
THIRD EDITION

P R 0 G RAM M I N G:
AN INTRODUCTION TO COMPUTER SCIENCE

OHN ZELLE

FRANKLIN, BEEDLE
[INDEPENDENT PUBLISHERS SINCE 1985]

PYTHON PROGRAMMING
AN INTRODUCTION TO COMPUTER SCIENCE

THIRD EDITION

John M. Zelle
Wartburg College

Franklin, Beedle & Associates Inc.+ 2154 NE Broadway, Suite 100 +Portland, Oregon 97232 + 503/284-6348 + www.fbeedle.com

Publisher

Editor

Production Associate

Cover Photography

Printed in the U. S. A.

Tom Sumner (tsumner@fbeedle.com)

Brenda Jones

Jaron Ayres

Jim Leisy ©2012

Names of all products herein are used for identification purposes only and are trademarks

and/or registered trademarks of their respective owners. Franklin, Beedle & Associates

Inc. makes no claim of ownership or corporate association with the products or compa­

nies that own them.

©2017 Franklin, Beedle & Associates Incorporated. No part of this book may be repro­

duced, stored in a retrieval system, transmitted, or transcribed, in any form or by any

means-electronic, mechanical, telepathic, photocopying, recording, or otherwise­

without prior written permission of the publisher. Requests for permission should be

addressed as follows:

Rights and Permissions

Franklin, Beedle & Associates Incorporated

2154 NE Broadway, Suite 100

Portland, Oregon 97232

Library of Congress Cataloging-in-Publication data

Names: Zelle, John M., author.
Title: Python programming : an introduction to computer science I John M.

Zelle, Wartburg College.
Description: Third edition. I Portland, Oregon : Franklin, Beedle &

Associates Inc., [2016] I Includes bibliographical references and index.
Identifiers: LCCN 2016024338 I ISBN 9781590282755
Subjects: LCSH: Python (Computer program language)
Classification: LCC QA76.73.P98 Z98 2016 I DDC 005.13/3--dc23
LC record available at https:/ /lccn.loc.gov/2016024338

Contents

Foreword, by Guido van Rossum .. ix
Preface . x

Chapter 1 Computers and Programs

1.1 The Universal Machine . 1

1.2 Program Power . 3

1. 3 What Is Computer Science? 3

1.4 Hardware Basics 5

1.5 Programming Languages 6

1.6 The Magic of Python 9

1. 7 Inside a Python Program 15

1.8 Chaos and Computers 18

1. 9 Chapter S u m mary 20

1.10 Exercises .. 21

1

Chapter 2 Writing Simple Programs 27
2.1 The Software Development Process 27

2. 2 Exam pie Program: T em perature Converter ... 28

2.3 Elements of Programs ... 31

2.3.1 Names ... 31

2.3.2 Expressions 32

2.4 0 utput Statements 34

2. 5 Assignment Statements 36

2. 5 .1 S i m pIe Assign men t 3 7

2.5.2 Assigning Input 39

2.5.3 Simultaneous Assignment 41

2. 6 Definite Loops 43

.
IV

2.7

2.8

2.9

Contents

Example Program: Future Value ... 47

Chapter Summary .. 50

Exercises . 51

Chapter 3 Computing with Numbers 57
3.1 Numeric Data Types .. 57

3. 2 Type Conversions and Rounding ... 62

3.3 Using the Math Library . 65

3.4 Accumulating Results: Factorials .. 68

3.5 Limitations of Computer Arithmetic ... 71

3.6 Chapter Summary .. 75

3. 7 Exercises .. 76

Chapter 4 Objects and Graphics 83
4.1 Overview .. 83

4. 2 T h e 0 b j ect of 0 b j ects. 84

4.3 Simple Graphics Programming .. 85

4.4 Using Graphical Objects ... 91

4.5 Graphing Future Value ... 96

4.6 Choosing Coordinates ... 103

4. 7 Interactive Graphics ... 107

4.7.1 Getting Mouse Clicks ... 107

4. 7.2 Handling Textual Input .. 109

4.8 Graphics Module Reference .. 112

4.8.1 Graph Win Objects ... 113

4. 8. 2 G ra ph i cs 0 b j ects. 115

4.8.3 Entry Objects .. 119

4.8.4 Displaying I mages .. 120

4.8.5 Generating Colors .. 121

4.8.6 Controlling Display Updates (Advanced) .. 121

4. 9 Chapter Sum mary . 122

4.10 Exercises .. 123

Chapter 5 Sequences: Strings, Lists, and Files 129
5.1

5.2

5.3

5.4

The String Data Type .. 129

Si m pie String Processing .. 133

Lists as Sequences .. 136

String Representation and Message Encoding ... 139

5.4.1 String Representation ... 139

5.4.2 Programming an Encoder .. 141

5.5 String Methods .. 142

5.5.1 Programming a Decoder .. 142

5.5.2 More String Methods ... 146

5.6 Lists Have Methods. Too ... 147

5. 7 From Encoding to Encryption ... 150

Contents

5.8 Input/Output as String Manipulation . 151

5. 8.1 Exam pie Application: Date Conversion . 151

5. 8. 2 String Formatting 154

5.8.3 Better Change Counter 157

5. 9 File Processing 158

5.9.1 Multi-line Strings ... 158

5.9.2 File Processing ... 159

5.9.3 Example Program: Batch Usernames .. 163

5.9.4 File Dialogs (Optional) .. 164

5.10 Chapter Summary .. 167

5.11 Exercises . 168

Chapter 6 Defining Functions 175
6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

The Function of Functions ... 175

Functions, Informally .. 177

Future Value with a Function ... 181

Functions and Para meters: The Exciting Deta i Is 183

Functions That Return Values 187

Functions that Modify Para meters 193

Functions and Program Structure 199

Chapter Summary .. 202

Exercises .. 203

Chapter 7 Decision Structures 209
7.1 Sim pie Decisions .. 209

7.1.1 Example: Temperature Warnings .. 210

7.1.2 Forming Simple Conditions .. 212

7 .1.3 Example: Condition a I Program Execution ... 214

7. 2 Two-Way Decisions .. 216

7.3 Multi-Way Decisions .. 220

7.4 Exception Handling .. 223

7. 5 Study in Design: Max of Three 227

7.5.1 Strategy 1: Compare Each to All. 228

7.5. 2 Strategy 2: Decision Tree 230

7 .5.3 Strategy 3: Sequential Processing ... 231

7 .5.4 Strategy 4: Use Python .. 234

7 .5.5 Some Lessons .. 234

7.6 Chapter Summary .. 235

7. 7 Exercises .. 236

Chapter 8 Loop Structures and Booleans 243
8.1 For Loops: A Quick Review .. 243

8.2 Indefinite Loops ... 245

8. 3 Common Loop Patterns ... 24 7

8. 3.1 Interactive Loops 24 7

8.3.2 Sentinel Loops 249

v

vi Contents

8.3.3 File Loops . 252

8.3.4 Nested Loops . 254

8.4 Computing with Boo leans .. 256

8.4.1 Boolean Operators ... 256

8.4.2 Boolean Algebra .. 260

8. 5 Other Common Structures . 262

8.5.1 Post-test Loop ... 262

8.5.2 Loop and a Half .. 264

8.5.3 Boolean Expressions as Decisions ... 266

8.6 Example: A Simple Event Loop .. 269

8. 7 Chapter Summary .. 275

8. 8 Exercises . 277

Chapter 9 Simulation and Design 283
9 .1 S i m u I at i n g Ra cq u et ba II. 2 83

9.1.1 A Simulation Problem . 284

9 .1. 2 Ana lysis and Specification .. 284

9. 2 Pseudo-random Numbers ... 286

9.3 Top-Down Design .. 288

9. 3.1 Top-Level Design . 289

9. 3. 2 Separation of Concerns . 291

9.3.3 Second-Level Design . 291

9.3.4 Designing simNGames . 293

9.3.5 Third-Level Design . 295

9.3.6 Finishing Up . 298

9.3. 7 Summary of the Design Process . 300

9.4 Bottom-Up Implementation .. 301

9.4.1 Unit Testing .. 301

9.4.2 Simulation Results ... 303

9. 5 Other Design Techniques . 304

9.5.1 Prototyping and Spiral Development . 304

9.5.2 The Art of Design . 306

9.6 Chapter Summary . 306

9. 7 Exercises . 307

Chapter 10 Defining Classes 313
10.1 Quick Review of Objects . 313

10.2 Example Program: Cannonball . 314

10.2.1 Program Specification . 314

10.2.2 Designing the Program .. 315

10.2.3 Mod ularizing the Program ... 319

10.3 Defining New Classes ... 321

10.3.1 Example: Multi-sided Dice ... 321

10.3.2 Example: The Projectile Class . 325

10.4 Data Processing with Class . 327

10.5 0 bjects and Encapsulation . 331

Contents

10.5.1 Encapsulating Useful Abstractions .. 331

10.5.2 Putting Classes in Modules .. 333

10.5.3 Module Documentation . 333

10.5.4 Working with Multiple Modules . 335

10.6 Widgets . 337

10.6.1 Example Program: Dice Roller ... 337

10.6.2 Building Buttons .. 338

10.6.3 Building Dice ... 342

10.6.4 The Main Program .. 345

10. 7 Anima ted Can non ba II . 346

10.7.1 Drawing the Animation Window ... 347

10.7 .2 Creating a Shot Tracker .. 348

10.7.3 Creating an Input Dialog .. 350

10.7.4 The Main Event Loop .. 353

10. 8 Chapter S u m mary . 355

10.9 Exercises .. 356

Chapter 11 Data Collections 363
11.1 Exam pie Problem: S i m pie Statistics .. 363

11.2 Applying Lists .. 365

11.2.1 Lists and Arrays ... 366

11.2. 2 List 0 perations .. 367

11.2.3 Statistics with Lists .. 370

11.3 Lists of Records ... 375

11.4 Designing with Lists and Classes .. 379

11.5 Case Study: Python Ca leu Ia tor ... 385

11.5.1 A Calculator as an Object .. 385

11.5. 2 Constructing the Interface .. 385

11.5.3 Processing Buttons .. 388

11.6 Case Study: Better Can non ba II Animation .. 392

11.6 .1 Creating a Launcher ... 393

11.6.2 Tracking Multiple Shots ... 396

11.7 Non-seq uenti a I Collections .. 401

11.7 .1 Dictionary Basics ... 401

11.7. 2 Dictionary 0 perations .. 402

11.7.3 Example Program: Word Frequency ... 404

11. 8 Chapter S u m mary . 409

11.9 Exercises .. 410

Chapter 12 Object-Oriented Design 419
12.1 The Process of OOD .. 419

12.2 Case Study: Racq uetba II Simulation ... 422

12.2.1 Candidate Objects and Methods .. 422

12.2.2 Implementing SimStats .. 424

12.2.3 Implementing RBaiiGame ... 426

12.2.4 Implementing Player .. 429

..
VI I

v111 Contents

12.2.5 The Complete Program .. 430

12.3 Case Study: Dice Poker .. 433

12.3.1

12.3.2

12.3.3

12.3.4

12.3.5

Program Specification . 433

Identifying Candidate Objects . 434

Implementing the Model . 436

A Text-Based U I .. 440

Developing a G U I ... 443

12.4 00 Concepts ... 451

12.4.1 Encapsulation .. 452

12.4.2 Polymorph ism .. 453

12.4.3 Inheritance ... 453

12. 5 Chapter S u m mary . 455

12.6 Exercises . 456

Chapter 13 Algorithm Design and Recursion 459
13.1 Searching ... 460

13.1.1

13.1.2

13.1.3

13.1.4

A Si m pie Searching Problem .. 460

Strategy 1: Linear Search ... 461

Strategy 2: Binary Search .. 462

Com paring Algorithms ... 463

13.2 Recursive Problem Solving ... 465

13.2.1 Recursive Definitions .. 466

13.2.2 Recursive Functions ... 468

13.2.3 Example: String Reversal ... 469

13.2.4 Example: Anagrams ... 471

13.2.5 Example: Fast Exponentiation .. 472

13.2.6 Example: Binary Search ... 473

13.2. 7 Recursion vs. Iteration ... 4 7 4

13.3 Sorting Algorithms ... 4 77

13.3.1 Naive Sorting: Selection Sort .. 477

13.3.2 Divide and Conquer: Merge Sort .. 479

13 . 3 . 3 Com pa r i n g Sorts . 481

13.4 Hard Problems ... 484

13.4.1 Tower of Hanoi .. 484

13.4.2 The Halting Problem ... 489

13.4.3 Conclusion ... 492

13.5 Chapter Summary .. 493

13.6 Exercises .. 494

Appendix A Python Quick Reference
Appendix C Glossary
Index

503
513
525

Foreword

When the publisher first sent me a draft of this book, I was immediately excited.

Disguised as a Python textbook, it is really an introduction to the fine art of pro­

gramming, using Python merely as the preferred medium for beginners. This is

how I have always imagined Python would be most useful in education: not as

the only language, but as a first language, just as in art one might start learning

to draw using a pencil rather than trying to paint in oil right away.

The author mentions in his preface that Python is near-ideal as a first pro­

gramming language, without being a "toy language. " As the creator of Python I

don't want to take full credit for this: Python was derived from ABC, a language

designed to teach programming in the early 1980s by Lambert Meertens, Leo

Geurts, and others at CWI (National Research Institute for Mathematics and

Computer Science) in Amsterdam. If I added anything to their work, it was mak­

ing Python into a non-toy language, with a broad user base and an extensive

collection of standard and third-party application modules.

I have no formal teaching experience, so I may not be qualified to judge its

educational effectiveness. Still, as a programmer with nearly 30 years experi­

ence, reading through the chapters I am continuously delighted by the book's

clear explanations of difficult concepts. I also like the many good excercises and

questions which both test understanding and encourage thinking about deeper
•

ISSUeS.

Reader of this book, congratulations! You will be well rewarded for studying

Python. I promise you'll have fun along the way, and I hope you won't forget

your first language once you have become a proficient software developer.

-Guido van Rossum
.

IX

Preface

This book is designed to be used as a primary textbook in a college-level first

course in computing. It takes a fairly traditional approach, emphasizing problem

solving, design, and programming as the core skills of computer science. However,

these ideas are illustrated using a non-traditional language, namely Python. In my

teaching experience, I have found that many students have difficulty mastering

the basic concepts of computer science and programming. Part of this difficulty

can be blamed on the complexity of the languages and tools that are most often

used in introductory courses. Consequently, this textbook was written with a

single overarching goal: to introduce fundamental computer science concepts as

simply as possible without being simplistic. Using Python is central to this goal.

Traditional systems languages such as C++, Ada, and Java evolved to solve

problems in large-scale programming, where the primary emphasis is on struc­

ture and discipline. They were not designed to make writing small- or medium­

scale programs easy. The recent rise in popularity of scripting (sometimes called

"agile") languages, such as Python, suggests an alternative approach. Python

is very flexible and makes experimentation easy. Solutions to simple problems

are simply and elegantly expressed. Python provides a great laboratory for the

neophyte programmer.

Python has a number of features that make it a near-perfect choice as a

first programming language. The basic structures are simple, clean, and well

designed, which allows students to focus on the primary skills of algorithmic

thinking and program design without getting bogged down in arcane language

details. Concepts learned in Python carry over directly to subsequent study of

X

Preface

systems languages such as C++ and Java. But Python is not a "toy language."

It is a real-world production language that is freely available for virtually every

programming platform and comes standard with its own easy-to-use integrated

programming environment. The best part is that Python makes learning to pro­

gram fun again.

Although I use Python as the language, teaching Python is not the main

point of this book. Rather, Python is used to illustrate fundamental principles of

design and programming that apply in any language or computing environment.

In some places I have purposely avoided certain Python features and idioms that

are not generally found in other languages. There are many good books about

Python on the market; this book is intended as an introduction to computing.

Besides using Python, there are other features of this book designed to make it

a gentler introduction to computer science. Some of these features include:

• Extensive use of computer graphics. Students love working on

programs that include graphics. This book presents a simple-to-use graph­

ics package (provided as a Python module) that allows students both to

learn the principles of computer graphics and to practice object-oriented

concepts without the complexity inherent in a full-blown graphics library

and event-driven programming.

• Interesting examples. The book is packed with complete programming

examples to solve real problems.

• Readable prose. The narrative style of the book introduces key computer

science concepts in a natural way as an outgrowth of a developing discus­

sion. I have tried to avoid random facts or tangentially related sidebars.

• Flexible spiral coverage. Since the goal of the book is to present con­

cepts simply, each chapter is organized so that students are introduced to

new ideas in a gradual way, giving them time to assimilate an increasing

level of detail as they progress. Ideas that take more time to master are

introduced in early chapters and reinforced in later chapters.

• Just-in-time object coverage. The proper place for the introduction of

object-oriented techniques is an ongoing controversy in computer science

education. This book is neither strictly "objects early'' nor "objects late,"

but gradually introduces object concepts after a brief initial grounding

in the basics of imperative programming. Students learn multiple design

.

XI

. .

XII Preface

techniques, including top-down (functional decomposition), spiral (proto­

typing), and object-oriented methods. Additionally, the textbook material

is flexible enough to accommodate other approaches.

• Extensive end-of-chapter problems. Exercises at the end of every

chapter provide ample opportunity for students to reinforce their mastery

of the chapter material and to practice new programming skills.

Changes in the Second and Third Editions

The first edition of the textbook has aged gracefully, and the approach it takes

remains just as relevant now as when it was first published.

While fundamental principles do not change, the technology environment

does. With the release of Python 3. 0, updates to the original material became

necessary. The second edition was basically the same as the original textbook,

except that it was updated to use Python 3. Virtually every program example in

the book had to be modified for the new Python. Additionally, to accommodate

certain changes in Python (notably the removal of the string library), the mate­

rial was reordered slightly to cover object terminology before discussing string

processing. A beneficial side effect of this change was an even earlier introduction

of computer graphics to pique student interest.

The third edition continues the tradition of updating the text to reflect new

technologies while maintaining a time-tested approach to teaching introductory

computer science. An important change to this edition is the removal of most

uses of eval and the addition of a discussion of its dangers. In our increasingly

connected world, it's never too early to begin considering computer security is­

sues.

Several new graphics examples, developed throughout chapters 4-12, have

been added to introduce new features of the graphics library that support anima­

tions, including simple video game development. This brings the text up to date

with the types of final projects that are often assigned in modern introductory

classes.

Smaller changes have been made throughout the text, including:

• Material on file dialogs has been added in Chapter 5.

• Chapter 6 has been expanded and reorganized to emphasize value-returning

functions.

Preface

• Coverage has been streamlined and simplified to use IDLE (the standard

"comes-with-Python" development environment) consistently. This makes

the text more suitable for self-study as well as for use as a classroom text­

book.

• Technology references have been updated.

• To further accommodate self-studiers, end-of-chapter solutions for this

third edition are freely available online. Classroom instructors wishing to

use alternative exercises can request those from the publisher. Self-studiers

and instructors alike can visit https:/ /fbeedle.com for details.

Coverage Options

In keeping with the goal of simplicity, I have tried to limit the amount of material

that would not be covered in a first course. Still, there is probably more mate­

rial here than can be covered in a typical one-semester introduction. My classes

cover virtually all of the material in the first 12 chapters in order, though not

necessarily covering every section in depth. One or two topics from Chapter 13

('�gorithm Design and Recursion") are generally interspersed at appropriate

places during the term.

Recognizing that different instructors prefer to approach topics in different

ways, I have tried to keep the material relatively flexible. Chapters 1-4 ("Com­

puters and Programs," "Writing Simple Programs," "Computing with Numbers,"

"Objects and Graphics") are essential introduction and should probably be

covered in order. The initial portions of Chapter 5 ("Sequences: Strings, Lists,

and Files") on string processing are also fundamental, but the later topics such

as string formatting and file processing can be delayed until needed later on.

Chapters 6--8 ("Defining Functions," "Decision Structures," and "Loop Structures

and Booleans") are designed to stand independently and can be taken in virtu­

ally any order. Chapters 9-12 on design approaches are written to be taken in

order, but the material in Chapter 1 1 ("Data Collections") could easily be moved

earlier, should the instructor want to cover lists (arrays) before various design

techniques. Instructors wishing to emphasize object-oriented design need not

spend much time on Chapter 9. Chapter 13 contains more advanced material

that may be covered at the end or interspersed at various places throughout the

course.

. . .

XI I I

.

XIV Preface

Acknowledgments

My approach to CSl has been influenced over the years by many fine textbooks

that I have read and used for classes. Much that I have learned from those books

has undoubtedly found its way into these pages. There are a few specific au­

thors whose approaches have been so important that I feel they deserve special

mention. A.K. Dewdney has always had a knack for finding simple examples

that illustrate complex issues; I have borrowed a few of those and given them

new legs in Python. I also owe a debt to wonderful textbooks from both Owen

Astrachan and Cay Horstmann. The graphics library I introduce in Chapter 4

was directly inspired by my experience teaching with a similar library designed

by Horstmann. I also learned much about teaching computer science from Nell

Dale, for whom I was fortunate enough to serve as a TA when I was a graduate

student at the University of Texas.

Many people have contributed either directly or indirectly to the produc­

tion of this book. I have also received much help and encouragement from my

colleagues (and former colleagues) at Wartburg College: Lynn Olson for his un­

flagging support at the very beginning; Josef Breutzmann, who supplied many

project ideas; and Terry Letsche, who prepared PowerPoint slides for the first

and third editions.

I want to thank the following individuals who read or commented on the

manuscript for the first edition: Rus May, Morehead State University; Carolyn

Miller, North Carolina State University; Guido Van Rossum, Google; Jim Sager,

California State University, Chico; Christine Shannon, Centre College; Paul

Tymann, Rochester Institute of Technology; Suzanne Westbrook, University of

Arizona. I am grateful to Dave Reed at Capital University, who used early ver­

sions of the first edition, offered numerous insightful suggestions, and worked

with Jeffrey Cohen at University of Chicago to supply alternate end-of-chapter

exercises for this edition. Ernie Ackermann test drove the second edition at Mary

Washington College. The third edition was test driven in classes by Theresa Migler

at California Polytechnic State University in San Luis Obispo and my colleague

Terry Letsche; and David Bantz provided feedback on a draft. Thanks to all for

their valuable observations and suggestions.

I also want to acknowledge the fine folks at Franklin, Beedle, and Associ­

ates, especially Tom Sumner, Brenda Jones, and Jaron Ayres, who turned my

pet project into a real textbook. This edition is dedicated to the memory of Jim

Leisy, the founder of Franklin, Beedle and Associates, who passed away unex-

Preface

pectedly as the third edition was getting off the ground. Jim was an amazing

man of unusually wide-ranging interests. It was his vision, guidance, relentless

enthusiasm, and a fair bit of determined prodding, that ultimately molded me

into a textbook author and made this book a success.

A special thanks also goes out to all my students, who have taught me so

much about teaching, and to Wartburg College for giving me sabbatical support to

work on the book. Last, but most importantly, I acknowledge my wife, Elizabeth

Bingham, who has served as editor, advisor, and morale booster while putting

up with me during my writing spells.

-JMZ

XV

Chapter 1

Objectives

Computers and

Programs

• To understand the respective roles of hardware and software in computing

systems.

• To learn what computer scientists study and the techniques that they use.

• To understand the basic design of a modern computer.

• To understand the form and function of computer programming languages.

• To begin using the Python programming language.

• To learn about chaotic models and their implications for computing.

lt.l l The Universal Machine

Almost everyone has used a computer at one time or another. Perhaps you have

played computer games or used a computer to write a paper, shop online, listen

to music, or connect with friends via social media. Computers are used to predict

the weather, design airplanes, make movies, run businesses, perform financial

transactions, and control factories.

Have you ever stopped to wonder what exactly a computer is? How can one

device perform so many different tasks? These basic questions are the starting
point for learning about computers and computer programming.

1

2 Chapter 1. Computers and Programs

A modern computer can be defined as "a machine that stores and manipu­

lates information under the control of a changeable program." There are two

key elements to this definition. The first is that computers are devices for ma­

nipulating information. This means we can put information into a computer,
and it can transform the information into new, useful forms, and then output or

display the information for our interpretation.

Computers are not the only machines that manipulate information. When

you use a simple calculator to add up a column of numbers, you are entering
information (the numbers) and the calculator is processing the information to

compute a running sum which is then displayed. Another simple example is a

gas pump. As you fill your tank, the pump uses certain inputs: the current price
of gas per gallon and signals from a sensor that reads the rate of gas flowing

into your car. The pump transforms this input into information about how much

gas you took and how much money you owe.

We would not consider either the calculator or the gas pump as full-fledged
computers, although modern versions of these devices may actually contain em­

bedded computers. They are different from computers in that they are built to

perform a single, specific task. This is where the second part of our definition

comes into the picture: Computers operate under the control of a changeable
program. What exactly does this mean?

A computer program is a detailed, step-by-step set of instructions telling a

computer exactly what to do. If we change the program, then the computer

performs a different sequence of actions, and hence, performs a different task.

It is this flexibility that allows your PC to be at one moment a word processor, at

the next moment a financial planner, and later on, an arcade game. The machine

stays the same, but the program controlling the machine changes.
Every computer is just a machine for executing (carrying out) programs.

There are many different kinds of computers. You might be familiar with Macin­

toshes, PCs, laptops, tablets and smartphones, but there are literally thousands

of other kinds of computers both real and theoretical. One of the remarkable
discoveries of computer science is the realization that all of these different com­

puters have the same power; with suitable programming, each computer can

basically do all the things that any other computer can do. In this sense, the
PC that you might have sitting on your desk is really a universal machine. It

can do anything you want it to do, provided you can describe the task to be

accomplished in sufficient detail. Now that's a powerful machine!

1.2. Program Power

11.21 Program Power

You have already learned an important lesson of computing: Software (pro­

grams) rules the hardware (the physical machine). It is the software that de­
termines what any computer can do. Without software, computers would just

be expensive paperweights. The process of creating software is called program­

ming, and that is the main focus of this book.

Computer programming is a challenging activity. Good programming re­

quires an ability to see the big picture while paying attention to minute detail.

Not everyone has the talent to become a first-class programmer, just as not ev­
eryone has the skills to be a professional athlete. However, virtually anyone can
learn how to program computers. With some patience and effort on your part,

this book will help you to become a programmer.

There are lots of good reasons to learn programming. Programming is a

fundamental part of computer science and is, therefore, important to anyone in­

terested in becoming a computer professional. But others can also benefit from
the experience. Computers have become a commonplace tool in our society. Un­

derstanding the strengths and limitations of this tool requires an understanding

of programming. Non-programmers often feel they are slaves of their comput­

ers. Programmers, however, are truly in control. If you want to become a more

intelligent user of computers, then this book is for you.

Programming can also be loads of fun. It is an intellectually engaging ac­

tivity that allows people to express themselves through useful and sometimes

remarkably beautiful creations. Believe it or not, many people actually write

computer programs as a hobby. Programming also develops valuable problem­

solving skills, especially the ability to analyze complex systems by reducing them

to interactions of understandable subsystems.

As you probably know, programmers are in great demand. More than a few
liberal arts majors have turned a couple of computer programming classes into

a lucrative career option. Computers are so commonplace in the business world

today that the ability to understand and program computers might just give you

the edge over your competition regardless of your occupation. When inspiration

strikes, you could be poised to write the next killer app.

lt.3l What Is Computer Science?

You might be surprised to learn that computer science is not the study of com­
puters. A famous computer scientist named Edsger Dijkstra once quipped that

3

4 Chapter 1. Computers and Programs

computers are to computer science what telescopes are to astronomy. The com­

puter is an important tool in computer science, but it is not itself the object of

study. Since a computer can carry out any process that we can describe, the

real question is "What processes can we describe?" To put it another way, the
fundamental question of computer science is simply "What can be computed?"

Computer scientists use numerous techniques of investigation to answer this

question. The three main ones are design, analysis, and experimentation.

One way to demonstrate that a particular problem can be solved is to actu­

ally design a solution. That is, we develop a step-by-step process for achieving
the desired result. Computer scientists call this an algorithm. That's a fancy

word that basically means "recipe." The design of algorithms is one of the most

important facets of computer science. In this book you will find techniques for
designing and implementing algorithms.

One weakness of design is that it can only answer the question "What is

computable?" in the positive. If I can devise an algorithm, then the problem is

solvable. However, failing to find an algorithm does not mean that a problem is

unsolvable. It may mean that I'm just not smart enough, or I haven't hit upon

the right idea yet. This is where analysis comes in.

Analysis is the process of examining algorithms and problems mathemati­

cally. Computer scientists have shown that some seemingly simple problems

are not solvable by any algorithm. Other problems are intractable. The algo­
rithms that solve these problems take too long or require too much memory to

be of practical value. Analysis of algorithms is an important part of computer

science; throughout this book we will touch on some of the fundamental princi­

ples. Chapter 13 has examples of unsolvable and intractable problems.

Some problems are too complex or ill-defined to lend themselves to anal­

ysis. In such cases, computer scientists rely on experimentation; they actually

implement systems and then study the resulting behavior. Even when theoret­

ical analysis is done, experimentation is often needed in order to verify and
refine the analysis. For most problems, the bottom line is whether a working,

reliable system can be built. Often we require empirical testing of the system

to determine that this bottom line has been met. As you begin writing your

own programs, you will get plenty of opportunities to observe your solutions in
action.

I have defined computer science in terms of designing, analyzing, and eval­

uating algorithms, and this is certainly the core of the academic discipline.

These days, however, computer scientists are involved in far-flung activities,
all of which fall under the general umbrella of computing. Some examples

1.4. Hardware Basics

Output

CPU Devices

Input
Devices

Main Secondary
Memory Memory

Figure 1.1: Functional view of a computer

include mobile computing, networking, human-computer interaction, artificial
intelligence, computational science (using powerful computers to model sci­

entific processes), databases and data mining, software engineering, web and

multimedia design, music production, management information systems, and

computer security. Wherever computing is done, the skills and knowledge of

computer science are being applied.

I 1.41 Hardware Basics

You don't have to know all the details of how a computer works to be a successful
programmer, but understanding the underlying principles will help you master
the steps we go through to put our programs into action. It's a bit like driving a

car. Knowing a little about internal combustion engines helps to explain why you

have to do things like fill the gas tank, start the engine, step on the accelerator,
and so on. You could learn to drive by just memorizing what to do, but a little

more knowledge makes the whole process much more understandable. Let's

take a moment to "look under the hood" of your computer.

Although different computers can vary significantly in specific details, at a

higher level all modem digital computers are remarkably similar. Figure 1.1
shows a functional view of a computer. The central processing unit (CPU) is the

"brain" of the machine. This is where all the basic operations of the computer are

carried out. The CPU can perform simple arithmetic operations like adding two

numbers and can also do logical operations like testing to see if two numbers
are equal.

5

6 Chapter 1. Computers and Programs

The memory stores programs and data. The CPU can directly access only

information that is stored in main memory (called RAM for Random Access Mem­
ory). Main memory is fast, but it is also volatile. That is, when the power is

turned off, the information in the memory is lost. Thus, there must also be some
secondary memory that provides more permanent storage.

In a modem personal computer, the principal secondary memory is typically

an internal hard disk drive (HOD) or a solid state drive (SSD). An HOD stores

information as magnetic patterns on a spinning disk, while an SSD employs elec­
tronic circuits known as flash memory. Most computers also support removeable

media for secondary memory such as USB memory "sticks" (also a form of flash

memory) and DVDs (digital versatile discs), which store information as optical

patterns that are read and written by a laser.

Humans interact with the computer through input and output devices. You

are probably familiar with common devices such as a keyboard, mouse, and

monitor (video screen). Information from input devices is processed by the CPU

and may be shuffled off to the main or secondary memory. Similarly, when
information needs to be displayed, the CPU sends it to one or more output

devices.

So what happens when you fire up your favorite game or word processing

program? First, the instructions that comprise the program are copied from the
(more) permanent secondary memory into the main memory of the computer.

Once the instructions are loaded, the CPU starts executing the program.

Technically the CPU follows a process called the fetch-execute cycle. The first

instruction is retrieved from memory, decoded to figure out what it represents,

and the appropriate action carried out. Then the next instruction is fetched,

decoded, and executed. The cycle continues, instruction after instruction. This

is really all the computer does from the time that you turn it on until you turn

it off again: fetch, decode, execute. It doesn't seem very exciting, does it? But
the computer can execute this stream of simple instructions with blazing speed,

zipping through billions of instructions each second. Put enough simple instruc­

tions together in just the right way, and the computer does amazing things.

lt.5l Programming Languages

Remember that a program is just a sequence of instructions telling a computer

what to do. Obviously, we need to provide those instructions in a language

that a computer can understand. It would be nice if we could just tell a com­
puter what to do using our native language, like they do in science fiction

1.5. Programming Languages

movies. ("Computer, how long will it take to reach planet Alphalpha at maxi­

mum warp?") Computer scientists have made great strides in this direction; you

may be familiar with technologies such as Siri (Apple), Google Now (Android) ,

and Cortana (Microsoft). But as anyone who has seriously useded such systems
can attest, designing a computer program to fully understand human language

is still an unsolved problem.

Even if computers could understand us, human languages are not very well

suited for describing complex algorithms. Natural language is fraught with am­
biguity and imprecision. For example, if I say "I saw the man in the park with the

telescope," did I have the telescope, or did the man? And who was in the park?

We understand each other most of the time only because all humans share a vast

store of common knowledge and experience. Even then, miscommunication is

commonplace.

Computer scientists have gotten around this problem by designing notations

for expressing computations in an exact and unambiguous way. These special
notations are called programming languages. Every structure in a programming

language has a precise form (its syntax) and a precise meaning (its semantics).
A programming language is something like a code for writing down the instruc­

tions that a computer will follow. In fact, programmers often refer to their
programs as computer code, and the process of writing an algorithm in a pro­

gramming language is called coding.

Python is one example of a programming language and is the language that
we will use throughout this book.l You may have heard of some other com­

monly used languages, such as C++, Java, Javascript, Ruby, Perl, Scheme, or

BASIC. Computer scientists have developed literally thousands of programming

languages, and the languages themselves evolve over time yielding multiple,

sometimes very different, versions. Although these languages differ in many

details, they all share the property of having well-defined, unambiguous syntax

and semantics.

All of the languages mentioned above are examples of high-level computer

languages. Although they are precise, they are designed to be used and under­

stood by humans. Strictly speaking, computer hardware can understand only a

very low-level language known as machine language.

Suppose we want the computer to add two numbers. The instructions that

the CPU actually carries out might be something like this:

1This edition of the text was developed and tested using Python version 3.4. Python 3.5 is
now available. If you have an earlier version of Python installed on your computer, you should
upgrade to the latest stable 3.x version to try out the examples.

7

8 Chapter 1. Computers and Programs

load the number from memory location 2001 into the CPU

load the number from memory location 2002 into the CPU

add the two numbers in the CPU

store the result into location 2003

This seems like a lot of work to add two numbers, doesn't it? Actually, it's even

more complicated than this because the instructions and numbers are repre­
sented in binary notation (as sequences of Os and ls) .

In a high-level language like Python, the addition of two numbers can be

expressed more naturally: c = a + b. That's a lot easier for us to understand,
but we need some way to translate the high-level language into the machine
language that the computer can execute. There are two ways to do this: a

high-level language can either be compiled or interpreted.

A compiler is a complex computer program that takes another program writ­

ten in a high-level language and translates it into an equivalent program in the
machine language of some computer. Figure 1.2 shows a block diagram of the

compiling process. The high-level program is called source code, and the re­

sulting machine code is a program that the computer can directly execute. The

dashed line in the diagram represents the execution of the machine code (also
known as "running the program").

Source
Code

(Program)
Compiler

Inputs Running
Program

Figure 1.2: Compiling a high-level language

An interpreter is a program that simulates a computer that understands a

high-level language. Rather than translating the source program into a machine
language equivalent, the interpreter analyzes and executes the source code in­

struction by instruction as necessary. Figure 1.3 illustrates the process.

The difference between interpreting and compiling is that compiling is a one­

shot translation; once a program is compiled, it may be run over and over again
without further need for the compiler or the source code. In the interpreted

Source
Code

(Program)

Inputs

1.6. The Magic of Python

Computer
Running an
Interpreter

Outputs

Figure 1.3: Interpreting a high-level language

case, the interpreter and the source are needed every time the program runs.

Compiled programs tend to be faster, since the translation is done once and for
all, but interpreted languages lend themselves to a more flexible programming

environment as programs can be developed and run interactively.

The translation process highlights another advantage that high-level lan­

guages have over machine language: portability. The machine language of a

computer is created by the designers of the particular CPU. Each kind of com­
puter has its own machine language. A program for an Intel i7 Processor in your

laptop won't run directly on an ARMv8 CPU in your smartphone. On the other

hand, a program written in a high-level language can be run on many different

kinds of computers as long as there is a suitable compiler or interpreter (which
is just another program). As a result, I can run the exact same Python program

on my laptop and my tablet; even though they have different CPUs, they both

sport a Python interpreter.

lt.6l The Magic of Python

Now that you have all the technical details, it's time to start having fun with

Python. The ultimate goal is to make the computer do our bidding. To this

end, we will write programs that control the computational processes inside the

machine. You have already seen that there is no magic in this process, but in

some ways programming feels like magic.

The computational processes inside the computer are like magical spirits that

we can harness for our work. Unfortunately, those spirits only understand a very

arcane language that we do not know. What we need is a friendly genie that can

direct the spirits to fulfill our wishes. Our genie is a Python interpreter. We can
give instructions to the Python interpreter, and it directs the underlying spirits

9

10 Chapter 1. Computers and Programs

to carry out our demands. We communicate with the genie through a special
language of spells and incantations (i.e., Python). The best way to start learning

about Python is to let our genie out of the bottle and try some spells.

With most Python installations, you can start a Python interpreter in an in­
teractive mode called a shell. A shell allows you to type Python commands and
then displays the result of executing them. The specifics for starting a shell differ

for various installations. If you are using the standard Python distribution for

PC or Mac from www.python.org, you should have an application called IDLE

that provides a Python shell and, as we'll see later on, also helps you create

and edit your own Python programs. The supporting website for this book has

information on installing and using Python on a variety of platforms.

When you first launch IDLE (or another Python shell), you should see some­

thing like the this:

Python 3.4.3 (v3.4.3: 9b73f1c3e601, Feb 24 2015, 22: 43: 06)

[MSC v.1600 32 bit (Intel)] on win32

Type "copyright", "credits" or "license() " for more information.

>>>

The exact opening message depends on the version of Python that you are run­

ning and the system that you are working on. The important part is the last line;

the > > > is a Python prompt indicating that our genie (the Python interpreter)
is waiting for us to give it a command. In programming languages, a complete

command is called a statement.
Here is a sample interaction with a Python shell:

>>> print("Hello, World!")

Hello, World!

>>> print(2 + 3)

5

>>> print("2 + 3 =", 2 + 3)

2 + 3 = 5

Here I have tried out three examples using the Python print statement. The

first statement asks Python to display the literal phrase Hello, World! . Python

responds on the next line by printing the phrase. The second print statement

asks Python to print the sum of 2 and 3. The third print combines these two

ideas. Python prints the part in quotes, 2 + 3 =, followed by the result of adding
2 + 3, which is 5.

This kind of shell interaction is a great way to try out new things in Python.
Snippets of interactive sessions are sprinkled throughout this book. When you

1.6. The Magic of Python

see the Python prompt > > > in an example, that should tip you off that an

interactive session is being illustrated. It's a good idea to fire up your own

Python shell and try the examples.

Usually we want to move beyond one-line snippets and execute an entire
sequence of statements. Python lets us put a sequence of statements together to

create a brand-new command or function. Here is an example of creating a new
function called hello:

>>> def hello() :

>>>

print ("Hello")

print("Computers are fun!")

The first line tells Python that we are defining a new function and we are naming

it hello. The following lines are indented to show that they are part of the hello

function. (Note: Some shells will print ellipses [" ... "] at the beginning of the

indented lines) . The blank line at the end (obtained by hitting the <Enter> key
twice) lets Python know that the definition is finished, and the shell responds

with another prompt. Notice that typing the definition did not cause Python to

print anything yet. We have told Python what should happen when the hello

function is used as a command; we haven't actually asked Python to perform it

yet.
A function is invoked (or called) by typing its name followed by parentheses.

Here's what happens when we use our hello command:

>>> hello()

Hello

Computers are fun!

>>>

Do you see what this does? The two print statements from the hello function

definition are executed in sequence.

You may be wondering about the parentheses in the definition and use of

hello. Commands can have changeable parts called parameters (also called
arguments) that are placed within the parentheses. Let's look at an example of

a customized greeting using a parameter. First the definition:

>>> def greet(person) :

print("Hello", person)

print("How are you?")

11

12 Chapter 1. Computers and Programs

Now we can use our customized greeting.

>>> greet(" John")

Hello John

How are you?

>>> greet("Emily")

Hello Emily

How are you?

>>>

Can you see what is happening here? When using greet we can send different

names to customize the result. You might also notice that this looks similar to

the print statements from before. In Python, print is an example of a built-in

function. When we call the print function, the parameters in the parentheses
tell the function what to print.

We will discuss parameters in detail later on. For the time being the im­
portant thing to remember is that the parentheses must be included after the

function name whenever we want to execute a function. This is true even when

no parameters are given. For example, you can create a blank line of output

using print without any parameters.

>>> print()

>>>

But if you type just the name of the function, omitting the parentheses, the

function will not actually execute. Instead, an interactive Python session will

show some output indicating what function that name refers to, as this interac­
tion shows:

>>> greet

<function greet at Ox8393aec>

>>> print

<built-in function print>

The funny text Ox8393aec is the location (address) in computer memory where
the greet function definition happens to be stored. If you are trying this out on

your own computer, you will almost certainly see a different address.

One problem with entering functions interactively into a Python shell as we

did with the hello and greet examples is that the definitions are lost when we
quit the shell. If we want to use them again the next time, we have to type them

1.6. The Magic of Python

all over again. Programs are usually created by typing definitions into a separate

file called a module or script. This file is saved in secondary memory so that it

can be used over and over again.

A module file is just a file of text, and you can create one using any ap­

plication for editing text, such as notepad or a word processor, provided you

save your program as a "plain text" file. A special type of application known as

an Integrated Development Environment (IDE) simplifies the process. An IDE is

specifically designed to help programmers write programs and includes features

such as automatic indenting, color highlighting, and interactive development.

IDLE is a good example. So far we have just been using IDLE as a Python shell,
but it is actually a simple but complete development environment. 2

Let's illustrate the use of a module file by writing and running a complete
program. Our program will explore a mathematical concept known as chaos. To

type this program into IDLE, you should select the File/New File menu option.

This brings up a blank (non-shell) window where you can type a program. Here

is the Python code for our program:

File: chaos. py

A simple program illustrating chaotic behavior.

def main() :

print("This program illustrates a chaotic function")

x = eval(input("Enter a number between 0 and 1: "))

for i in range(10) :

main()

X = 3. 9 * X * (1 - X)
print(x)

Once you have typed it in, select File/Save from the menu and save it with

the name chaos. py. The . py extension indicates that this is a Python module.

Be careful where you save your program. Sometimes IDLE starts you out in
the system-wide Python folder by default. Make sure to navigate to a folder

where you keep your own files. I'd suggest keeping all of your Python programs

together in a dedicated folder in your own personal document area.

At this point, you may be trying to make sense out of what you just typed.
You can see that this particular example contains lines to define a new function

2In fact, IDLE stands for Integrated DeveLopment Environment. The extra "L" is thrown in as
a tribute to Eric Idle, of Monty Python fame.

13

14 Chapter 1. Computers and Programs

called main. (Programs are often placed in a function called main.) The last

line of the file is the command to invoke this function. Don't worry if you don't

understand what main actually does; we will discuss it in the next section. The

point here is that once we have a program saved in a module file like this, we
can run it any time we want.

Our program can be run in a number of different ways that depend on the

actual operating system and programming environment that you are using. If

you are using a windowing system, you can probably run a Python program
by clicking (or double-clicking) on the module file's icon. In a command line

situation, you might type a command like python chaos. py. When using IDLE

you can run a program simply by selecting Run/Run Module from the module

window menu. Hitting the <F5> key is a handy shortcut for this operation.

When IDLE runs the program, control will shift over to the shell window.

Here is how that looks:

>>> ----------------------- RESTART -- -----------------------

>>>

This program illustrates a chaotic function

Enter a number between 0 and 1: .25

0.73125

0.76644140625

0.6981350104385375

0.8218958187902304

0.5708940191969317

0.9553987483642099

0.166186721954413

0.5404179120617926

0.9686289302998042

0.11850901017563877

>>>

The first line is a notification from IDLE indicating that the shell has restarted.
IDLE does this each time you run a program so that the program runs in a

pristine environment. Python then runs the module from top to bottom, line

by line. It's just as if we had typed them one-by-one at the interactive Python
prompt. The def in the module causes Python to create the main function. The

last line of this module causes Python to invoke the main function, thus running

our program. The running program asks the user to enter a number between 0
and 1 (in this case, I typed ".25") and then prints out a series of 10 numbers.

1.7. Inside a Python Program

If you browse through the files on your computer, you may notice that Python

sometimes creates another folder called __ pycache __ inside the folder where

your module files are stored. This is a place where Python stashes companion

files with a . pyc extension. In this example, Python might create another file

called chaos. pyc. This is an intermediate file used by the Python interpreter.

Technically, Python uses a hybrid compiling/interpreting process. The Python

source in the module file is compiled into more primitive instructions called

byte code. This byte code (the . pyc) is then interpreted. Having a . pyc file
available makes running a module faster the second time around. However,

you may delete the byte code files if you wish to save disk space; Python will

automatically recreate them as needed.

Running a module under IDLE loads the program into the shell window. You

can run the program again by asking Python to execute the main command.

Simply type the command at the shell prompt. Continuing with our example,
here is how it looks when we rerun the program with .26 as the input:

>>> main()

This program illustrates a chaotic function

Enter a number between 0 and 1: . 26

0. 75036

0. 73054749456

0. 767706625733

0. 6954993339

0. 825942040734

0. 560670965721

0. 960644232282

0. 147446875935

0. 490254549376

0. 974629602149

>>>

lt. 71 Inside a Python Program

The output from the chaos program may not look very exciting, but it illustrates
a very interesting phenomenon known to physicists and mathematicians. Let's

take a look at this program line by line and see what it does. Don't worry about
understanding every detail right away; we will be returning to all of these ideas

in the next chapter.

15

16 Chapter 1. Computers and Programs

The first two lines of the program start with the # character:

File: chaos. py

A simple program illustrating chaotic behavior.

These lines are called comments. They are intended for human readers of the
program and are ignored by Python. The Python interpreter always skips any

text from the pound sign (#) through the end of a line.

The next line of the program begins the definition of a function called main:

def main():

Strictly speaking, it would not be necessary to create a main function. Since the

lines of a module are executed as they are loaded, we could have written our

program without this definition. That is, the module could have looked like this:

File: chaos. py

A simple program illustrating chaotic behavior.

print("This program illustrates a chaotic function")

x = eval(input("Enter a number between 0 and 1: "))

for i in range(10):

X = 3.9 * X * (1 - X)
print(x)

This version is a bit shorter, but it is customary to place the instructions that

comprise a program inside of a function called main. One immediate benefit of
this approach was illustrated above; it allows us to run the program by simply

invoking main () . We don't have to restart the Python shell in order to run it

again, which would be necessary in the main-less case.
The first line inside of main is really the beginning of our program.

print("This program illustrates a chaotic function")

This line causes Python to print a message introducing the program when it

runs.

Take a look at the next line of the program:

x = eval(input("Enter a number between 0 and 1: "))

Here x is an example of a variable. A variable is used to give a name to a value
so that we can refer to it at other points in the program.

1.7. Inside a Python Program

The entire line is a statement to get some input from the user. There's quite

a bit going on in this line, and we'll discuss the details in the next chapter; for

now, you just need to know what it accomplishes. When Python gets to this

statement, it displays the quoted message Enter a number between 0 and 1:

and then pauses, waiting for the user to type something on the keyboard and

press the <Enter> key. The value that the user types is then stored as the variable

x. In the first example shown above, the user entered . 25, which becomes the

value of x.

The next statement is an example of a loop.

for i in range(10) :

A loop is a device that tells Python to do the same thing over and over again. This
particular loop says to do something 10 times. The lines indented underneath

the loop heading are the statements that are done 10 times. These form the

body of the loop.

X = 3. 9 * X * (1 - X)
print(x)

The effect of the loop is exactly the same as if we had written the body of

the loop 10 times:

X = 3. 9 * X * (1 - x)

print(x)

X = 3. 9 * X * (1 - x)

print(x)

X = 3. 9 * X * (1 - x)

print(x)

X = 3. 9 * X * (1 - x)

print(x)

X = 3. 9 * X * (1 - x)

print(x)

X = 3. 9 * X * (1 - x)

print(x)

X = 3. 9 * X * (1 - x)

print(x)

X = 3. 9 * X * (1 - x)

print(x)

X = 3. 9 * X * (1 - x)

17

18 Chapter 1. Computers and Programs

print(x)

X = 3 .9 * X * (1 - X)
print(x)

Obviously, using the loop instead saves the programmer a lot of trouble.

But what exactly do these statements do? The first one performs a calcula­

tion.

X = 3 .9 * X * (1 - X)

This is called an assignment statement. The part on the right side of the = is a

mathematical expression. Python uses the * character to indicate multiplication.
Recall that the value of x is 0.25 (from the input above). The computed value

is 3.9(0.25)(1- 0.25) or 0.73125. Once the value on the right-hand side is com­

puted, it is saved as (or assigned to) the variable that appears on the left-hand
side of the =, in this case x. The new value of x (0. 73125) replaces the old value

(0.25).
The second line in the loop body is a type of statement we have encountered

before, a print statement.

print(x)

When Python executes this statement, the current value of x is displayed on the
screen. So the first number of output is 0.73125.

Remember the loop executes 10 times. After printing the value of x, the two

statements of the loop are executed again.

X = 3 .9 * X * (1 - X)
print(x)

Of course, now x has the value 0. 73125, so the formula computes a new value of

x as 3.9(0.73125)(1- 0.73125), which is 0.76644140625.
Can you see how the current value of x is used to compute a new value each

time around the loop? That's where the numbers in the example run came from.

You might try working through the steps of the program yourself for a different

input value (say 0.5). Then run the program using Python and see how well you

did impersonating a computer.

lt.al Chaos and Computers

I said above that the chaos program illustrates an interesting phenomenon.
What could be interesting about a screen full of numbers? If you try out the

1.8. Chaos and Computers

program for yourself, you'll find that, no matter what number you start with,

the results are always similar: the program spits back 10 seemingly random

numbers between 0 and 1. As the program runs, the value of x seems to jump

around, well, chaotically.

The function computed by this program has the general form: k(x)(l- x),
where k in this case is 3. 9. This is called a logistic function. It models certain
kinds of unstable electronic circuits and is also sometimes used to model popu­

lation variation under limiting conditions. Repeated application of the logistic

function can produce chaos. Although our program has a well-defined underly­

ing behavior, the output seems unpredictable.

An interesting property of chaotic functions is that very small differences

in the initial value can lead to large differences in the result as the formula is
repeatedly applied. You can see this in the chaos program by entering numbers

that differ by only a small amount. Here is the output from a modified program

that shows the results for initial values of 0.25 and 0.26 side by side:

input 0. 25 0. 26

0. 731250 0. 750360

0. 766441 0. 730547

0. 698135 0. 767707

0. 821896 0. 695499

0. 570894 0. 825942

0. 955399 0. 560671

0. 166187 0. 960644

0. 540418 0. 147447

0. 968629 0. 490255

0. 118509 0. 974630

With very similar starting values, the outputs stay similar for a few iterations,

but then differ markedly. By about the fifth iteration, there no longer seems to

be any relationship between the two models.

These two features of our chaos program, apparent unpredictability and ex­

treme sensitivity to initial values, are the hallmarks of chaotic behavior. Chaos

has important implications for computer science. It turns out that many phe­

nomena in the real world that we might like to model and predict with our

computers exhibit just this kind of chaotic behavior. You may have heard of the

so-called butteifly effect. Computer models that are used to simulate and predict
weather patterns are so sensitive that the effect of a single butterfly flapping

19

20 Chapter 1. Computers and Programs

its wings in New Jersey might make the difference of whether or not rain is
predicted in Peoria.

It's very possible that even with perfect computer modeling, we might never

be able to measure existing weather conditions accurately enough to predict

weather more than a few days in advance. The measurements simply can't be

precise enough to make the predictions accurate over a longer time frame.

As you can see, this small program has a valuable lesson to teach users of

computers. As amazing as computers are, the results that they give us are only

as useful as the mathematical models on which the programs are based. Com­

puters can give incorrect results because of errors in programs, but even correct

programs may produce erroneous results if the models are wrong or the initial
inputs are not accurate enough.

lt.9l Chapter Summary

This chapter has introduced computers, computer science, and programming.
Here is a summary of some of the key concepts:

• A computer is a universal information-processing machine. It can carry out

any process that can be described in sufficient detail. A description of the

sequence of steps for solving a particular problem is called an algorithm.
Algorithms can be turned into software (programs) that determines what

the hardware (physical machine) can and does accomplish. The process

of creating software is called programming.

• Computer science is the study of what can be computed. Computer sci­
entists use the techniques of design, analysis, and experimentation. Com­

puter science is the foundation of the broader field of computing which

includes areas such as networking, databases, and information manage­

ment systems, to name a few.

• A basic functional view of a computer system comprises a central process­

ing unit (CPU), main memory, secondary memory, and input and output

devices. The CPU is the brain of the computer that performs simple arith­

metic and logical operations. Information that the CPU acts on (data and
programs) is stored in main memory (RAM). More permanent informa­

tion is stored on secondary memory devices such as magnetic disks, flash

memory, and optical devices. Information is entered into the computer via
input devices, and output devices display the results.

1. 10. Exercises

• Programs are written using a formal notation known as a programming

language. There are many different languages, but all share the property
of having a precise syntax (form) and semantics (meaning). Computer

hardware understands only a very low-level language known as machine
language. Programs are usually written using human-oriented, high-level

languages such as Python. A high-level language must either be compiled

or interpreted in order for the computer to understand it. High-level lan­

guages are more portable than machine language.

• Python is an interpreted language. One good way to learn about Python

is to use an interactive shell for experimentation. The standard Python

distribution includes a program called IDLE that provides a shell as well
as facilities for editing Python programs.

• A Python program is a sequence of commands (called statements) for the

Python interpreter to execute. Python includes statements to do things
such as print output to the screen, get input from the user, calculate the

value of a mathematical expression, and perform a sequence of statements

multiple times (loop).

• A mathematical model is called chaotic if very small changes in the input

lead to large changes in the results, making them seem random or un­

predictable. The models of many real-world phenomena exhibit chaotic

behavior, which places some limits on the power of computing.

lt.l 0 I Exercises

Review Questions

True/False

1. Computer science is the study of computers.

2. The CPU is the "brain" of the computer.

3. Secondary memory is also called RAM.

4. All information that a computer is currently working on is stored in main

memory.

5. The syntax of a language is its meaning, and semantics is its form.

21

22 Chapter 1. Computers and Programs

6. A function definition is a sequence of statements that defines a new com­

mand.

7. A programming environment refers to a place where programmers work.

8. A variable is used to give a name to a value so it can be referred to in other

places.

9. A loop is used to skip over a section of a program.

10. A chaotic function can't be computed by a computer.

Multiple Choice

1. What is the fundamental question of computer science?
a) How fast can a computer compute?

b) What can be computed?

c) What is the most effective programming language?
d) How much money can a programmer make?

2. An algorithm is like a

a) newspaper b) venus flytrap c) drum d) recipe

3. A problem is intractable when
a) you cannot reverse its solution

b) it involves tractors

c) it has many solutions

d) it is not practical to solve

4. Which of the following is not an example of secondary memory?
a) RAM b) hard drive c) USB flash drive d) DVD

5. Computer languages designed to be used and understood by humans are
a) natural languages

b) high-level computer languages
c) machine languages
d) fetch-execute languages

6. A statement is
a) a translation of machine language

b) a complete computer command
c) a precise description of a problem
d) a section of an algorithm

1. 10. Exercises 23

7. One difference between a compiler and an interpreter is
a) a compiler is a program

b) a compiler is used to translate high-level language into machine language

c) a compiler is no longer needed after a program is translated

d) a compiler processes source code

8. By convention, the statements of a program are often placed in a function

called
a) import b) main c) program d) IDLE

9. Which of the following is not true of comments?
a) They make a program more efficient.

b) They are intended for human readers.
c) They are ignored by Python.

d) In Python, they begin with a pound sign (#).

