering and Management, the Technion – Israel Institute of Technology,
Haifa, Israel.

He acquired his expertise in SQA through many years of consulting, teach
ing, and writing in the field. His courses include software quality assurance,
analysis and design of information systems, and strategic information systems.
Dr. Galin has been a member of staff at the faculty of the Lander Institute in
Jerusalem and the Ruppin Academic Center, where he headed the Information
Systems Studies.

Dr. Galin published a book entitled Software Quality Assurance: From The
ory to Implementation (Addison-Wesley, 2004), and an earlier book on the same
topic, coauthored with Dr. Z. Bluvband, entitled Software Quality Assurance,
(Opus, 1995 – in Hebrew). Many of his papers have been published in English
language professional journals. Dr. Galin has also authored additional books in
Hebrew, which were published by Israel’s leading publishers.

xxiii

Guides for Special Groups of Readers

Among the readers interested in software quality assurance, one can distinguish
two special groups:

• Readers interested in the ASQ (American Society for Quality) CSQE BOK
E (Certified Software Quality Engineer body of knowledge).

• Readers interested in the QAI (Quality Assurance Institute) CSQA CBOK
(Certified Software Quality Analyst common body of knowledge).

Guide to the ASQ’s CSQE body of knowledge

Almost all the elements of the CSQE (Certified Software Quality Engineer) body
of knowledge, as outlined in ASQ (American Society for Quality), are available
in the book. The following table directs the reader to the relevant chapters and
sections.

CSQE BOK 2016 Table

CSQE BOK chapter CSQE BOK subject Book reference

I. General knowledge

II. Software quality
management

III. System and
software
engineering

A Benefits of software quality
engineering

B Ethical and legal compliance
C Standards and models
D Leadership skills
E Team skills

A Quality management system

B Methodologies
C Audits

A Lifecycle and process
models

B System architecture
C Requirement engineering
D Requirement management
E Software analysis, design

and development
F Maintenance management

Section 1.1, Chapter 18

—

Appendices A and B
Chapter 4
Chapter 23

Sections 6.1, 7.4, 20.3, and
20.5, Chapter 11
Chapters 9, 13, and 19
Sections 6.2, 12.4, and 15.5

Appendices .D.1, D.3, and
D.5
—

Chapter 2
Chapter 22
Chapter 2, Appendix D

Chapter 15
(continued)

xxv

xxvi Guides for Special Groups of Readers

(Continued)

CSQE BOK chapter CSQE BOK subject Book reference

IV. Project
management

V. Software metrics
and analysis

VI. Software
verification and
validation

VII. Software
configuration
management

A Planning, scheduling, and
deployment

B Tracking and controlling
C Risk management

A Process and product
measurement

B Analysis and reporting
techniques

A Theory
B Test planning and design

C Reviews and inspections
D Test execution documents

A Configuration infrastructure
B Configuration identification
C Configuration control and

status accounting
D Configuration audits
E Product release and

distribution

Sections 7.4–7.6

Section 6.2, Appendix C
Section 7.4

Chapters 16 and 21

—

Chapters 12 and 14
Chapter 14, Section 20.5
and 20.6
Chapter 13
Sections 14.7 and 14.8

Section 25.3
Section 25.2
Section 25.6

Section 25.9
Sections 25.3, 25.7, and 25.8

Guide to the QAI’s CSQA common body of knowledge

Almost all the elements of the CSQA (Certified Software Quality Analyst) com
mon body of knowledge, as outlined in the QAI (Quality Assurance Institute), are
available in the book. The following table directs the reader to the relevant chap
ters and sections.

CSQA CBOK 2012 Table

CSQA CBOK chapter CSQA CBOK subject	 Book reference

SC1. Quality principles 1.1 Vocabulary of quality Section1.1
and conceptions 1.2 The different views of quality Section 1.1,

Chapter 2
1.3	 Quality concepts and practices Section 1.3,
1.4	 Quality control and quality Section 1.6

assurance
1.5.	 Quality pioneers approach to quality —

Guides for Special Groups of Readers xxvii

(Continued)

CSQA CBOK chapter CSQA CBOK subject Book reference

SC2. Quality 2.1
leadership 2.2

2.3

SC3. Quality baseline 3.1
3.2

3.3

3.4

SC4. Quality assurance 4.1

4.2
4.3
4.4

SC5. Quality planning 5.1

5.2

5.3
5.4

SC6. Define, build, 6.1
implement, and 6.2
improve work
processes

SC7. Quality control 7.1
practices 7.2

7.3

7.4
7.5

Leadership concepts
Quality management infrastructure
Quality environment

Quality baseline concepts
Methods used for establishing
baselines
Models and assessment
fundamentals
Industry quality models

Establishing a function to promote
and manage quality
Quality tools
Process deployment
Internal auditing and quality
assurance

Planning concepts

Integrating business and quality
planning
Prerequisites to quality planning
The planning to mature IT work
processes

Process management concepts
Process management processes

Testing concepts
Developing testing methodologies
Verification and validation methods

Software change control
Defect management

Section 6.2
Chapter 4
Section 3.3

Section 25.2
Section 25.3

Appendices B.5
and B.6
Appendices A
and B

Sections 3.3, 4.5,
Chapter 6
Appendix C
—

Appendix C.5

Sections 7.2
and 7.4
—

Section 7.3
Section 7.4,
Appendices B.5.3
and B.6.3

Section 18.1
—

Section 14.1
Section 14.3
Sections 14.5
and 14.6
Chapter 22
Section 21.3

(continued)

xxviii Guides for Special Groups of Readers

(Continued)

CSQA CBOK chapter CSQA CBOK subject	 Book reference

SC8. Metrics and
measurements

SC9. Internal control
and security

SC10. Outsourcing,
COTS, and
contracting
quality

8.1 Measurement concepts	 Section 16.2.1
8.2	 Measurement in software Chapters 16

and 21
8.3	 Variation and process capability Appendices B.5.2

and B.6.3
8.4	 Risk management Section 7.3,

Appendix C.3
8.5	 Implementing and measurement Section 16.2.4

program and 21.7

9.1	 Principles and concepts of internal Section 6.1
control

9.2 Risk and internal control models	 —

9.3 Building internal controls	 Chapter 6
9.4 Building adequate security	 —

10.1 Quality and outside software	 Sections 20.3 and
20.4

10.2 Selecting COTS software	 Sections 20.5 and
20.6

10.3	 Selecting software developed by Section 20.5.1
outside organizations

10.4	 Contracting for software developed Sections 20.5.1
by outside organizations and 20.6.1

10.5	 Operating for software developed by Section 20.3 and
outside organizations 20.6.2

Part I

Introduction

The opening part of the book presents definitions and background subjects
related to software quality:

• SQA – definitions and concepts (Chapter 1)

• Software quality factors (attributes) (Chapter 2)

• SQA challenges (Chapter 3)

• Organization for assuring software quality (Chapter 4)

• An additional chapter, Chapter 5, presents “the world of SQA”, an
overview of the book.

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

1

Chapter 1

SQA – Definitions
and Concepts

1.1 Software quality and software quality
assurance – definitions

We shall Start by delving into our target topic of software quality and discuss
the following basic definitions:

• Software quality

• Software quality assurance (SQA)

• Software quality assurance – an expanded definition

• The objectives of SQA activities

The definition of software quality is shown in Frame 1.1.

Frame 1.1: Software quality – a definition

Source: IEEE Std. 730-2014 (IEEE, 2014)

Software quality is

The degree to which a software product meets established requirements; however,
quality depends upon the degree to which established requirements accurately repre
sent stakeholder needs, wants, and expectations.

Two aspects of software quality are presented in the above definition: one is
meeting the requirements, while the other is generating customer/stakeholder sat
isfaction. A high quality software product is expected to meet all written devel
opment requirements – whether defined fully before the development began, or
later in the course of the development process – and to meet the relevant regula
tions and professional conventions. Quality is also achieved through fulfillment
of stakeholder needs and wants.

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

3

4 Chapter 1 SQA – Definitions and Concepts

Software quality assurance – definition

One of the most commonly used definitions of SQA is proposed by the IEEE,
cited in Frame 1.2.

Frame 1.2: Software quality assurance – a definition

Source: IEEE Std. 730-2014

Software quality assurance is

A set of activities that define and assess the adequacy of software process to pro
vide evidence that establishes confidence that the software processes are appropri
ate for and produce software products of suitable quality for their intended
processes. A key attribute of SQA is the objectivity of the SQA function with
respect to the project. The SQA function may also be organizationally indepen
dent of the project, that is, free from technical, managerial, and financial pressures
from the project.

This definition may be characterized by the following:

• Plan and implement systematically. SQA is based on the planning and
implementation of a series of activities that are integrated into all stages of
the software development process. These activities are performed in order
to substantiate the client’s confidence that the software product will
meet all the technical requirements.

• Refer to the software development products keeping the specified techni
cal requirements and suitability for stake holder’s intended use. However,
it does not include quality of the operation services.

• Refer to the technical appropriateness of the development process. How
ever, important attributes of the development process, namely schedule
and budget keeping, are not included. It is noteworthy that:
a. The appropriateness of project schedule and budget is a major issue in

SQA as can be seen by requirement for performing contract reviews
and project planning.

b. The major part of project progress control procedures, given to the
issues of schedule and budget.

c. The close relationships that exist between software product quality,
project schedule, and project budget, where schedule and budget fail
ures result, almost always, in unavoidable software quality failure.

An extended SQA definition was created considering the importance of the
quality of the software operation and the important effect of schedule and budget
keeping on the software quality product.

The resulting expanded SQA definition is shown in Frame 1.3.

51.2 What Is a Software Product?

Frame 1.3: Software quality assurance – an expanded definition

Software quality assurance

A set of activities that define and assess the adequacy of software process to provide
evidence that establishes confidence that the software processes are appropriate for pro
ducing software products of suitable quality, for their intended processes, or for their
intended operation services and fulfils the requirements of schedule and budget keeping

The objectives of SQA activities

The objectives of SQA activities refer to the functional and managerial aspects
of software development and software maintenance. These objectives are listed
in Frame 1.4.

Frame 1.4: The objectives of SQA activities

The objectives of SQA activities are

• Ensuring an acceptable level of confidence that the software product and software
operation services will conform to functional technical requirements and be suitable
quality for its intended use.

• According to the extended SQA definition – ensuring an acceptable level of confi
dence that the software development and software operation process will conform
to scheduling and budgetary requirements.

• Initiating and managing activities to improve and increase the efficiency of software
development, software operation, and SQA activities. These activities yield
improvements to the prospects’ achieving of functional and managerial require
ments while reducing costs.

The other sections of the chapter deal with the following issues:

• What is a software product?

• The principles of SQA

• Software errors, faults, and failures

• The causes of software errors

• Software quality assurance versus software quality control (SQC)

• Software quality engineering and software engineering

1.2 What is a software product?

Intuitively, when we think about software, we imagine an accumulation of pro
gramming language instructions and statements, usually referred to as “code.”

6 Chapter 1 SQA – Definitions and Concepts

However, when referring to a professional software product, “code” by itself is
not sufficient. Software products need to undergo defect corrections, and other
maintenance services, which typically include user instruction, corrections, adap
tations, and improvements of the software product during their life cycle.
Accordingly, software products also comprise components, required to ensure
operational success of the services provided by the product. The ISO/IEC/IEEE
definition shown in Frame 1.5 lists these components.

Frame 1.5: Software product definition

Source: ISO/IEC/IEEE Std. 90003:2014 (ISO/IEC/IEEE, 2014)

Software product is

Set of computer programs, procedures, and possibly associated documentation and data.

The software product components are:

Computer programs “the code”. The computer programs activate the com
puter system to perform the required applications. The computer pro
grams include several types of code, such as source code, executable
code, test code, and so on.

Procedures. Procedures define the order and schedule within which the soft
ware or project programs are performed, the method for handling com
mon malfunctioning of software products, and so on.

Documentation. The purpose of the documentation is to instruct or support
new software product version developers, maintenance staff, and end
users of the software product. It includes the various design reports, test
reports, and user and software manuals, and so on.

Data necessary for operating the software system. The required data
include lists of codes and parameters, and also standard test data. The
purpose of the standard test data is to ascertain that no undesirable
changes in the code or software data have occurred during bug correc
tions and other software maintenance activities, and to support the detec
tion of causes for any malfunctioning.

To summarize the above discussion, the definition of a software product is
presented in Frame 1.6.

Frame 1.6: Software product definition

Software product is

A collection of components necessary to ensure proper operation, and efficient main
tenance during its life cycle. The components include (1) computer programs
(“code”), (2) documentation, (3) data necessary for its operation and maintenance
(including standard test), and (4) procedures.

71.4 Software Errors, Faults, and Failures

It should be noted that software quality assurance refers to the quality of all
components of the software product, namely, the code, documentation, neces
sary operating and standard test data, and procedures. Moreover, the composi
tion of software product components varies significantly according to the
software development tools and methodology.

1.3 The principles of SQA

Source: after ISO 9000:2000 (ISO, 2000)
The following principles guide organizations in their process to ensure the

software quality of their software products and services satisfies the needs and
wants of stakeholders.

• Customer focus. Organizations depend on their customers, and thus need
to understand their current and future needs, fulfill their requirements, and
achieve their satisfaction.

• Leadership. An organization’s leaders should create an internal envi
ronment in which employees are involved in achieving the quality
targets.

• Involvement of people-employees. The involvement of employees at all
levels enables benefiting from their capabilities to promote software qual
ity issues.

• Process approach. Managing activities and resources as processes results
in their improved efficiency.

• System approach to management. Process management achieves higher
effectiveness and efficiency through identification, analysis, and under
standing of interrelated processes.

• Continual improvement. Continual combined improvement of quality
and processes’ effectiveness and efficiency performance are a permanent
objective of the organization.

• Factual approach of decision-making. Decisions should be based on
data and information.

• Mutually beneficial supplier relationships. Understanding that an orga
nization’s supplier relationships based on mutual benefits contributes to
improved performance of the organization with regard to quality, effi
ciency, and effectiveness.

1.4 Software errors, faults, and failures

To better understand the essence of software errors, faults, and failures, let us
take a look at the performance of a deployed software system, as perceived by
customers.

8 Chapter 1 SQA – Definitions and Concepts

Example: The Simplex HR is a software system that has been on the market
for 7 years. Its software package currently serves about 1200 customers.

One of the staff from the Simplex HR Support Centre reported a number of
quotes from typical customer complaints:

1. “We have been using the Simplex HR software in our Human Resources
Department for about four years, and have never experienced a software
failure. We have recommended the Simplex HR to our colleagues.”

2. Immediately following this positive testimony, the same employee com
plained that he could not prepare a simple monthly report.

3. “I started to use the Simplex HR two months ago; we have experienced
so many failures that we are considering replacing the Simplex-HR soft
ware package.”

4. “We have been using the software package for almost five years, and
were very satisfied with its performance, until recently. During the last
few months, we suddenly found ourselves having to contend with sev
eral severe failures.”

Is such a variation in user experience relating to failures possible for the
very same software package?

Can a software package that successfully served an organization for a long
period of time “suddenly” change its nature (quality) and be full of bugs?

The answer to both these questions is YES, and the reason for this is rooted
in the very characteristics of software errors.

The origin of software failures lies in a software error made by a software
designer or programmer. An error may refer to a grammatical error in one or
more of the code lines, or a logical error in carrying out one or more of the
specification requirements.

A software fault is a software error that causes improper functioning of the
software in a specific application, and in rare cases, of the software in general.
However, not all software errors become software faults. In many other cases,
erroneous code lines will not affect the functionality of the software (software
faults are not caused). It should be noted that in some software fault cases, the
fault is corrected or “neutralized” by subsequent code lines.

Naturally, our interest lies mainly in software failures that disrupt the use of
the software. A software failure is a result of a software fault, hence our next
question.

Do all software faults inevitably cause software failures? Not necessarily: A
software fault becomes a software failure only when it is “activated” – that is
when the software user tries to apply the specific, faulty application. In many
cases, a software fault is in fact never activated. This is either due to the user’s
lack of interest in the specific application, or to the fact that the combination of
conditions necessary to activate the software fault never occurs. The following
two examples demonstrate the software fault – software failure relationships.

91.4 Software Errors, Faults, and Failures

Example 1 The Simplex HR software package

Let us return to the Simplex HR software package mentioned above.
The software package includes the following fault:

1. Overtime compensation – This function was defined to allow two levels of
daily overtime, where the user can specify the details and compensation per
each level. For instance, the first 2 hours’ overtime (level 1) should be paid
at a rate that is 25% more than the regular hourly rates, while each follow
ing additional hour (level 2) should be paid at a rate that is 50% more than
the regular hourly rates.

The programmer’s mistake caused the following fault: In cases when
two levels of overtime were reported, the higher compensation was paid for
overtime hours reported for both the levels.

Let us now examine the software failures experienced by two of Simplex
HR users:

a. A chain of pharmacies
Overtime pay – The policy of the chain was to implement overtime

for no more than 2 hours on top. The first level of overtime compen
sation was defined at 3 hours.

Thanks to its policy, the chain did not experience software failures
relating to the overtime features?

b. A regional school
Overtime pay – The school has lately introduced the Simplex HR

software package to support the management of its teacher staff. Cases
of overtime happen quite frequently, and are due to the replacement of
teachers on sick leave, personal leave of absence, and so on. The teach
ers’ compensation was 30% above their hourly regular rate for the first 2
hours (level 1), and 75% above their hourly rate per each additional hour
overtime (level 2). The failure related to overtime calculations was evi
dent from the first salary calculations. Teachers who worked relatively
long hours’ overtime (over 2 hours per time) in the past months were
both astonished and delighted to discover significantly higher overtime
compensation than anticipated.

It should be noted that once software failures are identified, Simplex HR
maintenance team is expected to correct them.

Example 2 The “Meteoro-X” meteorological equipment firmware

Meteoro-X is a computerized recording and transmission equipment unit
designed for meteorological stations that perform temperature and precipitation
measurements. The Meteoro-X is also equipped with three wind vanes for wind

10 Chapter 1 SQA – Definitions and Concepts

velocity measurements. Meteorological measurements are defined to be transmit
ted every 5 minutes to a meteorological center.

“Meteoro-X” firmware (software embedded in the product) includes the fol
lowing software fault:

Temperature threshold – The safety control specifications require shutting
down the equipment if its temperature rises above 50 degrees centigrade.

The programmer error that resulted in a software fault – he registered the
threshold as 150 degrees centigrade. This fault could only be noted, and conse
quently cause damage, when the equipment was subjected to temperatures meas
uring higher than 50 degrees.

Let us now examine the failure experienced by some of the Meteoro-X users:

a. Meteorological authorities of a southern European country
Temperature threshold – The Meteoro-X performed with no failures

for about 3 years, due to the fact that temperatures higher than 50 degrees
centigrade had not been recorded. It was only in the month of August of
the fourth year when temperatures reached 57 degrees centigrade that an
equipment disaster in one of the meteorological stations occurred.

b. North European Meteorological Board
Temperature threshold – The Meteoro-X had no failures due to the

fact that temperatures higher than 50 degrees centigrade were not recorded.

A review of the specification document and the relevant code modules
revealed the causes of the software faults, and enabled their correction.

These examples clearly demonstrate that at some time during the software
service, some software faults will become software failures. Other software faults,
and in some cases even a major portion of them, will remain hidden, invisible to
software users, only to be activated when specific conditions are in place.

Figure 1.1 illustrates the relationships between software errors, faults, and
failures; of the 17 software errors yielded in the development process, 8 become

Figure 1.1 Software errors, software faults, and software failures

1.5 The Causes of Software Errors 11

software faults, while only 3 of these faults become software failures. The cus
tomer’s software usage characteristics determine which software applications are
used, and thereby which faults become failures. In other words, the character
istics serve as a “failure filter.”

1.5 The causes of software errors

As software errors are the cause of poor software quality, it is important to
investigate their causes, in order to prevent them. It should be noted that these
errors are all human errors, made by system analysts, programmers, software
testers, documentation experts, managers, and sometimes clients and their repre
sentatives. Even in rare cases where software errors may be caused by the devel
opment environment: interpreters, wizards, automatic software generators, and
so on, it is reasonable to claim that these too are human errors, as someone is
responsible for the failure of the development. The causes of software errors can
be classified according to the stages of the software development process in
which they occur. A classification of error causes into nine classes is presented:

a. Faulty definition of requirements
A faulty definition of a requirement, usually prepared by the client,

is one of the main causes of software errors. The most common errors of
this type are:
• Erroneous definition of requirements
• Lack of essential requirements
• Incomplete requirements definition

For instance, one of the requirements of a municipality’s local tax
software system refers to discounts granted to various segments of the
population: senior citizens, parents of large families, and so on.
Unfortunately, a discount granted to students was not included in the
requirements document.

• Inclusion of unnecessary requirements, functions that are not expected
to be applied.

b. Client–developer communication failures
Misunderstandings resulting from defective client–developer com

munication are additional causes for errors that prevail in the early stages
of the development process:
• Misunderstanding of the client’s instructions in the requirement
document.

• Misunderstanding of the client’s requirement changes presented to the
developer in written form or verbally during the development period.

• Misunderstanding of the client’s responses to design issues presented
by the developer.

• Lack of attention to client messages relating to requirement changes,
and client responses to questions raised by the developer.

12 Chapter 1 SQA – Definitions and Concepts

c. Deliberate deviations from software requirements
In several circumstances, developers may deliberately deviate from

the documented requirements – an action that often causes software
errors. The most common situations of deliberate deviations are:
• Developer reuses software modules from previous project without suf
ficient analysis of the changes and adaptations needed to correctly ful
fill all relevant customer requirements.

• Developer decides to omit part of the required functions in an attempt
to better handle time or budget pressures.

• Developer-initiated improvements to the software introduced without
managerial or client approval. Improvements of this type frequently
disregard project requirements deemed minor by the developer. Such
“minor” requirements when ignored create changes that may eventu
ally cause software errors.

d. Logical design errors
Software errors can enter the system when professionals designing

the system; system architects, software engineers, system analysts, and
so on formulate the software requirements into design definitions. Typi
cal logical errors include:
• Definitions that represent software requirements by means of errone
ous algorithms.

• Process definitions that contain sequencing errors.
Example: The software requirements for a firm’s debt collection

system define a debt collection process that includes the following
requirement: Once a client, after receiving three successive notification
letters, does not pay his debt; the client details are to be reported to the
Sales Department Manager, who will decide whether to proceed to
the next stage, which is referral of the client to the Legal Department.
The system analyst defined the process incorrectly by stating that if no
receipt of payment is noted after sending three successive letters, the
client personal and debt details will be included on a list of clients
delivered to the Legal Department. The logical error was caused by
the analyst’s erroneous omission of the Sales Department phase from
the debt collection process.

• Erroneous definition of boundary conditions.
Example: The client requirements stated that a special discount

will be granted to customers who make more than three purchase
transactions in the same month. The analyst erroneously defined the
software process to state that the discount would be granted to those
who make three or more transactions in the same year.

• Omission of required software system states.
Example: Real-time computerized apparatus is required to respond

in a specific way to a combination of temperatures and pressures. The

1.5 The Causes of Software Errors 13

analyst did not define the required response when the temperature is
over 120 degrees centigrade, and the pressure between 6 and 8
atmospheres.

• Omission of definitions concerning reactions to illegal operation of the
software system.

Example: A computerized theatre ticketing system operated by the
customer has no human operator interface. The software system is
required to limit sales to 10 tickets per customer. Accordingly, any
request for the purchase of more than 10 tickets is “illegal.” In the
design, the analyst included a message stating that sales are limited to
10 tickets per customer, but did not define the system response to cases
when customers (who might not have properly understood the mes
sage) key in a number higher than 10. When performing this illegal
request, a system “crash” may be expected, as no computerized
response was defined for this illegal operation.

e. Coding errors
A wide range of reasons cause programmers to make coding

errors. These include misunderstanding the design documentation,
linguistic errors in programming languages, errors in the application
of CASE and other development tools, errors in data selection, and
so on.

f. Noncompliance with documentation and coding instructions
Almost every development unit has its own documentation and

coding standards that define the content, order and format of the doc
uments, and code developed by team members. For this purpose, the
unit develops and publicizes templates and coding instructions. Mem
bers of the development team or unit are required to comply with
these directions.

As it may be assumed that errors of noncompliance with instructions
do not usually become software faults, one may ask why cases of non
compliance with these instructions should be considered as software
errors. Even if the quality of the “noncomplying” software is acceptable,
difficulties will inevitably be presented when trying to understand it. In
other words, future handling of this software (by development and/or
maintenance teams) is expected to substantially increase the rate of errors
in the following situations:
• Team members, who need to coordinate their own code with code
modules developed by “noncomplying” team members, can be
expected to encounter more difficulties than usual when trying to
understand the software.

• Individuals replacing the “noncomplying” team member (who retired
or was promoted) will find it difficult to fully understand the “noncom
plying” code.

14 Chapter 1 SQA – Definitions and Concepts

• The design review team will find it more difficult to study a design
document prepared by a “noncomplying” team, and as a result will
probably misunderstand part of the design details.

• The test team will find it more difficult to test the “noncomplying”
module; consequently, their effectiveness is expected to be decreased,
leaving more errors undetected. Moreover, team members required to
correct the detected errors can be expected to encounter greater diffi
culties when doing so. They may leave some errors only partially cor
rected, and even introduce new errors as a result of their incomplete
grasp of the other team member’s work.

• Maintenance teams required to contend with “bugs” detected by users,
and to change or add to the existing software will face extra difficulties
when trying to understand the “noncomplying” software and its docu
mentation. This is expected to result in an excessive number of errors,
along with increased maintenance expenditures.

g. Shortcomings of the testing process
Shortcomings of the testing process affect the error rate by leaving a

greater number of errors undetected or uncorrected. These shortcomings
result from:
• Incomplete test plans failing to test all or some parts of the software,
application functions, and operational states of the system.

• Failure to document and report detected errors and faults.
• Failure to promptly correct detected software faults, as a result of
inappropriate indications of the reasons for the fault.

• Incomplete testing of software error corrections
• Incomplete corrections of detected errors due to negligence or time
pressures.

h. User interface and procedure errors
User interfaces direct users in areas such as the performance of input

and output activities, and data collection and processing. Procedures
direct users with respect to the sequence of activities required at each
step of the process. Procedures are of special importance in complex
software systems, where processing is conducted in several steps, each
of which may feed a variety of types of data and enable examination of
intermediate results. User interface and procedure errors may cause proc
essing failures even in cases of error-free design and coding. The follow
ing example presents a procedure error.

Example
“Eiffel,” a construction material store, has decided to grant a 5%

discount to major customers, who are billed monthly. The discount is
offered to customers whose total net purchases in the store in the preced
ing 12 months exceeded $1 million. The discount is effective for the last

1.5 The Causes of Software Errors 15

Table 1.1 “Eiffel” billing procedures – correct and incorrect discount procedures

Correct procedure Incorrect procedure

At the beginning of each month, Eiffel’s
information processing department:

1. Calculates the cumulative purchases for
the last 12 months (A) and the cumulative
returns for the last 12 months (B) for each
of its major customers.

2. Calculates the net cumulative purchases
(A�B) for each major customer for the
last 12 months in the store.

3. For major customers, whose (A�B) >
$1 million and B/(A�B) <10%, calculate
5% discount on their last month’s account.

At the end of each month, Eiffel’s
information processing department:

1. Calculates the cumulative purchases for
the last 12 months (A) and the cumula
tive returns for the last 12 months (B)
for each of its major customers.

2. For major customers, whose A >
$1 million, and (B/A) <10%, calculate
5% discount on their last month’s
account.

month’s account. Furthermore, the management decided to withdraw the
discount from customers who returned goods valued in excess of 10% of
their net purchases during the last 12 months.

Table 1.1 presents a comparison of correct and incorrect procedures
regarding application of the discount.

It is clear that under the incorrect procedure, customers, whose net
purchases (A�B) are equal or below $1 million and/or their percentage
of returned goods (B/A�B) is equal or exceeds 10%, may be mistakenly
found to be eligible for the 5% discount

i. Documentation errors
The documentation errors of concern to the development and main

tenance teams are those found in the design, software manuals, docu
ments, and in the documentation integrated into the body of the
software. These errors can cause additional errors in further stages of
development and during the maintenance period.

Another type of documentation errors that affect mainly users are errors in
the user manuals and in the “help” displays incorporated in the software. Typical
errors of this type are:

• Omission of software functions.

• Errors in the explanations and instructions given to users, resulting in
“dead ends” or incorrect applications.

• Listings of nonexisting software functions, usually functions planned in
the early stages of development but later dropped, but also functions that

16 Chapter 1 SQA – Definitions and Concepts

were active in previous versions of the software but cancelled in the cur
rent version.

Frame 1.7 summarizes the causes of software errors.

Frame 1.7: The nine causes of software errors

The nine causes of software errors are:

a. Faulty requirements definition

b. Client–developer communication failures

c. Deliberate deviations from software requirements

d. Logical design errors

e. Coding errors

f. Noncompliance with documentation and coding instructions

g. Shortcomings of the testing process

h. User interface and procedure errors

i. Documentation errors

Additional approaches to classification of software defects and their causes are
presented by Ko and Myers (2005) and Thung et al. (2012).

1.6 Software quality assurance versus software
quality control

Two terms are constantly repeated within the context of software quality: “soft
ware quality control” and “software quality assurance.” Are they synonymous?
How are they related?

Definitions of software quality assurance are already presented in Frames
1.2 and 1.3. In order to compare the two terms, definitions for SQC are pre
sented in Frame 1.8.

Frame 1.8: Software quality control – the IEEE definitions

Source: IEEE Std. 610.12-1990 (IEEE, 1990)

Software quality control is

1. A set of activities designed to evaluate the quality of a developed or manufactured
product. Contrast with software quality assurance.

2. The process of verifying one’s own work or that of coworker.

SQA and SQC represent two distinct concepts.

1.7 Software Quality Engineering and Software Engineering 17

Software quality control relates to the activities needed to evaluate the
quality of a final software product, with the main objective of withholding any
product that does not qualify. In contrast, the main objective of software quality
assurance is to minimize the cost of ensuring the quality of a software product
with a variety of infrastructure activities and additional activities performed
throughout the software development and maintenance processes/stages. These
activities are aimed at preventing the causes of errors, and at detecting and cor
recting errors that may have occurred at the earliest possible stage, thus bringing
the quality of the software product to an acceptable level. As a result, quality
assurance activities reduce substantially the probability that software products
will not qualify and, at the same time, in most cases, reduce the costs of ensuring
quality.

In summary,

1. SQC and SQA activities serve different objectives.

2. SQC activities are only a part of the total range of SQA activities.

1.7 Software quality engineering and
software engineering

The definition of software engineering, according to the IEEE, is presented in
Frame 1.9.

Frame 1.9: Software engineering – the IEEE definition

Source: IEEE Std. 610.12-1990

Software engineering is

The application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software, that is, the application of engineering to
software.

The characteristics of software engineering, especially those of the system
atic, disciplined, and quantitative approach at its core, make it a good infra
structure for achieving effective and efficient software development and
maintenance objectives. The methodologies and tools applied by software engi
neering determine the process of transforming a software requirement document
into a software product, and also include the performance of quality assurance
activities. Software quality engineering employs the development of quality
assurance methodologies, procedures, and tools together with methods for fol
low-up of quality assurance activities performed by software development and
maintenance teams.

18 Chapter 1 SQA – Definitions and Concepts

Software quality engineering and software engineering have a great number
of topics in common. Albeit the two groups view these topics from different
standpoints – respective to their profession, their shared knowledge and coopera
tion are the basis for successful software development.

An indication of the extent of shared topics may be perceived when compar
ing the software engineering body of knowledge (SWEBOK) (Bourque and
Fairley, 2014) and the certified software quality engineer body of knowledge
(CSQEBOK) (ASQ, 2016). A detailed discussion of an earlier version of the
CSQEBOK was compiled by Westfall (2009).

Summary

1. Definitions of software, software quality, and software quality
assurance
Software, from the SQA perspective, is the combination of computer

programs (“code”), procedures, documentation, and data necessary
for operating the software system. The combination of all four com
ponents is needed to ensure the quality of the development process, as
well to ensure quality during extended maintenance periods.

Software quality, according to Pressman’s definition, is the degree
of conformance to specific functional requirements, specified soft
ware quality standards, and Good Software Engineering Practices
(GSEP).

Software quality assurance. This book adopts an expanded defini
tion of the widely accepted IEEE definition of software quality
assurance. Accordingly, software quality assurance is the systemat
ically planned set of actions necessary to provide adequate confi
dence that a software development, or maintenance process,
conforms to established functional technical requirements, and also
to the managerial requirements of keeping to schedule and operat
ing within budget.

2. The distinction between software errors, software faults, and soft
ware failures
Software errors are sections of the code that are partially or totally

incorrect as a result of a grammatical, logical, or other type of mistake
made by a system analyst, programmer, or other member of the soft
ware development team.

Software faults are software errors that cause the incorrect functioning
of the software during one of its specific applications.

Software faults become software failures only when they are “acti
vated,” that is, when a user tries to apply the specific software section
that is faulty. Thus, the root of any software failure is a software error.

Summary 19

3. The various causes of software errors
There are nine causes of software errors: (1) faulty requirements

definition, (2) client–developer communication failures, (3) deliberate
deviations from software requirements, (4) logical design errors,
(5) coding errors, (6) noncompliance with documentation or coding
instructions, (7) shortcomings of the testing process, (8) procedure
errors, and (9) documentation errors. It should be emphasized that all
errors are human errors, and are made by system analysts, program
mers, software testers, documentation experts, and even clients and
their representatives.

4. The objectives of software quality assurance activities
The objectives of SQA activities for software development and

maintenance are:
1. Ensuring, with acceptable levels of confidence, conformance to func

tional technical requirements.
2. Ensuring, with acceptable levels of confidence, conformance to mana

gerial requirements of scheduling and budgets.
3. Initiating and managing activities for the improvement and greater

efficiency of software development and SQA activities.

5. The differences between software quality assurance and software
quality control

Software quality control is a set of activities carried out with the
main objective of withholding software products from delivery to the
client if they do not qualify. In contrast, the objective of software
quality assurance is to minimize the costs of software quality by
introducing a variety of infrastructure activities and other activities
throughout the development and maintenance processes. These activi
ties are performed in all stages of development to eliminate causes of
errors, and detect and correct errors in the early stages of software
development. As a result, quality assurance substantially reduces the
rate of nonqualifying products.

6. The relationship between software quality assurance and software
engineering
Software engineering is the application of a systematic, disciplined,

quantifiable approach to the development, operation, and maintenance
of software.

Software quality assurance practices are intertwined with the soft
ware engineering process in several ways: (1) SQA considera
tions affect the choice of software development tools and
procedures. (2) SQA activities, such as design reviews and soft
ware tests, are incorporated in the software development activi
ties. (3) SQA participation in the development of the software

20 Chapter 1 SQA – Definitions and Concepts

development infrastructure of procedures, staff training, configu
ration management, and so on.

Selected bibliography

ASQ (2016) The Certified Software Quality Engineering Body of Knowledge (CSQE BoK), American
Society for Quality.

Bourque P. and Fairley R. (Eds.) (2014) Guide to the Software Engineering Body of Knowledge
SWEBOK, Ver. 3.0, IEEE and IEEE Computer Society Press, Piscataway, NJ.

IEEE (1990) IEEE Std. 610.12-1990-IEEE Standard Glossary of Software Engineering Terminology,
Corrected Edition, in IEEE, IEEE Standards Collection, The Institute of Electrical and Electronics
Engineering, New York.

IEEE (2014) IEEE Std. 730-2014 Software Quality Assurance, The IEEE Computer Society, IEEE,
New York.

ISO (2000) ISO Std. 9000:2000 – Quality Management Systems – Fundamental and Vocabulary,
International Organization for Standardization (ISO), Geneva, Switzerland.

ISO/IEC/IEEE (2014) ISO/IEC 90003:2014 – Software Engineering – Guidelines for the Applica
tion of ISO 9001:2008 to Computer Software, International Organization for Standardization
(ISO), Geneva, Switzerland.

Ko, A. J. and Myers, B. A. (2005) A framework and methodology for studying the causes of
software errors in programming systems, Journal of Visual Languages and Computing,
Vol. 16, pp. 41–84.

Thung F., Lo, D., Jiang, L. (2012) Automatic defect categorization, in Proceedings of the 19th Work
ing Conference on Reverse Engineering, pp. 205–214.

Westfall L. (2009) The Certified Software Quality Engineer Handbook, ASQ Quality Press,
Milwaukee, WI.

Review questions

1.1 A software product comprises four main components.

a. List the four components of a software system.

b. How does the quality of each component contribute to the quality of the devel
oped software?

c. How does the quality of each component contribute to the quality of the software
maintenance?

1.2 Refer to the following terms: software error, software fault, and software failure.

a. Define the terms.

b. Explain the differences between these undesirable software issues.

c. Suggest a case where in a software package serving 300 clients, a new software
failure (“bug”) appears for the first time 6 years after the software package was
first sold to the public.

Topics for Discussion 21

1.3 Consider the principles of SQA

a. Explain in your own words the importance of the 6th principle.

b. How can the implementation of the 8th principle contribute to the quality of soft
ware product?

1.4 a. List and briefly describe the various causes of software errors.

b. Classify the causes of errors according to the group/s responsible for the error –
the client staff, the system analysts, the programmers, the testing staff – or is the
responsibility a shared one, belonging to more than one group?

1.5 What are the differences between the IEEE definition of SQA and the expanded defi
nition discussed in this book?

1.6 According to the IEEE definition of SQC, SQC is in contrast with SQA.

a. In what respect does SQC vary from SQA?

b. In what way can SQC be considered part of SQA?

Topics for discussion

1.1 A programmer claims that as only a small proportion of software errors turn into
software failures, it is unnecessary to make substantial investments in the prevention
and elimination of software errors.

a. Do you agree with this view?

b. Discuss the outcome of accepting this view.

1.2 George Wise is an exceptional programmer. Testing his software modules reveals
very few errors, much less than the team’s average. He is very rarely late in
completing a task. George always finds original ways to solve programming
challenges, and uses an original, individual version of the coding style. He dis
likes preparing the required documentation, and rarely does so according to the
team’s templates.

A day after completing a challenging task, on time, he was called to the office
of the department’s chief software engineer. Instead of being praised for his accom
plishments (as he expected), he was warned by the company’s chief software engi
neer that he would be fired, unless he began to fully comply with the team’s coding
and documentation instructions.

a. Do you agree with the position taken by the department’s chief software engineer?

b. If you agree, could you suggest why his/her position was so decisive?

c. Explain how George’s behavior could cause software errors.

22 Chapter 1 SQA – Definitions and Concepts

1.3 The claim, according to the expanded definition of SQA, that a development team
should invest its efforts equally for complying with project requirements as they
invest in keeping project schedule and budget supports client satisfaction.

a. Do you agree with this claim?

b. If yes, provide arguments to substantiate your position.

1.4 Five reasons for shortcomings of the testing process are mentioned in Section 1.5.

a. Explain these five reasons in your own words.

b. Could you suggest circumstances of a testing process which could cause these
shortcomings?

Chapter 2

Software Quality
Factors (Attributes)

2.1 Complaints from the City Computer Club
members – an introductory mini case

The City Computer Club was established by municipal corporations and public
services’ IT department managers. The discussion topic of club meeting was
implementation experiences of members in their organizations.

Below is a transcription of part of the meeting.

• “Our new sales information system seems okay. The invoices and inven
tory records are correct, the discounts granted to our clients follow our
very complicated discount policy precisely, but our new sales information
system frequently fails. Recently, it has been failing at least twice a day,
and each time for at least twenty minutes. Yesterday, it took an hour and
half for us to get back to work . . . Just imagine how embarrassing this is
to store managers . . . and Softbest, the software house that developed our
computerized sales system, does not accept responsibility”

• “Just a year ago, we launched our successful new product – RD-1, a
police radar detector. The RD-1 firmware embedded in the product
seemed to be the reason for its success. But, when we began planning the
development of the European version of the product, RD-E1, we found
out that the RD-1 firmware had only been partially documented, and the
code, mostly written with no adherence to the company’s work instruc
tions. Consequently, the development department had to develop a new
firmware, as almost no parts of the RD-1 design and programming could
be reused.”

• “Believe it or not, our software package for schoolteachers “Blackboard”,
launched just three months ago, is already installed in 187 schools. The
development team just returned from a week in Hawaii - their vacation

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

23

24 Chapter 2 Software Quality Factors (Attributes)

bonus. But we have suddenly started to receive daily complaints from the
“Blackboard” maintenance team. They claim that the lack of failure detec
tion features in the software, in addition to the poor programmer’s man
ual, have caused them to invest more time to deal with bugs and minor
software changes, than that agreed upon in the purchasing contracts with
clients.”

• “The new version of our loan contract software is really accurate. We
have already processed 1,200 customer requests, and checked each of
the output contracts - no errors were found. But we did face a severe
unexpected problem – training a new staff member to use this software
takes about three weeks. This is a real problem in customer depart
ments suffering from high employee turnover...The project team claims
that as they were not required to include software user training as a
requirement to be considered during the software development period,
an additional two to three months of work will be required to solve the
problem.”

There are a number of characteristics common to all these “buts”:

• The software projects satisfactorily fulfilled the basic requirements to per
form the correct calculations (correct inventory figures, correct average
class scores, correct loan interests, etc.).

Apparently the software packages successfully fulfilled the correct
ness requirements.

• The software projects suffered from poor performance in important areas
such as software maintenance, software reliability, software reuse, and
user training.

Apparently, the software packages fail to fulfill the maintainability,
training usability, reliability, and reusability requirements.

• The common cause, for poor performance of the software projects devel
oped in these areas, was a lack in essential parts of the project require
ments. These parts should have been designated to cover important
aspects of software functionality.

2.2 The need for comprehensive software
quality requirements

The examples already shown represent difficulties faced by users, developers,
and maintenance staff. All of which could have been avoided if the relevant
requirement had been included in the requirement document. This leads us to
understand the imperative need for a comprehensive requirements set that
covers all attributes of software and aspects of its use needed throughout the
software life cycle. Software products that fulfill such a comprehensive

2.3 McCall’s Classic Model for Software Quality Factors 25

requirements set, including aspects of usability, reusability, maintainability,
and so forth, are expected to achieve increased user satisfaction, and higher
efficiency of development and maintenance teams. In other words, such a
requirements set will ensure the improvement of software performance records
and user satisfaction.

When analyzing typical examples of software quality requirements, one
cannot but note their multidimensional nature. The great variety of attributes/
characteristics of software quality defined in software requirement documents
can be classified into content groups; these groups are also termed software
quality factors. We expect the team responsible for defining the requirements
of a software system to examine the needs and to define specific requirements
that belong to each software quality factor. Software requirement documents are
expected to differ in the degree of emphasis placed on various quality factors,
hence the differences between software projects and the expectation that not all
factors are universally included in all requirement documents.

This chapter is, therefore, dedicated to the review of the wide spectrum of
software quality factors that represent aspects of software use that may be opera
tive throughout the life cycle of software systems. Over the last four decades,
groups of these software quality factors have been presented in several software
quality models. Several criteria (subfactors/subcharacteristics) for each of these
factors have been suggested. These criteria/subfactors are expected to be measur
able, and to support the reviewing, testing, and quality measurement of software
products with respect to these factors.

The following sections deal with:

• McCall’s classic model for software quality factors

• The ISO/IEC 25010 model and other alternative models of software qual
ity factors

• Software compliance with quality factors.

2.3 McCall’s classic model for software quality factors

Several models of software quality factors and their classification to factor cate
gories have been suggested over the years. The classic model of software quality
factors, suggested by McCall, consists of 11 factors (McCall et al. 1977). The
McCall factor model, despite decades of “maturation,” continues to provide a
practical, up-to-date method for classifying software quality requirements. Sub
sequent alternative models and factors, additional to McCall’s factors, will be
discussed later in this chapter.

McCall’s factor model classifies all software requirements into 11 software
quality factors. The 11 factors are grouped into three categories: product opera
tion, product revision, and product transition. McCall’s software quality model is
presented in Frame 2.1

26 Chapter 2 Software Quality Factors (Attributes)

Frame 2.1: McCall’s software quality factors model

McCall’s software quality factors model

Product operation factors: Correctness
Reliability
Efficiency
Integrity
Usability

Product revision factors: Maintainability
Flexibility
Testability

Product transition factors: Portability
Reusability
Interoperability

McCall’s model and its categories are illustrated in McCall’s model of soft
ware quality factors tree (see Figure 2.1).

The next three sections are dedicated to a detailed description of the soft
ware quality factors included in each of McCall’s categories.

Figure 2.1 McCall’s software quality factor model tree

2.3 McCall’s Classic Model for Software Quality Factors 27

2.3.1 McCall’s product operation software
quality factors

According to McCall’s model, five software quality factors are included in the
product operation category, all of which deal with requirements that directly
affect the daily operation of the software. These factors are:

Correctness

Correctness requirements are related to the outputs of software systems, such as
a query display of a customer’s balance in the sales accounting information sys
tem or the air supply as a function of temperature specified by the firmware of an
industrial control unit. A specification is required for each output (system func
tion). This output specification is usually multidimensional; some common
dimensions are:

• The required accuracy of the output. This may be adversely affected by
inaccurate data or inaccurate calculations. For example, the probability of
nonaccurate inventory information, containing one or more mistakes, will
not exceed 1%.

• The required completeness of the output information. This may be
adversely affected by incomplete data. For example, the probability of
missing data from a club member’s record: the number of his cellular
phone or home address will not exceed 1%.

• The required up-to-datedness of information (defined according to the fre
quency of data updating). In other words, the up-to-datedness defines the
time between the event and its recording and actual usage by the software
system. For example, it is required that information regarding club mem
ber payments be up dated within one working day (with probability
99.5%).

• The required response time, defined as the time needed to obtain the
requested information, or as the requested reaction time of the firmware
installed in a computerized apparatus. Two examples: (1) Response time
for queries regarding the inventory item will be on average less than 2
seconds; (2) The reaction time to open a valve for a cooling agent flow,
when the liquid temperature rises above 90 degrees centigrade, will be
less than 10 seconds.

• The standards for coding and documenting the software system.

Reliability

Reliability requirements deal with failures to provide service. They determine
the maximum allowed software system failure rate, the maximum allowed per
centage of a software system’s downtime, and the maximum allowed recovery

28 Chapter 2 Software Quality Factors (Attributes)

times. The requirements can refer to the entire system or to one or more of its
separate functions.

Examples

1.	 The failure frequency of a heart-monitoring unit operating in a hospital’s
intensive care ward is required to be less than one in 20 years. Its heart
attack detection function is required to have a failure rate of less than one
per 100 years.

2.	 One requirement of the new software system to be installed in the main
branch of the Independence Bank, which operates 120 branches, is that
on average, it will not fail more than 1 time per 12 months during the
bank’s office hours. In addition, the probability that the off-time (time
needed for repair and recovery of all the bank’s services) be more than
10 minutes is required to be less than 0.5%.

Efficiency

Efficiency requirements deal with the hardware resources needed to perform all
the functions of the software system in conformance with all other requirements.
The main hardware resources to be considered are the computer’s processing
capabilities (measured in Million Instructions Per Second (MIPS), megahertz –

million cycles per second, etc.), its data storage capability in terms of memory
and disk capacity (measured in gigabytes (GBs), terabytes (TBs), etc.), and the
data communication capability of the communication lines (usually measured in
megabits per second (MBPSs), and gigabits per second (GBPSs). These will all
be applied to a developed software system or the firmware.

Another type of efficiency requirement deals with the time lapse between
recharging the system’s portable units such as information system units located
in portable computers and meteorological units placed outdoors.

Examples

1.	 A chain of stores is considering two alternative bids for a software sys
tem. Both bids consist of placing the same type of computers in the
chain’s headquarters and its branches. The bids differ solely in the stor
age volume: 2 TB per branch computer, and 20 TB in the head office
computer (Bid A), 1 TB per branch computer and 10 GB in the head
office computer (Bid B). There is also a difference in the number of
communication lines required: Bid A comprises three communication
lines of 28.8 MBPS between each branch and the head office, whereas
Bid B is based on two communication lines of the same capacity
between each branch and the head office. In this case, it is evident that
Bid B is more efficient than Bid A because fewer hardware resources are
required.

2.3 McCall’s Classic Model for Software Quality Factors 29

2.	 An outdoor meteorological unit. The system performs measurements
once per hour, logs the results, and transmits the results once a day to
the meteorological center by means of wireless communication. The unit
is equipped with a 1,000 milliampere hour cell, which is capable of sup
plying the power requirements of the unit for at least 30 days. An alter
native meteorological unit of higher efficiency is able to cope with all the
requirements with a 500 milliampere unit.

Integrity

Integrity requirements deal with the software system security, that is, require
ments to prevent unauthorized access, to distinguish between the majority of
personnel only allowed to see the information (read only permit), and a limited
group who will be allowed to add and change data (write permit), and so forth.
Integrity requirements are defined to cope with risks of “nonfriendly” unautho
rized attempts to damage the software system and its performance.

Example
The Engineering Department of a local municipality operates a geographic

information system (GIS). The department is planning to allow citizens access to
its GIS files through the Internet. The software requirements include: the possi
bility to view and copy information, but not to make changes to maps of the
citizens’ own assets, and neither to those of any other asset in the municipality
area (“read only” permit). Access will be denied to plans in progress, and to
those maps defined by the department head as having “limited access.”

Usability

Usability requirements deal with the scope of staff resources needed to train a
new employee and to operate the software system. The usability requirements
relate to the (a) operation usability, the productivity of the user, that is, the aver
age number of transactions performed per hour, and (b) training usability, the
average time spent training a new employee.

Example
The software usability requirements for the new help desk system initiated by

a home appliance manufacturing company lists the following specification require
ments: (1) A staff member should be able to handle at least 60 service calls a day.
(2) Training a new employee will take no more than 2 days (16 training hours), at
the end of which the trainee will be able to handle 45 service calls a day.

2.3.2 Product revision software quality factors

According to the McCall model of software quality factors, three quality factors
comprise the product revision category. These factors deal with those

30 Chapter 2 Software Quality Factors (Attributes)

requirements that affect the complete range of software maintenance activities:
corrective maintenance (correction of software faults and failures), adaptive
maintenance (adapting the current software to additional circumstances and cus
tomers without changing the software), and perfective maintenance (enhance
ment and improvement of existing software with new applications with respect
to relevant developments of products, services, and new government regulations
and their impact etc.). These factors are:

Maintainability

Maintainability requirements determine the efforts needed by users and mainte
nance personnel to identify the reasons of a software failure, to correct the fail
ure, and to verify the success of the correction. This factor’s requirements refer
to the modular structure of software, the internal program documentation, and
the programmer’s manual, among other items.

Example
Typical maintainability requirements: (a) The size of a software module will

not exceed 30 statements. (b) The programming will adhere to the company cod
ing standards and guidelines.

Flexibility

The flexibility factor deals with the capabilities and efforts required to support
adaptive maintenance activities. These capabilities include the resources (i.e., in
man-days) required to adapt a software package to a variety of customers, with a
variating extent of activities, and a different range of products, but of the same
trade. No software changes are needed in these cases as the package is planned
for flexibility. This factor’s requirements also support perfective maintenance
activities, such as changes and additions to the software in order to improve its
service, and to adapt it to changes in the firm’s technical or commercial
environment.

Example
Teacher Support Software (TSS) is a software product that deals with the

documentation of student achievements, calculation of final grades, printing of
term grade statements, and automatic printing of warning letters to parents of
failing pupils. The software specifications included the following flexibility
requirements: the software should be suitable for teachers of all subjects and
school levels (elementary, middle, and high school). Another flexibility require
ment: nonprofessionals should be able to use TSS to create new types of reports
according to the schoolmaster’s requirements and/or demands of the city’s
department of education.

2.3 McCall’s Classic Model for Software Quality Factors 31

Testability

Testability requirements deal with the testing process of a software system, as well
as with its operation. Testability requirements for the ease of testing are related to
special features in the programs that help the tester, for instance by providing pre
defined intermediate results and log files. Testability requirements related to soft
ware operation include automatic diagnostics performed by the software system
prior to operating the system, to find out whether all components of the software
system are in working order and to obtain a report on the detected faults. Another
type of these requirements deals with automatic diagnostic checks to be applied
by the maintenance technicians to detect the causes of software failures.

Example
An industrial computerized control unit is programmed to calculate various

measures of the production status, report the performance level of the machin
ery, and operate a warning signal in predefined situations. One testability
requirement demanded was to develop a set of standard test data, including the
expected correct reactions of the system in each case. This standard test data is
to be run every morning before production begins, to verify that the computer
ized unit responds properly.

2.3.3 Product transition software quality factors

According to McCall, three quality factors are included in the product transition
category, a category that pertains to the adaptation of software to other environ
ments, and its interaction with other software systems.

Portability

Portability requirements relate to the adaptation of a software system to other
environments consisting of different hardware, different operating systems, and
so forth. These requirements make it possible to widen the market for the soft
ware product and enable using the same basic software in diverse situations: in
different hardware and operating systems.

Example
A software package designed and programmed to operate in a Windows

2007 environment is required to allow a low cost transfer to Linux environments.

Reusability

Reusability requirements deal with “two-directional” requirements. One direc
tion is the use of a software module, or an entire application, taken from an
existing software product in a new software project currently being developed.

32 Chapter 2 Software Quality Factors (Attributes)

The existing software module or entire application may be software former
developed by the organization, or open source software, or purchased software.
The other direction relates to a requirement to develop modules or a group of
modules, or even an entire project, in a way to enable their reuse in future proj
ects. Reused software is expected to be tested by its developers, and already
corrected according to failures experienced by former users. In other words, it is
assumed that most of the software faults have already been detected by quality
assurance activities performed by the original software developers, and any fail
ures identified by users of the software, corrected accordingly. Thus, the reuse of
software is expected to save development resources, shorten the development
schedule, and provide higher quality software modules.

Example
A software development unit has been required to develop a software sys

tem for the operation and control of a hotel swimming pool serving hotel guests
and members of a pool club. Although the management did not define reusabil
ity requirements, the unit’s team leader, after analyzing the information process
ing requirements of the hotel’s spa, decided to add the following reusability
requirement: A list of the software modules for the pool project should be
designed and programmed in a way that will allow its reuse in the spa’s future
software system planned to be developed next year. These modules include:

• The entrance checks of membership cards module

• The club members visit recording module

• The pool’s restaurant billing module

• The processing of membership renewal payments

Interoperability

Interoperability requirements focus on creating interfaces with other software
systems or equipment firmware (for example, the firmware of the production
machinery and testing equipment interfaces with the production control soft
ware). Interoperability requirements sometimes specify the name(s) of the soft
ware or firmware to which an interface is required. They may also specify the
accepted standard output structure in a specific industry or application area.

Example
The firmware of a medical laboratory’s equipment is required to process

its results (output) according to a standard data structure that can then serve
as the input for a number of standard medical laboratory information sys
tems. Another interoperability requirement at the same lab: the laboratory
information system is required to interface with a medical clinic information
system, in order to transmit patients’ test results automatically to the physi
cian’s clinic.

2.4 The ISO/IEC 25010 Model and Other Alternative Models 33

2.4 The ISO/IEC 25010 model and other alternative
models of software quality factors

Several software quality factor models, alternatives to the classic McCall’s
model, have been developed during the last four decades. Some of these models
are Boehm’s model (Boehm et al., 1978), FURPS model (first proposed by
Grady and Caswell, 1987), Evans and Marciniak’s model (Evans and Marciniak,
1987), Deutsch and Willis’s model (Deutsch and Willis, 1988), Dromey’s model
(Dromey, 1995), GEOQUAMO model (developed by Georgiadou, 2003), ISO/
IEC 25010:2011 (ISO/IEC, 2011), and AOSQUAMO model (2012) proposed
by Kumar (2012).

2.4.1 The ISO/IEC 25010 model

The ISO/IEC 25010:2011 model is of significant importance. It was developed
by a joint ISO/IEC international professional team. The ISO/IEC 25010:2011
product quality model is composed of eight factors, and shows a substantial sim
ilarity to McCall’s model, as four out of its eight factors are included in
McCall’s model. The factors (characteristics) that compose the ISO/IEC 25010
quality model are presented in Frame 2.2.

Frame 2.2: The ISO/IEC 25010 quality model

Source: The ISO/IEC 25010:2011

The ISO/IEC 25010 quality model

• Functional suitability

• Performance efficiency

• Compatibility

• Usability

• Reliability

• Security

• Maintainability

• Portability

The ISO/IEC 25010:2011 standard replaced the ISO/IEC IS 9126-1:2001 (ISO/
IEC, 2001) Software engineering - Product quality – Part 1: Quality model. The
ISO/IEC 9126 standard and its three technical reports were used as a basis for the
development of software metrics for COTS components (Carvallo and Franch,
2006), e-Government services (Quirchmayr et al., 2007), and for other specific areas.

The next paragraphs include descriptions of the software quality factors of
the ISO/IEC 25010:2011 (not included in McCall’s model).

34 Chapter 2 Software Quality Factors (Attributes)

Functional suitability

Functional suitability is the capability to fulfill the functions needed by the cus
tomer, stated or implied (not necessarily the specified requirement). It covers
a wide variety of aspects of software use, including the accurate and complete
production of needed results. A significant similarity exists between the func
tionality factor and the correctness, integrity and interoperability factors of
McCall’s model.

Performance efficiency

Performance. Software performance efficiency relates to the amount of hard
ware resources required to fulfill the software system tasks. The lower the
amount of hardware resources, the higher the performance. A significant similar
ity exists between the performance factor and the efficiency factor of McCall’s
model.

Compatibility

Compatibility refers to the capability of a software system or component to (a)
exchange information with other software systems or components and (b) per
form other system required functions, sharing its hardware system and software
environment

Security

Security relates to the capability of a system product to protect the software
system, data stores, and information produced from the reading, modification,
or destruction by unauthorized persons or systems. To accomplish this, the
system controls access to it through levels of authorization to persons and
software products, and denies unauthorized ones. A significant similarity
exists between the security factor and the integrity factor described in
McCall’s model.

2.4.2 Alternative software quality models

A great variety of software quality factors were presented in the alternative qual
ity models. While including part of the software quality factors of McCall’s and
the ISO/IEC 25010:2011 models, the alternative models also suggest additional
factors. A total of 14 additional factors were proposed by these alternative mod
els. Most of these factors are shared by two or more of the alternative models.
It should be noted that some of the additional factors overlap factors of McCall’s
model, as well as each other. The list of additional factors is presented in alpha
betical order in Frame 2.3

2.4 The ISO/IEC 25010 Model and Other Alternative Models 35

Frame 2.3: Software quality factors of alternative quality models
(For factors not included in McCall’s and ISO/IEC 25010:2011 product quality models.)

Additional software quality factors
Additional to McCall’s factors

1 Effectiveness
2 Evolvability
3 Expandability
4 Extensibility
5 Human Engineering
6 Manageability
7 Modifiability
8 Productivity
9 Safety

10 Satisfaction
11 Supportability
12 Survivability
13 Understandability
14 Verifiability

The additional factors are explained and described as follows:

Effectiveness. Effectiveness relates to successful completion of tasks,
including schedule and error frequency considerations.

Evolvability. Evolvability refers to efforts required to fulfill future require
ments for software system changes, and to adapt the system to technolog
ical developments and changes in the operational environment. A
significant similarity exists between the evolvability factor and McCall’s
flexibility factor.

Expandability. Expandability requirements refer to the future efforts
required to serve larger populations, improve service, or add new appli
cations, in order to improve system performance. The majority of these
requirements are covered by the evolvability quality requirement, as well
as by McCall’s flexibility factor.

Extensibility. Extensibility refers to efforts required to fulfill future require
ments to enhance the software product to meet new requirements, result
ing from economic and technological developments. A significant
similarity exists between the evolvability factor and McCall’s flexibility
factor.

Human Engineering. The human engineering factor deals with the “man–
machine” user interface with the application or software, the ease to
understand and work with the application, the ease to perform any com
munication involved with working with the application.

36 Chapter 2 Software Quality Factors (Attributes)

Manageability. Manageability requirements refer to the administrative tools
that support software modification during the software development and
maintenance periods, such as configuration management, software
change procedures, and the like.

Example
“Chemilog” is a software system that automatically logs the flow of chem

icals into various containers to allow managing the liquid inventory, and for later
analysis of the efficiency of production units. The development of “Chemilog’s”
new versions and releases are required to be documented and monitored by a
configuration management application.

Modifiability. Modifiability refers to the efforts that will be needed to mod
ify the software product according to specific requirements of customers.
Significant similarity exists between the modifiability factor and
McCall’s flexibility factor.

Productivity. Productivity relates to the rate at which the software product
performs tasks. This factor is the basis for development of quantitative
metrics for the operational productivity of the software product. A rela
tionship exists between the productivity factor and the usability factor of
McCall’s model.

Example
A supermarket management is considering replacing their point of sale

equipment and so conducted trials as follows. The trials were based on the point
of sale processing of a standard supermarket trolley with a variety of 30 different
products. The results from a full day’s trial with the proposed equipment aver
aged 9.2 and 8.3 trolleys per hour for offers A and B, respectively. As the differ
ence in price was negligible, the supermarket management chose offer A based
on its higher productivity.

Safety. Safety requirements are designed to eliminate conditions that may be
hazardous to equipment and equipment operators, as a result of errors in
process control software. These errors can result in inappropriate reactions
to dangerous situations, or to the failure to provide alarm signals when the
dangerous conditions, specified to be detected by the software, arise.

Example
In a chemical plant, a computerized system controls the flow of acid accord

ing to pressure and temperature changes occurring during production. The safety
requirements refer to the system’s computerized reactions, such as closing and
opening valves in dangerous situations, and also specify the types of alarms
needed per case.

Satisfaction. Satisfaction refers to user (and customer) perception of the
extent the software product meets user expectations in relation to the

2.4 The ISO/IEC 25010 Model and Other Alternative Models 37

requirements. The degree of the complete provision of all specified
requirements has substantial impact on the level of user satisfaction.

Supportability. Supportability refers to the ease of performing install tasks
and various maintenance tasks of error corrections, the adaption of the
software product to specific customer needs, and modification of the
product according to changing market requirements.

Survivability. Survivability requirements refer to the continuity of service.
They define the minimum time allowed between system failures, and the
maximum time permitted for recovery of service – two factors that per
tain to service continuity. Although these requirements may relate to all
types of service failures, they are especially geared toward failures of
essential functions or services. A significant similarity exists between the
survivability factor and the reliability factor described in McCall’s
model.

Example
Taya National Lottery Inc. operates a national lottery held once a week.

About 2,400,000 to 4,000,000 bets are placed weekly. 250,000 to 350,000 bets
are placed in the hour preceding the lottery draw. The computerized lottery sys
tem, serves customers at thousands of betting stations by recording their bets.
Any failure of the computerized lottery system or its wide communication sys
tem, especially during the last hour before the draw, is expected to cause colos
sal losses to Taya. The new lottery software and communication system (that
connects all the betting machines to the central computer) is required to operate
without any communication failure for at least 24 months.

Taya added the following survivability requirement to its high reliability
requirements: the probability that unrecoverable damage to the betting files will
occur in case of any communication system failure is to be less than one in a
million communication failures.

Understandability. Understandability refers to the user’s capability to find
out how to use the software for particular tasks, and to grasp the condi
tions of use. It relates to the user interface design, the user manual, and
the online help instructions. Another type of understandability require
ments relate to the use of software comments and program documenta
tion. It is accepted that conformity to design and company coding
guideline instructions ensures good understandability by both developers
and maintenance staff.

Verifiability. Verifiability requirements define design and programming
features that enable efficient verification of the design and programming.
Most verifiability requirements refer to modularity, simplicity, and adher
ence to documentation and programming guidelines. A significant simi
larity exists between the verifiability factor and McCall’s testability
factor.

38 Chapter 2 Software Quality Factors (Attributes)

2.5 Software compliance with quality factors

The software quality models call for implementation – for the evaluation of the
quality of software development and maintenance processes, and of software
products. In other words, we would like to find out the extent to which the soft
ware development and maintenance processes comply with the requirements of
the various quality factors to be examined in design reviews, software inspec
tions, software tests, and evaluated by software quality metrics. In efforts to do
so, we face the gap between the factors defined as general attributes, and explicit
review questions, requiring quantitative measurement.

A way to bridge this gap is by adding explanatory criteria (subfactors) for
each of the factors. As a result, each of the software quality factors is represented

Table 2.1 McCall’s model factors and criteria (subfactors)

Software Software
quality factors Criteria (subfactors) quality factors Criteria (subfactors)

Correctness Accuracy
Completeness
Up-to-datedness
Availability (response time)

Reliability System and application
reliability

Failure recovery
Hardware failure recovery

Efficiency Efficiency of processing
Efficiency of storage
Efficiency of communication
Efficiency of power usage (for
portable units)

Integrity Access control
Access audit

Usability Operability
Learning and training ability

Maintainability	 Simplicity
Modularity
Self-descriptiveness
Coding and documentation
guidelines compliance
(consistency)

Flexibility Modularity
Generality
Simplicity
Self-descriptiveness

Testability Simplicity
Failure maintenance
testability

Traceability
Portability Software system

independence
Reusability Modularity

Self-descriptiveness
Modularity
Coding and documentation
guidelines compliance
(consistency)

Software system and
application independence

Self-descriptiveness
Generality
Simplicity

Interoperability Commonality
System compatibility
Software system
independence

Modularity

2.5 Software Compliance with Quality Factors 39

by several quality criteria. The criteria (subfactors) are quantitative and qualita
tive criteria, where preference is given to the quantitative ones. These quantita
tive measurable criteria are believed to help formulate the specification of
software requirements, the definition of review questions, the preparing of test
plans, and the development of software metrics. These measurable criteria ena
ble examining the degree of compliance of a software project to the factors for
which the criteria were defined. Many authors investigated the software models
and proposed criteria for their factors. To mention but a few: Evans and Marci
niak (1987), Sharma et al. (2012), Al-Qutaish (2010), and Kumar (2012). The
importance of measurable criteria, the methods used to measure them, their plan
ning and implementation, and more about software measures are discussed by
Fenton and Bieman (2015).

Table 2.1 presents a selection of criteria (subfactors) for McCall’s factors.
Table 2.2 presents the criteria (subfactors) for ISO/IEC 25010:2011 product

quality models.
Table 2.3 Presents criteria for factors of alternative quality models, not

included in McCall’s and ISO/IEC 25010:2011 product quality models.

Table 2.2 ISO/IEC 25010 product quality model factors and criteria (subfactors)

Software quality Software Criteria
factors Criteria (subfactors) quality factors (subfactors)

Functional suitability Functional completeness Security Confidentiality
Functional correctness Integrity
Functional appropriateness Nonrepudiation

Performance Time behavior Accountability
efficiency Resource utilization Authenticity

Capacity Maintainability Modularity
Compatibility Coexistence Reusability

Interoperability Analyzability
Usability Appropriateness Modifiability

recognizability Testability
Learnability Portability Adaptability
User error protection Installability
User interface aesthetics Replaceability
Accessibility

Reliability Maturity
Availability
Fault tolerance
Recoverability

Source: – ISO/IEC Std. 25010:2011

40 Chapter 2 Software Quality Factors (Attributes)

Table 2.3 Factors and criteria of Alternative quality models (For factors not included
in McCall/s and ISO/IEC 25010 quality models)

Software Software
quality factors Criteria (subfactors) quality factors Criteria (subfactors)

Effectiveness

Evolvability

Expandability

Extensibility

Human
Engineering

Manageability

Modifiability

Production plan
compliance

Production schedule
compliance

Low failure rate
Modularity
Generality
Simplicity
Self-descriptiveness
Extensibility
Modularity
Generality
Simplicity
Self-descriptiveness
Modularity
Generality
Simplicity
Self-descriptiveness
Man–machine interface
Understandability
Completeness and ease
of support provided
to infrastructure
services for software
modifications in the
development process
Completeness and ease
of support provided
to infrastructure
services for software
modifications in
maintenance activities
Modularity
Generality
Simplicity
Self-descriptiveness

Productivity Operability
Resource efficiency

Safety Avoidance of hazardous
operating situations

Safety Unsafe conditions alarm
reliability

Satisfaction User perception of
requirements fulfillment
User perception of
performance

Supportability Installability
Maintainability
Modifiability

Survivability System reliability
Application reliability
Computational failure
recovery

Understandability	 Self-descriptiveness
Hardware failure recovery
Simplicity
Modularity
Coding and
documentation guidelines

Verifiability compliance (consistency)
Coding and
documentation guidelines
compliance (consistency)
Documentation accessibility
Traceability
Modularity

As you have probably noticed, several criteria (subfactors) relate to more
than one factor. This reflects the fact that several criteria contribute to successful
compliance in more than one factor. It also reflects the extensive overlapping,
and the many similarities of software quality factors.

Summary 41

Summary

1. The need for comprehensive requirements documents
Many cases of low customer satisfaction are situations where soft

ware projects have satisfactorily fulfilled the basic requirements of cor
rectness, but suffer from poor performance in other important areas such
as maintenance, reliability, software reuse, or training. One of the main
causes for these lapses is the lack of defined requirements pertaining to
these aspects of software functionally. Therefore, a comprehensive defi
nition of requirements to cover all aspects of software use throughout all
stages of the software life cycle is crucial.

Software quality models define the broad spectrum of quality factors
that relate to software quality requirements. We expect that those indi
viduals who define software quality requirements refer to each factor
and, accordingly, examine the need to incorporate the respective require
ments in their requirement specification documents.

2.	 The structure (categories and factors) of McCall’s classic factor
model

McCall’s factor model classifies all software requirements into 11
software quality factors. These 11 factors are grouped into three catego
ries: product operation, product revision, and product transition, as
follows:

Product operation factors:	 Correctness
Reliability
Efficiency
Integrity
Usability

Product revision factors:	 Maintainability
Flexibility
Testability

Product transition factors:	 Portability
Reusability
Interoperability

3. Quality factors of the ISO/IEC 25010:2011 model
The ISO/IEC 25010:2011 model was developed by a joint ISO/IEC

international professional team and is of significant importance. The
model includes the eight following factors, while four of them were
already included in McCall’s model.
• Functional suitability
• Performance efficiency
• Compatibility

42 Chapter 2 Software Quality Factors (Attributes)

• Usability
• Reliability
• Security
• Maintainability
• Portability

4. The additional factors suggested by alternative factor models
Several software quality models, alternatives to McCall’s 1976 clas

sic software quality model and to the ISO/IEC 25010:2011 software
quality models, have been presented since the late seventies. These alter
native models propose 14 additional software quality factors, several of
which show similarities to McCall’s factors and also overlap each other.

5. Software compliance with quality factors
The gap between the general character of software quality factors,

and the explicit nature of software specification requirements causes dif
ficulties when implementing software quality models in software devel
opment processes. A set of explanatory criteria for each factor is
believed to bridge the gap, and help customers and software developers
specify quality requirements, define review questions, prepare test plans,
and develop software quality metrics. As a result, the criteria help to
examine the degree software projects comply with the software quality
factors.

Selected bibliography

Al-Qutaish R. E. (2010) quality models in software engineering literature: an analytical and com
parative study, Journal of American Science, Vol. 6, No. 3, pp. 166–175.

Boehm B. W., Brown J. R., Caspar H., Lipow M., MacLeod G., and Merritt M. (1978) Character
istics of Software Quality, North Holland Publishing, Amsterdam, The Netherlands.

Carvallo J. P. and Franch X. (2006) Extending the ISO/IEC 9126-1 quality model with non-technical
factors for COTS components selection, in Proceedings of the 2006 International ACM Workshop
on Software Quality (WoSC).

Deutsch M. S. and Willis R. R. (1988) Software Quality Engineering: A Total Technical & Manage
ment Approach, Prentice-Hall, Englewood Cliffs, NJ, Chapter 3.

Dromey R. G. (1995) A Model for Software Product Quality, IEEE Transactions on Software Engi
neering, Vol. 21, pp. 146–162.

Evans M. W. and Marciniak J. J. (1987) Software Quality Assurance and Management, John WiIey &
Sons, New York, Chapters 7 and 8.

Fenton, N. E. and Bieman J. (2015) Software Metrics – A Rigorous and Practical Approach, 3rd
Edition, CRC Press, Boca Raton, FL.

Georgiadou E. (2003) A generic, multilayered, customisable, software quality model, International
Journal of Cybernetics, Vol. 11, No. 4, pp. 313–323.

Grady R.H and Coswell D. L. (1987) Software Metrics – Establishing a Company-wide Program,
Prentice Hall.

ISO/IEC (2001) ISO/IEC IS 9126-1 Software Engineering: Product Quality – Part 1: Quality Model,
ISO, Geneva, Switzerland.

ISO/IEC (2001) ISO/IEC 25010:2011 Systems and Software Engineering: Systems and Software,
ISO, Geneva, Switzerland.

Review Questions 43

Kumar P. (2012) Aspect-oriented software quality model: the AOSQ model, Advanced Computing:
An International Journal (ACIJ), Vol. 3, No. 2, pp. 105–118.

McCall, J., Richards P., and Walters G. (1977) Factors in Software Quality, Volume 1, Concepts and
Definitions of Software Quality, Vol. 1, No. 3, Rome Air Development Center Air Force Systems
Command, Griffiss Air Force Base, NY. Nov. 1977.

Quirchmayr G., Funilkul S., and Chutimaskul W. (2007) A quality model of e-government services
based on the ISO/IEC 9126 standard, in The Proceedings of International Legal Informatics Sym
posium, (IRIS), pp. 45–53.

Sharma A. H., Kalia A., and Singh H. (2012) An analysis of optimum software quality factors, IOSR
Journal of Engineering, Vol. 2, No. 4, pp. 663–669.

Review questions

2.1	 a. What are the three factor categories belonging to McCall’s factor model?

b. Which factors are included in each of the categories?

2.2	 The software requirement specification document for the tender for the development
of “Super-lab,” a software system for managing a hospital laboratory, consists of
chapter headings that are in accordance with the required quality factors. In the fol
lowing table, you will find sections from the mentioned requirements document.

For each section, fill in the name of the McCall’s factor that best fits the require
ment (choose only one factor per requirements section).

The quality
No. Section taken from the software requirement document factor

1 The probability that the “Super-lab” software system will be __________
found in a state of failure during peak hours (9 am to 4
pm) is required to be below 0.5%.

2 The “Super-lab” software system will enable the direct __________
transfer of laboratory results to those files of hospitalized
patients managed by the “MD-File” software package.

3 The “Super-lab” software system will include a module that __________
prepares a detailed report of the patient’s laboratory test
results during the current hospitalization. The time required
to obtain this printed report will be less than 60 seconds.

4 The “Super-lab” software to be developed for hospital __________
laboratory use may be adapted later for private laboratory
use.

5 The training of a laboratory technician, requiring no more __________
than 3 days, will enable the technician to reach level C of
“Super-lab” operator. This means that the trainee will be
able to manage the reception of 20 patients per hour.

6 The “Super-lab” software system will record details of users __________
logging in. In addition, the system will report attempts by
unauthorized persons to obtain medical information from
the laboratory test results database. Reports will include
detailed information about unauthorized attempts to access
the database of “Super lab”.

44 Chapter 2 Software Quality Factors (Attributes)

7 The “Super-lab” subsystem that deals with billing patients __________
for their tests may eventually be used as a subsystem in the
“Physiotherapy Centre” software package.

8 The “Super-lab” software system will process the monthly __________
reports of the hospital departments’ management, the
hospital management, and the hospital controller, in
accordance with Appendix D of the development contract
(not attached).

9 The software system should be able to serve 12 work stations __________
and 8 automatic testing machines with a single model AS20
server; and a CS25 communication server that will be able to
serve 25 communication lines. The hardware system should
conform to all availability requirements as listed in
Appendix D.

10 The “Super-lab” software package developed for the Linux __________
operating system should be compatible with applications in
the Windows NT environment.

2.3	 The ISO/IEC 25010:2011 model includes eight different factors.

a. List the factors included in the ISI/IEC model.

b.	 Discuss the similarity of the ISO/IEC model with McCall’s model.

2.4	 South cottage Inc. is a manufacturer of washing machines and dishwashers. The
requirements document for the new control unit includes the following specifications:

a.	 The firmware should be suitable for all six variations of the following year’s
washing machines models.

b.	 The water level control module of the washing machine should be suitable for use
for the dishwasher model planned to be released in 2 years’ time.
a.	 To which of McCall’s factors do the above requirements belong?
b.	 Explain your answer.

2.5	 Some people claim that testability and verifiability are actually different terms for the
same factor.

a. Do you agree?

b.	 If not, explain your reasoning.

Topics for discussion

2.1	 Four “but” complaints reflecting items missing from the requirement documents are
mentioned in Section 2.3.1.

a.	 To which McCall factors do the missing requirements belong?

b.	 Can you suggest software quality requirements that could fill the gap?

2.2	 Some professionals claim that increased software usability necessarily involves
decreased efficiency. Others claim that no dependence between software efficiency
and usability exists.

a.	 Do you agree with the first or second group?

b.	 Discuss your answer.

Chapter 3

The Software Quality
Challenges

3.1 Introduction

A basic question often asked is “Do we need a specialized quality assurance
methodology for software products?” In other words, Why don’t we use the gen
eral quality assurance tools and methodologies applied successfully in the food
and metal industries, as in many others? The answer rests in the unique character
of software, the software development process, and its maintenance. Thus, we
are inevitably faced with a need for unique quality assurance tools and method
ologies for software development and maintenance.

The other topic of the chapter deals with “the software development, main
tenance, and SQA environment” – the combination of legal, managerial, social,
and technological requirements that need to be fulfilled with the software devel
opment, maintenance, and SQA activities.The need to cope with the unique dif
ficulties of assuring software quality in the software development, maintenance,
and SQA environment is the very challenges of software development, mainte
nance, and SQA.

This chapter deals with two basic topics:

1. The uniqueness of software quality assurance in relation to the character
istics of software products and their development process.

2. Software development, maintenance, and the SQA environment.

3.2 The uniqueness of software quality assurance

“What is so special about software quality that it needs separate warranty docu
ments, and a specialized ISO 9000 standard all of its own?” I was asked by my
students at the beginning of a software quality assurance course.

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

45

46 Chapter 3 The Software Quality Challenges

I shall, as I did then, before I address to approach the fundamental issue of
the uniqueness of software quality assurance, I shall begin with two typical
examples.

First – warranty document comparison
Typical limited warranty documents of household or industrial devices, and

in our case – computer printers, state the following:

The Manufacturer warranty commences on the date of purchase of the original retail
customer for a period of one year. Should the product become defective within the
warranty period, the Manufacturer will repair or replace it at no charge, provided it is
delivered at the customer’s expense to an authorized service facility.

In comparison, a typical limited warranty document of a software product is
actually a disclaimer rather than a guarantee document, and states that the
following:

Although the Manufacturer has tested the software and reviewed the documentation
of the software, the Manufacturer makes no warranty or representation, either
expressed or implied, with respect to this software or documentation, its quality,
performance, merchantability, or fitness for a particular purpose. As a result, this
software and documentation are licensed ‘AS IS,’ and the licensee is assuming the
entire risk as to its quality and performance.

The Manufacturer warranty commences on the date of purchase of the original
retail customer for a period of one year. Should the product become defective within
the warranty period, the Manufacturer will repair or replace it at no charge, provided
it is delivered at the customer’s expense to an authorized service facility.

The most striking difference relates to the situation of product failure. For
the printer it says, “Should the product become defective within the warranty
period, the Manufacturer will repair or replace it at no charge.” However, for the
software package it says, “The Manufacturer makes no warranty or representa
tion, either expressed or implied, with respect to this software or documentation,
its quality, performance, merchantability, or fitness for a particular purpose. As a
result, this software and documentation are licensed ‘AS IS.’” The basic mean
ing is that while the printer manufacturer is sure about the quality of his product,
the software package manufacturer is not sure about the quality of his product.
In other words, he is not sure the software he sells is free of bugs. This differ
ence actually reflects the fact that in spite of investing vast resources to assure
the quality of the software package, total software quality (“no bugs”) could not
be achieved.

Second – Standards for general use versus specialized standard.
ISO/IEC 9000 is a “family” of standards that includes several standards, which

are updated once every few years. The three current standards of the “family” are:

• ISO/IEC 9000:2015 – Quality management systems – Fundamentals and
vocabulary.

3.2 The Uniqueness of Software Quality Assurance 47

• ISO/IEC 9001:2015 – Quality management systems – Requirements.

• ISO/IEC 9000:2015 – Quality management systems – Managing for the
sustained success of an organization (continuous improvement).

These standards serve almost every industry. However, a special ISO 9000
family member has been developed for the software industry, namely:

• The ISO/IEC 90003:2014 standard – Software engineering – Guidelines
for the application of ISO 9001:2008 to computer software.

A great part of the requirements included in the ISO/IEC 90003 standard are
not included in the other ISO/IEC standards, for instance:

• Documentation requirements

• Quality planning

• Design and development planning

• Customer-related requirements

• Customer communications during development requirements

The above two examples may serve as indicators for the uniqueness of soft
ware quality assurance. Now, let us investigate the three root causes for the chal
lenging uniqueness of software quality assurance.

• Software is complex. Software complexity may be measured by the
number of software modes of operation. This number reaches many
thousands, frequently millions, and sometimes even more. The task of
ensuring the correct operation for each of the multitude modes of oper
ation is actually impossible – a fact reflected in the software “limited
warranty” document. While on the other hand, the number of operation
possibilities for hardware products is substantially lower, making it
possible to test and verify the correctness of each operation mode.

• Software lacks visibility. Defects in software products (whether stored
on a disk-on-key, computer hard disc, or elsewhere) are invisible and
intangible, just as any missing parts of a software package or from a soft
ware file are. A predefined process of displaying the software listings on
screen or in print is required to enable the identification of software
defects, or missing software parts. While in the case of industrial prod
ucts, it is most likely that a defective or missing part will be identified by
the production line team. Imagine the case of a missing door, or a wrong
car headlamp on a car on an assembly line.

• Few opportunities to identify defects. Software defects may only be
identified in the software product development phase. In this phase,
designers and programmers develop software products, while staff
members and SQA function staff review and test the software to detect
defects.

48 Chapter 3 The Software Quality Challenges

When examining industrial products, for example, cars, a wide
range of opportunities to identify defects are evident. These opportunities
transpire over three phases: the car model prototype development phase,
the car production planning phase, and finally the manufacturing phase.
In the car model prototype development phase, designers design a new
model and construct a prototype, while the staff member and the quality
assurance (QA) function perform verification with the design require
ments documentation and test the prototype to detect defects. This phase
corresponds to the software product development phase.

During the car production planning phase, the production process
is planned, tools are designed and prepared, and a tailored production line
is devised and built. This phase thus provides additional opportunities to
review, inspect, and test the product, while defects, that may have
“escaped” reviews and tests conducted during the car model prototype
development phase, may be revealed. Defects detected during the car pro
duction planning phase processes can usually be corrected by performing
changes to the product design, components, or production tools. This
phase is very limited in software products, and deals almost only with the
publication of software manuals (prepared in the software product devel
opment phase), and planning the software product files packaging on
CDs, or other media. These limited activities include practically no SQA
activities, or in other words, are unable to contribute to the software prod
uct’s quality. This situation applies to all software products, whether their
number of copies is small, as in custom-made software, or large, as in
software packages sold to the general public.

In the car manufacturing phase, defects are identified by the assem
bly line staff, and also identified at a later stage, when QA procedures are
applied to detect failures in each of the manufactured cars. Defects
detected in a car during this phase can usually be repaired by replacing
faulty parts, and only in extreme cases is a car declared unfit for sale.
When compared with the manufacturing of a car, the release of a software
product is limited to automatic electronic copying of software product
files to the chosen media, and printing software manuals. Consequently,
there are no expectations for detecting software defects in this phase.

To summarize, while SQA activities are practically limited to the
development phase only, industrial products benefit from QA activities
performed throughout three phases: development, production planning,
and manufacturing phases. Moreover, QA activities for industrial products
are conducted by three independent teams, a fact that significantly con
tributes to the effectiveness of defect identification.

It should be noted that a significant number of products in advanced
machinery, as well as in household machines, include embedded software
components (usually termed “firmware”) that are integrated into the product.
These software components (the firmware) share the very same

3.3 Software Development, Maintenance, and SQA Environment 49

characteristics of software products discussed herein, and so it follows that
the comparison shown above should actually be of software products versus
nonsoftware components of industrial products.

The unique characteristics of software quality assurance versus the charac
teristics of industrial products are shown in Frame 3.1.

Frame 3.1: The uniqueness of software quality assurance

The ununiqueness of software quality assurance

Software’s high complexity versus substantially lower complexity of industrial
products

Software’s lack of visibility versus visibility of industrial products
Software’s few opportunities to identify defects: product development phase

only for software versus product development, production planning, development,
and manufacturing phases of industrial products.

Its great complexity and invisibility, as well as the few available opportuni
ties to identify defects, makes the development of SQA methodology and its
successful implementation extremely challenging.

3.3 Software development, maintenance, and SQA
environment

Software serves multifarious purposes, and is developed by many individuals
and organizations in many different environments. Our discussion deals with
software development maintained by commercial bodies: by software houses or
software development and maintenance units (teams, departments, etc.) of both
small and large industrial, financial, and other organizations.

Software development and maintenance is performed under a series of legal,
managerial, social, and technological requirements. These requirements may be
defined as the “software development, maintenance, and SQA environment.”
Whoever participates in software development and quality assurance activities is
required to cope and deal with these environment requirements.

The main characteristics of the software development, maintenance, and
SQA environment are:

1. Contractual conditions of software development, maintenance, and
SQA activities

The commitments and conditions between the software developer–
maintainer and the customer are defined in the contract. The contract
affects the activities of software development that include, in addition to
development, the delivery, installation, and running-in activities, and the

50 Chapter 3 The Software Quality Challenges

maintenance activities include software operation and the three types of
maintenance activities. All these need to cope with:
• Defined list of project functional requirements
• Development and maintenance project budget
• Project schedule
• Professional license or academic qualification requirements of project
team leader and team members
It is expected that an internal software development project be man

aged in environment conditions similar to those specified in the project
contract conditions, and according to an approved development plan
serving as part of the “internal contract.” The familiar situations prevail
ing in internal projects, where no formal contracts and less “binding”
customer–supplier relationships are in place, often lead to unsuccessful
projects, which are over-budget, completed late, and whose functional
requirements are only partially met.

2. Subjection to customer–supplier relationship
All software development and SQA activities throughout the process

are overseen by the customer, and therefore it is of great importance that
the project team continuously maintains a cooperative working relation
ship with the customer. This cooperation is vital to accomplish the fol
lowing activities: obtaining information required for the development
process from customer, discussing customer’s request for changes with
customer, discussing customer comments regarding project issues, and
obtaining customer approval for work performed, and for changes initi
ated by the development team. Environmental and contractual conditions
similar to those of customer projects also need to exist in internal proj
ects, between the software development team and representatives of the
department who initiated and ordered the project.

3. The need for teamwork
Three factors usually motivate the establishment of a project team,

rather than assigning the whole project to just one professional:
• Schedule requirements. The project workload to be performed requires
the participation of more than one person if the project is to be com
pleted on time.

• The need for a range of professional specializations in order to carry
out the project.

• The objective to benefit from professional mutual support and review
for the enhancement of project quality.

4. The need for cooperation and coordination with other internal
development teams

The carrying out of projects, especially larger projects, by more than
one team is a very common event in the software industry and coopera
tion and coordination may be required with the following:

3.3 Software Development, Maintenance, and SQA Environment 51

• Other software development team in the same organization.
• Hardware development teams in the same organization. This is usually
the case when the software development task is part of a hardware
manufacturer development project.

5. The need for cooperation and coordination with external partici
pants in the software development project

The carrying out of projects, especially large-scale projects,
requires, in many cases, participation of one or more external organi
zations with whom the development team is required to coordinate
and cooperate:
• Software and hardware suppliers
• Subcontractors and outsourcing development teams
• Development teams of partners performing the project
• Customer’s development teams – in cases that the customer partici
pates in project
An outline of cooperation and coordination between the internal and

external environment, as seen from the perspective of a development
team (“Our software development team”), is shown in Figure 3.1. The
team is part of a hardware–software product development effort. The
relationships of our software development team with the hardware

Figure 3.1 Cooperation and coordination scheme for software development team of large-scale
software project

52 Chapter 3 The Software Quality Challenges

development teams and the rest of the product development teams are
represented by one relationship with the hardware development team.
For reasons of simplicity, the figure does not show the professional rela
tionships with the system engineers and project management.

6. The required product interfaces with other software systems.
Today, most software systems include interfaces with other software

packages. These interfaces allow data in electronic form to flow between
the software systems.

The main types of interfaces are:
• Input interfaces, where other software systems transmit data to your
software system.

• Output interfaces, where your software system transmits processed
data to other software systems.

• Input and output interfaces to a software system, as in medical and
laboratory control systems.
Typical input and output interfaces to other software packages may

be seen in salary processing software packages. An example is shown in
Figure 3.2.

Let’s examine Figure 3.2. First, let us look at the input interfaces of
the salary processing package. In order to calculate salaries, the
employee attendance information is required. This data is captured by
the time clocks placed at the entrance to the office building, and later
processed by the attendance control software system. An additional input

Figure 3.2 A salary software system – example of software interfaces

3.3 Software Development, Maintenance, and SQA Environment 53

interface transmits data from the personnel information system, namely,
employee salary details including payable benefits, as agreed upon in the
employment agreement and employee bank account details. Once a
month, the input information from these two software systems is elec
tronically transmitted to the salary processing system. These data trans
missions represent two input interfaces for the salary processing software
system, and at the same time they represent output interfaces of the
attendance control system and the personnel software system. Let’s now
examine an output interface of the system. One of the outputs of the sal
ary processing system is the list of “net” salaries (after deduction of
income tax and other items) payable to the employees. The list of net
salary payments and the employee bank account details are electronically
transmitted to the bank. This transmission represents an output interface
for the salary processing system, and an input interface for the bank’s
accounts system.

7. The need to continue carrying out a software project despite team
member changes

It is common practice for team members to leave during the soft
ware project period, whether owing to a promotion, an employer switch,
a transfer to another city, and so on. It is the team leader’s responsibility
to replace the departing team member with either another company
employee, or a newly recruited employee. Regardless of how much time
and effort need to be invested in training the new team member, “the
show must go on,” and the original project contract schedule remains
unchanged. It should be noted that the software project includes the
development phases as well and the delivery, installation, and the run
ning-in phases. The same rule holds when a team leader leaves a team;
however, in this case it is management’s task to replace the team leader
promptly.

8. The need to maintain software systems for extended periods
Customers who develop or purchase a software system expect to

continue utilizing it for a long time, usually for 5–10 years. During the
service period, the need for maintenance will eventually arise. In most
cases, the developer is required to supply these services directly. In cases
when the software was developed in-house, internal customers share the
same expectation regarding software maintenance of their software
system.

In most cases, it is the environmental characteristics that create the need for
intensive and continuous managerial efforts. These efforts are invested in paral
lel to the professional efforts required in order to ensure project quality, or in
other words, to ensure the project’s success.

A summary of the main characteristics of the SQA environment is shown in
Frame 3.2.

54 Chapter 3 The Software Quality Challenges

Frame 3.2: Software development, maintenance, and SQA
environment

The main characteristics of the SQA environment

1. Contractual conditions of software development, maintenance, and SQA
activities

2. Subjection to customer–supplier relationship

3. The need for teamwork

4. The need for cooperation and coordination with other internal development
teams

5. The need for cooperation and coordination with external participants in the
project

6. The required product interfaces with other software systems

7. The need to continue carrying out a software project despite team member
changes

8. The need to maintain software systems for extended periods

Implementation tip

The existing familiar terms between the internal customer and the internal supplier
frequently create “nonbinding contract projects.” These projects, supported by the
notion that it “would save time,” usually take the same course; no existing require
ment documents (or at best a one pager consisting of a short vague definition of the
“functional expectations”) and no budget or schedule commitments are in place. These
widespread conditions for in-house projects are undesirable for both parties – both
sides are inevitably unsatisfied. The customer will find his functional expectations to
be only partially fulfilled correctly, while the developer will have wasted substantial
resources developing undesired functionalities. A reasonable level of formality is
expected to be beneficial to budget and schedule management, to the successful fulfill
ment of project requirements as well as contributing to reducing wasted resources by
software developers. For a discussion on internal customers – internal supplier rela
tionships and the pitfalls involved – see Sec. 8.6.

A significant amount of software, as well as firmware development, is not
carried out under formal contracts or formal customer–supplier relationships, as
mentioned in the first two SQA environment characteristics. This situation usu
ally relates to software or firmware developed in-house for internal use. The
informal relationship – between the marketing department, that initiates and
defines the requirements of a new product, and the respective in-house software
development department – may be likened to a relationship under a nonbinding
contract, or that of a less “binding” customer–supplier relationship. Typically,

Summary 55

for these situations, there is no documentation requirements, no commitment for
budget and schedule, and no regular coordination meetings between the develop
ing department and the customer department. In these conditions, an
unsuccessful project – over-budget, late completion (if at all), and partial
requirements met – is almost inevitable. Accordingly, many managers claim that
the more the relationship resembles a formal (vendor–customer) relationship, the
greater the prospects are for the project to reach a successful conclusion.

Summary

1. The uniqueness of software quality assurance. The fundamental dif
ferences between software products (including firmware) and other
industrial products, namely, higher product complexity, the invisibility
of software, and the contrasting fewer opportunities to detect defects.
These differences create substantial challenges for SQA methodologies
and tools required to meet these extremely difficult challenges and pro
duce quality software products.

2. The environments in which SQA methods need to be employed. The
SQA methods and tools discussed in this book are specially aimed at the
needs of professional software development and maintenance, and activi
ties required to contend with legal, managerial, social, and technological
conditions – in other words the SQA environment. The method and tools
to be applied in professional software development and maintenance are
subject to these environmental characteristics, namely:
• Contract conditions defining functional requirements, budget, sched
ule, and, in many cases, also team qualifications.

• The need to maintain customer–supplier relationships required for con
sultations with the customer, customer approvals, and more.

• The need to implement teamwork.
• The need for cooperation and coordination with other internal software
and hardware development teams.

• The need for cooperation and coordination with external participants
in the software development project, namely, suppliers, subcontractors,
outsourcing teams, partner teams, and, in many cases, also customer
development teams participating in project.

• The need for interfaces with other software systems.
• The need to continue carrying out a project during and after team
members changes.

• The need to conduct maintenance activities for the software system for
several years.
These characteristics demand that intensive and continuous manage

rial efforts be expended in parallel to the professional efforts invested to
ensure project quality or, in other words, to ensure project success.

56 Chapter 3 The Software Quality Challenges

These environmental characteristics also apply to the internal devel
opment of software and firmware.

Review questions

3.1 There are three major differences between software products and other industrial
products.

a. Identify and describe the differences.

b. Discuss the ways in which these differences affect SQA.

3.2 It is claimed that no significant SQA activities are expected to take place during the
production planning and manufacturing phases of software products.

a. Discuss this claim.

b. Compare the required production planning and manufacturing for a new refrigera
tor model, with the production planning and manufacturing efforts required for
the new release of a software product.

3.3 Eight issues characterize the professional software development and maintenance
environment.

a. Identify and describe these characteristics.

b. Which of these environmental characteristics require managerial efforts for exe
cuting software development and maintenance projects?

List the characteristics, and explain why such efforts are needed.

Topics for discussion

3.1 It is assumed that educational systems prepare students to cope with real-life
conditions.

Examine the environmental requirements of a final software development proj
ect at your college, and determine which of the higher education requirements could
be considered preparatory to professional life situations, as discussed above.

3.2 Which of the eight environmental characteristics of software development and main
tenance become severe when large-scale projects are to be carried out?

3.3 The interfaces of a salary processing system are exhibited in Figure 3.2.

a. List the main benefits of applying computerized interfaces instead of transfer
ring printouts.

b. Give two additional examples where input interfaces are employed.

c. Give two additional examples where output interfaces are employed.

d. Suggest additional situations where the use of input and output interfaces is not
applied but could be recommended.

Topics for Discussion 57

3.4 It is clear that a software development project executed by a software house for a
specific customer is carried out under content and schedule obligations, and that an
existing customer–supplier relationship also needs to be maintained.

a. Discuss how contractual commitments and customer–supplier relationships are
expected to exist? Be maintained? In cases when the software product is devel
oped in-house, and is to be sold to the public as a software package.

b. Discuss how contractual commitments and customer–supplier relationships are
expected to exist when software is developed for in-house usage, as in the case
when a software development department develops an inventory program for the
company’s warehouses.

c. Some managers claim that the closer contractual commitments and customer–sup
plier relationships are to formal ones; the greater the prospects are for an in-house
project to be successful. Discuss whether implementing customer–supplier rela
tionships in the situations mentioned in (1) and (2) above is beneficial to the com
pany, or an unnecessary burden to the development team.

Chapter 4

Organization for Assuring
Software Quality

4.1 Introduction

Who initiates, activates, operates, and controls all those components of the soft
ware quality assurance described briefly in Chapter 5 and discussed throughout
this book? Who is responsible for all the activities needed to run an effective and
efficient SQA system? Partial answers to these questions are sprinkled through
out the chapters of the book’s first part.

In this chapter, we take an integrated look at the quality assurance organiza
tion. We focus on mangers of the various levels, from top management to devel
opment, and maintenance team leaders. All of them carry out tasks related to
software quality assurance, namely, defining the quality assurance policy, per
forming quality assurance activities, and managing and following-up the per
formance. The tasks of planning SQA activities, developing SQA tools,
initiating, consulting, supporting, and professionally overviewing the perform
ance of quality assurance activities are carried out by the SQA function/unit.

For the purposes of our discussion, we refer to three levels of management
found in many software development organizations and to the SQA function:

• Top management level, including the organization’s general manager
and its chief executive officers (CEOs).

• Department managers level, including managers of software develop
ment, maintenance, and software testing departments.

• Project managers and team leaders of development projects and main
tenance services.

• The SQA function and its associated players in the SQA system. Many
SQA activities are performed by the SQA unit and its associated actors
associated with the SQA unit.

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

58

4.2 Top Management’s Quality Assurance Activities 59

Many quality assurance managerial tasks are shared by managers of more
than one level, with each manager taking on the responsibilities suitable to his
or her level of authority and expertise.

ISO/IEC 90003:2014 (ISO, 2014) software engineering standard dedicates
its Chapter 5 to management responsibility, defining the standard requirements
regarding management commitments, customer focus, planning, management’s
responsibility, authority and communication, and the performance of manage
ment reviews. Additional aspects of software management are presented by
Berki et al. (2004) and Gill (2005).

4.2 Top management’s quality assurance activities

Among its responsibilities, top management is committed to software quality
management requirements, as summarized in Frame 4.1.

Frame 4.1: Top management’s commitment to software quality
management requirements

Source: After ISO/IEC 90003:2015 (ISO/IEC 9001:2008)

Top management’s commitment to software quality management system
requirements

1. Communicate the importance of software product and services meeting customer
and regulatory requirements to employees at all levels.

2. Establish a software quality policy and ensure that quality objectives related to the
company’s software products and software maintenance services are established
and accomplished consistently.

3. Ensure that quality objectives are established for the organization’s SQA system
and that they are accomplished.

4. Ensure availability of the resources required for performing software quality assur
ance activities.

5. Conduct periodical management reviews.

The following are the three main tools available to top management for ful
fillment of its responsibilities:

• Establish and update the organization’s software quality policy.

• Assign one of the executives to be responsible for software quality issues
(e.g., Vice President of SQA)

• Conduct regular management reviews of performance with respect to soft
ware quality issues.

The next three sections deal with these tools.

60 Chapter 4 Organization for Assuring Software Quality

4.2.1 Software quality policy

The organization’s software quality policy, defined by top management, though
very general in its contents and their statement, should communicate the follow
ing, as presented in Frame 4.2:

Frame 4.2: Quality policy as defined by top managements.

Source: After ISO/IEC 90003:2015 (ISO/IEC 9001:2008)

Quality policy as defined by top managements

The quality policy:

• Conforms to the organization’s goals and purpose.

• Establishes continuous improvement of the organization’s quality and productivity,
and the effectiveness of software quality assurance systems.

• Establishes commitment to conform to project requirements and ensure customers
satisfaction.

• Establishes and states need for review of the software quality assurance objectives.

• Is reviewed and updated to ensure its continuous suitability.

• Is communicated and understood at all levels of the organization.

An example of a software quality policy – formulated by (the fictional)
Bridge Quality Software (BQS) Ltd. – is presented in Frame 4.3.

The organization’s software quality policy, as might be anticipated, is stated
in general terms. So, it is quite common to find that one organization’s software
quality policy declaration can be easily transferred to another organization “as
is” or with only minor changes.

4.2.2 The executive in charge of software quality

The following may be classified as the responsibilities of the executive in charge
of software quality issues:

1. Responsibility for defining the quality policy to be adopted by top man
agement and policy reviews.

2. Establish the system’s SQA objectives for the coming year.

3. Responsibility for preparation of an annual SQA activities program and
budget.

4. Determine the scope of subcontractor services and software purchases
planned for the coming year.

4.2 Top Management’s Quality Assurance Activities 61

Frame 4.3: Bridge Quality Software (BQS) Ltd. – Software
Quality Policy.

The Company’s quality goal

The principal goal of Lion Quality Software is to provide software products and soft
ware maintenance services that fully comply with customer requirements and expect
ations, at the scheduled time and according to the agreed-upon budget.

The Company’s quality policy

The quality policy adopted by LQS supports this by:

1. Assigning maximum priority to customer satisfaction by promptly fulfilling
requirements, expectations, requests, and complaints.

2. Involving employees in determination of quality objectives and commitment to
their achievement.

3. Performing development and maintenance tasks correctly the first time around and
minimizing the need for rework and correction.

4. Ensuring the high and adequate professional and managerial level of its employ
ees, a value maintained by offering incentives and encouragement to the employ
ees to achieve professional excellence.

5. Performing quality assurance activities throughout the software life cycle to ensure
the achievement of the required quality objectives.

6. Applying its quality assurance standards to subcontractors and suppliers. Only
those who qualify will be incorporated in the Company’s development projects
and maintenance services.

7. Aiming at continuous improvement of development and maintenance productivity
as well as SQA effectiveness and efficiency.

8. Allocating all the organizational, physical, and professional resources necessary to
realize software quality assurance objectives.

62 Chapter 4 Organization for Assuring Software Quality

5. Preparing development plans for human and other resources for the com
ing year, including adoption of new technologies, methodologies, and
standards.

6. Overall control of implementation of the annual SQA regular activities
program and planned SQA system development projects and their com
pliance with SQA procedures and standards.

7. Presentation of the annual activities program and budget for top manage
ment approval.

8. Presentation and advocacy of SQA issues to executive management, and
conducting of the management review sessions.

4.2.3 Management review

Management review is the name given to the periodic meeting dedicated to qual
ity issues. The meeting is convened to allow executives to obtain an overview of
their organization’s software quality issues. Management review meetings tend
to be scheduled from several times a year to at least twice a year.

A management review report, prepared by the SQA unit, sets the stage for
the discussions by providing items that appear on the meeting’s agenda. A sam
ple of typical items reviewed in management reviews is presented in Frame 4.4.

Frame 4.4: Typical items included in management review reports.

Source: After ISO/IEC 90003:2015 (ISO/IEC 9001:2008)

Typical items included in management review reports

1. Follow-up of approved actions and unsolved identified risks discussed in the pre
vious management review meeting.

2. Periodic performance records, including quality metrics.

3. Customer satisfaction feedback.

4. Follow-up of SQA annual regular activity program and SQA projects.

5. Summary of special quality events related to customers, suppliers, subcontractors,
and so on.

6. Review of significant findings of internal and external quality audits, as well as
special quality events related to customers, suppliers, subcontractors, and so on.

7. Status of previous preventive and corrective action tasks.

8. Identification of new major changes that could affect software quality and became
software quality risks.

9. Recommendations for improvements to be introduced in the software quality man
agement system (e.g., development of new SQA components, purchase of tools,
invitation of consultant) to be submitted for final approval.

4.3 Department Managers with Direct Responsibilities for Quality 63

Objectives of management reviews

The main objectives of management reviews are to assess the SQA system’s
compliance with the organization’s quality policy, that is, to:

• Assess achievement of the quality objectives set for the organization’s
software quality management system.

• Assess the compliance of the SQA system with the organization’s quality
policy.

• Initiate updates and improvements of the software quality management
system and its objectives.

• Initiate improvement of software product and software operation services
to better fulfill customer requirements and improve customer satisfaction.

• Outline directions for remedying major SQA deficiencies and software
quality management problems.

• Allocate additional resources to the software quality management system,
if required.

Decisions made during management reviews are expected to guide and
direct the operation of the software quality management system for the subse
quent period ending at the next review.

4.3 Department managers with direct responsibilities
for quality

This section only refers to department managers who are directly responsible for
software quality, namely, the managers of software development, software main
tenance, and software testing departments (henceforth referred to as “department
managers”). The department managers carry responsibilities for the quality of
software development projects and maintenance services performed by the
department steams and the operation of infrastructure services. The SQA unit
supports the department managers in performing their quality assurance tasks.

The departments’ management quality assurance responsibilities include
responsibilities for quality activities related to the department and infrastructure
services (department level responsibilities), and those related to quality issues
of particular software projects and maintenance services (project level
responsibilities).

The department-related responsibilities include infrastructure operation
and SQA activities related to the department itself:

1. Preparation of the department’s annual SQA activities program and budget.

2. Preparation of the department’s SQA systems development plans.

3. Control of implementation of the department’s annual SQA activities
program and development projects.

64 Chapter 4 Organization for Assuring Software Quality

4. Presentation of the department’s SQA issues to the executive in charge
of software quality.

5. Development and updating of procedures and programming conventions.

6. Ensure that quality objectives for the organization’s SQA system are
established and that they are accomplished.

7. Control of compliance to quality assurance procedures, related software
development, and maintenance processes, and to infrastructure services,
including CAB, SCM, and CCA bodies.

8. Initiate planning and implementation of changes necessary to adapt the
SQA system to changes related to the organization’s customers, competi
tion, and technology.

9. Initiate and promote software reuse in the department’s projects.

Project-related responsibilities vary according to the organization’s proce
dures and distribution of authority; they usually involve:

1. Detailed follow-up of contract review results and proposal approvals.

2. Follow-up of implementation of planned review activities; approval of
project documents and project phase completion.

3. Follow-up of software tests and test results; approval of project’s soft
ware products.

4. Follow-up of progress of software development projects: schedules, bud
get, and project’s risks. Advice and support project managers to resolve
project difficulties.

5. Follow-up of quality of maintenance services provision.

6. Approval of large software change orders and significant deviations from
project specifications.

4.3.1 The SQA system-related responsibilities of
department management

These responsibilities relate to department-level SQA tasks:

1. Preparation of the department’s annual SQA activities program.

2. Preparation of the department’s SQA system development plans.

3. Control performance of the department’s annual SQA activities program
and development projects.

4. Presentation of the department’s SQA issues to top management, in
coordination with the executive in charge of software quality.

4.4 Project Management Responsibilities for Quality 65

5. Development and updating of procedures and programming conventions.

6. Ensure quality objectives are established and accomplished.

7. Control of compliance to quality assurance procedures, to related soft
ware development and maintenance and to infrastructure services.

4.4 Project management responsibilities for quality

Most project management responsibilities are defined in procedures and
work instructions; the project manager is the person in charge of making
sure that all the team members comply with the said procedures and
instructions. His tasks include professional hands-on and managerial tasks,
particularly:

Professional hands-on tasks

1. Preparation of project and quality plans and their updates.

2. Participation in joint customer–supplier committees.

3. Close professional follow-up regarding the implemented solutions and
method, and professional support when needed.

4. Close follow-up of project team staffing, including attending to recruit
ment, training, and instruction.

Management tasks

Project managers address the follow-up issues:

1. Progress control of project schedule, budget, and project risk handling.

2. Performance of review activities and the consequent corrections, includ
ing participating in reviews.

3. Software development and maintenance unit performance with respect to
development, integration, and system test activities as well as corrections
and regression tests.

4. Performance of acceptance tests.

5. Software installation in customer sites and the running-in of the software
system by the customer.

6. SQA training and instruction of project team members.

7. Schedules and resources allocated to project activities (many interven
tions to correct deviations).

66 Chapter 4 Organization for Assuring Software Quality

8. Customer requests and satisfaction.

9. Evolving project development risks, application of solutions, and control
of results (implementation of the risk management process – see
Appendix 7.A).

The SQA system-related tasks required of project managers

1. Preparation of project and quality plans and their updates.

2. Participation in joint customer–supplier committee.

3. Close professional follow-up regarding the implemented solutions and
method, and professional support when needed.

4. Review of project’s teams’ staffing, including recruitment and training.

4.5 The SQA unit and its associated players in the
SQA system

4.5.1 The SQA system

In the previous sections we discussed the contributions made by management
levels as an involved party in the software quality assurance framework. In the
following sections we present the SQA unit and its associated players (The SQA
system).

The SQA system major party is the SQA function/team. Additional players
in the SQA system also include, beside the SQA unit professionals, interested
practitioners found among the software development and maintenance staff.
These SQA interested people contribute to the SQA system in the following
formats:

• SQA trustees

• SQA committee members

• SQA forum members

The SQA system includes the SQA unit and the associated players are pre
sented in Figure 4.1.

4.5.2 The SQA unit

The structure of an SQA unit varies according to the type, and of course, size of
the organization. As it is impossible to describe all the optional arrangements,
this section presents a model whose structure and task distribution are readily
adaptable to the characteristics and procedures characterizing the internal envi
ronment of a major share of organizations.

4.5 The SQA Unit and its Associated Players in the SQA System 67

igure 4.1 The SQA systemF

The proposed model of an SQA unit presented here is based on IEEE Std.
730-2014. The SQA unit is composed of three areas as follows:

• SQA area 1: SQA process implementation activities

• SQA area 2: The product assurance activities for conformance

• SQA area 3: The process assurance activities for conformance

The proposed model is shown in Figure 4.2.
The tasks of the SQA areas are described in the next sections.

Figure 4.2 Proposed model for an SQA Unit’s organizational structure

68 Chapter 4 Organization for Assuring Software Quality

4.5.3 Tasks of SQA area 1: SQA process
implementation activities

The SQA tasks performed by the SQA process implementation activities of the
SQA area may be classified into five groups:

a. Establishing SQA processes and their coordination with the software
development processes

b. SQA plan and project plan

c. Preproject process – contract review

d. Cost of software quality

e. SQA records and documentation control

The tasks descriptions follow.

a. Establishing SQA processes and their coordination with the software
development processes
• Supporting the establishment, updating, and implementation of the
organizational quality policy.

• Supporting the establishment, method, and responsibility for their per
formance of the SQA processes.

• Coordinating and collaborating for performing the SQA activities with
the software process activities.

b. SQA plan and project plan
• Preparing a comprehensive SQA plan (SQAP) that includes the SQA
activities and responsibility for their performance, including the evalu
ation of software product risks.

• Updating the SQAP
• Following-up of the implementation of the SQAP, and periodically
reporting the status of performance to the project managers and the
organization quality management.

• Identifying noncompliance of SQAP activities with expected outcomes
and reporting to project managers and the organization quality
management.

• Following-up of project changes, and if needed, updating the SQA
respectively.

c. Preproject process – contract review
• Supporting the organization to carry out contract reviews.

d. Cost of software quality
• Evaluating the costs of software quality according to the findings of
the SQAP activities conducted.

e. SQA records and documentation control
• Documenting the findings of SQAP activities to provide the required
performance evidence.

4.5 The SQA Unit and its Associated Players in the SQA System 69

• Implementing documentation control to avoid record changes and
securing the records.

• Supplying specific records, as specified in the project contract, to
stakeholders.

4.5.4 Tasks of SQA area 2: product assurance
activities for conformance

SQA tasks performed by product assurance activities for conformance of the
SQA area may be classified into three groups:

a. Evaluation of products for conformance

b. Assuring software operation services quality conformance

c. Software product quality metrics

The tasks descriptions follow.

a. Evaluation of products for conformance
• Identifying the contract requirements for the project plans
• Evaluating project plans for conformance to contract requirements,
regarding required established processes and consistency.

• Documenting noncompliance of project plans with plans required by
contract.

• Identifying the established requirements relating to the software prod
ucts and their documentation, and evaluating the product and its docu
mentation conformance with the requirements.

• Identifying the criteria for the software product acceptance, evaluating
the product’s conformance to the acceptance criteria, by applying
reviews, audits, tests, and so on.

b. Assuring quality conformance of software operation services
• Identifying the contract requirements for customer support services.
• Evaluating the customer support services for consistency with contract
requirements.

• Documenting noncompliance of customer support services with the
contract requirements.

• Performing regular measurements of the level of customer support ser
vices and their conformance to the service plans.

c. Software product quality metrics
• Allocating standards and procedures used by the project or
organization.

• Analyzing the proposed product metrics for consistency with the stan
dards and procedures adopted by the project or organization, and ver
ifying that they represent the product quality.

70 Chapter 4 Organization for Assuring Software Quality

• Analyzing product measurement procedures for compliance with
expectations, and in cases of gaps, suggesting process improvements
to close them.

• Evaluating the effectiveness of the suggested improvements by subse
quent measurements of the software product.

• Analyzing product measurement procedures to determine whether they
satisfy measurements required by contract, and project’s processes and
plans.

• Applying process measurements for all subcontractors’ products.

4.5.5 Tasks of SQA area 3: process assurance
activities for conformance

The SQA tasks performed by the process assurance activities for conformance
SQA area may be classified into six groups:

a. Evaluation of processes for conformance

b. Evaluation of environment for conformance

c. Improvement processes – corrective and preventive actions

d. Software process assurance activities for subcontractors

e. Software process quality metrics

f. Staff skills and knowledge – training and certification

The tasks descriptions follow.

a. Evaluation of processes for conformance
• Evaluating the appropriateness of the software life cycle processes
selected by the project team in respect to applicable process require
ments and product risks.

• Evaluating project plans and the selected software lifecycle processes
for appropriateness to meet the contract requirements.

• Auditing software development activities for consistency with software
life cycle processes and project plans.

• Applying process evaluations for subcontractors’ software life cycle
processes.

b. Evaluation of environment for conformance
• Evaluating the software engineering environment for conformance to
the relevant contract requirements.

• Evaluating the software engineering libraries and test environment for
conformance to the contract and project plans.

c. Improvement processes – corrective and preventive actions
• Evaluating the SQA processes result for nonconformance and suggest
ing improvement processes within the scope of the corrective and pre
ventive activities of the organization.

4.6 The Associated Players in the SQA System 71

• Supporting the corrective and preventive actions in evaluation process
records and developing improvement proposals.

• Performing follow-up process measurements to examine the effective
ness of the suggested improvements.

• Supporting the project team in resolution of development process
problems.

d. Software process assurance activities for subcontractors
• Identifying process requirements from subcontractors as defined in the
contracts with subcontractor.

• Evaluating the subcontractors’ processes for conformance to the contract

e. Software process quality metrics
• Allocating standards and procedures used by the project or
organization.

• Analyzing the proposed process metrics for consistency with the stan
dards and procedures adopted by the project and the organization and
seeing whether they conform to the project’s processes and plans.

• Analyzing process measurement procedures to determine whether they
satisfy measurements required by the contract and the project’s pro
cesses and plans.

• Reviewing process measurement to find out whether the SQA func
tion’s required measurements are conducted.

• Applying product measurements for all subcontractors’ products.

f. Staff skills and knowledge – training and certification
• Identifying gaps between the required skills and professional knowl
edge for carrying out a project, and the current skills and knowledge
of the project staff in place.

• Evaluate the capability of the existing organization’s training activities
to close the skills and professional gap.

• Verify whether new team members are examined for their skill and
professional knowledge and are trained to cover skill and knowledge
gaps.

• Review training activities regularly for completeness and effectiveness.

4.6 The associated players in the SQA system

A major part of the SQA system is the SQA function/team. Additional players in
the SQA system include interested practitioners found among the software
development and maintenance staff. These people with an interest in SQA con
tribute to the SQA system in the following formats:

• SQA trustees

• SQA committee members

• SQA forum members

72 Chapter 4 Organization for Assuring Software Quality

4.6.1 SQA trustees and their tasks

SQA trustees are staff members who, being strongly interested in software quality,
volunteer part of their time to promoting quality. They are frequently instructed by
the SQA unit on new and updated subjects of interest. As SQA “agents”, trustees
are expected to provide the internal support necessary to successfully implement
SQA components.

Trustee tasks vary substantially among organizations. Tasks may be unit related
and/or organization related, and include some or all of the following activities:

Unit-related tasks

• Support their colleagues’ attempts to solve difficulties arising in the
implementation of software quality procedures and work instructions.

• Help their unit manager to perform his or her SQA tasks (e.g., preparation of
a project’s work instructions, collection of data for calculating SQA metrics).

• Promote compliance and monitor implementation of SQA procedures and
work instructions by colleagues.

• Report substantial and systematic noncompliance events to the SQA unit.

• Report severe software quality failures to the SQA unit.

Organization-related tasks

• Initiate changes and updates of organization-wide SQA procedures and
work instructions.

• Initiate organization-wide improvements of development and maintenance
processes and applications to the CAB for solutions to recurrent failures
observed.

• Identify organization-wide SQA training needs and propose an appropri
ate training or instruction program to be carried out by the SQA unit.

The major part of the SQA system is the SQA function/team. Additional play
ers in the SQA system also include, beside the SQA unit professionals, interested
practitioners found among the software development and maintenance staff. These
SQA interested people contribute to the SQA system in the following formats:

• SQA trustees

• SQA committee members

• SQA forum members

4.6.2 SQA committees and their tasks

SQA committees can be either permanent or ad hoc. The subjects dealt with
authority granted, as well as division of tasks between permanent and ad hoc
committees, vary considerably among organizations.

4.6 The Associated Players in the SQA System 73

Permanent committees commonly deal with SCC (software change control),
CA (corrective actions), procedures, methods, development tools, and quality
metrics.

Ad hoc committees commonly deal with specific cases, such as updates of a
specific procedure, analysis and solution of a software failure, elaboration of
software metrics for a targeted process or product, and updates of data collection
methods for a specific issue.

Permanent SQA committees are integral parts of the SQA organizational
framework; their tasks and scope of operation are usually defined in the organi
zation’s SQA procedures. In contrast, ad hoc committees are established on a
short-term, per-problem basis, with members nominated by the executive
responsible for software quality issues, the head of the SQA Unit and the head
of SQA ad hoc committee. In some cases, permanent SQA committees may ini
tiate the formation of an ad hoc committee and follow its findings.

4.6.3 SQA forums – tasks and methods of operation

SQA forums are informal components of the SQA organizational framework;
they are established by volunteers and display some features of a community.
The forums operate rather freely, as are not subject to any standard requirements
or procedures. A forum’s subjects, activities, and participants vary from one
organization to another and reflect, more than anything else, the individuals
belonging to the organization’s software quality community, who are eager to
create a meeting place for the exchange of SQA experiences and ideas. An orga
nization generally benefits from the activities of its SQA forums, which can
function independently or in some kind of cooperative relationship.

Members of an SQA forum usually define its scope and mode of operation,
which can be limited or broad in scope. The forum can meet regularly or sporad
ically, and can define its preferred means of communication (Internet, Intranet,
electronic mail, etc.).

SQA forums typically focus on:

• SQA procedures’ improvement and implementation

• Quality metrics

• Corrective actions – analysis of failure and success cases

• Quality system issues – development and implementation of new tools

• Quality line management problems – daily operational software quality
problems brought before it by quality managers from every level

Participation in SQA forums may be closed (e.g., limited to quality line
managers) or open to all. Members of an open forum may include:

• SQA unit members

• SQA trustees

74 Chapter 4 Organization for Assuring Software Quality

• Software development and maintenance staff

• SQA and software engineering consultants/experts

• Customer representatives

Forum publications. Forums also maintain the option of publication. Publi
cations can range from newsletters to members, periodic reviews of SQA issues,
reports of professional task force, or special forum committees. In addition to
describing and analyzing a quality issue, the publications may include recom
mendations for corrective actions. The forum also decides upon a distribution
list, and whether it will remain limited to its members or extended to other mem
bers of the organization.

An example of a forum operating for several years in a well-known soft
ware house was the “Template Forum”. Four team leaders, two of whom had a
reputation for being outstanding report writers, established the forum, whose
sole objective was to prepare a set of templates for the 11 teams working within
the framework of the Software Development Department. On average, the forum
membership comprised 8–11 members, but membership never exceeded 15.
During the Forum’s 3 years of activity, about 20 different templates were issued,
most of which were also updated at least once during this period. The templates
were publicized in the Department’s data communication network and were
defined as the Department’s standard in the space of about a year. The Forum
discontinued its activities after two of its initiators left the firm. Several attempts
by the SQA unit to renew the Forum’s activities failed in the absence of a staff
member to drive its reactivation.

Summary

1. The managers participating in a typical quality assurance organiza
tional framework

The managers participating in the SQA framework are of the three
organization levels:
• Top management executives: Especially the executive directly in
charge of software quality assurance.

• Department managers: Managers of the software development, soft
ware maintenance, and software testing departments.

• Project managers: Managers of software development and software
maintenance projects.

2. The top management responsibilities regarding software quality
Top management is responsible to:

1. Communicate the importance of software product and services meet
ing customer and regulatory requirements to employees at all levels.

2. Establish the software quality policy and ensure that quality objec
tives related to the company’s software products and software main
tenance services are established and accomplished consistently.

Summary 75

3. Ensure that quality objectives are established for the organization’s
SQA system and that they are accomplished.

4. Ensure availability of the resources required for performing software
quality assurance activities.

5. Conduct periodical management reviews.

3. The software system-related responsibilities of the executive in
charge of software quality issues

The SQA tasks of the executive in charge include:
• Responsibility for preparation of an SQA annual activities program
and budget for final approval by top management.

• Responsibility for preparation of SQA development plans to respond
to changes in the organization’s internal and external environments.

• Overall control of implementation of the annual SQA regular activi
ties program and SQA development projects.

• Presentation and advocate SQA issues to the organization’s executive
management and conduct management reviews.

4. The description of the main objectives of management reviews
Management reviews are instruments that enable the organization’s

executives to:
• Assess the compliance of the SQA system with the organization’s
quality policy.

• Assess the achievement of quality objectives.
• Initiate changes and improvements of the software quality manage
ment system.

• Initiate improvement of software products and software operation ser
vices to better fulfill customer requirements and improve customer
satisfaction.

• Outline directions for the solution of major deficiencies and problems
in the organization’s software quality management system.

• Allocate additional resources for software quality activities when
necessary.

5. The SQA system-related responsibilities of department management
These responsibilities relate to department-level SQA tasks:

• Preparation of the department’s annual SQA activities program.
• Preparation of the department’s SQA system development plans.
• Control performance of the department’s annual SQA activities pro
gram and development projects.

• Presentation of the department’s SQA issues to top management, in
coordination with the executive in charge of software quality.

• Development and updating of procedures and programming conventions.
• Ensure quality objectives are established and accomplished.
• Control of compliance to quality assurance procedures, to related soft
ware development and maintenance, and to infrastructure services.

76 Chapter 4 Organization for Assuring Software Quality

6. The SQA system-related responsibilities required of project
managers
• Preparation of project and quality plans and their updates.
• Participation in joint customer–supplier committee.
• Close professional follow-up regarding the implemented solutions
and method, and professional support when needed.

• Review of project’s teams’ staffing, including recruitment and training.

7. The Tasks of SQA area 1: SQA process implementation activities
The SQA area tasks may be classified into five groups:

a. Establishing SQA processes and their coordination with the software
development processes

b. SQA plan and project plan
c. Preproject process – contract review
d. Cost of software quality
e. SQA records and documentation control

8. The tasks of SQA area 2: product assurance activities for conformance
The SQA area tasks may be classified into three groups:

a. Evaluation of products for conformance
b. Assuring software operation services quality conformance
c. Software product quality metrics

9. The tasks of SQA area 3: process assurance activities for
conformance

The SQA tasks performed by the process assurance activities for
conformance SQA area may be classified into six groups:
a. Evaluation of processes for conformance
b. Evaluation of environment for conformance
c. Improvement processes – corrective and preventive actions
d. Software process assurance activities for subcontractors
e. Software process quality metrics
f. Staff skills and knowledge – training and certification

10. The tasks of SQA trustees
SQA trustees are involved in unit-related tasks and organization-

related tasks, which vary considerably among organizations.
• Typical unit-related tasks: Support other unit/team members in
solving difficulties in the implementation of software quality proce
dures, help their unit manager in performing his SQA tasks, and
report the SQA unit on substantial and systematic noncompliance sit
uations and severe software quality failures.

• Typical organization-related tasks: Initiation of changes and
updates of SQA procedures, initiation of organization-wide improve
ments of development and maintenance processes and applications to
the CAB, identification of SQA training needs, and preparation of
proposals for appropriate training and/or instruction programs.

Review Questions 77

11. The comparison of SQA committee types
SQA committees may be permanent or ad hoc. The subjects, mem

bership criteria, and authority of permanent SQA committees are usually
defined by SQA procedures. Ad hoc committees are established and their
task definitions are initiated by various bodies, according to circum
stances and current needs. Members of ad hoc committees are chosen
mainly for their professionalism and authority. One may expect great
variation among the ad hoc committees nominated for the same task by
different initiators at different times.

12. SQA forum characteristics: scope and participants
SQA forums are informal components of the SQA organizational

framework. They are established, operated, and developed freely.
Scope of SQA forums: limited or broad. Forum subjects, activities,

and participants vary by organization and typically relate to SQA
procedure improvements and implementation, quality metrics,
development of software engineering tools, and implementation of
new tools.

Participation in SQA forums may be closed or open. Participants of
open SQA forums can include SQA unit members, SQA trustees,
members of software development and maintenance teams, customer
representatives, and software engineering consultants.

Selected bibliography

Berki E., Georgiadou E., and Holcombe M. (2004) Requirements engineering and process modeling
in software quality management – towards a generic process metamodel, Software Quality Journal,
Vol. 12, No. 3, pp. 265–283.

Gill N. S. (2005) Factors affecting effective software quality management revisited, ACM SIGSOFT
Software Engineering Notes, Vol. 30, No. 2, pp. 1–4.

ISO (2014) ISO/IEC 90003:2014 Software Engineering – Guidelines for the Application of TSO
9001: 2008 to Computer Software, International Organization for Standardization, Geneva,
Switzerland.

Review questions

4.1 The top management contributes to software quality by employing three main man
agerial tools.

a. List the tools applied by top management to achieve the software quality
objectives.

b. Describe each tool in your own words and explain how it affects software
quality.

78 Chapter 4 Organization for Assuring Software Quality

4.2 Refer to the software quality policy document presented in Frame 4.2.

a. List the policy clauses and explain their meaning in your own words.

b. Explain how each policy clause contributes to the achievement of the Com
pany’s quality goals.

4.3 Refer to the BQS Ltd. software quality policy document presented in Frame 4.3.

a. Examine each clause of the policy document and identify the SQA components
directly referred to in the clauses.

b. Examine the document and identify those components of the SQA system
indirectly addressed by the policy document.

c. List the SQA components not referred to at all.

4.4 The executive in charge of software quality issues is responsible for the preparation
of the annual SQA activities program and budget.

a. Describe in your own words the activities the executive has to perform to pre
pare the mentioned program and budget.

b. Refer to Chapter 19 and describe the participation of the heads of the SQA unit
and subunits in the preparation of the program and budget.

4.5 The executive in charge of software quality issues is responsible for overall control
of the performance of SQA activities.

a. List the types of SQA activities under the executive’s responsibility.

b. Describe in your own words the activities the executive has to perform to con
trol the SQA activities listed in (a).

4.6 Nine typical items contained in a management review report are mentioned in
Frame 4.4.

a. List at least five of these items.

b. Suggest possible decisions that can be taken, based on the items listed in (a).

4.7 The responsibilities of department management may be classified into department-
related responsibilities, project-related responsibilities, and SQA system-related
responsibilities.

• List the SQA system-related responsibilities and explain in your own words the
objective of each task.

4.8 The responsibilities of project management may be classified into professional
hands-on tasks and management tasks and SQA system-related tasks.

• List the project manager’s SQA system-related tasks and explain the objective of
each task in your own words.

4.9 The organizational structure of an SQA unit according to a model presented in
Figure 4.1 includes three area units that deal with SQA activities.

a. List the three area units.

b. Describe in your own words the tasks performed by each area unit.

Topics for Discussion 79

4.10 According to a model presented in Figure 4.1, the organizational structure of an
SQA unit includes two area units that deal with SQA development and maintenance.

a. List the two subunits.

b. Describe in your own words the tasks performed by each subunit.

4.11 It has become customary in recent years for subcontractors to perform parts of soft
ware developing projects.

a. Describe the tasks of the SQA function/unit involved in SQA issues relating to
subcontractors.

b. Discuss the importance of the SQA functions involved with the work of
subcontractors.

4.12 Discuss the contribution to software quality of associated players in the SQA
system.

Topics for discussion

4.1 It is commonly agreed that “SQA objectives are achieved through the cooperation
and integrated activities of all players involved in the quality assurance organiza
tional framework.”

a. Define in your own words who should be considered a player in a quality assur
ance organizational framework, and provide a list of typical players. Refer also to
the SQA unit and its associated players in the SQA system.

b. Explain the unique contribution of each player to the SQA system.

4.2 The organization’s software quality policy should conform to the organization’s pur
poses and goals.

a. List three or more organization goals, and suggest examples, where an organiza
tion’s software quality policy conforms to the organization’s purpose and goals.

b. Suggest at least one example where an organization’s software quality policy
does not conform to the organization’s purpose and goals.

4.3 “Alpha Software” was a medium-sized software house specializing in telecom real-
time software, and employing about 180 professionals. As no executive volunteered
for the position of “executive in charge of software quality”, the general manager of
“Alpha Software” did not insist on nominating an executive to this position. More
over, he did not assign any great importance to issue a quality policy document, as
he claimed, “the Company is anyway committed to quality”; hence, there was no
need for any written document. This situation continued for about two years without
any critical failures.

a. Suggest what unnoticed and undesired events may have resulted from this position.

b. Suggest what an executive in charge of software quality, in addition to an
adequate and updated policy document, could contribute to company product
quality.

80 Chapter 4 Organization for Assuring Software Quality

4.4 Computerized SQA information systems are already available in most organizations.
The objective of the SQA tasks related to the information system is to make the SQA
system more effective and efficient.

a. Describe in your own words the SQA tasks related to the SQA information
system.

b. Improvements of the SQA information systems are expected to contribute to
reduction of failure rates and quality costs. If you agree, give two or three exam
ples of such reductions.

c. Suggest types of information services to be provided by an SQA Intranet site, and
list the advantages of the SQA system of Intranet-based systems over the classic
paper-based systems.

4.5 SQA trustees are expected to be SQA agents in their teams/units and provide the
internal support for successful implementation of SQA components.

a. Explain how SQA trustees complement the formal activities performed by SQA
units and unit managers.

b. Evaluate the contributions of SQA trustees to software quality.

4.6 The permanent Software Metrics Committee of Venus Software has identified a sig
nificantly high failure rate in two software quality metrics for the new version 6.1 of
its popular “Customer-Venus” software package, to be released in the next month.
The package is used by about 2,500 consumer clubs all around the country. The
Product Development Committee (permanent committee) decided to establish an ad
hoc committee to contend with the failures.

a. Suggest a list of tasks for the ad hoc committee.

b. Suggest who should be nominated to the ad hoc committee and who should head it.

c. List the assumptions on which you based your answers to (a) and (b).

4.7 SQA forum activities are conducted entirely informally: For instance, participants
may join and leave the forum whenever they wish and they may undertake or refuse
to perform tasks of interest to the forum. Accordingly, some SQA experts tend to
consider forums to be worthless.

a. Do you agree with this opinion? If not, list your arguments.

b. In what ways can an organization promote and encourage SQA forum activities?

Chapter 5

The SQA World – An
Overview

Today’s software quality assurance (SQA) world comprises a great variety of
components, belonging to six distinct areas – all of which are discussed in
this book.

Just before we dive into the details of SQA processes, activities, and tasks,
we will take a short tour to the SQA process areas in the world of software qual
ity assurance. I hope the “guided tour” will help you plan your reading of this
book, and especially strengthen your will to read it.

We start our tour with a visit to the introductory area, where we will be
examining several basic issues.

5.1 First area: introductory topics (Part I of the book)

The following issues will be presented in the area:

• SQA – definitions and concepts

• Software quality factors (attributes)

• SQA challenges

• Organization for assuring software quality

5.1.1 SQA – definitions and concepts (Chapter 1)

A combination of two rivaling classic definitions for software quality is pre
sented in the IEEE’s definition of software quality: (a) Software quality is the
degree to which a software system meets specified requirements, and (b) it is
also the degree to which a software system fulfils customer or user needs and
expectations.

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

81

82 Chapter 5 The SQA World – An Overview

Software quality assurance is defined as an “Asset of activities that define
and assess the adequacy of a software process to provide evidence that estab
lishes confidence that the software processes are appropriate for, and produce,
software products of suitable quality for their intended purposes.”

The discussion on quality issues naturally continues with the causes of soft
ware errors. Nine main causes are listed; beginning with faulty requirements def
initions and client–developer communication failures, and ending with
documentation errors – all of which are human errors.

5.1.2 Software quality factors (attributes) (Chapter 2)

There is a great variety of attributes that characterize software quality: They are
also termed software quality factors. McCall classifies these factors into three
classes:

a. Product operation factors (correctness, reliability, efficiency, integrity,
and usability)

b. Product revision factors (maintainability, flexibility, and testability)

c. Product transition factors (portability, reusability, and interoperability)

Several other factor modes have been developed over the years, with high or
medium levels of similarity to McCall’s model.

5.1.3 SQA challenges (Chapter 3)

The first SQA challenge is the need to manage the unique quality assurance dif
ficulties stemming from the high complexity of software products, their lack of
visibility, and, finally, the fewer opportunities in which errors may be identified,
compared with products from other industries.

The second SQA challenge is the need to manage development, operation,
and environment characteristics: First – contract conditions, including functional
requirements, schedule and budget, and the customer–supplier relationship.
Second – the need to maintain teamwork and the team’s cooperation and coordi
nation with other internal and external teams. Third – the required product inter
faces with other software systems. Fourth – the need to continue the project
despite team member changes, and later to maintain the software system, often
for many years.

5.1.4 Organization for assuring software quality

The organization’s organs that contribute to a product’s quality are many. I have
chosen to focus on those who mostly affect software quality: management levels

5.2 Second Area: SQA Process Implementation Activities (Part II of the Book) 83

(top management, department managements, and project/team management
staff), and the SQA function/unit.

The following are the management level’s quality assurance responsibilities:

• Establish and update the organization’s software quality policy.

• Assign one of the executives to be responsible for software quality issues
(e.g., Vice President of SQA).

• Conduct regular management reviews of performance with respect to soft
ware quality issues.

The departments’ management quality assurance responsibilities include
responsibilities for quality activities related to the department and infrastructure
services, and those related to quality issues of particular software projects and
maintenance services.

Most project management responsibilities are defined in procedures and
work instructions; the project manager is the person in charge of making sure
that all team members comply with the said procedures and instructions. His
tasks include professional hands-on and managerial tasks.

The SQA unit’s activities may be classified into three areas: SQA process
implementation activities, product assurance activities for conformance, and pro
cess assurance activities for conformance.

The SQA unit is supported by the unit’s “associates”: SQA trustees, SQA
committee members, and SQA forum members, these may all contribute subs
tantially to the unit’s quality achievements.

We have now completed our visit to the introductory area, after examining the
basics of software quality and software quality assurance, and shall proceed to
the second area.

5.2 Second area: SQA process implementation
activities (Part II of the book)

SQA process implementation is the strategic infrastructure development of pol
icy, processes, and SQA roles that, when applied by the organization to software
projects, enable producing software products of the required level of quality.

The following issues will be presented in the second area:

• Establishing SQA processes and their coordination with related software
processes

• SQA plan (SQAP) and project plan

• Preproject process – contract review

• Cost of software quality

84 Chapter 5 The SQA World – An Overview

• The effectiveness and cost of a verification and validating plan (V&V)
plan – the SQA model

• SQA records and documentation control

5.2.1 Establishing SQA processes and their
coordination with related software processes
(Chapter 6)

SQA processes and their related procedures serve as SQA infrastructure. These
SQA processes and their related procedures are designed so that when imple
mented in a software development project, they enable the developers to fulfill
the established requirements.

