THIRD EDITION

PYTHON

PROGRAMMING:

AN INTRODUCTION TO COMPUTER SCIENCE

JOHN ZELLE

FRANKLIN, BEEDLE
[INDEPENDENT PUBLISHERS SINCE 1985]



PYTHON PROGRAMMING

AN INTRODUCTION TO COMPUTER SCIENCE

THIRD EDITION

¢

John M. Zelle
Wartburg College

Franklin, Beedle & Associates Inc. + 2154 NE Broadway, Suite 100 + Portland, Oregon 97232 + 503 /284-6348 + www.fbeedle.com



Publisher Tom Sumner (tsumner@fbeedle.com)

Editor Brenda Jones
Production Associate Jaron Ayres
Cover Photography Jim Leisy ©2012
Printed in the U.S.A.

Names of all products herein are used for identification purposes only and are trademarks
and/or registered trademarks of their respective owners. Franklin, Beedle & Associates
Inc. makes no claim of ownership or corporate association with the products or compa-
nies that own them.

©2017 Franklin, Beedle & Associates Incorporated. No part of this book may be repro-
duced, stored in a retrieval system, transmitted, or transcribed, in any form or by any
means—electronic, mechanical, telepathic, photocopying, recording, or otherwise—
without prior written permission of the publisher. Requests for permission should be
addressed as follows:

Rights and Permissions

Franklin, Beedle & Associates Incorporated
2154 NE Broadway, Suite 100

Portland, Oregon 97232

Library of Congress Cataloging-in-Publication data

Names: Zelle, John M., author.

Title: Python programming : an introduction to computer science / John M.
Zelle, Wartburg College.

Description: Third edition. | Portland, Oregon : Franklin, Beedle &
Associates Inc., [2016] | Includes bibliographical references and index.

Identifiers: LCCN 2016024338 | ISBN 9781590282755

Subjects: LCSH: Python (Computer program language)

Classification: LCC QA76.73.P98 Z98 2016 | DDC 005.13/3--dc23

LC record available at https://lccn.loc.gov/2016024338



Contents

Foreword, by Guido van ROSSUM ...t iX
Preface ... X
Chapter 1 Computers and Programs 1
1.1  The Universal MacChine......... ..ot e e naas 1
1.2 Program POWET ........ ... ettt et e et e e e n e e e e e e n e e enas 3
1.3  What Is Computer SCIENCET? .........ceuiiiiiiei it re e e e e ea s ea e en s ena e ennennns 3
1.4  Hardware BasiCs..........coiuiiiuiiiiiiii ittt e e 5
1.5 Programming LangUages .........cocuuiiuiiiiiiuiiiiiiie s ree s s s e s s s s e s s e e e e s e s e s e eas 6
1.6 The Magic of Python..........c. i n e 9
1.7 Inside a Python Program..........c..ooiiiiiiiiii e e 15
1.8 Chaos and COMPULELS .........cceuiiiiiiii e e e e e e e e s e e ea e en e enneenanns 18
1.9  Chapter SUMMArY ...t e e e e e e e e e e e e e e e e e e e e e eaneenans 20
I O T o1 21

Chapter 2 Writing Simple Programs 27

2.1 The Software Development Process............cccoieiiiiiiiiiiiiiic e e 27
2.2 Example Program: Temperature Converter ..............cooouiemniiiiiiiiiiieeeeeeeeeeeeee e 28
2.3 Elements of Programs ..o 31
0 T8 R | T 1 3 =TSR 31
2.3.2  EXPIeSSIONS ......cuuiiuiiiiiii it iee et et et r e st st s e s e s m s e s e earan e e e e nnranaeanaen 32
W S O T0 o 11 A =Y =Y 1 1= 1| 1= 34
2.5 Assignment StatemeENts........c..coiiiuiiiiiiiiiiiie e 36
2.5.1 Simple ASSIZNMENL ........ccouniiiii e e ea 37
2.5.2 Assigning INPUL.......oon i 39
2.5.3 Simultaneous ASSIgNMENL...........c.coiiiiiiiimiiiiice e 41

2.6  DefiNite LOOPS .. ccuiiiiiiiiiiii it e e aa e 43



\Y;

Contents

2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

4.9
4.10

5.1
5.2
53
5.4

5.5

Example Program: Future Value.............oorn it 47
Chapter SUMMArY ...t e e e e e e e e en e enae e enans 50
EXEICISES ... .ottt et e e e n e a e aanaas 51

Chapter 3 Computing with Numbers 57
NUMENC Data TyPeS .....ccuiieiiiiiiii e e r e e e e e ea e e ees 57
Type Conversions and Rounding............coceuiiiiiiiiio i e e 62
Using the Math Library ... e 65
Accumulating Results: Factorials ... 68
Limitations of Computer Arithmetic .............coooniiiiii e, 71
L@ =1 o1 L= YW T3 Y ' V=1 o V2 75
X CISES ... iii it 76

Chapter 4 Objects and Graphics 83
OVEIVIEW. ...ttt e et e et e et e e ea e e eneeenaeeeneennnaenns 83
The Object of ObJects........oiin e e e e e e eeas 84
Simple Graphics Programming...............coiiiiiiiiiiiiiii e 85
Using Graphical ObjJects.........cooeuiiiiiii e e e e n e 91
Graphing FUtUre Value...........oounioie et e e e e e e e e e e e e e eenn e eea 96
Choosing Coordinates...........ciiiuiiiieiiiiiir e e n s 103
Interactive GraphicCs ..........cooen i 107
4.7.1 Getting Mouse ClICKS........coiiiuiiiii e e e 107
4.7.2 Handling Textual Input...... ..o 109
Graphics Module Reference ...............coonnommiimeeeee e 112
4.8.1 GraphWin ObjJects .........couiimiiiiii et 113
4.8.2 Graphics ODbjJectS.........cooeuiieiiiii e e e eaas 115
7S TG T = 11 V2O o 1Yot .3 119
4.8.4 Displaying IMages........ccciiiuiiiiiii it ea 120
4.8.5 Generating Colors ........cooeuiiiiii i e 121
4.8.6 Controlling Display Updates (Advanced) ..........ccccceeriiiinnmmnnnneeeeeneee e 121
Chapter SUMMANY .......coee e e e e e e s e e et e e e s en s ennnernaenns 122
T o1 T PP 123

Chapter 5 Sequences: Strings, Lists, and Files 129
The String Data TyPe ... e e e e e e e e e e e e e naans 129
Simple String ProCessing...........o..oo oo iiiicc e 133
LiStS @S SEQUENCES.......... ettt e e e e e e e ee e e e e enenans 136
String Representation and Message Encoding .............c.ccovoiiiiiiiiiiiiii i 139
5.4.1 String Representation...........cccoiiuiiieiiiiiiiiie e s e e e e e e e e e e ennaen 139
5.4.2 Programming an Encoder .............oiiuiiiiiiiiii e 141
SEHNG Methods...... oo e e e 142
5.5.1 Programming a Decoder ... 142
5.5.2 More String Methods............cooiniiiii 146
Lists Have Methods, TOO ........couimii e 147

5.6
5.7

From Encoding to EnCryption...........coouiiniiiiiii e 150



Contents

5.8

5.9

5.10
5.11

Input/Output as String Manipulation .............ccceueiiiiiiiiii e
5.8.1 Example Application: Date Conversion ...........c.cceeevuiiiniiiiiiieiieeieneeeeean.
5.8.2 String FOrmatting ............cooiimiiiiiii e
5.8.3 Better Change Counter..............coooniiiiiiii et
File ProCesSINg....... oottt e e e e e e e e e e e e eas
5.9.1 Multi-line StrNGS .....cceuiiieiiie e eas
5.9.2 File ProCessing.......ccocuuiiiiuiiiiuiiiiii it s e e e ea
5.9.3 Example Program: Batch Usernames.............ccoooniiiniiiiiiiiiiiiiiic e,
5.9.4 File Dialogs (Optional) ......cccuviiiiiiiiiiiiiiirrrrrre e
Chapter SUMMArY ...... ..ot e e e e e e e e e n e e en e en e enaneenn
T o1 T PR

Chapter 6 Defining Functions

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

The Function of FUNCLIONS ..........oouiiiii e
Functions, Informally ... e
Future Value with a Function.............coo e
Functions and Parameters: The Exciting Details ................ccoiiiiiiiiii
Functions That Return Values................oooii e
Functions that Modify Parameters.............ccoooiiiimii e,
Functions and Program Structure.................ooiiiiii e,
Chapter SUMMArY ...... o e e e e e e e e e e e e e en s
ST ol 1= RS

Chapter 7 Decision Structures

7.1

7.2
7.3
7.4
7.5

7.6
7.7

15T 15 Y o] LT 0 1=T o T -3
7.1.1 Example: Temperature Warnings..............ccooeiiiiiiiiiii e
7.1.2 Forming Simple Conditions ............cc.oeimiiiiiii e
7.1.3 Example: Conditional Program Execution..........ccccccouiiiiiiiiiiiniiiiinniniennnnn.

TWO-Way DeCISIONS........cciiiiiiiiic e e ee

Multi-Way DeCISIONS .......cc.iiiuiiiiiiiiiiii e e e e

Exception Handling........cc..ooiniiiiii e

Study in Design: Max of Three.............coouimmiiiiii e
7.5.1 Strategy 1: Compare Each to All............o.oiimieeeeee,
7.5.2 Strategy 2: Decision Tre€.........cooomuiiiiiiiiiic et e e
7.5.3 Strategy 3: Sequential Processing...........cccooeuuiiiiiiiiiiiiiii e
7.5.4 Strategy 4: Use Python..........couoiieiiiiiii e e
7.5.5 S0ME LESSONS ......cceuiieiiiii et eee e e e e e e e e e e e e e e e e e e e e e enan s

Chapter SUMMANY ... e e e e e ne e e e e e e e e rna e en s

EXEICISES ... e e ran e

Chapter 8 Loop Structures and Booleans

8.1
8.2
8.3

For Loops: A QUICK REVIEW .........cuiiuiiiii et e e e e enn s
INdefinite LOOPS .....uonniieiee e e e e eaas
Common Loop Patterns ...t
8.3.1 Interactive LOOPS ........ceniinieii e
8.3.2 Sentinel LOOPS......couniiieii e



vi

Contents

8.3.3  File LOOPS...cun et 252
8.3.4 Nested LOOPS......cocuiiuiieiiiiiiii it 254
8.4 Computing with Booleans ... 256
8.4.1 Boolean Operators..............cooouiiiiiiiii e 256
8.4.2 Boolean Algebra ......... .o 260
8.5 Other CommMmON StrUCLUIES ........coovuiiiieeie e e e e e e e e e e anas 262
8.5.1 PoOSt-test LOOP ....ccuiiuiiiiiiiiiiiiii e 262
8.5.2 Loopand a Half ... e 264
8.5.3 Boolean Expressions as DeCiSIONS .........ccccevriuiriereiriirincreirreenreeeeeeneenns 266
8.6 Example: A Simple EVENt LOOP ......ceuieuiiieiiii ittt e e e e e 269
8.7 Chapter SUMMANY ...t n e e e e e enaas 275
S R T =T ¢ ol LYY 277

Chapter 9 Simulation and Design 283

9.1 Simulating Racquetball.............ccoo i 283
9.1.1 A Simulation Problem..............coormi e 284
9.1.2 Analysis and Specification...............coouiiiiiiiii i 284
9.2 Pseudo-random Numbers .............co e 286
9.3  TOp-DoWN DESIGN .......oeeiieiiiee et e et n e e e eas 288
0.3.1 Top-Level DeSIgn .......ccuoiieuiiieiiiiie et 289
0.3.2 Separation of CONCEIMS .......cuciiuiiieiiiiiiiiieieei e ee e e e esarensennnns 291
9.3.3 Second-Level Design ... 291
9.3.4 Designing sSIMNGames..........ccuciiiimiiiiiii e 293
9.3.5 Third-Level DeSign..........cciiiuiiiiiiiiiiic e 295
09.3.6 FinisShing Up ..ot 298
9.3.7 Summary of the Design Process...........ccouciiiniiiiiiiiiicccceecceeece e 300
9.4 Bottom-Up Implementation.................cooiii e 301
9.4.1 UNIt TeSHING «..eeieiee e n s 301
9.4.2 Simulation Results.............coomniiiii i 303
9.5 Other Design TeChNIQUES ........cceuuiiimiiiieie e e aaaas 304
9.5.1 Prototyping and Spiral Development.............ccoormiiiiiiiii e 304
9.5.2 The Art of DeSign.........ooiuuiiiiiiii e 306
0.6 Chapter SUMMAIY .....couiiciei e e e s e e e s e s e e ra s e enn s ean e ennsennnsennns 306
0.7  EXEICISES....cuiieiieiiiii ettt e e e e e e en e eas 307

Chapter 10 Defining Classes 313

10.1 Quick ReView Of ODbjJECES .......ccuiiieiieiiiiii e e e e n e e e e e en e e ens 313
10.2 Example Program: Cannonball .............cooiiiiniiiiii e 314
10.2.1 Program Specification............cccoiiiuiiiiiiiiiii e 314
10.2.2 Designing the Program ... 315
10.2.3 Modularizing the Program ... 319
10.3 Defining New ClIasses ...........coomiiiiiiieee e e e e e e enans 321
10.3.1 Example: Multi-sided Dice ..........coeomnimmniie e 321
10.3.2 Example: The Projectile Class.........cccoimmuiiiiiiiicceceeee e 325
10.4 Data Processing with Class ...........ccooeiuiiiiiiiii e e e 327

10.5 Objects and Encapsulation ..............co.ooiiiiiiiiiii e 331



Contents

Vil

10.5.1 Encapsulating Useful Abstractions............cccoeuiiiiiiiiiiiiiie e, 331
10.5.2 Putting Classes in Modules ............ccocuiiiiiiiii e, 333
10.5.3 Module Documentation ..............couiiiiiiiiiiiiiiiie e 333
10.5.4 Working with Multiple Modules ..o, 335
8 ST VAT o= 337
10.6.1 Example Program: Dice Roller ............coovuiiiniiiiiiicr e, 337
10.6.2 Building BUttOns..........couiiiiie i 338
10.6.3 Building DiCe.........coeieeiiiei et eena 342
10.6.4 The Main Program ..o s e e e e e e 345
10.7 Animated Cannonball.............o s 346
10.7.1 Drawing the Animation Window............ccooeiiiiiiiiiii e, 347
10.7.2 Creating @ ShotTracker..........cooiuuiiiiiii e e 348
10.7.3 Creating an Input Dialog............coomniiiii e 350
10.7.4 The Main Event LOOP......ccouiiiiiiieee et e e 353
10.8  Chapter SUMMArY ... et e e ee e een e e e enneeenna s 355
R T T (o1 R 356
Chapter 11 Data Collections
11.1 Example Problem: Simple Statistics..............ccooomiiiiiiiii e, 363
11.2  APPIYING LiStS .. euniieiie et e e e eaa s 365
11.2.1 Lists and Arrays.......cociiiiiuiiiiiiiiie et n e e eas 366
11.2.2  LiSt OPerations........ccuuiuuiiiiiiiiiieii i ere e e ra e ra e raa s ran s ranseannsennns 367
11.2.3 Statistics With Lists..........cooouuiiiiiiiiii e 370
11.3  Lists Of RECOIdS ........ccouniieiiiiici e e e e e e aa s 375
11.4 Designing with Lists and Classes ..............ccooeuiiiiiiiiiii e 379
11.5 Case Study: Python Calculator............cooeuiiniii e 385
11.5.1 A Calculator as an Object.............ccoormniiiimiii e 385
11.5.2 Constructing the Interface..............ccooiiiiiii e, 385
11.5.3 Processing BUttons............o.ooiniimiii e 388
11.6 Case Study: Better Cannonball Animation............cccoovuiiiiiiiii e 392
11.6.1 Creating a LauncCher...........ccoouiiiiii e e e 393
11.6.2 Tracking Multiple Shots...........couiiiiiiii e 396
11.7 Non-sequential Collections............cocuiiiuiiiiiiiiii e e e an e 401
11.7.1 Dictionary BasiCS.......cceuiiuiiuiiiiiiiiiieei e e e ee e s s e e e en e e en e enn e e enns 401
11.7.2 Dictionary Operations...........c.cceeeuiiieiiieiiiiie e e e e ene e ene e eeeeenaeennns 402
11.7.3 Example Program: Word Frequency ...........ccooouiiiiiiiiiiiiiic e 404
11.8  Chapter SUMMANY ........oon et et e e e e e e e e e e eenna e 409
R T T (o1 TR 410
Chapter 12 Object-Oriented Design
12.1 The Process of OOD........ ..o et 419
12.2 Case Study: Racquetball Simulation ..., 422
12.2.1 Candidate Objects and Methods .............ccoovviiiiiiiieiiiiice e, 422
12.2.2 Implementing SIMStats.........ccouiiiiiiii 424
12.2.3 Implementing RBallGame............cc.oorrmii e 426

12.2.4 Implementing Player ......... .o 429



viii Contents
12.2.5 The Complete Program.............ccoomeiimiiiii e 430
12.3  Case Study: Dice POKEr..........oiiiiuiiiiiiiiiic e e 433
12.3.1 Program Specification.............cccoeeuiiiiiiiiiiiieiiee e 433
12.3.2 Identifying Candidate Objects ...........cccoouiiminiiiiiiiii e 434
12.3.3 Implementing the Model ... 436
12.3.4 A Text-Based Ul..........oon e e e 440
12.3.5 Developing @ GUI.......coouuiiimei e 443
122 S © 1@ T o oY o | £ 451
12.4.1 ENcapsUulation .........ccccoiiiiiiiiiiiiiiie et e e e e e n e n e e an e 452
12.4.2  PolymorphiSm......c..iieuiiiiiii e e 453
12.4.3 INhErtaNCe.......ccuniieii e 453
12.5  Chapter SUMMArY ... et e e e s e ra e e e e enna e e 455
I T T (o1 R 456
Chapter 13 Algorithm Design and Recursion 459
1 200 Y- 1 ol 411 - 460
13.1.1 A Simple Searching Problem ...............oooiiiiiii e 460
13.1.2 Strategy 1: Linear Search..............ccooii e 461
13.1.3 Strategy 2: Binary Search ... 462
13.1.4 Comparing Algorithms ...........cooiuiiiiii e 463
13.2  Recursive Problem SoOIVING ........couuiiiiiiiiiiii e 465
13.2.1 Recursive Definitions............ccoiuiiiiiiiiiiici 466
13.2.2 Recursive FUNCLIONS .........c.iiiiiiiiiiic e e e e 468
13.2.3 Example: String Reversal ...........ccouoiiiiiiii e 469
13.2.4 Example: ANagrams........cccoovuiiiiiiiiiiiiiie et e e e e enas 471
13.2.5 Example: Fast Exponentiation............ccccouiiiniiiiiiiiiiiiii e 472
13.2.6 Example: Binary Search ..., 473
13.2.7 Recursion vs. Iteration ..............cooiiiiiiiiii e 474
13.3  Sorting AlGOFERMS ...........eieeeee e et e e e e e e e e e e e e eeneeeenas 477
13.3.1 Naive Sorting: Selection Sort...........ccooeiuiiiiiiiiiic e 477
13.3.2 Divide and Conquer: Merge Sort ...........cooieiiiiiiiiicce e 479
T TG T @ 14T o =1 7 - Yo T {3 481
13.4 Hard Problems........ ... e 484
13.4.1 Tower of HanOi.......ooeuiinii et e 484
13.4.2 The Halting Problem ...........ccoouiiiii e e 489
TG T e 1Yot ) o R 492
13.5  Chapter SUMMArY ...t e et e e et e e e e e e e e e e emeeennas 493
0 T ST T (o1 R 494
Appendix A Python Quick Reference 503
Appendix C Glossary 513
Index 525



Foreword

When the publisher first sent me a draft of this book, I was immediately excited.
Disguised as a Python textbook, it is really an introduction to the fine art of pro-
gramming, using Python merely as the preferred medium for beginners. This is
how I have always imagined Python would be most useful in education: not as
the only language, but as a first language, just as in art one might start learning
to draw using a pencil rather than trying to paint in oil right away.

The author mentions in his preface that Python is near-ideal as a first pro-
gramming language, without being a “toy language.” As the creator of Python I
don’t want to take full credit for this: Python was derived from ABC, a language
designed to teach programming in the early 1980s by Lambert Meertens, Leo
Geurts, and others at CWI (National Research Institute for Mathematics and
Computer Science) in Amsterdam. If I added anything to their work, it was mak-
ing Python into a non-toy language, with a broad user base and an extensive
collection of standard and third-party application modules.

I have no formal teaching experience, so I may not be qualified to judge its
educational effectiveness. Still, as a programmer with nearly 30 years experi-
ence, reading through the chapters I am continuously delighted by the book’s
clear explanations of difficult concepts. I also like the many good excercises and
questions which both test understanding and encourage thinking about deeper
issues.

Reader of this book, congratulations! You will be well rewarded for studying
Python. I promise you’ll have fun along the way, and I hope you won’t forget
your first language once you have become a proficient software developer.

—Guido van Rossum

IX



Preface

This book is designed to be used as a primary textbook in a college-level first
course in computing. It takes a fairly traditional approach, emphasizing problem
solving, design, and programming as the core skills of computer science. However,
these ideas are illustrated using a non-traditional language, namely Python. In my
teaching experience, I have found that many students have difficulty mastering
the basic concepts of computer science and programming. Part of this difficulty
can be blamed on the complexity of the languages and tools that are most often
used in introductory courses. Consequently, this textbook was written with a
single overarching goal: to introduce fundamental computer science concepts as
simply as possible without being simplistic. Using Python is central to this goal.

Traditional systems languages such as C++, Ada, and Java evolved to solve
problems in large-scale programming, where the primary emphasis is on struc-
ture and discipline. They were not designed to make writing small- or medium-
scale programs easy. The recent rise in popularity of scripting (sometimes called
“agile”) languages, such as Python, suggests an alternative approach. Python
is very flexible and makes experimentation easy. Solutions to simple problems
are simply and elegantly expressed. Python provides a great laboratory for the
neophyte programmer.

Python has a number of features that make it a near-perfect choice as a
first programming language. The basic structures are simple, clean, and well
designed, which allows students to focus on the primary skills of algorithmic
thinking and program design without getting bogged down in arcane language
details. Concepts learned in Python carry over directly to subsequent study of

X



Preface

Xi

systems languages such as C++ and Java. But Python is not a “toy language.”
It is a real-world production language that is freely available for virtually every
programming platform and comes standard with its own easy-to-use integrated
programming environment. The best part is that Python makes learning to pro-
gram fun again.

Although I use Python as the language, teaching Python is not the main
point of this book. Rather, Python is used to illustrate fundamental principles of
design and programming that apply in any language or computing environment.
In some places I have purposely avoided certain Python features and idioms that
are not generally found in other languages. There are many good books about
Python on the market; this book is intended as an introduction to computing.
Besides using Python, there are other features of this book designed to make it
a gentler introduction to computer science. Some of these features include:

e Extensive use of computer graphics. Students love working on
programs that include graphics. This book presents a simple-to-use graph-
ics package (provided as a Python module) that allows students both to
learn the principles of computer graphics and to practice object-oriented
concepts without the complexity inherent in a full-blown graphics library
and event-driven programming.

e Interesting examples. The book is packed with complete programming
examples to solve real problems.

e Readable prose. The narrative style of the book introduces key computer
science concepts in a natural way as an outgrowth of a developing discus-
sion. I have tried to avoid random facts or tangentially related sidebars.

e Flexible spiral coverage. Since the goal of the book is to present con-
cepts simply, each chapter is organized so that students are introduced to
new ideas in a gradual way, giving them time to assimilate an increasing
level of detail as they progress. Ideas that take more time to master are
introduced in early chapters and reinforced in later chapters.

e Just-in-time object coverage. The proper place for the introduction of
object-oriented techniques is an ongoing controversy in computer science
education. This book is neither strictly “objects early” nor “objects late,”
but gradually introduces object concepts after a brief initial grounding
in the basics of imperative programming. Students learn multiple design



Xl

Preface

techniques, including top-down (functional decomposition), spiral (proto-
typing), and object-oriented methods. Additionally, the textbook material
is flexible enough to accommodate other approaches.

e Extensive end-of-chapter problems. Exercises at the end of every
chapter provide ample opportunity for students to reinforce their mastery
of the chapter material and to practice new programming skills.

Changes in the Second and Third Editions

The first edition of the textbook has aged gracefully, and the approach it takes
remains just as relevant now as when it was first published.

While fundamental principles do not change, the technology environment
does. With the release of Python 3.0, updates to the original material became
necessary. The second edition was basically the same as the original textbook,
except that it was updated to use Python 3. Virtually every program example in
the book had to be modified for the new Python. Additionally, to accommodate
certain changes in Python (notably the removal of the string library), the mate-
rial was reordered slightly to cover object terminology before discussing string
processing. A beneficial side effect of this change was an even earlier introduction
of computer graphics to pique student interest.

The third edition continues the tradition of updating the text to reflect new
technologies while maintaining a time-tested approach to teaching introductory
computer science. An important change to this edition is the removal of most
uses of eval and the addition of a discussion of its dangers. In our increasingly
connected world, it’s never too early to begin considering computer security is-
sues.

Several new graphics examples, developed throughout chapters 4-12, have
been added to introduce new features of the graphics library that support anima-
tions, including simple video game development. This brings the text up to date
with the types of final projects that are often assigned in modern introductory
classes.

Smaller changes have been made throughout the text, including:

e Material on file dialogs has been added in Chapter 5.

e Chapter 6 has been expanded and reorganized to emphasize value-returning
functions.



Preface

xiil

e Coverage has been streamlined and simplified to use IDLE (the standard
“comes-with-Python” development environment) consistently. This makes

the text more suitable for self-study as well as for use as a classroom text-
book.

e Technology references have been updated.

e To further accommodate self-studiers, end-of-chapter solutions for this
third edition are freely available online. Classroom instructors wishing to
use alternative exercises can request those from the publisher. Self-studiers
and instructors alike can visit https://fbeedle.com for details.

Coverage Options

In keeping with the goal of simplicity, I have tried to limit the amount of material
that would not be covered in a first course. Still, there is probably more mate-
rial here than can be covered in a typical one-semester introduction. My classes
cover virtually all of the material in the first 12 chapters in order, though not
necessarily covering every section in depth. One or two topics from Chapter 13
(“Algorithm Design and Recursion”) are generally interspersed at appropriate
places during the term.

Recognizing that different instructors prefer to approach topics in different
ways, I have tried to keep the material relatively flexible. Chapters 14 (“Com-
puters and Programs,” “Writing Simple Programs,” “Computing with Numbers,”
“Objects and Graphics”) are essential introduction and should probably be
covered in order. The initial portions of Chapter 5 (“Sequences: Strings, Lists,
and Files”) on string processing are also fundamental, but the later topics such
as string formatting and file processing can be delayed until needed later on.
Chapters 68 (“Defining Functions,” “Decision Structures,” and “Loop Structures
and Booleans”) are designed to stand independently and can be taken in virtu-
ally any order. Chapters 9-12 on design approaches are written to be taken in
order, but the material in Chapter 11 (“Data Collections”) could easily be moved
earlier, should the instructor want to cover lists (arrays) before various design
techniques. Instructors wishing to emphasize object-oriented design need not
spend much time on Chapter 9. Chapter 13 contains more advanced material
that may be covered at the end or interspersed at various places throughout the
course.



XV

Preface

Acknowledgments

My approach to CS1 has been influenced over the years by many fine textbooks
that I have read and used for classes. Much that I have learned from those books
has undoubtedly found its way into these pages. There are a few specific au-
thors whose approaches have been so important that I feel they deserve special
mention. A.K. Dewdney has always had a knack for finding simple examples
that illustrate complex issues; I have borrowed a few of those and given them
new legs in Python. I also owe a debt to wonderful textbooks from both Owen
Astrachan and Cay Horstmann. The graphics library I introduce in Chapter 4
was directly inspired by my experience teaching with a similar library designed
by Horstmann. I also learned much about teaching computer science from Nell
Dale, for whom I was fortunate enough to serve as a TA when I was a graduate
student at the University of Texas.

Many people have contributed either directly or indirectly to the produc-
tion of this book. I have also received much help and encouragement from my
colleagues (and former colleagues) at Wartburg College: Lynn Olson for his un-
flagging support at the very beginning; Josef Breutzmann, who supplied many
project ideas; and Terry Letsche, who prepared PowerPoint slides for the first
and third editions.

I want to thank the following individuals who read or commented on the
manuscript for the first edition: Rus May, Morehead State University; Carolyn
Miller, North Carolina State University; Guido Van Rossum, Google; Jim Sager,
California State University, Chico; Christine Shannon, Centre College; Paul
Tymann, Rochester Institute of Technology; Suzanne Westbrook, University of
Arizona. I am grateful to Dave Reed at Capital University, who used early ver-
sions of the first edition, offered numerous insightful suggestions, and worked
with Jeffrey Cohen at University of Chicago to supply alternate end-of-chapter
exercises for this edition. Ernie Ackermann test drove the second edition at Mary
Washington College. The third edition was test driven in classes by Theresa Migler
at California Polytechnic State University in San Luis Obispo and my colleague
Terry Letsche; and David Bantz provided feedback on a draft. Thanks to all for
their valuable observations and suggestions.

I also want to acknowledge the fine folks at Franklin, Beedle, and Associ-
ates, especially Tom Sumner, Brenda Jones, and Jaron Ayres, who turned my
pet project into a real textbook. This edition is dedicated to the memory of Jim
Leisy, the founder of Franklin, Beedle and Associates, who passed away unex-



Preface

pectedly as the third edition was getting off the ground. Jim was an amazing
man of unusually wide-ranging interests. It was his vision, guidance, relentless
enthusiasm, and a fair bit of determined prodding, that ultimately molded me
into a textbook author and made this book a success.

A special thanks also goes out to all my students, who have taught me so
much about teaching, and to Wartburg College for giving me sabbatical support to
work on the book. Last, but most importantly, I acknowledge my wife, Elizabeth
Bingham, who has served as editor, advisor, and morale booster while putting
up with me during my writing spells.

—JMZ






Chapter 1 Computers and
Programs

Objectives

e To understand the respective roles of hardware and software in computing
systems.

e To learn what computer scientists study and the techniques that they use.
e To understand the basic design of a modern computer.

e To understand the form and function of computer programming languages.
e To begin using the Python programming language.

e To learn about chaotic models and their implications for computing.

1.1/ The Universal Machine

Almost everyone has used a computer at one time or another. Perhaps you have
played computer games or used a computer to write a paper, shop online, listen
to music, or connect with friends via social media. Computers are used to predict
the weather, design airplanes, make movies, run businesses, perform financial
transactions, and control factories.

Have you ever stopped to wonder what exactly a computer is? How can one
device perform so many different tasks? These basic questions are the starting
point for learning about computers and computer programming.

1



Chapter 1. Computers and Programs

A modern computer can be defined as “a machine that stores and manipu-
lates information under the control of a changeable program.” There are two
key elements to this definition. The first is that computers are devices for ma-
nipulating information. This means we can put information into a computer,
and it can transform the information into new, useful forms, and then output or
display the information for our interpretation.

Computers are not the only machines that manipulate information. When
you use a simple calculator to add up a column of numbers, you are entering
information (the numbers) and the calculator is processing the information to
compute a running sum which is then displayed. Another simple example is a
gas pump. As you fill your tank, the pump uses certain inputs: the current price
of gas per gallon and signals from a sensor that reads the rate of gas flowing
into your car. The pump transforms this input into information about how much
gas you took and how much money you owe.

We would not consider either the calculator or the gas pump as full-fledged
computers, although modern versions of these devices may actually contain em-
bedded computers. They are different from computers in that they are built to
perform a single, specific task. This is where the second part of our definition
comes into the picture: Computers operate under the control of a changeable
program. What exactly does this mean?

A computer program is a detailed, step-by-step set of instructions telling a
computer exactly what to do. If we change the program, then the computer
performs a different sequence of actions, and hence, performs a different task.
It is this flexibility that allows your PC to be at one moment a word processor, at
the next moment a financial planner, and later on, an arcade game. The machine
stays the same, but the program controlling the machine changes.

Every computer is just a machine for executing (carrying out) programs.
There are many different kinds of computers. You might be familiar with Macin-
toshes, PCs, laptops, tablets and smartphones, but there are literally thousands
of other kinds of computers both real and theoretical. One of the remarkable
discoveries of computer science is the realization that all of these different com-
puters have the same power; with suitable programming, each computer can
basically do all the things that any other computer can do. In this sense, the
PC that you might have sitting on your desk is really a universal machine. It
can do anything you want it to do, provided you can describe the task to be
accomplished in sufficient detail. Now that’s a powerful machine!



1.2. Program Power

1.2| Program Power

You have already learned an important lesson of computing: Software (pro-
grams) rules the hardware (the physical machine). It is the software that de-
termines what any computer can do. Without software, computers would just
be expensive paperweights. The process of creating software is called program-
ming, and that is the main focus of this book.

Computer programming is a challenging activity. Good programming re-
quires an ability to see the big picture while paying attention to minute detail.
Not everyone has the talent to become a first-class programmer, just as not ev-
eryone has the skills to be a professional athlete. However, virtually anyone can
learn how to program computers. With some patience and effort on your part,
this book will help you to become a programmer.

There are lots of good reasons to learn programming. Programming is a
fundamental part of computer science and is, therefore, important to anyone in-
terested in becoming a computer professional. But others can also benefit from
the experience. Computers have become a commonplace tool in our society. Un-
derstanding the strengths and limitations of this tool requires an understanding
of programming. Non-programmers often feel they are slaves of their comput-
ers. Programmers, however, are truly in control. If you want to become a more
intelligent user of computers, then this book is for you.

Programming can also be loads of fun. It is an intellectually engaging ac-
tivity that allows people to express themselves through useful and sometimes
remarkably beautiful creations. Believe it or not, many people actually write
computer programs as a hobby. Programming also develops valuable problem-
solving skills, especially the ability to analyze complex systems by reducing them
to interactions of understandable subsystems.

As you probably know, programmers are in great demand. More than a few
liberal arts majors have turned a couple of computer programming classes into
a lucrative career option. Computers are so commonplace in the business world
today that the ability to understand and program computers might just give you
the edge over your competition regardless of your occupation. When inspiration
strikes, you could be poised to write the next killer app.

1.3| What Is Computer Science?

You might be surprised to learn that computer science is not the study of com-
puters. A famous computer scientist named Edsger Dijkstra once quipped that



Chapter 1. Computers and Programs

computers are to computer science what telescopes are to astronomy. The com-
puter is an important tool in computer science, but it is not itself the object of
study. Since a computer can carry out any process that we can describe, the
real question is “What processes can we describe?” To put it another way, the
fundamental question of computer science is simply “What can be computed?”
Computer scientists use numerous techniques of investigation to answer this
question. The three main ones are design, analysis, and experimentation.

One way to demonstrate that a particular problem can be solved is to actu-
ally design a solution. That is, we develop a step-by-step process for achieving
the desired result. Computer scientists call this an algorithm. That’s a fancy
word that basically means “recipe.” The design of algorithms is one of the most
important facets of computer science. In this book you will find techniques for
designing and implementing algorithms.

One weakness of design is that it can only answer the question “What is
computable?” in the positive. If I can devise an algorithm, then the problem is
solvable. However, failing to find an algorithm does not mean that a problem is
unsolvable. It may mean that I’'m just not smart enough, or I haven’t hit upon
the right idea yet. This is where analysis comes in.