10. The items listed in the parentheses of a function definition are called
a) parentheticals
b) parameters

c) arguments

d) both b) and c) are correct

Discussion

1. Compare and contrast the following pairs of concepts from the chapter:

a) Hardware vs. Software

b) Algorithm vs. Program

c) Programming Language vs. Natural Language

d) High-Level Language vs. Machine Language

e) Interpreter vs. Compiler

f) Syntax vs. Semantics

2. List and explain in your own words the role of each of the five basic func­

tional units of a computer depicted in Figure 1.1.

3. Write a detailed algorithm for making a peanut butter and jelly sandwich

(or some other everyday activity). You should assume that you are talking

to someone who is conceptually able to do the task, but has never actually
done it before. For example, you might be telling a young child.

24 Chapter 1. Computers and Programs

4. As you will learn in a later chapter, many of the numbers stored in a com­

puter are not exact values, but rather close approximations. For example,

the value 0.1 might be stored as 0.10000000000000000555. Usually, such

small differences are not a problem; however, given what you have learned
about chaotic behavior in Chapter 1, you should realize the need for cau­

tion in certain situations. Can you think of examples where this might be

a problem? Explain.

5. Trace through the chaos program from Section 1.6 by hand using 0.15 as

the input value. Show the sequence of output that results.

Programming Exercises

1. Start up an interactive Python session and try typing in each of the follow­

ing commands. Write down the results you see.

a) print ("Hello, world! ")

b) print("Hello", "world!")

c) print (3)

d) print(3.0)

e) print (2 + 3)

f) print(2. 0 + 3. 0)

g) print (II 2 II
+

II 3 II)

h) print ("2 + 3 =", 2 + 3)

i) print(2 * 3)

j) print (2 ** 3)

k) print (7 I 3)

1) print(?// 3)

2. Enter and run the chaos program from Section 1.6. Try it out with various

values of input to see that it functions as described in the chapter.

3. Modify the chaos program using 2.0 in place of 3.9 as the multiplier in the

logistic function. Your modified line of code should look like this:

X = 2. 0 * X * (1 - X)

1. 10. Exercises

Run the program for various input values and compare the results to those

obtained from the original program. Write a short paragraph describing

any differences that you notice in the behavior of the two versions.

4. Modify the chaos program so that it prints out 20 values instead of 10.

5. Modify the chaos program so that the number of values to print is deter­

mined by the user. You will have to add a line near the top of the program

to get another value from the user:

n = eval(input("How many numbers should I print? "))

Then you will need to change the loop to use n instead of a specific number.

6. The calculation performed in the chaos program can be written in a num­

ber of ways that are algebraically equivalent. Write a version of the pro­

gram for each of the following ways of doing the computation. Have your
modified programs print out 100 iterations of the calculation and compare

the results when run on the same input.

a) 3 . 9 * x * (1 - x)

b) 3.9 * (x - x * x)

C) 3.9 * X - 3.9 * X * X

Explain the results of this experiment. Hint: See discussion question num­

ber 4, above.

7. (Advanced) Modify the chaos program so that it accepts two inputs and
then prints a table with two columns similar to the one shown in Sec­

tion 1.8. (Note: You will probably not be able to get the columns to line

up as nicely as those in the example. Chapter 5 discusses how to print

numbers with a fixed number of decimal places.)

25

Chapter 2

Objectives

Writing Simple

Programs

• To know the steps in an orderly software development process.

• To understand programs following the input, process, output (IPO) pattern
and be able to modify them in simple ways.

• To understand the rules for forming valid Python identifiers and expressions.

• To be able to understand and write Python statements to output informa­
tion to the screen, assign values to variables, get information entered from
the keyboard, and perform a counted loop.

12.11 The Software Development Process

As you saw in the previous chapter, it is easy to run programs that have already
been written. The harder part is actually coming up with a program in the first
place. Computers are very literal, and they must be told what to do right down
to the last detail. Writing large programs is a daunting challenge. It would be
almost impossible without a systematic approach.

The process of creating a program is often broken down into stages according
to the information that is produced in each phase. In a nutshell, here's what you
should do:

27

28 Chapter 2. Writing Simple Programs

Analyze the Problem Figure out exactly what the problem to be solved is. Try
to understand as much as possible about it. Until you really know what
the problem is, you cannot begin to solve it.

Determine Specifications Describe exactly what your program will do. At this
point, you should not worry about how your program will work, but rather
about deciding exactly what it will accomplish. For simple programs this
involves carefully describing what the inputs and outputs of the program
will be and how they relate to each other.

Create a Design Formulate the overall structure of the program. This is where
the how of the program gets worked out. The main task is to design the
algorithm(s) that will meet the specifications.

Implement the Design Translate the design into a computer language and put
it into the computer. In this book, we will be implementing our algorithms
as Python programs.

Test/Debug the Program Try out your program and see whether it works as
expected. If there are any errors (often called bugs), then you should
go back and fix them. The process of locating and fixing errors is called
debugging a program. During the debugging phase, your goal is to find
errors, so you should try everything you can think of that might ''break" the
program. It's good to keep in mind the old maxim: "Nothing is foolproof
because fools are too ingenious."

Maintain the Program Continue developing the program in response to the
needs of your users. Most programs are never really finished; they keep
evolving over years of use.

12.21 Example Program: Temperature Converter

Let's go through the steps of the software development process with a simple
real-world example involving a fictional computer science student, Susan Com­
putewell.

Susan is spending a year studying in Germany. She has no problems with
language, as she is fluent in many languages (including Python). Her problem
is that she has a hard time figuring out the temperature in the morning so that
she knows how to dress for the day. Susan listens to the weather report each

2.2. Example Program: Temperature Converter

morning, but the temperatures are given in degrees Celsius, and she is used to
Fahrenheit.

Fortunately, Susan has an idea to solve the problem. Being a computer sci­
ence major, she never goes anywhere without her laptop computer. She thinks
it might be possible that a computer program could help her out.

Susan begins with an analysis of her problem. In this case, the problem is
pretty clear: the radio announcer gives temperatures in degrees Celsius, but
Susan only comprehends temperatures that are in degrees Fahrenheit.

Next, Susan considers the specifications of a program that might help her
out. What should the input be? She decides that her program will allow her to
type in the temperature in degrees Celsius. And the output? The program will
display the temperature converted into degrees Fahrenheit. Now she needs to
specify the exact relationship of the output to the input.

Susan does some quick figuring. She knows that 0 degrees Celsius (freez­
ing) is equal to 32 degrees Fahrenheit, and 100 Celsius (boiling) is equal to 212
Fahrenheit. With this information, she computes the ratio of Fahrenheit to Cel­
sius degrees as 2lg0-=_3g = �gg = g. Using F to represent the Fahrenheit tempera­

ture and C for Celsius, the conversion formula will have the form F = g C + k for
some constant k. Plugging in 0 and 32 for C and F, respectively, Susan immedi­
ately sees that k = 32. So the final formula for the relationship is F = g C + 32.
That seems an adequate specification.

Notice that this describes one of many possible programs that could solve this
problem. If Susan had a background in the field of Artificial Intelligence (AI),
she might consider writing a program that would actually listen to the radio
announcer to get the current temperature using speech recognition algorithms.
For output, she might have the computer control a robot that goes to her closet
and picks an appropriate outfit based on the converted temperature. This would
be a much more ambitious project, to say the least!

Certainly, the robot program would also solve the problem identified in the
problem analysis. The purpose of specification is to decide exactly what this
particular program will do to solve a problem. Susan knows better than to just
dive in and start writing a program without first having a clear idea of what she
is trying to build.

Susan is now ready to design an algorithm for her problem. She immedi­
ately realizes that this is a simple algorithm that follows a standard pattern:
Input, Process, Output (IPO). Her program will prompt the user for some input
information (the Celsius temperature), process it to produce a Fahrenheit tem­
perature, and then output the result by displaying it on the computer screen.

29

30 Chapter 2. Writing Simple Programs

Susan could write her algorithm down in a computer language. However,
the precision required to write it out formally tends to stifle the creative pro­
cess of developing the algorithm. Instead, she writes her algorithm using pseu­
docode. Pseudocode is just precise English that describes what a program does.
It is meant to communicate algorithms without all the extra mental overhead of
getting the details right in any particular programming language.

Here is Susan's completed algorithm:

Input the temperature in degrees Celsius (call it celsius)
Calculate fahrenheit as (9/S) celsius + 32

Output fahrenheit

The next step is to translate this design into a Python program. This is
straightforward, as each line of the algorithm turns into a corresponding line
of Python code.

convert.py
A program to convert Celsius temps to Fahrenheit
by: Susan Computewell

def main () :
celsius = eval (input ("What is the Celsius temperature? "))
fahrenheit = 9/5 * celsius + 32

print ("The temperature is", fahrenheit, "degrees Fahrenheit.")

main ()

See if you can figure out what each line of this program does. Don't worry
if some parts are a bit confusing. They will be discussed in detail in the next
section.

After completing her program, Susan tests it to see how well it works. She
uses inputs for which she knows the correct answers. Here is the output from
two of her tests:

What is the Celsius temperature? 0

The temperature is 32.0 degrees Fahrenheit.

What is the Celsius temperature? 100

The temperature is 212.0 degrees Fahrenheit.

2.3. Elements of Programs

You can see that Susan used the values ofO and 100 to test her program. It looks
pretty good, and she is satisfied with her solution. She is especially pleased that
no debugging seems necessary (which is very unusual).

12.31 Elements of Programs

Now that you know something about the programming process, you are almost
ready to start writing programs on your own. Before doing that, though, you
need a more complete grounding in the fundamentals of Python. The next few
sections will discuss technical details that are essential to writing correct pro­
grams. This material can seem a bit tedious, but you will have to master these
basics before plunging into more interesting waters.

12.3.11 Names

You have already seen that names are an important part of programming. We
give names to modules (e.g., convert) and to the functions within modules
(e.g., main). Variables are used to give names to values (e.g., celsius and
fahrenheit). Technically, all these names are called identifiers. Python has
some rules about how identifiers are formed. Every identifier must begin with a
letter or underscore (the "_" character) which may be followed by any sequence
of letters, digits, or underscores. This implies that a single identifier cannot
contain any spaces.

According to these rules, all of the following are legal names in Python:

X
celsius
spam
spam2
SpamAnd.Eggs
Spam_and_Eggs

Identifiers are case-sensitive, so spam, Spam, sPam, and SPAM are all different
names to Python. For the most part, programmers are free to choose any name
that conforms to these rules. Good programmers always try to choose names
that describe the thing being named.

One important thing to be aware of is that some identifiers are part of Python
itself. These names are called reserved words or keywords and cannot be used as
ordinary identifiers. The complete list of Python keywords is shown in Table 2.1.

31

32

False
None
True
and
as
assert
break

Chapter 2. Writing Simple Programs

class finally is
continue for lambda
def from nonlocal
del global not
elif if or
else import pass
except

. .

1n ra1se

Table 2.1: Python keywords

return
try
while
with
yield

Python also includes quite a number of built-in functions, such as the print
function that we've already been using. While it's technically legal to (re)use the
built-in function-name identifiers for other purposes, it's generally a very bad

idea to do so. For example, if you redefine the meaning of print, then you will
no longer be able to print things out. You will also seriously confuse any Python
programmers who read your program; they expect print to refer to the built-in
function. A complete list of the built-in functions can be found in Appendix A.

12.3.21 Expressions

Programs manipulate data. So far, we have seen two different kinds of data in
our example programs: numbers and text. We'll examine these different data
types in great detail in later chapters. For now, you just need to keep in mind that
all data has to be stored on the computer in some digital format, and different
types of data are stored in different ways.

The fragments of program code that produce or calculate new data values
are called expressions. The simplest kind of expression is a literal. A literal is
used to indicate a specific value. In chaos . py you can find the numbers 3 . 9
and 1. The convert. py program contains 9, 5, and 32. These are all examples
of numeric literals, and their meaning is obvious: 32 represents, well, 32 (the
number 32).

Our programs also manipulated textual data in some simple ways. Com­
puter scientists refer to textual data as strings. You can think of a string as just
a sequence of printable characters. A string literal is indicated in Python by en­
closing the characters in quotation marks (" "). If you go back and look at our
example programs, you will find a number of string literals such as: "Hello"
and "Enter a number between 0 and 1: ". These literals produce strings

2.3. Elements of Programs

containing the quoted characters. Note that the quotes themselves are not part
of the string. They are just the mechanism to tell Python to create a string.

The process of turning an expression into an underlying data type is called
evaluation. When you type an expression into a Python shell, the shell evaluates
the expression and prints out a textual representation of the result. Consider
this small interaction:

>>> 32
32
>>> "Hello"
'Hello'
>>> "3211

'32'

Notice that when the shell shows the value of a string, it puts the sequence of
characters in single quotes. This is a way of letting us know that the value is
actually text, not a number (or other data type). In the last interaction, we see
that the expression "32" produces a string, not a number. In this case, Python is
actually storing the characters "3" and "2," not a representation of the number
32. If that's confusing right now, don't worry too much about it; it will become
clearer when we discuss these data types in later chapters.

A simple identifier can also be an expression. We use identifiers as variables
to give names to values. When an identifier appears as an expression, its value
is retrieved to provide a result for the expression. Here is an interaction with
the Python interpreter that illustrates the use of variables as expressions:

>>> X = 5
>>> X
5
>>> print (x)

5
>>> print (spam)
Traceback (most recent call last) :

File "<stdin>", line 1, in <module>
NameError: name 'spam' is not defined

First the variable x is assigned the value 5 (using the numeric literal 5). In the
second line of interaction, we are asking Python to evaluate the expression x. In
response, the Python shell prints out 5, which is the value that was just assigned
to x. Of course, we get the same result when we explicitly ask Python to print x

33

34 Chapter 2. Writing Simple Programs

using a print statement. The last interaction shows what happens when we try
to use a variable that has not been assigned a value. Python cannot find a value,
so it reports a NameError. This says that there is no value with that name. The
important lesson here is that a variable must always be assigned a value before
it can be used in an expression.

More complex and interesting expressions can be constructed by combin­
ing simpler expressions with operators. For numbers, Python provides the nor­
mal set of mathematical operations: addition, subtraction, multiplication, divi­
sion, and exponentiation. The corresponding Python operators are +, -, *, I,
and **· Here are some examples of complex expressions from chaos. py and
convert . py:

3.9 * x * (1 - x)

915 * celsius + 32

Spaces are irrelevant within an expression. The last expression could have been
written 9l5 *celsius+32 and the result would be exactly the same. Usually it's
a good idea to place some spaces in expressions to make them easier to read.

Python's mathematical operators obey the same rules of precedence and as­
sociativity that you learned in your math classes, including using parentheses
to modify the order of evaluation. You should have little trouble constructing
complex expressions in your own programs. Do keep in mind that only the
round parentheses are allowed in numeric expressions, but you can nest them if
necessary to create expressions like this:

((x1 - x2) I 2*n) + (spam I k **3)

By the way, Python also provides operators for strings. For example, you can
"add" strings.

>>> "Bat" + "man"
'Batman'

This is called concatenation. As you can see, the effect is to create a new string
that is the result of "gluing" the strings together. You'll see a lot more string
operations in Chapter 5.

12.41 Output Statements

Now that you have the basic building blocks, identifier and expression, you
are ready for a more complete description of various Python statements. You

2.4. Output Statements

already know that information can be displayed on screen using Python's built­
in function print. So far, we have looked at a few examples, but I have not yet
explained the print function in detail. Like all programming languages, Python
has a precise set of rules for the syntax (form) and semantics (meaning) of each
statement. Computer scientists have developed sophisticated notations called
meta-languages for describing programming languages. In this book we will rely
on a simple template notation to illustrate the syntax of various statements.

Since print is a built-in function, a print statement has the same general
form as any other function invocation. We type the function name print fol­
lowed by parameters listed in parentheses. Here is how the print statement
looks using our template notation:

print (<expr>, <expr>, . . . , <expr>)
print ()

These two templates show two forms of the print statement. The first indicates
that a print statement can consist of the function name print followed by a
parenthesized sequence of expressions, which are separated by commas. The
angle bracket notation (< >) in the template is used to indicate "slots" that are
filled in by other fragments of Python code. The name inside the brackets indi­
cates what is missing; expr stands for an expression. The ellipsis (" ... ") denotes
an indefinite series (of expressions, in this case). You don't actually type the
dots. The second version of the statement shows that it's also legal to have a
print without any expressions to print.

As far as semantics is concerned, a print statement displays information
in textual form. Any supplied expressions are evaluated left to right, and the
resulting values are displayed on a line of output in a left-to-right fashion. By
default, a single blank space character is placed between the displayed values.
As an example, this sequence of print statements:

print (3+ 4)
print (3, 4, 3 + 4)
print ()
print ("The answer is", 3 + 4)

produces this output:

7
3 4 7

The answer is 7

35

36 Chapter 2. Writing Simple Programs

The last statement illustrates how string literal expressions are often used in
print statements as a convenient way of labeling output.

Notice that successive print statements normally display on separate lines
of the screen. A bare print (no parameters) produces a blank line of output.
Underneath, what's really happening is that the print function automatically
appends some ending text after all of the supplied expressions are printed. By
default, that ending text is a special marker character (denoted as "\n") that
signals the end of a line. We can modify that behavior by including an additional
parameter that explicitly overrides this default. This is done using a special
syntax for named or keyword parameters.

A template for the print statement including the keyword parameter to
specify the ending text looks like this:

print (<expr>, <expr>, . . . , <expr>, end="\n")

The keyword for the named parameter is end and it is given a value using =
notation, similar to variable assignment. Notice in the template I have shown its
default value, the end-of-line character. This is a standard way of showing what
value a keyword parameter will have when it is not explicitly given some other
value.

One common use of the end parameter in print statements is to allow mul­
tiple prints to build up a single line of output. For example:

print ("The answer is", end=" ")
print (3 + 4)

produces the single line of output:

The answer is 7

Notice how the output from the first print statement ends with a space (" ")
rather than an end-of-line character. The output from the second statement
appears immediately following the space.

12.51 Assignment Statements

One of the most important kinds of statements in Python is the assignment state­
ment. We've already seen a number of these in our previous examples.

2.5. Assignment Statements

12.5.11 Simple Assignment

The basic assignment statement has this form:

<variable> = <expr>

Here variable is an identifier and expr is an expression. The semantics of the
assignment is that the expression on the right side is evaluated to produce a
value, which is then associated with the variable named on the left side.

Here are some of the assignments we've already seen:

X = 3.9 * X * (1 - X)
fahrenheit = 9 I 5 * celsius + 32
X = 5

A variable can be assigned many times. It always retains the value of the
most recent assignment. Here is an interactive Python session that demonstrates
the point:

>>> myVar - 0

>>> myVar
0

>>> myVar - 7
>>> myVar
7
>>> myVar = myVar + 1

>>> myVar

8

The last assignment statement shows how the current value of a variable can be
used to update its value. In this case I simply added 1 to the previous value. The
chaos . py program from Chapter 1 did something similar, though a bit more
complex. Remember, the values of variables can change; that's why they're
called variables.

Sometimes it's helpful to think of a variable as a sort of named storage loca­
tion in computer memory, a box that we can put a value in. When the variable
changes, the old value is erased and a new one written in. Figure 2.1 shows
how we might picture the effect of x = x + 1 using this model. This is exactly
the way assignment works in some computer languages. It's also a very sim­
ple way to view the effect of assignment, and you'll find pictures similar to this
throughout the book.

37

38 Chapter 2. Writing Simple Programs

Before

X 10
X = X + 1

After

X 11

Figure 2.1: Variable as box view of x = x + 1

Python assignment statements are actually slightly different from the ''vari­
able as a box" model. In Python, values may end up anywhere in memory, and
variables are used to refer to them. Assigning a variable is like putting one of
those little yellow sticky notes on the value and saying, "this is x." Figure 2.2
gives a more accurate picture of the effect of assignment in Python. An ar­
row is used to show which value a variable refers to. Notice that the old value
doesn't get erased by the new one; the variable simply switches to refer to the
new value. The effect is like moving the sticky note from one object to another.
This is the way assignment actually works in Python, so you'll see some of these
sticky-note style pictures sprinkled throughout the book as well.

Before

X IL..------+-------�� 1 0

X = X + 1

./

After

X 10

11

Figure 2.2: Variable as sticky note (Python) view of x = x + 1

By the way, even though the assignment statement doesn't directly cause the
old value of a variable to be erased and overwritten, you don't have to worry
about computer memory getting filled up with the "discarded" values. When a
value is no longer referred to by any variable, it is no longer useful. Python will
automatically clear these values out of memory so that the space can be used for
new values. This is like going through your closet and tossing out anything that

2.5. Assignment Statements

doesn't have a sticky note to label it. In fact, this process of automatic memory
management is actually called garbage collection.

12.5.21 Assigning Input

The purpose of an input statement is to get some information from the user of a
program and store it into a variable. Some programming languages have a spe­
cial statement to do this. In Python, input is accomplished using an assignment
statement combined with a built-in function called input. The exact form of an
input statement depends on what type of data you are trying to get from the
user. For textual input, the statement will look like this:

<variable> = input (<prompt>)

Here <prompt > is a string expression that is used to prompt the user for input;
the prompt is almost always a string literal (i.e., some text inside of quotation
marks).

When Python encounters a call to input, it prints the prompt on the screen.
Python then pauses and waits for the user to type some text and press the
<Enter> key. Whatever the user types is then stored as a string. Consider
this simple interaction:

>>> name = input (11Enter your name: 11)
Enter your name: John Yaya
>>> name
'John Yaya'

Executing the input statement caused Python to print out the prompt "Enter
your name:" and then the interpreter paused waiting for user input. In this
example, I typed John Yaya. As a result, the string' John Yaya' is remembered
in the variable name. Evaluating name gives back the string of characters that I
typed.

When the user input is a number, we need a slightly more complicated form
of input statement:

<variable> = eval (input (<prompt>))

Here I've added another built-in Python function eval that is ''wrapped around"
the input function. As you might guess, eval is short for "evaluate." In this
form, the text typed by the user is evaluated as an expression to produce the
value that is stored into the variable. So, for example, the string 113211 becomes

39

40 Chapter 2. Writing Simple Programs

the number 32. If you look back at the example programs so far, you'll see a
couple of examples where we've gotten numbers from the user like this.

x = eval (input ("Please enter a number between 0 and 1: "))
celsius = eval (input ("What is the Celsius temperature? "))

The important thing to remember is that you need to eval the input when you
want a number instead of some raw text (a string).

If you are reading the example programs carefully, you probably noticed the
blank space inside the quotes at the end of all these prompts. I usually put a
space at the end of a prompt so that the input that the user types does not start
right next to the prompt. Putting a space in makes the interaction easier to read
and understand.

Although our numeric examples specifically prompted the user to enter a
number, what the user types in this case is just a numeric literal-a simple
Python expression. In fact, any valid expression would be just as acceptable.
Consider the following interaction with the Python interpreter:

>>> ans = eval (input ("Enter an expression: "))
Enter an expression: 3 + 4 * 5
>>> print (ans)
23
>>>

Here, when prompted to enter an expression, the user typed "3 + 4 * 5." Python
evaluated this expression (via eval) and assigned the value to the variable ans.
When printed, we see that ans got the value 23 as expected. In a sense, the
input-eval combination is like a delayed expression. The example interaction
produced exactly the same result as if we had simply written ans = 3 + 4 * 5.
The difference is that the expression was supplied by the user at the time the
statement was executed instead of being typed by the programmer when the
program was written.

Beware: the eval function is very powerful and also potentially dangerous.

As this example illustrates, when we evaluate user input, we are essentially
allowing the user to enter a portion of our program. Python will dutifully eval­
uate whatever they type. Someone who knows Python could exploit this ability
to enter malicious instructions. For example, the user could type an expression
that captures private information or deletes files on the computer. In computer
security, this is called a code injection attack, because an attacker is injecting
malicious code into the running program.

2.5. Assignment Statements

As a beginning programmer writing programs for your own personal use,
computer scecurity is not much of an issue; if you are sitting at the computer
running a Python program, then you probably have full access to the system
and can find much easier ways to, say, delete all your files. However, when the
input to a program is coming from untrusted sources, say from users on the
Internet, the use of eval could be disasterous. Fortunately, you will see some
safer alternatives in the next chapter.

12.5.31 Simultaneous Assignment

There is an alternative form of the assignment statement that allows us to cal­
culate several values all at the same time. It looks like this:

<var1>, <var2>, . . . , <varn> = <expr1>, <expr2>, . . . , <exprn>

This is called simultaneous assignment. Semantically, this tells Python to evaluate
all the expressions on the right-hand side and then assign these values to the
corresponding variables named on the left-hand side. Here's an example:

sum, diff = x+y, x-y

Here sum would get the sum of x andy, and diff would get the difference.
This form of assignment seems strange at first, but it can prove remarkably

useful. Here's an example: Suppose you have two variables x andy, and you
want to swap the values. That is, you want the value currently stored in x to
be in y and the value that is currently in y to be stored in x. At first, you might
think this could be done with two simple assignments:

X = y
y = X

This doesn't work. We can trace the execution of these statements step by step
to see why.

Suppose x andy start with the values 2 and 4. Let's examine the logic of
the program to see how the variables change. The following sequence uses
comments to describe what happens to the variables as these two statements
are executed:

variables x y
initial values 2 4
X = y

41

42

now
y = X
final

Chapter 2. Writing Simple Programs

4 4

4 4

See how the first statement clobbers the original value of x by assigning to it the
value of y? When we then assign x toy in the second step, we just end up with
two copies of the original y value.

One way to make the swap work is to introduce an additional variable that
temporarily remembers the original value of x.

temp = x
X = y

y = temp

Let's walk through this sequence to see how it works.

variables X y temp
initial values 2 4 no value yet
temp = x
2 4 2
X = y
4 4 2

y - temp
4 2 2

As you can see from the final values of x and y, the swap was successful in this
case.

This sort of three-way shuffle is common in other programming languages.
In Python, the simultaneous assignment statement offers an elegant alternative.
Here is a simpler Python equivalent:

X, y = y, X

Because the assignment is simultaneous, it avoids wiping out one of the original
values.

Simultaneous assignment can also be used to get multiple numbers from the
user in a single input. Consider this program for averaging exam scores:

avg2. py
A simple program to average two exam scores
Illustrates use of multiple input

2.6. Definite Loops 43

def main () :
print ("This program computes the average of two exam scores. ")

score!, score2 = eval (input ("Enter two scores separated by a comma: "))
average = (score! + score2) I 2

print ("The average of the scores is: ", average)

main ()

The program prompts for two scores separated by a comma. Suppose the user
types 86, 92. The effect of the input statement is then the same as if we had
done this assignment:

score!, score2 = 86, 92

We have gotten a value for each of the variables in one fell swoop. This example
used just two values, but it could be generalized to any number of inputs.

Of course, we could have just gotten the input from the user with separate
input statements:

score! - eval (input ("Enter the first score: "))
score2 - eval (input ("Enter the second score: "))

In some ways this may be better, as the separate prompts are more informative
for the user. In this example the decision as to which approach to take is largely
a matter of taste. Sometimes getting multiple values in a single input provides a
more intuitive user interface, so it's a nice technique to have in your toolkit. Just
remember that the multiple values trick will not work for string (non-evaled)
input; when the user types a comma it will be just another character in the input
string. The comma only becomes a separator when the string is subsequently
evaluated.

12.61 Definite Loops

You already know that programmers use loops to execute a sequence of state­
ments multiple times in succession. The simplest kind of loop is called a definite
loop. This is a loop that will execute a definite number of times. That is, at the
point in the program when the loop begins, Python knows how many times to

44 Chapter 2. Writing Simple Programs

go around (or iterate) the body of the loop. For example, the chaos program in
Chapter 1 used a loop that always executed exactly ten times:

for i in range (10) :
X = 3 . 9 * X * (1 - X)
print (x)

This particular loop pattern is called a counted loop, and it is built using a Python
for statement. Before considering this example in detail, let's take a look at
what for loops are all about.

A Python for loop has this general form:

for <var> in <sequence>:
<body>

The body of the loop can be any sequence of Python statements. The extent of
the body is indicated by its indentation under the loop heading (the for <var>
in <sequence> : part).

The variable after the keyword for is called the loop index. It takes on each
successive value in the sequence, and the statements in the body are executed
once for each value. Often the sequence portion consists of a list of values. Lists
are a very important concept in Python, and you will learn more about them in
upcoming chapters. For now, it's enough to know that you can create a simple
list by placing a sequence of expressions in square brackets. Some interactive
examples help to illustrate the point:

>>> for i in [0, 1, 2, 3]:
print (i)

0
1
2
3

>>> for odd in [1, 3, 5, 7, 9]:
print (odd * odd)

1
9
25

49
81

2.6. Definite Loops

Can you see what is happening in these two examples? The body of the
loop is executed using each successive value in the list. The length of the list
determines the number of times the loop executes. In the first example, the list
contains the four values 0 through 3, and these successive values of i are simply
printed. In the second example, odd takes on the values of the first five odd
natural numbers, and the body of the loop prints the squares of these numbers.

Now, let's go back to the example that began this section (from chaos. py)
Look again at the loop heading:

for i in range (10) :

Comparing this to the template for the for loop shows that the last portion,
range (10) , must be some kind of sequence. It turns out that range is a built­
in Python function for generating a sequence of numbers "on the fly." You can
think of a range as a sort of implicit description of a sequence of numbers. To
get a handle on what range actually does, we can ask Python to turn a range
into a plain old list using another built-in function, l ist:

>>> l ist (range (10)) # turns range (10) into an expl icit l ist
[0' 1' 2' 3' 4' 5' 6' 7' 8' 9]

Do you see what is happening here? The expression range (10) produces the
sequence of numbers 0 through 9. The loop using range (10) is equivalent to
one using a list of those numbers.

for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]:

In general, range (<expr>) will produce a sequence of numbers that starts
with 0 and goes up to, but does not include, the value of <expr>. If you think
about it, you will see that the value of the expression determines the number of
items in the resulting sequence. In chaos . py we did not even care what values
the loop index variable used (since i was not referred to anywhere in the loop
body). We just needed a sequence length of 10 to make the body execute 10
times.

As I mentioned above, this pattern is called a counted loop, and it is a very
common way to use definite loops. When you want to do something in your
program a certain number of times, use a for loop with a suitable range. This
is a recurring Python programming idiom that you need to memorize:

45

46 Chapter 2. Writing Simple Programs

for <variable> in range (<expr>) :

The value of the expression determines how many times the loop executes. The
name of the index variable doesn't really matter much; programmers often use i
or j as the loop index variable for counted loops. Just be sure to use an identifier
that you are not using for any other purpose. Otherwise you might accidentally
wipe out a value that you will need later.

The interesting and useful thing about loops is the way that they alter the
"flow of control" in a program. Usually we think of computers as executing a
series of instructions in strict sequence. Introducing a loop causes Python to go
back and do some statements over and over again. Statements like the for loop
are called control structures because they control the execution of other parts of
the program.

Some programmers find it helpful to think of control structures in terms of
pictures called flowcharts. A flowchart is a diagram that uses boxes to represent
different parts of a program and arrows between the boxes to show the sequence
of events when the program is running. Figure 2.3 depicts the semantics of the
for loop as a flowchart.

<va r> = next item

<body>

Figure 2.3: Flowchart of a for loop

2.7. Example Program: Future Value

If you are having trouble understanding the for loop, you might find it useful
to study the flowchart. The diamond-shaped box in the flowchart represents a
decision in the program. When Python gets to the loop heading, it checks to see
if there are any items left in the sequence. If the answer is ''yes," the loop index
variable is assigned the next item in the sequence, and then the loop body is
executed. Once the body is complete, the program goes back to the loop heading
and checks for another value in the sequence. The loop quits when there are no
more items, and the program moves on to the statements that come after the
loop.

12.71 Example Program: Future Value

Let's close the chapter with one more example of the programming process in
action. We want to develop a program to determine the future value of an
investment. We'll start with an analysis of the problem. You know that money
deposited in a bank account earns interest, and this interest accumulates as the
years pass. How much will an account be worth ten years from now? Obviously,
it depends on how much money we start with (the principal) and how much
interest the account earns. Given the principal and the interest rate, a program
should be able to calculate the value of the investment ten years into the future.

We continue by developing the exact specifications for the program. Remem­
ber, this is a description of what the program will do. What exactly should the
inputs be? We need the user to enter the initial amount to invest, the principal.
We will also need some indication of how much interest the account earns. This
depends both on the interest rate and how often the interest is compounded.
One simple way of handling this is to have the user enter an annual percentage
rate. Whatever the actual interest rate and compounding frequency, the annual
rate tells us how much the investment accrues in one year. If the annual inter­
est is 3%, then a $100 investment will grow to $103 in one year's time. How
should the user represent an annual rate of 3%? There are a number of rea­
sonable choices. Let's assume the user supplies a decimal, so the rate would be
entered as 0.03.

This leads us to the following specification:

Program Future Value

Inputs

principal The amount of money being invested in dollars.

47

48 Chapter 2. Writing Simple Programs

APR The annual percentage rate expressed as a decimal number.

Output The value of the investment 10 years into the future.

Relationship Value after one year is given by principal(!+ apr). This formula
needs to be applied 10 times.

Next we design an algorithm for the program. We'll use pseudocode, so
that we can formulate our ideas without worrying about all the rules of Python.
Given our specification, the algorithm seems straightforward.

Print an introduction
Input the amount of the principal (principal)
Input the annual percentage rate (apr)
Repeat 10 times:

principal = principal * (1 + apr)
Output the val ue of principal

If you know a little bit about financial math (or just some basic algebra),
you probably realize that the loop in this design is not strictly necessary; there
is a formula for calculating future value in a single step using exponentiation. I
have used a loop here both to illustrate another counted loop, and also because
this version will lend itself to some modifications that are discussed in the pro­
gramming exercises at the end of the chapter. In any case, this design illustrates
that sometimes an algorithmic approach to a calculation can make the mathe­
matics easier. Knowing how to calculate the interest for just one year allows us
to calculate any number of years into the future.

Now that we've thought the problem all the way through in pseudocode, it's
time to put our new Python knowledge to work and develop a program. Each
line of the algorithm translates into a statement of Python:

Print an introduction (print statement, Section 2.4)
print ("This program calculates the future value")
print ("of a 10-year investment . ")

Input the amount of the principal (numeric input, Section 2.5.2)
principal = eval (input ("Enter the initial principal: "))

Input the annual percentage rate (numeric input, Section 2.5.2)
apr = eval (input ("Enter the annual interest rate: "))

2.7. Example Program: Future Value

Repeat 10 times: (counted loop, Section 2.6)
for i in range (10) :

Calculate principal = principal * (1 + apr) (simple assignment, Section 2.5.1)
principal = principal * (1 + apr)

Output the value of the principal (print statement, Section 2.4)
print ("The value in 10 years is: ", principal)

All of the statement types in this program have been discussed in detail in this
chapter. If you have any questions, you should go back and review the relevant
descriptions. Notice especially the counted loop pattern is used to apply the
interest formula 10 times.

That about wraps it up. Here is the completed program:

futval . py
A program to compute the value of an investment
carried 10 years into the future

def main () :
print ("This program calculates the future value")
print ("of a 10-year investment.")

principal - eval (input ("Enter the initial principal: "))
apr - eval (input ("Enter the annual interest rate: "))

for i in range (10) :
principal = principal * (1 + apr)

print ("The value in 10 years is: ", principal)

main ()

Notice that I have added a few blank lines to separate the input, processing,
and output portions of the program. Strategically placed ''white space" can help
make your programs more readable.

That's as far as I'm taking this example; I leave the testing and debugging as
an exercise for you.

49

50 Chapter 2. Writing Simple Programs

12.81 Chapter Summary

This chapter has covered a lot of ground laying out both the process that is used
to develop programs and the details of Python that are necessary to implement
simple programs. Here is a quick summary of some of the key points:

• Writing programs requires a systematic approach to problem solving and
involves the following steps:

1. Problem Analysis: Studying the problem to be solved.

2. Program Specification: Deciding exactly what the program will do.

3. Design: Writing an algorithm in pseudocode.

4. Implementation: Translating the design into a programming language.

5. Testing/Debugging: Finding and fixing errors in the program.

6. Maintenance: Keeping the program up to date with evolving needs.

• Many simple programs follow the input, process, output (IPO) pattern.

• Programs are composed of statements that are built from identifiers and
•

expressions.

• Identifiers are names; they begin with an underscore or letter which can
be followed by a combination of letter, digit, or underscore characters.
Identifiers in Python are case-sensitive.

• Expressions are the fragments of a program that produce data. An expres­
sion can be composed of the following components:

literals A literal is a representation of a specific value. For example, 3 is a
literal representing the number three.

variables A variable is an identifier that stores a value.

operators Operators are used to combine expressions into more complex
expressions. For example, in x + 3 * y the operators + and * are
used.

• The Python operators for numbers include the usual arithmetic operations
of addition (+), subtraction (-), multiplication (*), division (/), and expo­
nentiation (**).

2.9. Exercises

• The Python output statement print displays the values of a series of ex­
pressions to the screen.

• In Python, assignment of a value to a variable is indicated using the equal
sign (=). Using assignment, programs can get input from the keyboard.
Python also allows simultaneous assignment, which is useful for getting
multiple input values with a single prompt.

• The eval function can be used to evaluate user input, but it is a secu­
rity risk and should not be used with input from unknown or untrusted
sources.

• Definite loops are loops that execute a known number of times. The
Python for statement is a definite loop that iterates through a sequence of
values. A Python list is often used in a for loop to provide a sequence of
values for the loop.

• One important use of a for statement is in implementing a counted loop,
which is a loop designed specifically for the purpose of repeating some
portion of the program a specific number of times. A counted loop in
Python is created by using the built-in range function to produce a suitably
sized sequence of numbers.

12.91 Exercises

Review Questions

True/False

1. The best way to write a program is to immediately type in some code and
then debug it until it works.

2. An algorithm can be written without using a programming language.

3. Programs no longer require modification after they are written and de­
bugged.

4. Python identifiers must start with a letter or underscore.

5. Keywords make good variable names.

6. Expressions are built from literals, variables, and operators.

51

52 Chapter 2. Writing Simple Programs

7. In Python, x = x + 1 is a legal statement.

8. Python does not allow the input of multiple values with a single statement.

9. A counted loop is designed to iterate a specific number of times.

10. In a flowchart, diamonds are used to show statement sequences, and rect­
angles are used for decision points.

Multiple Choice

1. Which of the following is not a step in the software development process?
a) specification b) testing/Debugging
c) fee setting d) maintenance

2. What is the correct formula for converting Celsius to Fahrenheit?
a) F = 9/5(0) + 32 b) F = 5/9(0)- 32
c) F = B2 - 4AO d) F = 2lg0-=._3g

3. The process of describing exactly what a computer program will do to solve
a problem is called
a) design b) implementation c) programming d) specification

4. Which of the following is not a legal identifier?
a) spam b) spAm c) 2spam d) spam 4U

5. Which of the following are not used in expressions?
a) variables b) statements c) operators d) literals

6. Fragments of code that produce or calculate new data values are called
a) identifiers b) expressions
c) productive clauses d) assignment statements

7. Which of the following is not a part of the IPO pattern?
a) input b) program c) process d) output

8. The template for <variable> in range (<expr>) describes
a) a general for loop b) an assignment statement
c) a flowchart d) a counted loop

9. Which of the following is the most accurate model of assignment in Python?
a) sticky-note b) variable-as-box
c) simultaneous d) plastic-scale

2.9. Exercises

10. In Python, getting user input is done with a special expression called
a) for b) read c) simultaneous assignment d) input

Discussion

1. List and describe in your own words the six steps in the software develop­
ment process.

2. Write out the chaos. py program (Section 1.6) and identify the parts of
the program as follows:

• Circle each identifier.

• Underline each expression.

• Put a comment at the end of each line indicating the type of statement
on that line (output, assignment, input, loop, etc.).

3. Explain the relationships among the concepts: definite loop, for loop, and
counted loop.

4. Show the output from the following fragments:

a) for i in range (5) :
print (i * i)

b) for d in [3,1,4,1,5]:
print (d, end=" ")

c) for i in range (4) :
print ("Hello")

d) for i in range (5) :
print (i, 2**i)

5. Why is it a good idea to first write out an algorithm in pseudocode rather
than jumping immediately to Python code?

6. The Python print function supports other keyword parameters besides
end. One of these other keyword parameters is sep. What do you think
the sep parameter does? Hint: sep is short for separator. Test your idea
either by trying it interactively or by consulting the Python documentation.

7. What do you think will happen if the following code is executed?

53

54 Chapter 2. Writing Simple Programs

print ("start")
for i in range (O) :

print ("Hello")
print ("end")

Look at the flowchart for the for statement in this chapter to help you
figure this out. Then test your prediction by trying out these lines in a
program.

Programming Exercises

1. A user-friendly program should print an introduction that tells the user
what the program does. Modify the convert . py program (Section 2.2) to
print an introduction.

2. On many systems with Python, it is possible to run a program by simply
clicking (or double-clicking) on the icon of the program file. If you are
able to run the convert . py program this way, you may discover another
usability issue. The program starts running in a new window, but as soon
as the program has finished, the window disappears so that you cannot
read the results. Add an input statement at the end of the program so
that it pauses to give the user a chance to read the results. Something like
this should work:

input ("Press the <Enter> key to quit.")

3. Modify the avg2. py program (Section 2.5.3) to find the average of three
exam scores.

4. Modify the convert. py program (Section 2.2) with a loop so that it ex­
ecutes 5 times before quitting. Each time through the loop, the program
should get another temperature from the user and print the converted
value.

5. Modify the convert. py program (Section 2.2) so that it computes and
prints a table of Celsius temperatures and the Fahrenheit equivalents every
10 degrees from 0°C to 100°C.

6. Modify the futval. py program (Section 2. 7) so that the number of years
for the investment is also a user input. Make sure to change the final
message to reflect the correct number of years.

2.9. Exercises

7. Suppose you have an investment plan where you invest a certain fixed
amount every year. Modify futval . py to compute the total accumulation
of your investment. The inputs to the program will be the amount to invest
each year, the interest rate, and the number of years for the investment.

8. As an alternative to APR, the interest accrued on an account is often de­
scribed in terms of a nominal rate and the number of compounding peri­
ods. For example, if the interest rate is 3o/o and the interest is compounded
quarterly, the account actually earns �% interest every 3 months.

Modify the futval . py program to use this method of entering the
interest rate. The program should prompt the user for the yearly rate
(rate) and the number of times that the interest is compounded each year
(periods). To compute the value in ten years, the program will loop 10 *
periods times and accrue rate/period interest on each iteration.

9. Write a program that converts temperatures from Fahrenheit to Celsius.

10. Write a program that converts distances measured in kilometers to miles.
One kilometer is approximately 0.62 miles.

11. Write a program to perform a unit conversion of your own choosing. Make
sure that the program prints an introduction that explains what it does.

12. Write an interactive Python calculator program. The program should allow
the user to type a mathematical expression, and then print the value of the
expression. Include a loop so that the user can perform many calculations
(say, up to 100). Note: To quit early, the user can make the program
crash by typing a bad expression or simply closing the window that the
calculator program is running in. You'll learn better ways of terminating
interactive programs in later chapters.

55

Chapter 3

Objectives

Computing with

Numbers

• To understand the concept of data types.

• To be familiar with the basic numeric data types in Python.

• To understand the fundamental principles of how numbers are represented
on a computer.

• To be able to use the Python math library.

• To understand the accumulator program pattern.

• To be able to read and write programs that process numerical data.

13.11 Numeric Data Types

When computers were first developed, they were seen primarily as number
crunchers, and that is still an important application. As you have seen, prob­
lems that involve mathematical formulas are easy to translate into Python pro­
grams. In this chapter, we'll take a closer look at programs designed to perform
numerical calculations.

The information that is stored and manipulated by computer programs is
generically referred to as data. Different kinds of data will be stored and manip­
ulated in different ways. Consider this program to calculate the value of loose
change:

57

58 Chapter 3. Computing with Numbers

change.py

A program to calculate the value of some change in dollars

def main () :

print ("Change Counter")

print ()

print ("Please enter the count of each coin type. ")

quarters = eval (input ("Quarters: "))

dimes = eval (input ("Dimes: "))

nickels = eval (input ("Nickels: "))

pennies = eval (input ("Pennies: "))

total = quarters * .25 + dimes * .10 + nickels * .05 + pennies * .01

print ()

print ("The total value of your change is", total)

main ()

Here is an example of the output:

Change Counter

Please enter the count of each coin type.

Quarters: 5

Dimes: 3

Nickels: 4

Pennies: 6

The total value of your change is 1.81

This program actually manipulates two different kinds of numbers. The val­
ues entered by the user (5, 3, 4, 6) are whole numbers; they don't have any
fractional part. The values of the coins (.25, .10, .OS, .01) are decimal repre­
sentations of fractions. Inside the computer, whole numbers and numbers that
have fractional components are stored differently. Technically, we say that these
are two different data types.

The data type of an object determines what values it can have and what
operations can be performed on it. Whole numbers are represented using the
integer data type (int for short). Values of type int can be positive or nega­
tive whole numbers. Numbers that can have fractional parts are represented as
floating-point (or float) values. So how do we tell whether a number is an int or

3.1. Numeric Data Types

a float? A numeric literal that does not contain a decimal point produces an int
value, but a literal that has a decimal point is represented by a float (even if the
fractional part is 0) .

Python provides a special function called type that tells us the data type (or
"class") of any value. Here is an interaction with the Python interpreter showing
the difference between int and float literals:

>>> type (3)

<class 'int' >

>>> type (3. 14)

<class 'float' >

>>> type (3. 0)

<class 'float' >

>>> mylnt = -32

>>> type (mylnt)

<class 'int' >

>>> myFloat = 32. 0
>>> type (myFloat)

<class 'float' >

You may be wondering why there are two different data types for numbers.
One reason has to do with program style. Values that represent counts can't be
fractional; we can't have 3 � quarters, for example. Using an int value tells the
reader of a program that the value can't be a fraction. Another reason has to do
with the efficiency of various operations. The underlying algorithms that per­
form computer arithmetic are simpler, and can therefore be faster, for ints than
the more general algorithms required for float values. Of course, the hardware
implementations of floating-point operations on modem processors are highly
optimized and may be just as fast the int operations.

Another difference between ints and floats is that the float type can only
represent approximations to real numbers. As we will see, there is a limit to
the precision, or accuracy, of the stored values. Since float values are not exact,
while ints always are, your general rule of thumb should be: If you don't need
fractional values, use an int.

A value's data type determines what operations can be used on it. As we have
seen, Python supports the usual mathematical operations on numbers. Table 3.1
summarizes these operations. Actually, this table is somewhat misleading. Since
these two types have differing underlying representations, they each have their
own set of operations. For example, I have listed a single addition operation, but

59

60 Chapter 3. Computing with Numbers

operator operation

+ addition
- subtraction
* multiplication

I float division
• •

** exponentiation
abs () absolute value

II integer division
% remainder

Table 3.1: Python built-in numeric operations

keep in mind that when addition is performed on floats, the computer hardware
performs a floating-point addition, whereas with ints the computer performs an
integer addition. Python chooses the appropriate underlying operation (int or
float) based on the operands.

Consider the following interaction with Python:

>>> 3 + 4

7
>>> 3. 0 + 4. 0

7. 0
>>> 3 * 4

12

>>> 3. 0 * 4. 0

12. 0
>>> 4 ** 3

64

>>> 4. 0 ** 3

64. 0

>>> 4. 0 ** 3.0

64. 0
>>> abs (5)

5
>>> abs (-3.5)

3.5
>>>

For the most part, operations on floats produce floats, and operations on ints

3.1. Numeric Data Types

produce ints. Most of the time, we don't even worry about what type of oper­
ation is being performed; for example, integer addition produces pretty much
the same result as floating-point addition, and we can rely on Python to do the
right thing.

In the case of division, however, things get a bit more interesting. As the
table shows, Python (as of version 3.0) provides two different operators for
division. The usual symbol (I) is used for "regular" division and a double slash
(I I) is used to indicate integer division. The best way to get a handle on the
difference between these two is to try them out.

>>> 10 I 3

3.3333333333333335
>>> 10.0 I 3.0

3.3333333333333335
>>> 10 I 5

2.0
>>> 10 II 3

3
>>> 10.0 II 3.0

3.0
>>> 10 % 3

1

>>> 10.0 % 3.0

1.0

Notice that the I operator always returns a float. Regular division often pro­
duces a fractional result, even though the operands may be ints. Python accom­
modates this by always returning a floating-point number. Are you surprised
that the result of 1013 has a 5 at the very end? Remember, floating-point val­
ues are always approximations. This value is as close as Python can get when
representing 3 � as a floating-point number.

To get a division that returns an integer result, you can use the integer divi­
sion operation I I. Integer division always produces an integer. Think of integer
division as "gozinta." The expression 10 I I 3 produces 3 because three gozinta
(goes into) ten three times (with a remainder of one). While the result of inte­
ger division is always an integer, the data type of the result depends on the data
type of the operands. A float integer-divided by a float produces a float with a
0 fractional component. The last two interactions demonstrate the remainder
operation%. The remainder of integer-dividing 10 by 3 is 1. Notice again that
the data type of the result depends on the type of the operands.

61

62 Chapter 3. Computing with Numbers

Depending on your math background, you may not have used the integer
division or remainder operations before. The thing to keep in mind is that these
two operations are closely related. Integer division tells you how many times
one number goes into another, and the remainder tells you how much is left
over. Mathematically you could write the idea like this: a= (a/ /b)(b) + (a%b).

As an example application, suppose we calculated the value of our loose
change in cents (rather than dollars). If I have 383 cents, then I can find the
number of whole dollars by computing 383//100 = 3, and the remaining change
is 383%100 = 83. Thus, I must have a total of three dollars and 83 cents in
change.

By the way, although Python (as of version 3.0) treats regular division and
integer division as two separate operators, many other computer languages (and
earlier Python versions) just use I to signify both. When the operands are ints,
I means integer division, and when they are floats, it signifies regular division.
This is a common source of errors. For example, in our temperature conversion
program the formula 915 * celsius + 32 would not compute the proper re­
sult, since 915 would evaluate to 1 using integer division. In these languages,
you need to be careful to write this expression as 9. 015.0 * celsius + 32 so
that the proper form of division is used, yielding a fractional result.

13.21 Type Conversions and Rounding

There are situations where a value may need to be converted from one data
type into another. You already know that combining an int with an int (usually)
produces an int, and combining a float with a float creates another float. But
what happens if we write an expression that mixes an int with a float? For
example, what should the value of x be after this assignment statement?

X = 5.0 * 2

If this is floating-point multiplication, then the result should be the float value
10.0. If an int multiplication is performed, the result is 10. Before reading ahead
for the answer, take a minute to consider how you think Python should handle
this situation.

In order to make sense of the expression 5 . 0 * 2, Python must either change
5. 0 to 5 and perform an int operation or convert 2 to 2. 0 and perform a floating­
point operation. In general, converting a float to an int is a dangerous step,
because some information (the fractional part) will be lost. On the other hand,
an int can be safely turned into a float just by adding a fractional part of .0. So

3.2. Type Conversions and Rounding

in mixed-typed expressions, Python will automatically convert ints to floats and
perform floating-point operations to produce a float result.

Sometimes we may want to perform a type conversion ourselves. This is
called an explicit type conversion. Python provides the built-in functions int and
float for these occasions. Here are some interactive examples that illustrate
their behavior:

>>> int (4.5)

4
>>> int (3.9)

3
>>> float (4)

4.0
>>> float (4.5)

4.5

>>> float (int (3.3))

3.0

>>> int (float (3.3))

3
>>> int (float (3))

3

As you can see, converting to an int simply discards the fractional part of a float;
the value is truncated, not rounded. If you want a rounded result, you could
add 0.5 to the value before using int 0, assuming the value is positive.

A more general way of rounding off numbers is to use the built-in round

function, which rounds a number to the nearest whole value.

>>> round (3.14)

3
>>> round (3.5)

4

Notice that calling round like this results in an int value. So a simple call to
round is an alternative way of converting a float to an int.

If you want to round a float into another float value, you can do that by
supplying a second parameter that specifies the number of digits you want after
the decimal point. Here's a little interaction playing around with the value of pi:

>>> pi = 3.141592653589793

63

64

>>> round (pi, 2)

3.14
>>> round (pi,3)

3.142

Chapter 3. Computing with Numbers

Notice that when we round the approximation of pi to two or three decimal
places, we get a float whose displayed value looks like an exactly rounded result.
Remember though, floats are approximations; what we really get is a value
that's very close to what we requested. The actual stored value is something like
3.140000000000000124345 ... , the closest representable floating-point value to
3.14. Fortunately, Python is smart enough to know that we probably don't want
to see all of these digits, so it displays the rounded form. That means when you
write a program that rounds off a value to two decimal places and print it out,
you'll end up seeing two decimal places, just like you expect. In Chapter 5, we'll
see how to get even finer control over how numbers appear when printed; then
you'll be able to inspect all of the digits, should you want to.

The type conversion functions int and float can also be used to convert
strings of digits into numbers.

>>> int ("32")

32
>>> float ("32")

32.0
>>> float ("9.8")

9.8

This is particularly useful as a secure alternative to eval for getting numeric data
from users. As an example, here is an improved version of the change-counting
program that opened the chapter:

change2.py

A program to calculate the value of some change in dollars

def main () :

print ("Change Counter")

print ()

print ("Please enter the count of each coin type.")

quarters = int (input ("Quarters: "))

dimes = int (input ("Dimes: "))

nickels = int (input ("Nickels: "))

3.3. Using the Math Library

pennies = int (input ("Pennies: "))

total = .25*quarters + .10*dimes + .05*nickels + .01*pennies

print ()

print ("The total value of your change is", total)

main ()

Using int instead of eval in the input statements ensures that the user may
only enter valid whole numbers. Any illegal (non-int) inputs will cause the pro­
gram to crash with an error message, thus avoiding the risk of a code injection
attack (discussed in Section 2.5.2). A side benefit is that this version of the
program emphasizes that the inputs should be whole numbers.

The only downside to using numeric type conversions in place of eval is that
it does not accommodate simultaneous input (getting multiple values in a single
input), as the following example ilustrates:

>>> # simultaneous input using eval

>>> x,y = eval (input ("Enter (x,y) : "))

Enter (x,y) : 3,4
>>> X

3
>>> y

4

>>> # does not work with float

>>> x,y = float (input ("Enter (x,y) : "))

Enter (x,y) : 3,4
Traceback (most recent call last) :

File "<stdin >", line 1, in <module >

ValueError: could not convert string to float: '3,4'

This is a small price to pay for the added security, and you will learn how to
overcome this limitation in Chapter 5. As a matter of good practice, you should
use appropriate type conversion functions in place of eval wherever possible.

13.31 Using the Math Library

Besides the operations listed in Table 3.1, Python provides many other useful
mathematical functions in a special math library. A library is just a module that

65

66 Chapter 3. Computing with Numbers

contains some useful definitions. Our next program illustrates the use of this
library to compute the roots of quadratic equations.

A quadratic equation has the form ax2 + bx + c = 0. Such an equation has
two solutions for the value of x given by the quadratic formula:

-b± vb2- 4ac
x=--

2a
Let's write a program that can find the solutions to a quadratic equation. The
input to the program will be the values of the coefficients a, b, and c. The outputs
are the two values given by the quadratic formula. Here's a program that does
the job:

quadratic.py

A program that computes the real roots of a quadratic equation.

Illustrates use of the math library.