The SQA processes to be defined and developed include the following:

• Define the organization quality policy.

• Establish the organization’s SQA processes.

• Allocate tasks to those responsible for SQA processes.

• Define the management’s follow-up tool/method.

• Develop a follow-up and review method for the SQA function.

In order to realize the intended benefits from the SQA processes, their per
formance needs to be coordinated with the relevant software processes. The
coordination ensures that the SQA processes are performed in the appropriate
stage of the software process, and so contribute to the achievement of the
required level of software product quality.

5.2.2 SQA plan and project plan (Chapter 7)

The SQAP deals with the activities and tasks the SQA function is required to
carry out over the next year, and enables estimating resources required to
perform the SQAP. The planners of the resource estimates refer to the pro
fessional knowledge and experience requirements of the various activities
and tasks, and classify the staff requirement accordingly. In this way, the
SQA function may be appropriately staffed to carry out the SQAP in the
coming year.

The project plan deals with the activities and tasks to be performed by the
project team throughout the project’s life cycle, namely, during the development
and operation stages. Probably two of the most important elements of the project
plan are the activities schedule and the resource estimates for each activity.

The two plans are tightly connected, and need to be coordinated. A great
part of the SQAP activities has to be coordinated with the relevant project plan
activities.

5.2 Second Area: SQA Process Implementation Activities (Part II of the Book) 85

5.2.3 Preproject process – contract review (Chapter 8)

Contract review is a process where SQA function, by reviewing the project pro
posal and the contract draft, can assist in forming a successful contract. It is
natural for an SQA function to be involved in contract review as from the view
point of SQA, a bad contract – usually characterized by loosely defined require
ments, and unrealistic budgets and schedule – is expected to yield low-quality
software.

The contract review process begins with a reviewing the proposal draft, and
later, in the second stage, the contract draft is reviewed.

The role of the SQA function in carrying out contract reviews is major, due
to the knowledge and experience.

5.2.4 Cost of software quality (Chapter 9)

The following are the objectives of application of cost of software quality
measurements:

• Control organization-initiated costs to prevent and detect software errors.

• Evaluate financial damages of software failures as a basis for revising the
SQA budget.

• Evaluate plans to increase/decrease SQA activities, or to invest in new/
updated SQA infrastructure.

The classic quality cost model differentiates between controlled costs (pre
vention costs and appraisal costs) and software failure costs (internal failure
costs and external failure costs).

The chapter also presents an extended software quality cost model that adds
managerial quality costs to those included in the classic model.

Application of a cost of software quality system requires:

• Definition of a cost of software quality model and a standardized list of
cost items – specifically for the organization, department, team, or project.

• Definition of a method of data collection.

• Application of a cost of software quality system, including thorough fol
low-up.

• Actions to be taken in response to the findings produced.

5.2.5 The effectiveness and cost of a V&V plan – the
SQA model (Chapter 10)

The SQA model is an effective tool to provide project planners with estimates of
the effectiveness of a V&V plan. Such a tool enables comparing alternative

86 Chapter 5 The SQA World – An Overview

programs by supplying the expected percentage of errors to be removed in each
screening stage, when applying a given V&V plan, and also the expected costs
of performing the plan. This method of estimating could also be useful for the
SQA function when evaluating project plans.

The model deals with two quantitative aspects of a V&V plan consisting of
several defect detection activities. The plan itself is to be integrated within a
project’s development process:

a. The V&V plan’s total effectiveness in removing project defects.

b. The V&V plan’s total costs of removal of project defects.

An application of the model for comparing a standard V&V plan with a
comprehensive V&V plan is presented in this chapter.

5.2.6 SQA records and documentation control
(Chapter 11)

During the software life cycle many types of documents are created. Some of the
documents are required immediately for the continuation of the development,
while others may become vital for software quality assurance over the life cycle
of the system. Documents displaying these characteristics and treated according
to special procedures are:

Controlled documents. Documents produced during the development and
operation of software systems, which are immediately necessary for soft
ware processes, or during the life cycle of the system for software quality
assurance.

Quality records. Quality records are controlled documents aimed mainly to
provide evidence that the development and maintenance processes per
formed were in compliance with requirements.

The following are the implementation of documentation control:

a. Definition of the list of the controlled document types.

b. Design and development of controlled documents.

c. Document production and their regular use.

d. Updating (maintaining) the controlled documents list.

Leaving the second SQA area, we shall now approach the third area, which is
dedicated to software product quality issues.

5.3 Third Area: Product Assurance Activities for Conformance 87

5.3 Third area: product assurance activities for
conformance (Part III of the book)

This area is dedicated to the product software quality assurance activities, and
discusses the following issues:

• The SQA activities aimed at evaluating the conformance of software
products and related documentation to contract requirements and relevant
regulations and conventions.

• The review methods applied for evaluating documents, reports, and per
formance records.

• The testing methods used to verify and validate software code files.

• Assuring software operation services quality conformance.

• The software product quality measurement techniques.

• Procedures and work instructions and their development and usage.

5.3.1 Evaluation of products for conformance
(Chapter 12)

A substantial part of the SQA function’s efforts is devoted to evaluating the
products of the software processes. These are produced during the software
development life cycle (SDLC), and include software and any relevant docu
mentation. Software products include software packages/systems and software
services, while the relevant documentation includes various development and
operation reports, such as design reports, test reports, and periodical customer
services reports.

The evaluation for conformance subjects include:

• Project plans

• Project software products

• Project products for acceptability by the customer

• Project operation phase products

• Software product evaluation by measurements

5.3.2 Reviews (Chapter 13)

A review is defined as a process for evaluating a documented software project
product, in which a group of professionals and stakeholders raise comments
regarding the contents of a document presented to them beforehand.

The following are the direct objectives of a review:

• To detect analysis, design, and other documentation, functional, logical,
and implementation errors.

88 Chapter 5 The SQA World – An Overview

• To identify changes, deviations, and omissions with respect to the original
specifications and approved changes.

• To locate those deviations from templates, style procedures, and conven
tions, which are expected to cause difficulties to development and mainte
nance teams.

• To identify new risks that are likely to affect completion of the project.

• To approve, in formal reviews, the analysis, design, or other respective
development stage of the product, and allow the team to progress to the
next development phase.

The following review methods are common:

• Formal design reviews

• Peer reviews – inspections and walkthroughs

In general, the knowledge that an analysis, design, or other development
product will be reviewed stimulates the development team to do their best work.
This represents a further contribution of reviews to the improved product quality.

5.3.3 Software testing (Chapter 14)

Software testing is an activity in which a system or component is executed
under specified conditions, the results are observed or recorded, and evaluation
is made of some aspect of the system or component.

The following are the direct objectives of software testing:

• To identify and reveal as many errors as possible in the tested software.

• To bring the tested software to an acceptable level of quality, after correc
tion of the identified errors and retesting.

• To perform the required tests efficiently and effectively, and within the
budgetary and scheduling limitations.

• To establish with a degree of confidence that the software package is
ready for delivery (or installment at customer premises).

It is recommended that the software testing program be incremental and
include unit tests and integration tests, rather than to only be based on final “big
bang” system tests. Software testing programs are constructed from a variety of
tests: some manual and some automated. All tests have to be designed, planned,
and approved according to development procedures. The advantages and disad
vantages of automated testing are discussed in the text.

Another issue presented is the choice between black box and white box test
ing. A major factor in test planning is the size of the test case file. Line coverage
instead of path coverage enables reducing the test case file in white box testing.
For black box testing, the equivalent class method is offered to minimize the test

5.3 Third Area: Product Assurance Activities for Conformance 89

case file. Review activities for the programming phase are discussed as comple
mentary to software testing. Automated testing with its advantages and disad
vantages is also discussed in the text.

5.3.4 Assuring software operation services quality
conformance (Chapter 15)

The main part of the software life cycle is the operation phase, which usually
lasts for 5–10 years, although cases of software being operational for 15 years,
and even longer, are not rare. What makes one software package capable of
reaching “old age” with satisfied users, while another package, serving an almost
identical population, “perishes young?” The main factor responsible for a long-
term service success is the quality of operation services, namely, the user sup
port and maintenance services. Estimates of the percentage of resources invested
in operation phase services throughout its life cycle range from 50 to 75% of the
total invested software system resources.

User support services may be classified into two kinds:

User support services through the phone. This kind of service frequently
applies remote intervention in the user’s computer to solve the problem.

Onsite user support service. This kind of service is only used when sup
port through the phone is inapplicable. Usually this kind of service is
critical situation.

In part of the users support calls, the solution requires corrective mainte
nance service.

Software maintenance services include the following three components, all
essential for successful maintenance:

• Corrective maintenance – user support services and software corrections.

• Adaptive maintenance – adapts the software package to changes in new
customer requirements, changing environmental conditions, and the like.

• Functionality improvement maintenance – combines (1) perfective
maintenance of new functions added to the software to enhance perform
ance; (2) preventive maintenance – activities that improve software
package reliability, enabling easier and more efficient maintainability.

5.3.5 Software product quality metrics (Chapter 16)

Software product metrics are a quantitative representation of software products
or intermediate product’s attributes, as experienced by the user when applying
the software trying to adapt it or change it, such as size, effectiveness, productiv
ity, and reliability.

90 Chapter 5 The SQA World – An Overview

The product metrics are classified into two classes:

1. Software product size metrics

2. Software attributes metrics

A measure of software product size is needed mainly: (a) to estimate the
required development resources at the stage of preparing a proposal for a soft
ware project or planning and scheduling its process of development, and (b) for
use in other metrics when comparing the performance proportionally to the soft
ware project size, for example, in metrics of productivity, quality (defects rates),
and so on.

Two approaches for software size metrics are offered:

a. KLOC (thousands of lines of code). This metric represents metrics based
on the physical completed size of software, such as the number of lines
of code.

b. Function points (FPs). This metric represents the result of applying a
measure from the group of functional size measurement (FSM) methods.
These estimating methods are based on the functionality specified by the
software project requirements. More specifically, the FSM concept
requires counting items such as inputs and outputs of software systems.

Software product attribute metrics relate to attributes like software function
ality, software reliability, software usability, and software efficiency. The chapter
presents examples of metrics for each of the software attributes.

5.3.6 Procedures and work instructions (Chapter 17)

Application of the organization’s accumulated know-how, experience and
expertise.

SQA procedures and work instructions aim at:

• Performance of tasks, processes, or activities in the most effective and
efficient way without deviating from quality requirements.

• Effective and efficient communication between the different teams
involved in the development and maintenance of software systems. Uni
formity in performance, achieved by conformity with procedures and
work instructions, reduces misunderstandings that lead to software errors.

• Simplified coordination between tasks and activities performed by the
various bodies of the organization. Better coordination translates into
fewer errors.

Procedures supply all the details needed to carry out a task according to the
prescribed method for fulfilling the task’s function. Professionally developed and
maintained SQA procedures conform to an organization’s quality policy, and

5.4 Fourth Area: Process Assurance Activities for Conformance 91

also tend to conform to international or national SQA standards. Work instruc
tions deal with the application of procedures, and are adapted to the require
ments of a specific project team, customer, or other relevant party.

Procedures need to be updated from time to time. The motivation to update
existing procedures is based, among other reasons, on the following:

External changes

• Technological changes in development tools, hardware, communication
equipment, and so on

• Changes in legal requirements

• Changes in the organization’s areas of activity

After being impressed by the software product quality issues, we shall move on
to the next area, which is dedicated to software process quality issues.

5.4 Fourth area: process assurance activities for
conformance (Part IV of the book)

This area is dedicated to the process quality assurance activities and presents the
following issues:

• The SQA activities aimed at evaluating the conformance of software pro
cesses and related documentation to contract requirements and relevant
regulations and conventions.

• The process improvements processes and the services of corrective and
preventive actions (CAPAs).

• The activities applied for assuring the quality of software processes to be
performed by subcontractors and other external participants.

• The process quality measurement techniques.

• The software change control (SCC) process.

• The issues related to the assessment of staff skills and knowledge, con
ducting training and certification of staff members.

5.4.1 Evaluation of processes and development
environment for conformance (Chapter 18)

This chapter is dedicated to activities performed to evaluate process assurance
and development environment for conformance to requirements, standards, regu
lations, and conventions. “Process requirements specify the processes the project
will use to produce the project outcomes. The software engineering environment

92 Chapter 5 The SQA World – An Overview

provides assistance to the programmer through a workstation equipped with
compilers, program database systems, an interactive debugger, and other devel
opment tools.”

The test environment enables performing efficient testing by local comput
ing when adequate capacity exists or with cloud computing technology.

The evaluation process to be performed by the SQA function includes the
following activities:

1. Identify the life cycle processes required by the contract requirements,
regulations, and conventions.

2. Review planned life cycle processes for their conformance to the rele
vant established process requirements.

3. Review processes being performed for their conformance to the relevant
established process requirements. The review should yield lists of
nonconformities.

The evaluation of software development and test environments include the
following activities:

1. Evaluate the software development environment planned to be used, and
that which is actually used by the project team for conformance to con
tract requirements and conventions.

2. Evaluate the software and application libraries and software development
tools used by the project team for conformance to contract requirements
and planned libraries.

3. Evaluate the test environment for conformance to contract requirements
and planned environment.

All evaluation activities are followed by lists of nonconformities to
be corrected.

5.4.2 Improvement processes – corrective and
preventive actions (Chapter 19)

Continual improvement, in other words, ongoing improvement of overall per
formance, is also a basic principle of software quality assurance. The issues
involved in successful implementation of this principle by CAPAs are discussed
in this chapter.

Corrective action is a regularly applied feedback organizational process
that initiates and performs actions to eliminate causes of nonconformities
(software faults).

Preventive action is a regularly applied feedback organizational process
that initiates and performs actions to prevent the occurrence of potential
nonconformities (software faults).

5.4 Fourth Area: Process Assurance Activities for Conformance 93

The corrective and preventive actions process includes:

• Information collection

• Analysis of information

• Development of solutions and improved methods

• Implementation of improved methods

• Follow-up of CAPA activities – implementation and outcome

5.4.3 Software process assurance activities for
external participants (Chapter 20)

The organization that undertakes to carry out the development contract (the
“supplier”) is very often not the only participants in a development project. This
is especially true for large-scale projects, which frequently include external par
ticipants. The four external participant types are classified into two main groups:
external performers (subcontractors and the customer, as a participant in per
forming the project) and readymade software suppliers (COTS software and
reused software modules and open-source software).

The main risks with external participants:

• Delays in completion of the project

• Low quality of project parts developed by external participants

• Communication problems with subcontractors

• Loss of control over project parts

• Future maintenance difficulties

• Termination of work on contracted activities due to the subcontractor
going out of business

The main risks with readymade software:

• Difficulties in integrating readymade software

• Difficulties in correcting faults revealed in readymade software

• Future maintenance difficulties

QA activities applied to subcontractor’s participation in a software develop
ment project:

• Reviewing the requirements document and subcontractor contract

• Evaluation of selection process regarding external\performers

• Review of the external performers’ project plans and development
processes

• Establishment of project coordination and joint control committee

94 Chapter 5 The SQA World – An Overview

• Participation in external participants’ design reviews and software testing

• Formulation of external performers’ procedures

• Certification of external performers’ team leaders and members

• Regular follow-up of progress reports of external performers’ develop
ment activities

QA tools applied to usage of readymade software in a software development
project:

• Requiring document reviews

• Performing appropriate selection process
- The system requirements
- The readymade software product characteristics
- The provider’s characteristics
- Estimates of efforts required for readymade component’s integration

• Requirement changes to adapt to readymade software features

• Peer reviews and testing readymade package or component

• Knowledge management of components integrated in the software system

• Preparing specialized procedures

5.4.4 Software process quality metrics (Chapter 21)

Software process metrics are a quantitative representation of software pro
cesses, as encountered by developers and maintainers throughout the software
life cycle, such as prerelease defects, percent of modified code lines, and density
of detected defects.

The software process metrics are classified into four classes:

1. Software development process quality metrics

2. Software operation process quality metrics

3. Software maintenance process quality metrics

4. Management process quality metrics

Many examples of software process quality metrics may be found in this
chapter.

5.4.5 Software change control processes (Chapter 22)

The software development process is inevitably characterized by a constant flow
of change requests, mainly from customers. The need to cope with software
changes throughout the software life cycle is one of the more important and
onerous tasks of the software development and maintenance teams. Moreover,

5.4 Fourth Area: Process Assurance Activities for Conformance 95

performing changes – usually under time constraints – is one of the processes
more susceptible to software errors.

The process of examining change requests, selecting which should be
rejected and which should be approved, along with scheduling of the implemen
tation of approved changes is the SCC process. The SCC function in the devel
opment organization performs the following tasks:

a. Examination of requested or suggested changes.

b. Approval of implementation of only those changes that are worthy and
necessary, while all remaining are rejected.

c. Scheduling of the implementation of each of the approved changes.

d. Follow-up of the approved changes.

Software change requests (SCRs) initiatives may relate to one or more of
the following:

• A need to correct a software error.

• A need to adapt the software to changes in the operations of a customer’s
business or organization missions.

• A need to adapt the software to a new customer’s needs.

• A need to adapt the software to changes in general business and market
changes.

• A proposal to update and improve the software product, to achieve higher
customer satisfaction (in custom-made projects), or to affect the market
ability of the software (in COTS software).

• A need to adapt the software to budget and schedule constraints.

The chapter details the processes involved in software changes.

5.4.6 Staff skills and knowledge – training and
certification (Chapter 23)

Successful team performance is based on the staff possessing adequate skills and
knowledge. Also, it goes without saying that keeping staff abreast of the latest
professional advancements available is the key to achieving quality in develop
ment and maintenance. Moreover, it is generally accepted that regular professional
training, retraining, and updating are mandatory, if the gap between required and
current professional knowledge is to be maintained as narrow as possible.

Position certification (hereinafter “certification”) is conducted for staff mem
bers assigned to key positions, and is a way of achieving conformance of a can
didate’s skill and knowledge to a specific position’s skill and knowledge
requirements. It may be conducted for software development and maintenance
positions. Certification may be considered as another complementary tool for
ensuring suitable professional skill and knowledge of team members.

96 Chapter 5 The SQA World – An Overview

The operation of successful training demands that the following activities be
regularly performed:

• Determine needs for professional training and updating needs for filling
any knowledge gaps for the software development staff.

• Plan training and upskill programs for the software development staff.

• Conduct training programs for the software development staff.

• Perform follow-up on training activities and new knowledge acquired by
trainees.

The following activities are required for the certification process:

• Define positions requiring certification

• Plan certification programs for the selected positions

• Deliver certification programs

• Perform certification follow-up

The chapter discusses in detail the training and certification processes.

After completing our visit to the area of process assurance activities, we shall
now advance to the next area that presents three additional tools and methods
that support the software quality assurance efforts of the development teams.

5.5 Fifth area: additional tools and methods supporting
software quality (Part V of the book)

In this area the following are the three additional tools and methods that support
development teams in their efforts to ensure the quality of their software pro
cesses and software products quality:

• Templates and checklists

• Configuration management

• CASE tools and IDEs – their impact on software quality

5.5.1 Templates and checklists (Chapter 24)

Software development and maintenance processes involve the production and use
of a multitude of documents. Two simple SQA tools, templates and checklists,
could support the preparation of documents. In addition to timesavings, these
tools improve the quality of reports including their structures (contributed by tem
plates), and also provide better preparation for debate on reports by improving
them according to checklists and by preparing responses to the checklist topics.

5.5 Fifth Area: Additional Tools and Methods Supporting Software Quality 97

The usage of templates is quite advantageous to development teams and to
review teams.

For development teams, using templates:

• Facilitates the process of preparing documents by saving the time and
energy required to create the document’s structure.

• Means that documents prepared by developers are more complete as
all the subjects to be included in the document have already been defined.

• Provides for easier integration of new team members through familiarity.
The document’s standard structure, prepared according to templates that
may be known to the new member from previous work.

For DR Committee members, template use:

• Facilitates review of documents by eliminating the need to study a docu
ment’s structure and confirm its completeness – if the document is based
on the appropriate template.

For software maintenance teams, template use:

• Enables easier location of the information required for performing
maintenance tasks.

Checklists are used:

• By developers prior to completing a document to ensure that all required
topics have been included and discussed properly.

• By developers prior to performing an activity (e.g., installing a software
package at the customer site) and to ensure the completeness of preparations.

• By DR committee members for verifying that a document complies with
content topics requirements.

• By DR committee members to verify the correct order of topics in the
review sessions discussions.

The advantages of using templates to the development teams:

• Help developers carry out self-checks of documents or software code
prior to formal design reviews, inspections, or testing

• Assist developers in their preparations for tasks such as installation of
software at customer sites or performance of quality audits at subcontractors’
sites.

The advantages of using templates to the review teams:

• Ensure completeness of document reviews by review team members
as all relevant review topics appear on the list.

• Facilitate improved efficiency of review sessions as the subjects and
their order of discussion are defined and well known in advance.

98 Chapter 5 The SQA World – An Overview

5.5.2 Configuration management (Chapter 25)

The need to cope with software versions throughout the software life cycle is
one of the more important tasks of software development and maintenance
teams. The software quality support function to perform this task is software
configuration management (SCM).

The SCM tasks include:

• Systematic storage of identified versions of software configuration items
and other approved items.

• Release of SCI and software configuration versions.

• Provision of information services based on recovery of stored data.

• Verification of compliance to CM procedures.

The SCM serves versions of four classes, as follows:

• Design documents

• Software code

• Data files including files of test cases and test scripts

• Software development tools

5.5.3 CASE tools and IDEs – their impact on software
quality (Chapter 26)

CASE tools are computerized software development tools that support the soft
ware developer and maintenance staff by increasing the efficiency and effective
ness of the processes, and reducing the resources required and reducing defects
generated when supporting the performance of one or more phases of the soft
ware life cycle.

The contribution of CASE tools to the software project:

• Substantial savings in software development resources

• Shorter time to market

• Reduced generation of defects

• Increased automatic identification of defects and their correction during
development

• Greater reuse due to increased standardization of software components
and programs and improved search of potential COTS components and
software

• Substantial savings in maintenance teams’ resources

• Improved project scheduling and control of project performance

5.6 Sixth Area: Appendices (Part VI of the Book) 99

CASE tools may be classified into three groups:

The classic CASE tools group includes the well-established computerized soft
ware development support tools (such as interactive debuggers, compilers,
configuration management services, and project progress control systems).

The IDE CASE tools group includes CASE tools based on the integration
of several classic CASE tools into a common work environment, provid
ing a substantial improvement on the efficiency and effectiveness of soft
ware development.

The Real CASE tools group includes new tools that support the developer
during several consecutive project development phases; it is customary to
distinguish between upper CASE tools that support the analysis and
design phases, lower CASE.

After being introduced to additional tools and methods supporting software qual
ity, we shall move on to the last area to be visited.

5.6 Sixth area: Appendices (Part VI of the book)

The appendices in this book present basic software quality and software engi
neering topics that are very much related to SQA:

• Software development and quality assurance process standards

• Quality management standards and models

• Project progress control

• From SDLC to Agile – processes and quality assurance activities

5.6.1 Software development and quality assurance
process standards (Appendix A)

The use of standard is a vital part of engineering as software and software qual
ity engineering. The main benefits gained by using project development process
standards are:

• The ability to apply the most professional software development and
maintenance methodologies available.

• Better mutual understanding and coordination among teams, especially
between development and maintenance teams.

• Better cooperation between the software developer and external partici
pants in the project.

• Better understanding and cooperation between suppliers and customers,
based on incorporation of accepted standards within the contract.

100 Chapter 5 The SQA World – An Overview

Software process standards focus on methodologies for carrying out soft
ware development and maintenance projects, and assure their quality, that is, on
“how” a software project is to be implemented. These standards define steps to
be taken, design documentation requirements, the contents of design documents,
and so on. Naturally, due to their characteristics, many standards in this class can
serve as software engineering and SQA textbooks versa.

The chapter presents three important software engineering and software
quality assurance international standards:

• IEEE Std. 730-2014 – Software quality assurance

• ISO/IEC/IEEE 12207:2008 – Systems and software engineering – Soft
ware life cycle processes

• IEEE Std. 1012-2012 – Systems and software verification and validation

5.6.2 Software quality management standards and
models (Appendix B)

Quality management standards and models focus on the organization’s SQA sys
tem, infrastructure, and requirements while leaving the choice of methods and
tools to the organization. By complying with quality management standards,
organizations can constantly ensure that their software products achieve an
acceptable level of quality.

These standards may be classified into two classes:

• Certifying standards enable the software quality assurance to be examined
by a professional body to determine its quality level. When the quality
level is established as satisfactory, the developing organization is certified.

• Assessment standards enable the developing organization to assess its
professional level and plan any necessary improvements.

The following are the aims of certification standards:

• To enable a software development organization to demonstrate consistent
ability to ensure that its software products or maintenance services com
ply with acceptable quality requirements. This is achieved through certifi
cation granted by an external body.

• To serve as an agreed-upon basis for customer and supplier evaluation of
the supplier’s quality management system. This may be accomplished
with a quality audit of the supplier’s quality management system con
ducted by the customer. The audit will be based on the certification stan
dard’s requirements.

• To support the software development organization’s efforts to improve
quality management system performance.

5.6 Sixth Area: Appendices (Part VI of the Book) 101

The following are the aims of assessment standards:

• To serve software development and maintenance organizations as a tool for
self-assessment of their ability to carry out software development projects.

• To serve as a tool for improvement of development and maintenance pro
cesses. The standard indicates directions for process improvements.

• To help purchasing organizations determine the capabilities of potential
suppliers.

• To guide training of assessor by delineating qualifications and training
program curricula.

The chapter includes a detailed discussion of the following standards and
models:

• ISO/IEC 90003: 2014 – Software engineering – Guidelines for the appli
cation of ISO 9001:2008 to computer software, for Services

• Capability Maturity CMMI: 2010 – CMMI for acquisition for develop
ment and for services (3 models)

• ISO/IEC 15504:2011-2015 – Information technology – Process assessment

5.6.3 Project progress control (Appendix C)

Months of project delay and budget overruns exceeding 10% and sometimes up
to 30% and even more over project estimations, typical of too many software
development projects, are “red flags” for software project management.
Unfortunately, these events are usually coupled with the low quality of software
projects – a natural reaction of the developers to schedule and budget issues.
This chapter is dedicated to methods and procedures that ensure timely perform
ance in a software project, verifying schedule and budget keeping.

The main components of project progress control are:

• Control of risk management activities

• Project schedule control

• Project resource control

• Project budget control

Special cases of project progress control are internal projects and projects
performed by external participants.

Project progress control of internal projects, such as projects undertaken
for other departments, excludes, by definition, the option of external customers.
These projects thus tend to be assigned a lower management priority. The
inadequate attention awarded is often accompanied by inappropriate or lax fol
low-up on the part of the internal customer. Similar tendencies are observed in
the earlier preproject stage, inappropriate contract reviews (if any at all), and

102 Chapter 5 The SQA World – An Overview

project development plans. Significant delays in project completion time,
together with overrun project budgets, are typical results of these situations.

It is expected that loose development contracts of internal projects, if exist,
will also result in a lower quality of project software products. The SQA function
is required to manage these risks by meticulous reviews and follow-up activities.

Project progress control of projects performed by external projects
includes subcontractors, suppliers of COTS software, open-source software and
reused software modules, and, in some cases, the customer himself. The more
sizeable and complex the project, the greater the likelihood that external partic
ipants will be required, and the larger the portion of work allocated to them.
Management turns to external participants for a number of reasons, ranging
from economic to technical to personnel-related interests. The agreements
entered into by the external participants in a project have become so intricate
that communication and coordination have become problematic for the project
team as well as for management. In response, more significant efforts are called
for in order to achieve acceptable levels of control. Hence, project progress con
trol of external participants must focus mainly on the project’s schedule and the
risks identified in planned project activities.

It is much more difficult to perform reviews and follow-up quality issues
(SQA tasks) on the work and responsibilities of external participants than that of
the developer’s software project teams. These difficulties result from coordina
tion and cooperation issues, typical to external participants. Coordination and
cooperation of contract requirements, as well as an appropriate choice of exter
nal participants, are ways to overcome these difficulties.

5.6.4 From SDLC to Agile – processes and quality
assurance activities (Appendix D)

This chapter is dedicated to the various software development models in current
use, putting emphasis on the way that quality assurance activities are integrated
into the development process. Furthermore, the way the customer’s team is
involved in the quality assurance process is also discussed.

Seven models of the software development process are discussed in this
chapter:

• Classical software development models
- The SDLC model
- The prototyping model
- The spiral model

• The object-oriented methodology

• The incremental delivery model

• The staged models

• The Agile methodology models

5.7 The SQA Hall of Fame 103

The models presented here are not merely alternatives, but could represent a
complementary ways of software development, or refer to different development
contexts.

At the end of our SQA tour I believe that participants of the tour have under
stood the key for SQA success – application of a great variety of processes and
activities on the one hand and a strong need for cooperation and coordination of
all parties involved in the efforts to produce software of the required quality on
the other.

5.7 The SQA Hall of Fame

We have reached the end of our tour, but just before departing you are invited to
visit the SQA Hall of Fame (Figure 5.1):

• The pillars are in honor of the SQA processes and methodologies.

• The base structure units are in honor of the tools and methods that support
software quality.

Figure 5.1 The SQA Hall of Fame

Part II

SQA Process
Implementation
Activities

The SQA processes are classified into three areas:

1. SQA process implementation, which is the strategic infrastructure
and development of policy, processes and SQA roles that, when
applied by the organization and software projects, will enable to
produce software products of the required level of quality.

2. Product quality assurance related to the evaluation of software
products for their compliance with project requirements.

3. Process quality assurance related to the verification of software
project compliance with established processes and procedures.
Additional processes evaluate the effectiveness and efficiency of
the established processes, and list improvement suggestions.

This part of the book is dedicated to the first area, SQA process imple
mentation. The following issues will be presented:

• Establishing SQA processes and their coordination with related soft
ware processes (Chapter 6)

Software Quality: Concepts and Practice, First Edition. Daniel Galin.

 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

105

106 Part II SQA Process Implementation Activities

• SQA plan and project plan (Chapter 7)

• Preproject process – contract review (Chapter 8)

• Cost of software quality (Chapter 9)

• The effectiveness and cost of a V&V plan – the SQA model
(Chapter 10)

• SQA records and documentation control (Chapter 11).

Chapter 6

Establishing SQA Processes
and Their Coordination with
Relevant Software Processes

6.1 Establishing SQA processes

The established SQA processes are intended to serve as infrastructure for the
performance of SQA processes in the organization’s software project, and as a
basis for software quality management by the organization. These infrastructure
development activities are of a strategic nature for the organization. The SQA
processes to be defined and developed include the following:

• Defining the organization’s quality policy.

• Establishing the organization’s SQA processes.

• Defining tasks to those responsible for SQA processes.

• Defining the management’s follow-up tool/method.

• Developing a follow-up and review method for the SQA function.

All these SQA processes have to be defined and developed independently
from the organization’s software projects. In new organizations, these infra
structure processes are intended to be completed before software contacts are
signed.

The role of the SQA function in the establishment of the organization’s
SQA processes is to initiate and support the development. The SQA processes
discussed here follow the IEEE Std. 730-2014 (IEEE, 2014).

A discussion of SQA processes follows.

a. Defining the organization quality policy
The definition and development of the organization’s quality policy will
include the roles and responsibilities of SQA in the organization, and the

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

107

108 Chapter 6 Establishing SQA Processes and Their Coordination

obligatory status of SQA processes to be performed in the organization’s
software projects. The quality policy will also define the roles and
responsibilities of the SQA function.

b. Establishing the organization’s SQA processes
The organization’s SQA processes should be defined and developed for
all the SQA processes required for achieving adequate quality of soft
ware products and services. The development effort of the SQA pro
cesses should include development of the related procedures. It is
expected that the SQA function will take a major part in carrying out the
tasks of the SQA process development due to the team’s professional
knowledge and experience.

c. Defining tasks to those responsible for SQA processes
Performing the SQA processes requires defining tasks and responsibili
ties to persons in the software project teams, and to persons in the orga
nization’s software quality management. These persons will be
responsible for the execution of the SQA processes.

d. Defining the management’s overseeing tool/method
It is crucial that management has the whole picture of the SQA perform
ance of the organization. A method for reporting to management about
SQA processes performance and the outcomes of reviews and tests
should be developed. The management’s software quality performance
information will be shared with the SQA function. An additional tool for
providing management with a periodic review of the SQA performance
is the “management review.”

e. Developing a follow-up and review method for the SQA function
The data collected about the quality performance of software projects,
including problems, enables the SQA function to identify process
improvement opportunities and to plan their implementation.

6.2 Coordinating SQA processes with related
software processes

The need to coordinate SQA processes with relevant software processes
A great part of SQA processes are evaluation activities, namely, verification,

validation review, and audit activities. The performance of the SQA processes
should be integrated in the software project schedule. The efficient performance
of SQA processes requires close coordination between the SQA function and the
organization management and project managers.

The required coordination to be performed by the SQA function includes:

• Coordination during the stage when the software quality assurance plan
(SQAP) is being prepared. This coordination is required in order to plan
correctly the schedule, resources, and budget of the SQA function.

Summary 109

• Coordination with the organization regarding the performance of SQA
processes the management is responsible to carry out. Results of these
coordination efforts are reflected in the SQAP.

• Coordination between the SQA function and project managers along the
project performance.

The benefits of coordination
The following are the benefits of coordinating the SQA processes with

project’s software processes:

• The coordination ensures that the SQA processes are performed in the
appropriate stage of the software process and so contribute to the achieve
ment of the required level of software product quality.

• Resource savings for the SQA function by eliminating task redundancies
and duplicate tasks.

• Less disagreements when evaluating performance and nonconformance
results reported by the SQA function, as findings are based on common
evaluation tasks.

Summary

1. The SQA processes that should be established
The SQA function initiates and supports the establishment of SQA

processes that will serve as infrastructure of SQA in the organization:
• Defining the organization quality policy.
• Establishing the organization’s SQA processes.
• Defining tasks to those responsible for SQA processes.
• Defining the management’s follow-up tool/method. Developing a fol
low-up and review method for the SQA function

2. The benefits of coordinating SQA processes with relevant software
processes

The following are the benefits of coordinating the SQA processes
with software processes:
• The coordination ensures that the SQA processes be performed at the
appropriate stage of the software process, and so will contribute to the
achievement of the required level of software product quality.

• Saving resources for the SQA function by eliminating task redundan
cies and duplicate tasks.

• Less disagreements when evaluating performance and nonconformance
results reported by the SQA function, as findings are based on com
mon evaluation tasks.

110 Chapter 6 Establishing SQA Processes and Their Coordination

Selected bibliography

IEEE (2014) IEEE Std. 730-2014 Software Quality Assurance, The IEEE Computer Society, IEEE,
New York.

Review questions

6.1 The head of an SQA function insists that all required SQA processes be established.

a. List the required SQA processes.

b. Explain the importance of each of the SQA processes.

6.2 The SQA function is investing efforts to coordinate SQA processes with relevant
software processes.

• List the benefits of the coordination.

Topics for discussion

6.1 The organization is directed to establish the SQA processes prior to contracting the
execution of software development projects.

a. Should the established SQA processes be considered “infrastructure of the organi
zation’s SQA?” Discuss this issue.

b. Why should SQA processes be established prior to carrying out software develop
ment projects?

c. Explain the contribution of each of the SQA processes to the SQA system.

6.2 “The coordination process is a continuous process, which requires the SQAP to be
updated frequently due to the flow of software process changes”, claims a head of an
SQA team.

a. Do you agree with this claim? List your arguments.

b. Can you suggest three different situations resulting in software process changes.

Chapter 7

SQA Plan and Project Plan

7.1 Introduction

Planning ahead is always the key to success, this also applies to preparing SQA
plans and project plans. The chapter is dedicated to SQA plans and project plans –
their preparation process and contents.

The SQA plan (SQAP) deals with the activities and tasks the SQA function
is required to carry out over the next year, and enables estimating resources
required to perform the SQAP. The planners of the resource estimates refer to
the professional knowledge and experience requirements of the various activities
and tasks, and classify the staff requirement accordingly. In this way, the SQA
function may be appropriately staffed to carry out the SQAP in the coming year.

The project plan deals with the activities and tasks to be performed by the
project team throughout the project’s life cycle, namely, during the development
and operation stages. Probably, two of the most important elements of the proj
ect plan are the activities schedule and the resource estimates for each activity.

The two plans are tightly connected, and need to be coordinated. A great
part of the SQAP activities has to be coordinated with the relevant project plan
activities. In other words, each project plan needs to be coordinated with the
relevant part/s of the SQAP. Moreover, the coordination continues in the execu
tion stage, when both plans are updated according to project progress and
change requests are performed.

Sections 7.2 and 7.3 present the process of preparing an SQAP and its con
tents. Sections 7.4 and 7.6 present the process of preparing a project plan.
Section 7.5 presents a mini case that illustrates the importance of an updated
project plan. Section 7.7 is dedicated to the special cases of project plans for
small projects and internal projects.

IEEE Std. 730-2014 dedicates Sec. 6.33 and Annex C to SQA planning.
ISO/IEC/IEEE Std. 12207 Sec. 6.3.1 deals with project planning, while ISO/IEC
Std. 90003 Sec. 5.4.2 discusses quality management system planning; assuring
the quality of software projects.

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

111

112 Chapter 7 SQA Plan and Project Plan

7.2 The process of preparing an SQA plan

The SQAP is a comprehensive plan that directs the work of the SQA function
for a year. It is updated during the year according to the changing and new
circumstances.

The process of preparing an SQAP described here is based to a great extent
on IEEE Std. 730-2014 (IEEE, 2014).

The activities required to prepare an SQAP include:

1. Determining the relevant SQAP outline elements, while considering the
needs of each stakeholder in every project performed. This task is
accomplished through direct discussions with the stakeholders.

2. Preparing the software quality assurance plan (SQAP) according to the
standard required elements, considering the stakeholder needs. Special
attention is given to project risks.

3. Finalizing the SQAP according to that agreed with the project managers.

4. Identifying and analyzing product risks in the various projects; risks to
users of the software products. Furthermore, it is required to identify
activities aimed at reducing or eliminating these risks, enabling to deter
mine the expected success of handling these product risks.

5. Estimating the SQA function resources required for performing the
SQAP: size of function team, schedule of planned activities, skill and
knowledge required, and equipment required.

6. Defining measurements (metrics) to evaluate software quality and for the
performance of the SQA function. These metrics should enable assessing
the level of achieving the organization and project objectives.

The following are included in the SQAP updating activities:

1. Follow-up the SQA function’s activities and project progress and per
form SQAP revisions required.

2. Follow-up the changes performed by projects and perform necessary
adaptations to the SQAP.

3. Prepare periodic or on-demand status reports regarding the progress and
findings of the SQAP, and present the information to the organization’s
quality management and project management.

7.3 The SQAP elements

A comprehensive outline of the SQAP elements is presented in IEEE Std. 730
2014 (IEEE, 2014). The SQAP activities presented here are based upon this
standard. The activity elements are classified into three groups:

• SQA process implementation activity elements

7.3 The SQAP Elements 113

• Product assurance activity elements

• Process assurance activity elements

The contents of each plan section is presented, and includes general content
that applies to all projects, and specific content that applies to a specific software
project.

7.3.1 SQA process implementation activity elements

a. Activities for correcting management deficiencies related to quality
issues

The following are examples of management deficiencies related to
quality issues planned to be corrected by the SQA function over the next
year:
• Inadequate management quality policy: Inadequate organization for
monitoring SQA software process activities.

• Inadequate activities for establishing a corrective and preventive func
tion in the organization.

• Inadequate resources, trained persons, and equipment available to the
SQA function.

• Inappropriate levels of independence of the SQA function in terms of
management and financing.

b. Software product risks to users
This section presents a project list, where for each project an evalua

tion of software product risks has to be performed by the SQA function.
These include determination of the risk characteristics, and the method in
which to handle the product risks.

c. Development equipment and tools of software projects
This section presents a list of projects, where for each project a list

of equipment and tools will be determined, based on an analysis of the
nature and contract technical requirements of the project. Following
preparation of these lists, the training needs for the project team will be
specified. This activity is expected to also yield training needs for the
staff in organization general. The evaluation of the equipment and tool
lists prepared by project managers will be performed by the SQA func
tion over the next year.

d. Standards, practices, and conventions for software projects
This section refers to the activity that will evaluate lists of standards,

practices, and conventions – applicable to all software projects.
It also refers to analysis of activities to evaluate specific lists of stan

dards, practices, and conventions – applicable to each of the software
projects.

114 Chapter 7 SQA Plan and Project Plan

e. Resources and schedule estimates for the SQA function
This section presents resource and schedule estimates for the SQA

function activities planned for the next year. The estimates should be
based on the following information derived from the project require
ments: staff days, skills and experience, equipment, project activities,
type of professional expertise, and schedules. The estimations are quanti
fied as follows:

The total SQA function resources include:
• Calculations of the general workload for every week of the project.
• Calculations of the weekly workload for each of the professional groups.
• Calculations of the weekly load for each type of equipment required.

7.3.2 Product assurance activity elements

a. Conformance evaluation of project plans
This section lists the SQA function’s conformance evaluation tasks

of the project plan tasks, and includes the following examples:
• Preparing list of project plans to be evaluated for their conformance
with contracts, standards, regulations, and conventions.

• Preparing list of plans for processes of software support, software
reuse, and other processes to be evaluated for their conformance with
contract, standards, regulations, and conventions.

• Preparing list of plans for configuration management and documenta
tion to be evaluated for their conformance with requirement docu
ments, standards, regulations, and conventions.

b. Conformance evaluation of products
This section lists the evaluations of software development products

for their conformance to requirements, standards, and conventions.
These evaluations are carried by the SQA function and relate to software
development products such as design reports, verification and validation,
and test and integration reports.

c. Evaluation of product for acceptability
This section lists evaluation of the required confidence level of a

software project product (including product documentation) to be accept
able by the acquirer that is required to be carried out by the SQA func
tion over the next year. The evaluation needs to refer, among other
subjects, to the criteria for acceptance, the software installation strategy,
and maintenance procedures.

d. Conformance evaluation of product maintenance plan
This section lists evaluation of conformance of maintenance plans

with contract requirements, regulations, standards, and conventions that
have to be carried out over the next year.

7.3 The SQAP Elements 115

e. Measurement plans for products
This section lists the measurement plans and required data collection

for software products to be prepared by the SQA function over the next
year. The product measurement plans relate to product risks and the
organization’s quality goals, and include data collection.

7.3.3 Process assurance activity elements

a. Conformance evaluation of life cycle processes
This section deals with the evaluation tasks of life cycle processes,

models, and procedures to be performed by the SQA function over the
next year, and include:
• Evaluation of adequacy of the processes definitions, maintenance, and
improvements.

• Evaluation of adequacy of the responsibility and authority defined to
perform the life cycle processes.

• Evaluation of adequacy of process improvement implementation.
• Evaluation of adequacy of configuration management implementation.

b. Conformance evaluation of environment
This section deals with the evaluation of the adequacy of the envi

ronment of development, test, and support services to be performed by
the SQA function over the next year. The environments to be evaluated
for their conformance to project needs, as well as to software engineering
practices and relevant contract requirements, include work stations,
development tools, testing laboratories, and software libraries.

c. Conformance evaluation of subcontractors’ participation in project
implementation

This section presents the SQA function evaluation tasks aimed to
determine the adequacy of the precontract activities and activities
included in the contract for reviewing the subcontractor’s capabilities to
appropriately perform their part of the project.

d. Measurement of development, testing, and operation processes
This section lists the measurement plans and required data collection

for software life cycle processes to be prepared by the SQA function
over the next year. The process measurement plans relate to product
risks and the organization’s quality goals, and include data collection.

e. Assessment of staff skills and knowledge requirements and resulting
training needs

This section deals with the evaluation of skills and knowledge
required from project staff, identification of deficiencies, and the training
program expected to solve these deficiencies.

The list of SQA plan activity elements is presented in Frame 7.1.

116 Chapter 7 SQA Plan and Project Plan

Frame 7.1: SQA plan activity elements

SQA plan activity elements

SQA process implementation activity elements

a. Plans activities for correcting management’s deficiencies related to quality
issues

b. Software product risks to users

c. Development equipment and tools of software projects

d. Standards, practices, and conventions of software projects

e. Resources’ and schedules’ estimates for the SQA function

Product assurance activity elements

a. Evaluation of project plans for conformance

b. Evaluation of products for conformance

c. Evaluation of products for acceptability

d. Evaluation of product maintenance plan for conformance

e. Measurement plans for products

Process assurance activity elements

a. Evaluation of life cycle processes for conformance

b. Evaluation of environment for conformance

c. Evaluation of subcontractors’ participation in project implementation for
conformance

d. Measurement of development, testing, and operation processes

e. Assessment of staff skill and knowledge requirements and the resulting
training needs

7.4 The process of preparing a project plan

The project plan is a comprehensive document that serves the software project
throughout the project life time; the development and operation stages. The proj
ect plan that contains software development and quality element, comprises a
“development plan” and a “quality plan”.

The project plan objectives

The objectives of project plans are presented in Frame 7.2.

7.5 Jack Thanks His Department Manager – A Mini Case 117

Frame 7.2: The objectives of project plans

The objectives of project plans

1. Ensure the successful and timely performance of a project complying with contract
requirements, standards, procedures, and conventions.

2. Ensure the quality of the project products.

3. Provide management with the data required for efficient and effective project control.

The process of preparing a project plan

The project manager is usually the person responsible for preparing the project plan
– which is expected to be completed and reviewed before the project implementa
tion begins. The process of preparing a project plan requires the following phases:

• Data collection phase, which includes the study of qualified manpower
availability for the project, appropriate development tools, possible devel
opment risks, and method for their elimination or at least their mitigation.
Consultation with other project managers and experts completes the data
collection phase.

• Project plan compilation phase

• Project plan reviews

• Project plan updates are usually unavoidable; as change requests origi
nated by the acquirer and methodological and other changes initiated by
the project team are very common.

There is a tendency to use the project proposal material as a basis for pre
paring the project plan, as both documents share many elements. This practice
should be implemented carefully as parts of the proposal data may be invalid
due to circumstances changing during the period between preparing the proposal
and the time the contract was signed.

The project plan is a major subject of Sections 7.1 and 7.3 of ISO/IEC
90003-2014 (ISO/IEC, 2014) and Section 6.3.1 of ISO/IEC/IEEE Std. 12207
2008 (ISO/IEC/IEEE, 2008). The project plan is also an important element in
the Integrated Capability Maturity Model (ICMM).

The next section presents a min case that illustrates the importance of a
properly planned project plan.

7.5 Jack thanks his department manager – a mini case

Jack Bora, an experienced project manager, has been appointed to manage the
Pagoda project, a sizable project for automating a textile manufacturing plant. As
is often the case in the software industry, due to an earlier obligation he could
only begin organizing and executing the project 5 weeks after the scheduled

118 Chapter 7 SQA Plan and Project Plan

project start. Naturally, he was under serious time pressure from the very first
day. As he was a member of the proposal team and participated in most of the
meetings held with the customer’s representatives, he was confident that he knew
everything that was required to do the job, and could even save himself the tiring
task of preparing a project plan. He intended to use the proposal itself and the
working papers as the project’s development and quality plans. His reliance on
these materials was based on the fact that he knew that the proposal and all its
estimates, including the schedule, staff requirements, list of deliverables, software
products, and list of development risks had all been thoroughly reviewed by the
contract review team, and also amended accordingly.

The first month of the Pagoda project was by now progressing well with no
notable events. Then, one morning Jack was urgently called into the department
manager’s office. The development department manager did not waste a minute,
and demanded that Jack immediately prepare new full project development plans
(“development plan”) and project quality plans (“quality plan”). When Jack tried
to claim that there was no need for a project plan, as he had all the proposal team
materials: working papers, including the project plan, resource estimates, list of
project risks, and more. The department manager cut him short saying “I still
insist you prepare entirely new project development and quality plans and com
plete them before the end of next week.” After a few moments of silence, he
continued “By the way, don’t forget that a period of seven months elapsed
between the proposal preparation and the signing of the contract. Such a period
is a hell of time for changes in our trade. . . .”

So, without actually agreeing regarding the need for development plans,
Jack began carrying out “the manager’s task.” He reexamined the proposal mate
rials and thoroughly updated them.

The new plans were more comprehensive than the approved proposal, espe
cially with respect to schedules, resource estimates, and development risk evalu
ations, and included additional subjects, which were not covered in the original
proposal. The effort invested in preparing the development and quality plans
proved to be beneficial:

• He found out that the 5-week delay in the project start necessitates him to
change the work sequence of the project to enable finishing on time. This
change created a need for an additional team on the project.

• He soon discovered that two of the proposed team leaders would not be
available at the newly scheduled dates, due to assignments recently allo
cated. Another team leader would be needed for the newly created team,
so he would now need to locate and recruit three team leaders. (“Lucky I
am to discover the team leader shortage, at a time when there is still a
good chance to find a suitable candidate,” he thought).

• BG Software Consultants, the consulting company that had agreed to pro
vide professional support in a highly specialized and crucial area, had suf
fered heavy losses and had consequently gone bankrupt 3 months earlier.

7.6 The Elements of the Project Plan 119

• Jerry Fox, the company’s expert for the database chosen by the customer,
had resigned a month ago.

• The human resource department notified Jack that only three out of the
five programmers scheduled on the fourth to sixth month of the project
could now be assigned for the project.

When he finally brought the development and quality plans to the depart
ment manager, he opened saying “I should have brought a bottle of wine to
thank you for making me prepare updated plans. You have no doubt saved me a
lot of inevitable problems managing the project.”

7.6 The elements of the project plan

A comprehensive outline of project plan elements is presented in ISO/IEC
90003-2014 (ISO/IEC, 2014) and ISO/IEC/IEEE Std. 12207-2008 (IEEE, 2008).
The presentation here is based upon these standards. The elements are classified
into two groups:

• Development plan elements

• Quality plan elements

7.6.1 Development plan elements

The following elements comprise a development plan.

a. Project products
A development plan includes the following products:

• Designing the documents from each activity, indicating those items to
be delivered to the customer (deliverables)

• Software products of each activity, specifying installation sites
• Development process mapping
• Development resources estimation

b. Control methods
The project manager and the department management control proj

ect implementation by defining the monitoring practices to be applied:
progress report and coordinating meetings and so on.

A comprehensive discussion of project control methods is found in
the chapter dedicated to project progress control.

c. Mapping the development process
Mapping of the development process involves preparing detailed

definitions of each of the project’s activities. These descriptions
include definitions of inputs and outputs, and the specific activities
planned.

120 Chapter 7 SQA Plan and Project Plan

Activity descriptions include:
a. An estimate of the activity’s duration. These estimates are

highly dependent on the size of the team that performs the activity.
b. The logical sequence in which each activity is to be performed,

including a description of each activity’s dependence on previ
ously completed activities.

Implementation tip

In some development plans, quality assurance activities exist throughout the process,
but without time allocated for their performance or the subsequent removal of defects.
Someone probably assumed that a late afternoon meeting would be sufficient for per
forming the quality assurance activities and subsequent corrections.

As nothing may be achieved without time, the almost guaranteed result is delay,
caused by the “unexpectedly” long duration of the quality assurance process.

Hence, the time allocated for quality assurance activities and defect correction
work that follows should be examined. SQA activities, such as design reviews and
software tests, should be included among the scheduled project activities. The same
applies to the design and code correction activities. Failing to schedule these activities
can cause unanticipated delays in the initiation of subsequent activities.

Several methods are available for scheduling and graphically pre
senting the development process. One of the most commonly used
methods is the Gantt chart, which displays the various activities by
horizontal bars, whose lengths are proportional to activity duration.
The bars represent the activities themselves, and are placed vertically
according to their planned initiation and conclusion. Several comput
erized tools can prepare Gantt charts in addition to producing lists of
activities according to their required start and conclusion times, and
so forth.

More advanced scheduling methodologies, such as CPM and PERT,
both of which belong to the category of critical path analysis, take
sequence dependencies into account, in addition to the duration of activi
ties. They enable calculating the earliest and latest acceptable start times
for each activity. The difference between start times determines the
activity scheduling flexibility. Special attention is awarded to those activ
ities lacking scheduling flexibility (which explains their being called
“critical path” activities), and whose tardy completion could delay the
conclusion of the entire project.

Several software packages, used in conjunction with these method
ologies, support the planning, reporting, and follow-up of project time
tables. An example of a software package of this type is Microsoft
Project. For a more detailed discussion of scheduling, refer to the litera
ture dealing with project management.

7.6 The Elements of the Project Plan 121

d. Estimating development resources
For each project activity, the type of professional resources required

and the estimated quantity are determined as follows:
• Internal (developer) staff and their professional skills
• External (subcontractor) staff and their professional skills

The development resources data, when combined with the mapping
of the development activities enables:
• To calculate the general workload for every week of the project
• To calculate the weekly workload for each of the professional groups

e. Project staff organization
The organization plan includes:

• Organizational structure: Definition of project teams, their professional
area and tasks, including support by subcontractor teams and suppliers.

• Professional requirements for each team: Professional certification,
experience in a specific programming language or development tool,
experience with a specific software product and type, and so forth.

• Number of team members required for each period of time, according
to the activities scheduled. It is expected that teams will commence
their activities at different times, and that their team size may vary
from one period to the next, depending on the planned activities.

• Names of team leaders and, if possible, names of team members. Diffi
culties are expected to arise with respect to the project assignment of
team leaders and their current assignments. Therefore, staff names are
required to help recruit replacement team leaders and keep track of
their availability.

Implementation tip

The long-term availability of project staff should be carefully examined. Lags in com
pleting former assignments may result in delays in joining the project team, which
increase the risk of failing to meet project milestones. In addition, staff “evaporation”
caused by resignations and/or promotions, phenomena that are particularly frequent in
the software industry, can cause project staff shortages. Therefore, follow-up of staff
availability should be done periodically to avoid “surprises.” Early warning of
unforeseen staff shortages makes it easier to resolve this problem.

• Training tasks for new recruitments and current staff to get the neces
sary knowledge of new development tools.

f. Project interfaces
Project interfaces include:

• Interfaces with existing software packages (software interface)
• Interfaces with existing firmware of instrumentation and equipment
(hardware interface)

122 Chapter 7 SQA Plan and Project Plan

• Interfaces with other software and/or hardware development teams
who are working on the same system or project, applying cooperation
and coordination links, including suppliers, subcontractors, and part
ners (teams interface).

g. Project risks
1. Types of project risks

Two types were defined
• Product risk
• Development risks

Product risks
A product risk is a state where the software product may cause dam

age to the developer and/or to the user of the software. Special efforts
should be given by the developer to identify such risks and to eliminate
or at least to mitigate them.

Classes of product risks

Physical product risks

Product risks of medical equipment, aerospace equipment, and military
equipment are typical physical risks caused when the software embedded
product in these types of equipment fails.

Safety product risks

Car safety equipment and household fire safety equipment risks are typi
cal physical risks caused when the software embedded product in these
types of equipment fails.

Financial product risks

Typical financial damages are caused when management information
systems of financial organizations fail to operate or produce erroneous
information.

Development risks
Development risk is a state of a development task or environment,

which, if ignored, will increase the likelihood of project failure.

Classes of development risks
The development risks may be classified as follows:

Requirement risks

• Developer failed to fully understand the requirements.

• Excessive change requests will require major redesign or recoding
efforts substantially more than the estimates.

• Addition of unnecessary (not required) features, causing a waste of
development resources and also schedule delays.

7.6 The Elements of the Project Plan 123

Team member risks

• The assigned team members unexpectedly find tasks above their pro
fessional capabilities.

• The assigned team members are inexperienced in the use of the planned
development tools.

• Assigned team members are not available for performing planned activ
ities due to former project completion delays.

• Assigned team members have resigned or were promoted, causing a
shortage of team members.

• Excessive rate of defects, due to low professional skills of the team.

• Poor system performance regarding response times of real-time systems
and information systems.

Organizational risks

• Financial difficulties cause reduction of project budget.

• Difficulties in recruiting staff with the required skills.

• The likelihood that suppliers of specialized hardware or software sub
contractors will not fulfill their obligations on schedule.

• Required training on new development tools is not available in the
organization.

Development methodology and tools risks

• Code generator or development tool cannot fulfill the required tasks or
is not efficient.

• Planned case tool is not adequate for the planned task.

• Chosen methodology proves to be inadequate.

• Poor quality of purchased COTS software and software products devel
oped by subcontractors.

Estimation risks

• The development resources required were underestimated.

• Project schedule was underestimated.

• The software reuse possibilities were overestimated.

2. Development risk management process
The risk management process includes the following activities:

risk identification, risk evaluation, planning of risk management
actions (RMAs), implementation of RMAs, and monitoring implemen
tation of the risk management plan.

124 Chapter 7 SQA Plan and Project Plan

Similar planning activities (although not to the same degree of
thoroughness) are part of the proposal draft preparation process and
reviewed in the proposal draft review.

The respective planning activities include:
• Identification of software risk items

The main tool supporting the identification of SRIs is checklists
that specify the team, project, and customer situations that are likely to
cause software risks.

Identification of software risk items should begin at the start of the
project (preproject stage) and be repeated periodically throughout the
project until its completion.

• Evaluation of the identified SRIs
Evaluation of the identified SRIs is concerned mainly with:

• Estimating the probability that a software risk will materialize if no
RMA is taken (Prob(materialize))

• Estimating damages in case an SRI does materialize (Est(damage))
One common method used to prioritize SRIs is by calculating

their expected damage, where:

Expected damage � Est�damage� � Prob�materialize�:
• Planning RMAs

It is incumbent upon the software risk team to consider alternative
ways to resolve the identified SRIs. RMAs include a range of internal,
subcontractor, and customer actions.

Table 7.A.1 provides a list of possible RMAs and their contribution
to the prevention or resolution of SRIs.

In preparing the recommended list of RMAs, the planning team
should consider:
• The priority assigned to the SRI.
• The expected results of a planned RMA (complete or partial
resolution).

• The costs and organizational efforts required for implementation of the
RMA.

Implementation tip

In planning RMAs, one should be aware that:

• Some RMAs can prevent, identify, or resolve SRIs of various types.

• Some SRIs can be treated by several RMAs.

• The efficiency of an RMA varies significantly with different projects and different
environments.

7.6 The Elements of the Project Plan 125

• Implementation of RMAs
Implementation of a risk management plan requires that the staff

members be assigned as personally responsible for each RMA and its
implementation schedule.

• Monitoring implementation of the risk management plan
Systematic, periodical activities are required to monitor implemen

tation of the risk management plan. The aim of the monitoring activi
ties is to:
• Determine the efficiency of the RMAs.
• Plan new RMAs for unsuccessful implementation.
• Update the risk evaluation by considering newly identified SRIs.

The process of software risk management is illustrated in Figure 7.1.
The growing importance of software risk management is described in

the spiral model for software development. To cope with risks, a special
phase of risk assessment is assigned to every cycle of the spiral model.
(More information about the spiral model is provided in another chapter.)

The IEEE Std. 1540:2001 (IEEE, 2001) is dedicated to risk manage
ment. The subject of product risks is presented in IEEE Std. 730-2014
(IEEE, 2014).

Various aspects of risk management are presented by Sulaman et al.
(2013), Lobato et al. (2012), Pekar et al. (2015), Raz and Hillson (2005),
Elzamly and Hussin (2015), and Nelson et al. (2008).

Figure 7.1 The risk management process

126 Chapter 7 SQA Plan and Project Plan

h. Project milestones
Project milestones are events of importance in the development pro

cess, that is, the completion of the design phase. For each milestone, the
completed project products (documents or code) and scheduled times are
to be defined.

i. Project cost estimation
Project costs include human resources costs, subcontractor costs,

costs of purchased software, and costs of additional resources; such as
travel costs and equipment costs. The costs of internal and external (sub
contractors) human resources may be calculated according to the prepared
resource estimates. The list of planned COTS software products could
serve for preparing the purchase budget.

Estimates of project costs that have been prepared by the proposal
team could support the project cost estimation, while each cost compo
nent should be reviewed thoroughly, and updated according to the
updated resource estimates, contracts negotiated with subcontractors
and suppliers, and so forth. For instance, part of the project originally
planned to be carried out by internal development teams now needs to
be performed by a subcontractor, due to the unavailability of an inter
nal team. A change of this nature usually involves a substantial budget
change.

j. Project methodology and development tools
The methodology and development tools have to be applied for each

phase of the project.

Implementation tip

When evaluating the suitability of the proposed project methodology and development
tools, one should also take into account the professional experience of the staff,
including the subcontractors’ personnel – even though temporary.

k. Software development standards and procedures
A list of the software development standards, procedures, and work

instructions to be applied in the project. In some cases, software develop
ment standards and procedures are determined by the customer as part of
the requirements stated in the project contract.

l. Required development facilities
Required development facilities include: hardware, laboratories, soft

ware and hardware development tools, office space, and other items. For
each facility, the period required for its use should be indicated and
scheduled.

7.6 The Elements of the Project Plan 127

m. Documentation control
The planner is required to define the list of the project’s controlled

documents and quality records. In addition, a work instruction for the
project’s documentation control should be prepared.

n. Security including virus protection
The planner is required to define security controls related to the proj

ect documents, code in process, and software products. Special work
instructions might be required in certain projects.

The elements comprising a development plan are listed in Frame 7.3.

Frame 7.3: The elements comprising a development plan

Source: Based on ISO/IEC 90003-2014 and ISO/IEC/IEEE Std. 12207-2008.

The elements comprising a development plan

a. Project products

b. Control methods

c. Mapping the development process

d. Estimating development resources

e. Project staff organization

f. Project interfaces

g. Project risks

h. Project milestones

i. Project cost estimates

j. Project methodology and development tools

k. Software development standards and procedures

l. Required development facilities

m. Documentation control

n. Security including virus protection

Development plan approval

Development plan review and approval is to be completed according to the
review procedures applied within the organization.

7.6.2 Elements of the quality plan

Depending on the project, all or some of the following elements, presented in
Frame 7.4, comprise the elements of a project quality plan:

128 Chapter 7 SQA Plan and Project Plan

a. Quality goals
The term “quality goals” refers to the developed software system’s sub
stantive quality requirements. “Quantitative measures are usually pre
ferred to qualitative measures when choosing quality goals because they
provide the developer with more objective assessments of software per
formance during the development process and system testing. However,
one type of goal is not totally equivalent to the other.” The possible
replacement of qualitative with quantitative measures is illustrated in the
following example.

Example:
Quality goals have to be determined for a help desk system (HDS) that is
planned to serve an electrical appliance manufacturer. The HDS is
intended to operate 100 hours per week. The software quality assurance
team was requested to prepare a list of quantitative quality goals appro
priate for the following qualitative requirements:

HDS qualitative requirement Related quantitative quality goal

The HDS should be very reliable

The HDS should operate
continuously

HDS availability should exceed 99.9%
(HDS down time should not exceed
5 minutes per month).

In cases of HDS failure, the system’s
recovery time should not exceed
10 minutes in 99% of cases of failure.

The HDS should be highly
efficient

An HDS operator should be able to handle
at least 100 customer calls per 8-hour
shift.

The HDS should be very
responsive to customers

Waiting time for an operator response
should not exceed 30 seconds in 99% of
the calls. Achievement of this goal
depends on the combination of software
features, and the number of work stations
installed and operated.

The quality goals should reflect the major acceptance criteria indi
cated in the customer’s requirement document (i.e., the RFP document).
As such, quality goals serve as measures of the successful achievement
of the customer’s quality requirements.

b. Procedures and work instructions
The relevant procedures and work instructions should be defined, according
to the combined quality assurance and development considerations.

7.6 The Elements of the Project Plan 129

c. Criteria for ending each project stage
A criterion for ending each of the development stages, accepted by the
customer and developer, is essential for the regular flow of development
process. It requires:
• The body that applies the criterion, that is, the design review team, the
head of the testing department.

• Defining the criteria, that is, no major design defect that requires rede
signing of a system feature was identified; the number of identified
code defects in a regression test run is one or less. Quantitative criteria
are preferred to qualitative ones.

d. Project life cycle SQA activities

Planned review activities
The quality plan should provide a complete listing of all planned

review activities: design reviews (DRs), design inspections, code inspec
tions, and so on, with the following determined for each activity:
• The scope of the review activity
• The type of the review activity
• The schedule of review activities (as defined by the mapping of the
development activities)

• The specific procedures to be applied
• The party(ies) responsible for carrying out the review activity

Planned software tests
The quality plan should provide a complete list of planned software

tests, with the following designated for each test:
• The unit, integration, system test, and acceptance tests to be performed
• The type of testing activities to be carried out, including specification
of automated software tests to be applied

• The planned test schedule (as defined by the mapping of activities of
the project process)

• The specific procedures to be applied
• The party(ies) responsible for carrying out the test

Planned acceptance tests for externally developed software
A complete list of the acceptance tests planned for externally devel

oped software should be included in the quality plan. Elements to be
included are: (a) purchased software, (b) software developed by subcon
tractors, and (c) customer-supplied software. The acceptance tests for
externally developed software should be parallel to those used for inter
nally developed software tests.

e. Configuration management tools and procedures
The quality plan should specify configuration management tools and
procedures, including the timing of baseline version releases.

130 Chapter 7 SQA Plan and Project Plan

f. Monitoring measurement activities
The planners should define software quality metrics for quality, produc
tivity, schedule keeping, and so forth. The responsibility for performing
the measurements and for the monitoring of measurements should be
determined.

g. Person(s) responsible for approving project outputs
The person(s) authorized to approve each of the project products, docu
ments, and code files, especially the deliverable items, should be determined.

h. Training in usage of new development tools
The need to apply new development tools for a given development activ
ity creates a training requirement. Timing the training schedule before the
relevant development activity begins is crucial. The planner should find
out which of the scheduled development teams needs training

i. Change management
The change management procedures to be applied throughout the project
should be defined and agreed with the customer.

The required software quality plan elements are listed in Frame 7.4.

Frame 7.4: Elements of a software quality plan

Source: Based on ISO/IEC 90003-2014

Elements of a software quality plan

a. Quality goals

b. Procedures and work instructions

c. Criteria for ending each project stage

d. Project life cycle SQA activities

e. Configuration management tools and procedures

f. Monitoring measurement activities

g. Person(s) responsible for approving project outputs

h. Training in use of new development tools

i. Change management

7.7 Project plans for small projects and for internal
projects

It is quite natural for project leaders to try to evade the “hassle” of preparing the
development and quality plans (and the other surrounding reviews and plan
approvals). This behavior reflects the tendency to avoid “bureaucracy” and the
sweeping control that customers may attempt to exercise. This tendency is espe
cially common in two specific situations: small projects and internal projects.

7.7 Project Plans for Small Projects and for Internal Projects 131

The argument for preparing plans for such projects is discussed in the following
two sections.

7.7.1 Development and quality plans for small projects

• Does a project scheduled for only 40 working days, to be performed by one
professional and completed within 12 weeks, justify the investment of sev
eral man-days in order to prepare full-scale development and quality plans?

• Does a project to be implemented by three professionals with a total invest
ment of 30 man-days and duration of 5 weeks require full-scale plans?

It should be clear that the development and quality plan procedures applica
ble to large projects cannot be automatically applied to small projects. For these
projects, special procedures are needed. These procedures determine how to treat
the project in question with respect to the plans:

a. Cases/situations where neither development nor quality plans are
required, for example, projects requiring 15 man-days or less.

b. Cases/situations where the decision to prepare the plans is left to the proj
ect leader’s discretion, for example, projects that require less than 50 man-
days, with no significant software risk items identified.

c. A small and complicated project that has to be completed within 30 days,
with a heavy penalty for not completing on time. In this case, partial
planning that includes, at least the following, is needed: project mapping
of development activities, cost estimates based on resources estimates,
and a list of identified project risks including ways to manage them.

A list of elements recommended for inclusion in development and quality
plans for small projects is shown in Frame 7.5.

Frame 7.5: Recommended elements of development and quality
plans for small projects

Recommended elements of development and quality plans for small projects

Recommended development plan for small projects:

• Project products, indicating “deliverables”

• Project milestones

• Development risks

• Estimates of project costs

Recommended quality plan for small projects:

• Quality goals

132 Chapter 7 SQA Plan and Project Plan

Several advantages to “planned” small projects over “unplanned” projects
can be identified, even for the less extensive plans:

a. A more comprehensive and thorough understanding of tasks is attained.

b. Greater responsibility for meeting obligations may be assigned to project
commitments.

c. Better understanding with respect to the requirements and schedule may
be reached between the developer and the customer.

d. It becomes easier for management and customers to share control of the
project and to identify unexpected delays early on.

7.7.2 Development plans and quality plans for
internal projects

Internal projects are those projects intended for use by other departments in the
organization or by the entire organization, as well as projects dealing with soft
ware package development for the software market. The common denominator
to all these project types is that no external body participates “as customer” in
their development. Internal projects can be of a very large scale. Yet even in
these cases, there is a tendency to avoid preparing adequate development and
quality plans. The following example illustrates the negative consequences of an
“unplanned” internal project.

Example:
The marketing department of Toyware Ltd., a new computer game manufac
turer, had planned to hit the market with “Super-Monster V,” the firm’s new,
advanced computer game, during the upcoming Christmas season. The software
development department of Toyware claimed that work on the game should
commence immediately in order to complete the project on time. Therefore,
preparation of a full proposal, along with the subsequent preparation of a project
plan, was overlooked. The development department estimated the project budget
at $240,000, which was transferred to the department. According to the market
ing schedule, system tests were to be completed no later than October 1, so as to
allow the development department to manufacture the first batch of the toy pack
ages before November 1.

The project moved forward with no special difficulties, but as the project
progressed, it became evident that there might be a delay. Only at the end of
September it became obvious that a three-month delay could not be avoided.
The promotional and advertising activities that had taken place before September
30, thus became worthless. The project was finally completed at the end of Feb
ruary. The project’s cost overrun was significant – actual costs exceeded
$385,000 – but most painful was the company’s lost opportunity to exploit the

7.7 Project Plans for Small Projects and for Internal Projects 133

Christmas market, and damaged reputation from advertising a product which
was not available. Last week, the company management decided to avoid any
future internal computer game development projects.

This example makes it clear that preparing full-scale development and quality
plans for internal projects can be highly beneficial to both sides of internal
projects.

The benefits of full scale project plan for an internal project.
Software development departments can enjoy the following advantages of

plan preparation:

a. Avoiding budget overruns. This is of special importance when the profit
center system is applied.

b. Avoiding damage to other projects caused by delays in releasing profes
sionals occupied in an internal project.

c. Avoiding loss of market status (developer’s reputation in the
COTS software market) caused by delayed completion of new soft
ware products – already advertised – or new versions of current
products.

d. Avoiding loss of market status, especially regarding the developer’s rep
utation, caused by delayed completion of external projects triggered by
late completion of internal projects.

Internal “customers” can enjoy the following advantages:

a. Smaller deviations from planned completion dates and smaller budget
overruns.

b. Better control over the development process, including earlier identifica
tion of possible delays that enables the “internal customer” earlier search
for, and resolution of, the internal customer’s department difficulties
caused by the delay.

c. Fewer internal delay damages

The organization can enjoy these advantages:

a. Reduced risk of market loss (i.e., opportunity window) due to late arrival
of COTS software product.

b. Reduced risk of being sued for late supply of “custom” software systems;
hence, reduced penalties for noncompliance with contract demands.

c. Reduced risk of impairing the firm’s reputation as a reliable software
developer.

134 Chapter 7 SQA Plan and Project Plan

Summary

1. The SQA process implementation elements of SQA plans
The elements are:

• Plan’s activities for correcting management’s deficiencies related to
quality issues.

• Software product risks to users
• Development equipment and tools of software projects
• Standards, practices, and conventions for software projects
• Resource and schedule estimates for the SQA function

2. The product assurance elements of SQA plans
The elements are:

• Conformance evaluation of project plans
• Conformance evaluation of products
• Evaluate product for acceptability
• Conformance evaluation of product maintenance plan
• Measurement plans for products

3. The objectives of project plans
The plans’ objectives are to provide the adequate basis to:

• Ensure the successful and timely performance of a project that complies
with contract requirements, standards, procedures, and conventions

• Ensure the quality of project products
• Provide management with data needed for efficient and effective
project control

4. The elements of a development plan
Fourteen types of elements constitute a development plan:

1. Project products
2. Control methods
3. Project staff organization
4. Project interfaces
5. Development risks
6. Mapping of development process
7. Estimating development resources
8. Project milestones
9. Project cost estimates

10. Project methodology and development tools
11. Software development standards and procedures
12. Development facilities
13. Required documentation control
14. Security including virus protection

5. The elements of a quality plan
Nine elements constitute a quality plan:

1. Quality goals
2. Procedures and work instructions

Summary 135

3. Criteria for ending each project stage
4. Project life cycle SQA activities
5. Configuration management tools and procedures
6. Monitoring measurement activities
7. Person(s) responsible for approving project outputs
8. Training on usage of new development tools
9. Change management

6. The major project risk classes
Project risks may be classified as follows:
• Product riks
• Development risks
a. Product risks classification is as follows:

• Physical roduc risks
• Safety product risks
• Financial product risks

b. Devlopment risks classification is as follows:
• Requirement risks
• Team members risks
• Organizational risks
• Development methodology and tool risks
• Estimation risks

7. The process of software risk management
Risk management includes planning, implementation, and monitor

ing activities. The pertinent activities are identification and evaluation of
SRIs, planning RMAs to resolve the SRIs, implementation of RMAs, and
monitoring the implementation of RMAs.

8. The benefits of preparing development and quality plans for small
projects

For small development projects (less than 15 man-days), preparation of
development and quality plans is usually optional. However, one should
consider the substantial advantages gained by the plan’s developer. The
main advantages of plan preparation are improvements in the developer’s
understanding of the tasks, and his greater commitment to complete the
project as planned. In addition, the plan documents contribute to a better
understanding between the developer and the customer, and easier and
more effective project control.

9. The benefits of preparing project plans for internal projects
It is recommended that internal projects, undertaken on behalf of

other departments and for development of COTS software packages
geared toward the market, be treated as “regular projects.” This implies
that full-scale development and quality plans are to be prepared. Benefits
of the plans include:
a. The development department may avoid budget overrun incurred

by unrealistic schedules and budgets, as well as consequent dam
age to other projects and to the developer’s reputation.

136 Chapter 7 SQA Plan and Project Plan

b. The internal “customer” may enjoy reduced risk of late project com
pletion and budget overruns, in addition to improved project control
and coordination with the developer.

c. The developer’s firm will enjoy reduced risk of budget overruns,
reduced risk of late entry into the COTS software product market, and
reduced risk of a decline in its reputation resulting from late supply.

Selected bibliography

Elzamly A. and Hussin B. (2015) Classification and identification of risk management techniques for
mitigating risks with factor analysis technique in software risk management, Review of Computer
Engineering Research, Vol. 2, No. 2, pp. 22–38.

IEEE (2001) IEEE Std. 1540–2001 - IEEE Standard for Software Life Cycle Processes - Risk Manage
ment, IEEE standards collection, The Institute of Electrical and Electronics Engineers, New York, NY.

IEEE (2014) IEEE Std. 730–2014 Software Quality Assurance, The IEEE Computer Society, IEEE,
New York.

ISO/IEC (2014) ISO/IEC 90003:2014 Software Engineering – Guidelines for the Application of ISO
9001: 2008 to Computer Software, International Organization for Standardization (ISO), Geneva,
Switzerland.

Jones, C. (2014) Applied Software Measurement: Global Analysis of Productivity and Quality, 3rd
Edition, McGraw-Hill, New York, NY.

Lobato L.L., do Como Machado I., da Mota Silveira Neto P.A., and de Almeida E.S. (2012) Risk
management in software engineering: a scoping study, in 16th International Conference on Educa
tion & Assessment in Software Engineering (EASE’12), Ciudad Real, Spain, May 2012,
pp. 243–252.

Nelson C. R., Tyran G., and de Lascurain L. (2008) Explicit risk management in Agile processes, in
Proceedings of the 9th International Conference XP2008, Limerick, Ireland, June 2008,
pp. 190–201.

Pekar V., Felderer M., Breu R., Nickl F., Roßik C., and Schwarcz F. (2015) Integrating a lightweight
risk assessment approach into an industrial development process, Lecture Notes in Business Infor
mation Processing, Vol. 238, pp. 186–198.

Raz T. and Hillson D. (2005) A comparative review of risk management standards, Risk management
International Journal, Vol. 7, No. 4, pp. 53–66.

Sulaman S. M., Weyns K., and Host M. (2013) A review of research in risk analysis methods for IT
systems, EASE’13, The 17th International Conference on Evaluation and Assessment in Software
Engineering, pp. 86–96.

Review questions

7.1 Explain how the activities of the SQA function directly affect the quality of a soft
ware project?

7.2 One of the product assurance elements is measurement plans for products.

a. Can you suggest a management information system (MIS) product and offer
three metrics for the product?

b. Can you suggest an embedded software product and offer three metrics for the
product?

Review Questions 137

7.3 Evaluation of subcontractor participation in project implementation for conform
ance is one of the process assurance activities.

a. At what stage of the software project should this evaluation activity be performed?

b. Which activities could be carried out to correct negative environment results
related to laboratory equipment?

7.4 Significant similarities exist between the proposal draft review and the project plan.

a. Compare these documents with reference to the subjects reviewed.

b. Compare these documents and explain the need and purpose of preparing the
individual documents.

7.5 Project plans have three objectives.

a. Can you list the objectives?

b. Suggest ways in which each objective contributes to the successful and timely
completion of the project.

7.6 Development process mapping is one of the most important elements of the devel
opment plan.

a. List possible phases of the development process.

b. List possible inputs and outputs for each of the phases suggested in (1).

7.7 Some system analysts claim that requirements relating to part of the software qual
ity factors (see Chapter 3) should not be considered when preparing a software
development plan.

a. Do you agree with this claim? If you agree, list the software quality factors that
should not be considered.

b. If you don’t agree –present your arguments

7.8 The project’s organization is an important element of the development plan.

a. List the components of the organization element.

b. Why is it necessary to mention team members by name? Isn’t it sufficient to list the
number of team members by their expertise as required for each phase of the project?

7.9 Only 4 out of the 14 elements of a development plan, and only 1 out of 9 of the
quality plan elements are considered obligatory for small projects.

a. Do you agree with this statement? If yes – list your main arguments.

b. If you do not agree with this statement, present your improved list and explain
your choices.

7.10 “Preparing full-scale development and quality plans for internal projects can be
highly beneficial to both sides of the internal project” (quoted from Sec. 7.7.2).

a. Explain the benefits for the developer.

b. Explain the benefits for internal customers.

138 Chapter 7 SQA Plan and Project Plan

Topics for discussion

7.1 What is the difference between SQA process assurance activities and product assur
ance activities?

7.2 IEEE Std. 730 includes product assurance process activities and process assurance activities.
What is the special contribution of process assurance activities to the SQA process?

7.3 One of the elements of the process assurance elements is evaluation of subcontractor
participation in project implementation for conformance.

a. In which way can a subcontractor affect the quality of the project part which he is
responsible for?

b. Can you suggest ways in which to reduce or eliminate each of the risks men
tioned in (1).

7.4 “As long as the proposal was properly prepared and approved, following an adequate
contract review, there is no justification for redoing all this work. Its resource esti
mates, schedule and risk items may serve as the project plan elementss . . .” Claims
like this are often voiced.

a. Do you agree with this claim? If not – list your arguments against the claim.

b. Suggest situations when it is clear that the proposal and its materials can serve as
development and quality plans.

c. Suggest situations when it is clear that the proposal and its materials cannot serve
as development and quality plans.

7.5 Martin Adams, an experienced project leader at David’s Software Ltd., a medium-sized
software house, has been appointed project leader for development of an advanced help
desk software system for a leading home appliance maintenance service. This is the
12th help desk system developed by his department in the past three years.

The current project is somewhat special with respect to its schedule. The con
tract with the customer was signed 6 days after submitting the proposal, and the
development team is scheduled to begin working at full capacity, with 8 team mem
bers just 10 days following signing of the contract. The contract offers a significant
early completion bonus for each week under 26 weeks, but determines high late
completion penalties for each week over 30 weeks.

In a meeting with his superior, Adams claims that the comprehensive proposal
documentation “as is,” which has been thoroughly checked by the contract review
team, should serve as the project’s development and quality plans. His superior does
not agree with him and demands that he immediately prepare comprehensive project
and quality plans, according to company procedures.

a. Do you agree with Adams? If yes – list the arguments that support his claim.

b. Do you agree with his superior? If yes – list the arguments that support the supe
rior’s claim.

c. Considering the circumstances of the project, what, in your opinion, should be
done in this case.

d. Comparing the circumstances described here to those of the mini case anecdote
presented in Sec. 7.3, are there any justifications for different recommendations?

Appendix 7.A: Risk Management Activities and Measures 139

Appendix 7.A: Risk management activities and measures

Various activities and measures (usually termed “risk management actions” or
RMAs) that can be taken. The objectives of the RMAs are to:

• prevent software risks,

• achieve early identification of software risk items (SRIs), and

• resolve software risk items (SRIs).

These risk management actions can be grouped into the following classes:

• Internal risk management actions applied within the software developing
organization.

• Subcontracting risk management actions dealing with the relationship
between the software developer and his subcontractors and suppliers.

• Customer risk management actions dealing with the relationship between
the software developer and the customer.

Table 7.A.1 presents commonly recommended risk management actions
(RMAs) and their contributions

Table 7.A.1 Commonly recommended risk management actions (RMAs) and their
contributions

Class of RMA contribution Item No. Software risk management action (RMA)

Internal RMA
Preventive 1 Application of detailed and thorough analysis to

requirements and estimated schedules,
resources, and costs.

2 Efficient project organization, adequate staff, and
team size

3 Personnel training with new and current
development tools

4 Arranging for, and training replacements to, take
over in case of turnover and unanticipated
workloads.

5 Ensure user participation in the development
process.

6 Apply efficient change control (change requests
screening).

7 Perform, at the earliest, trials of new
methodologies and development tools.

8 Apply intensive software quality assurance
activities, such as inspections, design reviews,
unit tests, integration tests, system tests, and
acceptance tests.

(continued)

140 Chapter 7 SQA Plan and Project Plan

Table 7.A.1 (Continued)

Class of RMA contribution Item No. Software risk management action (RMA)

Early identification of SRI 9 Progress control of development activities,
including resources used and schedule keeping.

10 Early testing of system performance, including
load and availability testing.

11 Periodical verification of timely availability of
company professionals currently occupied with
other projects.

Resolution of SRI 12 Arranging for participation of professional staff
members with knowledge and experience with
SRIs.

13 Scheduling SRI-related activities as early as
possible to provide leeway in case of
difficulties.

14 Prototyping SRI-related modules or project
applications.

15 Preparing scenarios for complicated SRI-
related modules or project applications.

16 Simulating SRI-related modules or project
applications.

Subcontracting RMA
Preventive 1 Preparing comprehensive and thorough contracts

with subcontractors and suppliers, including
contract reviews.

Early identification of SRI 2 Participating in internal progress control and
software quality assurance activities of
subcontractors planned to participate in the
contract.

Resolution of SRI 3 Arranging “loans” of professionals with
specialized knowledge and experience – should
the need arise.

4 Hiring consultants to support the team in the
absence of sufficient know-how and experience.

5 Hiring subcontractors to solve staff shortage
difficulties.

Customer RMA
Preventive 1 Perform contract review to ensure formulating

comprehensive and thorough contracts with
customers.

Resolution of SRI 2 Negotiating with the customer to change
requirements regarding risky parts of the
project.

3 Negotiating with the customer to change
schedules regarding risky parts of the project.

Chapter 8

Preproject Process –
Contract Review

8.1 The CFV project completion celebration – an
introductory mini case

A happy gathering of the Carnegie Fruit and Vegetables (CFV) project team at a
popular downtown restaurant took place to celebrate the successful completion
of a 10-month project for CTV, a produce wholesaler. The new information sys
tem registers product receipts from growers, processes customer orders, pro
duces shipment documents for customers (greengrocers and supermarkets), bills
customers, and calculates payments to be made to the growers.

The team was especially proud that the project was on schedule, and espe
cially jubilant as earlier that morning, each member had received a nice bonus
for completing the project on time.

The third speaker, the software company’s Vice President of Finance,
altered the pleasant atmosphere by mentioning that this very successful project
had actually lost about $90,000. During his remarks, he praised the planners for
their accurate estimates of resources needed for the analysis and design phase,
and for the plans for the broad reuse of software from other systems that were,
this time, completely realized. “The only phase where our estimates failed was
one of the project’s final phases, customer training, when the customer’s staff is
instructed on how to use the new information system. It now appears that no one
had read the relevant RFP (requirement for proposal) section carefully enough.
This section stated in a rather innocuous manner that the personnel in all CFV
branches where the software was to be installed would be instructed in its use
by the software supplier.” After a short pause he continued dryly, “Nobody tried
to find out how many branches our customer operates before signing the con
tract. Nobody mentioned that CFV operates 19 branches – 6 of them overseas!”

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

141

142 Chapter 8 Preproject Process – Contract Review

He continued: “We tried to renegotiate the installation and instruction budget
items with the customer after completing these activities, but he insisted on
sticking to the original contract.” Although no names were mentioned, it was
clear that the VP blamed the sales negotiating team for the loss.

Similar losses, and in many cases much heavier ones, stem from sloppily
drafted proposals or poorly understood contracts.

8.2 Introduction

The above mini case demonstrates the devastating results of a contract not thor
oughly examined by the supplier, causing substantial losses to the supplier and
at least inconveniences to the acquirer, due to delays of project completion.

A bad contract is always undesirable. Contract review is a process where
SQA function, by reviewing the project proposal and the contract draft, can
assist in forming a successful contract. It is natural for an SQA function to be
involved in contract review as from the viewpoint of SQA, a bad contract –
usually characterized by loosely defined requirements, and unrealistic budgets
and schedule – is expected to yield low-quality software. In most improper
contract cases, due to schedule and budget shortage, management exerts pres
sure: “save time” and “cut development resources.” The unavoidable results
are lower than acceptable software quality. In other words, unrealistic low
budget and schedule estimates and professional commitments lead to high
rates of low-quality projects and even software failures. In the other case,
those of over-budgeted proposals, it is most likely that the tender is lost and
the proposal is rejected.

The contract review process begins with a reviewing the proposal draft, and
later, in the second stage, the contract draft is reviewed. “Contract review” cov
ers both activities. This chapter presents the issues of contract reviews from the
point of view of the supplier (the developer).

Contract review objectives

The objectives of contract review are presented in Frame 8.1.

Frame 8.1: Contract review objectives

Contract review objectives

• To reveal and document pitfalls in the software project proposal draft that reduces
the probability of such undesirable contract situations.

• To reveal and document pitfalls in the software project contract draft that reduces
the probability of such undesirable contract situation.

8.3 The Contract Review Process and its Stages 143

The factors affecting the extent of a contract review

The most important factors determining the extent of the contract review efforts
required are:

• Magnitude of project, usually measured in man-month resources.

• Technical complexity of project

• Degree of staff acquaintance and experience with project area.

• Organizational complexity of project – The greater the number of orga
nizations involved (i.e., partners, subcontractors, and customers) taking
part in the project, the greater the required contract review efforts.

Accordingly, contract reviews for “small” projects will be carried out even
by one reviewer, who will focus on few subjects and invest little time in his
review. Also, in very simple and “easy” proposed projects, no contract review is
required

The role of the SQA function in contract reviews

The role of the SQA function is major in carrying out contract reviews (includ
ing initiating and organizing, participating in the contract review teams). In cases
when SQA function teams are small or require support from experts in the pro
posal field, non-SQA function persons are requested to join the contract review
team.

Performing a contract review is a requirement of the IEEE Std. 730-2014
(IEEE, 2014) and the ISO/IEC 90003:2014 standard (ISO, 2014), which dedi
cate section to these issues.

The next sections are dedicated to the following:

• The contract review process and its stages

• Contract review evaluation subjects

• Implementation of a contract review

• Contract reviews for internal projects

A wide range of review topics that correspond to evaluating the proposal
draft ad the contract draft are presented in appendices to this chapter.

8.3 The contract review process and its stages

Several situations can lead a software company (the supplier) to sign a contract
with a customer. The most common are:

1. Winning a tender.

2. Submission of a proposal according to a customer’s RFP.

144 Chapter 8 Preproject Process – Contract Review

3. Winning an unsolicited proposal of an internal request or order from
another department in the organization.

One might argue that while a contract in cases of the first two events would
be in place, a contract would rarely be found in cases of the third event. In this
event, a “contract-substitute” or understanding is prepared. This kind of docu
ment is based on general requirements specification (prepared by the internal
“customer”), and vague obligations relating to the budget and schedule (prepared
by the developer). In this way, a kind of joint project committee exists with a
“contract” that requires more contract reviews than contracts in the other
circumstances.

Implementation tip

Internal projects tend, in many cases, to become informal. The friendly relationships
between the software development department and the ordering department, that is,
the software marketing department, yield undefined requirements by the customer
department, and a vague definition of schedule and budget by the development depart
ment. The expected “flow” of a project of this kind regularly includes dissatisfaction
expressed by the customer: “Our needs are entirely different than those you have
assumed,” or “You promised us the software would be ready by the beginning of
September, and you are already three months late.” or “You told us that 40–50 work
ing days would be required – now you mention that 90 working days were invested.”
Typical complaints from the developer: “You totally confused the whole department
with new requirements every week,” or “You never answered our designer questions
on time. In most cases it took you more than a week to respond.” Consequently, a
great many of such projects are never completed, while in the rest of the cases, the
projects are not such a big success. And, to add to it all, the software development
and marketing departments are no longer friends...

It is clear that a great majority of internal project disasters of this kind could
have been avoided, if the participants had taken care to prepare an adequate
requirement specification, a proper schedule and budget estimates, and if regular
joint project follow-up activities were ensured...in other words – if a kind of a
contract had existed between the internal parties.

The contract review process is conducted in two stages:

• Stage One – Review of the proposal draft (proposal draft review). This
stage reviews the final proposal draft and the proposal’s foundations: cus
tomer’s requirement documents, customer additional details to, and
explanations regarding, the requirements, cost and resource estimates,
existing contracts or contract drafts with partners and subcontractors.

• Stage Two – Review of contract draft (contract draft review). This stage
reviews the contract draft on the basis of the proposal and the understand
ings (including changes) reached during the contract negotiation sessions.

8.3 The Contract Review Process and its Stages 145

The review process can begin once the relevant draft document (proposal
draft or contract draft) has been completed. The individuals who perform the
review thoroughly examine each draft while referring to a comprehensive range
of review subjects. After the completion of a review stage, the necessary
changes, additions, and corrections are introduced by the proposal team (follow
ing the proposal draft review), and by the legal department (following the con
tract draft review).

The combined work of the proposal team and the contract review team in
preparing a proposal till it turns into a signed contract is presented in Figure 8.1.

After the completion of a review stage, the necessary changes, additions,
and corrections are introduced by the proposal team (following the proposal

Figure 8.1 The combined work of proposal and contract review teams

146 Chapter 8 Preproject Process – Contract Review

draft review) and by the legal department (following the contract draft
review).

8.4 Contract review evaluation subjects

As can be expected, the two contract review stages have different evaluation
subjects, which are detailed in the following sections.

8.4.1 Proposal draft review evaluation subjects

The objective of the proposal draft review is to make sure that the following
activities were satisfactorily carried out by the proposal team:

a. Have customer requirements been clarified and documented? RFP docu
ments and similar technical documents can be too general and imprecise
for the project’s purposes. As a result, additional details should be
obtained from the customer. Clarifications of vague requirements and
their updates should be recorded in a separate document that is approved
by both the customer and the software developer.

b. Have alternative approaches for carrying out the project been exam
ined? Often, promising and suitable alternatives to execute a project
have not been adequately reviewed (if at all) by the proposal team. This
stipulation refers especially to alternatives encompassing software reuse,
incorporation of COTS software and partnerships, or subcontracting with
firms that have specialized knowledge or staff that can qualify for meet
ing the proposal’s terms.

c. Have formal aspects of the relationship between the customer and the
software developer been specified? The proposal should define formali
ties that include: (1) customer – development communication and inter
face channels, (2) project deliverables and acceptance criteria, (3) formal
phase approval process, (4) customer design and test follow-up method,
and (5) customer change request procedure.

d. Have development risks been identified? Development risks, such as
insufficient professional know-how regarding the project’s professional
area or the use of required development tools, need to be identified and
resolved. For a comprehensive description of identified software risk
items and methods for risk management actions, see Appendix 8.A.

e. Have project resources and schedule been adequately estimated?
Resource estimations refer to professional staff and development facili
ties, as well as the project’s budget. These include subcontractor fees.
Scheduling estimates should take into account the schedule requirements
of all parties participating in the project.

8.4 Contract Review Evaluation Subjects 147

Implementation tip

In some situations, a supplier deliberately offers a below-cost proposal, after consider
ing factors such as future sales potential. In these cases, when the proposal has to be
based on realistic schedule estimates, and budget and professional capabilities, the
loss incurred is considered a calculated loss, not a project failure.

f. Has developer’s capacity with respect to the project been verified? This
examination should consider professional competence as well as the
availability of the required team members and development facilities dur
ing the scheduled time.

g. Has customer’s capacity to fulfill his commitments been verified? This
examination refers to the customer’s financial and organizational capaci
ties, such as personnel recruitment and training, installation of the
required hardware, and upgrading of its communications equipment.

h. Have partner and subcontractor participation conditions been defined?
These conditions cover quality assurance issues, payment schedules, dis
tribution of project income/profits, and cooperation between project man
agement and teams.

i. Have definition and protection of proprietary rights been identified? This
factor is of vital importance in cases where reused software is integrated
into a new package or when rights for future reuse of the current software
need to be decided. This item also refers to the use of proprietary files of
data crucial for operating the system and security measures.

The objectives of a proposal draft review are summarized in Frame 8.2.

Frame 8.2: Proposal draft review – evaluation topics

The nine proposal draft review evaluation topics

To evaluate the following activities carried out by the proposal team:

a. Have customer requirements been clarified and documented?

b. Have alternative approaches for carrying out the project been examined?

c. Have formal aspects of the relationship between the customer and the soft
ware developer been specified?

d. Have development risks been identified?

e. Have project resources and schedule been adequately estimated?

f. Has developer’s capacity with respect to the project been verified?

g. Has customer’s capacity to fulfill his commitments been verified?

h. Have partner and subcontractor participation conditions been defined?

i. Have definition and protection of proprietary rights been identified?

148 Chapter 8 Preproject Process – Contract Review

8.4.2 Contract draft review evaluation subjects

The objectives of the contract draft review are to make sure that the following
activities have been performed satisfactorily:

a. Are there unclarified issues in the contract draft?

b. Have all the understandings reached subsequent to the proposal
been correctly documented? All understandings reached between the
customer and the developer are to be fully and correctly documented in
the contract and its appendices. These understandings are meant to
resolve all unclarified issues and differences between the customer and
the developer that have been revealed so far.

c. Have “new” changes, additions, or omissions been entered into the
contract draft. No changes, additions, or omissions that have not been
discussed and agreed upon should be introduced into the contract draft.
All changes, whether intentional or not, may result in additional, sub
stantial, and unanticipated commitments on the part of the developer.

The objectives of a contract draft review are summarized in Frame 8.3.

Frame 8.3: Contract draft review – evaluation subjects

The three contract draft review evaluation subjects

To evaluate the following issues of the contact draft:

a. Are there unclarified issues in the contract draft?

b. Have all the understandings reached subsequent to the proposal been cor
rectly documented?

c. Have “new” changes, additions, or omissions been entered into the contract
draft?

Checklists for contract review evaluations are usually useful tools in helping
review teams organize their work, and adequately cover the relevant topics. It is
clear that while part of the topics on these lists may be irrelevant for some proj
ects, even a comprehensive checklist may exclude some important topics rele
vant to a given project proposal. It is the task of the contract review team, and
especially of its leader, to determine the list of relevant topics pertinent to the
specific project proposal.

Lists of contract review topics, classified according to contract review eval
uation subjects, are presented in the appendices to this chapter:

Appendix 8.A: Proposal draft review – topics checklist

Appendix 8.B: Contract draft review – topics checklist

8.5 Implementation of a Contract Review 149

8.5 Implementation of a contract review

This section refers to the following subjects:

• Who performs the contract review?

• Implementation of a contract review for a major proposal.

8.5.1 Who performs the contract review?

In order to ensure the review is effective, it should be performed by independent
persons, in other words, by members of the proposal team. It may be conducted
by various individuals, as listed here:

• Members of the SQA function.

• Leader of software projects of similar complexity and magnitude.

• Senior professional staff members, experienced in projects similar to the
proposed project.

• Outside professional experts, experienced in projects similar to the pro
posed project. Usually, outside experts are called in for major proposals
(see the next section). Outside experts may also be called in for contract
reviews in small software development organizations that lack an adequate
number of contract review team members in their staff.

8.5.2 Implementation of a contract review for a
major proposal

Major proposals are for projects characterized by at least a number of the follow
ing: very large scale, very high technical complexity, new professional area for
company, and high organizational complexity (realized by great number of orga
nizations participating in project, that is, partners, subcontractors, and custom
ers). Implementation of a contract review process for a major project usually
requires investing many working hours, and thus may incur substantial organiza
tional difficulties. Some avenues for overcoming these difficulties are suggested
here. The following are a review of the factors that introduce difficulties to the
smooth completion of a contract review.

The difficulties of carrying out contract reviews for major proposals

It is unequivocal that contract reviews are an excellent means of reducing the
risks for major project failures. However, several inherent difficulties in perform
ing these reviews exist, especially when major projects are at hand.

• Time pressures. The proposal draft reviews are usually performed when
the tender proposal team is under considerable time pressure. As a result,

150 Chapter 8 Preproject Process – Contract Review

the review needs to be completed in a too short time, within a few days.
This does not allow for a proper review and subsequent proposal
corrections.

• The potential contract review team members are very busy. The potential
members of the contract review team are often senior staff members
and experts, who are usually committed to performing their regular
tasks at the very time the review is to be conducted. Freeing profes
sional staff can therefore be a significant, if not impossible, logistical
problem. It should be mentioned that performing a major proposal
review requires substantial time.

Recommended avenues for implementing major contract reviews

The careful planning of contract reviews is required for its successful comple
tion. As should be clear by now, this holds doubly for major contract review. It
is recommended that the following steps be taken to facilitate the review
process.

• The earlier the beginning of the proposal preparation, the better. It is
expected that sufficient time will be set aside for a proper proposal draft
review.

• The contract review should be scheduled. Contract review activities
should be included in the proposal preparation process, leaving sufficient
time for a contract review and the ensuing corrections.

• A team should carry out the contract review, not a single reviewer.
Teamwork makes it possible to distribute the workload among the team
members so that each member of the contract review team can find suffi
cient time to do his share (which may include preparing a written report
that summarizes his or her findings and recommendations).

• A contract review team leader should be appointed at the earliest
time. It is important that the responsibility for organizing, managing, and
controlling the contract review activities, especially recruiting members, is
performed by the contract review team leader. Activities of the team
leader include:
- Recruitment of the team members
- Distribution of review tasks among the team members
- Coordination between the review and proposal teams.
- Coordination and follow-up of activities, especially compliance with the
schedule

- Summarization of the findings and participation in discussions regarding
the review findings with the proposal team

8.6 Contract Reviews for Internal Projects 151

Implementation tip

As contract reviews may impose a substantial workload and additional pressures on
the proposal team, thought should be given to when it may be appropriate to avoid
conducting a contract reviews. Such situations may be cases of small-scale projects,
or small- to medium-scale cost-plus projects, and medium-sized projects that repeat
projects executed in the past. Contract review procedures should therefore define those
types of projects for which a contract review is not obligatory.

For other defined types of “simple” projects, it is recommended that authority be
given to a senior professional of the software development department to make the
decision as to whether to perform the review for a given project.

8.6 Contract reviews for internal projects

A substantial number, if not the majority, of software projects are internal proj
ects –“in-house” projects – carried out by one unit of an organization for another
unit of the same organization. In such cases, the software development unit is
the supplier/developer, while the other unit may be considered the customer.
Typical internal projects and their in-house customers are listed in Table 8.1.

Frequently, internal software development projects are not based on what
could be considered a complete customer–supplier relationship. In many cases,
these projects are based on general understandings, with good will playing an

Table 8.1 Typical internal projects and in-house customers

Type of internal
project The in-house customers Project examples

1. Administrative or
operative software

2. Software packages
developed to be sold
to the public as
“carry off-the-shelf”
packages

3. Firmware to be
embedded in the
company products

Administration and
operating units

Software marketing
department

Electronic and mechanical
product development
departments

1. Sales and inventory systems
2. Financial resource management

systems
3. Human resource management

systems
4. The organization’s intranet site
1. Computer games
2. Internet shop generator
3. Educational software
4. Word processors
5. Sales and inventory management

software packages
1. Electronic hospital

instrumentation firmware
2. Household amusement equipment

and machinery firmware
3. Advanced toys firmware

152 Chapter 8 Preproject Process – Contract Review

important role in the relationship between the two units. It follows that the
developing unit will only perform a “super quick” contract review, or not per
form one at all.

Unfortunately, loose relationships are usually characterized by insufficient
examination of the project requirements, its schedule, resources, and develop
ment risks. As a result, the following problems are likely to arise:

1. Inadequate definition of project requirements

2. Poor estimates of required resources

3. Poor scheduling

4. Inadequate awareness of development risks

As this list indicates, we can easily conclude that in-house projects per
formed for internal customers are more prone to failure than outside contracted
projects. The potential disadvantages of the loose relationships typical of internal
projects are shown in Table 8.2.

It may be concluded that customer–supplier relationship and contract
review that proves to be fruitful for external projects should be applied to
internal projects as well. The chances of avoiding the abovementioned

Table 8.2 Disadvantages of “loose relationships” internal projects

Disadvantages to the Disadvantages to the internal
Subject internal customer developer

1. Inadequate definition of
project requirements

2. Poor required resource
estimates and unrealistic
commitments

3. Poor schedule

4. Inadequate awareness of
development risks

• Implementation deviates
from the needed
applications

• Low satisfaction

• Unrealistic expectations
about project
applicability

• Missing scheduled dates
for start of new products
distribution

• Customer unprepared
for project risks and
their consequences

• Higher than average change
requirements

• Wasted resources due to
introduction of avoidable
changes

• Substantial deviations from
development budget

• Friction between units induced
by requirements for budget
additions

• Development activities are
under time pressure and tend
to be of low quality

• Late project completion causes
delays in freeing staff for their
next project

• Tardy initiation of efforts to
overcome difficulties

Summary 153

potential problems could be improved considerably by implementing proce
dures that define:

• Well-defined requirement specification by the internal customer.

• An adequate proposal for the internal project, based on applying a proper
proposal and contract review team process.

• An adequate agreement between the internal customer and the internal
supplier/developer.

Summary

1. The two contract review stages
• Proposal draft review: This stage reviews the final proposal draft and
documents on which it is based.

• Contract draft review: This stage reviews the contract draft on the
basis of the proposal and the understandings reached during the cus
tomer–supplier negotiations prior to signing the contract.

2. The objectives of contract review
The objectives of the proposal draft review and the contract draft review
are:
• To reveal and document pitfalls in the software project proposal draft
that reduces the probability of such undesirable contract situations.

• To reveal and document pitfalls in the software project contract draft
that reduces the probability of such undesirable contract situation.

3. The factors affecting the extent of the contract review. The efforts to
be expended on the contract review depend on the factors characterizing
the project. The most important factors are the project magnitude and
complexity, the staff’s acquaintance and experience with the project
area, and the project organization complexity.

4. The difficulties in performing a major contract review
The main difficulties are the time pressures and the need to recruit con
tract review team members, senior professionals of the department who
are usually heavily loaded with performing and controlling their team’s
projects, and thus find it difficult to invest time in contract reviews.

5. The recommended avenues for implementing a major contract
review. To conduct a proper major contract review, one should abide by
the following guidelines:
• The contract review should be part of the proposal preparation
schedule.

• The contract review should be carried out by a team.
• A contract review leader should be appointed at the earliest time to
allow recruitment of team members

154 Chapter 8 Preproject Process – Contract Review

6. The importance of carrying out a contract review for internal projects.
The loose relationships maintained between the internal customer and the
internal developer increase the probability of project failure. It is likely
that the budget and schedule will not be kept, and the customer’s
expected applications will only partially be fulfilled. These undesired
results can be avoided by adequate procedures and by applying the same
guidelines used for external project contract reviews.

Selected bibliography

IEEE (2014) IEEE Std. 730-2014 Software Quality Assurance, IEEE, New York.
ISO (2014) ISO/IEC 90003:2014 Software Engineering – Guidelines for the Application of TSO
9001: 2008 to Computer Software, International Organization for Standardization, Geneva,
Switzerland.

Review questions

8.1 The KFV case is described at the beginning of this chapter. From the vice president’s
short speech, it can be understood that the proposal preparation was conducted as
follows: (a) a negotiating team was appointed by the management, (b) a proposal
was prepared by the negotiating team, (c) management approved the proposal before
it was presented to the customer, and (d) management signed the contract.

a. Can you suggest steps that would reduce the possible losses caused by a faulty
contract?

b. Which relevant contract review evaluation subjects, listed in Appendices 8.A and
8.B, could have revealed the contract faults described in the KFV case.

8.2 List the various aspects involved with the examination of the customer’s capabilities.

8.3 One of the objectives of a contract review is to examine development risks.

a. List the most common types of development risks.

b. What proposal team activities are required regarding each of the revealed devel
opment risks?

8.4 The extent of a contract review depends on the project’s characteristics.

a. Describe an imaginary project that requires an intensive and comprehensive con
tract review.

b. Describe an imaginary project where a small-scale contract review would be
adequate.

8.5 Performing a contract review raises many difficulties.

a. List the “built-in” difficulties when carrying out a large-scale contract review.

b. List the steps that should be taken to make a large-scale contract review feasible.

Topics for Discussion 155

8.6 List the issues involved with estimating the resources required for a project that
should be considered by the contract review team.

8.7 List the supplier’s capability issues that should be considered by the contract review
team.

8.8 List the partner and subcontractor participation issues that should be considered by
the contract review team.

Topics for discussion

8.1 MJS, Mount Jackson Systems, Ltd. signed a contract to develop a comprehensive cus
tomer relations management (CRM) system for a large food preparation corporation.
In order to fulfill the project requirements, MJS employed three subcontractors. MJS’s
experience with the subcontractors turned out to be troublesome, especially with
regard to keeping schedules, rates of software faults of all kinds, and the number of
interface faults with system parts developed by other participants in the project.

The head of the software quality assurance unit stated that had his unit carried
out the contract review procedure, most of the described problems could have been
averted.

a. What contract review topics are relevant to this case?

b. What process would you recommend when applying a contract review in this
case?

8.2 An SQA professional claims: “I find all the reasons given for a proposal draft
review to be justified. I also believe that a review contributes to the quality of the
proposal, especially in regards to clarifying and precisely defining requirements,
and in preparing more realistic estimates, among other issues. However, once the
proposal has been presented to the customer, there is no need for a contract draft
review. The task of reviewing the final negotiation results and the final version of
the contract should be left to the legal department and to management.”

a. Do you agree with the above statement? List your arguments.

b. In which situations is a contract draft review not necessary?

c. In which situations is a contract draft review absolutely necessary?

8.3 Many organizations do not apply their contract review procedures to internal projects
even though they perform comprehensive contract reviews for all their external projects.

a. List arguments that support this approach.

b. List arguments that oppose this approach.

c. Suggest types of internal projects where omission of a contract review could
result in severe damages to the organization (mention the main components of
damages listed for each project type).

8.4 One of the objectives of a contract review is to examine the customer’s capability to
fulfill his commitments. Accordingly, a comprehensive list of contract review topics
is suggested in Appendix 8.A. Some managers believe that as the supplier can sue

156 Chapter 8 Preproject Process – Contract Review

the customer in those cases when he does not fulfill his commitments, there is no
justification to invest resources in reviewing the customer’s capabilities.

a. Do you agree with these managers?

b. If you disagree, list your arguments in favor of a comprehensive examination of
the customer’s capabilities.

c. Can you describe a real or imaginary situation where a customer’s capability
failures could create substantial direct and indirect damages to a software devel
oper (the supplier)?

8.5 A contract draft review of a properly prepared contract document is expected to
yield no negative findings. Still, in reality, discrepancies in contracts do appear
frequently.

a. List real cases and common situations where such discrepancies could be
expected.

b. In what situations are discrepancies in the contract draft expected to be least
likely?

8.6 The examination of alternatives is one of the major tasks for a proposal team, espe
cially for tender proposals. However, in many cases, important alternatives are
omitted or neglected by the proposal team.

a. List real cases and common situations where negligence to define and examine
important alternatives can be expected.

b. In what situations are these types of discrepancies least likely to occur?

8.7 National Software Providers Ltd is very interested in the newly developing area of
Business Intelligence (BI) for electronic commerce firms. As the company is very
keen to gain experience in this area, it was especially interested in winning a tender
issued by one of the leading cosmetics manufacturers. The proposal team estimated
that in order to win the contract, their proposal should not exceed the sum of
$650,000. Accordingly, their quotation was $647,000. As all the team members
were aware that the cost of the company’s inexperienced development department
to complete the project would substantially exceed this sum, they decided that there
was little use in investing efforts to estimate the actual costs of the project.

a. Do you agree with the team’s decision not to estimate the project’s costs?

b. If you disagree, what are your arguments in favor of estimating the costs?

8.8 Consider the case of a custom-made software package developed by a supplier
according to the unique RFP (request for proposal) specifications of the customer.

a. What proprietary issues are expected in such a project?

b. Which security issues related to the proprietary rights listed in your answer to
(1) should be examined?

8.9 Contract review topics include a variety of financial issues.

a. Why should an SQA activity, such as a contract review, be so heavily involved
in financial issues?

Appendix 8.A: Proposal Draft Review 157

b. Is it likely that an SQA unit member be able to review the financial issues? Who do
you believe should conduct the review, and how should the review be organized?

8.10 A contract review can be performed by “insiders” (members of the organization’s
staff members) or by “outsiders.”

a. What are the advantages and disadvantages of employing outsiders, compared
with insiders, for a proposal draft review?

b. What are the advantages and disadvantages of employing outsiders, compared
with insiders, for a contract draft review?

8.11 A medium-size firm submits 5–10 proposals per month, 10–20% of which eventu
ally evolve into development contracts. The company takes care to perform a thor
ough proposal draft review for each of the proposals.

a. Do the proposal draft reviews performed for each of the individual projects guar
antee that the company will be capable of carrying out all the proposals that
eventually evolve into development contracts? List your arguments.

b. If your answer to (1) is negative, what measures should be taken to reduce the
risk of not being able to perform a contract?

Appendix 8.A: Proposal draft review

Checklist for a proposal draft review is presented in Table 8.A.1.

Table 8.A.1 Proposal draft review – topics checklist

Proposal draft review objective Proposal draft review topics to be verified

1. Customer requirements have
been clarified and
documented

The following should be defined:

1. The functional requirements
2. The customer’s operating environment (hardware

platform, data communication system, operating
system, etc.).

3. The required interfaces with other software
packages and instrument firmware.

4. The performance requirements, including
workloads as defined by the number of users and
the characteristics of use.

5. The system reliability.
6. The system’s usability, as realized in the

required training time for an operator to achieve
the required productivity.

7. The total training and instruction effort to be
carried out by the supplier, including number of
trainees and instructed staff, locations, and
duration.

(continued)

158 Chapter 8 Preproject Process – Contract Review

Table 8.A.1 (Continued)

Proposal draft review objective Proposal draft review topics to be verified

2. Alternative approaches to
carrying out the project have
been examined

3. Formal aspects of the
relationship between the
customer and the software
developer have been specified

8. The number of software installations to be
performed by the supplier, including locations.

9. The warranty period, extent of supplier liability,
and method of providing support.

10. Proposals for maintenance service provision
extending beyond the warranty period and its
conditions.

11. Completion of all tender requirements relating to
the project team, certification and other
documents, and so on.

The following should be defined:

1. Integrating reused and purchased COTS software,
including reused and purchased functions and
costs.

2. Partners, including partnership agreements.
3. Customer’s undertaking to perform certain project

tasks in-house.
4. Subcontractors, including proposed firms and

cooperation understandings.
5. Adequate comparison of alternatives.

The following should be defined:

1. A coordination and joint control committee,
including its procedures.

2. The list of documentation that has to be
delivered.

3. The customer responsibilities regarding
provision of development facilities, data, and
answers to the team’s inquiries.

4. Indication of the required phase approval by the
customer and the approval procedure.

5. Customer participation (extent and procedures)
in progress reviews, design reviews, and testing.

6. Procedures for handling customer change
requests during development and maintenance
stages, including method of costing introduction
of changes.

7. Criteria for project completion, method of
approval, and acceptance.

8. Procedures for handling customer complaints
and problems detected after acceptance,
including nonconformity to specifications
detected after the warranty period.

Appendix 8.A: Proposal Draft Review 159

Table 8.A.1 (Continued)

Proposal draft review objective Proposal draft review topics to be verified

4. Identification of development
risks

5. Adequate estimation of
resources and schedule

6. Examination of developer’s
capacity to perform the
project

9. Conditions for granting bonuses for earlier
project completion and penalties for delays.

10. Conditions to be complied with, including
financial arrangements, if part of, or the entire
project is cancelled or temporarily halted upon
the customer’s request.

11. Service provision conditions during warranty
period.

12. Software maintenance services and conditions,
including customer’s obligation to update his
version of the software as per supplier demands.

The following should be defined:

1. Risks regarding software modules or parts that
require acquisition of new professional capabili
ties and solution methods.

2. Risks regarding the possibility of not obtaining
purchased hardware and software components
according to schedule, and the suggested risk
management plan.

The examination of the following subjects will refer,
among other sources, to the proposal team’s
working papers of project program schedule and
resources required.

1. Man-days required for each project phase and
their cost. Do the estimates include spare
resources to cover any required corrections fol
lowing design reviews, tests, and so on?

2. Do the estimates of man-days include the required
work to prepare the required documentation,
especially documentation to be delivered to the
customer?

3. Are the manpower resources sufficient to fulfill
warranty obligations and their cost?

4. Does the project schedule include time required
for reviews, tests, and so on, and making the
required corrections?

The following should be defined:

1. Suitability and availability of proposed team
leaders.

2. Availability of specialized staff (on schedule and
in the required numbers).

(continued)

160 Chapter 8 Preproject Process – Contract Review

Table 8.A.1 (Continued)

Proposal draft review objective Proposal draft review topics to be verified

7. Examination of customer’s
capacity to fulfill his
commitments

8. Definition of partner and sub
contractor participation
conditions

9. Definition and protection of
software proprietary rights

3. Availability of computer resources and other
development (including testing) facilities (accord
ing to quantities and schedule as per project
contract).

4. Ability to cope with the customer requirements
regarding the use of special development tools or
software development standards.

5. Warranty and long-term software maintenance
service obligations.

The following should be examined:

1. Financial capability, including contract payments
and payments for additional internal investments.

2. Supply of all development facilities and data.
3. Responses to staff queries as they arise.
4. Recruitment and training of new and existing staff

required for operating the new software system.
5. Capacity to complete all task commitments on

time and at the requisite quality.

The examination of the following subjects will refer,
among other sources, to the proposal team’s
working papers related to partners, subcontractors,
and purchases:

1. Allocation of responsibility for completion of
tasks by the partners, subcontractors, or customer,
including schedule and method of coordination.

2. Allocation of payments, including bonuses and
penalties, among partners.

3. Subcontractor payment schedule, including
bonuses and penalties, and the relevant conditions.

4. Quality assurance of work performed by subcon
tractors, partners, and the customer, including
participation in SQA activities (e.g., quality plan
ning, reviews, tests).

The following should be defined:

1. Securing proprietary rights to software purchased
from other parties.

2. Securing proprietary rights to data files purchased
from other parties.

3. Securing proprietary rights to future reuse of
software developed in custom-made projects by
the developer and his subcontractors, while in
regular use by the customer.

Appendix 8.B: Contract Draft Review 161

Appendix 8.B: Contract draft review

Topics checklist for contract draft review is presented in Table 8.B.1.

Table 8.B.1 Contract draft review – topics checklist

Review objective Contract draft review topics to be verified

1. No unclarified issues remain
in the contract draft

2. All understandings reached
subsequent to the proposal
are correctly documented

3. No “new” changes, additions,
or
omissions have been entered
into the contract draft

1. Supplier’s obligations as defined in the contract
draft and its appendices.

2. Customer’s obligations as defined in the contract
draft and its appendices.

1. Understandings about the project’s functional
requirements.

2. Understandings about financial issues, including
payment schedule, bonuses, penalties, and so on.

3. Understandings about the customer’s obligations.
4. Understandings about partner and subcontractor

obligations, including the supplier’s agreements
with external parties.

1. The contract draft is complete; no contract section
or appendix is missing.

2. No changes, omissions and additions have been
entered into the agreed-upon document:
a. No changes, omissions and additions regarding

the financial issues have been entered.
b. No changes, omissions and additions regarding

the project schedule have been entered.
c. No changes, omissions and additions regarding

the customer’s and partners’ obligations have
been entered.

Chapter 9

Cost of Software Quality

9.1 This time the budget was approved – an
introductory mini case

Mary Janus, head of the SQA team, felt very disappointed when for the third
time the general manager rejected her investment plan for installing the Java
Solver package in the software development department.

The proposed package included proved capabilities for the automatic detec
tion of 92% of Java program errors, and the automatic correction of 85% of
them. The quality observed in the trial results of the proposed package was
astonishing. It was as good as that measured in manual corrections, and in a
great many cases was even better. A document that presented these facts,
together with a proposal for installing four workstations (four licenses) in the
department amounting to the sum of $48,000 a year, was submitted to the GM,
from which Mary and her team were all expecting a positive decision. In actual
fact, this document was an improved version of one submitted just 4 months
earlier.

It seems that disappointment may sometimes lead to success in rather cre
ative ways. Mary’s disappointment lead her to want to convince the GM again,
but this time by presenting calculations of the contribution margin of the pro
posed investment.

Mary now began her “research” project, and first identified the following:

1. The software development department employs 10 Java programmers
and 10 Java testers. The cost of an employee is $13,000 per month on
average.

2. Department statistics revealed that six of the Java programmers produce
new Java code, while the other four dedicate their time to correcting the
Java statements according to testing results.

3. The Java programs produced by the programmers are expected to be
processed on four Java Solver workstations by two testers (trained by

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

162

9.1 This Time the Budget Was Approved – An Introductory Mini Case 163

Java Solver staff). The annual cost of four Java Solver licenses is
$48,000.

4. The 2-week training course for the Java Solver costs $2,500 per trainee.
The cost of employment of a Java Solver trainee during the course is
$6,500. It is suggested that four staff are trained to ensure availability of
trained staff at all times.

5. It is expected that three Java testers will be employed to complete the
testing following the Java Solver automatic testing and corrections.

6. It is expected, according to the trial carried out by the SQA team on the
operation of the Java Solver, which two Java programmers could tend to
all the manual corrections needed including checking of the automatic
corrections.

7. To sum-up, after implementation of the Java Solver project, the Java pro
grammer team will consist of eight programmers (instead of the currently
employed 10), while only five Java testers will be needed (instead of the
currently employed 10).

In light of the above, the following estimated expenses and subsequent sav
ings were identified:

Cost of four Java Solver licenses $48,000 per year
Cost of Java Solver training courses (for four) $10,000
Cost of employing trainees during the course (for four) $26,000

Savings from Java team reduction (by seven) $91,000 per year

The expected annual savings are calculated as follows:

For the first year of application

1. Cost of employing seven Java testers	 $91,000
2. Cost of training four staff	 �$10,000
3. Cost of employing four trainees during the course	 �$26,000
4. Cost of four Java Solver licenses	 �$48,000
5. Net savings for the first year of application $7,000

For the second and subsequent years of application

6. Cost of seven employing seven Java testers	 $91,000
7. Cost of four Java Solver licenses �$48,000
8. Net savings for the second and subsequent years of application $43,000

Mary was filled with new hope for getting the “Java Solver” ’ project
approved when she submitted a short memo presenting the above economic facts

164 Chapter 9 Cost of Software Quality

to the GM. A few days later, Mary was invited to the GM’s office for an urgent
meeting.

The GM opened the meeting, “We, the deputy of finance and I, read your
proposal very carefully.” He stopped his speech for a moment, razing Mary’s
tension, and continued, “We found it to be an excellent investment proposal and
approved it immediately.” Leaving no time for Mary to react, the GM closed the
meeting saying, “Your current proposal deals with the appraisal cost and internal
failure cost. I would like your next proposal to be dedicated to the prevention
cost.”

More and more time management – whether of commercial companies or public
organizations – requires economic evaluation of their quality assurance systems.
Accordingly, it is becoming more and more likely that proposals for the devel
opment of new quality assurance tools, or for investments to improve and
expand the operation of existing systems, will be examined through an “eco
nomic” microscope. Thus, it is becoming obligatory for QA units to demonstrate
the potential profitability for every request made for substantial funds (required
for system infrastructure or operating cost).

9.2 Objectives of cost of software quality
measurement

Frame 9.1 presents the main objectives to be achieved by application of cost of
software quality metrics.

Frame 9.1: Cost of software quality measurement – objectives

Application of cost of software quality metrics enables management to achieve
economic control over SQA activities and outcomes. The specific objectives are:

• Control organization-initiated costs to prevent and detect software errors.

• Evaluate financial damages of software failures as a basis for revising the SQA
budget.

• Evaluate plans to increase/decrease SQA activities, or to invest in new/updated
SQA infrastructure.

Managerial control over the cost of software quality (CoSQ) is achieved by
a comparison of actual performance figures with:

• Prevention and appraisal activities budget

• Previous year’s failure cost

9.2 Objectives of Cost of Software Quality Measurement 165

• Previous project’s total quality cost (control cost and failure cost)

• Other department’s quality cost (control cost and failure cost)

The following relations may add important indications of the success of an
SQA plan:

• Percentage of cost of software quality out of total software development
cost.

• Percentage of software failure cost out of total software development cost.

• Percentage of cost of software quality out of total software maintenance
cost.

• Percentage of cost of software quality out of total sales of software prod
ucts and software maintenance.

It is the CoSQ indicators that stress the importance of SQA. For example,
the first indicator quite often reaches the level of 50% of the total cost of a soft
ware product. Application of SQA tools, which could potentially reduce the
CoSQ from 50 to 30%, would contribute substantially to the financial perform
ance of the software house.

We claim that cost of software quality – the financial assessment of software
quality development and maintenance – is just another class of software quality
metrics, where financial values are used as the measuring tool. However, while
quality metrics and costs of quality both support management control and deci
sion-making, cost of quality is a metric that displays a unique characteristic.
Application of common financial measures enables managements to obtain the
type of general overview of all software quality assurance activities unavailable
with any other metrics.

The unique features of the CoSQ discussed in this chapter reflect the special
characteristics of SQA, characteristics that are absent from quality assurance in
the manufacturing industry (see Section 2.1).

The cost of software development has been the subject of many research
projects, books, and articles in the last two decades. Nevertheless, publications
dedicated to the cost of software quality are relatively rare (e.g., Karg, 2009;
Karg et al., 2011).

The importance of quality cost data is considered to be used to improve the
organization’s processes, as discussed in Sec. 4.7 of IEEE Std. 730-2014 (IEEE,
2014).

Section 9.3 discusses the classic model of the cost of software quality,
which applies the general costs of the quality model to the software industry.
An additional model proposed by the author, the extended cost of software
quality model, is presented in Section 9.5 as an alternative that more effec
tively captures features specific to the software industry. Section 9.4 presents
industry figures for the scope of the cost of software quality. The concluding
part of the chapter deals with the application of a CoSQ system (Section 9.6),

166 Chapter 9 Cost of Software Quality

and the problems raised in the application of cost of software quality mea
surements (Section 9.7).

9.3 The classic model of cost of software quality

The classic quality cost model, developed in the early 1950s by Feigenbaum and
others, provides a methodology for classifying the costs associated with product
quality assurance from a financial point of view. The model was developed to
suit quality settings in manufacturing organizations, and has since been widely
implemented. The model was adopted for the software industry, and has become
the cost of software quality – CoSQ model.

The model classifies quality costs into two general classes.
Costs of control relate to costs controlled by the software developer and

includes the following subclasses:

• Prevention costs include investments in quality infrastructure and quality
activities targeted to reduce software errors. These activities are not
directed to a specific project or system, but are general to the
organization.

• Appraisal costs include the cost of activities performed for a specific
project or software system for the purpose of detecting software errors
that need to be corrected.

Costs of failure of control relate to costs of correcting failures that
occurred due to unsuccessful prevention activities. The model further subdivides
these costs into two subclasses.

• Internal failure costs include costs of correcting errors, and relate to
errors detected by design reviews (DRs), software tests, and acceptance
tests (carried out by the customer), which were corrected before the soft
ware was installed at customers’ sites.

• External failure costs include all costs of correcting failures detected by
customers or maintenance teams after the software system has been
installed at customer sites.

The classic model of the cost of software quality is presented in Figure 9.1.
In the next sections, the subclasses of the model are reviewed.

9.3.1 Prevention costs

Prevention costs include investments in establishing, updating, and improving a
software quality infrastructure, as well as for performing the regular activities
required for its operation. A significant share of the activities performed by the
SQA team is preventive in nature, as reflected in the SQA budget.

9.3 The Classic Model of Cost of Software Quality 167

Figure 9.1 The classic costs of software quality model.

Typical preventive costs include:

a. Investments in development of new or improved SQA infrastructure
components or regular updating of these components:
• Procedures and work instructions
• Support devices: templates, checklists, and so on
• Software configuration management system
• Software quality metrics
• Cost of software quality measurements

b. Regular implementation of SQA preventive activities:
• Instruction of new employees on SQA topics and procedures related to
their positions

• Instruction of employees in new and updated SQA topics and
procedures

• Certification of employees for specific positions
• Analysis of errors and additional data and the subsequent performing
of corrective and preventive actions

• Consultations on SQA issues provided to team leaders and others

c. Control of the SQA system through performance of:
• Internal quality audits
• External quality audits by customers and SQA system certification
organizations.

• Management quality reviews

9.3.2 Appraisal costs

Appraisal costs are devoted to the detection of software errors in specific proj
ects or software systems.

168 Chapter 9 Cost of Software Quality

Typical appraisal costs cover:

a. Reviews:
• Formal DRs
• Peer reviews (inspections and walkthroughs)
• Expert reviews

b. Cost of software testing:
• Unit tests
• Integration tests
• Software system tests
• Acceptance tests (participation in tests carried out by customer)

c. Costs of assuring the quality of work performed by external participants,
primarily by means of design reviews and software testing. External par
ticipants may include:
• Subcontractors
• COTS software systems suppliers and reusable software modules
• The customer (as a project participant)

9.3.3 Internal failure cost

Internal failure costs are those incurred through correcting errors that were
detected through design reviews, software tests, and acceptance tests performed
before the software was installed at customer sites. In other words, internal fail
ure costs represent the cost of error correction subsequent to formal examina
tions of the software during its development. It should be noted that corrections
and changes resulting from team leader checks or other team-initiated reviews
are generally not considered internal failure costs as they are an integral part of
the design and coding processes, and as such conducted informally.

Typical costs of internal failures:

• Cost of redesign or reprogramming subsequent to design review and test
findings (cost of rework).

• Cost of design corrections subsequent to design reviews and test findings.

• Cost of correcting programs following test findings.

• Cost of repeated design reviews and retesting (regression tests). Notably,
although the costs of regular design reviews and software tests are consid
ered appraisal costs, costs from repeated design reviews or software tests
directly resulting from poor design and inferior code quality are consid
ered internal failure costs.

• Domino effect damages: Delayed software projects, besides their incurred
failure costs, may cause damages to other projects performed by other
teams, due to the transfer of team members to enforce other projects under
pressure. Also, the delayed completion of a project can cause staff

9.3 The Classic Model of Cost of Software Quality 169

problems in other projects that are relying on staff released from the
delayed project. In other words, should a delay materialize, we can expect
a domino effect obstructing the progress of several other company projects
and inducing considerable internal as well as external failure costs.

9.3.4 External failure costs

External failure costs entail the costs of correcting failures detected by customers
or maintenance teams after a software system has been installed at a customer site.

These costs may be further classified into “overt” external failure costs and
“hidden” external failure costs.

In most cases, the extent of hidden costs is much greater than that of overt
costs. This gap is mainly caused by the difficulty in estimating hidden external
failure costs in comparison to overt external failure costs, which are readily
recorded or estimated. In addition, the estimates obtained are frequently disputed
among the professionals involved. As a result, hidden external failure cost esti
mation is rarely undertaken. Therefore, we will use the term external failure
costs to refer exclusively to “overt” failure costs.

Typical “overt” external failure costs cover:

• Resolution of customer complaints during the warranty period. In most
cases, this may be done over the phone or through data communication. It
involves a review of the complaint and transmission of resolution instruc
tions. In most cases, complaints result from a failure of the “help” func
tion or the guidelines found in the instruction manual.

• Correction of software bugs detected during regular operation. Corrections
involving code modifications (including tests of the corrected software)
followed by its installation are often performed at the customer’s site.

• Correction of software failures after the warranty period is over, even if
the correction is not covered by the warranty.

• Damages paid to customers in case of a severe software failure detected
during regular operation.

• Damages paid to customers in the event of project completion delays.

• Reimbursement of customer’s purchase costs, including handling, in case
of total dissatisfaction (relates to COTS software packages as well as to
custom-made software).

• Insurance against customer claims in case of a severe software failure. In
cases when the developer insures against customer claims, the insurance
expenses replace damage costs, as the insurance company pays customer
damage claims.

• Domino effect external failure costs, which mainly include delay penalties
and low-quality damages paid to customers.

170 Chapter 9 Cost of Software Quality

Implementation tip

Unaccounted exterior failure costs
In many cases, the developer has a clear interest in “reducing” the external failure

costs. He may achieve this by substituting what should have been damage payments
with compensation to the customer in the form of unaccounted “arrangements” by one
or more of the following methods:

• Forgoing the final project payment.
• Failing to charge for software changes requested by the customer.
• Failing to charge for the provision of HD services (beyond warranty period).
• Granting of discount for future purchase of software products.

The dollar values of such arrangements are not shown in the company’s book
keeping, and thus not included in the external failure costs.

The listed items reflect only “overt” external failure costs, which are directly
incurred by software failures detected and recorded during regular operation of
the software. In many cases, these costs only represent a small portion of the full
range of external failure costs. The greater portion of external failure costs –

“hidden” costs – reflect the resulting indirect damages to a software development
organization.

Typical examples of “hidden” external failure costs:

• Damages from reduced sales to customers with products suffering from
high rates of software failures.

• Severe decline in sales resulting from the firm’s damaged reputation.

• Increased investment in sales promotions to counter damaged reputation,
caused by past software failures.

• Diminished prospects of winning a tender due to damaged reputation.

• The need to underprice proposals to prevent competitors from winning
tenders.

9.4 The scope of the cost of software quality – industry
figures

The scope of the CoSQ as part of the overall software product costs is probably
one of the most accurate indicators for management, when considering invest
ments in software quality. Several studies of the correlation between the organi
zation’s SQA level and the relative part of the CoSQ in the total development
costs have been published.

Modeling of CoSQ and the extent of CoSQ as part of the costs of the soft
ware product are the subject of several papers, including Daughtrey (2013),

9.5 An Extended Model for Cost of Software Quality 171

Table 9.1 CoSQ according to CMM levels

CMM level

1 2 3 4 5

Total CoSQ (%)
Prevention cost (%)
Appraisal cost (%)
Internal failure cost (%)
External failure cost (%)

60
2
4

22
32

57
2

10
25
20

51
4
12
25
10

36
7

11
15
3

21
12
4
5
2

Source: Knox (1993).

Table 9.2 CoSQ for five American and European projects – averages

Software development projects American European

Number of projects
Total CoSQ (%)
Prevention cost (%)
Appraisal cost (%)
Internal and external failure cost (%)

2
57.5
13.5
16
28

3
67.7
8.7
26.3
32.7

Source: Laporte et al. (2012).

Jones (2011), Laporte et al. (2012), Krasner (1998), Galin and Avrahami (2007),
and Galin (2004).

The CoSQ results for organizations implementing CMM methodology ena
ble us to compare organizations with various SQA levels, as the CMM ranks
organizations into five levels according to their software quality achievements
(for CMM and CMMI methodologies, see Chapter 26). The results of Knox
(1993) show that at the lowest SQA level (CMM level 1), CoSQ reaches 60%
of the software product costs, at CMM level 3 it is reduced to 51%, and at the
highest CMM level (level 5), it only reaches the low percentage of 21%.

Knox’s detailed results for all CMM levels, and for the four components of
CoSQ according to the classic model, are presented in Table 9.1 as quality costs
defined by the classic model.

More recent results regarding the scope of CoSQ are provided by Laporte
et al. (2012) for American and European software development projects, and are
presented in Table 9.2.

9.5 An extended model for cost of software quality

Analysis of the software quality costs defined by the classic model reveals that
several costs of substantial magnitude are excluded. These costs are either

172 Chapter 9 Cost of Software Quality

unique to the software industry or negligible factor in other industries. For exam
ple, typical software quality failure costs include:

• Damages paid to customers in compensation for late completion of a proj
ect due to unrealistic scheduling.

• Damages paid to customers in compensation for late completion of a proj
ect as a result of failure to recruit sufficient staff.

The element common to these two failures is that they are not the result of
any particular action or lack of professionalism of the development team; they
are actually outcomes of managerial failure.

Further observations find activities by management to prevent or reduce
quality:

• Contract reviews (proposal draft review and contract draft review). The
cost of these reviews is usually negligible for contracts in the manufac
turing industries. However, in the software industry, considerable pro
fessional work is required to assure that a project proposal is based on
sound estimates and comprehensive evaluations of the proposed project.
The significant difference in required resources results from the nature
of the product, and the production process covered by the contract.
While a typical contract in the manufacturing industry deals with
repeated manufacturing of catalog-listed products, a typical contract in
the software industry deals with development of a new, unique software
system (see Chapter 3).

• Preparation of software development and quality plans. Significant
resources are required to prepare these plans as they are not comparable
to any management activities in other industries. The main benefits of the
plans are the early detection of risks of staffing shortages and expected
lack of professional expertise for specified project activities.

• Thorough appropriate progress control of the software project. While pro
duction control carried out in the manufacturing industry is a repetitive
task that can, in most cases, be performed automatically by machines,
software development progress control supervises task design and coding
activities and is performed the first time by the development team.

The important effect of management on the cost of software quality is
reflected in the title of a book by Flowers: Software Failure: Management Fail
ure (Flowers, 1996). In his book, Flowers describes and analyzes several colos
sal software project failures; he concludes by discussing the root of the critical
managerial failures and suggests ways to prevent or reduce the failures.

The extended cost of software quality model, as proposed by the author of
this book, extends the classic model to include management’s “contribution” to
the total cost of software quality. According to the extended CoSQ model,
shown in Figure 9.2, the costs are classified into two groups:

9.5 An Extended Model for Cost of Software Quality 173

Figure 9.2 The extended model for cost of software quality.

• Quality costs of development and SQA activities defined according to the
classic CoSQ model

• Management quality costs

The management quality costs are classified into two general classes.

1. Management control costs relate to costs that are controlled by the
management and include two subclasses as follows:
• Management prevention costs include preproject activities designed
to detect erroneous proposal parts and prepare appropriate plans for
project performance.

• Management appraisal costs include the costs of activities to control
the performance of a specific project.

174 Chapter 9 Cost of Software Quality

2. Management failure of control costs relates to costs of correcting fail
ures that occurred due to unsuccessful prevention activities. The model
further subdivides these costs into two subclasses.
• Internal management failure extra costs caused by management fail
ures in the project preparations, staff recruitment, and so on.

• External management failure costs include additional error repairs at
customer sites, and damages paid to customers due to customer-
detected product faults resulting from management commitments and
failures. A great part of these subclass costs are considered external
costs of a development team according to the classic CoSQ model.

The extended cost of software quality model is shown in Figure 9.2.
In the next sections, the subclasses of the management quality costs are

reviewed.

9.5.1 Managerial prevention costs

Managerial preventions costs are associated with activities performed to prevent
managerial failures or reduce prospects of their occurrence. These activities are
required to be performed before work commences on the project and are the
responsibility of management. Several of these activities are discussed in previ
ous chapters related to various SQA frameworks.