Analysis is the process of examining algorithms and problems mathemati-
cally Computer scientists have shown that some seemingly simple problems
are not solvable by any algorithm. Other problems are intractable. The algo-
rithms that solve these problems take too long or require too much memory to
be of practical value. Analysis of algorithms is an important part of computer
science; throughout this book we will touch on some of the fundamental princi-
ples. Chapter 13 has examples of unsolvable and intractable problems.

Some problems are too complex or ill-defined to lend themselves to anal-
ysis. In such cases, computer scientists rely on experimentation; they actually
implement systems and then study the resulting behavior. Even when theoret-
ical analysis is done, experimentation is often needed in order to verify and
refine the analysis. For most problems, the bottom line is whether a working,
reliable system can be built. Often we require empirical testing of the system
to determine that this bottom line has been met. As you begin writing your
own programs, you will get plenty of opportunities to observe your solutions in
action.

I have defined computer science in terms of designing, analyzing, and eval-
uating algorithms, and this is certainly the core of the academic discipline.
These days, however, computer scientists are involved in far-flung activities,
all of which fall under the general umbrella of computing. Some examples



1.4. Hardware Basics

. Output
% ) CPU Devices
Input \ . g
Devices
Main "| Secondary
Memory Memory
. v

Figure 1.1: Functional view of a computer

include mobile computing, networking, human-computer interaction, artificial
intelligence, computational science (using powerful computers to model sci-
entific processes), databases and data mining, software engineering, web and
multimedia design, music production, management information systems, and
computer security. Wherever computing is done, the skills and knowledge of
computer science are being applied.

1.4| Hardware Basics

You don’t have to know all the details of how a computer works to be a successful
programmer, but understanding the underlying principles will help you master
the steps we go through to put our programs into action. It’s a bit like driving a
car. Knowing a little about internal combustion engines helps to explain why you
have to do things like fill the gas tank, start the engine, step on the accelerator,
and so on. You could learn to drive by just memorizing what to do, but a little
more knowledge makes the whole process much more understandable. Let’s
take a moment to “look under the hood” of your computer.

Although different computers can vary significantly in specific details, at a
higher level all modern digital computers are remarkably similar. Figure 1.1
shows a functional view of a computer. The central processing unit (CPU) is the
“brain” of the machine. This is where all the basic operations of the computer are
carried out. The CPU can perform simple arithmetic operations like adding two
numbers and can also do logical operations like testing to see if two numbers
are equal.



Chapter 1. Computers and Programs

The memory stores programs and data. The CPU can directly access only
information that is stored in main memory (called RAM for Random Access Mem-
ory). Main memory is fast, but it is also volatile. That is, when the power is
turned off, the information in the memory is lost. Thus, there must also be some
secondary memory that provides more permanent storage.

In a modern personal computer, the principal secondary memory is typically
an internal hard disk drive (HDD) or a solid state drive (SSD). An HDD stores
information as magnetic patterns on a spinning disk, while an SSD employs elec-
tronic circuits known as flash memory. Most computers also support removeable
media for secondary memory such as USB memory “sticks” (also a form of flash
memory) and DVDs (digital versatile discs), which store information as optical
patterns that are read and written by a laser.

Humans interact with the computer through input and output devices. You
are probably familiar with common devices such as a keyboard, mouse, and
monitor (video screen). Information from input devices is processed by the CPU
and may be shuffled off to the main or secondary memory. Similarly, when
information needs to be displayed, the CPU sends it to one or more output
devices.

So what happens when you fire up your favorite game or word processing
program? First, the instructions that comprise the program are copied from the
(more) permanent secondary memory into the main memory of the computer.
Once the instructions are loaded, the CPU starts executing the program.

Technically the CPU follows a process called the fetch-execute cycle. The first
instruction is retrieved from memory, decoded to figure out what it represents,
and the appropriate action carried out. Then the next instruction is fetched,
decoded, and executed. The cycle continues, instruction after instruction. This
is really all the computer does from the time that you turn it on until you turn
it off again: fetch, decode, execute. It doesn’t seem very exciting, does it? But
the computer can execute this stream of simple instructions with blazing speed,
zipping through billions of instructions each second. Put enough simple instruc-
tions together in just the right way, and the computer does amazing things.

1.5| Programming Languages

Remember that a program is just a sequence of instructions telling a computer
what to do. Obviously, we need to provide those instructions in a language
that a computer can understand. It would be nice if we could just tell a com-
puter what to do using our native language, like they do in science fiction



1.5. Programming Languages

movies. (“Computer, how long will it take to reach planet Alphalpha at maxi-
mum warp?”) Computer scientists have made great strides in this direction; you
may be familiar with technologies such as Siri (Apple), Google Now (Android),
and Cortana (Microsoft). But as anyone who has seriously useded such systems
can attest, designing a computer program to fully understand human language
is still an unsolved problem.

Even if computers could understand us, human languages are not very well
suited for describing complex algorithms. Natural language is fraught with am-
biguity and imprecision. For example, if I say “I saw the man in the park with the
telescope,” did I have the telescope, or did the man? And who was in the park?
We understand each other most of the time only because all humans share a vast
store of common knowledge and experience. Even then, miscommunication is
commonplace.

Computer scientists have gotten around this problem by designing notations
for expressing computations in an exact and unambiguous way. These special
notations are called programming languages. Every structure in a programming
language has a precise form (its syntax) and a precise meaning (its semantics).
A programming language is something like a code for writing down the instruc-
tions that a computer will follow. In fact, programmers often refer to their
programs as computer code, and the process of writing an algorithm in a pro-
gramming language is called coding.

Python is one example of a programming language and is the language that
we will use throughout this book.! You may have heard of some other com-
monly used languages, such as C++, Java, Javascript, Ruby, Perl, Scheme, or
BASIC. Computer scientists have developed literally thousands of programming
languages, and the languages themselves evolve over time yielding multiple,
sometimes very different, versions. Although these languages differ in many
details, they all share the property of having well-defined, unambiguous syntax
and semantics.

All of the languages mentioned above are examples of high-level computer
languages. Although they are precise, they are designed to be used and under-
stood by humans. Strictly speaking, computer hardware can understand only a
very low-level language known as machine language.

Suppose we want the computer to add two numbers. The instructions that
the CPU actually carries out might be something like this:

This edition of the text was developed and tested using Python version 3.4. Python 3.5 is
now available. If you have an earlier version of Python installed on your computer, you should
upgrade to the latest stable 3.x version to try out the examples.



Chapter 1. Computers and Programs

load the number from memory location 2001 into the CPU
load the number from memory location 2002 into the CPU
add the two numbers in the CPU

store the result into location 2003

This seems like a lot of work to add two numbers, doesn’t it? Actually, it’s even
more complicated than this because the instructions and numbers are repre-
sented in binary notation (as sequences of Os and 1s).

In a high-level language like Python, the addition of two numbers can be
expressed more naturally: ¢ = a + b. That’s a lot easier for us to understand,
but we need some way to translate the high-level language into the machine
language that the computer can execute. There are two ways to do this: a
high-level language can either be compiled or interpreted.

A compiler is a complex computer program that takes another program writ-
ten in a high-level language and translates it into an equivalent program in the
machine language of some computer. Figure 1.2 shows a block diagram of the
compiling process. The high-level program is called source code, and the re-
sulting machine code is a program that the computer can directly execute. The
dashed line in the diagram represents the execution of the machine code (also
known as “running the program”).

Source
Code

Compiler - Machine
(Program)

Code

Y

Running | >
Program

N V.

Figure 1.2: Compiling a high-level language

An interpreter is a program that simulates a computer that understands a
high-level language. Rather than translating the source program into a machine
language equivalent, the interpreter analyzes and executes the source code in-
struction by instruction as necessary. Figure 1.3 illustrates the process.

The difference between interpreting and compiling is that compiling is a one-
shot translation; once a program is compiled, it may be run over and over again
without further need for the compiler or the source code. In the interpreted



1.6. The Magic of Python

Source
Code
(Program) Computer
Running an
Interpreter
\_ 7

Figure 1.3: Interpreting a high-level language

case, the interpreter and the source are needed every time the program runs.
Compiled programs tend to be faster, since the translation is done once and for
all, but interpreted languages lend themselves to a more flexible programming
environment as programs can be developed and run interactively.

The translation process highlights another advantage that high-level lan-
guages have over machine language: portability. The machine language of a
computer is created by the designers of the particular CPU. Each kind of com-
puter has its own machine language. A program for an Intel i7 Processor in your
laptop won’t run directly on an ARMv8 CPU in your smartphone. On the other
hand, a program written in a high-level language can be run on many different
kinds of computers as long as there is a suitable compiler or interpreter (which
is just another program). As a result, I can run the exact same Python program
on my laptop and my tablet; even though they have different CPUs, they both
sport a Python interpreter.

1.6| The Magic of Python

Now that you have all the technical details, it’s time to start having fun with
Python. The ultimate goal is to make the computer do our bidding. To this
end, we will write programs that control the computational processes inside the
machine. You have already seen that there is no magic in this process, but in
some ways programming feels like magic.

The computational processes inside the computer are like magical spirits that
we can harness for our work. Unfortunately, those spirits only understand a very
arcane language that we do not know. What we need is a friendly genie that can
direct the spirits to fulfill our wishes. Our genie is a Python interpreter. We can
give instructions to the Python interpreter, and it directs the underlying spirits



10

Chapter 1. Computers and Programs

to carry out our demands. We communicate with the genie through a special
language of spells and incantations (i.e., Python). The best way to start learning
about Python is to let our genie out of the bottle and try some spells.

With most Python installations, you can start a Python interpreter in an in-
teractive mode called a shell. A shell allows you to type Python commands and
then displays the result of executing them. The specifics for starting a shell differ
for various installations. If you are using the standard Python distribution for
PC or Mac from www.python.org, you should have an application called IDLE
that provides a Python shell and, as we’ll see later on, also helps you create
and edit your own Python programs. The supporting website for this book has
information on installing and using Python on a variety of platforms.

When you first launch IDLE (or another Python shell), you should see some-
thing like the this:

Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 24 2015, 22:43:06)
[MSC v.1600 32 bit (Intel)] on win32

Type "copyright", "credits" or "license()" for more information.
>>>

The exact opening message depends on the version of Python that you are run-
ning and the system that you are working on. The important part is the last line;
the >>> is a Python prompt indicating that our genie (the Python interpreter)
is waiting for us to give it a command. In programming languages, a complete
command is called a statement.

Here is a sample interaction with a Python shell:

>>> print("Hello, World!")
Hello, World!
>>> print(2 + 3)

5
>>> print("2 + 3 =", 2 + 3)
2+ 3 =5

Here I have tried out three examples using the Python print statement. The
first statement asks Python to display the literal phrase Hello, World!. Python
responds on the next line by printing the phrase. The second print statement
asks Python to print the sum of 2 and 3. The third print combines these two
ideas. Python prints the partin quotes, 2 + 3 =, followed by the result of adding
2 + 3, which is 5.

This kind of shell interaction is a great way to try out new things in Python.
Snippets of interactive sessions are sprinkled throughout this book. When you



1.6. The Magic of Python

11

see the Python prompt >>> in an example, that should tip you off that an
interactive session is being illustrated. It’s a good idea to fire up your own
Python shell and try the examples.

Usually we want to move beyond one-line snippets and execute an entire
sequence of statements. Python lets us put a sequence of statements together to
create a brand-new command or function. Here is an example of creating a new
function called hello:

>>> def hello():
print ("Hello")
print ("Computers are fun!")

>>>

The first line tells Python that we are defining a new function and we are naming
it hello. The following lines are indented to show that they are part of the hello
function. (Note: Some shells will print ellipses [“...”] at the beginning of the
indented lines). The blank line at the end (obtained by hitting the <Enter> key
twice) lets Python know that the definition is finished, and the shell responds
with another prompt. Notice that typing the definition did not cause Python to
print anything yet. We have told Python what should happen when the hello
function is used as a command; we haven’t actually asked Python to perform it
yet.

A function is invoked (or called) by typing its name followed by parentheses.
Here’s what happens when we use our hello command:

>>> hello()
Hello

Computers are fun!
>>>

Do you see what this does? The two print statements from the hello function
definition are executed in sequence.

You may be wondering about the parentheses in the definition and use of
hello. Commands can have changeable parts called parameters (also called
arguments) that are placed within the parentheses. Let’s look at an example of
a customized greeting using a parameter. First the definition:

>>> def greet(person):
print ("Hello", person)
print ("How are you?")



12

Chapter 1. Computers and Programs

Now we can use our customized greeting.

>>> greet("John")
Hello John

How are you?

>>> greet ("Emily")
Hello Emily

How are you?

>>>

Can you see what is happening here? When using greet we can send different
names to customize the result. You might also notice that this looks similar to
the print statements from before. In Python, print is an example of a built-in
function. When we call the print function, the parameters in the parentheses
tell the function what to print.

We will discuss parameters in detail later on. For the time being the im-
portant thing to remember is that the parentheses must be included after the
function name whenever we want to execute a function. This is true even when
no parameters are given. For example, you can create a blank line of output
using print without any parameters.

>>> print()

>>>

But if you type just the name of the function, omitting the parentheses, the
function will not actually execute. Instead, an interactive Python session will
show some output indicating what function that name refers to, as this interac-
tion shows:

>>> greet

<function greet at 0x8393aec>
>>> print

<built-in function print>

The funny text 0x8393aec is the location (address) in computer memory where
the greet function definition happens to be stored. If you are trying this out on
your own computer, you will almost certainly see a different address.

One problem with entering functions interactively into a Python shell as we
did with the hello and greet examples is that the definitions are lost when we
quit the shell. If we want to use them again the next time, we have to type them



1.6. The Magic of Python

13

all over again. Programs are usually created by typing definitions into a separate
file called a module or script. This file is saved in secondary memory so that it
can be used over and over again.

A module file is just a file of text, and you can create one using any ap-
plication for editing text, such as notepad or a word processor, provided you
save your program as a “plain text” file. A special type of application known as
an Integrated Development Environment (IDE) simplifies the process. An IDE is
specifically designed to help programmers write programs and includes features
such as automatic indenting, color highlighting, and interactive development.
IDLE is a good example. So far we have just been using IDLE as a Python shell,
but it is actually a simple but complete development environment.?

Let’s illustrate the use of a module file by writing and running a complete
program. Our program will explore a mathematical concept known as chaos. To
type this program into IDLE, you should select the File/New File menu option.
This brings up a blank (non-shell) window where you can type a program. Here
is the Python code for our program:

# File: chaos.py
# A simple program illustrating chaotic behavior.

def main():
print ("This program illustrates a chaotic function")
x = eval(input("Enter a number between O and 1: "))
for i in range(10):
x =3.9 %xx *x (1 - x)
print (x)

main()

Once you have typed it in, select File/Save from the menu and save it with
the name chaos.py. The .py extension indicates that this is a Python module.
Be careful where you save your program. Sometimes IDLE starts you out in
the system-wide Python folder by default. Make sure to navigate to a folder
where you keep your own files. I'd suggest keeping all of your Python programs
together in a dedicated folder in your own personal document area.

At this point, you may be trying to make sense out of what you just typed.
You can see that this particular example contains lines to define a new function

2In fact, IDLE stands for Integrated DeveLopment Environment. The extra “L” is thrown in as
a tribute to Eric Idle, of Monty Python fame.



14

Chapter 1. Computers and Programs

called main. (Programs are often placed in a function called main.) The last
line of the file is the command to invoke this function. Don’t worry if you don’t
understand what main actually does; we will discuss it in the next section. The
point here is that once we have a program saved in a module file like this, we
can run it any time we want.

Our program can be run in a number of different ways that depend on the
actual operating system and programming environment that you are using. If
you are using a windowing system, you can probably run a Python program
by clicking (or double-clicking) on the module file’s icon. In a command line
situation, you might type a command like python chaos.py. When using IDLE
you can run a program simply by selecting Run/Run Module from the module
window menu. Hitting the <F5> key is a handy shortcut for this operation.

When IDLE runs the program, control will shift over to the shell window.
Here is how that looks:

>>> RESTART
>>>

This program illustrates a chaotic function
Enter a number between O and 1: .25

. 73125

.76644140625

.6981350104385375

.82189568187902304

.5708940191969317

.95563987483642099

.166186721954413

.5404179120617926

.9686289302998042

.11850901017563877
>>>

O O O O O O O O OO

The first line is a notification from IDLE indicating that the shell has restarted.
IDLE does this each time you run a program so that the program runs in a
pristine environment. Python then runs the module from top to bottom, line
by line. It’s just as if we had typed them one-by-one at the interactive Python
prompt. The def in the module causes Python to create the main function. The
last line of this module causes Python to invoke the main function, thus running
our program. The running program asks the user to enter a number between 0
and 1 (in this case, I typed “.25”) and then prints out a series of 10 numbers.



1.7. Inside a Python Program

15

If you browse through the files on your computer, you may notice that Python
sometimes creates another folder called __pycache__ inside the folder where
your module files are stored. This is a place where Python stashes companion
files with a .pyc extension. In this example, Python might create another file
called chaos.pyc. This is an intermediate file used by the Python interpreter.
Technically, Python uses a hybrid compiling/interpreting process. The Python
source in the module file is compiled into more primitive instructions called
byte code. This byte code (the .pyc) is then interpreted. Having a .pyc file
available makes running a module faster the second time around. However,
you may delete the byte code files if you wish to save disk space; Python will
automatically recreate them as needed.

Running a module under IDLE loads the program into the shell window. You
can run the program again by asking Python to execute the main command.
Simply type the command at the shell prompt. Continuing with our example,
here is how it looks when we rerun the program with .26 as the input:

>>> main()

This program illustrates a chaotic function
Enter a number between O and 1: .26
. 75036

. 73054749456

. 767706625733

.6954993339

.825942040734

.560670965721

. 960644232282

.147446875935

.490254549376

.974629602149
>>>

O O O O O O O O OO

1.7| Inside a Python Program

The output from the chaos program may not look very exciting, but it illustrates
a very interesting phenomenon known to physicists and mathematicians. Let’s
take a look at this program line by line and see what it does. Don’t worry about
understanding every detail right away; we will be returning to all of these ideas
in the next chapter.



16

Chapter 1. Computers and Programs

The first two lines of the program start with the # character:

# File: chaos.py
# A simple program illustrating chaotic behavior.

These lines are called comments. They are intended for human readers of the
program and are ignored by Python. The Python interpreter always skips any
text from the pound sign (#) through the end of a line.

The next line of the program begins the definition of a function called main:

def main():

Strictly speaking, it would not be necessary to create a main function. Since the
lines of a module are executed as they are loaded, we could have written our
program without this definition. That is, the module could have looked like this:

# File: chaos.py
# A simple program illustrating chaotic behavior.

print ("This program illustrates a chaotic function")
x = eval(input("Enter a number between O and 1: "))
for i in range(10):

x=3.9*%xx % (1 - x)

print (x)

This version is a bit shorter, but it is customary to place the instructions that
comprise a program inside of a function called main. One immediate benefit of
this approach was illustrated above; it allows us to run the program by simply
invoking main(). We don’t have to restart the Python shell in order to run it
again, which would be necessary in the main-less case.

The first line inside of main is really the beginning of our program.

print ("This program illustrates a chaotic function")

This line causes Python to print a message introducing the program when it
runs.
Take a look at the next line of the program:

x = eval(input("Enter a number between O and 1: "))

Here x is an example of a variable. A variable is used to give a name to a value
so that we can refer to it at other points in the program.



1.7. Inside a Python Program

17

The entire line is a statement to get some input from the user. There’s quite
a bit going on in this line, and we’ll discuss the details in the next chapter; for
now, you just need to know what it accomplishes. When Python gets to this
statement, it displays the quoted message Enter a number between O and 1:
and then pauses, waiting for the user to type something on the keyboard and
press the <Enter> key. The value that the user types is then stored as the variable
x. In the first example shown above, the user entered .25, which becomes the
value of x.

The next statement is an example of a loop.

for i in range(10):

Aloop is a device that tells Python to do the same thing over and over again. This
particular loop says to do something 10 times. The lines indented underneath
the loop heading are the statements that are done 10 times. These form the
body of the loop.

x =39 xx * (1 - x)
print (x)

The effect of the loop is exactly the same as if we had written the body of
the loop 10 times:

x =3.9 xx * (1 - x)

print (x)
x=3.9%xx* (1 - x)
print (x)
x=3.9*%x*x (1 - x)
print (x)
x=3.9%xxx* (1 - x)
print (x)
x =3.9 xx *x (1 - x)
print (x)
x =39 *xx * (1 - x)
print (x)
x =39 xx * (1 - x)
print (x)
x =3.9 %xx *x (1 - x)
print (x)

x =3.9 xx *x (1 - x)



18

Chapter 1. Computers and Programs

print (x)
x =3.9 %xx *x (1 - x)
print (x)

Obviously, using the loop instead saves the programmer a lot of trouble.
But what exactly do these statements do? The first one performs a calcula-
tion.

x =3.9 *xx *x (1 - x)

This is called an assignment statement. The part on the right side of the = is a
mathematical expression. Python uses the * character to indicate multiplication.
Recall that the value of x is 0.25 (from the input above). The computed value
is 3.9(0.25)(1 — 0.25) or 0.73125. Once the value on the right-hand side is com-
puted, it is saved as (or assigned to) the variable that appears on the left-hand
side of the =, in this case x. The new value of x (0.73125) replaces the old value
(0.25).

The second line in the loop body is a type of statement we have encountered
before, a print statement.

print (x)

When Python executes this statement, the current value of x is displayed on the
screen. So the first number of output is 0.73125.

Remember the loop executes 10 times. After printing the value of x, the two
statements of the loop are executed again.

x =3.9 %xx *x (1 - x)
print (x)

Of course, now x has the value 0.73125, so the formula computes a new value of
x as 3.9(0.73125)(1 — 0.73125), which is 0.76644140625.

Can you see how the current value of x is used to compute a new value each
time around the loop? That’s where the numbers in the example run came from.
You might try working through the steps of the program yourself for a different
input value (say 0.5). Then run the program using Python and see how well you
did impersonating a computer.

1.8/ Chaos and Computers

I said above that the chaos program illustrates an interesting phenomenon.
What could be interesting about a screen full of numbers? If you try out the



1.8. Chaos and Computers

19

program for yourself, you’ll find that, no matter what number you start with,
the results are always similar: the program spits back 10 seemingly random
numbers between 0 and 1. As the program runs, the value of x seems to jump
around, well, chaotically.

The function computed by this program has the general form: k(z)(1 — z),
where k in this case is 3.9. This is called a logistic function. It models certain
kinds of unstable electronic circuits and is also sometimes used to model popu-
lation variation under limiting conditions. Repeated application of the logistic
function can produce chaos. Although our program has a well-defined underly-
ing behavior, the output seems unpredictable.

An interesting property of chaotic functions is that very small differences
in the initial value can lead to large differences in the result as the formula is
repeatedly applied. You can see this in the chaos program by entering numbers
that differ by only a small amount. Here is the output from a modified program
that shows the results for initial values of 0.25 and 0.26 side by side:

input 0.25 0.26
0.731250 0.750360
0.766441 0.730547
0.698135 0.767707
0.821896 0.695499
0.570894 0.825942
0.955399 0.560671
0.166187 0.960644
0.540418 0.147447
0.968629 0.490255
0.118509 0.974630

With very similar starting values, the outputs stay similar for a few iterations,
but then differ markedly. By about the fifth iteration, there no longer seems to
be any relationship between the two models.

These two features of our chaos program, apparent unpredictability and ex-
treme sensitivity to initial values, are the hallmarks of chaotic behavior. Chaos
has important implications for computer science. It turns out that many phe-
nomena in the real world that we might like to model and predict with our
computers exhibit just this kind of chaotic behavior. You may have heard of the
so-called butterfly effect. Computer models that are used to simulate and predict
weather patterns are so sensitive that the effect of a single butterfly flapping



20

Chapter 1. Computers and Programs

its wings in New Jersey might make the difference of whether or not rain is
predicted in Peoria.

It’s very possible that even with perfect computer modeling, we might never
be able to measure existing weather conditions accurately enough to predict
weather more than a few days in advance. The measurements simply can’t be
precise enough to make the predictions accurate over a longer time frame.

As you can see, this small program has a valuable lesson to teach users of
computers. As amazing as computers are, the results that they give us are only
as useful as the mathematical models on which the programs are based. Com-
puters can give incorrect results because of errors in programs, but even correct
programs may produce erroneous results if the models are wrong or the initial
inputs are not accurate enough.

1.9/ Chapter Summary

This chapter has introduced computers, computer science, and programming.
Here is a summary of some of the key concepts:

e A computer is a universal information-processing machine. It can carry out
any process that can be described in sufficient detail. A description of the
sequence of steps for solving a particular problem is called an algorithm.
Algorithms can be turned into software (programs) that determines what
the hardware (physical machine) can and does accomplish. The process
of creating software is called programming.

e Computer science is the study of what can be computed. Computer sci-
entists use the techniques of design, analysis, and experimentation. Com-
puter science is the foundation of the broader field of computing which
includes areas such as networking, databases, and information manage-
ment systems, to name a few.

e A basic functional view of a computer system comprises a central process-
ing unit (CPU), main memory, secondary memory, and input and output
devices. The CPU is the brain of the computer that performs simple arith-
metic and logical operations. Information that the CPU acts on (data and
programs) is stored in main memory (RAM). More permanent informa-
tion is stored on secondary memory devices such as magnetic disks, flash
memory, and optical devices. Information is entered into the computer via
input devices, and output devices display the results.



1.10. Exercises

21

e Programs are written using a formal notation known as a programming

language. There are many different languages, but all share the property
of having a precise syntax (form) and semantics (meaning). Computer
hardware understands only a very low-level language known as machine
language. Programs are usually written using human-oriented, high-level
languages such as Python. A high-level language must either be compiled
or interpreted in order for the computer to understand it. High-level lan-
guages are more portable than machine language.

Python is an interpreted language. One good way to learn about Python
is to use an interactive shell for experimentation. The standard Python
distribution includes a program called IDLE that provides a shell as well
as facilities for editing Python programs.

e A Python program is a sequence of commands (called statements) for the

Python interpreter to execute. Python includes statements to do things
such as print output to the screen, get input from the user, calculate the
value of a mathematical expression, and perform a sequence of statements
multiple times (loop).

e A mathematical model is called chaotic if very small changes in the input

lead to large changes in the results, making them seem random or un-
predictable. The models of many real-world phenomena exhibit chaotic
behavior, which places some limits on the power of computing.

1.10| Exercises

Review Questions

True/False

1.
2.

Computer science is the study of computers.

The CPU is the “brain” of the computer.

. Secondary memory is also called RAM.

. All information that a computer is currently working on is stored in main

memory.

. The syntax of a language is its meaning, and semantics is its form.



22

Chapter 1. Computers and Programs

9.
10.

. A function definition is a sequence of statements that defines a new com-

mand.

. A programming environment refers to a place where programmers work.

. A variable is used to give a name to a value so it can be referred to in other

places.
A loop is used to skip over a section of a program.

A chaotic function can’t be computed by a computer.

Multiple Choice

1.

What is the fundamental question of computer science?
a) How fast can a computer compute?

b) What can be computed?
c) What is the most effective programming language?
d) How much money can a programmer make?

. An algorithm is like a

a) newspaper b) venus flytrap c¢) drum d) recipe

. A problem is intractable when

a) you cannot reverse its solution
b) it involves tractors

c) it has many solutions

d) it is not practical to solve

Which of the following is not an example of secondary memory?
a) RAM b) hard drive c¢) USB flash drive d) DVD

. Computer languages designed to be used and understood by humans are

a) natural languages

b) high-level computer languages
c) machine languages

d) fetch-execute languages

. A statement is

a) a translation of machine language
b) a complete computer command
c) a precise description of a problem
d) a section of an algorithm



1.10. Exercises 23

7. One difference between a compiler and an interpreter is
a) a compiler is a program
b) a compiler is used to translate high-level language into machine language
c) a compiler is no longer needed after a program is translated
d) a compiler processes source code

8. By convention, the statements of a program are often placed in a function
called
a) import b) main c¢) program d) IDLE

9. Which of the following is not true of comments?
a) They make a program more efficient.

b) They are intended for human readers.
c) They are ignored by Python.
d) In Python, they begin with a pound sign (#).

10. The items listed in the parentheses of a function definition are called
a) parentheticals
b) parameters
c) arguments
d) both b) and c¢) are correct

Discussion
1. Compare and contrast the following pairs of concepts from the chapter:

a) Hardware vs. Software

b) Algorithm vs. Program

c) Programming Language vs. Natural Language
d) High-Level Language vs. Machine Language
e) Interpreter vs. Compiler

f) Syntax vs. Semantics

2. List and explain in your own words the role of each of the five basic func-
tional units of a computer depicted in Figure 1.1.

3. Write a detailed algorithm for making a peanut butter and jelly sandwich
(or some other everyday activity). You should assume that you are talking
to someone who is conceptually able to do the task, but has never actually
done it before. For example, you might be telling a young child.



24

Chapter 1. Computers and Programs

4. As you will learn in a later chapter, many of the numbers stored in a com-
puter are not exact values, but rather close approximations. For example,
the value 0.1 might be stored as 0.10000000000000000555. Usually, such
small differences are not a problem; however, given what you have learned
about chaotic behavior in Chapter 1, you should realize the need for cau-
tion in certain situations. Can you think of examples where this might be
a problem? Explain.

5. Trace through the chaos program from Section 1.6 by hand using 0.15 as
the input value. Show the sequence of output that results.

Programming Exercises

1. Start up an interactive Python session and try typing in each of the follow-
ing commands. Write down the results you see.

a)
b)
c)
d)
e)
f)
g)
h)
i)
j)
k)
1)

print ("Hello, world!")
print ("Hello", "world!")
print (3)

print (3.0)

print (2 + 3)

print(2.0 + 3.0)
print("2" + "3")
print("2 + 3 =", 2 + 3)
print(2 * 3)

print (2 ** 3)

print (7 / 3)

print (7 // 3)

2. Enter and run the chaos program from Section 1.6. Try it out with various
values of input to see that it functions as described in the chapter.

3. Modify the chaos program using 2.0 in place of 3.9 as the multiplier in the
logistic function. Your modified line of code should look like this:

x =2.0 x x * (1 - x)



1.10. Exercises

25

Run the program for various input values and compare the results to those
obtained from the original program. Write a short paragraph describing
any differences that you notice in the behavior of the two versions.

. Modify the chaos program so that it prints out 20 values instead of 10.

. Modify the chaos program so that the number of values to print is deter-
mined by the user. You will have to add a line near the top of the program
to get another value from the user:

n = eval(input("How many numbers should I print? "))

Then you will need to change the loop to use n instead of a specific number.

. The calculation performed in the chaos program can be written in a num-
ber of ways that are algebraically equivalent. Write a version of the pro-
gram for each of the following ways of doing the computation. Have your
modified programs print out 100 iterations of the calculation and compare
the results when run on the same input.

a) 3.9%x* (1 -x)
b) 3.9 *x (x - x * x)

c) 3.9 %xx -3.9%x *Xx

Explain the results of this experiment. Hint: See discussion question num-
ber 4, above.

. (Advanced) Modify the chaos program so that it accepts two inputs and
then prints a table with two columns similar to the one shown in Sec-
tion 1.8. (Note: You will probably not be able to get the columns to line
up as nicely as those in the example. Chapter 5 discusses how to print
numbers with a fixed number of decimal places.)






Chapter 2 Writing Simple
Programs

Objectives

e To know the steps in an orderly software development process.

e To understand programs following the input, process, output (IPO) pattern
and be able to modify them in simple ways.

e To understand the rules for forming valid Python identifiers and expressions.

e To be able to understand and write Python statements to output informa-
tion to the screen, assign values to variables, get information entered from
the keyboard, and perform a counted loop.

2.1/ The Software Development Process

As you saw in the previous chapter, it is easy to run programs that have already
been written. The harder part is actually coming up with a program in the first
place. Computers are very literal, and they must be told what to do right down
to the last detail. Writing large programs is a daunting challenge. It would be
almost impossible without a systematic approach.

The process of creating a program is often broken down into stages according

to the information that is produced in each phase. In a nutshell, here’s what you
should do:

27



28

Chapter 2. Writing Simple Programs

Analyze the Problem Figure out exactly what the problem to be solved is. Try
to understand as much as possible about it. Until you really know what
the problem is, you cannot begin to solve it.

Determine Specifications Describe exactly what your program will do. At this
point, you should not worry about how your program will work, but rather
about deciding exactly what it will accomplish. For simple programs this
involves carefully describing what the inputs and outputs of the program
will be and how they relate to each other.

Create a Design Formulate the overall structure of the program. This is where
the how of the program gets worked out. The main task is to design the
algorithm(s) that will meet the specifications.

Implement the Design Translate the design into a computer language and put
it into the computer. In this book, we will be implementing our algorithms
as Python programs.

Test/Debug the Program Try out your program and see whether it works as
expected. If there are any errors (often called bugs), then you should
go back and fix them. The process of locating and fixing errors is called
debugging a program. During the debugging phase, your goal is to find
errors, so you should try everything you can think of that might “break” the
program. It’s good to keep in mind the old maxim: “Nothing is foolproof
because fools are too ingenious.”

Maintain the Program Continue developing the program in response to the
needs of your users. Most programs are never really finished; they keep
evolving over years of use.

2.2| Example Program: Temperature Converter

Let’s go through the steps of the software development process with a simple
real-world example involving a fictional computer science student, Susan Com-
putewell.

Susan is spending a year studying in Germany. She has no problems with
language, as she is fluent in many languages (including Python). Her problem
is that she has a hard time figuring out the temperature in the morning so that
she knows how to dress for the day. Susan listens to the weather report each



2.2. Example Program: Temperature Converter

29

morning, but the temperatures are given in degrees Celsius, and she is used to
Fahrenheit.

Fortunately, Susan has an idea to solve the problem. Being a computer sci-
ence major, she never goes anywhere without her laptop computer. She thinks
it might be possible that a computer program could help her out.

Susan begins with an analysis of her problem. In this case, the problem is
pretty clear: the radio announcer gives temperatures in degrees Celsius, but
Susan only comprehends temperatures that are in degrees Fahrenheit.

Next, Susan considers the specifications of a program that might help her
out. What should the input be? She decides that her program will allow her to
type in the temperature in degrees Celsius. And the output? The program will
display the temperature converted into degrees Fahrenheit. Now she needs to
specify the exact relationship of the output to the input.

Susan does some quick figuring. She knows that 0 degrees Celsius (freez-
ing) is equal to 32 degrees Fahrenheit, and 100 Celsius (boiling) is equal to 212
Fahrenheit. With this information, she computes the ratio of Fahrenheit to Cel-

: 212-32 __ 180 __ 9 - - _
sius degrees as S55—5 = 190 = - Using F to represent the Fahrenheit tempera

ture and C for Celsius, the conversion formula will have the form F' = %C’ +k for
some constant k. Plugging in 0 and 32 for C and F, respectively, Susan immedi-
ately sees that k£ = 32. So the final formula for the relationship is F' = %C + 32.
That seems an adequate specification.

Notice that this describes one of many possible programs that could solve this
problem. If Susan had a background in the field of Artificial Intelligence (Al),
she might consider writing a program that would actually listen to the radio
announcer to get the current temperature using speech recognition algorithms.
For output, she might have the computer control a robot that goes to her closet
and picks an appropriate outfit based on the converted temperature. This would
be a much more ambitious project, to say the least!