Note: This program crashes if the equation has no real roots.

import math # Makes the math library available.

def main () :

print ("This program finds the real solutions to a quadratic")

print ()

a = float (input ("Enter coefficient a: "))

b - float (input ("Enter coefficient b: "))

c = float (input ("Enter coefficient c: "))

discRoot = math.sqrt (b * b - 4 * a * c)

root1 - (-b + discRoot) I (2 * a)

root2 = (-b - discRoot) I (2 * a)

print ()

print ("The solutions are: ", root1, root2)

main ()

This program makes use of the square root function sqrt from the math
library module. The line at the top of the program,

import math

3.3. Using the Math Library

tells Python that we are using the math module. Importing a module makes
whatever is defined in it available to the program. To compute -.jX, we use
math. sqrt (x) . This special dot notation tells Python to use the sqrt func­
tion that "lives" in the math module. In the quadratic program we calculate
vb2 - 4ac with the line

discRoot = math.sqrt (b * b - 4 * a * c)

Here is how the program looks in action:

This program finds the real solutions to a quadratic

Enter coefficient a: 3

Enter coefficient b: 4

Enter coefficient c: -2

The solutions are: 0.38742588672279316 -1.7207592200561266

This program is fine as long as the quadratics we try to solve have real so­
lutions. However, some inputs will cause the program to crash. Here's another
example run:

This program finds the real solutions to a quadratic

Enter coefficient a: 1

Enter coefficient b: 2

Enter coefficient c: 3

Traceback (most recent call last) :

File "quadratic.py", line 21, in?
main ()

File "quadratic.py", line 14, in main

discRoot = math.sqrt (b * b - 4 * a * c)

ValueError: math domain error

The problem here is that b2 - 4ac < 0, and the sqrt function is unable to
compute the square root of a negative number. Python prints a math domain

error. This is telling us that negative numbers are not in the domain of the
sqrt function. Right now, we don't have the tools to fix this problem, so we'll
just have to assume that the user will give us solvable equations.

67

68 Chapter 3. Computing with Numbers

Actually, quadratic. py did not need to use the math library. We could have
taken the square root using exponentiation **· (Can you see how?) Using
math. sqrt is somewhat more efficient, and it allowed me to illustrate the use of
the math library. In general, if your program requires a common mathematical
function, the math library is the first place to look. Table 3.2 shows some of the
other functions that are available in the math library:

Python mathematics English
.

An approximation of pi. pl. 7r

e e An approximation of e.
sqrt (x) y'X The square root of x.

sin (x)
•

The sine of x. SlllX

cos(x) cosx The cosine of x.

tan(x) tanx The tangent of x.

asin (x)
•

The inverse of sine x. arCSlllX

acos (x) arccosx The inverse of cosine x.

atan (x) arctanx The inverse of tangent x.

log(x) lnx The natural (base e) logarithm of x.

log10(x) log10 x The common (base 10) logarithm of x.

exp(x) ex The exponential of x.

ceil(x) fxl The smallest whole number>= x.

floor (x) LxJ The largest whole number <= x.

Table 3.2: Some math library functions

13.41 Accumulating Results: Factorials

Suppose you have a root beer sampler pack containing six different kinds of
root beer. Drinking the various flavors in different orders might affect how good
they taste. If you wanted to try out every possible ordering, how many different
orders would there be? It turns out the answer is a surprisingly large number,
720. Do you know where this number comes from? The value 720 is the factorial

of 6.
In mathematics, factorials are often denoted with an exclamation point (!).

The factorial of a whole number n is defined as n! = n(n - 1)(n- 2) ... (1). This
happens to be the number of distinct arrangements for n items. Given six items,
we compute 6! = (6)(5)(4)(3)(2)(1) = 720 possible arrangements.

3.4. Accumulating Results: Factorials

Let's write a program that will compute the factorial of a number entered
by the user. The basic outline of our program follows an input, process, output
pattern:

Input number to take factorial of, n

Compute factorial of n, fact

Output fact

Obviously, the tricky part here is in the second step.
How do we actually compute the factorial? Let's try one by hand to get an

idea for the process. In computing the factorial of 6, we first multiply 6(5) = 30.
Then we take that result and do another multiplication: 30(4) = 120. This
result is multiplied by 3: 120(3) = 360. Finally, this result is multiplied by 2:
360(2) = 720. According to the definition, we then multiply this result by 1, but
that won't change the final value of 720.

Now let's try to think about the algorithm more generally. What is actually
going on here? We are doing repeated multiplications, and as we go along, we
keep track of the running product. This is a very common algorithmic pattern
called an accumulator. We build up, or accumulate, a final value piece by piece.
To accomplish this in a program, we will use an accumulator variable and a loop
structure. The general pattern looks like this:

Initialize the accumulator variable

Loop until final result is reached

update the value of accumulator variable

Realizing this is the pattern that solves the factorial problem, we just need
to fill in the details. We will be accumulating the factorial. Let's keep it in a
variable called fact. Each time through the loop, we need to multiply fact by
one of the factors n, (n- 1), ... , 1. It looks like we should use a for loop that
iterates over this sequence of factors. For example, to compute the factorial of
6, we need a loop that works like this:

fact = 1

for factor in [6,5,4,3,2,1]:

fact = fact * factor

Take a minute to trace through the execution of this loop and convince your­
self that it works. When the loop body first executes, fact has the value 1 and
factor is 6. So the new value of fact is 1 * 6 = 6. The next time through the

69

70 Chapter 3. Computing with Numbers

loop, factor will be 5, and fact is updated to 6 * 5 = 30. The pattern continues
for each successive factor until the final result of 720 has been accumulated.

The initial assignment of 1 to fact before the loop is essential to get the
loop started. Each time through the loop body (including the first), the current
value of fact is used to compute the next value. The initialization ensures that
fact has a value on the very first iteration. Whenever you use the accumulator
pattern, make sure you include the proper initialization. Forgetting this is a
common mistake of beginning programmers.

Of course, there are many other ways we could have written this loop. As
you know from math class, multiplication is commutative and associative, so it
really doesn't matter what order we do the multiplications in. We could just as
easily go the other direction. You might also notice that including 1 in the list
of factors is unnecessary, since multiplication by 1 does not change the result.
Here is another version that computes the same result:

fact = 1

for factor in [2,3,4,5,6]:

fact = fact * factor

Unfortunately, neither of these loops solves the original problem. We have
hand -coded the list of factors to compute the factorial of 6. What we really want
is a program that can compute the factorial of any given input n. We need some
way to generate an appropriate sequence of factors from the value of n.

Luckily, this is quite easy to do using the Python range function. Recall that
range (n) produces a sequence of numbers starting with 0 and continuing up
to, but not including, n. There are other variations of range that can be used to
produce different sequences. With two parameters, range (start ,n) produces
a sequence that starts with the value start and continues up to, but does not
include, n. A third version range (start, n, step) is like the two-parameter
version, except that it uses step as the increment between numbers. Here are
some examples:

>>> list (range (10))

[0' 1' 2' 3' 4' 5' 6' 7' 8' 9]

>>> list (range (5,10))

[5' 6' 7' 8' 9]

>>> list (range (5, 10, 3))

[5, 8]

3.5. Limitations of Computer Arithmetic

Given our input value n, we have a couple of different range commands
that produce an appropriate list of factors for computing the factorial of n. To
generate them from smallest to largest (a Ia our second loop), we could use
range (2 ,n+1). Notice how I used n+1 as the second parameter, since the range
will go up to but not include this value. We need the +1 to make sure that n

itself is included as the last factor.
Another possibility is to generate the factors in the other direction (a Ia our

first loop) using the three-parameter version of range and a negative step to
cause the counting to go backwards: range (n, 1, -1). This one produces a list
starting with nand counting down (step -1) to, but not including 1.

Here then is one possible version of the factorial program:

factorial. py

Program to compute the factorial of a number

Illustrates for loop with an accumulator

def main () :

n = int (input ("Please enter a whole number: "))

fact = 1

for factor in range (n,1,-1) :

fact = fact * factor

print ("The factorial of", n, "is", fact)

main ()

Of course, there are numerous other ways this program could have been written.
I have already mentioned changing the order of factors. Another possibility is to
initialize fact to n and then use factors starting at n- 1 (as long as n > 0). You
might try out some of these variations and see which one you like best.

13.51 Limitations of Computer Arithmetic

It's sometimes suggested that the reason "!" is used to represent factorials is
because the function grows very rapidly. For example, here is what happens if
we use our program to find the factorial of 100:

Please enter a whole number: 100

71

The factorial of 100 is 9332621544394415268169923885626670049071596826

43816214685929638952175999932299156089414639761565182862536979208272237

58251185210916864000000000000000000000000

72 Chapter 3. Computing with Numbers

That's a pretty big number!
Although recent versions of Python have no difficulty with this calculation,

older versions of Python (and modern versions of other languages such as C++
and Java) would not fare as well. For example, here's what happens in several
runs of a similar program written using Java:

#run 1

Please enter a whole number: 6

The factorial is: 720

#run 2

Please enter a whole number: 12

The factorial is: 479001600

#run 3

Please enter a whole number: 13

The factorial is: 1932053504

This looks pretty good; we know that 6! = 720. A quick check also confirms that
12! = 479001600. Unfortunately, it turns out that 13! = 6227020800. It appears
that the Java program has given us an incorrect answer!

What is going on here? So far, I have talked about numeric data types as rep­
resentations of familiar numbers such as integers and decimals (fractions). It is
important to keep in mind, however, that computer representations of numbers
(the actual data types) do not always behave exactly like the numbers that they
stand for.

Remember back in Chapter 1 you learned that the computer's CPU can per­
form very basic operations such as adding or multiplying two numbers? It would
be more precise to say that the CPU can perform basic operations on the com­
puter's internal representation of numbers. The problem in this Java program is
that it is representing whole numbers using the computer's underlying int data
type and relying on the computer's multiplication operation for ints. Unfortu­
nately, these machine ints are not exactly like mathematical integers. There are
infinitely many integers, but only a finite range of ints. Inside the computer, ints
are stored in a fixed-sized binary representation. To make sense of all this, we
need to look at what's going on at the hardware level.

Computer memory is composed of electrical "switches," each of which can
be in one of two possible states, basically on or off. Each switch represents a
binary digit or bit of information. One bit can encode two possibilities, usually

3.5. Limitations of Computer Arithmetic

represented with the numerals 0 (for off) and 1 (for on). A sequence of bits can
be used to represent more possibilities. With two bits, we can represent four
things:

1 bit 2 1 bit 1 1
0 0
0 1
1 0
1 1

Three bits allow us to represent eight different values by adding a 0 or 1 to each
of the four two-bit patterns:

1 bit 3 1 bit 2 1 bit 1 1
0 0 0

0 0 1

0 1 0

0 1 1
1 0 0

1 0 1
1 1 0
1 1 1

You can see the pattern here. Each extra bit doubles the number of distinct
patterns. In general, n bits can represent 2n different values.

The number of bits that a particular computer uses to represent an int de­
pends on the design of the CPU. Typical PCs today use 32 or 64 bits. For a 32-bit
CPU, that means there are 232 possible values. These values are centered at 0
to represent a range of positive and negative integers. Now 2�2 = 231• So the
range of integers that can be represented in a 32-bit int value is -231 to 231- 1.
The reason for the -1 on the high end is to account for the representation of 0
in the top half of the range.

Given this knowledge, let's try to make sense of what's happening in the Java
factorial example. If the Java program is relying on a 32-bit int representation,
what's the largest number it can store? Python can give us a quick answer:

>>> 2**31-1

2147483647

Notice that this value (about 2.1 billion) lies between 12! (about 480 million)

73

74 Chapter 3. Computing with Numbers

and 13! (about 6.2 billion). That means the Java program is fine for calculating
factorials up to 12, but after that the representation "overflows" and the results
are garbage. Now you know exactly why the simple Java program can't compute
13! Of course, that leaves us with another puzzle. Why does the modern Python
program seem to work quite well computing with large integers?

At first, you might think that Python uses the float data type to get us around
the size limitation of the ints. However, it turns out that floats do not really solve
this problem. Here is an example run of a modified factorial program that uses
floating-point numbers:

Please enter a whole number: 30

The factorial of 30 is 2.6525285981219103e+32

Although this program runs just fine, after switching to float, we no longer get
an exact answer.

A very large (or very small) floating-point value is printed out using expo­
nential, or scientific, notation. The e+32 at the end means that the result is equal
to 2.6525285981219103 x 1032• You can think of the +32 at the end as a marker
that shows where the decimal point should be placed. In this case, it must move
32 places to the right to get the actual value. However, there are only 16 digits
to the right of the decimal, so we have "lost" the last 16 digits.

Using a float allows us to represent a much larger range of values than a
32-bit int, but the amount of precision is still fixed. In fact, a computer stores
floating-point numbers as a pair of fixed-length (binary) integers. One integer,
called the mantissa, represents the string of digits in the value and the second,
the exponent, keeps track of where the whole part ends and the fractional part
begins (where the "binary point" goes). Remember I told you that floats are ap­
proximations. Now you can see why. Since the underlying numbers are binary,
only fractions that involve powers of 2 can be represented exactly; any other
fraction produces an infinitely repeating mantissa. (Just like 1/3 produces an
infinitely repeating decimal because 3 is not a power of 10.) When an infinitely
long mantissa is truncated to a fixed length for storage, the result is a close ap­
proximation. The number of bits used for the mantissa determines how precise
the appoximations will be, but there is no getting around the fact that they will
be approximations.

Fortunately, Python has a better solution for large, exact values. A Python
int is not a fixed size, but expands to accommodate whatever value it holds. The
only limit is the amount of memory the computer has available to it. When the
value is small, Python can just use the computer's underlying int representation

3.6. Chapter Summary

and operations. When the value gets larger, Python automatically converts to
a representation using more bits. Of course, in order to perform operations on
larger numbers, Python has to break down the operations into smaller units that
the computer hardware is able to handle-similar to the way you might do long
division by hand. These operations will not be as efficient (they require more
steps), but they allow our Python ints to grow to arbitrary size. And that's what
allows our simple factorial program to compute some whopping large results.
This is a very cool feature of Python.

13.61 Chapter Summary

This chapter has filled in some important details concerning programs that do
numerical computations. Here is a quick summary of some key concepts:

• The way a computer represents a particular kind of information is called a
data type. The data type of an object determines what values it can have
and what operations it supports.

• Python has several different data types for representing numeric values,
including int and float.

• Whole numbers are generally represented using the int data type, and
fractional values are represented using floats. All of the Python numeric
data types support standard, built-in mathematical operations: addition
(+), subtraction (-), multiplication (*), division (/), integer division (/ /),

remainder (%), exponentiation (**), and absolute value (abs (x)).

• Python automatically converts numbers from one data type to another in
certain situations. For example, in a mixed-type expression involving ints
and floats, Python first converts the ints into floats and then uses float
arithmetic.

• Programs may also explicitly convert one data type into another using the
functions float () , int () , and round (). Type conversion functions should
generally be used in place of eval for handling numeric user inputs.

• Additional mathematical functions are defined in the math library. To use
these functions, a program must first import the library.

75

76 Chapter 3. Computing with Numbers

• Numerical results are often calculated by computing the sum or product
of a sequence of values. The loop accumulator programming pattern is
useful for this sort of calculation.

• Both ints and floats are represented on the underlying computer using a
fixed-length sequence of bits. This imposes certain limits on these rep­
resentations. Hardware ints must be in the range -231 . . . (231 - 1) on a
32-bit machine. Floats have a finite amount of precision and cannot rep­
resent most numbers exactly.

• Python's int data type may be used to store whole numbers of arbitrary
size. lnt values are automatically converted to longer representations
when they become too large for the underlying hardware int. Calcula­
tions involving these long ints are less efficient than those that use only
small ints.

13.71 Exercises

Review Questions

True/False

1. Information that is stored and manipulated by computers is called data.

2. Since floating-point numbers are extremely accurate, they should gener-
ally be used instead of ints.

3. Operations like addition and subtraction are defined in the math library.

4. The number of possible arrangements of n items is equal to n!.
5. The sqrt function computes the squirt of a number.

6. The float data type is identical to the mathematical concept of a real num­
ber.

7. Computers represent numbers using base-2 (binary) representations.

8. A hardware float can represent a larger range of values than a hardware
int.

9. Type conversion functions such as float are a safe alternative to eval for
getting a number as user input.

3.7. Exercises

10. In Python, 4+5 produces the same result type as 4 . 0+5. 0 .

Multiple Choice

1. Which of the following is not a built-in Python data type?
a) int b) float c) rational d) string

2. Which of the following is not a built-in operation?
a)+ b)% c) abs () d) sqrtO

3. In order to use functions in the math library, a program must include
a) a comment b) a loop c) an operator d) an import statement

4. The value of 4! is
a) 9 b) 24 c) 41 d) 120

5. The most appropriate data type for storing the value of pi is
a) int b) float c) irrational d) string

6. The number of distinct values that can be represented using 5 bits is
a) 5 b) 10 c) 32 d) 50

7. In a mixed-type expression involving ints and floats, Python will convert
a) floats to ints b) ints to strings
c) both floats and ints to strings d) ints to floats

8. Which of the following is not a Python type-conversion function?
a) float b) round c) int d) abs

9. The pattern used to compute factorials is
a) accumulator b) input, process, output
c) counted loop d) plaid

10. In modern Python, an int value that grows larger than the underlying
hardware int
a) causes an overflow b) converts to float
c) breaks the computer d) uses more memory

Discussion

1. Show the result of evaluating each expression. Be sure that the value is
in the proper form to indicate its type (int or float). If the expression is
illegal, explain why.

77

78 Chapter 3. Computing with Numbers

a)

b)

b)

d)

e)

f)

4.0 I 10.0 + 3.5

10 % 4 + 6 I 2

abs (4 - 20 II 3)

* 2

** 3

sqrt (4.5 - 5.0) + 7 *

3 * 10 II 3 + 10% 3

3 ** 3

3

2. Translate each of the following mathematical expressions into an equiva­
lent Python expression. You may assume that the math library has been
imported (via import math).

a) (3 + 4)(5)

b) n(n-1) 2
c) 47rr2

d) Jr(cos a)2 + r(sinb)2

e) y2-yl
x2-xl

3. Show the sequence of numbers that would be generated by each of the
following range expressions.

a) range (5)

b) range (3, 10)

c) range (4, 13, 3)

d) range (15, 5, -2)

e) range (5, 3)

4. Show the output that would be generated by each of the following pro­
gram fragments.

a) for i in range (!, 11) :

print (i*i)

b) for i in [1,3,5,7,9]:
print (i, ":", i**3)

print (i)

3.7. Exercises

c) x = 2
y = 10

for j in range (O, y, x) :

print (j, end="")

print (x + y)

print ("done")

d) ans = 0

for i in range (!, 11) :

ans = ans + i*i

print (i)

print (ans)

5. What do you think will happen if you use a negative number as the second
parameter in the round function? For example, what should be the result
of round (314 .159265, -1) ? Explain the rationale for your answer. After
you've written your answer, consult the Python documentation or try out
some examples to see what Python actually does in this case.

6. What do you think will happen when the operands to the integer division
or remainder operations are negative? Consider each of the following
cases and try to predict the result. Then try them out in Python. Hint:

Recall the magic formula a= (a/ /b)(b) + (a%b).
a)

b)

c)

d)

e)

-10 II 3

-10 % 3

10 II -3

10 % -3

-10 II -3

Programming Exercises

1. Write a program to calculate the volume and surface area of a sphere from
its radius, given as input. Here are some formulas that might be useful:

V = 4/37rr3
A= 47rr2

2. Write a program that calculates the cost per square inch of a circular pizza,
given its diameter and price. The formula for area is A = 1rr2•

79

80 Chapter 3. Computing with Numbers

3. Write a program that computes the molecular weight of a carbohydrate (in
grams per mole) based on the number of hydrogen, carbon, and oxygen
atoms in the molecule. The program should prompt the user to enter the
number of hydrogen atoms, the number of carbon atoms, and the number
of oxygen atoms. The program then prints the total combined molecular
weight of all the atoms based on these individual atom weights:

Atom Weight
(grams I mole)

H 1.00794

c 12.0107

0 15.9994

For example, the molecular weight of water (H20) is: 2(1.00794) +
15.9994 = 18.01528.

4. Write a program that determines the distance to a lightning strike based on
the time elapsed between the flash and the sound of thunder. The speed
of sound is approximately 1100 ft/ sec and 1 mile is 5280 ft.

5. The Konditorei coffee shop sells coffee at $10.50 a pound plus the cost
of shipping. Each order ships for $0.86 per pound + $1.50 fixed cost for
overhead. Write a program that calculates the cost of an order.

6. Two points in a plane are specified using the coordinates (x1,y1) and
(x2,y2). Write a program that calculates the slope of a line through two
(non-vertical) points entered by the user.

y2 - y1 slope= 2 1 x - x

7. Write a program that accepts two points (see previous problem) and de­
termines the distance between them.

distance= .j(x2- x1)2 + (y2- y1)2

8. The Gregorian epact is the number of days between January 1st and the
previous new moon. This value is used to figure out the date of Easter. It
is calculated by these formulas (using int arithmetic):

C = year/ /100

3.7. Exercises

epact = (8 + (C/ /4)- C + ((80 + 13)/ /25) + 11(year%19))%30
Write a program that prompts the user for a 4-digit year and then outputs
the value of the epact.

9. Write a program to calculate the area of a triangle given the length of its
three sides-a, b, and c-using these formulas:

a+b+c S= ---2

A= Js(s- a)(s- b)(s- c)

10. Write a program to determine the length of a ladder required to reach a
given height when leaned against a house. The height and angle of the
ladder are given as inputs. To compute length use:

l h height engt = -.--­

sin angle

Note: The angle must be in radians. Prompt for an angle in degrees and
use this formula to convert:

7r radians = 180 degrees

11. Write a program to find the sum of the first n natural numbers, where the
value of n is provided by the user.

12. Write a program to find the sum of the cubes of the first n natural numbers
where the value of n is provided by the user.

13. Write a program to sum a series of numbers entered by the user. The
program should first prompt the user for how many numbers are to be
summed. The program should then prompt the user for each of the num­
bers in turn and print out a total sum after all the numbers have been
entered. Hint: Use an input statement in the body of the loop.

14. Write a program that finds the average of a series of numbers entered by
the user. As in the previous problem, the program will first ask the user
how many numbers there are. Note: The average should always be a float,
even if the user inputs are all ints.

81

82 Chapter 3. Computing with Numbers

15. Write a program that approximates the value of pi by summing the terms
of this series: 4/1- 4/3 + 4/5- 4/7 + 4/9- 4/11 + . . . The program should
prompt the user for n, the number of terms to sum, and then output the
sum of the first n terms of this series. Have your program subtract the
approximation from the value of math. pi to see how accurate it is.

16. A Fibonacci sequence is a sequence of numbers where each successive
number is the sum of the previous two. The classic Fibonacci sequence
begins: 1, 1, 2, 3, 5, 8, 13, Write a program that computes the nth
Fibonacci number where n is a value input by the user. For example, if
n = 6, then the result is 8.

17. You have seen that the math library contains a function that computes
the square root of numbers. In this exercise, you are to write your own
algorithm for computing square roots. One way to solve this problem
is to use a guess-and -check approach. You first guess what the square
root might be, and then see how close your guess is. You can use this
information to make another guess and continue guessing until you have
found the square root (or a close approximation to it). One particularly
good way of making guesses is to use Newton's method. Suppose x is the
number we want the root of, and guess is the current guessed answer. The
guess can be improved by using computing the next guess as:

guess+ gu�ss
2

Write a program that implements Newton's method. The program
should prompt the user for the value to find the square root of (x) and
the number of times to improve the guess. Starting with a guess value
of x/2, your program should loop the specified number of times applying
Newton's method and report the final value of guess. You should also
subtract your estimate from the value of math. sqrt (x) to show how close
it is.

Chapter 4

Objectives

Objects and

Graphics

• To understand the concept of objects and how they can be used to simplify
•

programming.

• To become familiar with the various objects available in the graphics library.

• To be able to create objects in programs and call appropriate methods to
perform graphical computations.

• To understand the fundamental concepts of computer graphics, especially
the role of coordinate systems and coordinate transformations.

• To understand how to work with both mouse- and text -based input in a
graphical programming context.

• To be able to write simple interactive graphics programs using the graphics
library.

14.11 Overview

So far we have been writing programs that use the built-in Python data types for
numbers and strings. We saw that each data type could represent a certain set
of values, and each had a set of associated operations. Basically, we viewed the
data as passive entities that were manipulated and combined via active opera­
tions. This is a traditional way to view computation. To build complex systems,

83

84 Cha pter 4. Objects and Graphics

however, it helps to take a richer view of the relationship between data and
operations.

Most modern computer programs are built using an object-oriented (00)
approach. Object orientation is not easily defined. It encompasses a number
of principles for designing and implementing software, principles that we will
return to numerous times throughout the course of this book. This chapter pro­
vides a basic introduction to object concepts by way of some computer graphics.

Graphical programming is a lot of fun and provides a great vehicle for learn­
ing about objects. In the process, you will also learn the principles of computer
graphics that underlie many modern computer applications. Most of the appli­
cations that you are familiar with probably have a so-called graphical user in­

terface (GUI) that provides visual elements like windows, icons (representative
pictures), buttons, and menus.

Interactive graphics programming can be very complicated; entire textbooks
are devoted to the intricacies of graphics and graphical interfaces. Industrial­
strength GUI applications are usually developed using a dedicated graphics pro­
gramming framework. Python comes with its own standard GUI module called
Tkinter. As GUI frameworks go, Tkinter is one of the simplest to use, and Python
is a great language for developing real-world GUis. Still, at this point in your
programming career, it would be a challenge to learn the intricacies of any GUI
framework, and doing so would not contribute much to the main objectives of
this chapter, which are to introduce you to objects and the fundamental princi­
ples of computer graphics.

To make learning these basic concepts easier, we will use a graphics library
(graphics . py) specifically written for use with this textbook. This library is a
wrapper around Tkinter that makes it more suitable for beginning programmers.
It is freely available as a Python module file1 and you are welcome to use it as
you see fit. Eventually, you may want to study the code for the library itself as a
stepping stone to learning how to program directly in Tkinter.

14.21 The Object of Objects

The basic idea of object -oriented development is to view a complex system as the
interaction of simpler objects. The word objects is being used here in a specific
technical sense. Part of the challenge of 00 programming is figuring out the
vocabulary. You can think of an 00 object as a sort of active data type that

1The graphics module is available from this book's support website.

4.3. Simple Graphics Programming

combines both data and operations. To put it simply, objects know stuff (they
contain data), and they can do stuff (they have operations). Objects interact by
sending each other messages. A message is simply a request for an object to
perform one of its operations.

Consider a simple example. Suppose we want to develop a data processing
system for a college or university. We will need to keep track of considerable
information. For starters, we must keep records on the students who attend
the school. Each student could be represented in the program as an object. A
student object would contain certain data such as name, ID number, courses
taken, campus address, home address, GPA, etc. Each student object would also
be able to respond to certain requests. For example, to send out a mailing, we
would need to print an address for each student. This task might be handled by
a printCampusAddress operation. When a particular student object is sent the
printCampusAddress message, it prints out its own address. To print out all the
addresses, a program would loop through the collection of student objects and
send each one in turn the printCampusAddress message.

Objects may refer to other objects. In our example, each course in the college
might also be represented by an object. Course objects would know things such
as who the instructor is, what students are in the course, what the prerequisites
are, and when and where the course meets. One example operation might be
addStudent, which causes a student to be enrolled in the course. The student
being enrolled would be represented by the appropriate student object. Instruc­
tors would be another kind of object, as well as rooms, and even times. You can
see how successive refinement of these ideas could lead to a rather sophisticated
model of the information structure of the college.

As a beginning programmer, you're probably not yet ready to tackle a college
information system. For now, we'll study objects in the context of some simple
graphics programming.

14.31 Simple Graphics Programming

In order to run the graphical programs and examples in this chapter (and the
rest of the book), you will need a copy of the file graphics . py that is supplied
with the supplemental materials. Using the graphics library is as easy as placing
a copy of the graphics . py file in the same folder as your graphics program(s).
Alternatively, you can place it in a system directory where other Python libraries
are stored so that it can be used from any folder on the system.

The graphics library makes it easy to experiment with graphics interactively

85

86 Cha pter 4. Objects and Graphics

and write simple graphics programs. As you do, you will be learning principles
of object -oriented programming and computer graphics that can be applied in
more sophisticated graphical programming environments. The details of the
graphics module will be explored in later sections. Here we'll concentrate on a
basic hands-on introduction to whet your appetite.

As usual, the best way to start learning new concepts is to roll up your sleeves
and try out some examples. The first step is to import the graphics module.
Assuming you have placed graphics . py in an appropriate place, you can import
the graphics commands into an interactive Python session. If you are using IDLE,
you may have to first "point" IDLE to the folder where you saved graphics . py.

A simple way to do this is to load and run one of your existing programs from
that folder. Then you should be able to import graphics into the shell window:

>>> import graphics
>>>

If this import fails, it means that Python couldn't find the graphics module. Make
sure the file is in the correct folder and try again.

Next we need to create a place on the screen where the graphics will appear.
That place is a graphics window or GraphWin, which is provided by graphics :

>>> win = graphics . GraphWin ()
>>>

Notice the use of dot notation to invoke the GraphWin function that "lives in" the
graphics library. This is analogous to when we used math . sqrt (x) to invoke the
square root function from the math library module. The Graph Win () function
creates a new window on the screen. The window will have the title "Graphics
Window." The GraphWin may overlap your Python shell window, so you might
have to resize or move the shell to make both windows fully visible. Figure 4.1
shows an example screen view.

The GraphWin is an object, and we have assigned it to the variable called win.

We can now manipulate the window object through this variable. For example,
when we are finished with a window, we can destroy it. This is done by issuing
the close command:

>>> win . close ()
>>>

Typing this command causes the window to vanish from the screen.

4.3. Simple Graphics Programming

File Edit S hell Window

Python 3.4.3 (v3.4.3:9b73flc3e601, Feb 24 2015, 22:44:40) (HSC v.1600 64 bi

t (AI1D64)) on win32

Type "copyright", "credits" or "license()" for more information.

>>> from graphics import �

>>> win = GraphWin()

»> I

Figure 4.1: Screen shot with a Python shell and a GraphWin

Notice that we are again using the dot notation, but now we are using it
with a variable name, not a module name, on the left side of the dot. Recall
that win was earlier assigned as an object of type GraphWin. One of the things
a GraphWin object can do is to close itself. You can think of this command as
invoking the close operation that is associated with this particular window. The
result is that the window disappears from the screen.

By the way, I should mention here that trying out graphics commands inter­
actively like this may be tricky in some environments. If you are using a shell
within an IDE such as IDLE, it is possible that on your particular platform a
graphics window appears nonresponsive. For example, you may see a ''busy"
cursor when you mouse over the window, and you may not be able to drag the
window to position it. In some cases, your graphics window might be completely
hidden underneath the IDE and you have to go searching for it. These glitches

87

88 Cha pter 4. Objects and Graphics

are due to the IDE and the graphics window both striving to be in control of
your interactions. Regardless of any difficulties you might have playing with the
graphics interatively, rest assured that your programs making use of the graphics
library should run just fine in most standard environments. They will definitely
work under Windows, macOS, and Linux.

We will be using quite a few commands from the graphics library, and it gets
tedious having to type the "graphics ." notation every time we use one. Python
has an alternative form of import that can help out:

from graphics import *

The from statement allows you to load specific definitions from a library mod­
ule. You can either list the names of definitions to be imported or use an as­
terisk, as shown, to import everything defined in the module. The imported
commands become directly available without having to preface them with the
module name. After doing this import, we can create a GraphWin more simply:

win = GraphWin ()

All of the rest of the graphics examples will assume that the entire graphics
module has been imported using from.

Let's try our hand at some drawing. A graphics window is actually a collec­
tion of tiny points called pixels (short for "picture elements"). By controlling the
color of each pixel, we control what is displayed in the window. By default, a
GraphWin is 200 pixels tall and 200 pixels wide. That means there are 40,000
pixels in the GraphWin. Drawing a picture by assigning a color to each individ­
ual pixel would be a daunting challenge. Instead, we will rely on a library of
graphical objects. Each type of object does its own bookkeeping and knows how
to draw itself into a GraphWin.

The simplest object in the graphics module is a Point. In geometry, a point
is a location in space. A point is located by reference to a coordinate system. Our
graphics object Point is similar; it can represent a location in a GraphWin. We
define a point by supplying x andy coordinates (x, y). The x value represents
the horizontal location of the point, and the y value represents the vertical.

Traditionally, graphics programmers locate the point (0, 0) in the upper-left
corner of the window. Thus x values increase from left to right, and y values
increase from top to bottom. In the default 200 x 200 GraphWin, the lower-right
corner has the coordinates (199, 199). Drawing a Point sets the color of the
corresponding pixel in the GraphWin. The default color for drawing is black.

Here is a sample interaction with Python illustrating the use of Points :

4.3. Simple Graphics Programming

>>> p = Point (50 , 60)
>>> p . getX O

50
>>> p . getY O

60
>>> win = GraphWin ()
>>> p . draw (win)
>>> p2 = Point (140 , 100)
>>> p2 . draw (win)

The first line creates a Point located at (100, 120). After the Point has been
created, its coordinate values can be accessed by the operations getX and getY.

As with all function calls, make sure to put the parentheses on the end when
you are attempting to use the operations. A Point is drawn into a window using
the draw operation. In this example, two different Point objects (p and p2) are
created and drawn into the GraphWin called win. Figure 4.2 shows the resulting
graphical output.

•

•

Figure 4.2: Graphics window with two points drawn

In addition to points, the graphics library contains commands for drawing
lines, circles, rectangles, ovals, polygons and text. Each of these objects is cre­
ated and drawn in a similar fashion. Here is a sample interaction to draw various
shapes into a GraphWin:

89

90 Chapter 4. Objects and Graphics

>>> #### Open a graphics window

>>> win= GraphWin('Shapes')

>>> #### Draw a red circle centered at point (100,100) with radius 30

>>> center = Point(100,100)

>>> eire = Circle(center, 30)

>>> circ.setFill('red')

>>> circ.draw(win)

>>> #### Put a textual label in the center of the circle

>>> label = Text(center, "Red Circle")

>>> label.draw(win)

>>> #### Draw a square using a Rectangle object

>>> rect = Rectangle(Point(30,30), Point(70,70))

>>> rect.draw(win)

>>> #### Draw a line segment using a Line object

>>>line= Line(Point(20,30), Point(180, 165))

>>> line.draw(win)

>>>

>>>

>>>

Draw an oval using the

oval= Oval(Point(20,150),

oval.draw(win)

Oval object

Point(180,199))

Try to figure out what each of these statements does. If you type them in as
shown, the final result will look like Figure 4.3.

Shapes

Figure 4.3: Various shapes from the graphics module

4.4. Using Graphical Objects

14.41 Using Graphical Objects

Some of the examples in the above interactions may look a bit strange to you.
To really understand the graphics module, we need to take an object -oriented
point of view. Remember, objects combine data with operations. Computation
is performed by asking an object to carry out one of its operations. In order to
make use of objects, you need to know how to create them and how to request
operations.

In the interactive examples above, we manipulated several different kinds
of objects: GraphWin, Point, Circle, Oval, Line, Text, and Rectangle. These
are examples of classes. Every object is an instance of some class, and the class
describes the properties the instance will have.

Borrowing a biological metaphor, when we say that Fido is a dog, we are
actually saying that Fido is a specific individual in the larger class of all dogs. In
00 terminology, Fido is an instance of the dog class. Because Fido is an instance
of this class, we expect certain things. Fido has four legs, a tail, a cold, wet nose,
and he barks. If Rex is a dog, we expect that he will have similar properties, even
though Fido and Rex may differ in specific details such as size or color.

The same ideas hold for our computational objects. We can create two sepa­
rate instances of Point, say p and p2. Each of these points has an x and y value,
and they both support the same set of operations like getX and draw. These
properties hold because the objects are Points. However, different instances
can vary in specific details such as the values of their coordinates.

To create a new instance of a class, we use a special operation called a con­
structor. A call to a constructor is an expression that creates a brand new object.
The general form is as follows:

<class-name> (<param1> , <param2> , . . .)

Here <class-name> is the name of the class that we want to create a new in­
stance of, e.g., Circle or Point. The expressions in the parentheses are any
parameters that are required to initialize the object. The number and type of
the parameters depends on the class. A Point requires two numeric values,
while a GraphWin can be constructed without any parameters. Often, a con­
structor is used on the right side of an assignment statement, and the resulting
object is immediately assigned to a variable on the left side that is then used to
manipulate the object.

To take a concrete example, let's look at what happens when we create a
graphical point. Here is a constructor statement from the interactive example
above:

91

92

p = Point (50 , 60)

Cha pter 4. Objects and Graphics

The constructor for the Point class requires two parameters giving the x and
y coordinates for the new point. These values are stored as instance variables

inside the object. In this case, Python creates an instance of Point having an
x value of 50 and a y value of 60. The resulting point is then assigned to the
variable p.

A conceptual diagram of the result is shown in Figure 4.4. Note that in this
diagram as well as similar ones later on, only the most salient details are shown.
Points also contain other information such as their color and which window (if
any) they are drawn in. Most of this information is set to default values when
the Point is created.

'

p: - Point -

x: I 50 I
y: I 60 I

/

Figure 4.4: The variable p refers to a new Point

To perform an operation on an object, we send the object a message. The
set of messages that an object responds to are called the methods of the object.
You can think of methods as functions that live inside the object. A method is
invoked using dot-notation.

<object> . <method-name> (<param1> , <param2> , . . .)

The number and type of the parameters is determined by the method being used.
Some methods require no parameters at all. You can find numerous examples
of method invocation in the interactive examples above.

As examples of parameterless methods, consider these two expressions:

p . getX ()

p . getY ()

The getX and getY methods return the x andy values of a point, respectively.
Methods such as these are sometimes called accessors, because they allow us to
access information from the instance variables of the object.

4.4. Using Graphical Objects

Other methods change the values of an object's instance variables, hence
changing the state of the object. All of the graphical objects have a move method.
Here is a specification:

move (dx , dy) : Moves the object dx units in the x direction and dy units in they
direction.

To move the point p to the right 10 units, we could use this statement:

p . move (10 , 0)

This changes the x instance variable of p by adding 10 units. If the point is
currently drawn in a GraphWin, move will also take care of erasing the old image
and drawing it in its new position. Methods that change the state of an object
are sometimes called mutators.

The move method must be supplied with two simple numeric parameters
indicating the distance to move the object along each dimension. Some methods
require parameters that are themselves complex objects. For example, drawing
a Circle into a GraphWin involves two objects. Let's examine a sequence of
commands that does this:

eire = Circle (Point (100 , 100) , 30)

win = GraphWin ()

circ . draw (win)

The first line creates a Circle with a center located at the Point (100, 100) and
a radius of 30. Notice that we used the Point constructor to create a location
for the first parameter to the Circle constructor. The second line creates a
GraphWin. Do you see what is happening in the third line? This is a request for
the Circle object eire to draw itself into the GraphWin object win. The visible
effect of this statement is a circle in the GraphWin centered at (100, 100) and
having a radius of 30. Behind the scenes, a lot more is happening.

Remember, the draw method lives inside the eire object. Using informa­
tion about the center and radius of the circle from the instance variables, the
draw method issues an appropriate sequence of low-level drawing commands
(a sequence of method invocations) to the GraphWin. A conceptual picture of
the interactions among the Point, Circle and GraphWin objects is shown in
Figure 4.5. Fortunately, we don't usually have to worry about these kinds of
details; they're all taken care of by the graphical objects. We just create objects,
call the appropriate methods, and let them do the work. That's the power of
object -oriented programming.

93

94

.
c1rc:

Cha pter 4. Objects and Graphics

- Circle

center: I I -
I .

radius: I 30 I

draw(1)
. I

I
•

I
. I

Point

x: I 100 I
y: I 100 I

I Low-level drawing commands
'

.
w1n: ... Graph Win -

.

•

0

Figure 4.5: Object interactions to draw a circle

There is one subtle "gotcha" that you need to keep in mind when using
objects. It is possible for two different variables to refer to exactly the same
object; changes made to the object through one variable will also be visible to
the other. Suppose, for example, we are trying to write a sequence of code that
draws a smiley face. We want to create two eyes that are 20 units apart. Here is
a sequence of code intended to draw the eyes:

Incorrect way to create two circles .

leftEye = Circle (Point (80 , 50) , 5)

leftEye . setFill ('yellow')

leftEye . setOutline ('red')

rightEye = leftEye

rightEye . move (20 , 0)

The basic idea is to create the left eye and then copy that into a right eye, which
is then moved over 20 units.

This doesn't work. The problem here is that only one Circle object is cre­
ated. The assignment

rightEye = leftEye

4.4. Using Graphical Objects

simply makes rightEye refer to the very same circle as leftEye. Figure 4.6
shows the situation. When the Circle is moved in the last line of code, both
rightEye and leftEye refer to it in its new location on the right side. This
situation where two variables refer to the same object is called aliasing, and it
can sometimes produce rather unexpected results.

left Eye: Circle
--"' ---

""

center: I I Point
I

radius: I 10 I
x: I I 80

y: I 50 I
right Eye: ./

Figure 4.6: Variables leftEye and rightEye are aliases

One solution to this problem would be to create a separate circle for each
eye:

A correct way to create two circles .

leftEye = Circle (Point (80 , 50) , 5)

leftEye . setFill ('yellow')

leftEye . setOutline ('red')

rightEye = Circle (Point (100 , 50) , 5)

rightEye . setFill ('yellow')

rightEye . setOutline ('red')

This will certainly work, but it's cumbersome. We had to write duplicated code
for the two eyes. That's easy to do using a "cut and paste" approach, but it's not
very elegant. If we decide to change the appearance of the eyes, we will have to
be sure to make the changes in two places.

The graphics library provides a better solution; all graphical objects support
a clone method that makes a copy of the object. Using clone, we can rescue
the original approach:

Correct way to create two circles , using clone .

leftEye = Circle (Point (80 , 50) , 5)

leftEye . setFill ('yellow')

leftEye . setOutline ('red')

95

96 Cha pter 4. Objects and Graphics

rightEye = leftEye . clone () # rightEye is an exact copy of the left

rightEye . move (20 , 0)

Strategic use of cloning can make some graphics tasks much easier.

14.51 Graphing Future Value

Now that you have some idea of how to use objects from graphics, we're ready
to try some real graphics programming. One of the most important uses of
graphics is providing a visual representation of data. They say a picture is worth
a thousand words; it is almost certainly better than a thousand numbers. Just
about any program that manipulates numeric data can be improved with a bit
of graphical output. Remember the program in Chapter 2 that computed the
future value of a ten-year investment? Let's try our hand at creating a graphical
summary.

Programming with graphics requires careful planning. You'll probably want
pencil and paper handy to draw some diagrams and scratch out calculations as
we go along. As usual, we begin by considering the specification of exactly what

the program will do.
The original program futval . py had two inputs: the amount of money to

be invested and the annualized rate of interest. Using these inputs, the program
calculated the change in principal year by year for ten years using the formula
principal = principal * (1 + apr). It then printed out the final value of the
principal. In the graphical version, the output will be a ten-year bar graph where
the height of successive bars represents the value of the principal in successive
years.

Let's use a concrete example for illustration. Suppose we invest $2000 at
10% interest. Table 4.1 shows the growth of the investment over a ten-year
period. Our program will display this information in a bar graph. Figure 4. 7
shows the same data in graphical form. The graph contains eleven bars. The
first bar shows the original value of the principal. For reference, let's number
these bars according to the number of years of interest accrued, 0-10.

Here is a rough design for the program:

Print an introduction

Get value of principal and apr from user

Create a GraphWin

Draw scale labels on left side of window

Draw bar at position 0 with height corresponding to principal

4.5. Graphing Future Value 97

I years I value I
0 $2,000.00
1 $2,200.00
2 $2,420.00
3 $2,662.00
4 $2,928.20
5 $3,221.02

6 $3,542.12

7 $3,897.43
8 $4,287.18
9 $4,715.90

10 $5,187.49

Table 4. 1: Table showing growth of $2000 at 10% interest

For successive years 1 through 10

Calculate principal = principal * (1 + apr)

Draw a bar for this year having a height corresponding to principal

Wait for user to press Enter .

The pause created by the last step is necessary to keep the graphics window dis­
played so that we can interpret the results. Without such a pause, the program
would end, and the GraphWin would vanish with it.

While this design gives us the broad brush strokes for our algorithm, there
are some very important details that have been glossed over. We must decide
exactly how big the graphics window will be and how we will position the ob­
jects that appear in this window. For example, what does it mean to draw, say, a
bar for year five with height corresponding to $3221.02?

Let's start with the size of the GraphWin. Recall that the size of a window
is given in terms of the number of pixels in each dimension. Computer screens
are also measured in terms of pixels. The number of pixels or resolution of
the screen is determined by the monitor and graphics card in the computer you
use. The lowest resolution screen you are likely to encounter on a personal
computer these days is a so-called extended VGA screen that is 1024x768 pixels.
Most screens are considerably larger. Our default 200x200 pixel window will
probably seem a bit small. Let's make the GraphWin 320x240; that will make it
about 1/8 the size of a small screen.

98

1

Cha pter 4. Objects and Graphics

Figure 4. 7: Bar graph showing growth of $2000 at 1 Oo/o interest

Given this analysis, we can flesh out a bit of our design. The third line of the
design should now read:

Create a 320x240 GraphWin titled ''Investment Growth Chart''

You may be wondering how this will translate into Python code. You have al­
ready seen that the GraphWin constructor allows an optional parameter to spec­
ify the title of the window. You can also supply width and height parameters to
control the size of the window. Thus, the command to create the output window
will be:

win = GraphWin (" Investment Growth Chart " , 320 , 240)

Next we tum to the problem of printing labels along the left edge of our
window. To simplify the problem, we will assume the graph is always scaled to
a maximum of $10,000 with the five labels "O.OK" to "10.0K" as shown in the
example window. The question is how should the labels be drawn? We will need
some Text objects. When creating Text, we specify the anchor point (the point
the text is centered on) and the string to use as the label.

The label strings are easy. Our longest label is five characters, and the labels
should all line up on the right side of a column, so the shorter strings will be
padded on the left with spaces. The placement of the labels is chosen with a bit

4.5. Graphing Future Value

of calculation and some trial and error. Playing with some interactive examples,
it seems that a string of length five looks nicely positioned in the horizontal
direction placing the center 20 pixels in from the left edge. This leaves just a bit
of white space at the margin.

In the vertical direction, we have just over 200 pixels to work with. A simple
scaling would be to have 100 pixels represent $5,000. That means our five labels
should be spaced 50 pixels apart. Using 200 pixels for the range 0-10,000 leaves
240 - 200 = 40 pixels to split between the top and bottom margins. We might
want to leave a little more margin at the top to accommodate values that grow
beyond $10,000. A little experimentation suggests that putting the "O.OK" label
10 pixels from the bottom (position 230) seems to look nice.

Elaborating our algorithm to include these details, the single step

Draw scale labels on left side of window

becomes a sequence of steps:

Draw label I I O . OK 11 at (20 , 230)

Draw label I I 2 . 5K 11 at (20 , 180)

Draw label I I 5 . 0K 11 at (20 , 130)

Draw label I I 7 . 5K 11 at (20 , 80)

Draw label 11 10 . 0K 11 at (20 , 30)

The next step in the original design calls for drawing the bar that corresponds
to the initial amount of the principal. It is easy to see where the lower-left corner
of this bar should be. The value of $0.0 is located vertically at pixel 230, and
the labels are centered 20 pixels in from the left edge. Adding another 20 pixels
gets us to the right edge of the labels. Thus the lower-left comer of the Oth bar
should be at location (40, 230).

Now we just need to figure out where the opposite (upper-right) corner of
the bar should be so that we can draw an appropriate rectangle. In the ver­
tical direction, the height of the bar is determined by the value of principal.

In drawing the scale, we determined that 100 pixels is equal to $5,000. This
means that we have 100/5000 = 0.02 pixels to the dollar. This tells us, for ex­
ample, that a principal of $2,000 should produce a bar of height 2000(.02) = 40
pixels. In general, the y position of the upper-right corner will be given by
230- (principal)(0.02). (Remember that 230 is the 0 point, and the y coordi­
nates decrease going up.)

How wide should the bar be? The window is 320 pixels wide, but 40 pixels
are eaten up by the labels on the left. That leaves us with 280 pixels for 11 bars:

99

100 Cha pter 4. Objects and Graphics

280/11 = 25.4545. Let's just make each bar 25 pixels; that will give us a bit of
margin on the right side. So the right edge of our first bar will be at position
40 + 25 = 65.

We can now fill in the details for drawing the first bar into our algorithm:

Draw a rectangle from (40, 230) to (65 , 230 - principal * 0.02)

At this point, we have made all the major decisions and calculations required to
finish out the problem. All that remains is to percolate these details into the rest
of the algorithm. Figure 4.8 shows the general layout of the window with some
of the dimensions we have chosen.

lO.OK

7.Slt

240 s.ox

2.5X

50
O.OK

10 {40,230)

1 ... /0 I 25
320 � -

-.

�

{315,230)

{319,239)

Figure 4.8: Position of elements in future value bar graph

Let's figure out where the lower-left corner of each bar is going to be lo­
cated. We chose a bar width of 25, so the bar for each successive year will start
25 pixels farther right than the previous year. We can use a variable year to rep­
resent the year number and calculate the x coordinate of the lower-left corner
as (year)(25) + 40. (The +40 leaves space on the left edge for the labels.) Of
course, they coordinate of this point is still 230 (the bottom of the graph).

To find the upper-right corner of a bar, we add 25 (the width of the bar)
to the x value of the lower-left corner. They value of the upper-right comer is
determined from the (updated) value of principal exactly as we determined it
for the first bar. Here is the refined algorithm:

for year running from a value of 1 up through 10:

4.5. Graphing Future Value

Calculate principal = principal * (1 + apr)

Calculate xll = 25 * year + 40

Calculate height = principal * 0 . 02

Draw a rectangle from (xll , 230) to (xll+25 , 230 - height)

The variable xll stands for x lower-left-the x value of the lower-left comer of
the bar.

Putting all of this together produces the detailed algorithm shown below:

Print an introduction

Get value of principal and apr from user

Create a 320x240 GraphWin titled ''Investment Growth Chart''

Draw label " O . OK" at (20 , 230)

Draw label " 2 . 5K" at (20 , 180)

Draw label " 5 . 0K" at (20 , 130)

Draw label " 7 . 5K" at (20 , 80)

Draw label " 10 . 0K" at (20 , 30)

Draw a rectangle from (40 , 230) to (65 , 230 - principal * 0 . 02)

for year running from a value of 1 up through 10 :

Calculate principal = principal * (1 + apr)

Calculate xll = 25 * year + 40

101

Draw a rectangle from (xll , 230) to (xll+25 , 230 - principal * 0 . 02)

Wait for user to press Enter

Whew! That was a lot of work, but we are finally ready to translate this algo­
rithm into actual Python code. The translation is straightforward using objects
from the graphics library. Here's the program:

futval_graph . py

from graphics import *

def main () :

Introduction

print ("This program plots the growth of a 10-year investment . ")

Get principal and interest rate

principal = float (input ("Enter the initial principal : "))

apr = float (input ("Enter the annualized interest rate : "))

102 Cha pter 4. Objects and Graphics

Create a graphics window with labels on left edge

win = GraphWin (" Investment Growth Chart " , 320 , 240)

win . setBackground ("white ")

Text (Point (20 , 230) , ' O . OK') . draw (win)

Text (Point (20 , 180) , ' 2 . 5K') . draw (win)

Text (Point (20 , 130) , ' 5 . 0K') . draw (win)

Text (Point (20 , 80) , ' 7 . 5K') . draw (win)

Text (Point (20 , 30) , '10 . 0K') . draw (win)

Draw bar for initial principal

height = principal * 0 . 02

bar = Rectangle (Point (40 , 230) , Point (65 , 230-height))

bar . setFill ("green")

bar . setWidth (2)

bar . draw (win)

Draw bars for successive years

for year in range (1 , 1 1) :

calculate value for the next year

principal = principal * (1 + apr)

draw bar for this value

xll = year * 25 + 40

height = principal * 0 . 02

bar = Rectangle (Point (xll , 230) , Point (xll+25 , 230-height))

bar . setFill ("green")

bar . setWidth (2)

bar . draw (win)

input ("Press <Enter> to quit ")

win . close ()

main ()

If you study this program carefully, you will see that I added a number of
features to spruce it up a bit. All graphical objects support methods for changing
color. I have set the background color of the window to white:

win . setBackground ("white ")

4.6. Choosing Coord inates

I have also changed the color of the bar object. The following line asks the
bar to color its interior green (because it's money, you know):

bar . setFill ("green")

You can also change the color of a shape's outline using the setOutline method.
In this case, I have chosen to leave the outline the default black so that the bars
stand out from each other. To enhance this effect, this code makes the outline
wider (two pixels instead of the default one):

bar . setWidth (2)

You might also have noted the economy of notation in drawing the labels.
Since we don't ever change the labels, assigning them to a variable is unneces­
sary. We can just create a Text object, tell it to draw itself, and be done with it.
Here is an example:

Text (Point (20 , 230) , ' O . OK') . draw (win)

Finally, take a close look at the use of the year variable in the loop:

for year in range (1 , 1 1) :

The expression range (! , 1 1) produces a sequence of ints 1-10. The loop in­
dex variable year marches through this sequence on successive iterations of the
loop. So the first time through year is 1, then 2, then 3, etc., up to 10. The value
of year is then used to compute the proper position of the lower-left comer of
each bar:

xll = year * 25 + 40

I hope you are starting to get the hang of graphics programming. It's a bit
strenuous, but very addictive.

14.61 Choosing Coordinates

The lion's share of the work in designing the futval_graph program was in de­
termining the precise coordinates where things would be placed on the screen.
Most graphics programming problems require some sort of a coordinate transfor­
mation to change values from a real-world problem into the window coordinates
that get mapped onto the computer screen. In our example, the problem domain

103

104 Cha pter 4. Objects and Graphics

called for x values representing the year (0-10) andy values representing mone­
tary amounts ($0-$10,000). We had to transform these values to be represented
in a 320 x 240 window. It's nice to work through an example or two to see how
this transformation happens, but it makes for tedious programming.

Coordinate transformation is an integral and well-studied component of
computer graphics. It doesn't take too much mathematical savvy to see that
the transformation process always follows the same general pattern. Anything
that follows a pattern can be done automatically. In order to save you the trouble
of having to explicitly convert back and forth between coordinate systems, the
graphics library provides a simple mechanism to do it for you. When you cre­
ate a GraphWin you can specify a coordinate system for the window using the
setCoords method. The method requires four parameters specifying the coor­
dinates of the lower-left and upper-right corners, respectively. You can then use
this coordinate system to place graphical objects in the window.

To take a simple example, suppose we just want to divide the window into
nine equal squares, tic-tac-toe fashion. This could be done without too much
trouble using the default 200 x 200 window, but it would require a bit of arith­
metic. The problem becomes trivial if we first change the coordinates of the
window to run from 0 to 3 in both dimensions:

create a default 200x200 window

win = GraphWin ("Tic-Tac-Toe ")

set coordinates to go from (0 , 0) in the lower left

to (3 , 3) in the upper right .

win . setCoords (O . O , 0 . 0 , 3 . 0 , 3 . 0)

Draw vertical lines

Line (Point (1 , 0) , Point (1 , 3)) . draw (win)

Line (Point (2 , 0) , Point (2 , 3)) . draw (win)

Draw horizontal lines

Line (Point (0 , 1) , Point (3 , 1)) . draw (win)

Line (Point (0 , 2) , Point (3 , 2)) . draw (win)

Another benefit of this approach is that the size of the window can be changed
by simply changing the dimensions used when the window is created (e.g. win

= GraphWin ("Tic-Tac-Toe " , 300 , 300)). Because the same coordinates span
the window (due to setCoords) the objects will scale appropriately to the new

4.6. Choosing Coord inates

window size. Using "raw" window coordinates would require changes in the
definitions of the lines.