Typical managerial preparation and control costs include:

• Cost of carrying out contract reviews (proposal draft and contract draft
reviews) – see Chapter 8

• Cost of preparing project plans, including quality plans and their review –

see Chapter 7.

• Cost of carrying out contract review of subcontractors proposals for per
forming parts of projects.

9.5.2 Managerial appraisal costs

Managerial preparations and control costs are associated with activities per
formed to prevent managerial failures or reduce prospects of their occurrence.
Several of these activities are discussed in previous chapters related to various
SQA frameworks.

Typical managerial preparation and control costs include:

• Cost of periodic updating of project and quality plans.

• Cost of performing regular progress control of internal software develop
ment efforts – see Appendix C.

• Cost of performing regular progress control of the contribution of external
participants to the project – see Chapter 20.

9.6 Application of a Cost of Software Quality System 175

9.5.3 Managerial internal failure costs

Managerial internal failure costs may be incurred throughout the entire course of
software development. They are most likely to materialize in connection with
failed attempts to identify project risks, failed estimate regarding the appropriate
project schedule and budget as well as detect in a timely fashion those deviations
and problems that necessitate management intervention.

Typical internal managerial failure costs include:

• Unplanned costs for professional and other resources, resulting from
underestimation of resources on which submitted proposals are based.

• Additional staff costs paid to outsourcing companies, recruited under the
pressure of last-minute situations.

• Additional staff costs of “internal recruitment” made at the last minute, as
available staff, as opposed to the most suited, were recruited.

• Internal managerial domino effect damages: Damages to other company
projects caused by failing management activities or decisions.

9.5.4 Managerial external failure costs

Naturally, most managerial external failure costs incurred after completion of
software development and system installation.

These costs are most likely to emerge in connection with failed attempts to
detect project risks, failed estimates of the appropriate project schedule and bud
get, as well as detect in a timely fashion those deviations and problems that
demand management intervention.

Typical external managerial failure costs include:

• Damages paid to customers as compensation for late completion of the
project, a result of the unrealistic schedule presented in the company’s
proposal.

• Damages paid to customers as compensation for late completion of a proj
ect, resulting from management’s failure to recruit appropriate team
members.

• External managerial domino effect damages: Damages to other company
projects caused by failing management activities or decisions.

9.6 Application of a cost of software quality system

In order to apply a cost of software quality system in an organization, the fol
lowing are required:

• Definition of a cost of software quality model and array of cost items spe
cifically for the organization, department, team, or project.

176 Chapter 9 Cost of Software Quality

• Definition of a method of data collection.

• Application of a cost of software quality system, including thorough fol
low-up.

• Actions to be taken in response to the findings produced.

9.6.1 Definition of the organization’s CoSQ items

In the first stage of applying a CoSQ model, the organization should choose its
preferred type of cost model – classic or extended. Whichever model is selected,
its effectiveness is determined to a great degree by the suitability for the organi
zation of the cost items designed to be measured for the model. In other words,
these model items, defined specifically for the organization, are considered rele
vant to the organization’s activities and budget expenditures. Each item should
belong to one of the subclasses comprising the cost model.

Example:
The SQA unit of the information systems department of a commercial company
adopted the classic model as its cost of software quality model. A member of the
unit prepared a draft list of 13 potential CoSQ items to be classified by the head
of the SQA unit for compiling the department’s first annual CoSQ report. The
head of the SQA unit classified the items. He rejected three items, claiming they
were costs of software development, rather than CoSQ. The classification results
are presented in Table 9.3.

Implementation tip

The software development and maintenance departments should agree upon the struc
ture of the CoSQ model and the related CoSQ items. It is preferable to omit those
items over which agreement is difficult to reach, even at the expense of reduced cov
erage of quality costs.

Some CoSQ items may be shared by several departments or projects. In such
cases, the rules determining allocation of costs should be as simple as possible and
agreed to by all the relevant parties.

Updates and changes to the quality cost items can be expected. These are
based on analyses of the cost of software quality reports as well as on changes
in the organization’s structure and environment.

9.6.2 Planning the method for costs data collection

The method of costs data collection is a key factor (although regularly underesti
mated) in the success or failure of the CoSQ system.

Once the list of software quality cost items has been finalized, a method for
collecting the relevant data should be determined. One of the major questions

9.6 Application of a Cost of Software Quality System 177

Table 9.3 Classification of potential CoSQ items – an example

Cost item CoSQ subclass

1. Employment of head of SQA unit 50% prevention cost;
50% appraisal cost

2. Verification of compliance with SQA procedures Prevention cost
instructions by SQA team member (employment cost)

3. Payment to an outsourcing company for preparation of Not CoSQ (cost of
project documentation development)

4. Participation in internal and external SQA audits by Prevention cost
development and maintenance teams

5. First series of tests performed by testing team (time Appraisal cost
spent in tests)

6. Regression tests performed by testing team (time spent Internal failure cost
in tests)

7. Correction of errors identified by the testing team (time Internal failure cost
spent in corrections (seconds))

8. Correction by maintenance team of software failures External failure cost
identified by customer (time spent, and traveling costs
to customer site)

9. Team member code checking by development team Not CoSQ (cost of
leader development)

10. Regular visits by unit’s SQA consultant (standard Prevention cost
monthly fee)

11. Participation in external failure inquiries by unit’s External failure cost
SQA consultant (special invoices)

12. Special security software for the customer relations Not CoSQ (cost of
software system development)

13. Costs of SQA journals, and participation in Prevention cost
SQA seminars

raised at this stage is whether to develop an independent system for collecting
data or rely on the existing management information system (MIS). After adap
tations, the MIS is usually capable of serving the requirements of data collection
for the selected cost model. For instance, its human resource costing system can
record working hours invested in quality issues. Relatively simple changes to
ledger categories enable the accounting system to record the costs of external
services and purchases for the SQA system, as well as damages paid to custom
ers. In general, using existing MIS is preferable to introducing new systems,
mainly for the following reasons:

• Expected cost savings by running a working data collection system
instead of introducing an independent system.

• Avoidance of disagreements over interpretation of the data provided by
the MIS versus the data provided by the independent system; typical

178 Chapter 9 Cost of Software Quality

when operating an independent data collection system. Disagreements of
this type reduce the reliability of the software quality cost results.

Planning independent CoSQ data collection activities should apply the fol
lowing considerations:

• Ease of regular reporting and data collection, especially when develop
ment team members are required to report.

• The possible bias of data while reporting. The reporting method should
reduce as much as possible this potential biased reporting, which could
bias the results of CoSQ periodical reports.

9.6.3 Implementation of the planned CoSQ system

Like any other new procedure, implementation of a new cost of software quality
system involves:

• Assigning responsibility for reporting and collection of quality cost data.

• Instruction of the team in the logic and procedures of the new system.

• Follow-up:
– Support for solving implementation problems and providing supple
mentary information when needed.

– Identifying cases of partial or total lack of reporting and verifying regu
lar reporting.

– Identification of cases of clear biased reporting and verifying proper
future reporting.

• Processing the collected CoSQ data:
– Review of data collected, its proper classification, and recording.
– Review of completeness and accuracy of the CoSQ reports by their
comparison with records produced by the general MIS system and pre
vious cost and activity records. This task requires special efforts during
the initial implementation period.

• Updating and revising cost item definitions together with the reporting
and collecting methods, based on feedback.

9.6.4 Actions taken in response to the model’s findings

Most of the actions taken in response to the model’s findings – that is, the results
obtained after analysis of the CoSQ reports based on comparisons with previous
periods, with other units, and so on. In practice, the analysis and subsequent
actions taken are rooted in the application of the cost of software quality balance
concept. According to this concept, an increase in control costs is expected to
yield a decrease in failure of control costs and vice versa; a decrease in control

9.7 Problems in Application of CoSQ Measurements 179

Figure 9.3 The cost of software quality balance concept.

costs is expected to lead to an increase in failure of control costs. Moreover, the
effect of changes in control costs is expected to vary according to the desired
software quality level. This relationship is expected to yield an optimal total cost
of software quality, a minimal total cost achievable at a specified quality level –
the optimal software quality level. Figure 9.3 shows a graphic illustration of the
cost of software quality balance concept as shown by the control costs and costs
and failure of control costs for the different software quality levels.

Management is usually interested in minimal total quality cost, rather than
the control or failure of control cost components. Therefore, managers tend to
focus on the optimal quality level, and apply this concept when budgeting the
annual SQA activity plan as well as when budgeting a project.

Examples of typical decisions taken in the wake of cost of software quality
analysis and their expected results are shown in Table 9.4:

In addition to the actions taken by management, additional actions may be
initiated by the Corrective Action Board, which bases its analysis of the accumu
lated cost of quality, quality metrics on different data not considered by manage
ment. A comprehensive discussion of such CAB actions is found in Chapter 16.

9.7 Problems in application of CoSQ measurements

Application of a CoSQ model is generally accompanied by problems to be over
come, whatever the industry is. These impinge upon the accuracy and complete
ness of quality cost data caused by:

• Inaccurate and/or incomplete identification and classification of quality
costs.

180 Chapter 9 Cost of Software Quality

Table 9.4 Cost of software quality analysis – typical actions and expected results

No. Actions Expected results

1 Improvement of software manual and help
instructions

2 Increased investment of resources in contract
review

3 Reduction in instruction activities yielding no
significant improvement

4 Increased investment in training inspection team
members and team leaders

5 Adoption of more intensive project progress
control procedures

6 Construction of certified subcontractor list
allowed to participate in company projects

7 Introduction of automated software tests to
replace manual testing without a substantial
increase in testing costs

Reduction of external failure costs

Reduction of managerial internal
and external failure costs

Reduction of prevention costs
with no increase in failure costs
Reduction of internal and external
failure costs
Reduction of internal and external
managerial failure costs
Reduction of failure costs,
especially of external failure
costs
Reduction of internal and external
failure costs

• Negligent reporting by team members and others.

• Biased reporting of software costs, especially of “censored” internal and
external costs.

• Biased recording of external failure costs, due to indirect if not
“camouflaged” compensation of customers for failures (e.g., discounted
future services, delivery of free services, and so on), whose implications
are not recorded as external failure costs.

The abovementioned general quality assurance problems do arise within the
context of the software industry, but there are others as well, unique to the soft
ware industry. We shall focus on problems faced when recording management
prevention and control costs and managerial failure costs as these items signifi
cantly affect the validity and comprehensiveness of the total cost of software
quality, especially when the extended cost of software quality model is applied.

Problems arising when collecting data on managerial prevention and
appraisal costs:

• Contract review and progress control activities are performed in many
cases in a “part-time mode,” and in addition they are subdivided into sev
eral disconnected activities of short duration. The reporting of time
invested in these activities is usually inaccurate and often neglected.

• Many of the participants in these activities are senior staff members and
are not required to report their time.

• The nature of follow-up activities requiring few hours, and in many cases
even less than an hour, makes them difficult to report accurately.

Summary 181

Table 9.5 Causes for deviation from schedule and incurred quality cost

Cause for deviation from schedule Class of quality costs

1. Changes performed according to customer
request, including agreed delays in scheduled
completion

2. Customer-delayed installation of
communication and other hardware, and/or
delays in its staff recruitment and training

3. Poor performance by development team,
requiring extensive rework and corrections of
software detected after software was installed
at customer site

4. Project proposal based on unrealistic
schedules and budgets

5. Late or inadequate recruitment of staff or
reliance on company professionals, whose
release from other projects does not meet
project needs

Internal quality cost will be effective
for delays beyond the agreed delay

No internal failure cost, customer
responsibility for failure costs

External failure cost

Managerial internal failure cost

Managerial internal failure cost

Problems encountered in collection of data on managerial failure costs,
especially schedule failures costs:

• Determination of responsibility for schedule failures.
These costs may be assigned to the customer (in cases when the cus

tomer caused a delay that resulted in additional developer costs), who is
required to compensate the developer, the development team (delay dam
ages are considered an external failure cost), or management (delays caused
by management failure to recruit the required staff may result in damages
considered as a managerial failure cost). Schedule failure costs are fre
quently deliberated for lengthy periods because their direct causes or the
specific contributions of each participant to the initial failures are difficult to
pinpoint. Following are examples of typical causes for delays and the asso
ciated quality costs in Table 9.5:

• Late payment of customer’s overt compensation. At the time of these
compensations it is too late for effective application of the lessons learned.

Summary

1. The objectives of cost of software quality measurements
The objectives of cost of software quality measurements relate to

management interventions on the basis of economic data:
• To control the costs associated with error prevention (prior to occur
rence) and detection of errors (once they occur).

182 Chapter 9 Cost of Software Quality

• To evaluate the extent of financial damages from software failures, and
prevention and appraisal costs as a basis for revising and updating the
SQA budget.

• To facilitate financial evaluation of planned increases/decreases in
SQA activities or investment in new or updated SQA infrastructure,
based on past economic performance.

2. Comparison of the classic software quality cost model with the extended
model

The classic model for quality costs (Feigenbaum and others, early
1950s) presents a general concept that classifies manufacturing quality
costs into two classes: costs of control (prevention costs and appraisal
costs) – costs controlled by the organization and expended to prevent
and detect failures with the purpose of reducing total failures to an
acceptable level; costs of failure of control (internal failure costs and
external failure costs) – costs of failures, regarded as consequences,
caused by failures to prevent and detect software errors.

The extended model expands the scope of the classic model by
introducing costs related to management’s contribution to project success
and failure. According to the extended CoSQ model, the costs are classi
fied into two groups:
• Development and SQA activities quality costs, defined according to
the classic CoSQ model.

• Management quality costs. The subclasses of the management quality
costs group are: management prevention costs, management appraisal
costs, internal management failure costs, and external management
failure costs. These subclasses belong to the management control costs
and management failure costs classes.

3. The justification for the formulation of the extended CoSQ model
The need for the extended CoSQ model, unique to the software

industry, is justified by its inclusion of managerial quality costs. While
managerial control costs and managerial failure costs, as a proportion of
quality costs, are usually negligible in manufacturing, they may be quite
considerable in the development of software. The extent of losses (failure
costs) incurred by management’s erroneous actions and decisions or its
failure to act on time can be colossal. Also, as preparations and progress
control involve great efforts, associated costs are very high. This situa
tion stems from the special characteristics of the software industry as
described in Chapter 1.

4. The implementation process of a cost of software quality system
Implementation of a cost of software quality system in an organiza

tion requires:
• Definition of the organization’s CoSQ model including the specific
cost items.

Selected Bibliography 183

• Planning of the cost data collection method.
• Implementation of the planned CoSQ system, including follow-up
procedures.

• Taking action on the basis of the cost model’s findings.

5. The general and unique problems involved in implementing a CoSQ
software quality system

Implementation of such a system for software is generally con
fronted by problems similar to those encountered in other industries. The
general quality assurance difficulties that affect accuracy and complete
ness of quality cost data are:
• Inaccurate and incomplete identification and classification of quality
costs.

• Negligent reporting.
• Human tendency for biased reporting, especially of internal and exter
nal costs.

• Biased external failure cost records due to indirect if not “camouflaged”
compensation of customers that is not officially recorded as an external
failure cost.
Besides these general difficulties, unique difficulties typical to the

software industry include:
• Segmentation of contract review and progress control activities into
several short and disconnected activities, which interfere with accurate
reporting of time invested.

• Many senior staff members are not required to report time.
Typical difficulties in collecting managerial failure costs data, espe

cially regarding schedules:
• Difficulties in determining the responsibility for schedule failures: the
customer, the development team, or the management.

• Late payment of customer’s overt compensation. At the time these
compensations are too late for effective application of lessons learned.

Selected bibliography

Daughtrey T. (2013) Software quality costs, Software Quality Professional, Vol. 15, No. 2, pp. 4–15.
Flowers S. (1996) Software Failure: Management Failure, John Wiley & Sons, Inc, Chichester, NY.
Galin D. (2004) Towards an inclusive model for the costs of software quality, Software Quality Pro
fessional, Vol. 6, No. 4, pp. 25–31.

Galin, D. and Avrahami M. (2007) Benefits of a higher quality level of the software process: two
organizations compared, Software Quality Professional, Vol. 9, No. 4, pp. 27–35.

IEEE (2014) IEEE Std. 730-2014 Software Quality Assurance, The IEEE Computer Society, IEEE,
New York.

Jones C. (2011) Software quality and software costs, Software Quality Professional, Vol. 13, No. 3,
pp. 24–30.

184 Chapter 9 Cost of Software Quality

Karg L. M. (2009) Conformance quality and failure costs in the software industry: An empirical
analysis of open source software, in International Conference on Industrial Engineering and Engi
neering Management, Hong Kong, December 2009, pp. 1386–1390.

Karg L. M., Grottke M., and Beckhaus A. (2011) A systematic literature review of software quality
cost research, Journal of Systems and Software, Vol. 84, No. 3, pp. 415–427.

Knox S. T. (1993) Modeling the cost of software quality, Digital Technical Journal, Vol. 5, No. 4,
pp. 9–15.

Krasner H. (1998) Using the cost of quality approach for software, CrossTalk – The Journal of
Defense Software Engineering, Vol. 11, No. 11, pp. 6–11.

Laporte C. Y., Berrhouma N., Doucet M., and Palza-Vargas E. (2012) Measuring the costs of soft
ware quality of a large software project at Bombardier Transportation – a case study, Software
Quality Professional, Vol. 14, No. 3, pp. 14–31.

Review questions

9.1 Section 9.3 presents the classic CoSQ model. It classifies quality costs into four sub
classes: prevention costs, appraisal costs, internal failure costs, and external failure
costs.

a. Explain in your own words the main characteristics of each subclass of costs and
indicate the differences between them.

b. Suggest three items for each subclass.

9.2 Both the classic and the extended software quality models assign costs to two main
classes: costs of control and costs of failure of control.

a. Explain in your own words the nature of each class.

b. What would you consider to be the idea guiding this classification and what do
you consider the managerial aspects to be?

9.3 Section 9.5 presents the extended CoSQ model.

a. Explain the difference between the classic and extended models in your own
words.

b. Justify the formulation of a special extended cost of quality model for soft
ware. Base your arguments on a comparison of the characteristics of the soft
ware development project environment with those of industrial manufacturing
companies.

9.4 The annual report issued by Leonard Software Inc. includes several expenditure
items, listed in the table below.

Indicate the subclass of cost of software quality to which each of the following
expenditures belongs: PC= prevention costs, AC= appraisal costs, IFC= internal
failure costs, EFC= external failure costs, MPC=management prevention costs,
MAC=management appraisal costs, IMFC= internal management failure costs, and
EMFC= external management failure costs. In cases where an expenditure item is
not a software quality cost, mark “X” in the “nonsoftware quality cost” column.

_________ _________

_________ _________

_________ _________

_________ _________

_________ _________
_________ _________

_________ _________

_________ _________

_________ _________

_________ _________

_________ _________

_________ _________

_________ _________

Review Questions 185

Leonard Software Inc.: expenditure

Subclass Nonsoftware
of software quality cost

No. Expenditure item quality cost

1 Working hours spent installing software at
customer’s site in Singapore

2 Waiving of customer’s debt as agreed to in
compromise following software failures
detected in the installed software

3 Payment for Dr. Jacobs’s participation in a
design review

4 Payments made to “King SQA Consultants”
for preparing the new version of the software
quality procedures

5 Repair of a color printer
6 Working hours spent participating in monthly

meetings of the Coordination and Control
Committee headed by the Department
Manager

7 Travel to Switzerland to examine advanced
software testing system proposed to company

8 Purchase of barcode sticker software package
to be integrated in the inventory management
software system.

9 Working hours spent correcting errors listed in
a design review report.

10 Customer’s compensation for delay in schedule
resulting from the company’s inability to
recruit sufficient professional manpower for
the development team.

11 Working hours spent by the Chief Software
Engineer and Martin Fountain, Senior Project
Manager, in examining the schedule estimates
for the “Top Assets” tender.

12 Working hours spent in preparation of an
updated version of Leonard Software’s
C Programming Instructions.

13 Working hours spent by programmer (John) in
correcting program bugs detected by his team
leader in their weekly meeting.

186 Chapter 9 Cost of Software Quality

9.5 The company’s last year’s annual CoSQ were as follows:

Cost of software Previous year’s annual
quality class costs in thousands $

Development and SQA Prevention costs $1,238
activities quality costs Appraisal costs $3,450

Internal failure costs $4,238
External failure costs $2,890

Management quality costs Management $225
prevention costs

Management $127
appraisal costs

Internal management $1,840
failure costs

External $4,650
Management
failure costs

Development costs $12,876
(design and coding)

The software quality assurance manager has proposed a dramatic change in Leo
nard Software’s software quality expenditures policy. It is expected to reduce failure
costs by the following significant percentages: internal failure costs – 10%, external
failure costs – 25%, and managerial internal and external failure costs – at least 25%.

The SQA manager’s proposal involves increasing expenditures as follows: pre
vention costs $400,000, appraisal costs $700,000, managerial prevention costs
$580,000, and management appraisal costs $220,000.

Management commented about the proposed extravagant expenditures required
for the proposed SQA progress project. Management requested that you evaluate the
SQA manager’s proposal.

a. Examine the proposal and calculate its results from a financial aspect.

b. Explain in your own words, how this dramatic program’s additional funds should
be utilized in order to bring about the expected reduction in failure costs.

c. Can you list any hidden costs of failure that have not been mentioned in the program,
but which are expected to be reduced as a result of implementing the proposal?

d. Assuming the scope of development activities for next year will be similar to that
of last year, will the proposed project reduce the percentage of CoSQ in the total
costs of software products? Present your calculations.

Topics for discussion

9.1 A good part if not the majority of external failure costs are “hidden” costs.

a. List examples of hidden failure costs. For each example, indicate the type of soft
ware development organization and situation for which these failure costs could
become extremely high.

Topics for Discussion 187

b. Explain the difficulties faced in estimating the extent of failure costs for each of
the examples mentioned in (a).

9.2 Xrider, a leading software house, employs 500 professionals distributed among five
departments, each of which works on 20–30 software development projects simulta
neously. The company’s new classic CoSQ system has successfully completed its
second year of operation. The report on the annual cost of software quality presents
data on departments and teams as follows; for each department and team: preventive
costs, appraisal costs, internal failure costs, external failure costs, department’s soft
ware development budget, and team’s software development budget.

a. Suggest a systematic method, based on the compiled data, for comparing the sys
tem’s capabilities.

b. Discuss the limitations of some or all of the comparisons suggested in (a) and
propose checks to be carried out to prevent reaching erroneous conclusions based
on questionable comparisons.

9.3 The SQA unit of AB Dynamics has summarized its “7 years of success” in a colorful
brochure. One of the brochure’s tables presents the unit’s SQA achievements by
summarizing the cost of software quality over the period in the following manner:

AB Dynamics: Cost of software quality and annual sales (2010–2016)

Cost of software quality in thousands $

Internal External Total cost Total annual
Year Prevention Appraisal failure failure of software sales in

costs costs costs costs quality millions $

A B C D E F G
2010 380 2,200 930 1,820 5,330 38
2011 680 2,270 760 1,140 4,850 43
2012 840 2,320 500 880 4,540 49
2013 1,200 2,020 490 700 4,410 56
2014 1,110 2,080 420 640 4,250 58
2015 1,170 2,080 400 510 4,160 66
2016 1,330 2,120 410 450 4,310 76

a. Analyze the data in the above table regarding the progressively higher efficiency
and effectiveness achieved by the SQA system during the period 1996–2002.

b. Draw a diagram depicting the cost of software quality balance by quality level
(see Figure 9.3), based on the data in the above table. For this purpose, assume:

Quality cost to be the cost of quality per $1 million of sales (calculated by
applying the following formula: F/G).

Software quality level is assumed to be inversely proportional to the per
centage of external failure costs out of annual sales (calculated by applying the
following formula: G/(1.7 × E). The 1.7 factor is used to make the 2016 quality
level equal to 100. The lower the percentage of external failure costs, the higher
the quality level.

188 Chapter 9 Cost of Software Quality

c. Analyze the data in the diagram drawn in (b) according to the cost of software
quality balance concept.

9.4 The classic cost of software quality model employs – unchanged – the general quality
cost model applied in manufacturing industries.

a. Compare the characteristics of prevention costs for software development with a
manufacturing industry (e.g., wood products industry, metal products industry).

b. Compare the characteristics of appraisal costs for software development with a
manufacturing industry.

c. Compare the characteristics of internal failure costs for software development
with a manufacturing industry.

d. Compare the characteristics of external failure costs for software development
with a manufacturing industry.

Chapter 10

The Effectiveness and Cost
of a V&V Plan – The SQA
Model

The SQA model is an effective tool to provide project planners with estimates
of the effectiveness of a verification and validating plan (V&V plan). Such a tool
enables comparing alternative programs by supplying the expected percentage of
errors to be removed in each screening stage, when applying a given V&V plan,
and also the expected costs of performing the plan. This method of estimating
could also be useful for the SQA function when evaluating project plans.

The model deals with two quantitative aspects of a V&V plan consisting of
several defect detection activities. The plan itself is to be integrated within a
project’s development process:

a. The V&V plan’s total effectiveness in removing project defects.

b. The V&V plan’s total costs of removal of project defects.

Section 10.1 describes the data required for applying the model.

10.1 The data required for the SQA model

Application of the model is based on three types of data:

a. Defect origin distribution
Defect origins (the phase in which defects were introduced) are dis

tributed throughout the development process, from the project initiation
to its completion. Surveys conducted by major software developers, such
as IBM and TRW, and summarized by Jones (2008) (Chapters 3 and 5),
reveal patterns of defect origin distribution. It may be assumed that this
pattern has not changed substantially in recent years. A characteristic

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

189

190 Chapter 10 The Effectiveness and Cost of a V&V Plan – The SQA Model

Table 10.1 A characteristic distribution of software defect origins

Average percentage of
No. Software development phase defects originating in phase

1 Requirements specification 20%
2 Design 35%
3 Coding (unit coding – 25%, integration – 10%) 35%
4 Documentation 10%

distribution of software defect origins, based on Jones (2008), is shown
in Table 10.1.

b. Defect removal effectiveness
It is assumed that any quality assurance activity filters (screens) a

certain percentage of existing defects. It should be noted that in most
cases, the percentage of removed defects is somewhat lower than the
percentage of detected defects. This is due to the fact that some correc
tions (about 10% according to Jones (2008)) are ineffective or
inadequate (bad fixes). The remaining defects, those undetected and
uncorrected, are passed on to successive development phases. The next
quality assurance activity applied is designated for a combination of
defects: those remaining after previous quality assurance activities,
together with “new” defects created in the current development phase.
The rates of typical average defect filtering effectiveness for the various
quality assurance activities, by development phase, based on Jones
(2008) (Chapter 3), Jones (2011), and Pressman and Maxim (2015)
(Chapter 20), are listed in Table 10.2.

c. Cost of defect removal
Data collected about development project costs show that the cost of

removal of detected defects varies by development phase, while costs
rise substantially as the development process proceeds. For example,
removal of a design defect detected in the design phase may require an
investment of one working day; removal of the same defect during the
acceptance tests may require 16 working days. Several surveys, summa
rized by Pressman and Maxim (2015) (Chapter 19), estimate the relative
costs of correcting errors at each development phase. The representative
average of relative defect removal costs according to the defect origina
tion and removal phases, based on Pressman and Maxim (2015) (Chap
ter 19), are shown in Table 10.3.

It should be noted that the data in Tables 10.1–10.3 is based on findings
from projects developed according to SDLC sequential processes, and might not
represent projects developed according to an incremental delivery model or to an
agile methodology. In order to achieve more accurate estimates, an organization

10.2 The SQA Model 191

Table 10.2 Average filtering (defect removal) effectiveness by quality
assurance activities

Average defect filtering
No. Quality assurance activity effectiveness rate

1 Requirements specification review 70%
2 Design inspection 55%
3 DR 50%
4 DR after design inspection 30%
5 Code inspection 65%
6 Unit test 60%
7 Unit test after code inspection 35%
8 Integration test 50%
9 Documentation review 50%
10 System tests/acceptance tests 50%

Table 10.3 Representative average relative defect-removal costs

Average relative defect removal cost (cost units)

Defect origination phase

No. Defect removal phase Req Des Uni Int Doc

1 Requirements review 1
2 Design inspection 3.3 1
3 Design review 3.3 1
4 Code inspection 7 2.1 1
5 Unit testing 7 2.1 1
6 Integration testing 18 5.5 2.6 1
7 Documentation review 18 5.5 2.6 1 1
8 System testing/Acceptance testing 52 16 7.4 2.9 2.9
9 Operation by customer 103 31 15 5.7 5.7

The defect origination phases are: Req= requirement specification, Des= design, Uni= unit testing,
Int= integration tests, Doc= documentation.

plan to implement the model should collect relevant performance data, and cal
culate the local values for these tables.

10.2 The SQA model

The model is based on the following assumptions:

• The development process is linear and sequential, following the Waterfall
Model.

192 Chapter 10 The Effectiveness and Cost of a V&V Plan – The SQA Model

• A number of “new” defects are introduced in each development phase.
For their distributions, see Table 10.1. It is assumed that no “new” defects
are introduced in the phases of system tests and acceptance tests.

• Review and test software quality assurance activities serve as filters,
removing a percentage of the incoming defects, and letting the rest
pass on to the next development phase. For example, if the number of
incoming defects is 30, and the filtering efficiency is 60%, then 18
defects will be removed, while 12 defects will remain and be passed
on to be detected by the next quality assurance activity. Typical filter
ing effectiveness rates for the various quality assurance activities are
shown in Table 10.2.

• The filtering efficiency is the same for every defect, irrespective of its
origination phase.

• At each phase, the incoming defects are the sum of defects not removed
by the former quality assurance activity, together with the “new” defects
introduced (created) in the current development phase.

• The average cost of defect removal at the phase it originated is the same
for all phases – one cost unit.

• The cost of defect removal is calculated for each quality assurance activity
by multiplying the number of defects removed by the relative cost of
removing a defect (according to its originating and removal phases – see
Table 10.3).

• The remaining defects, not detected by the set of software quality assur
ance tools, are unfortunately passed on to the customer, and will also be
detected by the customer. In these circumstances, removal of defects
detected by the customer entails the heaviest of defect removal costs.

In the model, each of the quality assurance activities is represented by a
filter unit, as shown in Figure 10.1.

Figure 10.1 A filter unit for defect-removal effectiveness and cost – filtering of DR (where the

SQA process does not include design inspection).

10.2 The SQA Model 193

The filter unit shown in Figure 10.1 presents the filtering process by the DR
(design review) activity, where the filtering effectiveness is 50%. Six defects are
passed from the former development phase (the requirement review phase),
while 35 defects are due to the failures from the design phase process, and intro
duced into the filter. As the filtering effectiveness of this phase is 50%, the total
number of undetected defects passed to the next phase (code review of unit
testing) is 20.5, while 20.5 defects are removed in this SQA activity. The
resources invested in defect removal during the design phase amount to 27.4
cost units (cu), where removal of defects passed from the requirement phase
require 3.3 cost units (cu) for each defect. (The calculation is as follows
17.5× 1+ 3× 3.3= 27.4).

The defects introduced into the filter unit (their values shown in Table 10.3)
are:

• Dreq = Defects originated in the requirement phase

• Ddes = Defects originated in the design phase

• Duni = Defects originated in the unit testing phase

• Dint = Defects originated in the integration testing phase

• Ddoc = Defects originated in the documentation phase

The model presents the following quantities:

• POD = Phase originated defects (from Table 10.1)

• IDef = Incoming defects from current development phase and former
SQA activities

• PDef = Passed defects to next quality assurance activity

• Rdef = Removed defects in current quality assurance activity

• %FE = % of filtering effectiveness (also termed % screening effective
ness) shown in Table 10.2

• RDRC = Relative defect removal cost (from Table 10.3)

• TRC = Total removal cost of current filtering activity

• cu = cost units

The first illustration of the model applies to a standard quality assurance
plan that is composed of six quality assurance activities (six filters) that are
implemented internally by the developer. This standard plan does not include
design inspection and code inspection. An additional SQA activity, for removing
the remaining software defects, is performed for defects detected by the cus
tomer during regular operation of the software product. It is assumed that the
customer reveals all the remaining defects during regular operation of the soft
ware system.

A process-oriented illustration of the standard quality assurance plan model
is provided in Figure 10.2.

194 Chapter 10 The Effectiveness and Cost of a V&V Plan – The SQA Model

Figure 10.2 Defect removal effectiveness and cost – the standard V&V plan model of the process

of removal of 100 defects.

10.3 Application of the SQA Model for Comparing V&V Plans 195

10.3 Application of the SQA model for comparing
V&V plans

This section presents a comparison of two V&V plans:

• A standard V&V plan – presented in Figure 10.2

• A comprehensive V&V plan presented in Figure 10.3.

Figure 10.3 Defect removal effectiveness and cost – comprehensive plan model of the process of
correction of 100 defects.

196 Chapter 10 The Effectiveness and Cost of a V&V Plan – The SQA Model

Table 10.4 Defect removal effectiveness for quality assurance plans

Defects removal Defects removal
effectiveness for effectiveness for

Quality assurance activity standard V&V plan comprehensive V&V plan

Specification requirement review 70% 70%
Design inspection — 55%
Design review 50% 30%
Code inspection — 65%
Unit test 60% 40%
Integration tests 50% 60%
Documentation review 50% 60%
System test 50% 60%
Operation phase detection 100% 100%

The second illustration of the model in Figure 10.3 applies to a comprehen
sive V&V plan composed of eight quality assurance activities (eight filters),
including design inspection and code inspection, implemented internally by the
developer. The defect removal effectiveness of design inspection and code
inspection are 55 and 65%, respectively. It is assumed that the inspections, by
reducing the outcoming “stream” of defects, reduce the defect removal presented
in design reviews and found in unit tests to 30 and 40%, respectively. The com
parative defect removal activities of the standard and comprehensive V&V plans
are presented in Table 10.4.

Figure 10.3 provides a process-oriented illustration of the comprehensive
plan model.

A comparison of the percent of defects removed and the cost of removal for
each SQA activity of both V&V plans are shown in Table 10.5

Both examples present a detailed flow of calculations according to the pro
cess of defect removal effectiveness and cost.

In addition, the examples enable us to examine the SQA defect removal
approach that claims: “The more you invest in quality assurance in the earlier
stages of the software development process, the higher the total effectiveness of
defect removal is, and the lower the total defect removal costs are.” Let us fur
ther study the comparison between the plans:

A comparison of the outcomes of the standard software quality plan versus the
comprehensive plan is instructive. The comparison results are shown in Table 10.6.

The contributions of the additional SQA activities are:

• Reduced percentage of remaining defects passed to customer (operation)
by 22%

• Reduced costs of defect removal during the development process by 25%

• Reduced costs involved in defect removal when software product is in
regular operation by 47%

• Reduced total cost of defect removal by 32%

10.3 Application of the SQA Model for Comparing V&V Plans 197

Table 10.5 Comparison of standard and comprehensive V&V plans

Standard plan Comprehensive plan

Quality Removed Cost of Removed Cost of
assurance defects removing defects in removing

No. activity in % defects (cu) % (cu) defects (cu)

1 Requirements review 14.0 14.0 14.0 14.0
2 Design inspection — — 22.6 30.2
3 Design review 20.5 28.4 5.5 5.7
4 Code inspection — — 24.7 39.8
5 Unit test code 27.3 49.7 5.3 7.1
6 Integration test 14.1 48.1 8.95 21.9
7 Documentation review 12.1 29.0 9.47 15.8
8 System test 6.0 41.9 4.73 22.8

Total for internal 94.0 210.1 95.3 157.3
quality assurance
activities
Defects detected 6.0 84.2 4.7 45.0
during operation

Total 100.0 295.3 100.0 202.3

Table 10.6 A comparison of the effectiveness of the standard and comprehensive plans

The standard The comprehensive
V&V plan V&V plan

Number of SQA activities during the 6 8
development process

SQA activities during regular operation 1 1
Additional SQA activities 1. Design inspection

2. Unit code review
% Defects removed in the requirements 34.5% 42.1%
and design development phases

% Defects removed in the coding and 59.5% 53.2%
testing phases

The defect removal effectiveness of the 94% 95.3%
V&V plan

Defects passed on to the customer 6% 4.7%
(to maintenance)

Total SQA costs of defect removal costs 210.1 cu 157.3 cu
during the development process
(internal costs)

Defect removal cost during operation 84.2 45 cu

Total defect removal cost 295.3 202.3

198 Chapter 10 The Effectiveness and Cost of a V&V Plan – The SQA Model

It should be noted that the defect filtering model could be adapted to a wide
range of V&V plans developed according to various software development mod
els and methodologies.

Several models for estimating the effectiveness of V&V plans are avail
able, some use the terms “defect containment” or “phase containment” for
estimating defect removal achievements – I will mention three of these. A
model, similar to the SQA model described here, is presented by Hallowell
(2002). The mode enables estimating the percentage of errors detected, the
work invested in error detection (person-months), and the percentage of soft
ware costs used for fixing defects. The model is comprised of four develop
ment stages: requirements, design, coding, and testing. Hallowell illustrates
the application of the model by comparing SDLC with an Agile case. The
results show that the Agile case is superiority, as expected. A second model,
presented by Hedstorm and Watson (1995), is probabilistic considering the
defects input in the five stages of the development process according to the
Poisson distribution. The model enables predicting the percentage of
screened defects for each development stage. The model, defined as a soft
ware predictive engine, for which a US patent application was filed in Octo
ber 1996. Another model dealing with the cumulative effects of several
quality assurance activities, is discussed by Pressman and Maxim (2015)
(Chapter 20).

Summary

1. A model for SQA defect removal effectiveness and cost
The model deals with two quantitative aspects of a V&V plan

designed for a specific project:
a. Total effectiveness of defect removal plan
b. Total cost of defect removal plan

The model is based on three types of data:
• The distribution of the defects according to their originating phase
• The defect removal effectiveness according to the type of SQA activity
and development phase

• The cost of defect removal according to the originating development
phase and the phase from which it was removed

2. Possible uses for the model
The model enables calculating estimates for defect removal effec

tiveness, and costs of proposals in regards to the structure of V&V plans,
for example:
• Addition or elimination of a quality assurance activity from a given
plan

• Utilization of the model thus enables comparison of SQA policies/
strategies and activity plans

Topics for Discussion 199

Selected bibliography

Hedstorm J. R. and Watson D. A. Product defect predictive engine, U. S. Patent 6477471, (2002).
Hallowell D. L. (2002) Exploring defect containment metrics in Agile. Available at http//www.
Isixsigma.com/methdology/mentrics/exploring-defect-containment-metrics-agile.

Jones C. (2008) Applied Software Measurement: Global Analysis of Productivity and Quality, 3rd
Edition, McGraw-Hill, New York.

Jones C. (2011) Software quality and software costs, Software Quality Professional, Vol. 13, No. 3,
pp. 24–30.

Pressman R. S. and Maxim B. R. (2015) Software Engineering: A Practitioner’s Approach: Euro
pean Adaptation, 8th Edition, McGraw-Hill, New York.

Review questions

10.1 The chapter lists input data to the SQA model in Tables 10.1–10.3.

a. Is it possible that the data in these tables suits two of the department projects,
but definitely does not suit the third project? Explain your reply.

b. Provide three examples for situations where the above situation exists?

10.2 Referring to the model for software defect removal effectiveness and costs.

a. What assumptions rest at the foundations of the model?

b. Which three of the model’s data components are based on published survey results?

Topics for discussion

10.1 Due to time and budget constraints, a project leader has decided to introduce “an
economy plan” that limits the quality assurance activities to a standard design
review – as required by the contract with the customer (50% filter), and comprehen
sive system tests (60% filter). Considering the model’s contribution to defect-
removal efficiency and costs:

a. What are the expected savings, if any, in resources invested for defect removal
during the development process compared to the standard quality assurance plan?

b. What are the expected effects of the “economy plan” on customer satisfaction?
Support your answer with a quantitative comparison to the standard plan.

c. Compare the overall results of the “economy plan” to the results of the standard
and comprehensive plans

d. Based on your answer to (3), can you suggest some general rules about selecting
the preferred quality assurance plan?

10.2 Compare the results of topics for Topics for discussion 10.1 and the results for the
comprehensive V&V plan.

a. Does the comparison of the above results support the belief that investing in
verification processes in the early stages of a project reduces the total costs of
the SQA activities?

b. Explain in your own words the findings of (1).

http//www.Isixsigma.com/methdology/mentrics/exploring-defect-containment-metrics-agile
http//www.Isixsigma.com/methdology/mentrics/exploring-defect-containment-metrics-agile

Chapter 11

SQA Records and
Documentation Control

11.1 Jeff’s troubles – an introductory mini-case

Jeff, head of the legal department, was obviously furious when he entered the
office of Roberto, the Software Development Department Manager. Ignoring
preliminaries, he walked in and announced: “You cannot imagine the difficulties
I’m having collecting evidence to support our case in the Margaret Gardens
claim. Jerry managed the development project at the time, and mentioned a lot
of documents that were supposed to support our case. But, some of the key doc
uments were carelessly written, while others simply don’t exist. Even though the
project was completed only six months ago, so many important documents are
already unavailable or simply poorly written:

• Minutes of joint meetings that were held with the customer to discuss our
proposal prior to contract signing – during which some major changes
were agreed to – were discarded, or shredded two months ago.

• A software change request form submitted by Margaret Gardens last
August is available but, unbelievably, unsigned. The requested change
was implemented during the development process just eleven months ago;
however, the respective SCO (software change order) along with the test
report for the completed change, are missing.

• According to Margaret Garden’s change requests, the original requirement
specification document was revised twice. I managed to locate these
important documents, but while the original document was written accord
ing to procedures, the other two revision documents are of “free structure,”
making a comparison of the versions virtually impossible.

• Some of the major claims relate to software design, but only one of three
design review sessions attended by customer representatives was properly
documented. Another review session report, located in the unit’s filing system,
wasn’t signed by customer representatives. The third report was “just”missing.

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

200

11.2 Introduction 201

• Lastly, the summary report from tests that Margaret Gardens participated
in, and which were issued by the joint testing committee, is missing. The
secretary of the Testing Unit believes that the document is in the posses
sion of Ted James, who left us three months ago and moved to Indiana.”

When Jeff had left, Roberto called Martin, his deputy, into the office. “Jeff
just left after voicing some serious complaints about our department documents.
As you I’m sure remember, similar complaints have frequently been heard from
our development and maintenance team leaders. Please prepare a proposal,
including the necessary procedures, to deal with the use of templates and check
lists, as well as documentation control, and let’s do our best to finally solve these
documentation issues.”

11.2 Introduction

During the software life cycle many types of documents are created. Some of the
documents are required immediately for the continuation of the development,
while others may become vital for software quality assurance over the life cycle
of the system. Documents displaying these characteristics and treated according
to special procedures are:

Controlled documents. Documents produced during the development and
operation of software systems, which are immediately necessary for soft
ware processes, or during the life cycle of the system for software quality
assurance. Documentation control ensures the availability and quality of
these documents in terms of completeness and accuracy.

Quality records. Quality records are controlled documents mainly aimed to
provide evidence that the development and maintenance processes per
formed were in compliance with requirements, and that the software
quality system is operating fully and effectively.

Controlled document and quality records are defined in Frame 11.1.

Frame 11.1: Controlled document and quality record – definitions

Controlled document – definition
A document that is currently necessary or that may become vital for the development
and maintenance of software systems, as well as for the management of current and
future relationships with the customer.

Quality record – definition
A quality record is a special type of controlled document. It is a customer-targeted
record of document that may be required to demonstrate full compliance with cus
tomer requirements and effective operation of the software quality assurance system
throughout the development and maintenance processes.

202 Chapter 11 SQA Records and Documentation Control

There are various types of controlled documents, and cover all stages of the
software systems life cycle. Frame 11.2 presents an overview of the types of
documents that may be categorized as controlled documents. An examination of
the document list reveals that a good number of the controlled documents may
be classified as quality records.

Frame 11.2: Typical controlled documents (including quality records)

Typical controlled documents (including quality records)

Preproject documents

1. Contract review report

2. Contract negotiation meeting minutes

3. Software development contract

4. Software maintenance contract

5. Software development subcontracting
contract

6. Software development plan

Project life cycle documents

1. System requirements document

2. Software requirements document

3. Preliminary design document

4. Critical design document

5. Database description

6. Software test plan

7. Design review report

8. Follow-up records of design review
action items

9. Software test procedure

10. Software test report

11. Software user manuals

12. Software maintenance manuals

13. Software installation plan

14. Version description document

15. Software change requests

16. Software change orders

17. Software maintenance requests

18. Maintenance services reports

19. Records of subcontractor evaluations

SQA infrastructure documents

1. SQA procedures

2. Template library

3. SQA forms library

4. CAB meetings minutes

Software quality management
documents

1. Progress reports

2. Software metrics reports

SQA system audit documents

1. Management review report

2. Minutes of management review
meeting

3. Internal quality audit report

4. External SQA certification audit report

Customer documents

1. Software project tender documents

2. Customer software change requests

11.4 The Implementation of Documentation Control 203

Software development and quality standards deal with documentation
issues. ISO/IEC Std. 90003:2014 (ISO/IEC, 2014) dedicates a number of its
software engineering guidelines (Section 4.2) to documentation requirements,
and the control of documentation processes and of record conformity to require
ment records. ISO/IEC/IEEE Std. 12207-4008 dedicates Sec. 7.2.1 to software
documentation maintenance processes. IEEE Std. 730-2014 (IEEE, 2014) deals
separately with control of documents and control of records.

The following sections deal with

• The objectives of documentation control processes.

• The implementation of documentation control.

11.3 Objectives of documentation control processes

The main objectives of documentation control processes are presented in
Frame 11.3.

Frame 11.3: The objectives of documentation control processes

The objectives of documentation control processes

• To ensure the quality of the document.

• To ensure its technical completeness and compliance with document structure pro
cedures and instructions (use of templates, proper approval process, etc.).

• To ensure the future availability of documents that may be required for (a) the con
tinuation of the development process, (b) software system maintenance, (c) further
development of a software product being in its operational stage, or (d) responses to
a customer’s (tentative) future complaints.

• To support the investigation of software failure causes and to assign responsibility
as part of corrective and other actions.

11.4 The implementation of documentation control

The purpose of documentation control is to verify that the various stakeholders
of the software process fulfill the various documentation requirements of the
stakeholders of the software process. Documentation control processes, as
defined by documentation control procedures, should regulate the handling of
controlled documents from their creation to their disposal.

The implementation of documentation control includes the following pro
cesses as presented in Frame 11.4 .

204 Chapter 11 SQA Records and Documentation Control

Frame 11.4: The implementation of documentation control

Source: Based on ISO/IEC Std. 90003-2014 and ISO/IEC/IEEE Std. 12207-2008
(ISO/IEC, 2008)

Implementation processes of documentation control

a. Definition of the list of the controlled document types

b. Design and development of controlled documents

c. Document production and their regular use

d. Updating (maintaining) the controlled documents list

A description of the implementation processes of documentation control
follows:

a. Definition of the list of the controlled document types
The key to managing documentation control is the controlled docu

ment types (including quality records) list. Proper construction of the list
is based on the establishment of an authority to implement the concept,
whether embodied in a person or a committee. Specifically, this authority
is responsible for deciding which document type should be categorized
as a controlled document and which controlled document types classified
as quality records.

Most controlled document types are documents created internally by
the organization itself. Nonetheless, a substantial number of external
document types, such as contract documents and minutes of joint com
mittee meetings, also fall into this category. Furthermore, it should also
be noted that many of the controlled documents listed in Frame 11.2 are
products of SQA processes.

Implementation Tip

The use of subcontractors in the development, and in some cases maintenance, of soft
ware systems is the source of various documentation control procedures to be applied
with subcontractors. These procedures should ensure that subcontractor documents –
such as design documents – comply with the contractor’s documentation procedures.
Communication difficulties as well as negligence often result in subcontractor’s partial
compliance. Damage caused by such lapses may become apparent months, or even
years later, when a vital document is missing, or discovered to provide inadequate or
only partial information. Prevention of such situations can be achieved with appropri
ate contract clauses as well as through continuous follow-up of subcontractor compli
ance with documentation requirements.

11.4 The Implementation of Documentation Control 205

b. Design and development of controlled documents
The documentation requirements involved in the creation of a new

document or the revision of an existing document focus on complete
ness, improved readability, and availability. The following requirements
are realized in the documents’:
• Structure
• Identification method
• Orientation and reference information

The document’s structure may be free or defined by a template.
Templates and their contribution to software quality are discussed in
Section 24.2.

An identification method is devised to provide each document ver
sion and revision a unique identity. The method usually entails notation
of (a) the software system or product name or number, (b) the document
(type) code, and (c) the version and revision number. The method can
vary depending on the type of document.

The document’s orientation and reference information may also
be required. Orientation and reference information support future access
of required documents by supplying information about the content of the
document and its suitability to the needs of the future user. Depending
on the document type, a greater or smaller portion of the following items
is commonly required:
• The document author(s)
• Date of completion
• Person(s) who approved the document, including position
• Date of approval
• Signatures of the author(s) and person(s) who approved it
• Descriptions of the changes introduced in the new release
• List of former versions and revisions
• Circulation list
• Confidentiality restrictions

The relevant documentation procedures and work instructions per
tain to paper as well as electronic documents (e.g., e-mail and Intranet
applications).

Document approval. Certain documents require approval, while
others may be exempt from the associated review. For those documents
requiring approval, the relevant procedures indicate: (a) The position of
the person(s) authorized to approve per each type of document, such as
department head or a formal design review (FDR) committee. (b) The
details of the process implemented, where the approval process usually
requires an appropriate review process.

206 Chapter 11 SQA Records and Documentation Control

Implementation tip

Observation of the approval process frequently reveals instances of rubber stamping,
that is, situations where the process does not contribute to the document’s quality due
to the absence of a thorough document review. Some claim that formal approval actu
ally reduces the document’s quality because the authors know that the person(s)
authorized to approve the document do not actually conduct any review, and so they
do not have to double check the document before handing it in for approval. By the
very act of approval, the person(s) who approve it become directly responsible for its
quality. Accordingly, two options may be considered: (a) exemption of document
types from approval, meaning that full responsibility is returned to the author, or (b)
implementation of an approval process that assures thorough review of the document.
In other words, the implied solution to rubber-stamping is either performing the
approval process properly or eliminating it.

c. Controlled document production and their regular use
This process includes the following activities:

• Controlled document production
• Controlled document storage
• Retrieval of controlled documents and their circulation
• Control document security, including document disposal

Production of controlled documents including its identification
details and the adequate orientation and reference information.

Document storage requirements apply to (1) the number of copies to
be stored, (2) the unit responsible for storage of each copy, and (3) the
storage medium. Storage in electronic media is usually much more effi
cient and economical than storage on paper. Yet, paper originals of certain
documents are still stored in compliance with legal stipulations. In these
cases, an image processing copy is stored in addition to the paper original.

Retrieval of documents and their circulation. The requirements refer
to: (1) efficient and accurate retrieval of copies, in full compliance with
security restrictions, and (2) instructions for circulating a new document on
time to the designated recipients. Procedures should apply to the circulation
of paper documents as well as the use of e-mail, Intranet, and Internet.

The storage and retrieval tasks of code versions and revisions and
other software development products are included among the organiza
tion’s software configuration management tasks, and performed with a
variety of software configuration management tools. Yet, special efforts
are still needed to coordinate documentation procedures with those of
software configuration management.

Document security, including document disposal requirements, (1)
provides restricted access to document types, (2) prevents unauthorized
changes to stored documents, (3) provides back-up for stored paper as well
electronic files, and (4) determines the storage period. At the end of a

Summary 207

specified storage period, documents may be discarded or removed to a
lower standard of storage, a shift that usually reduces availability. While
paper files are prone to fire and flood damage, modern electronic storage is
subject to electronic risks. The planned method for back-up storage reflects
the level of these risks and the relative importance of the documents.

d. Updating (maintaining) the controlled documents list
Analyzing follow-up findings of actual use of controlled and no-

controlled documents, and initiating the required updates, changes,
removals, and additions to the controlled documents list.

Naturally, documentation control procedures vary among organiza
tions according to the nature of their customers, software products, and
maintenance services and their structure and size, among other character
istics if relates to the scope of the services. Software developers of large-
scale “custom-made” software projects usually require quite different
lists of controlled documents than do COTS software packages. In other
words, one organization’s procedures might be totally inadequate for
another one.

Summary

1. The objectives of documentation control activities
The following are the main objectives of managing controlled

documents:
• To ensure the quality of the document through its approval.
• To ensure the document’s technical completeness, compliance with
document structure and usage instructions.

• To ensure future availability of documents that may be required for
maintenance, further development of the software system, or responses
to customer complaints.

• To support investigation of software failure causes and to assign
responsibility as part of corrective and other actions.

2. The processes involved in establishment and maintenance of docu
mentation control

The processes are as follows:
• Deciding which document types are to be categorized as controlled
documents and which controlled document types are to be classified as
quality records.

• Defining the controlled documents’ format, identification details, and
their orientation and reference information.

• Producing the documents, and their storage and retrieval as required.
• Analyzing follow-up findings and initiating the required updates,
changes, removals, and additions to the controlled documents list.

208 Chapter 11 SQA Records and Documentation Control

Selected bibliography

IEEE (2014) IEEE Std. 730-2014 Software Quality Assurance, The IEEE Computer Society, IEEE,
New York.

ISO/IEC (2008) ISO/IEC/IEEE Std. 12207-2008 – Systems and Software Engineering – Software Life
Cycle Processes, International Organization for Standardization, Geneva, Switzerland.

ISO/IEC (2014) ISO/IEC 90003:2014 Software Engineering – Guidelines for the Application of TSO
9001: 2008 to Computer Software, International Organization for Standardization, Geneva,
Switzerland.

Review questions

11.1 The following documents are listed in Frame 11.2:

• Software development contract
• Design review report
• Software metrics report

a. Which of the above documents do you believe should be defined as quality
record and why?

b. Suggest an imaginary situation that illustrates the importance of controlling a
document belonging to each of the types you specified.

11.2 Choose six of the document types listed in Frame 11.2 (one from each group).

a. Which of the above document types do you believe should be defined as con
trolled documents? List your arguments.

b. Which of the document types you defined as controlled documents do you
believe should also be classified as quality records? List your arguments.

11.3 List the objectives of documentation control processes

11.4 Section 11.4 discusses the procedure 4 component that manages the controlled doc
uments list.

a. Describe in your own words the tasks (activities) to be performed by the
authority appointed to implement documentation control and discuss their
importance.

b. Explain the contribution of controlled documents and quality records to software
quality assurance.

11.5 It has been said that documentation procedures are the main tool for implementing
the objectives of documentation control.

a. Explain in your own words the issues addressed by these procedures.

b. Discuss how each of the procedural issues mentioned in (a) contributes to
achieving the objectives of documentation control while indicating the associ
ated objectives.

Topics for Discussion 209

Topics for discussion

11.1 The five examples presented in the mini-case (Section 11.1) deal with documenta
tion control failure in a software development company.

a. Examine each of the examples and determine the type of failure present – a con
trolled document failure or a quality record failure? Explain your answer.

b. For each of the above examples, describe the lapse in implementation of docu
mentation control procedures that caused the failure.

11.2 Section 11.4 discusses the tasks (activities) to be performed in order to provide an
updated controlled documents list, and the responsibilities of the appointed author
ity that carries out the tasks.

a. Explain the need for such an authority and why local solutions proposed by unit
leaders, department managers, and so on are to be rejected.

b. Who do you think should be appointed as the authority? Refer to specific orga
nizational positions and explain their suitability for the assignment.

11.3 Paper-based storage systems can be used alongside electronic systems to serve an
organization’s documentation control requirements.

• Compare the two storage technologies and list the advantages and disadvantages
of each one when performing the various tasks required by the documentation
control procedure.

Part III

Product Assurance
Activities for
Conformance

This part of the book is dedicated to the product software quality assur
ance activities of the SQA function, and includes six chapters:

• Chapter 12 deals with SQA activities aimed at evaluating the con
formance of software products and related documentation to
contract requirements and relevant regulations and conventions.

The following chapters describe methods applied to evaluate the conform
ance of documents and software products:

• Chapter 13 is dedicated to review methods applied for evaluating
documents, reports, and performance records.

• Chapter 14 is dedicated to testing methods used to verify and
validate software code files.

• Chapter 15 is dedicated to assuring software operation services
quality conformance.

• Chapter 16 is dedicated to software product quality measurement
techniques.

• The last chapter of this part of the book, Chapter 17, presents proce
dures and work instructions and their creation and usage.

Software Quality: Concepts and Practice, First Edition. Daniel Galin.

 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

211

Chapter 12

Evaluation of Products
for Conformance

12.1 Introduction

A substantial part of the SQA function’s efforts is devoted to evaluating the
products of the software processes. These are produced during the software
development life cycle (SDLC), and include software and any relevant docu
mentation. Software products include software packages/systems and software
services, while the relevant documentation includes various development and
operation reports, such as design reports, test reports, and periodical customer
services reports.

The different types of software product evaluation activities are presented in
Frame 12.1.

Frame 12.1: The types of software product evaluation activities

The types of software product evaluation activities

• Evaluation of project plans for their conformance with contract requirements, rele
vant regulations, and conventions.

• Evaluation of project products, including life cycle support services, for their con
formance with the contract, relevant regulations, and conventions.

• Evaluation of project products for their acceptability by the customer.

• Evaluation of project products by measurement.

Product requirement definition is presented in Frame 12.2.

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

213

214 Chapter 12 Evaluation of Products for Conformance

Frame 12.2: Product requirement definition

Source: IEEE Std. 730-2014 (IEEE, 2014)

Process requirement definition

“Product requirements specify the functions the product is mandated to perform the
attributes that the product is mandated to possess. These attributes include perform
ance attributes that specify how well the product should perform. Product require
ments, also called system requirements, can be allocated to software or nonsoftware
aspects of the product. Product requirements are derived from and are response to
stakeholder requirements.”

The SQA function performs the evaluations using the documentation of
SQA activities performed by the project team and the organization, and by par
ticipating in the project team quality activities, like reviews and software tests.

The next sections are dedicated to:

• The evaluation of project plans for conformance.

• The evaluation of project’s software products for conformance.

• The evaluation of a project products for acceptability by the customer.

• The evaluation of project’s operation phase products for conformance.

• The evaluation of a software product by measurements.

The methods employed for product evaluation are discussed in Chapter 13
(reviews) and Chapter 14 (software testing).

Chapter 15 is dedicated to assuring quality conformance of software opera
tion services.

Chapter 16 is dedicated to product quality measurement techniques.
Chapter 17 presents procedures and work instructions and their creation and

usage.
This chapter is based on IEEE Std. 730-2014.

12.2 The evaluation of project plans for conformance

The objective

The objective of the SQA function is to evaluate the project plans for conform
ance with the project contract. In other words, to verify that the contract require
ments are fully covered in the plans. The evaluation should be concluded with a
list of nonconformity findings to be corrected by the project team.

The evaluation process

The evaluation process to be performed by the SQA function includes the following:

1. Identify the required plans in the contract document.

12.3 The Evaluation of Project’s Software Products for Conformance 215

2. Evaluate the plan items for conformance with contract requirements, and
relevant regulations and conventions. The evaluation will yield lists of
nonconformities:
• Contract requirements not covered by the plans.
• Contract requirements incorrectly defined in the plans.
• Plan items not required by contract, relevant regulations, or conventions.

3. Evaluate the plans for consistency and list items that are not consistent.

4. Reevaluate the plans for conformance with contract requirements after
the plans have been corrected.

12.3 The evaluation of project’s software products
for conformance

The objective

The objective of the SQA function is to evaluate the degree of conformance of a
project’s development products with the project contract and relevant regulations
and conventions. The evaluation should be concluded with a list of nonconform
ities to be corrected by the project team.

The evaluation process

The evaluation process to be performed by the SQA function includes the
following:

1. Identify project development products and related documentation, as
listed in the project contract.

2. Evaluate the project’s products, software and related documents for con
formance with contract requirements and relevant regulations and con
ventions. Evaluation of the software shall be performed mainly by
examining review reports and test results and participating in reviews
and tests. The evaluation will yield lists of nonconformities:
• Contract requirements not implemented in the software or related
documentation.

• Contract requirements incorrectly implemented in the software or
related documentation.

• Relevant regulations and conventions not implemented or imple
mented incorrectly in the software or related documentation.

• Software applications included in the software products, but not a con
tract requirement.

3. Reevaluate the software and related documentation for conformance with
contract requirements after the software and documentation have been
corrected.

216 Chapter 12 Evaluation of Products for Conformance

12.4 Evaluation of project products for acceptability
by the customer

Success of the software product delivery stage, including the related documenta
tion package, depends on the product quality achieved by the development team,
in other words, on the degree the contract requirements and the acquirer docu
mented expectations have been fulfilled. The role of the SQA function in prod
uct delivery preparations is of importance.

The objective

The objective of the SQA function is to evaluate the degree of confidence that
the project’s development or operation products fulfill the contract requirements
and relevant regulations and conventions and are accepted by the acquirers. The
evaluation is required to perform product quality measurement and list noncon
formities to be corrected by the project team.

The evaluation process

The evaluation process to be performed by the SQA function includes the
following:

1. Derive criteria for acceptance of the software product and the related
documentation from the contract, project documentation, SQA reports,
joint project committee minutes, and so on.

2. Evaluate the degree to which the project products, software and related
documents successfully fulfill the acceptance criteria, and conform to
contract requirements and relevant regulations and conventions. The
evaluation of the software shall be performed mainly by reviews, audits,
and testing. The evaluation will yield lists of criteria not fulfilled by the
software or by the related documentation.

3. Reevaluate the software and related documentation for fulfillment of accep
tance criteria after the software and documentation have been corrected.

12.5 The evaluation of project’s operation phase
products for conformance

The objective

The objective of the SQA function is to evaluate the degree of conformance of
products from a project’s operation phase with the project contract and relevant
regulations and conventions. The evaluation should be concluded with a list of
nonconformities to be corrected by the project team.

12.6 The Evaluation of Software Product by Measurements 217

The evaluation process

The evaluation process to be performed by the SQA function includes the following:

1. Identify products from the project operation phase and related documen
tation, as listed in the project contract.

2. Evaluate the project’s operation phase products and related documents
for conformance with contract requirements and relevant regulations and
conventions. Evaluation of the user support and maintenance services
shall be performed mainly by examining software operation service per
formance reports and direct observation of services. The evaluation will
yield lists of nonconformities:
• Contract requirements for software operation services not implemented.
• Contract requirements incorrectly implemented or not conforming to
required levels of service.

• Software operation services not conforming to relevant regulations and
conventions.

• Software operation services provided that were not included in the
contract requirements.

For more about on assuring the quality conformance of software operation
services, see Chapter 15.

12.6 The evaluation of software product
by measurements

Quantitative criteria of software products provided by software product metrics
are very important tool for evaluation. These metrics, in many cases, are part of
standards and procedures: general, organizational, or specific procedures devel
oped for a software projector and its services operation.

Product measurement is discussed in several software engineering stan
dards, one of these is ISO/IEC (2001–2004) ISO/IEC Std. 9126-2001 Software
engineering – Product quality – Parts 1–4 (ISO/IEC, 2001, 2002, 2003, 2004).

Objective

To develop and implement software product metrics for evaluating software
product quality and the degree, they fulfill the requirements.

The required processes

Software product measurements to be performed by the SQA function include
the following activities:

1. Defining a set of product metrics according to relevant general and proj
ect specific procedures, where each metric represents correctly a product

218 Chapter 12 Evaluation of Products for Conformance

Table 12.1 Examples of product metrics

Metrics code Metrics name Calculation formula

PHWTET

HDE

SFDL

Percentage of HD calls exceeding
target waiting time

HD efficiency

Software system failure density per KLOC

PHWTET � NHYCET
NHYC

HDE � HDYH
NHYC

SFDL � NYF
KLOC

HD, help desk (user support center); NHYCET, the number of calls per year exceeding HD target
waiting time; NHYC, the number of HD calls during a year of service; HDYH, total annual working
hours invested by the HD servicing the software system; NYF, the number of software failures
detected during a year of maintenance service; KLOC, a thousand lines of code.

quality attribute: for example, the response time of the software program
to a specific query.

2. Implementation of the metrics that may result in a list of gaps between
the results of measurements and the expected quality result. In regard to
our former example, measured average response time is 18 seconds,
while expected quality result is 5 seconds.

3. Development of software or hardware improvements to close the gaps.

4. Reapply the measurements and determine the effectiveness of the
improvements.

5. Activities 3 and 4 may be repeated till measurement results are
satisfactory.

Examples of product metrics are presented in Table 12.1.
More about software metrics and specifically about product measurements

for evaluation of software product conformance may be found in a chapter dedi
cated to the subject – Chapter 16.

Summary

1. The types of software product evaluation activities
The types are:

1. Evaluation of project plans for their conformance with the contract
requirements, relevant regulations, and conventions.

2. Evaluation of project products including life cycle support services,
for their conformance with the contract, relevant regulations, and
conventions.

3. Evaluation of project products for their acceptability by the customer.
4. Evaluation of project products by measurement.

Review Questions 219

2. The evaluation process of project’s development and operation
products for conformance

The evaluation process to be performed by the SQA function
includes the following:
1. Identify project development and operation products and the related

documentation, as listed in the project contract.
2. Evaluate the project’s products and related documents for conform

ance with contract requirements and relevant regulations and conven
tions. The evaluation will yield lists of nonconformities.

3. Reevaluate the software and related documentation for conformance
with contract requirements after the software has been corrected.

3. The process of software product evaluation by measurements
Software product measurements to be performed by the SQA func

tion include the following activities:
1. Defining a set of product metrics according to relevant general and

project-specific procedures, where each metric represents correctly a
product quality attribute.

2. Implementation of the metrics that result in a list of gaps between the
results of measurements and the expected quality result. Development
of software or hardware improvements to close the gaps.

3. Redo the measurements and determine the effectiveness of
improvements.

4. Activities 3 and 4 may be repeated till measurement results are
satisfactory.

Selected bibliography

IEEE (2014) IEEE Std. 730-2014 Software Quality Assurance, The IEEE Computer Society, IEEE,
New York.

ISO/IEC (2001) ISO/IEC Std. 9126-2001 Software Engineering – Product Quality – Part 1: Quality
Model, ISO, Geneva, Switzerland.

ISO/IEC (2002) ISO/IEC Std. 9126-2003 Software Engineering – Product Quality – Part 2: External
Metrics, ISO, Geneva, Switzerland.

ISO/IEC (2003) ISO/IEC Std. 9126-2003 Software Engineering – Product Quality – Part 3: Internal
Metrics, ISO, Geneva, Switzerland.

ISO/IEC (2004) ISO/IEC Std. 9126-2004 Software Engineering – Product Quality – Part 4: Quality
in Use Metrics, ISO, Geneva, Switzerland.

Review Questions

12.1 Four types of evaluation of software project products conformance are listed in
Frame 12.1.

a. Explain in your own words the purpose of each type of evaluation.

b. Explain the differences between the types of evaluations.

220 Chapter 12 Evaluation of Products for Conformance

12.2 The evaluation of the conformance of project plans with the contract yields three
lists of nonconformities (see Section 12.2).

a. List in your own words the contents of each of the lists.

b. Explain the importance of the third list.

12.3 The evaluation of project product conformance requires evaluating software prod
ucts and the related documentation.

a. Explain why evaluation of the software product alone (the product directly serv
ing the user) is not sufficient?

b. Provide at least two situations where missing documentation or documentation
not evaluated could cause difficulties in the development process and in the
maintenance of the software product.

12.4 Being quantitative, project product metrics are considered more important than
qualitative criteria.

a. Explain in your own words the special importance of product metrics.

b. Suggest two metrics for a software package for POS (point of sale).

Topics for discussion

12.1 The IEEE Std. 70-2014 requires conformance evaluations for project plans and also
for project products and related documentation.

a. Some claim that the evaluation of project products and related documentation
are sufficient – do you agree?

b. List your arguments for your reply to (a).

12.2 An SQA practitioner claims that the evaluation of project products for their accept
ability by the customer should be the only evaluation activity for conformance, as it
assures that the project software product and related documentation are accepted by
the customer to his full satisfaction.

a. Do you agree with the practitioner?

b. List your arguments for your reply to (a).

c. Could you explain the special contribution of the first two evaluation types in
Frame 12.1 to the software project.

12.3 “The evaluation of project products, including life cycle support services, for their
conformance with the contract, relevant regulations and conventions, ensures that
all contract requirements have been fulfilled and that acceptability by the customer
is ensured. Thus, the evaluation of project products for their acceptability by the
customer is redundant.”

Topics for Discussion 221

a. Do you agree with the above quote?

b. If you disagree, explain in your own words the necessity of the evaluation of
project products for their acceptability by the customer.

12.4 Describe the cooperation that is required between the SQA function and the project
team for performing the evaluation of project products, including life cycle support
services, for their conformance with the contract, relevant regulations, and
conventions.

Chapter 13

Reviews

13.1 Introduction

A common product of the software development process, especially in its analy
sis and design phases, is a document, in which progress of development work
performed is recorded. The system analyst or designer who prepares the docu
ment reviews it repeatedly in order to detect any possible errors that might have
been introduced. In addition, development team leaders are also expected to
examine this document and its details to reveal any remaining errors before
granting their approval. However, it is clear that as these professionals were
involved in actually producing the document, they are unlikely to detect some of
their own errors, irrespective of the extent and number of reviews they conduct.
Therefore, only others – such as peers, superiors, experts, and customer repre
sentatives – who have different experience and points of view and are not
directly involved in creating the document, are capable of detecting errors
unnoticed by the development team. A review is probably the best method to
detect existing errors that remained undetected in a software project document.

As defined by Frame 13.1, a review process is:

Frame 13.1: Review – a definition

Review – a definition

A process for evaluating a documented software project product in which a group of
professionals and stakeholders raise comments regarding the contents of a document
presented to them beforehand. The reviewers may have the authority to approve the
contents of the document, and also to approve the project advancing to the next stage.

Design reviews and other reviews are organized by the project teams and
the development departments.

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

222

13.1 Introduction 223

The role of the SQA function in reviews

The role of the SQA function is supportive and may include organizing reviews
and improving their efficiency and effectiveness. SQA function team members
may participate in reviews, as part of the SQA activities of evaluating software
products conformance.

There are several objectives that motivate reviews. The review’s direct
objectives deal with the current project, whereas its indirect objectives are more
general in nature, and deal with the contribution of the review to appropriately
advance team members’ professional development, and the improvement of the
development methodologies applied by the organization.

The main review objectives are presented in Frame 13.2.

Frame 13.2: Review objectives

Review objectives

Direct objectives

• To detect analysis, design, and other document functional, logical, and implementa
tion errors.

• To identify changes, deviations, and omissions with respect to the original specifi
cations and approved changes.

• To locate those deviations from templates, style procedures, and conventions, which
are expected to cause difficulties to development and maintenance teams.

• To identify new risks that are likely to affect completion of the project.

• In formal reviews – to approve the analysis, design, or other respective develop
ment stage of the product, and allow the team to progress to the next development
phase.

Indirect objectives

• To provide an informal meeting place for the exchange of professional knowledge
about development methods, tools, and techniques.

• To record analysis and design errors that will serve as a basis for future corrective
actions to be implemented among other development teams. (For more about cor
rective actions, see Chapter 16).

The various review methods differ in the emphasis attributed to the dif
ferent objectives. The “filtering out” of errors achieved in the different
review techniques depends to a great extent on the optimization of the
review procedure. An improved “filtering out” of errors is achieved by the
selection of an appropriate review team member and a professional review
team leader, who knows how to lead the review session efficiently and
effectively.

224 Chapter 13 Reviews

As the documents are products of the project’s initial phases, reviews
acquire special importance in the SQA process, as they provide early detection
and prevent passing analysis and design errors “downstream,” to stages where
error detection and correction are much more intricate, cumbersome, and there
fore also costly.

Several methodologies can be implemented when reviewing documents. In
this chapter, the following review methods will be discussed:

• Formal design reviews (Section 13.3)

• Peer reviews – inspections and walkthroughs (Section 13.4)

• Expert opinions (Section 13.5)

Reviews are not activities to be conducted haphazardly. Procedural order
and teamwork lie at the heart of formal design reviews, inspections, and walk
throughs. Each participant is expected to focus on his or her area of responsibil
ity or specialization when making comments. At each review session, the
mutually agreed-upon remarks are recorded. The subsequent list of items should
include full details of defect location and description, documented in a way that
will later enable their full retrieval by the development team. In order to ensure
fruitful review sessions, a coordinator is required to supervise the discussion and
keep it on track.

In general, the knowledge that an analysis, design, or other development
product will be reviewed stimulates the development team to do their best work.
This represents a further contribution of reviews to the improved product quality.

The review activities are frequently termed “static software quality assur
ance techniques,” and should be distinguished from “dynamic software quality
assurance techniques,” which relate to testing that involves running the software.

It should be noted that inspections and walkthroughs are also widely suc
cessfully used to detect defects in the coding phase, where the appropriate docu
ment reviewed is the code printout.

In general, the knowledge that an analysis, design, or other development
product will be reviewed stimulates the development team to do their best work.
This represents a further contribution of reviews to the improved product quality.

Before studying the various review methodologies, let us examine the mini
case presented in Section 13.2.

13.2 The happy design review – an introductory
mini case

John Harris, head of IT unit A, was feeling anxious. The DR of a major project
was due to begin in less than an hour, and he knew that the project wasn’t going
that well, to say the least. The lack of success was due to serious team problems,
including staff shortage, and the fact that the team leader had to be replaced right
at the beginning of the design phase. On top of everything else, he was sure that

13.3 Formal Design Reviews (DRS) 225

failing this DR would affect his chances of promotion, and wondered whether
his plan would work.

The DR team showed up on time, nine men and four women, head of the IT
department, and several customer representatives, but most were senior employ
ees from IT unit B. The project lead’s presentation started on time, and colored
slides one after another were shown. The presenter was very polite and answered
all the audience questions. It was just after the presentation had being going on for
70 minutes, and more audience questions were being answered in length by the
presenter, that John began to feel relieved. It was clear to him that most of the
participants had not read the project design report, and it was at this moment that
John applied the second stage of his plan – a rich coffee break with the best cakes
and cookies in town. Everybody seemed happy with the break and the “goodies.”
The coffee break was now over, and the presentation was in full swing again.
After another 45 minutes, the presenter completed his presentation – in sync with
John’s special sign.

John stood up, and called on the audience to present their comments. Hesi
tatingly, three participants raised some basic issues, which the team leader easily
addressed in length. Another two questions raised dealt with administrative
aspects of the project. Then, about three hours into the whole session, the IT
department manager stood up, thanked the team leader for his presentation and
detailed answers, and announced that due to other obligations, he would need to
leave. The rest of the audience expressed their need to leave too, thanked John
for his hospitality and 10 minutes later, all participants had left.

John was really happy. His plan had worked perfectly. No worthy comment
was raised, and nobody uncovered any of the many deficiencies of the project.
John’s assumption that once the DR team grew, nobody would bother to read
the design report as they would rely on others to read it, was correct. The other
part of the plan, the lengthy presentation, was successful in that it left practically
no time for comments and discussion.

To sum it up – John’s plan was a success – the DR totally failed to produce any
worthy comments from the audience. In other words, the DR was totally worthless
as a review, but was a big success in regard to the personal interests of John Harris.

13.3 Formal design reviews (DRS)

Formal design reviews, also called “design reviews”, “DRs,” and “formal techni
cal reviews” (FTR), differ from all other review methods as they are the only
type of review that is a requisite for approving the development product. With
out this approval, the development team cannot continue to the next phase of
development. Formal design reviews may be conducted at any development
milestone requiring completion of a document, whether the document is a
requirement specification or an installation plan. A list of common formal design
reviews is presented in Frame 13.3.

226 Chapter 13 Reviews

Frame 13.3: Some common formal design reviews

DPR Development Plan Review

SRSR Software Requirement Specification Review

PDR Preliminary Design Review

DDR Detailed Design Review

DBDR Data Base Design Review

TPR Test Plan Review

STPR Software Test Procedure Review

VDR Version Description Review

OMR Operator Manual Review

SMR Support Manual Review

TRR Test Readiness Review

PRR Product Release Review

IPR Installation Plan Review

Our discussion of formal design reviews focus on:

• The DR participants

• The DR preparations

• The DR session

• The recommended post-DR activities

13.3.1 Participants in a DR

All DRs are conducted by a review leader and review team. The choice of
appropriate participants is of special importance because of their authority to
approve or disapprove the development product.

The review leader

As the appointment of an appropriate review leader is a major factor in the DR’s
success, candidates should possess certain characteristics:

• Knowledge and experience in the development of projects of the type
reviewed.

• Preliminary acquaintance with the current project is not necessary.

• Seniority at a level similar to that of the project leader, if not higher.

• Existing good relationships with the project leader and his team.

• Of an independent position, external to the project team.

13.3 Formal Design Reviews (DRS) 227

Thus, appropriate candidates for review team leadership include the devel
opment department manager, chief software engineer, a different project’s
leader, the software quality assurance unit head, in certain circumstances, and
the customer’s chief software engineer. Appointment of the review leader is
expected to be performed by a person of higher seniority than the project leader.

Implementation tip

In some cases, the project leader is appointed as the FDR leader, the main justification
for this decision being his/her superior knowledge of the project material. In most
cases, this choice proves to be professionally undesirable. A project leader who serves
as the review team leader tends, whether intentionally or not, to limit the scope of the
review and avoid insightful and constructive criticism, and his review team members
also tend to be chosen accordingly. Appointments of this type usually undermine the
purpose for the review, and only delay confronting problems to a later time, making
issues more sensitive, and more costly to correct.

Small development departments and small software houses typically have
substantial difficulties finding an appropriate in-house candidate to lead the
review team. One possible solution to this predicament is the appointment of an
external consultant.

The review team

The entire review team should be selected from among the senior members of
the project team, together with appropriate senior professionals assigned to other
projects and departments, customer/user representatives, and in some cases soft
ware development consultants. It is desirable that nonproject staff make up the
majority of the review team.

An important issue often neglected is the size of the review team. A review
team of 3–5 members is expected to be an efficient team, given that the proper
diversity of experience and approaches among the participants is assured. An
excessively large team tends to create coordination problems, wastes review ses
sion time, and decreases the overall level of the review.

Implementation tip

Sometimes, due to circumstances, we may feel obligated to honor 8–10 seniors from the
customer organization by appointing them to the review team. The greater difficulty to
coordinate the review session seems to be the least of the problems in cases of a larger
review team; the most negative result of an excessively large team tends to be the sub
stantial decrease in the level of review preparation, namely, in not reading the document
to be reviewed, and subsequently no comments or proposals for corrections are prepared.

Thus, creating an excessively large team, the larger the better, is a “wonderful”
tool for the organizer of the DR to avoid a real review.

228 Chapter 13 Reviews

13.3.2 The DR preparations

DR infrastructure

• Develop checklists for typical reviewed documents, or at least for the
most common ones.

• Train senior professionals to serve as review leaders and DR team
members.

• Periodically analyze the effectiveness of past DRs in regard to defect
detection to improve the DR methodology.

DR schedule

Schedule DRs as part of the project activity plan, and allocate the needed
resources as an integral part of the software development organization’s standard
operating procedures.

The DR contents

In most cases, participants in a DR are required to review a document (the entire
document). In cases of large volumes or complex documents, which no review
session can effectively cover, the review leader may consider splitting the review
material into two or more parts. In some cases, usually due to time pressure, it
could be decided to review only part of a document, the more critical part or the
part expected to be “richer” in defects. A decision regarding additional reviews
may depend on the number and type of defects found in the document reviewed.

There are three main review participant groups – the review leader, the
review team, and the development team – while each group is required to focus
on distinct aspects of the preparations:

Review leader preparations

The main tasks of the review leader in the preparation stage are:

• To appoint team members

• To schedule review sessions

• To distribute the document to be reviewed among the team members
(hard copy, electronic file, etc.)

It is of utmost importance that the review session be scheduled shortly after
the design document has been distributed to the review team members. Timely
sessions prevent an unreasonable length of time from elapsing before the project
team can commence to the next development phase, and thus reduce the risk of
going off schedule.

13.3 Formal Design Reviews (DRS) 229

Review team preparations

Team members are expected to review the review document and list their com
ments prior to the review session. In cases where the documents are of a sub
stantial size, the review leader may ease the load by assigning each team
member with only parts in the documents.

An important tool for ensuring the review’s completeness is the checklist. In
addition to the general design review checklist, checklists dedicated to the more
typical development documents are available, and can be constructed when nec
essary. Checklists contribute to the DR’s effectiveness by reminding the
reviewer of all the primary and secondary issues requiring attention. For a com
prehensive discussion of checklists, see Chapter 24

Development team preparations

As the review session approaches, the team’s main obligation is to prepare a
short presentation of the design document. Assuming that the review team mem
bers have read the design document thoroughly and are now familiar with the
project outlines, the presentation should focus on the main professional issues
awaiting approval rather than (wasting time) on a general description of the
project.

Implementation tip

One of the most common techniques used by project leaders to avoid professional
criticism and undermine review effectiveness is the comprehensive presentation of the
design document. This type of presentation “excels” in the abundant time it consumes.
It exhausts the review team and leaves little time, if any, for discussion. All experi
enced review leaders know how to handle this phenomenon.

In cases when the project leader serves as the review leader, one can observe
especially potent tactics aimed at stymieing an effective review: appointment of a
large review team combined with a comprehensive and long presentation.

13.3.3 The DR session

The review leader’s experience in leading discussions and sticking to the agenda
is the key to a successful DR session. A typical DR session agenda includes:

a. A short presentation of the design document.

b. Comments made by members of the review team.

c. Verification and validation of each of the comments discussed to deter
mine the required action items (corrections, changes and additions) that
the project team has to perform. A team member assigned as a scribe is
responsible to document each action item that relates to the required cor
rections, changes, and additions.

230 Chapter 13 Reviews

d. Decisions about the design product (document), which determine the
project’s progress. These decisions can take three different forms:
• Full approval: Enables immediate continuation to the next phase of
the project. On occasion, full approval may be accompanied by
requests for minor corrections to be performed by the project team.

• Partial approval: Approval of immediate continuation to the next
phase for some parts of the project, with major action items (correc
tions, changes, and additions) required for the remainder of the project.
Continuation to the next phase of these remaining parts will be permit
ted only after satisfactory completion of the action items. Approval
may be given by a member of the review team assigned to review the
completed action items, by the whole review team in a special review
session, or by any other forum the review leader considers appropriate.

• Denial of approval: Requires repeating the DR. This decision is
applied in cases of multiple major defects – particularly critical
defects.

13.3.4 Postreview activities

Apart from the DR report, the DR team or a representative is required to follow
up completion of the corrections and to examine the corrected sections.

The DR report. One of the review leader’s responsibilities is to issue the
DR report immediately after the review session. Early distribution of the DR
report enables the development team to perform the corrections earlier and mini
mize delays to the project schedule.

The report’s major sections contain:

• A summary of the review discussions.

• The decision regarding continuation of the project.

• A full list of required action items – corrections, changes, and additions
that the project team has to perform. For each action item, the anticipated
completion date and project team member responsible are listed.

• The name(s) of the review team member(s) assigned to follow up comple
tion of corrections.

The form shown in Appendix 13.A presents the data items that need to be
documented for an inclusive DR report.

The follow-up process. The person appointed to follow up the correc
tions, in many cases the review leader him/herself, is required to determine
whether each action item has been satisfactorily accomplished as a condition
for allowing the project to progress to the next phase. The follow-up should
be fully documented to enable future clarification of the corrections, if and
when necessary.

13.4 Peer Reviews 231

Implementation tip

Unfortunately, parts of, or even the entire DR report are often worthless, whether
because of an inadequately prepared review team or because of the intentional evasion
of a thorough review. It is fairly easy to identify such cases from the characteristics of
the review report: general short inspection summary, lack of inspection discussion
details, and few and minor action items.

Several authors listed guidelines for a successful DR, focusing on prepara
tions for a DR, and the conducting of a DR session. Additional guidelines refer
to the infrastructure needed to support a successful DR. Most of these guidelines
also apply to inspection and walkthrough sessions. Frame 13.4 presents the
guidelines for a successful DR session.

Frame 13.4: Guidelines for a successful DR session

The design review session guidelines

• Discuss professional issues in a constructive way, while refraining from personaliz
ing them. This helps to keep the discussion free of unnecessary tension.

• Deal with stupid comments in the same way you treat other comments, and do not
even hint about the value of these comments.

• Keep to the review agenda. Drifting from the planned agenda will only serve to take
away from the effectiveness of the review.

• Focus on detection of defects by verifying and validating participant comments.
Refrain from discussing possible solutions for the detected defects in order to save
time and avoid digressing from the agenda.

• In cases of disagreement about the significance of an error, it is good practice to end
the discussion and move the issue to another forum.

• Properly document the discussions, especially details of action items agreed upon
by the DR team.

• The duration of a review session should not exceed 2 hours.

13.4 Peer reviews

Two peer review methods, inspections and walkthroughs, are discussed in this
section. The major difference between formal design reviews and peer review
methods is rooted in the level of authority of the participants. While most partic
ipants in DRs hold superior positions to the project leader, participants in peer
reviews are, as expected, the project leader’s equals, members of the leader’s
department and other units. The other major difference lies in the degree of
authority and objective of each review method. Formal design reviews are

232 Chapter 13 Reviews

authorized to approve the design document so that work on the next stage of the
project may begin. This authority is not granted to the peer reviews, whose main
objectives lie in detecting errors and deviations from standards.

The level of formality differentiates a walkthrough from an inspection.
While the members of an inspection team are required to prepare for the inspec
tion session, walkthrough participants are not requested to make any meaningful
preparations. Another difference relates to the findings. While walkthroughs are
limited to comments on the document reviewed, the findings of inspections are
incorporated into the efforts invested to improve development methods through
corrective action processes. Inspections, as opposed to walkthroughs, are there
fore considered to be more significant contributors to the general level of SQA.

An inspection is usually based on a comprehensive infrastructure, including:

• Inspection checklists periodically updated and developed for each type of
design document, coding language, and tools. A positive contribution of
checklists to code inspection was found (Hatton, 2008).

• Typical defect frequency tables based on past findings to direct inspectors
to potential “defect concentration areas.”

• Training of competent professionals in inspection process issues. This
process makes it possible for them to serve as inspection leaders (modera
tors) or inspection team members. The trained employees serve as a reser
voir of professional inspectors available for future projects.

• Periodic analysis of the effectiveness of past inspections to improve the
inspection methodology.

Design and code inspections are procedural models and were initially
described and formulated by Fagan (1976, 1986). More about inspections can be
found in Horta, (2014); Mishra and Mishra, (2009); Parnas and Lawford, (2003);
Pressman and Maxim, (2015) and Sommerville, (2015). Regarding walk
throughs, Yourdon (1979) provides a thorough discussion of the related princi
ples and processes.

The inspection and walkthrough processes described here are the more com
monly employed versions of these methods. Organizations often modify these
methods with adaptations that represent their “local culture.” These adaptations
are characterized by the development, SQA units, software products developed,
team structure, composition, and the likes. It should be noted that in response to
this variability, especially common in walkthrough procedures, differences
between the two methods are easily blurred. Due to this state of affairs, some
specialists view walkthroughs as a type of inspection, and vice versa.

Today, with the development of computerized design tools, including CASE
tools, on the one hand, and the widely used COTS software packages and open
source software, on the other hand, some professionals tend to diminish the
value of manual reviews such as inspections and walkthroughs. Nevertheless,
past software surveys as well as recent empirical research findings provide us

13.4 Peer Reviews 233

with much convincing evidence that peer reviews are highly efficient and effec
tive methods.

The debate over which method is preferred has yet to be resolved, with pro
ponents of each arguing for the superiority of their favored approach. However,
as far as the development of improved new versions of the method, research
empirical, and theoretical studies goes, it seems that inspections are far ahead of
walkthroughs.

In the last decade, many efforts were invested in the development of auto
matic code inspection methods, also called “automatic static analysis.” It is the
inspection checklists that lead to the development of algorithms for identifying
errors in code. This subject is discussed in length in Chapter 24.

Our discussion of peer review methods will therefore focus on:

• Participants in peer reviews

• Requisite preparations for peer reviews

• The peer review session

• Postpeer review activities

• Peer review efficiency

• Peer review coverage

With minor adaptations, the principles and processes of design peer reviews
are successfully applied to code peer reviews.

13.4.1 Participants of peer reviews

The optimal peer review team is composed of three to five participants. In cer
tain cases, the addition of one to three participants is acceptable. All participants
should be peers of the software system designer author. A major factor contribu
ting to the success of a peer review is the group’s “blend” (which is a differenti
ating factor between inspections and walkthroughs).

A recommended peer review team includes:

• A review leader

• The author

• Specialized professionals

Inspection participants

The review leader (moderator) Candidates for this position must:

• Be well-versed in the development of projects of the current type, and
familiar with its technologies. Preliminary acquaintance with the current
project is not necessary.

• Maintain good relationships with the author and the development team.

234 Chapter 13 Reviews

• Come from outside the project team.

• Display proven experience in coordination and leadership of professional
meetings.

• Having undergone training as a moderator is also required – for inspections.

The author The author is, with no exception, a participant in each type of
peer review.

Specialized professionals The recommended professionals are:

• A designer: The system analyst responsible for analysis and design of the
software system reviewed.

• A coder or implementer: A professional, who is thoroughly acquainted
with coding tasks, preferably the leader of the designated coding team.
This inspector is expected to contribute his/her expertise to the detection
of defects that could lead to coding errors and subsequent software imple
mentation difficulties.

• A tester: This experienced professional, preferably the leader of the
assigned testing team, focuses on identification of design errors usually
detected during the testing phase.

Walkthrough participants

The review leader (coordinator) Candidates for the coordinator position
should have traits similar to those of the inspection moderator.

The author The author is, with no exception, a participant. In many cases he
serves as the coordinator.

Specialized professionals The recommended professionals are:

• A standards enforcer: This team member, who specializes in development
standards and procedures, is assigned the task of locating deviations from
the standards and procedures. Errors of this type substantially affect the
team’s long-term effectiveness; primarily, as they cause extra difficulties
for new members joining the development team, and will later reduce the
effectiveness of the team responsible to maintain the system.

• A maintenance expert: The maintenance expert is called upon to focus on
maintainability, flexibility, and testability issues (see Chapter 2), and to
detect design defects capable of impeding the correction of bugs or the
performance of future changes. Another area requiring his/her expertise is
documentation, whose completeness and correctness are vital for any
maintenance activity.

• A user representative: Participation of an internal (when the customer
belongs to the same firm) or external user representative in the

13.4 Peer Reviews 235

walkthrough team contributes to the review’s validity, as he/she examines
the software system from the point of view of the user/consumer, rather
than the designer/supplier. In cases where a “real” user is not available, as
is the case in the development of a COTS software package, a team mem
ber may take on this role, and focus on validity issues by comparing the
original requirements with the actual design.

13.4.2 Preparations for a peer review session

The review leader and team members are to assiduously complete their prepara
tion, while the type of review determines the scope.

Peer review leader’s preparations for the review session

The main tasks of the review leader, inspection moderator, and walkthrough
coordinator are similar and are as follows:

• To determine, together with the author, which sections of the design doc
ument are to be reviewed. Such sections may include:
- The most difficult and complex sections.
- The most critical sections, where any defect can cause severe damage to
the program application, and thus to the user.

- The sections prone to defects.

• To select the team members.

• To schedule the peer review sessions. It is advisable to limit a review ses
sion to 2 hours; therefore, several review sessions should be scheduled
(up to two sessions a day) when the review task is sizable. It is important
to schedule the sessions shortly after the pertinent design document sec
tions are ready for inspection. Moreover, for the process to unfold
smoothly, the inspection’s review leader should schedule an overview
meeting for his team.

• To distribute the document to the team members prior to the review session.

Peer review team’s preparations for the review session

The preparations required of an inspection team member are quite thorough,
while those required of a walkthrough team member are more concise.

Inspection team preparations

Inspection team members are expected to read the document sections to be
reviewed, and list their comments before the inspection session begins. The pur
pose of this advance preparation is to guarantee the session’s effectiveness. Team
members will also be asked to participate in an overview meeting. At this meet
ing, the author provides the inspection team members with the necessary relevant

236 Chapter 13 Reviews

background for reviewing the selected document sections: the project in general,
the logic, processes, outputs, inputs, and interfaces. In cases where the participants
are already well acquainted with the material, an overview meeting may be
waived.

An important tool supporting the inspector’s review is a checklist. In well-
established development departments, one can find specialized checklists dedi
cated to the more common types of development documents (see Chapter 24).

Walkthrough team preparations

Prior to the walkthrough session, team members briefly read the material in
order to obtain a general overview of the sections to be reviewed, and the project
and its environment. Participants lacking preliminary knowledge of the project
and its substantive area will need far more preparation time. In most organiza
tions employing walkthroughs, team participants are not required to prepare their
comments in advance.

13.4.3 The peer review session

Team session assignments

Conducting a review session naturally requires assignment of specific tasks to
the team members. Two of these task assignments are for the presenter of the
document, and the scribe, who documents the discussions.

• The presenter: During inspection sessions, the presenter of the document
is chosen by the moderator; usually, the presenter is not the document
author. In many cases, the software coder serves as the presenter because
he/she is the team member likely to best understand the design logic and
its implications for coding. Some experts claim that an author’s assign
ment as presenter may affect team members’ judgment; and they therefore
argue that the choice of a “neutral” presenter is preferred.
For most walkthrough sessions, it is the author, the professional most

acquainted with the document, who is chosen to present the document to
the team.

• The scribe: The team leader will often – but not always – serve as the
scribe for the session, and record the noted defects to be corrected by the
development team. This task is more than procedural; it requires thorough
professional understanding of the issues discussed.

The review session

A typical peer review session takes the following form:
After the presenter’s short overview of the document and the parts to be

read, he/she reads a section of the document and adds, if needed, a brief

13.4 Peer Reviews 237

Table 13.1 Classification of design errors by severity

Severity level Description

5 – Critical 1. Prevents performance of essential capabilities of health, airborne,
and military equipment

2. Jeopardizes safety, security of critical activities

4 1. Adversely affects the performance of equipment, when no
alternative way to overcome the situation is known

2. Adversely affects the performance of scheduling, monitoring, and
managing activities in a way that risks and harms the organization,
when no alternative way to overcome the situation is known

3 1. Adversely affects the performance of equipment, when an
alternative way to overcome the situation is known

2. Adversely affects the performance of scheduling, monitoring, and
managing activities in a way that risks and harms the organization,
when an alternative way to overcome the situation is known

2 1. Causes difficulties or inconvenience to equipment operators in
applying the equipment but does not affect the performance of its
essential capabilities

2. Causes difficulties or inconvenience to software system users in
applying the software but does not affect the performance of its
essential software capabilities

1 – Minor 1. All other minor effects to software or firmware

explanation of the issues involved in his/her own words. As the session prog
resses, the participants either deliver their comments to the document, or address
their reactions to comments from other participants. The discussion should be
confined to the identification of errors, which means that it should not deal with
tentative solutions. During the inspection session, a substantial part of the com
ments are preprepared, ready before reading begins. Concerning the length of the
inspection and walkthrough sessions, the same rules apply as to DRs: sessions
should not exceed 2 hours, or be scheduled more than twice daily.

During the session, the scribe should document each noted defect by loca
tion in the document and description, type and character (incorrect, missing, or
unnecessary parts). The inspection session scribe will add the estimated severity
level of each defect, a factor to be used in the statistical analysis of defects
found, and formulation of preventive and corrective actions. A typical five-scale
severity classification of design errors is presented in Table 13.1.

Session documentation

The documentation produced at the end of an inspection session is much more
comprehensive than that of a walkthrough session. Two documents are to be

238 Chapter 13 Reviews

produced and distributed among the session participants following an inspection
session.

Inspection session documentation

Two documents are to be produced following an inspection session and subse
quently distributed among the session participants:

a. Inspection session findings report. This report is produced by the scribe,
and should be completed and distributed immediately following the ses
sion’s closing. Its main purpose is to ensure the full documentation of
identified errors for correction and follow-up. An example of such a
report is provided in Appendix 13.B.

b. Inspection session summary report. This report is to be compiled by the
inspection leader shortly following the session or series of sessions deal
ing with the same document. A typical report of this type summarizes the
inspection findings and resources invested in the inspection; it presents
basic quality and efficiency metrics. The report serves mainly as input
for analysis aimed at inspection process improvement, and corrective
actions that go beyond the specific document or project. An example of
an inspection session summary report appears in Appendix 13.C.

At the end of a session or series of walkthrough sessions, copies of the
defects documentation – the “walkthrough session findings report” – should be
handed to the development team and the session participants.

13.4.4 Postpeer review activities

A fundamental element differentiating between the two peer review methods dis
cussed here is the postpeer review.

The inspection process, contrary to the walkthrough, does not end with a
review session or the distribution of reports. Postinspection activities are con
ducted to attest to:

• The prompt, effective correction and reworking of all errors by the
designer/author and his team, as approved by the inspection leader (or
another team member) in the course of the assigned follow-up activities.

• Transmission of the inspection reports to the internal Corrective Action
Board (CAB) for analysis. This action initiates the corrective and preven
tive actions that will reduce future defects and improve productivity (see
Chapter 19).

A comparison participants and process elements of the peer review methods
is presented in Figure 13.1.

13.4 Peer Reviews 239

Figure 13.1 Inspection versus walkthrough – participants and processes

13.4.5 Versions of the inspection process

Several proposals for changes in the original pattern of inspection developed by
Fagan have been presented during the past decades. One of these proposals sug
gests a pair inspection, justified by improved individual productivity. Another
proposal suggests “active inspection” by directing the team to focus on a series
of parts of the document and inspect each of them, instead of inspecting the
entire document line by line. In an additional proposed method, the “N-fold
inspection method,” several independent teams are to inspect the same docu
ment. This method is expected to increase the percentage of detected errors.
Experiment results show 35% defect detection for a single team, compared to a
quite disappointing 78% detection for nine inspection teams.

Still, another process proposal, the “phased inspection,” is based on a series
of single inspections, each dedicated to a specific aspect of the document. A
team session follows the individual inspections, in which the individual findings
are presented and discussed to create the final inspection report. Another pro
cess-oriented proposal suggests eliminating the team meeting or replacing it
with a limited meeting with only two or three team members. According to this

240 Chapter 13 Reviews

proposal, the inspection is individual and the team meeting replaced with corre
spondence. The proposal is justified by research results that found that only 10
percent of defects are detected during team meetings. A comprehensive survey
of software inspection developments is presented by Aurum et al. (2002).

13.4.6 The effectiveness and efficiency of peer reviews

Peer reviews, especially inspections, are widely used. Inspections are also part of the
integrated product development process of CMMI. But, how many software devel
opers use peer reviews, particularly software inspections? Very few survey results
are available. In a 2002 survey of European software professionals (Ciolkowski
et al., 2003), it was found that 40% of the respondents regularly implement inspec
tions for requirement and design documents and for 30% of the code reviews.

The issue of defect detection effectiveness and the efficiency of apt peer
review methods, in comparison to other SQA defect detection methods, is con
stantly being debated. Some of the more common metrics applied to estimate the
effectiveness and efficiency of peer reviews suggested in the literature are:

• Peer review effectiveness (the defects detected by peer reviews as a per
centage of total defects detected by the developer).

• Peer review detection efficiency (average number of hours invested per
defect detected).

• Peer review defect detection density (average number of defects detected
per page of the design document/per KLOC).

The literature provides rather meager findings regarding inspection effec
tiveness and efficiency. Fagan (Fagan, 1986) reported defect removal effective
ness as over 60%. Other publications report higher effectiveness of code
inspection: IBM – 83%, AT&T – 92% (O’Neill, 2008). In this regard, one
should mention the Cleanroom software development methodology that relies
entirely on inspection processes for defect removal. This incremental delivery
methodology applies an advanced inspection process and reaches almost 100%
effectiveness through inspections.

The effectiveness and efficiency performance of six inspection projects are
presented by Nair et al. (2011). The reported effectiveness results are substan
tially lower than those of Fagan and other authors already mentioned. The wide
range of effectiveness results might be explained (partly) by the reported large
differences in team size and experience, and project size. The effectiveness and
efficiency results are shown in Table 13.2.

Earlier results are presented by Dobbins (1998), who quotes Madachy’s
findings from an analysis of the design and code inspections conducted on the
Litton project, which summarize a large number of inspections. Madachy’s
findings regarding the efficiency metric already cited are presented in
Table 13.3.

13.4 Peer Reviews 243

In his paper, Dobbins also quotes Don O’Neill’s National Software Quality
Experiment, conducted in 1992 in 27 inspection labs in the United States. A
total of 90,925 source code lines were code inspected in this experiment. The
experiment’s results for the inspections conducted:

• Total number of defects detected 1849
• Number of major defects detected 242
• Total inspection time (hours) 380

Dobbins (1998) enables us to present comparable results for the National
Software Quality Experiment and the Litton project: (1) Code inspection defect
detection efficiency (work-hours defect) and (2) Code inspection defect detection
density (number of defects detected per KLOC of software code).

Code inspection defect detection efficiency

The National
Quality

Experiment

The
Litton
project

Defect detection efficiency (work-hours/defect)
Major defect detection efficiency (work-hours/major defect)

0.2
1.57

0.66
5.97

Code inspection defect detection density

The National
Quality Experiment

The Litton
project

Total defect detection density (defects per KLOCa)
Major defects detection density (defects per KLOCa)

20.3
2.66

25.9
2.80

aKLOC= 1000 lines of code

The empirical results shown here present a wide range of results, some are
practically incomparable. A possible partial explanation may be the variety of
team sizes and project sizes and characteristics.

13.4.7 Peer review coverage

In a substantial number of organizations, which do not rely heavily or entirely
on peer reviews, only a small percentage of documents and total volume of code
ever undergo peer review. Coverage of about 10–20% of document pages still
represents a significant contribution to the total defect detection, as the factor
that determines the contribution of peer reviews to the total quality is not the
percentage of pages covered, but the actual selection of those pages. More
importantly, with the increased usage of reused software, the number of docu
ment pages and code lines demanding inspection is obviously declining.

244 Chapter 13 Reviews

Frame 13.5 lists those document sections that are recommended for inclusion in
a peer review, as well as those that may be readily omitted.

Frame 13.5: Sections recommended to be included in, or omitted
from, peer reviews

Sections recommended for inclusion Sections recommended for omission

1. Sections of complicated logic

2. Critical sections, where defects
can severely damage essential
system capabilities

3. Sections dealing with new
environments

4. Sections designed by new or
inexperienced team members.

1. “Straightforward” sections (without
complicated logic)

2. Sections of a type already reviewed
several times by the team in similar
past projects

3. Sections that, if faulty, are not expected
to affect functionality

4. Reused design and code

5. Repeated parts of the design and code

13.4.8 A comparison of review methods

For practitioners and analysts alike, a comparison of the three review methods
discussed in this chapter may prove interesting. Table 13.4 presents this
comparison.

13.5 Expert opinions

The last review method we will discuss is the use of expert opinions. Expert
opinions, prepared by outside experts, support quality evaluation by introducing
additional capabilities to the internal review staff, and thus reinforcing the orga
nization’s internal quality assurance activities. Outside experts transmit their
expertise either by:

• Preparing an expert judgment about a document or a code section, or by

• Participating as a member of an internal design review, inspection, or
walkthrough team.

An outside expert’s judgment, as well as his participation as an external
member of a review team, is most beneficial in the following situations:

• Insufficient in-house professional capabilities in a specialized area.

• Temporary lack of in-house professionals for review team participation
due to intense workload pressures during periods when delaying could
cause substantial delays in the project completion schedule.

Summary 247

• Indecisiveness caused by major disagreements among the organization’s
senior professionals.

• In small organizations, where the number of suitable candidates for a
review team is insufficient.

Summary

1. Direct and indirect objectives of the review methodologies

The direct objectives are:
• To detect analysis and design errors.
• To identify new risks expected to affect the completion of the project.
• To locate deviations from software development instructions and
procedures.

• To identify deviations from templates and style procedures.
• In formal reviews – to approve the analysis or design product, allow
ing the team to continue to the next development phase.

The indirect objectives are:
• To serve as an informal meeting place for the exchange of knowledge
about software development.

• To promote and support corrective action activities.
• To identify deviations from standards, procedures, and work instructions.

2. The contribution of outside experts to the performance of review
tasks

An outside expert can support quality assessment efforts by evaluat
ing a document or a code section, or by participating in an internal
review team.

Turning to outside experts is useful in situations when: in-house
capabilities are insufficient in specialized areas, an insufficient number of
available in-house suitable candidates are available, and so on.

3. Comparison of objectives and participants of the three review methods
Three review methods were discussed: formal DRs, inspections, and

walkthroughs. The direct objective common to all these methods is error
detection. Other objectives, specific to formal design reviews, are the
identification of new risks and the approval of design documents. The
specific objective for inspections – identification of deviation from stan
dards and support of corrective actions. The indirect objective shared by
all review methods is the exchange of professional knowledge between
participants.

The project leader participates in the review teams of every method.
However, while the other participants in the DR are superior, either pro
fessionally or administratively to the team leader and customer

248 Chapter 13 Reviews

representatives, participants in the other review methods are all peers.
Another major difference between the DR and the peer review methods
is the inclusion of specialized professionals in the team: designers, coders
or implementers, and testers in inspections; standards enforcers, mainte
nance experts, and user representatives in walkthroughs.

Selected bibliography

Aurum A., Petersson H., and Wohlin C. (2002) State-of-the-art software inspections after 25 years,
Software Testing, Verification and Reliability, Vol. 12, No. 3, pp. 133–154.

Ciolkowski M., Laitenberger O., and Biffi S. (2003) Software reviews, the state of the practice, IEEE
Software, Vol. 20, No. 6, pp. 46–51.

Dobbins J. H. (1998) Inspections as an up-front quality technique in Schulmeyer G. G. and McMa
nus J. I., Handbook of Software Engineering, Prentice Hall PTR, Upper Saddle River, NJ, Vol. 3,
pp. 217–253.

Fagan M. E. (1976) Design and code inspections to reduce errors in program development, IBM
Syst. J. Vol. 15, No. 3, pp. 182–211.

Fagan M. E. (1986) Advances in software inspections, IEEE Trans. Softw. Eng., Vol. SE-12, No. 7,
pp. 744–751.

Hatton L. (2008) Testing the value of checklists in code inspection, IEEE Software, Vol. 25, No. 4,
pp. 82–88.

Horta H. (2014) Software defects: stay away from them. do inspections! Proceedings of the 2014 9th
International Conference on Quality of Information and Communications Technology (QUATIC),
Guimaraes, Portugal, Sep. 2014, pp. 1–7.

Mishra D. and Mishra A. (2009) Simplified software inspection process in compliance with interna
tional standards, Comput. Stand. Interfaces, Vol. 31, No. 4, pp. 763–771.

Nair T. R. G., Suma V., and Nair N. G. (2011) Estimation of the characteristics of a software team
for implementing an effective inspection process through inspection performance metric, Softw.
Qual. Prof., Vol. 13, No. 2, pp. 14–24.

O’Neill D. (2008) Inspections as an up-front quality technique in Schulmeyer G. G. (Ed.) Handbook
of software quality assurance, 4th Edition, Artech House, Norwood, MA.

Parnas D. L. and Lawford M. (2003) Inspection’s role in software quality assurance, IEEE Softw.
Vol. 20, No. 4, pp. 16–20.

Pressman R. J. and Maxim B. R. (2015) Software Engineering – A Practitioner’s Approach, 8th
Edition, McGraw-Hill International, London.

Sommerville I. (2015) Software Engineering, 10th Edition, Addison Wesley, Harlow, England.
Yourdon E. (1979) Structured Walkthrough, 2nd Edition, Prentice Hall International, London.

Review questions

13.1 There are five direct objectives and two indirect objectives attributed to the various
review methods.

a. List the direct and indirect objectives of each review method.

b. For each objective, indicate the review technique or techniques that contribute(s)
the most to achieve that objective.

Review Questions 249

13.2 One of the objectives of reviews is to identify deviations from templates and style
procedures, and conventions.

• Explain the importance of enforcing templates and keeping to style procedures
and conventions.

13.3 Some people claim that one of the justifications for a small design review team is
the need to schedule the review session within a few days after the design product
has been distributed to the team members.

a. List additional reasons for preferring small DR teams, apart from the anticipated
delays in convening a DR session composed of large teams.

b. What reasons motivate attempts to schedule the review session as soon after
distribution of the design reports to the team members as possible?

13.4 One can expect that in many cases, participants in an inspection session are able to
suggest solutions for a detected defect, or at least point out possible directions for
its solution. While it is clear that these suggestions are crucial for the development
team, it is commonly recommended to avoid any discussion about solutions during
the inspection session.

a. List your arguments in favor of this recommendation.

b. What other characteristics in the nature of cooperation between the moderator
and the review team would you prefer to observe in a session?

13.5 It is quite natural to expect participation of the document’s author (the designer) in
a review of any type.

a. What are the arguments in favor of his/her participation?

b. What are the differences in the role played and existing status of the author in
each of the review methods discussed?

13.6 The preparations made by the members of inspection teams are considered to be
of greater depth and thoroughness when compared with the preparations for
walkthroughs.

a. What activities are included in such high levels of preparation?

b. Do you think that inspection teams with 15 members can achieve similarly high
levels of preparation?

13.7 Seven guidelines for successful design review are presented in Frame 13.4.

a. It is often claimed that the seven guidelines dealing with the design review ses
sion are as applicable to inspections as they are to walkthrough sessions. Can
you list these common golden guidelines and explain the reasons for their broad
applicability?

b. List situations where it is difficult for the moderator to keep up with the session’s
agenda.

250 Chapter 13 Reviews

c. The DR session has already lasted for 2 hours but a substantial part of the
agenda has still not been discussed. Suggest reasons why a DR session should
not be prolonged for over 2 hours.

Topics for discussion

13.1 A proposal for changing an inspection procedure involves adding a new reporting
requirement as follows:

“At the end of the session or series of sessions, the inspection leader will sub
mit a copy of the inspection session finding’s report and a copy of the inspection
session summary report to management.”

a. Consider the proposal and list possible arguments for and against the change.

b. What would be your recommendation – to add the new reporting requirement or
not? Explain your reasoning.

13.2 David Martin just finished his inspection coordinator course. After obtaining his
first appointment, he plans to add his personal secretary to the inspection team for
the purpose of serving as session scribe and producing the required reports. He
assumes that her participation will free him of the coordination tasks and enable
him to conduct the session successfully.

• Is it advisable to employ a secretary (a noninformation technology professional)
as a scribe in an inspection session? List the pros and cons of adding such a
nonprofessional to the inspection session..

13.3 Table 13.2 presents the results of Nair et al. for inspection efficiency. These results
are characterized by their wide range, where the maximal design inspection effi
ciency is more than 12-fold the minimal efficiency. The author finds that team size
and experience and project size are factors explaining the variety in results.

a. Could you suggest additional factors that may affect the inspection efficiency?

b. Could you rank the affecting factors, those you have suggested and those men
tioned by the author, according to their impact on inspection efficiency?

13.4 Compare the various review techniques.

a. In which aspects are design reviews more formal than inspections?

b. In which aspects are inspections more formal than walkthroughs?

13.5 The chapter offers three different methodologies for the team review of design
documents.

a. Which of the methodologies should a software development organization
choose?

b. Can more than one method be chosen and applied for the same document?
Alternatively, is it recommended to apply all three methods? List your
arguments.

Topics for Discussion 251

13.6 Despite the widely accepted importance and contribution of DRs to software project
quality, there are situations where the development project leader or seniors in the
developing organization are not interested in the affectivity of a DR.

a. List situations where the organizers of a DR are not interested in its effectiveness.

b. If you were chosen to participate in a review team, and not notified about the
negative intentions of the organizers – how could you identify these intentions
of the organizers?

252 Chapter 13 Reviews

Appendix 13.A: DR report form

Appendix 13.B: Inspection Session Findings Report Form 253

Appendix 13.B: Inspection session findings report form

254 Chapter 13 Reviews

Appendix 13.C: Inspection session summary report

Chapter 14

Software Testing

14.1 Introduction

Software testing (or “testing”) was the first software quality tool applied as
“acceptance testing” to control the software product’s quality before its delivery
to, or installation at, the customer premises. At first, testing was confined to the
final stage of development, after the entire software product had been completed.
Later, as the importance of early detection of software defects penetrated as soft
ware quality assurance concepts, software development professionals were
encouraged to extend testing to the partial in-process products of coding, which
led to software module (unit) testing and integration testing. Common to all test
ing activities is their application through the running of code.

Some authors tend to broaden the scope of testing even further, and con
sider all quality assurance activities in the software life cycle as types of testing
activities. In other words, these authors term all quality activities “tests” whether
performed by running the software code or by examining documents.

In this book, we limit the scope of testing to those quality assurance activi
ties performed by running the code. Quality activities performed by examining
documents are termed “reviews.”

The definition of software testing applied in this book focuses on the opera
tive characteristics of testing as presented in the definition in Frame 14.1.

Frame 14.1: Software testing – definition

Source: IEEE Std. 829-2008 (IEEE, 2008)

Software testing – definition

An activity in which a system or component is executed under specified conditions,
the results are observed or recorded and evaluation is made of some aspect of the
system or component.

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

255

256 Chapter 14 Software Testing

The words and phrases stressed in the definition allow us to explain the key
characteristics of software testing:

System or component – Testing may be performed on the entire software
system (system test or acceptance test), on a component or module (unit
test) or on the integration of several components (integration test).

Executed – Performed by running software on computer.

Under specified conditions – The tests will be performed applying approved
test procedures, using test cases prepared and reviewed time in advance.

Software testing organization and performance

Software testing – unit testing, integration testing, and system acceptance testing
– is organized and carried out by the development teams and the development
departments. In some organizations, the acceptance testing is performed by spe
cialized testing teams or by outsourced testing organizations.

The role of the SQA function in software testing

The role of the SQA function is supportive of the software acceptance testing orga
nization (consulting basis), and is aimed at improving its efficiency and effective
ness. SQA function team members may participate in software acceptance testing,
as part of the SQA activities to evaluate software products conformance.

Now that software testing has been defined, we can turn to a discussion of
the objectives of software testing. These objectives are shown in Frame 14.2.

Frame 14.2: Software testing objectives

Software testing objectives

Direct objectives

• To identify and reveal as many errors as possible in the tested software.

• To bring the tested software to an acceptable level of quality, after correction of the
identified errors and retesting.

• To perform the required tests efficiently and effectively, and within the budgetary
and scheduling limitations.

• To establish with a degree of confidence that the software package is ready for
delivery (or installment at customer premises).

Indirect objectives
To compile a record of software errors for use in software process improvement

(by corrective and preventive actions – CAPA processes) and for managerial
purposes.

14.1 Introduction 257

It should be noted that the objective “to establish with a degree of confi
dence that the software package is ready for delivery” inherently contradicts the
first direct objective mentioned, and may influence, or stated more accurately,
bias the choice of tests and/or test cases or test results appraisal. Myers (1979),
in his classic book, summarized the issue nicely: “If your goal is to show the
absence of errors, you won’t discover many. If your goal is to show the presence
of errors, you will discover a large percentage of them.”

The wording of the second objective reflects the fact that bug-free software
is still a utopian aspiration. Therefore, we prefer the phrase “acceptable level of
quality,” meaning that a certain percentage of bugs tolerable to users will remain
unidentified upon installation of the software. This percentage obviously varies
according to the software package and developer.

The process approaches for the evaluation of software products guide soft
ware testing, as well as software reviews and other SQA activities: the verifica
tion, validation, and qualification approaches. The definitions of these approaches
are presented in Frame 14.3.

Frame 14.3: The process approaches for the evaluation of software
products

The process approaches for the evaluation of software products – the definitions

• Verification – A process for evaluating a software system or component product of
a given development phase with the purpose of checking whether the examined
item correctly and fully implemented the conditions and requirements presented at
the beginning of the development phase.

• Validation – A process for evaluating a software system or component product of a
given development phase with the purpose of checking whether the examined prod
uct correctly and fully implemented the relevant specified requirements.

• Qualification – A process for evaluating a software system or component product
of a given development phase with the purpose of checking whether the examined
product correctly and fully implemented the professional coding standards and style
and structure, instructions, and procedures.

Verification examines the consistency of the coding products being devel
oped with products developed in the previous phase. When doing so, the exam
iner follows the development process while assuming that all former
development phases were completed correctly – whether as originally planned
or after elimination of all discovered defects. This assumption causes the exam
iner to disregard deviations from a customer’s original requirements that might
have been introduced during the development process.

Validation represents customer interests by examining the extent that the
coding product is compliant with the customer’s original requirements. Thus,

258 Chapter 14 Software Testing

comprehensive code validation tends to improve customer satisfaction with the
system.

Qualification focuses on operational aspects, where maintenance is the main
issue. A software component that has been developed and documented accord
ing to professional standards, style and structure conventions, and procedures is
expected to be much easier to maintain than one that offers “marvelous” coding
improvisations, yet does not follow the accepted coding style procedures.

Testing planners are required to determine which of these approaches
should be examined for each quality assurance activity. A combination of
approaches is preferred in many, if not in most, SQA activities.

Three approaches toward the purpose of SQA activities are also applicable
to software reviews, inspections, and walkthroughs of software products
(reports, documents, code, etc.) throughout the software development process.

Software testing resources utilization

Software testing is undoubtedly the largest consumer of software quality assur
ance resources. Sommerville (2015) reports that about 40% of project costs are
spent on testing (integration and system tests), while 14% of costs are dedicated
to specifications including the analysis phase, 26% to the design phase, and 20%
to the coding including unit testing. The quoted cost distribution fits the waterfall
development process, while the cost portion of the testing phase does not change
significantly and remains the largest of all software development methods.

Testing is not the only type of quality assurance tool applied to program
ming and system testing phases. Review processes, namely, inspections and
walkthroughs, are applied to review program code listings. These review proce
dures, which are similar to those applied in the review of design documents,
yield important results in identifying a great, and even major, part of code
defects. Nevertheless, these tools usually do not replace software testing, which
examines the functionality of a software product by running on a computer, in
the form that the software will actually be used by the customer.

Additional material on testing can be found in numerous papers and books
dealing with software testing. A small sampling of these sources are the books
by Pressman and Maxim (2015), Sommerville (2015), Rubin and Chisnell
(2008), and Perry (2006), to cite some major documents in this category. Several
software engineering and SQA standards dedicate significant parts to software
testing issues, to mention just three: IEEE (2014), ISO/IEC (2008), and ISO/IEC
(1014).

The testing process is illustrated in Figure 14.1.
The testing process includes the following activities, presented in

Sections 14.3–14.10:

• Determining software testing strategies

• Requirement-driven software testing

14.2 Joe Decided to Skip In-Process Testing 259

Figure 14.1 The software testing process

Planning the testing process:

• Designing the testing process

• Implementing the testing process

• Automated testing process

• Alpha and beta site testing programs

• Code review activities for the programming and testing phases

Before delving into the testing process details, let us examine the mini-case
of the next section, Section 14.2, that may serve as an introduction to the next
sections.

14.2 Joe decided to skip in-process testing – an
introductory mini-case

Joe Brady, head of the development unit, was not satisfied with the tedious
procedure of unit and integration testing conducted prior to the system tests.
When looking into the resources utilized for the last five projects, he found that
unit and integration tests had consumed more resources than the design and cod
ing put together. What made him especially angry was that despite these early
testing efforts, about 10% of the defects still “escaped,” and were detected dur
ing the system tests. The new project, “S.F.G. Salaries,” seemed an appropriate
project to serve as a pilot to examine Joe’s idea of a project without unit and
integration testing.

The S.F.G. project was planned for 31 modules and 11 integrations, 7 of
which were first-level integrations. The development team was instructed to skip
the unit and integration tests. The design and coding took about 3 months, at that
time a system test plan was prepared and almost 900 test cases were compiled.
The first run of the system test yielded 310 failing test cases. It took 2 weeks to
solve the first 100 defects. During the next 2 weeks, another 80 defects were
removed. The main difficulty of locating the cause of the defect substantially

260 Chapter 14 Software Testing

reduced the rate of defect removals. The second month of correction yielded an
additional 90 corrections. At this stage, Joe decided to run a second full-scale
system test, which resulted in 45 failing test cases. While some of the unsolved
defects disappeared, several new failing test cases were listed. Evaluating the
results, Joe was concerned about the nearing delivery date, and applied for and
received help from the other software development unit. Now, working in pairs,
special efforts had been done to solve the remaining defects. A third full-scale
system test carried out 4 months after the system tests had commenced revealed
five failing test cases. Now, with the pressure of 2 months delay in delivery, Joe
decided to install the package “as is,” and to notify the customer about the
remaining minor defects. He promised the customer to install a “defect free”
version, once the correction process had been completed.

In the next team meeting, Joe stood up and declared: “My point has been
proven quite enough. Thank you all for your efforts and patience in carrying out
my experiment.” He paused for few seconds and continued: “The failure in a
relatively small project just proved the extent of potential disaster if my idea had
been tried out on a larger project. Unit testing and integration testing should be
carried out and improved, with the goal of zero defects during the system tests.”

∗ ∗ ∗

Joe’s pilot testing procedure reflects discussions among followers of testing
only the entire software package (frequently called “big bang” testing), and fol
lowers of partial testing of modules and integrations prior to system testing (fre
quently called “incremental testing”). This subject will be discussed later.

14.3 Software testing strategies

Software testing strategy deals with the steps to be carried out when performing
testing, and the software testing approaches and procedures. The following stra
tegic issues for testing will be discussed:

• Incremental testing versus “big bang” testing

• The order of performing incremental testing

• The testing concept – black box and white box testing

• Requirement-driven software testing

These software testing strategies will be discussed in the following sections.

14.3.1 Incremental testing versus “big bang” testing

There are two basic ways to test a software package:

• To test the software in its entirety, once the completed package is available;
otherwise, “big bang testing.”

14.3 Software Testing Strategies 261

• To test the software piecemeal, in modules, as they are completed (unit
tests); then to test groups of tested modules integrated with newly com
pleted modules (integration tests). This process continues until all the
package modules have been tested. Once this phase is completed, the
entire package is tested as a whole (system test). This testing strategy is
usually termed “incremental testing.”

“Big bang” versus incremental testing – compared

Unless the program is very small and simple, application of “big bang” testing
strategies displays severe disadvantages:

• The rate of “big bang” error identification, as indicated by failing test
cases, is relatively lower.

• Identification of the cause of an error in order to correct it becomes
quite demanding when dealing with immense quantities of software.
Moreover, when confronted with an entire software package, error
correction is often an onerous task, requiring consideration of the pos
sible effects of the correction on several modules at one and the same
time.

• As a result of the vast resources invested in correcting errors, the effec
tiveness of this approach is relatively meager.

• These error correction difficulties obviously make estimating the required
testing resources and schedule a rather fuzzy endeavor. This also implies
that prospects of keeping on schedule and within budget are substantially
reduced when applying the “big bang” testing strategy.

In contrast to “big bang” testing, “incremental testing” presents several
advantages, the main ones being:

• Incremental testing is usually performed on relatively small software mod
ules, as unit or integration tests. This makes it easier to identify higher
percentages of errors when compared with testing the entire software
package.

• Identification and correction of errors in unit and integration tests is much
simpler and requires fewer resources because it is performed on a limited
volume of software. In addition to preventing “migration” of defects to a
later development stage, where their identification and correction requires
significantly greater resources, it contributes to a higher total percentage of
defect detection.

• The total resources invested in unit, integration tests, and system tests in
incremental testing are lower than those invested in “big bang” testing
system tests.

262 Chapter 14 Software Testing

The following are the main disadvantages of incremental testing:

• The substantial amount of extra programming resources required for prep
aration for unit and integration testing. These extra resources are invested
in the programming of stubs and drivers for the unit and integration tests
(for details, see next section).

• The need to carry out numerous testing operations for the same program.
(Note: Big bang testing requires only a single testing operation.)

To sum up, apart from cases of very small and simple software development
projects, incremental testing should be highly preferred to “big bang” testing.

14.3.2 The order of performing incremental testing

Top-down and bottom-up incremental testing

Incremental testing is also performed according to two basic strategies: bottom-
up and top-down. Both incremental testing strategies assume that the software
package is constructed of a hierarchy of software modules. In top-down testing,
the first module tested is the main module, the highest level module in the soft
ware structure; the last modules to be tested are the lowest level modules. In
bottom-up testing, the order of testing is reversed: the lowest level modules are
tested first, while the main module is tested last.

Figure 14.2 illustrates top-down and bottom-up testing of an identical soft
ware development project composed of 11 modules. In the upper part of
Figure 14.2a, the software development process and its subsequent testing are
carried out bottom-up, in four stages, as follows:

• Stage 1: Unit tests of modules 1–7.

• Stage 2: Integration test A of modules 1 and 2, developed and tested in
stage 1, and integrated with module 8, developed in the current stage.

• Stage 3: Two separate integration tests, B, on modules 3, 4, 5, and 8,
integrated with module 9, and C, for modules 6 and 7, integrated with
module 10.

• Stage 4: System test is performed after B and C have been integrated with
module 11, developed in the current stage.

In Figure 14.2b, software development and testing are carried out top-
down in six stages. It should be apparent that the change of testing strategy
introduces major changes into the test schedule. The testing will be performed
as follows:

• Stage 1: Unit tests of module 11.

• Stage 2: Integration test A of module 11 integrated with modules 9 and
10, developed in the current stage.

14.3 Software Testing Strategies 263

Figure 14.2 Top-down and bottom-up testing – an illustration

• Stage 3: Integration test B of A integrated with module 8, developed in
the current stage.

• Stage 4: Integration test C of B integrated with modules 6 and 7, devel
oped in the current stage.

• Stage 5: Integration test D of C integrated with modules 1 and 2, devel
oped in the current stage.

• Stage 6: System test of D integrated with modules 3, 4, and 5, developed
in the current stage.

264 Chapter 14 Software Testing

The incremental test paths shown in Figure 14.1 represent only two of the
many possible paths.

Other possible paths involve the clustering of modules into one testing
stage. For example, for the top-down path of Figure 14.1b, one might cluster
modules 16, 1, and 2, and/or modules 10, 6, and 7.

The main advantage of the top-down strategy is the early stage at which it is
possible to demonstrate the program as a whole, a condition that supports early
identification of analysis and design errors by the customer.

14.3.3 The testing concept – white box and black
box testing

The issues of this section are the following:

a. The testing concept – black box and white box testing

b. White box testing realization

c. White box testing coverage

d. The advantages and disadvantages of white box testing

e. Black box testing realization

f. Equivalence classes for black box correctness tests

g. The Golden Splash Swimming Center – EC example

h. Advantages and disadvantages of black box testing

a. Black box and white box testing definitions
There is an ongoing debate over whether testing the functionality of

software solely according to its outputs is sufficient to achieve an accept
able level of quality. Some claim that the internal structure of the soft
ware and the calculations (i.e., the underlying mathematical structure,
also known as the software “mechanism”) should be included for satis
factory testing. Based on these two opposing concepts or approaches to
software quality, two testing classes have been developed:
• Black box (functionality) testing identifies bugs only according to soft
ware malfunctioning as they are revealed in its erroneous outputs. In
cases that the outputs are found to be correct, black box testing disre
gards the internal path of calculations and processing is performed.

• White box (structural) testing examines internal calculation paths in
order to identify bugs. Although the term “white” is meant to indicate
its being a contrary alternative to black box testing, the method’s other
name, “glass box testing,” better expresses its basic characteristic, that
of investigating the correctness of code structure.
Table 14.1 presents white box and black box testing suitability to

the various classes of tests. The classification of tests was done accord
ing to quality requirement factors (for details, see Chapter 2).

14.3 Software Testing Strategies 265

Table 14.1 White box and black box testing for the various classes of tests

Test classification according to requirements White box testing Black box testing

1.1 Correctness tests + +
1.2 User manuals tests +
1.3 Availability (reaction time) tests +
2. Reliability tests +
3. Stress tests (load tests and durability tests) +
4. Software system security tests +
5.1 Training usability tests +
5.2 Operational usability tests +
6. Maintainability correctness tests + +
7. Flexibility tests +
8. Testability tests +
9. Portability tests +
10. Reused software correctness tests + +
11.1 Software interoperability tests +
11.2 Equipment interoperability tests +

Examining Table 14.1 it is evident that correctness, maintainability,
and reused software correctness tests could be performed either by white
box testing, where data processing paths and calculations are examined,
or by black box testing where only the program outputs will be checked.
The other classes of tests are performed by black box testing.

Due to cost considerations, currently most of the testing carried out
is black box testing.

When implemented, each concept approaches software testing dif
ferently, as we shall see in the next four sections.

b. White box testing realization
Realization of the white box testing concept requires verification of

every program statement and comment. In order to perform data proc
essing and calculation correctness tests (white box correctness test),
every computational operation in the sequence of operations created by
each test case (path) must be examined. This type of verification allows
us to decide whether the processing operations and their sequences were
programmed correctly for the path in question, but not for other paths.

Different paths in a software module are created by the choice in
conditional statements, such as IF-THEN-ELSE or DO WHILE or DO
UNTIL. Path testing is motivated by the aspiration to achieve complete
coverage of a program by testing all its possible paths.

The next sections deal with white box issues:
• White box testing coverage (Section c)
• The advantages and disadvantages of white box testing (Section d)

266 Chapter 14 Software Testing

c. White box testing coverage
The concept of white box testing is based on checking the data proc

essing path for each test case, where the greater the number of paths
checked, the larger the number of defects detected are. It immediately
raises the question of coverage of the program’s vast number of possible
processing paths and the multitude of lines of code. Two alternative
approaches have emerged:
• “Path coverage” – To plan our test to cover all possible paths, cover
age is measured by the percentage of paths covered.

• “Line coverage” – To plan our tests to cover all program code lines,
coverage is measured by the percentage of lines covered.
Path coverage. Hence, the “path coverage” metrics gauging a

path’s test completeness is defined as the percentage of the program
paths executed during the test (activated by the test cases included in the
testing procedure).

While the concept of path testing naturally flows from application of
the white box testing concept, it is impractical in most cases because of
the vast resources required for its performance. Just how costly these
applications can be is illustrated in the following example.

Let us now calculate the number of possible paths created by a sim
ple module containing 10 conditional statements, each allowing for only
two options (e.g., IF-THEN-ALSO and DO WHILE). This simple mod
ule contains 1,024 different paths. In other words, in order to obtain full
path coverage for this module (probably 25–50 lines of code), at least
1,024 test cases need to be prepared, one for each possible path. A
straightforward calculation of the number of test cases required to test a
software package that contains 100 modules of similar complexity, a
total of 102,400 test cases, readily indicates the impracticality of the
wide use of path testing. Thus, its application is directed mainly to high
risk software modules, where the costs of failure resulting from software
error fully warrant the costs of path testing.

This situation has encouraged the development of an alternative yet
weaker coverage concept – line coverage. The line coverage concept
requires considerably fewer test cases but, as expected, leaves most of the
possible paths untested. The subject of line coverage is discussed next.

Line coverage. The line coverage concept requires that for full line
coverage every line of code be executed at least once during the process
of testing. The line coverage metrics for completeness of a line-testing
(basic path testing) plan is defined as the percentage of lines actually
executed – that is, covered – during the tests.

d. The advantages and disadvantages of white box testing
The main advantages of white box testing is (1) its direct statement

by-statement checking of code. It enables determination of software

14.3 Software Testing Strategies 267

correctness as expressed in the processing paths, including whether the
algorithms were correctly defined and coded. (2) It provides line cover
age follow-up. (3) Its capability to test the quality of coding work.

The main disadvantages of white box testing are (1) the vast
resources utilized (much more than those required for black box testing
of the same software package), and (2) the inability to test software per
formance in terms of availability (response time), reliability, load durabil
ity, and other testing classes related to operation, revision, and transition
factors.

The characteristics of white box testing limit its usage to cases of
software modules of very high risk and very high cost of failure, where
it is highly important to identify and fully correct as many of the soft
ware errors as possible.

e. Black box testing realization
Black box testing allows us to perform correctness tests and most

other classes of tests, based on the processing outputs only. The success
of black box testing relies only on the selection of the appropriate test
cases that will uncover errors in the wide variety of program paths.
While the effectiveness of black box testing relies on a wider variety of
test cases, the efficiency of black box testing depends on the decrease in
the number of test cases. There is a lengthy search for the optimal eco
nomic size of test cases sets.

The next sections will thus deal with the following black box issues:
• Equivalence classes for black box correctness tests (Section f).
• The Golden Splash Swimming Center – EC example (Section g).
• Advantages and disadvantages of black box testing (Section h).

For additional material on black box testing, I would mention Beizer
(1995) as one of the major sources available.

f. Equivalence classes for black box correctness tests
Black box correctness tests are based on test cases. Improving the

choice of test cases is an important goal of software testing, particularly
of black box testing.

Equivalence class partitioning is a black box testing method aimed
at increasing the efficiency of testing and, at the same time, improving
coverage of potential error conditions.

There are two types of equivalence classes: input equivalence classes
and output equivalence classes. An input equivalence class (IEC) is a set
of input variable values that produce the same output results or that are
processed identically. IEC boundaries are defined by a single numeric
or alphabetic value, a group of numeric or alphabetic values, a range of
values, and so on. An IEC that contains only valid values is defined as a
“valid IEC,” whereas an IEC that contains invalid input values is defined
as an “invalid IEC.” In cases where a program’s input is provided by

268 Chapter 14 Software Testing

several variables, valid and invalid ECs should be defined for each varia
ble. An output equivalence class (OEC) is an output result or an output
function of an input variable values combination or is common to a set of
input variable values combinations.

Test cases for valid ECS and invalid ECS
According to the equivalence class partitioning method, test cases

are defined so that each valid ECs, invalid IECs, and OECs is included
in at least one test case. The definition of test cases is done separately for
valid and invalid IECs and for OECs.

Test cases for IECS
1. Valid IECs. In defining a test case for the valid IECs, we try to cover

as many as possible “new” valid IECs (i.e., classes not included in any
of the former test cases) in that same test case. Test cases are added as
long as there are uncovered valid IECs. As a result of this process, the
total number of required test cases to cover the valid IECs is equal to,
and in most cases significantly below, the number of valid ECs.

2. Boundary values for valid IECs. According to the definition of input
equivalence classes, one test case should be sufficient for each class.
However, when equivalence classes cover a range of values (e.g.,
monthly income, apartment area), the tester has a special interest in
testing border values for input IECs, when these are considered to be
error prone. In these cases, preparation of three test cases – for mid
range, lower boundary, and upper boundary values – is recommended.

3. Invalid IECs. Note that in defining invalid ECs, we must assign one
test case to each “new” invalid EC, as only one invalid EC can be
included in a test case. A test case that includes more than one invalid
EC may not enable the tester to distinguish between the program’s sep
arate reactions to each of the invalid ECs. Hence, the number of test
cases required for the invalid ECs equals the number of invalid ECs.

4. Test cases for OECs. All OECs must be presented in the set of test
cases. As some of the OECs are already covered by test cases prepared
for the IECs, only those OECs not presented in the set of test cases
already prepared for the IECs need a test case defined according to
their OEC. One test case is prepared for each of these OECs.

Compared with the use of a random sample of test cases, equiva
lence classes save testing resources because they eliminate duplication
of test cases defined for each EC. Importantly, as the equivalence class
method is a black box method, equivalence class partitioning is based on
software specification documentation, not on the code. Systematic con
structing of equivalence classes for a program’s input variables increases
the coverage of the possible valid and error conditions of the input and
output, thus improves the testing plan’s effectiveness. Further improve
ment of testing effectiveness and efficiency is achieved by testing for the
boundary values of IECs, a subject we shall elaborate on next.

14.3 Software Testing Strategies 269

g. The Golden Splash Swimming Center – EC example
The following example illustrates the definition of input equivalence

classes (valid and invalid) and output equivalence classes, and the corre
sponding test case values. The software module in question calculates
entrance ticket prices for the Golden Splash Swimming Center.

The center’s ticket price depends on four variables: (1) day (week
day, weekend), (2) visitor’s status (OT= one time, M=member), (3)
entry hour (6.00–19.00, 19.01–24.00), and (4) visitor’s age (up to 16,
16.01–60, 60.01–120).

The entrance ticket prices table is shown in Table 14.2.
The input equivalence classes, output equivalence classes, and cor

responding test case values for the above example are presented in
Tables 14.3–14.5.

A total of 25 IECs were defined for the ticket price module: 9 valid
IECs, 10 valid boundary value IECs, and 6 invalid IECs.