Certainly, the robot program would also solve the problem identified in the
problem analysis. The purpose of specification is to decide exactly what this
particular program will do to solve a problem. Susan knows better than to just
dive in and start writing a program without first having a clear idea of what she
is trying to build.

Susan is now ready to design an algorithm for her problem. She immedi-
ately realizes that this is a simple algorithm that follows a standard pattern:
Input, Process, Output (IPO). Her program will prompt the user for some input
information (the Celsius temperature), process it to produce a Fahrenheit tem-
perature, and then output the result by displaying it on the computer screen.



30

Chapter 2. Writing Simple Programs

Susan could write her algorithm down in a computer language. However,
the precision required to write it out formally tends to stifle the creative pro-
cess of developing the algorithm. Instead, she writes her algorithm using pseu-
docode. Pseudocode is just precise English that describes what a program does.
It is meant to communicate algorithms without all the extra mental overhead of
getting the details right in any particular programming language.

Here is Susan’s completed algorithm:

Input the temperature in degrees Celsius (call it celsius)
Calculate fahrenheit as (9/5)celsius + 32
Output fahrenheit

The next step is to translate this design into a Python program. This is
straightforward, as each line of the algorithm turns into a corresponding line
of Python code.

# convert.py
# A program to convert Celsius temps to Fahrenheit
# by: Susan Computewell

def main():
celsius = eval(input("What is the Celsius temperature? "))
fahrenheit = 9/5 * celsius + 32
print ("The temperature is", fahrenheit, "degrees Fahrenheit.")

main ()

See if you can figure out what each line of this program does. Don’t worry
if some parts are a bit confusing. They will be discussed in detail in the next
section.

After completing her program, Susan tests it to see how well it works. She
uses inputs for which she knows the correct answers. Here is the output from
two of her tests:

What is the Celsius temperature? O
The temperature is 32.0 degrees Fahrenheit.

What is the Celsius temperature? 100
The temperature is 212.0 degrees Fahrenheit.



2.3. Elements of Programs

31

You can see that Susan used the values of 0 and 100 to test her program. It looks
pretty good, and she is satisfied with her solution. She is especially pleased that
no debugging seems necessary (which is very unusual).

2.3| Elements of Programs

Now that you know something about the programming process, you are almost
ready to start writing programs on your own. Before doing that, though, you
need a more complete grounding in the fundamentals of Python. The next few
sections will discuss technical details that are essential to writing correct pro-
grams. This material can seem a bit tedious, but you will have to master these
basics before plunging into more interesting waters.

2.3.1| Names

You have already seen that names are an important part of programming. We
give names to modules (e.g., convert) and to the functions within modules
(e.g., main). Variables are used to give names to values (e.g., celsius and
fahrenheit). Technically, all these names are called identifiers. Python has
some rules about how identifiers are formed. Every identifier must begin with a
letter or underscore (the “_” character) which may be followed by any sequence
of letters, digits, or underscores. This implies that a single identifier cannot
contain any spaces.

According to these rules, all of the following are legal names in Python:

X
celsius

spam

spam2
SpamAndEggs
Spam_and_Eggs

Identifiers are case-sensitive, so spam, Spam, sPam, and SPAM are all different
names to Python. For the most part, programmers are free to choose any name
that conforms to these rules. Good programmers always try to choose names
that describe the thing being named.

One important thing to be aware of is that some identifiers are part of Python
itself. These names are called reserved words or keywords and cannot be used as
ordinary identifiers. The complete list of Python keywords is shown in Table 2.1.



Chapter 2. Writing Simple Programs

False class finally is return
None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass

break  except in raise

Table 2.1: Python keywords

Python also includes quite a number of built-in functions, such as the print
function that we’ve already been using. While it’s technically legal to (re)use the
built-in function-name identifiers for other purposes, it’s generally a very bad
idea to do so. For example, if you redefine the meaning of print, then you will
no longer be able to print things out. You will also seriously confuse any Python
programmers who read your program; they expect print to refer to the built-in
function. A complete list of the built-in functions can be found in Appendix A.

2.3.2| Expressions

Programs manipulate data. So far, we have seen two different kinds of data in
our example programs: numbers and text. We’ll examine these different data
types in great detail in later chapters. For now, you just need to keep in mind that
all data has to be stored on the computer in some digital format, and different
types of data are stored in different ways.

The fragments of program code that produce or calculate new data values
are called expressions. The simplest kind of expression is a literal. A literal is
used to indicate a specific value. In chaos.py you can find the numbers 3.9
and 1. The convert.py program contains 9, 5, and 32. These are all examples
of numeric literals, and their meaning is obvious: 32 represents, well, 32 (the
number 32).

Our programs also manipulated textual data in some simple ways. Com-
puter scientists refer to textual data as strings. You can think of a string as just
a sequence of printable characters. A string literal is indicated in Python by en-
closing the characters in quotation marks (""). If you go back and look at our
example programs, you will find a number of string literals such as: "Hello"
and "Enter a number between O and 1: ". These literals produce strings



2.3. Elements of Programs

33

containing the quoted characters. Note that the quotes themselves are not part
of the string. They are just the mechanism to tell Python to create a string.

The process of turning an expression into an underlying data type is called
evaluation. When you type an expression into a Python shell, the shell evaluates
the expression and prints out a textual representation of the result. Consider
this small interaction:

>>> 32

32

>>> "Hello"
’Hello’

>>> n 32 n

) 32 )

Notice that when the shell shows the value of a string, it puts the sequence of
characters in single quotes. This is a way of letting us know that the value is
actually text, not a number (or other data type). In the last interaction, we see
that the expression "32" produces a string, not a number. In this case, Python is
actually storing the characters “3” and “2,” not a representation of the number
32. If that’s confusing right now, don’t worry too much about it; it will become
clearer when we discuss these data types in later chapters.

A simple identifier can also be an expression. We use identifiers as variables
to give names to values. When an identifier appears as an expression, its value
is retrieved to provide a result for the expression. Here is an interaction with
the Python interpreter that illustrates the use of variables as expressions:

>>> x = b
>>> x

5

>>> print(x)
5

>>> print(spam)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name ’spam’ is not defined

First the variable x is assigned the value 5 (using the numeric literal 5). In the
second line of interaction, we are asking Python to evaluate the expression x. In
response, the Python shell prints out 5, which is the value that was just assigned
to x. Of course, we get the same result when we explicitly ask Python to print x



34

Chapter 2. Writing Simple Programs

using a print statement. The last interaction shows what happens when we try
to use a variable that has not been assigned a value. Python cannot find a value,
so it reports a NameError. This says that there is no value with that name. The
important lesson here is that a variable must always be assigned a value before
it can be used in an expression.

More complex and interesting expressions can be constructed by combin-
ing simpler expressions with operators. For numbers, Python provides the nor-
mal set of mathematical operations: addition, subtraction, multiplication, divi-
sion, and exponentiation. The corresponding Python operators are +, —, *, /,
and **. Here are some examples of complex expressions from chaos.py and
convert.py:

3.9 x x *x (1 - x)
9/5 * celsius + 32

Spaces are irrelevant within an expression. The last expression could have been
written 9/5*celsius+32 and the result would be exactly the same. Usually it’s
a good idea to place some spaces in expressions to make them easier to read.

Python’s mathematical operators obey the same rules of precedence and as-
sociativity that you learned in your math classes, including using parentheses
to modify the order of evaluation. You should have little trouble constructing
complex expressions in your own programs. Do keep in mind that only the
round parentheses are allowed in numeric expressions, but you can nest them if
necessary to create expressions like this:

((x1 - x2) / 2*n) + (spam / k**3)

By the way, Python also provides operators for strings. For example, you can
“add” strings.

>>> IIBatll + llmanll
’Batman’

This is called concatenation. As you can see, the effect is to create a new string
that is the result of “gluing” the strings together. You’ll see a lot more string
operations in Chapter 5.

2.4| Output Statements

Now that you have the basic building blocks, identifier and expression, you
are ready for a more complete description of various Python statements. You



2.4. Output Statements

35

already know that information can be displayed on screen using Python’s built-
in function print. So far, we have looked at a few examples, but I have not yet
explained the print function in detail. Like all programming languages, Python
has a precise set of rules for the syntax (form) and semantics (meaning) of each
statement. Computer scientists have developed sophisticated notations called
meta-languages for describing programming languages. In this book we will rely
on a simple template notation to illustrate the syntax of various statements.

Since print is a built-in function, a print statement has the same general
form as any other function invocation. We type the function name print fol-
lowed by parameters listed in parentheses. Here is how the print statement
looks using our template notation:

print (<expr>, <expr>, ..., <expr>)
print ()

These two templates show two forms of the print statement. The first indicates
that a print statement can consist of the function name print followed by a
parenthesized sequence of expressions, which are separated by commas. The
angle bracket notation (<>) in the template is used to indicate “slots” that are
filled in by other fragments of Python code. The name inside the brackets indi-
cates what is missing; expr stands for an expression. The ellipsis (“...”) denotes
an indefinite series (of expressions, in this case). You don’t actually type the
dots. The second version of the statement shows that it’s also legal to have a
print without any expressions to print.

As far as semantics is concerned, a print statement displays information
in textual form. Any supplied expressions are evaluated left to right, and the
resulting values are displayed on a line of output in a left-to-right fashion. By
default, a single blank space character is placed between the displayed values.
As an example, this sequence of print statements:

print (3+4)

print(3, 4, 3 + 4)

print ()

print ("The answer is", 3 + 4)

produces this output:

7
347

The answer is 7



36

Chapter 2. Writing Simple Programs

The last statement illustrates how string literal expressions are often used in
print statements as a convenient way of labeling output.

Notice that successive print statements normally display on separate lines
of the screen. A bare print (no parameters) produces a blank line of output.
Underneath, what’s really happening is that the print function automatically
appends some ending text after all of the supplied expressions are printed. By
default, that ending text is a special marker character (denoted as "\n") that
signals the end of a line. We can modify that behavior by including an additional
parameter that explicitly overrides this default. This is done using a special
syntax for named or keyword parameters.

A template for the print statement including the keyword parameter to
specify the ending text looks like this:

print (<expr>, <expr>, ..., <expr>, end="\n")

The keyword for the named parameter is end and it is given a value using =
notation, similar to variable assignment. Notice in the template I have shown its
default value, the end-of-line character. This is a standard way of showing what
value a keyword parameter will have when it is not explicitly given some other
value.

One common use of the end parameter in print statements is to allow mul-
tiple prints to build up a single line of output. For example:

print ("The answer is", end=" ")
print(3 + 4)

produces the single line of output:
The answer is 7

Notice how the output from the first print statement ends with a space (" ")
rather than an end-of-line character. The output from the second statement
appears immediately following the space.

2.5| Assignment Statements

One of the most important kinds of statements in Python is the assignment state-
ment. We've already seen a number of these in our previous examples.



2.5. Assignment Statements

37

2.5.1| Simple Assignment

The basic assignment statement has this form:

<variable> = <expr>

Here variable is an identifier and expr is an expression. The semantics of the
assignment is that the expression on the right side is evaluated to produce a
value, which is then associated with the variable named on the left side.

Here are some of the assignments we’ve already seen:

x =3.9 xx *x (1 - x)
fahrenheit = 9 / 5 * celsius + 32
X =5

A variable can be assigned many times. It always retains the value of the
most recent assignment. Here is an interactive Python session that demonstrates
the point:

>>> myVar = O
>>> myVar
0

>>> myVar
>>> myVar
7

>>> myVar = myVar + 1
>>> myVar

8

I
ﬂ

The last assignment statement shows how the current value of a variable can be
used to update its value. In this case I simply added 1 to the previous value. The
chaos.py program from Chapter 1 did something similar, though a bit more
complex. Remember, the values of variables can change; that’s why they’re
called variables.

Sometimes it’s helpful to think of a variable as a sort of named storage loca-
tion in computer memory, a box that we can put a value in. When the variable
changes, the old value is erased and a new one written in. Figure 2.1 shows
how we might picture the effect of x = x + 1 using this model. This is exactly
the way assignment works in some computer languages. It’s also a very sim-
ple way to view the effect of assignment, and you’ll find pictures similar to this
throughout the book.



38

Chapter 2. Writing Simple Programs

Before After

x| 10 x| 11

Figure 2.1: Variable as box view of x = x + 1

Python assignment statements are actually slightly different from the “vari-
able as a box” model. In Python, values may end up anywhere in memory, and
variables are used to refer to them. Assigning a variable is like putting one of
those little yellow sticky notes on the value and saying, “this is x.” Figure 2.2
gives a more accurate picture of the effect of assignment in Python. An ar-
row is used to show which value a variable refers to. Notice that the old value
doesn’t get erased by the new one; the variable simply switches to refer to the
new value. The effect is like moving the sticky note from one object to another.
This is the way assignment actually works in Python, so you’ll see some of these
sticky-note style pictures sprinkled throughout the book as well.

Before After

X =x + 1
X = 10 X \ 10

11

Figure 2.2: Variable as sticky note (Python) viewof x = x + 1

By the way, even though the assignment statement doesn’t directly cause the
old value of a variable to be erased and overwritten, you don’t have to worry
about computer memory getting filled up with the “discarded” values. When a
value is no longer referred to by any variable, it is no longer useful. Python will
automatically clear these values out of memory so that the space can be used for
new values. This is like going through your closet and tossing out anything that



2.5. Assignment Statements

39

doesn’t have a sticky note to label it. In fact, this process of automatic memory
management is actually called garbage collection.

2.5.2| Assigning Input

The purpose of an input statement is to get some information from the user of a
program and store it into a variable. Some programming languages have a spe-
cial statement to do this. In Python, input is accomplished using an assignment
statement combined with a built-in function called input. The exact form of an
input statement depends on what type of data you are trying to get from the
user. For textual input, the statement will look like this:

<variable> = input(<prompt>)

Here <prompt> is a string expression that is used to prompt the user for input;
the prompt is almost always a string literal (i.e., some text inside of quotation
marks).

When Python encounters a call to input, it prints the prompt on the screen.
Python then pauses and waits for the user to type some text and press the
<Enter> key. Whatever the user types is then stored as a string. Consider
this simple interaction:

>>> name = input("Enter your name: ")
Enter your name: John Yaya

>>> name

>John Yaya’

Executing the input statement caused Python to print out the prompt “Enter
your name:” and then the interpreter paused waiting for user input. In this
example, I typed John Yaya. As a result, the string > John Yaya’ is remembered
in the variable name. Evaluating name gives back the string of characters that I
typed.

When the user input is a number, we need a slightly more complicated form
of input statement:

<variable> = eval (input (<prompt>))

Here I've added another built-in Python function eval that is “wrapped around”
the input function. As you might guess, eval is short for “evaluate.” In this
form, the text typed by the user is evaluated as an expression to produce the
value that is stored into the variable. So, for example, the string "32" becomes



40

Chapter 2. Writing Simple Programs

the number 32. If you look back at the example programs so far, you'll see a
couple of examples where we’ve gotten numbers from the user like this.

x = eval(input("Please enter a number between 0 and 1: "))
celsius = eval(input("What is the Celsius temperature? "))

The important thing to remember is that you need to eval the input when you
want a number instead of some raw text (a string).

If you are reading the example programs carefully, you probably noticed the
blank space inside the quotes at the end of all these prompts. I usually put a
space at the end of a prompt so that the input that the user types does not start
right next to the prompt. Putting a space in makes the interaction easier to read
and understand.

Although our numeric examples specifically prompted the user to enter a
number, what the user types in this case is just a numeric literal—a simple
Python expression. In fact, any valid expression would be just as acceptable.
Consider the following interaction with the Python interpreter:

>>> ans = eval(input("Enter an expression: "))
Enter an expression: 3 + 4 * b5

>>> print(ans)

23

>>>

Here, when prompted to enter an expression, the user typed “3 + 4 * 5.” Python
evaluated this expression (via eval) and assigned the value to the variable ans.
When printed, we see that ans got the value 23 as expected. In a sense, the
input-eval combination is like a delayed expression. The example interaction
produced exactly the same result as if we had simply writtenans = 3 + 4 * 5.
The difference is that the expression was supplied by the user at the time the
statement was executed instead of being typed by the programmer when the
program was written.

Beware: the eval function is very powerful and also potentially dangerous.
As this example illustrates, when we evaluate user input, we are essentially
allowing the user to enter a portion of our program. Python will dutifully eval-
uate whatever they type. Someone who knows Python could exploit this ability
to enter malicious instructions. For example, the user could type an expression
that captures private information or deletes files on the computer. In computer
security, this is called a code injection attack, because an attacker is injecting
malicious code into the running program.



2.5. Assignment Statements

41

As a beginning programmer writing programs for your own personal use,
computer scecurity is not much of an issue; if you are sitting at the computer
running a Python program, then you probably have full access to the system
and can find much easier ways to, say, delete all your files. However, when the
input to a program is coming from untrusted sources, say from users on the
Internet, the use of eval could be disasterous. Fortunately, you will see some
safer alternatives in the next chapter.

2.5.3| Simultaneous Assignment

There is an alternative form of the assignment statement that allows us to cal-
culate several values all at the same time. It looks like this:

<varl>, <var2>, ..., <varn> = <exprl>, <expr2>, ..., <exprn>

This is called simultaneous assignment. Semantically, this tells Python to evaluate
all the expressions on the right-hand side and then assign these values to the
corresponding variables named on the left-hand side. Here’s an example:

sum, diff = x+y, x-y

Here sum would get the sum of x and y, and diff would get the difference.

This form of assignment seems strange at first, but it can prove remarkably
useful. Here’s an example: Suppose you have two variables x and y, and you
want to swap the values. That is, you want the value currently stored in x to
be in y and the value that is currently in y to be stored in x. At first, you might
think this could be done with two simple assignments:

X =Yy
y=X

This doesn’t work. We can trace the execution of these statements step by step
to see why.

Suppose x and y start with the values 2 and 4. Let’s examine the logic of
the program to see how the variables change. The following sequence uses
comments to describe what happens to the variables as these two statements
are executed:

# variables X y
# initial values 2 4

X =Y



42 Chapter 2. Writing Simple Programs
# now 4 4
y=X
# final 4 4

See how the first statement clobbers the original value of x by assigning to it the
value of y? When we then assign x to y in the second step, we just end up with
two copies of the original y value.

One way to make the swap work is to introduce an additional variable that
temporarily remembers the original value of x.

temp = X
X =y
y = temp

Let’s walk through this sequence to see how it works.

# variables temp
# initial values 2 4 no value yet

al
<

temp = X

# 2 4 2
X=Y

# 4 4 2
y = temp

# 4 2 2

As you can see from the final values of x and y, the swap was successful in this
case.

This sort of three-way shuffle is common in other programming languages.
In Python, the simultaneous assignment statement offers an elegant alternative.
Here is a simpler Python equivalent:

X, Y=YV, X

Because the assignment is simultaneous, it avoids wiping out one of the original
values.

Simultaneous assignment can also be used to get multiple numbers from the
user in a single input. Consider this program for averaging exam scores:

# avg2.py
# A simple program to average two exam scores
# Illustrates use of multiple input



2.6. Definite Loops 43

def main():
print ("This program computes the average of two exam scores.")

scorel, score2 = eval(input("Enter two scores separated by a comma: "))
average = (scorel + score2) / 2

print ("The average of the scores is:", average)

main ()

The program prompts for two scores separated by a comma. Suppose the user
types 86, 92. The effect of the input statement is then the same as if we had
done this assignment:

scorel, score2 = 86, 92

We have gotten a value for each of the variables in one fell swoop. This example
used just two values, but it could be generalized to any number of inputs.

Of course, we could have just gotten the input from the user with separate
input statements:

scorel = eval(input("Enter the first score: "))
score2 = eval(input("Enter the second score: "))

In some ways this may be better, as the separate prompts are more informative
for the user. In this example the decision as to which approach to take is largely
a matter of taste. Sometimes getting multiple values in a single input provides a
more intuitive user interface, so it’s a nice technique to have in your toolkit. Just
remember that the multiple values trick will not work for string (non-evaled)
input; when the user types a comma it will be just another character in the input
string. The comma only becomes a separator when the string is subsequently
evaluated.

2.6/ Definite Loops

You already know that programmers use loops to execute a sequence of state-
ments multiple times in succession. The simplest kind of loop is called a definite
loop. This is a loop that will execute a definite number of times. That is, at the
point in the program when the loop begins, Python knows how many times to



44

Chapter 2. Writing Simple Programs

go around (or iterate) the body of the loop. For example, the chaos program in
Chapter 1 used a loop that always executed exactly ten times:

for i in range(10):
x=3.9 xx * (1 - x)
print (x)

This particular loop pattern is called a counted loop, and it is built using a Python
for statement. Before considering this example in detail, let’s take a look at
what for loops are all about.

A Python for loop has this general form:

for <var> in <sequence>:
<body>

The body of the loop can be any sequence of Python statements. The extent of
the body is indicated by its indentation under the loop heading (the for <var>
in <sequence>: part).

The variable after the keyword for is called the loop index. It takes on each
successive value in the sequence, and the statements in the body are executed
once for each value. Often the sequence portion consists of a list of values. Lists
are a very important concept in Python, and you will learn more about them in
upcoming chapters. For now, it’s enough to know that you can create a simple
list by placing a sequence of expressions in square brackets. Some interactive
examples help to illustrate the point:

>>> for i in [0, 1, 2, 3]:
print (i)

w N = O

>>> for odd in [1, 3, 5, 7, 9]:
print(odd * odd)

25



2.6. Definite Loops

45

49
81

Can you see what is happening in these two examples? The body of the
loop is executed using each successive value in the list. The length of the list
determines the number of times the loop executes. In the first example, the list
contains the four values O through 3, and these successive values of i are simply
printed. In the second example, odd takes on the values of the first five odd
natural numbers, and the body of the loop prints the squares of these numbers.

Now, let’s go back to the example that began this section (from chaos.py)
Look again at the loop heading:

for i in range(10):

Comparing this to the template for the for loop shows that the last portion,
range (10), must be some kind of sequence. It turns out that range is a built-
in Python function for generating a sequence of numbers “on the fly.” You can
think of a range as a sort of implicit description of a sequence of numbers. To
get a handle on what range actually does, we can ask Python to turn a range
into a plain old list using another built-in function, 1ist:

>>> list(range(10)) # turns range(10) into an explicit list
o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Do you see what is happening here? The expression range(10) produces the
sequence of numbers O through 9. The loop using range(10) is equivalent to
one using a list of those numbers.

for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:

In general, range (<expr>) will produce a sequence of numbers that starts
with 0 and goes up to, but does not include, the value of <expr>. If you think
about it, you will see that the value of the expression determines the number of
items in the resulting sequence. In chaos.py we did not even care what values
the loop index variable used (since i was not referred to anywhere in the loop
body). We just needed a sequence length of 10 to make the body execute 10
times.

As I mentioned above, this pattern is called a counted loop, and it is a very
common way to use definite loops. When you want to do something in your
program a certain number of times, use a for loop with a suitable range. This
is a recurring Python programming idiom that you need to memorize:



46

Chapter 2. Writing Simple Programs

for <variable> in range(<expr>):

The value of the expression determines how many times the loop executes. The
name of the index variable doesn’t really matter much; programmers often use i
or j as the loop index variable for counted loops. Just be sure to use an identifier
that you are not using for any other purpose. Otherwise you might accidentally
wipe out a value that you will need later.

The interesting and useful thing about loops is the way that they alter the
“flow of control” in a program. Usually we think of computers as executing a
series of instructions in strict sequence. Introducing a loop causes Python to go
back and do some statements over and over again. Statements like the for loop
are called control structures because they control the execution of other parts of
the program.

Some programmers find it helpful to think of control structures in terms of
pictures called flowcharts. A flowchart is a diagram that uses boxes to represent
different parts of a program and arrows between the boxes to show the sequence
of events when the program is running. Figure 2.3 depicts the semantics of the
for loop as a flowchart.

no

more items in <sequence>

<var> = next item

<body>

y

Figure 2.3: Flowchart of a for loop



2.7. Example Program: Future Value

47

If you are having trouble understanding the for loop, you might find it useful
to study the flowchart. The diamond-shaped box in the flowchart represents a
decision in the program. When Python gets to the loop heading, it checks to see
if there are any items left in the sequence. If the answer is “yes,” the loop index
variable is assigned the next item in the sequence, and then the loop body is
executed. Once the body is complete, the program goes back to the loop heading
and checks for another value in the sequence. The loop quits when there are no
more items, and the program moves on to the statements that come after the
loop.

2.7\ Example Program: Future Value

Let’s close the chapter with one more example of the programming process in
action. We want to develop a program to determine the future value of an
investment. We’ll start with an analysis of the problem. You know that money
deposited in a bank account earns interest, and this interest accumulates as the
years pass. How much will an account be worth ten years from now? Obviously,
it depends on how much money we start with (the principal) and how much
interest the account earns. Given the principal and the interest rate, a program
should be able to calculate the value of the investment ten years into the future.

We continue by developing the exact specifications for the program. Remem-
ber, this is a description of what the program will do. What exactly should the
inputs be? We need the user to enter the initial amount to invest, the principal.
We will also need some indication of how much interest the account earns. This
depends both on the interest rate and how often the interest is compounded.
One simple way of handling this is to have the user enter an annual percentage
rate. Whatever the actual interest rate and compounding frequency, the annual
rate tells us how much the investment accrues in one year. If the annual inter-
est is 3%, then a $100 investment will grow to $103 in one year’s time. How
should the user represent an annual rate of 3%? There are a number of rea-
sonable choices. Let’s assume the user supplies a decimal, so the rate would be
entered as 0.03.

This leads us to the following specification:

Program Future Value
Inputs

principal The amount of money being invested in dollars.



48

Chapter 2. Writing Simple Programs

APR The annual percentage rate expressed as a decimal number.
Output The value of the investment 10 years into the future.

Relationship Value after one year is given by principal(1 + apr). This formula
needs to be applied 10 times.

Next we design an algorithm for the program. We’ll use pseudocode, so
that we can formulate our ideas without worrying about all the rules of Python.
Given our specification, the algorithm seems straightforward.

Print an introduction
Input the amount of the principal (principal)
Input the annual percentage rate (apr)
Repeat 10 times:
principal = principal * (1 + apr)
Output the value of principal

If you know a little bit about financial math (or just some basic algebra),
you probably realize that the loop in this design is not strictly necessary; there
is a formula for calculating future value in a single step using exponentiation. I
have used a loop here both to illustrate another counted loop, and also because
this version will lend itself to some modifications that are discussed in the pro-
gramming exercises at the end of the chapter. In any case, this design illustrates
that sometimes an algorithmic approach to a calculation can make the mathe-
matics easier. Knowing how to calculate the interest for just one year allows us
to calculate any number of years into the future.

Now that we’ve thought the problem all the way through in pseudocode, it’s
time to put our new Python knowledge to work and develop a program. Each
line of the algorithm translates into a statement of Python:

Print an introduction (print statement, Section 2.4)
print ("This program calculates the future value")
print("of a 10-year investment.")

Input the amount of the principal (numeric input, Section 2.5.2)
principal = eval(input("Enter the initial principal: "))

Input the annual percentage rate (numeric input, Section 2.5.2)
apr = eval (input("Enter the annual interest rate: "))



2.7. Example Program: Future Value

49

Repeat 10 times: (counted loop, Section 2.6)
for i in range(10):

Calculate principal = principal * (1 + apr) (simple assignment, Section 2.5.1)
principal = principal * (1 + apr)

Output the value of the principal (print statement, Section 2.4)
print ("The value in 10 years is:", principal)

All of the statement types in this program have been discussed in detail in this
chapter. If you have any questions, you should go back and review the relevant
descriptions. Notice especially the counted loop pattern is used to apply the
interest formula 10 times.

That about wraps it up. Here is the completed program:

# futval.py
# A program to compute the value of an investment
# carried 10 years into the future

def main():
print ("This program calculates the future value")
print("of a 10-year investment.")

principal = eval(input("Enter the initial principal: "))
apr = eval(input("Enter the annual interest rate: "))

for i in range(10):
principal = principal * (1 + apr)

print("The value in 10 years is:", principal)
main ()

Notice that I have added a few blank lines to separate the input, processing,
and output portions of the program. Strategically placed “white space” can help
make your programs more readable.

That’s as far as I'm taking this example; I leave the testing and debugging as
an exercise for you.



50

Chapter 2. Writing Simple Programs

2.8

Chapter Summary

This chapter has covered a lot of ground laying out both the process that is used
to develop programs and the details of Python that are necessary to implement
simple programs. Here is a quick summary of some of the key points:

Writing programs requires a systematic approach to problem solving and
involves the following steps:

Problem Analysis: Studying the problem to be solved.

. Program Specification: Deciding exactly what the program will do.
. Design: Writing an algorithm in pseudocode.

Implementation: Translating the design into a programming language.

Testing/Debugging: Finding and fixing errors in the program.

N N N

Maintenance: Keeping the program up to date with evolving needs.
Many simple programs follow the input, process, output (IPO) pattern.

Programs are composed of statements that are built from identifiers and
expressions.

Identifiers are names; they begin with an underscore or letter which can
be followed by a combination of letter, digit, or underscore characters.
Identifiers in Python are case-sensitive.

Expressions are the fragments of a program that produce data. An expres-
sion can be composed of the following components:

literals A literal is a representation of a specific value. For example, 3 is a
literal representing the number three.

variables A variable is an identifier that stores a value.

operators Operators are used to combine expressions into more complex
expressions. For example, in x + 3 * y the operators + and * are
used.

The Python operators for numbers include the usual arithmetic operations
of addition (+), subtraction (-), multiplication (*), division (/), and expo-
nentiation ().



2.9. Exercises

51

The Python output statement print displays the values of a series of ex-
pressions to the screen.

In Python, assignment of a value to a variable is indicated using the equal
sign (=). Using assignment, programs can get input from the keyboard.
Python also allows simultaneous assignment, which is useful for getting
multiple input values with a single prompt.

The eval function can be used to evaluate user input, but it is a secu-
rity risk and should not be used with input from unknown or untrusted
sources.

Definite loops are loops that execute a known number of times. The
Python for statement is a definite loop that iterates through a sequence of
values. A Python list is often used in a for loop to provide a sequence of
values for the loop.

One important use of a for statement is in implementing a counted loop,
which is a loop designed specifically for the purpose of repeating some
portion of the program a specific number of times. A counted loop in
Python is created by using the built-in range function to produce a suitably
sized sequence of numbers.

2.9

Exercises

Review Questions

True/False

1.

The best way to write a program is to immediately type in some code and
then debug it until it works.

. An algorithm can be written without using a programming language.

. Programs no longer require modification after they are written and de-

bugged.

Python identifiers must start with a letter or underscore.

. Keywords make good variable names.

Expressions are built from literals, variables, and operators.



52

Chapter 2. Writing Simple Programs

10.

In Python, x = x + 1 is a legal statement.

. Python does not allow the input of multiple values with a single statement.

. A counted loop is designed to iterate a specific number of times.

In a flowchart, diamonds are used to show statement sequences, and rect-
angles are used for decision points.

Multiple Choice

1.

Which of the following is not a step in the software development process?
a) specification b) testing/Debugging
c) fee setting d) maintenance

. What is the correct formula for converting Celsius to Fahrenheit?

a) F=9/5(C)+32 b) F=5/9(C)— 32

_ __ 212-32
o) F=DB2-4AC d) F = 555-5

. The process of describing exactly what a computer program will do to solve

a problem is called
a) design b) implementation c¢) programming d) specification

Which of the following is not a legal identifier?
a) spam b) spAm c) 2spam d) spam4U

. Which of the following are not used in expressions?

a) variables b) statements c) operators d) literals

. Fragments of code that produce or calculate new data values are called

a) identifiers b) expressions
c) productive clauses d) assignment statements

Which of the following is not a part of the IPO pattern?
a) input b) program c) process d) output

. The template for <variable> in range(<expr>) describes

a) a general for loop b) an assignment statement
c) a flowchart d) a counted loop

. Which of the following is the most accurate model of assignment in Python?

a) sticky-note b) variable-as-box
c) simultaneous d) plastic-scale



2.9. Exercises

53

10. In Python, getting user input is done with a special expression called
a) for b)read c) simultaneous assignment d) input

Discussion

1. List and describe in your own words the six steps in the software develop-
ment process.

2. Write out the chaos.py program (Section 1.6) and identify the parts of
the program as follows:

e Circle each identifier.
e Underline each expression.

e Put a comment at the end of each line indicating the type of statement
on that line (output, assignment, input, loop, etc.).

3. Explain the relationships among the concepts: definite loop, for loop, and
counted loop.

4. Show the output from the following fragments:

a) for i in range(5):
print(i * i)

b) for 4 in [3,1,4,1,5]:
print(d, end=" ")

c) for i in range(4):
print ("Hello")

d) for i in range(5):
print (i, 2#¥*i)

5. Why is it a good idea to first write out an algorithm in pseudocode rather
than jumping immediately to Python code?

6. The Python print function supports other keyword parameters besides
end. One of these other keyword parameters is sep. What do you think
the sep parameter does? Hint: sep is short for separator. Test your idea
either by trying it interactively or by consulting the Python documentation.

7. What do you think will happen if the following code is executed?



Chapter 2. Writing Simple Programs

print("start")

for i in range(0):
print ("Hello")

print("end")

Look at the flowchart for the for statement in this chapter to help you
figure this out. Then test your prediction by trying out these lines in a
program.

Programming Exercises

1. A user-friendly program should print an introduction that tells the user
what the program does. Modify the convert.py program (Section 2.2) to
print an introduction.

2. On many systems with Python, it is possible to run a program by simply
clicking (or double-clicking) on the icon of the program file. If you are
able to run the convert.py program this way, you may discover another
usability issue. The program starts running in a new window, but as soon
as the program has finished, the window disappears so that you cannot
read the results. Add an input statement at the end of the program so
that it pauses to give the user a chance to read the results. Something like
this should work:

input ("Press the <Enter> key to quit.")

3. Modify the avg2.py program (Section 2.5.3) to find the average of three
exam Scores.

4. Modify the convert.py program (Section 2.2) with a loop so that it ex-
ecutes 5 times before quitting. Each time through the loop, the program
should get another temperature from the user and print the converted
value.

5. Modify the convert.py program (Section 2.2) so that it computes and
prints a table of Celsius temperatures and the Fahrenheit equivalents every
10 degrees from 0°C to 100°C.

6. Modify the futval.py program (Section 2.7) so that the number of years
for the investment is also a user input. Make sure to change the final
message to reflect the correct number of years.



2.9. Exercises

55

7.

Suppose you have an investment plan where you invest a certain fixed
amount every year. Modify futval.py to compute the total accumulation
of your investment. The inputs to the program will be the amount to invest
each year, the interest rate, and the number of years for the investment.

8. As an alternative to APR, the interest accrued on an account is often de-

10.

11.

12.

scribed in terms of a nominal rate and the number of compounding peri-
ods. For example, if the interest rate is 3% and the interest is compounded
quarterly, the account actually earns %% interest every 3 months.

Modify the futval.py program to use this method of entering the
interest rate. The program should prompt the user for the yearly rate
(rate) and the number of times that the interest is compounded each year
(periods). To compute the value in ten years, the program will loop 10 *
periods times and accrue rate/period interest on each iteration.

. Write a program that converts temperatures from Fahrenheit to Celsius.