We can apply this idea to simplify our graphing future value program. Ba­
sically, we want our graphics window to go from 0 through 10 (representing
years) in the x dimension, and from 0 to 10,000 (representing dollars) in they
dimension. We could create just such a window like this:

win = GraphWin (" Investment Growth Chart " , 320 , 240)

win . setCoords (O . O , 0 . 0 , 10 . 0 , 10000 . 0)

Then creating a bar for any values of year and principal would be simple.
Each bar starts at the given year and a baseline of 0, and grows to the next year
and a height equal to principal.

bar = Rectangle (Point (year , 0) , Point (year+1 , principal))

There is a small problem with this scheme. Can you see what I have for­
gotten? The eleven bars will fill the entire window; we haven't left any room
for labels or margins around the edges. This is easily fixed by expanding the
coordinates of the window slightly. Since our bars start at 0, we can locate the
left side labels at -1. We can add a bit of white space around the graph by ex­
panding the coordinates slightly beyond those required for our graph. A little
experimentation leads to this window definition:

win = GraphWin (" Investment Growth Chart " , 320 , 240)

win . setCoords (-1 . 75 , -200 , 1 1 . 5 , 10400)

Here is the program again, using the alternative coordinate system:

futval_graph2 . py

from graphics import *

def main () :

Introduction

105

print ("This program plots the growth of a 10-year investment . ")

Get principal and interest rate

principal = float (input ("Enter the initial principal : "))

apr = float (input ("Enter the annualized interest rate : "))

106 Cha pter 4. Objects and Graphics

Create a graphics window with labels on left edge

win = GraphWin (" Investment Growth Chart " , 320 , 240)

win . setBackground ("white ")

win . setCoords (-1 . 75 , -200 , 1 1 . 5 , 10400)

Text (Point (-1 , 0) , ' O . OK') . draw (win)

Text (Point (-1 , 2500) , ' 2 . 5K') . draw (win)

Text (Point (-1 , 5000) , ' 5 . 0K') . draw (win)

Text (Point (-1 , 7500) , ' 7 . 5k') . draw (win)

Text (Point (-1 , 10000) , '10 . 0K') . draw (win)

Draw bar for initial principal

bar = Rectangle (Point (O , 0) , Point (! , principal))

bar . setFill ("green")

bar . setWidth (2)

bar . draw (win)

Draw a bar for each subsequent year

for year in range (! , 1 1) :

principal = principal * (1 + apr)

bar = Rectangle (Point (year , 0) , Point (year+1 , principal))

bar . setFill ("green")

bar . setWidth (2)

bar . draw (win)

input ("Press <Enter> to quit . ")

win . close ()

main ()

Notice how the cumbersome coordinate calculations have been eliminated. This
version also makes it easy to change the size of the GraphWin. Changing the
window size to 640 x 480 produces a larger, but correctly drawn, bar graph. In
the original program, all of the calculations would have to be redone to accom­
modate the new scaling factors in the larger window.

Obviously, the second version of our program is much easier to develop and
understand. When you are doing graphics programming, give some consider­
ation to choosing a coordinate system that will make your task as simple as
possible.

4.7. Interactive Graphics

14.71 Interactive Graphics

Graphical interfaces can be used for input as well as output. In a GUI envi­
ronment, users typically interact with their applications by clicking on buttons,
choosing items from menus, and typing information into on-screen text boxes.
These applications use a technique called event-driven programming. Basically,
the program draws a set of interface elements (often called widgets) on the
screen, and then waits for the user to do something.

When the user moves the mouse, clicks a button, or types a key on the key­
board, this generates an event. Basically, an event is an object that encapsulates
data about what just happened. The event object is then sent off to an appropri­
ate part of the program to be processed. For example, a click on a button might
produce a button event. This event would be passed to the button-handling code,
which would then perform the appropriate action corresponding to that button.

Event -driven programming can be tricky for novice programmers, since it's
hard to figure out ''who's in charge" at any given moment. The graphics mod­
ule hides the underlying event-handling mechanisms and provides a few simple
ways of getting user input in a GraphWin.

14.7.11 Getting Mouse Clicks

We can get graphical information from the user via the getMouse method of the
GraphWin class. When getMouse is invoked on a GraphWin, the program pauses
and waits for the user to click the mouse somewhere in the graphics window.
The spot where the user clicks is returned to the program as a Point. Here is a
bit of code that reports the coordinates of ten successive mouse clicks:

click . py

from graphics import *

def main () :

win = GraphWin (" Click Me ! ")

for i in range (10) :

p = win . getMouse ()

print ("You clicked at : " , p . getX O , p . getY ())

main ()

The value returned by getMouse () is a ready-made Point. We can use it like

107

108 Cha pter 4. Objects and Graphics

any other point using accessors such as get X and get Y or other methods such as
draw and move.

Here is an example of an interactive program that allows the user to draw a
triangle by clicking on three points in a graphics window. This example is com­
pletely graphical, making use of Text objects as prompts. No interaction with
a Python text window is required. If you are programming in a Microsoft Win­
dows environment, you can name this program using a . pyw extension. Then
when the program is run, it will not even display the Python shell window.

triangle . pyw

from graphics import *

def main () :

win = GraphWin ("Draw a Triangle ")

win . setCoords (O . O , 0 . 0 , 10 . 0 , 10 . 0)

message = Text (Point (5 , 0 . 5) , "Click on three points ")

message . draw (win)

Get and draw three vertices of triangle

p1 = win . getMouse ()

p1 . draw (win)

p2 = win . getMouse ()

p2 . draw (win)

p3 = win . getMouse ()

p3 . draw (win)

Use Polygon object to draw the triangle

triangle = Polygon (p1 , p2 , p3)

triangle . setFill ("peachpuff ")

triangle . setOutline (" cyan")

triangle . draw (win)

Wait for another click to exit

message . setText (" Click anywhere to quit . ")

win . getMouse ()

main ()

The three-click triangle illustrates a couple of new features of the graphics
module. There is no triangle class; however, there is a general class Polygon

4.7. Interactive Graphics

that can be used for any multi-sided, closed shape. The constructor for Polygon

accepts any number of points and creates a polygon by using line segments to
connect the points in the order given and to connect the last point back to the
first. A triangle is just a three-sided polygon. Once we have three Points-pi,

p2, and p3---creating the triangle is a snap:

triangle = Polygon (p1 , p2 , p3)

You should also study how the Text object is used to provide prompts. A
single Text object is created and drawn near the beginning of the program:

message = Text (Point (5 , 0 . 5) , " Click on three points ")

message . draw (win)

To change the prompt, we don't need to create a new Text object; we can just
change the text that is displayed. This is done near the end of the program with
the setText method:

message . setText ("Click anywhere to quit . ")

As you can see, the getMouse method of Graph Win provides a simple way of
interacting with the user in a graphics-oriented program.

14.7.21 Handling Textual Input

In the triangle example, all of the input was provided through mouse clicks.
Often we will want to allow the user to interact with a graphics window via
the keyboard. The Graph Win object provides a getKey () method that works
very much like the getMouse method. Here's an extension of the simple clicking
program that allows the user to label positions in a window by typing a single
keypress after each mouse click:

clickntype . py

from graphics import *

def main () :

win = GraphWin (" Click and Type " , 400 , 400)

for i in range (10) :

pt = win . getMouse ()

key = win . getKey ()

109

1 10 Cha pter 4. Objects and Graphics

label = Text (pt , key)

label . draw (win)

main ()

Notice what happens in the loop body. First it waits for a mouse click, and
the resulting Point is saved as the variable p. Then the program waits for the
user to type a key on the keyboard. The key that is pressed is returned as a
string and saved as the variable key. For example, if the user presses g on the
keyboard, then key will be the string 'g'. The Point and string are then used
to create a text object (called label) that is drawn into the window.

You should try out this pogram to get a feel for what the getKey method
does. In particular, see what strings are returned when you type some of the
weirder keys such as <Shift>, <Ctrl>, or the cursor movement keys.

While the getKey method is certainly useful, it is not a very practical way of
getting an arbitrary string of characters from the user (for example a number or
a name). Fortunately, the graphics library provides an Entry object that allows
the user to actually type input right into a GraphWin.

An Entry object draws a box on the screen that can contain text. It un­
derstands setText and getText methods just like the Text object does. The
difference is that the contents of an Entry can be edited by the user. Here's a
version of the temperature conversion program from Chapter 2 with a graphical
user interface:

convert_gui . pyw

Program to convert Celsius to Fahrenheit using a simple

graphical interface .

from graphics import *

def main () :

win = GraphWin (" Celsius Converter" , 400 , 300)

win . setCoords (O . O , 0 . 0 , 3 . 0 , 4 . 0)

Draw the interface

Text (Point (1 , 3) , " Celsius Temperature : ") . draw (win)

Text (Point (1 , 1) , "Fahrenheit Temperature : ") . draw (win)

inputText = Entry (Point (2 . 25 , 3) , 5)

inputText . setText (" O . O ")

4.7. Interactive Graphics

inputText . draw (win)

outputText = Text (Point (2 . 25 , 1) , " ")

outputText . draw (win)

button = Text (Point (1 . 5 , 2 . 0) , "Convert It ")

button . draw (win)

Rectangle (Point (1 , 1 . 5) , Point (2 , 2 . 5)) . draw (win)

wait for a mouse click

win . getMouse ()

convert input

celsius = float (inputText . getText ())

fahrenheit = 9 . 0/5 . 0 * celsius + 32

display output and change button

outputText . setText (round (fahrenheit , 2))

button . setText (" Quit ")

wait for click and then quit

win . getMouse ()

win . close ()

main ()

When run, this produces a window with an entry box for typing in a Celsius
temperature and a "button" for doing the conversion. The button is just for show.
The program actually just pauses for a mouse click anywhere in the window.
Figure 4.9 shows how the window looks when the program starts.

Initially, the input entry box is set to contain the value 0.0. The user can
delete this value and type in another temperature. The program pauses until
the user clicks the mouse. Notice that the point where the user clicks is not even
saved; the getMouse method is just used to pause the program until the user has
a chance to enter a value in the input box.

The program then processes the input in four steps. First, the text in the
input box is converted into a number (via float) . This number is then con­
verted to degrees Fahrenheit. Finally, the resulting number is displayed in the
output text area. Although fahrenheit is a float value, the setText method
automatically converts it to a string so that it can be displayed in the output text
box.

1 1 1

1 12 Cha pter 4. Objects and Graphics

Figure 4.9: Initial screen for graphical temperature converter

Figure 4.10 shows how the window looks after the user has typed an input
and clicked the mouse. Notice that the converted temperature shows up in the
output area, and the label on the button has changed to "Quit" to show that
clicking again will exit the program. This example could be made much prettier
using some of the options in the graphics library for changing the colors, sizes,
and line widths of the various widgets. The code for the program is deliberately
spartan to illustrate just the essential elements of GUI design.

Although the basic tools getMouse, getKey, and Entry do not provide a
full-fledged GUI environment, we will see in later chapters how these simple
mechanisms can support surprisingly rich interactions.

14.81 Graphics Module Reference

The examples in this chapter have touched on most of the elements in the graph­
ics module. This section provides a complete reference to the objects and func­
tions provided in graphics. The set of objects and functions that are provided
by a module is sometimes called an Applications Programming Interface, or API.

Experienced programmers study APis to learn about new libraries. You should
probably read this section over once to see what the graphics library has to offer.

4.8. Graphics Module Reference

Figure 4.10: Graphical temperature converter after user input

After that, you will probably want to refer back to this section often when you
are writing your own graphical programs.

One of the biggest hurdles in learning an API is familiarizing yourself with
the various data types that are used. As you read through the reference, pay
close attention to the types of the parameters and return values of the vari­
ous methods. For example, when creating a Circle, it's essential that the first
parameter you supply must be a Point object (for the center) and the second
parameter must be a number (the radius). Using incorrect types will sometimes
give an immediate error message, but other times problems may not crop up un­
til later, say when an object is drawn. The examples at the end of each method
description incorporate Python literals to illustrate the appropriate data types
for parameters.

14.8.11 GraphWin Objects

A GraphWin object represents a window on the screen where graphical images
may be drawn. A program may define any number of GraphWins. A GraphWin

understands the following methods:

1 13

GraphWin (title , width , height) Constructs a new graphics window for draw­
ing on the screen. The parameters are optional; the default title is "Graph-

1 14 Cha pter 4. Objects and Graphics

ics Window," and the default size is 200 x 200 pixels.

Example: win = GraphWin (" Investment Growth" , 640 , 480)

plot (x , y , color) Draws the pixel at (x, y) in the window. Color is optional;
black is the default.

Example: win . plot (35 , 128 , "blue ")

plotPixel (x , y , color) Draws the pixel at the "raw'' position (x, y), ignoring
any coordinate transformations set up by setCoords.

Example: win . plotPixel (35 , 128 , "blue ")

setBackground (color) Sets the window background to the given color. The
default background color depends on your system. See Section 4.8.5 for
information on specifying colors.

Example: win . setBackground ("white ")

close () Closes the on-screen window.

Example: win . close ()

getMouse () Pauses for the user to click a mouse in the window and returns
where the mouse was clicked as a Point object.

Example: clickPoint = win . getMouse ()

checkMouse () Similar to getMouse, but does not pause for a user click. Returns
the last point where the mouse was clicked or None2 if the window has not
been clicked since the previous call to checkMouse or getMouse. This is
particularly useful for controlling animation loops (see Chapter 8).

Example: clickPoint = win . checkMouse ()

Note: clickPoint may be None.

getKey () Pauses for the user to type a key on the keyboard and returns a string
representing the key that was pressed.

Example: keyString = win . getKey ()

checkKey O Similar to getKey, but does not pause for the user to press a key.
Returns the last key that was pressed or " " if no key was pressed since
the previous call to checkKey or get Key. This is particularly useful for

2None is a special Python object often used to signify that a variable has no value. It is discussed
in Chapter 6.

4.8. Graphics Module Reference

controlling simple animation loops (see Chapter 8).

Example: keyString = win . checkKey ()

Note: keyString may be the empty string " "

setCoords (xll , yll , xur , yur) Sets the coordinate system of the window.
The lower-left comer is (xll, yll) and the upper-right comer is (xur, yur) .
Currently drawn objects are redrawn and subsequent drawing is done with
respect to the new coordinate system (except for plotPixel) .

Example: win . setCoords (O , 0 , 200 , 100)

14.8.21 Graphics Objects

The module provides the following classes of drawable objects: Point, Line,

Circle, Oval, Rectangle, Polygon, and Text. All objects are initially created
unfilled with a black outline. All graphics objects support the following generic
set of methods:

setFill (color) Sets the interior of the object to the given color.

Example: someObj ect . setFill ("red")

setOut line (color) Sets the outline of the object to the given color.

Example: someObj ect . setOut line ("yellow")

setWidth (pixels) Sets the width of the outline of the object to the desired
number of pixels. (Does not work for Point .)

Example: some0bject . setWidth (3)

draw (aGraphWin) Draws the object into the given GraphWin and returns the
drawn object.

Example: someObject . draw (someGraphWin)

undraw () Undraws the object from a graphics window. If the object is not cur­
rently drawn, no action is taken.

Example: someObject . undraw ()

move (dx , dy) Moves the object dx units in the x direction and dy units in the
y direction. If the object is currently drawn, the image is adjusted to the
new position.

Example: some0bject . move (10 , 15 . 5)

1 15

1 16 Cha pter 4. Objects and Graphics

clone () Returns a duplicate of the object. Clones are always created in an
undrawn state. Other than that, they are identical to the cloned object.

Example: objectCopy = someObject . clone ()

Point Methods

Point (x , y) Constructs a point having the given coordinates.

Example: aPoint = Point (3 . 5 , 8)

get X () Returns the x coordinate of a point.

Example: xValue = aPoint . getX O

getY () Returns they coordinate of a point.

Example: yValue = aPoint . getY O

Line Methods

Line (point! , point2) Constructs a line segment from point! to point2.

Example: aLine = Line (Point (1 , 3) , Point (7 , 4))

setArrow (endString) Sets the arrowhead status of a line. Arrows may be
drawn at either the first point, the last point, or both. Possible values
of endString are "first " , " last " , "both" , and "none " . The default set­
ting is "none " .

Example: aLine . setArrow ("both")

get Center () Returns a clone of the midpoint of the line segment.

Example: midPoint = aLine . getCenter ()

getP1 () , getP2 () Returns a clone of the corresponding endpoint of the seg­
ment.

Example: startPoint = aLine . getP1 ()

Circle Methods

Circle (centerPoint , radius) Constructs a circle with the given center point
and radius.

Example: aCircle = Circle (Point (3 , 4) , 10 . 5)

4.8. Graphics Module Reference

get Center () Returns a clone of the center point of the circle.

Example: centerPoint = aCircle . getCenter ()

getRadi us () Returns the radius of the circle.

Example: radius = aCircle . getRadius ()

getP1 () , getP2 () Returns a clone of the corresponding corner of the circle's
bounding box. These are opposite corner points of a square that circum­
scribes the circle.

Example: cornerPoint = aCircle . getP1 ()

Rectangle Methods

Rectangle (point 1 , point2) Constructs a rectangle having opposite corners
at point 1 and point2.

Example: aRectangle = Rectangle (Point (1 , 3) , Point (4 , 7))

get Center () Returns a clone of the center point of the rectangle.

Example: centerPoint = aRectangle . getCenter ()

getP1 () , getP2 () Returns a clone of the corresponding point used to con­
struct the rectangle.

Example: cornerPoint = aRectangle . getP1 ()

Oval Methods

Oval (point 1 , point2) Constructs an oval in the bounding box determined by
point 1 and point2.

Example: anOval = Oval (Point (1 , 2) , Point (3 , 4))

get Center () Returns a clone of the point at the center of the oval.

Example: centerPoint = anOval . getCenter ()

getP1 0 , getP2 0 Returns a clone of the corresponding point used to con­
struct the oval.

Example: cornerPoint = an0val . getP1 ()

1 17

1 18

Polygon Methods

Cha pter 4. Objects and Graphics

Polygon (point 1 , point2 , point3 , . . .) Constructs a polygon with the given
points as vertices. Also accepts a single parameter that is a list of the
vertices.

Example: aPolygon - Polygon (Point (1 , 2) , Point (3 , 4) , Point (5 , 6))

Example: aPolygon - Polygon ([Point (1 , 2) , Point (3 , 4) , Point (5 , 6)])

getPoints () Returns a list containing clones of the points used to construct the
polygon.

Example: pointList = aPolygon . getPoints ()

Text Methods

Text (anchorPoint , text String) Constructs a text object that displays text String

centered at anchorPoint. The text is displayed horizontally.

Example: message = Text (Point (3 , 4) , "Hello ! ")

setText (string) Sets the text of the object to string.

Example: message . set Text ("Goodbye ! ")

get Text () Returns the current string.

Example: msgString = message . getText ()

getAnchor () Returns a clone of the anchor point.

Example: centerPoint = message . getAnchor ()

setFace (family) Changes the font face to the given family. Possible values
are "helvetica" , " courier" , "times roman", and " arial " .

Example: message . setFace (" arial ")

set Size (point) Changes the font size to the given point size. Sizes from 5 to
36 points are legal.

Example: message . setSize (18)

setStyle (style) Changes font to the given style. Possible values are: "normal " ,

"bold", " italic " , and "bold italic " .

Example: message . setStyle ("bold")

4.8. Graphics Module Reference

setTextColor (color) Sets the color of the text to color. Note: setFill has
the same effect.

Example: message . setTextColor ("pink")

14.8.31 Entry Objects

Objects of type Entry are displayed as text entry boxes that can be edited by
the user of the program. Entry objects support the generic graphics meth­
ods move 0 , draw (graphwin) , undraw 0 , setFill (color) , and clone 0 . The
Entry specific methods are given below.

1 19

Entry (centerPoint , width) Constructs an Entry having the given center point
and width. The width is specified in number of characters of text that can
be displayed.

Example: inputBox = Entry (Point (3 , 4) , 5)

getAnchor () Returns a clone of the point where the entry box is centered.

Example: centerPoint = inputBox . getAnchor ()

get Text () Returns the string of text that is currently in the entry box.

Example: inputStr = inputBox . getText ()

set Text (string) Sets the text in the entry box to the given string.

Example: inputBox . setText (" 32 . 0 ")

setFace (family) Changes the font face to the given family. Possible values
are "helvetica" , " courier" , "times roman", and " arial " .

Example: inputBox . setFace (" courier ")

set Size (point) Changes the font size to the given point size. Sizes from 5 to
36 points are legal.

Example: inputBox . set Size (12)

setStyle (style) Changes font to the given style. Possible values are: "normal " ,

"bold", " italic " , and "bold italic " .

Example: inputBox . setStyle (" italic ")

setTextColor (color) Sets the color of the text to color.

Example: inputBox . setTextColor ("green")

120 Cha pter 4. Objects and Graphics

14.8.41 Displaying Images

The graphics module also provides minimal support for displaying and manipu­
lating images in a GraphWin. Most platforms will support at least PPM and GIF
images. Display is done with an Image object. Images support the generic meth­
ods move (dx , dy) , draw (graphwin) , undraw () , and clone () . Image-specific
methods are given below.

Image (anchorPoint , f ilename) Constructs an image from contents of the given
file, centered at the given anchor point. Can also be called with width and
height parameters instead of f ilename. In this case, a blank (transpar­
ent) image is created of the given width and height (in pixels).

Example: flowerimage = Image (Point (100 , 100) , "flower . gif ")

Example: blankimage = Image (320 , 240)

getAnchor () Returns a clone of the point where the image is centered.

Example: centerPoint = flowerimage . getAnchor ()

getWidth O Returns the width of the image.

Example: widthinPixels = flowerimage . getWidth ()

getHeight 0 Returns the height of the image.

Example: heightinPixels = flowerimage . getHeight ()

getPixel (x , y) Returns a list [red , green , blue] of the RGB values of the
pixel at position (x , y) . Each value is a number in the range 0-255 indi­
cating the intensity of the corresponding RGB color. These numbers can be
turned into a color string using the color _rgb function (see next section).

Note that pixel position is relative to the image itself, not the window
where the image may be drawn. The upper-left comer of the image is
always pixel (0 , 0) .

Example: red , green , blue = flowerimage . getPixel (32 , 18)

setPixel (x , y , color) Sets the pixel at position (x , y) to the given color.
Note: This is a slow operation.

Example: flowerimage . setPixel (32 , 18 , "blue ")

save (filename) Saves the image to a file. The type of the resulting file (e.g.,
GIF or PPM) is determined by the extension on the filename.

Example: flower Image . save ("mypic . ppm")

4.8. Graphics Module Reference

14.8.51 Generating Colors

Colors are indicated by strings. Most normal colors such as "red" , "purple " ,

"green" , " cyan", etc. should be available. Many colors come in various shades,
such as "red1 " "red2 " "red3 " "red4" which are increasingly darker shades ' ' ' '

of red. For a full list, look up Xl l color names on the web.
The graphics module also provides a function for mixing your own colors nu­

merically. The function color_rgb (red , green , blue) will return a string rep­
resenting a color that is a mixture of the intensities of red, green and blue spec­
ified. These should be ints in the range 0-255. Thus color _rgb (255 , 0 , 0) is
a bright red, while color _rgb (130 , 0 , 130) is a medium magenta.

Example: aCircle . setFill (color _rgb (130 , 0 , 130))

14.8.61 Controlling Display Updates (Advanced)

Usually, the visual display of a GraphWin is updated whenever any graphics ob­
ject's visible state is changed in some way. However, under some circumstances,
for example when using the graphics library inside some interactive shells, it
may be necessary to force the window to update in order for changes to be seen.
The update () function is provided to do this.

update () Causes any pending graphics operations to be carried out and the
results displayed.

For efficiency reasons, it is sometimes desirable to tum off the automatic
updating of a window every time one of the objects changes. For example, in
an animation, you might want to change the appearance of multiple objects
before showing the next "frame" of the animation. The GraphWin constructor
includes a special extra parameter called autoflush that controls this automatic
updating. By default, autoflush is on when a window is created. To turn it off,
the autoflush parameter should be set to False, like this:

win = GraphWin ("My Animation" , 400 , 400 , autoflush=False)

Now changes to the objects in win will only be shown when the graphics system
has some idle time or when the changes are forced by a call to update () .

The update () method also takes an optional parameter that specifies the
maximum rate (per second) at which updates can happen. This is useful for
controlling the speed of animations in a hardware-independent fashion. For
example, placing the command update (30) at the bottom of a loop ensures

121

122 Cha pter 4. Objects and Graphics

that the loop will "spin" at most 30 times per second. The update command will
insert an appropriate pause each time through to maintain a relatively constant
rate. Of course, the rate throttling will only work when the body of the loop
itself executes in less than l/30th of a second.

Example: 1000 frames at 30 frames per second

win = GraphWin ("Update Example " , 320 , 200 , autoflush=False)

for i in range (1000) :

<drawing commands for ith frame>

update (30)

14.91 Chapter Summary

This chapter introduced computer graphics and object-based programming. Here
is a summary of some of the important concepts:

• An object is a computational entity that combines data and operations.
Objects know stuff and can do stuff. An object's data is stored in instance
variables, and its operations are called methods.

• Every object is an instance of some class. It is the class that determines
what methods an object will have. An instance is created by calling a
constructor method.

• An object's attributes are accessed via dot notation. Generally computa­
tions with objects are performed by calling on an object's methods. Acces­
sor methods return information about the instance variables of an object.
Mutator methods change the value(s) of instance variables.

• The graphics module supplied with this book provides a number of classes
that are useful for graphics programming. A GraphWin is an object that
represents a window on the screen for displaying graphics. Various graph­
ical objects such as Point, Line, Circle, Rectangle, Oval, Polygon, and
Text may be drawn in a GraphWin. Users may interact with a GraphWin

by clicking the mouse or typing into an Entry box.

• An important consideration in graphical programming is the choice of an
appropriate coordinate system. The graphics library provides a way of
automating certain coordinate transformations.

4. 10. Exercises

• The situation where two variables refer to the same object is called alias­
ing. Aliasing can sometimes cause unexpected results. Use of the clone

method in the graphics library can help prevent these situations.

14.10 I Exercises

Review Questions

True/False

1. Using graphics . py allows graphics to be drawn in a Python shell window.

2. Traditionally, the upper-left comer of a graphics window has coordinates
(0,0).

3. A single point on a graphics screen is called a pixel.

4. A function that creates a new instance of a class is called an accessor.

5. Instance variables are used to store data inside an object.

6. The statement myShape . move (10 , 20) moves myShape to the point (1 0,20).

7. Aliasing occurs when two variables refer to the same object.

8. The copy method is provided to make a copy of a graphics object.

9. A graphics window always has the title "Graphics Window."

10. The method in the graphics library used to get a mouse click is read.Mouse.

Multiple Choice

1. A method that returns the value of an object's instance variable is called
a(n)
a) mutator b) function c) constructor d) accessor

2. A method that changes the state of an object is called a(n)
a) stator b) mutator c) constructor d) changor

3. What graphics class would be best for drawing a square?
a) Square b) Polygon c) Line d) Rectangle

123

124 Cha pter 4. Objects and Graph ics

4. What command would set the coordinates of win to go from (0,0) in the
lower-left corner to (10, 10) in the upper-right?
a) win . setcoords (Point (O , O) , Point (10 , 10))

b) win . setcoords ((O , O) , (10 , 10))

c) win . setcoords (O , 0 , 10 , 10)

d) win . setcoords (Point (10 , 10) , Point (O , O))

5. What expression would create a line from (2,3) to (4,5)?
a) Line (2 , 3 , 4 , 5)

b) Line ((2 , 3) , (4 , 5))

c) Line (2 , 4 , 3 , 5)

d) Line (Point (2 , 3) , Point (4 , 5))

6. What command would be used to draw the graphics object shape into the
graphics window win?
a) win . draw (shape) b) win . show (shape)

c) shape . draw () d) shape . draw (win)

7. Which of the following computes the horizontal distance between points
p1 and p2?
a) abs (p1-p2)

b) p2 . get X () - p 1 . get X ()

c) abs (p1 . getY O - p2 . getY ())

d) abs (p 1 . get X () - p2 . get X ())

8. What kind of object can be used to get text input in a graphics window?
a) Text b) Entry c) Input d) Keyboard

9. A user interface organized around visual elements and user actions is
called a(n)
a) GUI b) application c) windower d) API

10. What color is color _rgb (0 , 255 , 255) ?

a) yellow b) cyan c) magenta d) orange

Discussion

1. Pick an example of an interesting real-world object and describe it as a
programming object by listing its data (attributes, what it "knows") and
its methods (behaviors, what it can "do").

4. 10. Exercises

2. Describe in your own words the object produced by each of the following
operations from the graphics module. Be as precise as you can. Be sure to
mention such things as the size, position, and appearance of the various
objects. You may include a sketch if that helps.

a) Point (130 , 130)

b) c = Circle (Point (30 , 40) , 25)

c . setFill ("blue ")

c . setOutline ("red")

c) r = Rectangle (Point (20 , 20) , Point (40 , 40))

r . setFill (color_rgb (0 , 255 , 150))

r . setWidth (3)

d) 1 = Line (Point (100 , 100) , Point (100 , 200))

l . set0utline ("red4")

l . setArrow ('' f irst '')

e) Oval (Point (50 , 50) , Point (60 , 100))

125

f) shape = Polygon (Point (5 , 5) , Point (10 , 10) , Point (5 , 10) , Point (10 , 5))

shape . setFill (" orange ")

g) t = Text (Point (100 , 100) , "Hello World ! ")

t . setFace (" courier")

t . setSize (16)

t . setStyle ('' italic '')

3. Describe what happens when the following interactive graphics program
runs:

from graphics import *

def main () :

win = GraphWin ()

shape = Circle (Point (50 , 50) , 20)

shape . setOutline (" red")

shape . setFill ("red")

shape . draw (win)

for i in range (10) :

p = win . getMouse ()

c = shape . getCenter ()

dx = p . getX () - c . getX ()

126 Cha pter 4. Objects and Graph ics

dy = p . getY () - c . getY ()

shape . move (dx , dy)

win . close ()

main ()

Programming Exercises

1. Alter the program from the last discussion question in the following ways:

(a) Make it draw squares instead of circles.

(b) Have each successive click draw an additional square on the screen
(rather than moving the existing one).

(c) Print a message on the window "Click again to quit" after the loop,
and wait for a final click before closing the window.

2. An archery target consists of a central circle of yellow surrounded by con­
centric rings of red, blue, black and white. Each ring has the same width,
which is the same as the radius of the yellow circle. Write a program
that draws such a target. Hint: Objects drawn later will appear on top of
objects drawn earlier.

3. Write a program that draws some sort of face.

4. Write a program that draws a winter scene with a Christmas tree and a
snowman.

5. Write a program that draws 5 dice on the screen depicting a straight (1, 2,
3, 4, 5 or 2, 3, 4, 5, 6).

6. Modify the graphical future value program so that the input (principal and
APR) also are done in a graphical fashion using Entry objects.

4. 10. Exercises

7. Circle Intersection.

Write a program that computes the intersection of a circle with a hori­
zontal line and displays the information textually and graphically.

Input: Radius of the circle and they-intercept of the line.

Output: Draw a circle centered at (0, 0) with the given radius in a window
with coordinates running from -10,-10 to 10,10.
Draw a horizontal line across the window with the given y-intercept.
Draw the two points of intersection in red.
Print out the x values of the points of intersection.

Formula: x = ±y'r2 - y2

8. Line Segment Information.

This program allows the user to draw a line segment and then displays
some graphical and textual information about the line segment.

Input: Two mouse clicks for the end points of the line segment.

Output: Draw the midpoint of the segment in cyan.
Draw the line.
Print the length and the slope of the line.

Formulas: dx = x2 - x1
dy = Y2 - Yl

slope = dy / dx
length = J dx2 + dy2

9. Rectangle Information.

This program displays information about a rectangle drawn by the user.

Input: Two mouse clicks for the opposite comers of a rectangle.

Output: Draw the rectangle.
Print the perimeter and area of the rectangle.

Formulas: area = (length) (width)
perimeter = 2(length + width)

127

128 Cha pter 4. Objects and Graph ics

10. Triangle Information.

Same as the previous problem, but with three clicks for the vertices of
a triangle.

Formulas: For perimeter, see length from the Line Segment problem.
area = Js(s - a) (s - b) (s - c) where a, b, and c are the lengths of
the sides and s = a+�+c .

1 1. Five-click House.

You are to write a program that allows the user to draw a simple house
using five mouse clicks. The first two clicks will be the opposite corners of
the rectangular frame of the house. The third click will indicate the center
of the top edge of a rectangular door. The door should have a total width
that is � of the width of the house frame. The sides of the door should
extend from the corners of the top down to the bottom of the frame. The
fourth click will indicate the center of a square window. The window is
half as wide as the door. The last click will indicate the peak of the roof.
The edges of the roof will extend from the point at the peak to the corners
of the top edge of the house frame.

1

5

3 [±]

Chapter 5

Objectives

Sequences: Strings,

Lists, and Files

• To understand the string data type and how strings are represented in the

computer.

• To become familiar with various operations that can be performed on

strings through built-in functions and string methods.

• To understand the basic idea of sequences and indexing as they apply to

Python strings and lists.

• To be able to apply string formatting to produce attractive, informative

program output.

• To understand basic file-processing concepts and techniques for reading

and writing text files in Python.

• To understand basic concepts of cryptography.

• To understand and write programs that process textual information.

1 5 . 1 1 The String Data Type

So far, we have been discussing programs designed to manipulate numbers and
graphics. But you know that computers are also important for storing and oper­
ating on textual information. In fact, one of the most common uses for personal

129

130 Chapter 5. Sequences: Strings, Lists, and Fi les

computers is word processing. This chapter focuses on textual applications to
introduce some important ideas about how text is stored on the computer. You

may not think that word-based applications are all that exciting, but as you'll
soon see, the basic ideas presented here are at work in virtually all areas of
computing, including powering the the World Wide Web.

Text is represented in programs by the string data type. You can think of a

string as a sequence of characters. In Chapter 2 you learned that a string literal

is formed by enclosing some characters in quotation marks. Python also allows
strings to be delimited by single quotes (apostrophes). There is no difference;
just be sure to use a matching set. Strings can also be saved in variables, just

like any other data. Here are some examples illustrating the two forms of string

literals:

>>> str1 = "Hello "
>>> str2 = 'spam'
>>> print (str1 , str2)
Hello spam
>>> type (str1)
<class 'str'>
>>> type (str2)
<class 'str'>

You already know how to print strings. You have also seen how to get string

input from users. Recall that the input function returns whatever the user types

as a string object. That means when you want to get a string, you can use the
input in its "raw'' (unconverted) form. Here's a simple interaction to illustrate

the point:

>>> firstName = input ("Please enter your name : ")
Please enter your name : John
>>> print ("Hello " , firstName)
Hello John

Notice how we saved the user's name with a variable and then used that variable

to print the name back out again.

So far, we have seen how to get strings as input, assign them to variables,
and how to print them out. That's enough to write a parrot program, but not
to do any serious text-based computing. For that, we need some string opera­

tions. The rest of this section takes you on a tour of the more important Python

string operations. In the following section, we'll put these ideas to work in some
example programs.

5.1. The String Data Type

What kinds of things can we do with strings? For starters, remember what
a string is: a sequence of characters. One thing we might want to do is access
the individual characters that make up the string. In Python, this can be done

through the operation of indexing. We can think of the positions in a string as be­
ing numbered, starting from the left with 0. Figure 5. 1 illustrates with the string

Hello Bob. Indexing is used in string expressions to access a specific character
position in the string. The general form for indexing is <string> [<expr>] . The

value of the expression determines which character is selected from the string.

l b

0 1 2 3 4 5 6 7 8

Figure 5. 1: Indexing of the string "Hello Bob"

Here are some interactive indexing examples:

>>> greet = "Hello Bob"
>>> greet [0]
'H'
>>> print (greet [O] , greet [2] , greet [4])
H 1 o
>>> X = 8
>>> print (greet [x-2])
B

Notice that in a string of n characters, the last character is at position n- 1,
because the indexes start at 0. This is probably also a good time to remind you
about the difference between string objects and the actual printed output. In
the interactions above, the Python shell shows us the value of strings by putting

them in single quotes; that's Python's way of communicating to us that we are

looking at a string object. When we actually print the string, Python does not
put any quotes around the sequence of characters. We just get the text contained

in the string.

By the way, Python also allows indexing from the right end of a string using

negative indexes.

>>> greet [-1]
'b'

131

132

>>> greet [-3]
'B'

Chapter 5. Sequences: Strings, Lists, and Fi les

This is particularly handy for getting at the last character of a string.

Indexing returns a string containing a single character from a larger string. It
is also possible to access a contiguous sequence of characters or substring from a
string. In Python, this is accomplished through an operation called slicing. You
can think of slicing as a way of indexing a range of positions in the string. Slicing

takes the form <string> [<start> : <end>]. Both start and end should be
int -valued expressions. A slice produces the substring starting at the position

given by start and running up to, but not including, position end.

Continuing with our interactive example, here are some slices:

>>> greet [0 : 3]
'Hel'
>>> greet [5 : 9]
' Bob'
>>> greet [: 5]
'Hello'
>>> greet [5 :]
' Bob'
>>> greet [:]
'Hello Bob'

The last three examples show that if either expression is missing, the start and
end of the string are the assumed defaults. The final expression actually hands
back the entire string.

Indexing and slicing are useful operations for chopping strings into smaller
pieces. The string data type also supports operations for putting strings together.

Two handy operators are concatenation (+) and repetition (*) . Concatenation

builds a string by "gluing" two strings together. Repetition builds a string

by multiple concatenations of a string with itself. Another useful function is
len, which tells how many characters are in a string. Finally, since strings are

sequences of characters, you can iterate through the characters using a Python

for loop.

Here are some examples of various string operations:

>>> " spam" + "eggs "
'spameggs'
>>> "Spam" + "And" + "Eggs "

5.2. Simple String Processing

' SpamAnd.Eggs '

>>> 3 * " spam"
'spamspamspam'

>>> " spam" * 5
'spamspamspamspamspam'

>>> (3 * " spam") + (" eggs" * 5)
'spamspamspameggseggseggseggseggs'

>>> len (" spam")
4
>>> len (" SpamAndEggs ")
1 1
>>> for ch in "Spam ! ":

print (ch , end=" ")
S p a m !

These basic string operations are summarized in Table 5.1 .

operator
•

meaning

+
•

concatenation
* repetition

<string>[] indexing

<string> [:] slicing

len(<string>) length

for <var> in <string> iteration through characters

Table 5. 1: Python string operations

1 5.21 Simple String Processing

Now that you have an idea what various string operations can do, we're ready to
write some programs. Our first example is a program to compute the usernames
for a computer system.

Many computer systems use a username and password combination to au­
thenticate system users. The system administrator must assign a unique user­

name to each user. Often, usemames are derived from the user's actual name.
One scheme for generating usemames is to use the user's first initial followed
by up to seven letters of the user's last name. Using this method, the user-

133

134 Chapter 5. Sequences: Strings, Lists, and Fi les

name for Zaphod Beeblebrox would be "zbeebleb," and John Smith would just
be ']smith."

We want to write a program that reads a person's name and computes the
corresponding username. Our program will follow the basic input, process, out­
put pattern. For brevity, I will skip discussion of the algorithm development and

jump right to the code. The outline of the algorithm is included as comments in

the final program.

username . py
Simple string processing program to generate usernames .

def main() :
print ("This program generates computer usernames . \n")

get user's first and last names
first = input ("Please enter your first name (all lowercase) : ")
last = input ("Please enter your last name (all lowercase) : ")

concatenate first initial with 7 chars of the last name .
uname = first [O] + last [: 7]

output the username
print ("Your username is: " , uname)

main ()

This program first uses input to get strings from the user. Then indexing, slicing,

and concatenation are combined to produce the username. Here's an example
run:

This program generates computer usernames .

Please enter your first name (all lowercase) : zaphod
Please enter your last name (all lowercase) : beeblebrox
Your username is: zbeebleb

Do you see where the blank line between the introduction and the prompt for
the first name comes from? Putting the newline character (\n) at the end of the

string in the first print statement caused the output to skip down an extra line.

This is a simple trick for putting some extra white space into the output to make
it look a little better.

5.2. Simple String Processing

Here is another problem that we can solve with string operations. Suppose

we want to print the abbreviation of the month that corresponds to a given

month number. The input to the program is an int that represents a month

number (1-12), and the output is the abbreviation for the corresponding month.
For example, if the input is 3, then the output should be Mar, for March.

At first, it might seem that this program is beyond your current ability. Expe­

rienced programmers recognize that this is a decision problem. That is, we have
to decide which of 12 different outputs is appropriate, based on the number
given by the user. We will not cover decision structures until later; however, we

can write the program now by some clever use of string slicing.
The basic idea is to store all the month names in a big string:

months = "Jan.FebMarAprMayJunJulAugSepOctNovDec"

We can look up a particular month by slicing out the appropriate substring. The
trick is computing where to slice. Since each month is represented by three

letters, if we knew where a given month started in the string, we could easily
extract the abbreviation:

monthAbbrev = months [pos : pos+3]

This would get us the substring of length 3 that starts in the position indicated

by pos.
How do we compute this position? Let's try a few examples and see what we

find. Remember that string indexing starts at 0.

month number position

Jan 1 0
Feb 2 3
Mar 3 6
Apr 4 9

Of course, the positions all turn out to be multiples of 3. To get the correct
multiple, we just subtract 1 from the month number and then multiply by 3. So
for 1 we get (1-1) * 3 = 0 * 3 = 0, and for 12 we have (12 -1) * 3 = 11 * 3 = 33.

Now we're ready to code the program. Again, the final result is short and
sweet; the comments document the algorithm we've developed.

month . py

135

A program to print the abbreviation of a month , given its number

136 Chapter 5. Sequences: Strings, Lists, and Fi les

def main() :
months is used as a lookup table
months = "JanFebMarAprMayJunJulAugSepOctNovDec"

n = int (input ("Enter a month number (1-12) : "))

compute starting position of month n in months
pos = (n-1) * 3

Grab the appropriate slice from months
monthAbbrev = months [pos : pos+3]

print the result
print ("The month abbreviation is" , monthAbbrev + " . ")

main ()

Notice the last line of this program uses string concatenation to put a period at
the end of the month abbreviation.

Here is a sample of program output:

Enter a month number (1-12) : 4
The month abbreviation is Apr .

One weakness of the "string as lookup table" approach used in this example
is that it will only work when the substrings all have the same length (in this

case, three). Suppose we want to write a program that outputs the complete
month name for a given number. How could that be accomplished?

1 5.31 Lists as Sequences

Strictly speaking, the operations in Table 5. 1 are not really just string operations.
They are operations that apply to sequences. As you know from the discussion

in Chapter 2, Python lists are also a kind of sequence. That means we can also

index, slice, and concatenate lists, as the following session illustrates:

>>> [1 , 2] + [3 , 4]
[1' 2' 3' 4]
>>> [1 , 2] *3

[1 ' 2 ' 1 ' 2 ' 1 ' 2]

5.3. Lists as Sequences

>>> grades = ['A' , 'B' , 'C' , 'D' , 'F']
>>> grades [O]
'A'
>>> grades [2 : 4]
['C' , 'D']
>>> len(grades)
5

One of the nice things about lists is that they are more general than strings.

Strings are always sequences of characters, whereas lists can be sequences of

arbitrary objects. You can create a list of numbers or a list of strings. In fact, you
can even mix it up and create a list that contains both numbers and strings:

myList = [1 , "Spam" , 4 , "U"]

In later chapters, we'll put all sorts of things into lists like points, rectangles,

dice, buttons, and even students !

Using a list of strings, we can rewrite our month abbreviation program from
the previous section and make it even simpler:

month2 . py
A program to print the month abbreviation , given its number .

def main() :

months is a list used as a lookup table
months = ["Jan" , "Feb" , "Mar" , "Apr" , "May" , "Jun" ,

"Jul " , "Aug" , "Sep" , " Oct " , "Nov" , "Dec"]

n = int (input ("Enter a month number (1-12) : "))

print ("The month abbreviation is" , months [n-1] + " . ")

main ()

There are a couple of things you should notice about this program. I have cre­

ated a list of strings called months to use as the lookup table. The code that
creates the list is split over two lines. Normally a Python statement is written on

137

138 Chapter 5. Sequences: Strings, Lists, and Fi les

a single line, but in this case Python knows that the list isn't finished until the

closing bracket "] " is encountered. Breaking the statement across two lines like
this makes the code more readable.

Lists, just like strings, are indexed starting with 0, so in this list the value
months [OJ is the string "Jan" . In general, the nth month is at position n-1.
Since this computation is straightforward, I didn't even bother to put it in a sep­
arate step; the expression months [n-1] is used directly in the print statement.

Not only is this solution to the abbreviation problem a bit simpler, it is also
more flexible. For example, it would be trivial to change the program so that it
prints out the entire name of the month. All we need is a new definition of the

lookup list.

months = ["January" , "February" , "March" , "April" ,
"May" , "June " , "July" , "August " ,
" September" , " October" , "November" , "December"]

While strings and lists are both sequences, there is an important difference
between the two. Lists are mutable. That means that the value of an item in a

list can be modified with an assignment statement. Strings, on the other hand,
cannot be changed "in place." Here is an example interaction that illustrates the

difference:

>>> myList = [34 , 26 , 15 , 10]

>>> myList [2]
15
>>> myList [2] - 0
>>> myList
[34 , 26 , 0 , 10]
>>> myString = "Hello World"
>>> myString [2]
' 1 '

>>> myString [2] = 'z'

Traceback (most recent call last) :
File "<stdin>" , line 1 , in <module >

TypeError : 'str' object does not support item assignment

The first line creates a list of four numbers. Indexing position 2 returns the
value 15 (as usual, indexes start at 0). The next command assigns the value 0

to the item in position 2. After the assignment, evaluating the list shows that
the new value has replaced the old. Attempting a similar operation on a string

produces an error. Strings are not mutable; lists are.

5.4. String Representation and Message Encoding

1 5.41 String Representation and Message Encoding

15.4.11 String Representation

Hopefully, you are starting to get the hang of computing with textual (string)

data. However, we haven't yet discussed how computers actually manipulate
strings. In Chapter 3, you saw that numbers are stored in binary notation (se­
quences of Os and 1s); the computer CPU contains circuitry to do arithmetic

with these representations. Textual information is represented in exactly the

same way. Underneath, when the computer is manipulating text, it is really no
different from number crunching.

To understand this, you might think in terms of messages and secret codes.
Consider the age-old grade school dilemma. You are sitting in class and want
to pass a note to a friend across the room. Unfortunately, the note must pass
through the hands, and in front of the curious eyes, of many classmates before

it reaches its final destination. And, of course, there is always the risk that the

note could fall into enemy hands (the teacher's). So you and your friend need
to design a scheme for encoding the contents of your message.

One approach is to simply turn the message into a sequence of numbers.
You could choose a number to correspond to each letter of the alphabet and use
the numbers in place of letters. Without too much imagination, you might use

the numbers 1-26 to represent the letters a-z. Instead of the word "sourpuss,"

you would write "18, 14, 20, 17, 15, 20, 18, 18." To those who don't know the
code, this looks like a meaningless string of numbers. For you and your friend,

however, it represents a word.

This is how a computer represents strings. Each character is translated into
a number, and the entire string is stored as a sequence of (binary) numbers

in computer memory. It doesn't really matter what number is used to repre­
sent any given character as long as the computer is consistent about the encod­

ing! decoding process. In the early days of computing, different designers and

manufacturers used different encodings. You can imagine what a headache this

was for people transferring data between different systems.

Consider a situation that would result if, say, PCs and Macintosh computers
each used their own encoding. If you type a term paper on a PC and save it as
a text file, the characters in your paper are represented as a certain sequence of

numbers. Then, if the file was read into your instructor's Macintosh computer,
the numbers would be displayed on the screen as different characters from the
ones you typed. The result would be gibberish !

139

140 Chapter 5. Sequences: Strings, Lists, and Fi les

To avoid this sort of problem, computer systems today use industry standard

encodings. One important standard is called ASCII (American Standard Code for

Information Interchange). ASCII uses the numbers 0 through 127 to represent

the characters typically found on an (American) computer keyboard, as well as
certain special values known as control codes that are used to coordinate the
sending and receiving of information. For example, the capital letters A-Z are

represented by the values 65-90, and the lowercase versions have codes 97-122.

One problem with the ASCII encoding, as its name implies, is that it is

American-centric. It does not have symbols that are needed in many other lan­
guages. Extended ASCII encodings have been developed by the International
Standards Organization to remedy this situation. Most modern systems are
moving to Unicode, a much larger standard that aims to include the characters

of nearly all written languages. Python strings support the Unicode Standard,
so you can wrangle characters from just about any language, provided your op­
erating system has appropriate fonts for displaying the characters.

Python provides a couple of built-in functions that allow us to switch back

and forth between characters and the numeric values used to represent them

in strings. The ord function returns the numeric ("ordinal") code of a single­

character string, while chr goes the other direction. Here are some interac­
tive examples:

>>> ord("a")
97
>>> ord("A")
65
>>> chr (97)
'a'
>>> chr (90)
'Z'

If you're reading very carefully, you might notice that these results are consis­

tent with the ASCII encoding of characters that I mentioned above. By design,
Unicode uses the same codes as ASCII for the 127 characters originally defined
there. But Unicode includes many more exotic characters as well. For example,

the Greek letter pi is character 960, and the symbol for the Euro is character
8364.

There's one more piece in the puzzle of how to store characters in computer
memory. As you know from Chapter 3, the underlying CPU deals with memory
in fixed-sized pieces. The smallest addressable piece is typically 8 bits, which is

5.4. String Representation and Message Encoding

called a byte of memory. A single byte can store 28 = 256 different values. That's

more than enough to represent every possible ASCII character (in fact, ASCII is

only a 7-bit code). But a single byte is nowhere near sufficient for storing all the
100,000+ possible Unicode characters. To get around this problem, the Unicode
Standard defines various encoding schemes for packing Unicode characters into

sequences of bytes. The most common encoding is called UTF-8. UTF-8 is a

variable-length encoding scheme that uses a single byte to store characters that
are in the ASCII subset, but may need up to four bytes in order to represent
some of the more esoteric characters. That means that a string of length 10

characters will end up getting stored in memory as a sequence of between 10

and 40 bytes, depending on the actual characters used in the string. As a rule

of thumb for Latin alphabets (the usual Western characters), however, it's pretty
safe to estimate that a character requires about one byte of storage on average.

15.4.21 Programming an Encoder

Let's return to the note-passing example. Using the Python ord and chr func­

tions, we can write some simple programs that automate the process of turning
messages into sequences of numbers and back again. The algorithm for en cod­
ing the message is simple:

get the message to encode
for each character in the message :

print the letter number of the character

Getting the message from the user is easy; an input will take care of that for

us.

message = input ("Please enter the message to encode : ")

Implementing the loop requires a bit more effort. We need to do something for

each character of the message. Recall that a for loop iterates over a sequence
of objects. Since a string is a kind of sequence, we can just use a for loop to run
through all the characters of the message:

for ch in message :

Finally, we need to convert each character to a number. The simplest ap­
proach is to use the Unicode number (provided by ord) for each character in the

message.
Here is the final program for encoding the message:

14 1

142 Chapter 5. Sequences: Strings, Lists, and Fi les

text2numbers . py
A program to convert a textual message into a sequence of
numbers , utilizing the underlying Unicode encoding .

def main() :
print ("This program converts a textual message into a sequence ")
print (" of numbers representing the Unicode encoding of the message . \n")

Get the message to encode
message = input ("Please enter the message to encode : ")

print (" \nHere are the Unicode codes : ")

Loop through the message and print out the Unicode values
for ch in message :

print (ord(ch) , end=" ")

print () # blank line before prompt

main ()

We can use the program to encode important messages like this:

This program converts a textual message into a sequence
of numbers representing the Unicode encoding of the message .

Please enter the message to encode : What a Sourpuss !

Here are the Unicode codes :
87 104 97 1 16 32 97 32 83 1 1 1 1 17 1 14 1 12 1 17 1 15 1 15 33

One thing to notice about this result is that even the space character has a cor­
responding Unicode number. It is represented by the value 32.

ls.sl String Methods

15.5.11 Programming a Decoder

Now that we have a program to turn a message into a sequence of numbers,
it would be nice if our friend on the other end had a similar program to turn

5.5. String Methods

the numbers back into a readable message. Let's solve that problem next. Our
decoder program will prompt the user for a sequence of Unicode numbers and

then print out the text message with the corresponding characters. This program

presents us with a couple of challenges; we'll address these as we go along.

The overall outline of the decoder program looks very similar to the encoder

program. One change in structure is that the decoding version will collect the

characters of the message in a string and print out the entire message at the end
of the program. To do this, we need to use an accumulator variable, a pattern
we saw in the factorial program from Chapter 3. Here is the decoding algorithm:

get the sequence of numbers to decode
message = 11 11

for each number in the input :
convert the number to the corresponding Unicode character
add the character to the end of message

print message

Before the loop, the accumulator variable message is initialized to be an empty
string; that is, a string that contains no characters (11 11) . Each time through the
loop, a number from the input is converted into an appropriate character and
appended to the end of the message constructed so far.

The algorithm seems simple enough, but even the first step presents us with
a problem. How exactly do we get the sequence of numbers to decode? We

don't even know how many numbers there will be. To solve this problem, we

are going to rely on some more string manipulation operations.

First, we will read the entire sequence of numbers as a single string using

input. Then we will split the big string into a sequence of smaller strings, each

of which represents one of the numbers. Finally, we can iterate through the list

of smaller strings, convert each into a number, and use that number to produce
the corresponding Unicode character. Here is the complete algorithm:

get the sequence of numbers as a string, inString
split inString into a sequence of smaller strings
message = 11 11

for each of the smaller strings :
change the string of digits into the number it represents
append the Unicode character for that number to message

print message

143

144 Chapter 5. Sequences: Strings, Lists, and Fi les

This looks complicated, but Python provides some functions that do just what

we need.

You may have noticed all along that I've been talking about string objects.
Remember from the last chapter, objects have both data and operations (they
"know stuff" and "do stuff.") By virtue of being objects, strings have some

built-in methods in addition to the generic sequence operations that we have
used so far. We'll use some of those abilities here to solve our decoder problem.

For our decoder, we will make use of the split method. This method splits

a string into a list of substrings. By default, it will split the string wherever a
space occurs. Here's an example:

>>> myString = "Hello, string methods ! "
>>> myString . split ()
['Hello, ' , 'string' , 'methods ! ']

Naturally, the split operation is called using the usual dot notation for invoking

one of an object's methods. In the result, you can see how split has turned
the original string "Hello, string methods ! " into a list of three substrings:
"Hello, " , " string", and "methods ! ".

By the way, split can be used to split a string at places other than spaces

by supplying the character to split on as a parameter. For example, if we have a
string of numbers separated by commas, we could split on the commas:

>>> "32, 24, 25, 57" . split (", ")
[' 32' ' '24' ' '25' ' '57']

This is useful for getting multiple inputs from the user without resorting to the

use of eval. For example, we could get the x and y values of a point in a single

input string, turn it into a list using the split method, and then index into
the resulting list to get the individual component strings as illustrated in the

following interaction:

>>> coords = input ("Enter the point coordinates (x, y) : ") . split (", ")
Enter the point coordinates (x, y) : 3.4, 6.25
>>> coords
[' 3 . 4' ' ' 6 . 25 ']
>>> coords [O]
'3.4'
>>coords [1]
'6 . 25'

5.5. String Methods

Of course, we still need to convert those strings into the corresponding numbers.
Recall from Chapter 3 that we can use the type conversion functions int and

float to convert strings into the appropriate numeric type. In this case, we will

use float and combine this all into a couple lines of code:

coords = input ("Enter the point coordinates (x, y) : ") . split (", ")
x, y = float (coords [O]) , float (coords [1])

Returning to our decoder, we can use a similar technique. Since our pro­
gram should accept the same format that was produced by the encoder pro­
gram, namely a sequence of Unicode numbers with spaces between, the default

version of split works nicely:

145

>>> "87 104 97 1 16 32 97 32 83 1 1 1 1 17 1 14 1 12 1 17 1 15 1 15 33" . split 0
['87', '104', '97', '116', '32', '97', '32', '83', '1 1 1', '117',
'1 14', '1 12', '117', '1 15', '1 15', '33']

Again, the result is not a list of numbers, but a list of strings. It just so happens
these strings contain only digits and could be interpreted as numbers. In this

case, the strings are int literals, so we'll apply the int function to each one in
order to convert it to a number.