A total of 12 OECs were defined for the outputs of the ticket price
module.

The test cases that correspond to these IECs apply the representing
values listed in Table 14.5. The test cases related to the OECs were
selected from Table 14.3. The test cases for these IECs, including their
boundary values, as well as the test cases related to the OECs, are pre
sented in Table 14.4.

A total of 27 test cases cover all defined IECs and OECs:
• Three test cases for the valid IECs (for our example, a total of nine
valid IECs were defined).

• six test cases for the boundary value IECs (in our example, boundary
testing is applicable for only two of the four input variables).

• Six test cases for invalid IECs (for our example, a total of six invalid
ECs were defined).

• 12 OECs. Only four OECs were presented in the IEC test cases, and
accordingly, a set of eight test cases for the remaining OECs (OECs 3, 4,
5, 6, 7, 8, 9, and 11) was added to the list of test cases in Table 14.5.
Although the equivalence class method is mainly applied with cor

rectness tests, it may be used for other operation factor testing classes, as
well as for revision and transition factor testing classes.

h. Advantages and disadvantages of black box testing
The main advantages of black box testing are (1) the relatively

lower resources required to perform black box testing compared with
white box testing. (2) Further reduction of the black box testing
resources is achieved by automatic testing. The application of automatic
testing also contributes to shorter testing periods and to improved defect
uncovering rates, mainly by the easier performance of regression tests.
(3) The ability to perform almost all test classes, among them the

270 Chapter 14 Software Testing

Table 14.2 The entrance ticket price table – the Golden Splash Swimming Center

Mon, Tue, Wed, Thurs, Fri Sat, Sun
The day
Visitor’s status OT OT M M OT OT M M

Entry hour 6–19 19–24 6–19 19–24 6–19 19–24 6–19 19–24
Visitor’s age Ticket Prices – $
0.0–16.00 4.00 4.00 4.00 4.00 6.00 6.00 6.00 6.00
16.01–60.00 10.00 8.00 7.00 6.00 15.00 12.00 10.00 8.00
60.01–120.0 5.00 5.00 5.00 5.00 7.00 7.00 7.00 7.00

Table 14.3 Input equivalence classes – the Golden Splash Swimming Center

Representing values

Valid Values for Representing
equivalence the valid Invalid equivalence Values for the

The variable classes ECs Boundary values classes Invalid ECs

Day of the week (1) Mon, Tue, (1) Mon None Any alphanumeric Mox
Wed, Thurs, Fri (2) Sat value (not a day)
(2) Sat, Sun

Visitor’s status (1) OT (1) OT None Other than OT or M 88
(2) M	 (2)M

Entry hour (1) 6.00–19.00 (1) 7.55, (1) 6.00, 19.00 (1) Hours<6.00 (1) 4.40
(2)19.01–24.00 (2) 20.44 (2) 19.01, 24.00	 (2) Any (2) & @

alphanumeric values
(not time)

Visitor’s age (1) 0.0–16.0 (1) 8.4 (1) 0.0, 16.0 (1) Any alphanumeric (1) TTR
(2) 16.1–60.0	 (2) 42.7 (2) 16.1, 60.0 value (not an age) (2) 150.1
(3) 60.1–120.0 (3) 65.0 (3) 60.1, 120.0 (2) ages >120.0

Table 14.4 Output equivalence classes – the Golden Splash Swimming Center

Day Mon, Tue, Wed, Thurs, Fri	 Sat, Sun

Visitor’s status OT OT M M OT OT M M

Entry hour 6–19 19–24 6–19 19–24 6–19 19–24 6–19 19–24
Visitor’s age Ticket Prices – $
0.0–16.00 OEC(1)= 4.00 OEC(2)= 6.00
16.01–60.00 OEC(3)= OEC(4) OEC(5) OEC(6) OEC(7) OEC(8) OEC(9) OEC(10)

10.00 = 8.00 = 7.00 = 6.00 = 15.00 = 12.00 = 10.00 = 8.00
60.01–120.0 OEC(11)= 5.00 OEC(12)= 7.00

14.3 Software Testing Strategies 271

Table 14.5 Test cases – the Golden Splash Swimming Center

Test case Day of the Visitor’s Entry Visitor’s

Test case type no. week status hour age Test case results

Valid ECs Test cases 1 Mon OT 7.55 8.4 $4.00

2 Sat M 20.44 42.7 $8.00

3 Sat M 22.44 65.0 $7.00

Test cases for valid 4 Sat M 6.00 0.0 $6.00

border IECs 5 Sat M 19.00 16.0 $6.00

6 Sat M 19.01 16.1 $8.00

7 Sat M 19.01 60.0 $8.00

8 Sat M 24.00 60.1 $7.00

9 Sat M 24.00 120.0 $7.00

Test cases for invalid 10 Mon OT 7.55 8.4 Invalid day

IECs 11 Mon 88 7.55 8.4 Invalid visitor status

12 Mon OT 4.40 8.4 Invalid entry hour

13 Mon OT fv 8.4 Invalid entry hour

14 Mon OT 7.55 TTR Invalid visitor age

15 Mon OT 7.55 150.1 Invalid visitor age

Test cases for OECs 16 Tue OT 11.40 55.8 $10.00

17 Wed OT 19.45 46.0 $8.00

18 Thur M 12.00 44.0 $7.00

19 Fri M 15.00 55.0 $6.00

20 Sun OT 17.04 33.6 $15.00

21 Sat OT 21.05 58.9 $12.00

22 Sat M 6.15 56.0 $10.00

23 Tue OT 7.15 77.0 $5.00

following test classes of availability (response time), reliability, load
durability, and other testing classes related to operation, revision, and
transition factors, not available with white box testing.

The main disadvantages of black box testing are (1) its inability to
directly examine the software by checking the code statement-by-state
ment. Black box defect detection is indirect and based on the resulting
outputs. (2) A coincidental aggregation of several errors can produce the
correct response for a test case, and prevent error detection. (3) Absence
of control of line coverage. In cases where black box testers wish to
improve line coverage, there is no easy way to specify the parameters of
the test cases required to improve coverage. Consequently, black box
tests may not be conducted on a substantial proportion of code lines,
which are not covered by a set of test cases. (4) Impossibility of testing
the quality of coding and its adherence to the coding standards.

The characteristics of black box testing promote its use where appli
cable, while white box testing is preferred in cases of software products
with a very high risk and very high cost of failure, where it is highly
important to identify and fully correct as many of the software errors as
possible.

272 Chapter 14 Software Testing

14.4 Requirement-driven software testing

Chapter 2 presents McCall’s classic model for the classification of software qual
ity requirements. His model has been applied here to classify the tests classes to
ensure full coverage of the respective requirements. This classification was used
earlier in Table 14.1, for presenting the applicability of white box and black box
testing to the various test classes. The requirements and their corresponding tests
are shown in Table 14.6.

Table 14.6 Software quality requirements and test classification

Test classification
Factor Quality Quality requirement according to
category requirement factor subfactor requirements

Operation 1. Correctness 1.1 Accuracy and 1.1 Correctness tests
completeness
of outputs, accuracy and
completeness of data
1.2 Accuracy and 1.2 User manuals tests
completeness of
documentation
1.3 Availability 1.3 Availability
(reaction time) (reaction time)

tests
2. Reliability 2. Reliability tests
3. Efficiency 3. Stress tests (load

and durability tests)
4. Integrity 4. Software system

security tests
5. Usability 5.1 Training usability 5.1 Training usability

tests
5.2 Operational usability 5.2 Operational

usability tests
Revision 6. Maintainability 6. Maintainability

correctness tests
7. Flexibility 7. Flexibility tests
8. Testability 8. Testability tests

Transition 9. Portability 9. Portability tests
10. Reusability 10. Reused software

correctness tests
11. Interoperability 11.1 Interoperability 11.1 Software

with other software interoperability tests
11.2 Interoperability 11.2 Equipment
with other equipment interoperability

tests

14.4 Requirement-Driven Software Testing 273

14.4.1 Operation factor testing classes

Operation factor testing classes include eight test classes for the following five
operation factors categories:

Operation requirements factors:

• Correctness

• Reliability

• Efficiency

• Integrity

• Usability

a. Correctness tests
The correctness factor is covered by three test classes:

• Software correctness tests
• User manual tests
• Availability (reaction time) tests

These test classes are discussed, as follows:
1. Software correctness tests

Software correctness tests are aimed at verifying and validating the
accuracy and completeness of the outputs produced by the software.
These tests are carried out by black box and white box testing (dis
cussed above).

2. User manual tests
User manuals are a tool prepared by the developer for the cus

tomer to guide the developer regarding proper implementation of the
software functions. User manual errors disrupt the user operation and
might even cause substantial damage in certain situations.

User manual tests are planned to reveal user manual defects by
running test cases according to the manual’s directions.

3. Availability tests
Availability is defined as the reaction time – the time needed to

obtain the requested information or the time required for a firmware
installed in computerized equipment to react. Availability is of the
highest importance in online applications planned to serve a large
population of users (i.e., Internet sites), and for real-time systems
planned to handle high-frequency events. The failure of software sys
tems or firmware software to meet availability requirements (i.e.,
retarded reaction time) can make the software system or equipment
useless.
It is clear that the availability of real-time systems is affected by the

system load. In other words, the higher the system load, the lower the avail
ability (the longer the reaction time). Thus, a combined load and availabil
ity tests are needed where requirements for availability and load are defined

274 Chapter 14 Software Testing

for regular operation and for operation under maximal load. These com
bined availability–load tests are relatively difficult to conduct as it is
required to carry out the tests under regular operation load, as well as under
maximal load conditions as defined in the requirement specifications.

Carrying out the combined availability-load tests for systems
planned to serve large user populations manually is impractical. Testing
of this type is performed by computers that simulate the inputs of the
software user population and enable measuring the resulting expected
availability for any recorded load. For automatic availability and load
tests, see Section 14.8.

b. Reliability tests
The software system reliability requirement deals with features that

can be translated as events occurring over time, such as the average time
between failures (e.g., no more than once in 500 hours), average time for
recovery after system failure (e.g., no more than 15 minutes), or average
down time per month (e.g., no more than 30 minutes per month). Reli
ability requirements are to be in effect during regular full-capacity opera
tion of the system. It should be noted that in addition to the software
factor, reliability tests also relate to the hardware, the operating system,
and the data communication system effects.

Much like availability testing, reliability testing is especially difficult
as it requires operating the full range of software applications conducted
under regular and maximal workload conditions. To be practical, such
tasks should be carried out only after computerized simulations have
been run to obtain the required load values, and only once the system is
completed. With respect to resources, the major constraint to performing
tests of this type is the scope of resources required, which is vast, as test
ing may continue for hundreds of hours and a comprehensive test case
file must be constructed. Shorter reliability tests may be achieved by
simultaneously running more than one software system.

Bankmax software reliability tests – an example
Bankmax – a comprehensive custom-made software system – is

developed for branch operations and bank management. The systems
reliability requirements for a bank branch’s reliability are as follows:
• Bankmax operation failure frequency – no more than once a year (on
average)

• Recovery time after Bankmax software failure – no more than 15 min
utes (on average)
As the reliability tests needed to be run on the complete software sys

tem, they were scheduled in parallel to the system tests – for a period of 3
months. The tests should be conducted for at least 3 years of branch opera
tion in order to statistically prove that the system can cope with the maxi
mal failure frequency requirement. The testers’ problem is to work out

14.4 Requirement-Driven Software Testing 275

how 3 years of branch operation may be compressed into the available
testing period of only 3 months. We assume that system failures are ran
dom. Accordingly, if we run our reliability test for 24 hours daily, our test
ing day will be equal to several days of bank branch operation. Now let us
find out what can be achieved during the 3-month testing period. The bank
branch is open for 40 weekly hours; its annual hours of operation sum up
to 2,080 hours (40× 52). If we operate our reliability testing for 24 hours
daily, our 3-month testing period will provide 2,160 testing hours
(24× 30× 3), which can simulate a little more than a full year of bank
branch operation. Now we have worked out that in order to perform 3
years of branch operation, it will be sufficient to carry out reliability tests
for three independent branches for the planned testing period of 3 months.

Statistical reliability testing offers a much less expensive and speed
ier option to assess reliability on the basis of statistical models. Much
literature is available on the subject, to mention just a few sources: Perry
(2006), Mustafa et al. (2009), and Rubin and Chisnell (2008). However,
despite its widespread use and practical benefits, statistical reliability
tests have been subjected to criticism since their emergence. The main
issue debated is the extent to which statistical models represent real-life
software system operation.

c. Efficiency tests
The efficiency factor subsumes two main tests: (1) load test classes–

load tests and (2) durability tests. It is possible to perform these tests
only subsequent to software system completion. Durability tests, how
ever, can generally be carried out only after the firmware or information
system software has been installed and is ready for testing.

(1) Load tests
Load tests relate to the functional performance of the system under

maximal operational load, that is, maximal transactions per minute, hits
per minute to an Internet site and the like.

As explained above, as the load in real-time systems affects the sys
tem availability, where the higher the system load, the lower the availa
bility, a combined load and availability tests are needed. The
requirements for these combined tests define the availability and load for
regular operation and for operation under maximal load.

As explained above, testing of this type is performed by computers
that simulate the inputs of the software user population and enable meas
uring the resulting expected availability for any recorded load. For auto
matic availability and load tests, see Section 14.8.

It seems that a short example would be helpful.
The “Music in the Air” Example
“Music in the Air,” a network of music stores, run a service on the

Internet that registers requests for price quotations and orders.

276 Chapter 14 Software Testing

On weekdays, the average rate of customer hits is 5 per minute for
orders and 10 per minute for price quotations. The maximum loads
recorded on Saturday afternoon are 10 per minute for orders and 25 per
minute for price quotations.

The maximal load defined in the software specifications, which
takes future growth into account, is 25 per minute for orders and 60 per
minute for price quotation. As explained above, load and response time
should be tested together. The response time required for regular time is
3 seconds and for maximal hit rate 30 seconds.

Tests will be begin with hardware of a lower capability and will
gradually work up to hardware of higher capacities, till the test allocates
the hardware with the appropriate capacity. This hardware system will
enable coping with the availability requirements for the maximal load.

(2) Durability tests
Durability tests are carried out in physically extreme operating con

ditions such as high temperatures, humidity, and vibrations of high-
speed driving along unpaved rural roads, as detailed in the durability
specification requirements. Hence, these durability tests are typically
required for real-time firmware integrated into systems such as weapon
systems, long-distance transport vehicles, and meteorological equipment.
Durability issues for firmware include firmware responses to climatic
effects such as extreme hot and cold temperatures, dust, road bumps,
and extreme operation failures resulting from sudden electrical failure,
voltage “spikes” in the supply mains, sudden cutoffs in communications,
and so on.

d. Integrity tests – software system security tests
Software security components of software systems are aimed at (1)

preventing unauthorized access to the system or parts of it, (2) detection
of unauthorized access and activities performed by penetration, and (3)
recovery of damages caused by unauthorized penetration cases.

The following are the main security issues dealt with by these tests:
• Access control, where the usual requirement is for control of multile
vel access (usually by a password mechanism). Of special importance
here are the firewall systems that prevent unauthorized access to Inter
net sites

• Logging of transactions, system usage, access trials, and so on
The challenge of creating viruses and breaking into security systems

has bred a special brand of delinquent, the hacker. Often very young,
these enthusiasts find their ultimate pleasure first and foremost by break
ing into complex secured computer systems, sometimes accompanied by
system disruption, or planting of viruses that incapacitate others. Their
success has been astounding in some cases (e.g., national banks, US mil
itary security systems, etc.), and embarrassing to the same extent. One

14.4 Requirement-Driven Software Testing 277

"payoff" of their success is that it is no longer rare to find hackers invited
to join tester teams, especially for software systems where security
requirements are high.

e. Usability tests
Usability tests include training and operational usability tests.
(1) Training usability tests
When large numbers of users are involved in operating a system,

training usability requirements are added to the testing agenda. The
scope of training usability is defined by the resources needed to train a
new employee; in other words, the number of training hours required for
a new employee to achieve a defined level of acquaintance with the sys
tem or to reach a defined hourly production rate. The details of these,
like any other tests, are based on system characteristics but, more impor
tantly, on employee characteristics. The results of the tests should inspire
a sophisticated plan of training courses and follow-up, as well as
improved directions for software system training.

(2) Operational usability tests
The focus of this class of tests is the operator’s productivity, that is,

those aspects of the system that affect the performance regularly
achieved by system operators. These tests are applied mainly for infor
mation systems that serve many users, and are of high importance in
cases that the system can substantially affect the productivity of system
users.

The implementation of this class of tests deals mainly with the pro
ductivity, quantitatively, and qualitatively.

Operational usability tests can be performed manually by means
of time studies or by a computer program that collects the productiv
ity data of the users. In addition to productivity data, these manual
and computerized tests provide some insight into the reasons for
(high or low) performance levels and initiate ideas for improvements.
Accurate performance records can be achieved by automated follow-
up software that records all user activities throughout shifts. Software
packages of this type supply performance statistics and comparative
figures for different variables, such as specific activity, time period,
and industry.

Comprehensive discussions of usability testing issues and detailed
examples can be found in Rubin and Chisnell (2008).

14.4.2 Revision factor testing classes

Easy revision of software is a fundamental factor assuring a software package’s
successful, long service and successful sales to larger user populations. Related
to these features are the revision testing classes discussed in this section:

278 Chapter 14 Software Testing

• Maintainability tests

• Flexibility tests

• Testability tests

a. Maintainability correctness tests
The importance of software maintenance and maintainability can never

be overestimated; consider the fact that these functions consume the grea
test part of the total design, programming, and testing resources invested in
a software system throughout its life cycle. “It’s not unusual for a software
organization to expend as much as 60 to 70 percent of all resources on
software maintenance” (Pressman and Maxim 2015, p. 797).

Regular software operation and maintenance begin once installa
tion, running-in, and conversion have been successfully completed.
Maintenance of the software system is needed throughout the regular
operation period, which usually lasts for several years, until a new
software of a new generation replaces it. Maintenance incorporates
three types of services: (1) corrective – repairing software faults
identified by the user and the developer during operation; (2) adap
tive – using the existing software features with minor software adap
tations to fulfill new customers’ customization requirements; and (3)
functionality improving (perfective) – adding new minor features to
adapt the software package to market changes and improve software
performance.

Maintainability correctness tests relate mainly to these maintenance
issues:
• Testing the correctness of defect corrections
• Testing the correctness of adaptations performed
• Testing the correctness of changes and software additions performed
for the new features added to the software package

b. Flexibility tests
Software system flexibility refers to the system’s capabilities,

based on its structural and programming characteristics. These factors
significantly affect the ease to adapt the software to the variety of
customer needs as well as to introduce minor changes required by
customers and maintenance teams for the main purpose of enhancing
system sales.

Flexibility tests are intended to test the software functionality in a
variety of environments. These tests examine the software’s functionality
when applying parametric options to provide for the range of possible
customers.

c. Testability tests
Testability requirements deal with the ease of testing the software

system. Thus, testability here relates to the addition of special features in

14.4 Requirement-Driven Software Testing 279

the program that help the testers in their work, such as the possibility to
obtain intermediate results for certain check points and predefined log
files. Although often overlooked, these special testing support features
should be specified in the requirements document as integral to the func
tional software requirements.

Another objective of testability deals with diagnostic tool applica
tions implemented for the analysis of the system performance and the
report of any failure found. Some features of this kind are activated auto
matically when starting the software package or during regular operation,
and report on conditions warranting an alarm arise. Other features of this
type may be activated by the operator or maintenance technician. Testa
bility is particularly crucial for support of control rooms of large operat
ing systems (e.g., electricity plants) and for maintenance teams,
especially with respect to diagnosis of failures. Maintenance support
applications of this type may be activated either at the customer site and/
or at a remote help desk support center.

Testability tests will be carried out for the application of both types,
as noted in the requirement specifications. The tests should relate mainly
to aspects of correctness, documentation, and availability, as already
discussed.

14.4.3 Transition factor testing classes

Software systems are required by transition requirements to be operative, with
minor adaptations in different environments, In addition, they may be required
to incorporate reused modules or to interface with other software packages or
with other equipment’s firmware. These required transition features are espe
cially important for commercial software packages aimed at a wide range of cus
tomers. Hence, the following testing classes, discussed in this section, must be
applied:

• Portability tests

• Reusability tests

• Interoperability tests:
1. Software interfacing tests
2. Equipment interfacing tests

a. Portability tests
Portability requirements specify the environments (or environmental

conditions) in which the software system should be operable: the operat
ing systems, hardware and communication equipment standards, among
other variables. The portability test to be carried out will verify and vali
date these factors, as well as estimate the resources required for transfer
ring a software system to a different environment.

280 Chapter 14 Software Testing

b. Reusability tests
Software reusability is expected to substantially reduce project

resources requirements and improve the quality of the new software sys
tems. In doing so, reusability shortens the development period, which by
itself benefits the software development organization.

Reusability relates to (1) parts of the software system based on the
use of reused software, and (2) parts of the program (modules, integra
tions, and the like) that are to be developed for future reuse in other soft
ware development projects, whether already planned or not. These parts
should be developed, packaged, and documented according to reused
software library procedures.

Reusability requirements are of special importance for object-ori
ented software projects.

Reused correctness tests are devised to examine if these parts of the
software system function as required.

c. Software interoperability tests
Software interoperability deals with the software capabilities of inter

facing equipment and other software packages, to enable the joint opera
tion as one complex computerized system. The requirements list
delineates the specific equipment and/or software interfaces to be tested,
as well as the applicable data transfer and interfacing standards. A grow
ing share of commercial over-the-counter (COTS) software packages and
custom-made software packages are now required to have interoperability
capabilities, that is, to display the capacity to receive inputs from equip
ment firmware and/or other software systems and/or to send outputs to
other firmware and software systems. These software capabilities are car
ried out under the rigid data transfer standards, international and global or
industry-oriented interoperability standards, and tested accordingly.

Software interoperability tests examine whether the required interfa
ces with software packages and equipment were fulfilled.

14.5 Planning of the testing process

Planners should consider the following issues before initiating a specific test
plan:

• Which sources should be used for test cases

• Who should perform the tests

• Where should the tests be performed

These three issues will be discussed in this section.
The last subject of this section will discuss test plan documentation, priorit

ies (units 1 and 2), and the three lowest priorities (units 3, 4, and 7).

14.5 Planning of the Testing Process 281

14.5.1 Which sources should be used for test cases

Test case data components

A test case is a documented set that includes (1) the data input/parameters of
a test item, (2) the operating conditions required to run a test item, and (3)
the expected results of running the test item. The tester is expected to run the
program for the test item according to the test case documentation, and then
compare the actual results with the expected results noted in the documents.
If the obtained results completely agree with the expected results, no error is
present, or at least has been identified. When some, or all, of the results do
not agree with the expected results, a potential error is recognized. The
equivalence class partitioning method, discussed in Section 14.3.3, is applied
to achieve efficient and effective definition of the test cases files, as sets to
be used for black box testing.

An example – Test cases for the basic annual municipal property tax on
apartments.

The basic annual municipal property tax on apartments (before discounts to
special groups of city dwellers) is based on the following parameters:

• S – The size of the apartment (in square yards)

• N – The number of persons living in the apartment

• A, B, or C – The suburb’s socioeconomic classification

The annual Municipal Property Tax (MPT) is calculated as follows:

For class A suburbs MPT= (100× S)/(N+ 8)
For class B suburbs MPT= (80× S)/(N+ 8)
For class C suburbs MPT= (50× S)/(N+ 8)

Following are three test cases for the software module used to calculate the
basic municipal property tax on apartments:

Test case # 1 Test case # 2 Test case # 3

Size of apartment – (square yards) 250 180 98
Suburb class A B C
No. of persons in the household 2 4 6
Expected result: Annual Municipal $2,500 $1,200 $350
Property Tax (MPT)

Application of the test case will produce one or more of the following types
of expected results:

282 Chapter 14 Software Testing

• Numerical

• Alphabetic (name, address, etc.)

• Error message. Standard output informing user about missing data, erro
neous data, unmet conditions, and so on.

With real-time software and firmware, the expected results can be one or
more of the following types:

• Numerical and/or alphabetic messages displayed on a monitor’s screen or
on the equipment display.

• Activation of equipment or initiation of a defined operation.

• Activation of an operation, a siren, warning lamps, and the like, as a
reaction to identified threatening conditions.

• Error message. Standard output to inform the operator about missing data,
erroneous data, and so on.

Implementation tip

It is highly important that the test case file includes items where the expected result is
an error message, as well as nonstandard items and items displaying undesirable oper
ation conditions, and so on. Only by testing the software for nonregular conditions can
we be assured that it will remain under control should undesirable conditions arise. In
such cases, the software is expected to activate predefined reactions, alarms, operator
flags, and so on – all in ways appropriate to system and customer needs. See Section
6.7.7 for invalid equivalence classes.

Test case sources
There are two basic sources for test cases:
Random samples of real-life cases (sample cases)
Examples:

• A sample of urban households (to test new municipal tax information
system)

• A sample of shipping bills (to test new billing software)

• A sample of control records (to test new software for control of manufac
turing a plant production)

• A recorded sample of events that will be “run” as a test case (to
test online applications for an Internet site, and for real-time
applications).

Synthetic test cases, also called “simulated test cases” (synthetic cases).
This type of test case does not refer to an existing customer, shipment, or

product prepared by the test case designers. These test cases are designed to

14.5 Planning of the Testing Process 283

Table 14.7

Implication

Comparison of test data sources

The type of test case source

Random sample of cases Synthetic test cases

Effort required to
prepare a test
case file

Required size of
test case

Efforts required
to perform the
software tests

Effectiveness
–probability of
error detection

Less effort – especially when
expected results are available
and do not need to be
calculated
Relatively high – as most cases
refer to simple situations that
repeat themselves frequently.
In order to obtain a
sufficient number of
nonstandard situations, a
relatively large test
case file would need to be
compiled.
High efforts (low efficiency) – as
tests must be carried out for
large test case files. The low
efficiency stems from the
repetitiveness of case
conditions, especially
for simple situations
typical to most real-life
case files.
Relatively low – unless the test
case files are very large –
due to the low percentage
of uncommon combinations
of parameters.

No coverage of erroneous
situations.

Some ability to identify
unexpected errors
for unlisted
situations.

High effort – the parameters of
each test case must be
determined, and expected
results calculated.

Relatively small – as it may be
possible to avoid repetitions of
any given combination of
parameters

Less efforts (high efficiency) – due
to the relatively small test case
file compiled in order to avoid
repetitions.

Relatively high due to
good coverage by
design.

Good coverage of erroneous
situations by test case
file design.

Little possibility of identifying
unexpected errors, as
all test cases are designed
according to predefined
parameters.

cover all known software operation conditions, or at least those conditions that
are expected to be in frequent use, or that belong to a high error probability
class. For the equivalence class method, see Section 14.3.3f.

The implications of using each test case source are summarized, and
a comparison between the random and synthetic cases is shown in
Table 14.7.

284 Chapter 14 Software Testing

In most cases, the preferred test case file should combine sample cases with
synthetic cases. This is to overcome the disadvantages of a single source of test
cases, and to increase efficiency of the testing process. In the case of combined
test case files, test plans are often carried out in two stages: in the first stage,
synthetic test cases are used. After correction of the detected errors, a random
sample of test cases is used in the second stage.

The planners should consider which of the two main sources of test cases –
(1) samples of real-life and (2) synthetic test cases – are most appropriate to their
needs. Each component of the testing plan, dealing with unit, integration, or the
system test, requires an individual decision about the respective test cases and
their sources:

• Should a single source of test cases or both be used?

• How many test cases from each source are to be prepared?

Implementation tip

Substantial improvement in the efficiency of the random sampling of test cases is
achieved by using a stratified sampling procedure, rather than a standard random sam
pling of the entire population. Stratified sampling allows us to break down the random
sample into subpopulations of test cases, thereby reducing the proportion of the major
ity “regular” population tested, while increasing the sampling proportion of small pop
ulations and high potential error populations. This method application not only
minimizes the number of repetitions but also improves the coverage of less frequent
and rare conditions.

Example: Garden City’s population of about 100,000 households is divided
between the city itself (70%), suburb Orange (20%), suburb Lemon (7%), and suburb
Apple (3%). The suburbs and the city differ substantially in the characteristics of their
housing and socioeconomic status. Of the city dwellers, 5,000 enjoy tax reductions
entailing 40 different types of discounts (disabled persons, very large families, low-
income single parent families with more than six children, etc.). Originally, the stan
dard 0.5% sample had been planned. This was later replaced by the following strati
fied random sample:

Standard 0.5% Stratified
Households N sampling N sampling N

Regular households 65,000 325 100
Households eligible for 5,000 25 250
discounts

Suburb A 20,000 100 50
Suburb B 7,000 35 50
Suburb C 3,000 15 50
Total 100,000 500 500

14.5 Planning of the Testing Process 285

Test cases for reused software. It is quite common for reused software to
include many applications not required for the current software system, in addi
tion to the required applications. In situations of this kind, planners should con
sider which reused software modules should be tested. Additional modules of
the reused software will not be tested.

Automated test cases. The automated generation of test cases, an important
challenge of software testing, is a subject of intensive research in recent years.
Discussions on the subject are presented by Kruse and Luniak (2010) and Do
et al. (2013).

14.5.2 Who should perform the tests

Who should perform the various tests is determined at the planning stage:

• Integration tests, and especially unit tests, are generally performed by the
software development team. In some instances, it is the testing unit that
performs the tests.

• System tests are usually performed by an independent testing team (inter
nal testing team or external testing consultant team).

• In cases of large software systems, more than one testing team may be
employed to carry out the system tests. The prerequisite decision to be
made in such cases concerns the allocation of system tests between the
internal and external testing teams.

• In projects performed according to the incremental delivery model and the
Agile methodology models the testing is usually done by the
development team.

• In small software development organizations, when a separate testing
team does not exist, the following testing possibilities exist:
- testing by the development team,
- testing by another development team (each development team will serve
as the testing team for projects developed by other teams), and

- outsourcing of testing responsibilities.

14.5.3 Where should the tests be performed

Unit and integration testing are naturally carried out at the software develop
er’s site. Location becomes an important issue only when system tests are
concerned: Whether system tests should be performed at the developer’s or
customer’s site (the “target site”) is questioned. If the testing is to be per
formed by external testing consultants, a third option arises: the consultant’s
site. Main site selection considerations are the availability of the system’s
computerized environment, and the availability of testing resources to per
form the tests. As a rule, the computerized environment at the customer’s

286 Chapter 14 Software Testing

site differs from that at the developer’s site, despite efforts to “simulate” the
environment. In such situations, apprehension regarding the occurrence of
unpredicted failures once the system is installed at the customer’s site is
reduced by performing the system tests at the customer’s site. In such cases,
the customer will usually perform acceptance tests.

An alternative testing site that has become common in recent years is to use
cloud computing services. This option offers unlimited computing resources and
creates the appropriate configuration environment required for the testing. These
cloud services are especially attractive for a system’s full-scale testing, and for
tests that require a high volume of resources, such as availability and load auto
mated testing. In many cases, performing tests that require a high volume of
resources is not possible at the developer’s or customer’s site. In some cases,
testing of these types is possible at the developer’s or customer’s site, but not
without severe interruptions to the regular operation of customer’s software sys
tems. Publications that present the issues of testing using cloud services are Can
dea et al. (2010) and Incki et al. (2012).

Implementation tip

Once you consider terminating testing, whether on the basis of a mathematical model,
the error seeding route, or the dual testing teams’ route, validation of the accuracy of
the results within the organization’s testing environment is of highest importance.

Systematic follow-up activities are required for validation:

• Data collection. Collection of quality data on the errors detected in the project.
• Total number of code errors= errors detected in the testing process + errors
detected by the customers and maintenance team during the first 6 or 12 months of
regular software use.

• Analysis of the error data. The analysis will compare estimates supplied by the
models with the real figures.

• Comparative analysis of severity of errors. Errors detected in the testing process are
compared with errors detected by the customers and maintenance team during the
first 6 or 12 months of regular software use.

14.5.4 Test planning documentation

The planning stage of the software system tests is commonly documented in a
“software test plan” (STP). A template for the STP is presented in Frame 14.4.

14.6 Designing the testing process

The following are the products of the test design stage:

• Detailed design and procedures for each test.

• Test case database/file.

14.7 Implementation of the Testing Process 287

The testing design is carried out on the basis of the software test plan as
documented by an STP. The test procedures and the test case database/file may
be documented in a “software test procedure” document and “test case file” doc
ument, or in a single document called the “software test description” (STD). A
template for the STD is presented in Frame 14.5.

14.7 Implementation of the testing process

This section deals with two subjects:

• The implementation process

• Documentation of the implementation results

Frame 14.4: The software test plan (STP) – template

Scope of the tests

• The software package to be tested (name, version, and revision)

• The documents that provide the basis for the planned tests (name and version of
each document)

Testing environment

• Testing sites

• Required hardware and firmware configuration

• Participating organizations

• Manpower requirements

• Preparation and training required of the test team

Tests details (for each test)

• Test identification

• Test objective

• Cross-reference to the relevant design document and the requirement document

• Test class

• Test level (unit, integration, or system tests)

• Test case requirements

• Special requirements (e.g., measurements of response times, security requirements)

• Data to be recorded

Test schedule (for each test or test group) including time estimates for:

• Preparation

• Testing

• Error correction

• Regression tests

288 Chapter 14 Software Testing

14.7.1 The implementation process

Commonly, the testing implementation phase activities consist of a series of
tests, corrections of detected errors, and retests (regression tests):

• The tests are carried out by running the test cases according to the test
procedures. Documentation of the test procedures and the test case data-
base/file comprise the “software test description” (STD), presented in
Frame 14.5.

• Correction of detected errors, as carried out by the software developers,
is a highly controlled process. Follow-up of the process is performed to
ensure that all the errors listed in the STR have been corrected.

• Retesting (also termed “regression testing”) is conducted to verify that
errors detected in the previous test runs have been properly corrected, and
that no new errors entered the system as a result of faulty corrections. It is
quite common to find that the correction–regression testing sequence is
repeated two to four times before satisfactory test results are achieved.
Usually, it is advisable to retest according to the original test procedure.

Frame 14.5: Software test descriptions (STD) – template

Scope of the tests

• The software package to be tested (name, version, and revision)

• The documents providing the basis for the designed tests (name and version for
each document)

Test environment (for each test)

• Test identification (the test details are documented in the STP)

• Detailed description of the operating system and hardware configuration and the
required switch settings for the tests

• Instructions for software loading

Testing process

• Instructions for input, detailing every step of the input process

• Data to be recorded during the tests

Test cases (for each case)

• Test case identification details

• Input data and system settings

• Expected intermediate results (if applicable)

• Expected results (numerical, message, activation of equipment, etc.)

Actions to be taken in case of program failure/cessation
Procedures to be applied according to the test results summary

14.8 Automated Testing 289

Figure 14.3 Implementation process activities

However, in many cases, especially in manual software testing, only a
portion of the original test procedure is retested to save time and testing
resources. The parts of the software system that are omitted are those
where no errors were detected, or where all detected errors were properly
corrected at a previous point. Partial reruns of the test procedure save
resources and time, but involve the risk of not detecting new errors that
were unintentionally introduced in the omitted parts during the erroneous
correction of errors found in other parts of the software.

The implementation phase process is illustrated in Figure 14.3.
Symbolic execution for software testing in practice is discussed by Cadar

et al. (2011).

14.7.2 Documentation of the implementation results

The results of the individual tests and retests are documented in a “software test
report” (STR). A template for the STR is presented in Frame 14.6.

14.8 Automated testing

Test automation represents an additional step in the integration of computerized
tools in the process of software development. These tools are utilized in the

290 Chapter 14 Software Testing

execution of the tests, as well as in the management and control of the testing
process (testing results, error correction, and retesting). Test automation has
increased the share of computer-aided software engineering (CASE) tools in the
execution of software development projects.

Several factors have motivated the development of test automation tools.
The main factors anticipated were cost savings, shortened test duration, the abil
ity to perform test types impossible to perform manually, and improvements in
test management and control processes.

Frame 14.6: Software test report (STR) – template

Test identification, site, schedule, and participation

• The tested software identification (name, version, and revision)

• The documents providing the basis for the tests (name and version for each
document)

• Test site

• Initiation and concluding times for each testing session

• Test team members

• Other participants

• Hours invested in performing tests

Test environment

• Hardware and firmware configurations

• Preparations and training prior to testing

Test results

• Test identification

• Test case results (for each test case individually)

• Test case identification

• Tester identification

• Results: OK/failed.

• If failed: detailed description of results/problems.

Summary tables for total number of errors, their distribution, and types

• Summary of current tests

• Comparison with previous results (for regression test summaries)

Special events and tester proposals

• Special events and unpredicted responses of the software during testing

• Problems encountered during testing.

• Proposals for changes in the test environment, including test preparations

• Proposals for changes or corrections in test procedures and test case files

14.8 Automated Testing 291

At this stage of development, the planning, design, and test case preparation
of automated testing require substantial investment of professional manpower. It
is the computerized test performance and the reporting that yield the main eco
nomic, quality, and timetable advantages of the process. Availability of the
required professional manpower and the extent they are to be used represent the
main factors to be considered before initiating automation of software tests.

14.8.1 Automated testing process versus
manual testing

To better understand the issues, a comparison of automated and manual testing
is presented in Table 14.8.

Table 14.8 A comparison of automated and manual testing by phase

Automated testing Manual testing

Automated/ Automated/
manual manual

Testing process phases performance Comments performance Comments

Test planning M Preparing the test M Preparing
plan the test

plan
Test design M Preparing the test M Preparing

data base the testing
procedure

Preparing test cases M Preparing test cases M Preparing
and their recording test cases
into test case
database

Performance of the tests A Computerized M Performing
running of the tests the tests

with
testers

Regression tests A Computerized M Performing
running of the tests the tests

by testers
Preparing the tests log A Computerized output M Prepared by
and test reports, the testers
including comparative
reports

292 Chapter 14 Software Testing

Table 14.9 Automated versus manual testing – GUI testing experiment results

Tester run

Preparation time Execution time

Time range Time range

Average Min Max Average Min Max
(hours) (hours) (hours) (hours) (hours) (hours)

Automated 19.2 10.6 56.0 0.21 0.1
testing
Manual testing 11.6 10.0 20.0 3.93 0.5 24.0

Quantitative comparison – empirical findings

Empirical comparative studies of manual versus automated testing are very rare.
An interesting study was carried out by Dustin et al. (1999), who report the find
ings of a study initiated by the European Systems and Software Institute (ESSI).
Graphical user interface (GUI) software was chosen to be tested. The study was
composed of 10 comparative experiments, with parallel manual testing and auto
mated testing performed in each experiment. A summary of the results is pre
sented in Table 14.9.

The study results conform to qualitative evaluations, meaning that the
average preparation time for automated testing is substantially more than that
for manual testing of similar software system, with 65% more resources con
sumed on average, in preparation for the automated testing. Also, as antici
pated, the time invested by testers to run execution time for manual testing is
18.7 times more than that for the automated testing on average. Based on
these figures, the study’s authors estimated N – the minimum number of test
runs (the first test run and subsequent regression runs) that economically jus
tify application of automated testing (the “breakeven point”). Assuming that
the resources invested in regression tests, manual as well as automated, are
similar to those invested in the first test run, N can be derived according to
the following equation:

19:2 � 0:21 � N � 11:6 � 3:93 � N
N � 2:04

Based on this model, if the testing process requires one or more regression
test runs, automated testing is to be preferred. In a short survey I conducted, I
found that the common number of regression tests runs during the development
stage was 4.

Some reservations, including those mentioned by Dustin et al. (1999), are
evident:

1.0

14.8 Automated Testing 293

• The breakeven point model ignores or considers negligible the heavy
investments required for acquiring automated testing capabilities, namely,
investments in purchasing the software package and training the operators
of the automated testing professionals.

• Manual regression test runs, especially second, third, and later regression
runs, are usually partial, therefore requiring only a portion of the resources
consumed during the first test run.

• Automated test yields more accurate results than manual tests.

It should be emphasized that even when considering the above reservations,
N would change to be N= 4 or more. The important qualitative advantages of
automated testing would lead us to prefer it to manual testing in many cases.
The fact that automated correctness tests are performed during the maintenance
stage should also be considered.

Much additional research is needed to construct a comprehensive integrated
model for the comparison, quantitative and qualitative, of the two testing
approaches. The research efforts should be directed at collecting sufficient
empirical data and at development models capable of quantifying a good portion
of the qualitative advantages of automated testing.

Valuable sources for additional material on automated testing can be found
in books and papers by Dustin et al. (2009) and Graham and Fewster (2013).

14.8.2 Types of automated testing

Numerous types of automated tests are available, many have become more or less
routine. The more established automated tests are mainly those employed for test
ing tasks that require a high number of regression tests, and those performing test
classes not feasible for manual testing such as availability and load testing. The
main types of automated tests currently used are listed in Frame 14.7.

Frame 14.7: The main types of automated tests

The main types of automated tests

Correctness testing

• GUI tests

• Functional tests

Availability and load tests
Other tests

• Code auditing

• Coverage monitoring

• Integrity (security) testing

294 Chapter 14 Software Testing

a. Automated correctness tests
(1) Graphical user interface (GUI) tests
The user interface is composed of a series of user actions performed

to insert input data and system reactions/responses. The user inserts input
items to a graphical interface with key strokes, mouse clicks, screen
touches, and so on. The user expects changes in the graphical interface.
The testing process is designed to validate that the system reactions/
responses are correct.

The testing of automated graphical unit interfaces is based on the
recording of user activities and the correct reactions/responses

The family of automated graphical user interface testing includes
several variations related to the media used:
• Testing computer graphical input screens
• Testing website input pages
• Testing mobile computers and advanced phone screens inputs

Recent publications on the subject include Mariani et al. (2014).
(2) Functional tests
Automated functional tests often replace manual black box correct

ness tests. This type of test examines the calculations executed by the
program and detects deviations from the required results. Prior to per
forming these tests, the test cases are recorded into the test case database.
The tests are then carried out by executing the test cases through the test
program. The test results documentation includes listings of the errors
identified, in addition to a variety of summaries and statistics as
demanded by the tester specifications.

After the corrections have been completed, retesting the whole pro
gram or parts of it (regression tests) is most usually required. Automated
regression tests performed for the whole program verify that the error
corrections have been performed satisfactorily and that the corrections
have not unintentionally introduced new errors in other parts of the pro
gram. The regression tests themselves are performed with the existing
test case database; hence, these tests can be executed with minimal effort
or professional resources. An additional automated testing tool that sup
ports functional tests, the output comparator, greatly supports the regres
sion test stage. The automated comparison of outputs of successive tests,
together with results from the functional testing tools, enables testers to
prepare an improved analysis of the regression test results and to help
developers discover the causes of errors detected in the tests. It is quite
common for programs to require three or four regression tests before
their quality level is considered satisfactory.

b. Automated availability and load tests
The history of software system development contains many sad

chapters on systems that succeeded in correctness tests but severely

14.8 Automated Testing 295

failed – and caused enormous damage – once required to operate under
standard full load. The damage in many cases was extremely serious
because the failure occurred “unexpectedly,” when the systems were
supposed to start providing their regular software services. The most
spectacular failures tend to take place in very large information systems
that were planned to serve a large numbers of users at any one time, or in
real-time firmware systems planned to handle a high volume of simulta
neous events.

The maximal load environment must first be created for availability
and load tests to be performed. The tests must be conducted when the
system is under maximal user load, a condition that is, in most cases,
impractical or impossible for manual testing. Therefore, the only way to
carry out load tests for medium- and large-scale systems is by means of
computerized simulations that can be programmed to closely simulate
real load conditions.

The availability and load testing procedure
The environment required for availability and load test is created by

a computer program that simulates scenarios of user behavior. For simu
lating these scenarios, virtual users and virtual events are generated and
operated in a hardware and communication environment defined by the
system planner. A virtual user or event emulates the behavior of a human
user and real event. Its behavior is “constructed” by applying real out
puts captured from real user applications that are then used as inputs for
the simulation. The simulation then produces outputs similar to those
captured from real-life users at the frequencies and with the user mix
defined by the scenario. These outputs serve as inputs for the tested soft
ware. The tests are carried out by sending messages according to virtual
events by virtual users to the tested software and receiving the messages
sent by the tested software system.

The computerized monitoring of the automated availability and load
tests is based on “answer” messages sent by the tested software system
and its response times. It produces performance measurements of the
software system in terms of response time, processing time, and other
desired parameters. These are compared with the specified load perform
ance requirements in order to evaluate how well the software system will
perform when in daily use. Usually, a series of load tests is conducted
with the load gradually increased to the specified maximal load and
beyond. This step enables a more thorough study of system performance
under regular and maximal loads. The computer-produced tables and
graphs, based on the performance measurement information, allow the
tester to decide what changes are to be introduced into each simulation
for each test iteration. For example, the tester may wish to:
• Change the hardware, including the communication system, to
increase or decrease its capacity to allow the software system to fulfill

296 Chapter 14 Software Testing

its performance requirements, in terms of response time, at each load
level.

• Test new combinations of hardware and scenario components.
The tester will continue iterations till he finds the appropriate hard

ware and communication system configuration.
Example:
The “Tick Ticket” is a new Internet site designed to meet the follow

ing requirements:
• The site was planned to handle a regular load of 1,200 hits per hour,
and should be able to handle up to a maximum of 3,000 hits per hour.

• Average response time required for the maximal load of 3,000 hits per
hour.

• Average response time required for the regular load of 1,200 hits per
hour – 3 seconds or less.

• Considering future expected growth of load, it was decided to define
an average response time of 10 seconds or less for an extended load of
20% above the maximal load, namely, for 3,600 hits per hour.
The plan. The load tests were planned for the following series of

hit frequencies (hits per hour): 300, 600, 900, 1,200, 1,500, 1,800,
2,100, 2,400, 2,700, 3,000, 3,300 and 3,600. An initial hardware con
figuration was defined, and is to be adapted according to the load test
results

Implementation. Three series of load tests were run before the ade
quate hardware and communication software configuration were deter
mined. After the first and second series of load tests, the hardware
configuration was changed to increase the system capacity so as to
achieve the required reaction times. The second configuration fulfilled
the average reaction time requirement for the regular hit loads, but not
for the extended maximal load. Therefore, capacity was further
increased. In its final configuration, the software system could satisfacto
rily handle the requirement for loads 20% higher than the specified max
imal load. See Table 14.10 for the average reaction times measured at
each round of load testing.

c. Other types of automated testing
Three types of automated testing are presented:

• Automatic code auditing
• Automatic coverage monitoring
• Automatic integrity (security) testing

(1) Automatic code auditing
This test performs automated qualification testing. The computerized

code auditor checks the compliance of the code to specified standards
and procedures of coding. The auditor’s report includes a list of devia
tions from the standards and a statistical summary of findings.

14.8 Automated Testing 297

Table 14.10 Tick ticket load tests – measured reaction times

Average response time (seconds)

Load tests – series

I II III
Hit frequency Hardware Hardware Hardware
(hits per hour) configuration I configuration II configuration III

300 2.2 1.8 1.5
600 2.5 1.9 1.5
900 3.0 2.0 1.5
1,200 3.8 2.3 1.6
1,500 5.0 2.8 1.8
1,800 7.0 3.5 2.2
2,100 10.0 4.5 2.8
2,400 15.0 6.5 3.7
2,700 22.0 10.5 4.8
3,000 32.0 16.0 6.3
3,300 55.0 25.0 7.8
3,600 95.0 38.5 9.5

A code auditor can verify the following:
• Does the code fulfill code structure instructions and procedures?
• Levels of loop nesting
• Levels of subroutine nesting
• Prohibited constructs, such as GOTO
• Does the coding style follow the coding style procedures?
• Naming conventions for variables, files, etc.
• Unreachable code lines of program or entire subroutines
• Do the internal program documentation and “help” support sections
follow the coding style procedures?

• Comment format and size
• Comment location in the file
• Help index and presentation style

(2) Automatic coverage monitoring
Coverage monitors produce reports about the line coverage achieved

when implementing a given test case file. The monitor’s output includes
the percentage of lines covered by the test cases, as well as listings of
uncovered lines. These features make coverage monitoring a vital tool
for white-box tests.

(3) Automatic integrity (security) testing
The vulnerability of software systems to activities of criminal bodies

is of great concern to software system operators. The detection of

298 Chapter 14 Software Testing

software errors that cause the software vulnerability is a task recently
being targeted by automated specialized testing tools, black box and
white box tools. The white box tools generate test cases by creating ran
dom “mutations” from “well-formed program inputs” and examining the
results. Promising results of vulnerability errors detection with a white
box tool are described by Godefroid et al. (2007).

Another promising route for automatic vulnerability is based on
black box testing tools. In a series of empirical vulnerability, tests of
eight black box vulnerability tools are performed by Bau et al. (2010). It
was found in this study that the vulnerability errors detection rate reached
60%, when the detection rate differs in the various vulnerability types.

Future development of this class of automated tools is expected to
reach achievements that will place the automated vulnerability test as the
major tool in integrity (security) testing level

(4) Automatic test case generation
Test case generation is probably the most labor intensive tasks in

software testing that strongly affects the efficiency and effectiveness of
the software testing process. Consequently, several research and develop
ment efforts are directed to automate the generation of test cases. A sur
vey of these efforts and achievements is presented in Anand et al. (2013).

d. Automation in test management and control
Testing involves many participants occupied in actually carrying out

the tests and correcting the detected errors. In addition, testing typically
monitors performance of every item on long lists of test case files. This
workload makes timetable follow-up important to management. Comput
erized test management supports these and other testing management
goals. In general, computerized test management tools are planned to
provide testers with reports, lists, and other types of information at levels
of quality and availability higher than those provided by manual test
management systems.

Automated test management software packages provide features
applicable for manual testing together with automated testing and for
automated tests alone. The inputs the testers key in, together with the
software package capabilities, determine the application scope. Espe
cially important in these cases is the package’s interoperability with
respect to the automated testing tools.

Frame 14.8 provides a concise summary of the features offered by
automated test management software packages.

14.8.3 Advantages and disadvantages of
automated tests

The first part of this section presents a comprehensive qualitative comparison of
automated testing and manual testing, conducted by listing the advantages and

14.8 Automated Testing 299

Frame 14.8: Automated test management packages – main features

Type of feature Automated/manual testing

A. Test plans, test results, and correction follow-up
Preparation of lists, tables, and visual presentations
of test plans

A, M

List of test case A, M
Listing of detected errors A, M
Listing of correction schedule (performer, date of completion,
etc.)

A, M

Listing of uncompleted corrections for follow-up A, M
Error tracking: detection, correction, and regression tests A, M
Preparing summary reports of testing and error correction
follow-up

A, M

B. Test execution
Execution of automated software tests A
Automated listing of automated software test results A
Automated listing of detected errors A
C. Maintenance follow-up
Follow-up of errors reported by users and their correction and
retesting

A, M

Summary reports for maintenance correction services according
to customer, software system applications, and so on

A, M

disadvantages of automated testing. A quantitative comparison, especially one
based on empirical data, is sorely needed to support the qualitative comparison.
The second part of the section deals with early quantitative findings that point to
the economic advantages of using automated testing tools.

The following are the main advantages of automated tests:

• Accuracy and completeness of performance. Computerized testing
guarantees – to the maximum degree possible – that all tests and test cases
are being carried out completely and accurately. Manual testing suffers
from periods of tester weariness or low concentration, traits that induce
inaccurate keying in of test cases, omissions, and so on.

• Accuracy of results log and summary reports. Automated tests are pro
grammed for accurate reporting of errors detected. In contrast, the testers
who perform manual tests occasionally do not recognize errors, and may
overlook others in their logs and summaries.

• Comprehensiveness of information. Naturally, once the test data –

including test results – are stored in a database, queries and reports about
the test and its results are incomparably more available by automated tests

300 Chapter 14 Software Testing

than by manual tests. The automated comprehensive reporting, besides
supporting follow-up of testing and correction, and improving error infor
mation, enhances the input needed for preventive and corrective actions
(see Chapter 16).

• Lower manpower resources required for performing of tests. Manual
performance of testing, in comparison, is a major consumer of manpower
resources.

• Shorter duration of testing. The duration of automated tests is usually
far shorter than that of manual tests. In addition, automated tests can be
carried out, uninterrupted, 24 hours a day, 7 days a week, in contrast to
manual testing, which is difficult to be carried out by more than one test
ing team and in more than one shift a day.

• Performance of complete regression tests. Due to the shortage of time
and manpower resources, manual regression tests tend only to be con
ducted on a relatively small portion of the software package. In contrast,
the minimal time and manpower resources required to recycle the auto
mated tests make it possible to completely rerun regression tests. This
option substantially reduces the risk of not detecting errors introduced
during previous round of corrections. An additional possibility to recycle
automated tests exists for testing corrections and software changes per
formed in the maintenance stage.

• Performance of test classes beyond the scope of manual testing. Com
puterization enables the tester to perform, for example, availability and
load tests, for medium- and large-scale systems. These tests are almost
impossible to perform manually on systems that are not small.

The following are the main disadvantages of automated testing:

• High investments required in package purchasing and training.. An orga
nization that decides to implement automated testing must invest in soft
ware packages and in training staff to qualify for performing automated
tests. Despite claims of the software package developers, although the
amount of training varies per software package, it is still lengthy, and thus
expensive.

• High package development investment costs.. In cases where available
automated testing packages do not fully suit the system’s requirements,
custom-made packages must be developed.

• Extensive human resources required for test preparation.. The human
resources required for preparing an automated test procedure are usually
substantially higher than those required for preparing a manual procedure
for the same software package.

• Considerable testing areas left uncovered.. The variety of tools currently
offered covers most prevailing programming areas/applications, and is

14.9 Alpha and Beta Site Testing Programs 301

readily available from software development companies specializing in
automated testing tools. At present, automated software testing packages
do not cover the entire variety of development tools and types of applica
tions, and so manual tests are carried out in these cases.

The advantages and disadvantages of automated software testing are pre
sented in Frame 14.9.

Frame 14.9: Automated software testing: advantages and
disadvantages

Advantages

1. Accuracy and completeness of
performance

2. Accuracy of results log and
summary
reports

3. Comprehensive information

4. Less manpower resources for
test execution

5. Shorter testing periods

6. Performance of complete
regression tests

7. Performance of test classes beyond
scope of manual testing

Disadvantages

1. High investments required for package
purchasing and training

2. High package development investment
costs

3. Extensive manpower resources
required for test preparation

4. Considerable testing areas left
uncovered

14.9 Alpha and beta site testing programs

The alpha and beta site tests are employed to enable comments related to the
software quality from potential users of the package. These sites are additional
tools, commonly used to identify software design and code errors in software
packages in commercial over-the-counter sale (COTS). It is expected that
unexpected combinations of inputs used by alpha and beta site participants will
detect errors of types not expected to be revealed by testing plans. In a way,
alpha and beta site tests replace the customer’s acceptance test – a test that is
impractical under the conditions of commercial software package development.
However, an analysis of the characteristics of these tests leads one to conclude
that in no case should they replace the formal software tests performed by the
developer.

302 Chapter 14 Software Testing

Alpha site tests

“Alpha site tests” are tests performed by potential users at the developer’s site on
a new software package. The customer, by applying the new software to the
specific requirements of his organization, tends to examine the package from
angles not expected by the testing team. The errors identified by alpha site tests
are expected to include errors that only real users can reveal, and thus should be
reported to the developer.

Beta site tests

Beta site tests are much more commonly applied than alpha site tests. The beta
site test process can be described as follows: Once an advanced version of the
software package is available, the developer offers it free-of-charge to one or
more potential users. The users install the package in their sites (usually called
the “beta site”) with the understanding that they will inform the developer of all
errors revealed during trials or regular usage. Participants in beta site testing are
often users of previously released packages, sophisticated software professionals,
and the like. As beta site tests are considered to be a valuable tool, some devel
opers involve hundreds and even thousands of participants in the process.

The following are the main advantages of alpha and beta site tests:

• Identification of unexpected errors.. Users usually examine software in an
entirely different way than developers do and, of course, apply the soft
ware in ways far different from those typically found in developer scenar
ios, such as unexpected combinations of inputs. Consequently, they reveal
errors of a type that professional testers rarely identify.

• A wider population in search of errors.. The wide range of participants
involved in beta site testing contribute a scope of software usage experi
ence and potential for revealing hidden errors that go beyond those availa
ble at the developer’s testing site.

• Low costs.. As participants are not paid for their participation or for error
information they report, the only cost encountered is the cost of the pack
age delivery to the customer.

The following are the main disadvantages of alpha and beta site tests:

• A lack of systematic testing. As participants in beta site tests are in no way
obligated to prepare orderly reports, they tend to report scattered experi
ence and leave applications, or segments of them, untouched.

• Low-quality error reports. Participants are not professional testers; hence,
their error reports are often faulty (in some report no errors at all), and it is
frequently impossible to reconstruct the error conditions.

• Difficult to reproduce the test environment. Beta site testing is usually per
formed in an uncontrolled testing environment, a fact that creates difficul
ties when attempting to identify the causes of the reported errors.

14.10 Code Review Activities for the Programming and Testing Phases 303

• Much effort is required to examine reports. A relatively high investment
of time and human resources is needed when examining reports due to the
frequent repetitions and low quality of reporting.

While alpha site testing enjoys the same advantages and displays the same
disadvantages as beta site testing, alpha site tests are usually more difficult to
organize than beta site tests, yet tend to be fruitful.

Implementation tip

Testers and developers should be especially cautious when applying beta site testing.
Beta site testing of premature software may detect many software errors, but may also
result in highly negative publicity among potential customers. In some cases, these
negative impressions reach professional journals and cause substantial damage to a
company’s image.

We therefore recommend that alpha site testing be initiated first, and that beta site
testing be delayed until alpha site tests have been completed, and their results
analyzed.

14.10 Code review activities for the programming and
testing phases

Two code review classes serve the programming and testing phases. These
include:

• Reviews of code listings.

• Software qualification reviews

14.10.1 Reviews of code listings

Code reviews, namely, code inspections and walkthroughs, are performed on
code listings of unit software and integration software and conducted prior to
unit and integration tests. These code reviews successfully identify a significant
part of the software errors.

Code reviews are also performed on software produced by the maintenance
team during the operation phase.

14.10.2 Software qualification reviews

Software qualification reviews by code reviews is the preferred software quality
assurance tool for checking adherence to programming and maintenance require
ments. Software code and documentation that adhere to qualification require
ments make it easier for the team leader to check the software, for the

304 Chapter 14 Software Testing

replacement programmer to comprehend the ready code and documents and to
continue performing the tasks, and for the maintenance programmer to correct
bugs and/or update or change the program upon request.

Software qualification reviews relate mainly to the following issues:

• Does the code or document fulfill the structure standards and development
instructions and procedures, such as module size?

• Does the code style fulfill coding style procedures and instructions?

• Is the document (i.e., programmer manual) prepared according to
approved documentation standards or template and provide complete
documentation?

• Do the documentation and “help” sections fulfill coding style procedures?

Specialized software packages for code reviews (called code auditors) and
document reviews (called automatic static analysis) can now perform a portion
of the qualification tests by listing cases of nonconformity to coding standards,
procedures, and work instructions. Other parts of the reviews continue to be the
responsibility of trained personnel for their manual execution.

Summary

(1) Software testing objectives
One should distinguish between direct and indirect testing objectives.
The following are the direct objectives:

• To identify and reveal as many errors as possible in the tested software

• To bring the tested software to an acceptable quality level (after
corrections)

• To perform the required testing in an efficient and effective way, within
budget and scheduling limitations

• To establish with a degree of confidence that the software package is
ready for delivery

The following is the indirect objective:

• To compile a record of software errors for use in software process
improvement

(2) Software testing organization and performance
Software testing – unit testing, integration testing, and system acceptance

testing – is organized and carried out by the development teams and the
software development departments. In some organizations, the acceptance
testing is performed by a specialized testing teams or by outsourced testing
organizations.

The role of the SQA function in software testing

Summary 305

The role of the SQA function is supportive of the software acceptance test
ing organization (consulting basis), and is aimed at improving its efficiency and
effectiveness. SQA function team members may participate in software accep
tance testing, as part of the SQA activities to evaluate software product
conformance.

(3) The process approaches for the evaluation of software products –

the definitions
The three approaches are:

• Verification – A process for evaluating a software system or component
product of a given development phase with the purpose of checking
whether the examined product correctly and fully implemented the condi
tions and requirements presented at the beginning of the given phase.

• Validation – A process for evaluating a software system or component
product of a given development phase with the purpose of checking
whether the examined product correctly and fully implemented the rele
vant specified requirements.

• Qualification – A process for evaluating a software system or component
product of a given development phase with the purpose of checking
whether the examined product correctly and fully implemented the profes
sional coding conventions, style and structure, instructions, and
procedures.

(4) Big bang versus incremental testing
The two contrasting testing strategies are defined and compared
“Big bang testing”: Tests the software as a whole, once the completed pack

age is available.
“Incremental testing”: Tests the software piecemeal – software modules as

they are completed (unit tests), followed by groups of modules composed of
tested modules integrated with newly completed modules (integration tests).
Once the entire package is complete, it is tested as a whole (system test).

Unless the program is very small and simple, applying the “big bang” test
ing strategy presents severe disadvantages. In “big bang” testing, identification of
errors in the entire software package is very difficult, and as a result, performing
perfect correction of an error in this context is frequently laborious. In addition,
estimates of the required testing resources and testing schedule tend to be rather
fuzzy. In contrast, the incremental testing, as it is performed on relatively small
software units, yields higher percentages of identified errors and facilitates their
correction. Thus, usually incremental testing is more effective and more efficient.
As a result, it is generally accepted that incremental testing should be preferred.

(5) The order of performing incremental testing
There are two possible order strategies for conducting incremental testing:

bottom-up and top-down. In top-down testing, the first module tested is the
main module, the highest level module in the software structure; the last mod
ules to be tested are the lowest level modules. In bottom-up testing, the order of

306 Chapter 14 Software Testing

testing is reversed: the lowest level modules are tested first, with the main mod
ule tested last.

The main advantage of the top-down strategy is the early stage at which it is
possible to demonstrate the program as a whole, a condition that supports early
identification of analysis and design errors by the customer.

(6) Black box and white box testing
Black box testing identifies bugs only according to malfunctioning of the

software as revealed from its outputs.
White box testing examines the internal paths of calculations in order to

identify bugs.
The following are the main advantages of black box testing:

• Less testing resources are required compared with white box testing.

• The needed resources for black box testing may be further reduced by
conducting automatic black box testing.

• The tester may carry out almost all test classes, some are not available
with white box testing.

The following are the main disadvantages of black box testing:

• Inability to directly test software and identify errors.

• Lacks control of line coverage.

• Allows for identification of coincidental aggregation of several errors as
correct.

• Lacks possibilities to test the quality of coding work.

The following are the main advantages of white box testing:

• Enables directly checking processing paths and algorithms.

• Provides line coverage follow-up that delivers lists of lines of code not yet
been executed.

• Capable of testing the quality of coding work.

The following are the main disadvantages of white box testing:

• Requires vast resources, much more than those required for black box
testing.

• Cannot perform important test classes: availability, reliability, stress, and
so on.

(7) White box testing coverage
Two alternative approaches for white box coverage have emerged:

• “Path coverage” is defined as the percentage of possible paths covered by
the test cases.

• “Line coverage” is defined as the percentage of executed lines of code
examined during the tests.

Summary 307

In most cases, the conducting of full path coverage is impractical
because of the scope of resources required for its implementation.

(8) Requirement-driven software testing
The software tests are classified by requirements, according to McCall’s

model, into three categories:

• Operation factor testing categories

• Revision factor testing categories

• Transition factor testing categories

Operation factor category includes the following test classes:

• Correctness tests: software correctness tests, user manuals tests, and avail
ability (reaction time) tests

• Reliability tests

• Stress tests: load tests and durability tests

• Software system security tests

• Usability tests: training usability tests and operational usability tests factor

Revision factor testing classes include:

• Maintainability correctness tests

• Flexibility tests

• Testability tests

Transition factor testing classes include:

• Portability tests

• Reused software correctness tests

• Interoperability tests: equipment and software interfacing tests

(9) The process of tests planning
The planners consider the following issues for each test plan:

• Which sources should be used for test cases

• Who is to perform the tests

• Where should the tests be performed

Which sources should be used for test cases – A test case includes: (1) the
data input/parameters of a test item, (2) the operating conditions required to run
a test item, and (3) the expected results of running the test item.

There are two basic sources for test cases: (1) random samples of real-life
cases, and (2) synthetic test cases.

The main advantages of samples of real life are as follows: (1) less efforts in
preparing the test cases, especially where expected results are available and need

308 Chapter 14 Software Testing

not be calculated, and (2) some ability to identify unexpected errors for unlisted
situations.

The main advantages of synthetic test cases are as follows: (1) less
efforts to perform tests due to a relatively small test case file compiled to
avoid repetitions, and (2) good coverage of erroneous situations by test case
file design.

Who is to perform the tests – Unit and integration testing are generally
performed by the software development team. System tests are, in many cases,
performed by an independent testing team or by a testing consultant’s off-shore
team. In cases of large software system, more than one testing team can be
employed to carry out the system tests.

Where should the tests be performed – Unit and integration testing is
most naturally carried out at the software developer’s site. System tests are per
formed at the developer’s or customer’s site (the “target site”). An alternative
testing site, which has become common in recent years, is via the usage of cloud
computing services. This option offers unlimited computing resources.

(10) Designing the tests
The following are the products of the test design stage:

• Detailed design and procedure for each test

• Test case database/file

(11) Implementation of the testing process
Frequently, the testing implementation phase activities consist of a series of

tests, corrections of detected errors, and retests (regression tests). The software
test report (STR) provides documentation of the tests performed. Five alternative
routes for deciding test termination are available: (1) complete implementation
of testing plans, (2) application of mathematical models, (3) according to fault
injection results, (4) according to dual independent testing team results, and (5)
termination after resources have depleted.

(12) Automated testing process versus manual testing
Automated testing includes the manual activities of planning and designing

the tests and preparing the test cases. All the other activities, namely, performing
the tests, including the regression tests, and reporting the test results, including
comparative reports, are computerized, whereas in manual testing all activities
are manual.

Quantitative comparisons based on empirical results show that a testing pro
cess requires one or more regression test runs in order for automated testing to
be preferred.

(13) The main types of automated testing
The following are the main types of automated testing:

• Correctness testing
- GUI tests – The user’s way to add input items to a graphical interface is
by key strokes, mouse clicks, screen touches, and so on.

Summary 309

- Functional tests – This type of test examines the calculations executed
by the program and detects deviations from the required results.

• Availability and load tests – The tests must be conducted when the sys
tem is under maximal user load, a condition that is impractical in most
cases and impossible for manual testing. Conducting a series of availabil
ity and load tests for varying loads enables defining the appropriate hard
ware and communication configuration for a project.

• Other automated testing types
- Code auditing – The code auditor checks the compliance of code with
specified standards and procedures of coding. The auditor’s report
includes a list of deviations from the standards.

- Automatic coverage monitoring – Coverage monitors produce reports
about the line coverage achieved when implementing a given test case
file.

- Integrity (security) testing – The vulnerability of software systems to
activities of criminal bodies is of great concern to software system
operators. The detection of software errors that cause software vul
nerability is a task recently being targeted by automated specialized
testing tools

(14) Automation in test management and control
The following are the features offered by automated test management soft

ware packages:

• Documenting the planning and design of the tests

• Error tracking: detection, correction, and regression tests

• Preparing summary reports of testing, and error correction follow-up

• Execution of automated software tests
- Automated listing of automated software test results and detected errors
- Follow-up of errors reported by users, their correction, and retesting

• Summary reports for maintenance activities

(15) Discuss the advantages and disadvantages of automated computer
ized testing compared with manual testing

The following are the main advantages of automated tests:

• The accuracy and completeness of performance.

• Accuracy of results logs and summary reports.

• Ability to obtain substantially more comprehensive information.

• Performance requires less manpower resources.

• Shorter testing periods.

• Performance of complete regression tests.

• Performance of test classes beyond the reach of manual testing.

310 Chapter 14 Software Testing

The following are the main disadvantages of automated tests:

• Substantial investments required in package purchasing and training.

• Substantial manpower resources for preparing the tests.

• The considerable testing areas not covered by automated testing.

(16) Beta site testing
Beta site testing is a method by which a selected group of users/customers

receives an advanced version of the software to be installed in their sites, users
report the errors they find in the process of their experiments with the program
and its regular use.

The following are the main advantages of beta site testing:

• Identification of unexpected errors

• A wide scope coverage searching for errors

• Low costs

The following are the main disadvantages of beta site tests:

• Lack of systematic testing

• Error reports of low quality

• Difficulty to reproduce the test environment

• Substantial human effort required to examine participant reports

(17) Review Activities for the programming and testing phases
Several review classes serve the programming and testing phases. These

include code reviews, documentation reviews, up-to-date reviews, and software
qualification reviews. Code reviews, namely, code inspections and walk
throughs, are conducted for unit and integration software, prior to unit and inte
gration tests. Review activities are the appropriate tools to assure the quality of
the documents produced in the programming and testing phases. This type of
requirement relates mainly to information processing. Reviewing up-to-date
requires examining the operation procedures, and processes of handling the
inputs to the software system. Software qualification reviews is the preferred
software quality assurance tool for checking adherence to programming and
maintenance requirements. Software code and documentation that adhere to
qualification requirements make it easier for the team leader to check the soft
ware, for the replacement programmer to comprehend the code and documents
and continue performing the tasks, and for the maintenance programmer to cor
rect bugs and/or update or change the program upon request.

Selected bibliography

Anand S., Burke E. K., Chen T. Y., Clark J., Cohen M. B., Grieskamp W., Harman M., Harrold M.
J., and McMinn P. (2013) An orchestrated survey of methodologies for automated software test
case generation, Journal of Systems and Software, Vol. 86, pp. 1978–2001.

Selected Bibliography 311

Bau J., Bursztein E., Gupta D, and Mitchell J. (2010) State of the Art: automated black-box web
application vulnerability testing, in 2010 Symposium on Security and Privacy (SP), Oakland, CA,
May 16–19, 2010, pp. 332–345.

Beizer B. (1995) Black Box Testing – Techniques and Functional Testing of Software and Systems,
John Wiley and Sons, Inc., New York, NY.

Cadar C., Godefroid P., Khurshid S., Pasareanu C. S., Sen K., and Tillman N., and Visser W. (2011)
Symbolic execution for software testing in practice – preliminary assessment, in Proceedings of
the International Conference on Software Engineering (ICSE’11), pp. 1066–1071.

Candea G., Bucur S., and Zamfir C. (2010) Automated software testing as a service, in Proceedings
of the 1st ACM Symposium on Cloud Computing SoCC ’10, pp. 155–160.

Do T. B. N., Kitamura T., Nguyen V. T., Hatayama G., Sakuragi S., and Ohsaki H. (2013)
Constructing test cases for n-wise testing from free-based test models, in Proceedings of
the Fourth Symposium on Information and Communication Technology (SoICT’13), pp.
275–284.

Dustin E., Rashka J., and Paul J. (1999) Automated Software Testing – Introduction, Management
and Performance, Addison-Wesley, Reading, MA.

Dustin E., Garrett T., and Gauf B. (2009) Automated Software Testing, Addison-Wesley Longman,
Reading, MA.

Godefroid P., Levin M. Y., and Molnar D. (2007) Automated whitebox fuzz testing, Technical
Report MSR-TR-2007, Microsoft Research Redmond, WA, May 2007, pp. 1–15.

Graham D. and Fewster M. (2013) Experiences of Test Automation: Case Studies of Software Test
Automation, Addison Wesley Professional, Upper Saddle River, NZ.

IEEE . (2008) IEEE Std. 829-2008 for Software and System Test Documentation, The IEEE Com
puter Society, IEEE, New York.

IEEE . (2014) IEEE Std. 730-2014 Software Quality Assurance, The IEEE Computer Society, IEEE,
New York.

ISO/IEC . (2008) ISO/IEC/IEEE Std. 12207-2008 – Systems and Software Engineering – Software
Life Cycle Processes, International Organization for Standardization, Geneva, Switzerland.

ISO/IEC . (2014) ISO/IEC 90003:2014 Software Engineering – Guidelines for the Application of
TSO 9001: 2008 to Computer Software, International Organization for Standardization (ISO),
Geneva, Switzerland.

Incki K., An I., and Sozer H. (2012) A survey of software testing in the cloud, in The 2012 IEEE
Sixth International Conference on Software Security and Reliability Companion (SERE-C), pp.
18–23.

Kruse P. M. and Luniak M. (2010) Automated test case generation using classification trees, Soft
ware Quality Professional, Vol. 13, No. 1, pp. 4–12.

Mariani L., Pezze M., Riganelli O., and Santoro M. (2014) Automated Testing of GUI-Based Appli
cations, pp. 1–28. doi 10.1.1002/stvr.1539.

Mustafa K. M., Al-Qutaish R. E., and Muhairat M. I. (2009) Classification of software testing tools
based on the software testing methods, in 2009 Second International Conference on Computer and
Electrical Engineering, Vol. 1, Dubai, pp. 229–233.

Myers G. J. (1979) Software Reliability: Principles and Practices, John Wiley and Sons, Inc., India
napolis, IN.

Nidhra S. and Dondeti J. (2012) Black box and white box testing techniques – a literature review,
International Journal of Embedded Systems and Applications, Vol. 2, No. 2, pp. 29–50.

Perry W. E. (2006) Effective Methods for Software Testing: Includes Complete Guidelines, Checklists
and Templates, 3rd Edition, John Wiley and Sons, Inc., Indianapolis, IN.

Pressman R. S. and Maxim B. R. (2015) Software Engineering: A Practitioner’s Approach, 8th Edi
tion, McGraw-Hill International, London.

Rubin J. and Chisnell D. (2008) Handbook of Usability Testing – How to Plan, Design and Conduct
Effective Tests, John Wiley and Sons, Inc., New York.

Sommerville I. (2015) Software Engineering, 10th Edition, Addison Wesley, Harlow, England.

312 Chapter 14 Software Testing

Review questions

14.1 Quite a number of software industry professionals maintain that the main goal of
software testing is “to prove that the software package is ready.”

• Explain in your own words why this goal for software testing contradicts the
first direct objective.

14.2 Explain in your own words why big bang testing is inferior to any method of
incremental testing conducted for software packages that are not small.

14.3 Section 14.3.3c mentions the terms path coverage and line coverage.

a. Explain in your own words what the terms mean and list the main differences
between these coverage metrics.

b. Explain why the implementation of path coverage is impractical in most test
applications.

14.4 “Bengal Tours” is a city center travel agency that specializes in tours and vaca
tions in Canada. The agency regularly employs 25 permanent employees. During
the spring and summer, the agency employs an additional 20–25 temporary staff,
mostly pensioners and students. The agency is considering purchasing the right to
use the software system “Tourplanex,” which supports planning for flight and
vacation site vacancies and price information and expediting the orders and pay
ments of customers for the services ordered. If purchased, the software will
become the main working tool for the agency staff.

a. Discuss the importance of the training usability and operational usability tests
to be performed by the agency before it purchases “Tourplanex.”

b. Suggest to “Bengal Tours” management how they should apply training usabil
ity and operational usability tests to be performed on the program.

14.5 The student registration software package includes a student details form to pro
vide information about a student’s full name, birth date, address, phones, and so
on. Now our focus is on the student’s cellular phone number as listed in the stu
dent registration database.

• Explain the differences between the accuracy, completeness, and up-to-date
quality requirements regarding the student’s cellular phone number.

• Suggest quality requirements for the accuracy, completeness, and up-to-date of
the student details regarding cellular phone numbers.

• The student registration department is considering replacing the student details
form with a “computerized form,” where the student keys-in his details. Besides
saving the department’s key-in resources, will this change also improve accuracy,
completeness, and up-to-date of the student’s cellular phone number data? Explain.

• The student is expected to stay in the university for at least 3 years. Are the
quality of student cellular phone numbers expected to deteriorate throughout the
years? What activities would you suggest in order to keep these date details
within the quality requirements during all the students’ studying years?

Review Questions 313

14.6 “Alpha phone” is a software package that includes the following among its features:

• It manages a household phone address book.
• It produces printouts of the phone book according to a variety of classifications.
• It analyses the monthly traffic of incoming and outgoing phone calls according
to the classifications mentioned above.

You are called to perform a documentation test of the very elegant “alpha
phone” user manual.

• List at least five types of possible documentation errors in the manual.

14.7 “The MPT star” is a program for calculating the annual municipal property taxes,
based on the neighborhood, the type of property (house, store, apartment, etc.), the
size of the property, the discounts which 10% of the owners are entitled to (pen
sioners, low-income large families, single-parent families, etc.).

• Suggest a framework for stratified sampling test cases from the citizens file. List
your assumptions about the population’s distribution.

14.8 “In most cases, the test case file preferred should combine sample cases with syn
thetic cases, to overcome the disadvantages of a single source of test cases, and to
increase the efficiency of the testing process” (in Section 14.5.1).

• Elaborate on how applying a mixed-source methodology overcomes the disad
vantages of a single-source methodology.

• Elaborate on how applying a mixed-source methodology enhances testing effi
ciency. Provide a hypothetical example.

14.9 Software testing experts claim that applying a stratified sample of real-life test cases
is more effective for identifying errors and more efficient than regular random
sampling.

• If you agree, list your arguments.
• If you disagree, list your contradictory arguments.

14.10 Reviewing the advantages and disadvantages of automated software testing:

• Explain the main advantages and disadvantages of automated tests in your own
words.

• Referring to your answer in (a) – suggest which project characteristics are most
suitable for automated testing. List your assumptions.

• Referring to your answer in (a) – suggest which project characteristics are most
unsuitable for automated testing. List your assumptions.

14.11 Mr. Aleppo, head of the software development department, claims that beta site
tests should always be carried out as early as possible in the development process,
as there are no disadvantages in this method.

• Are beta site tests really a “disadvantage free” method? If not, what are the main
disadvantages and risks of beta site tests?

• List recommended guidelines that will minimize the risks and disadvantages in
applying beta site tests as listed in (a).

314 Chapter 14 Software Testing

Topics for discussion

14.1 “Police Star 1000 System” is the new prestigious software system for recording all
the verbal communication (line telephone, cellular telephone, and wireless) nation
wide to be instituted by the police force. One feature of the system is its ability to
supply any voice record completed in the last 12 months within 15 minutes in 98%
of the applications. The system is planned to be operative within 10 months.

• Discuss the importance of conducting comprehensive load tests for the system.
• Should the load test be required to combine availability and efficiency require
ments? Explain.

• Suggest the recommended guidelines for planning these load tests.
• What basic data on police activities would you recommend to collect in order to
plan the load test according to your recommended guidelines?

• Suggest availability and efficiency quality requirements for the “Police Star 1000
System.” Discuss your answer.

14.2 “Super Saving Light” is a new software system to control street illumination and
enhance its economy, developed for municipality maintenance departments. Among
its functions are:

• Turning street lighting on and off according to a daily timetable, scheduled
annually.

• Partial illumination (only one of each two lights will be activated) during the first
and last 15 minutes of each illumination period activated by (1).

• Measurement of natural light conditions by special sensors to ascertain if natural
lighting is insufficient (e.g., on cloudy days), leading to earlier commencement of
street illumination and later conclusion of illumination. In these cases, only one
of a trio of streetlights will be activated.

• Reduction of illumination time according to traffic density, monitored by a traffic
sensor installed at every road section, will reduce illumination as follows: If traf
fic density is below 1 vehicle per minute, only half of the street lights in the road
section will be activated; if traffic density is below 0.3 vehicles per minute, only
one-third of the lights will be activated.

Mr. Jones, head of the testing team, claims that black box testing is insufficient
and that white box tests are necessary for testing “Super Saving Light.”

• Support Mr. Jones’ claim with three software error examples based on the illumi
nation rules described above. In the examples you choose, black box test results
will be “OK,” while white box testing of the same example will detect at least
one error. For each example, explain why errors undetected by black box testing
will be detected by white box testing.

14.3 Based on the “Super Saving Light” case described above:

• What input and output variables are required for defining test cases?
• Suggest three to five simple test cases having low potential to identify errors.
• Suggest three to five test cases that you believe contain serious potential for error.
• Suggest three to five test cases to deal with boundary value situations.

__________ __________ __________ __________ __________ __________

__________ __________ __________ __________ __________ __________

__________ __________ __________ __________ __________ __________

__________ __________ __________ __________ __________ __________

Topics for Discussion 315

14.4 The Clean Fuel Ltd. is the owner of a chain of more than a hundred gas stations.
The gas stations are operated by contractors. The monthly billing system includes
the following table of basic monthly rent rates ($)

The number of pumps

Up to 4 5–9 10 and more

The station’s area
(thousands of
square feet)

Up to 10.00
10.01-20.00
20.01-40.00
40.01 and more

1,500
2,000
2,400
2,800

2.200
2,500
2.700
3,000

2,500
3,300
4,000
4,500

a. Added rent for restaurant in the gas station:
A restaurant – extra 100%.

b. Deductions according to the road level:
National freeway – no reduction, Local, urban road – 20% deduction.

Required:
a. List the variables and equivalence classes according to the equivalence class par

titioning method in the following table

No. Variable name Equivalence classes

1 2 3 4

1 _________ _________ _________ _________ _________
2 _________ _________ _________ _________ _________
2 _________ _________ _________ _________ _________
4 _________ _________ _________ _________ _________

b. List the IECs for the Clean Fuel’s basic monthly rent rates in the following table

Representing Values
The Valid Invalid Representing

Variable Equivalence Values for Boundary Equivalence Values for the
Classes the Valid ECs Values Classes Invalid ECs

316 Chapter 14 Software Testing

c. List the OECs for the Clean Fuel’s basic monthly rent rates in the following table

The number of pumps

Restaurant

Up to 4

None Exists None

5–9

Exists

10 and more

None Exists

Road level NF Loc NF Loc NF Loc NF Loc NF Loc NF Loc

Station’s area

(thousands of

square feet)

Up to 10.00

10.01–20.00

20.01–40.00

40.01 and more ______ ______ ______ ______ ______ ______

NF=National freeway, Loc=Local road.

d. List the required test cases according to the equivalence class partitioning
method in the following table

Test case type Test
case
no.

Variable values in the test cases

Var. 1 Var. 2 Var. 3 Var. 4

Expected test
case results

Valid IECs
test cases

1

2

3 ___ ___ ___ ___ __________

4 ___ ___ ___ ___ __________

Test cases for
valid border
IECs

5

6

7

8 ___ ___ ___ ___ __________

9 ___ ___ ___ ___ __________

10 ___ ___ ___ ___ __________

Test cases for
invalid IECs

11

12

13 ___ ___ ___ ___ __________

13 ___ ___ ___ ___ __________

Topics for Discussion 317

Test cases for 14 ___ ___ ___ ___ __________
OECs

15 ___ ___ ___ ___ __________

16 ___ ___ ___ ___ __________

17 ___ ___ ___ ___ __________

18 ___ ___ ___ ___ __________

19 ___ ___ ___ ___ __________

20 ___ ___ ___ ___ __________

Note: The number of rows and columns in the answer form does not necessarily reflect the number of
required test cases. In other words, your answer may not require filling out all the form rows.

Chapter 15

Assuring Software Quality
Conformance for Operation
Services

15.1 Introduction

The main part of the software life cycle is the operation phase, which usually
lasts for 5–10 years, although cases of software being operational for 15 years,
and even longer, are not rare. What makes one software package capable of
reaching “old age” with satisfied users, while another package, serving an almost
identical population, “perishes young?” The main factor responsible for a long-
term service success is the quality of operation services, namely, the user sup
port and maintenance services. Adding to the importance of software operation
services is an investment aspect; with the resources invested in user support and
maintenance services being equal to, or surpassing, those provided for the devel
opment of the software system itself. Estimates of the percentage of resources
invested in operation phase services throughout its life cycle range from
50–75% of the total invested software system resources.

The main factor responsible for the long and successful service of a soft
ware system is the quality of user support and maintenance services.

User support services may be classified into two kinds:

• User support services through the phone. This kind of service fre
quently applies remote intervention in the user’s computer to solve the
problem.

• Onsite user support service. This kind of service is used only when sup
port through the phone is inapplicable. Usually, this kind of service is
provided in severe situations.

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

318

15.1 Introduction 319

In part of the users support calls, the solution requires corrective mainte
nance service.

Software maintenance services include the following three components, all
are essential for successful maintenance:

• Corrective maintenance – user support services and software corrections

• Adaptive maintenance – adapts the software package to changes in new
customer requirements, changing environmental conditions, and the like

• Functionality improvement maintenance – combines (1) perfective
maintenance of new functions added to the software to enhance perform
ance and (2) preventive maintenance – activities that improve software
package reliability, enabling easier and more efficient maintainability

Generally, one may say that corrective maintenance ensures that current
users can operate the system as specified, adaptive maintenance enables expand
ing the user population, while functionality improvement maintenance extends
the software package’s service period.

User support services characteristics

User support services (usually supplied through user support centers – USCs) are
addressed by users to resolve all difficulties arising from software system usage.
Software correction services are usually an integral part of this service. User
difficulties may be caused by:

• Code failure (usually termed “software failure”).

• A mistake/s or missing part/s in the user manual, help screen/s or other
forms of documentation prepared for the user. In these cases, the support
service can provide the user with the correct instructions (although correc
tions to the software documentation itself are not performed).

• Incomplete, vague, or imprecise documentation.

• User’s insufficient knowledge of the software system or his/hers failure to
use the documentation supplied. These situations do not indicate software
system failures.

The first three causes are considered software system failures. An additional
cause for the call is the user’s inability to cope with the applications himself.

Thus, user requests for USC services are a mixture of requests for guidance
in the usage of the software package, and requests for software failure correc
tions. In addition, the integration of user support services and software mainte
nance services is generally accomplished in close cooperation with the teams,
and entails a great deal of information sharing.

The objectives of user support center’s QA activities are presented in
Frame 15.1

320 Chapter 15 Assuring Software Quality Conformance for Operation Services

Frame 15.1: User support services’ objectives

User support services objectives

• Ensure, with an accepted level of confidence, that the user support services comply
with service norms defined by the software services department or in user contracts.

• Ensure, with an accepted level of confidence, that user support services conform to
scheduling and budgetary requirements.

• Initiate and manage activities to improve the effectiveness and increase the effi
ciency of software maintenance activities. These activities improve the prospects of
achieving user support services, while reducing costs.

Software maintenance services characteristics

Corrective maintenance services, as mentioned above, are usually initiated by
users of the USC services. However, adaptive maintenance and perfective main
tenance (functionality improvements) tend to be initiated in a different manner –
by new customers (adaptive maintenance), and through planned development of
new versions of the software package in accordance with the version policies of
the organization (perfective maintenance).

Several estimates of the distribution of maintenance resources show the fol
lowing average percentages for the various maintenance services:

Corrective maintenance 20%
Adaptive maintenance 20%
Functionality improvement maintenance 60%

The objectives of software maintenance QA activities are presented in
Frame 15.2

Frame 15.2: Software maintenance services objectives

Software maintenance services objectives

• Ensure, with an accepted level of confidence, that the software maintenance activi
ties conform to functional technical requirements.

• Ensure, with an accepted level of confidence, that the software maintenance activi
ties conform to scheduling and budgetary requirements.

• Initiate and manage activities to improve the effectiveness and increase the effi
ciency of software maintenance activities. These activities improve the prospects of
achieving functional and managerial requirements, while reducing costs.

15.2 HR Software’s Success – An Introductory Mini Case 321

Just as the nature of different software maintenance components varies
substantially, so do the required quality assurance tools. In general, the perfec
tive (functionality improvement) and adaptive tasks display the characteristics of
a small or large software development project. This being the case, they basi
cally share the same software quality assurance processes. However, QA pro
cesses employed for corrective maintenance tend to display some unique
characteristics. It is important to remember that corrective maintenance activities
are service activities and that unlike functionality improvement and adaptive
tasks, they in many cases performed as part of user support services, and are as
such under the close supervision of the user/customer. Management of corrective
maintenance services focuses mainly on the availability of services and their
quality (measured by time to solution, percentage of cases of correction failures,
etc.), rather than on the budgetary and schedule controls typically applied when
managing functionality improvements and adaptive maintenance tasks.

The subject of software operation services is addressed in software develop
ment and quality standards, to mention just two sources. IEEE Std. 730-2014
(IEEE, 2014) refers to software operation, and user support and maintenance
services as software products (see Section 5.4). ISO/IEC Std. 90003-2014 (ISO,
2014) dedicates Sections 7.2.2.3 and 7.5.1.6 to operation and maintenance ser
vice quality. Additional information regarding the contribution of quality main
tenance to competitiveness, and the relation between quality and maintenance
achievements may be found in Stojanov et al. (2014), Al-Badareen et al. (2011),
and Xiong et al. (2011). The aspects of collaboration and cooperation in soft
ware maintenance are discussed by Gupta (2012), Mohd Nor and Abdullah
2008), and Mohd Nor et al. (2010).

The chapter will pursue the following quality assurance issues as they relate
to user support and software maintenance services:

• The foundations for high quality operation services

• Software Maintenance Maturity Model – a model for the operation phase

• Managerial processes of software operation quality assurance

A mini case presented in the next section introduces some of the software
service issues during the operation period to be later discussed in the chapter.

15.2 HR Software’s success – an introductory mini case

HR Software is a small software house specializing in human resource manage
ment. The company was founded 5 years ago, employs 40 software professio
nals, and has already performed several successful human resource management
projects for small and medium-sized companies. Three years ago, the company
began marketing HRMS1, a human resource management package for small and
medium-sized companies. HRMS1 provided personnel file management and per
sonnel salary processing. Even though the software package already has 350

322 Chapter 15 Assuring Software Quality Conformance for Operation Services

customers who use its profitable HRMS1 support center, the product is consid
ered only a “medium” success, mainly due to the high cancellation rate from
customer service; 10–15 per month. The main reason for this rate was the provi
sion of poor maintenance provided by the HRMS1 support center. Below are
some typical complaints:

• “We had to call the support service three times till they finally success
fully corrected a bug. It’s already the third time that it has taken three
times to successfully resolve a problem. We are left with no choice but to
look for a different human resource software, one which provides actual
support services . . .”

• “We purchased your HRMS1 just 9 months ago, after being verified that
the support services would be able perform a small modification task
required. All tests conducted following the modification performed by
your support service failed, and we were left with inferior HR services.
As a result, we needed to conduct a substantial number of unnecessary
manual calculations. Consequently, we are now in search of an alternative
HR software package.”

• “This is the second month that we have been unable to prepare up-to-date
accurate salary payments, as your support center does not seem to be
capable of correcting the updating module, or instructing us to overcome
the difficulty. We employ 2,200 staff members, and due to this unbearable
situation, about 30% of them are currently either underpaid or overpaid.
The HR software management must solve this situation with no additional
delay.”

Due to this substandard product experience, the management started to dis
cuss a proposal by the development department for a new human resource man
agement software package, HRMS2. The new software was to deal with data
collection of employee attendance and incentive pay. The promoters of the pro
posal estimated a short development schedule with limited resources, as the pro
posal was based on experience from, and knowledge gained in, a comprehensive
software project on the proposed subject completed just a few weeks earlier.

After a fairly long discussion, where opponents and supporters voiced their
support and reservations, respectively, and deliberated over lessons learnt from
the HRMS1 package, the proposed project was approved provided the following
conditions were met:

• The development will be carried out under strict observance of the SQA
software development procedures.

• Special attention will be paid to follow the project documentation
guidelines.

• The project development team will not fade out or handover following
development, but will instead function as a support center team for the
maintenance of the HRMS2 software package.

15.2 HR Software’s Success – An Introductory Mini Case 323

• The HRMS2 will be able to handle a variety of attendance and wage
incentive plans.

• The HRMS2 will include an interface with HRMS1, and will have interfac
ing capabilities with commonly used human resource software packages.

• The HRMS2 will be capable of serving companies with facilities located
at several sites, while all collected data will be transmitted to a central
database.

The project was executed without any noteworthy risk events, and provided
comprehensive documentation and a high-quality user manual. Besides the func
tional and interfacing capabilities, the promotion campaign emphasized the super
support center geared to immediately handle any service call by telephone or site
visit within one working day. The promotion campaign offered special prices to
HRMS1 customers, in addition to a substantial improvement of the support cen
ter services now available for the HRMS1 software too.

The first weeks of the promotion campaign were a time of tension for the mar
keting team, and especially for the development team. Finally, the manager’s deci
sion to approach five HRMS1 customers and propose they serve as beta sites for
HRMS2, proved fruitful. The very positive feedback on HRMS2 led 150 HRMS1
customers to purchase HRMS2 within the first 6 months of the package sales. A
very positive survey on HRMS2 by the computer expert of “HR Professional,” a
popular journal for human resource professionals, praised the functionality of the
package, and especially noted the excellent support center. He interviewed several
satisfied customers, who told him that all their requests for support were immedi
ately answered in full. One of the interviewed HR managers told about an adapta
tion task completed within 4 hours. The marketing team noted that this journal
article contributed tremendously to the sales of HRMS2. There were also those
who claimed that the article contributed even more than the promotion campaign.

In a meeting called to sum up the first year of HRMS2 sales, it was reported
that there were over 350 customers, and that most of them intend to join the
support center service once their one-year warranty has terminated. More good
news regarding the growth of sales, and a significantly reduced customer drop
out rate were reported by the HRMS1 team. The wise marketing manager partic
ipating in the meeting announced he would recommend a special bonus for the
HRMS2 maintenance team for their excellent work and very important contribu
tion to the competitiveness of the company.

∗ ∗ ∗

You may ask yourself:

• What are the possible reasons for the failing of the HRMS1 support center?

• What should have been done to change the situation, and establish out
standing software operation services?

324 Chapter 15 Assuring Software Quality Conformance for Operation Services

15.3 The foundations of high-quality
operation services

Three foundations of high quality operation services are discussed:

1. Software package quality. It goes without saying that the quality of the
new software package is perhaps the single most important foundation
underlying the quality of user support and maintenance services.

2. Software release and software version policies. Other critical founda
tions are the software releases and software version policies.

3. Specific QA procedures for operation services. The third foundation of
software operation quality is the specific QA procedures, which the soft
ware development organization operates.

A discussion on these topics follows.

15.3.1 Foundation one – software product quality

The quality of the software product that is to be in operation clearly stems from
the expertise and efforts of the development team, as well as the QA activities
performed throughout the development process. If the quality of the product is
poor, user support and maintenance services will be poor or ineffective, almost
by definition. In other words, provision of a high-quality software product con
tributes to the effectiveness and efficiency of all types of user support and soft
ware maintenance services, and, namely, serves as a foundation for quality
operation services.

15.3.2 Foundation two – software releases and
version policies

The main “products” of perfective maintenance are new releases and new ver
sions of software products. The management of software releases and version
requires a policy to be defined regarding:

• The frequency of software version releases

• The model of version development

The frequency of software version releases – policy

The typical frequency is once a year, though twice a year and once in two years
is also found. The perfective maintenance team may release one or more revi
sions between successive version releases. Software version releases include
major changes and additions to the software system, while revision releases
include minor changes and urgent software corrections.

15.3 The Foundations of High-Quality Operation Services 325

The model of version development – policy

The maintenance team performs successive development or evolution (termed
“perfective maintenance”) during the years of service of a software system. The
new version created during the service period should be undertaken according to
a policy planned in advance by the system’s developer. The choice of policy
routes depends on the system characteristics, and the customer population, as
well as the firm’s intentions regarding the system’s target market. Two funda
mental software evolution models – the linear model and the tree model – are
generally applied. We shall discuss these models next.

• The linear evolution model
According to the linear model, only one unique software system version
serves all customers at any given time. Each new version replaces the
prior version. This model is the natural choice for software systems devel
oped to serve a single organization. The model is also applied to popular
software packages, which tend to be uniform in structure, and where the
ability to meet a wide range of maintenance demands in a single version
is a great advantage.

• The tree evolution model
According to this model, several parallel versions of the software are
developed to serve the different needs of different customers simulta
neously throughout the system’s life cycle. Tree models are typically
applied in firmware configuration versions, where each branch serves a
different product or product line.

Figure 15.1 presents two version models, a linear and a tree model. The
version frequency for both models is once a year. The figure presents software
versions (marked V1, V2, etc.) and some revision releases (marked Ra, Rb, etc.).

In Figure 15.1, the linear version model includes 4 versions over a period of
4 years. During the same 4-year period, the tree version model creates 16 ver
sions released in 4 releases. The main difference being that at the end of the
fourth year, the tree model needs to maintain 7 different software versions.

It is clear that the frequency of software version releases and models of ver
sion development are major issues for those COTS software packages planned to
serve a large variety of customers. As mentioned above, models of version
development from which the software developer may choose are the “linear” or
“tree” models. When adopting a linear version policy, only one version is made
available to an entire customer population. This version includes a profusion of
applications that exhibit high redundancy, an attribute that enables the software
to serve the needs of all customers. The software must be revised periodically,
and once a new version is complete, it replaces the version currently used by an
entire user population.

When adopting a tree version model, the software perfective maintenance
team supports marketing efforts by developing a specialized, targeted version

326 Chapter 15 Assuring Software Quality Conformance for Operation Services

Figure 15.1 Comparison of linear and tree version models.

for groups of customers, or a major customer, upon request. A new version is
inaugurated by adding special applications or omitting existing applications, in
accordance with customer needs. The versions vary in complexity and level of
application, for example, targeted industry-oriented applications. When this pol
icy is adopted, the software package evolves after several years of service into a
multiversion package. The package will resemble a tree, with several main
branches and numerous secondary branches; each branch represents a version
with specialized revisions. As opposed to the linear version model, software,
maintenance, and management of tree version software is much more difficult
and resource consuming. Considering these deficiencies, software development
organizations try to apply a limited tree version model policy, allowing only a
small number of software versions to be developed.

Example: After just a few years of application, Inventory Perfect, an inven
tory management package developed according to the tree policy, has evolved
into a seven-version software package with the following main branches: Phar
macies, Electronics, Hospitals, Bookstores, Supermarkets, Garages (auto
repairs), and Chemical Plants. Each of the branches includes four to five second
ary branches that vary by their number of software modules, and level of imple
mentation or specific customer-oriented applications. For instance, the version
for bookstores has the following five secondary branches (versions): bookstore
chains, “free” bookstores, advanced management bookstores; it also has special
versions for the LP bookstore chain and for CUCB (City University Campus

15.3 The Foundations of High-Quality Operation Services 327

Bookstores). The software maintenance team tends to a total of 30 different ver
sions of the software package simultaneously, with each version revised periodi
cally according to customer requests and the team’s technical innovations.

The daily experience of the maintenance team, therefore, includes overcom
ing hardships, created by the version-structure of the package, that go beyond
those related to the software itself:

• Faulty corrections caused by inadequate identification of the module-
structure of the current version used by the specific customer.

• Faulty corrections caused by the incorrect replacement of a faulty module
with a module of a different version that later proved to be unsuitable OR
inappropriate to be integrated into the customer’s package version.

• Efforts invested to convince customers to update their software package
by adding newly developed modules or replacing current module versions
with a new version. Some customers insisted on keeping their existing
version of the package, adding to the number of versions to be
maintained.

The Head of the Maintenance Team has often voiced his envy for his col
league, the Head of Inventory Star’s maintenance team, who insisted that the
software package developed by his firm was to offer only one comprehensive
version for all customers.

It is clear that if Inventory Perfect were to adopt a linear policy, the
software would require substantially fewer maintenance efforts. In addition,
as only one version needs to be maintained, it is much easier to maintain its
quality level.

15.3.3 Foundation three – specific QA procedures for
operation services

Specific procedures that regulate the performance of user support and mainte
nance services by the service teams include:

Specific procedures for user support services:
The phone procedure that directs the team in the following issues:

• The process of handling a user call

• User support call report

• Training requirements for USC team members

The onsite user support procedure directs the team in the following
issues:

• Checkups to be performed before service

• The process of handling an onsite service call, including the
documentation

328 Chapter 15 Assuring Software Quality Conformance for Operation Services

• Criteria for escalating the call to a higher technical level when case is not
successfully resolved

• Onsite user support call report

• Training and certification requirements for members of the onsite user
support services team

USC services management procedure that directs the team in the follow
ing issues:

• Rules for handling incoming user calls, selection of the team member to
handle the call, and guidelines for following the process

• Recording the users support timetable:
For user service by phone: user call time, start of service, successful

completion of service.
For onsite user support service: user call time, registration as an onsite

service, beginning of onsite service, successful completion of service.

• Procedure for handling USC customer complaints
Procedure for follow-up and control of the services supplied by sub

contractors. More about subcontracting may be found in Chapter 20.

• Preparing a periodic USC activity report

Software maintenance-specific procedures cover corrective and adaptive
maintenance. No specific procedures are required for perfective maintenance
projects as these can be served by software development procedures.

Corrective maintenance procedure that directs the team in the following
issues:

• The process of handing a defect correction, including priorities of han
dling failure calls.

• Quality assurance processes for small-scale patch repairs. These patch
repair tasks are characterized by a small number of coding line changes,
which justify the use of a short correction process (a “mini life cycle”):
- A short review process (mini review)
- A short testing process (mini testing)

• Concise documentation of a patch repair. This documentation will ensure
that relevant patch repairs are included in next revisions or version releases.

The defect correction report

• Training requirements for corrective maintenance team members

Adaptive maintenance procedure that directs the team in the following
issues:

• The process of handling adaptive maintenance request, including identify
ing the needs for an adapted software product and estimate of resources
and schedule requirements for performing the request.

15.5 Managerial Processes of Software Operation Quality Assurance 329

• The process of performing an adapting maintenance task

• Quality assurance processes for adaptive maintenance project: reviews,
tests, and so on.

• Training and certification requirements for adaptive maintenance of team
members.

15.4 Software maintenance maturity model – a model
for the operation phase

The improvement of the quality of software maintenance processes is a common
objective of managements of software operation. A managed process for
improving software maintenance quality by the gradual implementation of main
tenance QA processes is presented by April et al. (2005), April and Abran
(2009), and Zarour et al. (2012). The process, named SMMM (Software Mainte
nance Maturity Model), is based on a six-level model that follows the principle,
structure and practices of CMMI (see Appendix B, Section B.5). The software
maintenance department that adopts the SMMM model gradually implements
the QA processes, according to the model, achieves improved capability to per
form software maintenance tasks. The gradually improved performance is also
expected to gradually reduce maintenance failures.

Achievements of the improvement process are periodically assessed to
assure the proper implementation of the SQA maintenance processes for each
level of the SMMM model. Table 15.1 presents the SMMM levels and improve
ments required in each of the model levels.

15.5 Managerial processes of software operation
quality assurance

The contribution of an organization’s management to the quality of the various
proposed operation services, namely, user support and maintenance services,
begins in the early preparation stages of the service provision, and continues
with performance follow-up. The following main processes are applied by the
management:

• Software operation contract review

• Software operation plan

• Software operation progress control

• Software operation metrics

• Software operation services quality costs

Software operation services organization and performance

Software operation – user support and maintenance services – is organized and
carried out by the software services development or another unit. In some

330 Chapter 15 Assuring Software Quality Conformance for Operation Services

Table 15.1 The SMMM levels

SMMM level Main implemented processes

0. Incomplete No sense of software maintenance process (SMP)
process

• No defined SMP is used

1. Perform

• There is no knowledge or understanding of software maintenance
activities that have been performed

Ad hoc software maintenance process
process

2. Managed

• The organization is aware of the need to manage the SMP
• Part of the teams begin implementing an SMP
• There is no measurement of the SMP performance
• The documentation of software maintenance activities is not adequate
Basic request-based software maintenance process

process
• ASMP is defined and software maintenance activities documented
locally (not generally)

• Training and professional support are provided locally
• Qualitative measurements of software maintenance activities are

3. Established
partly implemented

State-of-the-art software maintenance process
process

• Software maintenance practices are generally executed by trained
staff

4. Predictable
process

• Basic performance metrics are implemented and collected data is
analyzed

• The required resources are assigned to SMP tasks and managed
• Infrastructure services are available and used to support the SMPs
The performance of software maintenance process is con
trolled, documented, and reviewed

• Conformance to the SMPs is assessed
• Records of software maintenance processes are reviewed and the
SMPs are audited

• Resources and infrastructure usage are planned, qualified con
trolled, and managed.

• Main software maintenance activities are quantitatively measured,
and deviating results analyzed in order to adjust and correct the
causes

5. Optimizing Innovations for improvements of the software maintenance
process process

• Advanced techniques and technological improvements of processes
are reviewed and implemented

• Innovations of technologies are planned and their performance
measured

• Cost/benefit studies are performed, defect prevention is a main
objective. Causes for failures and defects are studied.

Source: After April et al. (2005).

15.5 Managerial Processes of Software Operation Quality Assurance 331

organizations, the services are performed by an external executer, usually an out
sourcing organization.

The role of the SQA function in software operation processes

The role of the SQA function is supportive regarding the organization of reviews
and improving their efficiency and effectiveness. SQA function team members
may participate in the organization’s QA activities for evaluating software oper
ation service’s performance and their compliance with standards, and regulation
instructions.

The next sections discuss the managerial processes of assuring the quality of
software operation services. The discussion is from the standpoint of the supplier
of software operation services.

15.5.1 Software operation contract review

Software operations are performed internally when the organization operates its
software systems, and externally when an external software organization pro
vides user support and software maintenance services according to a software
operation contract. These external software operation contracts are developed
for organizations for whom a custom-made package has been developed, and for
COTS software package customers. Provision of software operations for custom-
made software usually involves a proposal, and eventually a contract. The proce
dure of software operation’s contract review very much resembles the processes
of a software development project contract review. Thus, we will focus our dis
cussion on cases of software operation services to COTS software customers. In
cases such as these, the software operation services are usually provided to large
populations of customers located in a particular country and, in many cases, also
in additional countries.

Implementation tip

Software operation services for internal customers are often not contracted. In a typi
cal situation, some services provided during the running-in period are continued, with
no one bothering to determine the binding obligations related to their continuation. In
such situations, dissatisfaction may be expected on both sides: Internal customers feel
that they need to ask for favors instead of receiving the standard service they deserve,
whereas development teams eventually experience requests to perform maintenance
tasks as intrusions, once they have begun work on a different project.

To prevent these strains, an “internal service agreement” should be prepared. The
services to be provided by the internal maintenance team to the internal customer
should be clearly defined. By eliminating most of the misunderstandings related to
these vital services, such an agreement may serve as the basis for satisfactory mainte
nance to internal customers.

332 Chapter 15 Assuring Software Quality Conformance for Operation Services

When considering the operation services contract to be offered to the cus
tomers, a broad perspective should be embraced. More than anything else, deci
sions are required to be made in regard to the categories of services to be
offered. These decisions depend on the number of customers served, and their
locations. Therefore, before commencing to supply operation services to any of
these customers, an adequate software operation contract that sets down the total
range of operation service obligations according to the relevant conditions
should be finalized.

The software operation contract review activities are based on the contract
draft. The objective of the review is to examine the contract draft and to verify
that all necessary elements of the contract have been correctly defined and docu
mented, and to identify any missing, incomplete, or incorrect elements in the draft.
Naturally, the objectives and implementation of software operation contract
reviews follow the lines of preproject contract reviews (see Chapter 8). We shall
next review the list of the major objectives of software operation contract reviews:

a. Review of customer requirements clarification
The following issues deserve special attention:
• The user support services to be provided: remote and on-site services,
hours of service, response times, and so on.

• The size of the user population.
• The location of users, especially if at long distance and overseas sites.

b. Review of the alternative approaches to software operation provision
The following options deserve special consideration:
• Subcontracting of software operation services only for customers of
specified areas, especially for overseas customers or for specific types
of service.

• Performance of some services by the customer himself with support
from external supplier teams in times of need.

c. Review of the identified operation service risks
Maintenance service risks relate to situations where failure to provide
adequate services is anticipated. These risks include:
• Staff shortages, whether throughout the performance of the organiza
tion’s services, in a specific maintenance support center or for a spe
cific application.

• Inadequate qualifications or acquaintance of staff with part of the rele
vant software packages for performing user support services and/or
corrective maintenance tasks.

d. Review of the estimates of required resources
The reviewed estimates include:
• The resources required for performing software operation tasks. Esti
mates should be examined based on the planned operation services
defined in the contract draft, and the size of the customer population.

15.5 Managerial Processes of Software Operation Quality Assurance 333

• The resources required for operating the planned user support centers.
• The cost estimates for performing the planned software corrective
maintenance services including costs of subcontractor services.

e. Review of the services to be provided by subcontractors and/or the
customer
This review refers to the definition of the services provided by each
external participant, payments to subcontractors, quality assurance, and
follow-up procedures to be applied.

f. Review of the feasibility of the supplier’s organization to perform the
planned services
The review will examine the availability of professional personnel with
the required specialization that could (1) handle successfully the correc
tive maintenance tasks of failure repairs and the USC services, (2) per
form adaptive maintenance tasks, mainly to serve new customers, and
(3) perform functional improvement tasks, mainly for creating new ver
sions according to the version policy of the organization. The review will
consider the tasks planned to be performed by subcontractors and the
customer himself.

15.5.2 Software operation plan

Software operation services plans are annual plans that direct the management
regarding the required resources (personnel, equipment, offices, etc.) to perform
all software operation services expected in the coming year. The software ser
vices operation contract will determine the resources required for operation ser
vices, while the version and frequency policies will affect the required resources
for functional improvement maintenance. The plan should provide the frame
work within which the software operation services provision is organized for the
coming year.

The plan includes the following bases:

a. Estimate of the number of customers with contracted software oper
ation services:
• The number of customers currently receiving operation services for
custom made projects and any expected changes in their number.

• The number and location of customers currently receiving COTS soft
ware operation services and any expected changes in their number.

b. Estimate of the number of new COTS software customers and their
software adaptation requirements

c. The number of COTS software package versions to be released in
the coming year
This number will be based on the policy regarding version models and
the frequency of version releases.

334 Chapter 15 Assuring Software Quality Conformance for Operation Services

d. The number of USC sites
• The current number of USC sites
• The change (increase/decrease) of USC sites due to the current/updated
COTS software maintenance contract and other considerations.

e. The software operation unit organization
The software operations organization plan focuses on manpower require
ments and the facilities to be operated in the coming year: the number of
team members required for the coming year and their professional spe
cialization. The total number of personnel and their allocation into opera
tion services, adaptive and function improvement teams.
• The organization of the staff and teams located at various facilities. If
services are to be provided from several facilities – the team require
ment for each facility.

• The required qualifications of team members according to the soft
ware operation tasks, including familiarity with the said software
package(s).

• Software operation tasks to be performed by subcontractors and the
customers themselves.

• Organizational structure of the software operation teams, including
names of team leaders.

• Definition of tasks (responsibility for customers, types of applications,
etc.) for each team.

Implementation tip

When determining the software operations team and its organization, one should con
sider preparing for provision of services in peak demand. Support provided in peak
situations may be based on the temporary utilization of development teams and other
operation teams located at the same or other facilities. It should be emphasized that
effective peak load support is based on preplanning, which also includes training.
Software operation teams require regular training for these tasks; on the spot impro
vised solutions may prove to be harmful, rather than helpful.

f. The software operation services facilities
Software operation services facilities that make it possible to provide ser
vices include:
• The USCs with their installed hardware and communication equipment
to provide user support and software correction services.

• The facilities that serve the modification and function improvement teams.
• The facility of the unit management and infrastructure services teams.

g. Identified software maintenance service risks
Software maintenance service risks relate to situations where failure to
provide adequate software maintenance is anticipated. These risks include:
• Staff shortages, whether throughout the organization’s operation ser
vices in a specific USC or for a specific application.

15.5 Managerial Processes of Software Operation Quality Assurance 335

• Inadequate qualifications or lack of familiarity with part of the relevant
software packages to perform user support services and/or corrective
maintenance tasks.

• A lack of team members qualified to perform adaptive and functional
improvement tasks – in case a customer places an order of significant
size.

h. The software operation services budget
The annual budget of the software operation services, incomes and
expenditures, is prepared according to the information provided in the
above plan sections.

The components of the software operations plan are listed in Frame 15.3.

Frame 15.3: The components of the software operation plan

The components of software operation plan

a. Estimate of the number of customers with contracted software operation
services

b. Estimate of the number of new COTS software customers and their software
adaptation requirements

c. The number of COTS software package versions to be released in the com
ing year

d. The number of USC sites

e. The software operation unit organization

f. The software operation services facilities

g. Identified software maintenance service risks

h. The software operation services budget

15.5.3 Software operations progress control

Managerial SQA components are designed to improve control of software opera
tion services by creating early alarms that signal reduced quality of service and
increasing rates of service failures. While specialized managerial control QA
tools are required for user support corrective maintenance services, the similarity
between the software processes characterizing functionality improvement and
adaptive maintenance and software development enables these processes to
employ the same managerial tools (see Chapter 21).

The remainder of this section is dedicated to special managerial control
tools, mainly those related to software correction and user support services. A
great many of these tools rely on software operation quality metrics

Managerial performance controls of corrective maintenance services differ
when applied to software development correction (failure repair) processes and

336 Chapter 15 Assuring Software Quality Conformance for Operation Services

to USC services. The managerial control tools yield, besides periodical perform
ance information, alarms for management attention.

The following software operation information, mostly based on software
quality metrics, serves managerial quality tools:

For software failure correction

• Decreased rate of remote failure repairs (low-cost repairs) versus
increased rate of repairs at customer sites.

• Increased rate of on-site repairs at distant locations and overseas services.

• Increased percentage of failures, increased workload to meet repair sched
ule requirements.

• Increased rate of faulty repairs, and list of specific “model” cases of
extreme failure situations.

• List of failure repair tasks not completed according to schedule requirements.

• Lower customer satisfaction from software failure correction performance
based on customer satisfaction surveys.

For USC services

• General increased rates of requests for service, increase in requests for a
specific software system part, and so on.

• Increased resource utilization in USC services.

• Increased rate of failures for provision of requested consulting services.

• List of specific “outstanding” faulty consulting or failure to provide
required instructing service, including detailed information about these
cases. In most cases, the managerial action will be to initiate training or
replacement of USC staff members.

• Lower customer satisfaction in customer satisfaction surveys stemming
from software failure correction performance.

In addition to the above managerial controls, based on periodic reporting,
the periodic staff meetings, visits to the USCs, and examination of customer
complaints serve as managerial progress control tools.

Implementation tip

Many bitter failures experienced with software operation contracts are due to the sub
contracting of project parts. Failures often result from lack of control of the subcon
tractor’s performance, not from the absence of software quality assurance clauses in
the contract. The reasons for subcontracting, such as a shortage of software operation
professionals at remotely located customer sites, may induce faulty control over the
subcontractor’s services. In other words, successful subcontracting requires adequate
organization and procedures to implement proper control over performance of services.

15.5 Managerial Processes of Software Operation Quality Assurance 337

15.5.4 Software maintenance quality metrics

Software operation quality metrics are used to identify trends in software opera
tion services efficiency, effectiveness, and customer satisfaction, and as basic
information for planning and budgeting. Changes in trends, negative as well as
positive, besides being tools for managerial control on software operation ser
vices, provide the quantitative basis for managerial decision-making regarding:

• Estimation of resource requirements when preparing software operation
plans for the next period.

• Comparison of methods of operation.

• Initiation of preventive and corrective actions.

• Estimation of resource requirements as a basis for proposals for new or
modified maintenance services.

The SQA function usually initiates metrics and plans their implementation,
while the software development department is responsible for the regular data
collection and processing of the metrics.

For examples of quality metrics of software corrections and user support
services – see Sections 21.4 and 21.5.

15.5.5 Cost of software operation services quality

The discussion of costs of software operations quality follows the approach of
the discussion of cost of software quality (CoSQ) presented in Chapter 9.
Accordingly, we present:

• Classic model of cost of software operation quality

• An extended model of cost of software operation quality

As in the former sections, we refer here to user support services and out of
maintenance services, implemented only to corrective maintenance issues.

a. A classic model of cost of software operation quality
The model classifies quality costs into two general classes.
Costs of software operation control – relates to costs controlled by the
software operation and includes the following subclasses:
• Prevention costs
• Appraisal costs
Costs of software operation failure of control – relates to costs of fail
ures that occurred during the operation phase. The model further subdi
vides these costs into two subclasses.
• Internal failure costs
• External failure costs
In the next sections, the subclasses of the model are reviewed.

338 Chapter 15 Assuring Software Quality Conformance for Operation Services

• Cost of prevention:
• Cost of instruction and training of software operation teams.
• Cost of preventative and corrective actions related to software opera
tion processes.

• Cost of improving and updating software quality infrastructure related
to software operation.

• Cost of carrying out contract reviews of software operation contract
with customers.

• Cost of preparation and periodic updating of software operation plans.
• Cost of carrying out contract review of contracts with subcontractors
for performing parts of software operation services.

• Costs of appraisal:
• Cost of review and testing of software failure corrections.
• Cost of internal audits of the implementation of software operation
procedures and work instructions, that is, cost of USC service reviews
carried out.

• Cost of external audits of software operation services.
• Cost of customer satisfaction surveys.
• Cost of periodic updating of software operation services plans.
• Cost of performing regular follow-up of performance of user support
services.

• Cost of performing regular follow-up of performance of corrective
maintenance services.

• Cost of performing regular follow-up of performance of external par
ticipants software operation services.

• Cost of internal failure:
• Cost of software failure corrections identified by the software opera
tion team.

• Cost of review and testing of corrections of failures identified by the
software operation team.

• Internal managerial domino effect damages: Damages to other com
pany projects caused by failing management activities or decisions.

• Cost of external failure:
• Cost of software failure corrections identified by customer complaints.
• Cost of USC instruction services related to failures of the customer to
understand the instruction manual and directions embedded in the
software.

• Damages paid to customers in cases of severe delays in the completion
of software failure repairs. Some of these are due to management’s
inability to recruit sufficiently professional team members.

• Insurance fees against customer claims in cases of severe delays in
software failure correction.

• External managerial domino effect damages: Damages to other com
pany projects caused by failing management activities or decisions.

15.5 Managerial Processes of Software Operation Quality Assurance 339

b. An extended model of cost of software operation quality
Analysis of the software quality costs defined by the classic CoSQ model
(in the Section (a) above) reveals that several costs with substantial mag
nitude are excluded. These costs are related to the management’s
invested efforts in software operation performance and to the costs
caused by management failures.

The extended cost of software quality model, as proposed by the author of
this book, extends the classic model to include management’s “contribution” to
the total cost of software quality. According to the extended CoSQ model, the
costs of software quality (see Section 9.4) are divided into eight classes.

Following are types of software quality costs classified into the eight cost
classes.

• Cost of prevention:
- Cost of instruction and training of maintenance team.
- Cost of preventative and corrective actions related to software operation
processes.

- Cost of improving and updating software quality infrastructure related
to software operation services.

- Cost of management reviews related to software operation services.

• Costs of appraisal:
- Cost of review and testing of software failure corrections.
- Cost of internal audits of the implementation of software operation pro
cedures and work instructions, that is, cost of USC service reviews.

- Cost of external audits of maintenance services.
- Cost of ensuring the quality of services provided by external partici
pants involved in supplying corrective maintenance.

- Cost of software operation customer satisfaction surveys.

• Cost of internal failure:
- Cost of software failure corrections identified by the software operation
team.

- Cost of review and testing of corrections of failures identified by the
software operation team.

• Cost of external failure:
- Cost of software failure corrections initiated by customer complaints.
- Cost of USC instruction services-related failures of the customer to
understand the instruction manual and directions embedded in the software.

- Damages paid to customers in cases of severe delays in completion of
software failure repairs.

- Insurance fees against customer claims in cases of severe delays in soft
ware failure correction.

• Management prevention costs:
- Cost of carrying out software operation contract reviews.

340 Chapter 15 Assuring Software Quality Conformance for Operation Services

- Cost of preparation and periodic updating of software operation plans.
- Cost of carrying out contract review of contracts with subcontractors for
performing parts of software operation services.

• Management appraisal costs:
- Cost of periodic updating of software operation services plans.
- Cost of performing regular follow-up of performance of user support
services.

- Cost of performing regular follow-up of performance of corrective
maintenance services.

- Cost of performing regular follow-up of performance of external partic
ipant’s software operation services

• Internal managerial failure costs:
- Unplanned costs for professional and other resources, resulting from
underestimation of resources on which submitted proposals are based.

- Additional staff costs paid to outsourcing companies, recruited under
the pressure of last-minute situations.

- Internal managerial domino effect damages: Damages to other com
pany projects caused by failing management activities or decisions.

• External managerial failure costs:
- Failed management activities or bad decisions.

Domino effect of software operation services failures

The domino effect is identified in cases of internal and external managerial fail
ures (see Section 9.3.3). In such situations, an operation services failure in the
original service causes failure in another operation service, and further causes a
failure of operation services of another customer’s services.

Example. Several failures to complete repairs within the contract-assigned
time were recorded for the correction services of package A during the month of
April, mainly due to staff shortage. In order to support the package A team, the
management shifted several maintenance team members from Package B main
tenance team to package A team. This created severe difficulties for Package B
team to maintain the high level of maintenance services previously held, till
finally, in mid-August, these also failed. This negative domino effect continued
in September with a substantial drop in sales of package A, due to the damaged
reputation of package A’s quality of maintenance. One could speculate whether
the drop of package B’s sales will be felt in October or November.

In general, maintenance quality cost information, together with other mana
gerial control information, is expected to assist management in making decisions
regarding:

• Areas to focus on, and invest in, for the improvement of software opera
tion services.

Summary 341

• Development of improved software versions, especially for COTS soft
ware packages that serve large populations of users.

Summary

1. The components of software operation and the differences between
them
Software operation services include user support and maintenance
services.
There are two kinds of user support services:
• User support service on the phone. This kind of service frequently
applies remote intervention on the user’s computer to solve the
problem.

• Onsite user support service. This kind of service is only used when
support on the phone is inapplicable. This kind of service is usually
provided in severe situations.

There are three components of software maintenance, with the following
purposes:
• Corrective maintenance of software corrections and user support
services.

• Adaptive maintenance adjusts the software package according to
requirements of new customers and changing environmental conditions.

• Functionality improvement (perfective) maintenance performs
improvements to software functionality, performance, and reliability
during the operation phase of the software system.

2. The foundations of high-quality software operation services
Three factors are considered to be the foundations of high-quality soft
ware operation services: (a) the software package’s quality, (b) the ver
sion release policies, and (3) the infrastructure services.

It is clear according to the first foundation that software operation
services quality may be guaranteed by implementing a quality software
package. The version release policies, namely, the frequency of version
release policy and the model of version development policy are the sec
ond foundation. The model of version development determines the num
ber of versions to be updated every year, in other words, a number of
software versions are maintained at the same time. Thus, these policies
define, to a great extent, the workload on the software maintenance
department. The infrastructure QA processes that serve the software
operation services teams are the third foundation. The infrastructure tools
include the following: (a) procedures and work instructions, (b) tem
plates, checklists, and documentation control, (d) staff training and certi
fication, (e) software improvements by corrective and preventive actions,
and (f) configuration management.

342 Chapter 15 Assuring Software Quality Conformance for Operation Services

3. Main managerial SQA components for software operation services
The following main tools are applied by the management:
• Software operations contract review
• Software operations plan
• Software operation progress control
• Software operation metrics
• Software operation services quality costs

The software operation contract review and software operation plan
are dedicated to the appropriate preparation of operation activities, while
both affect the quality of operation. The managerial operation progress
control relies on regular periodic reporting, as well as staff meetings, vis
its to the USCs, and investigation of customer complaints. Software
maintenance metrics and software maintenance quality costs provide
additional supporting processes.

Selected bibliography

Al-Badareen A. B., Selamat M. H., Jabar M. A., Din J., and Turaev S. (2011) The impact of software
quality on maintenance process, International Journal of Computers, Vol. 5, No. 2, pp. 1–8.

April A. and Abran A. (2009) A software maintenance maturity model (S3M): measurement prac
tices at maturity levels 3 and 4, Electronic Notes in Theoretical Computer Science, Vol 233, pp.
73–87.

April A., Huffman Hayes J., Abran A., and Dumke R. (2005) software maintenance maturity model
(SMMM): the software maintenance process model, Journal of Software Maintenance and Evolu
tion: Research and Practice, Vol. 17, No. 3, pp. 197–223.

Gupta A. (2012) Practitioner-oriented collaborative and cooperative software maintenance, Interna
tional Journal of Computer Science: Theory, Technology and Applications, Vol. 1, No. 2, pp.
18–31.

IEEE (2014) IEEE Std. 730–2014 Software quality assurance, The IEEE Computer Society, IEEE,
New York.

ISO (2014) ISO/IEC 90003:2014 Software Engineering – Guidelines for the Application of TSO
9001: 2008 to Computer Software,International Organization for Standardization (ISO), Geneva,
Switzerland.

Mohd Nor M. Z. and Abdullah R. (2008) A technical perspective of knowledge management in
collaborative software maintenance environment, Knowledge Management International Confer
ence (KMIC), pp. 1–6.

Mohd Nor M. Z., Abdullah R., Azmi Murad M. A., and Selamat M. H. (2010) in Virtanen P. and
Helsander N. (Eds.) Managing knowledge in collaborative software maintenance environment,
InTech, pp. 73–92.

Stojanov Z., Hristoski I. H., Mitrevski P. J., and Brtka V. (2014) The role of effective software main
tenance in increasing competitiveness of very small software companies, SMEs Development and
Innovation: Building Competitive Future of South-Eastern Europe conference, Ohrid, Macedonia,
October 2014, pp. 835–845.

Xiong C. J., Xie M., and Ng S.-H. (2011) Optimal software maintenance policy considering unavail
able time, Journal of Software Maintenance and Evolution Research and Practice, Vol. 23, No. 1,
pp. 21–23.

Zarour M., Alarifi A., Abran A. and Desharnais J.-M. (2012) Evaluating the assessment method of
the software maintenance maturity model. 3012 International Conference on Information Technol
ogy and e-Service (ICITeS), Sousse. March 2012, pp. 1–6.

Review Questions 343

Review questions

15.1 Refer to the section on the foundations for high-quality operation services.

a. Explain in your own words the importance of the first foundation.

b. List and explain the importance of the various factors affecting the first
foundation.

c. Explain in your own words software operation services.

d. Explain in your own words what the third foundation is and how it affects the
quality of software operation services.

15.2 A company is anxious to sign a 3-year software operation contract for an ERP
(Enterprise Resource Planning) software package for a multinational organiza
tion that employs 6,000 people in eight countries. The company has already
acquired experience in the provision of software operation services for
the ERP package. The multinational organization suggests paying a lump sum
for user support, corrective and adaptive maintenance tasks, and a separate
payment for functional improvements, based on the characteristics of each
request. The pressure from the Sales Department to immediately sign the con
tract left little time to prepare a proposal, and practically no time for a con
tract review.

a. What risks are entailed by neglecting to hold a contract review?

b. What subjects would you most recommend for contract review in this case?

c. If software operation services of a similar nature were requested by an internal
customer (to serve employees of the same company), would you recommend
carrying out a contract review? List your arguments.

15.3 Refer to the section on software operation services plans (Section 15.5.2).

a. What are the basic elements of a software operation services plan? Explain the
importance of each element in your own words.

b. Who do you think should be responsible for preparing the plan? Who should
approve it? List your reasons.

c. What difficulties would you expect to arise when a plan has not been prepared?

15.4 It is claimed that higher standards are needed for the training and certification
of maintenance team members than those needed for development team
members.

a. Do you agree or disagree with this claim? List your arguments.

b. If you agree with the above, which component of software maintenance (correc
tive, adaptive, or functionality improvement) do you consider most suitable for
the above claim?

15.5 Most software operation procedures require extensive documentation on the activi
ties performed.

a. List the main uses for the various types of software operations documentation.

b. Explain the importance of the required documentation in your own words.

344 Chapter 15 Assuring Software Quality Conformance for Operation Services

15.6 Refer to the section on managerial control of software operation services.

a. List the main issues dealt with by managerial software operation control.

b. Is there a need for meetings and audits after management has received satisfac
tory reporting from the software operation teams? What additional contributions
to managerial control might be achieved with meetings and audits? List your
arguments.

Topics for discussion

15.1 A lecturer in an SQA conference concluded his talk by recommending a software
maintenance specialist participate in the quality assurance activities carried out dur
ing the development process.

a. Do you agree with the lecturer? What are the roles the SQA function staff should
fulfill in these activities?

b. List your arguments for and against this suggestion.

c. Do you support “reverse” cooperation, where a development specialist partici
pates in quality assurance activities related to the software operation conform
ance with contracts and standards?

d. List your arguments for and against this position.

15.2 Mr. Steve Barber, a software maintenance expert, was recruited to lead the team
providing maintenance services for Hotelex, a hotel management software package,
after the former team leader had resigned. The package had been on the market for
6 months and the team had already installed and maintained four different versions
of Hotelex in seven hotels. The company is in the first stages of developing pack
ages for sport clubs and community centers. The software maintenance team is
expected to serve customers of all three packages.

During the team’s monthly meeting, Barber mentioned that after a month in
service, he found the foundations for maintaining Hotelex to be inadequate, and the
cause of high software maintenance costs. While nothing could be done in relation
to the software package’s quality (the first maintenance foundation) at this point, he
hoped to improve maintenance by employing the version release policies (the sec
ond foundation) within the next 3 months. In general, he declared that he would
take action to ensure proper foundations for the two new software packages cur
rently being developed.

a. Suggest which findings regarding the maintenance of Hotelex had brought Mr.
Barber to his negative evaluation of the maintenance according to its second
foundation.

b. Suggest which actions Barber might plan to assure proper foundations for the
two new packages.

15.3 The suggested procedures for handling “patch repairs” includes “mini review” and
“mini test” procedures and is suggested in Section 15.3.

a. Explain the importance of the “mini” procedures toward achieving adequate
quality of software repairs.

Topics for Discussion 345

b. Compare the components designated for handling “patch repairs” with the com
ponents of the software development phase.

15.4 The weekly customer complaints piled on the desk of the Head of Software Opera
tions included the following:

a. A complaint repeated by several customers: The software maintenance techni
cian, who was unable to solve the problem on site at the scheduled time, claimed
that he was unaware that he was required to take the software programmers’
manual with him at all times; and was therefore, unable to solve the problem on
time.

b. A complaint by the Operations Manager of a supermarket chain: The software
maintenance team unsuccessfully tried to correct the software three times; as a
result, several crucial functions could not be activated for 4 days.

c. A customer’s angry letter complaining about an unfair cost estimate for a
requested minor improvement: Sixty man-days. He quoted the Head of the Soft
ware Functional Improvement Team, who said that the high estimate was the
outcome of missing documentation and nonstandard coding of the original
package.

Analyze each of the cases and then:

a. Suggest the reasons for each of the software operations team’s failures.

b. Suggest the steps to be taken in each case to prevent the failures mentioned in (a).

15.5 At a recent SQA conference, a speaker mentioned the following costs as mainte
nance quality costs:

a. High operating costs due to the unanticipated high frequency of overseas calls. It
has been found that the overseas branches of a firm employ six times more
employees than estimated by the software sales departments when preparing the
maintenance plan.

b. Damages to a Software Development Department due to increasing difficulties
in sales, and higher rates of tender losses after two leading customers had
decided not to renew their maintenance contracts, claiming inadequate quality of
maintenance services.

c. Increased penalties paid to customers during a two-month period in which the
maintenance team was short of three team members.

a. Can all costs in the three cases mentioned already be considered software opera
tion quality costs according to the classic model of cost of software operation
quality (see Section 15.5.5)? Analyze each of the cases separately. List your
arguments.

b. How would you classify each of the corrective maintenance quality costs
described in the above cases according to the extended model of cost of software
operation quality (see Section 15.5.5)? List your arguments.

Chapter 16

Software Product
Quality Metrics

“You can’t control what you can’t measure.”

Tom De Marco (1962)

This quote from Tom De Marco has become the motto for software quality
experts trying to develop and apply quality metrics in the software industry.

16.1 What are software quality metrics? – an
introduction

Software quality and other software engineers have formulated the main objec
tives for software quality metrics, presented in Frame 16.1:

Frame 16.1: Objectives of software quality metrics

Source: After ISO/IEC Std. 90003-2014 Sec. 8 (ISO/IEC 2014).

Objectives of software quality metrics:

• To assist management to monitor and control development and maintenance of soft
ware systems and their process improvements by:

• Observing the conformance of software product to functionality and other require
ments, regulations, and conventions.

• Serving as a data source for process improvement by:
- Identifying cases of low performance requiring improvement.
- Demonstrating the achievements of process improvement proposals (corrective
actions)

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

346

16.1 What Are Software Quality Metrics? – An Introduction 347

The metrics are used for comparison of performance data with indicators
that are quantitative values, such as:

• Defined software quality standards

• Quality targets set for organizations or individuals

• Previous year’s quality achievements

• Previous project’s quality achievements

• Average quality levels achieved by other teams applying the same devel
opment tools in similar development environments

• Average quality achievements of the organization

• Industry practices for meeting quality requirement

Comparison provides a practical basis for management’s application of met
rics and for SQA improvement in general.

The metrics’ required characteristics

In order for the selected quality metrics to be applicable and successful, both
favorable metrics characteristics and metrics implementation characteristics are
required.

The metrics characteristics include being relevant, valid, reliable, compre
hensive, and mutually exclusive.

The three metrics implementation characteristics are: being easy and
simple, not requiring independent data collection, and immune to biased
intervention by interested parties. Being easy and simple means that the reg
ular data collection and processing involved in implementation are simple
and require minimal resources. Being not requiring independent data collec
tion means that there are possibilities to integrate the metrics data collection
with other project data collection systems: employee attendance, wages, cost
accounting, etc. In addition to its efficiency aspects, this requirement con
tributes to the coordination of all information systems serving the organiza
tion. Being immune to biased interventions by interested parties means that
metric data collection is protected from any undesirable additions and dele
tions and changes. In other words, it is expected that in order to escape the
expected results of the analysis of the metrics, it is expected that interested
parties will try to change the data and, by doing so, improve their record.
Such actions obviously cause the relevant metrics to be biased. Immunity
(total or at least partial) is achieved mainly by a careful choice of metrics
along with adequate procedures.

The required characteristics, as presented in Frame 16.2, must be satisfied.

348 Chapter 16 Software Product Quality Metrics

Frame 16.2: Software quality metrics – required characteristics

Required characteristics Explanation

Metrics characteristics
• Relevant Related to an attribute of substantial importance
• Valid Measures the required attribute
• Reliable Produces similar results when applied under

similar conditions
• Comprehensive Applicable to a large variety of implementations

and situations
• Mutually exclusive Does not measure attributes measured by other

metrics

Metrics implementation characteristics
• Easy and simple The implementation of the metrics data collection

is simple and performed with minimal resources
• Does not require independent	 Metrics data collection can be integrated with
data collection	 other project data collection systems: that is,

employee attendance
• Immune to biased The data collection and processing system is
interventions by interested protected from unwanted changes; additions and
parties deletions

Several books, book chapters, and numerous journals as well as conference
papers have been dedicated to the subject of software quality metrics. A compre
hensive discussion of software metrics is presented in books by Fenton and Bie
man (2015) and Nicolette (2015), and in papers by Radjenovic et al. (2013),
Kitchenham (2010), and Mordal et al. (2012) and Barkmann et al. (2009).

The IEEE and ISO/IEC offer software quality metrics criteria within their
software engineering standards. In the ISO/IEC standards, we may also note that
ISO/IEC Std. 90003:2014 (ISO/IEC, 2014) dedicates chapter 8 to the measure
ment, analysis, and improvement of software products. Section 6.3.7 of the ISO/
IEC/IEEE Std. 12207-2008 (ISO/IEC/IEE, 2008) presents the measurement pro
cesses for project processes in a system life cycle. An ISO/IEC standard that
should be mentioned is ISO/IEC Std. 15939:2007 (ISO/IEC, 2007), which is
dedicated to measurement process.

A comprehensive presentation of software product metrics is provided by
the four-part ISO/IEC Std. 9126 (ISO/IEC 2002–2004) (ISO/IEC, 2002). IEEE
Std. 730-2014 (IEEE, 2014) discusses measure processes for product and pro
cess assurance activities.

The following sections discuss the following topics:

• Section 16.2: The implementation of software quality metrics

• Section 16.3: Product metrics and their classification

16.2 Implementation of Software Quality Metrics 349

• Section 16.4: Software product size metrics

• Section 16.5: Software attribute metrics

16.2 Implementation of software quality metrics

The implementation of software quality metrics in an organization includes the
following activities:

• Definition of software quality metrics – relevant and adequate for teams,
departments, and so on.