Write a program that converts distances measured in kilometers to miles.
One kilometer is approximately 0.62 miles.

Write a program to perform a unit conversion of your own choosing. Make
sure that the program prints an introduction that explains what it does.

Write an interactive Python calculator program. The program should allow
the user to type a mathematical expression, and then print the value of the
expression. Include a loop so that the user can perform many calculations
(say, up to 100). Note: To quit early, the user can make the program
crash by typing a bad expression or simply closing the window that the
calculator program is running in. You’ll learn better ways of terminating
interactive programs in later chapters.






Chapter 3 Computing with
Numbers

Objectives

e To understand the concept of data types.
e To be familiar with the basic numeric data types in Python.

e To understand the fundamental principles of how numbers are represented
on a computer.

e To be able to use the Python math library.
e To understand the accumulator program pattern.

e To be able to read and write programs that process numerical data.

3.1/ Numeric Data Types

When computers were first developed, they were seen primarily as number
crunchers, and that is still an important application. As you have seen, prob-
lems that involve mathematical formulas are easy to translate into Python pro-
grams. In this chapter, we’ll take a closer look at programs designed to perform
numerical calculations.

The information that is stored and manipulated by computer programs is
generically referred to as data. Different kinds of data will be stored and manip-
ulated in different ways. Consider this program to calculate the value of loose
change:

57



58

Chapter 3. Computing with Numbers

# change.py
# A program to calculate the value of some change in dollars

def main():
print ("Change Counter")
print ()
print ("Please enter the count of each coin type.")
quarters = eval(input("Quarters: "))
dimes = eval (input("Dimes: "))
nickels = eval(input("Nickels: "))
pennies = eval(input("Pennies: "))
total = quarters * .25 + dimes * .10 + nickels * .05 + pennies * .01
print ()
print ("The total value of your change is", total)

main()
Here is an example of the output:

Change Counter

Please enter the count of each coin type.
Quarters: 5

Dimes: 3

Nickels: 4

Pennies: 6

The total value of your change is 1.81

This program actually manipulates two different kinds of numbers. The val-
ues entered by the user (5, 3, 4, 6) are whole numbers; they don’t have any
fractional part. The values of the coins (.25, .10, .05, .01) are decimal repre-
sentations of fractions. Inside the computer, whole numbers and numbers that
have fractional components are stored differently. Technically, we say that these
are two different data types.

The data type of an object determines what values it can have and what
operations can be performed on it. Whole numbers are represented using the
integer data type (int for short). Values of type int can be positive or nega-
tive whole numbers. Numbers that can have fractional parts are represented as
floating-point (or float) values. So how do we tell whether a number is an int or



3.1. Numeric Data Types

59

a float? A numeric literal that does not contain a decimal point produces an int
value, but a literal that has a decimal point is represented by a float (even if the
fractional part is 0).

Python provides a special function called type that tells us the data type (or
“class”) of any value. Here is an interaction with the Python interpreter showing
the difference between int and float literals:

>>> type(3)
<class ’int’>
>>> type(3.14)
<class ’float’>
>>> type(3.0)
<class ’float’>
>>> myInt = —-32
>>> type(myInt)
<class ’int’>
>>> myFloat = 32.0
>>> type(myFloat)
<class ’float’>

You may be wondering why there are two different data types for numbers.
One reason has to do with program style. Values that represent counts can’t be
fractional; we can’t have 3% quarters, for example. Using an int value tells the
reader of a program that the value can’t be a fraction. Another reason has to do
with the efficiency of various operations. The underlying algorithms that per-
form computer arithmetic are simpler, and can therefore be faster, for ints than
the more general algorithms required for float values. Of course, the hardware
implementations of floating-point operations on modern processors are highly
optimized and may be just as fast the int operations.

Another difference between ints and floats is that the float type can only
represent approximations to real numbers. As we will see, there is a limit to
the precision, or accuracy, of the stored values. Since float values are not exact,
while ints always are, your general rule of thumb should be: If you don’t need
fractional values, use an int.

A value’s data type determines what operations can be used on it. As we have
seen, Python supports the usual mathematical operations on numbers. Table 3.1
summarizes these operations. Actually, this table is somewhat misleading. Since
these two types have differing underlying representations, they each have their
own set of operations. For example, I have listed a single addition operation, but



Chapter 3. Computing with Numbers

operator operation

+ addition
— subtraction
* multiplication
/ float division
* % exponentiation

abs () absolute value
// integer division
% remainder

Table 3.1: Python built-in numeric operations

keep in mind that when addition is performed on floats, the computer hardware
performs a floating-point addition, whereas with ints the computer performs an
integer addition. Python chooses the appropriate underlying operation (int or
float) based on the operands.

Consider the following interaction with Python:

>>> 3 + 4

l4

>>> 3.0 + 4.0
7.0

>>> 3 x 4

12

>>> 3.0 * 4.0
12.0

>>> 4 **x 3

64

>>> 4.0 ** 3
64.0

>>> 4.0 **x 3.0
64.0

>>> abs(5)

5

>>> abs(-3.5)
3.5

>>>

For the most part, operations on floats produce floats, and operations on ints



3.1. Numeric Data Types

61

produce ints. Most of the time, we don’t even worry about what type of oper-
ation is being performed; for example, integer addition produces pretty much
the same result as floating-point addition, and we can rely on Python to do the
right thing.

In the case of division, however, things get a bit more interesting. As the
table shows, Python (as of version 3.0) provides two different operators for
division. The usual symbol (/) is used for “regular” division and a double slash
(//) is used to indicate integer division. The best way to get a handle on the
difference between these two is to try them out.

>>> 10/ 3
3.3333333333333335
>>> 10.0 / 3.0
3.3333333333333335
>>> 10/ 5

2.0

>>> 10 // 3

3

>>> 10.0 // 3.0
3.0

>>> 10 % 3

1

>>> 10.0 % 3.0

1.0

Notice that the / operator always returns a float. Regular division often pro-
duces a fractional result, even though the operands may be ints. Python accom-
modates this by always returning a floating-point number. Are you surprised
that the result of 10/3 has a 5 at the very end? Remember, floating-point val-
ues are always approximations. This value is as close as Python can get when
representing 3% as a floating-point number.

To get a division that returns an integer result, you can use the integer divi-
sion operation //. Integer division always produces an integer. Think of integer
division as “gozinta.” The expression 10 // 3 produces 3 because three gozinta
(goes into) ten three times (with a remainder of one). While the result of inte-
ger division is always an integer, the data type of the result depends on the data
type of the operands. A float integer-divided by a float produces a float with a
0 fractional component. The last two interactions demonstrate the remainder
operation J%. The remainder of integer-dividing 10 by 3 is 1. Notice again that
the data type of the result depends on the type of the operands.



62

Chapter 3. Computing with Numbers

Depending on your math background, you may not have used the integer
division or remainder operations before. The thing to keep in mind is that these
two operations are closely related. Integer division tells you how many times
one number goes into another, and the remainder tells you how much is left
over. Mathematically you could write the idea like this: a = (a//b)(b) + (a%b).

As an example application, suppose we calculated the value of our loose
change in cents (rather than dollars). If I have 383 cents, then I can find the
number of whole dollars by computing 383//100 = 3, and the remaining change
is 383%100 = 83. Thus, I must have a total of three dollars and 83 cents in
change.

By the way, although Python (as of version 3.0) treats regular division and
integer division as two separate operators, many other computer languages (and
earlier Python versions) just use / to signify both. When the operands are ints,
/ means integer division, and when they are floats, it signifies regular division.
This is a common source of errors. For example, in our temperature conversion
program the formula 9/5 * celsius + 32 would not compute the proper re-
sult, since 9/5 would evaluate to 1 using integer division. In these languages,
you need to be careful to write this expression as 9.0/5.0 * celsius + 32 S0
that the proper form of division is used, yielding a fractional resuilt.

3.2| Type Conversions and Rounding

There are situations where a value may need to be converted from one data
type into another. You already know that combining an int with an int (usually)
produces an int, and combining a float with a float creates another float. But
what happens if we write an expression that mixes an int with a float? For
example, what should the value of x be after this assignment statement?

x =5.0 x 2

If this is floating-point multiplication, then the result should be the float value
10.0. If an int multiplication is performed, the result is 10. Before reading ahead
for the answer, take a minute to consider how you think Python should handle
this situation.

In order to make sense of the expression 5.0 * 2, Python must either change
5.0 to 5 and perform an int operation or convert 2 to 2.0 and perform a floating-
point operation. In general, converting a float to an int is a dangerous step,
because some information (the fractional part) will be lost. On the other hand,
an int can be safely turned into a float just by adding a fractional part of .0. So



3.2. Type Conversions and Rounding

63

in mixed-typed expressions, Python will automatically convert ints to floats and
perform floating-point operations to produce a float result.

Sometimes we may want to perform a type conversion ourselves. This is
called an explicit type conversion. Python provides the built-in functions int and
float for these occasions. Here are some interactive examples that illustrate
their behavior:

>>> int(4.5)

4

>>> int(3.9)

3

>>> float(4)

4.0

>>> float(4.5)

4.5

>>> float(int(3.3))
3.0

>>> int(float(3.3))
3

>>> int (float(3))

3

As you can see, converting to an int simply discards the fractional part of a float;
the value is truncated, not rounded. If you want a rounded result, you could
add 0.5 to the value before using int (), assuming the value is positive.

A more general way of rounding off numbers is to use the built-in round
function, which rounds a number to the nearest whole value.

>>> round(3.14)
3

>>> round (3.5)
4

Notice that calling round like this results in an int value. So a simple call to
round is an alternative way of converting a float to an int.

If you want to round a float into another float value, you can do that by
supplying a second parameter that specifies the number of digits you want after
the decimal point. Here’s a little interaction playing around with the value of pi:

>>> pi = 3.141592653589793



64

Chapter 3. Computing with Numbers

>>> round(pi, 2)
3.14
>>> round(pi,3)
3.142

Notice that when we round the approximation of pi to two or three decimal
places, we get a float whose displayed value looks like an exactly rounded result.
Remember though, floats are approximations; what we really get is a value
that’s very close to what we requested. The actual stored value is something like
3.140000000000000124345 . . ., the closest representable floating-point value to
3.14. Fortunately, Python is smart enough to know that we probably don’t want
to see all of these digits, so it displays the rounded form. That means when you
write a program that rounds off a value to two decimal places and print it out,
you’ll end up seeing two decimal places, just like you expect. In Chapter 5, we’ll
see how to get even finer control over how numbers appear when printed; then
you’ll be able to inspect all of the digits, should you want to.

The type conversion functions int and float can also be used to convert
strings of digits into numbers.

>>> int ("32")

32

>>> float("32")
32.0

>>> float("9.8")
9.8

This is particularly useful as a secure alternative to eval for getting numeric data
from users. As an example, here is an improved version of the change-counting
program that opened the chapter:

# change2.py
# A program to calculate the value of some change in dollars

def main():
print ("Change Counter")
print ()
print ("Please enter the count of each coin type.")
quarters = int(input("Quarters: "))
dimes = int(input("Dimes: "))
nickels = int(input("Nickels: "))



3.3. Using the Math Library

65

pennies = int(input("Pennies: "))

total = .2b*xquarters + .10*dimes + .0b5*nickels + .0Ol*pennies
print ()

print("The total value of your change is", total)

main()

Using int instead of eval in the input statements ensures that the user may
only enter valid whole numbers. Any illegal (non-int) inputs will cause the pro-
gram to crash with an error message, thus avoiding the risk of a code injection
attack (discussed in Section 2.5.2). A side benefit is that this version of the
program emphasizes that the inputs should be whole numbers.

The only downside to using numeric type conversions in place of eval is that
it does not accommodate simultaneous input (getting multiple values in a single
input), as the following example ilustrates:

>>> # simultaneous input using eval
>>> x,y = eval(input("Enter (x,y): "))
Enter (x,y): 3,4
>>> X
3
>>> y
4
>>> # does not work with float
>>> x,y = float(input ("Enter (x,y): "))
Enter (x,y): 3,4
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: could not convert string to float: ’3,4°

This is a small price to pay for the added security, and you will learn how to
overcome this limitation in Chapter 5. As a matter of good practice, you should
use appropriate type conversion functions in place of eval wherever possible.

3.3/ Using the Math Library

Besides the operations listed in Table 3.1, Python provides many other useful
mathematical functions in a special math library. A library is just a module that



66

Chapter 3. Computing with Numbers

contains some useful definitions. Our next program illustrates the use of this
library to compute the roots of quadratic equations.

A quadratic equation has the form az? + bz + ¢ = 0. Such an equation has
two solutions for the value of x given by the quadratic formula:

 —bx Vb —4ac
- 2a

Let’s write a program that can find the solutions to a quadratic equation. The
input to the program will be the values of the coefficients a, b, and c. The outputs
are the two values given by the quadratic formula. Here’s a program that does
the job:

T

# quadratic.py

# A program that computes the real roots of a quadratic equation.
# Illustrates use of the math library.
# Note: This program crashes if the equation has no real roots.

import math # Makes the math library available.

def main():
print ("This program finds the real solutions to a quadratic")
print ()

a = float(input("Enter coefficient a: "))
b = float(input ("Enter coefficient b: "))
c = float(input ("Enter coefficient c: "))

discRoot = math.sqrt(b * b - 4 * a * c)
rootl = (-b + discRoot) / (2 * a)
root2 = (-b - discRoot) / (2 * a)

print ()
print ("The solutions are:", rootl, root2 )
main()

This program makes use of the square root function sqrt from the math
library module. The line at the top of the program,

import math



3.3. Using the Math Library

67

tells Python that we are using the math module. Importing a module makes
whatever is defined in it available to the program. To compute /x, we use
math.sqrt(x). This special dot notation tells Python to use the sqrt func-
tion that “lives” in the math module. In the quadratic program we calculate

v b? — 4ac with the line

discRoot = math.sqrt(b * b - 4 * a * c)
Here is how the program looks in action:

This program finds the real solutions to a quadratic

Enter coefficient a: 3
Enter coefficient b: 4
Enter coefficient c: -2

The solutions are: 0.38742588672279316 -1.7207592200561266

This program is fine as long as the quadratics we try to solve have real so-
lutions. However, some inputs will cause the program to crash. Here’s another
example run:

This program finds the real solutions to a quadratic

Enter coefficient a: 1
Enter coefficient b: 2
Enter coefficient c: 3

Traceback (most recent call last):
File "quadratic.py", line 21, in 7
main()
File "quadratic.py", line 14, in main
discRoot = math.sqrt(b * b - 4 * a * c)
ValueError: math domain error

The problem here is that b* — 4ac < 0, and the sqrt function is unable to
compute the square root of a negative number. Python prints a math domain
error. This is telling us that negative numbers are not in the domain of the
sqrt function. Right now, we don’t have the tools to fix this problem, so we’ll
just have to assume that the user will give us solvable equations.



68

Chapter 3. Computing with Numbers

Actually, quadratic.py did not need to use the math library. We could have
taken the square root using exponentiation **. (Can you see how?) Using
math.sqrt is somewhat more efficient, and it allowed me to illustrate the use of
the math library. In general, if your program requires a common mathematical
function, the math library is the first place to look. Table 3.2 shows some of the
other functions that are available in the math library:

Python mathematics | English

pi 73 An approximation of pi.

e € An approximation of e.

sqrt(x) |z The square root of .

sin(x) sin The sine of =.

cos (x) COS I The cosine of z.

tan (x) tan x The tangent of z.

asin(x) | arcsinz The inverse of sine z.

acos(x) | arccosz The inverse of cosine z.

atan(x) | arctanz The inverse of tangent .

log(x) Inz The natural (base e) logarithm of .
logl0(x) | logpx The common (base 10) logarithm of .
exp (x) e’ The exponential of z.

ceil(x) | [z The smallest whole number >= z.
floor(x) | |z] The largest whole number <= z.

Table 3.2: Some math library functions

3.4| Accumulating Results: Factorials

Suppose you have a root beer sampler pack containing six different kinds of
root beer. Drinking the various flavors in different orders might affect how good
they taste. If you wanted to try out every possible ordering, how many different
orders would there be? It turns out the answer is a surprisingly large number,
720. Do you know where this number comes from? The value 720 is the factorial
of 6.

In mathematics, factorials are often denoted with an exclamation point (!).
The factorial of a whole number n is defined as n! = n(n —1)(n —2)... (1). This
happens to be the number of distinct arrangements for n items. Given six items,
we compute 6! = (6)(5)(4)(3)(2)(1) = 720 possible arrangements.



3.4. Accumulating Results: Factorials

69

Let’s write a program that will compute the factorial of a number entered
by the user. The basic outline of our program follows an input, process, output
pattern:

Input number to take factorial of, n
Compute factorial of n, fact
Output fact

Obviously, the tricky part here is in the second step.

How do we actually compute the factorial? Let’s try one by hand to get an
idea for the process. In computing the factorial of 6, we first multiply 6(5) = 30.
Then we take that result and do another multiplication: 30(4) = 120. This
result is multiplied by 3: 120(3) = 360. Finally, this result is multiplied by 2:
360(2) = 720. According to the definition, we then multiply this result by 1, but
that won’t change the final value of 720.

Now let’s try to think about the algorithm more generally. What is actually
going on here? We are doing repeated multiplications, and as we go along, we
keep track of the running product. This is a very common algorithmic pattern
called an accumulator. We build up, or accumulate, a final value piece by piece.
To accomplish this in a program, we will use an accumulator variable and a loop
structure. The general pattern looks like this:

Initialize the accumulator variable
Loop until final result is reached
update the value of accumulator variable

Realizing this is the pattern that solves the factorial problem, we just need
to fill in the details. We will be accumulating the factorial. Let’s keep it in a
variable called fact. Each time through the loop, we need to multiply fact by
one of the factors n,(n — 1),...,1. It looks like we should use a for loop that
iterates over this sequence of factors. For example, to compute the factorial of
6, we need a loop that works like this:

fact = 1
for factor in [6,5,4,3,2,1]:
fact = fact *x factor

Take a minute to trace through the execution of this loop and convince your-
self that it works. When the loop body first executes, fact has the value 1 and
factor is 6. So the new value of fact is 1 * 6 = 6. The next time through the



70

Chapter 3. Computing with Numbers

loop, factor will be 5, and fact is updated to 6 * 5 = 30. The pattern continues
for each successive factor until the final result of 720 has been accumulated.

The initial assignment of 1 to fact before the loop is essential to get the
loop started. Each time through the loop body (including the first), the current
value of fact is used to compute the next value. The initialization ensures that
fact has a value on the very first iteration. Whenever you use the accumulator
pattern, make sure you include the proper initialization. Forgetting this is a
common mistake of beginning programmers.

Of course, there are many other ways we could have written this loop. As
you know from math class, multiplication is commutative and associative, so it
really doesn’t matter what order we do the multiplications in. We could just as
easily go the other direction. You might also notice that including 1 in the list
of factors is unnecessary, since multiplication by 1 does not change the result.
Here is another version that computes the same result:

fact = 1
for factor in [2,3,4,5,6]:
fact = fact *x factor

Unfortunately, neither of these loops solves the original problem. We have
hand-coded the list of factors to compute the factorial of 6. What we really want
is a program that can compute the factorial of any given input n. We need some
way to generate an appropriate sequence of factors from the value of n.

Luckily, this is quite easy to do using the Python range function. Recall that
range (n) produces a sequence of numbers starting with 0 and continuing up
to, but not including, n. There are other variations of range that can be used to
produce different sequences. With two parameters, range (start,n) produces
a sequence that starts with the value start and continues up to, but does not
include, n. A third version range(start, n, step) is like the two-parameter
version, except that it uses step as the increment between numbers. Here are
some examples:

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(range(5,10))
[5, 6, 7, 8, 9]

>>> list(range(5, 10, 3))
[5, 8]



3.5. Limitations of Computer Arithmetic 71

Given our input value n, we have a couple of different range commands
that produce an appropriate list of factors for computing the factorial of n. To
generate them from smallest to largest (a la our second loop), we could use
range (2,n+1). Notice how I used n+1 as the second parameter, since the range
will go up to but not include this value. We need the +1 to make sure that n
itself is included as the last factor.

Another possibility is to generate the factors in the other direction (a la our
first loop) using the three-parameter version of range and a negative step to
cause the counting to go backwards: range(n,1,-1). This one produces a list
starting with n and counting down (step -1) to, but not including 1.

Here then is one possible version of the factorial program:

# factorial.py
# Program to compute the factorial of a number
# Illustrates for loop with an accumulator

def main():
n = int(input("Please enter a whole number: "))
fact = 1
for factor in range(n,1,-1):
fact = fact * factor
print ("The factorial of", n, "is", fact)

main()

Of course, there are numerous other ways this program could have been written.
I have already mentioned changing the order of factors. Another possibility is to
initialize fact to n and then use factors starting at n — 1 (as long as n > 0). You
might try out some of these variations and see which one you like best.

3.5| Limitations of Computer Arithmetic

“'77

It’s sometimes suggested that the reason is used to represent factorials is
because the function grows very rapidly. For example, here is what happens if
we use our program to find the factorial of 100:

Please enter a whole number: 100

The factorial of 100 is 9332621544394415268169923885626670049071596826
43816214685929638952175999932299156089414639761565182862536979208272237
58251185210916864000000000000000000000000



72

Chapter 3. Computing with Numbers

That’s a pretty big number!

Although recent versions of Python have no difficulty with this calculation,
older versions of Python (and modern versions of other languages such as C++
and Java) would not fare as well. For example, here’s what happens in several
runs of a similar program written using Java:

# run 1
Please enter a whole number: 6
The factorial is: 720

# run 2
Please enter a whole number: 12
The factorial is: 479001600

# run 3
Please enter a whole number: 13
The factorial is: 1932053504

This looks pretty good; we know that 6! = 720. A quick check also confirms that
12! = 479001600. Unfortunately, it turns out that 13! = 6227020800. It appears
that the Java program has given us an incorrect answer!

What is going on here? So far, I have talked about numeric data types as rep-
resentations of familiar numbers such as integers and decimals (fractions). It is
important to keep in mind, however, that computer representations of numbers
(the actual data types) do not always behave exactly like the numbers that they
stand for.

Remember back in Chapter 1 you learned that the computer’s CPU can per-
form very basic operations such as adding or multiplying two numbers? It would
be more precise to say that the CPU can perform basic operations on the com-
puter’s internal representation of numbers. The problem in this Java program is
that it is representing whole numbers using the computer’s underlying int data
type and relying on the computer’s multiplication operation for ints. Unfortu-
nately, these machine ints are not exactly like mathematical integers. There are
infinitely many integers, but only a finite range of ints. Inside the computer, ints
are stored in a fixed-sized binary representation. To make sense of all this, we
need to look at what’s going on at the hardware level.

Computer memory is composed of electrical “switches,” each of which can
be in one of two possible states, basically on or off. Each switch represents a
binary digit or bit of information. One bit can encode two possibilities, usually



3.5. Limitations of Computer Arithmetic

represented with the numerals 0 (for off) and 1 (for on). A sequence of bits can
be used to represent more possibilities. With two bits, we can represent four
things:

bit 2 | bit 1
0 0
0 1
1 0
1 1

Three bits allow us to represent eight different values by adding a O or 1 to each
of the four two-bit patterns:

bit 3 | bit 2 | bit 1

0 0 0

0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

You can see the pattern here. Each extra bit doubles the number of distinct
patterns. In general, n bits can represent 2" different values.

The number of bits that a particular computer uses to represent an int de-
pends on the design of the CPU. Typical PCs today use 32 or 64 bits. For a 32-bit
CPU, that means there are 232 possible values. These values are centered at 0
to represent a range of positive and negative integers. Now % = 231, So the
range of integers that can be represented in a 32-bit int value is —23! to 23! — 1.
The reason for the —1 on the high end is to account for the representation of 0
in the top half of the range.

Given this knowledge, let’s try to make sense of what’s happening in the Java
factorial example. If the Java program is relying on a 32-bit int representation,

what’s the largest number it can store? Python can give us a quick answer:

>>> 2%%31-1
2147483647

Notice that this value (about 2.1 billion) lies between 12! (about 480 million)



4

Chapter 3. Computing with Numbers

and 13! (about 6.2 billion). That means the Java program is fine for calculating
factorials up to 12, but after that the representation “overflows” and the results
are garbage. Now you know exactly why the simple Java program can’t compute
13! Of course, that leaves us with another puzzle. Why does the modern Python
program seem to work quite well computing with large integers?

At first, you might think that Python uses the float data type to get us around
the size limitation of the ints. However, it turns out that floats do not really solve
this problem. Here is an example run of a modified factorial program that uses
floating-point numbers:

Please enter a whole number: 30
The factorial of 30 is 2.6525285981219103e+32

Although this program runs just fine, after switching to float, we no longer get
an exact answetr.

A very large (or very small) floating-point value is printed out using expo-
nential, or scientific, notation. The e+32 at the end means that the result is equal
to 2.6525285981219103 x 1032. You can think of the +32 at the end as a marker
that shows where the decimal point should be placed. In this case, it must move
32 places to the right to get the actual value. However, there are only 16 digits
to the right of the decimal, so we have “lost” the last 16 digits.

Using a float allows us to represent a much larger range of values than a
32-bit int, but the amount of precision is still fixed. In fact, a computer stores
floating-point numbers as a pair of fixed-length (binary) integers. One integer,
called the mantissa, represents the string of digits in the value and the second,
the exponent, keeps track of where the whole part ends and the fractional part
begins (where the “binary point” goes). Remember I told you that floats are ap-
proximations. Now you can see why. Since the underlying numbers are binary,
only fractions that involve powers of 2 can be represented exactly; any other
fraction produces an infinitely repeating mantissa. (Just like 1/3 produces an
infinitely repeating decimal because 3 is not a power of 10.) When an infinitely
long mantissa is truncated to a fixed length for storage, the result is a close ap-
proximation. The number of bits used for the mantissa determines how precise
the appoximations will be, but there is no getting around the fact that they will
be approximations.

Fortunately, Python has a better solution for large, exact values. A Python
int is not a fixed size, but expands to accommodate whatever value it holds. The
only limit is the amount of memory the computer has available to it. When the
value is small, Python can just use the computer’s underlying int representation



3.6. Chapter Summary

75

and operations. When the value gets larger, Python automatically converts to
a representation using more bits. Of course, in order to perform operations on
larger numbers, Python has to break down the operations into smaller units that
the computer hardware is able to handle—similar to the way you might do long
division by hand. These operations will not be as efficient (they require more
steps), but they allow our Python ints to grow to arbitrary size. And that’s what
allows our simple factorial program to compute some whopping large results.
This is a very cool feature of Python.

3.6

Chapter Summary

This chapter has filled in some important details concerning programs that do
numerical computations. Here is a quick summary of some key concepts:

The way a computer represents a particular kind of information is called a
data type. The data type of an object determines what values it can have
and what operations it supports.

Python has several different data types for representing numeric values,
including int and float.

Whole numbers are generally represented using the int data type, and
fractional values are represented using floats. All of the Python numeric
data types support standard, built-in mathematical operations: addition
(+), subtraction (-), multiplication (*), division (/), integer division (//),
remainder (%), exponentiation (**), and absolute value (abs(x)).

Python automatically converts numbers from one data type to another in
certain situations. For example, in a mixed-type expression involving ints
and floats, Python first converts the ints into floats and then uses float
arithmetic.

Programs may also explicitly convert one data type into another using the
functions float (), int (), and round (). Type conversion functions should
generally be used in place of eval for handling numeric user inputs.

Additional mathematical functions are defined in the math library. To use
these functions, a program must first import the library.



76

Chapter 3. Computing with Numbers

3.7

Numerical results are often calculated by computing the sum or product
of a sequence of values. The loop accumulator programming pattern is
useful for this sort of calculation.

Both ints and floats are represented on the underlying computer using a
fixed-length sequence of bits. This imposes certain limits on these rep-
resentations. Hardware ints must be in the range —23'...(23! — 1) on a
32-bit machine. Floats have a finite amount of precision and cannot rep-
resent most numbers exactly.

Python’s int data type may be used to store whole numbers of arbitrary
size. Int values are automatically converted to longer representations
when they become too large for the underlying hardware int. Calcula-
tions involving these long ints are less efficient than those that use only
small ints.

Exercises

Review Questions

True/False

1.

A A

N

Information that is stored and manipulated by computers is called data.

Since floating-point numbers are extremely accurate, they should gener-
ally be used instead of ints.

Operations like addition and subtraction are defined in the math library.
The number of possible arrangements of n items is equal to n!.
The sqrt function computes the squirt of a number.

The float data type is identical to the mathematical concept of a real num-
ber.

Computers represent numbers using base-2 (binary) representations.

A hardware float can represent a larger range of values than a hardware
int.

Type conversion functions such as float are a safe alternative to eval for
getting a number as user input.



3.7. Exercises

77

10.

In Python, 4+5 produces the same result type as 4.0+5.0.

Multiple Choice

1.

Which of the following is not a built-in Python data type?
a) int b) float c) rational d) string

2. Which of the following is not a built-in operation?
a)+ b))% c)abs() d) sqrt()

3. In order to use functions in the math library, a program must include
a) acomment b)aloop c)anoperator d) an import statement

4. The value of 4! is
a)9 b)24 )41 d) 120

5. The most appropriate data type for storing the value of pi is
a) int b) float c) irrational d) string

6. The number of distinct values that can be represented using 5 bits is
a)5 b)10 ¢)32 d)50

7. In a mixed-type expression involving ints and floats, Python will convert
a) floats to ints b) ints to strings
c) both floats and ints to strings d) ints to floats

8. Which of the following is not a Python type-conversion function?
a) float b) round c¢)int d) abs

9. The pattern used to compute factorials is
a) accumulator b) input, process, output
c) counted loop d) plaid

10. In modern Python, an int value that grows larger than the underlying
hardware int
a) causes an overflow  b) converts to float
c) breaks the computer d) uses more memory
Discussion
1. Show the result of evaluating each expression. Be sure that the value is

in the proper form to indicate its type (int or float). If the expression is
illegal, explain why.



78

Chapter 3. Computing with Numbers

a) 4.0/ 10.0 + 3.5 *x 2

b) 10% 4 +6 / 2

b) abs(4 - 20 // 3) **x 3
d) sqrt(4.5 - 5.0) +7 * 3
el 3*x10// 3+ 10 % 3

f) 3 *x 3

. Translate each of the following mathematical expressions into an equiva-

lent Python expression. You may assume that the math library has been
imported (via import math).

a) (3+4)(5)

-1
b) n(n2 )
c) Amr?
d) +/r(cosa)? + r(sinb)?
—yl
e L4

. Show the sequence of numbers that would be generated by each of the

following range expressions.

a) range(5)

b) range(3, 10)

c) range(4, 13, 3)
d) range(15, 5, -2)
e) range(5, 3)

. Show the output that would be generated by each of the following pro-

gram fragments.

a) for i in range(1, 11):
print (i*i)
b) for i in [1,3,5,7,9]:
print(i, ":", i**3)
print (i)



3.7. Exercises

79

c)

d)

x = 2

y = 10

for j in range(0, y, x):
print(j, end="")
print(x + y)

print ("done")

ans = 0

for i in range(1, 11):
ans = ans + i*i
print (i)

print (ans)

5. What do you think will happen if you use a negative number as the second
parameter in the round function? For example, what should be the result
of round(314.159265, -1)? Explain the rationale for your answer. After
you’ve written your answer, consult the Python documentation or try out
some examples to see what Python actually does in this case.

6. What do you think will happen when the operands to the integer division
or remainder operations are negative? Consider each of the following
cases and try to predict the result. Then try them out in Python. Hint:

Recall the magic formula a = (a//b)(b) + (a%b).

a)
b)
c)
d)
e)

-10 // 3
-10 % 3
10 // -3
10 % -3
-10 // -3

Programming Exercises

1. Write a program to calculate the volume and surface area of a sphere from
its radius, given as input. Here are some formulas that might be useful:

V =4/3rr3

A = 47r?

2. Write a program that calculates the cost per square inch of a circular pizza,

given its diameter and price. The formula for area is A = =nr

2



80

Chapter 3. Computing with Numbers

. Write a program that computes the molecular weight of a carbohydrate (in

grams per mole) based on the number of hydrogen, carbon, and oxygen
atoms in the molecule. The program should prompt the user to enter the
number of hydrogen atoms, the number of carbon atoms, and the number
of oxygen atoms. The program then prints the total combined molecular
weight of all the atoms based on these individual atom weights:

Atom Weight
(grams / mole)
H 1.00794
C 12.0107
0 15.9994

For example, the molecular weight of water (H20) is: 2(1.00794) +
15.9994 = 18.01528.

. Write a program that determines the distance to a lightning strike based on

the time elapsed between the flash and the sound of thunder. The speed
of sound is approximately 1100 ft/sec and 1 mile is 5280 ft.

. The Konditorei coffee shop sells coffee at $10.50 a pound plus the cost

of shipping. Each order ships for $0.86 per pound + $1.50 fixed cost for
overhead. Write a program that calculates the cost of an order.

. Two points in a plane are specified using the coordinates (x1,yl) and

(x2,y2). Write a program that calculates the slope of a line through two
(non-vertical) points entered by the user.

y2 —yl
2 — xl

slope =

. Write a program that accepts two points (see previous problem) and de-

termines the distance between them.

distance = \/(3:2 —z1)? + (y2 — y1)?

. The Gregorian epact is the number of days between January 1% and the

previous new moon. This value is used to figure out the date of Easter. It
is calculated by these formulas (using int arithmetic):

C = year//100



3.7. Exercises

81

10.

11.

12.

13.

14.

epact = (8 + (C//4) — C + ((8C + 13)//25) + 11(year%19)) %30

Write a program that prompts the user for a 4-digit year and then outputs
the value of the epact.

. Write a program to calculate the area of a triangle given the length of its

three sides—a, b, and c—using these formulas:

_at+b+ec

5 2

A= \/s(s —a)(s—b)(s—c¢)

Write a program to determine the length of a ladder required to reach a
given height when leaned against a house. The height and angle of the
ladder are given as inputs. To compute length use:

height
sinangle

length =

Note: The angle must be in radians. Prompt for an angle in degrees and
use this formula to convert:

radians = 178r—0deg'rees

Write a program to find the sum of the first n natural numbers, where the
value of n is provided by the user.

Write a program to find the sum of the cubes of the first n natural numbers
where the value of n is provided by the user.

Write a program to sum a series of numbers entered by the user. The
program should first prompt the user for how many numbers are to be
summed. The program should then prompt the user for each of the num-
bers in turn and print out a total sum after all the numbers have been
entered. Hint: Use an input statement in the body of the loop.

Write a program that finds the average of a series of numbers entered by
the user. As in the previous problem, the program will first ask the user
how many numbers there are. Note: The average should always be a float,
even if the user inputs are all ints.



Chapter 3. Computing with Numbers

15. Write a program that approximates the value of pi by summing the terms
of this series: 4/1—-4/3+4/5—4/7+4/9—4/11+... The program should
prompt the user for n, the number of terms to sum, and then output the
sum of the first n terms of this series. Have your program subtract the
approximation from the value of math.pi to see how accurate it is.

16. A Fibonacci sequence is a sequence of numbers where each successive
number is the sum of the previous two. The classic Fibonacci sequence
begins: 1, 1, 2, 3, 5, 8, 13, .... Write a program that computes the nth
Fibonacci number where n is a value input by the user. For example, if
n = 6, then the result is 8.