Using split and int we can write our decoder program:

numbers2text . py
A program to convert a sequence of Unicode numbers into
a string of text .

def main() :
print ("This program converts a sequence of Unicode numbers into ")
print ("the string of text that it represents . \n")

Get the message to encode
inString = input ("Please enter the Unicode-encoded message : ")

Loop through each substring and build Unicode message
message = " "
for numStr in inString . split () :

codeNum - int (numStr) # convert digits to a number
message = message + chr (codeNum) # concatentate character to message

146 Chapter 5. Sequences: Strings, Lists, and Fi les

print (" \nThe decoded message is : ", message)

main ()

Study this program a bit and you should be able to understand exactly how
it accomplishes its task. The heart of the program is the loop:

for numStr in inString . split () :
codeNum = int (numStr)
message = message + chr (codeNum)

The split method produces a list of (sub)strings, and numStr takes on each
successive string in the list. I called the loop variable numStr to emphasize that
its value is a string of digits that represents some number. Each time through

the loop, the next substring is converted to a number by inting it. This number

is converted to the corresponding Unicode character via chr and appended to
the end of the accumulator, message. When the loop is finished, every number

in inString has been processed and message contains the decoded text.

Here is an example of the program in action:

This program converts a sequence of Unicode numbers into
the string of text that it represents .

Please enter the Unicode-encoded message :
83 1 16 1 14 105 1 10 103 1 15 32 97 1 14 101 32 70 1 17 1 10 33

The decoded message is : Strings are Fun !

15.5.21 More String Methods

Now we have a couple of programs that can encode and decode messages as

sequences of Unicode values. These programs turned out to be quite simple

due to the power of both Python's string data type and its built-in sequence
operations and string methods.

Python is a very good language for writing programs that manipulate textual

data. Table 5.2 lists some other useful string methods. A good way to learn
about these operations is to try them out interactively.

>>> s = "hello, I came here for an argument "
>>> s . capitalize ()

5.6. Lists Have Methods, Too

'Hello , i came here for an argument'
>>> s . title ()
'Hello , I Came Here For An Argument'
>>> s . lower 0
'hello , i came here for an argument'
>>> s . upper ()
'HELLO , I CAME HERE FOR AN ARGUMENT'

>>> s . replace (" I " , " you")
'hello , you came here for an argument'
>>> s . center (30)
'hello , I came here for an argument'
>>> s . center (50)
' hello , I came here for an argument
>>> s . count ('e')

5
> > > s . find (' , ')

5
>>> " " . j oin (["Number" , " one , " , "the " , "Larch"])
'Number one , the Larch'

>>> " spam" . j oin (["Number" , " one , " , "the " , "Larch"])
'Numberspamone , spamthespamLarch'

'

I should mention that many of these methods, like split, accept additional

parameters to customize their operation. Python also has a number of other
standard libraries for text processing that are not covered here. You can consult
the online documentation or a Python reference to find out more.

1 5 .61 Lists Have Methods, Too

In the last section we took a look at some of the methods for manipulating string

objects. Like strings, lists are also objects and come with their own set of "extra"

operations. Since this chapter is primarily concerned with text processing, we'll
save the detailed discussion of various list methods for a later chapter. How­

ever, I do want to introduce one important list method here, just to whet your

appetite.

The append method can be used to add an item at the end of a list. This

is often used to build a list one item at a time. Here's a fragment of code that
creates a list of the squares of the first 100 natural numbers:

147

148 Chapter 5. Sequences: Strings, Lists, and Fi les

function

s . capitalize ()
s . center (width)
s . count (sub)
s . find (sub)
s . j oin (list)
s . ljust (width)
s . lowerO
s . lstrip ()
s . replace (oldsub , newsub)
s . rfind (sub)
s . rjust (width)
s . rstrip ()
s . split ()
s . title ()
s . upper ()

•

meaning

Copy of s with only the first character capitalized.
Copy of s centered in a field of given width.
Count the number of occurrences of sub ins.
Find the first position where sub occurs ins.
Concatenate list into a string, using s as separator.

Like center, but s is left-justified.

Copy of s in all lowercase characters.
Copy of s with leading white space removed.
Replace all occurrences of oldsub in s with newsub.
Like find, but returns the rightmost position.

Like center, but s is right -justified.
Copy of s with trailing white space removed.

Splits into a list of substrings (see text).

Copy of s with first character of each word capitalized.
Copy of s with all characters converted to uppercase.

Table 5.2: Some string methods

squares = []
for x in range (1 , 101) :

squares . append(x*x)

In this example we start with an empty list ([]) and each number from 1 to 100
is squared and appended to the list. When the loop is done, squares will be
the list: [1 , 4, 9, . . . , 10000] . This is really just the accumulator pattern at

work again, this time with our accumulated value being a list.

With the append method in hand, we can go back and look at an alternative

approach to our little decoder program. As we left it, the program used a string

variable as an accumulator for the decoded output message. The statement

message = message + chr (codeNum)

essentially creates a complete copy of the message so far and tacks one more
character on the end. As we build up the message, we keep recopying a longer

and longer string, just to add a single new character at the end. In older versions
of Python, string concatenation could be a slow operation, and programmers
often used other techniques to accumulate a long string.

5.6. Lists Have Methods, Too

One way to avoid recopying the message over and over again is to use a list.
The message can be accumulated as a list of characters where each new charac­

ter is appended to the end of the existing list. Remember, lists are mutable, so

adding at the end of the list changes the list "in place," without having to copy
the existing contents over to a new object.1 Once we have accumulated all the

characters in a list, we can use the j oin operation to concatenate the characters

into a string in one fell swoop.

Here's a version of the decoder that uses this approach:

numbers2text2 . py
A program to convert a sequence of Unicode numbers into

149

a string of text . Efficient version using a list accumulator .

def main() :
print ("This program converts a sequence of Unicode numbers into ")
print ("the string of text that it represents . \n")

Get the message to encode
inString = input ("Please enter the Unicode-encoded message : ")

Loop through each substring and build Unicode message
chars = []
for numStr in inString . split () :

codeNum = int (numStr)
chars . append(chr (codeNum))

message = " " . j oin(chars)

convert digits to a number
accumulate new character

print (" \nThe decoded message is : " , message)

main ()

In this code, we collect the characters by appending them to a list called chars.
The final message is obtained by j oining these characters together using an

empty string as the separator. So the original characters are concatenated to­
gether without any extra spaces between.

Both the string concatenation and the append/j oin techniques are quite ef­

ficient in modern Python, and the choice between them is largely a matter of

1 Actually, the list does need to be recopied behind the scenes in the case where Python runs
out of room for the new item, but this is a rare occurrence.

150 Chapter 5. Sequences: Strings, Lists, and Fi les

taste. The list technique is a bit more flexible in that the j oin method makes it

easy to build strings that use a special separator (e.g., a tab, comma, or space),
if desired, between the concatenated items.

Is. 71 From Encoding to Encryption

We have looked at how computers represent strings as a sort of encoding prob­
lem. Each character in a string is represented by a number that is stored in the
computer as a binary representation. You should realize that there is nothing
really secret about this code at all. In fact, we are simply using an industry­

standard mapping of characters into numbers. Anyone with a little knowledge

of computer science would be able to crack our code with very little effort.

The process of encoding information for the purpose of keeping it secret or

transmitting it privately is called encryption. The study of encryption methods is

an increasingly important sub-field of mathematics and computer science known
as cryptography. For example, if you shop over the Internet, it is important

that your personal information such as your name and credit card number be

transmitted using encodings that keep it safe from potential eavesdroppers on

the network.

Our simple encoding! decoding programs use a very weak form of encryption

known as a substitution cipher. Each character of the original message, called
the plaintext, is replaced by a corresponding symbol (in our case a number) from

a cipher alphabet. The resulting code is called the ciphertext.

Even if our cipher were not based on the well-known Unicode encoding, it

would still be easy to discover the original message. Since each letter is always
encoded by the same symbol, a codebreaker could use statistical information

about the frequency of various letters and some simple trial and error testing to

discover the original message. Such simple encryption methods may be suffi­
cient for grade-school note passing, but they are certainly not up to the task of
securing communication over global networks.

Modem approaches to encryption start by translating a message into num­

bers, much like our encoding program. Then sophisticated mathematical algo­
rithms are employed to transform these numbers into other numbers. Usually,
the transformation is based on combining the message with some other special

value called the key. In order to decrypt the message, the party on the receiving

end needs to have an appropriate key so that the encoding can be reversed to
recover the original message.

Encryption approaches come in two flavors: private key and public key. In a

5.8. Input/Output as String Manipu lation

private key (also called shared key) system, the same key is used for encrypting
and decrypting messages. All parties that wish to communicate need to know

the key, but it must be kept secret from the outside world. This is the usual

system that people think of when considering secret codes.

In public key systems, there are separate but related keys for encrypting and

decrypting. Knowing the encryption key does not allow you to decrypt messages
or discover the decryption key. In a public key system, the encryption key can
be made publicly available, while the decryption key is kept private. Anyone
can safely send a message using the public key for encryption. Only the party

holding the decryption key will be able to decipher it. For example, a secure

website can send your web browser its public key, and the browser can use it
to encode your credit card information before sending it on the Internet. Then

only the company that is requesting the information will be able to decrypt and

read it using the proper private key.

ls.al Input/Output as String Manipulation

Even programs that we may not view as primarily doing text manipulation often

need to make use of string operations. For example, consider a program that

does financial analysis. Some of the information (e.g., dates) must be entered
as strings. After doing some number crunching, the results of the analysis will

typically be a nicely formatted report including textual information that is used

to label and explain numbers, charts, tables, and figures. String operations are

needed to handle these basic input and output tasks.

ls.a.tl Example Application: Date Conversion

As a concrete example, let's extend our month abbreviation program to do date
conversions. The user will input a date such as "05/24/2020," and the program
will display the date as "May 24, 2020." Here is the algorithm for our program:

Input the date in mm/dd/yyyy format (dateStr)
Split dateStr into month , day and year strings
Convert the month string into a month number
Use the month number to look up the month name
Create a new date string in form Month Day , Year
Output the new date string

151

152 Chapter 5. Sequences: Strings, Lists, and Fi les

We can implement the first two lines of our algorithm directly in code using

string operations we have already discussed:

dateStr = input ("Enter a date (mm/dd/yyyy) : ")
monthStr , dayStr , yearStr = dateStr.split ("/ ")

Here I have gotten the date as a string and split it at the slashes. I then

"unpacked" the list of three strings into the variables monthStr, dayStr, and
yearStr using simultaneous assignment.

The next step is to convert monthStr into an appropriate number (using int
again) and then use this value to look up the correct month name. Here is the

code:

months - ["January" , "February" , "March" , "April" ,
"May" , "June " , "July" , "August " ,
"September" , " October" , "November" , "December"]

monthStr = months [int (monthStr) -1]

Remember the indexing expression int (monthStr) -1 is used because list in­

dexes start at 0.
The last step in our program is to piece together the date in the new format:

print ("The converted date is : " , monthStr , dayStr+" , " , yearStr)

Notice how I have used concatenation for the comma immediately after the day.

Here's the complete program:

dateconvert.py
Converts a date in form "mm./dd/yyyy" to "month day , year"

def main() :
get the date
dateStr - input ("Enter a date (mm/dd/yyyy) : ")

split into components
monthStr , dayStr , yearStr = dateStr.split ("/ ")

convert monthStr to the month name
months = ["January" , "February" , "March" , "April" ,

"May" , "June " , "July" , "August " ,
" September" , " October" , "November" , "December"]

5.8. Input/Output as String Manipu lation

monthStr = months[int (monthStr) -1]

output result in month day , year format
print ("The converted date is : " , monthStr , dayStr+" , " , yearStr)

main ()

When run, the output looks like this:

Enter a date (mm/dd/yyyy) : 05/24/2020
The converted date is : May 24 , 2020

This example didn't show it, but often it is also necessary to turn a number
into a string. In Python, most data types can be converted into strings using the

str function. Here are a couple of simple examples:

>>> str (500)
'500'
>>> value = 3.14
>>> str (value)
'3.14'
>>> print ("The value is" , str (value) + " .")
The value is 3.14.

Notice particularly the last example. By turning value into a string, we can use

string concatenation to put a period at the end of a sentence. If we didn't first
turn value into a string, Python would interpret the + as a numerical operation
and produce an error, because "." is not a number.

We now have a complete set of operations for converting values among vari­

ous Python data types. Table 5.3 summarizes these four Python type conversion
functions:

function
0

meaning

float (<expr>) Convert expr to a floating-point value.
int (<expr>) Convert expr to an integer value.
str (<expr>) Return a string representation of expr.
eval (<string>) Evaluate string as an expression.

Table 5.3: Type conversion functions

153

154 Chapter 5. Sequences: Strings, Lists, and Fi les

One common reason for converting a number into a string is so that string
operations can be used to control the way the value is printed. For example,

a program performing date calculations would have to manipulate the month,
day, and year as numbers. For nicely formatted output, these numbers would be
converted back to strings.

15.8.21 String Formatting

As you have seen, basic string operations can be used to build nicely formatted

output. This technique is useful for simple formatting, but building up a com­

plex output through slicing and concatenation of smaller strings can be tedious.
Python provides a powerful string formatting operation that makes the job much

•

easier.

Let's start with a simple example. Here is a run of the change-counting
program from Chapter 3:

Change Counter

Please enter the count of each coin type.
How many quarters do you have? 6
How many dimes do you have? 0
How many nickels do you have? 0
How many pennies do you have? 0
The total value of your change is 1.5

Notice that the final value is given as a fraction with only one decimal place.
This looks funny, since we expect the output to be something like $1. 50.

We can fix this problem by changing the very last line of the program as
follows:

print ("The total value of your change is ${0 : 0.2f}" .format (total))

Now the program prints this message:

The total value of your change is $1.50

Let's try to make some sense of this. The format method is a built-in for

Python strings. The idea is that the string serves as a sort of template, and
values supplied as parameters are plugged into this template to form a new
string. So string formatting takes the form:

5.8. Input/Output as String Manipu lation

<template-string>. format (<values >)

Curly braces ({}) inside the template-string mark "slots" into which the pro­
vided values are inserted. The information inside the curly braces tells which
value goes in the slot and how the value should be formatted. The Python for­

matting operator is very flexible. We will cover just some basics here; you can
consult a Python reference if you'd like all of the details. In this book, the slot

descriptions will always have the form:

{<index>: <format-specifier>}

The index tells which of the parameters is inserted into the slot. 2 As usual in

Python, indexing starts with 0. In the example above, there is a single slot and
the index 0 is used to say that the first (and only) parameter is inserted into that

slot.
The part of the description after the colon specifies how the value should

look when it is inserted into the slot. Again returning to the example, the format
specifier is 0. 2f . The format of this specifier is <width>. <precision><type >.
The width specifies how many "spaces" the value should take up. If the value

takes up less than the specified width, it is padded with extra characters (spaces
are the default). If the value requires more space than allotted, it will take as

much space as is required to show the value. So putting a 0 here essentially

says "use as much space as you need." The precision is 2, which tells Python
to round the value to two decimal places. Finally, the type character f says the
value should be displayed as a fixed-point number. That means that the specified

number of decimal places will always be shown, even if they are 0.
A complete description of format specifiers is pretty hairy, but you can get a

good handle on what's possible just by looking at a few examples. The simplest
template strings just specify where to plug in the parameters.

>>> "Hello {0} {1}, you may have won ${2}".format("Mr.", "Smith", 10000)

'Hello Mr. Smith, you may have won $10000'

Often, you'll want to control the width and/ or precision of a numeric value.

>>> "This int, {0:5}, was placed in a field of width 5".format(7)

'This int, 7, was placed in a field of width 5'

>>> "This int, {0:10}, was placed in a field of width 10".format(7)

'This int, 7, was placed in a field of width 10'

2As of Python 3.1, the index portion of the slot description is optional. When the indexes are
omitted, the parameters are just filled into the slots in a left-to-right fashion.

155

156 Chapter 5. Sequences: Strings, Lists, and Fi les

>>> "This float, {0:10.5}, has width 10 and precision 5".format(3.1415926)

'This float, 3.1416, has width 10 and precision 5'

>>> "This float, {0:10.5f}, is fixed at 5 decimal places".format(3.1415926)

'This float, 3.14159, is fixed at 5 decimal places'

>>> "This float, {0:0.5}, has width 0 and precision 5".format(3.1415926)

'This float, 3.1416, has width 0 and precision 5'

>>> "Compare {0} and {0:0.20}".format(3.14)

'Compare 3.14 and 3.1400000000000001243'

Notice that for normal (not fixed-point) floating-point numbers, the precision

specifies the number of significant digits to print. For fixed-point (indicated by
the f at the end of the specifier) the precision gives the number of decimal

places. In the last example, the same number is printed out in two different

formats. This illustrates that if you print enough digits of a floating-point num­

ber, you will almost always find a "surprise." The computer can't represent 3.14
exactly as a floating-point number. The closest value it can represent is ever so
slightly larger than 3. 14. If not given an explicit precision, Python will print the

number out to a few decimal places. The slight extra amount shows up if you

print lots of digits. Generally, Python only displays a closely rounded version of
a float. Using explicit formatting allows you to see the full result down to the
last bit.

You may notice that, by default, numeric values are right -justified. This

is helpful for lining up numbers in columns. Strings, on the other hand, are
left -justified in their fields. You can change the default behaviors by including

an explicit justification character at the beginning of the format specifier. The
necessary characters are <, >, and - for left, right, and center justification,

respectively.

>>> " left justification : {0 : <5}" . format ("Hi ! ")
'left justification : Hi ! '

>>> "right justification : {0 : >5}" . format ("Hi ! ")
'right justification : Hi ! '

>>> " centered : {o : -5}" . format ("Hi ! ")
'centered : Hi ! '

5.8. Input/Output as String Manipu lation

15.8.31 Better Change Counter

Let's close our formatting discussion with one more example program. Given

what you have learned about floating-point numbers, you might be a little un­

easy about using them to represent money.

Suppose you are writing a computer system for a bank. Your customers

would not be too happy to learn that a charge went through for an amount

''very close to $107.56." They want to know that the bank is keeping precise
track of their money. Even though the amount of error in a given value is very

small, the small errors can be compounded when doing lots of calculations, and
the resulting error could add up to some real cash. That's not a satisfactory way

of doing business.

A better approach would be to make sure that our program uses exact val­

ues to represent money. We can do that by keeping track of the money in cents

and using an int to store it. We can then convert this into dollars and cents

in the output step. Assuming we are dealing with positive amounts, if total
represents the value in cents, then we can get the number of dollars by inte­
ger division total I I 100 and the cents from total % 100. Both of these are

integer calculations and, hence, will give us exact results. Here is the updated

program:

change2 . py
A program to calculate the value of some change in dollars
This version represents the total cash in cents .

def main() :
print ("Change Counter\n")
print ("Please enter the count of each coin type . ")
quarters = int (input (" Quarters : "))
dimes = int (input ("Dimes : "))
nickels - int (input ("Nickels : "))
pennies = int (input ("Pennies : "))

total = quarters * 25 + dimes * 10 + nickels * 5 + pennies

print ("The total value of your change is ${0} . {1 : 0 >2}"
. format (totalll100 , total%100))

main ()

157

158 Chapter 5. Sequences: Strings, Lists, and Fi les

I have split the final print statement across two lines. Normally a statement
ends at the end of the line, but sometimes it is nicer to break a long state­

ment into smaller pieces. Because this line is broken in the middle of the print
function, Python knows that the statement is not finished until the final clos­
ing parenthesis is reached. In this case, it is OK, and preferable, to break the
statement across two lines rather than having one really long line.

The string formatting in the print statement contains two slots, one for dol­

lars as an int and one for cents. The cents slot illustrates one additional twist on
format specifiers. The value of cents is printed with the specifier 0>2. The zero
in front of the justification character tells Python to pad the field (if necessary)
with zeroes instead of spaces. This ensures that a value like 10 dollars and 5

cents prints as $10 . 05 rather than $10 . 5.

1 5 .9 1 File Processing

I began the chapter with a reference to word processing as an application of

the string data type. One critical feature of any word processing program is the
ability to store and retrieve documents as files on disk. In this section, we'll take

a look at file input and output, which, as it turns out, is really just another form
of string processing.

15.9.11 Multi-line Strings

Conceptually, a file is a sequence of data that is stored in secondary memory
(usually on a disk drive). Files can contain any data type, but the easiest files

to work with are those that contain text. Files of text have the advantage that

they can be read and understood by humans, and they are easily created and
edited using general-purpose text editors (such as IDLE) and word processors.
In Python, text files can be very flexible, since it is easy to convert back and forth

between strings and other types.

You can think of a text file as a (possibly long) string that happens to be

stored on disk. Of course, a typical file generally contains more than a single
line of text. A special character or sequence of characters is used to mark the end

of each line. There are numerous conventions for end -of-line markers. Python
takes care of these different conventions for us and just uses the regular newline
character (\n) to indicate line breaks.

Let's take a look at a concrete example. Suppose you type the following lines
into a text editor exactly as shown here:

Hello
World

Goodbye 32

5.9. Fi le Processing

When stored to a file, you get this sequence of characters:

Hello\nWorld\n\nGoodbye 32\n

Notice that the blank line becomes a bare newline in the resulting file/string.

By the way, this is really no different than when we embed newline charac­

ters into output strings to produce multiple lines of output with a single print
statement. Here is the example from above printed interactively:

>>> print ("Hello\nWorld\n\nGoodbye 32\n")
Hello
World

Goodbye 32

>>>

Remember, if you simply evaluate a string containing newline characters in the

shell, you will just get the embedded newline representation back again:

>>>"Hello\nWorld\n\nGoodbye 32\n"
'Hello\nWorld\n\nGoodbye 32\n'

It's only when a string is printed that the special characters affect how the string

is displayed.

15.9.21 File Processing

The exact details of file processing differ substantially among programming lan­
guages, but virtually all languages share certain underlying file-manipulation
concepts. First, we need some way to associate a file on disk with an object in a

program. This process is called opening a file. Once a file has been opened, its
contents can be accessed through the associated file object.

Second, we need a set of operations that can manipulate the file object.
At the very least, this includes operations that allow us to read the information

from a file and write new information to a file. Typically, the reading and writing

159

160 Chapter 5. Sequences: Strings, Lists, and Fi les

operations for text files are similar to the operations for text -based, interactive

input and output.
Finally, when we are finished with a file, it is closed. Closing a file makes

sure that any bookkeeping that was necessary to maintain the correspondence
between the file on disk and the file object is finished up. For example, if you

write information to a file object, the changes might not show up on the disk
version until the file has been closed.

This idea of opening and closing files is closely related to how you might
work with files in an application program like a word processor. However, the

concepts are not exactly the same. When you open a file in a program like

Microsoft Word, the file is actually read from the disk and stored into RAM. In
programming terminology, the file is opened for reading and the contents of the

file are then read into memory via file-reading operations. At this point, the file
is closed (again in the programming sense). As you "edit the file," you are really

making changes to data in memory, not the file itself. The changes will not show
up in the file on the disk until you tell the application to "save" it.

Saving a file also involves a multi-step process. First, the original file on the

disk is reopened, this time in a mode that allows it to store information-the

file on disk is opened for writing. Doing so actually erases the old contents of
the file. File writing operations are then used to copy the current contents of

the in-memory version into the new file on the disk. From your perspective, it

appears that you have edited an existing file. From the program's perspective,

you have actually opened a file, read its contents into memory, closed the file,
created a new file (having the same name), written the (modified) contents of

memory into the new file, and closed the new file.
Working with text files is easy in Python. The first step is to create a file

object corresponding to a file on disk. This is done using the open function.
Usually, a file object is immediately assigned to a variable like this:

<variable > = open (<name >, <mode >)

Here name is a string that provides the name of the file on the disk. The mode
parameter is either the string "r" or " w " depending on whether we intend to

read from the file or write to the file.
For example, to open a file called "numbers.dat" for reading, we could use a

statement like the following:

infile = open("numbers . dat " , "r")

Now we can use the file object infile to read the contents of numbers . dat from
the disk.

5.9. Fi le Processing

Python provides three related operations for reading information from a file:

<file> . read() Returns the entire remaining contents of the file as a single
(potentially large, multi-line) string.

<file> . readline () Returns the next line of the file. That is, all text up to and

including the next newline character.

<file> . readlines () Returns a list of the remaining lines in the file. Each list
item is a single line including the newline character at the end.

Here's an example program that prints the contents of a file to the screen

using the read operation:

printfile . py
Prints a file to the screen .

def main() :
fname = input ("Enter filename : ")
infile = open (fname , "r ")
data = infile . read()
print (data)

main ()

The program first prompts the user for a file name and then opens the file for

reading through the variable infile. You could use any name for the variable;
I used inf ile to emphasize that the file was being used for input. The entire

contents of the file is then read as one large string and stored in the variable
data. Printing data causes the contents to be displayed.

The readline operation can be used to read the next line from a file. Suc­

cessive calls to readline get successive lines from the file. This is analogous to
input, which reads characters interactively until the user hits the <Enter> key;

each call to input gets another line from the user. One thing to keep in mind,

however, is that the string returned by readline will always end with a newline
character, whereas input discards the newline character.

As a quick example, this fragment of code prints out the first five lines of a
file:

infile = open(someFile , "r")
for i in range (5) :

161

162 Chapter 5. Sequences: Strings, Lists, and Fi les

line = infile . readline ()
print (line [: -1])

Notice the use of slicing to strip off the newline character at the end of the line.

Since print automatically jumps to the next line (i.e., it outputs a newline),

printing with the explicit newline at the end would put an extra blank line of
output between the lines of the file. Alternatively, you could print the whole

line, but simply tell print not to add its own newline character.

print (line , end=" ")

One way to loop through the entire contents of a file is to read in all of the
file using readlines and then loop through the resulting list:

infile = open(someFile , "r")
for line in infile . readlines () :

process the line here
infile . close ()

Of course, a potential drawback of this approach is the fact that the file may be
very large, and reading it into a list all at once may take up too much RAM.

Fortunately, there is a simple alternative. Python treats the file itself as a

sequence of lines. So looping through the lines of a file can be done directly like
this:

infile = open(someFile , "r")
for line in infile :

process the line here
infile . close ()

This is a particularly handy way to process the lines of a file one at a time.
Opening a file for writing prepares that file to receive data. If no file with

the given name exists, a new file will be created. A word of warning: if a file

with the given name does exist, Python will delete it and create a new, empty
file. When writing to a file, make sure you do not clobber any files you will need
later ! Here is an example of opening a file for output:

outfile = open("mydata . out " , "w")

The easiest way to write information into a text file is to use the already­

familiar print function. To print to a file, we just need to add an extra keyword
parameter that specifies the file:

5.9. Fi le Processing 163

print (. . . , file=<outputFile >)

This behaves exactly like a normal print except that the result is sent to outputFile
instead of being displayed on the screen.

1 5 .9.3 1 Example Program: Batch Usernames

To see how all these pieces fit together, let's redo the username generation pro­

gram. Our previous version created usernames interactively by having the user

type in his or her name. If we were setting up accounts for a large number of
users, the process would probably not be done interactively, but in batch mode.
In batch processing, program input and output is done through files.

Our new program is designed to process a file of names. Each line of the

input file will contain the first and last names of a new user separated by one
or more spaces. The program produces an output file containing a line for each

generated usemame:

userfile . py
Program to create a file of usernames in batch mode .

def main() :
print ("This program creates a file of usernames from a")
print ("file of names . ")

get the file names
infileName = input ("What file are the names in? ")
outfileName = input ("What file should the usernames go in? ")

open the files
infile = open(infileName , "r ")
outfile = open(outfileName , "w")

process each line of the input file
for line in infile :

get the first and last names from line
first , last = line . split ()
create the username
uname = (first [O] +last [: 7]) . lower ()
write it to the output file

164 Chapter 5. Sequences: Strings, Lists, and Fi les

print (uname , file=outfile)

close both files
infile . close ()
outfile . close ()

print ("Usernames have been written to" , outfileName)

main ()

There are a couple of things worth noticing in this program. I have two files
open at the same time, one for input (infile) and one for output (outfile) .
It's not unusual for a program to operate on several files simultaneously. Also,
when creating the usemame, I used the lower string method. Notice that the
method is applied to the string that results from the concatenation. This ensures

that the username is all lowercase, even if the input names are mixed case.

1 5 .9.4 1 File Dialogs (Optional)

One problem that often crops up with file manipulation programs is figuring out

exactly how to specify the file that you want to use. If a data file is in the same

directory (folder) as your program, then you simply have to type in the correct
name of the file; with no other information, Python will look for the file in the
"current" directory. Sometimes, however, it's difficult to know exactly what the

file's complete name is. Most modern operating systems use file names having
a form like <name >. <type > where the type portion is a short (3- or 4-letter)

extension that describes what sort of data the file contains. For example, our
usernames might be stored in a file called "users. txt" where the ".txt" extension

indicates a text file. The difficulty is that some operating systems (e.g. Windows
and macOS), by default, only show the part of the name that precedes the dot,

so it can be hard to figure out the full file name.
The situation is even more difficult when the file exists somewhere other

than than the current directory. File processing programs might be used on files
that are stored literally anywhere in secondary memory. In order to locate these
far-flung files, we must specify the complete path to locate the file in the user's

computer system. The exact form of a path differs from system to system. On
a Windows system, the complete file name with path might look something like
this:

C : /users/susan/Documents/Python_Programs/users . txt

5.9. Fi le Processing

Not only is this a lot to type, but most users probably don't even know how to

figure out the complete path+ filename for any given file on their systems.

The solution to this problem is to allow users to browse the file system visu­
ally and navigate their way to a particular directory/file. Asking a user for a file
name either for opening or saving is a common task across many applications,

and the underlying operating system generally provides a standard/familiar way

of doing this. The usual technique incorporates a dialog box (a special window
for user interaction) that allows a user to click around in the file system us­
ing a mouse and either select or type in the name of a file. Fortunately for

us, the tkinter GUI library included with (most) standard Python installations

provides some simple-to-use functions that create dialog boxes for getting file
names.

165

To ask the user for the name of a file to open, you can use the askopenf ilename
function. It is found in the tkinter. f iledialog module. At the top of the pro­

gram you will need to import the function:

from tkinter . filedialog import askopenfilename

The reason for the dot notation in the import is that tkinter is a package com­

posed of multiple modules. In this case, we are specifying the filedialog mod­
ule from tkinter. Rather than importing everything from this module, I speci­

fied just the one function that we are using here. Calling askopenf ilename will
pop up a system-appropriate file dialog box.

For example, to get the name of the user names file we could use a line of

code like this:

infileName = askopenfilename ()

The result of executing this line in Windows is shown in Figure 5.2. The dialog

allows the user to either type in the name of the file or to simply select it with

the mouse. When the user clicks the "Open" button, the complete path name

of the file is returned as a string and saved into the variable infileName. If the
user clicks the "Cancel" button, the function will simply return an empty string.

In Chapter 7, you'll learn how you can test the resulting value and take different

actions depending on which button the user selects.
Python's tkinter provides an analogous function, asksaveasfilename, for

saving files. It's usage is very similar.

from tkinter.filedialog import asksaveasfilename
• • •

outfileName = asksaveasfilename ()

166 Chapter 5. Sequences: Strings, Lists, and Files

Open

Look [n: Ill' Python 3 .., � L1 D·

srtl
T

Name Date modified

<!e? � wordcount 7/1 3/2015 3:21 PM
Recent places E!wcinput 7/1 3/2015 5:33PM

Eltest2 7/1 3/2015 5:24 PM

Desktop f3test1 7/1 3/2015 5:23 PM

� Eltest 11/21/2012 8:19 PM

� syracusenums 7/30/2015 2:40 PM

Ubraries B sumsquaresinput 7!17/2015 3:33PM �I � sumsquares 7!17/2015 4:48 PM

!]. sumcubes 7/22!2015 7:28 PM
This PC � sqrtguess 7/22!2015 7:23 PM

� � regress 8/9/2015 12:22 PM

� regress 7/31/20154:13 PM
Netwolk

fe. randomwalk1 exo 8/1 3/2015 4:32 PM
<

Rle !}arne: I ..:J
Rles of type: jAil Rles (".j 3

-

Type "'

Python File

Text Documer

Text Documer

Text Documer

Text Documer

Python File

Text Documer

Python File

Python File

Python File

Python File (n

Python File

Pvthon File v

>

Qpen I
Cancel

�
Figure 5.2: File dialog box from askopenfilename

Save As -
Save tn: Ill' Python 3 .., � L1 D·

srtl
T

Name Date modified Type "'

<!e? � wordcount 7/1 3/2015 3:21 PM Python File
Recent places Bwcinput 7/1 3/2015 5:33PM TXT File

Eltest2 7/13/2015 5:24 PM TXT File I Desktop f3test1 7/1 3/2015 5:23 PM TXT File

� Eltest 11/21/2012 8:19 PM TXT File

� syracusenums 7/30/2015 2:40 PM Python File

Ubraries B sumsquaresinput 7!17/2015 3:33PM TXT File �I � sumsquares 7!17/2015 4:48 PM Python File

� sumcubes 7/22!2015 7:28 PM Python File
This PC � sqrtguess 7/22!2015 7:23 PM Python File

� � regress 8/9/2015 12:22 PM Python File (n

� regress 7/31/20154:13 PM Python File
Netwolk

fe. randomwalk1 exo 8/1 3/2015 4:32 PM Pvthon File v

< >

Rle !}arne: II ..:J Save I
Save as type: jAil Rles (".j ::::J Cancel I

Figure 5.3: File dialog box from asksaveasfilename

5.10. Chapter Summary

An example dialog box for asksaveasfilename is shown in Figure 5.3. You can,

of course, import both of these functions at once with an import like:

from tkinter . filedialog import askopenfilename , asksaveasfilename

Both of these functions also have numerous optional parameters so that a pro­
gram can customize the the resulting dialogs, for example by changing the title

or suggesting a default file name. If you are interested in those details, you

should consult the Python documentation.

1 5 . 10 I Chapter Summary

This chapter has covered important elements of the Python string, list, and file
objects. Here is a summary of the highlights:

• Strings are sequences of characters. String literals can be delimited with
either single or double quotes.

• Strings and lists can be manipulated with the built-in sequence opera­

tions for concatenation (+), repetition (*), indexing ([]) , slicing ([: J) ,
and length (len ()). A for loop can be used to iterate through the charac­
ters of a string, items in a list, or lines of a file.

• One way of converting numeric information into string information is to

use a string or a list as a lookup table.

• Lists are more general than strings.

- Strings are always sequences of characters, whereas lists can contain
values of any type.

- Lists are mutable, which means that items in a list can be modified

by assigning new values.

• Strings are represented in the computer as numeric codes. ASCII and Uni­

code are compatible standards that are used for specifying the correspon­
dence between characters and the underlying codes. Python provides the

ord and chr functions for translating between Unicode codes and charac­
ters.

• Python string and list objects include many useful built-in methods for

string and list processing.

167

168 Chapter 5. Sequences: Strings, Lists, and Fi les

• The process of encoding data to keep it private is called encryption. There

are two different kinds of encryption systems: private key and public key.

• Program input and output often involve string processing. Python provides
numerous operators for converting back and forth between numbers and

strings. The string formatting method (format) is particularly useful for

producing nicely formatted output.

• Text files are multi-line strings stored in secondary memory. A text file may

be opened for reading or writing. When opened for writing, the existing

contents of the file are erased. Python provides three file-reading meth­

ods: read() , readline () , and readlines () . It is also possible to iterate
through the lines of a file with a for loop. Data is written to a file using

the print function. When processing is finished, a file should be closed.

Is . 1 1 1 Exercises

Review Questions

True/False

1. A Python string literal is always enclosed in double quotes.

2. The last character of a strings is at position len(s) -1 .

3. A string always contains a single line of text.

4. In Python 114 11 + 11 5 11 is 1145 11 •

5. Python lists are mutable, but strings are not.

6. ASCII is a standard for representing characters using numeric codes.

7. The split method breaks a string into a list of substrings, and j oin does
the opposite.

8. A substitution cipher is a good way to keep sensitive information secure.

9. The add method can be used to add an item to the end of a list.

10. The process of associating a file with an object in a program is called "read­
ing" the file.

5.11. Exercises

Multiple Choice

1. Accessing a single character out of a string is called:

a) slicing b) concatenation c) assignment d) indexing

2. Which of the following is the same ass [0 : -1] ?
a) s [-1] b) s [:] c) s [: len (s) -1] d) s [O : len(s)]

3. What function gives the Unicode value of a character?
a) ord b) ascii c) chr d) eval

4. Which of the following can not be used to convert a string of digits into a
number?
a) int b) float c) str d) eval

5. A successor to ASCII that includes characters from (nearly) all written
languages is

a) TELLI b) ASCII++ c) Unicode d) ISO

6. Which string method converts all the characters of a string to upper case?
a) capitalize b) capwords c) uppercase d) upper

7. The string "slots" that are filled in by the format method are marked by:

a) % b) $ c) [] d) {}

8. Which of the following is not a file-reading method in Python?

a) read b) readline c) readall d) readlines

9. The term for a program that does its input and output with files is
a) file-oriented b) multi-line c) batch d) lame

10. Before reading or writing to a file, a file object must be created via
a) open b) create c) File d) Folder

Discussion

1. Given the initial statements:

s1 - "spam"
s2 - "ni ! "

Show the result of evaluating each of the following string expressions.

169

170 Chapter 5. Sequences: Strings, Lists, and Fi les

a) "The Knights who say , " + s2

b) 3 * s1 + 2 * s2

c) s1 [1]

d) s1 [1 : 3]

e) s 1 [2] + s2 [: 2]

f) s1 + s2 [-1]

g) s1 . upper 0

h) s2 . upper () . ljust (4) * 3

2. Given the same initial statements as in the previous problem, show a

Python expression that could construct each of the following results by
performing string operations on s1 and s2.

a) "NI "

b) "ni ! spamni ! "

c) "Spam Ni ! Spam N . I 1 . Spam Ni ! "

d) " spam"

e) [" sp" , "m"]

f) " spm"

3. Show the output that would be generated by each of the following pro­

gram fragments:

a) for ch in "aardvark" :
print (ch)

b) for w in "Now is the winter of our discontent . . . " . split () :
print (w)

c) for w in "Mississippi " . split (" i ") :
print (w , end=" ")

d) msg = " "
for s in " secret " . split (" e ") :

msg = msg + s
print (msg)

e) msg = " "
for ch in " secret " :

msg = msg + chr (ord(ch) +1)
print (msg)

5.11. Exercises

4. Show the string that would result from each of the following string for­
matting operations. If the operation is not legal, explain why.

171

a) "Looks like {1} and {0} for breakfast " . format ("eggs " , " spam")

b) "There is {0} {1} {2} {3}" . format (! , " spam" , 4 , "you")

c) "Hello {0}" . format ("Susan" , "Computewell ")

d) " {0 : 0 . 2f} {0 : 0 . 2f}" . format (2 . 3 , 2 . 3468)

e) " {7 . 5f} {7 . 5f}" . format (2 . 3 , 2 . 3468)

f) "Time left {0 : 02} : {1 : 05 . 2f}" . format (1 , 37 . 374)

g) " {1 : 3}" . format (" 14")

5. Explain why public key encryption is more useful for securing communi­
cations on the Internet than private (shared) key encryption.

Programming Exercises

1. As discussed in the chapter, string formatting could be used to simplify the
dateconvert2 . py program. Go back and redo this program making use

of the string-formatting method.

2. A certain CS professor gives 5-point quizzes that are graded on the scale

5-A, 4-B, 3-C, 2-D, 1-F, 0-F. Write a program that accepts a quiz score as

an input and prints out the corresponding grade.

3. A certain CS professor gives 100-point exams that are graded on the scale
90-100:A, 80-89:B, 70-79:C, 60-69:D, <60:F. Write a program that ac­

cepts an exam score as input and prints out the corresponding grade.

4. An acronym is a word formed by taking the first letters of the words in a
phrase and making a word from them. For example, RAM is an acronym

for "random access memory." Write a program that allows the user to
type in a phrase and then outputs the acronym for that phrase. Note: The
acronym should be all uppercase, even if the words in the phrase are not

capitalized.

5. Numerologists claim to be able to determine a person's character traits
based on the "numeric value" of a name. The value of a name is deter­
mined by summing up the values of the letters of the name where "a" is
1 "b" is 2 "c" is 3 up to "z" being 26 For example the name "Zelle" ' ' ' . '

172 Chapter 5. Sequences: Strings, Lists, and Fi les

would have the value 26 + 5 + 12 + 12 + 5 = 60 (which happens to be a
very auspicious number, by the way). Write a program that calculates the

numeric value of a single name provided as input.

6. Expand your solution to the previous problem to allow the calculation of
a complete name such as '3"ohn Marvin Zelle" or '3"ohn Jacob Jingleheimer
Smith." The total value is just the sum of the numeric values of all the
names.

7. A Caesar cipher is a simple substitution cipher based on the idea of shifting

each letter of the plaintext message a fixed number (called the key) of

positions in the alphabet. For example, if the key value is 2, the word
"Sourpuss" would be encoded as "Uqwtrwuu." The original message can
be recovered by "reencoding" it using the negative of the key.

Write a program that can encode and decode Caesar ciphers. The in­
put to the program will be a string of plaintext and the value of the key.

The output will be an encoded message where each character in the orig­

inal message is replaced by shifting it key characters in the Unicode char­
acter set. For example, if ch is a character in the string and key is the
amount to shift, then the character that replaces ch can be calculated as:

chr (ord (ch) + key) .

8. One problem with the previous exercise is that it does not deal with the

case when we "drop off the end" of the alphabet. A true Caesar cipher
does the shifting in a circular fashion where the next character after "z" is
"a." Modify your solution to the previous problem to make it circular. You

may assume that the input consists only of letters and spaces. Hint: Make

a string containing all the characters of your alphabet and use positions in
this string as your code. You do not have to shift "z" into "a"; just make

sure that you use a circular shift over the entire sequence of characters in
your alphabet string.

9. Write a program that counts the number of words in a sentence entered

by the user.

10. Write a program that calculates the average word length in a sentence

entered by the user.

1 1. Write an improved version of the chaos . py program from Chapter 1 that
allows a user to input two initial values and the number of iterations,

5.11. Exercises

and then prints a nicely formatted table showing how the values change

over time. For example, if the starting values were . 25 and . 26 with 10
iterations, the table might look like this:

index 0 . 25 0 . 26
- -

1 0 . 731250 0 . 750360
2 0 . 766441 0 . 730547
3 0 . 698135 0 . 767707
4 0 . 821896 0 . 695499
5 0 . 570894 0 . 825942
6 0 . 955399 0 . 560671
7 0 . 166187 0 . 960644
8 0 . 540418 0 . 147447
9 0 . 968629 0 . 490255

10 0 . 1 18509 0 . 974630

12. Write an improved version of the futval . py program from Chapter 2.
Your program will prompt the user for the amount of the investment, the

annualized interest rate, and the number of years of the investment. The
program will then output a nicely formatted table that tracks the value of
the investment year by year. Your output might look something like this:

Year Value
- - - - - - - - - - - - - - - -

0 $2000 . 00
1 $2200 . 00
2 $2420 . 00
3 $2662 . 00
4 $2928 . 20
5 $3221 . 02
6 $3542 . 12
7 $3897 . 43

13. Redo any of the previous programming problems to make them batch­

oriented (using text files for input and output).

14. Word Count. A common utility on UniX/Linux systems is a small program
called ''we." This program analyzes a file to determine the number of

173

174 Chapter 5. Sequences: Strings, Lists, and Fi les

lines, words, and characters contained therein. Write your own version of

we. The program should accept a file name as input and then print three

numbers showing the count of lines, words, and characters in the file.

15. Write a program to plot a horizontal bar chart of student exam scores.
Your program should get input from a file. The first line of the file contains
the count of the number of students in the file, and each subsequent line

contains a student's last name followed by a score in the range 0-100.

Your program should draw a horizontal rectangle for each student where
the length of the bar represents the student's score. The bars should all
line up on their left-hand edges. Hint: Use the number of students to

determine the size of the window and its coordinates. Bonus: label the

bars at the left end with the students' names.

Computewell

Dibblebit

Jones

Smith

16. Write a program to draw a quiz score histogram. Your program should
read data from a file. Each line of the file contains a number in the range
0-10. Your program must count the number of occurrences of each score

and then draw a vertical bar chart with a bar for each possible score (0-
10) with a height corresponding to the count of that score. For example,

if 15 students got an 8, then the height of the bar for 8 should be 15.
Hint: Use a list that stores the count for each possible score. An example

histogram is shown below:

o o D D
0 1 2 3 4 5 6 7 8 9 10

Chapter 6 Defining Functions

Objectives

• To understand why programmers divide programs up into sets of cooper­
ating functions.

• To be able to define new functions in Python.

• To understand the details of function calls and parameter passing in Python.

• To write programs that use functions to reduce code duplication and in­
crease program modularity.

16.11 The Function of Functions

The programs that we have written so far comprise a single function, usually
called main. We have also been using pre-written functions and methods includ­
ing built-in Python functions (e.g., print, abs), functions and methods from the
Python standard libraries (e.g., math. sqrt), and methods from the graphics

module (e.g., my Point. get X()). Functions are an important tool for building
sophisticated programs. This chapter covers the whys and hows of designing
your own functions to make your programs easier to write and understand.

In Chapter 4, we looked at a graphic solution to the future value problem.
Recall that this program makes use of the graphics library to draw a bar chart
showing the growth of an investment. Here is the program as we left it:

futval_graph2.py

from graphics import *

175

176 Chapter 6. Defining Functions

def main():

Introduction

print("This program plots the growth of a 10-year investment.")

Get principal and interest rate

principal = float(input("Enter the initial principal: "))

apr = float(input("Enter the annualized interest rate: "))

Create a graphics window with labels on left edge

win = GraphWin("Investment Growth Chart", 320, 240)

win.setBackground("white")

win.setCoords(-1.75, -200, 11.5, 10400)

Text(Point(-1, 0), ' O.OK').draw(win)

Text(Point(-1, 2500), ' 2.5K').draw(win)

Text(Point(-1, 5000), ' 5.0K').draw(win)

Text(Point(-1, 7500), ' 7.5k').draw(win)

Text(Point(-1, 10000), '10.0K').draw(win)

Draw bar for initial principal

bar = Rectangle(Point(O, 0), Point(!, principal))

bar.setFill("green")

bar.setWidth(2)

bar.draw(win)

Draw a bar for each subsequent year

for year in range(!, 11):

principal = principal * (1 + apr)

bar = Rectangle(Point(year, 0), Point(year+1, principal))

bar. setFill ("green")

bar.setWidth(2)

bar.draw(win)

input("Press <Enter> to quit.")

win. close()

main()

This is certainly a workable program, but there is a nagging issue of program

6.2. Functions, Informally

style that really should be addressed. Notice that this program draws bars in two
different places. The initial bar is drawn just before the loop, and the subsequent
bars are drawn inside the loop.

Having similar code like this in two places has some drawbacks. Obviously,
one issue is having to write the code twice. A more subtle problem is that
the code has to be maintained in two different places. Should we decide to
change the color or other facets of the bars, we would have to make sure these
changes occur in both places. Failing to keep related parts of the code in sync is
a common problem in program maintenance.

Functions can be used to reduce code duplication and to make programs
more understandable and easier to maintain. Before fixing up the future value
program, let's take look at what functions have to offer.

16.21 Functions, Informally

You can think of a function as a subprogram-a small program inside a program.
The basic idea of a function is that we write a sequence of statements and give
that sequence a name. The instructions can then be executed at any point in the
program by referring to the function name.

The part of the program that creates a function is called a function definition.

When a function is subsequently used in a program, we say that the definition
is called or invoked. A single function definition may be called at many different
points of a program.

Let's take a concrete example. Suppose you want to write a program that
prints out the lyrics to the "Happy Birthday'' song. The standard lyrics look like
this:

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear <insert-name>.

Happy birthday to you!

We're going to play with this example in the interactive Python environment.
You might want to fire up Python and try some of this out yourself.

A simple approach to this problem is to use four print statements. Here's an
interactive session that creates a program for singing "Happy Birthday'' to Fred.

>>> def main():

print("Happy birthday to you!")

177

178 Chapter 6. Defining Functions

print("Happy birthday to you!")

print("Happy birthday, dear Fred. ")

print("Happy birthday to you!")

We can then run this program to get our lyrics:

>>> main()

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear Fred.

Happy birthday to you!

Obviously, there is some duplicated code in this program. For such a simple
program, that's not a big deal, but even here it's a bit annoying to keep retyping
the same line. Let's introduce a function that prints the lyrics of the first, second,
and fourth lines.

>>> def happy():

print("Happy birthday to you!")

We have defined a new function called happy. Here is an example of what it
does:

>>> happy()

Happy birthday to you!

Invoking the happy command causes Python to print a line of the song.
Now we can redo the verse for Fred using happy. Let's call our new version

singFred.

>>> def singFred():

happy()

happy()

print("Happy birthday, dear Fred. ")

happy()

This version required much less typing, thanks to the happy command. Let's try
printing the lyrics for Fred just to make sure it works.

>>> singFred()

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear Fred.

Happy birthday to you!

6.2. Functions, Informally

So far, so good. Now suppose that it's also Lucy's birthday, and we want to
sing a verse for Fred followed by a verse for Lucy. We've already got the verse
for Fred; we can prepare one for Lucy as well.

>>> def singLucy():

happy()

happy()

print("Happy birthday, dear Lucy. ")

happy()

Now we can write a main program that sings to both Fred and Lucy:

>>> def main():

singFred()

print()

singLucy()

The bare print between the two function calls puts a space between the verses
in our output. And here's the final product in action:

>>> main()

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear Fred.

Happy birthday to you!

Happy birthday to you!

Happy birthday to you!

Happy birthday, dear Lucy.

Happy birthday to you!

Well now, that certainly seems to work, and we've removed some of the
duplication by defining the happy function. However, something still doesn't feel
quite right. We have two functions, singFred and singLucy, that are almost
identical. Following this approach, adding a verse for Elmer would have us
create a singElmer function that looks just like those for Fred and Lucy. Can't
we do something about the proliferation of verses?

Notice that the only difference between singFred and singLucy is the name
at the end of the third print statement. The verses are exactly the same except
for this one changing part. We can collapse these two functions together by
using a parameter. Let's write a generic function called sing:

179

180 Chapter 6. Defining Functions

>>> def sing(person):

happy()

happy()

print ("Happy Birthday, dear" , person + " . ")

happy()

This function makes use of a parameter named person. A parameter is a variable
that is initialized when the function is called. We can use the sing function to
print a verse for either Fred or Lucy. We just need to supply the name as a
parameter when we invoke the function:

>>> sing("Fred")

Happy birthday to you!

Happy birthday to you!

Happy Birthday, dear Fred.

Happy birthday to you!

>>> sing("Lucy")

Happy birthday to you!

Happy birthday to you!

Happy Birthday, dear Lucy.

Happy birthday to you!

Let's finish with a program that sings to all three of our birthday people:

>>> def main():

sing("Fred")

print()

sing("Lucy")

print()

sing("Elmer")

It doesn't get much easier than that.
Here is the complete program as a module file:

happy.py

def happy():

print("Happy Birthday to you!")

def sing(person):

happy()

happy()

6.3. Future Value with a Function

print ("Happy birthday, dear", person + ". ")

happy()

def main():

sing ("Fred")

print()

sing ("Lucy")

print()

sing ("Elmer")

main()

16.31 Future Value with a Function

Now that you've seen how defining functions can help solve the code duplication
problem, let's return to the future value graph. Remember, the problem is that
bars of the graph are drawn at two different places in the program. The code
just before the loop looks like this:

Draw bar for initial principal

bar = Rectangle(Point(O, 0), Point(!, principal))

bar. setFill ("green")

bar.setWidth(2)

bar.draw(win)

And the code inside the loop is as follows:

bar = Rectangle(Point(year, 0), Point(year+1, principal))

bar. setFill ("green")

bar.setWidth(2)

bar.draw(win)

Let's try to combine these two into a single function that draws a bar on the
screen.

In order to draw the bar, we need some information. Specifically, we need to
know what year the bar will be for, how tall the bar will be, and what window

181

182 Chapter 6. Defining Functions

the bar will be drawn in. These three values will be supplied as parameters for
the function. Here's the function definition:

def drawBar(window, year, height):

Draw a bar in window for given year with given height

bar = Rectangle(Point(year, 0), Point(year+1, height))

bar.setFill("green")

bar.setWidth(2)

bar.draw(window)

To use this function, we just need to supply values for the three parameters. For
example, if win is a Graph Win, we can draw a bar for year 0 and a principal of
$2,000 by invoking drawBar like this:

drawBar(win, 0, 2000)

Incorporating the drawBar function, here is the latest version of our future
value program:

futval_graph3.py

from graphics import *

def drawBar(window, year, height):

Draw a bar in window starting at year with given height

bar = Rectangle(Point(year, 0), Point(year+1, height))

bar.setFill("green")

bar.setWidth(2)

bar.draw(window)

def main():

Introduction

print("This program plots the growth of a 10-year investment.")

Get principal and interest rate

principal = float(input("Enter the initial principal: "))

apr = float(input("Enter the annualized interest rate: "))

Create a graphics window with labels on left edge

win = GraphWin("Investment Growth Chart", 320, 240)

win.setBackground("white")

6.4. Functions and Parameters: The Exciting Details

win. setCoords(-1. 75, -200, 11. 5, 10400)

Text(Point(-1, 0), ' O. OK'). draw(win)

Text(Point(-1, 2500), ' 2. 5K'). draw(win)

Text(Point(-1, 5000), ' 5. 0K'). draw(win)

Text(Point(-1, 7500), ' 7. 5k'). draw(win)

Text(Point(-1, 10000), '10. 0K'). draw(win)

drawBar(win, 0, principal)

for year in range(!, 11):

principal = principal * (1 + apr)

drawBar(win, year, principal)

input("Press <Enter> to quit. ")

win. close()

main()

You can see how drawBar has eliminated the duplicated code. Should we
wish to change the appearance of the bars in the graph, we only need to change
the code in one spot, the definition of draw Bar. Don't worry yet if you don't
understand every detail of this example. You still have some things to learn
about functions.

16.41 Functions and Parameters: The Exciting Details

You may be wondering about the choice of parameters for the drawBar function.
Obviously, the year for which a bar is being drawn and the height of the bar are
the changeable parts in the drawing of a bar. But why is window also a parameter
to this function? Mter all, we will be drawing all of the bars in the same window;
it doesn't seem to change.

The reason for making window a parameter has to do with the scope of vari­
ables in function definitions. Scope refers to the places in a program where a
given variable may be referenced. Remember, each function is its own little sub­
program. The variables used inside one function are local to that function, even
if they happen to have the same name as variables that appear inside another
function.

The only way for a function to see a variable from another function is for
that variable to be passed as a parameter.1 Since the GraphWin (assigned to

1Technically, it is possible to reference a variable from a function that is nested inside another
function, but function nesting is beyond the scope of this discussion.

183

184 Chapter 6. Defining Functions

the variable win) is created inside main, it is not directly accessible in drawBar.

However, the window parameter in drawBar gets assigned the value of win from
main when drawBar is called. To see how this happens, we need to take a more
detailed look at the function invocation process.

A function definition looks like this:

def <name>(<formal-parameters>):

<body>

The name of the function must be an identifier, and formal-parameters is a
(possibly empty) sequence of variable names (also identifiers) . The formal pa­
rameters, like all variables used in the function, are only accessible in the body

of the function. Variables with identical names elsewhere in the program are
distinct from the formal parameters and variables inside the function body.

A function is called by using its name followed by a list of actual parameters

or arguments.