• Regular application of the metrics (by units, project teams, etc.)

• Analysis of metrics data by the Corrective Action Board

• Taking action in response to metrics analysis results

16.2.1 Definition of software quality metrics

The definition of metrics involves a four-stage process:

1. Listing attributes to be measured: software quality, development team
productivity, and so on.

2. Defining metrics that measure the required attributes and confirmation
of their adequacy in complying with the requirements listed in
Frame 16.2.

3. Determining comparative target values based on standards, previous
year’s performance, and so on. These values serve as indicators to
whether the unit measured (a team, individual, or portion of a soft
ware package) complies with the characteristics demanded of a given
attribute.

4. Determining the metrics application processes: (1) Reporting method,
including reporting process and frequency of reporting. (2) Metrics data
collection method.

The new metrics (updates, changes, and revised applications) will be con
structed following analysis of the metrics data as well as developments in the
organization and its environment.

16.2.2 Application of the metrics

The process of applying a metric or set of metrics is similar to the implementa
tion of new procedures or methodologies. It involves:

• Assigning responsibility for reporting and metrics data collection.

• Instruction of the team regarding the new metrics.

350 Chapter 16 Software Product Quality Metrics

• Follow-up includes: (1) Support for solving application problems and pro
vision of supplementary information when needed. (2) Control of metrics
reporting for completeness and accuracy.

Implementation tip

Many of the currently applied software quality metrics procedures and work instruc
tions omit the third stage of the metrics definition process: setting target values (indi
cators). In other words, no target values for the metrics are to be found in the
procedure or its appendices, in the accompanying work instructions, or in any other
document. In most cases, this situation reflects a serious lack of commitment to using
metrics in managerial control – the major reason for applying metrics in the first place.
When application of metrics goes beyond lip service, target values should be set, even
if updates of these values are expected soon after their first application.

An interesting global application of software quality metrics for comparison
of national software industries is presented in the following example.

Example – Comparison of US, Japanese, and other
software industries

Cusumano (1991) and Cusumano et al. (2003) makes use of two metrics in a
comparison of the US, Japanese, and other countries software industries:

• Mean productivity. This metric is similar to the DevPL presented in
Section 21.3.3.4.

• Failure density, based on measurements during the first 12 months
following system delivery. This metric is similar to the DEDL presented
in Section 21.3.1.

The results of Cusumano and Cusumano et al are presented in Table 16.1.
Examining Table 16.1 one may note: (a) The superiority of Japan in terms

of productivity and failure density. (b) The failure density improvement of the
United States during this decade. (c) The remarkable achievement of Japan in
reducing its failure density to one tenth during this decade.

16.2.3 Analysis of metrics data by the Corrective
Action Board

The Corrective Action Board (CAB) should perform analysis on the metrics’
results, in order that the metrics data be a valuable part of the SQA process.
Statistical tools may be used to identify any significant results. Analysis of these
significant results is expected to lead to process improvements.

16.2 Implementation of Software Quality Metrics 351

Table 16.1 Comparison of countries for two software quality metrics

Country USA Japan India Europe

Productivity – mean 2001/2 3,240 5,628 2,508 5,232
1990 7,290 12,447 — —

Failure density – 2001/2 0.400 0.020 0.225 0.263
median 1990 0.83 0.20 — —

(i) Mean productivity is measured in lines of noncomment code per man-year. (ii) Failure density is
measured in the number of failures in KLOC detected during the first year of regular use of a
software package. (iii) The difference between the productivity of 1990 and 2001/2 do not indicate a
decrease in average productivity during this period, but a difference in the programming language
used in those years.

16.2.4 Taking action in response to metrics
analysis results

The statistically analyzed metrics data provides opportunities for comparing a
series of project metrics. These certainly include comparison of metric results
against predefined indicators, as well as comparisons with former projects or
team performance during different periods of time, and so on. Another
important comparison relates to the effectiveness with which the metrics
themselves fulfill their respective objectives. The following questions are just
a sample of those that may be asked with respect to the metrics portion of
the SQA process.

• Are there significant differences between the HD teams’ quality of
service?

• Do the metric results support the assumption that application of the new
version of the development tool contributes significantly to software
quality?

• Do the metric results support the assumption that reorganization has con
tributed significantly to a specific team’s productivity?

The actions taken in response to metrics analysis as well as the develop
ments in the organization and its environment are mainly initiated by the Correc
tive Action Board (CAB). The CAB actions are a result of analysis of metrics
data accumulated from a variety of projects and/or development departments.

Examples of changes initiated include: (1) changes in comparative target
values (indicators) of metrics; (2) changes in method of metrics data collection;
and (3) replacement of a metrics, adding or dropping a metrics.

For a comprehensive discussion of the Corrective Action Board and its
activities, see Chapter 19.

The software quality metrics implementation process is described in
Figure 16.1.

352 Chapter 16 Software Product Quality Metrics

Figure 16.1 The implementation process of software quality metrics

16.3 Product metrics and their classification

SQA and software engineering professionals distinguished between software
product metrics and software process metrics.

Software product metrics are a quantitative representation of software
products or intermediate product’s attributes, as experienced by the user when

16.4 Software Product Size Metrics 353

applying the software trying to adapt it or change it, such as size, effectiveness,
productivity, and reliability.

Software process metrics are a quantitative representation of software pro
cesses, as experienced by developers and maintainers throughout the software
life cycle, such as, prerelease defects, percent of modified code lines, and density
of detected defects.

This chapter is dedicated to software product metrics.

Classification of software product metrics

The product metrics are classified into two classes:

1. Software product size metrics

2. Software attributes metrics

The software product size metrics and the software attribute metrics are dis
cussed in the next two sections.

16.4 Software product size metrics

A measure of software product size is needed mainly: (a) to estimate the
required development resources at the stage of preparing a proposal for a soft
ware project or planning and scheduling its process of development and (b) for
use in other metrics when comparing the performance proportionally to the soft
ware project size, for example, in metrics of productivity, quality (defects rates),
and so on.

Two approaches for software size metrics are offered:

a. KLOC (thousands off lines of code). This metric represents metrics
based on the physical completed size of software, such as the number of
lines of code or the number of software statements. While the application
of this metric is very simple, once the software project is completed, its
application during the early stages of development is very inaccurate.
Estimates of the expected KLOC size of a planned project rely only on
the personal experience of the evaluators, and the impression they form
when examining the project specifications.

b. Function points (FPs). This metric represents the result of applying a
measure from the group of functional size measurement (FSM) methods.
These estimating methods are based on the functionality specified by the
software project requirements. More specifically, the FSM concept
requires counting items such as inputs and outputs of software systems,
software transactions, and logical file systems derived directly from the
requirement specifications where the level of complexity/difficulty is
evaluated for each item, and an adequate factor is defined accordingly. A

354 Chapter 16 Software Product Quality Metrics

detailed function point calculation process and its implementation is pre
sented in Appendix A.

The first to present an FSM method was Albrecht in 1979 (Albrecht, 1979).
Several variations of the FSM method were publicized in the following decades.
The ISO/IEC Std. 14143 standard, published in six parts during 1998–2007
(ISO/IEC, 1998), relates to these methods and determines rules for defining
functional items to be included in an FSM method (see Czarnacka-Chrobot
(2009)); standard classifies the implemented methods according to the area of
application: business applications, real-time systems, scientific systems. Four of
the FSM methods are certified according to this standard: IFPUG FPA, ark II
FPA, COSMIC FFP, and NESMA FSM. As expected, there is a variance in the
function point results among the different FSM methods. An example of such
variation is presented by Efe et al. (2011) in a case study project. The number of
function points calculated by three FSM methods for the same project were as
follows: IFPUG FPA – 925, Mark II FPA – 1330, COSMIC FFP – 1060. The
variation between the FSM methods leads to intensive research dedicated to con
version methods between the methods, a selection of research results are: Lav
azza and Morasca (2011), Cuadrado-Gallego et al. (2010, 2008), and Abran
et al. (2011).

At this stage, we are interested in the following applicability questions:

• What is the average number of programming logical statements per func
tion point?

• What is the average productivity of a staff member in terms of the number
of function points produced per month?

Answers for these questions are provided by Jones (2014), who found a
gradual change in FP characteristics as a result of the progress in development
tools through the last six decades. The changing FP productivity results for
1955–2015 are presented in Table 16.2.

Table 16.2 FP productivity characteristics 1955–2015

Logical statements FP per
Year Typical programming language per FP staff-month

1955 Basic, Assembler 320 3.5 FP
1965 Macro-Assembly 120 5 FP
1975 C 91 6 FP
1985 COBOL 58 7 FP
1995 Java 53 8 FP
2005 C#, MySQL 40 9.5 FP
2015 Estimate RUP, TSP 27 12 FP

Source: After Jones (2014).

16.4 Software Product Size Metrics 355

From Table 16.2, it is noteworthy that (a) the efficiency of program
ming languages grew 12 times during this period. In other words, coding
the same application in 2015 required only 8.5% of the number of program
ming statements required in 1955. (b) Software engineering productivity
grew 3.5-fold during the last six decades. In other words, in 1955 a staff-
month produced a 3.5 FP project, while in 2015 a staff-month produced a
12 FP project.

FSM methods – advantages and disadvantages

Main advantages:

• The function point (FP) method estimates of development resources,
based entirely on the software requirement specification, can be prepared
at the preproject stage and can, therefore, support the management in its
project proposal and preparation efforts. The method’s reliability is rela
tively high.

• The FP evaluation of the volume of a development project can be
“translated” into required development resources, once you specify the
development tools or programming languages planned to be used (the
FP method determines the tools productivity in terms of FP per staff
months).

Main disadvantages:

• Estimates need to be based on detailed analysis of the software requirements
specifications, which requires substantial work investments. It is to be com
pared with expert estimates based on personal past projects experience and
professional and general understandings, which require just a few hours to
prepare (and was in most cases not found to be very accurate).

• The implementation of the FP method involves counting distinct compo
nents, where the distinction of a component is not very clear in many
cases. In addition, the implementer of the FP method is required to eval
uate the level of complexity of each component, which is arguable in
many cases, consequently, the FP result becomes subjective.

• To overcome or reduce the “subjectivity weakness,” the entire process
requires an experienced FP team to perform the process. As a result, the
FP method cannot be implemented by a “regular” software engineer.”

• A variety of FSM methods are offered, four of which are ISO/IEC-certified
evaluation tools. The estimates produced by these tools vary substantially.

• Most successful applications and research results are related to data proc
essing systems. Other areas of software systems require specialized adap
tations. In other words, the function point method cannot be universally
applied.

356 Chapter 16 Software Product Quality Metrics

More about FSM methodology may be read in Gencel and Demirors (2008),
Meli (2011), Lenarduzzi et al. (2015), Lenarduzzi and Taibi (2014), Alves de
Oliviera and Noya (2013), Jones (2003), and Santillio (2006).

16.5 Software product attribute metrics

Source: After the three parts of ISO/IEC TR 9126.
A comprehensive presentation of software product metrics is presented in

2003b,three parts of the ISO/IEC TR 9126 (ISO/IEC, 2003a, 2003c; ISO/IEC,
2004). The ISO/IEC technical reports relate to 10 attributes of software products,
which are as follows:

• Software functionality

• Software reliability

• Software usability

• Software efficiency

• Software maintainability

• Software portability

• Software effectiveness

• Software productivity

• Software safety

• Software satisfaction

Examples of these metrics are presented in the following section.

16.5.1 Software functionality metrics

Functionality metrics relate to the following aspects: suitability, accuracy, inter
operability, security, and functionality compliance. Four examples of functional
ity metrics are presented in Table 16.3. The first metric, FSS, relates to the

Table 16.3 Examples of functional (compliance) metrics.

Metric code Metric name Calculation formula

FSS Functional specification stability
FSS � 1 � NFSC

NFSR
FCI Functional correct implementation NFICI FCI= 1�NFSR
AAL Average accuracy level NACUs AAL=TNCUs
IADn Inaccuracy density NIAC IADn=OT

NFSC: number of function specification changed, NFSR: number of function specification required,
NFICI: number of functions incorrectly implemented, NACUs: number of accurate computations by
users, TNCUs: total number of computations by users, NIAC: number of inaccuracy cases recorded
over an observed period of time, OT: observation time.

16.5 Software Product Attribute Metrics 357

tendency to change function specifications during the development process,
when the fewer function specification changes, the lower the rate of software
defects is likely to be. The second metric relates to the level of correctly imple
mented functions in the software product. The third metric relates to the user
experience in computations accuracy. The last metric relates to the density of
inaccuracy of computation cases, that is, five inaccuracy cases a day.

16.5.2 Software reliability metrics

User metrics distinguish between:

• Full reliability: when all software system functions perform properly –

percentage of operation time.

• Vital reliability: when all vital functions function properly (but nonvital
functions may fail) – percentage of operation time.

• Total unreliability: when all software system functions fail – percentage
of operation time.

Where: Full reliability<Vital reliability< 1 - Total unreliability
For example, Full reliability= 0.92, Vital reliability= 0.94, and Total

unreliability= 0.03.
The source for all availability metrics is user failure records. The latter spec

ify the extent of damage (nonvital failures, vital failures, and total system fail
ures) as well as duration (hours) for each failure.

Three software system reliability metrics are presented in Table 16.4.

Table 16.4 Software system reliability metrics

Code Name Calculation formula

FR

VitR

TUR

Full Reliability

Vital Reliability

Total Unreliability

FR � NYSerH � NYFH
NYSerH

VitR � NYSerH � NYVitFH
NYSerH

TUR � NYTFH
TYSerH

• TYSerH: number of hours per year that the software system is in service. For an office software
system that is operating 50 hours per week for 52 weeks per year; NYSerH= 2,600 (50× 52).

For a real-time software application that serves users 24 hours a day, NYSerH= 8,760 (365× 24).
• NYFH: number of hours per year when at least one function failed (including total failure of the
software system).

• NYVitFH: number of hours per year when at least one vital function failed (including total failure
of the software system).

• NYTFH: number of hours per year of total system failures (all system functions failed).
• NYFH�NYVitFH�NYTFH.
• 1 – TUA�VitA�FA

358 Chapter 16 Software Product Quality Metrics

Table 16.5 Examples of usability metrics

Metric code Metric name Calculation formula

EFL Ease to learn function (hours) EFL � MTLUF
MECT Mean error (bug) correction time MECT � MTCC �MTSC

PERUs Percentage error recovery by user
PERU � NCERUs

TNEC
MC Message clarity

MC � NMCEx
TNM

MTLUF: mean time for learning to use a function correctly (hours), MTCC: mean time till correction
by technician is completed, MTSC: mean time till correction by technician is started, NCERUs:
number of cases of error recovery by users, TNEC: total number of error cases, NMCEx: number of
messages with clear explanation, TNM: total number of messages.

16.5.3 Software usability metrics

Usability metrics relate to the following aspects: understandability, learnability,
operability, attractiveness, and usability compliance. Four examples of usability
metrics are presented in Table 16.5. The first metric, EFL, relates to the time
required by a user to learn a function using a help notice or a user guide. The
second metric, MECI, refers to the time required to correct an error during the
operation phase. The third metric, PERUs relates to errors detected during regu
lar operation and to the capability of users to recover the error by themselves.
The last metric, MC, relates to the cases where the user understands messages
sent by the software system.

16.5.4 Software efficiency metrics

Efficiency metrics relate to the following aspects: behavior over time, resource
utilization, and efficiency compliance. Four examples of efficiency metrics are
presented in Table 16.6. The first metric, MRsT, relates to the performance of

Table 16.6 Examples of efficiency metrics

Metric code Metric name Calculation formula

MRsT Mean response time (seconds) MRsT
Throughput Throughput (tasks per hour)

Throughput � NTP
OT

ThrComp Throughput compliance
ThrComp � NTPTP

CTPTP
IOU I/O utilization

IOU � TIODOc
STIOOp

NTP: number of tasks performed, OT: observation time (hours), NTPTP: number of tasks performed
over a period of time, CTPTP: compliance tasks performed over a period of time, TIODOc: time I/O
device occupied, STIOOp: specified time for I/O operation.

16.5 Software Product Attribute Metrics 359

search tasks and is an important factor of the software efficiency. The second
metric, throughput, is an important factor in services that include software usage,
such as help desk services. The third metric, ThrComp, is based on the compari
son of the actual throughput with that required in the contract. The last metric,
IOU, measures the level of utilization of I/O equipment.

16.5.5 Software maintainability metrics

Maintainability metrics relate to the following aspects: analyzability, changeabil
ity, stability, testability, and maintainability compliance. Four examples of
usability metrics are presented in Table 16.7. The first metric, DSCp, measures
the level of support provided by the diagnostics function to resolve failure cases.
The second metric, CSR, relates to the cases of change failure. The third metric,
MFD, relates to the frequency of cases of modification failure.

16.5.6 Software portability metrics

Portability metrics relate to the following aspects: adaptability, installability,
coexistence, replaceability, and portability compliance. Three examples of portabil
ity metrics are presented in Table 16.8. The first metric, TNFATest, measures the
level of compliance to portability tasks. The second metric relates to the project of
perfective maintenance (functionality improvement maintenance) and measures the
successful acceptance of the improved functions. The last metric relates to the suc
cess of adapting a software system to a new organizational environment.

16.5.7 Software effectiveness metrics

Effectiveness metrics relate to a variety of implementation situations: corrections
and changes of the original software product. Three examples of effectiveness

Table 16.7 Examples of maintainability metrics

Metric code Metric name Calculation formula

DSCp

CSR

MFR

Diagnostics support capability

Change success ratio

Modification failure density

DSCp � NFMDF
TNF

CSR � 1 � NCnF
TNCn

MFD � NMF
OT

NFMDF: number of failures discovered by usage of the diagnostic function, TNF: total number of
failures, NCnF: number of change failures, TNCn: total number of changes, NMF: number of
modification failures.

360 Chapter 16 Software Product Quality Metrics

Table 16.8 Examples of portability metrics

Metric
code Metric name Calculation formula

PorComp Portability compliance
PorComp � NCIFPComp

TNF
PMAc Perfective maintenance acceptability

PMAc� NPMFAc
TNPMF

AAcOE Adaptability acceptance to organization’s
environment

AAcOE � 1 � NFAFail
TNFATest

NCIFPComp: number of correctly implemented functions in portability compliance, TNF: total
number of functions, NPMFAc: number of perfective maintenance functions accepted, TNPMF: total
number of perfective maintenance functions, CTPTP: compliance tasks performed over a period of
time, NFAFail: number of functions that failed adaptability testing, TNFATest: total number of
functions that underwent adaptability testing.

Table 16.9 Examples of effectiveness metrics

Metric
code Metric name Calculation formula

TskEfc Task effectiveness TskEfc � 1 � PTMICCom
TSCR Tasks successfully completed ratio

TSCR � NTSC
TNTAt

AAcOE Adaptability acceptance to organization’s
environment

AAcOE � 1 � NFAFail
TNFATest

PTMICCom: proportion of missing tasks and incorrect components, NTSC: number of tasks
successfully completed, TNTAt: total number of tasks attempted, NFAFail: number of functions that
failed adaptability testing, TNFATest: total number of functions that underwent adaptability testing.

metrics are presented in Table 16.9. The first metric, TskEfc, measures the pro
portion of effective components versus missing or incorrect components. The
second metric, TSCR, measures effectiveness by the proportion of tasks being
completed successfully. The last metric is dedicated to measuring the success of
the adaptation of a software system to a different environment.

16.5.8 Software productivity metrics

Productivity metrics relate to a variety of implementation situation allowing
comparison between tasks and teams, and between time periods. Two examples
of productivity metrics are presented in Table 16.10. The first metric, TskEfc,
PP, presents figures for productivity in performing a task. The second metric,
PC, allows calculating productivity changes when performing a given task.

16.5 Software Product Attribute Metrics 361

Table 16.10 Examples of productivity metrics

Metric code Metric name Calculation formula

PP Productivity proportion
PP � MTPT

MTT
PC Productivity change

PC � MTPTP2 �MTPTP1
MTPTP1

MNPT: mean task productive time, MTT: mean task time, where MTT=MNPT + waiting time +
error time + search time, MTPTP2: mean task performance time period 2, MTPTP1: mean task
performance time period 1.

16.5.9 Software safety metrics

Software safety metrics relate to the user being injured as a result of software
safety failure. The other metric deals with the prospects of suffering from a soft
ware corruption.

Safety metrics relate to a variety of implementation damage situations.
Two examples of safety metrics are presented in Table 16.11. The first met
ric, USafL, relates to the user being injured as a result of software safety
failure. The other metric deals with the prospects of suffering from a soft
ware corruption.

16.5.10 Software satisfaction metrics

Satisfaction metrics related to user satisfaction, where the level of satisfaction is
measured by a questionnaire. Two examples of satisfaction metrics are presented
in Table 16.12. Both matrices are based on user responses to satisfaction
questionnaire.

Table 16.11 Examples of safety metrics

Metric code Metric name Calculation formula

USafL User safety level
USafL � NInjU

1-TNU
SWDL Software corruption level

SWDL � NOcSWC
TNUSit

NInjU: number of injured users, TNU: total number of uses, NOcSWC: number of occurrences of
software corruption, TNUSit: total number of usage situations.

362 Chapter 16 Software Product Quality Metrics

Table 16.12 Examples of satisfaction metrics

Metric code Metric name Calculation formula

USatL User satisfaction level
USatL � SURSQ

TNRSQ

USatC User satisfaction change
USatC � USatLP2 � USatLP1

USatLP1

SURSQ: sum of user responses to satisfaction questionnaire, TNRSQ: total number of user responses
to satisfaction questionnaire, USatLP2: user satisfaction level period 2, USatLP2: user satisfaction
level period 1.

Summary

1. The objectives of software quality metrics
a. To support management control of software development projects

and software maintenance in setting functionality, schedule, and
budget performance targets.

b. To observe the conformance of software product to functionality and
other requirements, regulation, and convections.

c. To serve as a data source for process improvement by:
• Identifying cases of low performance that need improvement.
• Demonstrate the achievements of process improvement proposals
(corrective actions)

2. The required characteristics for successful software quality metrics
Applicability of quality metrics is determined by the degree to which

the following general and operative requirements are fulfilled:
Metrics characteristics

• Relevant – measures an attribute of considerable importance
• Valid – measures the required attribute
• Reliable – produces similar results when applied in similar conditions
• Comprehensive – is applicable to a large variety of situations
• Mutually exclusive – does not measure attributes that are measured
by other metrics

Metrics implementation characteristics

• Easy and simple – implemented with minimal resources
• Does not require independent data collection – metrics data collection
is based on currently employed data collection systems

• Immune to biased interventions by interested parties

3. The process of defining a new software quality metric
The definition of a new metric involves a four-stage process:

1. Definition of software quality metrics
2. Application of the metrics

Summary 363

3. Analysis of metrics data by the Corrective Action Board
4. Taking action in response to metrics analysis results

4. Software product metrics versus software process metrics
Software product metrics are a quantitative representation of a

software product or intermediate product’s attributes, as experienced by
the user when applying the software to try to adapt or change features,
such as size, effectiveness, productivity, and reliability.

Software process metrics are a quantitative representation of soft
ware processes, as experienced by developers and maintainers through
out the software life cycle, such as, prerelease defects, percent of
modified code lines, and density of detected defects.

5. Classification of software product metrics
The product metrics are classified into two classes:

1. Software product size metrics
2. Software attributes metrics.

6. Software product size metrics categories:
• KLOC
• Function points

7. The function point method process stages
Stage 1: Calculation of crude function points
Stage 2: Calculating the relative complexity adjustment factor (RCAF)
Stage 3: Calculate the number of function points (FP)

8. Comparison of KLOC and function point measures for the size of
software system

A significant number of the metrics presented here use one of two
measures for software system size, which are compared according to the
following criteria:
• Dependency on the development tool, programming language, or pro
grammer style. KLOC depends heavily on the development tool’s
characteristics and on the programmer’s style. Alternatively, although
the function point method does not depend on either of these factors,
it does depend to some extent on the function point instruction man
ual used systems.

• Professional experience required for implementation: Relatively little
experience is required for counting KLOC, while relatively great
experience is needed to evaluate function points.

• Amount of professional work required: Relatively little work is
required for KLOC; a relatively great deal of work is required to eval
uate function points.

• Subjective factors: Estimation of KLOC requires little subjective
judgment, whereas the opposite is true for function points as subjec
tive evaluations are required for determining the weight and relative
complexity factors for each software system component.

364 Chapter 16 Software Product Quality Metrics

Preproject estimates: Preproject estimates for KLOC are based only
on the evaluator’s experience, while function point estimates are based
on facts, such as the number of inputs and outputs of the planned soft
ware as derived from the requirement specification documents

9. Software attribute metrics types according to ISO/IEC Std. 9126
• Software functionality
• Software reliability
• Software usability
• Software efficiency
• Software maintainability
• Software portability
• Software effectiveness
• Software productivity
• Software safety
• Software satisfaction

Selected bibliography

Abran A., Desharnais J. M., and Aziz F. (2011) Measurement convertibility – from function points to
COSMIC FFP, in Rale D. and Abran A. (Eds.) COSMIC Function Points Theory and Advanced
Practices, CRC Press, Boca Raton. FL, pp. 214–226.

Albrecht, A. J. (1979) Measuring application development productivity, in Proceeding of the Joint
SHARE/GUIDE/IBM Application Development Symposium, October 1979, pp. 34–43.

Alves de Oliviera E. and Noya R. C. (2013) Using productivity measure and function points to
improve the software development process, in 2013 International Conference on Software Engi
neering Research and Practice, Athens, Greece.

Barkmann H., Linke R., and Lowe W. (2009) Quantitative evaluation of software quality metrics in
open-source projects, in Advanced Information Networking Workshops, WAINA’09, Bradford, May
2009, pp. 1067–1072.

Cuadrado-Gallego J. J., Buglione L., Rejas–Muslera R. J., and Machado-Pinz F. (2008) IFPUG –

COSMIC statistical conversion, in Proceedings of 34th European Conference on Software Engi
neering and Advanced Applications, Parma, Italy, pp. 427–432.

Cuadrado-Gallego J. J., Buglione L., Dominguz-Alda M. J., Femandez de Sevilla M., Gutierez de
Mesa A., and Demirors O. (2010) An experimental study on the conversion between IFPUG and
COSMIC functional size measurement unit, Information and Software Technology, Vol. 52, No. 3,
pp. 347–357.

Cusumano, M. A. (1991) Japan’s Software Factories – A Challenge to U.S. Management, Oxford
University Press, New York, NY.

Cusumano M. A., MacCormack A., Kemerer C. F., and Crandall B. (2003) Software development
worldwide: the state of the practice, IEEE Software, Vol. 20, No. 5, pp. 28–34.

Czarnacka-Chrobot B. (2009) The ISO/IEC standards for the software processes and products mea
surement, in Fujita I.I. and Marik V., (Eds.) New Trends in Software Methodologies: Tools and
techniques, IOS Press, pp. 187–200.

DeMarco T. (1978) “Structured analysis and system specification”, Yourdon Press Prentice Hall
PTR, upper Saddle River, NJ, USA

Efe P., Demirors O., and Gencel C. (2011) Mapping concepts of functional size measurement meth
ods, in Rale D. and Abran A. (Eds.) COSMIC Function Points: Theory and Advanced Practices,
CRC Press, Boca Raton, FL, pp. 57–71.

Selected Bibliography 365

Fenton, N. E. and Bieman J. (2015) Software Metrics: A Rigorous and Practical Approach, 3rd Edi
tion, CRC Press, Boca Raton, FL.

Gencel C. and Demirors O. (2008) Functional size measurement revisited, ACM Transactions on
Software Engineering and Methodology, Vol. 17, No. 3, pp. 1–36.

IEEE (2014) IEEE Std. 730–2014 Software quality assurance, The IEEE Computer Society, IEEE,
New York.

ISO/IEC (1998–2007) ISO/IEC Std. 14143 Information Technology – Software Measurement –
Functional Size Measurement, in Parts 1–6, International Organization for Standardization,
Geneva, Switzerland.

ISO/IEC (2002) ISO/IEC TR 9120-1 Software Engineering – Product Quality – Part 1: Quality
model, in International Organization for Standardization (ISO), Geneva, Switzerland.

ISO/IEC (2003a) ISO/IEC TR 9120-3 Software Engineering – Product Quality – Part 2: External
Metrics, in International Organization for Standardization (ISO), Geneva, Switzerland.

ISO/IEC (2003b) ISO/IEC TR 9120-3 Software Engineering – Product Quality – Part 3: Internal
Metrics, in International Organization for Standardization (ISO), Geneva, Switzerland.

ISO/IEC (2003b) ISO/IEC TR 9120-4 Software Engineering – Product Quality – Part 4 Quality In
Use Metrics, in International Organization for Standardization (ISO), Geneva, Switzerland.

ISO/TEC (2007) TSO/IEC Std. 15939 Software and Systems Engineering – Measurement Process, in
International Organization for Standardization (ISO), Geneva, Switzerland.

ISO/IEC (2008) ISO/IEC/IEEE Std. 12207-2008: Systems and Software Engineering – Software life
cycle processes, in ISO – International Organization for Standardization, Geneva, Switzerland.

ISO (2014) ISO/IEC 90003:2014 Software Engineering – Guidelines for the Application of ISO
9001: 2008 to Computer Software, in International Organization for Standardization (ISO),
Geneva, Switzerland.

Jones C. (2003) Variations in software development practices, IEEE Software, Vol. 20, No. 6,
pp. 22–27.

Jones C. (2014) The Technical and Social History of Software Engineering, Addison Wesley, Upper
Saddle River, NJ.

Kitchenham B. (2010) What’s up with software metrics? – a preliminary mapping study, Journal of
Systems and Software, Vol. 83, No. 1, pp. 37–51.

Lavazza L. and Morasca S. (2011) Convertibility of function points into COSMIC function points: A
study using piecewise linear regression, Information and Software Technology, Vol. 53, No. 8,
pp. 874–884.

Lenarduzzi V. and Taibi D. (2014) Can functional size measures improve effort estimation in
SCRUM?, in The Ninth International Conference on Software Engineering Advances
(ICSEA2014), Nice, France, pp. 73–178.

Lenarduzzi V., Lunesu I., Matta M., and Taibi D. (2015) Functional size measures and effort estima
tion in agile development: a replicated study, in Proceedings of the International Conference on
Agile Software Development, XP2015, Helsinki, Finland, pp. 105–116.

Meli R. (2011) Simple function point: a new functional size measurement method compliant with
IFPUG 4.x, in Software Measurement European Forum 2011, pp. 1–5.

Mordal K., Anquetil N., Laval J., Serebrenik A., Vasilescu B., and Ducasse S. (2012) Software qual
ity metrics aggregation in industry, Journal of Software: Evolution and Progress, Vol. 25, No. 10,
pp. 1117–1135.

Nicolette D. (2015) Software Development Metrics, Manning Publishing, Shelter Island, NY.
Radjenovic D., Hencko M., Torkar R., and Zivkovic A. (2013) Software fault prediction metrics:
a systematic literature review, Information and Software Technology, Vol. 55, No. 8,
pp. 1397–1418.

Santillo L. (2006) Function points usage in contracts – considerations and guidelines, in Proceedings
of the International Conference on Software Process and Product Measurement, MENSURA2006,
Cadiz, Spain, November, 2006, pp. 139–149.

366 Chapter 16 Software Product Quality Metrics

Review questions

16.1 Three implementation metrics characteristics are listed in Frame 16.2.

• Explain in your own words the implementation metrics characteristics and their
importance.

16.2 Five metrics characteristics are listed in Frame 16.2.

• Explain in your own words the metrics characteristics and their importance.

16.3 Table 16.3 presents a gradual improvement of function point productivity during
1955–2015.

a. Using the data in Table 16.3, what is the expected CLOC productivity change
during these years?

b. Explain your result in (a)?

16.4 Table 16.4 presents two metrics for accuracy.

a. Explain the difference between these metrics.

b. Justify the separate metric categories.

16.5 An organization has decided to implement the metrics in Table 16.6.

a. What type of data collection are required?

b. How many days of data collection and how many people should be observed for
the data collection.

c. Is there a requirement relating to the choice of days and staff to be observed?

16.6 At the end of his first year in office, the new manager of the sales department devel
oped a new customer satisfaction questionnaire based on a 5-point scale to replace
the old questionnaire that uses a 10-point scale.

The new manager plans to apply the USatC metrics in Table 16.12 to measure
the changes in customer satisfaction during his year in office.

Might the planned application of the USatC produce valuable results? Explain
your answer.

16.7 A planned human resource software system is estimated to require 5,000 logical
statements of MYSQL code.

a. Estimate the number of function points required for the software system.

b. Estimate the number of months required for a team of three members to com
plete the software system.

16.8 Analysis of the requirement specifications for a tender for development of The Buy
ers Club CRM System has been publicized in a professional journal.

ABC Software Labs is considering participating in the tender. The team
appointed to prepare the tender analyzed its requirement specifications and obtained
the following results:

• Number of user inputs – 28

Topics for Discussion 367

• Number of user outputs – 36
• Number of user online queries – 24
• Number of logical files – 8
• Number of external interfaces — 12

The team estimated that 50% of the components were simple, 25% average,
and 25% complex.

The team also evaluated the project’s complexity at an estimated RCAF = 57.

a. Compute the function points’ estimate for the project.

b. Mr. Barnes, the chief programmer, estimated that 3,500 logical statements of C#
code would be required for the project. Based on the result in (a), do you agree
with his estimate?

Topics for discussion

16.1 Two versions for the measure of software system size – KLOC – are applied: one
version counts every code line, while the other only counts the noncomment lines
of code.

a. Discuss the advantages and disadvantages of each version. Refer to the validity
of both versions.

b. Try to suggest an improved version that will comply with the arguments you
mentioned in your answer to (a).

16.2 Money-Money, a software package for financial management of medium-to-small
businesses developed by Penny–Penny Ltd., captured a substantial share of the mar
ket. The Money-Money help desk (HD) has gained a reputation for its high level of
professional service to customers that use the software package. During the third
and fourth quarters of 2016, the company invested substantial efforts in preparing
an improved user manual. Distribution of the manual to customers was completed
during December 2016.

The following table presents HD data summarizing the firm’s HD activities for
the first quarter of 2016 and 2017.

1st quarter 1st quarter
Data Code 2016 2017

Number of customers A 305 485
Total number of calls received during B 2,114 2,231
the quarter
Number of calls the HD failed to resolve C 318 98
Satisfaction questionnaire – number of D 5 10
responses 1

– number of responses 2 E 10 15
– number of responses 3 F 20 40
– number of responses 4 G 40 30
– number of responses 5 H 25 5

368 Chapter 16 Software Product Quality Metrics

a. Two software product metrics are presented in the table below. Can you develop
a formula for calculating the second metrics, using the letters in the code column
of the upper table?

No. Metric code Metric name	 Calculation formula

NTSC
1 TSCR Tasks successfully completed ratio TSCR �

TNTAt(Table 16.10)
SURSQ

2	 USatL User satisfaction level (Table 16.12) USatL �
TNRSQ

b. Compute the value of the quality metrics according to the data presented in the
above for each quarter.

c. Can the investments made to improve the user manual be justified? List your
arguments.

16.3 Mean response time metrics (see Table 16.7) are usually used to test the software
product compliance with a contract requirement related to response time.

a. Prepare an implementation plan for implementing the metrics.

b. Justify times and location requirements regarding performance of the required
data collection.

16.4 Two user support management software packages, Alpha and Beta, were examined.
The accuracy metrics of Table 16.4 were chosen to be the basis for the decision
about the software package to be adopted. A one month trial of both software pack
ages yielded the following measures:

Alpha	 Beta

NACUs 1560 1870
TNCUs 1830 2070
NIAC 270 200
OT 320 180

a. Calculate the values of the two accuracy metrics for Alpha and Beta.

b. Based on the results of (a), what is your recommendation? List your arguments
for the preferred software package.

16.5 Two human resource management software packages, HRM1 and HRM2, were
being tested by two different departments in an organization. It was decided to base
the choice between the two on usability characteristics (the first three metrics of
Table 16.6).

Topics for Discussion 369

The one-month trial of both software packages yielded the following
measurements:

HRM1 HRM2

MTLUF
MTCC
MTSC
NCERUs
TNEC

32
1.2
0.5
34
46

28
1.5
0.5
26
31

a. Calculate the values of the three usability metrics for HRM1 and HRM2.

b. Based on the results of (a), what is your recommendation? List the arguments
for your preferred software package.

16.6 DSCp is a diagnostics support capability metric presented in Table 16.8.

a. Prepare an implementation plan for this metric according to the steps presented
in Section 16.3.

b. Do you expect to encounter any difficulties in the data collection of this metric?
If yes – how would you suggest dealing with these difficulties and collecting
reliable data?

370 Chapter 16 Software Product Quality Metrics

Appendix 16.A: FSM method implementation

16.A.1: The function point method

As an example of an FSM method, we present here the IFPUG version of the func
tion point model. Estimation of project size is conducted in three stages as follows:

Stage 1: Calculation of crude function points
The number of software system functional components is first identified
followed by an evaluation of each component as “simple,” “average,” or
“complex.” At this point we are able to apply weighting factors according
to the system components and complexity class. The sum of the weighted
values for all the components of the software system is the CFP.

The method relates to the following five types of software system
components:
1. User inputs – distinct input applications, not including inputs for

online queries.
2. User outputs – distinct output applications such as batch processed

reports, lists, customer invoices, and error messages (not including
online queries).

3. User online queries – distinct online applications, where output may
be in the form of a printout or screen display.

4. Logical files – files that deal with a distinct type of data and that may
be grouped in a database.

5. External interfaces – computer-readable outputs or inputs transmitted
through data communication on CD, diskette, and so on.

The information needed at this stage is as follows:
1. The number of user inputs, sorted into “simple,” “average,” and

“complex” inputs.
2. The number of user outputs, sorted into “simple,” “average,” and

“complex” outputs.
3. The number of user online queries, sorted into “simple,” “average,”

and “complex” queries.
4. Number of logical files – sorted into “simple,” “average,” and

“complex” files.
5. The number of external interfaces – sorted into “simple,” “average,”

and “complex” interfaces.
The function point method applies weight factors to each component

according to its complexity; that is, for user outputs the factors are as
follows: for simple outputs -4, for average outputs -5, and for complex
outputs -6. The factors vary for the software system components and the
complexity class. The factors have been determined according to exten
sive field studies. A specialized form for implementation of stage 1 is
shown in Table 16.A.1.

Stage 1 can assist in computation of the CFP.

Appendix 16.A: FSM Method Implementation 371

Table 16.A.1 Stage 1: Crude function points (CFP) calculation form

Weight factor
Total CFP

Simple Average Complex
Software
system Count Factor Points Count Factor Points Count Factor Points
component A B C=A×B D E F=D×E G H I=G×H J=C+F+ I

User inputs — 3 — — 4 — — 6 —

User — 4 — — 5 — — 7 —

outputs
User online — 3 — — 4 — — 6 —

queries
Logical — 7 — — 10 — — 15 —

files
External — 5 — — 7 — — 10 —

interfaces
Total CFP

Stage 2: Calculating the relative complexity adjustment factor (RCAF)
The Relative Complexity Adjustment Factor (RCAF) summarizes the
complexity characteristics of the software system as a whole. The imple
menter of the function point method is asked to assign grades (0–5) to
each of the 14 subjects that substantially affect the required development
efforts. Accordingly, the RCAF results range from 0 to maximum 70.
The specialized form for stage 2 calculation of RCAF presents these 14
subjects and supports the calculation shown further. The list of subjects
is presented in the RCAF calculation form; see Table 16.A.2.

Stage 3: Calculate the number of function points (FP)
The function point value for a given software system is computed accord
ing to the results of stages 1 and 2, by applying the following formula:

FP � CFP � �0:65 � 0:01 � RCAF�

16.A.2: An example – The Attend-Master
software system

Attend-Master is a basic employee attendance system that is planned to serve
small-to-medium-sized businesses employing 10–100 employees. The system is
planned to have interfaces to the company’s other software packages: Human-
Master, which serves human resource units and Wage-Master, which serves the
wages units. Attend-Master is planned to produce several reports and online
queries. The scheme of the planned software system is found in the data flow
diagram (DFD) shown in Figure 16.A.1.

372 Chapter 16 Software Product Quality Metrics

Table 16.A.2 Stage 2: Relative complexity adjustment factor (RCAF) – calculation form

No. Subject The grade

1 Requirement for reliable backup and recovery 0 1 2 3 4 5
2 Requirement for data communication 0 1 2 3 4 5
3 Extent of distributed processing 0 1 2 3 4 5
4 Performance requirements 0 1 2 3 4 5
5 Expected operational environment 0 1 2 3 4 5
6 Extent of online data entries 0 1 2 3 4 5
7 Extent of multiscreen or multioperation online data input 0 1 2 3 4 5
8 Extent of online updating of master files 0 1 2 3 4 5
9 Extent of complex inputs, outputs, online queries and files 0 1 2 3 4 5
10 Extent of complex data processing 0 1 2 3 4 5
11 Extent that currently developed code can be designed for reuse 0 1 2 3 4 5
12 Extent of conversion and installation included in the design 0 1 2 3 4 5
13 Extent of multiple installations in an organization and variety of 0 1 2 3 4 5

customer organizations
14 Extent of change and focus on ease of use 0 1 2 3 4 5

Total=RCAF

Figure 16.A.1 The Attend-Master Data flow diagram

Appendix 16.A: FSM Method Implementation 373

Table 16.A.3 Attend-Master crude function points (CFP) – calculation form

Weight factor
Total CFP

Simple Average Complex
Software
system Count Factor Points Count Factor Points Count Factor Points

component A B C=A×B D E F=D×E G H I=G×H J=C+F+ I

User inputs 1 3 3 — 4 — 1 6 6 9
User — 4 — 2 5 10 1 7 7 17
outputs

User online 1 3 3 1 4 4 1 6 6 13
queries

Logical 1 7 7 — 10 — 1 15 15 22
files

External — 5 — — 7 — 2 10 20 20
interfaces

Total CFP 81

Let us now compute the function point value for the proposed Attend-Mas
ter software system.

Stage 1: Calculation of crude function points
Analysis of the software system as presented in the DFD summarizes the
number of the various components:
• Number of user inputs – 2
• Number of user outputs – 3
• Number of user online queries – 3
• Number of logical files – 2
• Number of external interfaces – 2

The degree of complexity (simple, average, or complex) was eval
uated for each component (see Table 16.A.3), after which CFP calcula
tions were performed.

Stage 2: Calculating the relative complexity factor
The evaluation of the complexity characteristics of Attend-Master and
calculation of the Relative Complexity Adjustment Factor (RCAF) are
presented in Table 16.A.4.

Stage 3: Calculate the number of function points (FP)
After stages 1 and 2 were completed, the calculation was performed as
follows:

FP � CFP � �0:65 � 0:01 � RCAF� � 81 � �0:65 � 0:01 � 41� � 85:86

374 Chapter 16 Software Product Quality Metrics

Table 16.A.4 Attend-Master RCAF – calculation form

No. The affecting subjects The grade

1 Requirement for reliable backup and recovery 0 1 2 3 4 ○5

2 Requirement for data communication ○0 1 2 3 4 5

3 Extent of distributed processing ○0 1 2 3 4 5

4 Performance requirements 0 1 2 3 4 ○5

5 Expected operational environment ○0 1 2 3 4 5

6 Extent of online data entries 0 1 2 3 ○4 5

7 Extent of multi-screen or multi-operation online data input 0 1○2 3 4 5

8 Extent of online updating of master files 0 1○2 3 4 5

9 Extent of complex inputs, outputs, online queries, and files 0 1 2 3 ○4 5

10 Extent of complex data processing 0 1 2 3 ○4 5

11 Extent that the currently developed code be designed for reuse 0 1 2 ○3 4 5

12 Extent of conversion and installation included in the design 0 1○2 3 4 5

13 Extent of multiple installations in an organization and variety 0 1 2 3 4 ○5
of customer organizations

14 Extent of change and the focus on ease of use 0 1 2 3 4 ○5

Total=RCAF 41

Chapter 17

Procedures and Work
Instructions

17.1 Introduction – the need for procedures and work
instructions

• “Why should we use SQA procedures and work instructions?”

• “Wouldn’t it be better if every professional relied on his own experience
and performed the task the best way he knows?”

• “What are the organizational benefits of forcing me to perform a task
exclusively in the way specified by the company?”

Questions like these are frequently voiced by staff in most organizations.
The answers uncover the challenge to be met by procedures and work instruc
tions: Application of the organization’s accumulated know-how, experience, and
expertise.

SQA procedures and work instructions aim at:

• Performance of tasks, processes, or activities in the most effective and
efficient way without deviating from quality requirements.

• Effective and efficient communication between the different teams
involved in the development and maintenance of software systems. Uni
formity in performance, achieved by conformity with procedures and
work instructions, reduces misunderstandings that lead to software errors.

• Simplified coordination between tasks and activities performed by the various
bodies of the organization. Better coordination translates into fewer errors.

This chapter will discuss the following topics:

• Procedures and work instructions and their conceptual hierarchy (Section 17.3)

• Procedures and procedure manuals (Section 17.4)

• Work instructions (Section 17.5)

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

375

376 Chapter 17 Procedures and Work Instructions

• Procedures and work instructions: preparation, implementation and updat
ing (Section 17.6)

Section 17.2 is a mini case that illustrates the importance of procedures and
their possible contribution.

17.2 Superbox pays $9000 in damages due to failing
support center – a mini case

A damage of $9,000 was paid by Lion Software to Superbox, a chain of 80 super
markets, for failure to repair a software problem. The failure totally paralyzed
Superbox’s sales and inventory systems for 96 hours, many beyond the 36 hours
contracted-maximal time allowed for the complete repair of software failures. The
damages paid were actually just a fraction of the losses caused by the total shut
down of the sales during these 4 days. Superbox announced that damages paid,
although calculated according to the maintenance contract damages clause, are
not satisfactory, and that its lawyer is preparing a legal claim on the basis of Lion
Software’s negligence to provide an appropriate software correction service.

The story behind this event is as follows. A major software failure, com
pletely halting the software processing of sales and inventory systems, was
reported at the Lion Users support center on Saturday about midday. Jack Fox,
on duty at the time, tried for about 3 hours to perform remote correction of the
failure, but with no success. Hence, he scheduled Ben Tracy, a new member of
the maintenance team, to arrive at Superbox headquarters on Monday morning
and handle the software problem. After a one and a half hour drive from Lion
Software headquarters, Ben arrived at Superbox headquarters shortly before
midday. He spent the afternoon hours examining the documentation available on
site, and performed a number of unsuccessful attempts to locate the faulty soft
ware module. He left Superbox office in the afternoon, promising to return early
the next morning, which he did. Ben spent the next day trying out various routes
to correct the failure, but again with no success. By Tuesday afternoon, the
Superbox operations manager approached the head of the Lion Software mainte
nance department for help. He received calming words of encouragement, and
promises that system recovery is just around the corner. Shortly after this, the
head of the Lion Software maintenance department called Ben and asked for
explanations. Ben, in his defense, claimed that he is just an hour or two away
from fixing the problem. However, by the end of Tuesday, no solution had been
achieved. On Wednesday, Ben arrived at Superbox head offices – much earlier
than the previous day – and full of new ideas to solve the problem. While Ben
continued his efforts, Superbox’s general manager tried desperately to locate the
general manager of Lion Software, who was “out of office.” When they finally
managed to talk, a heated discussion took place, with Superbox’s general man
ager demanding the immediate replacement of Ben Fox with a senior software
maintenance team to enable solving the already very costly problem with no
delay. In response, a team of three very experience technicians were sent to

17.2 Superbox Pays $9000 in Damages Due to Failing Support Center 377

Superbox offices early Wednesday afternoon. The software problem was finally
solved in the late evening hours. Thursday morning was spent recovering the
software system, and finally by Thursday midday, everybody sighed with relief
as the software system was again fully functioning.

A week later, all relevant management and staff members were called for a
discussion on management’s conclusions of the Superbox event. The general
manager opened the meeting, “As things are, it is clear that the damages paid to
Superbox are just a small part of the expected damage to our company. The
severe damage to our reputation is going to be costly.” He then started to discuss
his conclusions. “I found that after five years of operation, our company has no
procedures relating to the handling of service calls at our user support center,
and no follow-up and reporting procedures for technicians working at customer
sites. The guidelines according to which the user support center will operate
from now on will be as follows:

• The technician receiving the service call must first try to resolve the prob
lem remotely.

• An inexperienced technician may join the repair work at a customer site –
only as an integral part of his training.

• When no remote solution may be found, only an experienced technician is
to be sent to the site, and only after thorough efforts to remotely handle
the failure have been invested.

• In cases of priority customers, such as Superbox, a team of two experi
enced technicians will be sent to resolve the software problem at the cus
tomer’s site.

• In cases of priority customers, correction work will continue thru Sunday,
given the customer provides necessary arrangements for the correction team.

The procedure for a technician visiting a customer site:

• Before leaving for the customer site, the technician will be notified of the
senior technician, with whom he must consult regarding his difficulties to
resolve the software problem

• The technician will report to the user support center once every three
hours about the progress in his failure repair work.

Follow-up activities will be as follows:

• The follow-up and control of technicians at customer sites must be on
going at all times.

• In cases when a solution has not been found within 8 hours following the
customer’s call, a senior technician will be sent to join the technician on site.

• In cases when a solution has not been found within 24 hours, the head of
the maintenance team must be notified about the situation. The head of
the maintenance team will, from this moment on, direct efforts required to
solve the problem.”

378 Chapter 17 Procedures and Work Instructions

The general manager left no time for discussion, and appointed a team of
three to prepare a draft within 2 weeks of the required procedures.

17.3 Procedures and work instructions and their
conceptual hierarchy

A procedure is “a particular way of accomplishing something or of acting”
(Webster’s New College Dictionary). In other words, procedures, as transmit
ted in documents, are detailed activities or processes to be performed, accord
ing to a given method, for the purpose of accomplishing a task. The
procedures adopted by an organization are considered to be binding for the
organization employees, meaning that each employee is to perform his or her
tasks according to the steps appearing in the relevant procedure document,
often bearing the name of the designated task. Procedures also tend to be uni
versal within an organization, meaning that they are applied whenever the
task is performed, irrespective of the person performing the task, or the orga
nizational context.

Work instructions are used mainly in cases when a uniform method of per
forming the task throughout the organization is crucial to its success. As a result,
work instructions are specific to a team or department; they supplement proce
dures by providing explicit details that are suitable solely to the needs of one
team, department, or unit.

The software quality assurance procedures and work instructions of special
interest to us are those that affect the quality of a software product, software
maintenance, or project management.

Professionally developed and maintained SQA procedures conform to an
organization’s quality policy, and also tend to conform to international or
national SQA standards. An important point to bear in mind, when preparing the
procedures, is that procedural conformity with an SQA standard supports certifi
cation of the organization’s SQA system (see Part V). ISO/IEC 90003:2014
standard (ISO/IEC 2014) is one of the main certification standards that guide the
preparation of procedures.

Figure 17.1 presents a conceptual hierarchy frequently used to govern
development of procedures and work instructions.

17.4 Procedures and procedure manuals

Procedures

Procedures supply all the details needed to carry out a task according to the pre
scribed method for fulfilling the task’s function. These details may be regarded
as a response to five issues, known as the Five Ws, listed in Frame 17.1.

17.4 Procedures and Procedure Manuals 379

Figure 17.1 A conceptual hierarchy for development of procedures and work instruction

Frame 17.1: The Five Ws: issues resolved by procedures

s.

• What activities should be performed?

• How should the activity be performed?

• When should the activity be performed?

• Where should the activity be performed?

• Who should perform the activity?

Standardization – the application of a fixed format and structure – is the
principle applied to all SQA procedures. A typical example of a fixed table of
contents that may be used for all the procedures in an organization is presented
in Frame 17.2.

Frame 17.2: The fixed table of contents for procedures

1. Introduction∗

2. Purpose

3. Terms and abbreviations∗

4. Applicable documents

5. Method

6. Quality records and documentation

7. Reporting and follow up∗

8. Responsibility for implementation∗

9. List of appendices∗

Appendices∗

∗Sections included only if applicable

380 Chapter 17 Procedures and Work Instructions

Although they are not mandatory features, appendices are commonly used
to present reporting forms and documentation related to the activities included
in a procedure. Other appendices provide tables and lists that support the selec
tion of the appropriate sequence of activities among the options, if any, defined
by the procedure.

ISO (2001) discusses issues of procedure preparation, including a table of
contents for the procedures.

Appendix 17.A presents an example of a procedure prepared according to
the table of contents shown in Frame 17.2. Special attention should be directed
to the section on the method of the procedure prepared in a table format. The
main advantage of a table format compared to textual descriptions is the clarity
of the presentation of responsibilities and the activity’s documentation require
ments. Another benefit of the table format is its completeness of definition,
where the employee responsible to perform the task and the approving person is
defined for each activity, as well as the required documentation and reporting.
The annex to this sample procedure presents the form to be used when preparing
a design review report.

Implementation tip

Constructing/Choosing appendices

Documentation and report forms, especially tables or lists of conditions that deter
mine alternative sequences of activities, and tables that define limits of authority,
tend to change frequently in response to external developments or internal modifi
cations of a product or task. Most changes of this kind do not reflect any inherent
modification of the procedure. Appendices that provide these details simply pro
vide an effective way to introduce changes without interfering with the procedure
itself. It should be emphasized that although there are no changes in the body of
the procedure, a new version of the procedure should be issued when appendices
are added or updated.

The procedures manual

A collection of a company’s SQA procedures is usually referred to as an SQA
procedures manual. The contents of an organization’s procedures manual vary
according to:

• The types of software development and maintenance activities carried out
by the organization.

• The range of activities belonging to each activity type.

• The range of customers (e.g., internal/customers of custom-made soft-
ware/COTS software customers) and suppliers (e.g., self-development

17.4 Procedures and Procedure Manuals 381

and maintenance/subcontractors/suppliers of COTS software and reused
software modules).

• The conceptions governing the choice of method applied by the organiza
tion to achieve the desired SQA objectives.

The procedures manual reflects the SQA level implemented by the organiza
tion. Organizations seeking a higher quality assurance level usually achieve it by
adopting a national or international quality assurance standard. An organization
that adopts a quality standard has to adapt its procedures to the standard’s
requirements, where the standard defines “what has to be performed” and the
relevant organization’s procedure determines “how this requirement is to be ful
filled.” In other words, each of the standard requirements has a corresponding,
relevant quality assurance standard.

The ISO/IEC 90003 standard is probably one of the most suitable interna
tional standards to serve as a model for adoption as a basis for a high-level SQA
system and development of the required quality procedures manual. The SQA
requirements topics, as expressed by the 2014 version of the standard (ISO/IEC
90003:2014), serve as procedure subjects to be adopted by organizations. The
standard’s requirement topics are best presented by the standard’s table of con
tents (Chapters 4–7) shown in Table B.1 (Appendix B).

Frame 17.3: SQA work instructions subjects – examples

Departmental work instructions

• Audit process for new software development subcontractors (supplier candidates)

• Priorities for handling corrective maintenance tasks

• Annual evaluation of software development subcontractors

• On the job instructions and follow-up for new team members

• Design documentation templates and their application

• Objective C (or other code languages) programming instructions

Project management work instructions

• Coordination and cooperation with customer

• Weekly progress reporting by team leaders

• Special design report templates and their application in the project

• Follow-up of beta site reporting

• Monthly progress reporting to the customer

• Coordination of installation and customer’s team instruction

382 Chapter 17 Procedures and Work Instructions

17.5 Work instructions

As already mentioned, work instructions deal with the application of procedures,
adapted to the requirements of a specific project team, customer, or other rele
vant party. While general methodology is defined in a procedure, the precise
details that allow its application to a specific project or unit are often laid out in
a work procedure. Work instructions should never contradict their parent proce
dure, although several instructions may be associated with another procedure.
This means that one may add, change, or cancel work instructions without alter
ing the respective procedure.

Examples of work instructions, summarized by their titles, are found in
Frame 17.3.

17.6 Procedures and work instructions: preparation,
implementation, and updating

An “active” SQA procedures manual conceals numerous and often ongoing
activities that guarantee the procedures’ continued applicability: preparation of
the procedures, their implementation, and regular updating. These ongoing activ
ities performed by SQA team members, together with members of the teams and
managers of the organizational units involved, ensure that the procedures are
properly adapted to technology-related changes – as well as changes to clientele
and competition.

17.6.1 Preparation of new procedures

The initial steps taken to develop a new SQA procedures manual should deal
with the conceptual and organizational framework that determines the following:

• The “menu” of the proposed procedures manual.

• The persons responsible for the preparation, updating, and approval of
procedures.

• The structure of a procedure.

• The methods in which a current procedure is chosen to be updated.

• The methods in which procedures and their updating are published and
communicated to the relevant users.

This framework is usually also formulated as a procedure (frequently called
the procedure of procedures). The subsequent steps will, naturally, deal with
specific procedures.

Procedure manual preparation by a consultant. An outside expert may
be assigned the responsibility of preparing one or more procedures, or even the

17.5 Work Instructions 383

complete manual. The main advantages of employing a consultant are the added
value of his or her expertise and experience in other organizations, a reduced
burden on the organization’s senior professionals, as well as a shortened task
completion timetable. The main disadvantage experienced with consultants is a
reduced applicability due to the consultant’s insufficient acquaintance with the
organization’s unique characteristics.

The process of preparing procedures is:

a. Appointment of an ad hoc committee: The ad hoc committee is com
prised of professionals working in the units involved, SQA unit mem
bers, and experts in the respective topics to be dealt with.

b. Assessment of the existing process. The assessment will be based on an
observation of the process, documents review, study of quality problems,
and client complaints. The findings will be summarized in a report.

c. Preparation of a procedure draft. The committee will prepare the pro
posed draft.

d. Review of the proposed draft. The draft should be reviewed by the lead
ers of the teams responsible to implement the procedure, the managers of
the unit/department, and other persons involved in the procedure.

Implementation tip

The importance of the procedure review. In many cases, due to time pres
sure and other reasons, developers of procedures tend to omit the draft
review phase, or to conduct it in a hasty manner, leaving almost no time for
reviewer comments. This almost always results in: (a) lower quality of the
proposed procedure, specifically displaying a lack in adaptations required for
the relevant unit. (b) More substantial difficulties in implementing the proce
dures, as persons who participated in the process of preparing the procedure,
by raising comments, tend to cooperate in the implementation of the proce
dure, while persons that have not been given the chance to participate tend to
oppose it.

e. Preparation of the final draft for approval. A satisfactory final draft
will be prepared by the committee, based on the comments and
suggestions.

f. Approval of the proposed procedure by the authorized person(s). It
should be noted that the approval is not automatic, and in a number of
cases, the senior employee, serving as the authorizing person, initiates
further changes according to his/her comments.

384 Chapter 17 Procedures and Work Instructions

17.6.2 Implementation of new or revised procedures

Approval of a new or revised procedure says little about the ease of that proce
dure’s implementation, which is a separate and often difficult issue. A successful
implementation of procedures usually requires performing all the following
activities:

a. Distribution of the procedure material in a printed form, intranet site,
and so on to ensure availability to team members and all persons
involved in software development and maintenance. While substantial
resources are invested in the communication and publicizing of the pro
cedures, these are not enough to ensure full or even nearly full
conformity.

b. Supporting/coaching the users in implementation by providing explan
ations and solving user difficulties in performing the required processes.
Support should continue for as long as is required for users to fully
implement the new procedure.

c. Follow-up of implementation in order to identify users, who do not per
form correctly the new procedure, and instruct them as needed.

17.6.3 Updating procedures

The motivation to update existing procedures is based, among other reasons, on
the following:

External changes

• Technological changes in development tools, hardware, communication
equipment, and so on

• Changes in legal requirements

• Changes in the organization’s areas of activity

Proposals for process improvements

• User proposals for improvement

• Analysis of failures as well as successes

• Proposals for improvements initiated by internal audit reports

• Learning from the experience of other organizations

• Experiences of the SQA team

Procedural reasons

• Termination of a version lifetime, after which an update review is manda
tory as defined by the procedure itself.

Summary 385

Implementation tip

A procedure (as well as a work instruction) that has not been updated for a considera
ble period (e.g., three years) will, in most cases, be inadequate, and in the worst cases,
obsolete; that is, no longer needed or, simply disregarded. Both situations justify a
review of the procedure and its implementation environment. A periodic review of
“neglected” (i.e., unused) procedures can generally remedy this situation by initiating
updating or removal of the procedures from the manual.

Once the need to update a procedure has been recognized, a process, similar
to that applied when preparing new procedures, can be put into operation: An
ad hoc team is convened to prepare an updated version. The assessment of the
existing process, preparation of an updated procedure draft, review of the pro
posed updated procedure draft, and preparation of the final updated draft, is fol
lowed by authorization and implementation activities. This implies that updating
should be viewed as an integral stage to software quality assurance, and as
important as preparing new procedures.

Summary

1. The contribution of procedures to software quality assurance
SQA procedures, when developed and maintained properly, are

assumed to reflect the most adequate method known to date for the per
formance of design and maintenance activities. SQA procedures that are
up-to-date and fully implemented by developers and maintenance teams
ensure conformity of their activities to the software’s quality require
ments and performance of the associated activities in an efficient and
effective way. At the same time, uniform development and maintenance
enables easier and more effective professional reviews together with bet
ter communication with maintenance teams. It likewise facilitates coop
eration and coordination between all bodies, internal and external,
involved in the project. No less important is the reduction in errors made
possible by uniformity.

2. The difference between procedures and work instructions
Procedures define the activities performed in order to achieve given

tasks, where performance is universal to the entire organization. Work
instructions are complementary tools, used to define local variations in
the application of procedures by specific teams and/or departments.
Work instructions, however, detailed and targeted, cannot contradict the
organization’s procedures.

386 Chapter 17 Procedures and Work Instructions

3. The activities involved in maintaining an organization’s procedures
manual

Activities involved include activities for preparing new procedures,
updating existing procedures, and implementing new and updated proce
dures and are as follows:
• Initiation of a new procedure or updating of an existing procedure
• Appointment of an ad hoc committee
• Assessment of the existing process
• Preparation of a procedure draft
• Review of the proposed draft
• Preparation of the final draft for approval
• Approval of the proposed procedure by the authorized person(s)

These efforts involve the organization’s SQA team members, in addition to
members of ad hoc committees gathered to prepare a new or update an existing
procedure. Additional contributors to new and updated procedures are team
members, managers and others, who review the proposed procedures through
their comments and suggestions.

Participants in the implementation process include unit leaders and SQA trustees.

Selected bibliography

ISO (2014) ISO/IEC 90003:2014 Software Engineering – Guidelines for the Application of TSO
9001: 2008 to Computer Software, International Organization for Standardization (ISO), Geneva,
Switzerland.

ISO (2001) ISO/TR 10013:2001 Guidelines for Quality Management System Documentation, Inter
national Organization for Standardization (ISO), Geneva, Switzerland.

Review questions

17.1 Figure 17.1 presents a conceptual hierarchy for the development of SQA procedures
and work instructions.

a. Describe each of the components in the diagram in your own words.

b. Explain the meaning of each of the hierarchical relationships defined in the dia
gram in your own words.

17.2 List the benefits of implementing an SQA procedures manual in an organization.

17.3 The table of contents suggested in Frame 17.2 includes an optional section, “Terms
and Abbreviations.”

a. Do you recommend including terms like software program, printed output, con
figuration management, or ATM in this section? List your arguments.

b. What criteria should be applied when including a term or abbreviation? List
your reasoning.

Topics for Discussion 387

17.4 Some software quality experts claim that a standard procedures manual with no
changes or adaptations can serve 90% of the organization.

• Do you agree with this statement? List your arguments.

Topics for discussion

17.1 “The Software Lions” recently completed compilation of their SQA procedures
manual. The following are the “purpose” and “method” sections taken from the
“Certification of professional employees” procedure.

2. Purpose
2.1. To determine the professional positions that require certification and

the respective updating of processes.
2.2. To define the process by which a candidate is certified.

5. Method
5.1. Candidates for a position that requires certification, whether new or

long-term employees, must successfully pass the relevant certifica
tion examination before starting the role.

5.2. The content and format of the certification examinations will be pre
pared by the Quality Assurance Unit after consultation with the Chief
Software Engineer. The certification examinations will be approved
by the General Manager of the company.

5.3. A list of Examiners will be determined for every position that
requires certification.

5.4. A candidate for a position that requires certification will be directed
to one of the listed Examiners.

5.5. The Examiner will report the results of the certification examinations
to the Quality Assurance Unit. The candidate will be able to appeal
the results. In special circumstances, the candidate can be
reexamined.

5.6. The department that is interested in a candidate’s appointment will be
informed about the certification examination results.

5.7. The Quality Assurance Unit will update the content and format of the
certification examinations in response to organizational changes and
information technology developments.

5.8. Management will receive a summary report of the certification
examinations and their results.

a. Read the sections of the proposed procedure carefully and list your comments
while referring to any defects and shortcomings (usually incomplete sections).

b. For each item listed in (a), suggest an appropriate change, addition or deletion,
in order to correct the detected defects or shortcomings.

388 Chapter 17 Procedures and Work Instructions

17.2 “Wild solutions” is a medium-sized software house, employing about 250 employ
ees. The new SQA manager has decided to prepare several new procedures to
replace the company’s very old and outdated procedures. You are asked to join him
in his efforts and prepare a draft for the procedure entitled “Progress control of
software development projects.”

The procedure should deal with the following subjects:

1. Preparation of a timetable, manpower resources usage plan, and budget.

2. Progress reporting for those parts of the project carried out by the
company.

3. Progress reporting for those parts of the project carried out by subcontrac
tors, partners, and the customer(s).

4. Control process for progress reporting.

5. Updating of the timetable, manpower resources usage plan, and budget.

6. Responses to deviations from the project development plan (risks, timeta
ble, manpower resources, and budget) in parts carried out by the company.

7. Responses to deviations from the project development plan (risks, timetable,
manpower resources, and budget) in parts carried out by subcontractors.

8. Responses to deviations from the project development plan (risks, timetable,
manpower resources, and budget) in parts carried out by partners or
customers.

a. Sketch what you imagine to be the company’s organizational chart. The chart
may be used for your procedure draft.

b. Prepare a draft of the “Progress control of software development projects” pro
cedure. The procedure should cover all eight subjects listed above. Add appendi
ces if required.

c. List your assumptions regarding the procedure.

17.3 As an SQA unit member, you are required to prepare the first draft of a new
procedure.

a. Suggest sources of information that may be used to prepare the draft.

b. Mark the sources mentioned in your answer to (a) that are essential for a good
draft.

17.4 It is recommended that the new and updated procedures be prepared by an ad hoc
committee rather than by an expert member of the SQA unit or a consultant.

a. List the expected advantages of the “ad hoc committee” option in preparing new
and updated procedures. Does reliance on a company “expert” option have any
advantages?

b. List the expected advantages of the “ad hoc committee” option to be realized in
the implementation stage.

Appendix 17.A: Design Review Procedure 389

Appendix 17.A: Design review procedure

Bla-Bla Software Industries Ltd.
SQA Procedure 8-09: Design reviews

SQA procedures
Revision 6 (May 8, 2016)

1. Introduction
Design reviews are carried out throughout software development projects according to the
project’s quality plan, as defined in Procedure 8-02.

2. Purpose
To define the method for carrying out design reviews in software development projects.

3. Scope
The procedure will apply to all software development projects, excluding minor projects
carried out according to Procedure 8-17.

4. Applicable documents
Procedure 8-02: Project quality plan for software development projects.
Procedure 8-17: Minor software development projects.

5. Method
Responsibility:

No. Step Activity performer/approval Documentation Notes

5.1	 Preparation of Preparation of a Perf: Project leader. Drafts of
design complete draft of Approval: Not design
documents the design required. documents

documents

5.2 Coordination of (1) Define the list Perf: Project leader. List of (1) See project
DR meeting of participants. Approval: participants. quality plan for

Development dept. preliminary list
manager of participants.

(2) Coordination Perf: DR team leader. DR invitation (2) See contract
of DR meeting Approval: Not letters to DR for customer

required. team members participation.

(3) Distribution Perf: DR team leader. (3) Distribution
of documents to Approval: Not of documents in
DR team required printed or
members. electronic format

at least 48 hours
before DR
meeting.

5.3 DR meeting Agenda: Perf: DR team DR minutes See DR report
members. template in

– Presentation Approval: Not procedure
(concise) required. Annex.

– DR team
comments and
discussion

– Definition of
action items
(AI)

390 Chapter 17 Procedures and Work Instructions

Bla-Bla Software Industries Ltd.
SQA Procedure 8-09: Design reviews

SQA procedures
Revision 8 (May 8, 2016)

5. Method (Continued)

5.4 DR report (1) Preparation of
DR report.

Responsibility:
No. Step Activity performer/approval Documentation Notes

Perf: DR team leader. DR report The report
Approval: DR team should be
members. completed and

signed within
48 hours of the
meeting.

– Designation of
AI schedule
and person
responsible for
execution.

– Designation of
DR member
responsible for
corrections fol
low-up

– DR team
decision about
continuation of
development
work.

(2) Distribution
of the report to
the participants,
as well as the
chief software
engineer,
development
dept. manager,
head of quality
assurance unit.

Perf: DR team leader.
Approval: Not
required

5.5 Implementation (1) Implemen- Perf: Project team. Corrected
of DR decisions Approval: Project design

corrections
tation of required

leader. documents
included in AIs
list.

(2) Examination Perf: DR team (1) Approval of
of corrections member. Approval: each correction.
and approval by Not required (2) Approval of
DR team completion of
member. all corrections

Prepared by: Dave Towers QA engineer Date: April 3, 2016 Signed:

Approved by: Barry Hotter Head, QA unit Date: May 2, 2016 Signed:

Appendix 17.A: Design Review Procedure 391

Bla-Bla Software Industries Ltd.
SQA Procedure 8-09: Design reviews

SQA procedures
Revision 8 (May 8, 2016)

Annex: DR report form
DR report

Date of the DR: ___________ Project title: _______________________________
Participants: ___

DR type: __

Documents reviewed
Document title Version and Revision

Action items (AIs)

No. Description of AI Responsibility
Scheduled
Completion

Approval of
Completion

Completion
Date

Signed

Decisions:	 () Approved
() Approval conditional upon completion of all AIs.
() Corrected document should be submitted for repeated review.

 The repeated DR will be on _________________.
() Other: __

DR team member responsible for follow up: _____________

Signed: ____________ ____________ ____________ ____________ ____________

Name : ____________ ____________ ____________ ____________ ____________

Date : ____________ ____________ ____________ ____________ ____________

DR leader Member Member Member Member

Part IV

Process Assurance
Activities for
Conformance

This part of the book is dedicated to the process quality assurance activi
ties of the SQA function, and includes six chapters:

• Chapter 18 deals with SQA activities aimed at evaluating the con
formance of software processes and related documentation for con
tract requirements and relevant regulations and conventions.

The following five chapters describe services related to process assurance
activities:

• Chapter 19 is dedicated to process improvements and the services of
corrective and preventive actions.

• Chapter 20 is dedicated to activities applied for assuring the quality
of software processes to be performed by subcontractors and other
external participants.

• Chapter 21 is dedicated to process quality measurement techniques.

• Chapter 22 is dedicated to the software change control process.

• Chapter 23 is dedicated to issues relating to the assessment of staff
skills and knowledge, and conducting training and certification of
staff members.

Software Quality: Concepts and Practice, First Edition. Daniel Galin.

 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

393

Chapter 18

Evaluation of Processes and
Development Environment
for Conformance

18.1 Introduction

One may assure software product quality by evaluating the conformance of the
software product to requirements and correcting the identified nonconformities.
An alternative way to ensure software product quality is by evaluating the imple
mentation of appropriate processes throughout the software life cycle, and in this
way, totally or almost totally, preventing the creation of nonconformities. Per
haps, the combined implementation is the preferred way to assure the process
and also the product.

This chapter is dedicated to activities performed to evaluate process assur
ance and development environment for conformance to requirements, standards,
regulations, and conventions.

The process requirement definition is presented in Frame 18.1.

Frame 18.1: Process requirement definition

Source: IEEE Std. 730–2014 (IEEE, 2014)

Process requirement definition

“Process requirements specify the processes the project will use to produce the project
outcomes. Process requirements may include specific processes mandated to be in
place, specific tasks the project or organization is mandated to perform, and the man
ner in which specific tasks are to be performed. Process requirements are derived
from, and are a response to, stakeholder requirements.”

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

395

396 Chapter 18 Evaluation of Processes

The scope of process assurance activities include all phases of the software
life cycle.

The software life cycle includes the following phases (according to ISO/
IEC/IEEE Std. 12207-2008):

• Software requirement analysis

• Software architectural design

• Software detailed design

• Software implementation/construction

• Software integration

• Software qualification testing

• Software installation

• Software acceptance support service (during running in of the software
system)

• Software operation

• Software maintenance

• Software disposal

The SQA function performs process evaluations using project reports, and
by participating in SQA processes performed by the project teams.

The next sections present the following topics of evaluation:

• The evaluation of life cycle processes and plans for conformance.

• The evaluation of the required environment for conformance.

• The evaluation of processes for conformance of subcontractors and other
external participants.

• The evaluation of software process by measurements.

• The assessment of staff skills and knowledge.

This chapter is based on IEEE Std. 730–2014.

18.2 The evaluation of life cycle processes and plans
for conformance

The objective

The objective of the SQA function is to evaluate the planned project processes
and processes being performed for their conformance with the project require
ments, regulations, and conventions. The evaluation should yield a list of non-
conformities to be corrected by the project team.

18.3 The Evaluation of the Required Environment for Conformance 397

The evaluation process

The evaluation process to be performed by the SQA function includes the fol
lowing activities:

1. Identify the life cycle processes required by the contract requirements,
regulations, and conventions.

Examples of possible processes requirements:
• C# programming language
• RUP unified modeling language (UML)
• Database-driven website PHP and MySQL
• Agile methodology
• Cloud application and data storage

2. Review planned life cycle processes for their conformance to the rele
vant established process requirements.

3. Audit processes being performed for their conformance to the rele
vant established process requirements. The audit should yield lists
of nonconformities:
• Planned life cycle processes that do not conform to contract requirements.
• Processes performed that do not conform to contract requirements.
• Planned and performed life cycle processes that do not conform to reg
ulations and conventions.

18.3 The evaluation of the required environment
for conformance

The objective

The objective of the SQA function is to evaluate the degree of conformance of
the software engineering development tools and testing environment required by
the contract, regulations, and conventions. An outcome of the evaluation should
be a list of nonconformities.

The software engineering environment provides assistance to the program
mer through a work station equipped with compilers, program database systems,
an interactive debugger, and other development tools.

The test environment enables performing efficient testing by local comput
ing when adequate capacity exists or with cloud computing technology. The
testing environment may support test management, test failure analysis, auto
matic test execution, and more.

The evaluation process

The evaluation of software development and test environments include the fol
lowing activities:

398 Chapter 18 Evaluation of Processes

1. Evaluate the software development environment planned to be used, and
that which is actually used, by the project team for conformance to con
tract requirements and conventions.

2. Evaluate the software and application libraries and software development
tools used by the project team for conformance to contract requirements
and planned libraries.

3. Evaluate the test environment for conformance to contract requirements
and planned environment.

All evaluation activities are followed by lists of nonconformities to be
corrected.

18.4 The evaluation of subcontractor processes
for conformance

Subcontracting organizations have become a major participant in software proj
ects, especially in large-scale projects. The participation of subcontractors raises
severe quality assurance problems, these specific software quality assurance
issues are discussed in this section.

The objective

The objective of the SQA function is to evaluate the degree of conformance of
software processes performed by subcontractors to the processes required by the
acquirer and stated in the project contract.

The evaluation process

The evaluation process to be performed by the SQA function includes the
following:

1. Identifying the project parts to be performed by subcontractors and the
contracted project processes included in these parts.

2. Verifying that processes of the subcontractor project plans conform to
the list identified earlier.

3. Evaluating the processes of the subcontractor software development for
conformance to the list of software processes allocated to be performed
to enable correction of nonconformities.

For more about assuring the quality of software processes performed by
subcontractors and other external software project participants – see Chapter 20.

18.5 The Evaluation of Software Process by Measurements 399

18.5 The evaluation of software process
by measurements

Quantitative criteria of software processes provided by software process metrics
are a very important tool for the evaluation of software processes. The applica
tion of software process metrics is a requirement in software engineering, soft
ware quality assurance standards, and in an organization’s procedures.

Objective

Develop and implement software process metrics for evaluating software process
quality to measure the degree with which they fulfill the requirements.

The required processes

Software process measurements to be performed by the SQA function include
the following activities:

1. Defining a set of process metrics, where each metric enables to deter
mine whether the process conforms to the requirements, standards, and
procedures.

Examples of process metrics are shown in Table 18.1:

Table 18.1 Examples of process metrics

Metrics code Metrics name Calculation formula

PRLV Percent of revised code lines in a version PRLV � NRL � 100
KLOC

PASCO Percent of approved software change requests PASCO � NSCO � 100
NSCR

LOHDS Level of help desk skills and knowledge LOHDS � NHDCNH
TNHDC

Where:
• NRL =_The number of revised (code) lines.
• KLOC: The size of the software product, as measured in thousands of
code lines.

• NSCO: The number of software change orders.
• NSCR: The number of software change requests.
• NHDCNH: The number of help desk calls for which the HD staff
needed assistance from another staff member.

• TNHDC: The total number of help desk (user support center) calls.

400 Chapter 18 Evaluation of Processes

2. Implementation of the metrics that result in a list of gaps between the
results of measurements and the expected quality result. Development of
software or hardware improvements to close the gaps.

3. Reapply the measurements and determine the effectiveness of the
improvements.

4. Activities 3 and 4 may be repeated till measurement results are
satisfactory.

More about software metrics and specifically about process measure
ments for the evaluation of software process conformance may be found in
Chapter 21.

18.6 The assessment of staff skills and knowledge

The objective

The objective of the SQA function is to evaluate the skills, knowledge, compe
tency, and abilities of the project assigned staff and determine the degree with
which they fulfill the project professional requirements and attend training, as
required by staff members.

The assessment process

The assessment process should be performed at an early stage, before the
assigned staff begins its work. The assessment process to be performed by the
SQA function includes the following activities:

1. Defining skills, education, and other professional qualifications required
for all project staff.

2. The assigned staff are identified and evaluated in respect to their profes
sional qualifications to perform the project. The assessment yields a list
of skill and knowledge gaps and training required per person.

3. Prepare an education and training plan to close any qualification gaps.
List assigned staff members that will not be able to complete their train
ing plan in time for the planned project task. These staff members should
be replaced.

4. Assessment of new staff members joining the team.

5. Professional training activities are evaluated and documented.

For more about staff training requirements and certification processes – see
Chapter 23.

Selected Bibliography 401

Summary

The types of software process evaluation activities
The types are:

1. Evaluation of life cycle processes and plans for conformance.

2. Evaluation of the required environment for conformance.

3. Evaluation of subcontractor processes for conformance.

1. The evaluation process of the required environment for conformance
The evaluation process to be performed by the SQA function

includes the following:
1. Evaluate the software development environment to be used by the

project team for conformance to contract requirements and conventions.
2. Evaluate the software and application libraries used by the project

team for conformance to contract requirements and planned
libraries.

3. Evaluate the test environment for conformance to contract require
ments and the planned environment.

2. The objective of evaluation of subcontractors processes
The objective of the SQA function is to evaluate the degree of

conformance of software processes performed by subcontractors
to the processes required by the acquirer and stated in the project
contract.

3. The process of software process evaluation by measurements
Software process measurements to be performed by the SQA func

tion includes the following activities:
1. Defining a set of process metrics, where each metric enables to deter

mine whether a process conforms to the requirements, standards, or
procedures.

2. Implementation of the metrics that result in a list of gaps between the
results of measurements and the expected quality result.

3. Reapply the measurements after performing improvements and deter
mine the effectiveness of the improvements.

4. Activities 3 and 4 may be repeated till measurement results are
satisfactory.

Selected bibliography

IEEE (2014) IEEE Std. 730–2014 Software Quality Assurance, The IEEE Computer Society, IEEE,
New York.

402 Chapter 18 Evaluation of Processes

Review questions

18.1 Three types of evaluation of software project processes conformance are presented
in Frame 18.1.

a. Explain in your own words the purpose of each type of evaluation.

b. Explain the differences between the different types of evaluations.

18.2 The evaluation of the conformance of life cycle processes and plans for conform
ance to the contract yields three lists of nonconformities (see Section 18.2).

a. List in your own words the contents of each of the lists.

b. Explain the differences between the lists, and also the importance of each list.

18.3 An SQA function team leader decided not to evaluate the test environment for a
software project and save the evaluation efforts.

a. Can you suggest any undesired situations resulting from this decision?

b. Explain the damages expected from each of the situations mentioned in your
answer to (a).

18.4 The organization operates a user support service for its major software systems.

a. Suggest three process metrics for the user support services.

b. Suggest desired levels for the results of the suggested metrics that will conform
to the requirements.

18.5 Overloaded with SQA tasks, the team leader decided to postpone the evaluation of
staff skills and knowledge planned to be performed about a month after work on the
project has started.

a. What are the expected undesired results of this decision?

b. Can you suggest situations where the undesired results of this decision are
minimal?

Topics for discussion

18.1 Some professionals claim that the evaluation of project products and processes are
sufficient and that there is no justification for evaluation of project plans.

a. Do you agree with this claim?

b. List your arguments for your reply to (a).

18.2 The evaluation of the required environment for conformance is discussed in Section 18.3.

a. Some SQA professionals claim that evaluation of software processes and products
are sufficient and that there is no need to invest efforts in evaluation of the software
engineering and testing environment. Do you agree with these professionals?

b. Provide your argument for your answer to (a).

Topics for Discussion 403

18.3 The organization has developed a list of authorized subcontractors, which is regu
larly updated according to a subcontractor performance report issued by the project
leader.

The SQA function head claims that there is no need to evaluate the conform
ance of authorized subcontractors.

a. Do you agree with the SQA function head?

b. List your arguments for your reply to (a).

c. Suggest situations you would recommend not to evaluate the conformance of an
authorized subcontractor.

18.4 A procedure carried out by an SQA function requires performing an evaluation of
staff skills and knowledge once before submitting a large-scale proposal, and a sec
ond time after signing the project contract – as part of the activities required to
prepare the project plan.

a. Do you support the above procedure?

b. List the advantages and disadvantages of the above procedure compared with
performing evaluation of staff skills and knowledge before the work on the proj
ect begins.

18.5 Describe the cooperation that is required between the SQA function and the project
team for performing the evaluation of staff skills and knowledge.

Chapter 19

Improvement Processes –
Corrective and Preventive
Actions

Continual improvement requirement

“The organization shall continually improve the effectiveness of the quality manage
ment system through the use of the quality policy, quality objectives, audit results,
analysis of data, corrective and preventing actions and movement review”.

ISO/IEC Std. 90003-2014 Sec. 8.5.1

Continual improvement, in other words, ongoing improvement of overall per
formance, is also a basic principle of software quality assurance. The issues
involved in successful implementation of this principle by corrective and preven
tive actions (CAPA) are discussed in this chapter.

19.1 The “3S” development team – revisited – an
introductory mini case

The project for Apollo Ltd. (discussed in Chapter 23) that was completed by
Team 7 has now been operative for about 7 months. With its previous experi
ence in mind, the development department’s manager decided that the causes of
the team’s difficulties should be analyzed, and while all conclusions reached
should be implemented by Team 7, some should be implemented department
wide.

Participants at the meeting organized by the department manager included
Team 7’s team leader, head of the SQA unit, and head of the human Resources
Department. The objective of the meeting was defined by the participants: “To
detect systematic causes for the improper performance of Team 7, and to devise

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

404

19.1 The “3S” Development Team – Revisited – An Introductory Mini Case 405

measures to prevent their recurrence.” Amongst topics raised were the cancella
tion of the Athena application generator training, and the unsuccessful recruit
ment of a replacement programmer. In addition to some personal conclusions,
the participants recommended that the following actions be taken:

a. The training procedure should be updated to include the following clause
“In cases when team members are not able to undergo required training
prior to the introduction of new applications, a special consultant or
mentor should be appointed to support the team members.”

b. The appendix of the job certification procedure should be changed to
include programmers in the list of positions requiring certification.

c. The recruitment procedure should be changed to include the following
“A mentor should be appointed for a minimum period of three months
for new department employees, and for two months for employees in
new positions. Modification of the mentoring period be subject to
approval by the department manager.”

d. All the department’s teams will begin to use Focus Version 6.1 within
the next 3 months. This action item was based on a comparison of the
performance of the Focus Version 6.1 application generator (used by
Team 7 for integrations B, C, D, E, and G), to that of Focus Version 5.1
(used for integrations A and F).

Before closing the meeting, one of the participants commented that
the subject of their meeting should have been handled long ago by the
CAB (Corrective Action Board). The CAB is the committee responsible
for reviewing such incidents and for initiating corrective and preventive
actions in cases similar to the Apollo Ltd. project. The other participants
agreed. The head of the SQA unit then stood up and said “The firm’s
CAB committee has been inactive for about a year now ever since the
resignation and departure from ‘3S’ of its last head. Shortly after his
leaving, another two members of the committee resigned. Since then, we
have negotiated with several senior staff to replace the vacant positions,
but with no success, I hope that the current candidate to head the CAB
committee will finally agree and thus “revive” the committee’s activi
ties.” After a short pause he added “I must inform you that, to the best
of my knowledge, the CAB’s activities have never been internally aud
ited. The company procedures do not explicitly require this.” As a result,
the participants added two additional action items to their list of
recommendations:

e. “Reactivate” the CAB committee by, first of all, finding a proper candi
date to head the CAB, and fulfill the committee’s membership, and
renew its paralyzed activities.

f. Prepare a new appendix to the internal quality auditing procedure to deal
with CAB activities.

406 Chapter 19 Improvement Processes – Corrective and Preventive Actions

The above six recommendations are examples of activities that are not
intended to deal with the immediate correction of detected defects, but to elimi
nate the causes of those defects throughout software development departments.
The systematic activities that implement organization-wide improvements of
effectiveness and operational efficiency fall under the heading of corrective and
preventive actions (CAPA).

19.2 Introduction

Promoting continuous improvement of effectiveness and efficiency is one of the
important objectives of SQA. The corrective and preventive actions (CAPA)
process has become one of the main tools used to achieve this objective. The
improvements initiated by the CAB who implements the CAPA process are
characterized by improved software quality together with improved productivity.
Improved productivity is expected to result from the improved development pro
cess and reduced correction time resulting from reduced software faults.

The CAPA process is the subject of this chapter. The last section presents
illustrations of its implementation.

The importance of CAPA in any SQA system is emphasized by CMMI
Guidelines, and the ISO/IEC 90003:2014 (ISO, 2014) standard, which dedicates
its Sec. 8.5 to the subject. The standard requires that the organization aims to
continually improve its software quality, and states that one of the main ways to
achieve this is by implementing CAPA. Furthermore, the standard provides defi
nitions, and defines the process of correcting and preventing software faults.
IEEE Std. 730–2014 (IEEE, 2014) presents in Sec. 4.7 a process of process
improvement that includes the activities of data collection, analysis of the data,
resolution of identified problems, implementation of corrective and preventive
actions, and follow-up of improvement results – with an emphasis on costs
reduction. ISO/IEC/IEEE Std. 12207-2008 (ISO/IEC, 2008) focuses in its Sec.
7.2.8 on software problem resolution processes.

Support for CAPA data storage, as well as sorting, information retrieval,
and other data processing activities is provided by specialized software packages
such as ABCI Consultants (2015) and R. M. Baldwin Inc. (2005).

Corrective and preventive actions – definitions

Frame 19.1 presents the ISO/IEC 90003:2014 standard’s most inclusive defini
tions of corrective and preventive actions with respect to software development
and maintenance.

It should be emphasized that the analytic distinction between corrective and
preventive actions is somewhat artificial, as can be seen by the analogous ele
ments in their definitions. This means that certain items of information may

19.3 The Corrective and Preventive Actions Process 407

support both corrective and preventive actions. Furthermore, it should be remem
bered that the two aspects of CAPA create, in practice, a joint response; and there
fore, they will be treated as one in the remainder of this chapter.

Frame 19.1: Corrective and preventive actions – definitions

Source: ISO/IEC Std. 90003:2014

Corrective actions

A regularly applied feedback organizational process that initiates and performs actions
to eliminate causes of nonconformities (software faults).

Preventive actions

A regularly applied feedback organizational process that initiates and performs actions
to prevent the occurrence of potential nonconformities (software faults).

It is noteworthy that a major part of the changes in the training and certifica
tion practices, dealt with in Chapter 23, are initiated by the CAPA process

19.3 The corrective and preventive actions process

Successful operation of a CAPA process includes the following activities, as
presented in Frame 19.2.

Frame 19.2: The corrective and preventive actions process

Source: According to IEEE Std. 730 and ISO/IEC Std. 90003-2014

The corrective and preventive actions process

• Information collection

• Analysis of information

• Development of solutions and improved methods

• Implementation of improved methods

• Follow-up of CAPA activities – implementation and outcome

The process is regularly fed by the flow of information from a variety of
sources. In order to estimate its success, a closed-feedback loop is applied to
control the flow of information, implementation of resulting changes in practices
and procedures, and measurement of the outcomes.

A schematic overview of the CAPA process is shown in Figure 19.1. Each
of its stages will be discussed in a separate subsection of this chapter.

408 Chapter 19 Improvement Processes – Corrective and Preventive Actions

Figure 19.1 The corrective and preventive action process

19.3.1 Information collection

The variety of information sources, internal and external, that serve the CAPA
process is quite remarkable. Following this internal/external dichotomy, the four
main internal sources of information are the (1) Software development process,
(2) Software maintenance, (3) SQA infrastructure, and (4) Software quality man
agement procedures. External sources of information are mainly customer appli
cation statistics and customer complaints. The classification of information
sources is presented in Frame 19.3.

19.3 The Corrective and Preventive Actions Process 409

Frame 19.3: Sources of information for corrective and preventive
actions
Sources of information for corrective and preventive actions

Internal information sources

Software development process

• Software risk management reports

• Design review reports

• Inspection reports

• Walkthrough reports

• Expert opinion reports

• Test reviews

• Special reports on development failures and successes

• Proposals suggested by staff members

Software maintenance

• Customer application statistics

• Software change requests initiated by customer applications

• Software change requests initiated by maintenance staff

• Special reports on maintenance failures and successes

• Proposals suggested by staff members

SQA infrastructure type of sources

• Internal quality audit reports

• External quality audit reports

• Performance follow-up of trained and certified staff

• Proposals suggested by staff members

Software quality management procedures type of sources

• Project progress reports

• Software quality metrics reports

• Software quality cost reports

• Proposals suggested by staff members

External information sources

• Customer complaints

• Customer service statistics

• Customer-suggested proposals

410 Chapter 19 Improvement Processes – Corrective and Preventive Actions

An alternative classification of information sources, as shown in Figure 19.1,
distinguishes between the development process-related and product infra-
structure-related (including managerial and maintenance) sources of information.

Implementation tip

The initiation of inquiries into major project failures is almost instinctive. The conclu
sions reached by these inquiries affect a project’s immediate environment; in many
cases they also contribute to improved practices and procedures through the applica
tion of CAPA.

Success stories, however, are rarely investigated. Although the staff immediately
responsible for the success is usually rewarded, the likelihood of applying a CAPA
analysis is low. Such a process can yield meaningful information regarding which
aspects of the process led to the project’s success, as well as identify activities that
could benefit from further improvement.

19.3.2 Analysis of collected information

Regular operation of the CAPA process is expected to create a massive flow of
documents related to a wide range of information sources.

Analysis involves:

• Screening the information and identifying repeated cases of nonconform
ities. Documents received from the various sources of information are
reviewed by professionals in order to identify repeated nonconforming
cases; with potential opportunities for CAPA. This stage includes a com
parison of documents of the same type received from a number of units as
well as a comparison of documents of different types related to the same
case.

• Analysis of potential improvements
Efforts are directed to determine:

- Expected types and levels of damage resulting from the identified non-
conformities (fault).

- Estimates reading the extent of potential organization-wide faults of
each type. This information is needed to estimate the total damage
expected and to determine the priority of each fault case.

Two opposing requirements affect responses at this stage – comprehensive
analysis of masses of information conflicts with the need for a swift reaction to
faults. Resolution of this conflict lies in organization and methods. A team of
professionals assigned to deal with incoming information should be created
forthwith and without delay. This team will set priorities for resolving identified
faults, with low-priority cases that have been delayed, or not be handled at all.

19.3 The Corrective and Preventive Actions Process 411

Implementation tip

The staff responsible for information analysis is expected to face mounds of docu
ments, making it unfeasible for all the documents to be screened. One approach to
reducing this load is to only report those cases that the units believe are amenable to
initiation of a CAPA process. This approach can induce a situation of “no fault”
reporting through use of the “of no importance” excuse. Another approach is to ask
the units to indicate the priority of each case in their reports. This information will
induce the CAPA team to deal with the high-priority items first. A third approach is
to sample the fault documents. Application of random sampling to each type of infor
mation and document can reduce the load to a manageable level and increase the
probability of identifying the most important cases. Sampling can also be used in
combination with the second approach, where it is applied to low- and medium-prior
ity cases.

A combination of the second and third approach is preferable in most instances.

19.3.3 Determine the causes of nonconformities

The CAPA team identifies the causes for faults. In cases when expertise support
is needed, this type of support is usually found in the development and mainte
nance teams. The following are the typical causes:

• Noncompliance with work instructions and procedures

• Insufficient technical knowledge

• Extreme time and/or budget pressures mainly due to unrealistic estimates

• Lack of experience with new development tools

19.3.4 Development of solutions

Prior to investing efforts to solve the nonconformities, it is required to consider
the needs to develop a solution. Items considered include the total damage
expected and the issue regarding the temporary, or not, nature of the non
conformity events. At a later stage, the expected costs of the solution may also
be considered for “no solution development justified.”

Solutions to identified causes of recurrent software systems faults are
required to:

• Eliminate recurrence of the types of faults detected

• Contribute to improved efficiency by enabling higher productivity and
shorter schedules

Several courses for solutions are commonly taken:

• Updating relevant procedures. Changes may refer to a spectrum of proce
dures, from those related to specific stages of software development or

412 Chapter 19 Improvement Processes – Corrective and Preventive Actions

maintenance (e.g., changes in style of software comments, changes in con
tract review procedure in clauses dealing with proposals for small proj
ects) to procedures of a general nature (e.g., changes in employee
recruitment procedures, changes of the maximum and minimal number of
participants in a formal design review).

• Changes in practices, including updating of relevant work instructions (if
exist).

• Replacement of development tools and shifting to a development tool that
is more effective and less prone to the detected faults.

• Improvement of reporting methods, including changes in report content,
frequency of reporting, and reporting tasks. This course is expected to
improve prospects for identifying software system faults and for their ear
lier detection, both resulting in substantial reductions in damages.

• Improvement in the operation of SQA infrastructure tools, that is, initia
tives for training, retraining or updating staff, improving the performance
of the CAB.

It is worth noting that:

a. In many cases, the recommended solutions combine several action items,
from one or several courses.

b. Changing and updating of procedures and work instructions needs to be
discussed and approved by the bodies assigned to their development and
maintenance.

Returning to our example, the “3S” (Section 19.1) case displays six instan
ces for CAPA implementation:

• Updating of existing procedure (recommendations (a), (b), (c), and (f)).

• Replacement of development tools of low efficiency and effectiveness by
better tools (recommendation (d)).

• Improvement in the operation of SQA infrastructure tools (recommenda
tion (e)).

Example A: High percentage of severe defects

Analysis of software quality metrics for the “Peak Performance Software Ltd.”
The development department identified a high proportion of high-severity soft
ware defects in the projects completed by two of its six teams. It was also found
that the resources these teams required to correct the defects were substantially
higher in comparison to the time required by other teams to correct defects of a
similar nature.

The analysis was based on documented information relating to past projects
as well as current projects of the two teams, in addition to projects performed by

19.3 The Corrective and Preventive Actions Process 413

the four “healthy” teams. Further investigation revealed that most of the severe
faults of these two teams were found in modules characterized by the presence
of algorithms of medium to high complexity. Inquiries related to the SQA tools
applied by all the teams revealed a meaningful difference in the number of appli
cations inspected, especially in the analysis and design stages: while the
“healthy” teams treated inspection as a more-or-less standard procedure for
more complicated modules, the other teams used inspections rather sparingly.
The recommended CAPA solution was to introduce definitions of the module
types requiring inspection within the inspection work instructions.

The following example illustrates how a CAPA process can produce
unexpected findings and recommendations.

Example B: Increase in help desk calls that require service at the customer’s
site

The “Perfect Programming Company” regularly operates two help desk teams to
support users of its two most popular software products; Team 1 specializes on
point of sale (POS) packages, Team 2 on accountancy packages. The help desk
unit’s management devised a number of new quality metrics to support control
of the teams’ effectiveness and efficiency. These new metrics emphasized con
trol of services performed at the customer site, due to their high cost, and kept
track of two variables (metrics), namely, percentage of customer site visits and
average technician time per site visit. The fourth quarterly metrics reports for the
two help desk teams are shown in Table 19.1.

The fourth quarter report set off a warning signal among company manage
ment. Whereas Team 2 showed stability in its performance, a dangerous change
in Team 1’s performance was observed. Management was very concerned by the
substantial increase in the percentage of customer site visits and average techni
cian time per site visit. A corrective and preventive action team (CAPA team)
headed by an SQA unit staff member was appointed. The CAPA team held three

Table 19.1 Help desk quarterly report – IV quarter

I II III IV
The HD team Quality metrics Quarter Quarter Quarter Quarter

Team 1
POS packages

Team 2
Accountancy
packages

Number of packages installed
% of customer site visits
Average technician time per site
visit (hours)

Number of packages installed
% of customer site visits
Average technician time per site
visits (hours)

2,105
8.5
2.8

987
10.5
2.9

2,166
8.7
2.6

1,011
10.1
2.7

2,200
12.8
3.3

1,011
10.4
2.8

2,223
19.9
3.8

1,189
10.2
2.8

414 Chapter 19 Improvement Processes – Corrective and Preventive Actions

long meetings devoted to interviewing the help desk team leaders, reviewing a
sample of their customer site visit report and examining their detailed monthly
statistical report. The team also observed the help desk teams at work for one
afternoon.

The CAPA team discovered that while the previous year was rather low key
for Team 2, who displayed some regression in their efficiency, it had been a year
of major change in the operations of Team 1. During the first and second quar
ters, the team had invested substantial efforts to improve the user interface of the
POS package and had added several helpful error messages. In addition, a
revised user manual has been issued. All these improvements were included in
the new Version 6.4 that replaced Version 6.3 of the POS packages that had
served the company for the last 20 months. Version 6.4 had been installed by
most users during the third quarter.

Analysis of the quarterly operations statistics and metrics revealed that the
currently used quarterly reports were misleading. Unexpectedly, after applying
an improved statistics and metrics reporting, shown in Table 19.2, it soon
became obvious that in the last two quarters, Team 1 had actually achieved a
substantial reduction of total help desk efforts, as measured in hours of help
desk service per customer per quarter. The improved user interface and user
manual caused a dramatic decrease in the number of user calls. Evidently, it
was a result of the new friendlier and more proficient version of the packages.
The increase in average time spent at a customer site visit was due to the
higher percentage of services now given to new customers. The CAPA team
based its conclusions on the revised, extended quarterly report, presented in
Table 19.2. Application of the revised help desk quarterly report for Team 2
figures revealed a constant decrease in the efficiency and effectiveness of the
team’s HD services.

It should be noted that according to the HD procedure, each customer call is
first served trying to solve the problem through the phone and internet communi
cation (remote service). Only if this trial fails, a technician is sent to solve the
problem on the site (on the site service).

Two corrective actions were proposed by the CAPA team: (1) To replace
the currently used quarterly report with a more comprehensive one, based on the
lines of Table 19.2. (2) An inquiry into the practices implemented by Team 2
was suggested to achieve a substantial improvement in the team’s performance.

19.3.5 Implementation of improved methods

Implementation of CAPA solutions and improved methods relies on proper
instructions, and often training, but most of all on the cooperation of the relevant
units and individuals. Therefore, successful implementation requires targeted
staff members be convinced of the appropriateness of the proposed solution.
Without cooperation, the contribution of a CAPA can be undermined.

19.3 The Corrective and Preventive Actions Process 415

Table 19.2 Revised help desk quarterly report – IV quarter

I II III IV
The HD team Quality metrics Quarter Quarter Quarter Quarter

Team 1 Number of packages installed 2,105 2,166 2,200 2,223
POS packages Total number of customer calls 1,454 1,433 872 512

Number of phone service calls 1,330 1,308 755 410
Average technician time per phone 0.21 0.22 0.18 0.15
service call (hours) 124 125 117 102

Number of customer site calls 8.5 8.7 12.8 19.9
% of customer site calls 2.8 2.6 3.3 3.8
Average technician time per 0.310 0.295 0.247 0.209
customer site call (hours)

Average HD hours per customer
per quarter (hours)

Team 2 No of packages installed 987 1,001 1,011 1,089
Accountancy Total number of customer calls 585 604 615 698
packages Number of phone service calls 524 543 551 627

Average technician time per phone 0.28 0.29 0.31 0.30
service call (hours) 61 61 64 71

Number of customer site calls 10.5 10.1 10.4 10.2
% of customer site calls 2.9 2.7 2.8 2.8
Average technician time per 0.345 0.339 0.366 0.375
customer site call (hours)

Average HD hours per customer
per quarter (hours)

19.3.6 Follow-up of CAPA activities – implementation
and outcome

Three main follow-up tasks are necessary to properly implement a corrective and
preventive action process in any organization:

• Follow-up of the flow of development and maintenance CAPA records
from the various sources of information. This type of follow-up reveals
unreported cases as well as cases with low-quality reports, where impor
tant details are missing or inaccurate. This type of follow-up is conducted
mainly through analysis of long-term activity information, while feedback
is generated to the CAPA information sources.

• Follow-up of implementation. The object of this activity is to indicate
whether the designated actions – training activities, replacement of devel
opment tools, procedural changes (after approval), and so on – have been
performed. Adequate feedback is delivered to those bodies responsible for
implementation of the corrective and preventive actions.

416 Chapter 19 Improvement Processes – Corrective and Preventive Actions

• Follow-up of outcome. Follow-up of the improved methods’ actual out
come, as observed by project teams and organizational units, enables
assessing the degree to which corrective or preventive actions have
achieved the expected results. Feedback on the outcome is delivered to
the improved methods’ developers. In cases of low performance, formula
tion of a revised or a new corrective or preventive action is needed; a task
undertaken by the CAPA team.

Clearly, regular follow-up activities that promptly examine incoming infor
mation and initiate adequate flows of feedback are an essential link in the CAPA
chain of activities.

19.4 Organization for preventive and corrective
actions

Proper performance of CAPA activities depends on the existence of a permanent
core organizational unit as well as many ad hoc team members. The nucleus,
generally known as the CAB committee, although it may have different names
in different organizations, promotes the CAPA cause within the organization. Its
tasks include:

• Collecting CAPA records from the various sources.

• Screening the collected information.

• Nominating ad hoc CAPA teams to tend to given subjects. CAB commit
tee members may head some of the teams.

• Promoting implementation of CAPA in units, projects, and so on.

• Following up information collection, data analysis, progress made by ad hoc
teams, implementation as well as outcome of improved CAPA methods.

Members of the SQA unit, top-level professionals, and development and
maintenance department managers are natural candidates for membership in a
CAB committee.

A complementary group of potential participants, from the regular staff, join
CAPA efforts as members of ad hoc CAPA teams; they regularly focus on:

• Analysis of the CAPA information related to the team’s topic

• Initiation of additional observations and inquiries

• Identification of fault causes

• Development of solutions and relevant corrective and preventive actions

• Preparation of proposed implementation revisions

• Analysis of the CAPA implementation outcome and CAPA revision, if
necessary

Summary 417

Most members of the CAPA ad hoc team are department members, experi
enced in the subject matter. In cases when localized knowledge is inadequate,
other internal or sometimes external experts are asked to join the team.

Summary

1. The difference between defect correction and corrective and preven
tive actions.
Defect correction is a limited activity directed toward the immediate

solution of the defects detected in a project or a software system.
Corrective and preventive actions are wider in scope; their aim is to

initiate and guide performance of organization-wide actions to elimi
nate the causes of known or potential faults.

2. The main types of internal sources for CAPA process.
There are four main information source types that support and feed

the CAPA process:
1. Software development process
2. Software maintenance
3. SQA procedures
4. Software quality management procedures

3. The main approaches for introduction of CAPA.
Five approaches are commonly used:

• Updating relevant procedures.
• Changing software development or maintenance practices and updat
ing work instructions.

• Changing current software development tools to more effective tools
that are less prone to faults.

• Improving reporting methods by revising task content and report
ing frequency. This approach aims to detect faults earlier and thus
reduce damages.

• Initiating training, retraining, and updating of staff.

4. The main CAPA follow-up tasks.
Three main follow-up tasks necessary for successful CAPA process:

• Follow-up of the flow of development and maintenance CAPA records:
Enables cases of no reporting and cases with inadequate reports.

• Implementation follow-up: Determines whether CAPA solutions have
been performed as required.

• Outcome follow-up: Ascertains the degree to which a CAPA has
achieved the expected results.

5. The participants in the CAPA process and their contribution to its
successful implementation.

418 Chapter 19 Improvement Processes – Corrective and Preventive Actions

The CAPA process is carried out by the joint efforts of a permanent
CAPA body together with ad hoc team participants. The permanent
CAPA body, commonly called the CAB committee, activates the CAPA
process by screening information, appointing members of targeted ad hoc
CAPA teams, promoting implementation, and following up the process.
The ad hoc CAPA team’s task is to analyze information about a given
topic in addition to developing solutions and a CAPA implementation
process. The team members are expected to implement the CAPA and
use CAB-provided assistance, if needed. Most members of ad hoc CAPA
teams are department staff members experienced in the subject matter.

Selected bibliography

ABCI Consultants (2015) QMSCAOPA Software for ISO 9001 Quality Management Systems, Soft
ware package.

R. M. Baldwin Inc . (2005) CAPA Facilitator Professional – Corrective Action, Preventive Action
Software, Software package.

IEEE (2014) IEEE Std. 730–2014 Software Quality Assurance, The IEEE Computer Society, IEEE,
New York.

ISO/IEC (2008) ISO/IEC/IEEE Std. 12207-2008 – Systems and Software Engineering – Soft
ware Life Cycle Processes, International Organization for Standardization, Geneva,
Switzerland.

ISO	 (2014) ISO/IEC 90003:2014 Software Engineering – Guidelines for the Application of TSO
9001: 2008 to Computer Software, International Organization for Standardization (ISO), Geneva,
Switzerland.

Review questions

19.1 Analysis of the cases discussed in Section 19.3 involves identifying the causes of
the defects, but also determining the types and levels of damage expected from an
identified fault followed by preparation of estimates of damages related to the orga
nization-wide distribution of the respective defects and damages.

a. Some SQA professionals believe that analysis of the case should be limited to
identifying the causes of the defects. Do you agree?

b. List your arguments.

19.2 Improved reporting methods are discussed (in Section 19.3.4) as possible solutions
for an identified defect, though no change of performance practices is recommended
in the associated CAPA.

a. Some SQA professionals believe that a CAPA has no place for changes in
reporting methods. Do you agree? List your arguments.

b. If you do not agree, list possible contributions a CAPA can make based on
changed reporting methods

Topics for Discussion 419

19.3 Section 19.3.6 lists three main tasks of CAPA follow-up.

a. List the three tasks.

b. Explain in your own words the importance of the follow-up tasks to the success
of the process.

19.4 Section 19.3.3 lists the following typical causes for defects that should be treated by
CAPA: (1) noncompliance with work instructions and procedures, (2) insufficient
technical knowledge, (3) extreme time and/or budget pressures mainly due to
unrealistic estimates, and (4) lack of experience with new development tools.

Section 19.3.4 presents five possible approaches to the solution of the above
five causes.

Examine the feasibility of applying each of the five approaches to each typical
cause of defects.

Topics for discussion

19.1 Frame 19.2 lists four different types of internal CAPA information sources.

a. Considering the multitude of internal CAPA information sources, are external
information sources necessary?

b. If you believe that external information sources are required, list your arguments
and explain their special contribution to the CAPA process.

19.2 “Statement Software Ltd.” is a software house that specializes in development of
custom-made billing systems for the manufacturing industry. A common “State
ment Software” contract offers the customer 12 months of guarantee services. The
company’s help desk (HD) supplies solutions to customer calls by phone or at the
customer’s site. The last quarter’s performance report indicates a decline in service
quality, a trend that also characterizes the previous two quarters. This trend was
identified by the following four help desk quality metrics:

• Percentage of recurrent calls: the percentage of customer site calls that required a
recurrent call to deal with a defect supposedly solved by the prior call.

• Average reaction time to customer site calls (working days).
• Average hours invested in customer site calls, including travel time.
• Customer satisfaction computed from a quarterly customer satisfaction question
naire, using a 0–10 scale.

The SQA metrics I II III IV
Quarter Quarter Quarter Quarter

Percentage of recurrent calls 12 13 19 21
Average reaction time to customer site 0.7 0.8 1.7 1.8
calls (days)
Average hours for customer site calls 4.7 4.9 3.3 3.1
Customer satisfaction 8.3 8.4 6.7 6.5

420 Chapter 19 Improvement Processes – Corrective and Preventive Actions

The ad hoc CAPA team appointed to deal with the subject decided that each
member should prepare a separate list of possible causes for the decline in the qual
ity of HD services, prior to analysis of the collected information and complemen
tary observations.

a. Can you list possible causes for the recorded phenomenon?

b. Indicate possible solutions for each of the causes proposed in (a).

19.3 The head of the ad hoc CAPA team became quite angry and offended when it was
discovered that the team’s recommendations regarding two procedures, sent to the
Procedures Committee five months ago, had not yet been approved; he subse
quently forwarded his protest to the Procedures Committee. In reply to the angry
letter, the Procedures Committee head mentioned that the committee has already
dedicated two of its meetings to the subject, and hoped to finalize the issue in their
next meeting.

a. Is it reasonable for a Procedures Committee to require such a lengthy period of
time to approve a recommended CAPA?

b. Suggest reasons where such delays might be justified.

c. Suggest changes to the route taken by the head of the CAPA committee and the
Procedures Committee that could have improved the process in this, and similar,
situation.

19.4 The head of the CAB committee suggested adding three new members, and voiced
his belief that the extended CAB committee would be able to handle all the tasks
currently carried out by ad hoc teams. He believes that this proposed change will
substantially reduce the difficulties experienced by the ad hoc teams.

a. Do you support this proposal? List your arguments.

b. If you disagree, discuss the advantages of ad hoc teams.

Chapter 20

Software Process Assurance
Activities for External
Participants

20.1 Introduction

The partners of a software development project – traditionally the party inter
ested in the software system (the “acquirer”) and the organization that under
takes to carry out the development contract (the “supplier”) – are very often not
the only participants in a development project. This is especially true for large-
scale projects, which frequently include external participants. The four external
participant types are classified into two main groups: external performers and
readymade software suppliers.

External performers include:

a. Subcontractors (a general term for “off-shoring” and “outsourcing”)
who undertake to carry out parts of a project – small or large – according
to project conditions and requirements.

b. The customer, as a participant in performing the project. It is quite
common for customers to perform parts of a project; apply special exper
tise, respond to commercial or other security needs, keep internal soft
ware development staff occupied, prevent future maintenance problems,
and so forth. Hence, the inevitability of this situation has become a stan
dard element of many software development projects and contractual
relations.

Readymade software suppliers include:

a. COTS software and reused software modules provided by specialized
suppliers. The benefits of integrating these ready components are

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

421

422 Chapter 20 Software Process Assurance Activities for External Participants

obvious, and range from timetable and cost reductions to quality. One
might expect these ready-for-use elements be of higher quality, as these
components have already been tested and corrected by developers, as
well as corrected according to faults identified by previous customers.
The characteristics of COTS software and quality problems involved in
their usage are discussed by Basili and Boehm (2001).

b. Open source software available through specialized sites. These spe
cialized sites offer a huge variety of software packages and modules.
One such site offers over 150,000 open software items (Obrenovic and
Gasevic, 2007). The contact with the developers of open source software
is partial and rare, while similarly, the available documentation of OSS is
also usually partial.

The external participants and readymade software suppliers involved in a
software development project contribute to the project, but are not contractors,
nor are they the contractors’ partners. Their contribution to the project is struc
tured through agreements of subcontractors and suppliers of COTS software
with the contractor, and through those clauses of the project contract that state
which parts of the project will be performed by the customer. In most cases, no
bonding contract related to the application of open source software exists. The
larger and more complex the project, the greater the likelihood that external par
ticipants and readymade software will be required, and the larger the proportion
of work to be transmitted or parceled out. The motivation for turning to external
participants and readymade software rests on several considerations, ranging
from economic to technical and to personnel-related interests, and reflects a
growing trend in the allocation of work involved in completing complex
projects.

The typical contracting structure of projects is presented in Figure 20.1.
The responsibility for quality of software processes performed by exter

nal participants. The project manager and the software development are
responsible for the performance of quality assurance activities that will ensure
that the processes carried out by subcontractors and other external participants
conform to the project requirements.

The role of the SQA function in assuring the quality of external partic
ipants’ software products. SQA function supports the project manager by con
sultation regarding the planning of quality processes related to the contract with
external participants and the follow-up of the processes of the contract imple
mentation. The SQA function team members may participate in part of the proj
ect team quality assurance activities as part of their efforts to evaluate the
conformance of the software products of the external participants with the proj
ect requirements.

The ISO/IEC Std. 90003:2014 (ISO/IEC, 2014) states detailed requirements
related to external participants under the general classification “purchases,”

20.1 Introduction 423

Figure 20.1 Software development projects: a typical contracting structure. (a) “Simple”

contracting project (no external participants). (b) “Compound” contracting project (with external
participants).

considering subcontractors, outsourcers, COTS, and open source software sup
pliers. The detailed requirements included in the standard deal with the purchas
ing process, beginning with selection of the supplier of purchased software
product and ending with verification of purchased product. IEEE Std. 730–2014
(IEEE, 2014) dedicates Sec. 5.5.3 to evaluation of subcontractor processes for
conformance. ISO/IEC/IEEE Std. 12207-2008 (ISO/IEC/IEEE, 2008) includes a
brief requirement related to subcontractors in Sec. 7.2.3.3.3.3.

424 Chapter 20 Software Process Assurance Activities for External Participants

The ensuring of the quality of external participants’ contributions, and the
use of readymade software is widely discussed in software quality assurance lit
erature. A few examples are Basili and Boehm (2001), Obrenovic and Gasevic
(2007), Li et al. (2009), Maki-Asiala and Matinlassi (2006), Suleiman (2008),
and Musa and Alkhateeb (2013).

The next sections are dedicated to the following subjects:

• Benefits and risks of introducing external performers

• Benefits and risks of using readymade software

• QA activities for assuring external performers’ process quality

• QA activities for assuring quality of readymade software

Section 20.2 presents the case of a large-scale project involved in sizable
participation of external participants.

20.2 The Pharmax tender – a mini case

“Pharmax,” a tender issued by RedAid Health Insurance, presented a real chal
lenge for HealthSoft, a software house that specialized in hospital and pharmacy
software. A main section of the tender was an integrative nationwide system for
handling the fees charged by pharmacies for prescription supplied to RedAid’s
insured persons. RedAid’s insured persons are entitled to receive medications at
authorized pharmacies, paying just 10% of the price as a participation fee.
Accordingly, the pharmacies submit RedAid a monthly account for the medica
tions supplied to RedAid insured persons. RedAid checks the pharmacies’
accounts, and calculates the sums to be paid to them. The Pharmax software
system tender included the following subsystems and units:

Subsystems Units (modules)

1. Physician prescription
subsystem

2. Pharmacy prescription
processing subsystem

1.1 Unit that inserts barcodes to prescriptions printed by
the physician. Barcoded fields include: physician’s and
insured person’s identifications, catalog numbers and
quantities of medications, and date and prescription
number.
2.1 Unit that reads the prescription data and checks it.
2.2 Unit that authorizes validity of the physicians and
RedAid insured persons through online checks at
RedAid’s updated database; unauthorized prescriptions
are rejected.

2.3 Processing of prescription and printing pharmacy
invoice for RedAid’s insured person.

20.2 The Pharmax Tender – A Mini Case 425

3. Pharmacy monthly
processing subsystem

3.1 Unit that processes the prescriptions into monthly
reports that include a detailed prescription log and a
summary monthly account.

3.2 Unit that transmits the pharmacies’ monthly reports
to RedAid MIS via the Internet.

4. RedAid monthly
processing subsystem

4.1 Unit that receives and checks the pharmacies’
monthly reports.

4.2 Unit that performs computerized fraud reports
according to specialized algorithms based on past
records of physicians and RedAid insured persons.

4.3 Unit that calculates the sums to be credited to the
pharmacies’ bank accounts, and processes reports to be
sent to the pharmacies.

4.4 Unit that processes RedAid’s managerial monthly
reports.

The customer’s Management Information System (MIS) Department was to
develop the home office modules of subsystem 4 based on existing software. In
addition, the MIS Department was to purchase and install the hardware and
communication equipment according to the contractor’s specifications, see to
the computerized interfacing agreements required with RedAid’s authorized
pharmacies, and instruct RedAid personnel on the new system’s operation. The
system was to be a high-integrity system, and secured with a high-reliability req
uisite for all components. The system was to become fully operative no later
than 13 months after contract signing, with the contractor fully responsible for
the quality and timely completion of all system parts.

Already at the beginning of the RedAid tender proposal preparations, the
HealthSoft tender team realized that they would need professional support from
companies that specialize in software security and data communication. The size
of the anticipated programming load led the team to decide that a subcontractor
would be able to carry out 30–40% of the programming load. Cape-Code, a very
small software house located in a nearby suburb, was chosen as the program
ming subcontractor on the basis of the lowest price proposed. Some “breathing
space” when preparing the proposal was obtained, when the team discovered
that the new enhanced Version 5 of Medals Software’s product of the widely
used Medalux package, a laboratory accounting software program, included
important relevant modules. The relevant modules were for the online external
authorization of patient credit, and for the preparation of monthly laboratory
accounts for organizational customers, such as RedAid, and they suited the ten
der requirements. Medalux’s developers had stressed the wide variety of their
package’s interfacing capabilities, which were thought to be suited to almost
any requirements. The possible integration of Medalux’s version 5 into the pro
posed software would solve one of the remaining difficulties hampering

426 Chapter 20 Software Process Assurance Activities for External Participants

completion of the tender proposal, and enable substantial reduction of develop
ment costs. Finally, HealthSoft signed agreements with all its potential external
participants – Lions Securities, Comcom, and Cape-Code, subcontractors for
security, communication, and programming, respectively – who together framed
the project responsibilities for financial issues, as well as coordination between
the various participating organizations.

The day HealthSoft was announced winner of the tender was one of satis
faction and joy for the company. Within a few days, all the project teams were
working at full speed, with monthly coordination meetings conducted regularly.
The subcontractors reported satisfactory progress in accordance with the project
schedule.

The first warning signs appeared in the ninth meeting. Comcom, the com
munication subcontractor, reported that some of RedAid’s major pharmacy
chains had refused to supply the information needed for planning the communi
cation equipment to be installed on their premises, as they had not reached an
agreement with RedAid on the issue. Meanwhile, and as expected, Lion Securi
ties, the security subcontractor, was facing similar difficulties. Both subcontrac
tors declared that even if full cooperation was achieved within the following
week, a month’s delay in completion of the project was inevitable. During this
entire period, Cape-Code people continued to express their satisfaction with the
progress of the development tasks they had undertaken.

The next coordination meeting was a special meeting, called just 2 weeks
after the previous one, to discuss the severe delays now evident in Cape-Code’s
schedule. The delays had been discovered by a HealthSoft team when they had
tried to coordinate a planned integration test. At this late stage, HealthSoft had
found out that Cape-Code had subcontracted its development task to another
small software house. It became clear that the previous calming reports had not
been based on actual information; but were fabrications intended to satisfy
HealthSoft people (and ensure regular payments by RedAid to Cape-Code).

Integration tests for the Cape-Code modules began 10 weeks behind sched
ule. During the tests, many faults, of all kinds – many more than anticipated –

were identified, while the correction time required exceeded the original plan. It
was around this time that the team assigned to integrate the Medalux Version 5
software into the system realized that not all new modules in the enhanced ver
sion were operative, particularly the online external authorization of patients’
credit status. In addition, the interfacing trials with other system modules failed.
Medal Software assigned a special team to complete development of the missing
module parts, and perform the necessary corrections. Though the software
house’s efforts were evident, successful completion of the software integration
tests was accomplished almost 20 weeks behind schedule.

The system test started 19 weeks behind schedule, with the same severity of
quality problems observed at the integration phase. Finally, and about 5 months
late, it became possible to install the hardware and software equipment at
RedAid’s main offices, and at the authorized pharmacies.

20.3 Benefits and Risks of Introducing External Performers 427

The three-week conversion phase of the project that was started 23 weeks
behind schedule was, surprisingly, a great success, and no major faults discov
ered. All faults that were revealed were immediately repaired. However, the
implementation phase was a colossal failure: Only one third of the staff listed
for training actually participated in the instruction courses, and the majority of
those who participated displayed insufficient preliminary knowledge of the new
systems. Success with pharmacy personnel was even lower. Only 8 weeks later
could regular operation of the system begin, but with only about quarter of
RedAid’s pharmacies integrated into the new system.

The project, a frustrating one for all involved parties, ended with a series of
court claims. RedAid sued HealthSoft, and HealthSoft sued RedAid, Cape-Code,
and Medal Software, the developers of the Medalux software package. Lion
Securities and Comcom decided not to sue HealthSoft – despite extra costs
incurred – due to RedAid’s lack of cooperation, and the subsequent obstacles
tolerated during its efforts to bring the performance of their parts in the project
on par with requirements – in lieu of its expectations for continued cooperation
with HealthSoft on future projects. The trials lasted for years. The only consola
tion was that the new software, once in operation, was a great success, with
many of RedAid management admitting that the system worked well beyond
expectations.

You may ask yourself:

• Could the final gratifying results have been achieved without the “mess”
experienced during the course of the project?

• Was the HealthSoft process for selecting subcontractors satisfactory?

• Were the HealthSoft contracts that included the follow-up procedures of
progress of external participants adequate?

• Was the method of purchasing COTS software appropriate?

• Was the method of controlling the implementation of the customer’s con
tribution to the project adequate?

• Was HealthSoft’s control of its external participants adequate?

Whatever your responses to the specific questions, we can readily claim that
had HealthSoft properly implemented SQA activities, problems such as those
described above could have been avoided. Prevention of such issues is the main
subject of this chapter.

20.3 Benefits and risks of introducing
external performers

The main benefits and risks to project quality associated with introducing exter
nal participants within the framework of a project are:

The main benefits

428 Chapter 20 Software Process Assurance Activities for External Participants

For the contractor:

1. Budget reductions are achieved by lower prices offered by subcon
tractors, who specialize on the subject, and or the development tool.
In some cases, a tender among subcontractors leads to even lower
quotations.

2. Remedy of professional staff shortages achieved by participation of a
subcontractor, who employs professionalism of the required kind.

3. Shorter project schedule. The participation of a subcontractor, or shift
ing part of the development tasks to the customer’s MIS department,
enables performing more development tasks at the same time.

4. Acquisition of expertise in specialized areas is achieved by choosing
an external participant with the required expertise.

For the customer (as external participant):

1. Protecting the customer’s commercial secrets. The development of
sensitive tasks by a subcontractor inevitably exposes the subcontractor’s
team to the customer’s sensitive information. The risk that sensitive,
commercial, and technological information will be revealed to other cus
tomers of the subcontractor or other nonauthorized persons always
exists. By performing the sensitive tasks, the customer reduces these
risks.

2. Provision of employment to internal software development depart
ment. Participation in a software development project, in most cases, a
large-scale project, creates an opportunity for enriching the customer’s
MIS teams’ professional know-how, as well as an employment possibil
ity for any staff not fully occupied.

3. Acquisition of project know-how for self-supplied maintenance.

4. Customer software development teams participating in the develop
ment project are expected to be better prepared to operate the system,
and to possess the necessary know-how for maintaining the system
software.

5. Project cost reductions.

The main risks

1. Delays in completion of the project. In those cases where external par
ticipants are late in completing their parts of the software system, the
project as a whole is delayed. In many cases, control over the subcon
tractor’s and customer’s software development obligations is loose. This
creates a situation that causes tardy recognition of delays, and leaves no

20.3 Benefits and Risks of Introducing External Performers 429

time for activities necessary to cope with lateness and limits its impact
on the project.

2. Low quality of project parts developed by external participants.
Quality problems can be classified as (a) defects: a higher than expected
number of defects, often of greater than expected severity; (b) non
standard coding and documentation: violations of style and structure
instructions and procedures (supposedly stipulated in any contract).
Low-quality and nonstandard software are expected to cause difficulties
in the testing phase, and later in the maintenance phase.

3. Communication problems with subcontractors. Language and cultural
barriers cause communication difficulties that result in coordination,
cooperation, and project control difficulties. These difficulties are more
severe when working with overseas subcontractors.

4. Loss of control over project parts. Whether intentional or not, the con
trol of software development by external bodies may involve interrupted
communication with external participant’s teams for several weeks, a sit
uation that prevents assessment of the project’s progress. As a result,
alerts about development difficulties, staff shortages, and other problems
are likely to reach the contractor belatedly.

5. Future maintenance difficulties. The fact that several organizations
take part in the software development creates two possible difficult
maintenance situations: (a) One of the organization, most probably
the contractor, is responsible for maintenance of the whole project.
The contractor may then be faced with nonstandard coding and
incomplete documentation supplied by external participants. (b)
Maintenance services are supplied by more than one organization,
possibly the contractor and subcontractors, and occasionally the cus
tomer’s software development department. Each of these bodies
takes limited responsibility, a situation that may require the cus
tomer to search among the different bodies involved to find the one
responsible for a specific software failure, once discovered. Dam
ages of software failures are expected to grow in “multimaintainer”
situations.

6. Termination of work on contracted activities due to the sub
contractor going out of business. Cases of subcontractors terminating
their work are usually surprising, involved with difficulties recruiting
replacement teams, and difficulties of the replacement team to continue
the work due to insufficient documentation and the inability to collect
missing information from the subcontractor’s team.

The associated benefits and risks of introducing external participants in a
project are summarized in Frame 20.1.

430 Chapter 20 Software Process Assurance Activities for External Participants

Frame 20.1: Introduction of external participants: Benefits and risks

Benefits

For the contractor:

1. Budget reductions

2. Remedy of professional staff
shortages

3. Shorter project schedule

4. Acquisition of expertise in
specialized areas

For the customer (as external
participant):

1. Protecting the customer’s
commercial secrets

2. Provision of employment to
internal software development
departments

3. Acquisition of project know-how
for self-supplied maintenance

4. Project cost reductions

Risks

For the contractor and the customer:

1. Delayed project completion

2. Low quality of parts supplied by exter
nal participants.

3. Language and cultural barriers cause
communication problems, resulting in
coordination and cooperation difficulties

4. Loss of control over development of
specific project parts

5. Increased probability of difficulties in
maintaining parts supplied by external
participants

6. Termination of work on contracted
activities due to the subcontractor going
out of business

20.4 Benefits and risks of using readymade software

The main benefits and risks for the contractor associated with using readymade
software, namely, COTS software and open source software, are:

The main benefits

1. Budget reductions are achieved by the lower costs associated with
using readymade software. These costs are much lower than those asso
ciated with the development of the required software.

2. Remedy of professional staff shortages is achieved by using ready-
made software. Though the use of readymade software requires investing
efforts in selecting the preferred software, and integrating it in the proj
ect, it does reduce a substantial part of the team’s workload.

3. Shorter project schedule. The use of readymade software reduces the
number of development tasks, and enables performing the rest of the
development within a shorter schedule.

The main risks

1. Difficulties integrating readymade software. In many cases, difficul
ties integrating readymade software into the software project arise. These

20.4 Benefits and Risks of Using Readymade Software 431

difficulties are made worse when appropriate documentation does not
exist, and support services are not available.

Implementation tip

Purchasing a software package or module (COTS software) for integration into a newly
developed software system usually entails substantial savings of development
resources, including budgeted funds. This is especially true when the relevant software
has been tested and currently serves a substantial population of users. In some cases,
the contractor is persuaded to purchase a new, supposedly advanced version of an
accepted software package, soon to be on the market and thought to be better suited to
project requirements. However, it is not uncommon to discover, just a week or two
later, that the version’s release is (unexpectedly) delayed – repeatedly. A more thor
ough investigation into the status of the new version, including requests for information
from users, may also reveal that vital parts – for instance, development of equipment
and software interfaces or an advanced application – have been shifted to a later stage.

2. Difficulties in correcting faults revealed in readymade software. The
lack of knowledge of the software design and, in a great part of the cases
also a lack in documentation, cause severe difficulties in handling soft
ware faults. Support services for fault correction are available only for a
small part of the readymade software packages and modules. Substantial
difficulties exist in the self-correction of faults appearing in COTS soft
ware sold without the source code.

3. Future maintenance difficulties. The maintenance of readymade soft
ware by the organization that purchased it also includes the difficulties
already mentioned. These difficulties are eased in cases when support
services are offered by the developer of the readymade software and soft
ware user communities.

The associated benefits and risks of readymade software in a project are
summarized in Frame 20.2

Frame 20.2: Using readymade software: Benefits and risks

Benefits

1. Budget reductions

2. Remedy for professional staff
shortages

3. Shorter project schedule

Risks

1. Difficulties integrating readymade
software

2. Difficulties in correcting faults revealed
in readymade software

3. Future maintenance difficulties

432 Chapter 20 Software Process Assurance Activities for External Participants

20.5 QA activities for assuring external performers’
process quality

We can expect external participants to operate their own SQA systems as they
include the tools necessary for achieving acceptable quality levels for their own
software products and services. The tools mentioned here are those that contrac
tors can apply vis-à-vis their external participants. For this purpose, the issues of
quality and schedule are the most important, and are addressed further.

The main SQA tools to be applied before and during incorporation of exter
nal participants in a software development project are listed in Frame 20.3.

Frame 20.3: QA activities applied to subcontractor’s participation in
a software development project

QA activities applied to subcontractor’s participation in a software
development project

• Reviewing the requirements document and subcontractor contract

• Evaluation of selection process regarding external\performers

• Review of the external performer’s project plans and development processes

• Establishment of project coordination and joint control committee

• Participation in external participants’ design reviews and software testing

• Formulation of external performers’ procedures

• Certification of external performer’s team leaders and members

• Regular follow-up of progress reports of external performers’
development activities

20.5.1 Reviewing the requirements document and
subcontractor contract

Requirement documents provide the formal basis for the contracts signed
between the contractor and subcontractors, as well as for the contract clauses
dealing with customer obligations to carry out parts of the project. Hence,
review of the requirement documents to be presented to external participants is
expected to assure their correctness and completeness. The contracts proposed to
the subcontractors require reviews as well. The principles guiding this contract
review are adjusted to the different roles of the contractor, in this case – the
customer.

In general, the requirements documents presented by contractors to external
participants should be correlated with the customer requirements. The main
issues to be dealt with in a requirements document are presented in Table 20.1.

20.5 QA Activities for Assuring External Performers’ Process Quality 433

Table 20.1 Requirements list presented to external participants

Requirements type The requirements subject

Software functionality 1. Functional requirements (related to the customer
requirements)

2. Interfaces between the external participant’s part and other
parts of the project

3. Performance, availability, usability and reliability (related to
the customer requirements)

4. Required maintenance services
Formal and staff 1. Required qualifications of team leaders and members,

including certification where applicable
2. Establishment of coordination and a joint control committee,

including procedures for handling complaints and problems
3. List of software development documents to be delivered by

external participant
4. Criteria for completion of external participant’s part
5. Financial arrangements, including conditions for bonuses and

penalties
6. Subcontractor authorization requirement

SQA 1. Requirements regarding the contractor’s participation in the
external participant’s design reviews

2. Requirements regarding the contractor’s participation in the
external participant’s software testing

Implementation tip

One of the main surprises encountered by contractors is the revelation that the sub
contractor – without any authorization or prior consent – has subcontracted his task to
another company. Whatever the reason or justification for this step, it leads to the
contractor losing control over project quality and schedule, with subsequent delays
and noncompliance with quality requirements.

Contract clauses dealing with these issues are often inadequate to prevent such
behavior. Improved prospects for eliminating such phenomena can only be achieved
by combining stringent contractual clauses with strict implementation control.

20.5.2 Evaluation of selection process regarding
external\performers

While it is clear that cases of customer’s software development participation in
projects is difficult and sometimes impossible to limit or prevent, a good degree
of choice is available with respect to the subcontractors’ participants. Any

434 Chapter 20 Software Process Assurance Activities for External Participants

selection of external participants requires collection of information about the
candidates themselves, products they have developed and team qualification,
and also evaluation of this information.

Sources of information

The main sources of information that support this selection are:

• Contractor information about subcontractors based on previous experience
with their services

• Audit summaries from subcontractor’s quality assurance system

• Survey of opinions regarding subcontractors from outside sources

These information sources are described as follows:

a. Use of contractor’s internal information about subcontractors. A
subcontractor’s file that records past performance is the main source of
information for the contractor. Such an information system is based on
cumulative experience with previous tasks performed by the sub
contractor. Implementation of this tool requires systematic reporting that
is based on SQA procedures prepared by the departments involved:
• Teams or committees that evaluate subcontractors’ proposals.
• User representatives and coordination committee members responsible
for project follow up.

• Other users who have identified software faults or gained experience
with the supplier’s products and maintenance service.

Implementation tip

Two issues impinging on the adequacy of a “Suppliers File” should be considered:

1. Individuals evaluating a proposal prefer receiving full documentation on the orga
nization’s past experience with a prospective subcontractor/supplier, together with
information gathered in the past from various outside sources. Yet, these same
individuals are likely to neglect preparing records related to their own experience
with an external participant.

2. Difficulties often result from unstructured reporting to the Suppliers File. If the
information is not properly structured, evaluation and comparison of suppliers
become taxing, if not impossible.

The answer to these difficulties frequently lies in procedures applied, and forms
used. Procedures that define who should report what and in which situations can limit
the reporting burden. A structured reporting form, supported by unstructured descrip
tions, can be helpful in addressing both issues.

20.5 QA Activities for Assuring External Performers’ Process Quality 435

b. Auditing the supplier’s quality system. Auditing the supplier’s SQA
system is often encouraged by the subcontractors themselves, in an effort
to promote acceptance of their proposals. In some cases, such an audit is
part of the tender requirements. The auditors should verify that the aud
ited features are relevant to the project in its content, magnitude, and
complexity. Another issue to be considered is the demonstration project
and team, which are usually chosen by the subcontractor. The preferred
route is, of course, for the auditors to randomly choose the project and
team from a relevant list.

c. Opinions of other users of the subcontractor’s performance. Opin
ions can be gathered from other organizations with experience from the
subcontractor’s services in the past, from professional organizations that
certified the subcontractor as qualified to specialize in the field, and from
firms that have had professional dealings with the potential sub
contractor. The purpose of this step is also to ascertain reliability among
other variables that may affect contractual relations.

Evaluation and comparison of potential subcontractors should be based on
the information collected, and carried out according to procedures designed for
this purpose. Among the factors included in the procedure are the designation of
the evaluation committee or responsible manager, and the process of evaluation,
including the method for defining the relative importance attached to each item
along with the information source.

20.5.3 Review of the external performer’s project plans
and development processes

A review of an external performer’s project plan, development processes and
procedures is performed by the contractor to ensure conformance with the sub
contractor’s contract. The requirement for this review is part of the contract
itself.

20.5.4 Establishment of project coordination and joint
control committee

The scope of the committee’s activities and responsibilities vary in relation to
the part the external participant plays in the project. Substantial coordination,
monitoring, and evaluation of progress are essential when external participants
carry out major parts of a project.

The committee’s main activities related to external participants are:

• Confirming project schedule and milestones related to external partici
pants’ tasks.

436 Chapter 20 Software Process Assurance Activities for External Participants

• Performing follow-up according to progress reports submitted to the com
mittee by external participants.

• Early identification of difficulties arising in the progress of external
participants.