17. You have seen that the math library contains a function that computes
the square root of numbers. In this exercise, you are to write your own
algorithm for computing square roots. One way to solve this problem
is to use a guess-and-check approach. You first guess what the square
root might be, and then see how close your guess is. You can use this
information to make another guess and continue guessing until you have
found the square root (or a close approximation to it). One particularly
good way of making guesses is to use Newton’s method. Suppose x is the
number we want the root of, and guess is the current guessed answer. The
guess can be improved by using computing the next guess as:

T
guess

quess +
2

Write a program that implements Newton’s method. The program
should prompt the user for the value to find the square root of (x) and
the number of times to improve the guess. Starting with a guess value
of x/2, your program should loop the specified number of times applying
Newton’s method and report the final value of guess. You should also
subtract your estimate from the value of math.sqrt (x) to show how close
it is.



Chapter 4 Objects and
Graphics

Objectives

e To understand the concept of objects and how they can be used to simplify
programming.

e To become familiar with the various objects available in the graphics library.

e To be able to create objects in programs and call appropriate methods to
perform graphical computations.

e To understand the fundamental concepts of computer graphics, especially
the role of coordinate systems and coordinate transformations.

e To understand how to work with both mouse- and text-based input in a
graphical programming context.

e To be able to write simple interactive graphics programs using the graphics
library.

4.1/ Overview

So far we have been writing programs that use the built-in Python data types for
numbers and strings. We saw that each data type could represent a certain set
of values, and each had a set of associated operations. Basically, we viewed the
data as passive entities that were manipulated and combined via active opera-
tions. This is a traditional way to view computation. To build complex systems,

83



84

Chapter 4. Objects and Graphics

however, it helps to take a richer view of the relationship between data and
operations.

Most modern computer programs are built using an object-oriented (OO)
approach. Object orientation is not easily defined. It encompasses a number
of principles for designing and implementing software, principles that we will
return to numerous times throughout the course of this book. This chapter pro-
vides a basic introduction to object concepts by way of some computer graphics.

Graphical programming is a lot of fun and provides a great vehicle for learn-
ing about objects. In the process, you will also learn the principles of computer
graphics that underlie many modern computer applications. Most of the appli-
cations that you are familiar with probably have a so-called graphical user in-
terface (GUI) that provides visual elements like windows, icons (representative
pictures), buttons, and menus.

Interactive graphics programming can be very complicated; entire textbooks
are devoted to the intricacies of graphics and graphical interfaces. Industrial-
strength GUI applications are usually developed using a dedicated graphics pro-
gramming framework. Python comes with its own standard GUI module called
Tkinter. As GUI frameworks go, Tkinter is one of the simplest to use, and Python
is a great language for developing real-world GUIs. Still, at this point in your
programming career, it would be a challenge to learn the intricacies of any GUI
framework, and doing so would not contribute much to the main objectives of
this chapter, which are to introduce you to objects and the fundamental princi-
ples of computer graphics.

To make learning these basic concepts easier, we will use a graphics library
(graphics.py) specifically written for use with this textbook. This library is a
wrapper around Tkinter that makes it more suitable for beginning programmers.
It is freely available as a Python module file! and you are welcome to use it as
you see fit. Eventually, you may want to study the code for the library itself as a
stepping stone to learning how to program directly in Tkinter.

4.2| The Object of Objects

The basic idea of object-oriented development is to view a complex system as the
interaction of simpler objects. The word objects is being used here in a specific
technical sense. Part of the challenge of OO programming is figuring out the
vocabulary. You can think of an OO object as a sort of active data type that

1The graphics module is available from this book’s support website.



4.3. Simple Graphics Programming

85

combines both data and operations. To put it simply, objects know stuff (they
contain data), and they can do stuff (they have operations). Objects interact by
sending each other messages. A message is simply a request for an object to
perform one of its operations.

Consider a simple example. Suppose we want to develop a data processing
system for a college or university. We will need to keep track of considerable
information. For starters, we must keep records on the students who attend
the school. Each student could be represented in the program as an object. A
student object would contain certain data such as name, ID number, courses
taken, campus address, home address, GPA, etc. Each student object would also
be able to respond to certain requests. For example, to send out a mailing, we
would need to print an address for each student. This task might be handled by
a printCampusAddress operation. When a particular student object is sent the
printCampusAddress message, it prints out its own address. To print out all the
addresses, a program would loop through the collection of student objects and
send each one in turn the printCampusAddress message.

Objects may refer to other objects. In our example, each course in the college
might also be represented by an object. Course objects would know things such
as who the instructor is, what students are in the course, what the prerequisites
are, and when and where the course meets. One example operation might be
addStudent, which causes a student to be enrolled in the course. The student
being enrolled would be represented by the appropriate student object. Instruc-
tors would be another kind of object, as well as rooms, and even times. You can
see how successive refinement of these ideas could lead to a rather sophisticated
model of the information structure of the college.

As a beginning programmer, you’re probably not yet ready to tackle a college
information system. For now, we’ll study objects in the context of some simple
graphics programming.

4.3| Simple Graphics Programming

In order to run the graphical programs and examples in this chapter (and the
rest of the book), you will need a copy of the file graphics.py that is supplied
with the supplemental materials. Using the graphics library is as easy as placing
a copy of the graphics.py file in the same folder as your graphics program(s).
Alternatively, you can place it in a system directory where other Python libraries
are stored so that it can be used from any folder on the system.

The graphics library makes it easy to experiment with graphics interactively



86

Chapter 4. Objects and Graphics

and write simple graphics programs. As you do, you will be learning principles
of object-oriented programming and computer graphics that can be applied in
more sophisticated graphical programming environments. The details of the
graphics module will be explored in later sections. Here we’ll concentrate on a
basic hands-on introduction to whet your appetite.

As usual, the best way to start learning new concepts is to roll up your sleeves
and try out some examples. The first step is to import the graphics module.
Assuming you have placed graphics.py in an appropriate place, you can import
the graphics commands into an interactive Python session. If you are using IDLE,
you may have to first “point” IDLE to the folder where you saved graphics.py.
A simple way to do this is to load and run one of your existing programs from
that folder. Then you should be able to import graphics into the shell window:

>>> import graphics
>>>

If this import fails, it means that Python couldn’t find the graphics module. Make
sure the file is in the correct folder and try again.

Next we need to create a place on the screen where the graphics will appear.
That place is a graphics window or GraphWin, which is provided by graphics:

>>> win = graphics.GraphWin()
>>>

Notice the use of dot notation to invoke the GraphWin function that “lives in” the
graphics library. This is analogous to when we used math.sqrt (x) to invoke the
square root function from the math library module. The GraphWin() function
creates a new window on the screen. The window will have the title “Graphics
Window.” The GraphWin may overlap your Python shell window, so you might
have to resize or move the shell to make both windows fully visible. Figure 4.1
shows an example screen view.

The GraphWin is an object, and we have assigned it to the variable called win.
We can now manipulate the window object through this variable. For example,
when we are finished with a window, we can destroy it. This is done by issuing
the close command:

>>> win.close()
>>>

Typing this command causes the window to vanish from the screen.



4.3. Simple Graphics Programming

87

| & Python 3.4.3 Shell

File Edit Shell Debug Options Window Help

Pythen 3.4.3 (v3.4.3:9873f1c3esli, Fel 24 2015, 22:44:40} [MSC v.i800 &4 bi
t (AMP&4}] ern win32

Tympe "cepyright”, "credits” er "license(}" fer mere infernatien.

>>> graphics .

>>> win = GraphWin (}

>>> |

Figure 4.1: Screen shot with a Python shell and a GraphWin

Notice that we are again using the dot notation, but now we are using it
with a variable name, not a module name, on the left side of the dot. Recall
that win was earlier assigned as an object of type GraphWin. One of the things
a GraphWin object can do is to close itself. You can think of this command as
invoking the close operation that is associated with this particular window. The
result is that the window disappears from the screen.

By the way, I should mention here that trying out graphics commands inter-
actively like this may be tricky in some environments. If you are using a shell
within an IDE such as IDLE, it is possible that on your particular platform a
graphics window appears nonresponsive. For example, you may see a “busy”
cursor when you mouse over the window, and you may not be able to drag the
window to position it. In some cases, your graphics window might be completely
hidden underneath the IDE and you have to go searching for it. These glitches



88

Chapter 4. Objects and Graphics

are due to the IDE and the graphics window both striving to be in control of
your interactions. Regardless of any difficulties you might have playing with the
graphics interatively, rest assured that your programs making use of the graphics
library should run just fine in most standard environments. They will definitely
work under Windows, macOS, and Linux.

We will be using quite a few commands from the graphics library, and it gets
tedious having to type the “graphics.” notation every time we use one. Python
has an alternative form of import that can help out:

from graphics import *

The from statement allows you to load specific definitions from a library mod-
ule. You can either list the names of definitions to be imported or use an as-
terisk, as shown, to import everything defined in the module. The imported
commands become directly available without having to preface them with the
module name. After doing this import, we can create a GraphWin more simply:

win = GraphWin()

All of the rest of the graphics examples will assume that the entire graphics
module has been imported using from.

Let’s try our hand at some drawing. A graphics window is actually a collec-
tion of tiny points called pixels (short for “picture elements”). By controlling the
color of each pixel, we control what is displayed in the window. By default, a
GraphWin is 200 pixels tall and 200 pixels wide. That means there are 40,000
pixels in the GraphWin. Drawing a picture by assigning a color to each individ-
ual pixel would be a daunting challenge. Instead, we will rely on a library of
graphical objects. Each type of object does its own bookkeeping and knows how
to draw itself into a GraphWin.

The simplest object in the graphics module is a Point. In geometry, a point
is a location in space. A point is located by reference to a coordinate system. Our
graphics object Point is similar; it can represent a location in a GraphWin. We
define a point by supplying z and y coordinates (z,y). The x value represents
the horizontal location of the point, and the y value represents the vertical.

Traditionally, graphics programmers locate the point (0, 0) in the upper-left
corner of the window. Thus z values increase from left to right, and y values
increase from top to bottom. In the default 200 x 200 GraphWin, the lower-right
corner has the coordinates (199,199). Drawing a Point sets the color of the
corresponding pixel in the GraphWin. The default color for drawing is black.

Here is a sample interaction with Python illustrating the use of Points:



4.3. Simple Graphics Programming 89

>>> p = Point(50,60)
>>> p.getX()

50

>>> p.getY(Q)

60

>>> win = GraphWin()
>>> p.draw(win)

>>> p2 = Point(140,100)
>>> p2.draw(win)

The first line creates a Point located at (100,120). After the Point has been
created, its coordinate values can be accessed by the operations getX and getY.
As with all function calls, make sure to put the parentheses on the end when
you are attempting to use the operations. A Point is drawn into a window using
the draw operation. In this example, two different Point objects (p and p2) are
created and drawn into the GraphWin called win. Figure 4.2 shows the resulting
graphical output.

. apics g - | - x

Figure 4.2: Graphics window with two points drawn

In addition to points, the graphics library contains commands for drawing
lines, circles, rectangles, ovals, polygons and text. Each of these objects is cre-
ated and drawn in a similar fashion. Here is a sample interaction to draw various
shapes into a GraphWin:



Chapter 4. Objects and Graphics

>>> #HHHt Open a graphics window

>>> win = GraphWin(’Shapes?’)

>>> kit Draw a red circle centered at point (100,100) with radius 30
>>> center = Point (100,100)

>>> circ = Circle(center, 30)

>>> circ.setFill(’red’)

>>> circ.draw(win)

>>> #Ht# Put a textual label in the center of the circle
>>> label = Text(center, "Red Circle")

>>> label.draw(win)

>>> #HHt Draw a square using a Rectangle object

>>> rect = Rectangle(Point(30,30), Point(70,70))

>>> rect.draw(win)

>>> #i#t##t Draw a line segment using a Line object

>>> line = Line(Point(20,30), Point (180, 165))

>>> line.draw(win)

>>> it Draw an oval using the Oval object

>>> oval = Oval(Point(20,150), Point(180,199))

>>> oval.draw(win)

Try to figure out what each of these statements does. If you type them in as
shown, the final result will look like Figure 4.3.

A Shapes )

>

Figure 4.3: Various shapes from the graphics module



4.4. Using Graphical Objects

91

4.4| Using Graphical Objects

Some of the examples in the above interactions may look a bit strange to you.
To really understand the graphics module, we need to take an object-oriented
point of view. Remember, objects combine data with operations. Computation
is performed by asking an object to carry out one of its operations. In order to
make use of objects, you need to know how to create them and how to request
operations.

In the interactive examples above, we manipulated several different kinds
of objects: GraphWin, Point, Circle, Oval, Line, Text, and Rectangle. These
are examples of classes. Every object is an instance of some class, and the class
describes the properties the instance will have.

Borrowing a biological metaphor, when we say that Fido is a dog, we are
actually saying that Fido is a specific individual in the larger class of all dogs. In
OO terminology, Fido is an instance of the dog class. Because Fido is an instance
of this class, we expect certain things. Fido has four legs, a tail, a cold, wet nose,
and he barks. If Rex is a dog, we expect that he will have similar properties, even
though Fido and Rex may differ in specific details such as size or color.

The same ideas hold for our computational objects. We can create two sepa-
rate instances of Point, say p and p2. Each of these points has an = and y value,
and they both support the same set of operations like getX and draw. These
properties hold because the objects are Points. However, different instances
can vary in specific details such as the values of their coordinates.

To create a new instance of a class, we use a special operation called a con-
structor. A call to a constructor is an expression that creates a brand new object.
The general form is as follows:

<class—name>(<paraml>, <param2>, ...)

Here <class-name> is the name of the class that we want to create a new in-
stance of, e.g., Circle or Point. The expressions in the parentheses are any
parameters that are required to initialize the object. The number and type of
the parameters depends on the class. A Point requires two numeric values,
while a GraphWin can be constructed without any parameters. Often, a con-
structor is used on the right side of an assignment statement, and the resulting
object is immediately assigned to a variable on the left side that is then used to
manipulate the object.

To take a concrete example, let’s look at what happens when we create a
graphical point. Here is a constructor statement from the interactive example
above:



92

Chapter 4. Objects and Graphics

p = Point(50,60)

The constructor for the Point class requires two parameters giving the x and
y coordinates for the new point. These values are stored as instance variables
inside the object. In this case, Python creates an instance of Point having an
x value of 50 and a y value of 60. The resulting point is then assigned to the
variable p.

A conceptual diagram of the result is shown in Figure 4.4. Note that in this
diagram as well as similar ones later on, only the most salient details are shown.
Points also contain other information such as their color and which window (if
any) they are drawn in. Most of this information is set to default values when
the Point is created.

p: I E—— Point A
x: | 50
y: | 60

\ /

Figure 4.4: The variable p refers to a new Point

To perform an operation on an object, we send the object a message. The
set of messages that an object responds to are called the methods of the object.
You can think of methods as functions that live inside the object. A method is
invoked using dot-notation.

<object>.<method-name>(<paraml>, <param2>, ...)

The number and type of the parameters is determined by the method being used.
Some methods require no parameters at all. You can find numerous examples
of method invocation in the interactive examples above.

As examples of parameterless methods, consider these two expressions:

p.getX()
p.getY()

The getX and getY methods return the z and y values of a point, respectively.
Methods such as these are sometimes called accessors, because they allow us to
access information from the instance variables of the object.



4.4. Using Graphical Objects

93

Other methods change the values of an object’s instance variables, hence
changing the state of the object. All of the graphical objects have a move method.
Here is a specification:

move (dx,dy): Moves the object dx units in the z direction and dy units in the y
direction.

To move the point p to the right 10 units, we could use this statement:
p.move(10,0)

This changes the x instance variable of p by adding 10 units. If the point is
currently drawn in a GraphWin, move will also take care of erasing the old image
and drawing it in its new position. Methods that change the state of an object
are sometimes called mutators.

The move method must be supplied with two simple numeric parameters
indicating the distance to move the object along each dimension. Some methods
require parameters that are themselves complex objects. For example, drawing
a Circle into a GraphWin involves two objects. Let’s examine a sequence of
commands that does this:

circ = Circle(Point(100,100), 30)
win = GraphWin()
circ.draw(win)

The first line creates a Circle with a center located at the Point (100, 100) and
a radius of 30. Notice that we used the Point constructor to create a location
for the first parameter to the Circle constructor. The second line creates a
GraphWin. Do you see what is happening in the third line? This is a request for
the Circle object circ to draw itself into the GraphWin object win. The visible
effect of this statement is a circle in the GraphWin centered at (100,100) and
having a radius of 30. Behind the scenes, a lot more is happening.

Remember, the draw method lives inside the circ object. Using informa-
tion about the center and radius of the circle from the instance variables, the
draw method issues an appropriate sequence of low-level drawing commands
(a sequence of method invocations) to the GraphWin. A conceptual picture of
the interactions among the Point, Circle and GraphWin objects is shown in
Figure 4.5. Fortunately, we don’t usually have to worry about these kinds of
details; they’re all taken care of by the graphical objects. We just create objects,
call the appropriate methods, and let them do the work. That’s the power of
object-oriented programming.



Chapter 4. Objects and Graphics

circ: -"f CirCIe ki
center: fr Point
radius: | 30
x: | 100
draW( | ) y. 100
I e /

vy

Low-level drawing commands
|

7~ N

GraphWin

win: £

N 4

Figure 4.5: Object interactions to draw a circle

There is one subtle “gotcha” that you need to keep in mind when using
objects. It is possible for two different variables to refer to exactly the same
object; changes made to the object through one variable will also be visible to
the other. Suppose, for example, we are trying to write a sequence of code that
draws a smiley face. We want to create two eyes that are 20 units apart. Here is
a sequence of code intended to draw the eyes:

## Incorrect way to create two circles.
leftEye = Circle(Point (80, 50), 5)
leftEye.setFill(’yellow’)
leftEye.setOutline(’red’)

rightEye = leftEye

rightEye.move(20,0)

The basic idea is to create the left eye and then copy that into a right eye, which
is then moved over 20 units.

This doesn’t work. The problem here is that only one Circle object is cre-
ated. The assignment

rightEye = leftEye



4.4. Using Graphical Objects

95

simply makes rightEye refer to the very same circle as leftEye. Figure 4.6
shows the situation. When the Circle is moved in the last line of code, both
rightEye and leftEye refer to it in its new location on the right side. This
situation where two variables refer to the same object is called aliasing, and it
can sometimes produce rather unexpected results.

leftEye: I — Circle )
i 7=
" N
center: | Point
radius: 10
X
: ) 80
y 50
rightEye: 5 >

Figure 4.6: Variables 1eftEye and rightEye are aliases

One solution to this problem would be to create a separate circle for each
eye:

## A correct way to create two circles.
leftEye = Circle(Point (80, 50), 5)
leftEye.setFill(’yellow’)
leftEye.setOutline(’red’)

rightEye = Circle(Point (100, 50), 5)
rightEye.setFill(’yellow’)
rightEye.setOutline(’red’)

This will certainly work, but it’s cumbersome. We had to write duplicated code
for the two eyes. That’s easy to do using a “cut and paste” approach, but it’s not
very elegant. If we decide to change the appearance of the eyes, we will have to
be sure to make the changes in two places.

The graphics library provides a better solution; all graphical objects support
a clone method that makes a copy of the object. Using clone, we can rescue
the original approach:

## Correct way to create two circles, using clone.
leftEye = Circle(Point (80, 50), 5)
leftEye.setFill(’yellow’)
leftEye.setOutline(’red’)



96

Chapter 4. Objects and Graphics

rightEye = leftEye.clone() # rightEye is an exact copy of the left
rightEye.move(20,0)

Strategic use of cloning can make some graphics tasks much easier.

4.5| Graphing Future Value

Now that you have some idea of how to use objects from graphics, we’re ready
to try some real graphics programming. One of the most important uses of
graphics is providing a visual representation of data. They say a picture is worth
a thousand words; it is almost certainly better than a thousand numbers. Just
about any program that manipulates numeric data can be improved with a bit
of graphical output. Remember the program in Chapter 2 that computed the
future value of a ten-year investment? Let’s try our hand at creating a graphical
summary.

Programming with graphics requires careful planning. You’ll probably want
pencil and paper handy to draw some diagrams and scratch out calculations as
we go along. As usual, we begin by considering the specification of exactly what
the program will do.

The original program futval.py had two inputs: the amount of money to
be invested and the annualized rate of interest. Using these inputs, the program
calculated the change in principal year by year for ten years using the formula
principal = principal * (1 + apr). It then printed out the final value of the
principal. In the graphical version, the output will be a ten-year bar graph where
the height of successive bars represents the value of the principal in successive
years.

Let’s use a concrete example for illustration. Suppose we invest $2000 at
10% interest. Table 4.1 shows the growth of the investment over a ten-year
period. Our program will display this information in a bar graph. Figure 4.7
shows the same data in graphical form. The graph contains eleven bars. The
first bar shows the original value of the principal. For reference, let's number
these bars according to the number of years of interest accrued, 0-10.

Here is a rough design for the program:

Print an introduction

Get value of principal and apr from user

Create a GraphWin

Draw scale labels on left side of window

Draw bar at position O with height corresponding to principal



4.5. Graphing Future Value 97

years value
0 | $2,000.00
1| $2,200.00
2 | $2,420.00
3| $2,662.00
4 | $2,928.20
51 $3,221.02
6 | $3,542.12
7 | $3,897.43
8 | $4,287.18
9 | $4,715.90
10 | $5,187.49

Table 4.1: Table showing growth of $2000 at 10% interest

For successive years 1 through 10

Calculate principal = principal * (1 + apr)

Draw a bar for this year having a height corresponding to principal
Wait for user to press Enter.

The pause created by the last step is necessary to keep the graphics window dis-
played so that we can interpret the results. Without such a pause, the program
would end, and the GraphWin would vanish with it.

While this design gives us the broad brush strokes for our algorithm, there
are some very important details that have been glossed over. We must decide
exactly how big the graphics window will be and how we will position the ob-
jects that appear in this window. For example, what does it mean to draw, say, a
bar for year five with height corresponding to $3221.02?

Let’s start with the size of the GraphWin. Recall that the size of a window
is given in terms of the number of pixels in each dimension. Computer screens
are also measured in terms of pixels. The number of pixels or resolution of
the screen is determined by the monitor and graphics card in the computer you
use. The lowest resolution screen you are likely to encounter on a personal
computer these days is a so-called extended VGA screen that is 1024x768 pixels.
Most screens are considerably larger. Our default 200x200 pixel window will
probably seem a bit small. Let’s make the GraphWin 320x240; that will make it
about 1/8 the size of a small screen.



98

Chapter 4. Objects and Graphics

Investment Growth Chart E]li

10.0K
7.5K

5.0K

aaaniiill

Figure 4.7: Bar graph showing growth of $2000 at 10% interest

Given this analysis, we can flesh out a bit of our design. The third line of the
design should now read:

Create a 320x240 GraphWin titled ¢ ‘Investment Growth Chart’’

You may be wondering how this will translate into Python code. You have al-
ready seen that the GraphWin constructor allows an optional parameter to spec-
ify the title of the window. You can also supply width and height parameters to
control the size of the window. Thus, the command to create the output window
will be:

win = GraphWin("Investment Growth Chart", 320, 240)

Next we turn to the problem of printing labels along the left edge of our
window. To simplify the problem, we will assume the graph is always scaled to
a maximum of $10,000 with the five labels “0.0K” to “10.0K” as shown in the
example window. The question is how should the labels be drawn? We will need
some Text objects. When creating Text, we specify the anchor point (the point
the text is centered on) and the string to use as the label.

The label strings are easy. Our longest label is five characters, and the labels
should all line up on the right side of a column, so the shorter strings will be
padded on the left with spaces. The placement of the labels is chosen with a bit



4.5. Graphing Future Value

99

of calculation and some trial and error. Playing with some interactive examples,
it seems that a string of length five looks nicely positioned in the horizontal
direction placing the center 20 pixels in from the left edge. This leaves just a bit
of white space at the margin.

In the vertical direction, we have just over 200 pixels to work with. A simple
scaling would be to have 100 pixels represent $5,000. That means our five labels
should be spaced 50 pixels apart. Using 200 pixels for the range 0-10,000 leaves
240 — 200 = 40 pixels to split between the top and bottom margins. We might
want to leave a little more margin at the top to accommodate values that grow
beyond $10,000. A little experimentation suggests that putting the “0.0K” label
10 pixels from the bottom (position 230) seems to look nice.

Elaborating our algorithm to include these details, the single step

Draw scale labels on left side of window
becomes a sequence of steps:

Draw label " 0.0K" at (20, 230)
Draw label " 2.5K" at (20, 180)
Draw label " 5.0K" at (20, 130)
Draw label " 7.5K" at (20, 80)
Draw label "10.0K" at (20, 30)

The next step in the original design calls for drawing the bar that corresponds
to the initial amount of the principal. It is easy to see where the lower-left corner
of this bar should be. The value of $0.0 is located vertically at pixel 230, and
the labels are centered 20 pixels in from the left edge. Adding another 20 pixels
gets us to the right edge of the labels. Thus the lower-left corner of the Oth bar
should be at location (40, 230).

Now we just need to figure out where the opposite (upper-right) corner of
the bar should be so that we can draw an appropriate rectangle. In the ver-
tical direction, the height of the bar is determined by the value of principal.
In drawing the scale, we determined that 100 pixels is equal to $5,000. This
means that we have 100/5000 = 0.02 pixels to the dollar. This tells us, for ex-
ample, that a principal of $2,000 should produce a bar of height 2000(.02) = 40
pixels. In general, the y position of the upper-right corner will be given by
230 — (principal)(0.02). (Remember that 230 is the 0 point, and the y coordi-
nates decrease going up.)

How wide should the bar be? The window is 320 pixels wide, but 40 pixels
are eaten up by the labels on the left. That leaves us with 280 pixels for 11 bars:



100

Chapter 4. Objects and Graphics

280/11 = 25.4545. Let’s just make each bar 25 pixels; that will give us a bit of
margin on the right side. So the right edge of our first bar will be at position
40 + 25 = 65.

We can now fill in the details for drawing the first bar into our algorithm:

Draw a rectangle from (40, 230) to (65, 230 - principal * 0.02)

At this point, we have made all the major decisions and calculations required to
finish out the problem. All that remains is to percolate these details into the rest
of the algorithm. Figure 4.8 shows the general layout of the window with some
of the dimensions we have chosen.

—(0,0)

v

10.0K

7 .5K

240 5.0K

— | 2.5K
50

0.0K <I— (315,230)
4\—(40,230)

<=—(319,239)

40 | 25
< 320 >

Figure 4.8: Position of elements in future value bar graph

Let’s figure out where the lower-left corner of each bar is going to be lo-
cated. We chose a bar width of 25, so the bar for each successive year will start
25 pixels farther right than the previous year. We can use a variable year to rep-
resent the year number and calculate the = coordinate of the lower-left corner
as (year)(25) + 40. (The +40 leaves space on the left edge for the labels.) Of
course, the y coordinate of this point is still 230 (the bottom of the graph).

To find the upper-right corner of a bar, we add 25 (the width of the bar)
to the z value of the lower-left corner. The y value of the upper-right corner is
determined from the (updated) value of principal exactly as we determined it
for the first bar. Here is the refined algorithm:

for year running from a value of 1 up through 10:



4.5. Graphing Future Value 101

Calculate principal = principal * (1 + apr)

Calculate x11 = 25 * year + 40

Calculate height = principal * 0.02

Draw a rectangle from (x11, 230) to (x11+25, 230 - height)

The variable x11 stands for z lower-left—the z value of the lower-left corner of
the bar.
Putting all of this together produces the detailed algorithm shown below:

Print an introduction
Get value of principal and apr from user
Create a 320x240 GraphWin titled ¢ ‘Investment Growth Chart’’
Draw label " 0.0K" at (20, 230)
Draw label " 2.5K" at (20, 180)
Draw label " 5.0K" at (20, 130)
Draw label " 7.5K" at (20, 80)
Draw label "10.0K" at (20, 30)
Draw a rectangle from (40, 230) to (65, 230 - principal * 0.02)
for year running from a value of 1 up through 10:
Calculate principal = principal * (1 + apr)
Calculate x11 = 25 * year + 40
Draw a rectangle from (x11, 230) to (x11+25, 230 - principal * 0.02)
Wait for user to press Enter

Whew! That was a lot of work, but we are finally ready to translate this algo-
rithm into actual Python code. The translation is straightforward using objects
from the graphics library. Here’s the program:

# futval_graph.py
from graphics import =*

def main():
# Introduction
print ("This program plots the growth of a 10-year investment.")

# Get principal and interest rate
principal = float(input("Enter the initial principal: "))
apr = float(input ("Enter the annualized interest rate: "))



102 Chapter 4. Objects and Graphics
# Create a graphics window with labels on left edge
win = GraphWin("Investment Growth Chart", 320, 240)
win.setBackground ("white")
Text (Point (20, 230), ’> 0.0K’).draw(win)
Text (Point (20, 180), ’ 2.5K’).draw(win)
Text (Point (20, 130), ’> 5.0K’).draw(win)
Text (Point (20, 80), ’ 7.5K’).draw(win)
Text (Point (20, 30), ’10.0K’) .draw(win)
# Draw bar for initial principal
height = principal * 0.02
bar = Rectangle(Point (40, 230), Point(65, 230-height))
bar.setFill("green")
bar.setWidth(2)
bar.draw(win)
# Draw bars for successive years
for year in range(1,11):
# calculate value for the next year
principal = principal * (1 + apr)
# draw bar for this value
xll = year * 25 + 40
height = principal * 0.02
bar = Rectangle(Point(x11l, 230), Point(x11+25, 230-height))
bar.setFill("green")
bar.setWidth(2)
bar.draw(win)
input ("Press <Enter> to quit")
win.close()
main ()

If you study this program carefully, you will see that I added a number of
features to spruce it up a bit. All graphical objects support methods for changing
color. I have set the background color of the window to white:

win.setBackground("white")



4.6. Choosing Coordinates

103

I have also changed the color of the bar object. The following line asks the
bar to color its interior green (because it’s money, you know):

bar.setFill("green")

You can also change the color of a shape’s outline using the setOutline method.
In this case, I have chosen to leave the outline the default black so that the bars
stand out from each other. To enhance this effect, this code makes the outline
wider (two pixels instead of the default one):

bar.setWidth(2)

You might also have noted the economy of notation in drawing the labels.
Since we don’t ever change the labels, assigning them to a variable is unneces-
sary. We can just create a Text object, tell it to draw itself, and be done with it.
Here is an example:

Text (Point (20,230), ’ 0.0K’) .draw(win)
Finally, take a close look at the use of the year variable in the loop:
for year in range(1,11):

The expression range(1,11) produces a sequence of ints 1-10. The loop in-
dex variable year marches through this sequence on successive iterations of the
loop. So the first time through year is 1, then 2, then 3, etc., up to 10. The value
of year is then used to compute the proper position of the lower-left corner of
each bar:

x11 = year * 25 + 40

I hope you are starting to get the hang of graphics programming. It’s a bit
strenuous, but very addictive.

4.6/ Choosing Coordinates

The lion’s share of the work in designing the futval_graph program was in de-
termining the precise coordinates where things would be placed on the screen.
Most graphics programming problems require some sort of a coordinate transfor-
mation to change values from a real-world problem into the window coordinates
that get mapped onto the computer screen. In our example, the problem domain



104

Chapter 4. Objects and Graphics

called for z values representing the year (0—10) and y values representing mone-
tary amounts ($0-$10,000). We had to transform these values to be represented
in a 320 x 240 window. It’s nice to work through an example or two to see how
this transformation happens, but it makes for tedious programming.

Coordinate transformation is an integral and well-studied component of
computer graphics. It doesn’t take too much mathematical savvy to see that
the transformation process always follows the same general pattern. Anything
that follows a pattern can be done automatically. In order to save you the trouble
of having to explicitly convert back and forth between coordinate systems, the
graphics library provides a simple mechanism to do it for you. When you cre-
ate a GraphWin you can specify a coordinate system for the window using the
setCoords method. The method requires four parameters specifying the coor-
dinates of the lower-left and upper-right corners, respectively. You can then use
this coordinate system to place graphical objects in the window.

To take a simple example, suppose we just want to divide the window into
nine equal squares, tic-tac-toe fashion. This could be done without too much
trouble using the default 200 x 200 window, but it would require a bit of arith-
metic. The problem becomes trivial if we first change the coordinates of the
window to run from O to 3 in both dimensions:

# create a default 200x200 window
win = GraphWin("Tic-Tac-Toe")

# set coordinates to go from (0,0) in the lower left
# to (3,3) in the upper right.
win.setCoords (0.0, 0.0, 3.0, 3.0)

# Draw vertical lines
Line(Point(1,0), Point(1,3)) .draw(win)
Line(Point(2,0), Point(2,3)) .draw(win)

# Draw horizontal lines
Line (Point(0,1), Point(3,1)) .draw(win)
Line (Point (0,2), Point(3,2)) .draw(win)

Another benefit of this approach is that the size of the window can be changed
by simply changing the dimensions used when the window is created (e.g. win
= GraphWin("Tic-Tac-Toe", 300, 300)). Because the same coordinates span
the window (due to setCoords) the objects will scale appropriately to the new



4.6. Choosing Coordinates

105

window size. Using “raw” window coordinates would require changes in the
definitions of the lines.

We can apply this idea to simplify our graphing future value program. Ba-
sically, we want our graphics window to go from O through 10 (representing
years) in the z dimension, and from 0 to 10,000 (representing dollars) in the y
dimension. We could create just such a window like this:

win = GraphWin("Investment Growth Chart", 320, 240)
win.setCoords(0.0, 0.0, 10.0, 10000.0)

Then creating a bar for any values of year and principal would be simple.
Each bar starts at the given year and a baseline of 0, and grows to the next year
and a height equal to principal.

bar = Rectangle(Point(year, 0), Point(year+1, principal))

There is a small problem with this scheme. Can you see what I have for-
gotten? The eleven bars will fill the entire window; we haven’t left any room
for labels or margins around the edges. This is easily fixed by expanding the
coordinates of the window slightly. Since our bars start at 0, we can locate the
left side labels at -1. We can add a bit of white space around the graph by ex-
panding the coordinates slightly beyond those required for our graph. A little
experimentation leads to this window definition:

win = GraphWin("Investment Growth Chart", 320, 240)
win.setCoords(-1.75,-200, 11.5, 10400)

Here is the program again, using the alternative coordinate system:

# futval_graph2.py
from graphics import *

def main():
# Introduction

print ("This program plots the growth of a 10-year investment.")

# Get principal and interest rate
principal = float(input("Enter the initial principal: "))
apr = float(input ("Enter the annualized interest rate: "))



106

Chapter 4. Objects and Graphics

# Create a graphics window with labels on left edge
win = GraphWin("Investment Growth Chart", 320, 240)
win.setBackground ("white")
win.setCoords(-1.75,-200, 11.5, 10400)

Text (Point(-1, 0), ’ 0.0K’) .draw(win)

Text (Point (-1, 2500), ’> 2.5K?’) .draw(win)

Text (Point (-1, 5000), ’> 5.0K’) .draw(win)

Text (Point (-1, 7500), ’> 7.5k’) .draw(win)

Text (Point (-1, 10000), ’10.0K’) .draw(win)

# Draw bar for initial principal

bar = Rectangle(Point(0, 0), Point(1, principal))
bar.setFill("green")

bar.setWidth(2)

bar.draw(win)

# Draw a bar for each subsequent year
for year in range(1l, 11):
principal = principal * (1 + apr)
bar = Rectangle(Point(year, 0), Point(year+1, principal))
bar.setFill("green")
bar.setWidth(2)
bar.draw(win)

input ("Press <Enter> to quit.")
win.close()

main ()

Notice how the cumbersome coordinate calculations have been eliminated. This
version also makes it easy to change the size of the GraphWin. Changing the
window size to 640 x 480 produces a larger, but correctly drawn, bar graph. In
the original program, all of the calculations would have to be redone to accom-
modate the new scaling factors in the larger window.