<name>(<actual-parameters>)

When Python comes to a function call, it initiates a four-step process:

1. The calling program suspends execution at the point of the call.

2. The formal parameters of the function get assigned the values supplied by
the actual parameters in the call.

3. The body of the function is executed.

4. Control returns to the point just after where the function was called.

Returning to the Happy Birthday example, let's trace through the singing of
two verses. Here is part of the body from main:

sing ("Fred")

print()

sing ("Lucy")

When Python gets to sing ("Fred"), execution of main is temporarily suspended.
At this point, Python looks up the definition of sing and sees that it has a single
formal parameter, person. The formal parameter is assigned the value of the
actual parameter, so it is as if we had executed this statement:

person = "Fred"

6.4. Functions and Parameters: The Exciting Details

A snapshot of the situation is shown in Figure 6. 1 . Notice the variable person

inside sing has just been initialized.

def sing(person):
def main(): person =

sing(•Fred•)
•:rredn ...-happy()

happy()
print()

sing (n Lucy•)
print(•B&P,P,y birthday,

happy()

person: I· Pred n I

Figure 6. 1 : Illustration of control transferring to sing

At this point, Python begins executing the body of sing. The first statement
is another function call, this one to happy. Python suspends execution of sing

and transfers control to the called function. The body of happy consists of a
single print. This statement is executed, and then control returns to where it
left off in sing. Figure 6.2 shows a snapshot of the execution so far.

d f i () def happy() :
def main(): e a ng person : � person • •rred• ""--· _ _:__-----·+ print(•Bappy Birthday to you!•)

sing(•:rred•) • •,..,z() -..,,. ____ ___,

print() happy()
print(•Bappy birthday, dear•, person + •.•)
happy()

person= 1 •:rred • 1

Figure 6.2: Snapshot of completed call to happy

Execution continues in this manner with Python making two more side trips
back to happy to complete the execution of sing. When Python gets to the end
of sing, control then returns to main and continues immediately after the func­
tion call. Figure 6.3 shows where we are at that point. Notice that the person

variable in sing has disappeared. The memory occupied by local function vari­
ables is reclaimed when the function finishes. Local variables do not retain any
values from one function execution to the next.

185

186 Chapter 6. Defining Functions

def main():

sing(•Fred•)

print()

def sing(person): !happy()
happy()
print(•B&P,P,y birthday, dear•, person + •.•)

happy() sing (n Lucy•)

Figure 6.3: Snapshot of completed call to sing

The next statement to execute is the bare print statement in main. This
produces a blank line in the output. Then Python encounters another call to
sing. As before, control transfers to the function definition. This time the formal
parameter is "Lucy". Figure 6.4 shows the situation as sing begins to execute
for the second time.

def main():
�·

def sing(person): ! sing (n Fred n) ,. •1i'l-0 happy ()

• :�:•� happy ()
pr1Dt () op8

priDt (DB&P,py birthday 1 dearn, perSOD + B • n)
sing (n Lucy•) happy ()

person: I•Lucy• I

Figure 6.4: Snapshot of second call to sing

Now we'll fast forward to the end. The function body of sing is executed
for Lucy (with three side trips through happy) and control returns to main just
after the point of the function call. Now we have reached the bottom of our
code fragment, as illustrated by Figure 6.5. These three statements in main have
caused sing to execute twice and happy to execute six times. Overall, nine total
lines of output were generated.

def main(): def sing(person): � sing(•Fred•) l =��
print()

print(nB&P.P.Y birthday, dearn, person + •.•)
sing (•Lucy•) �-------L happy()

�

Figure 6.5: Completion of second call to sing

Hopefully you're getting the hang of how function calls work. One point that
this example did not address is the use of multiple parameters. Usually when a

6.5. Functions That Return Values

function definition has several parameters, the actual parameters are matched
up with the formal parameters by position. The first actual parameter is assigned
to the first formal parameter, the second actual is assigned to the second formal,
etc. It's possible to modify this behavior using keyword parameters, which are
matched up by name (e.g., end="" in a call to print). However, we will rely on
positional matching for all of our example functions.

As an example, look again at the use of the draw Bar function from the future
value program. Here is the call to draw the initial bar:

drawBar(win, 0, principal)

When Python transfers control to drawBar, these parameters are matched up to
the formal parameters in the function heading:

def drawBar(window, year, height):

The net effect is as if the function body had been prefaced with three assignment
statements:

window = win

year = 0

height = principal

You must always be careful when calling a function that you get the actual
parameters in the correct order to match the function definition.

16.51 Functions That Return Values

You have seen that parameter passing provides a mechanism for initializing the
variables in a function. In a way, parameters act as inputs to a function. We
can call a function many times and get different results by changing the input
parameters. Oftentimes we also want to get information back out of a function.
In fact, the fundamental ideas and vocabulary of functions are borrowed from
mathematics, where a function is considered to be a relation between input
variables and output variables. For example, a mathematician might define a
function, f, that computes the square of its input. Mathematically we would
write something like this:

f(x) = x2

This shows that f is a function that operates on a single variable (named x here)
and produces a value that is the square of x.

187

188 Chapter 6. Defining Functions

As with Python functions, mathematicians use parenthetical notation to show
the application of a function. For example, /(5) = 25 states the fact that when f
is applied to 5, the result is 25. We would say "f of 5 equals 25." Mathematical
functions are not restricted to a single argument. We might, for example, define
a function that uses the Pythagorean Theorem to produce the length of the hy­
potenuse of a right triangle given the lengths of the legs. Let's call the function
h.

h(x,y) = Jx2 + y2

From this definition, you should be able to verify that h(3, 4) = 5.
So far we have been discussing Python function details with examples where

functions are being used as new commands and functions are invoked to carry
out the commands. But in the mathematical view, function calls are really ex­
pressions that produce a result. We can easily extend our view of Python func­
tions to accomodate this idea. In fact, you have already seen numerous examples
of this type of function. For example, consider this call to the sqrt function from
the math library:

discRt = math.sqrt(b*b - 4*a*c)

Here the value of b*b - 4*a*c is the actual parameter of the math. sqrt func­
tion. Since the function call occurs on the right side of an assignment statement,
that means it is an expression. The math. sqrt function produces a value that is
then assigned to the variable discRt. Technically, we say that sqrt returns the
square root of its argument.

It's very easy to write functions that return values. Here's a Python imple­
mentation of a function that returns the square of its argument:

def square(x):

return x ** 2

Do you see how this function definition is very similar to the mathematical ver­
sion (/ (x)) above? The body of the Python function consists of a single return

statement. When Python encounters a return, it immediately exits the cur­
rent function and returns control to the point just after where the function was
called. In addition, the value provided in the return statement is sent back
to the caller as an expression result. Essentially, this just adds one small detail
to the four-step function call process outlined before: the return value from a
function is used as the expression result.

The effect is that we can use our square function any place in our code that
an expression would be legal. Here are some interactive examples:

6.5. Functions That Return Values

>>> square(3)

9
>>> print(square(4))

16

>>> X = 5

>>> y = square(x)

>>> print(y)

25

>>> print(square(x) + square(3))

34

Let's use the square function to write another function, one that finds the
distance between two points. Given two points (x1, Yl) and (x2, Y2), the dis­
tance between them is calculated as J(x2- x1)2 + (y2- y1)2• Here is a Python
function to compute the distance between two Point objects:

def distance(p1, p2):

dist = math. sqrt(square(p2. getX() - p1. getX())

+ square(p2. getY() - p1. getY())

return dist

Using the distance function, we can augment the interactive triangle pro­
gram from Chapter 4 to calculate the perimeter of the triangle. Here's the com­
plete program:

Program: triangle2. py

import math

from graphics import *

def square(x):

return x ** 2

def distance(p1, p2):

dist = math. sqrt(square(p2. getX() - p1. getX())

+ square(p2. getY() - p1. getY()))

return dist

def main():

win = GraphWin("Draw a Triangle")

win. setCoords(O. O, 0. 0, 10. 0, 10. 0)

189

190 Chapter 6. Defining Functions

message = Text(Point(5, 0. 5), "Click on three points")

message. draw(win)

Get and draw three vertices of triangle

p1 = win. getMouse()

p1. draw(win)

p2 = win. getMouse()

p2. draw(win)

p3 = win. getMouse()

p3. draw(win)

Use Polygon object to draw the triangle

triangle = Polygon(p1, p2, p3)

triangle. setFill("peachpuff")

triangle. setOutline("cyan")

triangle. draw(win)

Calculate the perimeter of the triangle

perim = distance(p1, p2) + distance(p2, p3) + distance(p3, p1)

message. setText("The perimeter is: {0: 0. 2f}". format(perim))

Wait for another click to exit

win. getMouse()

win. close()

main()

You can see how distance is called three times in one line to compute the
perimeter of the triangle. Using a function here saves quite a bit of tedious
coding. Value-returning functions are extremely useful and flexible because they
can be combined in expressions like this.

By the way, the order of the function definitions in the program is not im­
portant. It would have worked just the same with the main function defined at
the top, for example. We just have to make sure a function is defined before the
program actually tries to run it. Since the call to main () does not happen until
the very last line of the module, all of the functions will be defined before the
program actually starts running.

As another example, let's go back to the Happy Birthday program. In the
original version, we used several functions containing print statements. Rather

6.5. Functions That Return Values

than having our helper functions do the printing, we could simply have them
return values, strings in this case, that are then printed by main. Consider this
version of the program:

happy2.py

def happy():

return "Happy Birthday to you!\n"

def verseFor(person):

191

lyrics = happy0*2 + "Happy birthday, dear " + person + ". \n" + happy()

return lyrics

def main():

for person in ["Fred", "Lucy", "Elmer"]:

print(verseFor(person))

main()

Notice that all the printing is carried out in one place (main) while happy and
verseFor are just responsible for creating and returning appropriate strings.
Through the magic of value-returning functions, we have streamlined the pro­
gram so that an entire verse is built in a single string expression.

lyrics = happy() *2 + "Happy birthday, dear " + person + " . \n" + happy()

Make sure you carefully examine and understand this line of code; it really
illustrates the power and beauty of value-returning functions.

In addition to being more elegant, this version of the program is also more
flexible than the original because the printing is no longer distributed across
multiple functions. For example, we can easily modify the program to write the
results into a file instead of to the screen. All we have to do is open a file for
writing and add a file= parameter to the print statement. No revision of the
other functions is required. Here's the complete modification:

def main():

outf = open("Happy_Birthday.txt", "w")

for person in ["Fred", "Lucy", "Elmer"]:

print(verseFor(person), file=outf)

outf.close()

192 Chapter 6. Defining Functions

In general, it's almost always better (more flexible, that is) to have functions
return values rather than printing information to the screen. That way the caller
can choose whether to print the information or put it to some other use.

Sometimes a function needs to return more than one value. This can be done
by simply listing more than one expression in the return statement. As a silly
example, here is a function that computes both the sum and the difference of
two numbers:

def sumDiff(x, y):

sum = x + y

diff = X - y

return sum, diff

As you can see, this return hands back two values. When calling this func­
tion, we would place it in a simultaneous assignment:

num1, num2 = input("Please enter two numbers (num1, num2) ").split(", ")

s, d = sumDiff(float(num1), float(num2))

print("The sum is", s, "and the difference is", d)

As with parameters, when multiple values are returned from a function, they
are assigned to variables by position. In this example, s will get the first value
listed in the return (sum), and d will get the second value (diff).

That's just about all there is to know about value-returning functions in
Python. There is one "gotcha" to warn you about. Technically, all functions
in Python return a value, regardless of whether the function actually contains
a return statement. Functions without a return always hand back a special
object, denoted None. This object is often used as a sort of default value for
variables that don't currently hold anything useful. A common mistake that
new (and not-so-new) programmers make is writing what should be a value­
returning function but forgetting to include a return statement at the end.

Suppose we forget to include the return statement at the end of the distance

function:

def distance(p1, p2):

dist = math.sqrt(square(p2.getX() - p1.getX())

+ square(p2.getY() - p1.getY()))

Running the revised triangle program with this version of distance generates
this Python error message:

6.6. Functions that Modify Parameters

Traceback (most recent call last):

File "triangle2.py", line 42, in <module>

main()

File "triangle2.py", line 35, in main

193

perim = distance(p1, p2) + distance(p2, p3) + distance(p3, p1)

TypeError: unsupported operand type(s) for +: 'NoneType' and 'NoneType'

The problem here is that this version of distance does not return a number;
it always hands back the value None. Addition is not defined for None (which has
the special type NoneType), and so Python complains. If your value-returning
functions are producing strange error messages involving None or if your pro­
grams print out a mysterious "None" in the midst your output, check to see
whether you missed a return statement.

16.61 Functions that Modify Parameters

Return values are the main way to send information from a function back to the
part of the program that called the function. In some cases, functions can also
communicate back to the calling program by making changes to the function
parameters. Understanding when and how this is possible requires the mastery
of some subtle details about how assignment works in Python and the effect
this has on the relationship between the actual and formal parameters used in a
function call.

Let's start with a simple example. Suppose you are writing a program that
manages bank accounts or investments. One of the common tasks that must
be performed is to accumulate interest on an account (as we did in the future
value program). We might consider writing a function that automatically adds
the interest to the account balance. Here is a first attempt at such a function:

addinterestl.py

def addlnterest(balance, rate):

newBalance = balance * (!+rate)

balance = newBalance

The intent of this function is to set the balance of the account to a value that has
been updated by the amount of interest.

Let's try out our function by writing a very small test program:

194 Chapter 6. Defining Functions

def test():

amount = 1000

rate = 0.05

addlnterest(amount, rate)

print(amount)

What do you think this program will print? Our intent is that 5% should be
added to amount, giving a result of 1050. Here's what actually happens:

>>>test()

1000

As you can see, amount is unchanged! What has gone wrong?

Actually, nothing has gone wrong. If you consider carefully what we have
discussed so far regarding functions and parameters, you will see that this is
exactly the result that we should expect. Let's trace the execution of this example
to see what happens. The first two lines of the test function create two local
variables called amount and rate which are given the initial values of 1000 and
0.05, respectively.

Next, control transfers to the addinterest function. The formal parameters
balance and rate are assigned the values from the actual parameters amount

and rate. Remember, even though the name rate appears in both functions,
these are two separate variables. The situation as addinterest begins to exe­
cute is shown in Figure 6.6. Notice that the assignment of parameters causes the
variables balance and rate in addinterest to refer to the values of the actual
parameters.

deftest(): ��� def addinterest(balance, rate): t amount = 1000 l._,.e•--s:a.�• newBalance = balance * (1 + rate)
rate = o.os �a. -s:a.�•- balance = newBalance
addinterest(amount,rate)
print (amount)

balance

amount ---+--� 1000
rate

rate ---+--� 0. 05

Figure 6.6: Transfer of control to addinterest

6.6. Functions that Modify Parameters

Executing the first line of addlnterest creates a new variable, newBalance.

Now comes the key step. The next statement in addlnterest assigns balance

to have the same value as newBalance. The result is shown in Figure 6. 7. Notice
that balance now refers to the same value as newBalance, but this had no effect
on amount in the test function.

clef test(): ��t t amount = 1000 cef$1JIP
rate = 0 . 05 -pal.�

addinterest(amount,rate) t•��at•

print amount �&

rate 1�.....--_-....... +---•••[o . 05]

def addinterest(balance, rate):
! newBalance = balance*(l+rate)

T balance = newBalance

balance

rate

newBalance

Figure 6. 7: Assignment of balance

At this point, execution of addinterest has completed and control returns
to test. The local variables (including parameters) in addlnterest go away,
but amount and rate in the test function still refer to the initial values of 1000
and 0.05, respectively. Of course, the program prints amount as 1000.

To summarize the situation, the formal parameters of a function only receive
the values of the actual parameters. The function does not have access to the
variable that holds the actual parameter; therefore, assigning a new value to a
formal parameter has no effect on the variable containing the actual parameter.
In programming language parlance, Python passes all parameters by value.

Some programming languages (e.g., C++ and Ada), do allow variables
themselves to be sent as parameters to a function. Such a mechanism is called
passing parameters by reference. When a variable is passed by reference, as­
signing a new value to the formal parameter actually changes the value of the
parameter variable in the calling program.

195

Since Python does not allow passing parameters by reference, an obvious al­
ternative is to change our addlnterest function so that it returns the newBalance.

196 Chapter 6. Defining Functions

This value can then be used to update the amount in the test function. Here's a
working version (addinterest2. py):

def add!nterest(balance, rate):

newBalance = balance * (1+rate)

return newBalance

def test():

amount - 1000
rate = 0. 05
amount = add!nterest(amount, rate)

print(amount)

You should easily be able to trace through the execution of this program to see
how we get this output:

>>>test()

1050

Now suppose instead of looking at a single account, we are writing a pro­
gram that deals with many bank accounts. We could store the account balances
in a Python list. It would be nice to have an add!nterest function that adds the
accrued interest to all of the balances in the list. If balances is a list of account
balances, we can update the first amount in the list (the one at index 0) with a
line of code like this:

balances [O] = balances [O] * (1 + rate)

Remember, this works because lists are mutable. This line of code essentially
says, "multiply the value in the Oth position of the list by (1 + rate) and store
the result back into the Oth position of the list. " Of course, a very similar line of
code would work to update the balance of the next location in the list; we just
replace the Os with 1s:

balances [!] = balances [!] * (1 + rate)

A more general way of updating all the balances in a list is to use a loop that
goes through positions 0, 1, ... , length - 1. Consider addinterest3. py:

def add!nterest(balances, rate):

for i in range(len(balances)):

balances [i] = balances [i] * (1+rate)

6.6. Functions that Modify Parameters

def test():

amounts = [1000, 2200, 800, 360]
rate = 0. 05
addlnterest(amounts, rate)

print(amounts)

Take a moment to study this program. The test function starts by setting
amounts to be a list of four values. Then the addlnterest function is called
sending amounts as the first parameter. After the function call, the value of
amounts is printed out. What do you expect to see? Let's run the program and
see what happens:

>>> test()

[1050. 0, 2310. 0, 840. 0, 378. 0]

Isn't that interesting? In this example, the function seems to change the value
of the amounts variable. But I just told you that Python passes parameters by
value, so the variable itself (amounts) can't be changed by the function. So
what's going on here?

The first two lines of test create the variables amounts and rates, and then
control transfers to the addlnterest function. The situation at this point is
depicted in Figure 6.8.

def test()z

1 amounts = [1000,2200,800,360]
' rate • 0.05

addinterest(amounts,rate)

print amounts

rat• l L...-�=----�•� (o.os]
amounts I •

(1000] (2200] EJ (360]

def addinterest(balances, rate):

for i in range(len(balaDCes)):

balaDCes[i] • balances[i] * (1+rate)

rate

balances

Figure 6.8: Transfer of list parameter to addinterest

197

198 Chapter 6. Defining Functions

Notice that the value of the variable amounts is now a list object that itself
contains four int values. It is this list object that gets passed to addinterest and
is therefore also the value of balances.

Next, addinterest executes. The loop goes through each index in the range
0, 1, . . . , length - 1 and updates that item in balances. The result is shown in
Figure 6.9.

de£ test():
1 amounts • [1000,2200,800,360]
T rate = 0.05

addZnterest(amounts,rate)
print amounts

rate I (o.os]

de£ addZnterest(balances, rate):
1 for i in range(len(balances)):
l balances[i] • balances[i] * (l+rate)

rate

balances

amounts [, , ,]

(1oso] (2310] EJ EJ
(1ooo) (22oo) EJ EJ

Figure 6.9: List modified in addinterest

You'll notice in the diagram that I left the old values (1000, 2200, 800, 360)
just hanging around. I did this to emphasize that the numbers in the value boxes
have not changed. Instead, what has happened is that new values were created,
and the assignments into the list caused it to refer to the new values. The old
values will actually get cleaned up when Python does garbage collection.

It should be clear now why the list version of the addinterest program
produces the answer that it does. When addinterest terminates, the list stored
in amounts now contains the new balances, and that is what gets printed. The
important point here is that the variable amounts was never changed. It still
refers to the same list that it did before the call to addinterest. What has
happened is that the state of that list has changed, and this change is visible
back in the calling program.

Now you really know everything there is to know about how Python passes
parameters to functions. Parameters are always passed by value. However, if

6.7. Functions and Program Structure

the actual parameter is a variable whose value is a mutable object (like a list
or graphics object), then changes to the state of the object will be visible to the
calling program. This situation is another example of the aliasing issue discussed
in Chapter 4.

16.71 Functions and Program Structure

So far, we have been discussing functions as a mechanism for reducing code du­
plication, thus shortening and simplifying our programs. Surprisingly, functions
are often used even when doing so actually makes a program longer. A second
reason for using functions is to make programs more modular.

As the algorithms that you design get more complex, it gets more and more
difficult to make sense of programs. Humans are pretty good at keeping track
of eight to ten things at a time. When presented with an algorithm that is
hundreds of lines long, even the best programmers will throw up their hands in
bewilderment.

One way to deal with this complexity is to break an algorithm into smaller
subprograms, each of which makes sense on its own. I'll have a lot more to say
about this later when we discuss program design in Chapter 9. For now, we'll
just take a look at an example. Let's return to the future value problem one
more time. Here is the main program as we left it:

def main():

Introduction

199

print("This program plots the growth of a 10-year investment. ")

Get principal and interest rate

principal = float(input("Enter the initial principal: "))

apr = float(input("Enter the annualized interest rate: "))

Create a graphics window with labels on left edge

win = GraphWin("Investment Growth Chart", 320, 240)

win. setBackground("white")

win. setCoords(-1. 75, -200, 11. 5, 10400)

Text(Point(-1, 0), ' O. OK'). draw(win)

Text(Point(-1, 2500), ' 2. 5K'). draw(win)

Text(Point(-1, 5000), ' 5. 0K'). draw(win)

Text(Point(-1, 7500), ' 7. 5k'). draw(win)

200 Chapter 6. Defining Functions

Text(Point(-1, 10000), '10. 0K'). draw(win)

Draw bar for initial principal

drawBar(win, 0, principal)

Draw a bar for each subsequent year

for year in range(!, 11):

principal = principal * (1 + apr)

drawBar(win, year, principal)

input("Press <Enter> to quit. ")

win. close()

main()

Although we have already shortened this algorithm through the use of the
drawBar function, it is still long enough to make reading through it awkward.
The comments help to explain things, but-not to put too fine a point on it­
this function is just too long. One way to make the program more readable is
to move some of the details into a separate function. For example, there are
eight lines in the middle that simply create the window where the chart will be
drawn. We could put these steps into a value-returning function:

def createLabeledWindow():

Returns a GraphWin with title and labels drawn

window = GraphWin("Investment Growth Chart", 320, 240)

window. setBackground("white")

window. setCoords(-1. 75, -200, 11. 5, 10400)

Text(Point(-1, 0), ' O. OK'). draw(window)

Text(Point(-1, 2500), ' 2. 5K'). draw(window)

Text(Point(-1, 5000), ' 5. 0K'). draw(window)

Text(Point(-1, 7500), ' 7. 5k'). draw(window)

Text(Point(-1, 10000), '10. 0K'). draw(window)

return window

As its name implies, this function takes care of all the nitty-gritty details of
drawing the initial window. It is a self-contained entity that performs this one
well-defined task.

Using our new function, the main algorithm seems much simpler:

6.7. Functions and Program Structure 201

def main():

print("This program plots the growth of a 10-year investment.")

principal = input("Enter the initial principal: ")

apr - input("Enter the annualized interest rate: ")

win - createLabeledWindow()

drawBar(win, 0, principal)

for year in range(!, 11):

principal = principal * (1 + apr)

drawBar(win, year, principal)

input("Press <Enter> to quit.")

win. close()

Notice that I have removed the comments; the intent of the algorithm is now
clear. With suitably named functions, the code has become nearly self-documenting.

Here is the final version of our future value program:

futval_graph4.py

from graphics import *

def createLabeledWindow():

window = GraphWin("Investment Growth Chart", 320, 240)

window.setBackground("white")

window.setCoords(-1.75, -200, 11.5, 10400)

Text(Point(-1, 0), ' O.OK').draw(window)

Text(Point(-1, 2500), ' 2.5K').draw(window)

Text(Point(-1, 5000), ' 5.0K').draw(window)

Text(Point(-1, 7500), ' 7.5k').draw(window)

Text(Point(-1, 10000), '10.0K').draw(window)

return window

def drawBar(window, year, height):

bar = Rectangle(Point(year, 0), Point(year+1, height))

bar.setFill("green")

bar.setWidth(2)

bar.draw(window)

202 Chapter 6. Defining Functions

def main():

print("This program plots the growth of a 10 year investment.")

principal = float(input("Enter the initial principal: "))

apr - float(input("Enter the annualized interest rate: "))

win - createLabeledWindow()

drawBar(win, 0, principal)

for year in range(1, 11):

principal = principal * (1 + apr)

drawBar(win, year, principal)

input("Press <Enter> to quit.")

win. close()

main()

Although this version is longer than the previous version, experienced program­
mers would find it much easier to understand. As you get used to reading and
writing functions, you too will learn to appreciate the elegance of more modular
code.

16.81 Chapter Summary

• A function is a kind of subprogram. Programmers use functions to reduce
code duplication and to help structure or modularize programs. Once a
function is defined, it may be called multiple times from many different
places in a program. Parameters allow functions to have changeable parts.
The parameters appearing in the function definition are called formal pa­
rameters, and the expressions appearing in a function call are known as
actual parameters.

• A call to a function initiates a four-step process:

1 . The calling program is suspended.

2. The values of actual parameters are assigned to the formal parame­
ters.

3. The body of the function is executed.

6.9. Exercises

4. Control returns immediately following the function call in the calling
program. The value returned by the function is used as the expression
result.

• The scope of a variable is the area of the program where it may be refer­
enced. Formal parameters and other variables inside function definitions
are local to the function. Local variables are distinct from variables of the
same name that may be used elsewhere in the program.

• Functions can communicate information back to the caller through return
values. In Python, functions may return multiple values. Value-returning
functions should generally be called from inside an expression. Functions
that don't explicitly return a value return the special object None.

• Python passes parameters by value. If the value being passed is a mutable
object, then changes made to the object may be visible to the caller.

16.91 Exercises

Review Questions

True/False
1. Programmers rarely define their own functions.

2. A function may only be called at one place in a program.

3. Information can be passed into a function through parameters.

4. Every Python function returns some value.

5. In Python, some parameters are passed by reference.

6. In Python, a function can return only one value.

7. Python functions can never modify a parameter.

8. One reason to use functions is to reduce code duplication.

9. Variables defined in a function are local to that function.

10. It's a bad idea to define new functions if it makes a program longer.

203

204 Chapter 6. Defining Functions

Multiple Choice
1. The part of a program that uses a function is called the

a) user b) caller c) callee d) statement

2. A Python function definition begins with
a) def b) define c) function d) defun

3. A function can send output back to the program with a(n)
a) return b) print c) assignment d) SASE

4. Formal and actual parameters are matched up by
a) name b) position c) ID d) interests

5. Which of the following is not a step in the function-calling process?
a) The calling program suspends.
b) The formal parameters are assigned the value of the actual parameters.
c) The body of the function executes.
d) Control returns to the point just before the function was called.

6. In Python, actual parameters are passed to functions
a) by value b) by reference c) at random d) by networking

7. Which of the following is not a reason to use functions?
a) to reduce code duplication
b) to make a program more modular
c) to make a program more self-documenting
d) to demonstrate intellectual superiority

8. If a function returns a value, it should generally be called from
a) an expression b) a different program
c) main d) a cell phone

9. A function with no return statement returns
a) nothing b) its parameters c) its variables d) None

10. A function can modify the value of an actual parameter only if it's
a) mutable b) a list c) passed by reference d) a variable

Discussion
1. In your own words, describe the two motivations for defining functions in

your programs.

6.9. Exercises

2. We have been thinking about computer programs as sequences of instruc­
tions where the computer methodically executes one instruction and then
moves on to the next one. Do programs that contain functions fit this
model? Explain your answer.

3. Parameters are an important concept in defining functions.

a) What is the purpose of parameters?

b) What is the difference between a formal parameter and an actual
parameter?

c) In what ways are parameters similar to and different from ordinary
variables?

4. Functions can be thought of as miniature (sub)programs inside other pro­
grams. Like any other program, we can think of functions as having input
and output to communicate with the main program.

a) How does a program provide "input" to one of its functions?

b) How does a function provide "output" to the program?

5. Consider this very simple function:

def cube(x):

answer = x * x * x

return answer

a) What does this function do?

b) Show how a program could use this function to print the value of y3,
assuming y is a variable.

c) Here is a fragment of a program that uses this function:

answer = 4
result = cube(3)

print(answer, result)

The output from this fragment is 4 27. Explain why the output is not
27 27, even though cube seems to change the value of answer to 27.

205

206 Chapter 6. Defining Functions

Programming Exercises
1. Write a program to print the lyrics of the song "Old MacDonald." Your

program should print the lyrics for five different animals, similar to the
example verse below.

Old MacDonald had a farm, Ee-igh, Ee-igh, Oh!
And on that farm he had a cow, Ee-igh, Ee-igh, Oh!
With a moo, moo here and a moo, moo there.
Here a moo, there a moo, everywhere a moo, moo.
Old MacDonald had a farm, Ee-igh, Ee-igh, Oh!

2. Write a program to print the lyrics for ten verses of "The Ants Go March­
ing." A couple of sample verses are given below. You may choose your own
activity for the "little one" in each verse, but be sure to choose something
that makes the rhyme work (or almost work).

The ants go marching one by one, hurrah! hurrah!
The ants go marching one by one, hurrah! hurrah!
The ants go marching one by one,
The little one stops to suck his thumb,
And they all go marching down ...
In the ground ...
To get out
Of the rain.
Boom! Boom! Boom!

The ants go marching two by two, hurrah! hurrah!
The ants go marching two by two, hurrah! hurrah!
The ants go marching two by two,
The little one stops to tie his shoe,
And they all go marching down ...
In the ground ...
To get out ...
Of the rain.
Boom! Boom! Boom!

3. Write definitions for these functions:

sphereArea(radius) Returns the surface area of a sphere having the
given radius.

6.9. Exercises

sphere Volume (radius) Returns the volume of a sphere having the given
radius.

Use your functions to solve Programming Exercise 1 from Chapter 3.

4. Write definitions for the following two functions:

sumN (n) returns the sum of the first n natural numbers.

sumNCubes (n) returns the sum of the cubes of the first n natural numbers.

Then use these functions in a program that prompts a user for an n and
prints out the sum of the first n natural numbers and the sum of the cubes
of the first n natural numbers.

5. Redo Programming Exercise 2 from Chapter 3. Use two functions-one to
compute the area of a pizza, and one to compute cost per square inch.

6. Write a function that computes the area of a triangle given the length of its
three sides as parameters (see Programming Exercise 9 from Chapter 3) .
Use your function to augment triangle2 . py from this chapter so that it
also displays the area of the triangle.

7. Write a function to compute the nth Fibonacci number. Use your function
to solve Programming Exercise 16 from Chapter 3.

8. Solve Programming Exercise 17 from Chapter 3 using a function
nextGuess (guess, x) that returns the next guess.

9. Do Programming Exercise 3 from Chapter 5 using a function grade (score)

that returns the letter grade for a score.

207

10. Do Programming Exercise 4 from Chapter 5 using a function acronym(phrase)

that returns an acronym for a phrase supplied as a string.

1 1 . Write and test a function to meet this specification.

squareEach (nums) nums is a list of numbers. Modifies the list by squaring
each entry.

12. Write and test a function to meet this specification.

sumList (nums) nums is a list of numbers. Returns the sum of the numbers
in the list.

208 Chapter 6. Defining Functions

13. Write and test a function to meet this specification.

toNumbers (strList) strList is a list of strings, each of which represents
a number. Modifies each entry in the list by converting it to a number.

14. Use the functions from the previous three problems to implement a pro­
gram that computes the sum of the squares of numbers read from a file.
Your program should prompt for a file name and print out the sum of the
squares of the values in the file. Hint: Use readlines ()

15. Write and test a function to meet this specification.

drawFace (center, size, win) center is a Point, size is an int, and
win is a GraphWin. Draws a simple face of the given size in win.

Your function can draw a simple smiley (or grim) face. Demonstrate the
function by writing a program that draws several faces of varying size in a
single window.

16. Use your drawFace function from the previous exercise to write a photo
anonymizer. This program allows a user to load an image file (such as a
PPM or GIF) and to draw cartoon faces over the top of existing faces in the
photo. The user first inputs the name of the file containing the image. The
image is displayed and the user is asked how many faces are to be blocked.
The program then enters a loop for the user to click on two points for each
face: the center and somewhere on the edge of the face (to determine the
size of the face) . The program should then draw a face in that location
using the drawFace function.

Hints: Section 4.8.4 describes the image-manipulation methods in the
graphics library. Display the image centered in a GraphWin that is the same
width and height as the image, and draw the graphics into this window.
You can use a screen capture utility to save the resulting images.

17. Write a function to meet this specification.

move To (shape, newCenter) shape is a graphics object that supports the
getCenter method and newCenter is a Point. Moves shape so that
newCenter is its center.

Use your function to write a program that draws a circle and then allows
the user to click the window 10 times. Each time the user clicks, the circle
is moved where the user clicked.

Chapter 7

Objectives

Decision

Structures

• To understand the simple decision programming pattern and its imple­
mentation using a Python if statement.

• To understand the two-way decision programming pattern and its imple­
mentation using a Python if- el se statement.

• To understand the multi-way decision programming pattern and its imple­
mentation using a Python if- el if- el se statement.

• To understand the idea of exception handling and be able to write simple
exception-handling code that catches standard Python run-time errors.

• To understand the concept of Boolean expressions and the b ool data type.

• To be able to read, write, and implement algorithms that employ decision
structures, including those that employ sequences of decisions and nested
decision structures.

17.11 Simple Decisions

So far, we have mostly viewed computer programs as sequences of instructions
that are followed one after the other. Sequencing is a fundamental concept
of programming, but alone it is not sufficient to solve every problem. Often
it is necessary to alter the sequential flow of a program to suit the needs of

209

210 Chapter 7. Decision Structures

a particular situation. This is done with special statements known as control

structures. In this chapter, we'll take a look at decision structures, which are
statements that allow a program to execute different sequences of instructions
for different cases, effectively allowing the program to "choose" an appropriate
course of action.

11.1.11 Example: Temperature Warnings

Let's start by getting the computer to make a simple decision. For an easy exam­
ple, we'll return to the Celsius to Fahrenheit temperature conversion program
from Chapter 2. Remember, this was written by Susan Computewell to help her
figure out how to dress each morning in Europe. Here is the program as we left
it:

conv ert . py
A program to conv ert C el sius temps to Fahrenheit
by : Susan C omputew ell

d ef ma in() :
cel sius = fl oat (input ("What is the C el sius temperature? "))
fahrenheit = 9/5 * cel sius + 32
print ("The temperature is", fahrenheit, "d egrees fahrenheit .")

ma in ()

This is a fine program as far as it goes, but we want to enhance it. Susan
Computewell is not a morning person, and even though she has a program
to convert the temperatures, sometimes she does not pay very close attention
to the results. Our enhancement to the program will ensure that when the
temperatures are extreme, the program prints out a suitable warning so that
Susan takes notice.

The first step is to fully specify the enhancement. An extreme temperature
is either quite hot or quite cold. Let's say that any temperature over 90 degrees
Fahrenheit deserves a heat warning, and a temperature under 30 degrees war­
rants a cold warning. With this specification in mind, we can design an extended
algorithm:

Input the temperature in d egrees C el sius (call it cel sius)
Cal culate fa hrenheit a s 9/5 cel sius + 32
Output fahrenheit

7.1. Simple Decisions

if fahrenheit > 9 0
print a heat wa rning

if fahrenheit < 30
print a cold wa rning

This new design has two simple decisions at the end. The indentation indi­
cates that a step should be performed only if the condition listed in the previous
line is met. The idea here is that the decision introduces an alternative flow of
control through the program. The exact set of steps taken by the algorithm will
depend on the value of fa hrenheit.

Figure 7.1 is a flowchart showing the possible paths that can be taken through
the algorithm. The diamond boxes show conditional decisions. If the condition
is false, control passes to the next statement in the sequence (the one below).
If the condition holds, however, control transfers to the instructions in the box
to the right. Once these instructions are done, control then passes to the next
statement.

Input Celsius Temperature
Farenheit = 9/5 * celsius + 32

Print Fahrenheit

no

yes

Print a Heat Warning

yes

Print a Cold Warning

Figure 7.1: Flowchart of temperature conversion program with warnings

Here is how the new design translates into Python code:

211

212 Chapter 7. Decision Structures

conv ert2 . py
A program to conv ert C el sius temps to Fahrenheit .
This v ersion issues heat and cold warnings .

d ef ma in():
cel sius = fl oat (input ("What is the C el sius temperature? "))
fahrenheit = 9/5 * cel sius + 32
print ("The temperature is", fa hrenheit, "d egrees Fa hrenheit .")

P rint warnings for extreme temps
if fahrenheit > 9 0:

print ("It' s really hot out there . B e careful!")
if fahrenheit < 30:

print ("Brrrrr . B e sure to d ress warmly!")

ma in ()

You can see that the Python if statement is used to implement the decision.
The form of the if is very similar to the pseudocode in the algorithm.

if < cond ition>:
<b ody >

The b ody is just a sequence of one or more statements indented under the if
heading. In conv ert2 . py there are two if statements, both of which have a
single statement in the body.

The semantics of the if should be clear from the example above. First, the
condition in the heading is evaluated. If the condition is true, the sequence of
statements in the body is executed, and then control passes to the next statement
in the program. If the condition is false, the statements in the body are skipped.
Figure 7.2 shows the semantics of the if as a flowchart. Notice that the body
of the if either executes or not depending on the condition. In either case,
control then passes to the next statement after the if. This is a one-way or
simple decision.

11.1.21 Forming Simple Conditions

One point that has not yet been discussed is exactly what a condition looks like.
For the time being, our programs will use simple conditions that compare the
values of two expressions: < expr> < rel op> < expr>. Here < rel op> is short for

7.1. Simple Decisions

yes

no
<Statement>

<Statement>

<Statement>

Figure 7.2: Control flow of simple if statement

relational operator. That's just a fancy name for the mathematical concepts like
"less than" or "equal to." There are six relational operators in Python, shown in
the following table:

I Python I mathematics I meaning

<

<=

--
--

>=

>

,_
. -

<

< -

-
-

> -

>

less than
less than or equal to
equal to
greater than or equal to
greater than
not equal to

Notice especially the use of == for equality. Since Python uses the = sign to
indicate an assignment statement, a different symbol is required for the concept

213

214 Chapter 7. Decision Structures

of equality. A common mistake in Python programs is using = in conditions,
where a == is required.

Conditions may compare either numbers or strings. When comparing strings,
the ordering is lexicographic. Basically, this means that strings are put in alpha­
betic order according to the underlying Unicode values. So all uppercase Latin
letters come before lowercase equivalents (e.g., "Bbbb" comes before "aaaa,"
since "B" precedes "a").

I should mention that conditions are actually a type of expression, called a
Boolean expression, after George Boole, a 19th century English mathematician.
When a Boolean expression is evaluated, it produces a value of either true (the
condition holds) or false (it does not hold). Some languages such as C++ and
older versions of Python just use the ints 1 and 0 to represent these values.
Other languages like Java and modern Python have a dedicated data type for
Boolean expressions.

In Python, Boolean expressions are of type bool and the Boolean values
true and false are represented by the literals True and False. Here are a few
interactive examples:

>>> 3 < 4
True

>>> 3 * 4 < 3 + 4
Fal se
>>> "hello" == "hello"

True

>>> "hello" < "hello"

Fal se
>>> "Hello" < "hello"

True

17.1.31 Example: Conditional Program Execution

Back in Chapter 1, I mentioned that there are several different ways of running
Python programs. Some Python module files are designed to be run directly.
These are usually referred to as "programs" or "scripts." Other Python modules
are designed primarily to be imported and used by other programs; these are
often called "libraries." Sometimes we want to create a sort of hybrid module
that can be used both as a stand -alone program and as a library that can be
imported by other programs.

7.1. Simple Decisions

So far, most of our programs have had a line at the bottom to invoke the
ma in function.

ma in ()

As you know, this is what actually starts a program running. These programs
are suitable for running directly. In a windowing environment, you might run
a file by (double-) clicking its icon. Or you might type a command like python
<my fil e> . py .

Since Python evaluates the lines of a module during the import process, our
current programs also run when they are imported into either an interactive
Python session or into another Python program. Generally, it is nicer not to
have modules run as they are imported. When testing a program interactively,
the usual approach is to first import the module and then call its ma in (or some
other function) each time we want to run it.

In a program designed to be either imported (without running) or run di­
rectly, the call to ma in at the bottom must be made conditional. A simple deci­
sion should do the trick:

if < cond ition>:
ma in()

We just need to figure out a suitable condition.

Whenever a module is imported, Python creates a special variable, _..name __ ,
inside that module and assigns it a string representing the module's name. Here
is an example interaction showing what happens with the math library:

>>> import math
>>> math . _ _ nam e
'math'

You can see that, when imported, the _..nam e __ variable inside the math module
is assigned the string 'math' .

However, when Python code is being run directly (not imported), Python
sets the value of _..nam e __ to be ' _ _ma in __ ' . To see this in action, you just need
to start a Python shell and look at the value.

>>> __ nam e

, __ ma in __ ,

215

216 Chapter 7. Decision Structures

So if a module is imported, the code inside that module will see a variable
called _ _nam e __ whose value is the name of the module. When a file is run
directly, the code will see that _ _nam e __ has the value ' _ _ma in __ ' . A module can
determine how it is being used by inspecting this variable.

Putting the pieces together, we can change the final lines of our programs to
look like this:

if __ nam e
ma in()

-- ' __ ma in __ ':

This guarantees that ma in will automatically run when the program is invoked
directly, but it will not run if the module is imported. You will see a line of code
similar to this at the bottom of virtually every Python program.

11.21 Two-Way Decisions

Now that we have a way to selectively execute certain statements in a program
using decisions, it's time to go back and spruce up the quadratic equation solver
from Chapter 3. Here is the program as we left it:

quad ratic . py
A program that computes the real roots of a quad ratic equation .
N ote: This program cra shes if the equation ha s no real roots .

import math

d ef ma in():
print ("This program find s the real solutions to a quad ratic\n")

a = fl oat (input ("Enter coefficient a: "))
b - fl oat (input ("Enter coefficient b: "))
c = fl oat (input ("Enter coefficient c: "))

d iscR oot = math . sqrt (b * b - 4 * a * c)
root1 - (-b + d iscR oot) I (2 * a)
root2 = (-b - d iscR oot) I (2 * a)

print ("\nThe solutions a re:", root1, root2)

ma in ()

7. 2. Two-Way Decisions

As noted in the comments, this program crashes when it is given coefficients
of a quadratic equation that has no real roots. The problem with this code is
that when b2 - 4ac is less than 0, the program attempts to take the square root
of a negative number. Since negative numbers do not have real roots, the math
library reports an error. Here's an example:

>>> ma in()
This program find s the real solutions to a quad ratic

Enter coefficient a : 1
Enter coefficient b : 2
Enter coefficient c : 3
Tra ceba ck (most recent call la st) :

F il e "quad ratic . py", l ine 23, in <modul e>
ma in()

F il e "quad ratic . py", l ine 16, in ma in
d iscR oot = math . sqrt (b * b - 4 * a * c)

ValueError : math d oma in error

We can use a decision to check for this situation and make sure that the
program can't crash. Here's a first attempt:

quad ratic2 . py
import math

d ef ma in() :

217

print ("This program find s the real solutions to a quad ratic\n")
a = fl oat (input ("Enter coefficient a : "))
b - fl oat (input ("Enter coefficient b : "))
c = fl oat (input ("Enter coefficient c : "))

d iscrim = b * b - 4 * a * c
if d iscrim >= 0:

ma in ()

d iscR oot = math . sq rt (d iscrim)
root1 = (-b + d iscR oot) I (2 * a)
root2 = (-b - d iscR oot) I (2 * a)
print ("\nThe solutions a re :", root1, root2)

218 Chapter 7. Decision Structures

This version first computes the value of the discriminant (b2 - 4ac) and then
checks to make sure it is not negative. Only then does the program proceed
to take the square root and calculate the solutions. This program will never
attempt to call math . sqrt when d iscrim is negative.

Unfortunately, this updated version is not really a complete solution. Do
you see what happens when the equation has no real roots? According to the
semantics for a simple if, when b*b - 4*a* c is less than zero, the program will
simply skip the calculations and go to the next statement. Since there is no next
statement, the program just quits. Here's an example interactive session:

>>> ma in()
This program find s the real solutions to a quad ratic

Enter coefficient a : 1
Enter coefficient b : 2
Enter coefficient c : 3
>>>

This is almost worse than the previous version, because it does not give
users any indication of what went wrong; it just leaves them hanging. A better
program would print a message telling users that their particular equation has
no real solutions. We could accomplish this by adding another simple decision
at the end of the program.

if d iscrim < 0:
print ("The equation ha s no real roots!")

This will certainly solve our problem, but this solution just doesn't feel right.
We have programmed a sequence of two decisions, but the two outcomes are
mutually exclusive. If d iscrim >= 0 is true then d iscrim < 0 must be false
and vice versa. We have two conditions in the program, but there is really only
one decision to make. Based on the value of d iscrim the program should either

print that there are no real roots or it should calculate and display the roots.
This is an example of a two-way decision. Figure 7.3 illustrates the situation.

In Python, a two-way decision can be implemented by attaching an el se
clause onto an if clause. The result is called an if- el se statement.

if < cond ition> :
< statements>

el se :
< statements>

7. 2. Two-Way Decisions

no yes

Calculate roots Print .. no roots"

Figure 7.3: Quadratic solver as a two-way decision

When the Python interpreter encounters this structure, it will first evaluate the
condition. If the condition is true, the statements under the if are executed.
If the condition is false, the statements under the el se are executed. In either
case, control then passes to the statement following the if- el se.

Using a two-way decision in the quadratic solver yields a more elegant solu­
tion:

quad ratic3 . py
import math

d ef ma in() :

219

print ("This program find s the real solutions to a quad ratic\n")

a = fl oat (input ("Enter coefficient a : "))
b - fl oat (input ("Enter coefficient b : "))
c = fl oat (input ("Enter coefficient c : "))

d iscrim = b * b - 4 * a * c
if d iscrim < 0 :

print ("\nThe equation ha s no real roots!")
el se :

d iscR oot = math . sq rt (b * b - 4 * a * c)
root1 = (-b + d iscR oot) I (2 * a)

220 Chapter 7. Decision Structures

root2 = (-b - d iscR oot) I (2 * a)
print ("\nThe solutions a re :", root!, root2)

ma in ()

This program fills the bill nicely. Here is a sample session that runs the new
program twice:

>>> ma in()
This program find s the real solutions to a quad ratic

Enter coefficient a : 1
Enter coefficient b : 2
Enter coefficient c : 3

The equation ha s no real roots!
>>> ma in()
This program find s the real solutions to a quad ratic

Enter coefficient a : 2
Enter coefficient b : 4
Enter coefficient c : 1

The solutions a re : -0 .29289 32188 134524 - 1 .7 07 10678 1 1865475
>>>

17.31 Multi-Way Decisions

The newest version of the quadratic solver is certainly a big improvement, but it
still has some quirks. Here is another example run:

>>> ma in()
This program find s the real solutions to a quad ratic

Enter coefficient a : 1
Enter coefficient b : 2
Enter coefficient c : 1

The solutions a re : - 1 . 0 - 1 . 0

7.3. Multi-Way Decisions

This is technically correct; the given coefficients produce an equation that has
a double root at -1. However, the output might be confusing to some users. It
looks like the program has mistakenly printed the same number twice. Perhaps
the program should be a bit more informative to avoid confusion.

The double-root situation occurs when d iscrim is exactly 0. In this case,
d iscR oot is also 0, and both roots have the value 2!. If we want to catch this
special case, our program actually needs a three-way decision. Here's a quick
sketch of the design:

• • •

Check the value of d iscrim
when < 0 : handl e the ca se of no roots
when - 0 : handl e the ca se of a d oubl e root
when > 0 : handl e the ca se of tw o d istinct roots .

One way to code this algorithm is to use two if- el se statements. The body
of an if or el se clause can contain any legal Python statements, including other
if or if - el se statements. Putting one compound statement inside another is
called nesting. Here's a fragment of code that uses nesting to achieve a three­
way decision:

if d iscrim < 0 :
print ("Equation ha s no real roots")

el se :
if d iscrim == 0 :

root = -b I (2 * a)
print ("There is a d oubl e root at", root)

el se :
D o stuff for tw o roots

If you trace through this code carefully, you will see that there are exactly
three possible paths. The sequencing is determined by the value of d iscrim. A
flowchart of this solution is shown in Figure 7.4. You can see that the top-level
structure is just an if- el se. (Treat the dashed box as one big statement.) The
dashed box contains the second if- el se nested comfortably inside the el se
part of the top-level decision.

Once again, we have a working solution, but the implementation doesn't
feel quite right. We have finessed a three-way decision by using two two-way
decisions. The resulting code does not reflect the true three-fold decision of the
original problem. Imagine if we needed to make a five-way decision like this.

221

222 Chapter 7. Decision Structures

yes no

� -----------------------------------
Print "no roots''

yes no

Do Double Root Do Unique Roots

Figure 7.4: Three-way decision for quadratic solver using nested if- el se

The if- el se structures would nest four levels deep, and the Python code would
march off the right-hand edge of the page.

There is another way to write multi-way decisions in Python that preserves
the semantics of the nested structures but gives it a more appealing look. The
idea is to combine an el se followed immediately by an if into a single clause
called an el if (pronounced "ell-if").

if < cond ition! > :
< ca se1 statements>

el if < cond ition2> :
< ca se2 statements>

el if < cond ition3> :
< ca se3 statements>

• • •

el se :
<d efault statements>

This form is used to set off any number of mutually exclusive code blocks.
Python will evaluate each condition in turn looking for the first one that is true.
If a true condition is found, the statements indented under that condition are ex­
ecuted, and control passes to the next statement after the entire if- el if- el se.

7. 4. Exception Handling

If none of the conditions are true, the statements under the el se are performed.
The el se clause is optional; if omitted, it is possible that no indented statement
block will be executed.

Using an if- el if- el se to show the three-way decision in our quadratic
solver yields a nicely finished program:

quad ratic4 . py
import math

d ef ma in() :

223

print ("This program find s the real solutions to a quad ratic\n")

a = fl oat (input ("Enter coefficient a : "))
b - fl oat (input ("Enter coefficient b : "))
c = fl oat (input ("Enter coefficient c : "))

d iscrim = b * b - 4 * a * c
if d iscrim < 0 :

print ("\nThe equation ha s no real roots!")
el if d iscrim == 0 :

root = -b I (2 * a)
print ("\nThere is a d oubl e root at", root)

el se :

ma in ()

d iscR oot = math . sq rt (b * b - 4 * a * c)
root! = (-b + d iscR oot) I (2 * a)
root2 = (-b - d iscR oot) I (2 * a)
print ("\nThe solutions a re :", root!, root2)

17.41 Exception Handling

Our quadratic program uses decision structures to avoid taking the square root
of a negative number and generating an error at runtime. This is a common
pattern in many programs: using decisions to protect against rare but possible
errors.

In the case of the quadratic solver, we checked the data before the call to
the sqrt function. Sometimes functions themselves check for possible errors
and return a special value to indicate that the operation was unsuccessful. For

224 Chapter 7. Decision Structures

example, a different square root operation might return a negative number (say,
-1) to indicate an error. Since the square root function should always return the
non-negative root, this value could be used to signal that an error has occurred.
The program would check the result of the operation with a decision:

d iscRt = otherSqrt (b*b - 4*a* c)
if d iscRt < 0 :

print ("N o real roots .")
el se :

• • •

Sometimes programs become so peppered with decisions to check for spe­
cial cases that the main algorithm for handling the run-of-the-mill cases seems
completely lost. Programming language designers have come up with mecha­
nisms for exception handling that help to solve this design problem. The idea of
an exception-handling mechanism is that the programmer can write code that
catches and deals with errors that arise when the program is running. Rather
than explicitly checking that each step in the algorithm was successful, a pro­
gram with exception handling can in essence say, "Do these steps, and if any
problem crops up, handle it this way."

We're not going to discuss all the details of the Python exception-handling
mechanism here, but I do want to give you a concrete example so you can see
how exception handling works and understand programs that use it. In Python,
exception handling is done with a special control structure that is similar to a
decision. Let's start with a specific example and then take a look at the general
approach.

Here is a version of the quadratic program that uses Python's exception
mechanism to catch potential errors in the math . sqrt function:

quad ratic5 . py
import math

d ef ma in() :
print ("This program find s the real solutions to a quad ratic\n")

try :
a = fl oat (input ("Enter coefficient a : "))
b = fl oat (input ("Enter coefficient b : "))
c = fl oat (input ("Enter coefficient c : "))
d iscR oot = math . sq rt (b * b - 4 * a * c)

7. 4. Exception Handling

root1 = (-b + d iscR oot) I (2 * a)
root2 = (-b - d iscR oot) I (2 * a)
print ("\nThe solutions a re :", root1, root2)

except ValueError :
print ("\nN o real roots")

ma in ()

Notice that this is basically the very first version of the quadratic program
with the addition of a try . . . except around the heart of the program. A try
statement has the general form:

try :
<b ody >

except <ErrorType> :
<handl er>

When Python encounters a try statement, it attempts to execute the state­
ments inside the body. If these statements execute without error, control then
passes to the next statement after the try . . . except. If an error occurs some­
where in the body, Python looks for an except clause with a matching error
type. If a suitable except is found, the handler code is executed.

The original program without the exception handling produced the following
error:

Tra ceba ck (most recent call la st) :
F il e "quad ratic . py", l ine 23, in <modul e>

ma in()
F il e "quad ratic . py", l ine 16, in ma in

d iscR oot = math . sqrt (b * b - 4 * a * c)
ValueError : math d oma in error

The last line of this error message indicates the type of error that was generated,
namely a ValueE rror. The updated version of the program provides an except
clause to catch the ValueError. Here's how it looks in action:

This program find s the real solutions to a quad ratic

Enter coefficient a : 1
Enter coefficient b : 2
Enter coefficient c : 3

N o real roots

225

226 Chapter 7. Decision Structures

Instead of crashing, the exception handler catches the error and prints a message
indicating that the equation does not have real roots.

Interestingly, our new program also catches errors caused by the user typing
invalid input values. Let's run the program again, and this time type "x" as the
first input. Here's how it looks:

This program find s the real solutions to a quad ratic

Enter coefficient a : x

N o real roots

Do you see what happened here? Python raised a ValueE rror executing fl oat ("x")
because "x" is not convertible to a float. This caused the program to exit the
try and jump to the except clause for that error. Of course, the final message
here looks a bit strange. Here's one last version of the program that checks to
see what sort of error occurred:

quad ratic6 . py
import math

d ef ma in() :
print ("This program find s the real solutions to a quad ratic\n")
try :

a = fl oat (input ("Enter coefficient a : "))
b - fl oat (input ("Enter coefficient b : "))
c - fl oat (input ("Enter coefficient c : "))
d iscR oot = math . sq rt (b * b - 4 * a * c)
root1 = (-b + d iscR oot) I (2 * a)
root2 = (-b - d iscR oot) I (2 * a)
print ("\nThe solutions a re :", root1, root2)

except ValueError a s excObj :
if str (excObj) == "math d oma in error" :

print ("N o R eal R oots")
el se :

print ("Inval id coefficient giv en")
except :

print ("\nS omething w ent w rong, sorry!")

ma in ()

7.5. Study in Design: Max of Three

The multiple excepts are similar to el ifs. If an error occurs, Python will try
each except in tum looking for one that matches the type of error. The bare
except at the bottom in this example acts like an el se and will be used as the
default if no previous except error type matches. If there is no default at the
bottom and none of the except types match the error, then the program crashes
and Python reports the error.

Notice how I handled the two different kinds ofValueE rrors . Exceptions are
actually a kind of object. If you follow the error type with an a s <variabl e> in
an except clause, Python will assign that variable the actual exception object.
In this case, I turned the exception into a string and looked at the message to see
what caused the ValueE rror. Notice that this text is exactly what Python prints
out if the error is not caught (e.g., ValueError : math d oma in error) . If the
exception is not a ValueError, this program just prints a general apology. As a
challenge, you might see whether you can find an erroneous input that produces
the apology.

You can see how the try . . . except statement allows us to write bullet-proof
programs. You can use this same technique by observing the error messages that
Python prints and designing except clauses to catch and handle them. Whether
you need to go to this much trouble depends on the type of program you are
writing. In your beginning programs, you might not worry too much about bad
input; however, professional-quality software should do whatever is feasible to
shield users from unexpected results.

17.51 Study in Design: Max of Three

Now that we have decisions that can alter the control flow of a program, our
algorithms are liberated from the monotony of step-by-step, strictly sequential
processing. This is both a blessing and a curse. The positive side is that we can
now develop more sophisticated algorithms, as we did for our quadratic solver.
The negative side is that designing these more sophisticated algorithms is much
harder. In this section, we'll step through the design of a more difficult decision
problem to illustrate some of the challenge and excitement of the design process.