• Holding meetings with team leaders and others in the field in severe
situations.

• Making decisions regarding ways to resolve problems identified in design
reviews and software tests for external participants tasks.

The goal of follow-up and coordination of a subcontractor’s performance
may also be accomplished by alternative ways. The contractor could appoint a
manager to perform these tasks. In general, the method of coordination, and its
extent, should suit the size and complexity of a subcontractor’s tasks.

Application of the specific SQA procedure that regulates follow-up and
coordination of external participants’ activities can be of great benefit.

20.5.5 Participation in external performers’ design
reviews and software testing

The extent to which contractor participation is required in subcontractors’ design
reviews and software testing depends on the nature of the project parts provided
by the external participants. When the contractor participates, we can expect him
or her to function as a full member of the review and testing management team.
Participation in design reviews and software testing should include all stages of
the development process: design reviews, (of planning and tests design), reviews
of the test results, and follow-up meetings for corrections and regression testing.
Additional review activities refer to software development documents that sum
marize phases of the project (deliverable documents). To sum up, the nature of
participation in the development process is sufficiently comprehensive to enable
the contractor’s representative to intervene, if necessary, to obtain assurance that
the quality and schedule requirements are fulfilled.

20.5.6 Formulation of external performers’ procedures

The procedures would support the contractor in handling the relationship with
external performers and regulate SQA activities within the context of contractual
relations with external performers. The main objectives of specialized proce
dures are:

• Selection of subcontractors based on auditing the subcontractor’s software
development and QA capabilities

• Contract requirements contents with subcontractors

20.5 QA Activities for Assuring External Performers’ Process Quality 437

• Review of the external performer’s project plans and development processes

• Review arrangements of subcontractor’s performance

• Coordination arrangements with subcontractors

• Formulation of external performers’ procedures

• Certification requirements from external performers

20.5.7 Certification of external performers’ team
leaders and other staff

Requirements for qualification and certification of the external participants’ team
leaders and other staff, especially subcontractors’ staff, are intended to ensure an
acceptable level of professional work as required by the project or the customer.
This requirement is not to be belittled, for the quality of staff is the heart of any
contractual relationship. The SQA activities required here are:

• Qualification and certification of staff is listed as a contractual requirement.

• Implementation of these clauses is to be confirmed by the contractor at
outset of the work.

• Changes and replacement of the respective team members are to be
approved by the contractor.

• Periodic review of implementation of the mentioned three clauses by the
contractor.

Implementation tip

Subcontractors, when under pressure due to other projects or other activities, fre
quently try to replace qualified and professional certified team members needed else
where with staff that is not fully qualified and/or lacking certification. “Partial”
violations – with the team leader or team member allocating his time, without
approval, on more than one project – are also common. The control activities men
tioned should deter the subcontractor from changing staff midproject in this manner,
and help the contractor quickly identify violations, should they occur.

20.5.8 Regular follow-up of progress reports of
external performers’ development activities

When external participants share the project workload, the main objectives of the
progress reports prepared for the coordination and joint progress control commit
tee are:

• Regular follow-up of the project schedule

• Regular follow-up of the risks identified in the project work

438 Chapter 20 Software Process Assurance Activities for External Participants

a. Follow-up of the project schedule. This report focuses on activities that
are behind schedule, and milestones expected to be reached later than
scheduled. The report describes the actions taken to minimize delays and
suggests further actions and changes in plans to be approved by the
committee.

b. Follow-up of the risks identified in the project work. The report
describes the current status of risks identified in previous reports, such as
shortage of professionals with special expertise, shortage of equipment,
difficulties in developing a module. For risks still unsolved, the report
should discuss possible remedial actions. The new risks identified in the
period covered by the report, as well as actions to be taken and their
prospects, should also be mentioned.

Two other issues to be covered in progress reports are:

• Follow-up of resource utilization

• Follow-up of the project budget

In most cases when subcontractors perform their parts as fixed-price tasks,
these issues seem to be of importance mainly to the external participants. How
ever, it is clear that an unfavorable situation regarding these two issues can affect
project quality, an event that makes them of immediate concern to the
contractor.

20.6 QA activities for assuring quality of
readymade software

We can expect developers of COTS software and open-source software to oper
ate their own SQA systems. These include the tools necessary for achieving
acceptable quality levels for their software products. In addition, previous users
of these software products are expected to have identified defects already cor
rected by the providers of these software products. Consequently, the quality of
readymade software is considered to be relatively high. However, it is clear that
readymade software is not defect free, and that defect density varies.

The tools mentioned here may be applied by the user of readymade software
to ensure the quality of these software products.

The subject of quality assurance of COTS software and open source soft
ware is the subject of many papers, these include: Li et al. (2009), Maki-Asiala
and Matinlassi (2006), Carvallo and Franch (2006), Obrenovic and Gasevic
(2007), Suleiman (2008), Malhotra et al. (2010), Musa and AlKhateeb (2013,)
and the classic Basili and Boehm (2001). Perry (2006) dedicates a chapter of his
book (Chapter 18) to the topic of testing COTS and contracted software.

The main SQA tools to be applied before and during incorporation of ready-
made software are listed in Frame 20.4.

20.6 QA Activities for Assuring Quality of Readymade Software 439

Frame 20.4: SQA tools applied to usage of readymade software in a
software development project

SQA tools applied to usage of readymade software in a software development
project

• Requirements document reviews

• Performing appropriate selection process
- The system requirements
- The readymade software product characteristics
- The provider’s characteristics
- Estimates of efforts required for readymade component’s integration

• Requirement changes to adapt to readymade software features

• Peer reviews and testing readymade package or component

• Knowledge management of components integrated in the software system

• Preparing specialized procedures

20.6.1 Requirements document reviews

Requirements documents provide the basis for the choice between alternative
COTS and open-source software packages and components.

For a list of the main issues to be dealt with in a requirements document, see
Table 20.1.

20.6.2 Performing appropriate selection process

A vast variety of COTS and open source software items are available to software
developers. Web-based search engines are the most common tool for finding
potential software packages and components to fit the system’s requirements.
The main kinds of information to be considered in the selection process are:

• The system requirements

• The readymade software product characteristics

• The vendor’s characteristics

• Estimates of efforts required for the readymade component’s integration

The different types of information are described below:

a. The system requirements. The degree the software package or compo
nent fulfils the requirements is a major consideration in the decision to
adopt a readymade software candidate. The ISO/IEC 9126 standard
focuses on requirements that belong to functionality, reliability, usability,
efficiency, maintainability, and portability factors.

440 Chapter 20 Software Process Assurance Activities for External Participants

b. The readymade software product characteristics
• Source code availability. For part of the COTS software, no source
code is supplied, this increases the dependency on the COTS software
provider for performing corrections of identified defects.

• The quality of the software product documentation. The readabil
ity, accuracy, and completeness of the component documentation sup
plied by the provider.

• The software product (component of package) quality. Understand
ability, its compatibility with industrial standards of coding and docu
mentation, and its maturity in terms of the number of clients it has
already served (the possibility that its defects have already been identi
fied and corrected).

c. The provider characteristics
• Provider’s reputation based on experience with provider’s software
products, recommendations from other clients, and provider’s matu
rity, in terms of number of years and clients the provider has already
served.

• Availability of support by COTS and open source providers. Sup
port provided by providers for software structure and defect correction
is evaluated by its comprehensiveness, quality, and response time.

• Support of COTS and open-source software community. Support
for user and developer communities relates to provision of information
regarding the features and quality of the component or package, and
assistance in defect correction.

d. Estimates of efforts required for readymade components’ integra
tion. These efforts are affected by the software understanding ability, as
well as the extent of conformance of the system’s environment and the
component’s environment/technology.

Implementation tip

The timing of the selection process is important. Early selection, even during the
requirement phase, has proved to yield better selection results, due to the wider search
of possible component and package candidates. Late selection usually means only a
partial search for sources of readymade components, a collection of partial informa
tion on the components and providers, and a quick and hasty evaluation process of
comparisons. A result of late selection is the expected selection of an inferior compo
nent or software package.

A risk that early selection faces is the release of a new version of the selected
component or package during the software development process. This requires a rese
lection process, though efforts required of this second process are significantly lower
than those required for the early selection process. Even when considering the possi
bility of the need for a reselection process – an early selection should be preferred.

Summary 441

20.6.3 Requirement changes to adapt to readymade
software features

In many cases, readymade software does not offer certain required features. In
most cases, a provider upgrade of the readymade software is not possible. No
upgrading is the case when the COTS software source code is absent. In such
situations, especially when the missing feature relates to a minor requirement,
one should consider changing the relevant requirement. The developer negoti
ates with the client regarding requirement changes.

20.6.4 Testing readymade package or component

It is expected that readymade components be of as high a quality, at least as that
of the in-house components. Static peer review testing (code inspections and
walkthroughs) of readymade software are not possible in most cases. However,
dynamic testing (by a computer running the software) are frequently used prior
to the final decision regarding the preferred software product. In some cases,
applying the prototyping procedure for verifying component’s functionalities, as
well to discover defects, was found to be applicable.

20.6.5 Knowledge management of components
integrated in the software system

The developer’s company is responsible to manage the knowledge about compo
nents supplied by the provider and other external sources. In addition to saving
information that becomes available during integration and usage. In other words,
to capture knowledge not included in the documentation by the provider and
others, including defects.

20.6.6 Preparing specialized procedures

The specialized procedures that regulate SQA activities within the context of the
use of COTS and open source software have already been mentioned in this
chapter. These special procedures are usually adaptations of procedures applied
in projects that the organization has carried out.

It should be noted that developers tend to use informal processes for select
ing readymade components and packages. Time-to-market considerations and
relying on in-house expertise and on the provider’s advice are the justifications
mentioned by integrators of the development teams.

Summary

1. The difference between contractors and external participants. Soft
ware development contractors are organizations or groups of

442 Chapter 20 Software Process Assurance Activities for External Participants

organizations contracted by a customer to develop a software system
with a project contract. External participants are parties that participate
in the development process and perform small to large parts of the work,
according to a contract with the contractor, but are not parties to the proj
ect’s contract.

2. The types of external participants and readymade software and the
benefits they provide to the contractor.

The external participants can be categorized into two main groups:
external performers and readymade software suppliers.

The external supplies are:
• Subcontractors
• The customer, as an active participant in performing parts of the project

The readymade software suppliers are:
• Suppliers of COTS software and software components
• Open source software available through Internet sites

The main benefits to the contractor of using external participants
are:
a. Budget savings achieved when subcontractors offer prices below

those incurred by performing the project internally, and by the use
of COTS and reused software.

b. Overcoming shortages of professional staff by transferring parts of
the project to be carried out to firms employing staff with relevant
skills.

c. Potentially shorter project schedules achieved by purchasing
COTS software and reused software rather than developing the
software.

d. Expertise acquired in areas that need specialization through the
participation of owners – the subcontractor or the customer’s devel
opment department – of that expertise.
The main benefits to the contractor from using readymade software

are:
a. Budget reductions are achieved as the cost of the purchased soft

ware or open-source software, and its integration in the software
developed are much lower than the development costs.

b. Remedy of professional staff shortages as it reduces required
efforts from the development team.

c. Shorter project schedule as parts of, or whole development tasks
may be performed at the same time.

3. The risks for the contractor associated with working with external
performers and readymade software

The main risks for the contractor from using external performers are:
a. Delays in completion of project parts due to the competing inter

ests of external participants, who are only partially committed to

Summary 443

keeping to schedule. Even the customer – as supplier of his own
project – might prefer another project and delay completion of his
own part.

b. Low quality of project parts caused by insufficient capabilities,
attempts to save resources, or other factors.

c. Future maintenance difficulties due to low quality or nonstandard
software and/or incomplete or poor documentation of parts carried
out by external participants.

d. Loss of control over parts of the project instigated by periods of
cut off communication, whether intentionally or inadvertently
initiated.
The main risks to the contractor from using readymade software are:

a. Difficulties in integration of readymade software. In many cases,
difficulties arise in the integration of the readymade software into the
software project. These difficulties are worse when no appropriate
documentation exists, and no support services are available.

b. Difficulties in correcting faults revealed in readymade software.
The lack of software design knowledge and, in a great number of
cases, also a lack in documentation, causes severe difficulties in han
dling software faults.

c. Future maintenance difficulties. Due to the lack of knowledge and
documentation of the software, maintenance of readymade software
by the purchasing organization is not without difficulties. In some
cases, support from the software providers and user communities’
eases the situation.

4. QA activities appropriate for use with external performers
a. Reviewing the requirements document and subcontractor con

tract ensures a correct and complete list of the requirements related
to software functionality, to formal and staff aspects of the project,
and to SQA issues.

b. Reviewing the requirements document and subcontractor con
tract. An appropriate selection process requires collecting and ana
lyzing information about the external participants.

c. Review of the external performer’s project plans and development
processes.

d. Establishment of project coordination and joint control committee.
One of the committee’s main tasks is to identify and resolve quality
and schedule problems. Early alerts and cooperation can reduce, and
even eliminate, these risks.

e. Participation in external participants’ design reviews and soft
ware testing provides an excellent opportunity to examine the real
quality of an external participant’s work, and to introduce correc
tions when necessary.

444 Chapter 20 Software Process Assurance Activities for External Participants

f. Formulation of external performers’ procedures is part of a contrac
tor’s SQA infrastructure. These procedures are expected to cover all
aspects of work with external participants.

g. Certification of the external participant’s team leaders and other
staff, as part of their contract with the contractor.

h. Regular progress reports of external participants’ development
activities are prepared mainly in order to identify risks to the
schedule.

5. The QA activities appropriate for use with readymade software
a. Requirements document reviews
b. Performing appropriate selection process

The main types of information to be considered in the selection process are:
• The system’s requirements
• The readymade software product characteristics
• The provider’s characteristics
• Estimates of efforts required for the readymade component’s
integration
c. Requirement changes needed to adapt to readymade software

features. Performing such changes are especially suitable when the
required changes are minor.

d. Peer reviews for, and testing of, readymade packages or compo
nents to be performed before purchase or after integration.

e. Knowledge management of components integrated in the soft
ware system. Developer procedures are to capture knowledge not
included in the documentation by the provider or others, including
defects.

f. Preparing specialized procedures to handle selection and integra
tion of readymade software packages and components.

Selected bibliography

Basili V. R. and Boehm B. (2001) COTS – based systems top 10 list, Computer, Vol. 34, No. 5,
pp. 91–93.

Carvallo J. P. and Franch X. (2006) Extending the ISO/IEC 9126-1 quality model with non-technical
factors for COTS components selection, The 4th ICSE International Workshop of Software Qual
ity, pp. 9–14.

IEEE (2014) IEEE Std. 730–2014 Software Quality Assurance, The IEEE Computer Society, IEEE,
New York.

ISO/IEC/IEEE (2008) ISO/IEC/IEEE Std. 12207-2008 – Systems and Software Engineering – Soft
ware Life Cycle Processes, International Organization for Standardization (ISO), Geneva,
Switzerland.

ISO/IEC (2014) ISO/IEC Std.90003:2014 Software Engineering – Guidelines for the Application of
TSO 9001: 2008 to Computer Software, International Organization for Standardization (ISO),
Geneva, Switzerland.

Review Questions 445

Li J., Conradi R., Slyngstad O. P. N., Bunse C., Torchiano M., and Maurizio M. (2009) Development
with off-the-shelf components: 10 facts, IEEE Software, Vol. 20, No. 2, pp. 80–87.

Maki-Asiala P. and Matinlassi M. (2006) Quality assurance of open source components integrator
point of view, Computer Software and Applications Conference, Chicago, IL, September 2006,
pp. 189–194.

Malhotra R., Kaur A., and Singh Y. (2010) Empirical validation of object-oriented metrics to predict
fault proneness using open source software, Software Quality Professional, Vol. 13, No. 1,
pp. 29–41.

Musa K. and Alkhateeb J. (2013) Quality model based on COTS quality attributes, International
Journal of Software Engineering & Applications, Vol. 4, No. 1, pp. 1–8.

Obrenovic Z. and Gasevic D. (2007) Open source software: all you do is put it together, IEEE Soft
ware, Vol. 24, No. 5, pp. 86–95.

Perry W. E. (2006) Effective Methods for Software Testing: Includes Complete Guidelines, Checklists
and Templates, 3rd Edition, Wiley Publishing, Indianapolis, IN.

Suleiman B. (2008) Commercial-off-the-shelf software development framework, ASWEC 2008 Aus
tralian Conference on Software Engineering, Perth, WA, Australia, March 2008, pp. 690–695.

Review questions

20.1 The customer as a developer of parts of a project is listed as one of the two types of
external participants.

• Compared to subcontractors and suppliers of COTS software, the customer as a
developer-supplier causes the contractor special difficulties before and during
implementation of the project. List the special difficulties and explain their possi
ble effects on the project.

20.2 External participants introduce four main risks into the project quality.

• List the main risks and explain in your own words the implications of each one.

20.3 Employing external participants provides the contractor with four major benefits
with respect to carrying out a project.

• List the main benefits to a contractor and explain in your own words the implica
tions of each one.

20.4 The customer enjoys four principle benefits from the employment of external partic
ipants when carrying out a project.

• List the main benefits to the customer and explain in your own words the impli
cations of each one.

20.5 Employing readymade components and packages provides the contractor with
major benefits, but involves risks with respect to carrying out a project.

a. List the main benefits to a contractor and explain in your own words the implica
tions of each one.

b. List the main risks to a contractor and explain in your own words the implica
tions of each one.

446 Chapter 20 Software Process Assurance Activities for External Participants

20.6 Qualifications and certification requirements for team leaders and team members are
included in many subcontracting contracts.

a. Can you suggest examples of project team functions and list a number of rele
vant qualification and certification requirements?

b. What do contractors expect to gain from qualification and certification requirements?

20.7 For contractors, project adherence to schedule and discovery of hitherto unknown
project risks are the main areas of interest in progress reports.

• Explain in your own words what actions are to be taken and what information
items are to be required to ensure that progress reports comply with these two
demands.

20.8 Performing a software development project of significant size almost always
involves employing external participants and using readymade software

a. List the QA activities appropriate for use when external participants are involved
in a project.

b. Add short statements regarding the risks involved with projects, including exter
nal participants and the QA activities that can help to eliminate or reduce these
risks.

c. List the QA activities appropriate when using readymade software

d. Add short statements regarding the risks involved with using readymade soft
ware and the QA activities that can help to eliminate or reduce these risks.

Topics for discussion

20.1 Refer to the Pharmax tender mini case.

a. List the errors made by HealthSoft in the proposal preparation stage.

b. List the errors committed by HealthSoft during performance of the project.

c. Suggest SQA activities that could have prevented the above errors.

20.2 A nationwide furniture store chain has issued a tender for the development of its
new generation software system; integrating advanced data communication sys
tems, online applications, and a new feature – an Internet site – to display the chain
products.

The chain received several proposals, two of which were selected for the last
stage of the tender. Both contenders were well-established software houses, experi
enced in large-scale projects with sound professional reputations. Both proposals
adequately addressed the tender schedule and other organizational demands, as well
as the software specification requirements. The difference in price between the pro
posals was negligible.

Proposal A: The “in-house proposal,” based entirely on in-house development,
proposed integrating various company teams. The company declared that substan
tial parts of the project would be based on reused software modules from the com
pany’s software library.

Topics for Discussion 447

Proposal B: The “big coalition proposal” was based on six external partici
pants, half of them suppliers of reused software, while the remaining subcontractors
were leading specialists in their fields of expertise.

You have been appointed to present your recommendations for the final choice
between the closing proposals.

a. Which of the two final proposals would you recommend?

b. List your arguments for and against your preferred proposal.

c. Given that the cost of the nonpreferred proposal (not recommended in (a)) is
10% lower than the preferred proposal, would you consider changing your rec
ommendation? List your arguments for this decision.

20.3 There are three sources of information reviewed in the process of selecting external
participants.

a. List each source of information and explain in your own words the contribution
of each one.

b. Why is it important to use all three types of sources?

c. What are the difficulties involved in employing each of the information types of
sources?

20.4 Some professionals claim that in cases when the contract specifies reviews of deliv
erables, and acceptance tests of project parts carried out by external participants, the
contractor has no justification to participate in design reviews and software tests.

a. Do you agree with these professionals? List your arguments.

b. Do you agree with others who suggest that there is no need to carry out accep
tance tests in cases when comprehensive participation in design reviews and
software tests has been executed? List your arguments.

Chapter 21

Software Process Quality
Metrics

21.1 Software process metrics – an introduction

Software quality metrics are quantitative measures of the attributes of a software
system as a product and also in its development and operative processes. Mea
sures are based on relevant collected data related to these attributes. Fundamen
tal tools are employed to assist management in three basic areas: setting targets
for the software development and maintenance performance, evaluating the
degree of achievement of the targets of development and maintenance tasks, and
ensuring the detection of changes in those attributes.

Introductory issues on the objectives of software quality metrics, required
characteristics of software quality metrics, and the implementation process of
software quality metrics are presented in Chapter 18.

SQA and software engineering professional use to distinguish between soft
ware process metrics and software product metrics.

Software process metrics are a quantitative representation of software pro
cesses, as encountered by developers and maintainers throughout the software
life cycle, such as prerelease defects, percent of modified code lines, and density
of detected defects.

Software product metrics are a quantitative representation of attributes of
software products or intermediate products, encountered by the user when apply
ing software in efforts to adapt or change the product. Attributes changed
include effectiveness, productivity, and reliability. Chapter 16 is dedicated to the
topic of software product metrics.

This chapter is dedicated to software process metrics.

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

448

21.1 Software Process Metrics – An Introduction 449

Classification of software process metrics

The software process metrics are classified into four classes:

1. Software development process quality metrics

2. Software operation process quality metrics

3. Software maintenance process quality metrics

4. Management process quality metrics

Software development process metrics include the following:

• Software development process quality metrics

• Software development by readymade suitability metrics

• Software development process effectiveness, efficiency, and productivity
metrics

• Software development process rework metrics

Software operation process quality metrics include the following:

• Software operation process quality metrics

• Software operation process effectiveness, efficiency, and productivity
metrics

Software maintenance process metrics include the following:

• Software maintenance process workload metrics

• Software maintenance process quality metrics

• Software maintenance process effectiveness, efficiency, and productivity
metrics

Management process metrics include the following:

• Software development process management metrics

• Software reuse process metrics

Several books, book chapters, and numerous journals as well as conference
papers have been dedicated to the subject of software quality metrics. A compre
hensive discussion of software metrics is presented in books by Fenton and
Bieman (2015) and Nicolette (2015), and in papers by Radjenovic et al. (2013),
Kitchenham (2010), and Mordal et al. (2012).

Object-oriented (OO) software quality metrics.
The characteristics of OO design and coding methodology, namely, classes,

methods, coupling, cohesion, inheritance, and so on, require adaptations as well
as new quality metrics specialized in measuring OO software projects. Proposals
of OO metrics and evaluation proposed OO metrics are discussed by a multitude
of papers, to mention but a few: Darcy and Kemerer (2005), Aggarwal et al.
(2007), Cheikhi et al. (2014), Ani et al. (2015), and Ferreira et al. (2012).

450 Chapter 21 Software Process Quality Metrics

IEEE and ISO/IEC offer software quality metrics criteria within their soft
ware engineering standards. In the ISO/IEC standard, we may again note that
ISO/IEC 90003:2014 (ISO/IEC, 2014) dedicates Chapter 8 to measurement,
analysis, and improvement processes. ISO/IEC/IEEE Std. 12207-2008 (ISO/
IEC/IEEE, 2008) presents the measurement processes for project in a system life
cycle in Section 6.3.7. An ISO/IEC standard that is worthwhile mentioning is
ISO/IEC Std. 15939:2007 (ISO/IEC, 2007), which is dedicated to measurement
processes.

The chapter’s next sections discuss the following topics:

• Section 21.3 – Software development process metrics

• Section 21.4 – Software operation process metrics

• Section 21.5 – Software maintenance process metrics

• Section 21.6 – Management process metrics

• Section 21.7 is dedicated to a discussion on the limitations of software
metrics

The following section presents a mini case that illustrates the implementa
tion uses of process software metrics.

21.2 North against South – who’ll win this time
round? – a mini case

John Kaine, the new manager of Norman Computing, was surprised to find out
that the two software development departments, located at the south and north
wings of the company building, employ entirely different methodology and
development tools. His discovery led him to understand that this situation should
be amended as soon as possible, to ensure that all the company’s software devel
opment activities be conducted according to the same methodology and develop
ment tools. In a meeting initiated by Mr. Kaine to try to find the preferred
methodology and development tools for the company, a loud discussion took
place between the participants, with each claiming their department’s technology
and tools to be substantially superior to the others. Mr. Kaine cut the discussion
short with his decision – a test project will be performed in each of the depart
ments, and the company’s methodology and development tools will be defined
according to the results.

A week later, the test project was decided: The north wing department will
perform the Oak project, a customer club for a major hardware shop, while the
south wing department, the Tower project, will perform a customer service for a
large sport center. Both projects were very similar in size (35.1 and 34.8 func
tion points, respectively), and had a similar complexity level. The projects were
scheduled to begin the following month with an expected duration of 6 months.
It was further agreed that the achievements of both development teams will be
compared according to the three metrics presented in Table 21.1.

21.2 North Against South – Who’ll Win This Time Round? – A Mini Case 451

Table 21.1 The comparison metrics

No. Metrics code Metrics name Calculation formula

DevH
1 DevPF Development Productivity by DevPF �

NFPFunction Points
NDE

2 DEF Development Error Density by DEF �
NFPFunction Points

NDE
3 DERE Development Error Removal Effectiveness DERE �

NDE � NFHY

DevH, total working hours invested in the development of the software system; NFP, the number of
function points; NDE, number of development errors; NFHY, the number of all software failures
detected during the first-half a year of regular operation.

The Tower and Oak projects began on time, with both teams keen to prove
the superiority of their methodology and development tools. The teams com
pleted their work about 2 weeks before schedule and the software packages
were installed successfully a few weeks later. The data collected during the
development period and the first half a year of customer regular use are listed in
the following table.

Data item Tower project Oak Project

DevH
NFP
NDE
NHYF

537
35.1
123
14

581
34.8
107
17

The following table presents the metrics defined for comparing the Tower
and Oak projects:

Metric Tower project Oak Project

DevPF 15.30 16.90
DEF 3.50 3.07
DERE 0.90 0.86

Mr. Kaine opened the comparison summary meeting with a sigh. “I am
really sorry. The results of the test projects were a real disappointment, as no
decisive superiority of one of the wing’s tools was proved. While the Tower
project yielded better results in development productivity and development error
removal effectiveness, the results of the Oak project for development error den
sity were better.” He left no time for questions and continued: “The heads of the
software development departments are requested to meet and discuss which

452 Chapter 21 Software Process Quality Metrics

methodologies and development tools of those employed by the two depart
ments should be preferred, and eventually become the Norman Computing offi
cial tools. I wish you fair and professional discussions, and will expect your
results within ten days.”

21.3 Software development process metrics

This section presents the following examples of metrics:

• Software development process quality metrics

• Software development by readymade suitability metrics

• Software development process effectiveness, efficiency, and productivity
metrics

• Software development rework metrics

21.3.1 Software development process quality metrics

Software development process quality metrics may be classified into two groups:

• Development error severity metrics

• Development error density metrics

A discussion of the above two classes is as follows.

a. Development error severity metrics
Metrics belonging to this group are used to detect adverse situa

tions of increasing numbers of severe errors. Thus, the average sever
ity of errors is calculated by weighting errors according to their
severity.

Errors number measures. Two error measures are used for calcu
lating the average severity metrics: (a) The number of errors counted that
include requirement specification errors, design errors, and coding errors.
(b) The weighted number of errors. The weighted number of errors con
siders the severity of the errors.

A common method applied to arrive at these measures is by classifi
cation of the detected errors into severity classes, followed by defining a
severity weight for each class. The weighted error measure is calculated
by summing up multiples of the number of errors found in each severity
class by the adequate severity weight. A commonly used five-level
severity classification for design errors that applies also to the other
phases of software development is presented in Table 13.1.

Example 1 demonstrates the calculation of the weighted number of
development errors (WNDE).

21.3 Software Development Process Metrics 453

Example 1

The development error summary for the department’s Atlantis project
indicted the following:

Low severity errors: 42; medium severity errors: 17; high severity
errors: 11.

Three classes of error severity and their relative weights were defined:

Error severity class Relative weight

Low severity
Medium severity
High severity

1
3
9

The calculation of NDE (number of development errors, relates to the
total number detected throughout the development process) and WNDE
(weighted number of development errors) is presented in Table 21.2.

Error severity metrics for the entire development process and the
development process phases are presented in Table 21.3.

b. Development error density
The counted number of errors and a measure for the project size are

used to calculate the error density.

Software size measures. Two software project size measures are used:

a. KLOC (thousand lines of code). The estimated KLOC measure is to be
used during the development process, and replaced by the real measure
once the programming phase is completed.

b. NFP (the number of function points). The number of function point esti
mates should be replaced by more accurate ones as the project progresses.

The subject of software project size is discussed in Section 16.4.

Table 21.2 Calculation of NDE and WNDE – an example

Calculation of WNDE
Calculation of NDE

Error severity class Number of errors Relative weight Weighted errors

a b c D= b × c
Low severity 42 1 42
Medium severity 17 3 51
High severity 11 9 99
Total 70 – 192
NDE 70 – –

WNDE – – 192

454 Chapter 21 Software Process Quality Metrics

Table 21.3 Development error severity metrics

Metrics
code Metrics name Calculation formula

ADES

ARES

ADSES

Average Development Errors Severity (for the entire
development process)

Average Requirement Specifications Errors Severity

Average Design Errors Severity

ADES � WNDE
NDE

ARES � WNRE
NRE

ADSES � WNDSE
NDSE

ACES Average Coding Errors Severity ACES � WNCE
NCE

NDE, number of development errors; NRE, number of requirement specification errors;
NDSE, number of design errors; NCE, number of coding errors; WNDE, weighted number of
development errors; WNRE, weighted number of requirement specification errors; WNDSE,
weighted number of design errors; WNCE, weighted number of coding errors.

Table 21.4 Error density metrics – for the development process

Metrics
code Metrics name Calculation formula

DEDL Development Error Density by KLOC DEDL � NDE
KLOC

DEDF Development Error Density by Function Points DEDF � NDE
NFP

WDEDL Weighted Development Error Density by KLOC WDEDL=DEDL×ADES
WDEDF Weighted Development Error Density by WDEDF=DEDF×ADES

Function Point

KLOC, the size of the software product, as measured by thousands of code lines; NFP, the size of the
software product, as measured by the number of function points.

As error average severity and error density metrics alone provide two partial
and different descriptions of the error situation, only a combination of both met
rics (the weighted density metrics) can present a full picture of the error situation.

Table 21.4 displays four error density metrics dedicated to the development
process as a whole.

Example 2

This example follows example 1 and demonstrates implications of their usage.
A software development department applies two alternative metrics for the

calculation of development error density: DEDL and WDEDL. The size of the

21.3 Software Development Process Metrics 455

Table 21.5 Metrics calculations for the Atlantis project

Measures and metrics Metrics formulae Metrics calculation Metrics result

NDE 70
DEDL DEDL � 1.75

KLOC 40

WDEDL WDEDL=DEDL×ADES 1.75× 2.74 4.8

project is 40 KLOC. According to the Atlantis project in example 1: NDE= 70
and WNDE= 190. ADES may now be calculated as 192/70= 2.74

The unit determined the following indicators as unacceptable software qual
ity achievements of the development team:

DEL > 2 and WDEL > 4

1. Calculation of the two metrics according to example 1 follows in
Table 21.3.

The conclusions reached by applying the two metrics are contradict
ing. While the DEDL metrics do not indicate unacceptable team quality
achievements, the WDEDL metrics do. The contradicting results call for
management intervention (Table 21.5).

2. Error density for phases of the development process
The study of the origin of software errors is of importance in plan

ning the SQA components to be applied. We refer to three development
phases: the requirement specification analysis, design, and coding (pro
gramming). The number of errors detected in these phases are NSE,
NDSE, and NCE, and the weighted number of errors are WNSE,
WNDSE, and WNCE, where

NDE � NSE � NDSE � NCE and
WNDE � WNSE �WNDSE �WNCE:

The error density for these development phases is shown in
Table 21.6.

The error density metrics by function points for the development phases
may be calculated similarly to those shown in Table 21.6.

It should be noted that as the number of detected errors grows as the project
progresses, the error density of the development phases grows. In other words,
requirement specification errors detected in the design phase add to those
detected in the requirement specification phase, causing an increase of the speci
fication error density metrics. Accordingly, if somebody quotes a design error
density metric, it should be clarified at which development phase the metrics
were calculated.

456 Chapter 21 Software Process Quality Metrics

Table 21.6 Development error density for development phases

Metrics
code Metrics name Calculation formula

REDL

DSEDL

CEDL

Requirement Specification Error Density by
KLOC

Design Error Density by KLOC

Coding Error Density by KLOC

REDL � NRE
KLOC

DSEDL � NDSE
KLOC

CEDL � NCE
KLOC

WREDL Weighted Requirement Specification Error
Density by KLOC

WREDL=REDL×ARES

WDSEDL Weighted Design Error Density by KLOC WDSEDL=DSEDL×ADSES

WCEDL Weighted Coding Error Density by KLOC WCEDL=CEDL×ACES

21.3.2 Software development by readymade
suitability metrics

Metrics for measuring the quality of readymade
software components

Software products of recent years include a growing number of ready-made
components: COTS software components, complete packages, and open-source
software components. Venkatesan and Krishnamoorthy (2009) suggest a metrics
suite for measuring the quality of readymade software components. They distin
guish between functional and nonfunctional metrics, where the functional met
rics include complexity, accuracy, suitability, and accuracy metrics, and the
nonfunctional metrics include usability, maintainability, reusability, and per
formance metrics. The metrics suite for readymade software components are
shown in Figure 21.1.

Venkatesan and Krishnamoorthy (2009), Barkmann et al. (2009), and Aloysius
and Maheswaran (2015) present a comprehensive set of software metrics that mea
sure the functionality of the components in the entire software system. A great part
of the applied metrics is generally used in software measuring.

Preliminary metrics specific to the readymade software are the suitability
metrics, which measure the degree of fulfillment of software requirements and
extra functionalities provided by a candidate component. These metrics can sup
port choosing the best component out of candidate components. Refinement of
these metrics is achieved by using weighted metrics. Combined suitability met
rics are created using weigh factors to represent the relative values of conform
ing functionalities and the extra functionalities.

The suitability metrics are presented in Table 21.7.

21.3 Software Development Process Metrics 457

Figure 21.1 The metrics suite for readymade software components

Table 21.7 Suitability metrics for readymade components

Metrics
code Metrics name Calculation formula

FunSC Functionality Suitability of a
Component

WFunSC Weighted Functionality
Suitability of a Component

ExFunC Extra Functionality of a
Component

WExFunC Weighted Extra Functionality
of a Component

CFunSC Combined Functionality
Suitability of a Component

CWFunSC Combined Weighted
Functionality Suitability of a
Component

NRFunC
FunSC �

NRFun

WNRFunC
WFunSC �

WNRFun

NExFunC
ExFunC �

NRFun

WNRFunC
ExWFunSC �

WNRFun

CFunSC=C1×WFunSC+C2×ExWFunC

CWFunSC= k1× FunSC+ k2×ExFunC

NRFunC, number of required functionalities provided by the component; NRFun, number of required
functionalities (relevant to the component); WNRFunC, weighted number of required functionalities
provided by the component; WNRFun, weighted number of required functionalities (relevant to
the component); NExFunC, number of extra functionalities provided by the component;
WNExFunC, weighted number of extra functionalities provided by the component.

458 Chapter 21 Software Process Quality Metrics

The subject of integrating readymade software components in a software
product is discussed in Chapter 20.

21.3.3 Software development process effectiveness,
efficiency, and productivity metrics

This section deals with three subjects related to error removal productivity dur
ing the development process:

• The effectiveness of the employed error removal processes in terms of the
percentages of errors removed

• The efficiency of error removal processes in terms of manpower resources
to be invested to remove an error

• The productivity of development processes in terms of manpower
resources to be invested relative to software product size

a. Error removal effectiveness
Software developers are interested in measuring the total effective

ness of all the error detection tools applied throughout the development
process. In other words, the proportion of software errors not detected in
spite of all efforts invested in error removal. For this purpose, errors
detected during a project’s regular operation need to be collected in addi
tion to development process errors. For practical reasons, we limit the
observations of regular operation errors to a period of 6 or 12 months.
Thus metrics combine the error records of the development stage with
the failure records compiled during the first year (or any defined period)
of regular operation.

Five error removal effectiveness metrics of the development process
and its phases are presented in Table 21.8.

Weighted removal effectiveness metrics for the development phases
may be defined similarly to those of the development phase presented in
Table 21.5.

b. Error removal efficiency
When discussing the efficiency of error removal efforts, we relate to

the whole development process as well as to the efficiency of the review
and coding activities. The efficiency of error removals relates to the
number of errors detected, and the resources invested in detection. The
review error removals refer to errors in inspection, walkthrough, and
design review activities, whereas testing error removals refer to errors in
unit, integration, and software system test activities. Table 21.9 presents
the error removal metrics:

c. Software process productivity metrics
This group of metrics includes metrics that deal with the project’s

human resource productivity

21.3 Software Development Process Metrics 459

Table 21.8 Error removal effectiveness metrics

Metrics code Metrics name Calculation formula

NDE
DERE Development Error Removal Effectiveness DERE �

NDE � NYF

WNDE
WDERE Weighted Development Error Removal WDERE �

WNDE �WNYFEffectiveness
NRE

RERE Requirement Specification Error Removal RERE �
NRE � RYFEffectiveness

NDSE
DSERE Design Error Removal Effectiveness DSERE �

NDSE � DSYF

NCE
CERE Coding Error Removal Effectiveness CERE �

NCE � CYF

NYF, number of all software failures detected during the first year of regular operation;
WNDE, weighted number of development errors; WNYF, weighted number of software failures
detected during the first year of regular operation; RYF, number of requirement specification failures
detected during the first year of regular operation; DSYF, number of design failures detected during
the first year of regular operation; CYF, number of coding failures detected during the first year of
regular operation.
Here, NYF=RYF+DSYF+CYF.

Table 21.9 Error removal efficiency metrics

Metrics code Metrics name Calculation formula

DevERE

RERE

TERE

Development Error Removal Efficiency

Review Error Removal Efficiency

Testing Error Removal Efficiency

DevERE � DevQH
NDE

RERE � RevH
NRE

TERE � TesH
NTE

DevQH, development hours invested in quality assurance activities (actual); RevH, review hours
(actual); TesH, testing hours (actual); where DevQH=RevH+TesH.
NDE, number of development errors; NRE, number of errors detected in review activities;
NTE, number of errors detected in testing activities, where NDE=NRE+NTE.

Two development process productivity metrics, direct and indirect, are pre
sented in Table 21.10.

21.3.4 Software development rework metrics

An alternative metric to measure the quality of the development performance is
to refer to the resources invested in the rework. This may be done by referring to

460 Chapter 21 Software Process Quality Metrics

Table 21.10 Development process productivity metrics

Metrics code Metrics name Calculation formula

DevH
DevPL Development Productivity by KLOC DevPL �

KLOC

DevH
DevPF Development Productivity by Function Points DevPF �

NFP

DevH, total number of working hours invested in the development of the software system.

Table 21.11 Software development rework metrics

Metrics code Metrics name Calculation formula

DRwH � 100
PDRw Percentage of Development Rework PDRw �

DevH

DSRwH � 100
PDSRw Percentage of Design Rework PDSRw �

DevH

CRwH � 100
PCRw Percentage of Coding Rework PCRw �

DevH

DRwH, development team hours invested in rework; DSRwH, team hours invested in design rework;
CRwH, team hours invested in coding rework; DevH, total number of working hours invested in the
development of the software system.

the development process as a whole, or to phases of the process. The following
metrics relate to rework percentages and are presented in Table 21.11.

21.4 Software operation process metrics

Operation of the user support center (help desk) services relates to software sup
port to internal or external customers, who bought and installed software pack
ages or COTS software. User support center (USC) services include instructing
customers regarding the method of application of the software, solution of cus
tomer implementation problems, and correction of software failures.

The demand for these services depends to a great extent on the following:

• The size of the user population of software packages or COTS software sold.

• The quality of the software package, especially the quality of its user
manual and the user’s interface as experienced by the online software use
instruction. The higher the quality, the lower the rates of customer calls.

This section deals with the following topics:

• Software operation process workload

• Software operation process quality metrics

• Software operation process effectiveness, efficiency, and productivity metrics

21.4 Software Operation Process Metrics 461

Table 21.12 USC calls – workload metrics

Code

AFUCH

UDL

UDF

Name

Average frequency of USC calls per hour

USC Call Density by KLOC

USC Call Density by Function Point

Calculation formula

AFUCH � NUYC
NUSHY

UDL � NUYC
KUS � KLOC

UDF � NUYC
KUS � NFP

NUYC, the number of USC calls during a year of service; KUS, thousands of users; NUSHY, the
number of USC service hours a year.

21.4.1 Software operation process workload

The operation process workload is observed according to (a) frequency and its
(b) density proportional to the operated software package size and the number of
users. The USC calls workload metrics are presented in Table 21.12.

21.4.2 Software operation process quality metrics

The quality of USC, to great extent, defines the quality of software operation
services. The USC services quality may be evaluated according to three aspects:
the waiting time for USC service, the average service time, and the percentage of
users waiting above target time and the percentage of user’s service time above
target time.

Three metrics were defined accordingly, and presented in Table 21.13.
An example for the application of the USC quality metrics is as follows:

The USC services for an inventory management software package are required
to comply with the following requirements:

• Average waiting time for USC service will be below 2 minutes per call.

• Percentage of USC calls served within 5 minutes will exceed 95%.

Productivity metrics

a. USC effectiveness metrics
The effectiveness of USC services is measured by the success rate in

solving the user’s problem in the first call.

b. USC efficiency metrics
A prevalent metric of USC services efficiency refers to the average

resources invested in responding to a customer’s USC call.

462 Chapter 21 Software Process Quality Metrics

Table 21.13 USC quality metrics

Metrics
code Metrics name Calculation formula

AUWT Average Waiting Time for USC Service AUWT � TUWT
NUOT

PDWTET Percentage of USC Calls Exceeding Target
Waiting Time

PUWTET � NUYCET
NUYC

PUSFC Percentage of USC Calls Exceeding Target
Service Time

PUSFC � NUYCFC
NUYC

TUWT, total users waiting time for USC service; NUOT, the number of USC calls during the
observation time; NUYCET, the number of calls per year exceeding USC target waiting time;
NUYCFC, the number of calls per year when USC achieved first call resolution (FCR); NUYC, the
number of USC calls per year.

Table 21.14 USC effectiveness, efficiency, and productivity metrics

Metrics
code Metrics name Calculation formula

PUSFC

UE

UPL

Percentage of USC Problems Solved in the
First Call

USC Efficiency

USC Productivity by KLOC

PUSFC � NUYCFC
NUYC

UE � UYH
NUYC

UPL � UYH
KUS � KLOC

UPF USC Productivity by Function Point UPF
UYH

KUS � NFP

UYH, total annual working hours invested by the HD servicing the software system.

c. USC productivity metrics
USC productivity is considered to be proportional to the size of the

user population and the size of the software package (being supported).

Four process metrics are presented in Table 21.14.

21.5 Software maintenance process metrics

Software maintenance activities include:

• Corrective maintenance – Correction of software failures detected during
regular operation of the software.

• Adaptive maintenance – Adaptation of existing software to new customers
or new requirements.

21.5 Software Maintenance Process Metrics 463

• Functional improvement maintenance – Addition of new functions to the
existing software; improvement of reliability; and so on.

In the metrics presented here, we limit our discussion to those dealing with
corrective maintenance.

Software maintenance process metrics include the following groups:

• Software maintenance process workload metrics

• Software maintenance process quality metrics

• Software maintenance process effectiveness, efficiency, and productivity
metrics

21.5.1 Software maintenance process workload

The maintenance process workload is observed according to three attributes.

a. Failure frequency
Failure frequency reflects the daily workload of the corrective main

tenance team.

b. Failure severity
The failure severity measured relates either to the disturbance and

damage caused to the customer (represents the customer’s point of view)
or to the resources required to resolve the failure (represents interests of
the maintenance team). Metrics from this group detect adverse situations
with increasing severity of software failures in the maintained software
system. Results may trigger retesting of all or parts of the software sys
tem. The metric presented here can be used for both aspects of severity,
that is, to apply weights that refer to the severity of the disturbance and
damage experienced by the customer, or to the extent of resources
required by the maintainer to correct the failure.

The ASFS metrics refer to the severity of software failures detected
during the period of 1 year. To implement the ASFS metric, the severity
should be evaluated for each failure. The metrics are presented in
Table 21.14

c. Software system failure density
Software system failure density during the regular operation phase

depends not only on the complexity of the software but also on the effec
tiveness of the error removal activities during the development phase
(see Section 21.3.2b). It should be noted that changes and additions per
formed during the operation phase are a significant source for software
errors that have to be treated by the corrective maintenance team.

The presented software system failure density metrics in Table 21.15 relate
to the number of failures. The size of the maintenance tasks is measured by the

464 Chapter 21 Software Process Quality Metrics

Table 21.15 failure cases workload metrics

Code Name Calculation formula

AFMCD Average frequency of failures (maintenance cases)
per day

AFMCD � NYF
NMSDY

ASFS Average Software Failure Severity ASFS � WNYF
NYF

SFDL Software System Failure Density per KLOC SFDL � NYF
KLOC

SFDF Software System Failures per Function Point SFDF � NYF
NFP

NUYC, the number of failures during a year of service; NMSDY, number of maintenance service
days per year; NYF, number of software failures detected during a year of maintenance service;
WNYF, weighted number of software failures per year detected with their severity evaluated;
KLOC, thousands lines of code; NFP, number of function points.

total number of code lines of the maintained software as well as by the function
point evaluation. The sources of data for these metrics are software maintenance
reports.

21.5.2 Software maintenance process quality metrics

The method proposed here for the evaluation of software maintenance process
quality is to refer to two failure situations: maintenance time failure and mainte
nance total repair failure. In other words, maintenance services can fail either by
being unable to complete the failure correction within the specified time, or by
failing to correct the problem, when no time limit for repair is specified. Failure
metrics for the two situations are as follows:

Maintenance time failure metrics �MTimF

Software service agreements define a maximum time duration for the main
tenance repair to be completed, that is, repair should be completed no later than
12 hours after the customer’s failure notice has been received. Maintenance time
failure is a repair that failed to be completed on time.

Maintenance total repair failure metric �MRepF

A repair failure that could not be repaired despite repeated trials and unlimited
invested resources.

The two maintenance quality failure metrics are presented in Table 21.16.

21.5 Software Maintenance Process Metrics 465

Table 21.16 Maintenance quality failure metrics

Metrics code Metrics name Calculation formula

MaiTimF Maintenance Time Failure Proportion MaiTimF � NTimYF
NYF

MaiTRepF Maintenance Total Repair Failure Proportion MaiTRepF � NTRepYF
NYF

NTimYF, number of failure repairs not completed on time per year; NTRepYF, number of
maintenance total repair failures per year.

21.5.3 Software maintenance process effectiveness,
efficiency, and productivity metrics

This group of metrics includes the following metrics:

a. Maintenance effectiveness metrics
The metrics refer to the repair success. In other words, a successful

repair is one that does not require a recall where the first correction
failed.

b. Maintenance efficiency metrics
The metrics refer to the average amount of resources invested in

resolving a failure. One prevalent metric is presented in Table 21.16.

c. Maintenance productivity metrics
Maintenance productivity is considered to be proportional to the size

of the maintenance task, measured by KLOC or number of function
points. Accordingly, two metrics are presented in Table 21.17.

Table 21.17 Software corrective maintenance effectiveness, efficiency, and productivity
metrics

Metrics
code Metrics name Calculation formula

CMaiEff

CMaiE

CMaiPL

CMaiPF

Corrective Maintenance Effectiveness

Corrective Maintenance Efficiency

Corrective Maintenance Productivity by KLOC

Corrective Maintenance Productivity by
Function Point

CMaiEff � NYFCFT
NYF

CMaiE � CMaiYH
NYF

CMaiPL � CMaiYH
KLOC

FCMPF � CMaiYH
NFP

CMaiYH, total annual working hours invested in the corrective maintenance of the software system;
NYFCFT, number of yearly failures corrected by the first time.

466 Chapter 21 Software Process Quality Metrics

21.6 Management process metrics

This class of software process metrics includes the following:

• Software development process management metrics

• Software reuse process metrics

21.6.1 Software development project progress
management metrics

Three attributes describe the project progress for managerial control of software
development projects:

• Schedule keeping

• Resource usage compliance

• Budget keeping

Software process metrics were developed for these three attributes. The met
rics presented here may be applied at any time during the performance period of
the project.

a. Project schedule keeping metrics
Schedule keeping metrics relate to schedule keeping during the

development process. The metrics offered here are based on records of
schedule keeping for project milestones. Two approaches may be used
for these metrics: (a) percentage of project milestones completed on
schedule, or earlier out of the total number of milestones completed, and
(b) the average time delay calculated for the completion of all mile
stones, or milestones during a specified phase.

b. Project resource usage compliance metrics
One of the important tools of SQA is the monitoring of resource

usage. The metrics measure the human resource usage compliance with
the planned human resources of the project plan. The metrics may be
implemented during the development process by referring only to the
planned and actual human resource usage of the completed development
activities. Our resource usage metrics refer only to human resources,
which are the main resource investment in software development
projects.

c. Project budget-keeping metrics
Project budget-keeping metrics relate to all types of resources, and

thus it is complementary to the project resource usage compliance met
rics. The source for project-planned budget is the project plan. It should
be noted that part of the cases of not complying with budget proves to be
cases of unrealistic project budget.

21.7 Limitations of Software Metrics 467

Table 21.18 Software development project progress management metrics

Metrics code Metrics name Calculation formula

PMSK

DMSK

HRUE

BKE

Percentage of Milestone Schedule Keeping

Average Delay of Milestone Schedule Keeping

Human Resource Usage Efficiency

Budget-Keeping Efficiency

PMSK � MSOT
NMS

DMSK � TMSCD
NMS

HRUE � DevH
PDevH

BKE � CCAct
PCCAct

MSOT, Milestones completed on time; NMS, Total number of milestones; TMSCD, total milestone
completion delays (days, weeks, etc.) for all milestones; DevH, working hours actually invested in
the completed development activities; PDevH, planned working hours to be invested in the
completed development activities; CCAct, actual costs of the completed development activities;
PCCAct, planned costs of the completed development activities.

The metrics for the three attributes are presented in Table 21.18.
To calculate the DMSK measure, delays reported for all relevant milestones

are summed up. Milestones completed on time or before schedule are considered
“O” delays.

Some professionals refer to completion of milestones before schedule as
“minus” delays, to balance milestones accounted for delays. In these cases, the
value of the DMSK may be lower than the value obtained according to the met
ric originally suggested.

The PMSK and DMSK metrics are based on data for all relevant milestones
scheduled and completed in the project plan. Therefore, these metrics can be
applied throughout development and need not wait for the project’s completion.

21.6.2 Software reuse process metrics

Reuse practices are used for software code and software documentation. The
metrics may reveal the success level of the management policy for promoting
reuse in the organization. Software reuse substantially affects productivity and
efficiency of software development processes. The software reuse process met
rics are presented in Table 21.19.

21.7 Limitations of software metrics

Application of quality metrics is strewn with obstacles. These can be grouped as
follows:

• Budget constraints in allocating the necessary resources (manpower,
funds, etc.) for the development of a quality metrics system and its regular
application.

468 Chapter 21 Software Process Quality Metrics

Table 21.19 Software reuse process metrics

Metrics code Metrics name Calculation formula

CRe Code Reuse Rate CRe � ReKLOC
KLOC

DocRe Documentation Reuse Rate DocRe � ReDoc
NDoc

ReKLOC, number of thousands of reused lines of code; ReDoc number of reused pages of
documentation; NDoc number of pages of documentation.

• Human factors, especially opposition of employees to the evaluation of
their activities.

• Uncertainty regarding the data’s validity, rooted in partial and biased
reporting.

These difficulties are fairly universal and, as such, apply to software quality
metrics, too. However, additional obstacles that are uniquely related to the soft
ware industry may appear. These obstacles are discussed in this section.

The unique obstacles in the application of software quality metrics – com
paring performances for managerial use – are rooted in the attributes measured.
As a result, most commonly used metrics suffer from low validity and limited
comprehensiveness. Examples of the software measures that exhibit these severe
weaknesses are:

• Parameters used in development process metrics: KLOC, NDE, and NCE.

• Parameters used in product HD and corrective maintenance metrics:
KLOC, NHYC, and NYF.

The main factors affecting development process parameters, especially their
magnitude, are:

a. Programming style: strongly affects software volume, where “wasteful”
coding may double the volume of produced code (KLOC).

b. Documentation comments volume: volume of documentation comments
included in the code: affects volume of the code. The volume of com
ments is usually determined by the programming style (KLOC).

c. Software complexity: Complex modules require much more development
time (per line of code) in comparison to simple modules. Complex mod
ules also suffer from more defects than simple modules of similar size
(KLOC, NDE, and NCE).

d. Percentage of reused code: The higher the percentage of reused code
incorporated into the software developed, the greater the volume of code
that may be produced per day, and the lower the number of defects
detected in reviews, testing, and regular use (NDE, NCE).

21.7 Limitations of Software Metrics 469

e. Design review quality: Professionalism and thoroughness of design
reviews and software testing: affects the number of defects detected (NCE).

f. Reporting style of review results: Reporting style of the review and test
ing results: some teams produce concise reports that present the findings
in a small number of items (small NDE and NCE), while others produce
comprehensive reports, showing the same findings for a large number of
items (large NDE and NCE).

The main factors affecting the magnitude of the product HD and corrective
maintenance parameters are:

a. Quality of installed software: The quality of the installed software and its
documentation is determined by the quality of the development team as
well as that of the review and testing teams. The lower the quality of the
maintained software, the greater the anticipated software failures identi
fied and subsequent maintenance efforts (NYF, NHYC).

b. Programming style and volume of documentation comments: Program
ming style and volume of comments included in the code defined in the
development stage both strongly impact the volume of software to be
maintained, where wasteful coding and documentation may double the
volume of code to be maintained (KLOC).

c. Software complexity: Complex modules require investment of many
more maintenance resources per line of code than do simple modules,
and suffer from more defects left undetected during the development
stage (NYF, NHYC).

d. Percentage of reused code: The higher the percentage of reused code,
the lower the number of defects detected in regular use, as well as the
fewer required corrective maintenance and HD efforts (NYF, NHYC).

e. Number of installations: The size of the user population and level of
applications in use affects the number of HD calls, as well as the number
of defects detected by users during regular use (NHYC, NYF).

By impacting the magnitude of the parameters, these factors distort the soft
ware process and software product quality metrics on which they are based. The
inevitable result is that a major portion of the metrics that we have discussed
does not reflect the real productivity and quality achievements of development
or maintenance teams in what may be the majority of situations. As a result, the
possibility to compare the performance achievements becomes very limited.
While a comparison of projects performed by the same team is less affected by
the obstacles mentioned above, comparison between different departments
becomes problematic. In other words, many of the metric applications reviewed
here are characterized by limited validity and comprehensiveness.

Examples of practices used to resolve some of the mentioned difficulties are
by counting coding lines without comments, adding a factor to counted lines of

470 Chapter 21 Software Process Quality Metrics

comments (i.e., 0.5), adding a factor to reused software lines (i.e. 0.2) and using
weighting factors to reflect severity of failures or complexity of software tasks.

Substantial research efforts are needed in order to develop metrics appropri
ate for the software industry. The function point method, discussed in Section
23.4, is an example of a successful methodological development aimed at replac
ing the problematic KLOC metric.

Discussion of the difficulties in applying software quality metrics, especially
for decision-making in the context of software development, was presented by Rif-
kin (2001), McQuaid and Dekkers (2004), Texel (2015a, 2015b), and Cross (2004).

Summary

1. The categories of software process metrics
A two-level system of categories is used here. The first level distin

guishes between four categories:
1. Software development process quality metrics
2. Software operation process quality metrics
3. Software maintenance process quality metrics
4. Management process quality metrics

The second level of metrics classes includes:
• Software operation process quality metrics
• Software operation process quality metrics
• Software operation process effectiveness, efficiency, and productivity
metrics

Software maintenance process metrics include the following:
• Software maintenance process workload metrics
• Software maintenance process quality metrics
• Software maintenance process effectiveness, efficiency, and produc
tivity metrics

Management process metrics include the following:
• Software development process management metrics
• Software reuse process metrics

2. Count metrics versus weighted metrics
A common way to compare quality of software development or

operation services is by comparing the number of events or errors. A
familiar reaction will raise the question – Are the errors comparable? The
weighted metric is a good way of reaching an improved solution that
combines the count and severity of events in one metric.

3. Metrics for measuring the quality of readymade software components
Suitability metrics are a tool for determining and comparing prefer

ences of COTS software components. It is expected that the COTS or

Selected Bibliography 471

open-source software component will not only own part of the function
alities required but also own some extra functionalities not specifically
required (but that still may prove useful). Combined suitability metrics
are created using weight factors to represent the relative values of con
forming functionalities and the extra functionalities.

4. Software reuse process metrics as management process metrics
Reuse practices are used for software code and software documenta

tion. The metrics are designed to reveal the success level of the manage
ment policy of promoting reuse in the organization. Software reuse
substantially affects productivity and efficiency of software development
processes.

5. Difficulties characterizing some software quality metrics
A unique difficulty faced by users of software quality metrics is

rooted in the measures (parameters) that comprise many of the software
quality metrics. As a result, a large proportion of software metrics,
including most of the commonly used ones, suffer from low validity and
limited comprehensiveness. Examples of metrics that exhibit severe
weaknesses are:
• Software development metrics that are based on measures such as
KLOC, NDE, and NCE.

• Product maintenance metrics that are based on measures such as
KLOC, NHYC, and NYF.
For example, the KLOC measure is affected by the programming

style, volume of documentation comments included in the code, and the
complexity of the software. NYF is affected by the quality of the
installed software and its documentation as well as the percentage of
reused code, among the other factors affecting maintenance.

Selected bibliography

Aggarwal K. K., Singh Y., Kaur A., and Malhotra R. (2007) Software design metrics for object-
oriented software, Journal of Object Technology, Vol. 6, No. 1, pp. 121–138.

Aloysius A. and Maheswaran K. (2015) A review on component based software metrics, Interna
tional Journal Fuzzy Mathematical Archive, Vol. 7, No. 2, pp. 185–194.

Ani Z. C., Basri S. and Sarlan A. (2015) Validating reusability of software projects using object-
oriented design metrics, in Information Science and Applications, Part 7, Springer, Berlin,
pp. 845–850.

Barkmann H., Linke R., and Lowe W. (2009) Quantitative evaluation of software quality metrics in
open-source projects, Advanced Information Networking Workshops, WAINA’09, Bradford, May
2009, pp. 1067–1072.

Cheikhi L., Al-Qutaish R. A., Idri A., and Sallami A. (2014) Chidamber and Kemerer object-oriented
measures: analysis of their design from a metrology perspective, International Journal of Software
Engineering and its Applications, Vol. 8, No. 2, pp. 359–374.

Cross P. (2004) The uses and abuses of software metrics, Software Quality Professionl, Vol. 6,
No. 2, pp. 4–16.

472 Chapter 21 Software Process Quality Metrics

Darcy D. P. and Kemerer C. F. (2005) OO metrics in practice, IEEE Software, Vol. 22 No. 1,
pp. 17–19.

Fenton, N. E. and Bieman J. (2015) Software Metrics: A Rigorous and Practical Approach,
3rd Edition, CRC Press, Boca Raton, FL.

Ferreira K. A. M., Bigonha M. A. S., Bigonha R. S., Mendes L. F. O., and Almeida H. C. (2012)
Identifying thresholds for object-oriented software metrics, Journal of Systems and Software,
Vol. 85, No. 2, pp. 244–257.

ISO/IEC (2014) ISO/IEC 90003:2014 Software Engineering – Guidelines for the Application of ISO
9001: 2008 to Computer Software, International Organization for Standardization (ISO), Geneva,
Switzerland.

ISO/IEC (2007) ISO/IEC Std. 15939 Software and Systems Engineering – Measurement Process,
International Organization for Standardization (ISO), Geneva, Switzerland.

ISO/IEC/IEEE (2008) ISO/IEC/IEEE Std. 12207-2008 – Systems and Software Engineering –

Software Life Cycle Processes, International Organization for Standardization (ISO), Geneva,
Switzerland.

Kitchenham B. (2010) What’s up with software metrics? A preliminary mapping study, Journal of
Systems and Software, Vol. 83, No. 1, pp. 37–51.

McQuaid P. A. and Dekkers C. A. Steer clear of hazards on the road to software measurement suc
cess, Software Quality Professional, Vol. 6, No. 2, pp. 27–33.

Mordal K., Anquetil N., Laval J., Serebrenik A., Vasilescu B., and Ducasse S. (2012) Software qual
ity metrics aggregation in industry, Journal of Software: Evolution and Progress, Vol. 25, No. 10,
pp. 1117–1135.

Nicolette D. (2015) Software Development Metrics, Manning Publishing, Shelter Island, NY.
Radjenovic D., Hencko M., Torkar R., and Zivkovic A. (2013) Software fault prediction metrics: a
systematic literature review, Information and Software Technology, Vol. 55, No. 8,
pp. 1397–1418.

Rifkin S. (2001) What makes measuring software so hard? IEEE Software, Vol. 18 (3), pp. 41–45.
Texel P. P. (2015a) Exploring government contractor experiences assessing and reporting software
development status, Doctoral dissertation,Faculty of Management, Walden University.

Texel P. P. (2015b) Measuring software development status: Do we really know where we are? in
Southeastcon 2015 Conference, Fort Lauderdale, FL, pp. 1–6.

Venkatesan V. P. and Krishnamoorthy M. (2009) A metrics suite for measuring software compo
nents, Journal of Convergence Information Technology, Vol. 4, No. 2, pp. 138–153.

Review questions

21.1 Table 21.6 defines the following two code error density metrics: CEDL and
WCEDL.

a. Compare CEDL and WCEDL including references to their managerial applica
tion characteristics as well as their validity.

b. Which of the above metrics would you prefer? List your arguments.

21.2 Table 21.10 defines the following two development productivity metrics: DevPL
and DevPF

a. Compare DevPL and DevPF including references to their managerial implemen
tation characteristics as well as to their validity.

b. Which of the above metrics – DevPL or DevPF – would you prefer in this case?
List your arguments.

Topics for Discussion 473

21.3 Section 21.4 and Section 21.5 list metrics for USC and corrective maintenance
services.

a. Explain the difference between these services.

b. Justify the separate metric categories and actions (based on their differences).

21.4 Table 21.15 defines two maintenance failure density metrics – SFDL and SFDF.

a. Evaluate each of the above metrics as to the degree they fulfill the requirements
for a software quality metric as listed in Frame 23.2.

b. Indicate the expected direction of distortion for each of the metrics.

21.5 USC services are vital for successful regular use of a software system.

a. Suggest situations where the USC service is a failure.

b. What metrics can be applied for the failure situations mentioned in (a)?

21.6 Section 21.6 describes several measures used to construct the software development
management metrics presented in this section.

• Based on the listed measures, suggest a new schedule metrics and a new process
productivity metrics.

21.7 Section 21.4 and Section 21.5 describe several measures used to construct the USC
and corrective maintenance metrics presented in this section.

• Based on the listed measures, suggest two new USC call density metrics and two
new software system reliability metrics.

21.8 Choose one of the corrective maintenance quality metrics described in Section 21.4
that includes NYF as one of its measures.

a. Examine the five factors affecting the maintenance measures listed in Sec
tion 21.7 and indicate in which direction the metrics you have chosen
might be biased by each one, and indicate how this bias affects the met
ric’s validity.

b. Examine the above factors and indicate how each of them may limit the compre
hensiveness of the metrics you have chosen.

Topics for discussion

21.1 Two versions for the measure of software system size – KLOC – are applied: one
version counts every code line, while the other only counts the noncomment lines
of code.

a. Discuss the advantages and disadvantages of each version. Refer to the validity
of both versions.

b. Try to suggest an improved version that will comply with the arguments you
mentioned in your answer to (a).

474 Chapter 21 Software Process Quality Metrics

21.2 The selection of quality metrics presented in Tables 21.3 and 21.4 includes several
error severity, error density, and weighted error metrics.

a. Explain the importance of error severity and error density metrics, and illustrate
with examples why the use of only one of the metrics does not provide the full
picture of the software error situation.

b. Explain the contribution of the weighted error density metrics to the improve
ment of the evaluation of the error situation. Use the examples of (a) to support
your arguments.

21.3 Examine the metrics described in Tables 21.3 and 21.4.

a. Analyze the measures (parameters) that comprise the respective metrics and
decide whether they are objective or subjective, where objective measures are
based on reliable counts, and subjective measures are partly or totally deter
mined through professional evaluation.

b. Compare the attributes of objective and subjective measures.

c. List the advantages and disadvantages of the two types of measures.

21.4 The two software development department teams have recently completed
their projects. Both applied the same development tool and similar program
ming style.

The following measures (see Table 21.3) were supplied:

Team A Team B

NCE 154 91
NDE 223 206

a. What additional data would you require to determine which of the teams
achieved results with the better quality?

b. After examining the metrics, what differences in software quality conception
held by the team leaders may be concluded from the results?

21.5 Choose one of the process metrics described in Table 21.6 that includes KLOC as
one of the constituent measures.

a. Examine the six factors listed in Section 21.7 affecting KLOC (as a measure of
the software development task) and indicate for each one the direction in which
there might be a bias to the metrics you have chosen. Explain how each bias
could affect metric validity.

b. Examine the above factors and indicate the way in which each of them may
limit the comprehensiveness of the metrics you have chosen.

21.6 Comparison of the number of errors detected during the development process for
the recently completed project with the team’s previous project revealed the
following:

Topics for Discussion 475

Recent project Former project

Total number of errors detected 188 346

a. What additional data would you require to determine whether real progress in
software quality has been achieved (as claimed by the team leader)?

b. Which software quality metrics would you use to examine the team leader’s
claim?

Chapter 22

Software Change Control
Processes

22.1 Introduction

The software development process is inevitably characterized by a constant flow
of change requests from customers and sometimes other parties involved in the
software project. Carrying out a change during the software development pro
cess involves investing additional resources; their quantity varies according to
the nature of the request, and the development stage of the project. The need to
cope with software changes throughout the software life cycle is one of the more
important and onerous tasks of the software development and maintenance
teams. Moreover, performing changes usually under time constraints is one of
the processes more susceptible to software errors.

The process of examining change requests; selecting which should be
rejected and which approved, along with scheduling of the implementation of
approved changes is the software change control (SCC) process. The SCC func
tion in the development organization performs the following tasks:

a. Examination of requested or suggested changes.

b. Approval of implementation of only those changes which are worthy and
necessary, while all remaining are rejected.

c. Scheduling of the implementation of each of the approved changes.

d. Follow-up of the approved changes.

Following change control processes correctly throughout the software life
cycle is key to the effective and efficient performance of software development
and maintenance.

The importance of SCC is stressed in Section 5.3 of the IEEE Std. 730-2014
(IEEE 2014) and Section 7.3 of the ISO/IEC Std. 90003:2014 (ISO/IEC 2014).
Change control issues are likewise discussed in software engineering books,

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

476

22.2 How a Well-Planned Project Lost Over Half a Million Dollars 477

such as Pressman and Maxim (2015). Also worth mentioning is Reifer (2012), a
book specializing in the diverse issues of software change management, while
various aspects are also discussed in Wang et al. (2008).

The next sections discuss the following:

• The process of handling an SCR
– Submission of software change requests
– Examination of SCRs by the SCC committees
– Approval to carry out requested changes by the SCC committee
– Follow-up of software change processes by the SCC committee

• The SCC function in the organization

• The role of SQ when following the SCC process

Before turning to study the above topics, let us observe a mini case in Sec
tion 22.2 presenting the potential damage from careless running of the software
change control process.

22.2 How a well-planned project lost over half a million
dollars – a mini case

The quarterly management review meeting opened with the usual progress report
on project performance and maintenance team accomplishments. But the main
subject that morning was the city taxes project, which had lost over half a mil
lion dollars.

Patrick, head of software development, was the first to speak. “The project
was to yield a profit of half a million. We invested a great deal of time and effort
planning and budgeting our proposal, and our most experienced project manag
ers conducted the contract review. Staffing of the teams went smoothly, no other
difficulties were encountered, and the project even progressed according to
schedule – for the first 4 months that is. In fact, we were actually one week
ahead of schedule, and even started discussing the possibility of receiving the
2% bonus for early completion . . .”

Patrick continued: “During the next 3 months, progress slowed down, and
by the end of the seventh month, the project was about two weeks behind sched
ule. During this time, resources invested increased to 15% more than the original
project estimates. Consequently, the number of staff was also increased in efforts
to reduce, and finally eliminate, the project delay. Unfortunately, this costly
action reaped no success. It was at this stage that we realized that the reasons for
the project delay were rooted in the software change control joint committee’s
decisions. After examining the committee’s decisions, we noted that 97% of the
software change requests (SCRs) were placed by the customer; 94% of these
were approved, and software change orders (SCOs) were issued accordingly.
The committee, in addition to granting approval, had to define charges for

478 Chapter 22 Software Change Control Processes

performing these changes, and approve project completion delays according to
schedule delay estimations. The committee showed remarkable ‘generosity’; and
below are some painful facts affirming this:

• 34 change requests were approved with no charge and no estimated
schedule delay. In total, about 250 working days were invested in com
pleting these 34 SCOs.

• The committee approved a schedule delay of only one week for design
and coding resources needed for each of the two major SCRs; this was
obviously insufficient.

A typical, and especially outrageous, example was the committee’s handling
of an SCR requesting to entirely change tax reduction rules relating to various
populations of deprived and low income city residents, such as unemployed citi
zens, students and low-income pensioners. Additional changes were also
requested to tax reduction rules related to poor neighborhoods. This important
SCR, despite the fact that it should have been approved, was only placed at a
stage when almost all coding for the current reduction rules had been
completed.”

At this point, he turned to the audience and asked, “What extra resources do
you think the committee should have approved for the design and coding efforts
needed for performing this SCR? How many weeks delay in schedule would you
deem to have been appropriate?” He continued, without actually waiting for any
one to say anything. “The committee, as expected, approved the SCR, but,
would you believe it, they decided to grant the extra resource of 10 working
days, with no expected delay to the schedule.”

At this stage, the general manager who was heading the meeting stopped
Patrick and asked, “What could be the explanation for the ‘generosity’ of the
committee?”

Patrick answered immediately, “I thoroughly searched the committee docu
mentation regarding the SCC discussions, and to my surprise only a few records
included estimates of the resources needed to perform the approved SCOs. Still,
I believe that George and Norman, both company members of the committee,
were greatly influenced by the interest shown by management in this first project
for the new city management. Everyone stressed the great potential, and so it
was understood that the client’s satisfaction was of utmost importance. The com
mittee members grossly exaggerated, and in no way did they take into account
the accumulated burden they put on the development teams.”

At this point, one of the meeting participants asked: “Why didn’t the com
mittee approve the so obviously necessary schedule delays?”

Patrick let out a sigh, “The committee’s decisions were motivated by the
developers’ promises to install the final project after testing before the beginning
of the new fiscal year, and for the system to be fully implemented at the begin
ning of the new year.”

22.3 The Process of Handling an SCR 479

A short discussion followed before the general manager summarized the
meeting:

a. The SCC committee’s first consideration should be: Is the immediate
implementation of the SCR really necessary, should it be delayed to the
second version of the software project, or not handled at all?

b. The SCC committee should perform its duties, including decision-mak
ing, in a more professional way, and base their decisions, among other
considerations, on estimates of (1) additional required development
resources and (2) additional project time needed to implement the
requested change. All these estimates should be fully documented.

c. Performance of the SCC committee should be audited.

22.3 The process of handling an SCR

The process of handling an SCR

• Submission of software change requests

• Examination of the SCR by the SCC committee

• Approval to carry out requested changes by the SCC committee

• Follow-up of software change processes by the SCC committee

22.3.1 Submission of software change requests

From the very beginning of the software development process till later on, some
times years later in the operational stage of a software system, SCRs continue to
flow. These SCR initiatives (also termed as change requests (CRs) and engineer
ing change request (ECRs)) may relate to one or more of the following:

• A need to correct a software error.

• A need to adapt the software to changes in the operations of a customer’s
business or organization missions.

• A need to adapt the software to a new customer’s needs.

• A need to adapt the software to changes in general business and market
changes.

• A proposal to update and improve the software product, to achieve higher
customer satisfaction (in custom-made projects) or to affect the market
ability of the software (in COTS software).

• A need to adapt the software to budget and schedule constraints.

Initiatives to submit SCRs in the software development stage are mainly
proposed by the customer and the developer. In the software operational stage, it

480 Chapter 22 Software Change Control Processes

is the maintenance teams and customers (COTS software customers and custom-
made software customers) who initiate.

A typical SCR template is shown in Frame 22.1

Frame 22.1: Software change request (SCR) document – a template

Change principles

• The initiator

• The date the SCR was presented

• The character of the change

• The goals

• The expected contribution to the project/system

• The urgency to complete

Change details

• Description of the proposed change

• A list of the software configuration items (SCIs) to be changed

• Expected effect on other SCIs

• Expected effect on interfaces with other software and hardware systems

• Expected delays in development schedules and expected interruption to customer
software services.

Change schedule and resources estimates

• Schedule for implementation

• Estimated required professional resources

• Other resources required

• Estimated total cost of requested change

22.3.2 Examination of SCR

The SCC committee performs an examination of each SCR by professionals.
The SCR evaluation report refers to the various aspect of the request, and serves
as a basis for the SCC committee’s decision

22.3.3 Approval to carry out requested changes

The factors affecting the decision whether to implement a proposed change
include:

• Expected contribution of the proposed change

• Urgency and preference of the change.

22.4 The SCC Function in the Organization 481

• Effect of the proposed change on project schedule, level of service, and so
on.

• Estimated required professional resources and cost of performing change.

• Estimated delays in project schedule and completion time, resulting from
the change implementation.

Decisions regarding each SCR are made by the SCC committee after exam
ining the SCR. In part of the cases, decisions are made by a specialized change
control team appointed by the SCC committee.

The SCC committee may approve, delay, or deny the request for immediate
implementation. For each SCR approved for immediate implementation, a SCO
is issued. In some organizations, these orders are called change orders (CO) or
engineering change orders (ECO). The SCO provides the change details, its
costs and schedule, which may differ from the original estimates, as the SCC
committee exercised its discretion on the related issues of the SCR.

22.3.4 Follow-up of software change processes

The SCC committee follows-up implementation of the SCQs regarding conform
ance to the project schedule, successful completion of change activities, and the
actual resources utilized for the SCO.

Experience gained in follow-up activities provides the SCC committee with
improved know-how on what to base its future decisions.

22.4 The SCC function in the organization

The responsibility for implementation of the above SCC tasks in software devel
opment and maintenance organizations is usually assigned to professional com
mittee appointed by the management. Additional ad hoc members include the
project manager, the customer representative, and experts for specific subjects.
This committee is commonly called the software change control authority
(SCCA) or the software change control board (SCCB), and also frequently
known as the change control authority (CCA) or change control board (CCB).
In some cases, the SCC function is performed by the software configuration
management board (SCMB), who appoints an SCC committee.

The operation of SCC activities is supported by SCC procedures defining
the process of SCR submission, and the activities of the SCC committee.

During the software development phase, when the development is carried
out according to a contract, the main considerations of the SCCA committee are
the cost of changes and schedule delays. During the operational phase, the
SCCA decisions, typical to maintenance, are the continuity of regular service, in
addition to cost of changes. In organizations developing COTS software, it is

482 Chapter 22 Software Change Control Processes

expected that decisions regarding SCRs are strongly affected by merchantability
considerations.

22.5 Software quality assurance activities related to
software change control

The SCC committee, whose decisions might have a strong effect on the qual
ity of the development and maintenance processes, as well as the develop
ment product, clearly needs to oversee software quality assurance activities,
including:

• Review of change control procedures

• Initiation of changes and improvement revisions of SCC procedures

• Review of the SCC committee’s performance: compliance with proce
dures, completeness of SCR examinations by the committee, and delays
in decision making by the committee.

• Review of SCC decisions regarding approvals and rejections, approved
additional resources, project completion delays and more

• Auditing of the implementation of SCOs; on schedule and implementation
processes of the approved changes

Summary

1. The components of the SCR
The components are:

Change principles, including the goals of the change, its expected con
tribution, and the urgency of the change.

Change details, including descriptions of the required change, a list of
software configuration items to be changed or impacted by the pro
posed change, and expected delays in development schedules and
customer service interruptions.

Change schedule and resources estimates, including implementation
schedules and resources, and cost estimates.

2. The main tasks of software change control
The main tasks of software change control committee can be listed

as follows:
• To examine software change requests (SCRs)
• To approve SCR and issue SCOs
• To follow-up and control requested changes
• Quality assurance of software changes

Review Questions 483

3. The SCC function in the organization
The responsibility for the SCC tasks is assigned to a professional

SCC committee assigned by the management. In some cases, the commit
tee is called a change control board (SCCB), or a change control authority
(SCCA). Project managers and customer representatives serve as ad hoc
members of the committee, and are assigned according to the specific sub
ject. Performance of SCC activities is supported by SCC procedures,
which define the SCR submission process, and activities of the SCC
committee.

4. The SQA unit reviews and audits the SCC procedures and activities:
• Review of change control procedures.
• Initiation of changes and improvement revisions of SCC procedures.
• Reviews of the SCC committee’s performance.
• Reviews of SCC decisions regarding approvals and rejections.
• Auditing of the SCO implementation.

Selected bibliography

IEEE (2014) TEEE Std. 730-2014 IEEE Standard for Software Quality Assurance Processes, IEEE,
Piscataway, NJ.

ISO/IEC (2014) ISO/IEC 90003:2014 Software Engineering – Guidelines for the Application of ISO
9001: 2008 to Computer Software, International Organization for Standardization (ISO), Geneva,
Switzerland.

Pressman R. J. and Maxim B. R. (2015) Software Engineering – A Practitioner’s Approach, 8th
Edition, European adaptation, McGraw-Hill International, London.

Reifer D. J. (2012) Software Change Management: Case Studies and Practical Advice (Developer
Best Practices), Microsoft Press, Redmond, Washington.

Wang E. T. G., Ju P-H., Jiang J. J., and Klein G. (2008) The effect of change control and manage
ment review on software flexibility and project performance, Information and Management,
Vol. 85, pp. 438–442.

Review questions

22.1 An SCR relating to changes in only two of the software source SCIs has been
approved. However, the software test plan prepared by the Testing Unit included
nine of the system’s software source SCIs.

• Explain in your own words why it may not be sufficient only to test the two SCIs
specified in the SCR after they were changed.

22.2 The SCC committee assigns the task of examination of an SCR to one of the com
mittee members.

a. Why is there a need to examine the submitted SCR?

b. List types of expected examination findings that need to be corrected

484 Chapter 22 Software Change Control Processes

22.3 The SQA unit periodic review of the activities of the organization’s |SCCA identi
fied many shortcomings in the committee’s activities and decisions.

a. List at least four different types of shortcomings.

b. Suggest ways to prevent succession of each of the shortcomings mentioned
in (a).

Topics for discussion

22.1 A developer’s success to complete a project, while successfully fulfilling the project
requirements and being on schedule depends, to a great extent, on compliance to
SCC procedures.

a. While referring to the software change control tasks, explain in your own words
the risks incurred with software quality by only partially complying with SCC
procedures.

b. It is widely accepted that by performing a full SCR process, the risks of failing
to complete a software development project on schedule are substantially
reduced. Explain

22.2 Two SCRs have been placed before the CCB for a decision. Some of their charac
teristics are:

SCR-1:

• Expected to contribute substantially to the sales of the company’s leading soft
ware package.

• Essence of the change: introduction of new software functions.
• Changes in two software SCIs are required.
• Other SCIs expected to be affected by the requested change – none.
• Estimate of required professional resources – 40 man-days.
• Estimated timetable for implementation – 2 months.

SCR-2

• Expected to save substantial help desk resources, due to the improved user
interface.

• Essence of the change: improvement of the user interface to make it easier and
more user-friendly.

• Changes in 11 software SCIs are required.
• Other SCIs expected to be affected by the requested change – 8.
• Estimate of required professional resources – 15 man-days.
• Estimated timetable for implementation – 2 months.

a. Can you determine which of the requests deserve the higher priority? What are
your supporting arguments?

b. If you find it difficult to determine the priorities, what additional information do
you require to prioritize the SCRs?

Topics for Discussion 485

22.3 The software maintenance department provides services to 215 customers who use
one or more of the company’s three popular software packages. From time to time,
a maintenance team discovers that the software version installed in a customer’s site
includes unrecorded changes that were not requested by an SCR, nor approved as
part of an SCO.

f. Who do you believe inserted the unrecorded changes and under what conditions
could this have occurred?

g. What effect could this event have on maintenance performance, and what is
the expected influence on software quality from the perspective of the
customer?

h. What measures could be taken to make sure that no such unauthorized changes
occur?

Chapter 23

Staff Skills and Knowledge –
Training and Certification

23.1 Introduction

Successful team performance is based on the staff possessing adequate skills and
knowledge. Accordingly, skill and knowledge requirements are discussed with
every team candidate. The organization’s skill and knowledge requirements may
differ from specific projects. Project-specific requirements may be included in
the project contract requirements.

It goes without saying that keeping staff abreast of the latest professional
advancements available is the key to achieving quality in development and
maintenance. Moreover, it is generally accepted that regular professional train
ing, retraining, and updating are mandatory, if the gap between required and cur
rent professional knowledge is to be maintained as narrow as possible.

Position certification (hereinafter “certification”) is conducted for staff mem
bers assigned to key positions, and is a way of achieving conformance of a can
didate’s skill and knowledge to a specific position’s skill and knowledge
requirements. It may be conducted for software development and maintenance
positions. Certification may be considered as another complementary tool for
ensuring suitable professional skill and knowledge of team members. Position
certification of staff should not, however, be confused with professional certifi
cation awarded by the American Society for Quality (ASQ), IEEE Computer
Society, in addition to other types of professional certification granted by com
mercial organizations such as Microsoft or Red Hat.

The importance of professional training as a vital component of any SQA
system is emphasized in ISO/IEC 90003-2014 (ISO, 2014) (Section 6.2.2), as
well as the CMM Guidelines.

The case where staff skill and knowledge assessment for a project and the
plan for determining the needed staff training are discussed by IEEE Std. 730
2014 (IEEE, 2014) (Sec. 5.5.6). Training program for software quality managers,

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

486

23.2 Surprises for the “3S” Development Team – An Introductory Mini Case 487

activities, and evaluation methods of quality programs are discussed by Baker
and Fisher (2008).

The training and certification objectives and activities are dealt with in
Sections 23.3–23.7.

Section 23.2 illustrates potential damages to a project when no staff knowl
edge and skills assessment have been performed, and subsequently no training or
certification were required.

23.2 Surprises for the “3S” development team – an
introductory mini case

Team 7 of “3S - Sahara Software Specialists” started its new project for Apollo
Ltd. 3 weeks late due to delays in the completion of a previous project. Severely
pressured for time, the team leader decided to cancel the scheduled 5-day train
ing course on the new Athena application generator to be used for subsystem F –

as required by contract. He believed that the concise Athena manuals supplied
by the customer would be an adequate substitute for the course. This decision,
however, proved to be very costly. The two team members responsible for sub
system F found it very difficult to operate a generator they had never used. In
addition to 3 days spent receiving expert advice, they needed to spend a total of
25 working days over the scheduled number of days to complete development of
the subsystem. At this point, the project was already 2 weeks behind schedule,
yet the team still hoped that they would be able to close the gap over the
18 weeks left to complete the package, prior to the system tests. Then, within
the space of 2 weeks, two of the team’s six programmers suddenly resigned and
left. As no in-house programmers were available to be shifted, management con
tacted an employment agency with a request to find replacements as quickly as
possible. The team leader was relieved as the urgently needed programmers were
located and temporarily recruited within a few days. Under immense pressure,
the team leader decided to undergo the regular recruitment procedure that
required certifying new programmers and conducting certification courses, when
necessary. The newly recruited employees were immediately sent to the pro
grammer stations. Both new team members were experienced programmers, and
almost never troubled the other team members with requests for assistance or
instruction. This arrangement seemed to suit the situation wonderfully as it did
not interfere with the intensive efforts the team was exerting to complete the
project with minimal delay.

Considering the project’s unexpected difficulties – the Athena application
problems and two programmers resigning – the team felt very lucky when they
managed to complete the programming stage by November 11, only 11 days
behind schedule.

The team’s troubles began in earnest with the issuance of the test report
3 weeks later. Together with a long list of minor defects, the report mentioned

488 Chapter 23 Staff Skills and Knowledge – Training and Certification

numerous severe faults in units A2, A6, A7, A9, and A11 of subsystems A and
F5, and F7 of subsystem F. Although correction of the faults detected in units F5
and F7 required only 5 days’ programmer time, correcting the faults found in the
other units proved to be a whole different story. All five units of subsystem A
were programmed by John Abrams, one of the temporary programmers recruited
by the agency. The two team members who were directed to repair the units
were confronted with unexpected difficulties: In addition to severe programming
errors and what appeared to be a total lack of understanding in regards to the
relevant design documents, the coding did not comply with any of the company
coding procedures or work instructions. When describing the situation, the tem
porary workers jokingly stated that they felt more like archaeologists than pro
grammers. Later, they concluded that John Abrams’s professional qualifications
were far below those claimed in his letters of recommendation. After investing
several days attempting to correct the errors, four out of the five units had to be
recoded, as all efforts to repair the existing code were to no avail. Altogether, 6
exhausting weeks were spent verifying the units were operative.

At this point, 7 weeks behind schedule, the team leader concluded that the
“super saving strategy” applied to the “super recruitment procedure shortcut” as
well as to the recruiter training, instruction, and follow-up, had proven to be
quite costly.

23.3 The objectives of training

The objectives of software development staff training are listed in Frame 23.1
and those of the SQA function team are listed in Frame 23.2.

Frame 23.1: The objectives of software development staff training

The objectives of software development staff training

• To develop the knowledge and skills required by new staff to perform software
development tasks, including those related to quality assurance at an adequate level
of efficiency and effectiveness. Such training facilitates the integration of new team
members.

• To bring up to date the knowledge and skills of the existing staff in response to
developments in the organization and technology, and to ensure efficient and effec
tive performance of updated requirements of project tasks.

The mentioned objectives conform to the general goals of software quality
assurance by inspiring management to persistently nurture the level of knowl
edge and skills of the organization’s staff and improve its efficiency and effec
tiveness. The objectives of the SQA function team training are presented in
Frame 23.2.

23.4 The Staff Training Process for Software Development 489

Frame 23.2: The objectives of the SQA function team training

The objectives of the SQA function team training

• To develop the knowledge and skills related to SQA methodology, and the proce
dures and standards adopted by the organization required by new SQA function
team members to perform their tasks at an adequate level of efficiency and effective
ness. Such training facilitates integration of new team members in the SQA function.

• To bring up to date the knowledge and skills of the existing staff in response to
developments in the organization and SQA methodology, and to ensure efficient
and effective performance of updated requirements of tasks.

23.4 The staff training process for software
development

The operation of successful training demands that the following activities be reg
ularly performed:

• Audit needs for professional training and updating needs for filling any
knowledge gaps for the software development staff.

• Plan training and upskill programs for the software development staff.

• Conduct training programs for the software development staff.

• Perform follow-up on training activities and new knowledge acquired by
trainees.

All these activities converge into an integrated process in which feedback
from past activities, and information about professional developments, stimulate
a cycle of continuous training and adaptation to changing software engineering
and quality assurance requirements.

Comprehensive follow-up of the outcomes of current programs, as well as
keeping track of developments in the profession are required to make sure that
programs are performed and are adequately up-to-date.

The role of the SQA function is supportive regarding the skill and knowl
edge required from software development staff, especially related to quality
assurance topics.

The training process for software development staff is displayed in Figure 23.1.
A detailed discussion of each of these activities is presented in the next

sections.

23.4.1 Determine training and updating needs for
software development positions

Most organizations set education and professional training requirements for each
of the software development and maintenance positions. Staff members who

490 Chapter 23 Staff Skills and Knowledge – Training and Certification

Figure 23.1 The software development staff training process.

fulfill these requirements still need additional “local” or “internal” knowledge
and skills, related to specific development and maintenance procedures. This
specialized knowledge can be grouped into two categories:

• Knowledge and skills related to software engineering topics, such as soft
ware development tools, programming language version, and CASE tool
version, applied by the specific organization or unit.

• Knowledge of quality assurance topics, such as the procedures pertaining
to the various development and maintenance activities, assigned to be per
formed by the individual in a specific position.

Training and updating needs are determined by a comparison of the staff’s
current knowledge with the updated knowledge requirements. The type of train
ing is adapted to the needs of three distinct groups of staff:

• Training: for new employees, according to their designated assignment.

• Retraining: for employees assigned to new positions or new assignments.

• Updating: for staff members as demanded by their position.

The need to train new employees and retrain and update staff should be
assessed regularly to facilitate planning of the required programs.

23.4 The Staff Training Process for Software Development 491

The guide for software engineering body of knowledge – SWEBOK (Bourque
and Fairley, 2014) can serve as a source for determining general software engi
neering knowledge and skill requirements.

23.4.2 Plan training and updating programs

Practically speaking, two basic programs should be devised for software devel
opment staff – one for software engineering topics and one for SQA topics.

The planning of training, retraining, and updating activities refers to the pro
gram contents, the number of participants, and the form of training. Of special
importance is the choice of the form of training: traditional training course,
workshops, computer-based training, web-based training, self-study, mentor
supervision, and on-the-job training.

Planning training programs for software engineering topics

The timing and number of participants of many training and retraining activities
cannot be determined in advance, as new personnel is recruited and veteran staff
shifted – often after relatively short notice. Thus, the training and retraining
activities, being of an ad hoc nature and varying number of trainees, should be
planned accordingly and employ the adequate form of training. Irrespective of
whether the programs are carried out in-house or by an outsourcing organization,
high-level staff, such as the chief software engineer, usually participates in their
preparation.

Implementation tip

Unless the software development organization is rather large, it is often the case that
only one or a small number of new staff needs to be trained or retrained. Moreover, as
new employees may be recruited to a variety of different positions, the training pro
gram may need to be highly differentiated. When the same training program applies to
all the recruited employees, the training is frequently inappropriate for carrying out
specific tasks, and will have subsequent negative implications on the trainees’ per
formance in their new role. The appropriate solution for these circumstances is to pre
pare personal training options and to employ a variety of training such as computer-
based training, self–training, on-the-job training, and so on.

Planning update programs for software engineering topics

Updating activities can be scheduled well ahead, to be performed once in a
period, for example, once every 3 months. The audience of these updating activ
ities is known, and the program contents closed up to the date of the training.

492 Chapter 23 Staff Skills and Knowledge – Training and Certification

Planning update programs for SQA topics

Updating programs for SQA topics are carried out for new employees as well as
for the more senior staff members. Typical SQA updating programs are carried
out once a year or once every 6 months, depending on the pace of change. The
topics to be discussed include new and updated SQA procedures, analysis of
software quality failures, quality success stories, and so on. The SQA unit or the
unit designated to be responsible for SQA issues in the organization usually pre
pares these training and updating programs.

23.4.3 Perform training programs for software
development staff

The training team is responsible for performing the training. Retraining and updat
ing programs need to cover ad hoc requirements of newly recruited and reposi
tioned employees. These activities include registering the candidates and taking
care of all the logistics. Only those who completed successfully the examinations
will be eligible to join the software development and maintenance teams.

23.4.4 Perform follow-up of training activities
and trainees

Managers and software professionals often express doubts about the effective
ness of training in general, or regarding specific activities. They question
whether the substantial resources and efforts invested in training are really
worthwhile. To assuage these doubts and for additional considerations, system
atic follow-up is necessary:

• To provide information to verify whether all training program activities
were conducted and about the participation of enlisted participants.

• To provide feedback indicating whether the training efforts were justified
in terms of improved productivity and quality of trainee performance.

• To identify ineffective and unsuccessful training activities in order to
ensure continuous improvement of training activities.

Analysis of the data accumulated following a training course or an individual
training session provides the information necessary to revise programs by guiding
the modification: addition and deletion of identified activities and materials.

The follow-up information sources include:

• Performance data, collected regularly and processes into metrics – such as
errors and productivity metrics, corrective maintenance statistics and
resources invested – prepared by the respective units. For a discussion of
software quality metrics in general and the specific issue of performance
metrics – see Chapters 16 and 21.

23.5 The Training Process for the SQA Function Team 493

• Questionnaires completed by the trainees, their superiors, customers, and
others.

• Information regarding outstanding achievements, as well as failures.

• Specialized review of software products (documents and code) prepared
by trained employees.

The Corrective Action Board (CAB), based on the follow-up subsequent to
training and other sources of information, may initiate training programs
improvements. For more about process improvements and corrective and pre
ventive actions in the context of training and other issues, see Chapter 19.

23.5 The training process for the SQA function team

Conducting successful training for the SQA function team requires the following
activities to be regularly performed:

• Determine needs for professional training and needs for filling any knowl
edge gaps for the SQA function team.

• Plan training and upskill programs for the SQA function team.

• Conduct training programs for the SQA function team.

• Perform follow-up on training activities and new knowledge acquired by
trainees.

Comprehensive follow-up of the outcomes of current programs, as well as
keeping track of developments in the profession are required to make sure that
programs are performed and are adequately up-to-date.

The training process for the SQA function team is very similar to the pro
cess displayed in Figure 23.1.

23.5.1 Determine training and updating needs for
software development positions

SQA functions position require skill and knowledge of the following three
categories:

Most organizations set education and professional training requirements for
each of the software development and maintenance positions. Staff members
who fulfill these requirements still need additional “local” or “internal” knowl
edge and skills, related to specific development and maintenance procedures.
This specialized knowledge can be grouped into the following categories:

• Professional SQA education

• Knowledge and skills related to SQA local procedures and conventions

494 Chapter 23 Staff Skills and Knowledge – Training and Certification

• Knowledge of skills in implementation of SQA and software engineering
standards adopted by the organization

Training and updating needs are determined by a comparison of the staff’s
current knowledge with the updated knowledge requirements. The type of train
ing is adapted to the needs of three distinct groups of staff:

• Training: For new SQA function team candidates, according to their des
ignated assignment

• Retraining: For employees assigned to new SQA positions

• Bringing up to date: SQA team members

In small SQA teams, a common list of requirements is a useful resource to
expedite team replacements and team enforcements when the need is great.

The certified software quality engineer (CSQE) body of knowledge (ASQ,
2016) can serve as a source for determining general software quality engineering
knowledge and skill requirements. A book by Linda Westfall (Westfall, 2010)
provides explanations on topics from the former edition of the CSQE BOK (the
2008 edition).

23.5.2 Plan training and upskilling programs for SQA
function positions

The planning of training, retraining, and updating activities refers to the program
contents, the number of participants, and the form of training. Of special impor
tance is the choice of the form of training: traditional training course, work
shops, computer-based training, web-based training, self-study, mentoring, and
on-the-job training.

Planning update programs

Updating activities can be scheduled well ahead, to be performed once in a
period, for example, once every 3 months. The audience of these updating activ
ities is known, and the program contents closed up to the date of the training.

23.5.3 Conduct the training programs for software
development staff

The training team is responsible for performing the training. Updating pro
grams need to cover advancements of SQA methodologies and standards. In
many cases the training and updating will be delivered by external training
centers.

23.7 The Certification Process 495

23.5.4 Perform follow-up of training activities and
trainees

The head of the SQA function is required to follow up on the outcomes of the
training efforts:

• To verify whether all training program activities were conducted and
about the participation of enlisted participants.

• To provide feedback indicating whether the training efforts were justified
in terms of improved effectiveness and quality of trainee performance.

• To identify ineffective and unsuccessful training activities in order to
ensure continuous improvement of training activities.

The CAB, based on the follow-up subsequent to training and other sources
of information, may initiate training programs improvements.

23.6 The objectives of certification

The objectives of certification are listed in Frame 23.3

Frame 23.3: The objectives of certification

The objectives of certification

• To determine which of the key positions of software development and maintenance
requires certification.

• To ensure that candidates for key software development and maintenance positions
are adequately qualified.

The above objectives conform to the general goals of software quality assur
ance by inspiring management to persistently nurture the level of knowledge and
skills displayed by staff, and improve its efficiency and effectiveness.

23.7 The certification process

The successful operation of development and maintenance processes is sup
ported in most cases by position certification of the key positions involved in
performing these processes. The following activities are required for the certifi
cation process:

• Define positions requiring certification

• Plan certification programs for the selected positions

• Deliver certification programs

• Perform certification follow-up

496 Chapter 23 Staff Skills and Knowledge – Training and Certification

Figure 23.2 The certification process.

Certification activities are aimed at filling any knowledge gaps and some
times upskilling qualified staff. Comprehensive follow-up of the outcome of cur
rent programs as well as keeping track of developments in the relevant field/s are
required to make sure that programs are adequately up-to-date.

The organization performs the certification process, while the SQA function
supports the process by providing consultation on the various activities of the
process.

The issues of certification programs for project management, and especially
the need for such programs, are discussed by Catanio et al. (2013) and McHugh
and Mairead (2008).

A detailed discussion of each of these activities is presented in the next
sections.

The certification process is displayed in Figure 23.2.

23.7.1 Defining the positions requiring certification

It is commonly accepted that assignment of personnel to key positions in soft
ware development and maintenance requires extreme care. One of the proce
dures used to improve the suitability of candidates is certification. Examples of
positions frequently requiring certification are software development team lead
ers, software testing team leaders, software maintenance technicians, and internal
quality auditors. The last two positions are particularly sensitive because the
related tasks are usually performed by one staff member, acting alone, and sub
ject to little close control or support by superiors.

23.7 The Certification Process 497

A certification committee (or designated senior staff member) defines the
list of positions that require certification and whether the certification will be
effective permanently or for a limited period. Considering the volatility of the
profession, this list should be revised periodically. Periodical review and modifi
cation of certification requirements, ensures that staff members possess up-to
date knowledge and skills according to the current certification requirements.

The list of positions that require certification naturally varies by firm or
organization. Some use certification sparingly while others apply tool on a large
scale, even to standard programmers.

23.7.2 Planning certification programs for the
selected positions

Certification is aimed at providing a framework for the thorough investigation of
a candidate’s qualifications and a demonstration of his/her professional knowl
edge and skills. Details of the certification programs are unique to the organiza
tion; they reflect its special characteristics, areas of specialization, software
development, maintenance tools, customers, and so on.

Every detail of the certification program for every position requires
approval, as defined in the certification procedure.

Typical certification requirements

A typical certification process entails meeting some, or even all, of the following
requirements:

• Professional education: Academic or technical degrees and in some cases
certification by a professional organization or by a leading commercial
software producer. A program of importance are professional certification
programs for software quality professionals (CSQA and CSQE) delivered
by the ASQ (see Carver, 2012 and Westfall, 2010). All these programs
are based on a comprehensive “Body of Knowledge”. The Microsoft pro
fessional certification (MCP) was found to be a contributor to perform
ance (Kabia et al., 2013). Another example of a certification program by
a commercial company is Red Hat (Jang, 2007).

• Participation in internal training courses.

• Professional experience in the organization (may partially or completely
be replaced by experience in other organizations).

• Assessment of achievements and abilities as noted in periodical perform
ance appraisals (for internal candidates).

• Evaluation by a candidate’s direct superior (often by completion of a spe
cial questionnaire).

• Demonstration of knowledge and skills by means of a test or project.

• Mentor supervision for a specified period of time.

498 Chapter 23 Staff Skills and Knowledge – Training and Certification

The main requirements of a certification program are shown in Frame 23.4.

Frame 23.4: The main requirements of a certification program

The main requirements of a certification program

• Professional education

• Internal training courses

• Professional experience in the current organization and other organizations

• Evaluation of the candidate’s achievements and ability as found in periodic per
formance assessments

• Evaluation by the candidate’s direct superior

• Demonstration of knowledge and skills by means of a test or a project

• Mentor’s supervision for a specified period

Functions of the certification committee

The person or committee members responsible for certification are usually senior
software development and maintenance staff.

The responsibilities of the certifying body include:

• To perform certification activities for individual applicants or for a unit
and to grant certification to those who qualify.

• To follow-up certification activities (such as mentoring) carried out by
others.

• To follow-up the success of the certification process in terms of the candi
date job performance.

• To update certification requirements in response to developments in the
organization as well as the profession.

• To revise the list of positions requiring certification.

Implementation tip

An additional task to be performed by those responsible for certification is the active
search for qualified personnel, who may be encouraged to become certification com
mittee members. These persons could serve as testers in certification test, mentors, or
instructors.

Example
Certification requirements at SKF Advanced Software

SKF Advanced Software is a medium-sized software house. The firm’s cer
tification requirements document for a programming team leader is presented in
Frame 23.5.

23.7 The Certification Process 499

Frame 23.5: SKF Advanced Software – Position Certification
Requirement (Example)

SKF Advanced Software
Position Certification Requirements

Position 11.3 – Programmer team leader
Version 5 Valid as from 10.1.2018

Certification requirements

• Professional education: Two options: (a) BA or BSc in software engineering or
equivalent degree. (b) Technician or equivalent degree in software engineering
granted by a recognized school.

• Internal training courses: Two required courses: (1) Project management – 5-day
course. (2) Advanced project management – 5-day course.

• Professional experience in the organization: For candidates holding a technician’s
degree – 3 years’ experience as a programmer in SKF. For candidates holding an
academic degree – 2 years’ experience as a programmer in SKF. For candidates
with over 5 years’ experience as a programmer or programming team leader in
another organization – double the respective period of experience in SKF.

• Periodic performance appraisal. The average score of each of the last two semi
annual performance appraisals will not fall below 3.8 (out of a maximum of 5).

• Targeted evaluation by direct superior. The score of each of the eight items in the
questionnaire will be no less than 3 (out of 5), with an average score of at least 3.8
for all items.

• Demonstration of knowledge and skills by means of a test or project: 8-hour pro
gramming skill test according to a specially selected software design document.
Minimum grade: 80.

• Mentor supervision for a designated period. Mentor supervision and on-the-job
instruction by a senior programming team leader for a period of 6 months.

Responsibility for certification

• Overall responsibility: Chief software engineer

• Responsibility for skill demonstration test: Manager of relevant software develop
ment or software maintenance department (preparation of candidate’s test/task and
its evaluation).

• Responsibility for carrying out certification process: Head of the training and certifi
cation unit.

Approved by C. Haley
Position: Chief Software Engineer
Date of approval: September 17, 2017

500 Chapter 23 Staff Skills and Knowledge – Training and Certification

23.7.3 Delivery of certification programs

Application for certification, whether individual or presented by units of the
organization, will be handled by the certification team. The team will perform
the following:

a. Examine the documents presented by the candidates and define the can
didate certification process.

b. Coordinate and schedule the individual certification activities for the can
didates: software engineering, software quality assurance, and manage
ment skills (within the framework of certification requirements). The
method used to carry out certification varies accordingly. Courses may
be conducted in-house by the organization’s training and certification
unit, or externally, either by vocational or academic institutions that pre
pare programs attuned to the organization’s requirements, or by an indi
vidual computer-based training or other forms of training.

c. Verify that the candidate undergoes the required certification activities.

d. Evaluate the candidate success in the certification activities.

e. Present the candidate’s achievements in the various certification activi
ties to the certification committee for approval or disapproval of their
qualifications for the position.

23.7.4 Follow-up of certification process and results

Managers and software professionals often express doubts about the effective
ness of certification in general, or in regard to one of the associated activities.
They question whether the substantial resources and efforts invested in certifica
tion are really worthwhile. To relieve these doubts, systematic follow-up is nec
essary to provide feedback to the professional units. Such feedback indicates
whether the certification efforts were justified, while also serves to ensure con
tinuous improvement of certification activities. The information provided by fol
low-up relates to:

• Records of the performance of the participants in the program for all certi
fication programs conducted.

• Information about special cases of certification activities that proved to
be either highly successful, or clearly unsuccessful, in improving staff
performance.

• Information about proven cases of failures of certified staff that point to
clearly inadequate certification requirements.

Analysis of the data accumulated following a certification activity provides
the information necessary to revise programs by guiding the modification,

Summary 501

addition, and deletion of identified activities and materials. Meaningful follow-
up of certification requires performance information collected prior, as well as
subsequent, to certification. In regard to certification follow-up, comparisons of
the performance of noncertified with those of certified staff is impossible, as
noncertified staff are not expected to hold positions that require certification.
Instead, it is possible to base the follow-up on performance comparisons of certi
fied staff whose achievements in the certification process were high, with certi
fied staff whose achievements were substantially lower. Given these constraints,
the units responsible for training and certification should perform follow-up reg
ularly using instruments such as:

• Collection of regular performance metrics – such as errors and productivity
statistics, corrective maintenance statistics and resources invested – prepared
by the respective units. For a discussion of software quality metrics in gen
eral and the specific issue of performance metrics – see Chapter 21.

• Questionnaires completed by certified staff members, their superiors, cus
tomers, and others.

• Analysis of outstanding achievements as well as failures.

• Specialized review of software products (documents and code) prepared
by certified and trained employees.

The CAB, based on follow-up subsequent to certification and other sources
of information, may initiate changes to the certification process activities subse
quent to analysis of the cases presented to it. For more about corrective and pre
ventive actions in the context of certification and other issues, see Chapter 19.

Summary

1. The main objectives of training software development staff
• To develop the knowledge and skills needed by new employees and to
update the knowledge and skills of veteran employees so as to assure
efficient and effective task performance.

• To update the knowledge and skills of existing staff in response to
developments in the organization and technology, and to ensure efficient
and effective performance of updated requirements of project tasks.

2. Discuss what is needed to prepare training and updating program
for software development staff

The three activities to be performed prior to planning a program:
• Determine the knowledge requirements for each software develop
ment position

Determine knowledge and skills related to software engineering
and quality assurance topics, including professional education, and
internal procedures and conventions.

502 Chapter 23 Staff Skills and Knowledge – Training and Certification

• Determine training and professional updating needs of software
development staff

These needs are ascertained through comparisons of the staff’s
knowledge and skills with the state of the art. These should be speci
fied for three populations:
- New employees (training)
- Employees assigned to new position (retraining)
- Other staff (professional updating)

Training and updating needs should also be determined by per
formance requirements, based on feedback transmitted by the orga
nization’s various units.

• Plan training and updating programs for software development
staff

These programs will respond to the following issues:
- The use of in-house training teams and facilities or outsourcing
- The timing of the training and updating activities (whenever possible)
- The use of e-learning programs

3. The training process for the SQA function team
Successful training of the SQA function team requires performing

the following activities:
• Determine needs for professional training and needs for filling any
knowledge gaps for the SQA function team.

• Plan training and upskill programs for the SQA function team.
• Conduct training programs for the SQA function team.
• Perform follow-up on training activities and new knowledge acquired
by trainees.

4. The main components of a certification program
A certification program defines position requirements and responsi

bilities for carrying out the program and its revision.
Certification requirements may include some or even all of the

following components, depending on their relevance to the task or
position:

Certification responsibilities include:
• Response to requests made by applications or the organization
• Conduct of follow-up
• Revision of certification requirements according to technological
developments

• Revision of the list of positions requiring certification

5. Explain the objectives of follow-up of trained and certified staff
performance and main sources of the follow-up data

Follow-up is meant to provide the information necessary to initiate
revisions of the training and certification programs based on performance
data.

Review Questions 503

Sources for performance data include:
• Regular performance metrics – such as errors and productivity statis
tics – prepared by the individual units.

• Questionnaires completed by trainees, their superiors, and others.
• Analysis of outstanding achievements as well as failures.
• Specialized review of software products (documents and code) pro
duced by certified and trained employees.

Selected bibliography

ASQ (2016) The 2016 certified software quality engineer (CEQE) body of knowledge.
Baker E. R. and Fisher M. J. (2008) Training for quality managers, in Schulmeyer G. G. (Ed.) Hand
book of Software Quality Assurance, 4th Edition, Artech House, Norwood, MA, pp. 111–119.

Bourque P. and Fairley R. E. Eds. (2014) Guide to the Software Engineering Body of Knowledge,
Version 3.0, The IEEE Computer Society, New York, NY.

Carver D. (2012) Certified Software Quality Analyst (CSQA), ASQ Quality Press, Milwaukee, WI.
Catanio J. T., Armstrong G., and Tucker J. (2013) The effects of project management certifications
on the triple constant. Information Technology Project Management, Vol. 4, No. 4, pp. 1–13.

IEEE (2014) IEEE Std. 730-2014 Software Quality Assurance, The IEEE Computer Society, IEEE,
New York, NY.

ISO (2014) ISO/IEC 90003:2014 Software Engineering – Guidelines for the Application of ISO
9001: 2008 to Computer Software, International Organization for Standardization (ISO), Geneva,
Switzerland.

Jang M. (2007) RHCSA/RHCE Red Hat Linux Certification Study Guide, McGraw Hill, New York,
NY.

Kabia M., Oni O., and Booher L. (2013) Information technology certification as a predictor of job
performance, Journal of Leadership and Organizational Effectiveness, Vol. 1, No. 1, pp. 15–32.

McHugh O. and Mairead H. (2008) Project managers – do they need to be certified? in Barry, C.
et al. Eds, Information Systems Development: Challenges in Practice, Theory, and Education,
vol. 2, pp. 195–208.

Westfall L. (2010) The ASQ Certified Software Quality Engineer Handbook, Quality Press, Milwau
kee, WI.

Review questions

23.1 It has been claimed that training and certification objectives of software develop
ment staff conform to objectives of SQA activities (see Section 1.1 of Chapter 1).

• Review each of the SQA objectives and explain in your own words how they
conform to the relevant training and certification objectives.

23.2 The main tasks of training software development staff are classified into training
and updating.

• Discuss the main differentiating characteristics between the two types of tasks.

23.3 One of the training methods mentioned in Section 23.5.2 is “on-the-job training.”

• Discuss the advantages and disadvantages of the “on-the-job training” compared
with participation in a course.

504 Chapter 23 Staff Skills and Knowledge – Training and Certification

23.4 Consider the certification requirement “mentor supervision.”

a. Explain in your own words the unique contribution of supervision to the success
of the certification process.

b. Can you suggest certification requirements that can be replaced, wholly or par
tially, by a mentor’s supervision? List your arguments.

23.5 The Certification Committee of SKF Advanced Software has decided to extend the
list of positions requiring certification. The following positions were added:

• C# programmer
• Automated testing planner
• Tester team leader

• Prepare a proposal for a position certification document for one of the above posi
tions (see Frame 23.4).

Topics for discussion

23.1 Refer to the “3S” development team mini case.

a. List the decisions made by the team leader that led to the problematic situation.

b. Can you suggest procedures that could have eliminated or reduced the risk of
arriving at a situation similar to that found in “3S”? Explain, in a few sentences,
how each of your proposed procedures may contribute to eliminating these risks.

23.2 In the last few years, many human resource management departments and staff
training units have invested substantial resources in computer-aided training.

a. Discuss the advantages of computer-aided training and retraining.

b. Discuss the advantages of computer-aided training for professional updating.

c. Discuss the disadvantages of computer-aided training for professional training,
retraining, and updating.

d. Suggest ways to overcome the above disadvantages.

23.3 New Ventures Bank (NVB) operates 87 branches throughout the state. The Software
Development and Maintenance Department employs a professional staff of 350.
Lately, the bank’s General Manager, who has often expressed his dissatisfaction
with the performance of NVB’s certification processes, took away responsibility for
the staff certification from the manager of the Software Development Department. A
day later, he assigned the responsibility to Raphael Jones, the very successful
Finance Department Head.

a. Do you expect the new choice to be successful? List arguments for each view.

b. Some senior staff members of the Development Department suggested that
Victor McFaden, a senior software development consultant, well-experienced
with the certification process, serve as head of the new Certification Committee
to be established. Do you agree with this recommendation? List your arguments
and compare this appointment to that of Mr. Jones.

Topics for Discussion 505

23.4 The managers of a software development department have decided that all training
and certification programs will only be delivered by members of the department
staff. They explained that the decision is based on the importance of a “local color”
in a training and certification activity, and stressed that economic considerations did
not play a role in the decision.

a. Discuss the appropriateness of the decision.

b. Suggest ways for improving the decision.

23.5 Follow-up of the certification process, discussed in Section 23.7.4, rests on four
different sources of information. An SQA expert claims that the quantitative infor
mation provided by performance metrics is sufficient, and that collecting additional
information is unnecessary, and may very well prove to be a waste of resources.

a. Do you agree with the claim? List your arguments for and against.

b. If you disagree, discuss the unique contribution of each source of information to
a successful feedback process.

Part V

Additional Tools and
Methods Supporting
Software Quality

This part of the book presents three additional tools and methods that
support development teams in their efforts to assure the quality of their
software processes and software products:

• Chapter 24 presents two simple tools, templates and checklists, that
in addition to time savings, improve the quality of reports including
their structures by supporting the report preparation and reviewing
stages.

• Chapter 25 is dedicated to configuration management systems, their
tasks, implementation processes, and the related software quality
assurance activities.

• Chapter 26 is dedicated to CASE Tools, computerized software
development tools that support the software developer and mainte
nance, their classification and contributions to the efficiency, effec
tiveness, and quality of the processes.

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

507

Chapter 24

Templates and Checklists

24.1 Introduction

The task of preparing a report is always time-consuming, and despite investing
time and thought into the process, you may often find yourself troubled with
deliberations about the completeness and structure of the result, the “product.”
An improvised solution to these structure and completeness difficulties is to
scan old reports in order to apply their table of contents to the current report.
Furthermore, you may find out that you need past reports on which to base your
arguments. Unfortunately, only half of these may be available, and it is most
often that the most important ones are missing. Once you finish your report, you
may wish to look at the questions asked in last year’s report’s discussion. Again,
frustration, the management clerks could not find the minutes of that meeting.

Software development and maintenance processes involve the production
and use of a multitude of documents. Two simple SQA tools, templates and
checklists, could support the preparation of documents. In addition to time sav
ings, these tools improve the quality of reports including their structures (con
tributed by templates), and also provide better preparation for debate on reports
by improving them according to checklists, and by preparing responses to the
checklist topics.

The contribution of templates and checklists and the organizational frame
work for implementing these SQA tools are the topics discussed in the sections
of this chapter:

• Section 24.2 presents the templates.

• Section 24.3 presents the checklists.

24.2 Templates

In nonsoftware areas of work, a template is “a gauge, pattern or mould (as a thin
plate or board) used as a guide to the form of a piece being made” (Webster’s

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

509

510 Chapter 24 Templates and Checklists

New College Dictionary). When applied to software engineering, the term “tem
plate” refers to a format (especially tables of contents) created by units or orga
nizations, to be applied when compiling a report or other types of documents.
Application of templates may be obligatory for some documents and elective for
others; in some cases, only part of a template (e.g., specific chapters or general
structure) is demanded.

Three examples of templates are presented in the following frames in
Chapter 14:

• Frame 14.4: The software test plan (STP)

• Frame 14.5: Software test description (STD)

• Frame 14.6: Software test report (STR)

An additional two examples of templates appear in Chapters 22 and 25:

• Frame 22.1: Software change request (SCR)

• Frame 25.5: Documentation of software configuration release

The next sections deal with the contribution of templates to software
quality and the efforts required for producing, maintaining, and implementing
templates.

The contribution of templates to software quality

The usage of templates is quite advantageous to development teams and to
review teams.

For development teams, template use:

• Facilitates the process of preparing documents by saving the time and
energy required to create the document’s structure. Most organizations
allow templates to be copied from an SQA public file, or downloaded
from the organization’s Intranet files, which even saves keying in the
table of contents to a new document.

• Means that documents prepared by developers are more complete as
all the subjects to be included in the document have already been defined
and repeatedly reviewed by numerous professionals over the course of the
template’s use. Common errors, such as the overlooking of a topic, are
less likely to occur.

• Provides for easier integration of new team members through familiar
ity. The document’s standard structure, prepared according to templates
that may be known to the new member from previous work in another of
the organization’s units or teams, makes finding information much easier.
It also smooths ongoing document preparation in cases where parts of the
document have been prepared by another team member, who may or may
not have left.

24.3 The Organizational Framework for Implementing Templates 511

For DR committee members, template use:

• Facilitates review of documents by eliminating the need to study a docu
ment’s structure and confirm its completeness – if the document is based
on the appropriate template. It also simplifies reviewing the completed
document as its structure is standard and reviewers are familiar with its
expected contents (chapters, sections, and appendices). As a result of this
consistency, the review is expected to be more thorough yet less time-
consuming.

For software maintenance teams, template use:

• Enables easier location of the information required for performing
maintenance tasks.

The summary of the contribution of templates to software quality is pre
sented in Frame 24.1.

Frame 24.1: The contribution of templates to software quality

The contribution of templates to software quality

For development teams:

• Facilitates the process of preparing documents

• Means that documents prepared by developers are more complete

• Provides for easier integration of new team members

For DR committee members:

• Facilitates review of documents

For software maintenance teams:

• Enables easier location of the information

24.3 The organizational framework for implementing
templates

Organizations tend to save their internal resources, which often means using suc
cessfully employed reports as models for company-wide reports, or even
employing a whole report as is. Thus, if Mr Brown’s or Mr Johnson’s reports
have acquired a reputation as comprehensive and highly professional, their
tables of contents may be used as base templates by their colleagues. One dis
advantage of this situation is that often not everyone who can benefit from these
basis templates is aware of their existence. Another disadvantage is that further

512 Chapter 24 Templates and Checklists

improvement of the templates, accomplished through their review by profes
sional teams, may be thwarted.

The SQA unit is usually responsible for preparing professional templates for
the more common types of reports and documents required by the organization’s
staff. Developing the general infrastructure for using templates, the subject of
this section, is an integral part of the unit’s tasks.

24.3.1 Preparation of new templates

Development of a template infrastructure naturally centers on the work of a
group of professionals devoted to the task. This group (or committee) should
include senior staff who represent the various software development lines,
the department’s chief software engineer, and SQA unit members. Informal
developers of “template services” should likewise be encouraged to join the
group.

One of the group’s first tasks is to compile a target list of templates to be
developed and common structure parts for all template types, or for most of them.
Once the list is accepted, priorities must be set. Higher priority should be given to
templates of the most commonly prepared documents, as well as to “informal”
templates already in use, as it is estimated that only minimal efforts will be
required for their completion and authorization. Subcommittees are then assigned
the task of preparing the first drafts. The subcommittee may use examples of exist
ing templates to facilitate and improve the process of preparing a template draft.

The most common information sources used in preparing a template are
listed in Frame 24.2.

Frame 24.2: Common information sources for template

Common information sources for template

• Informal templates already in use in the organization

• Template examples found in professional publications

• Templates used by similar organizations

An SQA unit member can be anticipated to undertake the task of leading the
group, but a template “freak,” who is also a member of the committee, may just
as readily be chosen for the job. Irrespective of who the group’s head is, he or
she must see to the distribution of template drafts among members, the organiza
tion of meetings, and the follow-up of progress made by template preparation
subcommittees. Distribution of template drafts among team leaders for their
comments can yield important improvements and at the same time promote
future use of the template.

24.3 The Organizational Framework for Implementing Templates 513

24.3.2 Application of templates

Several fundamental decisions are involved in the implementation of new or
updated templates:

• What channels should be used for promoting the templates?

• How should the templates be made available to the organization’s internal
“consumers”?

• Which templates should be compulsory and how can their application be
enforced?

All internal means of communication may be used for promoting templates
internally, within the organization: leaflets, e-mails, SQA intranet, as well as
short presentations at meetings.

One of the most efficient methods of making templates available to the
organization is the internal net (intranet), to be preferred to any paper-based
route. Distribution through the internal net ensures users use the latest revision
of the template needed and also saves keying in (required for paper-based tem
plates) the document’s table of contents.

Directions regarding compulsory use of specific templates are generally
found in the organization’s procedures or work instructions. The chief software
engineer or other senior staff member is usually authorized to determine the list
of compulsory templates appropriate for the selected procedure, although we can
expect the template group to submit its own recommended list.

A common “tool” for enforcing the use of templates is the DR committee
that can demand restructuring reviewed documents to comply with relevant
templates.

24.3.3 Updating templates

The decision to update an existing template may be considered a reactive mea
sure stemming from any of the following:

• User proposals and suggestions

• Changes in the organization’s areas of activity

• Proposals initiated by design reviews and inspection teams based on their
review of documents prepared according to the templates

• Analysis of failures as well as successes

• Experience from other organizations

• SQA team initiatives

The process of updating templates is quite similar to that of template
preparation.

514 Chapter 24 Templates and Checklists

24.4 Checklists

The checklist used by software developers refers to the list of topics, usually a
comprehensive one, especially constructed for each type of document. Check
lists are used:

• By developers prior to completing a document to ensure that all required
topics have been included and discussed properly

• By developers prior to performing an activity (e.g., installing a software
package at the customer site) and to ensure the completeness of
preparations

• By DR committee members for verifying that a document complies with
content topics requirements

• By DR committee members to verify the correct order of topics in the
review sessions discussions

Usually, a checklist tends to be considered an optional infrastructure tool,
depending mainly on the list’s professional attributes, user acquaintance with the
list, and availability.

Figure 24.1 presents an example of a checklist for design reviews of
requirement specification documents. The presented checklist serves for docu
menting the findings of the checks performed, where the checker can mark
whether the document complies with the topic’s issue or not and list necessary
comments.

Two additional examples of checklists can be found in Chapter 8:

• Appendix 8.A: Proposal draft reviews – subjects checklist

• Appendix 8.B: Contract draft review – subjects checklist

Several examples of comprehensive and detailed checklists may be found in
a book by Perry (2006). The important contribution of checklists is discussed by
Houston (2004).

Next, we deal with the contribution of checklists to software quality and the
efforts required for their implementation: establishing, maintaining, and applying
the lists.

The contribution of checklists to software quality

Like templates, checklists provide many benefits to development teams, commit
tee members, and software maintenance teams and contribute to document and
performance quality.

The advantages to development teams:

• Help developers carry out self-checks of documents or software code
prior to formal design reviews, inspections, or testing. Checklists are

24.4 Checklists 515

Figure 24.1 DR checklist for requirement specification reports

516 Chapter 24 Templates and Checklists

expected to help the developer discover incomplete sections as well as
detect overlooked parts. Checklists are also expected to contribute to the
quality of documents or software code submitted for review, as the quality
issues to be surveyed by the review team are already listed in the
checklist.

• Assist developers in their preparations for tasks such as installation of
software at customer sites, performance of quality audits at subcontrac
tors’ sites, or signing of contracts with suppliers of reused software mod
ules. Checklists are expected to help developers become better equipped
for task performance.

The advantages to review teams:

• Ensure completeness of document reviews by review team members
as all relevant review topics appear on the list.

• Facilitate improved efficiency of review sessions as the subjects and
their order of discussion are defined and well known in advance.

The summary of the contribution of checklists to software quality is pre
sented in Frame 24.3.

Frame 24.3: The contribution of checklists to software quality

The contribution of checklists to software quality

The advantages to development teams:

• Help developers carry out self-checks of documents or software code

• Assist developers in their preparations for tasks

The advantages to review teams:

• Ensure completeness of document reviews by review team members

• Facilitate improved efficiency of review sessions

24.5 The organizational framework for
implementing checklists

Although highly recommended, the use of checklists remains in most organiza
tions as discretionary. Checklist preparation and updating, and the promotion of
their use, are usually assigned to the SQA unit. A “checklist group,” headed by
an SQA unit member, can undertake the task of maintaining a collection of
updated lists. The participation of additional staff interested in promoting the
use of checklists in the group is also voluntary; in some cases, however, the

24.5 The Organizational Framework for Implementing Checklists 517

assistance of an SQA consultant is recommended. In the remainder of this sec
tion, we describe the processes required to maintain a checklist infrastructure:
preparation of new checklists, updating, and promoting their use.

24.5.1 Preparation of new checklists

One of the first tasks awaiting the “checklist group” is the compilation of a list
of checklists targeted for development, followed by the definition of a common
format for all the checklists released by the group.

The first checklists approved by the group are usually based on informal
checklists already in use by a number of development team members and
reviewers. In most cases, a few changes and adaptations of these checklists are
sufficient to satisfy the format and contents defined by the group. Preparation of
new checklists, as well as the improvement of informal checklists, is supported
by the information sources listed in Frame 24.4.

Frame 24.4: Common sources of checklist

Common sources of checklist

• Informal checklists already in use in the organization.

• Checklist examples found in books and other professional publications.

• Checklists used by similar organizations.

The process of preparing a new checklist is similar to the one for a template.

24.5.2 Updating checklists

Like templates and procedures, initiatives to update an existing checklist gener
ally flow from the following sources:

• User proposals and suggestions

• Changes in technology, areas of activity, and clientele

• Proposals initiated by inspection teams in design and document reviews

• Analysis of failures as well as successes

• Experience from other organizations

• SQA team initiatives

The process of updating checklists is quite similar to their preparation.

518 Chapter 24 Templates and Checklists

24.5.3 Promotion of checklist use

As the use of checklists is rarely mandatory, promoting their use is based on
their circulating and guaranteed availability. Staff interested in promoting the
use of checklists and internal channels of communication can be used for publi
cizing the checklists: through leaflets, e-mail, SQA intranet, as well as profes
sional meetings. The internal net remains, however, the preferred and most
efficient method for making checklists available to the organization’s internal
“consumers.”

Summary

1. The main contribution of templates to software quality assurance
The main contributions are:

• The use of templates facilitates the process of preparing a document by
saving the efforts required for planning the document structure.

• Documents submitted for review are complete, thus common errors of
overlooked topics are eliminated.

• Documents submitted for review are complete. As a result, review
teams can direct their efforts to examining the document and to further
improving the final product.

• Document reviews are facilitated as their structure is standard and well
known among the reviewers. Freed of structural concerns, reviewers
can focus on issues relating to the document content.

2. The main contributions of checklists to software quality assurance
The main contributions are:

• Checklists support document quality as all relevant topics may be self-
checked according to the checklist and quality issues to be reviewed
are already listed.

• Checklists support the developer’s preparation for tasks such as
installing software or/and verifying subcontractor’s performance.

• Checklists ensure completeness of document reviews by review
team members as all relevant review topics appear on the list.

• Management of review sessions becomes less problematic when topics
and their order of priority are defined and well known. An efficient
session is expected to carry out a thorough analysis of comments by
reviewers.

3. The activities involved in maintaining templates and checklists
The activities involved in maintaining state-of-the-art compilations

of templates and checklist collections include preparation, implementa
tion, and updating.

The preparation and updating of both types of SQA tools are the
work of groups of interested staff, including those who have already

Review Questions 519

proposed informal templates and checklists to their colleagues. Leader
ship of the group is usually an SQA unit obligation. The group members
decide on target lists of templates and checklists, which they later try to
complete. Drafts are prepared by the group members and reviewed by
other group members and others. Team members, SQA unit members,
and others, especially those in the relevant field, can readily initiate
updating efforts. Updates are effected to improve current releases on the
basis of team and external experience, and to cope with organizational
changes, altered consumer tastes, failure analysis results, and so on. The
implementation of templates and checklist is successful when the major
ity of users or relevant internal consumers apply them regularly. Success
ful application is based on both promotion activities and availability.
Promotion is based on advertising, especially on internal communication
networks, while easy access is usually achieved through the internal net.
In many organizations, use of some or all templates is compulsory
in situations that demand adequate procedures and/or work instructions.

Selected bibliography

Houston D. (2004) The value of a good checklist, Software Quality Professional, Vol. 6, No. 2,
pp. 17–26.

Perry W. (2006) Effective Methods for Software Testing, 3rd Edition, John Wiley & Sons Inc, New
York, NY.

Review questions

24.1 Explain the advantages of templates in your own words.

24.2 The SQA unit has prepared a list of eight new additional templates awaiting
preparation.

a. Whom would you recommend to participate in an ad hoc committee for prepar
ing the templates?

b. The head of the SQA unit is considering hiring an SQA consultant to join the
committee. Is this advisable? List your arguments.

c. If you agree with the unit head, what tasks would you prefer the consultant
attend to? List your arguments.

24.3 The organizational framework for implementing templates deals with updating
procedures.

a. Explain in your own words the sources for initiatives for procedure updating.

b. Explain the process of updating procedures.

24.4 Explain the advantages of using checklists in your own words.

520 Chapter 24 Templates and Checklists

24.5 Relate to new checklists and their updates.

a. What are possible sources for preparing a new template?

b. Evaluate the advantages and disadvantages of each possible template source.

Topics for discussion

24.1 Mr John Bogart, head of the SQA unit, has decided that henceforth it will be man
datory for all developers to apply the templates included in a well-known Templates
Manual for the SQA Professional. A procedure has been prepared to enforce adher
ence to the templates. The manager of the software development department has
been asked to approve the procedure.

a. Would you recommend that the manager approve the procedure? List your
arguments.

b. If your recommendation is against approving the procedure, suggest how the
department’s informal templates, if deemed more suitable than the Manual’s
templates, may be adopted.

24.2 Tommy, a software development team leader, tends to delete standard (i.e., tem
plate) sections and chapters that are not applicable from the tables of contents of
the documents he compiles. He claims that by doing this the documents “look
nicer.”

a. Do you agree with this method of adapting templates to current application?

b. What are the disadvantages of “template editing” by the team leader? What do
you recommend doing in cases of inapplicable template chapters or sections?

24.3 An SQA professional claims that the availability of design review checklists makes
the DR redundant.

a. Do you agree with this claim? List your arguments.

b. Compare the expected situation in the following two DR sessions: first session,
when designers do not use a checklist, and second session, when designers make
use of a DR document checklist.

24.4 Tom Haley, a software development team leader, prepared new work instructions.
The head of the SQA function claimed that as these instructions do not comply with
the relevant procedure, changes should be made to verify that they do. Tom Haley
responded saying that there is no need to adapt the instructions to the procedure.

a. Do you agree with Tom Haley? If yes, list your arguments.

b. If you disagree with Tom Haley, what are the expected damages of such non
compliance between work instructions and relevant procedures?

24.5 It is suggested that the revised edition of the Templates and Checklists Procedure
includes the following section: “If a template or checklist has not been updated or
changed for a period of 36 months – a team should be nominated to check these
templates and checklists and recommend any required changes and updates. The

Topics for Discussion 521

SQA unit is responsible for performing the needed review at least semi-annually. A
committee, nominated by the head of the Software Development Department,
should submit its recommended changes and updates not later than six months after
their nomination.”

a. Is the proposed procedure for updating templates and checklists justified or a
waste of time?

b. Suggest situations where templates and checklists, accepted as proper and highly
professional when released, need to be changed.

24.6 It is recommended that an ad hoc committee (or group), rather than an expert mem
ber of the SQA unit or a consultant, prepares a new and updated checklist file.

• List the expected advantages and disadvantages of the committee/group option
for performing this task.

Chapter 25

Configuration Management

25.1 Introduction

The need to cope with software versions throughout the software life cycle is
one of the more important tasks of software development and maintenance
teams. The software quality support function to perform this task is software
configuration management (SCM). Operation of software configuration control
throughout the software life cycle is key to the effective and efficient perform
ance of successful software development and maintenance.

In many organizations, the function of software change control, as discussed
in Chapter 22, is integrated into the configuration management function.

All the SCM processes of software version storage release and recovery of
stored information are based on the use of identified configuration items.

The SQA activities related to SCM include overseeing the SCM activities
performed by the software development organization and supporting them
professionally.

SCM is sometimes referred to simply as configuration management (CM).
Its definition along with its objectives are presented in Frame 25.1.

The importance of SCM to support software development and maintenance
processes is stressed in the ISO/IEC/IEEE Std. 12207-2008 Section 7.2.2 (ISO,
2008), ISO/IEC Std.90003:2014 Section 7.5.3.2 (ISO, 2014), and also in the
CMM Guidelines (Leon (2015) and Aiello and Sachs (2010)). These are just
two of the books dedicated to the CM subject. Chapters dedicated to CM are
likewise found in software engineering texts such as Pressman and Maxim
(2015). Various aspects of configuration management are discussed in papers, a
sample of these include Kogel (2008), Lapouchnian et al. (2007), Sarma (2008),
Fauzi (2010), Buchmann et al. (2013) Alidoosti (2015), and Estublier et al.
(2005).

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

522

25.2 Software Configuration Items 523

Frame 25.1: Definition and tasks of software configuration
management

Software configuration management – definition

A quality support function for software development and maintenance processes
responsible for applying (computerized and noncomputerized) technical tools and
administrative procedures that enable completion of the tasks required to identify,
store, and maintain availability and accuracy of the information related to all aspects
of the components of a software system and their versions.

The tasks of configuration management

• Systematic storage of identified versions of software configuration items and other
approved items.

• Release of SCI and software configuration versions.

• Provision of information services based on recovery of stored data.

• Verification of compliance to CM procedures.

• Control software change (in cases the SCMA is responsible for the change control
task)

The next sections deal with the following:
The storage tasks of SCM

• The configuration items

• Release of software configuration items

• Documentation of software configuration versions

• Configuration management planning

• Provision of CM information services

• Computerized tools for performing configuration management tasks

• The CM function in the organization

• Software quality assurance activities related to CM

25.2 Software configuration items

Storage, release, and recovery of software items to support a reliable software
configuration process require the use of software configuration items, software
configuration item versions, and software configuration versions. Definitions of
these software items are presented in Frame 25.2.

A unit of software code or a document is defined as an SCI if assumed
that it may be needed for further development of the software system and/or
its maintenance. In other words, the main criterion governing a noncode

524 Chapter 25 Configuration Management

item’s classification as an SCI, and its inclusion in a software configuration
version, is its potential contribution to the software development and mainte
nance process.

Frame 25.2: Software configuration items – definitions

Software configuration item (SCI) or configuration item (CI)

An approved unit of software code, a document or piece of hardware that is designed
for configuration management and treated as a distinct entity in the software configu
ration management process.

SCI version

The approved state of an SCI at any given point of time during the development or
maintenance process.

Software configuration version

An approved selected set of documented SCIs that constitute a software system or
document at a given point of time. Activities related to a software configuration ver
sion are controlled by software configuration management procedures. The software
configuration versions are released according to the cited procedures.

A software configuration is composed of as many SCIs as the developers
assume will be needed in the future, with each SCI approved, identified, and
registered. The SCIs aggregated in each software configuration version natu
rally correspond to the software components and software definitions
reviewed earlier in the book. The SCIs are generally placed into the follow
ing four classes:

• Design documents

• Software code

• Data files including files of test cases and test scripts

• Software development tools

A list of common types of SCIs is presented in Frame 25.3.
Table 25.1 lists the SCI contents of two software configuration versions.

The software package, whose software configuration versions are shown,
includes 11 SCIs: 5 reports, 3 code modules, a test cases file, a compiler, and a
software user manual. It should be noted that for part of the SCIs, the same SCI
version is used in both software configuration versions, that is, Ver. 1 of SRD is
included in both software configuration versions.

25.2 Software Configuration Items 525

Frame 25.3: Common types of software configuration items

Design documents:

• Software development plan (SDP)

• System requirements document

• Software requirements document (SRD)

• Interface design specifications

• Preliminary design document (PDD)

• Critical design document (CDD)

• Database description

• Software test plan (STP)

• Software test procedure (STPR)

• Software test report (STR)

• Software user manuals

• Software maintenance manuals

• Software installation plan (SIP)

• Software maintenance requests (including problem reports)

• Software change requests (SCRs) and software change orders (SCOs)

• Version description document (VDD)

Software code:

• Source code

• Object code

• Prototype software

Data files:

• Test cases and test scripts

• Parameters, codes, and so on

Software development tools (the versions applied in the development and
maintenance stages):

• Compilers and debuggers

• Application generators

• CASE tools

526 Chapter 25 Configuration Management

Table 25.1 Software configuration versions and the included SCI versions

Software configuration Version 6.0 Software configuration Version 7.0

SCI SCI version in the SC version SCI version in the SC version

SRD Ver. 1 Ver. 1
CDD Ver. 3 Ver. 4
STP Ver. 3 Ver. 4
SIP Ver. 2 Ver. 2
VDD Ver. 6 Ver. 7
Code Module 1 Ver. 3 Ver. 5
Code Module 2 Ver. 8 Ver. 8
Code Module 3 Ver. 2 Ver. 2
Test cases file Ver. 3 Ver. 4
CL compiler Ver. 5 Ver. 7
Software user Ver. 6 Ver. 7
manual

25.3 Release of software configuration versions

The need to release a new software configuration version usually stems from one
or more of the following conditions:

• Defective SCIs identified in former version/s

• Special features requested by new customers

• Team initiatives to introduce SCI improvements

• New features initiated to manage market changes, and also the desire to
improve the software product marketability

A discussion of the following issues, all of which are part of the process of
software configuration version release, is presented in the remainder of this section:

• Software configuration evolution models

• Software configuration management plans (SCMPs)

• Documentation of software configuration versions

25.3.1 Types of software configuration releases

Baseline versions, intermediate versions, and revisions are considered to be the
three main types of configuration releases.