Obviously, the second version of our program is much easier to develop and
understand. When you are doing graphics programming, give some consider-
ation to choosing a coordinate system that will make your task as simple as
possible.



4.7. Interactive Graphics

107

4.7| Interactive Graphics

Graphical interfaces can be used for input as well as output. In a GUI envi-
ronment, users typically interact with their applications by clicking on buttons,
choosing items from menus, and typing information into on-screen text boxes.
These applications use a technique called event-driven programming. Basically,
the program draws a set of interface elements (often called widgets) on the
screen, and then waits for the user to do something.

When the user moves the mouse, clicks a button, or types a key on the key-
board, this generates an event. Basically, an event is an object that encapsulates
data about what just happened. The event object is then sent off to an appropri-
ate part of the program to be processed. For example, a click on a button might
produce a button event. This event would be passed to the button-handling code,
which would then perform the appropriate action corresponding to that button.

Event-driven programming can be tricky for novice programmers, since it’s
hard to figure out “who’s in charge” at any given moment. The graphics mod-
ule hides the underlying event-handling mechanisms and provides a few simple
ways of getting user input in a GraphWin.

4.7.1| Getting Mouse Clicks

We can get graphical information from the user via the getMouse method of the
GraphWin class. When getMouse is invoked on a GraphWin, the program pauses
and waits for the user to click the mouse somewhere in the graphics window.
The spot where the user clicks is returned to the program as a Point. Here is a
bit of code that reports the coordinates of ten successive mouse clicks:

# click.py
from graphics import *

def main():
win = GraphWin("Click Me!")
for i in range(10):
p = win.getMouse()
print ("You clicked at:", p.getX(), p.getY())

main ()

The value returned by getMouse() is a ready-made Point. We can use it like



108 Chapter 4. Objects and Graphics

any other point using accessors such as getX and getY or other methods such as
draw and move.

Here is an example of an interactive program that allows the user to draw a
triangle by clicking on three points in a graphics window. This example is com-
pletely graphical, making use of Text objects as prompts. No interaction with
a Python text window is required. If you are programming in a Microsoft Win-
dows environment, you can name this program using a .pyw extension. Then
when the program is run, it will not even display the Python shell window.

# triangle.pyw
from graphics import *

def main():
win = GraphWin("Draw a Triangle")
win.setCoords(0.0, 0.0, 10.0, 10.0)
message = Text(Point(5, 0.5), "Click on three points")
message .draw(win)

# Get and draw three vertices of triangle
pl = win.getMouse ()

pl.draw(win)

p2 = win.getMouse ()

p2.draw(win)

p3 = win.getMouse ()

p3.draw(win)

# Use Polygon object to draw the triangle
triangle = Polygon(pl,p2,p3)
triangle.setFill("peachpuff")
triangle.setOutline("cyan")
triangle.draw(win)

# Wait for amnother click to exit
message.setText ("Click anywhere to quit.")
win.getMouse ()

main ()

The three-click triangle illustrates a couple of new features of the graphics
module. There is no triangle class; however, there is a general class Polygon



4.7. Interactive Graphics

109

that can be used for any multi-sided, closed shape. The constructor for Polygon
accepts any number of points and creates a polygon by using line segments to
connect the points in the order given and to connect the last point back to the
first. A triangle is just a three-sided polygon. Once we have three Points—pi1,
p2, and p3—<creating the triangle is a snap:

triangle = Polygon(pl, p2, p3)

You should also study how the Text object is used to provide prompts. A
single Text object is created and drawn near the beginning of the program:

message = Text(Point(5, 0.5), "Click on three points")
message.draw(win)

To change the prompt, we don’t need to create a new Text object; we can just
change the text that is displayed. This is done near the end of the program with
the setText method:

message.setText ("Click anywhere to quit.")

As you can see, the getMouse method of GraphWin provides a simple way of
interacting with the user in a graphics-oriented program.

4.7.2| Handling Textual Input

In the triangle example, all of the input was provided through mouse clicks.
Often we will want to allow the user to interact with a graphics window via
the keyboard. The GraphWin object provides a getKey() method that works
very much like the getMouse method. Here’s an extension of the simple clicking
program that allows the user to label positions in a window by typing a single
keypress after each mouse click:

# clickntype.py
from graphics import *

def main():
win = GraphWin("Click and Type", 400, 400)
for i in range(10):
pt = win.getMouse()
key = win.getKey()



110 Chapter 4. Objects and Graphics
label = Text(pt, key)
label.draw(win)

main ()

Notice what happens in the loop body. First it waits for a mouse click, and
the resulting Point is saved as the variable p. Then the program waits for the
user to type a key on the keyboard. The key that is pressed is returned as a
string and saved as the variable key. For example, if the user presses g on the
keyboard, then key will be the string >g’. The Point and string are then used
to create a text object (called 1abel) that is drawn into the window.

You should try out this pogram to get a feel for what the getKey method
does. In particular, see what strings are returned when you type some of the
weirder keys such as <Shift>, <Ctrl>, or the cursor movement keys.

While the getKey method is certainly useful, it is not a very practical way of
getting an arbitrary string of characters from the user (for example a number or
a name). Fortunately, the graphics library provides an Entry object that allows
the user to actually type input right into a GraphWin.

An Entry object draws a box on the screen that can contain text. It un-
derstands setText and getText methods just like the Text object does. The
difference is that the contents of an Entry can be edited by the user. Here’s a
version of the temperature conversion program from Chapter 2 with a graphical
user interface:

# convert_guil.pyw
# Program to convert Celsius to Fahrenheit using a simple
# graphical interface.

from graphics import *

def main():
win = GraphWin("Celsius Converter", 400, 300)
win.setCoords(0.0, 0.0, 3.0, 4.0)

# Draw the interface

Text(Point(1,3), " Celsius Temperature:").draw(win)
Text (Point(1,1), "Fahrenheit Temperature:").draw(win)
inputText = Entry(Point(2.25, 3), 5)
inputText.setText ("0.0")



4.7. Interactive Graphics

111

inputText.draw(win)

outputText = Text(Point(2.25,1),"")
outputText.draw(win)

button = Text(Point(1.5,2.0),"Convert It")
button.draw(win)

Rectangle(Point(1,1.5), Point(2,2.5)) .draw(win)

# wait for a mouse click
win.getMouse ()

# convert input
celsius = float(inputText.getText())
fahrenheit = 9.0/5.0 * celsius + 32

# display output and change button
outputText.setText (round(fahrenheit,2))
button.setText ("Quit")

# wait for click and then quit
win.getMouse ()
win.close()

main ()

When run, this produces a window with an entry box for typing in a Celsius
temperature and a “button” for doing the conversion. The button is just for show.
The program actually just pauses for a mouse click anywhere in the window.
Figure 4.9 shows how the window looks when the program starts.

Initially, the input entry box is set to contain the value 0.0. The user can
delete this value and type in another temperature. The program pauses until
the user clicks the mouse. Notice that the point where the user clicks is not even
saved; the getMouse method is just used to pause the program until the user has
a chance to enter a value in the input box.

The program then processes the input in four steps. First, the text in the
input box is converted into a number (via float). This number is then con-
verted to degrees Fahrenheit. Finally, the resulting number is displayed in the
output text area. Although fahrenheit is a float value, the setText method
automatically converts it to a string so that it can be displayed in the output text
box.



112

Chapter 4. Objects and Graphics

Celsius Converter

Celsius Temperature: |0.0

Convert It

Fahrenheit Temperature:

Figure 4.9: Initial screen for graphical temperature converter

Figure 4.10 shows how the window looks after the user has typed an input
and clicked the mouse. Notice that the converted temperature shows up in the
output area, and the label on the button has changed to “Quit” to show that
clicking again will exit the program. This example could be made much prettier
using some of the options in the graphics library for changing the colors, sizes,
and line widths of the various widgets. The code for the program is deliberately
spartan to illustrate just the essential elements of GUI design.

Although the basic tools getMouse, getKey, and Entry do not provide a
full-fledged GUI environment, we will see in later chapters how these simple
mechanisms can support surprisingly rich interactions.

4.8 Graphics Module Reference

The examples in this chapter have touched on most of the elements in the graph-
ics module. This section provides a complete reference to the objects and func-
tions provided in graphics. The set of objects and functions that are provided
by a module is sometimes called an Applications Programming Interface, or API.
Experienced programmers study APIs to learn about new libraries. You should
probably read this section over once to see what the graphics library has to offer.



4.8. Graphics Module Reference

113

Celsius Converter

Celsius Temperature: 20

Quit

Fahrenheit Temperature: 68.0

Figure 4.10: Graphical temperature converter after user input

After that, you will probably want to refer back to this section often when you
are writing your own graphical programs.

One of the biggest hurdles in learning an API is familiarizing yourself with
the various data types that are used. As you read through the reference, pay
close attention to the types of the parameters and return values of the vari-
ous methods. For example, when creating a Circle, it’s essential that the first
parameter you supply must be a Point object (for the center) and the second
parameter must be a number (the radius). Using incorrect types will sometimes
give an immediate error message, but other times problems may not crop up un-
til later, say when an object is drawn. The examples at the end of each method
description incorporate Python literals to illustrate the appropriate data types
for parameters.

4.8.1| GraphWin Objects

A GraphWin object represents a window on the screen where graphical images
may be drawn. A program may define any number of GraphWins. A GraphWin
understands the following methods:

GraphWin(title, width, height) Constructs a new graphics window for draw-

ing on the screen. The parameters are optional; the default title is “Graph-



114

Chapter 4. Objects and Graphics

ics Window,” and the default size is 200 x 200 pixels.
Example: win = GraphWin("Investment Growth", 640, 480)

plot(x, y, color) Draws the pixel at (x,y) in the window. Color is optional;
black is the default.

Example: win.plot(35, 128, "blue")

plotPixel(x, y, color) Draws the pixel at the “raw” position (z, y), ignoring
any coordinate transformations set up by setCoords.

Example: win.plotPixel(35, 128, "blue")

setBackground(color) Sets the window background to the given color. The
default background color depends on your system. See Section 4.8.5 for
information on specifying colors.

Example: win.setBackground("white")

close() Closes the on-screen window.
Example: win.close()

getMouse() Pauses for the user to click a mouse in the window and returns
where the mouse was clicked as a Point object.

Example: clickPoint = win.getMouse()

checkMouse () Similar to getMouse, but does not pause for a user click. Returns
the last point where the mouse was clicked or None? if the window has not
been clicked since the previous call to checkMouse or getMouse. This is
particularly useful for controlling animation loops (see Chapter 8).

Example: clickPoint = win.checkMouse()
Note: clickPoint may be None.

getKey () Pauses for the user to type a key on the keyboard and returns a string
representing the key that was pressed.

Example: keyString = win.getKey()

checkKey() Similar to getKey, but does not pause for the user to press a key.
Returns the last key that was pressed or "" if no key was pressed since
the previous call to checkKey or getKey. This is particularly useful for

%None is a special Python object often used to signify that a variable has no value. It is discussed
in Chapter 6.



4.8. Graphics Module Reference

115

controlling simple animation loops (see Chapter 8).

Example: keyString = win.checkKey()
Note: keyString may be the empty string ""

setCoords (x11, yll, xur, yur) Sets the coordinate system of the window.
The lower-left corner is (zll, yll) and the upper-right corner is (zur, yur).
Currently drawn objects are redrawn and subsequent drawing is done with
respect to the new coordinate system (except for plotPixel).

Example: win.setCoords(0, 0, 200, 100)

4.8.2| Graphics Objects

The module provides the following classes of drawable objects: Point, Line,
Circle, Oval, Rectangle, Polygon, and Text. All objects are initially created
unfilled with a black outline. All graphics objects support the following generic
set of methods:

setFill(color) Sets the interior of the object to the given color.
Example: someObject.setFill("red")

setOutline(color) Sets the outline of the object to the given color.
Example: someObject.setOutline("yellow")

setWidth(pixels) Sets the width of the outline of the object to the desired
number of pixels. (Does not work for Point.)

Example: someObject.setWidth(3)

draw(aGraphWin) Draws the object into the given GraphWin and returns the
drawn object.

Example: someObject.draw(someGraphWin)

undraw() Undraws the object from a graphics window. If the object is not cur-
rently drawn, no action is taken.

Example: someObject.undraw()

move (dx,dy) Moves the object dx units in the z direction and dy units in the
y direction. If the object is currently drawn, the image is adjusted to the
new position.

Example: someObject.move(10, 15.5)



116

Chapter 4. Objects and Graphics

clone() Returns a duplicate of the object. Clones are always created in an
undrawn state. Other than that, they are identical to the cloned object.

Example: objectCopy = someObject.clone()

Point Methods

Point (x,y) Constructs a point having the given coordinates.
Example: aPoint = Point(3.5, 8)

getX() Returns the z coordinate of a point.
Example: xValue = aPoint.getX()

getY() Returns the y coordinate of a point.
Example: yValue = aPoint.getY()

Line Methods

Line(pointl, point2) Constructs a line segment from point1 to point2.
Example: aLine = Line(Point(1,3), Point(7,4))

setArrow(endString) Sets the arrowhead status of a line. Arrows may be
drawn at either the first point, the last point, or both. Possible values
of endString are "first", "last", "both", and "none". The default set-
ting is "none".

Example: aLine.setArrow("both")

getCenter() Returns a clone of the midpoint of the line segment.
Example: midPoint = alLine.getCenter()

getP1(), getP2() Returns a clone of the corresponding endpoint of the seg-
ment.

Example: startPoint = aLine.getP1()

Circle Methods

Circle(centerPoint, radius) Constructs a circle with the given center point
and radius.

Example: aCircle = Circle(Point(3,4), 10.5)



4.8. Graphics Module Reference

117

getCenter() Returns a clone of the center point of the circle.

Example: centerPoint = aCircle.getCenter ()

getRadius() Returns the radius of the circle.

Example: radius = aCircle.getRadius()

getP1(), getP2() Returns a clone of the corresponding corner of the circle’s
bounding box. These are opposite corner points of a square that circum-
scribes the circle.

Example: cornerPoint = aCircle.getP1()

Rectangle Methods

Rectangle(pointl, point2) Constructs a rectangle having opposite corners
at pointl and point2.

Example: aRectangle = Rectangle(Point(1,3), Point(4,7))

getCenter () Returns a clone of the center point of the rectangle.

Example: centerPoint = aRectangle.getCenter ()

getP1(), getP2() Returns a clone of the corresponding point used to con-
struct the rectangle.

Example: cornerPoint = aRectangle.getP1()

Oval Methods

Oval(pointl, point2) Constructs an oval in the bounding box determined by
pointl and point2.

Example: anOval = Oval(Point(1,2), Point(3,4))

getCenter () Returns a clone of the point at the center of the oval.

Example: centerPoint = anOval.getCenter ()

getP1(), getP2() Returns a clone of the corresponding point used to con-
struct the oval.

Example: cornerPoint = anOval.getP1()



118 Chapter 4. Objects and Graphics

Polygon Methods

Polygon(pointl, point2, point3, ...) Constructs a polygon with the given
points as vertices. Also accepts a single parameter that is a list of the
vertices.

Example: aPolygon = Polygon(Point(1,2), Point(3,4), Point(5,6))
Example: aPolygon = Polygon([Point(1,2), Point(3,4), Point(5,6)])

getPoints() Returns a list containing clones of the points used to construct the
polygon.
Example: pointList = aPolygon.getPoints()

Text Methods

Text (anchorPoint, textString) Constructs a text object that displays textString
centered at anchorPoint. The text is displayed horizontally.

Example: message = Text(Point(3,4), "Hello!")

setText (string) Sets the text of the object to string.
Example: message.setText ("Goodbye!")

getText () Returns the current string.

Example: msgString = message.getText()

getAnchor () Returns a clone of the anchor point.

Example: centerPoint = message.getAnchor()

setFace(family) Changes the font face to the given family. Possible values
are "helvetica", "courier", "times roman", and "arial".

Example: message.setFace("arial")

setSize(point) Changes the font size to the given point size. Sizes from 5 to
36 points are legal.

Example: message.setSize(18)

setStyle(style) Changes font to the given style. Possible values are: "normal",
"bold", "italic", and "bold italic".

Example: message.setStyle("bold")



4.8. Graphics Module Reference 119

setTextColor (color) Sets the color of the text to color. Note: setFill has
the same effect.

Example: message.setTextColor ("pink")

4.8.3| Entry Objects

Objects of type Entry are displayed as text entry boxes that can be edited by
the user of the program. Entry objects support the generic graphics meth-
ods move(), draw(graphwin), undraw(), setFill(color), and clone(). The
Entry specific methods are given below.

Entry(centerPoint, width) Constructs an Entry having the given center point
and width. The width is specified in number of characters of text that can
be displayed.

Example: inputBox = Entry(Point(3,4), 5)

getAnchor () Returns a clone of the point where the entry box is centered.
Example: centerPoint = inputBox.getAnchor ()

getText () Returns the string of text that is currently in the entry box.
Example: inputStr = inputBox.getText()

setText (string) Sets the text in the entry box to the given string.
Example: inputBox.setText("32.0")

setFace(family) Changes the font face to the given family. Possible values
are "helvetica", "courier", "times roman", and "arial".

Example: inputBox.setFace("courier")

setSize(point) Changes the font size to the given point size. Sizes from 5 to
36 points are legal.

Example: inputBox.setSize(12)

setStyle(style) Changes font to the given style. Possible values are: "normal",
"bold", "italic", and "bold italic".

Example: inputBox.setStyle("italic")

setTextColor (color) Sets the color of the text to color.
Example: inputBox.setTextColor("green")



120 Chapter 4. Objects and Graphics

4.8.4| Displaying Images

The graphics module also provides minimal support for displaying and manipu-
lating images in a GraphWin. Most platforms will support at least PPM and GIF
images. Display is done with an Image object. Images support the generic meth-
ods move(dx,dy), draw(graphwin), undraw(), and clone(). Image-specific
methods are given below.

Image (anchorPoint, filename) Constructs animage from contents of the given
file, centered at the given anchor point. Can also be called with width and
height parameters instead of filename. In this case, a blank (transpar-
ent) image is created of the given width and height (in pixels).

Example: flowerImage = Image(Point(100,100), "flower.gif")
Example: blankImage = Image (320, 240)

getAnchor() Returns a clone of the point where the image is centered.
Example: centerPoint = flowerImage.getAnchor ()

getWidth() Returns the width of the image.
Example: widthInPixels = flowerImage.getWidth()

getHeight () Returns the height of the image.
Example: heightInPixels = flowerImage.getHeight ()

getPixel(x, y) Returns a list [red, green, blue] of the RGB values of the
pixel at position (x,y). Each value is a number in the range 0-255 indi-
cating the intensity of the corresponding RGB color. These numbers can be
turned into a color string using the color_rgb function (see next section).

Note that pixel position is relative to the image itself, not the window
where the image may be drawn. The upper-left corner of the image is
always pixel (0,0).

Example: red, green, blue = flowerImage.getPixel (32,18)

setPixel(x, y, color) Sets the pixel at position (x,y) to the given color.
Note: This is a slow operation.

Example: flowerImage.setPixel(32, 18, "blue")

save (filename) Saves the image to a file. The type of the resulting file (e.g.,
GIF or PPM) is determined by the extension on the filename.

Example: flowerImage.save ("mypic.ppm")



4.8. Graphics Module Reference

121

4.8.5| Generating Colors

Colors are indicated by strings. Most normal colors such as "red", "purple",
"green", "cyan", etc. should be available. Many colors come in various shades,
such as "red1", "red2","red3", "red4", which are increasingly darker shades
of red. For a full list, look up X11 color names on the web.

The graphics module also provides a function for mixing your own colors nu-
merically. The function color_rgb(red, green, blue) will return a string rep-
resenting a color that is a mixture of the intensities of red, green and blue spec-
ified. These should be ints in the range 0-255. Thus color_rgb(255, 0, 0) is
a bright red, while color_rgb(130, 0, 130) is a medium magenta.

Example: aCircle.setFill(color_rgb(130, 0, 130))

4.8.6| Controlling Display Updates (Advanced)

Usually, the visual display of a GraphWin is updated whenever any graphics ob-
ject’s visible state is changed in some way. However, under some circumstances,
for example when using the graphics library inside some interactive shells, it
may be necessary to force the window to update in order for changes to be seen.
The update () function is provided to do this.

update() Causes any pending graphics operations to be carried out and the
results displayed.

For efficiency reasons, it is sometimes desirable to turn off the automatic
updating of a window every time one of the objects changes. For example, in
an animation, you might want to change the appearance of multiple objects
before showing the next “frame” of the animation. The GraphWin constructor
includes a special extra parameter called autoflush that controls this automatic
updating. By default, autoflush is on when a window is created. To turn it off,
the autoflush parameter should be set to False, like this:

win = GraphWin("My Animation", 400, 400, autoflush=False)

Now changes to the objects in win will only be shown when the graphics system
has some idle time or when the changes are forced by a call to update ().

The update() method also takes an optional parameter that specifies the
maximum rate (per second) at which updates can happen. This is useful for
controlling the speed of animations in a hardware-independent fashion. For
example, placing the command update(30) at the bottom of a loop ensures



122

Chapter 4. Objects and Graphics

that the loop will “spin” at most 30 times per second. The update command will
insert an appropriate pause each time through to maintain a relatively constant

rate.

Of course, the rate throttling will only work when the body of the loop

itself executes in less than 1/30th of a second.

Example: 1000 frames at 30 frames per second

win = GraphWin("Update Example", 320, 200, autoflush=False)

for i in range(1000):

# <drawing commands for ith frame>
update (30)

4.9

Chapter Summary

This chapter introduced computer graphics and object-based programming. Here
is a summary of some of the important concepts:

An object is a computational entity that combines data and operations.
Objects know stuff and can do stuff. An object’s data is stored in instance
variables, and its operations are called methods.

Every object is an instance of some class. It is the class that determines
what methods an object will have. An instance is created by calling a
constructor method.

An object’s attributes are accessed via dot notation. Generally computa-
tions with objects are performed by calling on an object’s methods. Acces-
sor methods return information about the instance variables of an object.
Mutator methods change the value(s) of instance variables.

The graphics module supplied with this book provides a number of classes
that are useful for graphics programming. A GraphWin is an object that
represents a window on the screen for displaying graphics. Various graph-
ical objects such as Point, Line, Circle, Rectangle, Oval, Polygon, and
Text may be drawn in a GraphWin. Users may interact with a GraphWin
by clicking the mouse or typing into an Entry box.

An important consideration in graphical programming is the choice of an
appropriate coordinate system. The graphics library provides a way of
automating certain coordinate transformations.



4.10. Exercises 123

e The situation where two variables refer to the same object is called alias-
ing. Aliasing can sometimes cause unexpected results. Use of the clone
method in the graphics library can help prevent these situations.

4.10| Exercises

Review Questions
True/False

1. Using graphics.py allows graphics to be drawn in a Python shell window.

2. Traditionally, the upper-left corner of a graphics window has coordinates
(0,0).

A single point on a graphics screen is called a pixel.

A function that creates a new instance of a class is called an accessor.
Instance variables are used to store data inside an object.

The statement myShape .move (10,20) moves myShape to the point (10,20).
. Aliasing occurs when two variables refer to the same object.

The copy method is provided to make a copy of a graphics object.

© ® N o U oA W

. A graphics window always has the title “Graphics Window.”

10. The method in the graphics library used to get a mouse click is readMouse.

Multiple Choice

1. A method that returns the value of an object’s instance variable is called

a(n)

a) mutator b) function c¢) constructor d) accessor

2. A method that changes the state of an object is called a(n)
a) stator b) mutator c) constructor d) changor

3. What graphics class would be best for drawing a square?
a) Square b) Polygon c)Line d) Rectangle



124

Chapter 4. Objects and Graphics

10.

1.

. What command would set the coordinates of win to go from (0,0) in the

lower-left corner to (10,10) in the upper-right?
a) win.setcoords(Point(0,0), Point(10,10))
b) win.setcoords((0,0), (10,10))

c) win.setcoords(0, 0, 10, 10)

d) win.setcoords (Point (10,10), Point(0,0))

. What expression would create a line from (2,3) to (4,5)?

a) Line(2, 3, 4, 5)

b) Line((2,3), (4,5))

c) Line(2, 4, 3, 5)

d) Line (Point(2,3), Point(4,5))

. What command would be used to draw the graphics object shape into the

graphics window win?
a) win.draw(shape) b) win.show(shape)
c) shape.draw() d) shape.draw(win)

. Which of the following computes the horizontal distance between points

pl and p2?

a) abs(p1-p2)

b) p2.getX() - pl.getX()

c) abs(pl.getY() - p2.getY())
d) abs(pl.getX() - p2.getX())

. What kind of object can be used to get text input in a graphics window?

a) Text b) Entry c) Input d) Keyboard

. A user interface organized around visual elements and user actions is

called a(n)
a) GUI b) application c¢) windower d) API

What color is color_rgb(0,255,255)?
a) yellow b) cyan c) magenta d) orange

Discussion

Pick an example of an interesting real-world object and describe it as a
programming object by listing its data (attributes, what it “knows”) and
its methods (behaviors, what it can “do”).



4.10. Exercises 125

2. Describe in your own words the object produced by each of the following
operations from the graphics module. Be as precise as you can. Be sure to
mention such things as the size, position, and appearance of the various
objects. You may include a sketch if that helps.

a) Point(130,130)

b) ¢ = Circle(Point(30,40),25)
c.setFill("blue")
c.setOutline("red")

= Rectangle(Point(20,20), Point(40,40))
.setFill(color_rgb(0,255,150))
.setWidth(3)

= Line(Point (100,100), Point(100,200))
.setOutline("red4")
.setArrow("first")

e) Oval(Point(50,50), Point(60,100))

f) shape = Polygon(Point(5,5), Point(10,10), Point(5,10), Point(10,5))
shape.setFill("orange")

g) t = Text(Point(100,100), "Hello World!")
t.setFace("courier")
t.setSize(16)
t.setStyle("italic")

oW
—
=+ 8 KR H

3. Describe what happens when the following interactive graphics program
runs:

from graphics import *

def main():

win = GraphWin()
shape = Circle(Point(50,50), 20)
shape.setOutline("red")
shape.setFill("red")
shape.draw(win)
for i in range(10):

p = win.getMouse()

c = shape.getCenter()

dx = p.getX() - c.getX()



126

Chapter 4. Objects and Graphics

dy = p.getY() - c.getY()
shape.move (dx,dy)
win.close()
main()

Programming Exercises

1. Alter the program from the last discussion question in the following ways:

(a) Make it draw squares instead of circles.

(b) Have each successive click draw an additional square on the screen
(rather than moving the existing one).

(c) Print a message on the window “Click again to quit” after the loop,
and wait for a final click before closing the window.

. An archery target consists of a central circle of yellow surrounded by con-

centric rings of red, blue, black and white. Each ring has the same width,
which is the same as the radius of the yellow circle. Write a program
that draws such a target. Hint: Objects drawn later will appear on top of
objects drawn earlier.

. Write a program that draws some sort of face.

. Write a program that draws a winter scene with a Christmas tree and a

Snowinall.

. Write a program that draws 5 dice on the screen depicting a straight (1, 2,

3,4,50r2, 3, 4,5, 6).

. Modify the graphical future value program so that the input (principal and

APR) also are done in a graphical fashion using Entry objects.



4.10. Exercises 127

7. Circle Intersection.

Write a program that computes the intersection of a circle with a hori-
zontal line and displays the information textually and graphically.

Input: Radius of the circle and the y-intercept of the line.

Output: Draw a circle centered at (0, 0) with the given radius in a window
with coordinates running from -10,-10 to 10,10.
Draw a horizontal line across the window with the given y-intercept.
Draw the two points of intersection in red.
Print out the x values of the points of intersection.

Formula: z = ++/72 — ¢?

8. Line Segment Information.

This program allows the user to draw a line segment and then displays
some graphical and textual information about the line segment.

Input: Two mouse clicks for the end points of the line segment.

Output: Draw the midpoint of the segment in cyan.
Draw the line.
Print the length and the slope of the line.

Formulas: dr = 29 — 11
dy = y2 — 1
slope = dy/dzx
length = \/dz? + dy?

9. Rectangle Information.

This program displays information about a rectangle drawn by the user.

Input: Two mouse clicks for the opposite corners of a rectangle.

Output: Draw the rectangle.
Print the perimeter and area of the rectangle.

Formulas: area = (length)(width)
perimeter = 2(length + width)



128

Chapter 4. Objects and Graphics

10. Triangle Information.

11.

Same as the previous problem, but with three clicks for the vertices of
a triangle.

Formulas: For perimeter, see length from the Line Segment problem.
area = 1/3(s —a)(s — b)(s — c) where a, b, and c are the lengths of
the sides and s = 212t

Five-click House.

You are to write a program that allows the user to draw a simple house
using five mouse clicks. The first two clicks will be the opposite corners of
the rectangular frame of the house. The third click will indicate the center
of the top edge of a rectangular door. The door should have a total width
that is % of the width of the house frame. The sides of the door should
extend from the corners of the top down to the bottom of the frame. The
fourth click will indicate the center of a square window. The window is
half as wide as the door. The last click will indicate the peak of the roof.
The edges of the roof will extend from the point at the peak to the corners
of the top edge of the house frame.

5




Chapter 5 Sequences: Strings,
Lists, and Files

Objectives

e To understand the string data type and how strings are represented in the
computer.

e To become familiar with various operations that can be performed on
strings through built-in functions and string methods.

e To understand the basic idea of sequences and indexing as they apply to
Python strings and lists.

e To be able to apply string formatting to produce attractive, informative
program output.

e To understand basic file-processing concepts and techniques for reading
and writing text files in Python.

e To understand basic concepts of cryptography.

e To understand and write programs that process textual information.

5.1 The String Data Type

So far, we have been discussing programs designed to manipulate numbers and
graphics. But you know that computers are also important for storing and oper-
ating on textual information. In fact, one of the most common uses for personal

129



130

Chapter 5. Sequences: Strings, Lists, and Files

computers is word processing. This chapter focuses on textual applications to
introduce some important ideas about how text is stored on the computer. You
may not think that word-based applications are all that exciting, but as you’ll
soon see, the basic ideas presented here are at work in virtually all areas of
computing, including powering the the World Wide Web.

Text is represented in programs by the string data type. You can think of a
string as a sequence of characters. In Chapter 2 you learned that a string literal
is formed by enclosing some characters in quotation marks. Python also allows
strings to be delimited by single quotes (apostrophes). There is no difference;
just be sure to use a matching set. Strings can also be saved in variables, just
like any other data. Here are some examples illustrating the two forms of string
literals:

>>> strl = "Hello"
>>> str2 = ’spam’

>>> print(strl, str2)
Hello spam

>>> type(strl)

<class ’str’>

>>> type(str2)

<class ’str’>

You already know how to print strings. You have also seen how to get string
input from users. Recall that the input function returns whatever the user types
as a string object. That means when you want to get a string, you can use the
input in its “raw” (unconverted) form. Here’s a simple interaction to illustrate
the point:

>>> firstName = input("Please enter your name: ")
Please enter your name: John

>>> print("Hello", firstName)

Hello John

Notice how we saved the user’s name with a variable and then used that variable
to print the name back out again.

So far, we have seen how to get strings as input, assign them to variables,
and how to print them out. That’s enough to write a parrot program, but not
to do any serious text-based computing. For that, we need some string opera-
tions. The rest of this section takes you on a tour of the more important Python
string operations. In the following section, we’ll put these ideas to work in some
example programs.



5.1. The String Data Type

131

What kinds of things can we do with strings? For starters, remember what
a string is: a sequence of characters. One thing we might want to do is access
the individual characters that make up the string. In Python, this can be done
through the operation of indexing. We can think of the positions in a string as be-
ing numbered, starting from the left with 0. Figure 5.1 illustrates with the string
Hello Bob. Indexing is used in string expressions to access a specific character
position in the string. The general form for indexing is <string>[<expr>]. The
value of the expression determines which character is selected from the string.

H|le |1 |1 | o B o | b
o 1 2 3 4 5 6 7 B8

Figure 5.1: Indexing of the string "Hello Bob"

Here are some interactive indexing examples:

>>> greet = "Hello Bob"
>>> greet [0]

)H,

>>> print(greet[0], greet[2], greet[4])
H1o

>>> x = 8

>>> print(greet[x-2])

B

Notice that in a string of n characters, the last character is at position n — 1,
because the indexes start at 0. This is probably also a good time to remind you
about the difference between string objects and the actual printed output. In
the interactions above, the Python shell shows us the value of strings by putting
them in single quotes; that’s Python’s way of communicating to us that we are
looking at a string object. When we actually print the string, Python does not
put any quotes around the sequence of characters. We just get the text contained
in the string.

By the way, Python also allows indexing from the right end of a string using
negative indexes.

>>> greet[-1]
)b)



132

Chapter 5. Sequences: Strings, Lists, and Files

>>> greet [-3]
)BJ

This is particularly handy for getting at the last character of a string.

Indexing returns a string containing a single character from a larger string. It
is also possible to access a contiguous sequence of characters or substring from a
string. In Python, this is accomplished through an operation called slicing. You
can think of slicing as a way of indexing a range of positions in the string. Slicing
takes the form <string>[<start>:<end>]. Both start and end should be
int-valued expressions. A slice produces the substring starting at the position
given by start and running up to, but not including, position end.

Continuing with our interactive example, here are some slices:

>>> greet[0:3]
’Hel’

>>> greet[5:9]
> Bob’

>>> greet[:5]
’Hello’

>>> greet[5:]
> Bob’

>>> greet[:]
’Hello Bob’

The last three examples show that if either expression is missing, the start and
end of the string are the assumed defaults. The final expression actually hands
back the entire string.

Indexing and slicing are useful operations for chopping strings into smaller
pieces. The string data type also supports operations for putting strings together.
Two handy operators are concatenation (+) and repetition (*). Concatenation
builds a string by “gluing” two strings together. = Repetition builds a string
by multiple concatenations of a string with itself. Another useful function is
len, which tells how many characters are in a string. Finally, since strings are
sequences of characters, you can iterate through the characters using a Python
for loop.

Here are some examples of various string operations:

SO> n Spamll + lleggsll
’spameggs’
SO> llSpamll + llAndll + llEggSll



5.2. Simple String Processing

133

’SpamAndEggs’

>>> 3 * "spam"

’ spamspamspam’

>>> "spam" * 5

’ spamspamspamspamspam’

>>> (3 * "spam") + ("eggs" * 5)

’ spamspamspameggseggseggseggseggs’

>>> len("spam")

4

>>> len("SpamAndEggs")

11

>>> for ch in "Spam!":
print(ch, end=" ")

Spanmn!

These basic string operations are summarized in Table 5.1.

operator meaning
+ concatenation
* repetition
<string>[ ] indexing
<string>[ : ] slicing
len(<string>) length
for <var> in <string> | iteration through characters

Table 5.1: Python string operations

5.2| Simple String Processing

Now that you have an idea what various string operations can do, we’re ready to
write some programs. Our first example is a program to compute the usernames
for a computer system.