Suppose we need an algorithm to find the largest of three numbers. This
algorithm could be part of a larger problem such as determining grades or com­
puting taxes, but we are not interested in the final details, just the crux of the
problem. That is, how can a computer determine which of three user inputs is
the largest? Here's a simple program outline:

227

228 Chapter 7. Decision Structures

d ef ma in() :
x1, x2, x3 = eval (input ("Pl ea se enter three values : "))

missing cod e sets maxval to the value of the largest

print ("The la rgest value is", ma xval)

Notice I'm using eval as a quick and dirty way to get three numbers; in pro­
duction code (programs for other users), of course, you should generally avoid
eval . It's fine here because we are only concerned with developing and testing
some algorithm ideas.

Now we just need to fill in the missing section. Before reading the following
analysis, you might want to try your hand at solving this problem.

17.5.11 Strategy 1: Compare Each to All

Obviously, this program presents us with a decision problem. We need a se­
quence of statements that sets the value of maxval to the largest of the three
inputs, x1, x2, and x3. At first glance, this looks like a three-way decision; we
need to execute one of the following assignments:

ma xval - x1
ma xval - x2
ma xval - x3

It would seem we just need to preface each one with the appropriate condi­
tion(s), so that it is executed only in the proper situation.

Let's consider the first possibility, that x1 is the largest. To determine that
x1 is actually the largest, we just need to check that it is at least as large as the
other two. Here is a first attempt:

if x1 >= x2 >= x3 :
ma xval = x1

Your first concern here should be whether this statement is syntactically cor­
rect. The condition x1 >= x2 >= x3 does not match the template for condi­
tions shown above. Most computer languages would not accept this as a valid
expression. It turns out that Python does allow this compound condition, and
it behaves exactly like the mathematical relations xl > x2 > x3. That is, the
condition is true when x1 is at least as large as x2 and x2 is at least as large as
x3. So, fortunately, Python has no problem with this condition.

7.5. Study in Design: Max of Three

Whenever you write a decision, you should ask yourself two crucial ques­
tions. First, when the condition is true, are you absolutely certain that executing
the body of the decision is the right action to take? In this case, the condition
clearly states that x1 is at least as large as x2 and x3, so assigning its value to
ma xval should be correct. Always pay particular attention to borderline values.
Notice that our condition includes equal as well as greater. We should convince
ourselves that this is correct. Suppose that x1, x2, and x3 are all the same; this
condition will return true. That's OK because it doesn't matter which we choose;
the first is at least as big as the others, and hence, the max.

The second question to ask is the converse of the first. Are we certain that
this condition is true in all cases where x1 is the max? Unfortunately, our con­
dition does not meet this test. Suppose the values are 5, 2, and 4. Clearly, x1 is
the largest, but our condition returns false since the relationship 5 > 2 > 4 does
not hold. We need to fix this.

We want to ensure that x1 is the largest, but we don't care about the relative
ordering of x2 and x3. What we really need is two separate tests to determine
that x1 >= x2 and that x1 >= x3. Python allows us to test multiple conditions
like this by combining them with the keyword and. We'll discuss the exact se­
mantics of and in Chapter 8. Intuitively, the following condition seems to be
what we are looking for:

229

if x1 >= x2 and x1 >= x3 :
ma xval = x1

x1 is greater than ea ch of the others

To complete the program, we just need to implement analogous tests for the
other possibilities:

if x1 >= x2 and x1 >= x3 :
ma xval = x1

el if x2 >= x1 and x2 >= x3 :
ma xval - x2

el se :
ma xval - x3

Summing up this approach, our algorithm is basically checking each possible
value against all the others to determine if it is the largest.

With just three values the result is quite simple, but how would this solution
look if we were trying to find the max of five values? Then we would need four
Boolean expressions, each consisting of four conditions anded together. The
complex expressions result from the fact that each decision is designed to stand

230 Chapter 7. Decision Structures

on its own; information from one test is ignored in the subsequent tests. To
see what I mean, look back at our simple max of three code. Suppose the first
decision discovers that x1 is greater than x2, but not greater than x3. At this
point, we know that x3 must be the max. Unfortunately, our code ignores this;
Python will go ahead and evaluate the next expression, discover it to be false,
and finally execute the el se.

17.5.21 Strategy 2: Decision Tree

One way to avoid the redundant tests of the previous algorithm is to use a
decision tree approach. Suppose we start with a simple test x1 >= x2. This
knocks either x1 or x2 out of contention to be the max. If the condition is true,
we just need to see which is larger, x1 or x3. Should the initial condition be
false, the result boils down to a choice between x2 and x3. As you can see, the
first decision ''branches" into two possibilities, each of which is another decision,
hence the name decision tree. Figure 7.5 shows the situation in a flowchart. This
flowchart translates easily into nested if- el se statements.

if x1 >= x2 :
if x1 >= x3 :

maxval - x1
el se :

ma xval - x3
el se :

if x2 >= x3 :
ma xval - x2

el se :
maxval - x3

The strength of this approach is its efficiency. No matter what the ordering of
the three values, this algorithm will make exactly two comparisons and assign
the correct value to ma xval . However, the structure of this approach is more
complicated than the first, and it suffers a similar complexity explosion should
we try this design with more than three values. As a challenge, you might see
if you can design a decision tree to find the max of four values. (You will need
if- el ses nested three levels deep leading to eight assignment statements.)

7.5. Study in Design: Max of Three

yes no

yes no yes no

max= x1 max= x3 max= x2 max= x3

Figure 7.5: Flowchart of the decision tree approach to max of three

17.5.31 Strategy 3: Sequential Processing

So far, we have designed two very different algorithms, but neither one seems
particularly elegant. Perhaps there is yet a third way. When designing an algo­
rithm, a good starting place is to ask yourself how you would solve the problem
if you were asked to do the job. For finding the max of three numbers, you
probably don't have a very good intuition about the steps you go through. You'd
just look at the numbers and know which is the largest. But what if you were
handed a book containing hundreds of numbers in no particular order? How
would you find the largest in this collection?

When confronted with the larger problem, most people develop a simple
strategy. Scan through the numbers until you find a big one, and put your finger
on it. Continue scanning; if you find a number bigger than the one your finger is
on, move your finger to the new one. When you get to the end of the list, your
finger will remain on the largest value. In a nutshell, this strategy has us look
through the list sequentially, keeping track of the largest number seen so far.

A computer doesn't have fingers, but we can use a variable to keep track
of the max so far. In fact, the easiest approach is just to use ma xval to do
this job. That way, when we get to the end, maxval automatically contains the
largest value in the list. A flowchart depicting this strategy for the max of three
problem is shown in Figure 7.6.

231

232 Chapter 7. Decision Structures

max= xl

x2 >max

max= x2

x3 >max

max= x3

Figure 7.6: Flowchart of a sequential approach to the max of three problem

Here is the corresponding Python code:

ma xval = x1
if x2 > maxval:

ma xval = x2
if x3 > ma xval:

ma xval = x3

Clearly, the sequential approach is the best of our three algorithms. The code
itself is quite simple, containing only two simple decisions, and the sequencing
is easier to understand than the nesting used in the previous algorithm. Fur­
thermore, the idea scales well to larger problems. For example, adding a fourth
item requires only one more statement:

ma xval = x1
if x2 > ma xval:

ma xval = x2
if x3 > maxval:

ma xval = x3
if x4 > ma xval:

ma xval = x4

7.5. Study in Design: Max of Three

It should not be surprising that the last solution scales to larger problems; we
invented the algorithm by explicitly considering how to solve a more complex
problem. In fact, you can see that the code is very repetitive. We can easily write
a program that allows the user to find the largest of n numbers by folding our
algorithm into a loop. Rather than having separate variables for x1, x2, x3, etc.,
we can just get the values one at a time and keep reusing a single variable x.
Each time, we compare the newest x against the current value of ma xval to see
if it is larger.

program: ma xn . py
F ind s the ma ximum of a series of numb ers

d ef ma in():
n = int (input ("H ow many numb ers a re there? "))

S et ma x to b e the first value
ma xval = fl oat (input ("Enter a numb er >> "))

N ow compare the n- 1 successiv e values
for i in range (n- 1):

x = fl oat (input ("Enter a numb er >> "))
if x > ma xval:

maxval = x

print ("The la rgest value is", ma xval)

ma in ()

This code uses a decision nested inside of a loop to get the job done. On each
iteration of the loop, ma xval contains the largest value seen so far.

233

234 Chapter 7. Decision Structures

17.5.41 Strategy 4: Use Python

Before leaving this problem, I really should mention that none of the algorithm
development we have so painstakingly pursued was necessary. Python actually
has a built-in function called max that returns the largest of its parameters. Here
is the simplest version of our program:

d ef ma in():
x1, x2, x3 = eval (input ("Pl ea se enter three values: "))
print ("The la rgest value is", ma x (x1, x2, x3))

Of course, this version didn't require any algorithm development at all, which
rather defeats the point of the exercise! Sometimes Python is just too simple for
our own good.

17.5.51 Some Lessons

The max of three problem is not particularly earth shattering, but the attempt
to solve this problem has illustrated some important ideas in algorithm and
program design.

• There is more than one way to do it. For any non-trivial computing prob­
lem, there are many ways to approach the problem. While this may seem
obvious, many beginning programmers do not really take this point to
heart. What does this mean for you? Don't rush to code up the first idea
that pops into your head. Think about your design, ask yourself if there is
a better way to approach the problem. Once you have written the code,
ask yourself again if there might be a better way. Your first task is to find
a correct algorithm. After that, strive for clarity, simplicity, efficiency, scal­
ability, and elegance. Good algorithms and programs are like poems of
logic. They are a pleasure to read and maintain.

• Be the computer. Especially for beginning programmers, one of the best
ways to formulate an algorithm is to simply ask yourself how you would
solve the problem. There are other techniques for designing good algo­
rithms (see Chapter 13); however, the straightforward approach is often
simple, clear, and efficient enough.

• Generality is good. We arrived at the best solution to the max of three
problem by considering the more general max of n numbers problem. It
is not unusual that consideration of a more general problem can lead to a

7.6. Chapter Summary

better solution for some special case. Don't be afraid to step back and think
about the overarching problem. Similarly, when designing programs, you
should always have an eye toward making your program more generally
useful. If the max of n program is just as easy to write as max of three, you
may as well write the more general program because it is more likely to
be useful in other situations. That way you get the maximum utility from
your programming effort.

• Don't reinvent the wheel. Our fourth solution was to use Python's max
function. You may think that was cheating, but this example illustrates an
important point. A lot of very smart programmers have designed countless
good algorithms and programs. If the problem you are trying to solve
seems to be one that lots of others must have encountered, you might
begin by finding out if the problem has already been solved for you. As
you are learning to program, designing from scratch is great experience.
Truly expert programmers, however, know when to borrow.

17.61 Chapter Summary

This chapter has laid out the basic control structures for making decisions. Here
are the key points.

• Decision structures are control structures that allow a program to execute
different sequences of instructions for different cases.

• Decisions are implemented in Python with if statements. Simple decisions
are implemented with a plain if . Two-way decisions generally use an
if- el se. Multi-way decisions are implemented with if- el if- el se.

• Decisions are based on the evaluation of conditions, which are simple
Boolean expressions. A Boolean expression is either true or false. Python
has a dedicated b ool data type with literals True and Fal se. Conditions
are formed using the relational operators: <, <=, ! =, ==, >, and >=.

• Some programming languages provide exception handling mechanisms
which help to make programs more ''bulletproof." Python provides a
try- except statement for exception handling.

• Algorithms that incorporate decisions can become quite complicated as
decision structures are nested. Usually a number of solutions are possible,

235

236 Chapter 7. Decision Structures

and careful thought should be given to produce a correct, efficient, and
understandable program.

17.71 Exercises

Review Questions

True/False

1. A simple decision can be implemented with an if statement.

2. In Python conditions, =1- is written as/=.

3. Strings are compared by lexicographic ordering.

4. A two-way decision is implemented using an if- el if statement.

5. The math . sqrt function cannot compute the square root of a negative
number.

6. A single try statement can catch multiple kinds of errors.

7. Multi-way decisions must be handled by nesting multiple if- el se state­
ments.

8. There is usually only one correct solution to a problem involving decision
structures.

9. The condition x <= y <= z is allowed in Python.

10. Input validation means prompting a user when input is required.

Multiple Choice

1. A statement that controls the execution of other statements is called a
a) boss structure b) super structure
c) control structure d) branch

2. The best structure for implementing a multi-way decision in Python is
a) if b) if- el se c) if- el if- el se d) try

3. An expression that evaluates to either true or false is called
a) operational b) Boolean c) simple d) compound

7. 7. Exercises

4. When a program is being run directly (not imported), the value of
•

_ _nam e __ IS

a) script b) ma in c) _ _ma in__ d) True

5. The literals for type b ool are
a) T, F b) True, Fal se c) true, fal se d) 1, 0

6. Placing a decision inside of another decision is an example of
a) cloning b) spooning c) nesting d) procrastination

7. In Python, the body of a decision is indicated by
a) indentation b) parentheses c) curly braces d) a colon

8. A structure in which one decision leads to another set of decisions, which
leads to another set of decisions, etc., is called a decision
a) network b) web c) tree d) trap

9. Taking the square root of a negative value with math . sqrt produces a(n)
a) ValueError b) imaginary number
c) program crash d) stomachache

10. A multiple choice question is most similar to
a) simple decision b) two-way decision
c) multi-way decisions d) an exception handler

Discussion

1. Explain the following patterns in your own words:

a) simple decision

b) two-way decision

c) multi-way decision

2. How is exception handling using try I except similar to and different from
handling exceptional cases using ordinary decision structures (variations
on if)?

3. The following is a (silly) decision structure:

a, b, c - eval(input('Enter three numb ers : '))

237

238 Chapter 7. Decision Structures

if a > b :
if b > c :

print("Spam Pl ea se!")
el se :

print("It' s a late pa rrot!")
el if b > c :

print("Cheese Shoppe")
if a >= c :

print("Chedda r")
el if a < b :

print ("G ouda")
el if c == b :

print("Sw iss")
el se :

print("T rees")
if a == b :

print("Chestnut")
el se :

print ("Larch")
print ("D one")

Show the output that would result from each of the following possible
inputs:

a) 3, 4, 5

b) 3, 3, 3

c) 5, 4, 3

d) 3, 5, 2

e) 5, 4, 7

f) 3, 3, 2

Programming Exercises

1. Many companies pay time-and-a-half for any hours worked above 40 in a
given week. Write a program to input the number of hours worked and
the hourly rate and calculate the total wages for the week.

7. 7. Exercises

2. A certain CS professor gives five-point quizzes that are graded on the scale
5-A, 4-B, 3-C, 2-D, 1-F, 0-F. Write a program that accepts a quiz score as an
input and uses a decision structure to calculate the corresponding grade.

3. A certain CS professor gives 100-point exams that are graded on the scale
90-100:A, 80-89:B, 70-79:C, 60-69:0, <60:F. Write a program that ac­
cepts an exam score as input and uses a decision structure to calculate the
corresponding grade.

4. A certain college classifies students according to credits earned. A student
with less than 7 credits is a Freshman. At least 7 credits are required to be
a Sophomore, 16 to be a Junior and 26 to be classified as a Senior. Write a
program that calculates class standing from the number of credits earned.

5. The body mass index (BMI) is calculated as a person's weight (in pounds)
times 720, divided by the square of the person's height (in inches). A BMI
in the range 19-25, inclusive, is considered healthy. Write a program that
calculates a person's BMI and prints a message telling whether they are
above, within, or below the healthy range.

6. The speeding ticket fine policy in Podunksville is $50 plus $5 for each mph
over the limit plus a penalty of $200 for any speed over 90 mph. Write a
program that accepts a speed limit and a clocked speed and either prints
a message indicating the speed was legal or prints the amount of the fine,
if the speed is illegal.

7. A babysitter charges $2.50 an hour until 9:00 PM when the rate drops to
$1.75 an hour (the children are in bed). Write a program that accepts a
starting time and ending time in hours and minutes and calculates the total
babysitting bill. You may assume that the starting and ending times are in
a single 24-hour period. Partial hours should be appropriately prorated.

8. A person is eligible to be a US senator if they are at least 30 years old
and have been a US citizen for at least 9 years. To be a US representative
these numbers are 25 and 7, respectively. Write a program that accepts a
person's age and years of citizenship as input and outputs their eligibility
for the Senate and House.

9. A formula for computing Easter in the years 1982-2048, inclusive, is as
follows: let a = year%19, b = year%4, c = year%7, d = (19a + 24)%30,
e = (2b + 4c + 6d + 5)%7. The date of Easter is March 22 + d + e (which

239

240 Chapter 7. Decision Structures

could be in April). Write a program that inputs a year, verifies that it is in
the proper range, and then prints out the date of Easter that year.

10. The formula for Easter in the previous problem works for every year in
the range 1900-2099 except for 1954, 1981, 2049, and 2076. For these
4 years it produces a date that is one week too late. Modify the above
program to work for the entire range 1900-2099.

11. A year is a leap year if it is divisible by 4, unless it is a century year that is
not divisible by 400. (1800 and 1900 are not leap years while 1600 and
2000 are.) Write a program that calculates whether a year is a leap year.

12. Write a program that accepts a date in the form month! day /year and out­
puts whether or not the date is valid. For example 5/24/1962 is valid, but
9/31/2000 is not. (September has only 30 days.)

13. The days of the year are often numbered from 1 through 365 (or 366).
This number can be computed in three steps using int arithmetic:

(a) dayNum = 3 1(month - 1) +day

(b) if the month is after February subtract (4(month) + 23)/ /10

(c) if it's a leap year and after February 29, add 1

Write a program that accepts a date as month/ day /year, verifies that it is a
valid date (see previous problem), and then calculates the corresponding
day number.

14. Do Programming Exercise 7 from Chapter 4, but add a decision to handle
the case where the line does not intersect the circle.

15. Do Programming Exercise 8 from Chapter 4, but add a decision to prevent
the program from dividing by zero if the line is vertical.

16. Archery Scorer. Write a program that draws an archery target (see Pro­
gramming Exercise 2 from Chapter 4) and allows the user to click five
times to represent arrows shot at the target. Using five-band scoring, a
bulls-eye (yellow) is worth 9 points and each successive ring is worth 2
fewer points down to 1 for white. The program should output a score for
each click and keep track of a running sum for the entire series.

7. 7. Exercises

17. Write a program to animate a circle bouncing around a window. The basic
idea is to start the circle somewhere in the interior of the window. Use
variables d x and dy (both initialized to 1) to control the movement of the
circle. Use a large counted loop (say 10000 iterations), and each time
through the loop move the circle using dx and dy . When the x-value of the
center of the circle gets too high (it hits the edge), change dx to -1. When
it gets too low, change dx back to 1. Use a similar approach for dy .

Note: Your animation will probably run too fast. You can slow it down
by using update from the graphics library with a rate parameters. For
example, this loop will be limited to going around at a rate of 30 times per
second:

for i in range (10000) :
• • •

241

update (30) # pause so rate is not more than 30 times a second

18. Take a favorite programming problem from a previous chapter and add
decisions and/ or exception handling as required to make it truly robust
(will not crash on any inputs). Trade your program with a friend and have
a contest to see who can ''break" the other's program.

Chapter 8

Objectives

Loop Structures

and Booleans

• To understand the concepts of definite and indefinite loops as they are
realized in the Python for and while statements.

• To understand the programming patterns interactive loop and sentinel
loop and their implementations using a Python while statement.

• To understand the programming pattern end-of-file loop and ways of im­
plementing such loops in Python.

• To be able to design and implement solutions to problems involving loop
patterns including nested loop structures.

• To understand the basic ideas of Boolean algebra and be able to analyze
and write Boolean expressions involving Boolean operators.

IB.ll For Loops: A Quick Review

In Chapter 7, we looked in detail at the Python if statement and its use in
implementing programming patterns such as one-way, two-way, and multi-way
decisions. In this chapter, we'll wrap up our tour of control structures with a
detailed look at loops and Boolean expressions.

You already know that the Python for statement provides a kind of loop. It
allows us to iterate through a sequence of values.

243

244 Chapter 8. Loop Structures and Booleans

for <var> in <sequence>:

<body>

The loop index variable var takes on each successive value in the sequence, and
the statements in the body of the loop are executed once for each value.

Suppose we want to write a program that can compute the average of a series
of numbers entered by the user. To make the program general, it should work
for any size set of numbers. You know that an average is calculated by summing
up the numbers and dividing by the count of how many numbers there are. We
don't need to keep track of all the numbers that have been entered; we just need
a running sum so that we can calculate the average at the end.

This problem description should start some bells ringing in your head. It
suggests the use of some design patterns you have seen before. We are dealing
with a series of numbers-they will be handled by some form of loop. If there
are n numbers, the loop should execute n times; we can use the counted loop
pattern. We also need a running total sum; that calls for a loop accumulator.
Putting the two ideas together, we can generate a design for this problem:

input the count of the numbers, n

initialize total to 0

loop n times

input a number, x

add x to total

output average as total I n

Hopefully, you see both the counted loop and accumulator patterns integrated
into this design. We can translate this design almost directly into a Python
implementation:

average1.py

def main():

n = int(input("How many numbers do you have? "))

total = 0.0

for i in range(n):

x = float(input("Enter a number >> "))

total = total + x

print("\nThe average of the numbers is", total In)

main()

8.2. Indefinite Loops

The running total starts at 0, and each number is added in tum. Mter the loop,
the total is divided by n to compute the average.

Here is the program in action:

How many numbers do you have? 5

Enter a number >> 32

Enter a number >> 45

Enter a number >> 34

Enter a number >> 76

Enter a number >> 45

The average of the numbers is 46.4

Well, that wasn't too bad. Knowing a couple of common patterns, counted
loop and accumulator, got us to a working program with minimal difficulty in
design and implementation. Hopefully, you can see the worth of committing
these sorts of programming cliches to memory.

10.21 Indefinite Loops

Our averaging program is certainly functional, but it doesn't have the best user
interface. It begins by asking the user how many numbers there are. For a
handful of numbers this is OK, but what if I have a whole page of numbers to
average? It might be a significant burden to go through and count them up.

It would be much nicer if the computer could take care of counting the num­
bers for us. Unfortunately, as you no doubt recall, the for loop (in its usual
form) is a definite loop, and that means the number of iterations is determined
when the loop starts. We can't use a definite loop unless we know the number
of iterations ahead of time, and we can't know how many iterations this loop
needs until all of the numbers have been entered. We seem to be stuck.

The solution to this dilemma lies in another kind of loop, the indefinite or
conditional loop. An indefinite loop keeps iterating until certain conditions are
met. There is no guarantee ahead of time regarding how many times the loop
will go around.

In Python, an indefinite loop is implemented using a while statement. Syn­
tactically, the while is very simple:

while <condition>:

<body>

245

246 Chapter 8. Loop Structures and Booleans

Here condition is a Boolean expression, just like in if statements. The body is,
as usual, a sequence of one or more statements.

The semantics of while is straightforward. The body of the loop executes
repeatedly as long as the condition remains true. When the condition is false,
the loop terminates. Figure 8. 1 shows a flowchart for the while. Notice that
the condition is always tested at the top of the loop, before the loop body is
executed. This kind of structure is called a pre-test loop. If the loop condition is
initially false, the loop body will not execute at all.

no

yes

<body>

Figure 8.1: Flowchart of a while loop

Here is an example of a simple while loop that counts from 0 to 10:

i = 0

while i <= 10:

print(i)

i = i + 1

This code will have the same output as if we had written a for loop like this:

for i in range(1 1):

print(i)

8.3. Common Loop Patterns

Notice that the while version requires us to take care of initializing i before the
loop and incrementing i at the bottom of the loop body. In the for loop, the
loop variable is handled automatically.

The simplicity of the while statement makes it both powerful and dangerous.
Because it is less rigid, it is more versatile; it can do more than just iterate
through sequences. But it is also a common source of errors.

Suppose we forget to increment i at the bottom of the loop body in the
counting example:

i = 0

while i <= 10:

print(i)

What will the output from this program be? When Python gets to the loop, i

will be 0, which is less than 10, so the loop body executes, printing a 0. Now
control returns to the condition; i is still 0, so the loop body executes again,
printing a 0. Now control returns to the condition; i is still 0, so the loop body
executes again, printing a 0

You get the picture. This is an example of an infinite loop. Usually, infinite
loops are a bad thing. Clearly this version of the program does nothing useful.
That reminds me, did you hear about the computer scientist who died of ex­
haustion while washing his hair? The instructions on the bottle said: "Lather.
Rinse. Repeat."

As a beginning programmer, it would be surprising if you did not accidentally
write a few programs with infinite loops-it's a rite of passage for programmers.
Even more experienced programmers have been known to do this from time
to time. Usually, you can break out of a loop by pressing <Ctrl>-c (holding
down the <Ctrl> key and pressing c) . If your loop is really tight, this might not
work, and you'll have to resort to more drastic means (such as <Ctrl>-<Alt>­
<Delete> on a PC) . If all else fails, there is always the trusty reset button on
your computer. The best idea is to avoid writing infinite loops in the first place.

18.31 Common Loop Patterns

18.3.11 Interactive Loops

One good use of the indefinite loop is to write interactive loops. The idea be­
hind an interactive loop is that it allows the user to repeat certain portions of a

247

248 Chapter 8. Loop Structures and Booleans

program on demand. Let's take a look at this loop pattern in the context of our
number-averaging problem.

Recall that the previous version of the program forced the user to count up
how many numbers there were to be averaged. We want to modify the program
so that it keeps track of how many numbers there are. We can do this with
another accumulator-call it count-that starts at 0 and increases by 1 each
time through the loop.

To allow the user to stop at any time, each iteration of the loop will ask
whether there is more data to process. The general pattern for an interactive
loop looks like this:

set moredata to "yes"

while moredata is "yes"

get the next data item

process the item

ask user if there is moredata

Combining the interactive loop pattern with accumulators for the total and
count yields this algorithm for the averaging program:

initialize total to 0.0

initialize count to 0

set moredata to "yes"

while moredata is "yes"

input a number, x

add x to total

add 1 to count

ask user if there is moredata

output total I count

Notice how the two accumulators are interleaved into the basic structure of the
interactive loop.

Here is the corresponding Python program:

average2.py

def main():

total = 0.0

count = 0

moredata = "yes"

8.3. Common Loop Patterns

while moredata [0] == "y":

x = float(input("Enter a number >> "))

total = total + x

count = count + 1

moredata = input("Do you have more numbers (yes or no)? ")

print("\nThe average of the numbers is", total I count)

main()

Notice this program uses string indexing (moredata [OJ) to look just at the first
letter of the user's input. This allows for varied responses such as ''yes," ''y,"
''yeah," etc. All that matters is that the first letter is a ''y."

Here is sample output from this program:

Enter a number >> 32

Do you have more numbers (yes or no)? yes

Enter a number >> 45

Do you have more numbers (yes or no)? y

Enter a number >> 34

Do you have more numbers (yes or no)? y

Enter a number >> 76

Do you have more numbers (yes or no)? y

Enter a number >> 45

Do you have more numbers (yes or no)? nope

The average of the numbers is 46.4

In this version, the user doesn't have to count the data values, but the inter­
face is still not good. The user will almost certainly be annoyed by the constant
prodding for more data. The interactive loop has many good applications; this
is not one of them.

18.3.21 Sentinel Loops

A better solution to the number-averaging problem is to employ a pattern com­
monly known as a sentinel loop. A sentinel loop continues to process data until
reaching a special value that signals the end. The special value is called the
sentinel. Any value may be chosen for the sentinel. The only restriction is that it
be distinguishable from actual data values. The sentinel is not processed as part
of the data.

249

250 Chapter 8. Loop Structures and Booleans

Here is a general pattern for designing sentinel loops:

get the first data item

while item is not the sentinel

process the item

get the next data item

Notice how this pattern avoids processing the sentinel item. The first item is
retrieved before the loop starts. This is sometimes called the priming read, as it
gets the process started. If the first item is the sentinel, the loop immediately
terminates and no data is processed. Otherwise, the item is processed and the
next one is read. The loop test at the top ensures this next item is not the sentinel
before processing it. When the sentinel is reached, the loop terminates.

We can apply the sentinel pattern to our number-averaging problem. The
first step is to pick a sentinel. Suppose we are using the program to average
exam scores. In that case, we can safely assume that no score will be below 0.
The user can enter a negative number to signal the end of the data. Combining
the sentinel loop with the two accumulators from the interactive loop version
yields this program:

average3.py

def main():

total = 0.0

count = 0

x = float(input("Enter a number (negative to quit) >> "))

while x >= 0:

total = total + x

count = count + 1

x = float(input("Enter a number (negative to quit) >> "))

print("\nThe average of the numbers is", total I count)

main()

I have changed the prompt so that the user knows how to signal the end of the
data. Notice that the prompt is identical at the priming read and the bottom of
the loop body.

Now we have a useful form of the program. Here it is in action:

Enter a number (negative to quit) >> 32

8.3. Common Loop Patterns

Enter a number (negative to quit) >> 45

Enter a number (negative to quit) >> 34

Enter a number (negative to quit) >> 76

Enter a number (negative to quit) >> 45

Enter a number (negative to quit) >> -1

The average of the numbers is 46.4

This version provides the ease of use of the interactive loop without the hassle
of having to type ''yes" all the time. The sentinel loop is a very handy pattern for
solving all sorts of data processing problems. It's another cliche that you should
commit to memory.

This sentinel loop solution is quite good, but there is still a limitation. The
program can't be used to average a set of numbers containing negative as well
as positive values. Let's see if we can't generalize the program a bit. What we
need is a sentinel value that is distinct from any possible valid number, positive
or negative. Of course, this is impossible as long as we restrict ourselves to
working with numbers. No matter what number or range of numbers we pick as
a sentinel, it is always possible that some data set may contain such a number.

In order to have a truly unique sentinel, we need to broaden the possible
inputs. Suppose that we get the input from the user as a string. We can have
a distinctive, non-numeric string that indicates the end of the input; all others
would be converted into numbers and treated as data. One simple solution is
to have the sentinel value be an empty string. Remember, an empty string is
represented in Python as 11 11 (quotes with no space between) . If the user types a
blank line in response to an input Gust hits <Enter>), Python returns an empty
string. We can use this as a simple way to terminate input. The design looks like
this:

initialize total to 0.0

initialize count to 0

input data item as a string, xStr

while xStr is not empty

convert xStr to a number, x

add x to total

add 1 to count

input next data item as a string, xStr

output total I count

Comparing this to the previous algorithm, you can see that converting the string

251

252 Chapter 8. Loop Structures and Booleans

to a number has been added to the processing section of the sentinel loop.
Translating it into Python yields this program:

average4.py

def main():

total = 0.0

count = 0

xStr = input("Enter a number (<Enter> to quit) >> ")

while xStr != "":

x = float(xStr)

total = total + x

count = count + 1

xStr = input("Enter a number (<Enter> to quit) >> ")

print("\nThe average of the numbers is", total I count)

main()

This code does not turn the input into a number (via float) until after it has
checked to make sure the input was not the sentinel (" ") .

Here is an example run, showing that it is now possible to average arbitrary
sets of numbers:

Enter a number (<Enter> to quit) >> 34

Enter a number (<Enter> to quit) >> 23

Enter a number (<Enter> to quit) >> 0

Enter a number (<Enter> to quit) >> -25

Enter a number (<Enter> to quit) >> -34.4

Enter a number (<Enter> to quit) >> 22.7

Enter a number (<Enter> to quit) >>

The average of the numbers is 3.38333333333

We finally have an excellent solution to our original problem. You should study
this solution so that you can incorporate these techniques into your own pro­
grams.

18.3.31 File Loops

One disadvantage of all the averaging programs presented so far is that they are
interactive. Imagine you are trying to average 87 numbers and you happen to

8.3. Common Loop Patterns

make a typo near the end. With our interactive program, you will need to start
all over again.

A better approach to the problem might be to type all of the numbers into
a file. The data in the file can be perused and edited before sending it to a
program that generates a report. This file-oriented approach is typically used
for data-processing applications.

Back in Chapter 5, we looked at reading data from files by using the file
object as a sequence in a for loop. We can apply this technique directly to the
number-averaging problem. Assuming that the numbers are typed into a file
one per line, we can compute the average with this program:

average5.py

def main():

fileName = input("What file are the numbers in? ")

infile = open(fileName, 'r')

total = 0.0

count = 0

for line in infile:

total = total + float(line)

count = count + 1

print("\nThe average of the numbers is", total I count)

main()

In this code, the loop variable line iterates through the file as a sequence of
lines; each line is converted to a number and added to the running total.

Many programming languages do not have a special mechanism for looping
through files like this. In these languages, the lines of a file can be read one at
a time using a form of sentinel loop. We can illustrate this method in Python by
using readline (). Remember, the readline () method gets the next line from
a file as a string. At the end of the file, readline () returns an empty string,
which we can use as a sentinel value. Here is a general pattern for an end-of-file
loop using readline () in Python:

line = infile.readline()

while line != "":

process line

line = infile.readline()

253

254 Chapter 8. Loop Structures and Booleans

At first glance, you may be concerned that this loop stops prematurely if it
encounters an empty line in the file. This is not the case. Remember, a blank
line in a text file contains a single newline character ("\n"), and the readline

method includes the newline character in its return value. Since "\n" ! = " " ,
the loop will continue.

Here is the code that results from applying the end-of-file sentinel loop to
our number-averaging problem:

average6.py

def main():

fileName = input("What file are the numbers in? ")

infile = open(fileName, 'r')

total = 0.0

count = 0

line = infile.readline()

while line != "":

total = total + float(line)

count = count + 1

line = infile.readline()

print("\nThe average of the numbers is", total I count)

main()

Obviously, this version is not quite as concise as the version using the for loop.
In Python, you might as well use the latter, but it is still good to know about
end-of-file loops in case you're stuck programming in a less elegant language.

18.3.41 Nested Loops

In the last chapter, you saw how control structures such as decisions and loops
could be nested inside one another to produce sophisticated algorithms. One
particularly useful but somewhat tricky technique is the nesting of loops.

Let's take a look at an example program. How about one last version of our
number-averaging problem? I promise this is the last time I'll use this example.1

Suppose we modify the specification of the file-based averaging problem slightly.
This time, instead of typing the numbers into the file one per line, we'll allow

1Until Chapter 11.

8.3. Common Loop Patterns

any number of values on a line. When multiple values appear on a line, they
will be separated by commas.

At the top level, the basic algorithm will be some sort of file-processing loop
that computes a running total and count. For practice, let's use an end-of-file
loop. Here is the code comprising the top-level loop:

total = 0.0

count = 0

line = infile.readline()

while line != "":

update total and count for values in line

line = infile.readline()

print("\nThe average of the numbers is", total I count)

Now we need to figure out how to update the total and count in the body
of the loop. Since each individual line of the file contains one or more numbers
separated by commas, we can split the line into substrings, each of which repre­
sents a number. Then we need to loop through these substrings, convert each to
a number, and add it to total. We also need to add 1 to count for each number.
Here is a code fragment that processes a line:

for xStr in line.split('' , ''):

total - total + float(xStr)

count = count +1

Notice that the iteration of the for loop in this fragment is controlled by the
value of line, which just happens to be the loop-control variable for the file­
processing loop we outlined above. Knitting these two loops together, here is
our program:

average7.py

def main():

fileName = input("What file are the numbers in? ")

infile = open(fileName, 'r')

total = 0.0

count = 0

line = infile.readline()

while line != "":

update total and count for values in line

255

256 Chapter 8. Loop Structures and Booleans

for xStr in line.split(", "):

total = total + float(xStr)

count = count + 1

line = infile.readline()

print("\nThe average of the numbers is", total I count)

main()

As you can see, the loop that processes the numbers in a line is indented inside
the file-processing loop. The outer while loop iterates once for each line of the
file. On each iteration of the outer loop, the inner for loop iterates as many
times as there are numbers on that line. When the inner loop finishes, the next
line of the file is read, and the outer loop goes through its next iteration.

The individual fragments of this problem are not complex when taken sepa­
rately, but the final result is fairly intricate. The best way to design nested loops
is to follow the process we did here. First design the outer loop without worry­
ing about what goes inside. Then design what goes inside, ignoring the outer
loop(s) . Finally, put the pieces together, taking care to preserve the nesting. If
the individual loops are correct, the nested result will work just fine; trust it.
With a little practice, you'll be implementing double-, even triple-nested loops
with ease.

18.41 Computing with Booleans

We now have two control structures, if and while, that use conditions, which
are Boolean expressions. Conceptually, a Boolean expression evaluates to one of
two values: false or true. In Python, these values are represented by the literals
False and True. So far, we have used simple Boolean expressions that compare
two values (e.g., while x >= 0).

18.4.11 Bool ean Operators

Sometimes the simple conditions that we have been using do not seem expres­
sive enough. For example, suppose you need to determine whether two point
objects are in the same position-that is, they have equal x coordinates and
equal y coordinates. One way of handling this would be a nested decision:

if p1.getX() == p2.getX():

if p1.getY() == p2.getY():

8.4. Computing with Booleans

points are the same

else:

points are different

else:

points are different

You can see how awkward this is.
Instead of working around this problem with a decision structure, another

approach would be to construct a more complex expression using Boolean op­
erations. Like most programming languages, Python provides three Boolean
operators: and, or, and not. Let's take a look at these three operators and then
see how they can be used to simplify our problem.

The Boolean operators and and or are used to combine two Boolean expres­
sions and produce a Boolean result:

<expr> and <expr>

<expr> or <expr>

The and of two expressions is true exactly when both of the expressions are true.
We can represent this definition in a truth table.

P Q PandQ

T T T
T F F
F T F
F F F

In this table, P and Q represent smaller Boolean expressions. Since each ex­
pression has two possible values, there are four possible combinations of values,
each shown as one row in the table. The last column gives the value of P and

Q for each possible combination. By definition, the and is true only in the case
where both P and Q are true.

The or of two expressions is true when either expression is true. Here is the
truth table defining or:

P Q PorQ

T T T
T F T
F T T
F F F

257

258 Chapter 8. Loop Structures and Booleans

The only time the or is false is when both expressions are false. Notice especially
that or is true when both expressions are true. This is the mathematical defini­
tion of or, but the word "or'' is sometimes used in an exclusive sense in everyday
English. If your mom said that you could have cake or cookies for dessert, she
would probably scold you for taking both.

The not operator computes the opposite of a Boolean expression. It is a
unary operator, meaning that it operates on a single expression. The truth table
is very simple:

P not P

T F
F T

Using Boolean operators, it is possible to build arbitrarily complex Boolean
expressions. As with arithmetic operators, the exact meaning of a complex ex­
pression depends on the precedence rules for the operators. Consider this ex-

•

pression:

a or not b and c

How should this be evaluated?
Python follows a standard convention that the order of precedence from

high to low is not, followed by and, followed by or. So the expression would be
equivalent to this parenthesized version:

(a or ((not b) and c))

Unlike arithmetic, however, most people don't tend to know or remember the
precedence rules for Booleans. I suggest that you always parenthesize your
complex expressions to prevent confusion.

Now that we have some Boolean operators, we are ready to return to our
example problem. To test for the co-location of two points, we could use an and

operation.

if p1.getX() == p2.getX() and p2.getY() == p1.getY():

points are the same

else:

points are different

Here the entire expression will only be true when both of the simple conditions
are true. This ensures that both the x and y coordinates match for the points

8.4. Computing with Booleans

to be the same. Obviously, this is much simpler and clearer than the nested ifs
from the previous version.

Let's look at a slightly more complex example. In the next chapter, we will
develop a simulation for the game of racquetball. Part of the simulation will
need to determine when a game has ended. Suppose that scoreA and scoreB

represent the scores of two racquetball players. The game is over as soon as
either of the players has reached 15 points. Here is a Boolean expression that is
true when the game is over:

scoreA == 15 or scoreB == 15

When either score reaches 15, one of the two simple conditions becomes true,
and, by definition of or, the entire Boolean expression is true. As long as both
conditions remain false (neither player has reached 15) the entire expression is
false.

Our simulation will need a loop that continues as long as the game is not
over. We can construct an appropriate loop condition by taking the negation of
the game-over condition.

while not (scoreA == 15 or scoreB -- 15):

continue playing

We can also construct more complex Boolean expressions that reflect differ­
ent possible stopping conditions. Some racquetball players play shutouts (some­
times called a "skunk") . For these players, a game also ends when one of the
players reaches 7 and the other has not yet scored a point. For brevity, I'll use a

for scoreA and b for scoreB. Here is an expression for game-over when shutouts
are included:

a == 15 or b == 15 or (a == 7 and b == 0) or (b == 7 and a == 0)

Do you see how I have added two more situations to the original condition? The
new parts reflect the two possible ways a shutout can occur, and each requires
checking both scores. The result is a fairly complex expression.

While we're at it, let's try one more example. Suppose we were writing a
simulation for volleyball rather than racquetball. Traditional volleyball does not
have shutouts, but it requires a team to win by at least two points. If the score
is 15 to 14, or even 21 to 20, the game continues.

Let's write a condition that computes when a volleyball game is over. Here's
one approach:

259

260 Chapter 8. Loop Structures and Booleans

(a >= 15 and a - b >= 2) or (b >= 15 and b - a >= 2)

Do you see how this expression works? It basically says the game is over when
team A has won (scored at least 15 and leading by at least 2) or when team B
has won.

Here is another way to do it:

(a >= 15 or b >= 15) and abs(a - b) >= 2

This version is a bit more succinct. It states that the game is over when one of
the teams has reached a winning total and the difference in the scores is at least
2. Remember that abs returns the absolute value of an expression.

18.4.21 Bool ean Algebra

All decisions in computer programs boil down to appropriate Boolean expres­
sions. The ability to formulate, manipulate, and reason with these expressions
is an important skill for programmers and computer scientists. Boolean expres­
sions obey certain algebraic laws similar to those that apply to numeric opera­
tions. These laws are called Boolean logic or Boolean algebra.

Let's look at a few examples. The following table shows some rules of algebra
with their correlates in Boolean algebra:

algebra Boolean algebra

a and false = = false
a and true== a

a+O=a a or false== a

From these examples, you can see that and has similarities to multiplication, or

has similarities to addition, and 0 and 1 correspond to false and true.
Here are some other interesting properties of Boolean operations. Anything

ored with true is just true.

(a or True) == True

Both and and or distribute over each other.

(a or (b and c)) -- ((a or b) and (a or c))

(a and (b or c)) -- ((a and b) or (a and c))

A double negative cancels out.

8.4. Computing with Booleans

(not (not a)) == a

The next two identities are known as DeMorgan's laws.

(not(a or b)) == ((not a) and (not b))

(not(a and b)) == ((not a) or (not b))

Notice how the operator changes between and and or when the not is pushed
into an expression.

One nice property of Boolean algebra is that simple identities of this sort can
be easily verified with a truth table. Since there are always a finite combination
of possible values for the variables, we can systematically list all of the possi­
bilites and compute the value of the expressions. For example, the following
table demonstrates DeMorgan's first law:

I a I b I a or b I not (a or b) I not a I not b I (not a) and (not b) I
T T T F F F F
T F T F F T F
F T T F T F F
F F F T T T T

Here the rows represent the four distinct cases for the variables a and b, and
the columns show the truth value of the subexpressions in the identity. Notice
that the bolded columns are identical, thus proving that the identity always
holds.

An important application of Boolean algebra is the analysis and simplifica­
tion of Boolean expressions inside programs. For example, let's go back to the
racquetball game one more time. Above, we developed a loop condition for
continuing the game that looked like this:

while not (scoreA == 15 or scoreB == 15):

continue playing

You can read this condition as something like: While it is not the case that player
A has 15 or player B has 15, continue playing. We're pretty sure that's correct,
but negating complex conditions like this can be somewhat awkward, to say the
least. Using a little Boolean algebra, we can transform this result.

Applying DeMorgan's law, we know that the expression is equivalent to this:

(not scoreA == 15) and (not scoreB == 15)

261

262 Chapter 8. Loop Structures and Booleans

Remember, we have to change the or to and when "distributing" the not. This
condition is no better than the first, but we can go one step farther by pushing
the nots into the conditions themselves:

while scoreA != 15 and scoreB != 15:

continue playing

Now we have a version that is much easier to understand. This reads simply
as while player A has not reached 15 and player B has not reached 15, continue
playing.

This particular example illustrates a generally useful approach to loop con­
ditions. Sometimes it's easier to figure out when a loop should stop, rather than
when the loop should continue. In that case, simply write the loop termination
condition and then put a not in front of it. An application or two of DeMorgan's
laws can then get you to a simpler but equivalent version suitable for use in a
while statement.

18.51 Oth er Common Structures

Taken together, the decision structure (if) along with a pre-test loop (while)

provide a complete set of control structures. This means that every algorithm
can be expressed using just these. Once you've mastered the while and the if,

you can write every conceivable algorithm, in principle. However, for certain
kinds of problems, alternative structures can sometimes be convenient. This
section outlines some of those alternatives.

la.s.tl Post-test Loop

Suppose you are writing an input algorithm that is supposed to get a non­
negative number from the user. If the user types an incorrect input, the pro­
gram asks for another value. It continues to reprompt until the user enters a
valid value. This process is called input validation. Well-engineered programs
validate inputs whenever possible.

Here is a simple algorithm:

repeat

get a number from the user

until number is >= 0

8.5. Other Common Structures

The idea here is that the loop keeps getting inputs until the value is acceptable.
The flowchart depicting this design in shown in Figure 8. 2 . Notice how this
algorithm contains a loop where the condition test comes after the loop body.
This is a post-test loop. A post-test loop must always execute the body of the loop
at least once.

Get a number

no

Figure 8. 2: Flowchart of a post-test loop

Unlike some other languages, Python does not have a statement that directly
implements a post-test loop. However, this algorithm can be implemented with
a while by "seeding" the loop condition for the first iteration:

number = -1 # Start with an illegal value to get into the loop.

while number < 0:

number = float(input("Enter a positive number: "))

This forces the loop body to execute at least once and is equivalent to the post­
test algorithm. You might notice that this is similar to the structure given earlier
for the interactive loop pattern. Interactive loops are naturally suited to a post­
test implementation.

Some programmers prefer to simulate a post-test loop more directly by us­
ing a Python break statement. Executing break causes Python to immediately
exit the enclosing loop. Often a break statement is used to leave what looks
syntactically like an infinite loop.

Here is the same algorithm implemented with a break:

263

264

while True:

Chapter 8. Loop Structures and Booleans

number = float(input("Enter a positive number: "))

if number >= 0: break # Exit loop if number is valid.

The first line may look a bit strange to you. Remember that a while loop contin­
ues as long as the expression in the loop heading evaluates to true. Since True is
always true, this appears to be an infinite loop. However, when the value of x is
non-negative, the break statement executes, which terminates the loop. Notice
that I placed the break on the same line as the if. This is legal when the body
of the if contains only one statement. It's common to see a one-line if-break

combination used as a loop exit.
Even this small example can be improved. It would be nice if the program

issued a warning explaining why the input was invalid. In the while version
of the post-test loop, this is a bit awkward. We need to add an if so that the
warning is not displayed for valid inputs.

number = -1 # Start with an illegal value to get into the loop.

while number < 0:

number = float(input("Enter a positive number: "))

if number < 0:

print("The number you entered was not positive")

Do you see how the validity check gets repeated in two places?
Adding a warning to the version using break only requires adding an else

to the existing if.

while True:

number = float(input("Enter a positive number: "))

if number >= 0:

break # Exit loop if number is valid.

else:

print("The number you entered was not positive")

18.5.21 Loop and a Half

Some programmers would solve the warning problem from the previous section
using a slightly different style:

while True:

number = float(input("Enter a positive number: "))

8.5. Other Common Structures

if number >= 0: break # Loop exit

print("The number you entered was not positive")

Here the loop exit is actually in the middle of the loop body. This is called a loop
and a half. Some purists frown on exits in the midst of a loop like this, but the
pattern can be quite handy.

The loop and a half is an elegant way to avoid the priming read in a sentinel
loop. Here is the general pattern of a sentinel loop implemented as a loop and
a half:

while True:

get next data item

if the item is the sentinel: break

process the item

Figure 8. 3 shows a flowchart of this approach to sentinel loops. You can see that
this implementation is faithful to the first rule of sentinel loops: avoid processing
the sentinel value.

Get next Data item

no

Process the item

Figure 8. 3: Loop-and-a-half implementation of sentinel loop pattern

The choice of whether to use break statements or not is largely a matter
of taste. Either style is acceptable. One temptation that should generally be
avoided is peppering the body of a loop with multiple break statements. The
logic of a loop is easily lost when there are multiple exits. However, there are

265

266 Chapter 8. Loop Structures and Booleans

times when even this rule should be broken to provide the most elegant solution
to a problem.

18.5.31 Bool ean Expressions as Decisions

So far, we have talked about Boolean expressions only within the context of
other control structures. Sometimes Boolean expressions themselves can act as
control structures. In fact, Boolean expressions are so flexible in Python that
they can sometimes lead to subtle programming errors.

Consider writing an interactive loop that keeps going as long as the user
response starts with a ''y." To allow the user to type either an upper- or lowercase
response, you could use a loop like this:

while response[O] == "y" or response[O] == "Y":

You must be careful not to abbreviate this condition as you might think of it in
English: ''While the first letter is Y or 'Y' ". The following form does not work:

while response[O] == "y" or "Y":

In fact, this is an infinite loop. Understanding why this condition is always true
requires digging into some idiosyncrasies of Python Boolean expressions.

You already know that Python has a bool type. Actually, this is a fairly recent
addition to the language (version 2.3) . Before that, Python just used the ints
1 and 0 to represent true and false. In fact, the bool type is just a "special" int
where the values of 0 and 1 print as False and True. You can test this out by
evaluating the expression True + True.

We have been using the bool literals True and False to represent the Boolean
values true and false, respectively. The Python condition operators (e.g., ==)
always evaluate to a value of type bool. However, Python is actually very flexible
about what data type can appear as a Boolean expression. Any built-in type
can be interpreted as a Boolean. For numbers (ints and floats) a zero value
is considered as false; anything other than zero is taken as true. You can see
how a value will be interpreted when used as a Boolean expression by explicitly
converting the value to type bool. Here are a few examples:

>>> bool(O)

False

>>> bool(1)

True

>>> bool(32)

True

>>> bool("hello")

True

>>> bool("")

False

>>> bool([1, 2, 3])

True

>>> bool ([])

False

8.5. Other Common Structures

As you can see, for sequence types, an empty sequence is interpreted as false
whereas any non-empty sequence is taken to indicate true.

The flexibility of Python Booleans extends to the Boolean operators. Al­
though the main use of these operators is forming Boolean expressions, they
have operational definitions that make them useful for other purposes as well.
This table summarizes the behavior of these operators:

operator

x and y
x or y
not x

operational definition

If x is false, return x. Otherwise, return y.
If x is true, return x. Otherwise, return y.
If x is false, return True. Otherwise, return False.

The definition of not is straightforward. It might take a bit of thinking to con­
vince yourself that these descriptions of and and or faithfully reflect the truth
tables you saw at the beginning of the chapter.

Consider the expression x and y. In order for this to be true, both expres­
sions, x and y, must be true. As soon as one of them is discovered to be false, the
party is over. Python looks at the expressions left to right. If x is false, Python
should return a false result. Whatever the false value of x was, that is what is
returned. If x turns out to be true, then the truth or falsity of the whole expres­
sion turns on the result of y. Simply returning y guarantees that if y is true, the
whole result is true, and if y is false, the whole result is false. Similar reasoning
can be used to show that the description of or is faithful to the logical definition
of or given in the truth table.

These operational definitions show that Python's Boolean operators are short­
circuit operators. That means that a true or false value is returned as soon as the
result is known. In an and where the first expression is false and in an or where
the first expression is true, Python will not even evaluate the second expression.

Now let's take a look at our infinite loop problem:

267

268 Chapter 8. Loop Structures and Booleans

response[O] == "y" or "Y"

Treated as a Boolean expression, this will always evaluate to true. The first thing
to notice is that the Boolean operator is combining two expressions; the first is a
simple condition, and the second is a string. Here is an equivalent parenthesized

•

version:

(response[O] == "y") or ("Y"):

By the operational description of or, this expression returns either True (re­
turned by == when response [0]) is "y") or "Y" (when response [0] is not
"y"). Either of these results is interpreted by Python as true.

A more logic-oriented way to think about this is to simply look at the second
expression. It is a nonempty string, so Python will always interpret it as true.
Since at least one of the two expressions is always true, the or of the expressions
must always be true as well.

So the strange behavior of this example is due to some quirks in the defini­
tions of the Boolean operators. This is one of the few places where the design of
Python has a potential pitfall for the beginning programmer. You may wonder
about the wisdom of this design, yet the flexibility of Python allows for certain
succinct programming idioms that many programmers find useful. Let's look at
an example.

Frequently, programs prompt users for information but offer a default value
for the response. The default value, sometimes listed in square brackets, is used
if the user simply hits the <Enter> key. Here is an example code fragment:

ans = input("What flavor do you want [vanilla] : ")

if ans ! = " " :

flavor - ans

else:

flavor = "vanilla"

Exploiting the fact that the string in ans can be treated as a Boolean, the
condition in this code can be simplified as follows:

ans = input("What flavor do you want [vanilla] : ")

if ans:

flavor - ans

else:

flavor - "vanilla"

8.6. Example: A Simple Event Loop

Here a Boolean condition is being used to decide how to set a string variable. If
the user just hits <Enter>, ans will be an empty string, which Python interprets
as false. In this case, the empty string will be replaced by 11Vanilla11 in the else

clause.
The same idea can be more succinctly coded by treating the strings them­

selves as Booleans and using an or:

ans = input(11 What flavor do you want [vanilla] : 11)

flavor = ans or 11Vanilla11

The operational definition of or guarantees that this is equivalent to the if-else

version. Remember, any nonempty answer is interpreted as true.
In fact, this task can easily be accomplished in a single line of code:

flavor= input(11 What flavor do you want [vanilla] : 11) or 11Vanilla11

I don't know whether it's really worthwhile to save a few lines of code using
Boolean operators this way. If you like this style, by all means, feel free to use
it. Just make sure that your code doesn't get so tricky that others (or you) have
trouble understanding it.

18.61 Example: A Simple Event Loop

Back in Chapter 4, I mentioned that modem programs incorporating graphical
user interfaces (GUis) are generally written in an event-driven style. The pro­
gram displays a graphical interface and then ''waits" for the user events such as
clicking on a menu or pressing a key on the keyboard. The program responds
by processing the event. Underneath, the mechanism that drives this style of
program is a so-called event loop. The basic outline of a GUI-based program is
something like this:

draw the GUI

while True:

get next event

if event is 11 quit signal11 :

break

process the event

clean up and exit

269

270 Chapter 8. Loop Structures and Booleans

Essentially, we have a sentinel loop (here expressed as a loop and a half) where
the sentinel is just a special event, for example hitting the q key, that causes the
program exit.

As a simple example, consider a program that simply opens up a graphics
window and allows the user to change its color by typing different keys-r for
red, g for gray, etc. The user can quit at any time by hitting the q key. We
can code this as a simple event loop using get Key () to handle the key presses.
Here's the code:

event_loopl.py keyboard-driven color changing window

from graphics import *

def main():

win= GraphWin("Color Window", 500, 500)

Event Loop: handle key presses until user presses the "q" key.

while True:

key = win.getKey()

if key== "q": # loop exit

break

#process the key

if key == "r":

win.setBackground("pink")

elif key == "w" :

win.setBackground("white")

elif key== "g":

win.setBackground("lightgray")

elif key == "b":

win.setBackground("lightblue")

exit program

win. close()

main()

Notice that each time through the event loop this program will wait for the user
to press a key on the keyboard. The line

8.6. Example: A Simple Event Loop

key = win.getKey()

forces the user to type a key in order to continue.
A more flexible user interface might allow the user to interact in various

ways, say by typing on the keyboard, selecting a menu item, hovering over an
icon, or clicking a button. In that case, the event loop would have to check
for mulitple types of events rather than waiting for one specific event. To il­
lustrate, let's extend our simple color-changing window to include some mouse
interaction. Let's add the ability for the user to click the mouse to position and
type strings into the window, a sort of souped-up version of the click-and-type
example from Chapter 4.