Baseline software configuration releases (baseline releases)

Baseline releases are planned ahead, while their content and schedules are
defined in the SCMP.

25.3 Release of Software Configuration Versions 527

The first baseline configuration version is defined at an advanced stage of
the development process following the review, testing, and approval of all devel
opment items. The next baseline releases are expected to be released according
to the SCMP, at the end of the software development stage, following an organi
zational change, or the likes.

Baseline configuration versions are defined for design documents, test plans,
source code, and so on.

Intermediate software version releases (intermediate release)

When problems requiring immediate attention arise – such as the need to correct
defects identified in an important SCI, or perform immediate adaptations
required by legal changes – an intermediate version of the software is often
prepared.

Usually, intermediate versions only serve a portion of a firm’s customers,
and for a limited period until replaced by a new baseline configuration version.
Naturally, we can expect that these intermediate versions will not receive the
attention and efforts typically devoted to the release of new baseline versions.
An intermediate software configuration version release can thus serve as a
“pilot” or springboard to the next baseline version.

Revision software releases (revision release)

Revision releases introduce minor changes and corrections to a given software
baseline release. In some cases, several successive revisions are released before
a new baseline configuration version is released.

COTS software configuration version releases

COTS software packages present typical software configuration versions. These
are planned versions usually released once or twice a year. These releases are
designed to achieve improved marketability by presenting substantial software
improvements and new features in each new release.

Numeration conventions for identification of SCI and software
configuration versions

A numeration convention applied for software configuration versions: baseline
configuration versions are numbered 1.0, 2.0, 3.0, 4.0, and so on, and intermedi
ate and revisions versions are numbered 1,1, 2.5, 3.1, 3.2, 4.1, 4.2, and so on.
Each software configuration version is composed of SCIs, each of which is iden
tified by its own version and revision numbers.

The numeration conventions can likewise be used to identify firmware to be
embedded in a variety of product lines and models, but these may require special
adaptations.

528 Chapter 25 Configuration Management

25.3.2 Software configuration version
evolution models

The organization’s policy of version evolution defines the number of software
configuration versions that will follow any given software configuration version.
According to the linear evolution model, only one new software configuration
version will replace the former “old” software configuration version. However,
according to the tree evolution model, one or more new software configuration
versions will replace former software configuration version. The version evolu
tion models and their advantages and disadvantages are discussed in Chapter 15,
and an illustration of linear and tree model “history” can be viewed in
Figure 15.1.

Tables 25.2 and 25.3 list seven software configuration versions and their
configuration item versions for software packages that adopt the linear evolution
model and the tree evolution model, respectively. In both examples, decimal
numeration is implemented with the configuration version type – baseline, inter
mediate, or revision releases, clearly marked.

Table 25.2 presents the SCI contents of seven configuration versions of an
accounting software system that adopts the linear evolution model throughout its
development and operational stages.

Table 25.2 presents seven software configuration versions released over
a period of more than 3 years 6 months. The baseline versions were
released once a year, in the middle of January. In addition, two revision
versions and an intermediate version were released during this period. Note
that software configuration version1.0 is a design baseline software configu
ration version, and as such it only includes two SCIs, both of which are
design configuration item versions. Note also that software module SM-4
was only added to the software package for the baseline software configura
tion version release 4.0.

Version release 2.1 is a revision released with only three of its SCIs
changed from the baseline software configuration version 2.0: DD-1, DD-2,
and SM-3. Baseline configuration version 4.0 introduces the new software
module, SM-4, which was released in response to a new accounting regula
tion. Version 6.03 of the commercial CASE tool, applied for the develop
ment and maintenance, was replaced with the more advanced version 7.0,
while the baseline configuration for this release is version 3.0 of our software
system.

Table 25.3 presents the SCI contents of the 10 software configuration ver
sions of a system developed for printer firmware, where separate versions were
developed for the standard printer, fast black printer, and printer-fax. Further
development of the product line resulted in two separate configuration versions,
one for the fast black ink printer and one for the printer-fax. In this case, the first
baseline software configuration version was defined at the end of the develop
ment stage.

530 Chapter 25 Configuration Management

Table 25.3 Configuration versions of printer firmware products – tree evolution model

Standard printer Fast black printer Printer-fax

a1.0 a2.0 a2.1 a1.0 b1.1 b2.0 b3.0 a1.0 c1.1 c2.0

Bl Bl In Bl In Bl Bl Bl In Bl

Jan 1, Jan 1, Aug 8, Jun 1, Sep 3, Jan 1, Jan 1, Jan 1, Feb 4, Jan 1,
2015 2016 2016 2015 2015 2016 2017 2016 2016 2017

Design document 1.0 2.0 2.0 1.0 11.4 12.0 13.0 2.0 21.3 22.0
DD-1

Design document 1.0 2.0 2.1 1.0 11.2 12.0 12.0 2.0 21.3 22.0

DD-2
Design document – – – – – – – – 21.1 22.0
DD-3

Design document – – – – – 11.0 11.0 – – –

DD-4
Software module 1.0 2.0 2.3 1.0 1.0 11.0 11.0 2.0 21.4 22.0
SM-1

Software module 1.0 1.0 1.4 1.0 11.4 12.0 13.0 1.0 1.0 21.0
SM-2

Software module – – – – – – – – 21.2 22.0

SM-3
Software module – – – – – 11.0 11.0 – – -
SM-4

Test case file TC 1.0 2.0 2.0 1.0 11.4 12.0 13.0 2.0 2.0 2.0
User manual UM 1.0 1.0 1.1 1.0 11.1 12.0 12.0 1.0 21.1 22.0
Development 1.5 2.3 2.3 1.5 2.3 2.3 2.5 2.3 2.3 2.5
tool DT

Bl = Baseline, Re = Revision, In = Intermediate.

Table 25.3 illustrates the evolution of software configurations in the develop
ment and maintenance stages according to the tree model. Three parallel firmware
configuration versions evolved so as to serve three product lines: standard print
ers, fast black printer, and printer-fax. The table displays two version partitions:

First: The baseline version a1.0, common to the standard printer and
the fast black printer firmware, is partitioned into a standard printer
baseline version a2.0 and fast black ink printer b2.0, an intermediate
version b2.1.

Second: The standard printer baseline version a2.0, common to the standard
printer and the printer-fax, is partitioned into a standard printer interme
diate a2.1and printer-fax intermediate version c1.1.

25.4 Documentation of Software Configuration Versions 531

Table 25.3 also displays the SCIs common to the firmware of more than one
product. In addition, the table displays unique SCIs included in the firmware of
only one product: DD-4 and SM-4 are unique to the fast black printer, while
DD-3 and SM-3 are unique to the printer-fax. In other words, several improve
ment features were added to the fast black printer and to the printer-fax in a later
version. For instance, a new feature based on software module SM-4 was added
to the fast black printer in ver. b2.0 released on January 1, 2016, and another
new feature, based on software module SM-3, was added to the printer-fax revi
sion c1.1 on February 4, 2016.

25.4 Documentation of software
configuration versions

Within the framework of software configuration management, the project man
ager must verify that all documentation tasks are properly performed. Two of
the main types of tasks to be completed are:

• Documentation of SCI versions

• Documentation of software configuration releases (versions and revisions)

The information items required for documentation of an SCI version are
listed in Frame 25.4.

Frame 25.4: Documentation of SCI version – a template

Identification of an SCI version

• SCI version number

• Name(s) of software engineer(s) who implemented the change

• Date when the new version was completed and approved

Changes in the new SCI version

• Former SCI version number

• Short description of the introduced change/s

• List of other SCIs that had to be changed as a result of the current changes

• List of SCOs included in the new version

• List of software problem reports resolved by the new version

• Operational and other implications of the changes introduced in the new version

The documentation for a new SCI version may be submitted as a document
or as part of the code (i.e., as “release notes” in the code listing).

Documentation of software configuration releases, often referred to as a
VDD, is presented in Frame 25.5.

532 Chapter 25 Configuration Management

Frame 25.5: Software configuration release documentation – version
description document (VDD) template

Identification of configuration version and its installed sites

• Release version and revision number

• Date of the new version’s release

• List of installations where the release was entered (site, date, name of technician
that installed the version) – if applicable

Configuration of the released version

• List of SCIs in the released version, including identification of each SCI version.

• List of hardware configuration items required for operating the specified version,
including specification of each hardware configuration item.

• List of interfacing software systems (including version) and hardware systems
(including model).

• Installation instructions for the new release.

Changes in the new version

Previous software configuration version

• List of SCIs that have been changed, new SCIs, introduced for the first time, and
deleted SCIs.

• Short description of introduced changes.

• Operational and other implications of changes introduced in the new release.

Further development issues

• List of software system problems that have not been solved in the new version.

• List of SCRs and proposals for development of the software system, for which
implementation of development was delayed.

25.5 Configuration management planning

The main objectives of configuration management planning are:

• To plan the schedule and contents of baseline and other software configu
ration version releases.

• To prepare estimates of the resources required to carry out the plan.

• To enable to follow-up the progress of activities involved in software ver
sion releases.

25.5 Configuration Management Planning 533

Configuration management plans (CMPs) are required during the develop
ment stage, as well as the operation (maintenance) stage. Accordingly, a CMP
usually includes:

• An overview of the software development project or existing operating
software system.

• A list of scheduled baseline version releases.

• A list of scheduled software configuration version intermediate releases.

• A list of SCIs (documents, code, etc.) planned to be included in each
planned version.

• A table identifying the correlation between software development project
plans and maintenance plans with scheduled releases of new SCIs or SCI
versions.

• Estimates of the human resources and budget needed to perform
the CMP.

SCMP for the development stage

The SCMP sets the baseline versions release dates based on the project plan;
these usually coincide with the conclusion of one or more of the following two
events: the design stage and the system test stage. As these annual plans repre
sent the software development activities planned up to the time when the SCMP
is prepared, they will inevitably require updates during the year. Contracts for
new development projects, as well as project cancellations will make it neces
sary to periodically update the SCMP.

The project manager is usually the person responsible to carry out these
SCM planning tasks in accordance with the SCM procedures.

External participants in the project are required to comply with the SCMP,
or to suggest an alternative appropriate for their part of the project – contingent
on acceptance by the project manager.

SCMP for the operational (maintenance) stage

During the operational (maintenance) stage, further releases of software
configuration versions are required in order to introduce improved software
versions. These new versions are released following the accumulation of SCI
changes during regular customer use and their subsequent incorporation, or
following software error corrections made soon after their identification and
resolution.

SCM planning is of special importance for COTS software developers. The
SCMPs generally schedule periodic releases for new baseline configuration soft
ware versions. These are usually annual, semiannual, or according to the

534 Chapter 25 Configuration Management

anticipated number of accumulated changes in SCIs. Intermediate software con
figuration releases are occasionally released, to correct severe software errors or
to add features needed to cope with legal or urgent change requirements. The
periodic planned baseline releases include corrected and improved versions, as
well as new SCIs – each of which include the adaptations and/or improvements
initiated by the company. Only SCIs for which changes have been completed
and approved by the targeted release date can be included in the new baseline
software configuration version.

25.6 Provision of SCM information services

Requests for information frequently raised by software developers:

• “Which SCI MM4 version should I continue coding?”

• “What changes have been introduced in the new version 6.0 of the
software?”

• “Who was involved in the development of the new SCI GK11version 1/0?”

Requests for information frequently raised by maintenance teams:

• “Who can provide me with an accurate copy of last year’s version 4.1 of
the TMY software system?”

• “What version of the design document correlates to the software version
we are currently adapting to the new customer requirements?”

• “What version of the software system is installed at ABC Industries?”

• “What changes have been introduced in the version currently installed at
the ABC Industries site?”

• “Where can I find the full list of customers that use version 6.8 of our
software?”

• “Can we be sure that the version installed at Top Com Ltd. does not include
undocumented changes (and changes that have not been approved)?”

These and many similar questions reflect the essentiality of a service that
provides accurate and reliable information regarding parts of, or whole, software
products for developers and maintenance teams. This service ensures the reliable
availability of approved versions of SCIs and software configuration versions,
and is of critical importance, considering the constant changes every active soft
ware information system undergoes every year. SCM is the information service
required to provide this service to professionals – mainly developers, mainte
nance teams, and customer representatives.

The information provided may be classified into information related to soft
ware change control and information dealing with SCI and software configura
tion versions.

25.7 Computerized Tools for Performing Configuration Management Tasks 535

Information services about SCIs and software configuration versions:

• Accurate copies of SCI versions (code SCIs, document SCIs, etc.) and
entire software configuration versions.

• Full reports of changes introduced between successive releases (versions
and/or revisions) of code SCIs, as well as between successive releases of
other types of SCIs.

• Lists of version history for CMIs and software configuration versions.

• Copies of SCI version documentation and software configuration VDDs.

• Detailed version and revision history for SCIs and software configurations
versions for any specific SCI or software system product.

• Information about current versions installed at a given site.

• List of sites where a given software configuration version is installed.

Provision of the above information services is practically impossible for man
ual SCM systems. Only a computerized service may be expected to cope with this
task effectively and reliably. For more about this subject, see Section 25.7.

25.7 Computerized tools for performing configuration
management tasks

Computerized CM tools have been on the market for many years. These tools
differ in their level of comprehensiveness, structure model of their repository,
flexibility of application, and ease of use. More comprehensive tools can supply
most or almost all of the CM information services listed in Section 25.6.

It is expected that a computerized tool for storage and recovery of data
will be able to comply with the required high level of accuracy and com
pleteness of storage and recovery of information, and with the required level
of availability (measured by the response time from request for information
to its provision).

The computerized SCM tools also operate the mechanisms coordinating
the work on SCI changes and prevent damages to software items from teams
simultaneously introducing changes in the same SCI. Current-enhanced tools
are characterized by easier input capacities, coordination of SCM support
teams operating in different development environments, including geograph
ically distributed teams, and provision of an expanded variety of reporting
options.

Additional benefits from a computerized SCM system is the high security
level it is able to provide:

• Secures the code version and documentation file versions by protecting
them from any unintentional damages: changes, deletions, and other
damages.

536 Chapter 25 Configuration Management

• Activates backup procedures required to secure SCM repository storage.

• Prevents unauthorized bodies from copying, damaging, or deleting SCIs
or software configuration versions stored in the SCM repository.

A comparative analysis of two leading computerized tools for configuration
management is presented by Akukary (2013).

25.8 The software configuration management function
in the organization

The software configuration management function is performed by a specialized
unit, the SCO unit, supported by technical professionals of the organization. The
SCM unit, in some places called the SCM Authority (SCMA), implements the
SCM procedures and oversees their compliance by the software development
and maintenance teams.

According to the ISO/IEC/Std. 12207-2008 (ISO, 2008), the processes
required to be performed by the SCM unit supported by the organization techni
cal professionals include:

1. To prepare a software configuration plan. The plan should be coordi
nated with software configuration plans of the various ongoing develop
ment projects and operating systems.

2. To control the identification of SCIs to be stored in the SCM repository.
The identification of the stored SCIs should be according to a scheme
defined in the SCM procedures.

3. In cases when SCC is performed by the SCM to control software
changes and verify their full documentation according to the require
ments detailed in the SCC chapter of the SCM procedure, the SCC
documentation should include the SCR, SCR evaluation report, SCC
committee decision, verification results for changed SCI, and release
details of modified SCI. The change documentation should provide
an audit trail to all documents of the change as well to the persons
involved.

4. To produce, on request, a detailed status of each stored SCI, including
full history of changes, versions, and releases. Preparation of software
release code and documentation is carried out by the software develop
ment or maintenance teams.

5. To prepare an evaluation report regarding the quality of the SCM opera
tion, including completeness of the stored SCIs.

6. To release and deliver software products and their documentation as
required by developers and maintenance teams, while storing master
copies of each SCI for the software product lifetime; providing security
and safety measures for the repository items.

25.9 Software Quality Assurance Activities Related to SCM 537

25.9 Software quality assurance activities
related to SCM

The SQA authority performs tasks to assure that the activities and products of
SCM comply with the standards and procedures requirements. These are mainly
a variety of SCM processes audits performed by the SCMA:

• Prepare audit plans adapted to the characteristics of the projects to be
audited.

• Coordinate audits with all involved parties.

• Verify that the SCM processes conform to the relevant procedures and
standards.

• Document audit findings – compliance and noncompliance with the
required standards and procedures.

• Report findings to supplier and purchasing bodies.

• Support the problem resolution process.

The SQA audit activities cover all the SCM processes, namely, the prepara
tion of SQA plans, control of SCI identification, control of the implementation
of SCC procedures (in cases when the SCS function is integrated in the SCM
function), production of status reports for SCIs, evaluation of the performance
quality of the SCM, and release and delivery of software products and their
documentation.

The SQA audit activities related to SCM are presented in Frame 25.6.

Frame 25.6: SQA audit subject for SCM processes

1. Preparation of software configuration plan

2. Control of SCI identification

3. Control of software changes (in cases that SCC is performed by the SCM)

4. Production, on request, of a detailed status of each stored SCI

5. Preparation of an SCM performance evaluation report for release of SCI and
software configuration versions

All respective tasks are defined in CM procedures. SCM audits performed
by the SQA unit may be supported by:

• Metrics of SCM performance

• Statistics of SCM performance

• Examining samples of SCM documentation

• Discussions with SCM authority persons and others

538 Chapter 25 Configuration Management

Following is a list of typical metrics and statistics of SCM performance used
for SCM audits of the various tasks:

1. Preparing software configuration plan:
• Percentage of SCMP items not complying with the procedure and
standards (sample results).

• Percentage of software project plans not complying with the procedure
and standards (sample results).

• Number of SCMP items recorded in the last year.

2. Control the identification of SCIs:
• Percentage of cases where the SCIs identification is incomplete or not
compliant with the procedures (sample results).

• Percentage of cases where the software configuration version identifi
cation is incomplete or not compliant with the procedures (sample
results).

• Number of SCIs and software configuration versions stored in the last
year.

3. Control of software changes (in cases when SCC is performed by the
SCM):
• Total numbers of SCRs submitted to the SCCA in the last year.
• Percentage of unapproved SCRs relating to development or operation
(maintenance activities).

• Percentage of submitted SCR documents found incomplete or not
compliant with the procedure (sample result).

• Percentage of SCOs not carried out according to requirement instruc
tions or not completed on schedule (sample result).

4. Production, on request, a detailed status of each stored SCI:
• Percentage of cases of SCI versions, where change history is
incomplete (sample results).

• Percentage of software configuration version release history that is
incomplete or not fully compliant with the relevant procedures (sample
results).

5. Preparing an SCM performance evaluation report:
• Percentage of incomplete or incorrect identification of software config
uration versions (sample results).

• Percentage of cases of missing software configuration version records.

6. SCI and software configuration versions release:
• Percentage of cases of failure to release complete SCI or software con
figuration version information according to requests (sample results).

• Number of cases the SCM failed to provide the requested information
during the last year.

• Percentage of cases where production of software configuration ver
sion records is not performed immediately.

Summary 539

SQA audits may be combined with software development department audits
and documentation control audits relating to issues performed by the project
development teams.

Summary

1. The tasks of software configuration management
Software configuration management tasks are classified into the fol

lowing groups:
• Storage of identified SCI and software configuration versions
• Release of SCI and software configuration versions
• Provision of SCM information services
• Verification of compliance to SCM procedures
• Control software change (in cases the SCMA is responsible for the
change control task)

2. Definition of software configuration version
An approved selected set of documented SCIs, that constitute a soft

ware system or document at a given point of time, where the activities
related to a software configuration version are controlled by software
configuration management procedures. The software configuration ver
sions are released according to the cited procedures.

3. The difference between baseline, intermediate, revision releases
Baseline releases: Baseline releases are planned ahead and their

content and schedule are defined in the SCMP.
The first baseline configuration version is defined at an advanced

stage of the development process following review, testing, and approval
of all development items. The next baseline releases are expected to be
released according to the SCMP, at the end of a software development
stage, following an organizational change, and so on.

Baseline configuration versions are defined for design documents,
test plans, source code, and so on.

Intermediate releases: When problems that require immediate
attention arise – such as the need to correct defects identified in an
important SCI, or perform immediate adaptations required by legal
changes, an intermediate version of the software is often prepared.

Revision releases: Revision releases introduce minor changes and
corrections to a given software baseline release. In some cases, several
successive revisions are released before a new baseline configuration ver
sion is released.

4. COTS software configuration version release
COTS software packages present typical software configuration ver

sions planned to be released once or twice a year. These releases are

540 Chapter 25 Configuration Management

designed to achieve improved marketability by presenting substantial
software improvements and new features in each new release.

5. The objectives of configuration management plans
The main objectives of configuration management planning are:

• To plan the schedule and contents of baseline and other software con
figuration version releases

• To prepare estimates of the resources required to carry out the plan
• To enable to follow-up the progress of activities involved in software
version releases

6. The information services of SCM
Information services about SCIs and software configuration versions

include:
• Accurate copies of SCI versions (code SCIs, document SCIs, etc.) and
entire software configuration versions.

• Full reports of change history of code SCIs, as well of software config
uration versions.

• Copies of SCI version documentation and software configuration VDDs.
• Information about current versions installed at a given site.
• List of sites where a given software configuration version is installed.

7. Security applications that the computerized SCM system provide
Additional benefits from a computerized SCM system is the high

security level it is able to provide:
• Secures the code version and documentation files versions by protect
ing them from any unintentional damages: changes, deletions, and
other damages.

• Activates back-up procedures required to secure SCM repository
storage.

• Prevents unauthorized bodies from copying, damaging, or deleting
SCIs or software configuration versions stored in the SCM repository.

8. The SCM tasks performed by the organization
According to ISO/IEC/Std. 12207-2008 (ISO, 2008), the processes

required to be performed by the SCM unit include:
1. To prepare a software configuration plan.
2. To control the identification of SCIs to be stored in the SCM

repository.
3. To control software changes and their full documentation in cases

when SCC is performed by the SCM.
4. To produce, on request, a detailed status of each stored SCI, includ

ing full change history of versions and releases.
5. To prepare an evaluation report regarding the quality of the SCM

operation in terms of completeness of the stored SCIs.
6. To release and deliver software products and their documentation as

required by developers and maintenance teams.

Selected Bibliography 541

9. Software Quality assurance activities related to SCM
The SQA unit tasks to assure that the activities of SCM comply with

standards and procedures are performed mainly by audits:
• Preparing audit plans adapted to the characteristics of the projects to
be audited.

• Coordinating audits with all involved parties.
• Examining the SCM processes conformance with the relevant proce
dures and standards.

• Documenting audits findings – compliance and noncompliance with
the required standards and procedures.

• Reporting the findings to the supplier and acquirer bodies.
• Supporting the problem resolution process.

Selected bibliography

Aiello R. and Sachs L. (2010) Configuration Management Best Practices: Practical Methods that
Work in the Real World, Addison-Wesley, Upper Saddle River, NJ.

Akukary A. M. (2013) Configuration management: a comparative analysis of CVS and SVN, Inter
national Journal of ICT and Management, Vol. 1, No. 1, pp. 157–162.

Alidoosti R., Moaven S., and Habibi J. (2015) Service oriented configuration management of soft
ware architecture, International Journal for Network Security and Its Applications, Vol. 7, No. 1,
pp. 29–43.

Buchmann T., Dotor A., and Westfechtel B. (2013) MOD2-SCM: A model-driven product line for
software configuration management systems, Information and Software Technology, Vol. 55,
No. 3, pp. 530–650.

Estublier J., Leblang D., van der Hoek A., Ntnu R. C., Clemm G., Tichy W., and Wiborg-Weber D.
(2005) Impact of software engineering research on the practice of software configuration manage
ment, ACM Transaction on Software Engineering and Methodology, Vol. 14, No. 4, pp. 1–48.

Fauzi S. S. M. (2010) Software configuration management in global software development: a
systematic map, 17th Asia Pacific Software Engineering Conference, Sydney, NSW, Australia,
pp. 404–403.

ISO/IEC/IEEE (2008) ISO/IEC/IEEE 12207-2008 Systems and Software Engineering – Software
Life Cycle Processes, International Organization for Standardization (ISO), Geneva, Switzerland.

ISO (2014) ISO/IEC 90003:2014 Software Engineering – Guidelines for the Application of ISO
9001: 2008 to Computer Software, International Organization for Standardization (ISO), Geneva,
Switzerland.

Kogel M. (2008) Towards software configuration management for unified models, Proceedings of the
2008 International Workshop on Comparison and Versioning of Software Models (CVSM’08),
pp. 19–24.

Lapouchnian A., Yu Y., and Mylopoulos J. (2007) Requirements-Driven Design and Configuration
Management of Business Processes, Proceedings of 5th International Conference on Business Pro
cess Management, LNCS, vol. 4714, Springer, Berlin, Germany, pp. 246–261.

Leon A. (2015) Software Configuration Management Handbook, 3rd Edition, Artech House, Boston,
Mass.

Pressman R. J. and Maxim B. R. (2015) Software Engineering – A Practitioner’s Approach, 8th
Edition (European adaptation), McGraw-Hill International, London.

Sarma A., Redmiles D., and van der Hoek A. (2008) Empirical evidence of the benefits of workspace
awareness in software configuration management, in Proceedings of the 16 ACM SIGSOFT Inter
national Symposium of Foundations of Software Engineering, pp. 113–132.

542 Chapter 25 Configuration Management

Review questions

25.1 One of the tasks of an SCM is to supply information about sites where a given
software configuration version is installed (Section 25.6).

• Explain potential uses of this type of information and its contribution to software
quality.

25.2 Design documents or source code files are identified and stored as SCIs (see
Frame 25.3) for obvious reasons: Further development of the software system or its
correction cannot take place without accurate copies of these items.

Explain in your own words why the following should be identified and stored
as SCIs:

a. Test cases

b. Compiler

c. Software installation plans

d. Software change requests files

25.3 It is mentioned that a version history of a software system configuration includes
baseline, intermediate, and revision version releases.

a. Explain in your own words the function of each type of release.

b. Explain in your own words the particular importance of baseline versions.

25.4 Frame 25.6 is a template that lists the information items necessary for software con
figuration version documentation (VDD).

• List possible uses for each of the information items mentioned in the template.

25.5 The SQA unit is expected to spend a significant part of its resources carrying out
software configuration audits.

a. List the main SQA audit tasks.

b. Explain the contributions of each task to software quality.

Topics for discussion

25.1 The success of an SCM authority depends to a great extent on compliance to SCM
procedures.

a. Referring to the release of new versions of the software system, explain in your
own words the risks incurred to software quality by partial compliance to SCM
procedures.

b. What tools are available for verification of compliance to SCM procedures?

25.2 “Audit trails” are basic requirements of proper SCM documentation. In order for a
document to comply with audit trail requirements, the documentation has to provide
information enabling identification of the source for each event and/or item recorded.

Topics for Discussion 543

This information enables future location of the source according to the document
reference, name of programmer who coded the software unit, and so forth.

a. List at least two audit trails required within the framework of SCM and show
how the required audit trail information may become available.

b. Explain how the audit trails you described in (a) contributes to software quality.
25.3 Software houses that develop and maintain COTS software packages to serve large

customer populations are recommended to adopt the line evolution model for their
packages rather than the tree evolution model.

a. Describe the principles of line and the tree evolution models, and the environ
ments in which they are used.

b. Do you agree with the above recommendation? List your arguments – pros and
cons.

c. What consequences for the structure and size of the COTS software packages
would you follow when adopting this recommendation?

d. What are the consequences of this recommendation from the user’s perspective?

25.4 The software maintenance department provides services to 215 customers who use
one or more of the company’s three popular software packages. From time to time,
a maintenance team discovers that the software version installed in a customer’s site
includes unrecorded changes that were not requested by an SCR, nor approved as
part of an SCO.

a. Who do you believe inserted the unrecorded changes and under what conditions
could this have occurred?

b. What effect could this event have on maintenance performance, and what is the
expected influence on software quality from the perspective of the customer?

c. What measures could be taken to make sure that no such unauthorized changes
occur?

25.5 The VDD document (see Frame 25.5) includes a list of unsolved problems pertain
ing to a released software version.

• Discuss the justification for including this type of information in a VDD.

25.6 Most SCM systems are operated nowadays by specialized software packages.

• Explain the special features offered effectively and efficiently only by computer
ized configuration management software packages and explain their contribution
to software quality.

a. Discuss the appropriateness of the decision.

b. Suggest ways for improving the decision.

Chapter 26

CASE Tools and IDEs –
Impact on Software Quality

26.1 What is a CASE tool?

An increasing variety of specialized computerized tools (actually software pack
ages) have been made available to software engineering departments since the
early 1990s.

The purpose of these tools is to make the work of development and mainte
nance teams more efficient and effective, collectively named CASE (computer
aided software engineering) tools.

Frame 26.1 contains the basic definition of a CASE tool.

Frame 26.1: CASE tools – definition

CASE tools – definition

CASE tools: Computerized software development tools that support the software
developer and maintenance staff by increasing the efficiency and effectiveness of the
processes, and reducing the resources required and reducing defects generated when
supporting the performance of one or more phases of the software life cycle.

CASE tools contribute substantially to the economy of software project
development and maintenance. In addition, from an SQA point of view, these
tools also improve project quality.

The contribution of CASE tools to the software process is presented in
Frame 26.2.

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

544

26.1 What Is a CASE Tool? 545

Frame 26.2: The contribution of CASE tools to the software project

The contribution of CASE tools to the software project

• Substantial savings in software development resources

• Shorter time to market

• Reduced generation of defects

• Increased automatic identification of defects and their correction during development

• Greater reuse due to increased standardization of software components and pro
grams and improved search of potential COTS components and software

• Substantial savings in maintenance teams’ resources

• Improved project scheduling and control of project performance

In light of their characteristics, CASE tools serve as a source to ease the
amount of effort expended on the development of increasingly complex and
large software systems.

The following sections will deal with the below subjects:

• The classic CASE tool

• IDE CASE tools

• Real CASE tools

The generality of the definition of CASE enables compilers, interactive
debugging systems, configuration management systems, and automated testing
systems to be considered as CASE tools. The CASE tools may be classified into
three groups:

• The first group includes the well-established computerized software
development support tools (such as interactive debuggers, compilers, con
figuration management services, and project progress control systems).
These tools can readily be considered classic CASE tools.

• The second group includes CASE tools based on the integration of sev
eral classic CASE tools into a common work environment, providing a
substantial improvement on the efficiency and effectiveness of software
development, and also known as IDE CASE tools.

• The third group includes new tools that support the developer during
several consecutive project development phases, and are referred to as
real CASE tools. When referring to real CASE tools, it is customary to
distinguish between upper CASE tools that support the analysis and
design phases, lower CASE tools that support the coding and testing
phases (where “upper” and “lower” refer to the location of these phases
in the Waterfall Model – Annex D, Sec. D.1.1), and integrated CASE
tools that support the analysis, design, and coding phases.

546 Chapter 26 CASE Tools and IDEs – Impact on Software Quality

26.2 The classic CASE tool

The main types of classic CASE tools deal with the following areas:

• Code editing

• Configuration management

• Automatic documentation

• Software project management

Some software quality assurance publications include word processing and
spreadsheet programs.

26.2.1 Code editing

Compiling, interpreting, or applying interactive code debugging based on exami
nation of the code for language consistency. Accordingly, special compilers and
interpreters need to be developed for each version of programming language or
development tool.

26.2.2 Configuration management

Basic software configuration management (SCM) tools separately store each of
the products of the software development process, including software versions
created by maintenance teams. Besides storage tasks, the important service pro
vided by configuration management is the retrieval of stored files according to
the needs of the development and maintenance teams.

Advanced configuration management is achieved by the repository method
ology, where all products of the development (and maintenance) processes are
integrated and stored under a uniform structure (metadata model). The project
information accumulates in the repository as development proceeds, and is
updated as changes are initiated during the development phases and maintenance
stage. The repository of the previous development phase serves as a basis for the
next phase. The computerized configuration management of the repository guar
antees the information’s consistency and integrity, and its compliance with proj
ect methodology as well as its standardization according to style and structure
procedures and work instructions. Many CASE tools are based on the use of the
repository data. Some lower CASE and integrated CASE tools can automatically
generate code based entirely on the design information stored in the repository.
Reverse engineering (reengineering) tools are also based on the use of repository
information.

Figure 26.1 presents a comparison of CASE tools in the development pro
cess: basic SCM-supported process versus repository-supported process.

26.2 The Classic CASE Tool 547

Figure 26.1 Basic SCM-supported versus repository-supported development life cycle

26.2.3 Automatic documentation

The documentation is expected to support the software development process as a
basis for team work, maintenance for error correction and software changes, and
also contract–legal issues. While it is commonly accepted that comprehensive
documentation is an important part of software development and maintenance,

548 Chapter 26 CASE Tools and IDEs – Impact on Software Quality

the fact that programmers dislike documentation tasks is well known. Thus,
automated documentation becomes especially important and, when based on the
project repository, is provided by various automated tools.

The substantial reduction in documentation is a major part of agile meth
odologies, mainly to save developing resources and achieve shorter “time to
market.” An important study by Cozzetti et al. (2005) tried to realize the need
for documentation by maintenance staff. The survey found that while, on the
one hand, the maintenance staff intensively used certain types of documenta
tion, on the other hand, many other types of commonly available documenta
tion were hardly used. The types of documentation found to be most used for
structured analysis projects were unit source code, system and acceptance test
plans, requirement lists and descriptions, logical and physical data models,
component specifications, implementation plans, and data dictionary. More
than half of the types of documentation were scarcely ever used, even if avail
able to the staff.

Considering the survey results, and the typical state of affairs when docu
mentation is only poor, partial, not updated, or even nonexisting, a rational con
clusion for development and maintenance departments would be to reduce the
variety of documentation, and to ensure quality for the essentially required docu
mentation types.

26.2.4 Software project management

Software project management tools support the planning of project schedule
and resources required. The tools enable progress control of software devel
opment projects, serving the different levels of participants in software devel
opment projects: departments, units project teams, and individuals in
development teams.

For more on project management, see Appendix C.

26.3 IDE CASE tools

An integrated development environment (IDE) is a software program that creates
an advanced computing environment enabling the programmer to easily employ
several software development tools, that is, code editor, interpreter, debugger, and
compiler, in the same work environment. Practically, the IDE enables the program
mer to use a variety of development tools while applying the same user interface
(in the same work environment). This capability facilitates a significant improve
ment for the programmer’s functionality in regard to productivity and effectiveness.

An example of IDE features, JCreator – a Java IDE, is presented in
Frame 26.3.

26.3 IDE CASE Tools 549

Frame 26.3: IDE features example – JCreator, Java IDE

IDE features example – JCreator, Java IDE

• Project management templates

• Code completion

• Debugger interface

• Editor and syntax highlighting

• Wizard for walk-through assistance

• Customizable user interface

• Tabbed documents with dockable windows and toolbars

IDEs have already been in use for more than three decades. The IDEs have
become more and more comprehensive over the years, and today serve a grow
ing population of software developers. The popular IDEs regularly release new
versions that typically increase the variety of integrated software development
tools and improve the existing development tools and their user interface. Part
of the IDEs support the object-oriented software development methodology. The
last decade has provided IDE support developments for mobile applications.
IDEs differ in their user interface type, the computing platform they run on, and
the programming languages they support.

Classification of IDEs can be made according to several IDE attributes:

a. Type of user interface, textual or graphical/visual. An example of a tex
tual IDE is Turbo Pascal. Most modern IDEs are graphical; some of the
most popular ones are Visual Studio, Eclipse, and NetBeans.

b. Computing platform. Part of the IDEs were developed for one comput
ing platform, while others are applicable to more than one computing
platform. Common computing platforms include UNIX, Linux, Micro-
soft Windows, and OS. An example of a multicomputing platform is the
Judo IDE that runs on Windows, Mac OS, and Linux.

c. Language support. Part of the IDEs support one programming lan
guage, while others support more than one. Examples of IDEs support
ing one language are JCreator that supports Java, WingWare that
supports the Python programming language, and Zend Studio that sup
ports PHP. Examples of IDEs supporting multilanguages are Eclipse
supporting C, C++, PHP, Java and more, and Geany supporting C,
Java, HTML, Pascal and more. Language plugins are installed in many
IDEs to add new programming languages to the IDE. Eclipse IDE uses
plugins for C++, Ada, Python, PHP, and other programming languages.

d. Cost. Many IDEs are free of charge, while some are charged according
to a variety of plans.

550 Chapter 26 CASE Tools and IDEs – Impact on Software Quality

A multitude of articles are dedicated to IDE applications, evaluating their
performance and contribution to software development: Kerrigan et al. (2007),
Muslu et al. (2012), Bragdon et al. (2010), Murphy et al. (2006), Chafle et al.
(2007), Sentilles et al. (2008), and Leino and Wustholz (2014), to name but a few.

26.4 Real CASE tools

Real CASE tools contribute to a variety of software development and mainte
nance processes. In this section, examples of the following areas are provided:

• Analysis and design tools

• Coding tools

• Automated testing tools

• Detection of defect and their correction

• Advanced automatic documentation tools

• Reengineering tools

26.4.1 Analysis and design tools

Generating design and diagramming

CASE tools of this group create design diagrams based on requirement text
and diagrams. Other tools create design diagrams according to requirement
specifications.

26.4.2 Coding tools

Automatic code generation

Code generation tools transform design records into prototypes or application
software compatible with a given software development language (or develop
ment tool/s).

Refactoring

Refactoring CASE tools perform a process of rewriting program source code
automatically without changing its functionality or behavior. The improvements
include eliminating redundancies, improving data structures, changing inefficient
processes, as well as correcting cases of noncompliance with coding rules and
instructions. The refactoring process is applied by software developers. Refactor
ing tools are of various sophistication levels and perform anywhere from part of
the refactoring steps to the whole process. Two of the many publications dedi
cated to refactoring tools are Murphy-Hill and Black (2008) and Drienyovszky
et al. (2010).

26.4 Real CASE Tools 551

Software components reuse

To enable utilizing software reuse tools for integration of reused components in
a new software, the reused component requires customization so that it may be
suited in terms of size and programming language. Other tools of this group deal
with fitting components of object-oriented software to new software products.
Examples of papers that present these issues are Rosello et al. (2007) and
Biggerstaff (2001).

26.4.3 Automated testing tools

Automated testing includes the manual activities of planning and designing the
tests, and preparing the test cases. All other activities, namely, performing the
tests, including the regression tests, and reporting the test results, including com
parative reports, are computerized; in manual testing, where all activities are
manual, quantitative comparisons based on empirical results show that a testing
process requires one or more regression tests run for automated testing to be
preferred.

The following are the main types of automated testing:

a. Correctness testing
• GUI tests
• Functional tests

b. Availability and load tests

c. Other automated testing types
• Code auditing
• Automatic coverage monitoring
• Integrity (security) testing

Additional contributions of automation are in the test management and
control.

The following are the features offered by automated management software
testing:

• Documenting the planning and design of the tests

• Error tracking: detection, correction, and regression tests

• Preparing summary reports of testing, and error correction follow-up

• Execution of automated software tests

• Automated listing of automated software test results and detected errors

• Follow-up of errors reported by users, their correction, and retesting

• Summary reports for maintenance activities

A detailed discussion of automated testing is presented in Section 14.8.

552 Chapter 26 CASE Tools and IDEs – Impact on Software Quality

26.4.4 Detection of defect and their correction

Automatic repair of software defects

Classic CASE tools provide us with comprehensive tools for the detection of
defects – debuggers and compilers. The challenge of developing real CASE tool
to automatically identify defects and repair them is adopted by several groups of
CASE tools developers. These tools implement a variety of approaches. A sum
mary of the achievements of these efforts is presented in several papers from
2014 to 2015 (Durieux et al., 2015; Mechtaev et al., 2015; Pei et al., 2014;
Smith et al., 2015).

Encouraging results were presented for AutoFix (Pei et al., 2011, 2015). In
a 2015 experiment, AutoFix successfully fixed 42% of the software faults (86
out of 204 faults), where in most cases (51 out of 86 cases) the quality of the fix
was comparable to a fix performed by a programmer. The remainder of the fixes
were all correct but their quality was lower, when evaluated for readability and
simplicity. A great part of the unfixed faults were found to be design faults. The
computer processing was quite “heavy,” with an average processing time of
almost 20 minutes per fix. The AutoFix procedure is based on the following
steps: (1) Preparing simple base statements on the system requirements (termed
“contracts”). This step is manual and performed by the programmer. The rest of
the steps are performed automatically. (2) Processing the contracts to create a set
of test cases. (3) Performing analysis of the tested software with static and
dynamic methods analysis (methods for identifying faults and producing a col
lection of suggested fixes). Through applying the prepared set of test cases, the
suggested fixes are tested. (4) Ranking the suggested fixes according to defined
heuristics, and locating the fix with the higher quality. Higher successful repair
rate of 60 and 57% are reported for two other automated fixing tools by Smith
et al. (2015). However, these promising results, as well as other experimental
results, were obtained only for the type of software types for which the tool was
developed.

Less promising results were presented by Mechtaev et al. (2015) when com
paring two fault repair tools, DirectFix versus SemFix. The rate of correct fixes
by DirectFix and SemFix were 53 and 17%, respectively. The rate of fixes that
failed by DirectFix and SemFix were 31 and 51%, respectively. The more suc
cessful results of DirectFix are probably achieved with a more comprehensive
tool, as shown by the average computer resource used before fix: about 3.5 min
utes for DirectFix compared with 9 seconds for SemFix.

Quite disappointing results were reported by Durieux et al. (2015) when
implementing three fault repair tools together. The three tools together fixed
only 41 out of 224 faults (18%) with 59 patches; however, only 8 patches were
undoubtedly correct.

Further analysis of 42 of the produced fixes showed that most of them are
incorrect (26 out of 42–62%). The computer resources consumed in this experi
ment reached an average of 1 hour per fault fixed.

26.4 Real CASE Tools 553

26.4.5 Advanced automatic documentation tools

Automatic documentation of program changes

Documenting software changes due to bug correction or function improvement
is usually a burden to the heavily loaded maintenance teams. The result in many
cases is incomplete and inaccurate documentation. A real CASE tool performs
this task and creates an automatic generation of human-readable documentation.
The documentation, based on the comparison of old and new software versions,
includes identification of the location of the software change and description of
the effect of the change on behavior of the program, including the conditions
under which the behavior changes and what the new behavior is. The automatic
documentation of changes leaves the information on “why it was changed” for
manual documentation. Experimental application of documenting 10,000
changes in an entire repository took about 3 hours. For additional information,
see Buse and Weimar (2010).

26.4.6 Reengineering tools

Reverse engineering

Reverse engineering is a group of technologies that focus on knowledge of
higher abstraction level extracted from available software products. Reverse
engineering processes are capable of deriving procedural design representation,
data and program structure out of available source code, high-level programming
code, and website code. These outcomes of a reverse engineering process are
invaluable in cases of well-established software systems that have undergone a
series of changes over the years, and have no up-to-date accurate and complete
documentation of the requirement, design, data structure, and so on. Available
CASE tools are based on a variety of algorithms and processes, and provide
different levels abstraction and completeness as well as differences in effective
ness and efficiency. Development efforts invested in these CASE tools generate
more advanced tools every year. Reverse engineering processes include pro
cesses targeted to the retrieval of data structures, data bases details, and so on.
Another types of processes deal with the extraction of procedural and functional
aspects of a software system, especially to support the understanding of its mod
ules performance, security procedures, interoperability, customizability features,
and so on. A comprehensive survey of reverse engineering tools is presented by
Kienle and Muller (2010).

Restructuring

Restructuring CASE tools transform old “legacy” software systems that have
been “patched” with many corrections and changes. The process of restructuring
includes code and data restructuring. Code structuring generates a new code

554 Chapter 26 CASE Tools and IDEs – Impact on Software Quality

without changing the functionality of the software, and improves its quality by
improving its maintainability and understandability, as well as usability. Data
restructuring includes the redesign and modification of data structures and data
bases, data names standardization, elimination of aliases, and correction of non
compliance with coding standards and instructions. The results are improved
efficiency of data base services and improved understandability and maintain
ability of data structures and databases. Improved restructuring data may trans
form an old programming language into a new (modern) programming language,
or replace old data structures with new ones.

Automatic extraction of nonfunctional requirements
in available documentation

Requirement specification for a software system, especially for information proc
essing systems, includes, in addition to functional requirements, many non
functional requirements, which the developer and maintainer have to fulfill.
Examples for these nonfunctional requirements are security requirements (i.e.,
username and password and rules for their usage), legal requirements (i.e.,
reporting formats, frequency, and dates), and privacy requirements (i.e., rules for
publication, mailing lists). Maintenance teams are typically in need of lists of
nonfunctional requirements, when applying corrections or functional improving
changes, to ensure coping with those requirements. Several CASE tools perform
extraction of nonfunctional requirements out of natural language documents,
such as requirement specifications, requests for proposals, agreements, and
install manuals and user manuals. These tools implement specialized algorithms
and produce lists of the located nonfunctional requirements in human-readable
documents. One of these tools is described by Slankas and Williams (2013).

Frame 26.4 presents a summary of the real CASE examples mentioned in
Section 26.4.

26.5 The contribution of CASE tools to
software quality

CASE tools contribute to software product quality by fulfilling the functional
and nonfunctional requirements, improving the productivity and schedules of
software development processes and reducing the number of errors in the deliv
ered software product. In order to evaluate the contribution of CASE tools to
reduce or eliminate software errors anticipated by each of the nine causes of
software errors listed in Section 2.3, classic and real CASE tools are included in
our evaluation.

Table 26.1 lists the contribution of CASE tools to software quality. When
examining the table, we find that the contribution of CASE tools is either by

26.5 The Contribution of CASE Tools to Software Quality 555

eliminating or reducing errors generated by a given cause, or by identifying or
correcting software errors created by a specific cause. The contribution of CASE
tools varies from small to very large for some error causes, while no contribution
may be found for other error causes.

Frame 26.4: Examples of real CASE – a summary

Area of real CASE
application Examples of CASE tools

1. Analysis and design tools Generating design and diagramming create design
based on requirements text and diagrams and design
diagrams according to requirements.

2. Coding tools a. Automatic code generation generates code based
on design records

b. Refactoring performs rewriting of source code
without changing the functionality and behavior of
the software

c. Software components reuse performs fitting of the
size and programming language of reused
components to new software.

3. Automated testing tools Automatically performs correctness testing,
availability, and load tests and other types of testing.
Additional tools contribute to planning and control
of software testing.

4. Detection of defect and Automatic repair of software defects automatically
their correction performs identification of defects and repairs them.

5. Advanced automatic Automatic documentation of program changes
documentation tools creates automatically generated human-readable

documentation of software changes due to error
corrections and functional improvement software
changes.

6. Reengineering tools a. Reverse engineering and restructuring
performs knowledge extracting from available
artifact, such as extracting design information out
of source code.

b. Restructuring transforms old software into new
structured code, without changing the functionality
or behavior of the software.

c. Automatic extraction of nonfunctional
requirements in available documentation
performs search for nonfunctional requirements in
various documentation such as manuals, requests
for proposals.

556 Chapter 26 CASE Tools and IDEs – Impact on Software Quality

Table 26.1 The contribution of CASE tools to software quality

Extent and manner of contribution to quality

Cause of software errors Classic CASE tools Real CASE tools

1. Faulty requirements No contribution Small contribution
definition • Reverse engineering

• Automatic extraction of non
functional requirements in
available documentation

2. Client-developer com- No contribution No contribution
munication failures

3. Deliberate deviations No contribution Large contribution
from software • Generating design and
requirements diagramming

4. Logical design errors No contribution Small contribution
• Automatic code generation
• Reverse engineering

5. Coding errors Very large contribution Very large contribution
• Code editing • Refactoring
• Configuration • Software components reuse
management

6. Noncompliance with Large contribution Very large contribution
coding and documenta • Code editing • Automatic code generation
tion instructions • Refactoring

• Reverse engineering

7. Shortcomings in the No contribution Large contribution
testing process • Automated testing tools

• Automatic repair of software
defects

8. Procedural errors Large contribution No contribution
• Configuration
management

9. Documentation errors Very large contribution Large contribution
• Automated • Automatic documentation of
documentation program changes

Summary

1. The contribution of CASE tools to software development
Major contributions of CASE tools to software development may be

seen in the improvement in the developer’s productivity, and in the short
ening of the development period. Even more impressive is the

Selected Bibliography 557

contribution to productivity and quality of software maintenance. Another
highly valuable contribution is software reuse, supported by complete,
updated documentation and maximum standardization. Last but not least,
the contribution to software quality attained through the substantial reduc
tion of errors is also very important.

2. The difference between classic and real CASE tools and some examples
Classic CASE tools are long-established computerized tools that

support developers (and maintenance teams), that is, compilers, interpret
ers, and configuration managers. Real CASE tools are “newer” tools, that
is, automated design tools based on repository data and automated soft
ware testing.

3. Integrated development environment (IDE)
An integrated development environment (IDE) is a software program

that creates an advanced computing environment enabling the program
mer to easily employ several software development tools. Practically, the
IDE enables the programmer to use a variety of development tools while
applying the same user interface. This capability facilitates a significant
improvement on the programmer’s functionality in regard to productivity
and effectiveness.

4. The contributions of CASE tools to the management of software
development and maintenance

The main CASE tools that contribute to the management of software
projects are project scheduling and software metrics tools. Software
scheduling tools are aimed at the planning and follow-up of projects.
Software metrics tools measure the performance of software development
and maintenance teams automatically, showing improvement (or decline)
of a team’s performance and compliance to performance standards.

5. CASE tools with a very large contribution to quality
Classic CASE tools with a very large contribution are:

• Code editing
• Configuration management
• Automated documentation

Real CASE tools with a very large contribution are:
• Refactoring
• Software components reuse
• Automatic code generation
• Reverse engineering

Selected bibliography

Biggerstaff T. J. (2001) A characterization of generator and component reuse technologies, in Pro
ceedings of the 3rd International Conference on Generative and Component-Based Software Engi
neering, Eifurt, Germany, September 2001, pp. 1–9.

558 Chapter 26 CASE Tools and IDEs – Impact on Software Quality

Bragdon A., Reiss S. P., Zeleznik R., Karumuri S., Cheung W., Kaplan J., Coleman C., Adeputra F.,
and LaViola J. J. (2010) Code Bubbles: rethinking the user interface paradigm of integrated devel
opment environments, in IEEE Proceedings of the 32nd ACM/IEEE Conference on Software Engi
neering, Cape Town, South Africa, May 2010.

Buse R. P. L. and Weimar W. R. (2010) Automatically documenting program changes, in ASE ’10
Proceedings of the IEEE/ACM International Conference on Automated Software Engineering,
pp. 33–42.

Chafle G., Das G., Dasgupta K., Kumar A., Mittal S., Mukherjea S., and Srivastava B. (2007) An
integrated development environment for web services composition, IEEE International Conference
on Web Services (ICWS), 2007, pp. 839–847.

Cozzetti S., de Souza B., Anquetil N., and de Oliveira K. M. (2005) A study of the documentation
essential to software maintenance, in Proceedings of SIGDOC 05, the 23rd Annual International
Conference on Design of Communication Documentation & Designing for Pervasive Information,
pp. 68–75.

Drienyovszky D., Horpacsi D., and Thompson S. (2010) Quickchecking refactoring tools, in Pro
ceedings of the 9th ACM SIGPLAN Workshop on Erlang, pp. 75–80.

Durieux T., Martinez M., Monperrus M., Sommerard R. and Xuan J. (2015) Automated repair of real
bugs: an experience report on the Defects4J dataset, CoRR.abs/1505.07002.2015.

Kerrigan M., Mocan A., Tanler M. and Fensel D. (2007) The web service modeling toolkit – an
integrated development environment for semantic web services. (System Description), European
Semantic Web Conference (ESWC2007), Inbruck, Austria, pp. 1–8.

Kienle H. M. and Muller H. A. (2010) The tools perspective on software reverse engineering require
ments, construction and evaluation, Advances in Computers, Vol. 79, pp. 189–290.

Leino K. R. M. and Wustholz V. (2014) The Dafny integrated development environment, Electronic
Proceedings in Theoretical Computer Science (EPTCS), Vol. 149, pp. 3–15.

Mechtaev S., Yi J., and Roychoudhury A. (2015) DirectFix: Looking for simple program repair, in
Proceedings of the 37th International Conference on Software Engineering (ICSE 15), Florence,
Italy, May 2015.

Murphy G. C., Kersten M., and Findlater L. (2006) How are Java software developers using the
Eclipse IDE? IEEE Software, Vol. 23, No. 4, pp. 76–83.

Murphy-Hill E. and Black A. P. (2008) Refactoring tools: fitness for purpose, IEEE Software,
Vol. 25, No. 5, pp. 38–44.

Muslu K., Brun Y., Holmes R., Ernst M. D., and Notkin D. (2012) Speculative analysis of integrated
development environment recommendations, in Proceedings of the ACM International Conference
on Object Oriented Programming System Languages and Applications, Tucson, AZ, October 2012,
pp. 669–682.

Pei Y., Furia C. A., Nordio M., Wei Y., Meyer B., and Zeller A., (2014) Automated fixing of pro
grams with contracts, IEEE Transaction on Software Engineering, Vol. 40, No. 5, pp. 427–449.

Pei Y., Wei Y., Furia C. A., Nordio M., and Meyer B. (2011) Cod-based automated program fixing,
in Proceedings of the 26th IEEE/ACM International Conference on Automated Software Engineer
ing, pp. 1–22.

Rosello E. G., Lado M. J., Mendez A. J., Dacosta J. G., and Cota M. P. (2007) A component frame
work for reusing a proprietary computer-aided engineering environment, Advances in Engineering
Software, Vol. 38, No. 4, pp. 256–266.

Sentilles S., Pettersson P., Crnkovic I., and Hakansson J. (2008) Save-IDE: an integrated develop
ment environment for building component-based embedded systems, in IEEE/ICM 23rd Interna
tional Conference on Automated Software Engineering, pp. 1–2.

Slankas J. and Williams L. (2013) Automated extraction of non-functional requirements in available
documentation, in 2013 1st International Workshop on Natural Language Analysis in Software
Engineering, San Francisco, CA, May, pp. 9–16.

Smith E. K., Barr E. T., Goues C. Le. and Brun V. (2015) Is the cure worse than the disease? Over-
fitting in automated program repair, in Proceedings of the 2015 10th Joint Meeting on Founda
tions of Software Engineering, pp. 532–543.

Topics for Discussion 559

Review questions

26.1 Explain in your own words the expected benefits for software system developers
and software maintenance teams of using CASE tools.

26.2 “Advanced configuration management is achieved by the repository methodology,
where all the products of the development (and maintenance) processes are inte
grated and stored under uniform structure (‘metadata model’).”

a. Define “repository” in your own words.

b. List the functions a repository fulfils and explain their impact on software devel
opment productivity.

c. List the functions a repository serves and explain their impact on software
quality.

26.3 Software development and functional improvement maintenance are said to have
much in common.

a. Discuss their similarities regarding quality assurance and the application of
CASE tools. List and explain which CASE tools, if any, can be applied in the
same way to both functions.

b. Discuss the special quality assurance problems typical to functional improvement
maintenance, and how CASE tools may be applied to the correction process.

26.4 Explain in your own words the expected benefits for software developers and soft
ware maintenance teams of using IDEs tools.

The contribution of CASE tools to the quality of project management and
quality metrics are questionable.

a. Describe the quality aspects of classic CASE tools for project management and
those for quality metrics.

b. Discuss the contributions real CASE tools can make to the quality of project
management, and the way in which they actually improve quality.

Topics for discussion

26.1 It has been claimed that “the availability of full and updated documentation pro
vided by an integrated CASE system is of higher value for a maintenance team
than for a development team.”

a. Discuss the above statement with respect to the team’s productivity.

b. Discuss the above statement with respect to the quality of the work performed
by the teams.

26.2 The Shureshure/Ashure Insurance Company has just marked completion of a
reengineering project that generated a new version of its main legacy software sys
tem. The budget for the reengineered alternative was 30% below the budget esti
mated for development of a similar but new software system. The reengineered

560 Chapter 26 CASE Tools and IDEs – Impact on Software Quality

version, which includes several additions and changes, was developed by applying
a fourth-generation lower CASE tool that replaced the third-generation language of
the legacy system. The project, planned to take 6 months, was completed 1 week
earlier than scheduled.

The company’s monthly magazine dedicated two pages to a report on the
event. In its description of the company’s satisfaction from the project, the following
statements were made:

• The management expressed their full satisfaction from the project’s budget and
their admiration for the team’s punctuality.

• The leaders of the quality assurance and software maintenance teams declared
that the new software version is a real success. It can be maintained more easily
and with fewer failures when compared with the former legacy system.

• The only staff disappointed with the system were the managers of the Operations
and Local Branch Departments. They claimed that the users they represent are
highly dissatisfied with the new version.

a. Why was the software maintenance team leader satisfied with the system? Try to
list his arguments.

b. Why was the software quality assurance team leader satisfied with the system?
Try to list his arguments.

c. Can you suggest why users were dissatisfied from the reengineered version?

26.3 It is claimed that IDEs contribute to the quality of software products.

a. Do you agree? List your arguments?

b. Could you provide some examples of software development situation that illus
trate software IDEs contribute to the quality of software?

Part VI

Appendices

The appendices in this book present basic software quality and software
engineering topics that are very much related to SQA.

The use of standard is a vital part of engineering as software and soft
ware quality engineering and project management.

The first two appendices examine software engineering, software develop
ment management, and SQA standards:

• Software development and quality assurance process standards
(Appendix A).

• Quality management standards and models (Appendix B).

• Appendix C is dedicated to project progress control. The main
issues discussed are control of risk management activities, project
schedule control, project resource control, and project budget
control.

• Appendix D focuses on the various software development models in
current use, with emphasis on the way that quality assurance activi
ties are integrated into the development process.

Software Quality: Concepts and Practice, First Edition. Daniel Galin.

 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

561

AppendixA

Software Development and
Quality Assurance Process
Standards

A.1 Introduction – standards and their use

One can easily imagine professionals asking themselves questions like:
“Should SQA standards be implemented in our organization and software
projects? Wouldn’t it be preferable to apply our experience and professional
knowledge and employ the procedures and methodologies that best suit our
organization?”

Despite the legitimacy of pondering on such issues, it is widely accepted
that the benefits gained from standardization are far beyond those reaped from
professional independence.

To introduce the subject, let us refer to the following issues:

• The benefits of using standards

• The organizations involved in standards development

• The classification of standards

A.1.1 The benefits of using standards

The main benefits gained by the use of standards (benefits that are not expected
in organizations who embrace a high level of professional independence) are
listed in the Frame A.1:

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

563

564 Appendix A: Software Development and Quality Assurance

Frame A.1: The benefits of using standards

• The ability to apply for software projects and department’s software development
and maintenance of the state-of-the-art methodologies and procedures of the highest
professional level.

• Better mutual understanding and coordination among development teams, and espe
cially between development and maintenance teams.

• Better cooperation between the software developer and external participants in the
project.

• Better understanding and cooperation between software suppliers and customers/
acquirers, based on the adoption of known development, maintenance, and quality
assurance standards.

These advantages, together with the growing complexity and scope of soft
ware projects, have prompted a wider application of standards in the industry.

A.1.2 The organizations involved in standards
development

Development of SQA standards has been undertaken by several national and
international standards institutes; professional and industry-oriented organiza
tions that invest substantial resources in the development and updating of stan
dards projects.

The following institutes and organizations are among the most prominent
developers of SQA and software engineering standards, and have gained interna
tional reputation and standing in this area:

• IEEE (Institute of Electrical and Electronics Engineers) Computer Society

• ISO (International Organization for Standardization)

• ANSI (American National Standards Institute)

• IEC (International Electrotechnical Commission)

• EIA (Electronic Industries Alliance)

The last two decades saw rapid development in international SQA stan
dards. This was expressed through increasing comprehensive coverage of related
topics, which also led to a greater understanding of the standards and the need
for them. Also, currently a great part of the efforts in development of new and
updating standards is carried out as “joint ventures” of two or more of these
major organizations, a trend that promotes internationalization of standards.
Examples of such “joint ventures” are the standards issued by the IEEE/ANSI,
the ISO/IEC, and the IEEE/ISO. Examples of “mergers” of three institutes are:

• ISO/IEC/IEEE 90003-2014 (ISO, 2014) – Software engineering – Guide
lines for the application of ISO 9001:2008 to computer software

A.1 Introduction – Standards and Their Use 565

• ISO/IEC/IEEE 15504:2012 – Information technology – Process assessment

• ISO/IEC/IEEE 12207:2008 – Systems and software engineering – Soft
ware life cycle processes

Another parallel and growing trend is the adoption of international standards
as national standards by national standards institutes. This trend further supports
internationalization.

The above developments inaugurated a trend toward the application of soft
ware industry standards worldwide.

A.1.3 Classification of SQA standards

Software development and quality assurance standards can be classified into two
main classes:

• Process standards. Standards of this class focus on methodologies for
carrying out software development and maintenance projects, and assure
their quality, that is, on “how” a software project is to be implemented.
These standards define: steps to be taken, design documentation require
ments, the contents of design documents, design reviews and review
issues, software testing to be performed, testing topics, and so forth. Natu
rally, due to their characteristics, many standards in this class can serve as
software engineering and SQA textbooks versa.

• Management standards. Standards of this class focus on the organi
zation’s software development and SQA management infrastructure
and requirements, while leaving the choice of methods and tools to
the organization. By complying with quality management standards,
organizations can steadily assure that their software products achieve
an acceptable level of quality. Some current software development ten
ders require participants to be certified with one of the quality manage
ment standards.

The characteristics of the two classes of standards are summarized in
Table A.1.

As could be anticipated, standards vary in their scope; from comprehen
sive standards that cover all (or almost all) aspects to specialized standards
that deal with one specific area or issue. The ISO/IEC/IEEE Std.90003 Stan
dard and ISO/IEC/IEEE Std. 12207 and IEEE Std. 730 Standard are exam
ples of comprehensive standards that cover all aspects of software quality
management and the software development life cycle, respectively. Examples
of specialized standards of both classes may be found in IEEE software engi
neering standards, such as the IEEE 1012 Standard for software quality
assurance verification.

566 Appendix A: Software Development and Quality Assurance

Table A.1 Classes of standards – comparison

Characteristics Process standards Management standards

The target unit A software development and/or
maintenance project team

The main focus Methodologies for carrying out
software development and
maintenance projects

Standard’s “How” to perform
objective

Standard’s goal Assuring the quality of a
specific software project.

Examples	 IEEE 730 Standard
ISO/IEC/IEEE12207
Standard
IEEE 1012 Standard

Management of software
development and/or maintenance
and the specific SQA units.

Organization of SQA systems,
infrastructure, and requirements

“What” to achieve

Assuring supplier’s software quality
and assessing its software process
capability
ISO/IEC/IEEE 90003
Standard
SEI CMMI
ISO/IEC 15504 Standard

The next two chapters discuss some of the most commonly used software
quality assurance standards from each of the two classes.

• Appendix A is dedicated to software development and quality assurance
process standards.

• Appendix B is dedicated to software development management standards.

A review of systems engineering standards is presented by Guey-Shin et al.
(2008).

This chapter deals with the following standards:

• IEEE Std. 730: Standard for software quality assurance

• ISO/IEC/IEEE Std. 12207: Establishing common framework for processes

• IEEE Std. 1012: On verification and validation

A.2 IEEE Std. 730-2014 Standard for software
quality assurance

The IEEE Std. 730-2014 (IEEE, 2014) presents requirements that cover all
aspects of software quality assurance; initiation, planning, control, and execution
for the full life cycle of a software project.

A.2.1 IEEE Std. 730 concepts

The concepts expressed in this standard deal with six basic issues:

1. Applicability of the standard – The standard applies to software proj
ects of all sizes and types; whether new, enhanced, or being actively
maintained.

A.2 IEEE Std. 730-2014 Standard for Software Quality Assurance 567

2. Users of standard – The standard serves all participants in a software
life cycle of software and system products, suppliers, developers, opera
tion and maintenance staff, project managers, and SQA staff.

3. Levels of standard’s task implementation – The standard specifies
three classes of implementation:
Requirement – the user of the standard must conform with this task

(shall tasks).
Recommendations – the user is recommended to implement these tasks

(should tasks).
Might tasks – optional requirements to be considered by the user (may

tasks).

4. Achieving compliance to the standard – An organization achieves
compliance to the standard by performing the standard requirements
(shall tasks).

5. Alignment with software development standard – The standard is
aligned with ISO/IEC/IEEE Std. 12207-2008 (ISO/IEC/IEEE, 2008) and
ISO/IEC/IEEE Std. 15289-2011.

6. Standard adaptability by tailoring – The SQA unit may adapt the stan
dard to the specific characteristics of the development or maintenance
project. A process of tailoring may take place and omit part of the stan
dards requirements. Tailoring is limited to tasks mentioned in Sections
5.4 and 5.5 of the standard.

A.2.2 IEEE Std. 730-2014 – structure

The first four clauses of the standard deal with:

• Overview

• Normative references

• Definitions, acronyms, and abbreviations

• Key concepts of software quality assurance

The main part of the standard (Clause 5), describing the SQA processes,
activities, and tasks, is grouped into three major areas:

• SQA process implementation activities

• Product assurance activities

• Process assurance activities

The standard includes 12 appendices, of which I will mention six:

• Appendix C: Guidance to creating a software quality assurance plan
(SQMP). The appendix, holding 36 pages reflects the great importance
attached to preparing an SQAP by the IEEE Std. 730).

• Appendix E: Applying IEEE Std. 730:2014 to specific industries.

• Appendix F: SQA’s relationships to agile development methods.

• Appendix H: Validating software tools.

568 Appendix A: Software Development and Quality Assurance

• Appendix J: Examples of corrective actions, preventive actions, and root
cause analysis processes

• Appendix L: Bibliography of this standard.

A.2.3 IEEE Std. 730-2014 – contents

A total of 16 activities comprise the SQA process. The list of SQA activities is
presented in Frame A.2.

Frame A.2: IEEE Std. 730-3014 SQA activities

Source: IEEE Std. 730-3014

SQA activity title

SQA process implementation activities

• Establish the SQA processes

• Coordinate with related software processes

• Document SQA planning

• Execute the SQA plan

• Manage SQA record

• Evaluate organizational independence and objectivity

Product assurance activities

• Evaluate plans for conformance to contracts, standards, and regulations

• Evaluate product for conformance to established requirements

• Evaluate product for acceptability

• Evaluate product lifecycle support for conformance

• Measure products

Process assurance activities

• Evaluate life cycle processes and plans for conformance

• Evaluate environment for conformance

• Evaluate subcontractors for conformance

• Measure processes

• Assess staff skills and knowledge

The standard provides comprehensive description for each of the activities.

Description of activity

The description of each activity of the standard has a fixed format that includes:

• The text of ISO/IEC/IEEE Std. 12207:2008 relevant to the activity, pre
senting the conformance of the IEEE Std. 750-2014 with Std. 12207.

• Purpose of the activity.

A.2 IEEE Std. 730-2014 Standard for Software Quality Assurance 569

• Outcomes: Specific results of the successful implementation of the activ
ity, such as documentation, a change of project constraint. The number of
activity outcomes varies between 3 and 8.

• Tasks: Specific actions required to achieve the purpose of the activity.
The activity tasks include required (shall), recommended (should),
and might (may) tasks. The number of activity tasks varies between 2
and 13.

An example of an activity description is presented in Frame A.3.

Frame A.3: IEEE Std. 730-2014 activity description – an example

Source: IEEE Std. 730-2014 Section 5.5.3

Activity: Evaluate environment conformance

This subclause addresses the following ISO/IEC/IEEE 12207:2008 subclause:

7.2.3.3.3.2 It shall be assured that the internal software engineering practices, develop
ment environment, test environment, and libraries comply with the contract.

Purpose

Determine whether software engineering environment (SEE) and software test envi
ronment (STE) conform to project process and plans.

Outcomes

This activity shall produce the following outcomes:

– Software engineering environments are consistent with project plans.

– Software test environments are consistent with project plans.

– Nonconformances are raised when software engineering environment do not con
form to project plans.

– Nonconformances are raised when software test environment do not conform to
project plans.

Tasks

To accomplish this activity, the SQA function shall perform the following tasks:

1. Review the software engineering environment used by the project team to deter
mine whether they conform to the contract.

2. Review the software engineering libraries used by the project team to determine
whether they conform to the contract.

3. Review the software test environment used by the project team to determine
whether they conform to the contract.

570 Appendix A: Software Development and Quality Assurance

A.3 ISO/IEC Std. 12207-2008: system and software
engineering – software life cycle processes

ISO/IEC/IEEE Std. 12207-2008 (ISO/IEC, 2008) provides a framework that
incorporates the entire spectrum of software life cycle processes.

The objectives of the 12207-2008 Standard can be summarized thus:

• To establish an internationally recognized model of common software
life cycle processes that can be referenced by the software industry
worldwide to facilitate communication among acquirers, suppliers, and
other stakeholders.

• To serve all participants in a software life cycle: acquirers of software and
system products, suppliers, developers, operation and maintenance staff,
managers, SQA staff, and product users.

• To promote understanding among business parties by applying commonly
recognized processes, activities, and tasks.

A discussion of the various aspects of implementing the standard is the sub
ject of a considerable number of papers. I will mention several. The implementa
tion of the standard to small and medium enterprises (SME) is presented by
Laporte et al. (2006) and Laporte et al. (2008). The issues of application of the
standard for open-source software is discussed by Krishnamurthy and O’Connor
(2013). Clarke et al. (2012) and Clarke and O’Connor (2010) present the aspects
of software process improvement (SPI) activities included in the standard.
The subject of product management and reuse are discussed by Stallinger and
Neumann (2012).

The following sections present the standard’s concepts and contents.

A.3.1. 12207 Standard: concepts

The concepts expressed in this standard deal with 10 basic issues:

1. Applicability to every participant in the software life cycle. The
standard applies to all participants in the software life cycle: buyers,
suppliers, developers, operators, and maintenance professionals. It
provides separate definitions of processes, activities, and tasks for
each role.

2. Adaptability of the standard. Organizations are encouraged to tailor
the standard to their needs by omitting irrelevant or unsuitable elements.
The remaining processes, activities, and tasks thus become the standard
for that particular project. Tailoring the standard allows it to be applica
ble to a large variety of software projects: large, highly complex as well
as small, simple projects, stand-alone projects, and projects that

A.3 ISO/IEC Std. 12207-2008: System and Software Engineering 571

represent parts within extensive systems. Also, tailoring supports the
applicability of the standard to fit all parties, whether external customers
(within customer–supplier relationships) or internal customers (devel
oped for other departments within the organization).

3. Flexibility and responsiveness to technological changes. The stan
dard instructs its users “how to” perform activities, but does not
specify “exactly how to” perform the activities”, that is, it leaves
room for users to choose their own life cycle model, development
tools, software metrics, project milestones, and documentation stan
dards. Despite this freedom, the standard’s highly detailed tasks, as
well as required level of conformance to its principles, are firmly
imposed. Benefits of the “how to” approach include a reduction of
the user’s dependence on a specific technology, a feature that intro
duces flexibility and enhances responsiveness to changes in informa
tion technology (software and hardware).

4. Relationship between software and systems. The standard establishes
a strong link between a system and its software, where software is an
integral part of the total system. It is implemented by the strong rela
tionship with the 15288 system life cycle processes international
standard.

5. Applicability to software products and services. The standard applies
to software products and software services.

6. Nature of evaluation task. The standard requires evaluating entities
and their objectives through defined criteria.

7. Absence of organizational structure requirements. The standard does
not imply a certain organizational structure. The processes of the stan
dard may serve a wide range of organizations, large or small, where
each organization may select an appropriate set of processes and
activities.

8. Evaluation, verification, and validation. The standard requires that the
performer of a life cycle task evaluates the product of the task. An addi
tional evaluation will be provided by verification and validation con
ducted by the buyer, the supplier, or another participator.

9. Life cycle models and stages. The standard allows a range of life cycle
models comprised of sequences of stages that may overlap and iterate,
as appropriate for the project characteristics. Each stage is defined a pur
pose and an outcome.

10. Absence of certification requirements. The standard does not require
certification of the developer organization; a fact that supports its world
wide acceptance. It should be noted that the international standard
90003, which does require certification, is closely coordinated with the
international standard 12207.

572 Appendix A: Software Development and Quality Assurance

A.3.2 12207 Standard: contents

The main body of the 12207-2008 Standard is dedicated to a description of the
processes, activities, and tasks of the software life cycle:

The software life cycle architecture outlined in the 12207-2012 Standard is
structured as a five-level tree composed of:

1. Process classes: System context processes and software-specific pro
cesses. Each process class includes 3–4 process categories.

2. Process categories: A total of seven categories are defined. Each process
category includes 2–11 processes.

3. Processes: A total of 43 processes are defined for the 7 process categories.

4. Activities

5. Tasks

The three upper levels of the standard’s process architecture, namely, the
process classes, the process categories, and their integral processes, are illus
trated in a fishbone diagram in Figure A.1.

The standard provides comprehensive definitions of the tasks comprising
each activity. Comprehensiveness is realized in the number of tasks assigned to
each activity and the level of detail characterizing the descriptions. An example
of the tasks of an activity is presented in Frame A.4.

Frame A.4: Standard 12207 activity’s tasks description – an example

Source: ISO/IEC Std. 12207-2008

Activity: Contract agreement (Standard section 6.1.1.3.4)

The activity consists of the following three tasks:

1. The acquirer may involve other parties, including potential suppliers or any neces
sary third parties (such as regulators), before contract award, in determining the
acquirer’s requirements for tailoring of this international Standard for the project.
In making this determination, the acquirer shall consider the effect of the tailoring
requirements upon the supplier’s organizationally adopted processes. The acquirer
shall include or reference the tailoring requirements in the contract.

2. The acquirer shall then prepare and negotiate a contract with the supplier that
addresses the acquisition requirements, including the cost and schedule, of the
software product or service to be delivered. The contract shall address proprietary,
usage, ownership, warranty, and licensing rights associated with the reusable off-
the-shelf software products.

3. Once the contract is underway, the acquirer shall control changes to the contract
through negotiation with the supplier as part of a change contract mechanism.
Changes to the contract shall be investigated for impact on project plans, costs,
benefits, quality, and schedule.

A.3 ISO/IEC Std. 12207-2008: System and Software Engineering 573

Figure A.1 ISO/IEC Std. 12207-2008 – a fishbone diagram

The standard includes nine annexes. Three of these are dedicated to the fol
lowing issues:

• Annex A – Discusses the various aspects of the tailoring process.

• Annex B – Process reference model for assessment purposes, presents
conformance of the 12207 standard with the 15404-2 international stan
dard: information technology – process attribute – number 2: performance
management.

574 Appendix A: Software Development and Quality Assurance

• Annex D – ISO/IEC 12207 and ISO/IEC 15288 process alignment pres
ents the relationships between the processes of both these standards.

A.4 IEEE Std. 1012-2012 systems and software
verification and validation

A.4.1 Introduction

The IEEE Std.1012-2012 (IEEE, 2012) is a process that defines all SQA activi
ties throughout the entire software life cycle as V&V activities. The standard
requires the application of V&V activities for system, software, and hardware
processes as well as for managerial and administrative processes. As such, it
became a comprehensive broad standard, and includes hundreds of SQA activi
ties and tasks to be performed during the software life cycle. The IEEE Std.
1012 deals with the processes applied to determine whether a software product
conforms to its requirements specifications (verification) and whether it satisfies
the objectives of its intended use (validation).

The current standard version, IEEE Std. 1012-2012, is the fourth version,
first issued in 1986. The following standard versions were issued in 1998 and
2004.

The IEEE Std. 1012 presented in this section was chosen as an example of
the collection of IEEE typical software engineering standards, dedicated to a
wide variety of software engineering topics. Each of the IEEE typical standards
deals with a specific phase of the software cycle, a methodology or process in
the software life cycle process. The standards are updated once every 5–10
years, when the updating process by technical committees is completed.

Typical examples are presented in Table A.2.
In addition to typical software engineering standards, the IEEE develops

and adopts several international comprehensive standards that deal with the
entire software life cycle or the whole range of managerial activities throughout
the entire software life cycle. A great part of these standards is developed in
cooperation with other standard institutes or adopted from these institutes, that
is, ISO/IEC/IEEE Std. 12207 and ISO/IEC/IEEE Std. 90003.

The objectives of the IEEE Std. 1012 are:

• To help developers introduce quality into the software system during the
software life cycle.

• To establish a common framework for V&V activities and tasks for soft
ware life cycle processes.

• To define V&V processes to provide an objective assessment of the prod
uct and processes to demonstrate whether these are correct, complete,
accurate and consistent, and also conform with relevant requirements and
satisfy their intended use and user needs.

A.4 IEEE Std. 1012-2012 Systems and Software Verification and Validation 575

Table A.2 Examples to IEEE typical standards

Standard code Standard name

IEEE Std. 610.12-1990 Glossary of Software Engineering Terminology
IEEE Std. 828-2012 Configuration Management – Systems and Software

Engineering
IEEE Std. 829-2008 Software Test Documentation
IEEE Std. 982.1-2005 IEEE Dictionary of Measures to Produce Reliable Software
IEEE Std. 1012-2012 Software Verification And Validation
IEEE Std. 1016-2009 IEEE Recommended Process for Software Design

Descriptions
IEEE Std. 1028-2008 Software Reviews
IEEE Std. 1061-1998 Software Quality Metrics Methodology
IEEE Std. 1175.4-2008 CASE tools Interconnections Reference Model for

Specifying System Behavior
IEEE Std. 1233-1998 Guide for Developing System Requirement Specifications
IEEE Std. 1420.1b-1999 Information Technology - Software Reuse, Data Model for

Reuse Library Interoperability: Intellectual Property

A.4.2 IEEE Std. 1012-2012 concepts

The concepts expressed in IEEE 1012-2012 address six basic issues:

1. Broad definition of V&V activities
Broad definition of V&V activities enables the standard to embrace

all SQA activities performed throughout the software life cycle, relating
to management, systems, software, and hardware.

2. Integrity levels system performance
“Major” – A function that affects important system performance.
“Moderate” – A function that affects system performance; however,

availability of an alternative method of operation enables the system
to overcome the associated difficulties.

“Low” – A function that affects system performance only by inconven
iencing the user.
The standard requires that integrity levels be assigned to components

as early as the software V&V plan (SVVP) is prepared.

3. Minimum V&V tasks
The standard defines the minimum tasks required for each integrity

level, and includes tables of optional task selection for each integrity
level.

4. Detailed criteria for V&V tasks
The standard includes criteria for each V&V task, including mini

mum criteria for correctness, consistency, completeness, accuracy,

576 Appendix A: Software Development and Quality Assurance

readability, and testability. The V&V task descriptions include a list of
required inputs and outputs.

5. Intensity and rigor applied to V&V tasks
According to the standard, the intensity and rigor applied to the

V&V tasks vary according to the integrity level, the higher the integrity
level, the higher the required intensity and rigor applied to the V&V task.

6. Detailed criteria for V&V tasks
The V&V task descriptions include a list of required inputs and out

puts. They also include specific quantitative criteria for each V&V task,
including minimum criteria for correctness, consistency, completeness,
accuracy, readability and testability.

7. Compliance and compatibility to international standards
The IEEE Std. 1012-2012 standard defines the V&V processes to

conform to the international life cycle standards ISO/IEC/IEEE Std.
12207-2008 and ISO/IEC/IEEE Std. 15388-2008, as well as to the entire
group of IEEE typical software engineering standards.

A.4.3 IEEE Std. 1012-2012 contents

a. Processes, activities, and tasks
The main body of IEEE 1012-2012 is dedicated to a description of

the processes, activities, and tasks of the software life cycle.
The software life cycle architecture presented in the standard is

structured as a three-level tree composed of:
• Processes
• Activities
• Tasks

The processes covered by the standard are classified as:
1. Common processes
2. System processes
3. Software processes
4. Hardware processes

The description of each process includes the requisite 1–6 activities,
while 3–10 tasks are assigned to each activity. The common processes
include verification and validation activities of management, acquisition,
supply planning, project planning, and configuration planning. The verifi
cation and validation activities for systems, software, and hardware relate
to the entire variety of software systems development, including concept
definition, requirements analysis, design, implementation, transition, reg
ular operation, maintenance efforts, and finally disposal of used systems.

The task descriptions provided by the standard are very detailed and
include task details and required inputs and outputs. An example of a
task description is shown in Frame A.5.

A.4 IEEE Std. 1012-2012 Systems and Software Verification and Validation 577

Frame A.5: IEEE Std. 1012 task description – an example

Source: IEEE Std. 1012:2012

Process: Common V&V activities
Activity 7.3: Supply planning V&V
Task (2): Contract verification

Task description Required input Required output

Verify the following 1. V&V Plan (VVP) 1. Task(s) reports
characteristics of the contract: 2. RFP of tender 2. Contract

1. System requirements (from 3. Contract verification

RFP or tender and contract)
satisfy and are consistent
with user needs.

4. Supplier development
plans and schedules

3. Updated VVP

4. Anomaly report(s)

2. Procedures are documented
for managing requirement
changes and for identifying
management hierarchy to
manage problems.

3. Procedures for interface and
cooperation among the
parties are documented,
including ownership,
warranty, copyright, and
confidentiality.

4. Acceptance criteria and pro
cedures are documented in
accordance with requirement.

The standard defines four integrity levels, where the higher the integrity
level, the greater the number of tasks assigned to the pertinent activity.
Accordingly, the standard presents tables as follows:

• Minimum V&V – task assigned to each integrity level

• Optimal V&V – technical suggested applications in implementation process

b. Reporting, administrative, and documentation requirements
The next chapter of the standard is dedicated to reporting, administra

tive and documentation requirements and includes lists of required reports.

c. Outline of the V&V plan (VVP)
A detailed outline of the V&V plan is presented in the following

discussion.
The comprehensive scope of the required VVP is well demonstrated

by its outline (template). For the VVP to conform to the standard’s

578 Appendix A: Software Development and Quality Assurance

Table A.3 IEEE Std.1012-2012’s V&V plan outline (template)

1 Purpose
2 Referenced Documents
3 Definitions
4 V&V Overview

4.1 Organization
4.2 Master Schedule
4.3 Integrity Level Scheme
4.4 Resources Summary
4.5 Responsibilities
4.6 Tools, Techniques, and
Methods

5 V&V Overview
5.1 Common V&V processes, activities and tasks
5.2 System V&V processes, activities and tasks
5.3 Software V&V processes, activities and tasks
5.4 Hardware V&V processes, activities and tasks

6 V&V reporting requirements
6.1 Test reports
6.2 Anomaly reports
6.3 V&V final reports
6.4 Special studies report (optional)
6.5 Other reports (optional)

7 Administrative requirements
7.1 Anomaly resolution and reporting
7.2 Task iteration policy
7.3 Deviation policy
7.4 Control procedures
7.5 Standards, practices and conventions

8 V&V test documentation requirements

Source: IEEE Std. 1012:2012

requirements, planners have to thoroughly understand the software sys
tem and ascertain the professional, administrative, and resource issues
implicit in the V&V project as planned. Table A.3 presents the outline
for the VVP document as required by the IEEE Std.1012.

For each section and subsection of the VVP outline, the IEEE 1012
supplements provide detailed definitions of the requisite contents.

The standard includes 10 informative annexes that present a great vari
ety of subjects. Five of the annexes are dedicated to the following topics:
Annex D: V&V of reuse software
Annex E: V&V measures. Included are V&V measures for evaluating

anomaly density, effectiveness, and efficiency
Annex I: V&V of system, software, and hardware integration
Annex J: Hazard, security, and risk analysis

Summary 579

Summary

1. The concepts underlying IEEE Std. 730-2014
a. Applicability of the standard

The standard applies to software projects of all sizes and types;
whether new, enhanced, or being actively maintained.

b. Users of standard
The standard serves all participants in a software life cycle:

acquirers of software and system products, suppliers, developers,
operation and maintenance staff, project managers, and SQA staff.

c. Levels of standard’s task implementation
The standard specifies three classes of implementation:

Requirement – the user of the standard must conform with these
tasks (shall tasks).

Recommendations – the user is recommended to implement these
tasks (should tasks).

Might tasks – optional requirements to be considered by the user
(may tasks).

d. Achieving compliance to the standard
An organization achieves conformance compliance to the stan

dard by performing the standard requirements (shall tasks).
e. Alignment with software development standard

The standard is aligned with ISO/IEC/IEEE Std. 12207-2008
and ISO/IEC/IEEE Std. 15289-2011.

f. Standard adaptability by tailoring
The SQA unit may adapt the standard to the specific character

istics of the development or maintenance project by a process of lim
ited tailoring.

2. The content of the IEEE Std. 730-2014
The standard defines 16 activities to be performed by the SQA unit.

These activities are divided into three areas:
• SQA process implementation activities – processes to be implemented
by the SQA unit/team.

• Product assurance activities – evaluation activities for products of
software development projects.

• Process assurance activities – activities of evaluation of processes
employed by software development project teams comply with the
standard.

3. The concepts underlying IEEE/EIA Std. 12207-2008
a. Applicability and adaptability of the standard

The standard is applicable to all participants in the software life
cycle for projects that vary in size and complexity. Much of its broad
applicability is due to tailoring within the limits allowed to users.

580 Appendix A: Software Development and Quality Assurance

b. Flexibility and responsiveness to technological changes
The standard instructs “how to do” and not “exactly how to

do” a project; hence, users can choose their life cycle model,
development tools, software metrics, project milestones, and
product and documentation standards. As a consequence, this
approach contributes to reduced dependency on specific technolo
gies, coupled with increased responsiveness to technological
change.

c. Software links with its system
The standard establishes strong links between the software and

the system of which it is a part in each phase of the life cycle. The
standard is implemented with a strong relationship with the ISO/IEC
15288 system’s life cycle international standard.

d. Nature of evaluation tasks
The standard requires that an evaluation of entities (process,

activity, report, etc.) with the associated objectives be conducted
against their defined criteria. An additional evaluation will be pro
vided by verification and validation conducted by the buyer, the sup
plier, or others.

e. Life cycle models and stages
The standard allows a range of life cycle models comprised of a

sequence of stages that may overlap and iterate, as appropriate for
the project characteristics, where each stage is defined by objective
and outcome.

f. Absence of certification of developer organizations
The standard does not require certification of the developer

organization.

4. The concepts underlying of IEEE Std. 1012.
a. A broad definition of V&V activities

The standard provides a broad review of the V&V activities to
be performed throughout the software life cycle. These include:
reviews, tests, evaluations, risk analyses, hazard analyses, retirement
assessments, and so on.

b. Software integrity levels and adapted V&V requirements
The standard identifies four integrity levels – high, major, mod

erate, and low – according to the criticality of the software function,
module, or unit. Graded requirements are attuned to the integrity
level. The standard requires that integrity levels be assigned to com
ponents as early as the SVVP.

c. Minimum V&V tasks
The standard defines the minimum tasks required for each integ

rity level, and includes tables of optional task selection for each
integrity level.

Selected Bibliography 581

d. Detailed criteria for V&V tasks
The V&V task descriptions include a list of required inputs and

outputs. They also include specific quantitative criteria for each
V&V task, including minimum criteria for correctness, consistency,
completeness, accuracy, readability, and testability. The V&V task
descriptions include a list of required inputs and outputs.

e. Detailed criteria for V&V tasks
The V&V task descriptions include a list of required inputs and

outputs. It also includes specific quantitative criteria for each V&V
task, including minimum criteria for correctness, consistency, com
pleteness, accuracy, readability, and testability. The V&V task
descriptions include a list of required inputs and outputs.

f. Compliance and compatibility to international standards
The IEEE Std. 1012-2012 defines the V&V processes to con

form to the international life cycle standards; ISO/IEC/IEEE Std.
12207-2008 and ISO/IEC/IEEE Std. 15388-2008 as well as the
entire group of IEEE topical software engineering standards.

g. Recognition of special characteristics of V&V of reusable
software

The difficulties of performing V&V activities for reusable soft
ware are recognized, and possible directions for performing V&V
activities are shown.

5. Explain the essence of the SVVP as required by IEEE Std.1012.
The SVVP is designed to thoroughly delineate a plan for V&V

activities that will include all aspects of their performance, including
the schedule, resources, responsibilities, tools, and techniques to be
used. In addition, the SVVP documents administrative directions con
cerning anomaly resolution procedures, task iteration and deviation
policies, performance control procedures, and the standard practices
and conventions that have to be applied. Special instructions are
given for documentation.

Selected bibliography

Clarke P. and O’Connor R. V. (2010) Harnessing ISO/IEC 12207 to Examine the Extent of SPI
Activity in an Organization, Proceedings of the 17th Conference on European Systems, Software
and Services Process Improvement, CCIS, Vol. 99, Springer, Berlin, Germany, pp. 25–36.

Clarke P., O’Connor R. V., and Yilmaz M. (2012) A Hierarchy of SPI Activities for Software SMEs:
Results from ISO/IEC 12207-Based SPI Assessments, Proceedings of the 12th International Con
ference on Software Process and Capability Conference (SPICE’12), CCIS Vol. 290, Springer,
Berlin, Germany, pp. 62–74.

Guey-Shin C., Horng-Linn P., and Jer-Nan J. (2008) A review of systems engineering standards and
processes, Journal of Biomechanics Engineering, Vol. 1, No. 1, pp. 71–85.

582 Appendix A: Software Development and Quality Assurance

IEEE (2012) IEEE Std. 1012–2012 - IEEE Standard for System and Software Verification and Vali
dation, The IEEE Computer Society, IEEE, New York, NY.

IEEE (2014) IEEE Std. 730–2014 Software Quality Assurance, The IEEE Computer Society, IEEE,
New York.

ISO/IEC/IEEE (2008) ISO/IEC/IEEE Std. 12207-2008 – Systems and Software Engineering - Soft
ware Life Cycle Processes, ISO – International Organization for Standardization, Geneva,
Switzerland.

ISO (2014) ISO/IEC 90003:2014 Software Engineering – Guidelines for the Application of TSO
9001: 2008 to Computer Software, International Organization for Standardization (ISO), Geneva,
Switzerland.

Krishnamurthy A. and O’Connor R. V. (2013) Using ISO/IEC 12207 to Analyze Open Source Soft
ware Development Processes: An e-Learning Case Study, Proceedings of the 13th International
Conference on Software Process Improvement and Capability Determination (SPICE 2013), CCIS
Vol. 349, Springer, Berlin, Germany, pp. 1–12.

Laporte C. Y., April A., and Renault A. (2006) Applying ISO/IEC software engineering standards in
small settings: historical perspectives and initial achievements, in Proceedings of SPICE 2006
Conference, Luxembourg, May 2006, pp. 1–5.

Laporte C. Y., Alexandre S., and O’Connor R. V. (2008) A software engineering lifecycle standard
for very small enterprises, Software Process Improvement. Communications in Computer and
Information Science, Vol. 16, No. 2, pp. 129–141.

Stallinger F. and Neumann R. (2012) Extending ISO/IEC 12207 with Software Product Management:
A Process Reference Model Proposal, Communications in Computer and Information Science,
Vol. 290, Springer, Berlin, Germany, pp. 93–106.

Review questions

A.1 Two classes of standards dealing with software development and quality assurance
are discussed in the book: process standards and management standards.

• Explain the difference between these two classes.

A.2 The IEEE Std.730-2014 presents six concepts.

• Explain these concepts in your own words.

A.3 The IEEE Std.730-2014 divides its activities into three areas.

• Explain the difference between the SQA process implementation activities and the
product and process assurance activities, regarding methods of implementation
and relationships with the software development project teams.

A.4 ISO/IEC/IEEE Std.12207-2008 is considered an international standard.

a. Explain, in your own words, why this status is warranted.

b. Explain the importance of international standards.

A.5 The initiators of Std. 12207 were highly interested in the broad applicability of the
standard.

• Name concept topics contributing to its broad applicability, and explain the way
these topics contribute to the applicability.

Topics for Discussion 583

A.6 Consider the purpose of the IEEE Std.1012-2012.

• Explain, in your own words, the purpose of the standard.

A.7 The 2012 version of the IEEE Std. 1012 incorporates system and software V&V
activities.

• Explain the contribution of both system and software V&A activities in the same
standard.

Topics for discussion

A.1 One of the concepts of IEEE Std. 730-2014 is its alignment with ISO/IEC/IEEE Std.
12207-2008 and ISO/IEC/IEEE Std. 15289-2011.

a. How does the alignment contribute to an SQA unit’s activities?

b. How does the alignment contribute to software product quality?

A.2 IEEE Std. 730-2014 assigns a special activity and an annex to SQA planning.

• What is the special importance of the SQA planning?

A.3 The annual SQA plan is usually required to be revised several times a year.

a. List events that warrant revising the annual SQA plan.

b. What are some possible results of failing to revise the SQA plan following an
event or events listed in your above answer.

A.4 The 10 concepts at the foundation of the ISO/IEC/IEEE Std. 12207-2008 are listed
in Section A.3.2.

• Examine the concepts and determine which of these contributes most to the stan
dard’s wide applicability. Explain your choice.

A.5 IEEE/EIA Std. 12207-2008 sets three levels of tasks: requirements, recommenda
tions, and permissible tasks. These represent levels of conformance to the standard’s
requirements.

a. Explain, in your own words, the significance of each level.

b. Discuss the contribution made by the clear definition of these levels.

A.6 IEEE Std.1012-2012 dedicates a special appendix to V&V of reusable
software.

a. List the kind of software that is considered to be “reusable.”

b. Explain the special characteristics of “reusable software” in relation to V&V
activities.

c. List what you consider to be options for overcoming the difficulties inherent in
performing V&V for reusable software.

584 Appendix A: Software Development and Quality Assurance

A.7 Some senior system analysts claim that as a result of their experience, the VVP
required in the IEEE Std. 1012-2012 is simply a “waste of time,” and that a develop
ment (project) plan should suffice.

a. Do you agree with this claim?

b. List the arguments backing your position. Base them on a comparison of the con
tents of the two document templates (a VVP and a project plan).

A.8 The IEEE Std. 1012 includes the notion “level of integrity.”

a. Address the contribution of the “level of integrity” to the effectiveness of the
standard’s prescribed V&V activities.

b. How does the notion “level of integrity” influence the standard’s applicability?

AppendixB

Software Quality
Management Standards
and Models

B.1 ABC Software Ltd – an unnecessary loss – a mini-case

2015 was ABC Software’s worst year since being founded in 1985. The company
lost almost $2.1 million, sales dropped 35%, and it had to let go of 145 out of its
390 personnel.

ABC Software specializes in the development of custom-made informa
tion systems for governments and government agencies. Only a very small
part of the company’s activities was directed toward the development of
COTS software packages. By 2013, the company’s annual sales reached over
$65 million.

“A clear case of negligence caused unnecessary losses and severe damage to
the company’s reputation – that will need at least 5 years to recover,” Sam Baron,
the company’s deputy manager operations and quality, explained.

“It all began in 2005, when management realized that in order to further grow
the company business, it would need to become ISO 90003 certified. It took us
about a year to get organized with a full set of procedures and written work
instructions, and to train our staff in implementing the procedures. National Stan
dard Institute experts reviewed our procedures and performed a comprehensive
audit to verify staff compliance with our procedures. A few days after the audit,
we received the much anticipated ISO 90003 standard certification document,
which I proudly presented at the following management and board meeting, and
to which the participants expressed their appreciation. The original framed certifi
cation document is still hanging in the board meeting room. In the following
years, the ISO 90003 certification proved very helpful in winning government
tenders.”

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

585

586 Appendix B: Software Quality Management Standards and Models

“It sounds like you made a very good decision, and that the organization per
formed exceptionally well to adapt to the needed changes for the certification. So
what went wrong?”We asked Baron.

“I believe that the cause of our current trouble is rooted in one line of the
certification document – a line stating that the certification is valid for one year
only, a line which was overlooked by management. In other words, the National
Standards Institute (NSI) needs to re-audit the organization every year to verify
continued conformance to procedures and work instructions.” Baron then sug
gested that the head of the SQA unit explain the events that took place from that
time till December 2015.

The head of the SQA unit started to recap the chain of events. “The audits
conducted by the National Standard Institute (NSI) annual certification in the fol
lowing years had high evaluation scores – well, at least at the beginning. But
gradually the audit scores became less and less positive and the number of ‘topics
for required attention’ quickly grew. Nevertheless, a renewed certification was
granted to ABC Software each year. In December 2014, a change came about
and the audit ended with a warning; unless a substantial improvement of in the
company’s SQA performance is evident by in the next audit, the ISO 90003 certi
fication will be cancelled.” He paused for a minute, and the following questions
were raised.

“What caused the decline of your SQA system?” “What changed in the
company?”

The SQA manager picked up where he had left off, “During the last few
years management has been putting a great deal of pressure on the software devel
opment department to make substantial resource savings and stick to the sched
ules. These directives forced the project staff to skip reviews and cut tests plans.
And all this happened despite my repeated requests to follow procedures in order
to avoid any negative outcomes. Actually, several of these projects failed the sys
tem tests, and two projects were even rejected in acceptance tests performed by
customers. The worst situation evolved closely after February 2015, when ABC
Software won the Treasury project, the company’s largest ever project. The win
was achieved mainly due to proposing the lowest price and the shortest schedule.
It took just a few weeks for the project manager to realize that the proposed proj
ect budget and schedule were unrealistic. From this moment on, the Treasury
project team came under immense pressure to cope with the meager budget and
tight schedule. Round about this time, the December 2015 ISO 90003 audit took
place. As unfortunately expected, during their review of the Treasury project, the
auditors found a handful of nonconformance issues, some examples are:

• The contract review was only partly performed, and worse, there was no
sign of discussions on its findings, nor for changing the proposal
accordingly.

• The design review of the design document listed 23 action items. None of
which were implemented.

B.2 The Scope of Quality Management Standards 587

• No corrective or preventive actions were initiated during 2015, and no
minutes of meeting of the CAB were found for this period.

• Half of the planned unit tests were not performed, while no record was
found for the defects correction process, including the testing of the cor
rected software, for the remaining unit tests.

• The joint customer–supplier committee required the procedure to take
place once in 2 weeks but was conducted every 4–6 weeks.

A total of 43 audit team findings, all of them negative, led to the inevitable
result of the certification being cancelled, and management requests for a reaudit
were denied. The NSI also denied a request to hold the next planned audit earlier
when the company may present corrected SQA behavior and gain back its ISO
90003 certificating. The next NSI audit was scheduled for December 2016.

“The full impact of losing the certification was felt just a few weeks later,”
the head of the SQA unit continued, “When the management found out that the
company could not participate in about two thirds of the tenders; those requiring
the participants hold valid ISO 90003 certification. Following this discovery, a
decision was made to submit the remaining tenders with minimal profit margins,
in order to improve winning prospects.” By May 2016, when most of the work on
the Treasury project had been completed, it became clear to the company that no
tasks at all could be allocated to a great many of the company professionals. This
led to 145 staff members being let go.

The company expects an annual loss of over $2 million by the end of 2016. It
is widely agreed among company management and employees alike that the
major, if not the only, cause for this loss was the revoked certification.

“The lesson was learned, but not before paying high ‘tuition fees.’ Manage
ment was now committed to regain the certification, and invested efforts to pro
mote SQA activities, and instruct members of staff to strictly conform to
procedure requirements. In addition, a special consultant was hired to perform
internal audits.”

Jerry concluded his speech, “I hope that the coming NSI audit will note the
significant change, created by the joint efforts of the SQA unit and professional
staff, and restore our ISO 90003 certification.”

We did not react to the ABC Software’s sad “story,” but only wish the deputy
operations and quality manager, head of the SQA unit, and the company itself
success in remembering the lessons learnt, and the substantial contribution of pro
fessional certification, but especially in never losing sight of the vast damages that
could be caused by the loss of certification.

B.2 The scope of quality management standards

Quality management standards and methodologies focus on the software
quality assurance system – its organization, infrastructure, and requirements

588 Appendix B: Software Quality Management Standards and Models

performance – yet leave the choice of the methods and tools to be used in
the hands of the organization. In other words, these standards focus on the
“what” of SQA and not on the “how.” Compliance to quality management
standards supports the organization’s steady efforts to assure an acceptable
quality level for its software products. The application of these standards is
directed mainly as an assessment tool, but also as a certification tool. The
standards of both routes, ISO/IEC 90003 and ISO/IEC 15504, are interna
tional standards and have also been adopted by the Institute of Electrical
and Electronic Engineering (IEEE) and as national standards in many
countries.

Standards for the software industry, belonging to the certification class –

mainly ISO 90003, structure the SQA certification procedures applied to soft
ware developing organizations. Some standards and methodologies for the
software industry of the assessment class, such as the Capability Maturity
Model Integrated (CMMI) and ISO/IEC 15504, serve mainly for self-assess
ment of the organization’s SQA achievements as guidance to the develop
ment of its SQA system.

Certification standards vary from assessment standards by content and
emphasis.

The following are the aims of certification standards:

• To enable a software development organization to demonstrate consistent
ability to ensure that its software products or maintenance services comply
with acceptable quality requirements. This is achieved through certification
granted by an external body.

• To serve as an agreed-upon basis for customer and supplier evaluation of
the supplier’s quality management system. This may be accomplished with
a quality audit of the supplier’s quality management system conducted by
the customer. The audit will be based on the certification standard’s
requirements.

• To support the software development organization’s efforts to improve
quality management system performance and enhance customer satisfac
tion through compliance with the standard’s requirements.

One indication of the importance of certification standards is the current trend
in software development tenders, which requires certification of participants
according to at least one of the dominant quality management standards.

The following are the aims of assessment standards:

• To serve software development and maintenance organizations as a
tool for self-assessment of their ability to carry out software develop
ment projects.

• To serve as a tool for improvement of development and maintenance pro
cesses. The standard indicates directions for process improvements.

B.3 Software Quality Management Standards as SPI Standards 589

• To help purchasing organizations determine the capabilities of potential
suppliers.

• To guide training of assessor by delineating qualifications and training pro
gram curricula.

To sum up, while the certification standards emphasis is external – to support
the supplier–customer relationships – the emphasis of the assessment standards is
internal and focuses on the improvement of the software process.

Comparison and evaluation of maturity process models for process
improvement are the subject of several papers. A selection of these includes
Helgesson et al. (2011), Salviano and Figueiredo (2006), and Bella et al.
(2008).

The next section of the chapter presents the software process improvement
aspects of quality management standards and their methodologies. Following
this, the next three sections, Sections B.4–B.6, are dedicated to the scope of three
major certification and assessment standards. These are followed by Section B.7
that presents two additional software quality management methodologies: TickIt
and Bootstrap.

B.3 Software quality management standards
as SPI standards

The concept of software process improvement (SPI) seeking to achieve process
improvement throughout the software life cycle corresponds well to the SQA
principle of continuous improvement. SPI, much like software quality manage
ment, promotes:

a. Software development organizations to focus more on improving the
effectiveness and efficiency of the development process.

b. Software development organizations to assess their professional level of
performance (termed also “maturity”).

c. Use of quantitative and qualitative indicators to measure the level of
improvement of software development processes of an organization.

One of the major approaches for managements to implement process
improvement is by the adoption of appropriate quality management standards
that support SPI.

These standards may be classified into two classes:

• Certifying standards. An example of this class of standards, ISO/IEC
90003, is discussed in this chapter.

• Assessment standards. CMMI, P-CMM, and ISO/IEC 15504, discussed in
this chapter, are all examples of standards belonging to this class.

590 Appendix B: Software Quality Management Standards and Models

B.4 ISO/IEC 90003

The ISO/IEC 90003 international standard was developed for the application of
the ISO 9001 standard to computer software. In other words, ISO/IEC 90003
presents implementation of the general methodology of quality management of
ISO 9001 standards, which deals with product development, product production,
and product services and maintenance, for the special case of software develop
ment and maintenance. Both ISO 9001 and ISO/IEC 90003 are separately
reviewed and updated once every 5–8 years. The current ISO/IEC 90003:2014
international standard (ISO/IEC, 2014) is an application of ISO 9001:2008 to
computer software.

The ISO/IEC 90003 international standard is planned to serve the entire
population of software development and maintenance organizations by adopt
ing a policy of comprehensiveness and standard redundancy. These features
facilitate achieving universality that allows the ISO/IEC 90003 to fit the
immense variety of organizations belonging to the software industry, and be
especially suitable to serve as a tool for assessing and certifying organiza
tions of the software industry.

There is a growing worldwide interest in ISO/IEC 9001 certification from
organizations in many industries, including ISO/IEC 90003 in the worldwide
software industry. Many national standard institutes, including the IEEE, have
adopted the ISO/IEC 90003 standard.

One indication of the importance of these standards is the current trend in
software development tenders requiring certification of participants according to
at least one of the leading quality management standards.

In Section B.4.1, the principles underlying the 9001 and 90003 standards are
reviewed. The contents of the current version of the standard are discussed in the
following section, and the certification process according to ISO/IEC 90003 is the
subject of the third section, Section B.4.3.

B.4.1 Guiding principles of ISO 9001 and
ISO/IEC 90003 standards

Eight principles guide the ISO 9001 and ISO/IEC 90003 standards as follows:

1. Customer focus
Organizations depend on their customers and therefore should under

stand current and future customer needs.

2. Leadership
Leaders establish the organization’s vision. They should create

and maintain an environment in which people can become fully
involved in achieving the organization’s objectives in the designated
route.

B.4 ISO/IEC 90003 591

3. Involvement of people
People are the essence of an organization; their full involvement, at

all levels of the organization, enables their abilities to be applied for the
organization’s benefit.

4. Process approach
A desired result is achieved more efficiently when activities and

resources are managed as a process.

5. System approach to management
Identifying, understanding, and managing processes, if viewed as a

system, contributes to the organization’s effectiveness and efficiency.

6. Continual improvement
Ongoing improvement of overall performance should be high on the

organization’s agenda.

7. Factual approach to decision-making
Effective decisions are based on the analysis of information.

8. Mutually supportive supplier relationships
An organization and its suppliers are interdependent; a mutually sup

portive relationship enhances the ability of both to create added value.

B.4.2 ISO/IEC 90003: 2014 standard’s content

The current standard edition of ISO/IEC 90003-2014 (ISO/IEC, 2014) presents
the standard’s requirement that is classified into the following five groups:

• Quality management system

• Management responsibilities

• Resource management

• Product realization

• Management, analysis, and improvement

Each of the requirement groups is further classified into requirement areas.
The standard includes a total of 22 requirement areas.

Each of the requirement areas is further subdivided into several specific
requirements.

Each of the specific requirements is followed by guidelines.
This standard structure provides detailed guidelines to the standard user.

However, the standard presents detailed requirements listing “what” has to be
done, but not “how” it should be performed.

The requirement groups and their requirement areas are presented in
Table B.1. A typical example of the detailing level of the guidelines for a specific
requirement is shown in Frame B.1.

592 Appendix B: Software Quality Management Standards and Models

Frame B.1: An example of ISO/IEC 90003 detailed requirements –maintenance
requirements

Source: ISO/IEC 90003-2012

Guidelines for: Requirement area: Customer-related processes

Specific requirement: Review of requirements related to the product.
Guidelines subject: Risks (Standard Sec. 7.2.2.2)

The following risks may be included when reviewing requirements
related to the product:

1. Criticality, safety, and security issues

2. Capabilities and experience of the organization or its suppliers

3. Reliability of estimates of the resources and the duration required for each activity

4. Significant difficulties between the times required to deliver product or service, and
the times determined from plans through the optimization of cost and quality goals

5. Significant geographical dispersion of the organization, customers, users, and
suppliers

6. High technical novelty including novel methods, tools, technologies, and supplied
software

7. Low quality or availability of supplied software and tools

8. Low precision, accuracy, and stability of the definition of the customer require
ments and external interfaces

B.4.3 Certification process according to ISO/IEC 90003

The ISO/IEC 90003 certification process verifies that an organization’s software
development and maintenance processes fully comply with the standard’s
requirements.

The certification service is organized by the International Organization for
Standardization (ISO) through a worldwide network of certification services that
are authorized by means of accreditation bodies and certification bodies. Each
accreditation body is licensed by ISO to authorize other professional organiza
tions as certification bodies. Certification bodies, whose number may vary by
country, perform the actual certification audits and certify the organizations that
qualify.

Obtaining certification. Organizations wishing to obtain ISO/IEC 90003
certification are required to complete the following:

• Develop the organization’s SQA system

• Implement the organization’s SQA system

• Undergo successfully the certification audits

B.4 ISO/IEC 90003 593

Table B.1 ISO/IEC 90003–TOC – requirement areas and their classification

Requirement groups Requirement areas

4. Quality management system 4.1 General requirements
4.2 Documentation requirements

5. Management responsibilities 5.1 Management commitments
5.2 Customer focus
5.3 Quality policy
5.4 Planning
5.5 Responsibility, authority, and communication
5.6 Management review

6. Resource management 6.1 Provision of resources
6.2 Human resources
6.3 Infrastructure
6.4 Work environment

7. Product realization 7.1 Planning of product realization
7.2 Customer-related processes
7.3 Design and development
7.4 Purchasing
7.5 Production and service provision
7.6 Control of monitoring and measuring devices

8. Measurement, analysis, and	 8.1 General
improvement 8.2 Monitoring and measurement

8.3 Control of nonconforming products
8.4 Analysis of data
8.5 Improvement

Source: ISO/IEC Std. 90003-2014.

Fulfillment of these requirements demands thorough planning of the struc
tures and resources necessary to perform the activities culminating in
certification.

Retaining certification. Once the organization has obtained the ISO/IEC
certification, efforts should be invested to retain the organization’s certification.
The organization has to undergo successfully the periodical certification audits.

This process may vary somewhat from one organization to another, depend
ing on the characteristics of the organization’s design and maintenance activities
as well as the certification bodies. The certification processes for obtaining and
retaining certification are discussed in greater detail in the rest of this section and
illustrated in Figure B.1.

The process for obtaining the certification includes the following activities:

a. Planning the process leading to certification

b. Development of the organization’s SQA system and its procedures

594 Appendix B: Software Quality Management Standards and Models

Figure B.1 The ISO 90003 certification process

B.4 ISO/IEC 90003 595

c. Implementation of the organization’s SQA system

d. Undergoing the certification audits
The process for retaining the certification includes the following

activities:

e. Procedures for retaining ISO certification

a. Planning the process leading to certification
Once management has made its decision to obtain ISO 90003 certifi

cation for its software development and maintenance activities, an action
plan is needed.

An internal survey of the current SQA system and how it is imple
mented is a good place to begin. The survey should supply information
about:
• Gaps between currently employed SQA and required procedures: miss
ing procedures in addition to inadequate procedures.

• Gaps between staff know-how and knowledge required regarding SQA
procedures and SQA tools.

• Gaps regarding documentation of development as well as maintenance
activities.

• Gaps/imparity regarding software configuration system capabilities and
implementation.

• Gaps regarding managerial practices demanded for project progress
control.

• Gaps regarding SQA unit organization and its capabilities.
After completing the above analysis, the plan for obtaining certifica

tion can be constructed. It should include:
• A list of activities to be performed, including schedules.
• Estimates of resources required to carry out each activity.
• Organizational resources: (a) Internal participants – SQA unit staff
(including staff to be recruited) and senior software engineers; (b) SQA
consultants.

b. Development of the organization’s SQA system and its procedures
Before proceeding, the organization’s SQA management system

should be developed to a level adequate to meet ISO/IEC 90003 require
ments. These efforts should include:
• Development of a quality manual and a comprehensive set of SQA
procedures

• Development of additional SQA infrastructure:
– Staff training and instruction programs, including staff certification
programs

– Preventive and corrective actions procedures, including the CAB
committee

– Configuration management services, including a software change
control management unit

596 Appendix B: Software Quality Management Standards and Models

– Documentation and quality record controls
• Development of a project progress control system

c. Implementation of the organization’s SQA system
Once the components of the SQA management system conform to

certification requirements, efforts are shifted toward implementing the
system. These efforts include setting up a staff instruction program and
support services appropriate for the task of solving problems that may
arise when implementing SQA tools. These arrangements are targeted
especially at team leaders and unit managers, who are expected to follow
up and support the implementation efforts made by their units.

Throughout this stage, internal quality audits are carried out to verify
the success of implementation and to identify units and SQA issues that
require additional attention. The internal quality audit findings will enable
determining whether the organization has reached a satisfactory level of
implementation.

d. Undergoing the certification audits
The certification audits are carried out in two stages:

a. Review of the quality manual and SQA procedures developed by the
organization. The review ascertains completeness and accuracy. In
cases of noncompliance with standards, the organization is obligated
to complete the corrections prior to advancing to the second stage of
certification.

b. Verification audits of compliance with the requirements defined by the
organization in its quality manual and SQA procedures. The main
questions to be answered are:
• Has the staffs been adequately instructed on SQA topics and does it
display a satisfactory level of knowledge?

• Have the relevant procedures – project plans, design reviews, prog
ress reports, and so on – been properly and fully implemented by the
development teams?

• Have documentation requirements been fully observed?
The main sources of information for certification audits are: (a) inter

views with members of the audited unit and (b) review of documents such
as project plans, design documents and test plans and procedures, and
design review records. In order to ensure reliable results and avoid biased
conclusions, audits are based on a random selection of projects and/or
teams.

e. Procedures for retaining ISO/IEC certification
Periodic recertification audits, usually carried out once or twice a

year, are performed to verify continued compliance with ISO/IEC 90003
requirements. During these audits, the organization has to demonstrate
continuing development of its SQA management system, which is indi
cated in quality and productivity performance improvements, regular

B.5 Capability Maturity CMMI Models – Assessment Methodology 597

updates of procedures to reflect technological changes, as well as process
improvement.

B.5 Capability maturity CMMImodels – assessment
methodology

Carnegie Mellon University’s Software Engineering Institute (SEI) took the ini
tial steps toward development of what is termed as a capability maturity model
(CMM) in 1986, when it released the first brief description of the maturity process
framework. The initial version of the CMM was released in 1992, mainly to
receive feedback from the software community. The first version for public use
was released in 1993 and was dedicated to the assessment of software develop
ment processes (Paulk et al., 1995). The current integrated CMMI methodology
includes software development, software service, and acquisition models, inte
grated into the CMMI (CMMI Product Team, 2010a, 2010b, 2010c).

Another maturity model, P-CMM (People-CMM), was developed by the SEI
team similarly to other maturity models, and dedicated to the process improve
ment of human resources management.

Several CMMI methodology implementation issues are presented by
Ramanujan and Kesh (2004), Diaz et al. (2009), Trujillo et al. (2011), and
Alyahya et al. (2012). The applicability of capability models for small software
organizations is examined by Suominen and Makinen (2014).

B.5.1 The principles of CMMI

CMM assessment is based on the following concepts and principles:

• Application of elaborate management methods based on quantitative
approaches increases the organization’s capability to control the quality
and improve the productivity of the software development process.

• The vehicle for enhancement of software development is composed of the
five-level capability maturity model. The integrated models for software
development, software services, and acquisition enable an organization to
evaluate its achievements and determine the efforts needed to reach the
next capability level by locating the process areas requiring improvement.

• Process areas are generic; they define the “what” – not the “how.” This
approach enables the model to be applied to a wide range of implementa
tion organizations as:
– It allows using any life cycle model.
– It allows using any design methodology, software development tool, and
programming language.

– It does not specify any particular documentation standard.

598 Appendix B: Software Quality Management Standards and Models

B.5.2 The CMMI structure and processes areas

The three CMMI models share the same conceptual framework. The CMMI mod
els, like the original CMM model, are composed of the following five levels:

• Capability maturity level 1: Initial

• Capability maturity level 2: Managed

• Capability maturity level 3: Defined

• Capability maturity level 4: Quantitatively managed

• Capability maturity level 5: Optimizing

Each of the CMMI models includes almost the same number of process areas
(PAs): CMMI model for software development – 22 PAs, CMMI model for ser
vices – 23 PAs, and CMMI model for acquisition – 22 PAs. The organization is
required to successfully perform a set of PAs in order to be awarded a higher
maturity level.

The CMMI models share a great part of their PAs as follows:

• CMMI model for software development shares 14 PAs with CMMI model
for services share

• CMMI model for software development shares 16 PAs with CMMI model
for acquisition

• CMMI model for services shares 14 PAs with CMMI model for
acquisition

Thirteen of the PAs are common to the three CMMI models.
The CMMI model for software development and its process areas (PAs) are

presented in Figure B.2.
The CMMI assessment standards provide detailed guidance for the perform

ance of each PA. This guidance includes:

• Purpose statement of the PA

• Specific goals for each PA

• Specific practices for each specific goal

• Examples of information sources, categories of practices, criteria, situa
tions, selection considerations, and so on

• Examples of work products and subpractices for each specific practice

In addition, the CMMI assessment standards define generic goals for each
PA, where

• Purpose statement of the PA is defined

• Generic goals are defined for each PA

• Generic practices are defined for each generic goal

B.5 Capability Maturity CMMI Models – Assessment Methodology 599

Figure B.2 The CMMI model for software development – model levels and process areas (PAs).
(After Paulk et al., 1995.)

• Subpractices and generic practice elaborations and additions are provided
for each generic practice

B.5.3 CMMI appraisal process

CMMI standards do not have a certification process, but enable the professional
appraisal of the quality management achievement of the organization. The
appraisal could be performed as a self-assessment or by an external assessor. The
appraisal results determine the organization’s capability level or its capability
achievement profile.

600 Appendix B: Software Quality Management Standards and Models

The following are the main justifications for performing an appraisal:

• To determine the quality management performance achievements com
pared with CMMI requirements, in order to identify areas that need
improvement.

• To present to customers the organization’s capability level as a supplier of
software development and services.

• To meet capability level requirement by customers.

CMMI methodology stresses the importance of the assessor’s qualifications. A
certified assessor is required to be SEI-trained and to be certified by the institute.

B.5.4 CMM implementation experience

In our discussion of CMMI implementation experience, we refer to:

• Performance improvements

• Time required for the transition from one CMMI level to the next

Performance improvements

Implementation of a CMMI program by an organization is a costly investment.
Managers often wonder what the expected benefits of this investment are. A
response to this request, based on quantitative measurements by 19 organizations,
is provided by Galin and Avrahami (2006). It was found that “climbing” to a
higher capability level (i.e., from CMM level 2 to CMM level 3) is followed by
the following average performance improvements in Table B.2.

Even when considering the fact that the resulting benefits are somewhat
biased, being based on CMM success stories, the benefits are still remarkable.

Table B.2 Performance improvement by transition to the next CMM level

Average performance
Performance criterion improvement (%)

Reduction of error density 48
Increase of productivity 52
Decrease of percentage of rework 39
Reduction of project cycle time 38
Increase of schedule fidelity 45
Increase of error detection 63
effectiveness

Source: Galin and Avrahami (2006).

B.5 Capability Maturity CMMI Models – Assessment Methodology 601

Table B.3 Time required to progress to the next
CMM capability level

Capability level transition Mean time (months)

Level 1 to level 2 24
Level 2 to level 3 21.5
Level 3 to level 4 33
Level 4 to level 5 18

Expected CMMI transition time

A report by Gartner Group Inc., a leading consulting company on information
technology management, summarizes the firm’s accumulated experience regard
ing the time required for progress from one capability level to the next (Gartner
Group, 2001). The average time required for progress from one CMM capability
level to the next is a measure of the efforts required for achievements in a CMMI
project. As such, this information is of great interest to managers considering
implementation of a CMMI project in their organization. These results for CMM
projects are shown in Table B.3.

The results for performance improvement and time required for transition
from one capability level to the next are based on studies of CMM project experi
ence. No similar studies were found for CMMI projects. We expect that similar
results will also be achieved in CMMI applications.

B.5.5 The People CMMmodel

The People-CMM (P-CMM) methodology (Curtis et al., 2009a) is an important
complementary part to the CMMI methodology as it guides management of the
human resources, whom are occupied with the development of the software
systems and the provision of software services. In other words, implementing
P-CMM increases the organizational capability to perform CMMI process areas
and reach higher CMMI capability levels. The P-CMM process areas deal with
HR management, skill and knowledge development, quantified managerial con
trol of HR, and improvement of HR management practices.

The P-CMM model is a “traditional” 5-capability level model, dedicated to
the HR-specific process areas. The P-CMM model levels and their process areas
are presented in Figure B.3.

Several papers discuss the issues of People-CMM and the experience of its
implementation in organizations: Gama et al. (2011) and Colomo-Palacios et al.
(2010), to name but a few. A comprehensive discussion of the P-CMM methodol
ogy, possible uses of the model and experience gained by implementation of the
model, can be found in a book by Curtis et al. (2009b).

602 Appendix B: Software Quality Management Standards and Models

Figure B.3 P-CMMmodel – capability levels and process areas

B.6 The SPICE project and the ISO/IEC 15504 software
process assessment standard

The success of CMM created parallel development of several software process
assessment methodologies. The most important of these was a joint initiative by
ISO and IEC, the SPICE (Software Process Improvement for Capability Determi
nation) Project, established in 1993 by developing an international standard of
software process assessment methodology.

The SPICE Project released its Version 1.0 report in 1995, which became the
basis for the development of the TR (technical report) version of the ISO/IEC
15504 standard released in 1998.

B.6 The SPICE Project and the ISO/IEC 15504 Software Process Assessment 603

The next stage in the development of the ISO/IEC 15504 standard will be its
release as an international standard. An ISO/IEC working group has been
assigned the responsibility of developing the standard and publishing its revi
sions. Each revision draft is examined and edited by the national standard institute
members of ISO and IEC before being finally approved. Another route taken to
identify features demanding revision was the conduct of a major three-phase trial
within the framework of the SPICE Project.

The current ISO/IEC standard is composed of eight parts, four of which are
technical specifications (TSs). The eight standard parts are dedicated to the fol
lowing subjects:

• Part 2: Performing an assessment (ISO/IEC, 2003)

• Part 3: Guidance on performing an assessment (ISO/IEC, 2004a)

• Part 4: Guidance on use of process improvement and process capability
determination (ISO/IEC, 2004b)

• Part 5: An exemplar process assessment process model (ISO/IEC, 2012a)

• Part 6: An exemplar system life cycle process assessment model (TS) (ISO/
IEC, 2013)

• Part 8: An exemplar process assessment process model for IT service man
agement (TS) (ISO/IEC, 2012b).

• Part 9: Target process profiles (TS) (ISO/IEC, 2011a).

• Part 10: Safety extension (TS) (ISO/IEC, 2011b)

Former parts 1 and 7 of the 15504 standard were replaced by a new standard:
ISO/IEC 33001: Concepts and terminology.

This first replacement is part of the entire ISO/IEC 15504 set of stan
dards being replaced by a new set of ISO/IEC 33000 series of standards as
follows:

• ISO/IEC 33001: 2015 Information technology – Process assessment –
Concepts and terminology (ISO/IEC, 2015a).

• ISO/IEC 33002: 2015 Information technology – Process assessment –
Requirement for performing process assessment (ISO/IEC, 2015b).

• ISO/IEC 33003: 2015 Information technology – Process assessment –
Requirement for process measurement framework (ISO/IEC, 2015c).

• ISO/IEC 33004: 2015 Information technology – Process assessment –
Process reference, process assessment, and maturity models (ISO/IEC,
2015d).

• ISO/IEC 33014: 2015 Information technology – Process assessment –
Guide for process improvement (ISO/IEC, 2015e).

• ISO/IEC 33063: 2015 Information technology – Process assessment –
Process measurement framework for assessment of process capability.

604 Appendix B: Software Quality Management Standards and Models

B.6.1 Principles behind ISO/IEC 15504
assessment model

The initiators of the SPICE project and the ISO/IEC standard have defined the
following guiding principles for the new assessment model:

• Harmonize the many existing “independent” assessment methodologies
by providing a comprehensive framework model (instructing the users
in “what” has to be accomplished rather than on “how” it has to be
done).

• Be universal to serve all or almost all categories of software suppliers and
customers as well as software categories.

• Be highly professional.

• Be worldwide accepted. Aim at reaching international acceptance to
emerge as a real-world standard. Becoming a world standard is expected to
save supplier resources by eliminating the need to perform several different
capability assessments simultaneously in response to different customer
requirements. The standard allows conformity of its process model with
existing assessment models.

Comparative studies have already proved high conformity of the ISO/IEC
15504 standard with the CMM model and Bootstrap model.

B.6.2 Structure of the ISO/IEC 15504
assessment model

The 15504 process assessment model is a two-dimensional model:

• The capability dimension

• The process dimension

The capability dimension

The capability dimension model is composed of six levels of capability, where
level 0 is the lowest and level 5 the highest. The model defines process attributes
(PAs) that have to be attained to achieve each capability level. Process attributes
are generic, defining “what,” not “how,”

The model is composed of:

• Capability levels and process attribute requirements (PAs) for each
level

B.6 The SPICE Project and the ISO/IEC 15504 Software Process Assessment 605

• Indicators for each PA, which are used as a basis for collecting the objec
tive evidence that enables an assessor to assign ratings

• Achievement grades scale for process attributes

• Accumulative achievement requirements for each capability level

Capability levels and process attribute requirements

Level 0: Incomplete process
No process attributes are expected. There is no (or only little) implementation

of any planned or identified process.
Level 1: Performed process
PA1: Process performance includes identifying processes and their inputs

and outputs.
Level 2: Managed process
PA2: Performance management – Processes performed according to proce

dures, their progress is controlled.
PA3: Work product management – Work products are controlled and

documented, their compliance is verified.
Level 3: Established process
PA4: Process definition – The organization applies well-defined processes

throughout. Processes tailored to any specific project originate in standard
processes.

PA5: Process deployment – The organization controls use of project
resources: human resources, infrastructure resources, and so on.

Level 4: Predictable process
PA6: Process measurement – Performance measurement supports achieve

ment of project goals.
PA7: Process control – The organization controls processes by collec

tion of data on performance and product measures, analysis and implementa
tion of needed corrections of process performance to achieve process
goals.

Level 5: Optimizing process
PA8: Process innovation – The organization initiates and controls processes

and managerial systems to improve its effectiveness and efficiency for achieve
ment of its business goals and assures continuous improvement of processes and
management.

PA9: Process optimization – The organization persistently monitors
the changes implemented through quantitative measurement to achieve
optimization.

An example of indicators for a process attribute is presented in Frame B.2.
The capability dimension model and the process attributes required for each

level are illustrated in Figure B.4.

606 Appendix B: Software Quality Management Standards and Models

Frame B.2: Indicator for process control attributes – an example

Source: ISO/IEC Std. 15504-2

Level 4: Predictable process.

PA7: Process control attribute.
Indicators:

a. Suitable analysis and control techniques determined and applied where applicable

b. Control limits of variation are established for normal process performance

c. Measurement data are analyzed for special cases of variation

d. Corrective actions are taken to address special causes of variation

e. Control limits are reestablished (as necessary) following corrective action

Figure B.4 The ISO/IEC 15504 capability dimension model

B.6 The SPICE Project and the ISO/IEC 15504 Software Process Assessment 607

The process dimension

The 15504 process dimension fully adopts the process reference model of the
12207 standard presented in Figure A.1. The process dimension model is com
posed of more than 40 processes. (The number of processes varies slightly for the
different versions of the 12207 standard.) The processes are classified into seven
categories:

System life cycle category group:

• AGR: Agreement process

• ORG: Organization project-enabling processes

• PRO: Project processes

• ENG: Technical processes

Software life cycle category group:

• DEV: Software development processes

• SUP: Software support processes

• REU: Software reuse processes

The relationship between the capability dimension and the process dimension
is defined by the standard in a table that indicates relevant PAs for each process.
According to the table, a process could be relevant for one to four PAs. The two-
dimensional process assessment model and the relationships between the dimen
sions are presented in Figure B.5.

Figure B.5 The 15504 two-dimensional process assessment model

608 Appendix B: Software Quality Management Standards and Models

B.6.3 The ISO/IEC 15504 appraisal process

The standard allows performing the appraisal as a self-assessment or independent
assessment. In both cases, the standard presents strict requirements regarding the
qualifications of assessors:

a. Have adequate education, training, and experience on the relevant
processes.

b. Have access to the guidance documentation on how to perform the rele
vant assessment activities.

c. Have the competence to use the tools to support the appraisal that are pro
vided by the standard

The assessment result ratings for each PA are summarized by grades. A PA
may be graded with one of the following four grades according to its evaluation:

• Fully achieved (F) for ratings in the range of 86–100%.

• Largely achieved (L) for ratings in the range of 51–85%

• Partially achieved (P) for ratings in the range of 16–50%

• Not achieved (N) for ratings in the range of 0–15%

The ISO/IEC 15504 model likewise determines the achievements required
for each of the relevant process areas. An organization’s SQA system capability
maturity would be evaluated to a certain capability maturity level if (1) all level
PAs are fully or largely achieved, and (2) all PAs of lower capability maturity
levels are fully achieved. For example, an organization is evaluated as capability
maturity level 3 if all PAs of level 3 are rated fully or largely achieved and all
level 2 and level 1 PAs are fully achieved.

B.6.4 The SPICE project

The SPICE project operates the professional working groups that created the ISO/
IEC 15504 standard in the mid-1990s and continue to conduct work to develop
the standard.

Once the standard became public, the SPICE project management planned a
large-scale trial of the ISO/IEC 15504 technical report version to facilitate its
transformation into an effective standard. The trials had three goals:

• To validate the model’s conformity with current standards

• To verify its usability in determining whether software satisfies user
requirements

• To gain experience in applying the model

B.7 Additional Software Quality Management Standards 609

The three phases of the trial were carried out during 1995–2000. A data
base was built of data collected during full-scale assessments performed in
organizational environments. Each volunteer organization agreed to carry out
at least one full-scale assessment. Special efforts were invested to create a
diversified database, including participants from every continent and a variety
of software specializations. During these trials, more than 200 full-scale
assessments were carried out with several technical reports that summarized
the SPICE trials empirical experience published in the late 1990s. The analy
sis of the collected empirical data served as a major basis for the full version
of the ISO/IEC international standard parts that were published during
2003–2006.

The SPICE project working group continued to develop and update the stan
dard in the following years. Other activities within the SPICE project are the
SPICE annual conferences dedicated to software development assessment
research and experience with the application of the 15504 standard and other soft
ware development assessment models.

A new direction in the development of the SPICE project was the adaptation
to individual domains by development of SPICE PRM, PAM, and OMM models.
Another development was the automotive industry, with the 2005 release of the
automotive SPICE standard.

Detailed descriptions of the history of the SPICE project can be found in
Rout et al. (2007), Salviano et al. (2012), and Mesquida et al. (2014).

B.7 Additional software quality management standards

Several software quality management methodologies were developed in parallel
to ISO/IEC 90003, CMMI, and ISO/IEC 15504 standards. TickIT and Bootstrap
methodologies will be presented in this section.

TickIT

TickIT was launched in the late 1980s by the British software industry in cooper
ation with the British Department for Trade and Industry to promote development
of a methodology for adapting ISO 9001 to the characteristics of the software
industry known as the TickIT initiative. Currently, with the TickIT Plus methodol
ogy and TickIt standards, it provides a variety of consulting, auditing, and certifi
cation services, mainly to the British IT industry.

At the time of its launching, ISO 9001 had already been successfully applied
in the manufacturing industry; however, no significant methodology for its appli
cation to the special characteristics of the software industry was yet available. In
the years to follow, the TickIT initiative, together with efforts invested in the
development of ISO/IEC 90003, achieved this goal.

610 Appendix B: Software Quality Management Standards and Models

TickIT activities include:

• Publication of the TickIt standards of software quality management and
capability assessment.

• Publication of the TickIT Guide and other publications that support the
software industry efforts to spread ISO 9001 and ISO/IEC 90003 certifica
tion. The current guide, which includes references to ISO/IEC 12207 and
ISO/IEC 15504 and other TSO/IEC standards, is distributed to all TickIT
customers.

• Performance of audit-based assessments of software quality systems and
consultation to organizations on improvement of software development
and maintenance processes in addition to their management.

• Conduct ISO/IEC 90003 and TickIT Plus in addition to certification audits
and assessment audits. TickIT auditors who conduct audit-based assess
ments and certification audits are registered by the International Register
of Certificated Auditors (IRCA).

• Provide consulting and training services.

The Bootstrap

The Bootstrap Institute, a nonprofit organization that operates in Europe as part of
the European Strategic Program for Research in Information Technology
(ESPRIT) in cooperation with the European Software Institute (ESI), offers
another route for professional SQA support to organizations based on its Boot
strap methodology.

The Bootstrap Institute provides various types of support to its licensed
members:

1. Access to the Bootstrap methodology for assessment and improvement of
software development processes. The Institute constantly updates and
improves its methodology.

2. Training and accreditation of assessors.

3. Access to the Bootstrap database.

The Bootstrap methodology measures the maturity of an organization and
its projects on the basis of quality attributes grouped into three classes: process,
organization, and technology. A five-grade scale is applied to each of the quality
attributes separately. The methodology facilitates detailed assessment of the soft
ware development process by evaluating its achievements with respect to each
attribute, and indicates the improvements required in the software development
process and projects. The assessment options include:

• Evaluation of the current position of the software quality assurance system
as a basis for improvement initiation.

Summary 611

• Evaluation of level of achievements according to the Capability Maturity
Model Integrated (CMMI) models.

• Evaluation of achievements according to ISO 15504 (the SPICE project).

• ISO 90003 gap assessment to support preparations for a certification
audit.

Training and accreditation of assessors. Bootstrap trains three levels of
registered assessors, namely, trained assessor, assessor, and lead assessor. A per
son can become a registered lead assessor, having overall responsibility for plan
ning and performing a Bootstrap assessment, only after successfully performing
as a trained and then registered assessor. In order to become a trained assessor, a
person has to successfully complete a basic assessor training program, after which
she or he can participate in Bootstrap assessments. Trained assessors who have
demonstrated knowledge in performance of assessments and have been recom
mended by a registered lead assessor may qualify as a registered assessor. Regis
tered assessors are likewise required to demonstrate knowledge and competence
in carrying out higher level assessments in addition to participation in a lead
assessors training course. Only then they can apply for acceptance as lead
assessors.

The Bootstrap database contains the findings of Bootstrap assessments
conducted for its member organizations. Although the sources of the data are
kept anonymous, the assessment results are classified according to the type of
organization, country, type of product or service, market, and development effort.
Members can obtain the following information:

• Members own assessments – retrieved from the database

• Aggregate assessments results from comparable organizations

• Data for surveys and research of software development to improve devel
opment processes and product quality

Summary

1. The aims of certification standards
• Enable a software development organization to demonstrate consistent
ability to perform software development and or maintenance services
that comply with quality requirements.

• Serve as an agreed-upon basis for customer and supplier evaluation of
the supplier’s quality management system.

• Support the software development organization’s efforts to improve
quality management system performance and enhance customer
satisfaction.

612 Appendix B: Software Quality Management Standards and Models

2. The aims of capability assessment standards
• Serve software development and maintenance organizations as a tool
for self-assessment of their capability level to carry out software devel
opment projects.

• Serve as a tool for improvement of development and maintenance
processes. The standard indicates directions for process
improvements.

• Help purchasing organizations determine the capabilities of potential
suppliers.

• Guide training of assessor by delineating qualifications and training
program curricula.

3. Ways by which continuous improvement principle of SPIs are
achieved
• Serve software development and maintenance organizations as a tool
for self-assessment of their ability to carry out software development
projects.

• Serve as a tool for improvement of development and maintenance pro
cesses. The standard indicates directions for process improvements.

• Help purchasing organizations determine the capabilities of potential
suppliers.

• Guide training of assessor by delineating qualifications and training
program curricula.

4. Description of the general principles underlying quality management
according to ISO/IEC 90003
• Customer focus – understanding a customer’s current and future needs.
• Leadership exercised in the creation and maintenance of a positive
internal environment in order to achieve the organization’s
objectives.

• Involvement of people at all levels to further organizational goals.
• Process approach – activities and related resources are perceived and
managed as a process.