Many computer systems use a username and password combination to au-
thenticate system users. The system administrator must assign a unique user-
name to each user. Often, usernames are derived from the user’s actual name.
One scheme for generating usernames is to use the user’s first initial followed
by up to seven letters of the user’s last name. Using this method, the user-



134 Chapter 5. Sequences: Strings, Lists, and Files

name for Zaphod Beeblebrox would be “zbeebleb,” and John Smith would just
be “jsmith.”

We want to write a program that reads a person’s name and computes the
corresponding username. Our program will follow the basic input, process, out-
put pattern. For brevity, I will skip discussion of the algorithm development and
jump right to the code. The outline of the algorithm is included as comments in
the final program.

# username.py
# Simple string processing program to generate usernames.

def main():
print ("This program generates computer usernames.\n")

# get user’s first and last names
first = input("Please enter your first name (all lowercase): ")
last = input("Please enter your last name (all lowercase): ")

# concatenate first initial with 7 chars of the last name.
uname = first[0] + last[:7]

# output the username
print ("Your username is:", uname)

main ()

This program first uses input to get strings from the user. Then indexing, slicing,
and concatenation are combined to produce the username. Here’s an example
run:

This program generates computer usernames.

Please enter your first name (all lowercase): zaphod
Please enter your last name (all lowercase): beeblebrox
Your username is: Zzbeebleb

Do you see where the blank line between the introduction and the prompt for
the first name comes from? Putting the newline character (\n) at the end of the
string in the first print statement caused the output to skip down an extra line.
This is a simple trick for putting some extra white space into the output to make
it look a little better.



5.2. Simple String Processing

135

Here is another problem that we can solve with string operations. Suppose
we want to print the abbreviation of the month that corresponds to a given
month number. The input to the program is an int that represents a month
number (1-12), and the output is the abbreviation for the corresponding month.
For example, if the input is 3, then the output should be Mar, for March.

At first, it might seem that this program is beyond your current ability. Expe-
rienced programmers recognize that this is a decision problem. That is, we have
to decide which of 12 different outputs is appropriate, based on the number
given by the user. We will not cover decision structures until later; however, we
can write the program now by some clever use of string slicing.

The basic idea is to store all the month names in a big string:

months = "JanFebMarAprMayJunJulAugSepOctNovDec"

We can look up a particular month by slicing out the appropriate substring. The
trick is computing where to slice. Since each month is represented by three
letters, if we knew where a given month started in the string, we could easily
extract the abbreviation:

monthAbbrev = months [pos:pos+3]

This would get us the substring of length 3 that starts in the position indicated
by pos.

How do we compute this position? Let’s try a few examples and see what we
find. Remember that string indexing starts at O.

month number position

Jan 1 0
Feb 2 3
Mar 3 6
Apr 4 9

Of course, the positions all turn out to be multiples of 3. To get the correct
multiple, we just subtract 1 from the month number and then multiply by 3. So
for1weget (1—1)*3=0%3 =0, and for 12 we have (12—1)*3 = 11%3 = 33.

Now we’re ready to code the program. Again, the final result is short and
sweet; the comments document the algorithm we’ve developed.

# month.py

# A program to print the abbreviation of a month, given its number



136

Chapter 5. Sequences: Strings, Lists, and Files

def main():
# months is used as a lookup table
months = "JanFebMarAprMayJunJulAugSepOctNovDec"

n = int(input("Enter a month number (1-12): "))

# compute starting position of month n in months
pos = (n-1) * 3

# Grab the appropriate slice from months
monthAbbrev = months [pos:pos+3]

# print the result
print ("The month abbreviation is", monthAbbrev + ".")

main()

Notice the last line of this program uses string concatenation to put a period at
the end of the month abbreviation.
Here is a sample of program output:

Enter a month number (1-12): 4
The month abbreviation is Apr.

One weakness of the “string as lookup table” approach used in this example
is that it will only work when the substrings all have the same length (in this
case, three). Suppose we want to write a program that outputs the complete
month name for a given number. How could that be accomplished?

5.3| Lists as Sequences

Strictly speaking, the operations in Table 5.1 are not really just string operations.
They are operations that apply to sequences. As you know from the discussion
in Chapter 2, Python lists are also a kind of sequence. That means we can also
index, slice, and concatenate lists, as the following session illustrates:

>>> [1,2] + [3,4]
[1, 2, 3, 4]
>>> [1,2]*3



5.3. Lists as Sequences 137

[1, 2, 1’ 2’ 1’ 2]

>>> grades = [’A’,’B’,’C?,’D’,’F’]
>>> grades[0]

’A’

>>> grades[2:4]

[>C>, °D’]

>>> len(grades)

5

One of the nice things about lists is that they are more general than strings.
Strings are always sequences of characters, whereas lists can be sequences of
arbitrary objects. You can create a list of numbers or a list of strings. In fact, you
can even mix it up and create a list that contains both numbers and strings:

myList = [1, "Spam", 4, "U"]

In later chapters, we’ll put all sorts of things into lists like points, rectangles,
dice, buttons, and even students!

Using a list of strings, we can rewrite our month abbreviation program from
the previous section and make it even simpler:

# month2.py
# A program to print the month abbreviation, given its number.

def main():
# months is a 1list used as a lookup table

months - [ll Janll , llFeb" , "Mar n , IIAPI. n , llMay n , n Junll ,
n Jul n , llAugll , llSepll , lloct n , IINOVII , "DeC"]

n = int(input("Enter a month number (1-12): "))
print ("The month abbreviation is", months[n-1] + ".")
main ()

There are a couple of things you should notice about this program. I have cre-
ated a list of strings called months to use as the lookup table. The code that
creates the list is split over two lines. Normally a Python statement is written on



138

Chapter 5. Sequences: Strings, Lists, and Files

a single line, but in this case Python knows that the list isn’t finished until the
closing bracket “]” is encountered. Breaking the statement across two lines like
this makes the code more readable.

Lists, just like strings, are indexed starting with 0, so in this list the value
months [0] is the string "Jan". In general, the nth month is at position n-1.
Since this computation is straightforward, I didn’t even bother to put it in a sep-
arate step; the expression months [n-1] is used directly in the print statement.

Not only is this solution to the abbreviation problem a bit simpler, it is also
more flexible. For example, it would be trivial to change the program so that it
prints out the entire name of the month. All we need is a new definition of the
lookup list.

months = ["January", "February", "March", "April",
n May n , n June n , n Julyll , n August n ,
"September", "October", "November", "December"]

While strings and lists are both sequences, there is an important difference
between the two. Lists are mutable. That means that the value of an item in a
list can be modified with an assignment statement. Strings, on the other hand,
cannot be changed “in place.” Here is an example interaction that illustrates the
difference:

>>> myList = [34, 26, 15, 10]

>>> myList [2]

15

>>> myList[2] = 0

>>> myList

[34, 26, 0, 10]

>>> myString = "Hello World"

>>> myString[2]

Jl)

>>> myString[2] = ’z’

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: ’str’ object does not support item assignment

The first line creates a list of four numbers. Indexing position 2 returns the
value 15 (as usual, indexes start at 0). The next command assigns the value O
to the item in position 2. After the assignment, evaluating the list shows that
the new value has replaced the old. Attempting a similar operation on a string
produces an error. Strings are not mutable; lists are.



5.4. String Representation and Message Encoding

139

5.4| String Representation and Message Encoding

5.4.1| String Representation

Hopefully, you are starting to get the hang of computing with textual (string)
data. However, we haven’t yet discussed how computers actually manipulate
strings. In Chapter 3, you saw that numbers are stored in binary notation (se-
quences of Os and 1s); the computer CPU contains circuitry to do arithmetic
with these representations. Textual information is represented in exactly the
same way. Underneath, when the computer is manipulating text, it is really no
different from number crunching.

To understand this, you might think in terms of messages and secret codes.
Consider the age-old grade school dilemma. You are sitting in class and want
to pass a note to a friend across the room. Unfortunately, the note must pass
through the hands, and in front of the curious eyes, of many classmates before
it reaches its final destination. And, of course, there is always the risk that the
note could fall into enemy hands (the teacher’s). So you and your friend need
to design a scheme for encoding the contents of your message.

One approach is to simply turn the message into a sequence of numbers.
You could choose a number to correspond to each letter of the alphabet and use
the numbers in place of letters. Without too much imagination, you might use
the numbers 1-26 to represent the letters a—z. Instead of the word “sourpuss,”
you would write “18, 14, 20, 17, 15, 20, 18, 18.” To those who don’t know the
code, this looks like a meaningless string of numbers. For you and your friend,
however, it represents a word.

This is how a computer represents strings. Each character is translated into
a number, and the entire string is stored as a sequence of (binary) numbers
in computer memory. It doesn’t really matter what number is used to repre-
sent any given character as long as the computer is consistent about the encod-
ing/decoding process. In the early days of computing, different designers and
manufacturers used different encodings. You can imagine what a headache this
was for people transferring data between different systems.

Consider a situation that would result if, say, PCs and Macintosh computers
each used their own encoding. If you type a term paper on a PC and save it as
a text file, the characters in your paper are represented as a certain sequence of
numbers. Then, if the file was read into your instructor’s Macintosh computer,
the numbers would be displayed on the screen as different characters from the
ones you typed. The result would be gibberish!



140

Chapter 5. Sequences: Strings, Lists, and Files

To avoid this sort of problem, computer systems today use industry standard
encodings. One important standard is called ASCII (American Standard Code for
Information Interchange). ASCII uses the numbers O through 127 to represent
the characters typically found on an (American) computer keyboard, as well as
certain special values known as control codes that are used to coordinate the
sending and receiving of information. For example, the capital letters A-Z are
represented by the values 65-90, and the lowercase versions have codes 97-122.

One problem with the ASCII encoding, as its name implies, is that it is
American-centric. It does not have symbols that are needed in many other lan-
guages. Extended ASCII encodings have been developed by the International
Standards Organization to remedy this situation. Most modern systems are
moving to Unicode, a much larger standard that aims to include the characters
of nearly all written languages. Python strings support the Unicode Standard,
so you can wrangle characters from just about any language, provided your op-
erating system has appropriate fonts for displaying the characters.

Python provides a couple of built-in functions that allow us to switch back
and forth between characters and the numeric values used to represent them
in strings. The ord function returns the numeric (“ordinal”) code of a single-
character string, while chr goes the other direction. Here are some interac-
tive examples:

SO>S Ord( llall)
97

>5O> Ord( IIAII)
65

>>> chr(97)
)a,

>>> chr(90)
JZ)

If you’re reading very carefully, you might notice that these results are consis-
tent with the ASCII encoding of characters that I mentioned above. By design,
Unicode uses the same codes as ASCII for the 127 characters originally defined
there. But Unicode includes many more exotic characters as well. For example,
the Greek letter pi is character 960, and the symbol for the Euro is character
8364.

There’s one more piece in the puzzle of how to store characters in computer
memory. As you know from Chapter 3, the underlying CPU deals with memory
in fixed-sized pieces. The smallest addressable piece is typically 8 bits, which is



5.4. String Representation and Message Encoding

141

called a byte of memory. A single byte can store 28 = 256 different values. That’s
more than enough to represent every possible ASCII character (in fact, ASCII is
only a 7-bit code). But a single byte is nowhere near sufficient for storing all the
100,000+ possible Unicode characters. To get around this problem, the Unicode
Standard defines various encoding schemes for packing Unicode characters into
sequences of bytes. The most common encoding is called UTF-8. UTF-8 is a
variable-length encoding scheme that uses a single byte to store characters that
are in the ASCII subset, but may need up to four bytes in order to represent
some of the more esoteric characters. That means that a string of length 10
characters will end up getting stored in memory as a sequence of between 10
and 40 bytes, depending on the actual characters used in the string. As a rule
of thumb for Latin alphabets (the usual Western characters), however, it’s pretty
safe to estimate that a character requires about one byte of storage on average.

5.4.2| Programming an Encoder

Let’s return to the note-passing example. Using the Python ord and chr func-
tions, we can write some simple programs that automate the process of turning
messages into sequences of numbers and back again. The algorithm for encod-
ing the message is simple:

get the message to encode
for each character in the message:
print the letter number of the character

Getting the message from the user is easy; an input will take care of that for
us.

message = input("Please enter the message to encode: ")

Implementing the loop requires a bit more effort. We need to do something for
each character of the message. Recall that a for loop iterates over a sequence
of objects. Since a string is a kind of sequence, we can just use a for loop to run
through all the characters of the message:

for ch in message:

Finally, we need to convert each character to a number. The simplest ap-
proach is to use the Unicode number (provided by ord) for each character in the
message.

Here is the final program for encoding the message:



142 Chapter 5. Sequences: Strings, Lists, and Files

# text2numbers.py
# A program to convert a textual message into a sequence of
# numbers, utilizing the underlying Unicode encoding.

def main():
print ("This program converts a textual message into a sequence")
print ("of numbers representing the Unicode encoding of the message.\n")

# Get the message to encode
message = input("Please enter the message to encode: ")

print ("\nHere are the Unicode codes:")

# Loop through the message and print out the Unicode values
for ch in message:
print(ord(ch), end=" ")

print() # blank line before prompt

main ()

We can use the program to encode important messages like this:

This program converts a textual message into a sequence

of numbers representing the Unicode encoding of the message.
Please enter the message to encode: What a Sourpuss!

Here are the Unicode codes:

87 104 97 116 32 97 32 83 111 117 114 112 117 115 115 33

One thing to notice about this result is that even the space character has a cor-
responding Unicode number. It is represented by the value 32.

5.5| String Methods

5.5.1| Programming a Decoder

Now that we have a program to turn a message into a sequence of numbers,
it would be nice if our friend on the other end had a similar program to turn



5.5. String Methods

143

the numbers back into a readable message. Let’s solve that problem next. Our
decoder program will prompt the user for a sequence of Unicode numbers and
then print out the text message with the corresponding characters. This program
presents us with a couple of challenges; we’ll address these as we go along.
The overall outline of the decoder program looks very similar to the encoder
program. One change in structure is that the decoding version will collect the
characters of the message in a string and print out the entire message at the end
of the program. To do this, we need to use an accumulator variable, a pattern
we saw in the factorial program from Chapter 3. Here is the decoding algorithm:

get the sequence of numbers to decode

message = ""

for each number in the input:
convert the number to the corresponding Unicode character
add the character to the end of message

print message

Before the loop, the accumulator variable message is initialized to be an empty
string; that is, a string that contains no characters (""). Each time through the
loop, a number from the input is converted into an appropriate character and
appended to the end of the message constructed so far.

The algorithm seems simple enough, but even the first step presents us with
a problem. How exactly do we get the sequence of numbers to decode? We
don’t even know how many numbers there will be. To solve this problem, we
are going to rely on some more string manipulation operations.

First, we will read the entire sequence of numbers as a single string using
input. Then we will split the big string into a sequence of smaller strings, each
of which represents one of the numbers. Finally, we can iterate through the list
of smaller strings, convert each into a number, and use that number to produce
the corresponding Unicode character. Here is the complete algorithm:

get the sequence of numbers as a string, inString
split inString into a sequence of smaller strings
message = ""
for each of the smaller strings:
change the string of digits into the number it represents
append the Unicode character for that number to message
print message



144

Chapter 5. Sequences: Strings, Lists, and Files

This looks complicated, but Python provides some functions that do just what
we need.

You may have noticed all along that I’'ve been talking about string objects.
Remember from the last chapter, objects have both data and operations (they
“know stuff” and “do stuff.”) By virtue of being objects, strings have some
built-in methods in addition to the generic sequence operations that we have
used so far. We'll use some of those abilities here to solve our decoder problem.

For our decoder, we will make use of the split method. This method splits
a string into a list of substrings. By default, it will split the string wherever a
space occurs. Here’s an example:

>>> myString = "Hello, string methods!"
>>> myString.split()
[’Hello,’, ’string’, ’methods!’]

Naturally, the split operation is called using the usual dot notation for invoking
one of an object’s methods. In the result, you can see how split has turned
the original string "Hello, string methods!" into a list of three substrings:
"Hello,", "string", and "methods!".

By the way, split can be used to split a string at places other than spaces
by supplying the character to split on as a parameter. For example, if we have a
string of numbers separated by commas, we could split on the commas:

>>> "32,24,25,57".split(",")
[’327, 24’, 725, >57°]

This is useful for getting multiple inputs from the user without resorting to the
use of eval. For example, we could get the x and y values of a point in a single
input string, turn it into a list using the split method, and then index into
the resulting list to get the individual component strings as illustrated in the
following interaction:

>>> coords = input("Enter the point coordinates (x,y): ").split(",")
Enter the point coordinates (x,y): 3.4, 6.25
>>> coords

[’3.4°, ’6.25°]

>>> coords[0]

’3.4°

>>coords[1]

’6.25°



5.5. String Methods 145

Of course, we still need to convert those strings into the corresponding numbers.
Recall from Chapter 3 that we can use the type conversion functions int and
float to convert strings into the appropriate numeric type. In this case, we will
use float and combine this all into a couple lines of code:

coords = input("Enter the point coordinates (x,y): ").split(",")
x,y = float(coords[0]), float(coords[1])

Returning to our decoder, we can use a similar technique. Since our pro-
gram should accept the same format that was produced by the encoder pro-
gram, namely a sequence of Unicode numbers with spaces between, the default
version of split works nicely:

>>> "87 104 97 116 32 97 32 83 111 117 114 112 117 115 115 33".split()
[>87°, °104°, °97’, ’116°, °327, °97>, 32>, 83, *111’, *117’,
1147, °112°, °117°, 115>, ’115°, 2337]

Again, the result is not a list of numbers, but a list of strings. It just so happens
these strings contain only digits and could be interpreted as numbers. In this
case, the strings are int literals, so we’ll apply the int function to each one in
order to convert it to a number.

Using split and int we can write our decoder program:

# numbers2text.py
# A program to convert a sequence of Unicode numbers into
# a string of text.

def main():
print ("This program converts a sequence of Unicode numbers into")

print("the string of text that it represents.\n")

# Get the message to encode
inString = input("Please enter the Unicode-encoded message: ")

# Loop through each substring and build Unicode message

message = ""
for numStr in inString.split():
codeNum = int (numStr) # convert digits to a number

message = message + chr(codeNum) # concatentate character to message



146

Chapter 5. Sequences: Strings, Lists, and Files

print ("\nThe decoded message is:", message)

main ()

Study this program a bit and you should be able to understand exactly how
it accomplishes its task. The heart of the program is the loop:

for numStr in inString.split():
codeNum = int(numStr)
message = message + chr(codeNum)

The split method produces a list of (sub)strings, and numStr takes on each
successive string in the list. I called the loop variable numStr to emphasize that
its value is a string of digits that represents some number. Each time through
the loop, the next substring is converted to a number by inting it. This number
is converted to the corresponding Unicode character via chr and appended to
the end of the accumulator, message. When the loop is finished, every number
in inString has been processed and message contains the decoded text.
Here is an example of the program in action:

This program converts a sequence of Unicode numbers into
the string of text that it represents.

Please enter the Unicode—-encoded message:
83 116 114 105 110 103 115 32 97 114 101 32 70 117 110 33

The decoded message is: Strings are Fun!

5.5.2| More String Methods

Now we have a couple of programs that can encode and decode messages as
sequences of Unicode values. These programs turned out to be quite simple
due to the power of both Python’s string data type and its built-in sequence
operations and string methods.

Python is a very good language for writing programs that manipulate textual
data. Table 5.2 lists some other useful string methods. A good way to learn
about these operations is to try them out interactively.

>>> s = "hello, I came here for an argument"
>>> s.capitalize()



5.6. Lists Have Methods, Too

147

’Hello, i came here for an argument’
>>> s.title()

’Hello, I Came Here For An Argument’
>>> s.lower()

’hello, i came here for an argument’
>>> s.upper()

HELLO, I CAME HERE FOR AN ARGUMENT’
>>> s.replace("I", "you")

’hello, you came here for an argument’
>>> s.center(30)

’hello, I came here for an argument’
>>> s.center(50)

) hello, I came here for an argument )
>>> s.count(’e’)

5

>>> s.find(’,?)

5

>>> " " join(["Number", "omne,", "the", "Larch"])

’Number one, the Larch’
>>> "spam".join(["Number", "one,", "the", "Larch"])
’Numberspamone , spamthespamlLarch’

I should mention that many of these methods, like split, accept additional
parameters to customize their operation. Python also has a number of other
standard libraries for text processing that are not covered here. You can consult
the online documentation or a Python reference to find out more.

5.6/ Lists Have Methods, Too

In the last section we took a look at some of the methods for manipulating string
objects. Like strings, lists are also objects and come with their own set of “extra”
operations. Since this chapter is primarily concerned with text processing, we’ll
save the detailed discussion of various list methods for a later chapter. How-
ever, I do want to introduce one important list method here, just to whet your
appetite.

The append method can be used to add an item at the end of a list. This
is often used to build a list one item at a time. Here’s a fragment of code that
creates a list of the squares of the first 100 natural numbers:



148 Chapter 5. Sequences: Strings, Lists, and Files

function meaning

s.capitalize() Copy of s with only the first character capitalized.
s.center(width) Copy of s centered in a field of given width.

s.count (sub) Count the number of occurrences of sub in s.

s.find (sub) Find the first position where sub occurs in s.
s.join(list) Concatenate 1list into a string, using s as separator.
s.ljust (width) Like center, but s is left-justified.

s.lower () Copy of s in all lowercase characters.

s.lstrip() Copy of s with leading white space removed.
s.replace(oldsub,newsub) | Replace all occurrences of oldsub in s with newsub.
s.rfind (sub) Like find, but returns the rightmost position.
s.rjust (width) Like center, but s is right-justified.

s.rstrip() Copy of s with trailing white space removed.
s.split() Split s into a list of substrings (see text).

s.title() Copy of s with first character of each word capitalized.
s.upper () Copy of s with all characters converted to uppercase.

Table 5.2: Some string methods

squares = []
for x in range(1,101):
squares.append (x*x)

In this example we start with an empty list ([1) and each number from 1 to 100
is squared and appended to the list. When the loop is done, squares will be
the list: [1, 4, 9, ..., 10000]. This is really just the accumulator pattern at
work again, this time with our accumulated value being a list.

With the append method in hand, we can go back and look at an alternative
approach to our little decoder program. As we left it, the program used a string
variable as an accumulator for the decoded output message. The statement

message = message + chr(codeNum)

essentially creates a complete copy of the message so far and tacks one more
character on the end. As we build up the message, we keep recopying a longer
and longer string, just to add a single new character at the end. In older versions
of Python, string concatenation could be a slow operation, and programmers
often used other techniques to accumulate a long string.



5.6. Lists Have Methods, Too 149

One way to avoid recopying the message over and over again is to use a list.
The message can be accumulated as a list of characters where each new charac-
ter is appended to the end of the existing list. Remember, lists are mutable, so
adding at the end of the list changes the list “in place,” without having to copy
the existing contents over to a new object.! Once we have accumulated all the
characters in a list, we can use the join operation to concatenate the characters
into a string in one fell swoop.

Here’s a version of the decoder that uses this approach:

# numbers2text2.py
# A program to convert a sequence of Unicode numbers into
# a string of text. Efficient version using a list accumulator.

def main():

print ("This program converts a sequence of Unicode numbers into")
print ("the string of text that it represents.\n")

# Get the message to encode
inString = input("Please enter the Unicode-encoded message: ")

# Loop through each substring and build Unicode message
chars = []
for numStr in inString.split():

codeNum = int (numStr) # convert digits to a number
chars.append (chr (codeNum) ) # accumulate new character
message = "".join(chars)

print ("\nThe decoded message is:", message)

main ()

In this code, we collect the characters by appending them to a list called chars.
The final message is obtained by joining these characters together using an
empty string as the separator. So the original characters are concatenated to-
gether without any extra spaces between.

Both the string concatenation and the append/join techniques are quite ef-
ficient in modern Python, and the choice between them is largely a matter of

1Actually, the list does need to be recopied behind the scenes in the case where Python runs
out of room for the new item, but this is a rare occurrence.



150

Chapter 5. Sequences: Strings, Lists, and Files

taste. The list technique is a bit more flexible in that the join method makes it
easy to build strings that use a special separator (e.g., a tab, comma, or space),
if desired, between the concatenated items.

5.7/ From Encoding to Encryption

We have looked at how computers represent strings as a sort of encoding prob-
lem. Each character in a string is represented by a number that is stored in the
computer as a binary representation. You should realize that there is nothing
really secret about this code at all. In fact, we are simply using an industry-
standard mapping of characters into numbers. Anyone with a little knowledge
of computer science would be able to crack our code with very little effort.

The process of encoding information for the purpose of keeping it secret or
transmitting it privately is called encryption. The study of encryption methods is
an increasingly important sub-field of mathematics and computer science known
as cryptography. For example, if you shop over the Internet, it is important
that your personal information such as your name and credit card number be
transmitted using encodings that keep it safe from potential eavesdroppers on
the network.

Our simple encoding/decoding programs use a very weak form of encryption
known as a substitution cipher. Each character of the original message, called
the plaintext, is replaced by a corresponding symbol (in our case a number) from
a cipher alphabet. The resulting code is called the ciphertext.

Even if our cipher were not based on the well-known Unicode encoding, it
would still be easy to discover the original message. Since each letter is always
encoded by the same symbol, a codebreaker could use statistical information
about the frequency of various letters and some simple trial and error testing to
discover the original message. Such simple encryption methods may be suffi-
cient for grade-school note passing, but they are certainly not up to the task of
securing communication over global networks.

Modern approaches to encryption start by translating a message into num-
bers, much like our encoding program. Then sophisticated mathematical algo-
rithms are employed to transform these numbers into other numbers. Usually,
the transformation is based on combining the message with some other special
value called the key. In order to decrypt the message, the party on the receiving
end needs to have an appropriate key so that the encoding can be reversed to
recover the original message.

Encryption approaches come in two flavors: private key and public key. In a



5.8. Input/Output as String Manipulation

151

private key (also called shared key) system, the same key is used for encrypting
and decrypting messages. All parties that wish to communicate need to know
the key, but it must be kept secret from the outside world. This is the usual
system that people think of when considering secret codes.

In public key systems, there are separate but related keys for encrypting and
decrypting. Knowing the encryption key does not allow you to decrypt messages
or discover the decryption key. In a public key system, the encryption key can
be made publicly available, while the decryption key is kept private. Anyone
can safely send a message using the public key for encryption. Only the party
holding the decryption key will be able to decipher it. For example, a secure
website can send your web browser its public key, and the browser can use it
to encode your credit card information before sending it on the Internet. Then
only the company that is requesting the information will be able to decrypt and
read it using the proper private Kkey.

5.8/ Input/Output as String Manipulation

Even programs that we may not view as primarily doing text manipulation often
need to make use of string operations. For example, consider a program that
does financial analysis. Some of the information (e.g., dates) must be entered
as strings. After doing some number crunching, the results of the analysis will
typically be a nicely formatted report including textual information that is used
to label and explain numbers, charts, tables, and figures. String operations are
needed to handle these basic input and output tasks.

5.8.1| Example Application: Date Conversion

As a concrete example, let’s extend our month abbreviation program to do date
conversions. The user will input a date such as “05/24/2020,” and the program
will display the date as “May 24, 2020.” Here is the algorithm for our program:

Input the date in mm/dd/yyyy format (dateStr)
Split dateStr into month, day and year strings
Convert the month string into a month number
Use the month number to look up the month name
Create a new date string in form Month Day, Year
Output the new date string



152

Chapter 5. Sequences: Strings, Lists, and Files

We can implement the first two lines of our algorithm directly in code using
string operations we have already discussed:

dateStr = input("Enter a date (mm/dd/yyyy): ")
monthStr, dayStr, yearStr = dateStr.split("/")

Here I have gotten the date as a string and split it at the slashes. I then
“unpacked” the list of three strings into the variables monthStr, dayStr, and
yearStr using simultaneous assignment.

The next step is to convert monthStr into an appropriate number (using int
again) and then use this value to look up the correct month name. Here is the
code:

months = ["January", "February", "March", "April",

n May n , n June n , " Julyll , n Augus-t n ,

"September", "October", "November", "December"]
monthStr = months[int (monthStr)-1]

Remember the indexing expression int(monthStr)-1 is used because list in-
dexes start at O.
The last step in our program is to piece together the date in the new format:

print ("The converted date is:", monthStr, dayStr+",", yearStr)

Notice how I have used concatenation for the comma immediately after the day.
Here’s the complete program:

# dateconvert.py
# Converts a date in form "mm/dd/yyyy" to "month day, year"

def main():
# get the date
dateStr = input("Enter a date (mm/dd/yyyy): ")

# split into components
monthStr, dayStr, yearStr = dateStr.split("/")

# convert monthStr to the month name
months = ["January", "February", "March", "April",
"May", "June", "July", "August",
"September", "October", "November", "December"]



5.8. Input/Output as String Manipulation 153

monthStr = months[int (monthStr)-1]

# output result in month day, year format
print ("The converted date is:", monthStr, dayStr+",", yearStr)

main ()
When run, the output looks like this:

Enter a date (mm/dd/yyyy): 05/24/2020
The converted date is: May 24, 2020

This example didn’t show it, but often it is also necessary to turn a number
into a string. In Python, most data types can be converted into strings using the
str function. Here are a couple of simple examples:

>>> str(500)

’500°

>>> value = 3.14

>>> str(value)

’3.14°

>>> print("The value is", str(value) + ".")
The value is 3.14.

Notice particularly the last example. By turning value into a string, we can use
string concatenation to put a period at the end of a sentence. If we didn’t first
turn value into a string, Python would interpret the + as a numerical operation
and produce an error, because “.” is not a number.

We now have a complete set of operations for converting values among vari-
ous Python data types. Table 5.3 summarizes these four Python type conversion

functions:

function meaning

float (<expr>) | Convert expr to a floating-point value.
int (<expr>) Convert expr to an integer value.
str(<expr>) Return a string representation of expr.
eval (<string>) | Evaluate string as an expression.

Table 5.3: Type conversion functions



154

Chapter 5. Sequences: Strings, Lists, and Files

One common reason for converting a number into a string is so that string
operations can be used to control the way the value is printed. For example,
a program performing date calculations would have to manipulate the month,
day, and year as numbers. For nicely formatted output, these numbers would be
converted back to strings.

5.8.2| String Formatting

As you have seen, basic string operations can be used to build nicely formatted
output. This technique is useful for simple formatting, but building up a com-
plex output through slicing and concatenation of smaller strings can be tedious.
Python provides a powerful string formatting operation that makes the job much
easier.

Let’s start with a simple example. Here is a run of the change-counting
program from Chapter 3:

Change Counter

Please enter the count of each coin type.
How many quarters do you have? 6

How many dimes do you have? O

How many nickels do you have? O

How many pennies do you have? O

The total value of your change is 1.5

Notice that the final value is given as a fraction with only one decimal place.
This looks funny, since we expect the output to be something like $1.50.

We can fix this problem by changing the very last line of the program as
follows:

print ("The total value of your change is ${0:0.2f}".format(total))
Now the program prints this message:
The total value of your change is $1.50

Let’s try to make some sense of this. The format method is a built-in for
Python strings. The idea is that the string serves as a sort of template, and
values supplied as parameters are plugged into this template to form a new
string. So string formatting takes the form:



5.8. Input/Output as String Manipulation

155

<template-string>.format(<values>)

Curly braces ({}) inside the template-string mark “slots” into which the pro-
vided values are inserted. The information inside the curly braces tells which
value goes in the slot and how the value should be formatted. The Python for-
matting operator is very flexible. We will cover just some basics here; you can
consult a Python reference if you’d like all of the details. In this book, the slot
descriptions will always have the form:

{<index>:<format-specifier>}

The index tells which of the parameters is inserted into the slot.? As usual in
Python, indexing starts with 0. In the example above, there is a single slot and
the index 0 is used to say that the first (and only) parameter is inserted into that
slot.

The part of the description after the colon specifies how the value should
look when it is inserted into the slot. Again returning to the example, the format
specifier is 0.2f. The format of this specifier is <width>.<precision><type>.
The width specifies how many “spaces” the value should take up. If the value
takes up less than the specified width, it is padded with extra characters (spaces
are the default). If the value requires more space than allotted, it will take as
much space as is required to show the value. So putting a O here essentially
says “use as much space as you need.” The precision is 2, which tells Python
to round the value to two decimal places. Finally, the type character f says the
value should be displayed as a fixed-point number. That means that the specified

number of decimal places will always be shown, even if they are 0.

A complete description of format specifiers is pretty hairy, but you can get a
good handle on what’s possible just by looking at a few examples. The simplest
template strings just specify where to plug in the parameters.

>>> "Hello {0} {1}, you may have won ${2}".format("Mr.", "Smith", 10000)
’Hello Mr. Smith, you may have won $10000’

Often, you’ll want to control the width and/or precision of a numeric value.

>>> "This int, {0:5}, was placed in a field of width 5".format(7)
’This int, 7, was placed in a field of width 5’

>>> "This int, {0:10}, was placed in a field of width 10".format(7)
’This int, 7, was placed in a field of width 10’

2As of Python 3.1, the index portion of the slot description is optional. When the indexes are
omitted, the parameters are just filled into the slots in a left-to-right fashion.



156 Chapter 5. Sequences: Strings, Lists, and Files

>>> "This float, {0:10.5}, has width 10 and precision 5".format(3.1415926)
’This float, 3.1416, has width 10 and precision 5’

>>> "This float, {0:10.5f}, is fixed at 5 decimal places".format(3.1415926)
’This float, 3.14159, is fixed at 5 decimal places’

>>> "This float, {0:0.5}, has width O and precision 5".format(3.1415926)
’This float, 3.1416, has width O and precision 5’

>>> "Compare {0} and {0:0.20}".format(3.14)
’Compare 3.14 and 3.1400000000000001243°

Notice that for normal (not fixed-point) floating-point numbers, the precision
specifies the number of significant digits to print. For fixed-point (indicated by
the £ at the end of the specifier) the precision gives the number of decimal
places. In the last example, the same number is printed out in two different
formats. This illustrates that if you print enough digits of a floating-point num-
ber, you will almost always find a “surprise.” The computer can’t represent 3.14
exactly as a floating-point number. The closest value it can represent is ever so
slightly larger than 3.14. If not given an explicit precision, Python will print the
number out to a few decimal places. The slight extra amount shows up if you
print lots of digits. Generally, Python only displays a closely rounded version of
a float. Using explicit formatting allows you to see the full result down to the
last bit.

You may notice that, by default, numeric values are right-justified. This
is helpful for lining up numbers in columns. Strings, on the other hand, are
left-justified in their fields. You can change the default behaviors by including
an explicit justification character at the beginning of the format specifier. The
necessary characters are <, >, and ~ for left, right, and center justification,
respectively.

>>> "left justification: {0:<5}".format("Hi!")
’left justificatiom: Hi! °

>>> "right justification: {0:>5}".format("Hi!")
’right justification: Hil>

>>> "centered: {0:°5}".format("Hi!")
centered: Hi!



5.8. Input/Output as String Manipulation

157

5.8.3| Better Change Counter

Let’s close our formatting discussion with one more example program. Given
what you have learned about floating-point numbers, you might be a little un-
easy about using them to represent money.

Suppose you are writing a computer system for a bank. Your customers
would not be too happy to learn that a charge went through for an amount
“very close to $107.56.” They want to know that the bank is keeping precise
track of their money. Even though the amount of error in a given value is very
small, the small errors can be compounded when doing lots of calculations, and
the resulting error could add up to some real cash. That’s not a satisfactory way
of doing business.