• Systems approach to management – managing processes as a
system.

• Continual improvement of the organization’s overall performance.
• Factual approach to decision-making – decisions are based on the anal
ysis of data and information.

• Mutually beneficial supplier relationships – emphasis on coordination
and cooperation.

5. Description of the ISO/IEC 90003 certification process
To acquire ISO/IEC 90003 certification, organizations must carry out

the following:
• Plan the organization’s activities for gaining certification.
• Development the organization’s SQA system, including procedures.

Selected Bibliography 613

• Obtain approval of procedures by the certifying organization.
• Implement the organization’s SQA system.
• Undergoing certification audits of actual performance of the SQA
system.
To retain the ISO/IEC certification, the organization

• must undergo certification audits of actual performance of the SQA
system;

• is required to improve its performance in cases of low audits results to a
level that complies with the standard requirements.

• undergo recurrent certification audits.

6. Description of the principles embodied in the CMM
• Application of highly elaborated software quality management methods
increases the organization’s capability to control quality and improve
software process productivity.

• Application of the five levels of the capability maturity model enables
the organization to evaluate its achievements and determine which
additional efforts are needed to reach the next capability level.

• Process areas are generic, with the model defining “what” and leaving
the “how” to the implementing organizations, that is, the choice of life
cycle model, design methodology, software development tool, pro
gramming language, and documentation standard.

7. Description of the principles that guided the developers of ISO/IEC
15504
• Harmonization of independent assessment methodologies by providing
a conceptual framework based on “what,” not “how.”

• Universality of applicability to all or almost all categories of software
suppliers and customer organizations as well as software categories.

• Professionalism.
• Worldwide acceptance.

Selected bibliography

Alyahya M., Ahmad R., and Lee S. P. (2012) Impact of CMMI-based process maturity levels of effort,
productivity and diseconomy of scale, The International Arab Journal of Information Technology,
Vol. 9, No. 4, pp. 352–360.

Bella F., Hormann K., and Vanamali B. (2008) From CMMI to SPICE – experiences on how to survive
a SPICE assessment having already implemented CMMI, in The 9th International Conference on
Product-Focused Software Process Improvement, pp. 133–142.

CMMI Product Team (2010a) CMMI for Acquisition, CMMI-ACQ, V1.3. Technical report CMU/
SEI-2010-TR-032 ESC-TR 201-032, Carnegie Mellon University, Software Engineering Institute,
Pittsburgh, PA.

CMMI Product Team (2010b) CMMI for Development, CMMI-ACQ, V1.3. Technical report CMU/
SEI-2010-TR-033 DEV-TR 2010-033, Carnegie Mellon University, Software Engineering Institute,
Pittsburgh, PA.

614 Appendix B: Software Quality Management Standards and Models

CMMI Product Team (2010c) CMMI for Services CMMI-SER, V1.3. Technical report CMU/SEI
2010-TR-034 ESC-TR 2010-034, Carnegie Mellon University, Software Engineering Institute,
Pittsburgh, PA.

Colomo-Palacios R., Tovar-Caro E., Garcia-Crespo A., and Gomez-Berbis J. M. (2010) Identifying
technical competences of IT professionals: the case of software engineers, International Journal of
Human Capital and Information Technology, Vol. 1, No. 1, pp. 31–41.

Curtis B., Hefley W. E., and Miller S. A. (2009a) People Capability Maturity Model (P-CMM)
Version 2.0, 2nd Edition. Technical report CMR/SEI-2009TR-003 ESC-TR-2009-003, Carnegie
Mellon University, Software Engineering Institute, Pittsburgh, PA.

Curtis B., Hefley W. E., and Miller S. A. (2009b) People CMM – A Framework for Human Capital
Management, 2nd Edition, Pearson Education, Boston, MA.

Diaz J., Garbajosa J., and Calco-Manzano J. A. (2009) Mapping CMMI level 2 to scrum practices: an
experience report, Communications of Computer Information Systems, Vol. 42, No. 2, pp. 93–104.

Galin D. and Avrahami M. (2006) Are CMM program investments beneficial? Analyzing past studies,
IEEE Software, Vol. 23, No. 6, pp. 81–87.

Gama N., da Silva R. N., and da Silva M. M. (2011) Using People-CMM for diminishing resistance to
ITIL, International Journal of Human Capital and Information Technology Professionals, Vol. 2,
No. 3, pp. 29–43.

Gartner Group (2001) Describing the Capacity Maturity Model, Measure, Special Edition 2001,
Gartner Inc., http//www.gartner.com/measurements.

Helgesson Y. Y. L., Host M., and Weyns K. (2011) A review of methods for evaluation of maturity
models for process improvement, Journal of Software: Evolution and Process, Vol. 24, No. 4,
pp. 436–454.

ISO/IEC (2003) ISO/IEC 15504-2:2003 Software Engineering – Process Assessment – Part 2 – Per
forming an Assessment, International Organization for Standardization (ISO), Geneva.

ISO/IEC (2004a) ISO/IEC 15504-3:2004 Information Technology – Process Assessment – Part 3 –

Guidance on Performing an Assessment, International Organization for Standardization (ISO),
Geneva.

ISO/IEC (2004b) ISO/IEC 15504-4:2004 Information Technology – Process Assessment – Part 4 –

Guidance on Use for Process Improvement and Process Capability Determination, International
Organization for Standardization (ISO), Geneva.

ISO/IEC (2011a) ISO/IEC TS 15504-9:2011 Information Technology – Process Assessment – Part 9 –
Target process Profiles, International Organization for Standardization (ISO), Geneva.

ISO/IEC (2011b) ISO/IEC TS 15504-10:2011 Information Technology – Process Assessment – Part
10 – Safety Extension, International Organization for Standardization (ISO), Geneva.

ISO/IEC (2012a) ISO/IEC 15504-5:2012 Information Technology – Process Assessment – Part 5 –

An Exemplar Software Life Cycle Process Assessment Model, International Organization for Stan
dardization (ISO), Geneva.

ISO/IEC (2012b) ISO/IEC TS 15504-8:2012 Information Technology – Process Assessment – Part 8
– An Exemplar Process Assessment Model for IT Service Management, International Organization
for Standardization (ISO), Geneva.

ISO/IEC (2013) ISO/IEC TS 15504-6:2013 Information Technology – Process Assessment – Part 6 –

An Exemplar System Life Cycle Process Assessment Model, International Organization for Standard
ization (ISO), Geneva.

ISO/IEC (2014) ISO/IEC 90003:2014 – Software Engineering – Guidelines for the Application
of ISO 9001:2008 to Computer Software, International Organization for Standardization (ISO),
Geneva.

ISO/IEC (2015a) ISO/IEC 33001:2015 Information Technology – Process Assessment – Concepts
and Terminology, International Organization for Standardization (ISO), Geneva.

ISO/IEC	 (2015b) ISO/IEC 33002: 2015 Information Technology – Process Assessment – Require
ment for Performing Process Assessment, International Organization for Standardization (ISO),
Geneva.

http//www.gartner.com/measurements

Review Questions 615

ISO/IEC (2015c) ISO/IEC 33003: 2015 Information Technology – Process Assessment – Requirement
for Process Measurement Frameworks, International Organization for Standardization (ISO),
Geneva.

ISO/IEC (2015d) ISO/IEC 33004: 2015 Information Technology – Process Assessment – Require
ments for Process Reference, Process Assessment and Maturity Models, International Organization
for Standardization (ISO), Geneva.

ISO/IEC (2015e) ISO/IEC 33014: 2015 Information Technology – Process Assessment – Guide for
Process Improvement, International Organization for Standardization (ISO), Geneva.

Mesquida A. L., Mas A., Lepnets M., and Renault A. (2014) Development of the project management
SPICE (PMSPICE) framework, in Proceedings of the 14th International Conference, SPICE 2014,
Vilnius, LT, November, pp. 60–71.

Paulk M. C., Weber C. V., Curtis B., and Chrissis M. B. (1955) Capability Maturity Model: Guide
lines for Improving the Software Process, Addison-Wesley, Reading, MA.

Ramanujan S. and Kesh S. (204) Comparison of knowledge management and CMM/CMMI imple
mentation, Journal of the American Academy of Business, Cambridge, Vol. 4, No. 1–2,
pp. 271–277.

Rout T. P., El Emam K., Fusani M., Goldenson D. and Jung H-W. (2007) SPICE in retrospect:
developing a standard for process assessment, Journal of Systems and Software, Vol. 80,
pp. 1483–1493.

Salviano C. F., Alves A., Stefanuto G. N., Maintinguer S. T., Mattos C. V., Zeitoum C. and Reuss G.
(2012) Developing a process assessment model for technological and business competencies on
software development, in The 8th International Conference on the Quality of Information and Com
munication Technology, pp. 125–130.

Salviano C. F. and Figueiredo A. M. C. M. (2006) Unified basic concepts for process capability mod
els, in Proceedings of the 20th International Conference on Software Engineering and Knowledge
Engineering, SEKE’06, San Francisco, CA, July, pp. 173–178.

Suominen M. and Makinen T. (2014) On the applicability of capability models for small software
organizations: does the use of standard processes lead to a better achievement of business goals?
Software Quality Journal, Vol. 22, No. 4, pp. 579–591.

Trujillo M. M., Oktaba H., Pino F., and Orozo M. J. (2011) Applying agile and lean practices in an
software development project into a CMMI organization, in Calvano D. et al. (Eds.) PROFES 2011
LNCS 6759, Springer, Heidelberg, Germany, pp. 17–29.

Review questions

B.1 Section B.2 presents classes of software quality management standards.

a. Explain the differences between the two classes.

b. Compare the scope of the two classes and discuss the differences with respect to
the goals of software quality assurance.

B.2 The evolution and diversification of the CMM methodology have produced several
specialized CMM products. At a certain point, SEI moved toward creation of inte
grated CMMI models.
a. Explain the reasons for this move.

b. List arguments for and against integration.

B.3 The SPICE project performed a comprehensive trial with the early versions of the
ISO/IEC 15504 standard.

616 Appendix B: Software Quality Management Standards and Models

• Explain in your own words the contribution of the trial to development of the
standard.

B.4 One of the main activities of the Bootstrap Institute is training and accreditation of
assessors.
• Discuss the special role of assessors in implementation of the Bootstrap
methodology.

Topics for discussion

B.1 ISO/IEC 90003 serves as a certification standard for interested software development
organizations throughout the world.

a. The ISO and the IEC are neither capable nor interested in carrying out certification
audits. How do standards organizations ensure the performance of audits con
ducted with the same method and requiring the same level of achievement in the
same subjects for organizations worldwide?

b. Describe in your own words the certification for an organization.

c. Explain the unique importance of each stage of a certification audit.

B.2 Organizations are usually interested to retain their ISO/IEC 90003 certification.

a. Describe in your own words the recertification process of an organization.

b. Describe situations when an organization does not retain its certification.

B.3 CMMI models are composed of almost identical capability maturity models. The
models include 24 process areas.

a. Explain the differences between the CMMI models process areas in relation to the
respective subject matter.

b. Indicate which of the capability levels present the most differences among the
models.

c. Can you characterize the observed differences among the models?

B.4 Section B.5.4 describes the CMM implementation experience.

a. Discuss in your own words the experience presented in the section.

b. What additional information could be helpful for organizations considering the
adoption of the CMMI methodology in their decision making?

AppendixC

Project Progress Control

C.1 Introduction

Months of project delay and budget overruns exceeding 10 and sometimes
up to 30 and more percent over project estimations, typical of too many soft
ware development projects, are “red flags” for software project management.
Unfortunately, these events are usually coupled with the low quality of soft
ware projects – a natural reaction of the developers to schedule and budget
issues. This chapter is dedicated to methods and procedures that ensure
timely performance in a software project, verifying schedule and budget
keeping.

These events, which are mainly failures of management itself, are caused by
situations such as:

• Overly or even blindly optimistic scheduling and budgeting

• Unprofessional software risk management presented in tardy or
inappropriate reactions to software risks.

• Belated identification of schedule and budget difficulties and/or underesti
mation of their extent.

Situations of the first type can be prevented by performing contract reviews
and preparing quality and project planning tools. Project progress control is
expected to prevent situations of the second and third types.

While design reviews, inspections, and software tests focus on a project’s
quality and technical functional aspects, project progress control deals mainly
with the managerial aspects, namely, scheduling, human and other resource man
agement, and budget and risk management.

The aim of software project progress control is defined in Frame C.1.

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

617

618 Appendix C: Project Progress Control

Frame C.1: The aim of software project progress control

The aim of project progress control is to provide a thorough follow-up of a
project’s implementation, enabling the timely detection of schedule, resource,
and budget deviations from project plan. Accurate information about a project’s
status enables the management to take action to resolve schedule, resource,
budget, and risk issues. Project plans may be adjusted when appropriate.

The first understanding from examining the definition is the importance of a
professional thorough project plan. The prompt follow-up of the project plan,
which reveals project development is the basis for taking correction action, leads
the project back to the original route. The project progress control process is pre
sented in Figure C.1.

The components of project progress control are discussed in the next section.
Special attention is given to difficulties and solutions for controlling distributors
and globally distributed software development projects in Section C.4. The diffi
culties entailed with controlling external participants and internal projects are dis
cussed in Section C.5. The implementation of project progress control processes
is the subject of Section C.6, while Section C.7 is dedicated to computer-aided
project progress control.

Management control over maintenance contracts is discussed in Chapter 15
Several software maintenance activities, especially perfective maintenance,
include tasks that are similar to software development tasks. Hence, progress

Figure C.1 The project progress control process

C.2 Finally, a Successful Project – A Mini Case 619

control of these tasks can be performed applying the progress control components
discussed in this chapter.

The place of project progress control is attested to in SQA general software
life cycle standards of ISO/IEC and IEEE software, just to mention ISO/IEC/
IEEE International standard 12207:2008 (ISO (2008), which dedicates Section
6.2 to project management processes.

C.2 Finally, a successful project – amini case

Chemsoft was a medium-sized software company specializing in the chemical
industry. The company had well-earned its bad reputation, as most of its projects
were behind schedule and almost always over budget. Last year’s “record”
included 14 projects (out of the 19 completed) with late schedules, and to top it
off, a total of $115,000 was paid out in late completion penalties for 11 of the
projects.

Dave, the manager of the project operation department was very proud of the
new “project progress control procedure,” and decided to apply it for the first time
on the OPC, Oils Processing Control project. The project duration was deter
mined as 21 weeks, with about a third of the development work to be carried out
by MSPR, as a subcontractor. According to the procedure, the first PPC (project
progress control) meeting was to be set for the week before work was scheduled
to start on the OPC project. Let us examine some of the minutes of the PPC
meetings.

Minutes of the first meeting

Participants: Dave, Brian, the project leader, and Kevin, the MSPR team leader.
Brian: Presented ver.1 of the project plan – completion schedule – 22 weeks,

human resources – 385 staff-days, purchase budget – $5,200, mainly for sensors
for chemical processes. Subcontractor budget – $78,000. Risks: (1) We are not
yet sure about the suitability of the BBX Industry sensors, and they may need to
be replaced by another brand. (2) The consulting company cannot commit its
availability. And have not signed the contract yet.

Kevin: The OPC team will be ready to begin on time.
Dave: The OPC project is to be a model project for schedule and budget

keeping.
Decided: According to the procedure, PPC meetings will take place every

two weeks on a Monday.

Minutes of the third meeting (beginning of the fifth week)

Brian: There is a week’s delay in activities 8 and 11. Staff days invested – 34,
planned – 34. Presented a revised activities plan (Ver. 2) that will bring the

620 Appendix C: Project Progress Control

project back to the original completion schedule within 4 weeks. Risk manage
ment: (1) A satisfactory contract was signed with the consulting company. (2)
Laboratory tests proved that the BBX Industries sensors are not suitable: We
examined sensors of three alternative brands.

Kevin: The OPC team is on schedule.

Minutes of the fifth meeting

Brian: The new project plan has successfully been followed during the last 4
weeks and the project is now back on schedule. Staff days invested – 77, planned
– 75. Risk management: One of the alternative sensor brands was found suitable.
The testing of the other alternative brands is expected to be completed next week.

Kevin: Informs about a 3 week delay in the start of system tests. Accord
ingly, a delay of 3 weeks is now expected in the delivery of MSPR share in the
OPC project. He said he would take actions to reduce the schedule delay.

Dave: Expresses dissatisfaction regarding the late delay notice from the sub
contractor and mentioned the penalty section of the contract.

Decided: (1) MSPR will submit within a week a plan for extensive testing
and error corrections to reduce the delay to a maximum of 1 week. (2) Dave will
discuss the situation with Gail, head of the MSPR software department.

Minutes of the eighth meeting

Brian: Presented a new version of the activities plan with 1 week’s delay in the
scheduled completion, based on the assumption of the 2-weeks delay in the deliv
ery of MSPR share. He expects that an additional 4–5 staff-days on top of the
previous plan will be needed to carry out this “crash” plan. Regarding the current
status, his project parts are on schedule, but, due to the ver.2 changes, he had to
employ a new team member causing staff days spent to grow to 246, planned 242.
Risk management: After testing the three alternative brands, it was decided to
choose alternative C, which fully fulfils all the requirements and also means a
reduction of $920 to the purchasing budget.

Kevin: The MSPR team is progressing according to the extensive plan. A 2
week delay in the team’s completion schedule is expected.

Dave: Supports Brian’s “crash” plan.
Decided: To approve Brian’s “crash” plan.

Minutes of the eleventh meeting

Brian: Integration tests of the MSPR share began as scheduled (2 weeks delay
from the original schedule) and while no surprises were encountered, tests will be
completed on schedule. System tests were completed successfully, including the
prompt correction of identified errors. All sensors and other equipment, required
for installation of the system, have already been delivered. The installation work

C.3 The Components of Project Progress Control 621

and running-in of the system begins today, as scheduled, to be concluded at
the end of the twenty-second week of the project. Staff days spent up to last
week – 354, planned 348.

Kevin: Satisfied with the results of the MSPR integration tests that showed
the quality of their project parts, and suggests considering the project delay
penalties.

Dave: We should also consider that the expected 1 week delay in project
completion, as well as the need for Brian’s team to spend extra resources, were
caused by MSPR’s delay.

Decided: To communicate Kevin’s request to Chemsoft’s deputy for soft
ware development with no recommendations.

Minutes of the twelfth meeting – took place after project completion

Brian: Really satisfied with the expected completion date – only 1 week delay.
Staff days invested – 391, compared to 385 planned. Considering the pressure
caused by the MSPR delays, efforts invested in reducing the overall project delay
are a minimal price to pay.

Dave: Believes the PPC meetings and project management were performed
strictly accordingly to the PPC procedure, and that this contributed substantially
to the success of the project. The readiness of Brian to replan the project, and the
team’s ability to cope with ver.2 and ver.3 changes should be commended. Con
sidering the difficulties encountered, 1 week delay in the scheduled completion,
and a “slip” of 7 staff-days; less than 2% of the planned resources, may be consid
ered a real success. The main lesson learned is that there is an urgent need to
update the subcontractor follow-up procedure to verify the close follow-up and
early detection of development and potential delays.

C.3 The components of project progress control

Project progress control has one immediate objective: early detection of irregular
events. Detection promotes the timely initiation of problem-solving responses.
The accumulated information on progress control, as well as successes and
extreme failures, also serves a long-term objective: initiation of corrective actions.

The main components of project progress control are:

• Control of risk management activities

• Project schedule control

• Project resource control

• Project budget control

Control of risk management activities refers to the software development
risk items identified in the project plan, some of which are already listed in the

622 Appendix C: Project Progress Control

contract review (proposal draft review – see Appendix 8.A) document, together
with other risk items identified throughout the project’s progress. The software
development team copes with software risk items by applying systematic
risk management activities. Control of the progress of risk management begins
with the preparation of periodic assessments about the state of software risk items,
and the expected outcomes of the risk management activities performed in their
wake. Based on these reports, in the more extreme cases, project managers are
expected to intervene and help arrive at a solution. More about software
project risks and software risk management can be found in Chapter 7 and its
Appendix 7.A.

Project schedule control deals with the project’s compliance with its
approved and contracted schedules. Follow-up is based mainly on milestones,
which are set (in part) to facilitate identification of delays in completing planned
activities. Milestones set in contracts, especially dates for the delivery of specified
software products to the customer, or completion of a development activity gener
ally receive special emphasis. Although some delay can be anticipated, manage
ment will focus its control activities on critical delays, those that may
substantially affect the final completion of the project. Much of the information
needed for management project progress control is transmitted by means of mile
stone reports and other periodic reports. In response to this information, manage
ment may intervene by allocating additional resources or even renegotiating the
schedule with the customer.

Project resource control focuses on professional human resources but it can
deal with other assets as well. For real-time software systems and firmware, soft
ware development and testing facility resources typically demand the tightest
control. Here as well, management’s control is based on periodic reports of
resource use that compare actual to scheduled utilization because, it should be
stressed, the true extent of deviations in resource use can be assessed only from
the viewpoint of the project’s progress. In other words, a project displaying what
appears to be only slight deviations in resource utilization, when considering the
resources scheduled used up to a specific point of time (e.g., 5%), may actually
experience severe cumulative deviations (e.g., 25%), if severe delays in its prog
ress are suffered.

Another aspect of resource control is internal composition or allocation. For
example, management may find that no deviations have taken place in total man-
months allocated to system analysts. However, review of itemized expenditures
may disclose that instead of the 25% of man-months originally allocated to senior
system analysts, 50% was actually spent, a step that may eventually undermine
the planned budget. Although project budget controls also reveal deviations of
this type, they do so at a much later stage of the project, a fact that impedes intro
duction of remedial actions.

If the deviations are justified, management can intervene by increasing the
resources allocated; alternatively, management can shift resources by reorganiz
ing the project teams, revising the project’s plan, and so forth.

C.4 Progress Control of Distributed and Globally Distributed Software 623

Project budget control is based on the comparison of actual with
scheduled expenditures. As in resource control, a more accurate picture of
budget deviations requires that the associated delays in completion of activi
ties be taken into consideration. The main budget items demanding control
are:

• Human resources

• Development and testing facilities

• Purchase of COTS software

• Purchase of hardware

• Payments to subcontractors

Again, like resource control, budget control is based on milestones and the
periodic reports that facilitate early identification of budget overruns. In cases of
deviations by internal bodies, the menu of optional interventions is similar to that
applied in project resource control. In deviations by external participants, legal
and other measures may also be applied.

Budget control is obviously of the highest priority to management because of
its direct effect on project profitability. Managers, therefore, tend to neglect other
components of project progress control, especially if they are under serious con
straints imposed by monitoring staff. Neglecting other components related to
project progress control naturally reduces the effect of control in general. This is
regrettable because if applied correctly and in a timely manner, these other prog
ress control tools can reveal unresolved software risk items, delays in completion
of activities and excessive use of resources, at a much earlier stage in the project
life cycle. This means that reliance solely on budget control activities may be
more costly in the long run than application of the full spate of project progress
control activities because implementation of effective solutions to problems may
be delayed.

C.4 Progress control of distributed and globally
distributed software development projects

The growing size of software projects, the availability of geographically distant
and offshore professionals, and above all the potential lower costs cause growing
parts of software projects to be carried out as distributed and global projects.
Cusumano (2008), Jimenez et al. (2009), and Colomo-Palacios et al. (2014),
among others, discuss the special nature of managing these projects and the ways
to succeed in doing so.

The difficulties of distributed software development (DSD) and global soft
ware development (GSD) projects include communication and coordination diffi
culties, and in GSD projects, culture differences and insufficient facility of the
English language also.

624 Appendix C: Project Progress Control

Success factors for controlling the progress of DSD and GDS projects
offered by the mentioned authors include:

• Application of incremental development methodology (used by Agile proj
ects) or iterative development methodology.

• Planning frequent incremental deliveries (2–4 weeks frequency).

• Employing prototyping to achieve higher user participation in the develop
ment process.

• Despite the expected flow of change requests, typical to projects of the
incremental development process, it is recommended to plan ahead all the
project’s increments, and schedule the deliveries.

Of special importance for successful controlling of the progress of DSD and
GDS projects are the following (which will naturally contribute to success of
“regular” software projects):

• Close communication with the customer.

• Communication with the distributed developers.

C.5 Progress control of internal projects and external
participants

Project progress control is initiated in order to provide management with a com
prehensive view of all the software development activities carried out in an orga
nization, and thus increases the probability of the project being completed as
scheduled. Nevertheless, in most organizations, project control provides, for dif
ferent reasons, a limited view of the progress of internal software development
and an even more limited view of the progress made by external participants.
Control over internal projects and external participants tends to be somewhat
flawed, as I will describe.

Internal projects, such as those undertaken for other departments or projects
dealing with software packages for the general software market exclude, by defi
nition, the option of external customers. These projects thus tend to be assigned a
lower management priority. The inadequate attention awarded is often accompa
nied by inappropriate or lax follow-up on the part of the internal customer. Simi
lar tendencies are observed in the earlier preproject stage, in carrying out contract
reviews and preparation development plans (see Sections 20.7 and 21.5.2). Typi
cally, this situation results in tardy identification of adverse delays and severe
budget overruns, with the ensuing limited correction of the problems encoun
tered. The inevitable solution to this situation is the imposition of the full range of
project progress controls to internal projects as well.

It is expected that internal project with loose development contractor none at
all, will also result in lower quality of software products.. The SQA function is
required to tend with these risks by tight review and follow-up activities.

C.6 Implementation of Project Progress Control 625

External participants include subcontractors, suppliers of COTS software,
open-source software, and reused software modules and, in some cases, the cus
tomer himself. The more sizeable and complex the project, the greater the likeli
hood that external participants will be required, and the larger the portion of work
allocated to them. Management turns to external participants for a number of rea
sons, ranging from economic to technical to personnel-related interests; this has
become a growing trend in project contracting and subcontracting. Moreover, the
agreements entered into by the participants in a project have become so intricate
that communication and coordination have become problematic for the project
team as well as for management. In response, more significant efforts are called
for in order to achieve acceptable levels of control. Hence, project progress con
trol of external participants must focus mainly on the project’s schedule and the
risks identified in planned project activities.

The performance of the SQA tasks of review and follow-up of quality issues
of external participants are much more difficult than those of the developer soft
ware project teams. These situations result from coordination and cooperation dif
ficulties typical to external participants. Thus, coordination and cooperation
contract requirements as well as appropriate choice of external participants are
way to overcome those difficulties.

For a comprehensive discussion of the subject of assuring quality in projects
with external participants, see Chapter 20.

C.6 Implementation of project progress control

Project progress control is usually based on procedures that determine:

• The allocation of responsibility for performance of the process control
tasks that are appropriate for the project’s characteristics, including size:
○ The person or management unit responsible for executing progress con
trol tasks.

○ The frequency of reporting required from each of the project’s units and
administrative level.

○ The situations requiring project leaders to report immediately to
management.

○ The situations requiring lower management to report immediately to
upper management.

• Management audits of project progress deal mainly with: (1) how well
progress reports are transmitted by project leaders and by lower to upper
level managers and (2) the specific management control activities to be
initiated.

In large software development organizations, project progress control may be
conducted on several managerial levels, such as, software department manage
ment, software division management, and top management. Though each level is

626 Appendix C: Project Progress Control

expected to define its own project progress control regime, one that reflects the
parameters considered adequate for assessing the project’s progress from that par
ticular location, coordination among the various levels is mandatory for progress
control to be effective.

The entire reporting chain transmits information culled from the lowest man
agerial level – the project leader’s periodic progress report – which summarizes
the status of project risks, project schedule, and resource utilization, which is, the
first three components of progress control. The project leader bases his or her
progress report on information gathered from team leaders. An example of a proj
ect leader’s project progress report is presented in Figure C.2.

C.7 Computerized tools for software progress control

Computerized tools for software progress control include:

• Programs for the planning and control of schedule and resource usage

• Project progress metrics and progress tracking charts

C.7.1 Computerized programs for planning and control
of schedule and resource usage

Computerized tools for software project progress control are a clear necessity
given the increasing size and complexity of projects as well as the growing distri
bution and global distribution of projects on one hand, and the solutions they
bring with them on the other. The comprehensive project management tools that
have been available on the market for many years can serve most of the control
components of software projects quite effectively and efficiently. The majority of
these general-purpose packages apply PERT/CPM analysis so that the resulting
reports take the interactions between activities and the criticality of each activity
into account. These packages are usually readily adaptable to specific cases due to
the great variety of options that they offer. An important aspect for evaluating
these software tools is the ability to communicate with the development teams
and other stakeholders involved with inputs and outputs, especially in size, of
distributed and globally distributed projects.

The choice of the appropriate computerized tool is of utmost importance. The
size of the project, the project complexity, and organizational complexity (e.g.,
performance by external participants and distributed project) should be consid
ered when choosing progress control software package. Especially, small project
should beware of adopting a package for large-scale project, which will require
excess reporting and updating processes.

Typical services that computerized tools can provide are all based on project
plans inputs reporting:

C.7 Computerized Tools for Software Progress Control 627

Figure C.2 Project leader’s progress report – an example

628 Appendix C: Project Progress Control

Control of risk management activities

• Lists of software risk items by category and their planned solution dates

• Lists of exceptions of software risk items – overrun risk solution dates,
project activity schedule expected according to the risk management status.

Project schedule control

• Activities and milestones scheduling presented by Gantt, PERT, and
CERT or other methods, according to progress reports and applied correc
tion measures – for teams, development units, and so on.

• Updated schedules according to expected schedules in case change
requests are approved.

• Classified lists of delayed activities.

• Classified lists of delays of critical activities that, if not corrected, can
affect the project’s completion date.

• Updated activity schedules generated according to progress reports and
correction measures applied – for teams, development units, and so on.

• Classified lists of delayed milestones.

Project resource control

• Project human resources allocation plan according to activities schedule –
for activities and software modules, teams, development units, designated
time periods, and so on.

• Project resource utilization according to human skill – by period or accu
mulated – as specified above.

• Project resource utilization exceptions, compared to the original project
plan – by period or accumulated – as specified above.

• Updated resource allocation plans generated according to progress reports
and correction measures applied, as well as expected, in case change
requests are approved.

Project budget control

• Project budget plans – by activity and software module – for teams, devel
opment units, designated time periods, and so on.

• Project budget utilization reports – by period or accumulated – as specified
above.

• Project budget utilization deviations (as compared with the original project
plan) – by period or accumulated – as specified above.

C.7 Computerized Tools for Software Progress Control 629

• Updated budget plans generated according to progress reports and correc
tion measures applied and approved change requests.

Several commercial software project management software packages are
offered to managers; probably the most popular is MS Project by Microsoft. Dis
cussion of the capabilities of computerized software management tools and their
comparison are presented by Cicibas et al. (2010), Alba and Chicano et al (2007),
Gholami and Murugesan (2011), and others.

C.7.2 Project progress metrics and progress tracking
charts

Project process metrics and progress tracking charts present numerically and
graphically the actual project progress relative to the planned, with regard to
schedule, resource and budget usage. This information serves managements in
the control the progress of projects.

Project progress metrics provide momentary information about the status of
the project with regard to schedule keeping, human resource usage, and budget
spent up to the time of observation. This topic of “management process metrics”
is discussed and illustrated by metrics in an example presented in Section 21.6.

The project process metrics, when plotted according to the project time, cre
ate a graph showing project performance deviations from the planned schedule
over time. Two classic project progress tracking charts are the burn down chart
and the earned value management (EVM) chart – both have been widely used for
decades

The burn down chart presents the work left to be performed (backlog) com
pared to the planned work left, both are presented versus time.

An illustration of the burn down chart for a 10-week project is shown in
Figure C.3.

Figure C.3 A burn down chart for a 10-week project

630 Appendix C: Project Progress Control

As shown in Figure C.2, at the beginning of the first week the planned back
log is equal to the actual backlog, simply because the work has not yet started.
The planned backlog by the end of the tenth week is 0%, while the actual backlog
might deviate from the planned backlog. The chart presents the achievements of
the project team for the first 7 weeks. At the end of the first week, the planned
backlog is 90%, while the actual backlog is 94%. The chart presents the negative
status of the project, which is behind planned performance, this lasts for the first 3
weeks of the project. However, the next 2 weeks, weeks 4 and 5, are very produc
tive weeks for the project team and result in the project catching up to the planned
backlog.

An earned value management chart presents project performance, in terms of
schedule keeping and expenditures during the project schedule. Three attributes
of project progress are tracked for any point of time in the project:

PV – The planned cumulative cost (budget) of the project activities planned
to be completed up to the time of observation.

EV – The budgeted cost of the activities that were actually completed till the
time of observation.

AC – The actual project costs spent till the time of observation.

An illustration of an earned value management chart for a $100,000 10-week
project is shown in Figure C.4.

As shown in Figure C.3, at the beginning of the first week, the planned value
(PV) is 0%, equal to the actual costs (AC) and the earned value (EV), simply
because the work has not yet started. The PV by the end of the tenth week is
$100,000, as the work is completed. EV reaches $100,000 at the end of the ninth
week, showing early completion by one week, while AC are $90,000 at the end of
the ninth week, which means savings of $10,000 by the diligent team. When
checking the project status at the end of the third week, we find that the PV and

Figure C.4 An earned value management chart for a $100,000, 10 weeks project

Summary 631

CW are equal, $40,000; however, the EV reached $50,000 showing the team is
highly skilled. Observing the status at the end of the eighth week, we find that EV
is equal to AC, $80,000, much above the PV, which was only $70,000. Moreover,
when observing the team’s charted performance, we find that in the first 4 weeks,
the EV is above the PV, in other words the performance of the team surpassed the
project plans.

There is a variety of versions of the burn down and EVM charts, to enable
their adaption to the charts, type of projects, and nature of the organization.

Summary

1. The components of management’s control of project progress
There are four main components of project progress control. Manage

ment is expected to intervene and contribute to arriving at solutions in
extreme cases.
a. Control of risk management activities refers to actions taken with

respect to software risk items identified in the project plan, as well as
to risk items identified later, during the project’s progress. In practice,
the software development team attempts to solve risk situations by
applying systematic risk management activities. Management controls
these efforts through review of periodic reports and evaluation of
progress information.

b. Project schedule control deals with compliance with the project’s
approved and contractual schedules. Follow-up is based on updated
schedules for activities and milestones, which enable identification of
delays in completion of planned activities. Special emphasis is given
to customer-demanded milestones, as noted in the contract. Manage
ment tends to focus control on those critical delays that threaten to
substantially delay project completion dates.

c. Project resource control focuses on professional human resources,
and also deals with software development and testing facilities, typi
cally required by real-time software systems and firmware. Manage
ment exercises control on the basis of periodic reports of resources
used.

d. Project budget control is based on the comparison of actual to sched
uled costs. The main budget items to be controlled are:

• Human resources
• Development and testing facilities
• Purchase of COTS software
• Purchase of hardware
• Payments to subcontractors

Budget control requires input transmitted by periodic reports related
to activities and milestone. These reports enable early identification of

632 Appendix C: Project Progress Control

budget overruns that affect project profitability. The other components of
process control are expected to identify deviant situations earlier than bud
get control is capable of doing.

2. The implementation issues associated with project progress control
• Initiation of project progress control requires the following to be defined
for each project:
• Person or management unit responsible for progress control.
• Frequency of progress reports required from the various project man
agement levels.

• Situations where project leaders are required to report immediately to
management.

• Situations where lower level management is required to report imme
diately to upper level management.

• Management audits of project progress deal with how well reporting by
project leaders and other managers as well as management project con
trol activities are functioning.

3. Project progress metrics and progress tracking chartsProject process
metrics and progress tracking charts, presented numerically and graphi
cally, show the actual project progress relative to that planned, regarding
schedule, resource and budget usage. This information serves manage
ment to control the progress of projects.

Project progress metrics provide the momentary information about
the status of the project up to the time of observation, with regards to
schedule keeping, human resource usage, and budget spent.

Two classic project progress tracking charts are the burn down
chart and the EVM chart, which have been widely used for decades.
The burn down chart presents graphically the work left to be per
formed (backlog) compared to the work planned to be left at this
stage; both are presented versus time. The earned value management
chart presents project performance, in terms of schedule keeping and
resources spent.

Selected bibliography

Alba E. and Chicano J. F. (2007) Software project management with GAs, Information Science, Vol.
177, No. 1, pp. 2380–2401.

Colomo-Palacios R., Casado-Lumbreras C., Soto-Acosta P., Garcia-Penalvo F. J., and Tovar E. (2014)
Project managers in global software development teams: a study of the effects on productivity and
performance, Software Quality Journal, Vol. 22, No. 1, pp. 3–19.

Cicibas H., Unal O., and Demir K. A. (2010) A comparison of project management software tools
(PMST), in Proceedings of the 9th International Conference on Software Engineering Research
and Practice, Las Vegas, USA, pp. 1–6.

Cusumano M. A. (2008) Managing software development in globally distributed teams, Communica
tions of the ACM –Alternate Reality Gaming, Vol. 51, No. 2, pp. 15–17.

Review Questions 633

Gholami B. and Murugesan S. (2011) Global IT project management using Web 2.0, International
Journal of Information Technology Project Management, Vol. 2, No. 3, pp. 30–52.

ISO (2008) ISO/IEC 12207:2008 Systems and Software Engineering – Software Life Cycle Processes,
International Organization for Standardization, Geneva.

Jimenez, M., Piattini M., and Vizcaino A. (2009) Challenges and improvements in distributed soft
ware development: a systematic review, Advances in Software Engineering, Vol. 20009, No. 1,
pp. 1–14.

Review questions

C.1 The introduction of the chapter presents three situations that can cause managerial
failure in the control of a software development project.

a. What measures could management have taken to prevent each of these adverse
situations?

b. Which of these adverse situations could have been detected by auditing adherence
to the project progress control procedures?

C.2 In April, the project progress control system identified an expected delay of months to
the project’s delivery date (originally planned for October).

a. List your proposed interventions in this situation, including the assumptions
underlying each proposal.

b. Would you alter your proposals if the project were an internal project for develop
ment of a computer game software package scheduled for the pre-Christmas
market?

C.3 A project progress control process has been planned to involve two levels: (1) Man
agement of the Development Department, which regularly operates six to eight soft
ware development teams and (2) Management of the Software Development
Division, which covers three software development departments.

Consider the case of a standard 1-year software development project.

a. Inform the project leader of your suggestions for the proper progress reporting
frequencies and conditions for immediate reporting to department management.

b. Inform the Department Manager of your suggestions for the proper progress
reporting frequencies and conditions for immediate reporting to division
management.

c. What type of progress-related information would you recommend be reported to
division management?

C.4 A project plan includes 100 tasks; each budgeted for 4–6 designer or programmer
days. The head of the SQA team claims that the burn in chart could be applied when
the number of uncompleted tasks is used instead of the actual backlog, and the
planned number of uncompleted tasks instead of the planned backlog.

a. Do you agree with the head of the SQA team’s claim? List your arguments.

b. Is there expected to be a difference in the accuracy of the charted results when
these are based on the backlog compared to the number of uncompleted tasks

634 Appendix C: Project Progress Control

Topics for discussion

C.1 The “Golden Bridge” software development project was scheduled to be completed
in about 12 months. Two to six team members were planned to work on the project at
the same time. Project progress control was based on a monthly report that would
refer to each of the 32 activities to be performed and to the components (1) risk item
management, (2) schedule, and (3) human resource utilization.

The first three monthly progress reports submitted to management did not indi
cate any deviation from the plan. The fourth progress report presented an unresolved
risk item that was listed in the project plan, a substantial overrun in human resource
utilization (overtime, etc.), as well as a month’s delay in the expected completion
dates for some of the activities.

a. Can you suggest possible reasons for the relatively late detection of the deviations
from the project plan?

b. For each of the above three components, describe the measures that could have
prevented the deviations and their adverse effects.

C.2 Consider the “Golden Bridge” software development project discussed in Topics for
Discussion C.1.

• Suggest some interventions that management could have introduced to com
pensate for the project’s failures, including the assumptions behind each
intervention.

C.3 Some managers claim they must use both the burn down and the EVM charts as they
are complementary to each other.

a. Do you agree with this claim? List your arguments.

b. If you agree, explain the importance of relying on both charts for project follow-
up.

AppendixD

From SDLC to Agile –
Processes and Quality
Assurance Activities

This chapter is dedicated to the various software development models in current
use. This chapter defines the models and the way that quality assurance activities
are integrated into the development process. Furthermore, the way the customer’s
team is involved in the quality assurance process is also discussed. By deciding
which models are to be applied, the project leader determines how the project
will be carried out.

The SQA function professionals need to be familiar with the various software
engineering models in order to be able to fulfill tasks such as preparing a quality
plan that is properly integrated into the project plan, providing development
teams with professional support to perform quality assurance activities, and fol
lowing up on the performance of these activities.

Seven models of the software development process are discussed in this
chapter:

• Classical software development models
○ The software development life cycle (SDLC) model
○ The prototyping model
○ The spiral model

• The object-oriented methodology

• The incremental delivery model

• The staged models

• The Agile methodology models

The models presented here are not merely alternatives, but could also repre
sent a complementary ways of software development, or refer to different devel
opment contexts. Additional material on software development processes can be

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

635

636 Appendix D: From SDLC to Agile – Processes and Quality Assurance Activities

found in numerous papers and books dealing with software testing. A small
sampling of book sources are the books by Pressman and Maxim (2015) and
Sommerville (2015).

D.1 The classical software development models

The following three classical models are discussed:

• The SDLC model

• The prototyping model

• The spiral model

D.1.1 The software development life cycle model

The software development life cycle model is the classic model (still applicable
today). The model displays the major building blocks of the entire development
process, which is defined as a linear sequence. In the initial phases of the software
development process, requirement, definition, analysis, and design documents are
prepared, with the first version of the computer program presented for evaluation
only at a relatively late stage of the process. The SDLC model may serve as a
framework within which the other models may be presented.

The most common illustration of the SDLC model is the waterfall model,
shown in Figure D.1.

The model shown in Figure D.1 presents a seven-phase process. At the end of
each phase, the outputs are examined and evaluated through formal and informal
quality assurance activities performed by the developer and, in many cases, by the
customer as well. These quality assurance activities are aimed at detecting errors in
the phase outcomes. Possible outcomes of the formal review include:

• Approval of the phase outputs, and progression to the next phase (indicated
in the waterfall model by an arrow directed to the beginning of the next
development phase).

• Demands to correct, redo, or change parts of the last phase; in these cases,
earlier phases need to be repeated (indicated in the waterfall model by an
arrow directing back to the beginning of the previous phase). In some
cases, a correction related to earlier phases is required (as indicated by a
thin arrow pointing upward).

A description of the software development phases and the related or associ
ated SQA activities is as follows:

• Requirements definition. The customers must define requirements for the
software system to be developed. In many cases, the software system is
part of a larger system. Thus, some of the requirements are related to

D.1 The Classical Software Development Models 637

Figure D.1 The waterfall model

interfaces with other parts of the expanded system. These requirements are
essential to ensure the interoperability of the developed software system.
Quality assurance activities that follow the requirement specifying

phase: FDR of the requirement specification document.

• Analysis. The main effort in this phase is to analyze the requirements’
implications in order to form the initial definition of the software system.
SQA activities of peer reviews and expert opinions are applied throughout
this phase.
Quality assurance activities that follow the analysis phase: FDR and

informal review activities of the software analysis report. For more about
reviews, see Chapter 13.

638 Appendix D: From SDLC to Agile – Processes and Quality Assurance Activities

• Design. This phase involves a detailed definition of the outputs, inputs, and
processing procedures, including data structures and databases, software
structure, and so on.
Quality assurance activities that follow the design phase: similar to

those of the analysis phase.

• Coding. In this phase, the design is translated into code. The coding phase
integrates SQA activities in the process.
Quality assurance activities of the coding phase: The quality assurance

activities include unit code inspection and unit tests related to units of the
software product, and integration tests related to the integration of the soft
ware product units.

• System tests. This phase is dedicated entirely to quality assurance
activities, namely, to those tests that assess the software system as a
whole. These tests are performed once the coding phase is completed.
The main goal of system testing is to uncover as many software errors
as possible, so as to achieve an acceptable level of software quality
once corrections have been completed. System tests are carried out by
the software development team or by the developer’s testing unit or by
an external organization that specializes in software testing. Software
testing is performed before the software is supplied to the customer. In
many cases, the customer performs independent software system tests
(acceptance tests) to ensure that the developer has fulfilled all commit
ments, and that no software failures are anticipated. It is quite common
for a customer to ask the developer to perform joint system tests, a
procedure that saves time and resources, otherwise required for sepa
rate system tests and acceptance tests.

• Installation and conversion. When the software system quality has been
approved, the system is installed in the customer premises in order to start
servicing. The first period of new installed software system serves as a run-
in period, while special attention is paid to examine its performance and to
verify that it is according to specifications. If the new software system is to
replace an existing system, a software conversion process is combined
within the running-in process.
Quality assurance activities that follow the installation and conversion

phase: FDR and informal reviews of installation and conversion plans.

• Regular operation and maintenance. Regular software operation com
mences once installation, running-in, and conversion have been success
fully completed. Maintenance of the software system is needed throughout
the operation period, which usually lasts for several years, until it is
replaced by new software of a new generation. Maintenance incorporates
three types of services: (1) corrective – repairing software faults identified
by the user and the developer during operation; (2) adaptive – using the
existing software features to fulfill new requirements; and (3) functionality

D.1 The Classical Software Development Models 639

improving (perfective) – adding new minor features to improve software
performance.
Quality assurance activities that follow the operation and maintenance

phase: Follow-up of the user support centers (USCs) and maintenance
services.

Table D.1 summarizes the SDLC quality assurance activities.
The number of phases tends to vary according to the characteristics of the

project. In complex, large-scale models, some phases are split, causing the num
ber of phases to grow to eight, nine, or more. In smaller projects, some phases
may be merged, reducing the number of phases to five, six, and even four.

The main deficiency of the SDLC model, in relation to software quality, is the
lateness of the phase (coding phase), in which the developer may obtain valuable

Table D.1 The SDLC quality assurance activities

Quality assurance SQA function
Development phase activity The performers activities

1. Requirement FDR The development team Provision of
definition professional

support for the
development team
and follow-up of
activity
performance

2. Analysis FDR The developera, and in many
cases, the customer
participates

3. Design Informal reviews Colleagues of the
development team

FDR The developera, and in many
cases, the customer
participates

4. Coding Code inspection Development team colleagues
Unit tests The development team
Integration tests The development team

5. System tests Final software tests The development team, and
the developer’sa testing unit
or an external testing
organization. In many cases,
the customer representatives
participate.

6. Installation and FDR The developera, and in many
conversion cases, the customer

participates
7. Regular operation Follow-up of USC and The software operation team
and maintenance maintenance services and the developer’sa

managers

aThe developer= the software development organization.

640 Appendix D: From SDLC to Agile – Processes and Quality Assurance Activities

user feedback regarding the adequacy of the developed software product. The
products of the first three phases are written reports only made available to soft
ware developers. Thus, as mentioned above, it is only the coding phase products,
namely, working programs, that are suitable for user examination and review.

The classic waterfall model was suggested by Royce (1970), and later pre
sented in its commonly known form by Boehm (1981). The processes and activi
ties of the life cycle of software development and maintenance are defined in the
IEEE/12207 (IEEE, 2008) and other international standards.

D.1.2 The prototypingmodel

The prototyping methodology is an iterative one, where in each iteration a proto
type software is developed. In the first iteration, only part of the specified require
ments is implemented, and in each of the next iterations the new prototype
implements an additional part of the requirements. Each prototype is examined
and evaluated by the customer and the user’s team. Their demands for correc
tions, changes, and additions related to the current prototype are to be considered
by the developer in the next integration prototype. These iterations will continue
till all the requirements are fulfilled.

A typical application of the prototyping methodology is shown in Figure D.2.
The process of prototyping could be best illustrated with an example.

The store management example

A store is interested in a store management information system to process sales,
inventory, suppliers, and customer data. The information system developer has
suggested to employ the prototyping methodology, in which the store manager
and two of the senior staff participate in the evaluation and examination of the
prototypes (the products of each software development iteration). The contents of
each development cycle (iteration) are shown in Table D.2.

The prototyping methodology excels in enabling customer and user partici
pation in the examination and evaluation of the evolving software product in its
early stage of development. This is in contrast to the SDLC methodology that
allows receiving user and customer feedback only at a very late phase of the soft
ware development stage.

Practitioners and software researchers realized the great efficiency of proto
typing, and estimated a 50% savings in development resources, as well as sub
stantial improvements to the project schedule. While these savings were widely
accepted professionally, no actual evidence has ever been produced. This is due
to the fact that no customer would be willing to order a project to be developed
twice; once by prototyping and then by SDLC methodology, in order to compare
the methodologies. Such wishful evidence came from the academy, when a com
parative research enabled the same project to be developed by four student teams

D.1 The Classical Software Development Models 641

Figure D.2 A typical application of the prototyping methodology

using SDLC and three student teams using prototyping (Boehm et al., 1984). The
statistically significant results derived from the research were as follows:

• The prototyping projects consumed 45% less resources than the SDLC
project.

• The prototyping projects produced 40% less code.

• The prototyping projects produced 63% less documentation.

• The prototyping projects were rated somewhat lower on functionality and
robustness.

• The prototyping projects were rated higher on ease of use and ease of
learning.

642 Appendix D: From SDLC to Agile – Processes and Quality Assurance Activities

Table D.2 Developer and user evaluation collaboration in a prototyping development
process

Contents corrected
New contents of prototype and changed by Corrections and changes

Iteration prepared by developer for developer per requested by the user
no. current iteration iteration evaluation team per iteration

1 Sales invoice, item price database,
and daily sales report

2 Discount options, sales promotion
options

3 Inventory management (sales and
supply recorded), daily order list
according to inventory level

4 Customer sales and suppliers
reports and monthly store
reports

5 Customer club options

6 All specified requirements have
been fulfilled. No new contents

No corrected
contents available

Corrections related
to iteration 1

Corrections related
to iteration 2

Corrections related
to iteration 3

Corrections related
to iteration 4

Corrections related
to iteration 5

Corrections and changes of
iteration 1 requested by the
evaluation team

Corrections and changes of
iteration 2 requested by the
evaluation team

Corrections and changes of
iteration 3 requested by the
evaluation team

Corrections and changes of
iteration 4 requested by the
evaluation team

Corrections and changes of
iteration 1 requested by the
evaluation team

No requests for corrections exist.
The completed information
system will progress to system
tests

The prototyping methodology has been found to be especially successful for
small and medium projects. It is also applicable for developing parts of large-
scale projects. Prototyping may be applied in combination with other methodolo
gies or as a “stand-alone” methodology. In other words, the extent of prototyping
can vary from replacing one SDLC (or other methodology) in part of a project to
the complete prototyping of an entire software system.

There are a variety of typical situations when prototyping is used:

• Projects with vaguely defined specifications, where feedback from users on
prototypes serves to explore the requirements. In many of these cases, the
sole interest in the prototyping process is to accurately define the system
requirements produced throughout the process. Thus, the produced proto
typing software is a “throwaway” software and not put to service.

• Software systems planned for short service and for a limited population of
users, that is, research management, temporary usage as a pilot software
system.

• Projects for regular use, characterized by low complexity and a limited
population of users.

D.1 The Classical Software Development Models 643

The main advantages and deficiencies of prototyping over the complete
SDLC benefit from the intense involvement of users and customers in the soft
ware development process. Such involvement facilitates a better understanding of
the system and a lower probability of the system failing. However, the intensive
participation of customers and users in the development process limits the devel
oper’s freedom to introduce innovative changes into the system.

The main advantages and deficiencies of prototyping over the SDLC meth
odology are summarized in Frame D.1.

Frame D.1: Prototyping versus SDLC methodology – advantages and disadvantages

Prototyping versus SDLC methodology — advantages and disadvantages

Advantages of prototyping:

• Shorter development process

• Substantial savings of development resources (man-days)

• Better fit to customer requirements and reduced risk of project failure

• Better system usability

Disadvantages of prototyping:

• Diminished flexibility and adaptability to changes and modifications

• Reduced preparation for unexpected instances of failure

• Implementation depends on availability of adequate customer representatives to par
ticipate in prototyping process

The quality assurance activities for prototyping are summarized in Table D.3.

D.1.3 The spiral model

The spiral model provides an iterative methodology for ensuring performance
is effective at each of the SDLC model phases. It involves integrating cus
tomer comments and change requirements, risk analysis and resolution, and
software system planning and engineering activities at each of the SDLC
model phases. One or more iterations of the spiral model may be required to
complete each of the project’s SDLC phases. Thus, the spiral model offers
an improved methodology for overseeing large and more complex develop
ment projects displaying higher prospects of failure. The associated engineer
ing phases may be performed according to the SDLC, prototyping, or
additional software development models.

The advanced spiral model, the Win-Win Spiral model (Boehm, 1998),
enhances an earlier version of the Spiral model (Boehm, 1988). The advanced

644 Appendix D: From SDLC to Agile – Processes and Quality Assurance Activities

Table D.3 The prototyping quality assurance activities

Quality assurance SQA function
Development phase activity The performers activities

1. Requirement
definition

2. a Analysis and
design iteration

3. a Prototype
implementation
(coding) iteration

4. a Prototype
evaluation iteration

5. System tests

6. Installation and
conversion

7. Regular operation
and maintenance

Self-review

Self-review

Self-testing

Prototype testing

Final software tests

FDR

Follow-up of USC and
maintenance services

Development team

Development team

Development team

Customer representatives
team

The development team, and in
many cases, the customer
representatives participate

The developerb, and in many
cases, the customer
representatives participate

The software operation team
and the developer’sb

managers

Provision of
professional
support for the
development team
and follow-up of
activity
performance

aPhases 2–4 are repeated for each iteration.
bThe developer= the software development department.

model places extra emphasis on communication and feedback between the
customer and the developer. The model earned its name as by using this pro
cess, the customer “wins” in the form of improved chances to receive the
system that most satisfies his needs, and the developer “wins” in the form of
improved chances to stay within the budget and complete the project by the
agreed-upon date. This is achieved by increasing the emphasis on customer
participation in iterative engineering activities and by periodical risk analysis
and resolution activity.

Accordingly, in the advanced spiral model shown in Figure D.3, the follow
ing six activities are carried out in each iteration:

• Customer’s specification of requirements, comments, and change demands

• Developer’s planning activities

• Developer’s risk analysis and resolutions

• Developer’s design activities

• Developer’s construction activities pertaining to, that is, coding, testing,
installation, and release

• Customer’s evaluation

Table D.4 presents the advanced spiral model quality assurance activities.

D.2 The Object-Oriented Model 645

Figure D.3 The advanced spiral model – the Win-Win model

D.2 The object-oriented model

D.2.1 The object-orientedmethod

The object-oriented model differs from the former models as it is based on a col
lection of independent units (termed “classes”), each dedicated to a physical or
other entity saving its related data and software functions (termed “methods”). A
class contains all the items of the type (termed “objects”). For instance, class “cli
ent address” will include the addresses of each of the clients. Methods related to
“client address” may include adding an object for a new client, updating client’s
address, answering a query “what is the address of a client whose ID is X,” and so
on. These independent classes are “self-sufficient” classes and are said to be
“encapsulated.” Boundary classes are dedicated to interfaces with other software
systems, to production of outputs (printouts, computer displays, etc.), and input
tools. It is the collaboration among these entities that enables achieving all the
system’s specified requirements. The performance of a certain goal, that is,

646 Appendix D: From SDLC to Agile – Processes and Quality Assurance Activities

Table D.4 The advanced spiral model quality assurance activities

Quality assurance SQA function
Development phase activity The performers activities

1. a Requirement analysis
and project planning

2. a Risk analysis

3. a Prototype design
iteration

4. a Prototype
implementation
(coding) iteration

5. a Project evaluation
6. a Customer comments
and change
requirements

7. System tests

8. Installation and
conversion

9. Regular operation and
maintenance

Self-review

FDR

Self-review
Informal reviews

Code inspection

Prototype testing
Unit tests
Integration tests

Final software
tests

FDR

Follow-up of USC
and maintenance
services

The development team

The software development
department

The development team
Development team
colleagues

Development team
colleagues

The development team
The development team
The development team

The development team, and
the developer’s testing unit
or an external testing
organization. In many
cases, the customer
representatives participates

The developerb, and in
many cases, the customer
representatives participate

The operation team and the
developer’s managers

Provision of
professional support
for the development
team and follow-up
of activity
performance

aPhases 1–6 are repeated for each iteration.
bThe developer= the software development department.

creating a report, requires the collaboration of the relevant classes. In order to
perform a goal by a group of classes, each of the group classes performs part of
the processing tasks required, and transmits data (via “messages”) to other mem
ber classes till the goal is achieved.

The use of classes, each dedicated to an entity, such as “client’s
address,” “client’s payments,” “inventory item,” and so on, creates possibilit
ies for reuse of classes in additional software systems developed by object-
oriented methodology. Thus, object-oriented methodology excels through its
intensive reuse of software components compared with other methodologies.
In other words, it is characterized by its easy integration of existing library
items of software classes (called also components) into newly developed
software systems. A software component library serves this purpose by sup
plying software components for reuse.

D.2 The Object-Oriented Model 647

D.2.2 The object-oriented software
development process

The development process and its quality assurance activities are adapted to the
class structure, which differs substantially from forms of software.

Analysis. In the analysis phase of the object-oriented development process,
the definition of classes needed to perform the specified requirements and the
goals required for implementations of the requirements are performed.

The software quality assurance activities of object-oriented projects are quite
unique. The design reviews (DRs) of the analysis phase examine the object-ori
ented analysis (OOA) model, the class model planned to achieve all the software
development goals (stemming from the specified requirements).

Design. In the design phase that follows, the design of the classes is refined,
and the details processed for achieving each of the software system goals are
defined. The design phase is followed by acquisition of suitable components
from the reusable software library, when available. “Regular” development is oth
erwise carried out. Copies of newly developed software components are then
“stocked” in the software library for future reuse. It is expected that the growing
software component stocks in the reusable software library will enable the sub
stantial and increasing reuse of software.

The DRs of the design phase examine the refined object-oriented design
(OOD) model that includes the connectivity planning and detailed class structure
design, related to the classes’ data and methods.

Coding. The coding phase follows the class structure design, where coding
tasks include programming the class methods and the required communication
messages network.

Testing. The testing phase includes class testing, integration testing, and sys
tem tests, all adapted to the class structure of the software system. Class testing is
equivalent to unit testing, where the data and methods of the encapsulated class
are tested. Integration testing is performed to clusters of classes, where in the next
step additional classes are integrated and tested – this continues till all classes
have been included in the integration tests. System tests encompass the entire
software system, with the task of screening out the remaining errors. Black box
testing may be employed throughout the various levels of object-oriented testing.

The remaining life cycle phases are similar to those of the SDLC model.
The object-oriented model is shown in Figure D.4.

D.2.3 Advantages of the object-orientedmethodology

The advantages of the object-oriented methodology over other methodologies
stem from its class structure.

a. There are greater possibilities for software reuse, which leads to the fol
lowing advantages in the following areas:

648 Appendix D: From SDLC to Agile – Processes and Quality Assurance Activities

Figure D.4 The object-oriented model

• Cost-efficiency – The cost of integrating a reusable software component
is much lower than developing a new component.

• Improved quality – Used software components are expected to contain
considerably fewer defects than newly developed software components
due to the detection of faults by former users.

• Shorter development time – The integration of reusable software com
ponents reduces pressures pertaining to project schedule.

b. It is possible to assign relatively small tasks to be developed by a team
member.

c. It is easier to carry out large-scale projects, due to the division into
classes.

d. The design and analysis, as well as programming of software systems, are
easier and reach higher quality levels.

D.3 The Incremental Delivery Model 649

e. Easier maintenance, easier to locate faulty software, and easier to intro
duce software changes.

f. The minor defined tasks result in easier cooperation and coordination with
team members, and thus easier project management.

The advantages of the object-oriented methodology compared with other
methodologies are summarized in Frame D.2.

Frame D.2: The advantages of object-oriented methodology

The advantages of object-oriented methodology:

(Compared to other technologies)

1. Easier software reuse, based on local or commercial class libraries. Software reuse
contributes to lower project costs

2. Easier distribution of development tasks among team numbers

3. Easier to cope with software development of large-scale projects with high
complexity

4. Easier to perform and easier to achieve high quality of analysis design and pro
gramming (for the non-reused parts of the software product)

5. Easier maintenance

6. Easier to manage software projects

The quality assurance activities of the object-oriented development process
are presented in Table D.5.

D.3 The incremental delivery model

The incremental software development models share the concept of delivery
of software projects in parts (increments) with the Agile models. According
to this concept, each increment implements only part of the specified require
ments of the software system. The “size” of the increment varies according
to the group of goals selected to be implemented in the increment. Imple
mentation of each increment will include the following phases: analysis,
design, coding, system testing, installment, conversion, and run-in and main
tenance. Each increment is integrated with the accumulation of earlier incre
ments (creating a new version of the developing software product). A
schematic description of the staged incremental delivery model is presented
in Figure D.5.

The reasons for clients and developers to prefer incremental delivery rather
than to wait for the complete software product vary:

650 Appendix D: From SDLC to Agile – Processes and Quality Assurance Activities

Table D.5 The quality assurance activities of the object-oriented development process

Quality assurance SQA function
Development phase activity The performers activities

1. Requirement FDR Development team Provision of
definition professional

2. Object-oriented FDR The developera, and in many cases, support for the
analysis the customer participates development

3. Object-oriented Informal reviews Colleagues of the development team team and follow-
design FDR The developera, and in many cases, up of activity

the customer representatives performance
participate

4. Reusability survey Self-review The development team
of component library

5. System construction Code inspection Development team colleagues
(coding) Unit tests The development team

Integration tests The development team
6. System tests Final software The development team, and the

tests developer’sa testing unit or an
external testing organization.
Frequently, the customer
representatives participate

7. Installation and FDR The developera, and in many cases,
conversion the customer participates

8. Regular operation Follow-up of USC The software operation team and the
and maintenance and maintenance developer’sa managers

services

aThe developer= the software development department

• The customer wishes to satisfy the urgent and highest priority goals of the
project at the earliest possible schedule, and to gain substantial value from
the project at the earliest possible time. The second increment will include
goals of the second priority, and so on.

• The developer implements the goals that are defined more clearly in the
first increment. The developer will use the first increment to explore the
requirements of the next increment, and so on.

• The incremental delivery is based on limited goals implemented in each
increment and reduces the risk of project failure, as each increment is
required to handle a much lower number of less risks.

The incremental delivery concept is one of the main concepts of the Agile
methodologies.

The quality assurance activities of the incremental development process are
presented in Table D.6.

D.3 The Incremental Delivery Model 651

Figure D.5 The staged-incremental delivery software development model

Table D.6 The quality assurance activities of the incremental development process

Quality assurance SQA function
Development phase activity The performers activities

1. Requirement
analysis

2. a Design iteration
3. a Analysis iteration
4. a Coding iteration

5. a Iteration system
tests

6. a Installation and
conversion

7. a Regular operation
and maintenance

Team’s self-review

Team’s self-review
Team’s self-review
Code inspection
Unit test
Iteration integration
tests

Iteration software tests

Self-review

Follow-up of USC and
maintenance services

The development team

The development team
The development team
Development team colleagues
The development team
The development team

The development team. In
some cases, the customer
representatives participate

The developer, and in many
cases, the customer
representatives participate

The software operation team
and the developer’sb

managers

Professional support
to the development
team and follow-
up of performance

aPhases 2–7 are repeated for each iteration.
bThe developer= the software development department.

652 Appendix D: From SDLC to Agile – Processes and Quality Assurance Activities

Figure D.6 The staged model life cycle

D.4 The stagedmodel

The staged model is an evolutionary model. It is applied to the development pro
cess of software products for both commercial and company usage. The software
starts off as basic software and gradually becomes more sophisticated and com
prehensive through a series of software versions.

The model describes the process where a software version is in use and main
tained for a period of time. During this period, the maintenance team performs
corrections of errors identified by users and carries out adaptations and minor
changes and additions to perfect the software according to user requests, and the
development team completes the next, more advanced software version. In time,
after a successful period of servicing, the software version phases out, and finally
closes down. The current software version should be replaced by the next more
advanced version. The new version usually includes new functionalities, changes
according to environmental developments, and current user requirements.
Figure D.6 presents the staged model life cycle.

The quality assurance activities in staged model life cycle are presented in
Table D.7.

D.5 The Agile methodologymodels

The growing cost of software development, long supply schedules, and difficulty
to introduce requested changes during the development process all lead to lower
customer satisfaction. Several software development methodologies offered radi
cal changes to traditional software development processes in order to create new
effective and efficient ways for software development to cope with the above defi
ciencies of traditional methodologies. All these new methodologies have much in
common, which was what led, on February 2001, to the forming of an alliance of

D.5 The Agile Methodology Models 653

Table D.7 The quality assurance activities in a staged model life cycle

SQA function
Development phase Quality assurance activity The performers activities

1. Requirement
analysis

2. a Design version
3. a Analysis version
4. a Coding version

5. a Version system
tests

6. a Version
installation and
conversion

7. a Regular version
service

8. a Version
maintenance

9. a Version phases
out and closes down

Team’s self-review

Team’s self-review
Team’s self-review
Code inspection

Unit test
Iteration integration tests
Iteration software tests

Self-review

Follow-up of USC
services

Follow-up of maintenance
services

Follow-up of phase out
process

The development team

The development team
The development team
Development team
colleagues

The development team
The development team
The development team.
In some cases, the
customer
representatives
participate

The development team

The software operation
team and the
developer’sb

management
The software operation
team and the
developer’sb managers

The software operation
team and the
developer’sb managers

Professional support
to the development
team and follow-up
of performance

aPhases 2–9 are repeated for each version.
bThe developer= the software development department.

the developers of these methodologies – “the Agile Alliance.” The purpose of the
alliance was to promote these methodologies.

D.5.1 The Agility principles

The radicalism of the new methodologies is well expressed by the Agile Alliance
members in their values:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

654 Appendix D: From SDLC to Agile – Processes and Quality Assurance Activities

The Agile Alliance published the Agile Manifesto that presented the 12 Agile
principles.

The Agility principles (Agile, 2003) are shown in Frame D.3.

Frame D.3: The Agility principles

The Agility principles

1. Our highest priority is to satisfy the customer through early and continuous deliv
ery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes har
ness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and sup
port they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity – the art of maximizing the amount of work not done – is essential.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

The software development methodologies that share the Agility principles
include the following:

• Agile modeling

• SCRUM

• Extreme programming (XP)

• Crystal

• Feature-driven development (FDD)

• Dynamic system development method (DSDM)

• Kanban

• Lean software development

• Rapid application development (RAD)

D.5 The Agile Methodology Models 655

Besides sharing the Agile principles (see Frame D.3), each of these Agile
methodologies has specific distinguishing features related to the rules of behavior
regarding commitment to schedule, acceptance, handling of change requests, and
so on.

D.5.2 Typical Agile software development process

The typical software development process, as realized according to Agile method
ologies, includes the following activities:

• Project requirements are only vaguely defined, in most cases in the form of
“user stories.”

• Estimates of budget and schedule are prepared by the developer based on
the list of “user stories.” Naturally, these estimates are very general.

• The customer arranges the “user stories” into increment groups according
to customer priority, where the first increment group is of the highest prior
ity. In other words, the early increments create higher values for the cus
tomer or include urgent functionality. Each increment will be designed
within a short schedule with a duration of no longer than several weeks.

• The development process is performed by small teams, usually made up of
pairs of development professionals.

• The development process includes analysis and design phases with limited
documentation.

• The developers are not bound to software development standards or work
instructions.

• The quality assurance task is performed by mutual examination of develop
ment products by the development team. In other words, design, analysis,
or coding performed by a team member is reviewed or tested by his partner
in the development team. The practice of development and quality assur
ance tasks being performed within the team makes them “self-sufficient,”
and places the heavy burden of software quality almost entirely upon them.

• Customers will actively participate throughout the development process by
responding to developer queries, examining development issues raised by
the developers, and so on on a daily basis.

• The released software increment is gradually added to the required soft
ware product. However, throughout the development process additional
“user stories” initiated by the customer are included. This causes the final
software product to grow by an each additional requirement or “user
story.”

• The teams keep daily stand-up meetings to update and synchronize the
development efforts.

656 Appendix D: From SDLC to Agile – Processes and Quality Assurance Activities

• Periodical team meetings are dedicated to the retrospect examination of the
team methods for ongoing improvements to the team’s development work.

Team members participating in Agile projects are expected to own key traits,
as shown in Frame D.4.

Frame D.4: Expected key traits of Agile project team members

Expected key traits of Agile project team member

• Competent

• Highly motivated

• Collaborative within the team (pair) and the project team

• Able to make professional decisions

• Able to handle fuzzy requirements

• Able to cope with frequent requirement changes

• Able to share trust and respect with the team partner

D.5.3 Quality assurance in Agile software development
projects

Quality assurance activities are incorporated in each iteration. There may be 10
iterations or more, with each iteration delivering a relatively small software incre
ment – a product of a few weeks of development effort. The following quality
assurance activities are included in each iteration:

• Review of analysis results, together performed by team members and cus
tomer representatives throughout the analysis.

• Review of design results, together performed by team members and cus
tomer representatives throughout the design.

• Most Agile methodologies adopt the test-driven development, where unit
tests are planned before programming. This method supports the quality of
testing. Code reviews and unit testing are together performed by team
members and customer representatives.

• Testing the integration of the current delivered code increment with former
software increments is performed by the development team.

Quality assurance of Agile projects has major advantages and disadvantages
over that of SDLC projects:

• SQA activities are performed on software increments, where each incre
ment relates only to a small number of requirements and to just a few
weeks of development efforts. Thus, the increment to be delivered creates

D.5 The Agile Methodology Models 657

much less of a quality challenge than the SDLC SQA activities examining
entire projects.

• The customer’s close collaboration (daily) and involvement with the
development team provides continuous follow-up and valuable input
throughout the entire project life cycle. Participation of the customer
in the SDLC development process is limited to joint follow-up com
mittees and examining and commenting on the finished products of
the software development process (various analysis and design docu
ments, etc.).

• These two advantages counter-affect the deficiency of only the develop
ment team performing quality assurance activities – with no support from
independent reviewers or testers.

The quality assurance activities of an Agile project are presented in
Table D.8.

A comparative analysis of quality assurance practices in Agile projects ver
sus SDLC projects is presented by Huo et al. (2004). Empirical studies of Agile
software development processes are presented by Dyba and Dingsoyr (2013).

Table D.8 Quality assurance activities of an Agile project

Quality assurance SQA function
Development phase activity The performers activities

1. Requirement analysis Self-review The development pair Provision of
2. a Design increment Review The developing pair professional support

and customer for the development
representatives team and follow-up

3. a Analysis increment Team’s self-review The developing pair of activity
and customer performance
representatives

4. a Coding increment Code review and unit The developing pair
test	 and customer

representatives
5. a Integration of Software tests The development pair
increment with
former software
increments

6. a Increment Team’s self-review The development pair
installation and
conversion

7. a Regular service and Follow-up of USC The software
maintenance	 services operation team and

the developer’sb

managers

aPhases 2–6 are repeated for each increment.
bThe developer= the software development department.

658 Appendix D: From SDLC to Agile – Processes and Quality Assurance Activities

D.5.4 The Agile experience

Efforts needed to introduce Agile methodologies into an organization employing
conventional methodology vary. Some organizations reported the change to be
easy and required just 1 week of instruction, while others report that a long pro
cess of training and follow-up support was required. It was reported that more
qualified and experienced teams experienced an easier adoption of Agile method
ologies (mainly regarding the XP method). The last decade’s experience has
shown difficulties in employing Agile methodologies in large-scale projects, and
in large and complex organizations. Despite difficulties moving over to Agile
methodologies, there is a constantly growing number of organizations that adopt
these methodologies.

Obstacles to introducing Agile methodologies in organizations employing
traditional development methods are discussed by Gandomani et al. (2013).
Implementing Agile methods challenges the team members themselves; it
changes their personal relations and status by the need to work in small teams –
usually in pairs, and to collaborate with, and trust their new teams. A major chal
lenge for managers is the new organizational structure that reduces their ability to
control and manage, and introduces the need to manage through collaboration.
Another managerial difficulty arises from the very limited documentation, typical
to Agile projects, where a great part of the project’s know-how is left in the devel
oper’s mind. This creates severe difficulties when replacing team members.
Another personal difficulty results from the participation of customers in the
development team, and sharing with them the decision-making processes of the
project. Difficulties were reported when attempting to employ Agile methodolo
gies in large-scale projects and in large and complex organizations. The change in
process from traditional SDLC methods to the Agile incremental delivery method
is a major challenge that involves changes in strategies, tools, and techniques.

The Agile literature, as well as Agile promoters, claims that there exist sub
stantial gains to Agile projects when compared with “conventional” software
development projects. These claims are supported by empirical comparative
research, though still scarce. These findings could be considered as indications
rather than “solid” evidence, due to their limitability. These benefits refer mainly
to the following areas of interest: project management, productivity, software
quality, and job satisfaction (of development teams).

The main management issues considered in the comparative studies were the
project progress control and communication with the customers. Managers of
Agile projects had better control of the development process, fulfillment of
requirements, and an easier introduction of changes. These studies found Agile
projects to have better, more effective communication with the customers, which
led to the management’s higher satisfaction of its customer relationships. In rela
tion to human resource management, greater difficulties were found in Agile proj
ects regarding team member replacement.

D.5 The Agile Methodology Models 659

Productivity comparative studies were few, all of them showed a sub
stantial increase of productivity (40% and more), where productivity was
measured by lines of code per hour. In most of the studies, the quality of the
Agile software products was found to be higher regarding internal quality as
well as external quality measured by errors identified by the customer. In
other comparative studies, no quality differences were found. A comparative
study of defects in Scrum and “conventional” projects show similar defect
density and similar defect profiles in both projects. However, the Agile proj
ect achieved more efficient defect removal processes and provided a higher
quality of delivered software. The results for job satisfaction were not con
clusive, and only in part of the studies the Agile teams were found to enjoy
higher job satisfaction.

It should be noted that in most of the comparative studies, the most
important requirement to enable comparing between Agile and “conven
tional” teams, namely, the controlling of a team’s level of expertise, was
not exercised. In other words, in most of the studies, team members were
not assigned randomly, and as a result Agile teams were of higher expertise
and higher abilities. This situation leads us to attach a lower value to the
findings.

D.5.5. Agile methodologies’ limitations

The limitations of the Agile methodologies stem from their very basic principles:

a. The high qualifications (see Frame D.3) required from Agile team mem
bers limit the number of participants in Agile teams.

b. The practice of performing all software quality assurance activities within
the team encourages the team to try to do the best to produce a high-qual
ity product. However, the practice of mutual development and then rely
ing on mutual reviews and testing within the team might lead to the
misidentification of errors and lack the external reviewer’s and tester’s
independent ability to identify errors. Thus, despite the team’s efforts, a
high-quality product is not always ensured.

c. It is expected that the very limited documentation, where a substantial part
of the project’s know-how is not documented, will cause substantial diffi
culties in cases when team members leave the team.

d. The very limited documentation is expected to cause difficulties perform
ing maintenance tasks.

e. Another difficulty in maintaining the products results from the permitted
free use of tools and procedures by Agile team members, rather than keep
ing to standards and instructions for documentation of analysis, design,
and programming (typical to some of the Agile methods).

660 Appendix D: From SDLC to Agile – Processes and Quality Assurance Activities

Summary

1. The classic software development models
Three classic models of software development processes are dis

cussed in this chapter:
• The SDLC model
• The prototyping model
• The spiral model

The classic SDLC model is a linear sequential model composed of
several phases, beginning with requirements definition and concluding
with regular system operation and maintenance.

At the end of each phase, outputs are reviewed and evaluated by the
developer, as well as the customer in many cases. The outcomes range
from approval of the phase results and continuation to the next phase, to
demands to correct, redo, or alter parts of the respective phase.

The waterfall model can be viewed as the basic framework for the
other models, which may be considered complementary, which represents
different perspectives of the process, or as diverse development process.

According to the prototyping methodology, users of the developed
system are required to comment on versions of the software prototypes
prepared by the developers. The developers thereafter correct the proto
type and incorporate additional parts into the system. This process is
repeated till the software system is completed or till the prototyping goal
is achieved.

The main advantages of the prototyping over the SDLC model for
small-to-medium projects are the shorter development processes, substan
tial savings in development resources, better fit to customer requirements,
reduced risk of project failure, and facilitated usability of the new system.

The advanced spiral model provides an improved methodology for
larger and more complex projects. This improvement is achieved by intro
ducing and emphasizing elements of risk analysis and customer participa
tion in the development process. Each of the model’s iterations includes
planning, risk analysis and resolution, engineering, and customer evalua
tion and comments.

The advantages of the object-oriented process stem from its class
structure: intensive software reuse possibilities (cost savings, shorter
development schedule, and lower error rates), easier software develop
ment and maintenance, easier quality assurance, and easier development
of large-scale projects.

2. The object-oriented methodology
The object-oriented methodology is based on a collection of indepen

dent units (termed “classes”), each dedicated to a physical or other entity
and saving its related data and software functions (termed “methods”).

Summary 661

These independent classes are “self-sufficient” and are said to be “encap
sulated.” The collaboration among these entities, by applying a message
network, enables achieving all system’s specified requirements. The
object-oriented model encourages intensive reuse of software compo
nents. According to this model, the development process begins with a
sequence of object-oriented analysis and design activities. The design
phase is followed by acquisition of reusable software components
together with “regular” development of the unavailable software compo
nents. The SQA activities are adapted to the class structure of object-ori
ented software development.

3. The incremental delivery model
According to the incremental delivery model, software products

are delivered to the customer in increments, rather than as an entire
software product. Each increment implements only part of the speci
fied requirements of the software system. The advantages of incre
mental delivery relate to clients and developers. Customers are able
to satisfy urgent and highest priority project goals at the earliest pos
sible schedule, and to gain substantial value of the project at an ear
lier stage. For the developer, the development in increments makes
development easier and reduces the risk of project failure. The com
mon approach of these methodologies was more individual interac
tions throughout the process.

4. The staged model
The staged model is an evolutionary model dedicated to the develop

ment process of a software product that begins as basic software and grad
ually becomes more sophisticated and comprehensive through a series of
software versions.

5. The Agile methodology models
The growing cost of software development, long supply schedules,

and the difficulty of introducing requirement changes all lead to lower
customer satisfaction. Several software development methodologies
offered radical changes to the traditional software development process in
order to confront these challenges. The common approach of these meth
odologies is the Agility concept: more individual interactions throughout
the project over processes, priority to working software over documenta
tion, customer collaboration over contract negotiations, and responding to
change requests over following a plan. The main Agility principles are as
follows: incremental delivery to satisfy customers, allowing requirement
changes throughout the project, customer joins the development team on
a daily basis, the importance of motivated team members, the importance
of face-to-face conversation, the importance of achieving working soft
ware, and the continuous attention to development excellence and
improvement of methods and behavior.

662 Appendix D: From SDLC to Agile – Processes and Quality Assurance Activities

Quality assurance activities incorporated in each iteration. Agile qual
ity assurance activities are performed together by team members and cus
tomer representatives throughout the development process. SQA activities
are conducted on software increments. Each increment relates to a small
number of requirements, and together with the customer’s contribution,
these activities are easier to perform and ensure a higher quality of
products.

The move from the “traditional” development method to Agile devel
opment methodologies is a radical change for team members and manag
ers. Despite difficulties, many organizations already implement Agile
methodologies in their organizations and more organizations are moving
to Agility each year.

6. The participants in quality assurance activities
A great variety of participants perform quality assurance activities in

the software life cycle of the various development models and
methodologies:
• The developing team
• The developer (footnote a in tables), and in many cases, the customer
representatives also participate.

• Development team colleagues
• The software development department
• The developer’s testing unit
• The developer’s (footnote a in tables) managers
• Customer representative teams
• An external testing organization
• The software operation team

Selected bibliography

Agile Alliance (2003) The Agility Principles, The Agile Alliance homepage, agilealliance.org/home.
Boehm B. W. (1981) Software Engineering Economics, Prentice Hall, Upper Saddle River, NJ, Ch. 4.
Boehm B. W. (1988) A spiral model of software development and enhancement, Computer, Vol. 21,
No. 5, pp. 61–72.

Boehm B. W. (1998) Using the win-win spiral model: a case study, Computer, Vol. 31, No. 7,
pp. 33–44.

Boehm, B. W., Gray T. E., and Seewaldt T. (1984) Prototyping versus specifying: a multiproject
experiment, IEEE Transactions on Software Engineering, Vol. SE-10, No. 3, pp. 290–303.

Dyba T. and Dingsoyr T. (2013) Empirical studies of Agile software development: a systematic
review, Information and Software Technology, Vol. 50, No. 9–10, pp. 839–859.

Gandomani T. J., Zulzalil H. A., Ghani A. A. A., Sulan A. B., and Nafchi M. Z. (2013) Obstacles in
moving to agile software development methods: at a glance, Journal of Computer Science, Vol. 9,
No. 5, pp. 620–625.

Huo M., Verner J., Zhu L., and Babar M. A. (2004) Software quality and agile methods, in The Annual
International Computer Software and Applications Conference (COMPSAc4), pp. 520–525.

IEEE (2008) IEEE/ISO/IEC Std. 12207:2008 – Systems and Software Engineering – Software Life
Cycle Processes, The Institute of Electrical and Electronics Engineers, New York, NY.

http://agilealliance.org/home

Review Questions 663

Pressman R. J. and Maxim B. R. (2015) Software Engineering – A Practitioner’s Approach,
8th Edition, European adaptation, McGraw-Hill International, London.

Royce W. W. (1971) Mapping the development of large scale systems concepts and techniques, in
Proceedings of IEEE WESCON, August 1970.

Sommerville I. (2015) Software Engineering, 10th Edition, Addison Wesley, Harlow, England.

Review questions

D.1 In reference to the SDLC model:

a. What are the seven basic phases of the development process suggested by the
model?

b. Suggest situations where the number of process phases should be reduced.

c. Suggest situations where the number of process phases should be increased.

D.2 With respect to the prototyping methodology:

a. List the conditions necessary for the prototyping model to be applied.

b. Can you suggest an imaginary project ideally suited for the prototyping
methodology?

c. Can you suggest an imaginary project that is obviously unsuitable for the prototyp
ing methodology?

D.3 With respect to the prototyping methodology:

a. List the participants in quality assurance activities

b. Explain the special contribution of each participation group to quality

D.4 The prototyping development process is used in a variety of project environments.

a. List the advantages prototyping may bring to projects, with the prototype serving
as a “throw away” project.

b. List the advantages of a prototyping project for an active organization when a full-
scale software project is expected to be completed in only 12 months.

c. An agricultural experimental site is expected to follow a new experiment to inves
tigate the effects of irrigation, fertilizers, and shading variations on the crops of
several kinds of vegetables. Most measurements should be automatic. The
research team comprises eight researchers. The research is planned to start within
2 months and to last for 3 years. Explain why the prototyping development process
would be the most suitable?

D.5 Comparing the SDLC and prototyping methodologies.

a. List the advantages of the prototyping compared with the SDLC methodology for
the development of small-to-medium projects.

b. Explain why the advantages of prototyping cannot be realized for large software
systems.

c. In which ways can prototyping support the development of large-scale projects?

664 Appendix D: From SDLC to Agile – Processes and Quality Assurance Activities

D.6 Referring to the advanced spiral model:

a. Describe the six activities to be repeated in each iteration of the development pro
cess. Explain why the six designated activities are to be repeated in each iteration
of the development process.

b. The advanced spiral model received from its author a second title, “The Win-Win
Model.” Can you explain this additional title?

D.7 Object-oriented software is based on the class structure.

a. Explain how the class structure promotes software reuse.

b. Imagine a software system for managing a large store, which was developed
according to the object-oriented model. Can you suggest five classes of the soft
ware system with high reuse potential?

c. Referring to the above-mentioned classes, could you suggest two software systems
belonging to different areas that could reuse the particular class for each of the
above-mentioned classes?

D.8 A software house is to perform two projects: internal development of a commercial
software package, and a custom-made project for long-term customers. The staged
model is applied for the development of the commercial software package, while an
incremental delivery model is employed for the development of the custom-made
project.

a. Do you support the decision to employ the staged model for the commercial soft
ware package?

b. Do you support the decision to employ the incremental delivery, rather than the
SDLC model, for the development of the custom-made project?

D.9 The prototyping model, incremental delivery model, and Agile models employ itera
tive processes.

a. Explain the differences in the part iteration in these three development models.

b. Compare the customer representative’s task in each of the three development
models.

Topics for discussion

D.1 A software development firm is planning a new and very large-scale airport luggage
control project. The system is to control the luggage transfer from the terminal to the
planes, from the planes to the terminal’s luggage release system, and from plane to
plane (for transit passengers). The airport requires the highest reliability for the sys
tem, and wishes to initiate several new applications that have yet to be implemented
in any other airport.

a. Two professional consultants recommend using the object-oriented model, but dif
fer regarding their choice of method – Agile versus “traditional” method. What
would you suggest as the recommended method? What are your arguments?

b. Estimate the risk involved in the project. Does it justify the use of the spiral
model?

Topics for Discussion 665

D.2 The software development department employs almost 100 analyzers, designers, and
programmers. The department’s manager plans to move the department’s profes
sional staff from the traditional development methods to an Agile development meth
odology within the next year. His deputy claims that only half of the teams are suited
to be moved to Agile development methods, while the rest should continue to employ
the traditional methods.

a. What are the arguments the department’s manager could present?

b. What are the arguments the deputy could present to support only partial transition
to the Agile development method?

D.3 HRS Ltd. is a software house that specializes in human resource management pack
ages sold mainly to small- and medium-sized organizations. Its recruitment manage
ment software packages are already very popular.

a. Which methodology should be applied by HRS? List your arguments.

b. The company wishes to penetrate the area of custom-made human resource man
agement software systems for large organizations such as banks and government
agencies. Which methodology or combination of methodologies would best fit its
new needs?

D.4 Software reuse has become an important factor in the software development industry.

a. Explain the advantages of software reuse.

b. How can a software development firm get organized to efficiently reuse software?

c. What similar trends can you identify in manufacturing industries (automobiles,
home appliances, etc.)?

D.5 The Agile models and the incremental delivery model adopt the incremental delivery
concept.

a. Explain the differences between these two models.

b. The head of an Agile development team has decided to double the increment size
and deliver software every 8, instead of 4, weeks, claiming an important 50% sav
ings on integration tests. Do you support the team head’s decision considering its
effect on the team performance and the customer satisfaction?

D.6 Refer to the quality assurance efforts invested in quality assurance activities of the
SDLC model and the incremental development process.

a. Compare the efforts invested in the quality assurance activities of these software
development processes.

b. Explain the reasons for these differences.

c. Discuss the advantages of the incremental development process.

Author Index

A
Abdullah R., 321, 342
Abran A., 321, 329, 342, 354, 364
Adeputra F., 558
Aggarwal K. K., 440, 471
Ahmad R., 613
Aiello R., 522, 541
Akukary A. M., 536, 541
Alarifi A., 342
Alba E., 629, 632
Al-Badareen A. B., 321, 342
Albrecht, A. J., 364
Alexandre S., 582
Alidoosti R., 522, 541
Alkhateeb J., 424, 445
Almeida H. C., 472
Al-Qutaish R. A., 39, 42, 311, 456, 471
Alves A., 615
Alves de Oliviera E., 364
Alyahya M., 597, 613
An I., 311
Anand S., 298, 310
Ani Z. C., 449, 471
Anquetil N., 365, 472, 558
April A., 329, 330, 342, 582
Aurum A., 240, 248
Avrahami M., 171, 183, 600, 614
Aziz F., 364
Azmi Murad M. A., 342

B
Baker E. R., 486, 503
Barkmann H., 348, 364, 456, 471
Barr E. T., 552, 558
Barry, C., 503
Bashka J., 311

Basili V. R., 422, 424, 438, 444
Basri S., 471
Bau J., 298, 311
Beckhaus A., 184
Beizer B., 311
Bella F., 589, 613
Berki E., 59, 77
Berrhouma N., 184
Bieman J., 39, 42, 348, 365, 449, 472
Biffi S., 248
Biggerstaff T. J., 551, 557
Bigonha M. A. S., 472
Bigonha R. S., 472
Black A. P., 550, 558
Boehm B. W., 33, 42, 422, 424, 438, 444,
640, 643, 662

Booher L., 503
Bourque P., 20, 503
Bragdon A., 550, 558
Breu R., 136
Brown J. R., 42
Brtka V., 342
Brun V., 558
Buchmann T., 522, 541
Bucur S., 311
Buglione L., 364
Bunse C., 445
Burke E. K., 310
Bursztein E., 311
Buse R. P. L., 553, 558

C
Cadar C., 289, 311
Calco-Manzano J. A., 614
Candea G., 286, 311
Carvallo J. P., 33, 42, 438, 444

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

667

668 Author Index

Carver D., 497, 503
Casado-Lumbreras C., 632
Caspar H., 42
Caswell D. L., 42
Catanio, 496
Chafle G., 550, 558
Cheikhi L., 449, 471
Chen T. Y., 310
Cheung W., 558
Chicano J, F., 629, 632
Chisnell D., 258, 275, 277, 311
Chrissis M. B., 615
Chutimaskul W., 43
Cicibas H., 529, 632
Ciolkowski M., 240, 248
Clark J., 310
Clarke P., 570, 581
Clemm G., 541
Cohen M. B., 310
Coleman C., 558
Colomo-Palacios R., 601, 614, 632
Conradi R., 445
Cota M. P., 558
Cozzetti S., 558
Crandall B., 364
Crnkovic I., 558
Cross P., 470, 471
Cuadrado-Gallego J. J., 364
Curtis B., 601, 614, 615
Cusumano M. A., 350, 364,
623, 632,

Czarnacka-Chrobot B., 364

D
da Silva M. M., 614
da Silva R. N., 614
Dacosta J. G., 558
Darcy D. P., 449, 472
Das G., 558
Dasgupta K., 558
Daughtrey T., 170, 183
de Almeida E.S., 136
de Lascurain L., 136
De Marco, 346
de Oliviera K. M., 356, 558
de Souza B., 558
Dekkers C. A., 470, 472
Demir K. A., 632

Demirors O., 356, 364, 365
Desharnais J. M., 342, 364
Deutsch M. S., 33, 42
Diaz J., 567, 614
Din J., 342
Dingsoyr T., 657, 662
Do T. B. N., 285, 311
Dobbins J. H., 240, 241,
243, 248

Dominguz-Alda M. J., 364
Dondeti J., 271, 311
Dotor A., 541
Doucet M., 184
Drienyovszky D., 550, 558
Dromey R. G., 33, 42
Ducasse S., 365, 472
Dumke R., 342
Durieux T., 552, 558
Dustin E., 292, 293, 311
Dyba T., 657, 662

E
Efe P., 364
El Emam K., 615
Elzamly A., 125, 136
Ernst M. D., 558
Estublier J., 522, 541
Evans M. W., 33, 39, 42

F
Fagan M. E., 232, 240, 248
Fairley R. E., 20, 503
Fauzi S. S. M., 522, 541
Felderer M., 136
Femandez de Sevilla M., 364
Fensel D., 558
Fenton, N. E., 39, 42, 348, 349, 365,
449, 472

Ferreira K. A. M., 449, 472
Fewster M., 293, 311
Figueiredo A. M. C. M., 615
Findlater L., 558
Fisher M. J., 503
Flowers S., 172, 183
Franch X., 33, 42, 444
Funilkul S., 43
Furia C. A., 558
Fusani M., 615

Author Index 669

G
Galin, 171, 183, 600, 614
Gama N., 601, 614
Gandomani T. J., 658, 662
Garbajosa J., 614
Garcia-Crespo A., 614
Garcia-Penalvo F. J., 632
Garrett T., 293, 311
Gasevic D., 422, 424, 438, 445
Gauf B., 293, 311
Gencel C., 356, 364, 365
Georgiadou E., 42, 77
Ghani A. A. A., 662
Gholami B., 629, 633
Gill N. S., 59, 77
Godefroid P., 298, 311
Goldenson D., 615
Gomez-Berbis J. M., 614
Goues C., 558
Grady R. R., 42
Graham D., 293, 311
Grieskamp W., 310
Grottke M., 184
Guey-Shin C., 566, 581
Gupta A., 321, 342
Gupta D., 311
Gutierez de Mesa A., 364

H
Habibi J., 541
Hakansson J., 558
Hallowell, 198
Harman M., 310
Harrold M. J., 310
Hatayama G., 311
Hatton L., 248
Hedstorm J. R., 198, 199
Hefley W. E., 614
Helgesson Y. Y. L., 589, 614
Hencko M., 365, 472
Hillson D., 125, 136
Holcombe M., 77
Holmes R., 558
Hormann K., 613
Horng-Linn P., 581
Horpacsi D., 558
Horta H., 232, 233, 248
Host M., 136, 614

Houston D., 514, 519
Hristoski I. H., 342
Huffman Hayes J., 342
Huo M., 657, 662
Hussin B., 125, 136

I
Idri A., 471
Incki K., 286, 311

J
Jabar M. A., 342
Jang M., 497, 503
Jer-Nan J., 581
Jiang, L., 20
Jimenez, M., 523, 633
Jones, C., 125, 136, 171, 183,
189, 190, 199, 314, 354, 356,
365, 504

Ju P-H., J. J., 483
Jung H-W., 615

K
Kabia, 497
Kalia A., 43
Kaplan J., 558
Karg L. M., 165, 184
Karumuri S., 558
Kaur A., 445, 471
Kemerer C. F., 364, 449, 472
Kerrigan M., 550, 558
Kersten M., 558
Kesh S., 597, 615
Khateeb, 438
Khurshid S., 311
Kienle H. M., 553, 558
Kitamura T., 311
Kitchenham B., 365, 449, 472
Klein G., 483
Knox S. T., 184
Ko, A. J., 16, 20
Kogel M., 522, 541
Krasner H., 171, 184
Krishnamoorthy M., 456, 472
Krishnamurthy A., 57, 570, 582
Kruse P. M., 285, 311
Kumar A., 558
Kumar P., 33, 39, 43

670 Author Index

L
Lado M. J., 558
Laitenberger O., 248
Laporte C. Y., 170, 171, 184, 570, 582
Lapouchnian A., 522, 541
Laval J., 365, 472
Lavazza L., 354, 365
LaViola J. J., 558
Lawford M., 233, 248
Leblang D., 541
Lee S. P., 613
Leino K. R. M., 550, 558
Lenarduzzi V., 356, 365
Leon A., 522, 541
Lepnets M., 615
Levin M. Y., 311
Li J., 424, 438, 445
Linke R., 364, 471
Lipow M., 42
Lo, D., 20
Lobato L. L., 125, 136
Lowe W., 364, 471
Lunesu I., 365
Luniak M., 285, 311

M
MacCormack A., 364
Machado-Pinz F., 364
MacLeod G., 42
Madachy, 240, 241
Maheswaran K., 456, 471
Maintinguer S. T., 615
Mairead, 496
Maki-Asiala P., 424, 438, 445
Makinen, 597
Malhotra R., 438, 445, 471
Maniani L., 311
Marciniak J. J., 39, 42
Mariani, 294
Martinez M., 558
Mas A., 615
Matinlassi M., 424, 438, 445
Matta M., 365
Mattos C. V., 615
Maurizio M., 445
Maxim, B, R., 190, 198, 199, 232, 233,
248, 258, 278, 311, 476, 483, 522,
541, 663

McCall, J., 25–27, 29, 31, 33–44, 82, 272,
307

McHugh O., 496, 503
McMinn P., 310
McQuaid P. A., 470, 472
Mechtaev S., 552, 558
Meli R., 356, 365
Mendes L. F. O., 472
Mendez A. J., 558
Merritt M., 42
Mesquida A. L., 609, 615
Meyer B., 558
Miller S. A., 614
Mishra A., 232, 233, 248
Mishra D., 248
Mitchell J., 311
Mitrevski P. J., 342
Mittal S., 558
Moaven S., 541
Mocan A., 558
Mohd Nor M. Z., 321, 342
Molnar D., 311
Monperrus M., 558
Morasca S., 354, 365
Mordal K., 365, 449, 472
Muhairat M., 275, 311
Mukherjea S., 558
Muller H. A., 553, 558
Murphy G. C., 550, 558
Murphy-Hill E., 550, 558
Murugesan S., 629, 633
Musa K., 424, 445, 458
Muslu K., 285, 550, 558
Mustafa K. M., 275, 311
Myers G. J., 257, 311
Myers, B. A., 16, 20
Mylopoulos J., 541

N
Nafchi M. Z., 662
Nair N. G., 240, 248
Nelson C. R., 125, 136
Neto P. A., 136
Neumann R., 582
Ng S-H., 342
Nguyen V. T., 311
Nickl F., 136
Nicolette D., 348, 365, 449, 472

Author Index 671

Nidhra S., 271, 311
Nordio M., 558
Notkin D., 558
Noya R. C., 356, 364
Ntnu R. C., 541

O
O’Connor R. V., 570, 581, 582
O’Neill, 240, 243, 248
Obrenovic, 422, 424, 438, 445
Ohsaki H., 311
Oktaba H., 615
Oni O., 503
Orozo M. J., 615

P
Palacios, 623
Palza-Vargas E., 184
Panka, 33
Parnas D. L., 232, 233, 248
Pasareanu C. S., 311
Paul J., 292, 311
Paulk M. C., 599, 615
Pei Y., 552, 558
Pekar V., 125, 136
Perry W., 258, 275, 311, 438, 445,
514, 519

Petersson H., 248
Pettersson P., 558
Pezze M., 311
Piattini M., 633
Pino F., 615
Pressman, R. J., 18, 190, 198, 199, 232,
233, 248, 258, 278, 311, 476, 483, 522,
541, 663

Q
Quadrado-Dalego, A., 354
Quirchmayr G., 33, 43

R
Radjenovic D., 348, 365, 449,
472

Rale D., 364
Ramanujan S., 597, 615
Rashka, 292
Raz T., 125, 136
Redmiles D., 541

Reifer, 476
Reiss S., 558
Rejas–Muslera R. J., 364
Renault A., 582, 615
Reuss G., 615
Richards P., 43
Rifkin S., 470, 472
Riganelli O., 311
Rosello E. G., 551, 558
Roßik C., 136
Rout T. P., 609, 615
Royce, 640
Rubin J., 258, 275, 277, 311

S
Sachs L., 522, 541
Sakuragi S., 311
Sallami A., 471
Salviano C. F., 589, 609, 615
Santillo L., 356, 365
Santoro M., 311
Sarlan A., 471
Sarma A., 522, 541
Schulmeyer G. G., 503
Schwarcz F., 136
Seewaldt T., 662
Selamat M. H., 342
Sen K., 311
Sentilles S., 550, 558
Serebrenik A., 365, 472
Sharma A. H., 38, 43
Singh Y., 445, 471
Slankas J., 554, 558
Slyngstad O. P. N., 445
Smith E. K., 552, 558
Sommerville R., 232, 233, 248, 258, 311,
556, 663

Soto-Acosta P., 632
Sozer H., 311
Srivastava B., 558
Stallinger F., 570, 582
Stefanuto G. N., 615
Stojanov Z., 321, 342
Sulaman S. M., 125, 136
Sulan A. B., 662
Suleiman B., 424, 438, 445
Suma V., 248
Suominen, 597

672 Author Index

T
Taibi D., 356, 365
Tanler M., 558
Texel P. P., 470, 472
Thompson S., 558
Thung F., 16, 20
Tichy W., 541
Tillman N., 311
Torchiano M., 445
Torkar R., 365, 472
Tovar E., 632
Tovar-Caro E., 614
Trujillo M. M., 597, 615
Turaev S., 342
Tyran G., 136

U
Unal O., 632

V
van der Hoek A., 541
Vanamali B., 613
Vasilescu B., 365, 472
Venkatesan V. P., 456, 472
Verner J., 662
Visser W., 311
Vizcaino A., 633

W
Wabg, 477
Walters G., 43
Wang E. T. G., 483

Watson D, A., 198, 199
Weber C. V., 615
Wei Y., 558
Weimar W. R., 553, 558
Westfall L., 18, 20, 497, 503
Westfechtel B., 541
Weyns K., 136, 614
Wiborg-Weber D., 541
Williams L., 555, 558
Willis R. R., 33, 42
Wohlin C., 248
Wustholz V., 550, 558

X
Xie M., 342
Xiong C. J., 321, 342
Xuan J., 558

Y
Yilmaz M., 581
Yourdon E., 232, 248
Yu Y., 541

Z
Zamfir C., 311
Zarour M., 342
Zeitoum C., 615
Zeleznik R., 558
Zerour, 329
Zhu L., 662
Zivkovic A., 365, 472
Zulzalil H. A., 662

Subject Index

A
agile models, 652
implementation experience, 658
key traits of Agile project team
members, 656

methodologies limitations, 659
quality assurance activities, 656
typical software development
process, 655

agility principles, 653
assuring software quality for operation

services, 318–42
automated testing
advantges and disadvantages, 298
alpha and beta site testing, 301
availability and load tests, 294
test management and control, 298
tools, 551

automated testing process vs. manual
testing, 291

automatic documentation tools, 553

B
black box testing
advantages and disadvantages, 267
definition, 264

bootstrap
methodology, 610

bootstrap Institute
support to its licensed members, 610

capability maturity model integrated.
see CMMI

CASE tools
classsic tools, 546
contribution to software project, 545

definition, 544
IDE, 548
real CASE tools, 550

CASE tools and IDEs–impact on
software quality, 544–57

checklists, 517
common sources of, 517
contribution to software quality, 516
organizational framework for
implementing, 516

preparation of new checklists, 517
promotion of use, 518
updating of, 517
users of, 514

classic CASE tool
automatic documentation, 547
code editing, 546
software project management, 548

classical software development
models, 636

CMMI
appraisal process, 599
assessment methodology, 597
implementation experience, 600
performance improvement, 600
principles of, 597
structure and processes areas, 598

code review activities for programming, 303
configuration management. see software

configuration management
contract review, 141–54

contract draft review evaluation
subjects, 148

contract draft review topics checklist, 161
for software operation, 331
implementation of, 149
objectives of, 142

Software Quality: Concepts and Practice, First Edition. Daniel Galin.
 2018 the IEEE Computer Society, Inc. Published 2018 by John Wiley & Sons, Inc.

C

673

674 Subject Index

contract review (continued)
process and stages, 143
proposal draft review evaluation
subjects, 146

proposal draft review topics
checklist, 157

corrective and preventive actions
organization for, 416
sources of information for, 409

corrective and preventive actions
process, 407

CoSQ classic model classes
appraisal costs, 166, 167
costs of control, 166
costs of failure of control, 166
external failure costs, 166, 169
industry figures, 170
internal failure costs, 166, 168
prevention costs, 166

CoSQ extended model classes
management quality costs, 173
managerial apprqisal costs, 174
managerial external failure costs,
175

managerial internal failure costs, 175
managerial prevention costs, 174
quality costs of development and
SQA, 173

CoSQ measurements
objectives of, 164

CoSQ system
actions taken in response to model’s
findings, 178

application of, 175
classiication of items, 177
definition Implementation of planned
system, 178

definition of organization’s items, 176
planning of cost data collection, 176

cost of softwae quality, 162–83. see also
CoSQ

D
design errors
casified by severity, 237

development plan elements
control methods, 119
documentation control, 127

estimating of development
resources, 121

mapping the development process, 119
project cost estimations, 126
project development standards and
procedures, 126

project interfaces, 121
project methodology and development
tools, 126

project milestones, 125
project organization, 121
project products, 119
project risks, 122
required development facilities, 126
security including virus protection, 127

E
effectiveness and cost SQA model
application for comparing V&V
plans, 195

data required for the model, 189
defect removal efectiveness, 190
defect rremoval cost, 190
the SQA model, 191

effectiveness and cost of a V&V plan
–SQA, 189–99

equivalence classes for black box correct
ness tests, 267

equivalence classes partitioning
test cases for, 268
the Golden Splash swimming center
example, 267

establishing SQA processes software
processes and coordination, 107–9

coordinating SQA processes, 108
establishing SQA processes, 107

evaluation of processes and development
environment, 395–401

evaluation of the required
environment, 397

expert opinion, 244
external participants. see extrnal performers
external performers, 421
activities for assuring process
quality, 432

benefits and risks of introducing, 427
certification of external performers team
leaders, 437

project progress control, 624
requirements list presented to, 433

F
formal design review (DR), 225
DR session, 229
participants, 226
post review activities, 230
preparations for DR, 228

function points, 370. see also functional
size measurement (FSM)

product attribute metrics, 356
functional size measurement (FSM), 353,

355
implementation, 370
the Attend-Master software system
example, 371

I
IDE feature examples, 549
IEEE Std. 1012
concepts, 575
contents, 576
task description – an example, 577
V&V plan outline, 578

IEEE Std. 730, 566
activity description – an example,

569
contents, 568
structure, 567

improvement processes – corrective and
preventive actions, 404–18

incremental delivery model, 651
quality assurance activities, 651

inspection, 224
versions of the process, 239

integrated development environment. see
IDE

Internal projects
contract reviews for, 151
development and quality plans for, 132
project progress control, 624

ISO/IEC Std. 12207
activity’s tasks description – an

example, 572
concepts, 570
contents, 572
fishbone diagram, 573

Subject Index 675

software life cycle processes, 570
ISO/IEC Std. 15504
appraisal process, 608
capability dimension model, 606
component standards, 603
principles of assessment model, 604
process control attributes – an

example, 606
structure of assessment model, 604
the SPICE project, 602

ISO/IEC Std. 90003
certification process, 594
procedures for retaining tha
certification, 596

requirement areas, 593

K
KLOC (thousands off lines of code) size

estimation, 353

M
management process metrics
software development progress, 466,
467

software reuse, 467, 468
management review, 62
mini case
ABC Software Ltd - an unnecessary
loss, 585

C.F.M. project completion
celebration, 141

Complaints from the City Computer
Club members, 23

finally a successful project
the happy design review, 224
how a well planned project lost over half
a million dollars, 477

HR Software’s success, 321
Jack thanks his department
manager, 117

Jeff’s troubles, 200
Joe decided to skip in-process
testing, 259

North against South - who’ll win this
time round, 450

the Pharmax tender, 424
Superbox pays $9000 in damages due to
failing support center, 376

676 Subject Index

finally a successful project (continued)
surprises for the “3S” development
team, 487

the “3S” Development team-
Revisited, 404

this time the budget was approved, 162

O
object-oriented model, 645
advantages, 647
quality assurance activities, 650
software development process, 647

organization for assuring software
quality, 58

depament maagers activities, 63
executive in charge of software quality
actiities, 60

management review, 62
project management responsibilities, 65
SQA committee members, 71
SQA forum members, 71
SQA trusties, 71
the SQA unit, 66
top management activities, 59

P
peer review, 231
effectiveness and efficiency, 240
inspection vs. walkthrough, 231
participants, 233
peer review session, 236
post peer review activities, 238
preparations for peer review, 235

people CMM model
capability levels and process areas, 601

procedure
definition, 378
procedure manual, 378
updating, 384

procedures and work instructions,
375–86

the conceptual hierarchy, 378
implementation process, 382
the need for, 375

process evaluation
assessment staff skills and
knowledge, 400

life cycle processes, 396

by measurements, 399
subcontructor processes, 398

process requirement
definition, 395

product evaluation for
conformance, 213–19

evaluation of operation phase
product, 216

evaluation of project plans, 214
evaluation of project’s products for
acceptability by customer, 216

evaluation of project’s software
products, 215

evaluation of software product by
measurements, 217

objective, 214
project plan
development plan elements, 119
elements of, 119
objectives of, 117
process of preparing, 116
quality plan elements, 127

project progress control, 617–32
components of, 621
control of risk management
activities, 621

of distributed and globally distributed
projects, 623

of external participants, 624
implementation of, 625
of internal projects, 624
metrics for project progress, 629
process, 618
project budget control, 623
project resource control, 622
project schedule control, 622

project risks, 122
development methodology and tools
risks, 123

development risks, 122
estimtion risks, 123
financial product risks, 122
organizational risks, 123
physical product risks, 122
product risks, 122
requirement risks, 122
safety risks, 122
team member risks, 123

prototyping model, 640
advantages and disadvantages, 643
developer and user evaluation
collaboration in a prototyping, 642

Q
quality management standards
the scope of, 587

quality plan elements
change mangement, 130
configuration management tools and
procedures, 129

criteria for ending each project stage, 129
monitoring measurement activities, 130
person(s) responsible for approving
project outputs, 130

procedures and work instructions, 128
project life cycle SQA activities, 129
quality goals, 128
training in usage of new development
tools, 130

R
readymade software, 421, 430
QA activities for assuring quality, 438
testing package or component, 441

real CASE tools, 550, 554
advanced automatic documentation, 553
analysis and design tools, 550
automated testing, 551
coding tools, 550
contribution to software quality, 554
detection of defect and their
correction, 552

reengineering, 553
refactoring, 550
restructuring, 553

reengineering tools, 553
refactoring, 550
restructuring tools, 553
review, 222–47
comparison of methods, 244
definition, 222
objectives, 223

risk management actions (RMA), 124
contributions of, 139
evaluation of identified software risk
items, 124

Subject Index 677

identification of software risk items, 124
monitoring implementation of the risk
manaement plan, 125

planning RMAs, 124

S
SCC
function in the organization, 481
SQA activities, 482

SDLC model, 636
quality assurance activities, 639

small projects
development plans for, 130
elements for development and qualiy
plans, 131

software change control. see SCC
software change control processes,

476–83
software change requests
document, 480
the process of examination and selection
of, 476, 477, 479, 481

submission of, 479
software configuration items
common types, 525
definition, 524
versions and releases, 526

software configuration management,
522–41

computerized tools for tasks
performing, 535

definition:, 523
function in the organization, 536
planning, 532
services, 534
SQA activities, 537
tasks, 523

software configuration versions, 526
documentation of, 531
evolution models, 528

software development and quality
assurance process standards,
563–81

software development life cycle. see SDLC
software development process metrics, 452
effectiveness, efficiency and
productivity, 458

error density, 452

678 Subject Index

software development process metrics
(continued)

error severity, 452
for readymade software suitability, 456
quality, 452

software development, maintenance and
SQA environment, 49

software engineering, 17
software maintenance maturity model

(SMMM), 329
software maintenance process metrics
effectiveness, efficiency and
productivity, 465

failue cases workload, 463
quality, 464

software maintenance services, 320
objectives, 320
quality metrics, 337

software metrics limitations, 467
software operation services, 318
cost of quality, 337
foundations for high quality, 324
plan, 333
progress cintrol, 335
unit organization, 334

software operation USC process metrics
calls workload, 461
effectiveness, efficiency and
productivity, 462

quality of service, 462
software process assurance activities for

external participants, 421–44
software process improvement. see SPI
software process metrics
classification, 449
definition, 448
for development productivity, 460
for development rework, 460
for error removal effectiveness, 459
for error removal efficiency, 459

software process quality metrics, 448–71
software product
definition, 5

software product metrics
classification, 352
effectiveness, 359
efficiency, 358
functionality, 356

maintainability, 359
portability, 359
productivity, 360
reliability, 357
safety, 361
satisfaction, 361
size metrics, 353
usability, 358

software product quality metrics, 318–42
software progress control
computerized tools for, 626

software quality
causes of sofware errors, 11
definition, 3

software quality assurance. see SQA
software quality challenges, 45–56
software quality engineering, 17
software quality factors, 23–44

alternative quality models, 34
compatibility, 34
correctness, 27
criteria (sub-factors, 38
effectiveness, 35
efficiecy, 28
evolvability, 35
expandability, 35
extensibility, 35
flexibility, 30
funcional suitability, 34
human engineering, 35
ineroperability, 32
integrity, 29
ISO/IEC 25010 model, 33
maintainability, 30
manageability, 36
Mc Call’s classic model, 25
modifiability, 36
performance efficiency, 34
portability, 31
product operation factors, 27
product revision factors, 29
product transition factors, 31
productivity, 36
reliability, 27
reusability, 31
safety, 36
satisfaction, 36
security, 34

supportability, 37
survivability, 37
testability, 31
understandability, 37
usabuility, 29
verifiability, 37

software quality management additional
standards, 609

software quality management standards
As SPI standards, 589

software quality management standards
and models, 563–81

software quality metrics
analysis of metrics data, 350
implementation of, 349
objectives, 346
required characteristics, 347

software quality requirements
the need for, 24

software releases and version policies, 324
software suitability metrics
for readymade software
components, 457

software testing, 255–310
automated testing, 289
definition, 255
designing the testing process, 286
documenttion odf the
implementation, 289

evaluation of software products, 257
incremental vs., 260
objectives, 256
operation factor testing classes, 273
planning the testing prcess, 280
requirement driven, 272
strategies, 260
test case sources, 281
where should the tests be performed, 285
white box and black box testing, 264

SPI standards
concepts, 589

spiral model, 643
quality assurance activities, 646

SQA
compared to software quality control, 16
definition and concepts, 3–19
environment chracteristics, 49
errors, faults and failures, 7

Subject Index 679

objectives, 5
principles, 7
uniqueness of, 45

SQA plan
elements of, 112
process assurance elements, 115
process of preparing, 112
product assurance elements, 114
Sctivity elements, 116
SQA process implementation
elements, 113

SQA plan and project plan, 111–40
SQA records and documentation

control, 189–99
definitions, 201
implementation of, 204
objectives of, 204
typical controlled documents, 202

SQA world
appendices, 99
introductoty topics, 81
process assurance activities, 91
product assurance activities, 87
the SQA hall of fame, 103
SQA processes implementation
activities, 83

tools and metjods supporting software
quality, 96

SQA world – an overview, 81–104
staff certification
components of a certification
program, 498

follow-up of certification process and
results, 500

objectives of, 495
planning programs for selected
positions, 497

process of, 495
typical certification requirements,
497

staff skills and knowledge – training and
certification, 486–503

staged model, 652
life cycle, 652
quality assurance activities, 653

standards
benefits of using, 563
classification, 565

680 Subject Index

standards development
international organizations involved in
standards development, 564

T
templates
application of, 513
contribution to software quality, 510, 511
information sources for, 512
organizational framework for
implementing, 511

preparation of new templates, 512
updating of, 513
usage advantages to development
teams, 510

templates and checklists, 509–19
TickIT, 609
activities, 610

training
determine needs for software
development positions, 489

follow-up of training activities and
trainees, 492

plan training and updating
programs, 491

process for software development
staff, 489

process for SQA function team, 493
the objectives of, 488

U
user support services, 318
objectives, 319

W
walkthroughs, 224
waterfall Model, 637
white box testing
advantages and disadvantages, 266
definition, 264

work instructions
definition, 378

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley's ebook
EULA.

http://www.wiley.com/go/eula

	Software Quality: Concepts and Practice
	Contents
	Preface
	Acknowledgments
	About the Author
	Guides for Special Groups of Readers
	Part I: Introduction
	Chapter 1: SQA - Definitions and Concepts
	1.1 Software Quality and Software Quality Assurance-Definitions
	1.2 What Is a Software Product?
	1.3 The Principles of Sqa
	1.4 Software Errors, Faults, and Failures
	1.5 The Causes of Software Errors
	1.6 Software Quality Assurance Versus Software QualityControl
	1.7 Software Quality Engineering and SoftwareEngineering
	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Chapter 2: Software Quality Factors (Attributes)
	2.1 Complaints From the City Computer Club Members- an Introductory Mini Case
	2.2 The Need for Comprehensive Software QualityRequirements
	2.3 McCall'S Classic Model for Software Quality Factors
	2.3.1 Mc Call's product operation software quality factors
	2.3.2 Product revision software quality factors
	2.3.3 Product transition software quality factors

	2.4 The ISO/IEC 25010 Model and Other Alternative Models of Software Quality Factors
	2.4.1 The ISO/IEC 25010 model
	2.4.2 Alternative software quality models

	2.5 Software Compliance With Quality Factors
	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Chapter 3: The Software Quality Challenges
	3.1 Introduction
	3.2 The Uniqueness of Software Quality Assurance
	3.3 Software Development, Maintenance, and Sqa Environment
	Summary
	Review Questions
	Topics for Discussion

	Chapter 4: Organization for Assuring Software Quality
	4.1 Introduction
	4.2 Top Management's Quality Assurance Activities
	4.2.1 Software quality policy
	4.2.2 The executive in charge of software quality
	4.2.3 Management review

	4.3 Department Managers With Direct Responsibilities for Quality
	4.3.1 The SQA system-related responsibilities of department management

	4.4 Project Management Responsibilities for Quality
	4.5 The Sqa Unit and its Associated Players in the SqaSystem
	4.5.1 The SQA system
	4.5.2 The SQA unit
	4.5.3 Tasks of SQA area 1: SQA process implementation activities
	4.5.4 Tasks of SQA area 2: product assurance activities for conformance
	4.5.5 Tasks of SQA area 3: process assurance activities for conformance

	4.6 The Associated Players in the Sqa System
	4.6.1 SQA trustees and their tasks
	4.6.2 SQA committees and their tasks
	4.6.3 SQA forums - tasks and methods of operation

	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Chapter 5: The SQA World - An Overview
	5.1 First Area: Introductory Topics (Part I of the Book)
	5.1.1 SQA - definitions and concepts (Chapter 1)
	5.1.2 Software quality factors (attributes) (Chapter 2)
	5.1.3 SQA challenges (Chapter 3)
	5.1.4 Organization for assuring software quality

	5.2 Second Area: Sqa Process Implementation Activities (Part Ii of the Book)
	5.2.1 Establishing SQA processes and their coordination with related software processes (Chapter 6)
	5.2.2 SQA plan and project plan (Chapter 7)
	5.2.3 Preproject process - contract review (Chapter 8)
	5.2.4 Cost of software quality (Chapter 9)
	5.2.5 The effectiveness and cost of a VandV plan - the SQA model (Chapter 10)
	5.2.6 SQA records and documentation control (Chapter 11)

	5.3 Third Area: Product Assurance Activities for Conformance (Part Iii of the Book)
	5.3.1 Evaluation of products for conformance (Chapter 12)
	5.3.2 Reviews (Chapter 13)
	5.3.3 Software testing (Chapter 14)
	5.3.4 Assuring software operation services quality conformance (Chapter 15)
	5.3.5 Software product quality metrics (Chapter 16)
	5.3.6 Procedures and work instructions (Chapter 17)

	5.4 Fourth Area: Process Assurance Activities for Conformance (Part Iv of the Book)
	5.4.1 Evaluation of processes and development environment for conformance (Chapter 18)
	5.4.2 Improvement processes - corrective and preventive actions (Chapter 19)
	5.4.3 Software process assurance activities for external participants (Chapter 20)
	5.4.4 Software process quality metrics (Chapter 21)
	5.4.5 Software change control processes (Chapter 22)
	5.4.6 Staff skills and knowledge - training and certification (Chapter 23)

	5.5 Fifth Area: Additional Tools and Methods Supporting Software Quality (Part V of the Book)
	5.5.1 Templates and checklists Chapter 24)
	5.5.2 Configuration management (Chapter 25)
	5.5.3 CASE tools and IDEs - their impact on software quality (Chapter 26)

	5.6 Sixth Area: Appendices (Part VI of the Book)
	5.6.1 Software development and quality assurance process standards (Appendix A)
	5.6.2 Software quality management standards and models (Appendix B)
	5.6.3 Project progress control (Appendix C)
	5.6.4 From SDLC to Agile - processes and quality assurance activities (Appendix D)

	5.7 The Sqa Hall of Fame

	Part II: SQA Process Implementation Activities
	Chapter 6: Establishing SQA Processes and Their Coordination with Relevant Software Processes
	6.1 Establishing Sqa Processes
	6.2 Coordinating Sqa Processes With Related SoftwareProcesses
	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Chapter 7: SQA Plan and Project Plan
	7.1 Introduction
	7.2 The Process of Preparing an Sqa Plan
	7.3 The Sqap Elements
	7.3.1 SQA process implementation activity elements
	7.3.2 Product assurance activity elements
	7.3.3 Process assurance activity elements

	7.4 The process of preparing a project plan
	7.5 Jack Thanks His Department Manager - a Mini Case
	7.6 The Elements of the Project Plan
	7.6.1 Development plan elements
	7.6.2 Elements of the quality plan

	7.7 Project Plans for Small Projects and for Internal Projects
	7.7.1 Development and quality plans for small projects
	7.7.2 Development plans and quality plans for internal projects

	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion
	Appendix 7.A: Risk Management Activities and Measures

	Chapter 8: Preproject Process - Contract Review
	8.1 The CFV Project Completion Celebration - an Introductory Mini Case
	8.2 Introduction
	8.3 The Contract Review Process and its Stages
	8.4 Contract Review Evaluation Subjects
	8.4.1 Proposal draft review evaluation subjects
	8.4.2 Contract draft review evaluation subjects

	8.5 Implementation of a Contract Review
	8.5.1 Who performs the contract review?
	8.5.2 Implementation of a contract review for a major proposal

	8.6 Contract Reviews for Internal Projects
	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion
	Appendix 8.A: Proposal Draft Review
	Appendix 8.B: Contract Draft Review

	Chapter 9: Cost of Software Quality
	9.1 This Time the Budget Was Approved - an Introductory Mini Case
	9.2 Objectives of Cost of Software Quality Measurement
	9.3 The Classic Model of Cost of Software Quality
	9.3.1 Prevention costs
	9.3.2 Appraisal costs
	9.3.3 Internal failure cost
	9.3.4 External failure costs

	9.4 The Scope of the Cost of Software Quality - Industry Figures
	9.5 An Extended Model for Cost of Software Quality
	9.5.1 Managerial prevention costs
	9.5.2 Managerial appraisal costs
	9.5.3 Managerial internal failure costs
	9.5.4 Managerial external failure costs

	9.6 Application of a Cost of Software Quality System
	9.6.1 Definition of the organization's CoSQ items
	9.6.2 Planning the method for costs data collection
	9.6.3 Implementation of the planned CoSQ system
	9.6.4 Actions taken in response to the model's findings

	9.7 Problems in Application of CoSQ Measurements
	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Chapter 10: The Effectiveness and Cost of a VandV Plan - The SQA Model
	10.1 The Data Required for the Sqa Model
	10.2 The Sqa Model
	10.3 Application of the Sqa Model for Comparing V&Amp;V Plans
	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Chapter 11: SQA Records and Documentation Control
	11.1 Jeff's Troubles - an Introductory Mini-Case
	11.2 Introduction
	11.3 Objectives of Documentation Control Processes
	11.4 The Implementation of Documentation Control
	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Part III: Product Assurance Activities for Conformance
	Chapter 12: Evaluation of Products for Conformance
	12.1 Introduction
	12.2 The Evaluation of Project Plans for Conformance
	12.3 The Evaluation of Project's Software Products For Conformance
	12.4 Evaluation of Project Products for Acceptability By the Customer
	12.5 The Evaluation of Project's Operation Phase Products for Conformance
	12.6 The Evaluation of Software Product By Measurements
	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Chapter 13: Reviews
	13.1 Introduction
	13.2 The Happy Design Review - an Introductory MiniCase
	13.3 Formal Design Reviews (Drs)
	13.3.1 Participants in a DR
	13.3.2 The DR preparations
	13.3.3 The DR session
	13.3.4 Postreview activities

	13.4 Peer Reviews
	13.4.1 Participants of peer reviews
	13.4.2 Preparations for a peer review session
	13.4.3 The peer review session
	13.4.4 Postpeer review activities
	13.4.5 Versions of the inspection process
	13.4.6 The effectiveness and efficiency of peer reviews
	13.4.7 Peer review coverage
	13.4.8 A comparison of review methods

	13.5 Expert Opinions
	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion
	Appendix 13.A: DR report form
	Appendix 13.B: Inspection session findings report form
	Appendix 13.C: Inspection session summary report

	Chapter 14: Software Testing
	14.1 Introduction
	14.2 Joe Decided to Skip In-Process Testing - an Introductory Mini-Case
	14.3 Software Testing Strategies
	14.3.1 Incremental testing versus ``big bang´´ testing
	14.3.2 The order of performing incremental testing
	14.3.3 The testing concept - white box and black box testing

	14.4 Requirement-Driven Software Testing
	14.4.1 Operation factor testing classes
	14.4.2 Revision factor testing classes
	14.4.3 Transition factor testing classes

	14.5 Planning of the Testing Process
	14.5.1 Which sources should be used for test cases
	14.5.2 Who should perform the tests
	14.5.3 Where should the tests be performed
	14.5.4 Test planning documentation

	14.6 Designing the Testing Process
	14.7 Implementation of the Testing Process
	14.7.1 The implementation process
	14.7.2 Documentation of the implementation results

	14.8 Automated Testing
	14.8.1 Automated testing process versus manual testing
	14.8.2 Types of automated testing
	14.8.3 Advantages and disadvantages of automated tests

	14.9 Alpha and Beta Site Testing Programs
	14.10 Code Review Activities for the Programming and Testing Phases
	14.10.1 Reviews of code listings
	14.10.2 Software qualification reviews

	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Chapter 15: Assuring Software Quality Conformance for Operation Services
	15.1 Introduction
	15.2 Hr Software's Success -- an Introductory Mini Case
	15.3 The Foundations of High-Quality OperationServices
	15.3.1 Foundation one - software product quality
	15.3.2 Foundation two - software releases and version policies
	15.3.3 Foundation three - specific QA procedures for operation services

	15.4 Software Maintenance Maturity Model - a Model for the Operation Phase
	15.5 Managerial Processes of Software Operation Quality Assurance
	15.5.1 Software operation contract review
	15.5.2 Software operation plan
	15.5.3 Software operations progress control
	15.5.4 Software maintenance quality metrics
	15.5.5 Cost of software operation services quality

	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Chapter 16: Software Product Quality Metrics
	16.1 What Are Software Quality Metrics? - an Introduction
	16.2 Implementation of Software Quality Metrics
	16.2.1 Definition of software quality metrics
	16.2.2 Application of the metrics
	16.2.3 Analysis of metrics data by the Corrective Action Board
	16.2.4 Taking action in response to metrics analysis results

	16.3 Product Metrics and Their Classification
	16.4 Software Product Size Metrics
	16.5 Software Product Attribute Metrics
	16.5.1 Software functionality metrics
	16.5.2 Software reliability metrics
	16.5.3 Software usability metrics
	16.5.4 Software efficiency metrics
	16.5.5 Software maintainability metrics
	16.5.6 Software portability metrics
	16.5.7 Software effectiveness metrics
	16.5.8 Software productivity metrics
	16.5.9 Software safety metrics
	16.5.10 Software satisfaction metrics

	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion
	Appendix 16.A: Fsm Method Implementation
	16.A.1: The function point method
	16.A.2: An example - The Attend-Mastersoftware system

	Chapter 17: Procedures and Work Instructions
	17.1 Introduction - the Need for Procedures and Work Instructions
	17.2 Superbox Pays &Dollar;9000 in Damages Due to Failing Support Center - a Mini Case
	17.3 Procedures and Work Instructions and Their Conceptual Hierarchy
	17.4 Procedures and Procedure Manuals
	17.5 Work Instructions
	17.6 Procedures and work instructions: preparation, implementation, and updating
	17.6.1 Preparation of new procedures
	17.6.2 Implementation of new or revised procedures
	17.6.3 Updating procedures

	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion
	Appendix 17.A: Design Review Procedure

	Part IV: Process Assurance Activities for Conformance
	Chapter 18: Evaluation of Processes and Development Environment for Conformance
	18.1 Introduction
	18.2 The Evaluation of Life Cycle Processes and Plans for Conformance
	18.3 The Evaluation of the Required Environment For Conformance
	18.4 The Evaluation of Subcontractor Processes ForConformance
	18.5 The Evaluation of Software Process By Measurements
	18.6 The Assessment of Staff Skills and Knowledge
	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Chapter 19: Improvement Processes - Corrective and Preventive Actions
	19.1 The "3S" Development Team - Revisited - an Introductory Mini Case
	19.2 Introduction
	19.3 The Corrective and Preventive Actions Process
	19.3.1 Information collection
	19.3.2 Analysis of collected information
	19.3.3 Determine the causes of nonconformities
	19.3.4 Development of solutions
	19.3.5 Implementation of improved methods
	19.3.6 Follow-up of CAPA activities - implementation and outcome

	19.4 Organization for Preventive and Corrective Actions
	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Chapter 20: Software Process Assurance Activities for External Participants
	20.1 Introduction
	20.2 The Pharmax Tender - a Mini Case
	20.3 Benefits and Risks of Introducing ExternalPerformers
	20.4 Benefits and Risks of Using Readymade Software
	20.5 QA Activities for Assuring External Performers' Process Quality
	20.5.1 Reviewing the requirements document and subcontractor contract
	20.5.2 Evaluation of selection process regarding external\performers
	20.5.3 Review of the external performer's project plans and development processes
	20.5.4 Establishment of project coordination and joint control committee
	20.5.5 Participation in external performers' design reviews and software testing
	20.5.6 Formulation of external performers' procedures
	20.5.7 Certification of external performers' team leaders and other staff
	20.5.8 Regular follow-up of progress reports of external performers' development activities

	20.6 QA Activities for Assuring Quality of Readymade Software
	20.6.1 Requirements document reviews
	20.6.2 Performing appropriate selection process
	20.6.3 Requirement changes to adapt to readymade software features
	20.6.4 Testing readymade package or component
	20.6.5 Knowledge management of components integrated in the software system
	20.6.6 Preparing specialized procedures

	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Chapter 21: Software Process Quality Metrics
	21.1 Software Process Metrics - an Introduction
	21.2 North Against South - Who'Ll Win This Time Round? - a Mini Case
	21.3 Software Development Process Metrics
	21.3.1 Software development process quality metrics
	21.3.2 Software development by readymade suitability metrics
	21.3.3 Software development process effectiveness, efficiency, and productivity metrics
	21.3.4 Software development rework metrics

	21.4 Software Operation Process Metrics
	21.4.1 Software operation process workload
	21.4.2 Software operation process quality metrics

	21.5 Software Maintenance Process Metrics
	21.5.1 Software maintenance process workload
	21.5.2 Software maintenance process quality metrics
	21.5.3 Software maintenance process effectiveness, efficiency, and productivity metrics

	21.6 Management Process Metrics
	21.6.1 Software development project progress management metrics
	21.6.2 Software reuse process metrics

	21.7 Limitations of Software Metrics
	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Chapter 22: Software Change Control Processes
	22.1 Introduction
	22.2 How a Well-Planned Project Lost Over Half a Million Dollars - a Mini Case
	22.3 The Process of Handling an Scr
	22.3.1 Submission of software change requests
	22.3.2 Examination of SCR
	22.3.3 Approval to carry out requested changes
	22.3.4 Follow-up of software change processes

	22.4 The SCC Function in the Organization
	22.5 Software Quality Assurance Activities Related to Software Change Control
	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Chapter 23: Staff Skills and Knowledge - Training and Certification
	23.1 Introduction
	23.2 Surprises for the "3S" Development Team - an Introductory Mini Case
	23.3 The Objectives of Training
	23.4 The Staff Training Process for Software Development
	23.4.1 Determine training and updating needs for software development positions
	23.4.2 Plan training and updating programs
	23.4.3 Perform training programs for software development staff
	23.4.4 Perform follow-up of training activities and trainees

	23.5 The Training Process for the Sqa Function Team
	23.5.1 Determine training and updating needs for software development positions
	23.5.2 Plan training and upskilling programs for SQA function positions
	23.5.3 Conduct the training programs for software development staff
	23.5.4 Perform follow-up of training activities and trainees

	23.6 The Objectives of Certification
	23.7 The Certification Process
	23.7.1 Defining the positions requiring certification
	23.7.2 Planning certification programs for the selected positions
	23.7.3 Delivery of certification programs
	23.7.4 Follow-up of certification process and results

	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Part V: Additional Tools and Methods Supporting Software Quality
	Chapter 24: Templates and Checklists
	24.1 Introduction
	24.2 Templates
	24.3 The Organizational Framework for Implementing Templates
	24.3.1 Preparation of new templates
	24.3.2 Application of templates
	24.3.3 Updating templates

	24.4 Checklists
	24.5 The Organizational Framework for ImplementingChecklists
	24.5.1 Preparation of new checklists
	24.5.2 Updating checklists
	24.5.3 Promotion of checklist use

	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Chapter 25: Configuration Management
	25.1 Introduction
	25.2 Software Configuration Items
	25.3 Release of Software Configuration Versions
	25.3.1 Types of software configuration releases
	25.3.2 Software configuration version evolution models

	25.4 Documentation of Software ConfigurationVersions
	25.5 Configuration Management Planning
	25.6 Provision of Scm Information Services
	25.7 Computerized Tools for Performing Configuration Management Tasks
	25.8 The Software Configuration Management Function in the Organization
	25.9 Software Quality Assurance Activities RelatedToScm
	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Chapter 26: CASE Tools and IDEs - Impact on Software Quality
	26.1 What Is a Case Tool?
	26.2 The Classic Case Tool
	26.2.1 Code editing
	26.2.2 Configuration management
	26.2.3 Automatic documentation
	26.2.4 Software project management

	26.3 IDE CASE Tools
	26.4 Real CASE Tools
	26.4.1 Analysis and design tools
	26.4.2 Coding tools
	26.4.3 Automated testing tools
	26.4.4 Detection of defect and their correction
	26.4.5 Advanced automatic documentation tools
	26.4.6 Reengineering tools

	26.5 The Contribution of Case Tools to SoftwareQuality
	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Part VI: Appendices
	Appendix A: Software Development and Quality Assurance Process Standards
	A.1 Introduction - Standards and Their Use
	A.1.1 The benefits of using standards
	A.1.2 The organizations involved in standards development
	A.1.3 Classification of

	A.2 IEEE Std. 730-2014 Standard for Software Quality Assurance
	A.2.1
	A.2.2
	A.2.3

	A.3 ISO/IEC Std. 12207-2008: System and Software Engineering - Software Life Cycle Processes
	A.3.1. 12207 Standard: concepts
	A.3.2 12207 Standard: contents

	A.4 IEEE Std. 1012-2012 Systems and Software Verification and Validation
	A.4.1 Introduction
	A.4.2 IEEE Std. 1012-2012 concepts
	A.4.3 IEEE Std. 1012-2012 contents

	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Appendix B: Software Quality Management Standards and Models
	B.1 ABC Software Ltd - an Unnecessary Loss - a Mini-Case
	B.2 The Scope of Quality Management Standards
	B.3 Software Quality Management Standards As Spi Standards
	B.4 ISO/IEC 90003
	B.4.1 Guiding principles of
	B.4.2 ISO/IEC 90003: 2014 standard’s content
	B.4.3 Certification process according to

	B.5 Capability Maturity CMMI Models -- Assessment Methodology
	B.5.1 The principles of CMMI
	B.5.2 The CMMI structure and processes areas
	B.5.3 CMMI appraisal process
	B.5.4 CMM implementation experience
	B.5.5 The People CMM model

	B.6 The SPICE Project and the ISO/IEC 15504 Software Process Assessment Standard
	B.6.1 Principles behind ISO/IEC 15504
assessment model
	B.6.2 Structure of the ISO/IEC 15504 assessment model
	B.6.3 The ISO/IEC 15504 appraisal process
	B.6.4 The SPICE project

	B.7 Additional Software Quality Management Standards
	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Appendix C: Project Progress Control
	C.1 Introduction
	C.2 Finally, a successful project – a mini case
	C.3 The components of project progress control
	C.4 Progress control of distributed and globally distributed software development projects
	C.5 Progress control of internal projects and external participants
	C.6 Implementation of project progress control
	C.7 Computerized tools for software progress control
	C.7.1 Computerized programs for planning and control of schedule and resource usage
	C.7.2 Project progress metrics and progress tracking charts

	Summary
	Selected Bibliography
	Review Questions
	Topics for Discussion

	Appendix D: From SDLC to Agile –
Processes and Quality
Assurance Activities
	D.1 The classical software development models
	D.1.1 The software development life cycle model
	D.1.2 The prototyping model
	D.1.3 The spiral model

	D.2 The object-oriented model
	D.2.1 The object-oriented method
	D.2.2 The object-oriented software development process
	D.2.3 Advantages of the object-oriented methodology

	D.3 The incremental delivery model
	D.4 The staged model
	D.5 The Agile methodology models
	D.5.1 The Agility principles
	D.5.2 Typical Agile software development process
	D.5.3 Quality assurance in Agile software development projects
	D.5.4 The Agile experience
	D.5.5. Agile methodologies’ limitations

	Summary
	Selected bibliography
	Review questions
	Topics for discussion

	Author Index
	Subject Index
	End User License Agreement