A better approach would be to make sure that our program uses exact val-
ues to represent money. We can do that by keeping track of the money in cents
and using an int to store it. We can then convert this into dollars and cents
in the output step. Assuming we are dealing with positive amounts, if total
represents the value in cents, then we can get the number of dollars by inte-
ger division total // 100 and the cents from total % 100. Both of these are
integer calculations and, hence, will give us exact results. Here is the updated
program:

# change2.py
# A program to calculate the value of some change in dollars
# This version represents the total cash in cents.

def main():
print ("Change Counter\n")
print ("Please enter the count of each coin type.")
quarters = int(input("Quarters: "))
dimes = int(input("Dimes: "))
nickels = int(input("Nickels: "))
pennies = int(input("Pennies: "))

total = quarters * 25 + dimes * 10 + nickels * 5 + pennies

print("The total value of your change is ${0}.{1:0>2}"
.format (total//100, total’100))

main()



158

Chapter 5. Sequences: Strings, Lists, and Files

I have split the final print statement across two lines. Normally a statement
ends at the end of the line, but sometimes it is nicer to break a long state-
ment into smaller pieces. Because this line is broken in the middle of the print
function, Python knows that the statement is not finished until the final clos-
ing parenthesis is reached. In this case, it is OK, and preferable, to break the
statement across two lines rather than having one really long line.

The string formatting in the print statement contains two slots, one for dol-
lars as an int and one for cents. The cents slot illustrates one additional twist on
format specifiers. The value of cents is printed with the specifier 0>2. The zero
in front of the justification character tells Python to pad the field (if necessary)
with zeroes instead of spaces. This ensures that a value like 10 dollars and 5
cents prints as $10.05 rather than $10. 5.

5.9, File Processing

I began the chapter with a reference to word processing as an application of
the string data type. One critical feature of any word processing program is the
ability to store and retrieve documents as files on disk. In this section, we’ll take
a look at file input and output, which, as it turns out, is really just another form
of string processing.

5.9.1| Multi-line Strings

Conceptually, a file is a sequence of data that is stored in secondary memory
(usually on a disk drive). Files can contain any data type, but the easiest files
to work with are those that contain text. Files of text have the advantage that
they can be read and understood by humans, and they are easily created and
edited using general-purpose text editors (such as IDLE) and word processors.
In Python, text files can be very flexible, since it is easy to convert back and forth
between strings and other types.

You can think of a text file as a (possibly long) string that happens to be
stored on disk. Of course, a typical file generally contains more than a single
line of text. A special character or sequence of characters is used to mark the end
of each line. There are numerous conventions for end-of-line markers. Python
takes care of these different conventions for us and just uses the regular newline
character (\n) to indicate line breaks.

Let’s take a look at a concrete example. Suppose you type the following lines
into a text editor exactly as shown here:



5.9. File Processing 159

Hello
World

Goodbye 32
When stored to a file, you get this sequence of characters:
Hello\nWorld\n\nGoodbye 32\n

Notice that the blank line becomes a bare newline in the resulting file/string.

By the way, this is really no different than when we embed newline charac-
ters into output strings to produce multiple lines of output with a single print
statement. Here is the example from above printed interactively:

>>> print("Hello\nWorld\n\nGoodbye 32\n")
Hello
World

Goodbye 32

>>>

Remember, if you simply evaluate a string containing newline characters in the
shell, you will just get the embedded newline representation back again:

>>>"Hello\nWorld\n\nGoodbye 32\n"
’Hello\nWorld\n\nGoodbye 32\n’

It’s only when a string is printed that the special characters affect how the string
is displayed.

5.9.2| File Processing

The exact details of file processing differ substantially among programming lan-
guages, but virtually all languages share certain underlying file-manipulation
concepts. First, we need some way to associate a file on disk with an object in a
program. This process is called opening a file. Once a file has been opened, its
contents can be accessed through the associated file object.

Second, we need a set of operations that can manipulate the file object.
At the very least, this includes operations that allow us to read the information
from a file and write new information to a file. Typically, the reading and writing



160

Chapter 5. Sequences: Strings, Lists, and Files

operations for text files are similar to the operations for text-based, interactive
input and output.

Finally, when we are finished with a file, it is closed. Closing a file makes
sure that any bookkeeping that was necessary to maintain the correspondence
between the file on disk and the file object is finished up. For example, if you
write information to a file object, the changes might not show up on the disk
version until the file has been closed.

This idea of opening and closing files is closely related to how you might
work with files in an application program like a word processor. However, the
concepts are not exactly the same. When you open a file in a program like
Microsoft Word, the file is actually read from the disk and stored into RAM. In
programming terminology, the file is opened for reading and the contents of the
file are then read into memory via file-reading operations. At this point, the file
is closed (again in the programming sense). As you “edit the file,” you are really
making changes to data in memory, not the file itself. The changes will not show
up in the file on the disk until you tell the application to “save” it.

Saving a file also involves a multi-step process. First, the original file on the
disk is reopened, this time in a mode that allows it to store information—the
file on disk is opened for writing. Doing so actually erases the old contents of
the file. File writing operations are then used to copy the current contents of
the in-memory version into the new file on the disk. From your perspective, it
appears that you have edited an existing file. From the program’s perspective,
you have actually opened a file, read its contents into memory, closed the file,
created a new file (having the same name), written the (modified) contents of
memory into the new file, and closed the new file.

Working with text files is easy in Python. The first step is to create a file
object corresponding to a file on disk. This is done using the open function.
Usually, a file object is immediately assigned to a variable like this:

<variable> = open(<name>, <mode>)

Here name is a string that provides the name of the file on the disk. The mode
parameter is either the string "r" or "w" depending on whether we intend to
read from the file or write to the file.

For example, to open a file called “numbers.dat” for reading, we could use a
statement like the following:

infile = open("numbers.dat", "r")

Now we can use the file object infile to read the contents of numbers.dat from
the disk.



5.9. File Processing

161

Python provides three related operations for reading information from a file:

<file>.read() Returns the entire remaining contents of the file as a single
(potentially large, multi-line) string.

<file>.readline() Returns the next line of the file. That is, all text up to and
including the next newline character.

<file>.readlines() Returns a list of the remaining lines in the file. Each list
item is a single line including the newline character at the end.

Here’s an example program that prints the contents of a file to the screen
using the read operation:

# printfile.py
# Prints a file to the screen.

def main():
fname = input("Enter filename: ")
infile = open(fname,"r")
data = infile.read()
print(data)

main ()

The program first prompts the user for a file name and then opens the file for
reading through the variable infile. You could use any name for the variable;
I used infile to emphasize that the file was being used for input. The entire
contents of the file is then read as one large string and stored in the variable
data. Printing data causes the contents to be displayed.

The readline operation can be used to read the next line from a file. Suc-
cessive calls to readline get successive lines from the file. This is analogous to
input, which reads characters interactively until the user hits the <Enter> key;
each call to input gets another line from the user. One thing to keep in mind,
however, is that the string returned by readline will always end with a newline
character, whereas input discards the newline character.

As a quick example, this fragment of code prints out the first five lines of a
file:

infile = open(someFile, "r")
for i in range(5):



162

Chapter 5. Sequences: Strings, Lists, and Files

line = infile.readline()
print(line[:-1])

Notice the use of slicing to strip off the newline character at the end of the line.
Since print automatically jumps to the next line (i.e., it outputs a newline),
printing with the explicit newline at the end would put an extra blank line of
output between the lines of the file. Alternatively, you could print the whole
line, but simply tell print not to add its own newline character.

print(line, end="")

One way to loop through the entire contents of a file is to read in all of the
file using readlines and then loop through the resulting list:

infile = open(someFile, "r")
for line in infile.readlines():
# process the line here

infile.close()

Of course, a potential drawback of this approach is the fact that the file may be
very large, and reading it into a list all at once may take up too much RAM.

Fortunately, there is a simple alternative. Python treats the file itself as a
sequence of lines. So looping through the lines of a file can be done directly like
this:

infile = open(someFile, "r")
for line in infile:

# process the line here
infile.close()

This is a particularly handy way to process the lines of a file one at a time.

Opening a file for writing prepares that file to receive data. If no file with
the given name exists, a new file will be created. A word of warning: if a file
with the given name does exist, Python will delete it and create a new, empty
file. When writing to a file, make sure you do not clobber any files you will need
later! Here is an example of opening a file for output:

outfile = open("mydata.out", "w")

The easiest way to write information into a text file is to use the already-
familiar print function. To print to a file, we just need to add an extra keyword
parameter that specifies the file:



5.9. File Processing 163

print (..., file=<outputFile>)

This behaves exactly like a normal print except that the result is sent to outputFile
instead of being displayed on the screen.

5.9.3| Example Program: Batch Usernames

To see how all these pieces fit together, let’s redo the username generation pro-
gram. Our previous version created usernames interactively by having the user
type in his or her name. If we were setting up accounts for a large number of
users, the process would probably not be done interactively, but in batch mode.
In batch processing, program input and output is done through files.

Our new program is designed to process a file of names. Each line of the
input file will contain the first and last names of a new user separated by one
or more spaces. The program produces an output file containing a line for each
generated username:

# userfile.py
# Program to create a file of usernames in batch mode.

def main():
print ("This program creates a file of usernames from a")
print("file of names.")

# get the file names
infileName = input("What file are the names in? ")
outfileName = input("What file should the usernames go in? ")

# open the files
infile = open(infileName, "r")
outfile = open(outfileName, "w")

# process each line of the input file
for line in infile:
# get the first and last names from line
first, last = line.split()
# create the username
uname = (first[0]+last[:7]).lower()
# write it to the output file



164

Chapter 5. Sequences: Strings, Lists, and Files

print (uname, file=outfile)

# close both files
infile.close()
outfile.close()

print ("Usernames have been written to", outfileName)

main ()

There are a couple of things worth noticing in this program. I have two files
open at the same time, one for input (infile) and one for output (outfile).
I’s not unusual for a program to operate on several files simultaneously. Also,
when creating the username, I used the lower string method. Notice that the
method is applied to the string that results from the concatenation. This ensures
that the username is all lowercase, even if the input names are mixed case.

5.9.4| File Dialogs (Optional)

One problem that often crops up with file manipulation programs is figuring out
exactly how to specify the file that you want to use. If a data file is in the same
directory (folder) as your program, then you simply have to type in the correct
name of the file; with no other information, Python will look for the file in the
“current” directory. Sometimes, however, it’s difficult to know exactly what the
file’s complete name is. Most modern operating systems use file names having
a form like <name>.<type> where the type portion is a short (3- or 4-letter)
extension that describes what sort of data the file contains. For example, our
usernames might be stored in a file called “users.txt” where the “.txt” extension
indicates a text file. The difficulty is that some operating systems (e.g. Windows
and macOS), by default, only show the part of the name that precedes the dot,
so it can be hard to figure out the full file name.

The situation is even more difficult when the file exists somewhere other
than than the current directory. File processing programs might be used on files
that are stored literally anywhere in secondary memory. In order to locate these
far-flung files, we must specify the complete path to locate the file in the user’s
computer system. The exact form of a path differs from system to system. On
a Windows system, the complete file name with path might look something like
this:

C:/users/susan/Documents/Python_Programs/users.txt



5.9. File Processing

165

Not only is this a lot to type, but most users probably don’t even know how to
figure out the complete path+filename for any given file on their systems.

The solution to this problem is to allow users to browse the file system visu-
ally and navigate their way to a particular directory/file. Asking a user for a file
name either for opening or saving is a common task across many applications,
and the underlying operating system generally provides a standard/familiar way
of doing this. The usual technique incorporates a dialog box (a special window
for user interaction) that allows a user to click around in the file system us-
ing a mouse and either select or type in the name of a file. Fortunately for
us, the tkinter GUI library included with (most) standard Python installations
provides some simple-to-use functions that create dialog boxes for getting file
names.

To ask the user for the name of a file to open, you can use the askopenfilename

function. It is found in the tkinter.filedialog module. At the top of the pro-
gram you will need to import the function:

from tkinter.filedialog import askopenfilename

The reason for the dot notation in the import is that tkinter is a package com-
posed of multiple modules. In this case, we are specifying the filedialog mod-
ule from tkinter. Rather than importing everything from this module, I speci-
fied just the one function that we are using here. Calling askopenfilename will
pop up a system-appropriate file dialog box.

For example, to get the name of the user names file we could use a line of
code like this:

infileName = askopenfilename()

The result of executing this line in Windows is shown in Figure 5.2. The dialog
allows the user to either type in the name of the file or to simply select it with
the mouse. When the user clicks the “Open” button, the complete path name
of the file is returned as a string and saved into the variable infileName. If the
user clicks the “Cancel” button, the function will simply return an empty string.
In Chapter 7, you’ll learn how you can test the resulting value and take different
actions depending on which button the user selects.

Python’s tkinter provides an analogous function, asksaveasfilename, for
saving files. It’s usage is very similar.

from tkinter.filedialog import asksaveasfilename

outfileName = asksaveasfilename()



166

Chapter 5. Sequences: Strings, Lists, and Files

Fiecent places

Desktep

Leek in: | L Pythen

Name

F.__l"a wordcount
% wainput
% test?

= testl

= test

E} syracusenums

%sumsquarcsinput

E} sumsquares
E'.f'—s umcubes
F.__l"a sgriguess
'—.__l"u regress

. * regress

f_li';"'--randomwalk1 exo

<

File name:

Files of type:

Date medified

7/13/2015 3:21 PM
7/13/2015 5:33PM
7/13/2015 5:24 PM
7/13/2015 5:23 PM
11/21/2012 819 PM
7/3072015 2:40 PM
/1772015 3:33PM
/1772015 4:43 PM
7/22/2015 728 PM
7/22/2015 723 PM
$/9/201512:22 PM
7/31/20154:13 PM
$/13/2015 4:32 PM

All Files (*.°)

~| + M cxE-

Type

Pythen File
Text Decumer.
Text Decumer
Text Decumer
Text Decumer
Pythen File
Text Decumer
Pythen File
Pythen File
Pythen File
Pythen File (n
Pythen File

Pvthen File Vv
>

Open

Figure 5.2: File dialog box from askopenfilename

Save in: | 1. Pythen

Name

F.__l""'~1 wordcount
% wcinput
é testl

= test

= test

E’} syracusenums

%sumsquaresinput

E’} sumsquares
F.__l""'o sumcubes
F.__l""'o sgritguess
F.__l'"" regress

i regress

:_li';"'--randomwaIH exo

<

File name:

Save astype:

Date medified

7/13/2015 3:21 PM
7/13/2015 5:33PM
7/13/2015 524 PM
7/13/2015 523 PM
11/21/2012 819 PM
7/3072015 2:40 PM
7/17/2015 3:33PM
7/17/2015 4:48 PM
7/22/2015 728 PM
7/22/2015 723 PM
$/9/201512:.22 PM
7/31/20154:13 PM
$/13/2015 4:32 PM

Al Files (*.%)

~| + M cxE-

Type

Pythen File
TXT File

TXT File

TXT File

TXT File
Pythen File
TXT File
Pythen File
Pythen File
Pythen File
Pythen File (n
Pythen File
Pvthen File Vv

Figure 5.3: File dialog box from asksaveasfilename




5.10. Chapter Summary

167

An example dialog box for asksaveasfilename is shown in Figure 5.3. You can,
of course, import both of these functions at once with an import like:

from tkinter.filedialog import askopenfilename, asksaveasfilename

Both of these functions also have numerous optional parameters so that a pro-
gram can customize the the resulting dialogs, for example by changing the title
or suggesting a default file name. If you are interested in those details, you
should consult the Python documentation.

5.10| Chapter Summary

This chapter has covered important elements of the Python string, list, and file
objects. Here is a summary of the highlights:

Strings are sequences of characters. String literals can be delimited with
either single or double quotes.

Strings and lists can be manipulated with the built-in sequence opera-
tions for concatenation (+), repetition (*), indexing ([1), slicing ([:1),
and length (1en()). A for loop can be used to iterate through the charac-
ters of a string, items in a list, or lines of a file.

One way of converting numeric information into string information is to
use a string or a list as a lookup table.

Lists are more general than strings.

— Strings are always sequences of characters, whereas lists can contain
values of any type.

— Lists are mutable, which means that items in a list can be modified
by assigning new values.

Strings are represented in the computer as numeric codes. ASCII and Uni-
code are compatible standards that are used for specifying the correspon-
dence between characters and the underlying codes. Python provides the
ord and chr functions for translating between Unicode codes and charac-
ters.

Python string and list objects include many useful built-in methods for
string and list processing.



168 Chapter 5. Sequences: Strings, Lists, and Files

e The process of encoding data to keep it private is called encryption. There
are two different kinds of encryption systems: private key and public key.

e Program input and output often involve string processing. Python provides
numerous operators for converting back and forth between numbers and
strings. The string formatting method (format) is particularly useful for
producing nicely formatted output.

e Text files are multi-line strings stored in secondary memory. A text file may
be opened for reading or writing. When opened for writing, the existing
contents of the file are erased. Python provides three file-reading meth-
ods: read(), readline(), and readlines(). It is also possible to iterate
through the lines of a file with a for loop. Data is written to a file using
the print function. When processing is finished, a file should be closed.

5.11| Exercises

Review Questions
True/False

1. A Python string literal is always enclosed in double quotes.
The last character of a string s is at position len(s)-1.

A string always contains a single line of text.

In Python "4" + "5" is "45",

Python lists are mutable, but strings are not.

ASCII is a standard for representing characters using numeric codes.

N o 0k~ WD

The split method breaks a string into a list of substrings, and join does
the opposite.

Qo

. A substitution cipher is a good way to keep sensitive information secure.
9. The add method can be used to add an item to the end of a list.

10. The process of associating a file with an object in a program is called “read-
ing” the file.



5.11. Exercises 169

Multiple Choice

1.

10.

Accessing a single character out of a string is called:
a) slicing b) concatenation c) assignment d) indexing

. Which of the following is the same as s[0:-1]?

a)s[-1] Db)s[:] c)sl[:len(s)-1] d) s[0:1len(s)]

. What function gives the Unicode value of a character?

a) ord b)ascii ¢) chr d) eval

. Which of the following can not be used to convert a string of digits into a

number?
a) int b) float c¢) str d) eval

. A successor to ASCII that includes characters from (nearly) all written

languages is
a) TELLI b) ASCII++ c¢) Unicode d) ISO

. Which string method converts all the characters of a string to upper case?

a) capitalize b) capwords c) uppercase d) upper

. The string “slots” that are filled in by the format method are marked by:

a)h b)s$ ol d{}

. Which of the following is not a file-reading method in Python?

a) read b) readline c) readall d) readlines

. The term for a program that does its input and output with files is

a) file-oriented b) multi-line c¢) batch d) lame

Before reading or writing to a file, a file object must be created via
a) open b) create c)File d) Folder

Discussion

1.

Given the initial statements:

sl = "spam"
s2 = "nil"

Show the result of evaluating each of the following string expressions.



170 Chapter 5. Sequences: Strings, Lists, and Files

a) "The Knights who say, " + s2
b) 3 % s1 + 2 % g2

c) si[1]

d si1[1:3]

e) s1[2] + s2[:2]

f) s1 + s2[-1]

g) sl.upper()

h) s2.upper().ljust(4) * 3

2. Given the same initial statements as in the previous problem, show a
Python expression that could construct each of the following results by
performing string operations on s1 and s2.

a) "NI"
b) "nil!spamni!"

c) "Spam Ni! Spam Ni! Spam Ni!"

d) ] spam"
e) [u Sp" , umu]
f) " spm"

3. Show the output that would be generated by each of the following pro-
gram fragments:

a) for ch in "aardvark":
print (ch)

b) for w in "Now is the winter of our discontent...".split():
print (w)
c) for w in "Mississippi".split("i"):
print(w, end=" ")
d) msg = nn
for s in "secret".split("e"):
msg = msg + s
print (msg)
e) msg = nn
for ch in "secret":
msg = msg + chr(ord(ch)+1)
print (msg)



5.11. Exercises 171

4. Show the string that would result from each of the following string for-
matting operations. If the operation is not legal, explain why.

a) "Looks like {1} and {0} for breakfast".format("eggs", "spam")
b) "There is {0} {1} {2} {3}".format(1,"spam", 4, "you")

c) "Hello {0}".format("Susan", "Computewell")

d) "{0:0.2f} {0:0.2f}".format(2.3, 2.3468)

e) "{7.5f} {7.5f}".format(2.3, 2.3468)

f) "Time left {0:02}:{1:05.2f}".format(1, 37.374)

g) "{1:3}".format("14")

5. Explain why public key encryption is more useful for securing communi-
cations on the Internet than private (shared) key encryption.

Programming Exercises

1. As discussed in the chapter, string formatting could be used to simplify the
dateconvert2.py program. Go back and redo this program making use
of the string-formatting method.

2. A certain CS professor gives 5-point quizzes that are graded on the scale
5-A, 4-B, 3-C, 2-D, 1-F, O-F. Write a program that accepts a quiz score as
an input and prints out the corresponding grade.

3. A certain CS professor gives 100-point exams that are graded on the scale
90-100:A, 80-89:B, 70-79:C, 60-69:D, <60:F. Write a program that ac-
cepts an exam score as input and prints out the corresponding grade.

4. An acronym is a word formed by taking the first letters of the words in a
phrase and making a word from them. For example, RAM is an acronym
for “random access memory.” Write a program that allows the user to
type in a phrase and then outputs the acronym for that phrase. Note: The
acronym should be all uppercase, even if the words in the phrase are not
capitalized.

5. Numerologists claim to be able to determine a person’s character traits
based on the “numeric value” of a name. The value of a name is deter-
€7

mined by summing up the values of the letters of the name where “a” is
1, “b” is 2, “c” is 3, up to “z” being 26. For example, the name “Zelle”



172

Chapter 5. Sequences: Strings, Lists, and Files

10.

11.

would have the value 26 4+ 5 + 12 4+ 12 + 5 = 60 (which happens to be a
very auspicious number, by the way). Write a program that calculates the
numeric value of a single name provided as input.

. Expand your solution to the previous problem to allow the calculation of

a complete name such as ‘John Marvin Zelle” or ‘John Jacob Jingleheimer
Smith.” The total value is just the sum of the numeric values of all the
names.

. A Caesar cipher is a simple substitution cipher based on the idea of shifting

each letter of the plaintext message a fixed number (called the key) of
positions in the alphabet. For example, if the key value is 2, the word
“Sourpuss” would be encoded as “Uqwtrwuu.” The original message can
be recovered by “reencoding” it using the negative of the key.

Write a program that can encode and decode Caesar ciphers. The in-
put to the program will be a string of plaintext and the value of the key.
The output will be an encoded message where each character in the orig-
inal message is replaced by shifting it key characters in the Unicode char-
acter set. For example, if ch is a character in the string and key is the
amount to shift, then the character that replaces ch can be calculated as:
chr (ord(ch) + key).

. One problem with the previous exercise is that it does not deal with the

case when we “drop off the end” of the alphabet. A true Caesar cipher
does the shifting in a circular fashion where the next character after “z” is
“a.” Modify your solution to the previous problem to make it circular. You
may assume that the input consists only of letters and spaces. Hint: Make
a string containing all the characters of your alphabet and use positions in
this string as your code. You do not have to shift “z” into “a”; just make
sure that you use a circular shift over the entire sequence of characters in

your alphabet string.

. Write a program that counts the number of words in a sentence entered

by the user.

Write a program that calculates the average word length in a sentence
entered by the user.

Write an improved version of the chaos.py program from Chapter 1 that
allows a user to input two initial values and the number of iterations,



5.11. Exercises 173

12.

13.

14.

and then prints a nicely formatted table showing how the values change
over time. For example, if the starting values were .25 and .26 with 10
iterations, the table might look like this:

index 0.25 0.26
1 0.731250 0.750360
2 0.766441 0.730547
3 0.698135 0.767707
4 0.821896 0.695499
5 0.570894 0.825942
6 0.955399 0.560671
4 0.166187 0.960644
8 0.540418 0.147447
9 0.968629 0.490255
10 0.118509 0.974630

Write an improved version of the futval.py program from Chapter 2.
Your program will prompt the user for the amount of the investment, the
annualized interest rate, and the number of years of the investment. The
program will then output a nicely formatted table that tracks the value of
the investment year by year. Your output might look something like this:

NO O dd WD~ O
&
N
e,
N
00
N
o

Redo any of the previous programming problems to make them batch-
oriented (using text files for input and output).

Word Count. A common utility on Unix/Linux systems is a small program
called “wc.” This program analyzes a file to determine the number of



174

Chapter 5. Sequences: Strings, Lists, and Files

15.

16.

lines, words, and characters contained therein. Write your own version of
wc. The program should accept a file name as input and then print three
numbers showing the count of lines, words, and characters in the file.

Write a program to plot a horizontal bar chart of student exam scores.
Your program should get input from a file. The first line of the file contains
the count of the number of students in the file, and each subsequent line
contains a student’s last name followed by a score in the range 0-100.
Your program should draw a horizontal rectangle for each student where
the length of the bar represents the student’s score. The bars should all
line up on their left-hand edges. Hint: Use the number of students to
determine the size of the window and its coordinates. Bonus: label the
bars at the left end with the students’ names.

Computewell
Dibblebit
Jones

Smith

Write a program to draw a quiz score histogram. Your program should
read data from a file. Each line of the file contains a number in the range
0-10. Your program must count the number of occurrences of each score
and then draw a vertical bar chart with a bar for each possible score (0—
10) with a height corresponding to the count of that score. For example,
if 15 students got an 8, then the height of the bar for 8 should be 15.
Hint: Use a list that stores the count for each possible score. An example
histogram is shown below:

0O 1 2 3 4 5 6 7 8 9 10



Chapter 6 Defining Functions

Objectives

e To understand why programmers divide programs up into sets of cooper-
ating functions.

e To be able to define new functions in Python.
e To understand the details of function calls and parameter passing in Python.

e To write programs that use functions to reduce code duplication and in-
crease program modularity.

6.1 The Function of Functions

The programs that we have written so far comprise a single function, usually
called main. We have also been using pre-written functions and methods includ-
ing built-in Python functions (e.g., print, abs), functions and methods from the
Python standard libraries (e.g., math.sqrt), and methods from the graphics
module (e.g., myPoint.getX()). Functions are an important tool for building
sophisticated programs. This chapter covers the whys and hows of designing
your own functions to make your programs easier to write and understand.

In Chapter 4, we looked at a graphic solution to the future value problem.
Recall that this program makes use of the graphics library to draw a bar chart
showing the growth of an investment. Here is the program as we left it:

# futval_graph2.py
from graphics import *

175



176 Chapter 6. Defining Functions

def main():
# Introduction
print ("This program plots the growth of a 10-year investment.")

# Get principal and interest rate
principal = float(input("Enter the initial principal: "))
apr = float(input("Enter the annualized interest rate: "))

# Create a graphics window with labels on left edge
win = GraphWin("Investment Growth Chart", 320, 240)
win.setBackground ("white")
win.setCoords(-1.75,-200, 11.5, 10400)

Text (Point (-1, 0), ’ 0.0K’).draw(win)

Text (Point (-1, 2500), ’ 2.5K’).draw(win)

Text (Point (-1, 5000), ’ 5.0K’).draw(win)

Text (Point (-1, 7500), ’ 7.5k’).draw(win)

Text (Point (-1, 10000), ’10.0K’).draw(win)

# Draw bar for initial principal

bar = Rectangle(Point(0, 0), Point(1, principal))
bar.setFill("green")

bar.setWidth(2)

bar.draw(win)

# Draw a bar for each subsequent year
for year in range(1, 11):
principal = principal * (1 + apr)
bar = Rectangle(Point(year, 0), Point(year+1, principal))
bar.setFill("green")
bar.setWidth(2)
bar.draw(win)

input ("Press <Enter> to quit.")
win.close()

main()

This is certainly a workable program, but there is a nagging issue of program



6.2. Functions, Informally

177

style that really should be addressed. Notice that this program draws bars in two
different places. The initial bar is drawn just before the loop, and the subsequent
bars are drawn inside the loop.

Having similar code like this in two places has some drawbacks. Obviously,
one issue is having to write the code twice. A more subtle problem is that
the code has to be maintained in two different places. Should we decide to
change the color or other facets of the bars, we would have to make sure these
changes occur in both places. Failing to keep related parts of the code in sync is
a common problem in program maintenance.

Functions can be used to reduce code duplication and to make programs
more understandable and easier to maintain. Before fixing up the future value
program, let’s take look at what functions have to offer.

6.2 Functions, Informally

You can think of a function as a subprogram—a small program inside a program.
The basic idea of a function is that we write a sequence of statements and give
that sequence a name. The instructions can then be executed at any point in the
program by referring to the function name.

The part of the program that creates a function is called a function definition.
When a function is subsequently used in a program, we say that the definition
is called or invoked. A single function definition may be called at many different
points of a program.

Let’s take a concrete example. Suppose you want to write a program that
prints out the lyrics to the “Happy Birthday” song. The standard lyrics look like
this:

Happy birthday to you!
Happy birthday to you!
Happy birthday, dear <insert-name>.
Happy birthday to you!

We'’re going to play with this example in the interactive Python environment.
You might want to fire up Python and try some of this out yourself.

A simple approach to this problem is to use four print statements. Here’s an
interactive session that creates a program for singing “Happy Birthday” to Fred.

>>> def main():
print ("Happy birthday to you!")



178 Chapter 6. Defining Functions

print ("Happy birthday to you!")
print ("Happy birthday, dear Fred.")
print ("Happy birthday to you!")

We can then run this program to get our lyrics:

>>> main()

Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Fred.
Happy birthday to you!

Obviously, there is some duplicated code in this program. For such a simple
program, that’s not a big deal, but even here it’s a bit annoying to keep retyping
the same line. Let’s introduce a function that prints the lyrics of the first, second,
and fourth lines.

>>> def happy():
print ("Happy birthday to you!")

We have defined a new function called happy. Here is an example of what it
does:

>>> happy ()
Happy birthday to you!

Invoking the happy command causes Python to print a line of the song.
Now we can redo the verse for Fred using happy. Let’s call our new version
singFred.

>>> def singFred():

happy O
happy )
print ("Happy birthday, dear Fred.")

happy ()

This version required much less typing, thanks to the happy command. Let’s try
printing the lyrics for Fred just to make sure it works.

>>> singFred()

Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Fred.
Happy birthday to you!



6.2. Functions, Informally 179

So far, so good. Now suppose that it’s also Lucy’s birthday, and we want to
sing a verse for Fred followed by a verse for Lucy. We've already got the verse
for Fred; we can prepare one for Lucy as well.

>>> def singLucy(Q):

happy O

happy )
print ("Happy birthday, dear Lucy.")

happy ()

Now we can write a main program that sings to both Fred and Lucy:

>>> def main():
singFred ()
print ()
singLucy()

The bare print between the two function calls puts a space between the verses
in our output. And here’s the final product in action:

>>> main()

Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Fred.
Happy birthday to you!

Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Lucy.
Happy birthday to you!

Well now, that certainly seems to work, and we’ve removed some of the
duplication by defining the happy function. However, something still doesn’t feel
quite right. We have two functions, singFred and singLucy, that are almost
identical. Following this approach, adding a verse for Elmer would have us
create a singElmer function that looks just like those for Fred and Lucy. Can’t
we do something about the proliferation of verses?

Notice that the only difference between singFred and singLucy is the name
at the end of the third print statement. The verses are exactly the same except
for this one changing part. We can collapse these two functions together by
using a parameter. Let’s write a generic function called sing:



180

Chapter 6. Defining Functions

>>> def sing(person):
happy ()
happy ()
print ("Happy Birthday, dear", person + ".")

happy ()

This function makes use of a parameter named person. A parameter is a variable
that is initialized when the function is called. We can use the sing function to
print a verse for either Fred or Lucy. We just need to supply the name as a
parameter when we invoke the function:

>>> sing("Fred")

Happy birthday to you!
Happy birthday to you!
Happy Birthday, dear Fred.
Happy birthday to you!

>>> sing("Lucy")

Happy birthday to you!
Happy birthday to you!
Happy Birthday, dear Lucy.
Happy birthday to you!

Let’s finish with a program that sings to all three of our birthday people:

>>> def main():
sing("Fred")
print ()
sing("Lucy")
print ()
sing ("Elmer")

It doesn’t get much easier than that.
Here is the complete program as a module file:

# happy.py

def happy():
print ("Happy Birthday to you!")



6.3. Future Value with a Function 181

def sing(person):
happy OO
happy O
print ("Happy birthday, dear", person + ".")

happy ()

def main():
sing("Fred")
print ()
sing("Lucy")
print ()
sing ("Elmer")

main()

6.3| Future Value with a Function

Now that you’ve seen how defining functions can help solve the code duplication
problem, let’s return to the future value graph. Remember, the problem is that
bars of the graph are drawn at two different places in the program. The code
just before the loop looks like this:

# Draw bar for initial principal
bar = Rectangle(Point(0, 0), Point(1, principal))
bar.setFill("green")

bar.setWidth(2)
bar.draw(win)

And the code inside the loop is as follows:

bar = Rectangle(Point(year, 0), Point(year+1, principal))
bar.setFill("green")

bar.setWidth(2)
bar.draw(win)

Let’s try to combine these two into a single function that draws a bar on the
screen.

In order to draw the bar, we need some information. Specifically, we need to
know what year the bar will be for, how tall the bar will be, and what window



182 Chapter 6. Defining Functions

the bar will be drawn in. These three values will be supplied as parameters for
the function. Here’s the function definition:

def drawBar(window, year, height):
# Draw a bar in window for given year with given height
bar = Rectangle(Point(year, 0), Point(year+1, height))
bar.setFill("green")
bar.setWidth(2)
bar.draw(window)

To use this function, we just need to supply values for the three parameters. For
example, if win is a GraphWin, we can draw a bar for year 0 and a principal of
$2,000 by invoking drawBar like this:

drawBar (win, 0, 2000)

Incorporating the drawBar function, here is the latest version of our future
value program:

# futval_graph3.py
from graphics import *

def drawBar(window, year, height):
# Draw a bar in window starting at year with given height
bar = Rectangle(Point(year, 0), Point(year+1, height))
bar.setFill("green")
bar.setWidth(2)
bar.draw(window)

def main():
# Introduction
print ("This program plots the growth of a 10-year investment.")

# Get principal and interest rate
principal = float(input("Enter the initial principal: "))
apr = float(input("Enter the annualized interest rate: "))

# Create a graphics window with labels on left edge
win = GraphWin("Investment Growth Chart", 320, 240)
win.setBackground ("white")



6.4. Functions and Parameters: The Exciting Details

183

win.setCoords(-1.75,-200, 11.5, 10400)
Text (Point (-1, 0), ’ 0.0K’).draw(win)
Text (Point (-1, 2500), ’ 2.5K’).draw(win)
Text (Point (-1, 5000), ’ 5.0K’).draw(win)
Text (Point (-1, 7500), ’ 7.5k’).draw(win)
Text (Point (-1, 10000), ’10.0K’) .draw(win)

drawBar (win, O, principal)

for year in range(1, 11):
principal = principal * (1 + apr)
drawBar (win, year, principal)

input ("Press <Enter> to quit.")
win.close()
main()

You can see how drawBar has eliminated the duplicated code. Should we
wish to change the appearance of the bars in the graph, we only need to change
the code in one spot, the definition of drawBar. Do