When mixing mouse and keyboard control, we immediately run into a prob­
lem. We can no longer rely on our workhorse input methods of getMouse and
getKey. Do you see why? If we call win. getKey () then the program will pause
until the user types a key. What happens if they decide to use the mouse in­
stead? No dice-the program is stalled waiting for a key press. Conversely, if
we issue a call to getMouse 0, then keyboard input is locked out because the
program is waiting for a mouse click. In interface-design parlance, we call these
modal input methods, because they lock the user into a certain mode of interac­
tion. Input is nonmodal (multimodal might be a better term) when the user is
in control of how to interact.

In our example, we can make the event loop nonmodal by using the alter­
native methods checkKey and checkMouse. These methods are similar to their
counterparts except that they do not wait for the user to do something. Consider
this statement:

key = win.checkKey()

Python will check to see whether a key has been pressed, and, if so, return a
string that represents the key. However, it does not wait. If no key has been
pressed, checkKey will immediately return an empty string. By examining the
value of key, the program can determine whether any key has been pressed
without actually stopping to wait for it.

Using the check method versions, we can easily sketch out a nonmodal event
loop:

Draw the GUI

while True:

key = checkKey()

if key is quit signal: break

271

272 Chapter 8. Loop Structures and Booleans

if key is a valid key:

process key

click = checkMouse()

if click is valid:

process click

clean up and Exit

Take a careful look at this pseudocode. Each time through the loop, the program
looks for a key press or a mouse click and handles them appropriately. If there
is no event to process, it does not wait; instead it just goes around the loop and
checks again. When the program seems to be patiently waiting for the user to
do something, it is actually busy spinning around and around the loop.

As a first step towards our super click-and-type program, we can revise the
color-changing window to incorporate this extended event loop:

event_loop2.py --- color-changing window

from graphics import *

def handleKey(k, win):

if k == "r":

win.setBackground("pink")

elif k == "w" :

win.setBackground("white")

elif k == "g":

win.setBackground("lightgray")

elif k == "b":

win.setBackground("lightblue")

def handleClick(pt, win):

pass

def main():

win= GraphWin("Click and Type", 500, 500)

Event Loop: handle key presses and mouse clicks until the user

presses the "q" key.

8.6. Example: A Simple Event Loop

while True:

key = win.checkKey()

if key== 11q11: # loop exit

break

if key:

handleKey(key, win)

pt = win.checkMouse()

if pt:

handleClick(pt, win)

win. close()

main()

I have used functions here to modularize the program and emphasize how the
structure corresponds to the augmented event loop algorithm. Since I have not
yet determined exactly what to do with mouse clicks, I defined a handleClick

function with a body containing a pass statement. A pass statement does noth­
ing; it simply fills in the spot where Python is syntactically expecting a statement
to be. That allows me to run and test this program to see that it acts just like the
previous version did.

273

Also, look carefully at the conditions I used in the if statements. When there
is no input, the checkKey () and checkMouse () calls both return a value that
Python inteprets as false; for checkKey it is an empty string, and for checkMouse ()
it is the special None object. As you learned in the previous section, this allows
for a succinct Pythonic way of checking to see whether there was indeed any
user interaction. We can just type if key : rather than if key ! = 11 11 : and if

pt: rather than if pt ! = None. Not all programmers use these idioms, but I
rather like the way they read. I think of these as saying "if I got a key," or "if I
got a point," then I have to do something.

Now that we have updated our color-changing window program with a non­
modal event loop, we are ready to add the mouse-handling part. We want to
enable users to place text in the window. Rather than dealing with a single char­
acter at a time using the existing event loop, it will be more convenient to have
users actually type into an Entry object. So clicking on the window initiates a
basic three-step algorithm:

1 . Display an Entry box where the user clicked.

274 Chapter 8. Loop Structures and Booleans

2. Allow the user to type text into the box; typing is terminated by hitting the
<Enter> key.

3. The Entry box disappears and the typed text appears directly in the win­
dow.

There is an interesting thing happening in step two of this algorithm. We
want the text that the user types to show up in the Entry box, but we don't
want those key presses to be interpreted as top-level commands. For example,
typing a "q" into the Entry should not cause the program to quit! We need
the program to "go modal." That is, the program switches to text-entry mode
until the user types the <Enter> key. This is similar to the familiar situation
in GUI applications where a dialog box pops up and forces the user to do some
interaction to dismiss the dialog before continuing to use the application. This
is known as a modal dialog.

How do we make our Entry box modal? The answer is just another loop. In­
side the main event loop we nest another loop that consumes all the keypresses
until the user hits the <Enter> key. Once the <Enter> key is pressed, the inner
loop terminates and the program continues on. Here is code for the updated
handleClick:

def handleClick(pt, win):

create an Entry for user to type in

entry = Entry(pt, 10)

entry.draw(win)

Go modal: loop until user types <Enter> key

while True:

key = win.getKey()

if key== "Return": break

undraw the entry and create and draw TextO

entry.undraw()

typed = entry.getText()

Text(pt, typed).draw(win)

clear (ignore) any mouse click that occurred during text entry

win.checkMouse()

Study this code to make sure you understand how it implements the three­
step algorithm above. One thing to noticed is that getKey returns "Return"

8.7. Chapter Summary

for the <Enter> key; historically, the <Enter> key is known as a return key.
Also, I've structured the modal loop so that it looks very similar to our other
key-processing examples. Since we are just waiting for "Return", I could have
simplified it to something like this:

while win.getKey O != "Return":

pass

In this version, the body of this loop literally does nothing. The loop just keeps
checking the condition until <Enter> is pressed and it becomes false. Then the
do-nothing loop quits, allowing the program to continue. Either version gets the
job done. The second is cleverer, but the first seems more obvious. It's probably
best to go with obvious over clever.

The very last line of this function is necessary to ensure that the text entry
is truly modal. Any mouse clicks that may have occurred before the <Enter>
key was pressed should just be ignored. Since checkMouse only returns mouse
clicks that have happened since the last call to checkMouse, calling the function
here at the end has the effect of clearing any click that may have occurred but
not yet been checked for.

That's it for this example. I would definitely suggest running and studying
the final version of this program, event_loop3. py. A couple things you might
try are commenting out the checkMouse at the end of handleClick and seeing
if you can create a situation where the program acts weird as a result. Another
good exercise would be a modification that allows the user to cancel text entry at
any time by hitting the Escape key <Esc>. In effect, "Escape" becomes another
sentinel for the modal loop, but when used, no Text object is created.

l B. 71 Chapter Summary

This chapter has filled in details of Python loops and Boolean expressions. Here
are the highlights:

• A Python for loop is a definite loop that iterates through a sequence.

• A Python while statement is an example of an indefinite loop. It continues
to iterate as long as the loop condition remains true. When using an indef­
inite loop, programmers must guard against the possibility of accidentally
writing an infinite loop.

275

276 Chapter 8. Loop Structures and Booleans

• One important use for an indefinite loop is for implementing the program­
ming pattern interactive loop. An interactive loop allows portions of a
program to be repeated according to the wishes of the user.

• A sentinel loop is a loop that handles input until a special value (the sen­
tinel) is encountered. Sentinel loops are a common programming pattern.
In writing a sentinel loop, a programmer must be careful that the sentinel
is not processed.

• Loops are useful for reading files. Python treats a file as a sequence of
lines, so it is particularly easy to process a file line by line using a for

loop. In other languages, a file loop is generally implemented using a
sentinel loop pattern.

• Loops, like other control structures, can be nested. When designing nested
loop algorithms, it is best to consider the loops one at a time.

• Complex Boolean expressions can be built from simple conditions using
the Boolean operators and, or, and not. Boolean operators obey the rules
of Boolean algebra. DeMorgan's laws describe how to negate Boolean
expressions involving and and or.

• Nonstandard loop structures such as a loop and a half can be built using a
while loop having a loop condition of True and using a break statement
to provide a loop exit.

• Python Boolean operators and and or employ short-circuit evaluation.
They also have operational definitions that allow them to be used in cer­
tain decision contexts. Even though Python has a built-in bool data type,
other data types (e.g., int) may also be used where Boolean expressions
are expected.

• GUI programs are generally event driven and implement carefully de­
signed event loops to control user interaction. Interactions are called non­
modal when the user is in control of what happens next and modal when
the application dictates what the user must do next.

8.8. Exercises

Ia. al Exercises

Review Questions

True/False

1 . A Python while implements a definite loop.

2. The counted loop pattern uses a definite loop.

3. A sentinel loop asks the user whether to continue on each iteration.

4. A sentinel loop should not actually process the sentinel value.

5. The easiest way to iterate through the lines of a file in Python is to use a
while loop.

6. A while is a post-test loop.

7. The Boolean operator or returns True when both of its operands are true.

8. a and (b or c) == (a and b) or (a and c)

9. not(a or b) -- (not a) or not(b)

10. True or False

Multiple Choice

1 . A loop pattern that asks the user whether to continue on each iteration is
called a(n)
a) interactive loop b) end-of-file loop
c) sentinel loop d) infinite loop

2. A loop pattern that continues until a special value is input is called a(n)
a) interactive loop b) end-of-file loop
c) sentinel loop d) infinite loop

3. A loop structure that tests the loop condition after executing the loop body
is called a
a) pre-test loop b) loop and a half
c) sentinel loop d) post -test loop

277

278 Chapter 8. Loop Structures and Booleans

4. A priming read is part of the pattern for a(n)
a) interactive loop b) end-of-file loop
c) sentinel loop d) infinite loop

5. What statement can be executed in the body of a loop to cause it to termi­
nate?
a) if b) input c) break d) exit

6. Which of the following is not a valid rule of Boolean algebra?
a) (True or x) == True

b) (False and x) == False

c) not(a and b)== not(a) and not(b)

d) (True or False) == True

7. A loop that never terminates is called
a) busy b) indefinite c) tight d) infinite

8. Which line would not be found in a truth table for and?
� T T T b) T F T � F T F d) F F F

9. Which line would not be found in a truth table for or?

� T T T b) T F T � F T F d) F F F

10. The term for an operator that may not evaluate one of its subexpressions
•

IS

a) short -circuit b) faulty c) exclusive d) indefinite

Discussion

1 . Compare and contrast the following pairs of terms:

a) definite loop vs. indefinite loop

b) for loop vs. while loop

c) interactive loop vs. sentinel loop

d) sentinel loop vs. end -of-file loop

2. Give a truth table that shows the Boolean value of each of the follow­
ing Boolean expressions, for every possible combination of "input" values.
Hint: Including columns for intermediate expressions is helpful.

a) not (P and Q)

b) (not P) and Q

c) (not P) or (not Q)

d) (P and Q) or R

8.8. Exercises

e) (P or R) and (Q or R)

3. Write a while loop fragment that calculates the following values:

a) Sum of the first n counting numbers: 1 + 2 + 3 + . . . + n

b) Sum of the first n odd numbers: 1 + 3 + 5 + . . . + 2n - 1

c) Sum of a series of numbers entered by the user until the value 999 is
entered. Note: 999 should not be part of the sum.

d) The number of times a whole number n can be divided by 2 (using
integer division) before reaching 1 (i.e., log2n) .

Programming Exercises

1 . The Fibonacci sequence starts 1 , 1 , 2, 3, 5 , 8, Each number in the se­
quence (after the first two) is the sum of the previous two. Write a pro­
gram that computes and outputs the nth Fibonacci number, where n is a
value entered by the user.

2. The National Weather Service computes the windchill index using the fol­
lowing formula:

35 .74 + 0.6 215T - 35.75(V0·16) + 0.4 275T(V0·16)

Where T is the temperature in degrees Fahrenheit, and V is the wind speed
in miles per hour.

Write a program that prints a nicely formatted table of windchill val­
ues. Rows should represent wind speed for 0 to 50 in 5-mph increments,
and the columns represent temperatures from -20 to +60 in 10-degree in­
crements. Note: The formula only applies for wind speeds in excess of 3
miles per hour.

3. Write a program that uses a while loop to determine how long it takes
for an investment to double at a given interest rate. The input will be an
annualized interest rate, and the output is the number of years it takes an
investment to double. Note: The amount of the initial investment does not
matter; you can use $1 .

279

280 Chapter 8. Loop Structures and Booleans

4. The Syracuse (also called "Collatz" or "Hailstone") sequence is generated
by starting with a natural number and repeatedly applying the following
function until reaching 1 :

{ x/ 2 if x is even syr(x) =

3x + 1 if x is odd

For example, the Syracuse sequence starting with 5 is: 5, 16, 8, 4, 2, 1 . It is
an open question in mathematics whether this sequence will always go to
1 for every possible starting value.

Write a program that gets a starting value from the user and then prints
the Syracuse sequence for that starting value.

5. A positive whole number n > 2 is prime if no number between 2 and .Jii
(inclusive) evenly divides n. Write a program that accepts a value of n as
input and determines if the value is prime. If n is not prime, your program
should quit as soon as it finds a value that evenly divides n.

6. Modify the previous program to find every prime number less than or equal
to n.

7. The Goldbach conjecture asserts that every even number is the sum of two
prime numbers. Write a program that gets a number from the user, checks
to make sure that it is even, and then finds two prime numbers that add
up to the number.

8. The greatest common divisor (GCD) of two values can be computed using
Euclid's algorithm. Starting with the values m and n, we repeatedly apply
the formula: n, m = m , ni'.m until m is 0. At that point, n is the GCD of
the original m and n. Write a program that finds the GCD of two numbers
using this algorithm.

9. Write a program that computes the fuel efficiency of a multi-leg journey.
The program will first prompt for the starting odometer reading and then
get information about a series of legs. For each leg, the user enters the
current odometer reading and the amount of gas used (separated by a
space) . The user signals the end of the trip with a blank line. The program
should print out the miles per gallon achieved on each leg and the total
MPG for the trip.

10. Modify the previous program to get its input from a file.

8.8. Exercises

1 1 . Heating and cooling degree days are measures used by utility companies
to estimate energy requirements. If the average temperature for a day is
below 60, then the number of degrees below 60 is added to the heating
degree days. If the temperature is above 80, the amount over 80 is added
to the cooling degree days. Write a program that accepts a sequence of
average daily temperatures and computes the running total of cooling and
heating degree days. The program should print these two totals after all
the data has been processed.

12. Modify the previous program to get its input from a file.

13. Write a program that graphically plots a regression line-that is, the line
with the best fit through a collection of points. First ask the user to specify
the data points by clicking on them in a graphics window. To find the end
of input, place a small rectangle labeled "Done" in the lower-left comer of
the window; the program will stop gathering points when the user clicks
inside that rectangle.

The regression line is the line with the following equation:

y = y + m(x - x)

where
L XiYi - nxy

m = -------==--------:--

L xr - nx2

x is the mean of the x-values, y is the mean of the y-values, and n is the
number of points.

As the user clicks on points, the program should draw them in the
graphics window and keep track of the count of input values and the run­
ning sum of x, y, x2, and xy values. When the user clicks inside the "Done"
rectangle, the program then computes the value of y (using the equations
above) corresponding to the x values at the left and right edges of the
window to compute the endpoints of the regression line spanning the win­
dow. Mer the line is drawn, the program will pause for another mouse
click before closing the window and quitting.

14. Write a program that converts a color image to grayscale. The user sup­
plies the name of a file containing a GIF or PPM image, and the program
loads the image and displays the file. At the click of the mouse, the pro­
gram converts the image to grayscale. The user is then prompted for a file
name to store the grayscale image in.

281

282 Chapter 8. Loop Structures and Booleans

You will probably want to go back and review the Image object from
the graphics libarary (Section 4.8.4) . The basic idea for converting the im­
age is to go through it pixel by pixel and convert each one from color to an
appropriate shade of gray. A gray pixel is created by setting its red, green,
and blue components to have the same brightness. So color _rgb (0, 0, 0)

is black, color _rgb (255, 255, 255) is white, and color _rgb (127, 127, 127)

is a gray "halfway'' between. You should use a weighted average of the
original RGB values to determine the brightness of the gray. Here is the
pseudocode for the grayscale algorithm:

for each row in the image :

for each col11mn in the image :

r, g, b = get pixel information for current row and column

brightness = int(round(0.299r + 0.587g + 0.1 14b))

set pixel to color_rgb(brightness, brightness, brightness)

update the image # to see progress row by row

Note: The pixel operations in the Image class are rather slow, so you
will want to use relatively small images (not 12 megapixels) to test your
program.

15. Write a program to convert an image to its color negative. The general
form of the program will be similar to that of the previous problem. The
negative of a pixel is formed by subtracting each color value from 255. So
the new pixel color is color _rgb (255-r, 255-g, 255-b).

16. Modify the event_loop3 program to use the <Esc> key as described in the
text. When the user types into an Entry box, hitting <Esc> should cause
the Entry to disappear and discard whatever text may have been typed in
the box.

Chapter 9

Objectives

Simulation and
Design

• To understand the potential applications of simulation as a way to solve

real-world problems.

• To understand pseudo-random numbers and their application in Monte

Carlo simulations.

• To understand and be able to apply top-down and spiral design techniques

in writing complex programs.

• To understand unit testing and be able to apply this technique in the im­

plementation and debugging of complex programs.

19.11 Simulating Racquetball

You may not realize it, but you have reached a significant milestone in the jour­

ney to becoming a computer scientist. You now have all the tools to write pro­

grams that solve interesting problems. By interesting, I mean problems that

would be difficult or impossible to solve without the ability to write and imple­

ment computer algorithms. You are probably not yet ready to write the next

great killer application, but you can do some nontrivial computing.

One particularly powerful technique for solving real-world problems is sim­
ulation. Computers can model real-world processes to provide otherwise unob­

tainable information. Computer simulation is used every day to perform myriad

283

284 Chapter 9. Simulation and Design

tasks such as predicting the weather, designing aircraft, creating special effects

for movies, and entertaining video game players, to name just a few. Most

of these applications require extremely complex programs, but even relatively

modest simulations can sometimes shed light on knotty problems.

In this chapter we are going to develop a simple simulation of the game of

racquetball. Along the way, you will learn some important design and imple­

mentation strategies that will help you in tackling your own problems.

19.1.11 A Simulation Problem

Susan Computewell's friend, Denny Dibblebit, plays racquetball. Over years of

playing, he has noticed a strange quirk in the game. He often competes with

players who are just a little bit better than he is. In the process, he always seems

to get thumped, losing the vast majority of matches. This has led him to question

what is going on. On the surface, one would think that players who are slightly

better should win slightly more often, but against Denny, they seem to win the

lion's share.

One obvious possibility is that Denny Dibblebit's problem is in his head.

Maybe his mental game isn't up to par with his physical skills. Or perhaps the

other players are really much better than he is, and he just refuses to see it.

One day, Denny was discussing racquetball with Susan, when she suggested

another possibility. Maybe it is the nature of the game itself that small differ­

ences in ability lead to lopsided matches on the court. Denny was intrigued by

the idea; he didn't want to waste money on an expensive sports psychologist if

it wasn't going to help. But how could he figure out if the problem was mental

or just part of the game?

Susan suggested she could write a computer program to simulate certain

aspects of racquetball. Using the simulation, they could let the computer model

thousands of games between players of differing skill levels. Since there would

not be any mental aspects involved, the simulation would show whether Denny

is losing more than his share of matches.

Let's write our own racquetball simulation and see what Susan and Denny

discovered.

19.1.21 Analysis and Specification

Racquetball is a sport played between two players using racquets to strike a ball

in a four-walled court. It has aspects similar to many other ball and racquet

9.1. Simulating Racquetball

games such as tennis, volleyball, badminton, squash and table tennis. We don't

need to understand all the rules of racquetball to write the program, just the

basic outline of the game.

To start the game, one of the players puts the ball into play-this is called

serving. The players then alternate hitting the ball to keep it in play; this is a

rally. The rally ends when one of the players fails to hit a legal shot. The player

who misses the shot loses the rally. If the loser is the player who served, then

service passes to the other player. If the server wins the rally, a point is awarded.

Players can only score points during their own service. The first player to reach

15 points wins the game.

In our simulation, the ability level of the players will be represented by the

probability that the player wins the rally when he or she serves. Thus, players

with a 0.6 probability win a point on 60o/o of their serves. The program will

prompt the user to enter the service probability for both players and then sim­

ulate multiple games of racquetball using those probabilities. The program will

then print a summary of the results.

Here is a detailed specification:

Input The program first prompts for and gets the service probabilities of the

two players (called "player .N.' and "player B"). Then the program prompts

for and gets the number of games to be simulated.

285

Output The program will provide a series of initial prompts such as the following:

What is the prob. player A wins a serve?
What is the prob. player B wins a serve?
How many games to simulate?

The program will print out a nicely formatted report showing the number

of games simulated and the number of wins and winning percentage for

each player. Here is an example:

Games Simulated: 500
Wins for A: 268 (53.6%)
Wins for B: 232 (46.4%)

Notes: All inputs are assumed to be legal numeric values; no error or validity

checking is required.

In each simulated game, player A serves first.

286 Chapter 9. Simulation and Design

19.21 Pseudo-random Numbers

Our simulation program will have to deal with uncertain events. When we say

that a player wins SOo/o of the serves, that does not mean that every other serve

is a winner. It's more like a coin toss. Overall, we expect that half the time

the coin will come up heads and half the time it will come up tails, but there is

nothing to prevent a run of five tails in a row. Similarly, our racquetball player

should win or lose rallies randomly. The service probability provides a likelihood

that a given serve will be won, but there is no set pattern.

Many simulations share this property of requiring events to occur with a

certain likelihood. A driving simulation must model the unpredictability of other

drivers; a bank simulation has to deal with the random arrival of customers.

These sorts of simulations are sometimes called Monte Carlo algorithms because

the results depend on "chance" probabilities.1 Of course, you know that there

is nothing random about computers; they are instruction-following machines.

How can computer programs model seemingly random happenings?

Simulating randomness is a well-studied problem in computer science. Re­

member the chaos program from Chapter 1? The numbers produced by that pro­

gram seemed to jump around randomly between zero and one. This apparent

randomness came from repeatedly applying a function to generate a sequence of

numbers. A similar approach can be used to generate random (actually pseudo­

random) numbers.

A pseudo-random number generator works by starting with some seed value.

This value is fed to a function to produce a "random" number. The next time

a random number is needed, the current value is fed back into the function to

produce a new number. With a carefully chosen function, the resulting sequence

of values looks essentially random. Of course, if you start the process over
again with the same seed value, you end up with exactly the same sequence of

numbers. It's all determined by the generating function and the value of the

seed.

Python provides a library module that contains a number of useful functions

for generating pseudo-random numbers. The functions in this module derive an

initial seed value from the date and time when the module is loaded, so you

get a different seed value each time the program is run. This means that you

will also get a unique sequence of pseudo-random values. The two functions of
greatest interest to us are randrange and random.

1So probabilistic simulations written in Python could be called Monte Python programs (nudge,
nudge; wink,wink).

9.2. Pseudo-random Numbers

The randrange function is used to select a pseudo-random int from a given

range. It can be used with one, two, or three parameters to specify a range

exactly as with the range function. For example, randrange (1 , 6) returns some

number from the range [1,2,3,4,5], and randrange(5, 105,5) returns a mul­

tiple of 5 between 5 and 100, inclusive. (Remember, ranges go up to, but do not

include, the stopping value.)

Each call to randrange generates a new pseudo-random int. Here is an

interactive session that shows randrange in action:

>>> from random import randrange
>>> randrange(1,6)
3
>>> randrange(1,6)
3
>>> randrange(1,6)
5
>>> randrange(1,6)
5
>>> randrange(1,6)
5
>>> randrange(1,6)
1
>>> randrange(1,6)
5
>>> randrange(1,6)
4
>>> randrange(1,6)
2

Notice it took nine calls to randrange to eventually generate every number in

the range 1-5. The value 5 came up almost half of the time. This shows the

probabilistic nature of random numbers. Over the long haul, this function pro­

duces a uniform distribution, which means that all values will appear an (ap­

proximately) equal number of times.

The random function can be used to generate pseudo-random floating-point

values. It takes no parameters and returns values uniformly distributed between

0 and 1 (including 0, but excluding 1). Here are some interactive examples:

>>> from random import random
>>> random()

287

288

0.545146406725
>>> random()
0. 221621655814
>>> random()
0.928877335157
>>> random()
0. 258660828538
>>> random()
0.859346793436

Chapter 9. Simulation and Design

The name of the module (random) is the same as the name of the function,

which gives rise to the funny-looking import line.

Our racquetball simulation can make use of the random function to deter­

mine whether or not a player wins a serve. Let's look at a specific example.

Suppose a player's service probability is 0. 70. This means that they should win

70% of their serves. You can imagine a decision in the program something like

this:

if <player wins serve>:
score = score + 1

We need to insert a probabilistic condition that will succeed 70% of the time.

Suppose we generate a random value between 0 and 1. Exactly 70o/o of the

interval 0 . . . 1 is to the left of 0. 7. So 70% of the time the random number will be

< 0.7, and it will be> 0.7 the other 30% of the time. (The= goes on the upper

end, because the random generator can produce a 0, but never a 1.) In general,

if prob represents the probability that the player wins a serve, the condition
random() < prob will succeed with just the right probability. Here is how the

decision will look:

if random() < prob:
score = score + 1

19.31 Top-Down Design

Now you have the complete specification for our simulation and the necessary

knowledge of random numbers to get the job done. Go ahead and take a few

minutes to write up the program; I'll wait.

9.3. Top-Down Design

OK, seriously, this is a more complicated program than you've probably at­

tempted so far. You may not even know where to begin. If you're going to make

it through with minimal frustration, you'll need a systematic approach.

One proven technique for tackling complex problems is called top-down de­
sign. The basic idea is to start with the general problem and try to express a

solution in terms of smaller problems. Then each of the smaller problems is

attacked in turn using the same technique. Eventually the problems get so small

that they are trivial to solve. Then you just put all the pieces back together and,

voila, you've got a program.

19.3.11 Top-Level Design

Top-down design is easier to illustrate than it is to define. Let's give it a try on

our racquetball simulation and see where it takes us. As always, a good start

is to study the program specification. In very broad brushstrokes, this program

follows the basic input, process, output pattern. We need to get the simulation

inputs from the user, simulate a bunch of games, and print out a report. Here is

a basic algorithm:

Print an Introduction
Get the inputs: probA, probB, n
Simulate n games of racquetball using probA and probB
Print a report on the wins for playerA and playerB

Now that we've got an algorithm, we're ready to write a program. I know

what you're thinking: this design is too high-level; you don't have any idea yet

how it's all going to work. That's OK. Whatever we don't know how to do, we'll

just ignore for now. Imagine that all of the components you need to implement

the algorithm have already been written for you. Your job is to finish this top­

level algorithm using those components.

First we have to print an introduction. I think I know how to do this. It

just requires a few print statements, but I don't really want to bother with it

right now. It seems an unimportant part of the algorithm. I'll procrastinate

and pretend that someone else will do it for me. Here's the beginning of the

program:

def main():
printintro ()

Do you see how this works? I'm just assuming there is a print!ntro function

that takes care of printing the instructions. That step was easy! Let's move on.

289

290 Chapter 9. Simulation and Design

Next, I need to get some inputs from the user. I also know how to do that-I

just need a few input statements. Again, that doesn't seem very interesting, and

I feel like putting off the details. Let's assume that a component already exists to

solve that problem. We'll call the function get Inputs. The point of this function

is to get values for variables pro bA, pro bB, and n. The function must return

these values for the main program to use. Here is our program so far:

def main():
printlntro ()
probA, probB, n = getlnputs()

We're making progress; let's move on to the next line.

Here we've hit the crux of the problem. We need to simulate n games of

racquetball using the values of probA and probB. This time, I really don't have

a very good idea how that will even be accomplished. Let's procrastinate again

and push the details off into a function. (Maybe we can get someone else to

write that part for us later.) But what should we put into main? Let's call our

function simNGames. We need to figure out what the call of this function looks

like.

Suppose you were asking a friend to actually carry out a simulation of n
games. What information would you have to give him? Your friend would need

to know how many games he was supposed to simulate and what the values of

probA and probB should be for those simulations. These three values will, in a

sense, be inputs to the function.

What information do you need to get back from your friend? Well, in order to

finish out the program (print a report) you need to know how many games were

won by player A and how many games were won by player B. These must be

outputs from the simNGames function. Remember in the discussion of functions

in Chapter 6, I said that parameters were used as function inputs, and return

values serve as function outputs. Given this analysis, we now know how the

next step of the algorithm can be coded:

def main():
printlntro ()
probA, probB, n = getlnputs()
winsA, winsB = simNGames(n, probA, probB)

Are you getting the hang of this? The last step is to print a report. If you told

your friend to type up the report, you would have to tell him how many wins

there were for each player; these values are inputs to the function. Here's the

complete program:

def main():
print!ntro ()

9.3. Top-Down Design

probA, probB, n = get!nputs()
winsA, winsB = simNGames(n, probA, probB)
printSummary(winsA, winsB)

That wasn't very hard. The main function is only five lines long, and the program

looks like a more precise formulation of the rough algorithm.

19.3.21 Separation of Concerns

Of course, the main function alone won't do very much; we've put off all of the

interesting details. In fact, you may think that we have not yet accomplished
anything at all, but that is far from true.

291

We have broken the original problem into four independent tasks: print!ntro,
get!nputs, simNGames and printSummary. Further, we have specified the name,

parameters, and expected return values of the functions that perform these

tasks. This information is called the interface or signature of a function.

Having signatures allows us to tackle pieces independently. For the purposes

of main, we don't care how simNGames does its job. The only concern is that,

when given the number of games to simulate and the two probabilities, it must

hand back the correct number of wins for each player. The main function only

cares what each (sub-)function does.

Our work so far can be represented as a structure chart (also called a module
hierarchy chart) . Figure 9.1 illustrates this. Each component in the design is a

rectangle. A line connecting two rectangles indicates that the one above uses
the one below. The arrows and annotations show the interfaces between the

components in terms of information flow.

At each level of a design, the interface tells us which details of the lower level

are important. Anything else can be ignored (for the moment). The general

process of determining the important characteristics of something and ignoring

other details is called abstraction. Abstraction is the fundamental tool of design.
You might view the entire process of top-down design as a systematic method

for discovering useful abstractions.

19.3.31 Second-Level Design

Now all we need to do is repeat the design process for each of the remaining

components. Let's take them in order. The print!ntro function should print

292 Chapter 9. Simulation and Design

main

printintro get Inputs simNGames print Summary

Figure 9.1: First-level structure chart for racquetball simulation

an introduction to the program. Let's compose a suitable sequence of print
statements:

def print!ntro():
print("This program simulates a game of racquetball between two")
print('players called "A" and "B". The ability of each player is')
print("indicated by a probability (a number between 0 and 1) that")
print("the player wins the point when serving. Player A always")
print("has the first serve. ")

Notice the second line. I put double quotes around 'W' and "B" so that the entire

string is enclosed in apostrophes. This function comprises only primitive Python
instructions. Since we didn't introduce any new functions, there is no change to

our structure chart.

Now let's tackle get!nputs. We need to prompt for and get three values,

which are returned to the main program. Again, this is simple to code:

def get!nputs():
Returns the three simulation parameters probA, probB and n
a - float(input("What is the prob. player A wins a serve? 11))
b = float(input("What is the prob. player B wins a serve? 11))
n = int(input(11How many games to simulate? "))
return a, b, n

Notice that I have taken some shortcuts with the variable names. Remember,

variables inside a function are local to that function. This function is so short,

it's very easy to see what the three values represent. The main concern here

9.3. Top-Down Design

is to make sure the values are returned in the correct order to match with the

interface we established between get Inputs and main.

19.3.41 Designing simNGames

Now that we are getting some experience with the top-down design technique,

we are ready to try our hand at the real problem, simNGames. This one requires
a bit more thought. The basic idea is to simulate n games and keep track of how

many wins there are for each player. Well, "simulate n games" sounds like a

counted loop, and tracking wins sounds like the job for a couple of accumulators.

Using our familiar patterns, we can piece together an algorithm:

Initialize winsA and winsB to 0
loop n times

simulate a game
if playerA wins

Add one to winsA
else

Add one to winsB

It's a pretty rough design, but then so was our top-level algorithm. We'll fill in

the details by turning it into Python code.

Remember, we already have the signature for our function:

def simNGames(n, probA, probB):
Simulates n games and returns winsA and winsB

We'll add to this by initializing the two accumulator variables and adding the

counted loop heading:

def simNGames(n, probA, probB):
Simulates n games and returns winsA and winsB
winsA = 0
winsB = 0
for i in range(n):

The next step in the algorithm calls for simulating a game of racquetball.

I'm not quite sure how to do that, so as usual, I'll put off the details. Let's just

assume there's a function called simOneGame to take care of this.

We need to figure out what the interface for this function will be. The inputs

for the function seem straightforward. In order to accurately simulate a game,

293

294 Chapter 9. Simulation and Design

we need to know what the probabilities are for each player. But what should the

output be? In the next step of the algorithm, we will need to know who won the

game. How do you know who won? Generally, you look at the final score.

Let's have simOneGame return the final scores for the two players. We can

update our structure chart to reflect these decisions. The result is shown in

Figure 9.2. Translating this structure into code yields this nearly completed

function:

def simNGames(n, probA, probB):
Simulates n games and returns winsA and winsB
winsA = 0
winsB = 0
for i in range(n):

scoreA, scoreB - simOneGame(probA, probB)

main

printintro get Inputs simNGames

probB
probA � t

scoreA
scoreB

simOneGame

print Summary

Figure 9.2: Second-level structure chart for racquetball simulation

Finally, we need to check the scores to see who won and update the appro­

priate accumulator. Here is the result:

def simNGames(n, probA, probB):
winsA = winsB = 0
for i in range(n):

9.3. Top-Down Design

scoreA, scoreB = simOneGame(probA, probB)
if scoreA > scoreB:

winsA - winsA + 1
else:

winsB = winsB + 1
return winsA, winsB

19.3.51 Third-Level Design

Everything seems to be coming together nicely. Let's keep working on the guts

of the simulation. The next obvious point of attack is simOneGame. Here's where

we actually have to code up the logic of the racquetball rules. Players keep

doing rallies until the game is over. That suggests some kind of indefinite loop

structure; we don't know how many rallies it will take before one of the players

gets to 15. The loop just keeps going until the game is over.

Along the way, we need to keep track of the score(s), and we also need to

know who is currently serving. The scores will probably just be a couple of int­

valued accumulators, but how do we keep track of who's serving? It's either

player A or player B. One approach is to use a string variable that stores either

"A" or "B". It's also an accumulator of sorts, but to update its value we just

switch it from one value to the other.

That's enough analysis to put together a rough algorithm. Let's try this:

Initialize scores to 0
Set serving to "A"
Loop while game is not over:

Simulate one serve of whichever player is serving
update the status of the game

Return scores

It's a start, at least. Clearly there's still some work to be done on this one.

We can quickly fill in the first couple of steps of the algorithm to get the

following:

def simOneGame(probA, probB):
scoreA = 0
scoreB = 0
serving = "A"
while <condition>:

295

296 Chapter 9. Simulation and Design

The question at this point is exactly what the condition will be. We need to

keep looping as long as the game is not over. We should be able to tell if the

game is over by looking at the scores. We discussed a number of possibilities

for this condition in the previous chapter, some of which were fairly complex.

Let's hide the details in another function, gameOver, that looks at the scores and

returns True if the game is over, and False if it is not. That gets us on to the

rest of the loop for now.

Figure 9.3 shows the structure chart with our new function. The code for

simOneGame now looks like this:

def simOneGame(probA, probB):
scoreA = 0
scoreB = 0
serving = "A"
while not gameOver(scoreA, scoreB):

main

winsB
��m

printintro get Inputs simNGames

probA l t sroreA
probB

scoreB

simOneGame

sroreA l
scoreB t truelfalse

game Over

printSummary

Figure 9.3: Third-level structure chart for racquetball simulation

9.3. Top-Down Design

Inside the loop, we need to do a single serve. Remember, we are going

to compare a random number to a probability in order to determine whether

the server wins the point (random() < prob). The correct probability to use

is determined by the value of serving. We will need a decision based on this
value. If A is serving, then we need to use .N.s probability, and, based on the

result of the serve, either update .N.s score or change the service to B. Here is the

code:

if serving == "A":
if random() < probA: # A wins the serve

scoreA = scoreA + 1
else: # A loses the serve

serving = "B"

Of course, if A is not serving, we need to do the same thing, only for B. We
just need to attach a mirror image else clause.

if serving == "A":
if random() < probA: # A wins the serve

scoreA = scoreA + 1
else: # A loses serve

serving - "B"
else:

if random() < probB: # B . the serve w1ns
scoreB = scoreB + 1

else: # B loses the serve
serving = "A"

That pretty much completes the function. It got a bit complicated, but seems

to reflect the rules of the simulation as they were laid out. Putting the function

together, here is the result:

def simOneGame(probA, probB):
scoreA = 0
scoreB = 0
serving = "A"
while not gameOver(scoreA, scoreB):

if serving == "A" :
if random() < probA:

scoreA = scoreA + 1

297

298 Chapter 9. Simulation and Design

else:
serving - "B"

else:
if random() < probB:

scoreB = scoreB + 1
else:

serving = "A"
return scoreA, scoreB

19.3.61 Finishing Up

Whew! We have just one more troublesome function left, game Over. Here is

what we know about it so far:

def gameOver(a,b):
a and b represent scores for a racquetball game
Returns True if the game is over, False otherwise.

According to the rules for our simulation, a game is over when either player

reaches a total of 15. We can check this with a simple Boolean condition.

def gameOver(a,b):
a and b represent scores for a racquetball game
Returns True if the game is over, False otherwise.
return a== 15 or b== 15

Notice how this function directly computes and returns the Boolean result all in

one step.

We've done it! Except for printSnmmary, the program is complete. Let's fill

in the missing details and call it a wrap. Here is the complete program from
start to finish:

rball.py
from random import random

def main():
printlntro ()
probA, probB, n = getlnputs()
winsA, winsB = simNGames(n, probA, probB)
printSummary(winsA, winsB)

9.3. Top-Down Design 299

def printlntro():
print("This program simulates a game of racquetball between two")
print('players called "A" and "B". The ability of each player is')
print("indicated by a probability (a number between 0 and 1) that")
print("the player wins the point when serving. Player A always")
print("has the first serve.")

def getlnputs():
Returns the three simulation parameters
a - float(input("What is the prob. player A wins a serve? "))
b = float(input("What is the prob. player B wins a serve? "))
n = int(input("How many games to simulate? "))
return a, b, n

def simNGames(n, probA, probB):
Simulates n games of racquetball between players whose
abilities are represented by the probability of winning a serve.
Returns number of wins for A and B
winsA = winsB = 0
for i in range(n):

scoreA, scoreB = simOneGame(probA, probB)
if scoreA > scoreB:

winsA - winsA + 1
else:

winsB = winsB + 1
return winsA, winsB

def simOneGame(probA, probB):
Simulates a single game or racquetball between players whose
abilities are represented by the probability of winning a serve.
Returns final scores for A and B
serving = "A"
scoreA = 0
scoreB = 0
while not gameOver(scoreA, scoreB):

if serving == "A" :
if random() < probA:

scoreA = scoreA + 1

300 Chapter 9. Simulation and Design

else:
serving - "B"

else:
if random() < probB:

scoreB = scoreB + 1
else:

serving = "A"
return scoreA, scoreB

def gameOver(a, b):
a and b represent scores for a racquetball game
Returns True if the game is over, False otherwise.
return a== 15 or b== 15

def printSummary(winsA, winsB):
Prints a summary of wins for each player.
n = winsA + winsB
print("\nGames simulated: ", n)
print("Wins for A: {0} ({1: 0.1%})".format(winsA, winsA/n))
print("Wins for B: {0} ({1: 0.1%})".format(winsB, winsB/n))

if __ name == ' __ main __ ' : main()

You might take notice of the string formatting in printSummary. The type spec­

ifier % is useful for printing percentages. Python automatically multiplies the

number by 100 and adds a trailing percent sign.

19.3. 71 Summary of the Design Process

You have just seen an example of top-down design in action. Now you can

really see why it's called top-down design. We started at the highest level of

our structure chart and worked our way down. At each level, we began with a

general algorithm and then gradually refined it into precise code. This approach

is sometimes called step-wise refinement. The whole process can be summarized

in four steps:

1. Express the algorithm as a series of smaller problems.

2. Develop an interface for each of the small problems.

9.4. Bottom-Up Implementation

3. Detail the algorithm by expressing it in terms of its interfaces with the

smaller problems.

4. Repeat the process for each smaller problem.

Top-down design is an invaluable tool for developing complex algorithms.

The process may seem easy, since I've walked you through it step by step.

When you first try it out for yourself, though, things probably won't go quite

so smoothly. Stay with it-the more you do it, the easier it will get. Initially,

you may think writing all of those functions is a lot of trouble. The truth is,

developing any sophisticated system is virtually impossible without a modular

approach. Keep at it, and soon expressing your own programs in terms of coop­

erating functions will become second nature.

19.41 Bottom-Up Implementation

Now that we've got a program in hand, your inclination might be to run off, type

the whole thing in, and give it a try. If you do that, the result will probably be

disappointment and frustration. Even though we have been very careful in our

design, there is no guarantee that we haven't introduced some silly errors. Even

if the code is flawless, you'll probably make some mistakes when you enter it.

Just as designing a program one piece at a time is easier than trying to tackle

the whole problem at once, implementation is best approached in small doses.

19.4.11 Unit Testing

A good way to approach the implementation of a modest -sized program is to

start at the lowest levels of the structure chart and work your way up, testing

each component as you complete it. Looking back at the structure chart for our

simulation, we could start with the gameOver function. Once this function is

typed into a module file, we can immediately import the file and test it. Here is

a sample session testing out just this function:

>>> gameOver(O,O)
False
>>> game0ver(5,10)
False
>>> game0ver(15,3)
True

301

302

>>> game0ver(3,15)
True

Chapter 9. Simulation and Design

I have selected test data that tries all the important cases for the function. The

first time it is called, the score will be 0 to 0. The function correctly responds

with False; the game is not over. As the game progresses, the function will be

called with intermediate scores. The second example shows that the function

again responded that the game is still in progress. The last two examples show

that the function correctly identifies that the game is over when either player

reaches 15.

Having confidence that gameOver is functioning correctly, now we can go

back and implement the simOneGame function. This function has some proba­

bilistic behavior, so I'm not sure exactly what the output will be. The best we

can do in testing it is to see that it behaves reasonably. Here is a sample session:

>>> simOneGame(. 5,. 5)
(13, 15)
>>> sim0neGame(. 5,. 5)
(15' 1 1)
>>> simOneGame(. 3,. 3)
(15, 1 1)
>>> sim0neGame(. 3,. 3)
(1 1' 15)
>>> simOneGame(. 4,. 9)
(4, 15)
>>> sim0neGame(. 4,. 9)
(1' 15)
>>> sim0neGame(. 9,. 4)
(15' 3)
>>> sim0neGame(. 9,. 4)
(15, 0)
>>> sim0neGame(. 4,. 6)
(9' 15)
>>> simOneGame(. 4,. 6)
(6' 15)

Notice that when the probabilities are equal, the scores are close. When the

probabilities are farther apart, the game is a rout. That squares with how we

think this function should behave.

9.4. Bottom-Up Implementation

We can continue this piecewise implementation, testing out each component

as we add it into the code. Software engineers call this process unit testing.
Testing each function independently makes it easier to spot errors. By the time

you get around to testing the entire program, chances are that everything will

work smoothly.

Separating concerns through a modular design makes it possible to design

sophisticated programs. Separating concerns through unit testing makes it pos­

sible to implement and debug sophisticated programs. Try these techniques for

yourself, and you'll see that you are getting your programs working with less

overall effort and far less frustration.

19.4.21 Simulation Results

Finally, we can take a look at Denny Dibblebit's question. Is it the nature of

racquetball that small differences in ability lead to large differences in the out­

come? Suppose Denny wins about 60o/o of his serves and his opponent is 5%

better. How often should Denny win the game? Here's an example run where

Denny's opponent always serves first:

This program simulates a game of racquetball between two
players called "A" and "B". The ability of each player is
indicated by a probability (a number between 0 and 1) that
the player wins the point when serving. Player A always
has the first serve.

What is the prob. player A wins a serve? .65
What is the prob. player B wins a serve? .6
How many games to simulate? 5000

Games simulated: 5000
Wins for A: 3360 (67.2%)
Wins for B: 1640 (32.8%)

Even though there is only a small difference in ability, Denny should win only

about one in three games. His chances of winning a three- or five-game match

are pretty slim. Apparently, Denny is winning his share. He should skip the

shrink and work harder on his game.

Speaking of matches, expanding this program to compute the probability of

winning multi-game matches would be a great exercise. Why don't you give it a

try?

303

304 Chapter 9. Simulation and Design

19.51 Other Design Techniques

Top-down design is a very powerful technique for program design, but it is not

the only way to go about creating a program. Sometimes you may get stuck at

a step and not know how to go about refining it. Or the original specification

might be so complicated that refining it level by level is just too daunting.

19.5.11 Prototyping and Spiral Development

Another approach to design is to start with a simple version of a program or

program component and then try to gradually add features until it meets the full

specification. The initial stripped-down version is called a prototype. Prototyping

often leads to a sort of spiral development process. Rather than taking the

entire problem and proceeding through specification, design, implementation,

and testing, we first design, implement, and test a prototype. Then new features

are designed, implemented, and tested. We make many mini-cycles through the

development process as the prototype is incrementally expanded into the final

program.

As an example, consider how we might have approached the racquetball

simulation. The very essence of the problem is simulating a game of racquetball.

We might have started with just the simOneGame function. Simplifying even

further, our prototype could assume that each player has a 50-50 chance of

winning any given point and just play a series of 30 rallies. That leaves the crux

of the problem, which is handling the awarding of points and change of service.

Here is an example prototype:

from random import random

def simOneGame():
scoreA = 0

scoreB = 0

serving = "A"
for i in range(30):

if serving == "A" :
if random() < .5:

scoreA = scoreA + 1
else:

serving = "B"
else:

9.5. Other Design Techniques

if random() < .5:
scoreB = scoreB + 1

else:
serving = "A"

print(scoreA, scoreB)

if __ name __ == ' __ main __ ' : simOneGame()

You can see that I have added a print statement at the bottom of the loop.

Printing out the scores as we go along allows us to see that the prototype is

playing a game. Here is some example output:

1 0

1 0

2 0

• • •

7 7
7 8

It's not pretty, but it shows that we have gotten the scoring and change of service

working.

We could then work on augmenting the program in phases. Here's a project

plan:

Phase 1 Initial prototype. Play 30 rallies where the server always has a 50%

chance of winning. Print out the scores after each serve.

Phase 2 Add two parameters to represent different probabilities for the two

players.

Phase 3 Play the game until one of the players reaches 15 points. At this point,

we have a working simulation of a single game.

Phase 4 Expand to play multiple games. The output is the count of games won

by each player.

Phase 5 Build the complete program. Add interactive inputs and a nicely for­

matted report of the results.

Spiral development is particularly useful when dealing with new or unfamil­

iar features or technologies. It's helpful to "get your hands dirty'' with a quick

prototype just to see what you can do. As a novice programmer, everything may

seem new to you, so prototyping might prove useful. If full-blown top-down

design does not seem to be working for you, try some spiral development.

305

306 Chapter 9. Simulation and Design

19.5.21 The Art of Design

It is important to note that spiral development is not an alternative to top-down

design. Rather, they are complementary approaches. When designing the pro­

totype, you will still use top-down techniques. In Chapter 12, you will see yet

another approach called object -oriented design.

There is no "one true way'' of design. The truth is that good design is as

much a creative process as a science. Designs can be meticulously analyzed

after the fact, but there are no hard-and-fast rules for producing a design. The

best software designers seem to employ a variety of techniques. You can learn

about techniques by reading books like this one, but books can't teach how and

when to apply them. That you have to learn for yourself through experience. In

design, as in almost anything, the key to success is practice.

19.61 Chapter Summary

• Computer simulation is a powerful technique for answering questions about

real-world processes. Simulation techniques that rely on probabilistic or

chance events are known as Monte Carlo simulations. Computers use

pseudo-random numbers to perform Monte Carlo simulations.

• Top-down design is a technique for designing complex programs. The
basic steps are:

1. Express an algorithm in terms of smaller problems.

2. Develop an interface for each of the smaller problems.

3. Express the algorithm in terms of its interfaces with the smaller prob­

lems.

4. Repeat the process for each of the smaller problems.

• Top-down design was illustrated by the development of a program to sim­

ulate the game of racquetball.

• Unit-testing is the process of trying out each component of a larger pro­

gram independently. Unit-testing and bottom-up implementation are use­

ful in coding complex programs.

• Spiral development is the process of first creating a simple version (pro­

totype) of a complex program and gradually adding features. Prototyping

9.7. Exercises

and spiral development are often useful in conjunction with top-down de-
•

sign.

• Design is a combination of art and science. Practice is the best way to

become a better designer.

19.71 Exercises

Review Questions

True/False

1. Computers can generate truly random numbers.

2. The Python random function returns a pseudo-random int.

3. Top-down design is also called stepwise refinement.

4. In top-down design, the main algorithm is written in terms of functions

that don't yet exist.

5. The main function is at the top of a functional structure chart.

6. A top-down design is best implemented from the top down.

7. Unit-testing is the process of trying out a component of a larger program

in isolation.

8. A developer should use either top-down or spiral design, but not both.

9. Reading design books alone will make you a great designer.

10. A simplified version of a program is called a simulation.

Multiple Choice

1. Which expression is true approximately 66% of the time?
a) random () >= 66 b) random () < 66
c) random() < 0 . 66 d) random() >= 0 . 66

307

308 Chapter 9. Simulation and Design

2. Which of the following is not a step in pure top-down design?
a) Repeat the process on smaller problems.

b) Detail the algorithm in terms of its interfaces with smaller problems.

c) Construct a simplified prototype of the system.

d) Express the algorithm in terms of smaller problems.

3. A graphical view of the dependencies among components of a design is

called a(n)

a) flowchart b) prototype c) interface d) structure chart

4. The arrows in a module hierarchy chart depict
a) information flow b) control flow

c) sticky-note attachment d) one-way streets

5. In top-down design, the subcomponents of the design are

a) objects b) loops c) functions d) programs

6. A simulation that uses probabilistic events is called

a) Monte Carlo b) pseudo-random c) Monty Python d) chaotic

7. The initial version of a system used in spiral development is called a

a) starter kit b) prototype c) mock-up d) beta-version

8. In the racquetball simulation, what data type is returned by the gameOver
function?

a) bool b) int c) string d) float

9. How is a percent sign indicated in a string-formatting template?

a) % b) \% c) %% d) \%%

10. The easiest place in a system structure to start unit-testing is

a) the top b) the bottom c) the middle d) the main function

Discussion

1. Draw the top levels of a structure chart for a program having the following

main function:

def main():
print!ntro()
length, width = getDimensions()
amtNeeded = computeAmount(length,width)
printReport(length, width, amtNeeded)

9.7. Exercises

2. Write an expression using either random or randrange to calculate the

following:

a) A random int in the range 0-10

b) A random float in the range -0.5-0.5

c) A random number representing the roll of a six-sided die

d) A random number representing the sum resulting from rolling two

six-sided dice

e) A random float in the range -10.0-10.0

3. In your own words, describe what factors might lead a designer to choose

spiral development over a top-down approach.

Programming Exercises

1. Revise the racquetball simulation so that it computes the results for best

of n game matches. First service alternates, so player A serves first in the

odd games of the match, and player B serves first in the even games.

2. Revise the racquetball simulation to take shutouts into account. Your up­

dated version should report for both players the number of wins, percent­

age of wins, number of shutouts, and percentage of wins that are shutouts.

3. Design and implement a simulation of the game of volleyball. Normal

volleyball is played like racquetball in that a team can only score points

when it is serving. Games are played to 15, but must be won by at least

two points.

4. Most sanctioned volleyball is now played using rally scoring. In this sys­

tem, the team that wins a rally is awarded a point, even if they were not

the serving team. Games are played to a score of 25. Design and imple­

ment a simulation of volleyball using rally scoring.

5. Design and implement a system that compares regular volleyball games

to those using rally scoring. Your program should be able to investigate

whether rally scoring magnifies, reduces, or has no effect on the relative

advantage enjoyed by the better team.

6. Design and implement a simulation of some other racquet sport (e.g., ten­

nis or table tennis).

309

310 Chapter 9. Simulation and Design

7. Craps is a dice game played at many casinos. A player rolls a pair of normal

six-sided dice. If the initial roll is 2, 3, or 12, the player loses. If the roll is

7 or 11, the player wins. Any other initial roll causes the player to "roll for

point." That is, the player keeps rolling the dice until either rolling a 7 or

re-rolling the value of the initial roll. If the player re-rolls the initial value

before rolling a 7, it's a win. Rolling a 7 first is a loss.

Write a program to simulate multiple games of craps and estimate the

probability that the player wins. For example, if the player wins 249 out of

500 games, then the estimated probability of winning is 249/500 = 0.498.

8. Blackjack (twenty-one) is a casino game played with cards. The goal of the

game is to draw cards that total as close to 21 points as possible without

going over. All face cards count as 10 points, aces count as 1 or 11, and all

other cards count their numeric value.

The game is played against a dealer. The player tries to get closer to

21 (without going over) than the dealer. If the dealer busts (goes over

21), the player automatically wins (provided the player had not already

busted). The dealer must always take cards according to a fixed set of

rules. The dealer takes cards until he or she achieves a total of at least

17. If the dealer's hand contains an ace, it will be counted as 11 when

that results in a total between 17 and 21 inclusive; otherwise, the ace is

counted as 1.

Write a program that simulates multiple games of blackjack and esti­

mates the probability that the dealer will bust. Hints: Treat the deck of

cards as infinite (casinos use a "shoe" containing many decks). You do not

need to keep track of the cards in the hand, just the total so far (treat­

ing an ace as 1) and a bool variable hasAce that tells whether or not the

hand contains an ace. A hand containing an ace should have 10 points

added to the total exactly when doing so would produce a stopping total

(something between 17 and 21 inclusive).

9. A blackjack dealer always starts with one card showing. It would be useful

for a player to know the dealer's bust probability (see previous problem)

for each possible starting value. Write a simulation program that runs

multiple hands of blackjack for each possible starting value (ace-10) and

estimates the probability that the dealer busts for each starting value.

10. Monte Carlo techniques can be used to estimate the value of pi. Suppose

you have a round dartboard that just fits inside of a square cabinet. If

9.7. Exercises

you throw darts randomly, the proportion that hit the dartboard vs. those

that hit the cabinet (in the corners not covered by the board) will be de­

termined by the relative area of the dartboard and the cabinet. If n is the

total number of darts randomly thrown (that land within the confines of

the cabinet), and h is the number that hit the board, it is easy to show that

h
1r � 4(-)

n

Write a program that accepts the "number of darts" as an input and
then performs a simulation to estimate 1r. Hint: You can use 2*random ()
- 1 to generate the x and y coordinates of a random point inside a 2x2

square centered at (0, 0) . The point lies inside the inscribed circle if x2 +
y2 < 1.

11. Write a program that performs a simulation to estimate the probability of

rolling five of a kind in a single roll of five six-sided dice.

12. A random walk is a particular kind of probabilistic simulation that models

certain statistical systems such as the Brownian motion of molecules. You

can think of a one-dimensional random walk in terms of coin flipping.

Suppose you are standing on a very long straight sidewalk that extends

both in front of and behind you. You flip a coin. If it comes up heads, you

take a step forward; tails means to take a step backward.

Suppose you take a random walk of n steps. On average, how many

steps away from the starting point will you end up? Write a program to

help you investigate this question.

13. Suppose you are doing a random walk (see previous problem) on the

blocks of a city street. At each "step" you choose to walk one block (at

random) either forward, backward, left or right. In n steps, how far do

you expect to be from your starting point? Write a program to help an­

swer this question.

14. Write a graphical program to trace a random walk (see previous two prob­

lems) in two dimensions. In this simulation you should allow the step to

be taken in any direction. You can generate a random direction as an angle

off of the x axis.

angle = random() * 2 * math.pi

311

312 Chapter 9. Simulation and Design

The new x and y positions are then given by these formulas:

x = x + cos(angle)
y = y + sin(angle)

The program should take the number of steps as an input. Start your

walker at the center of a lOOxlOO grid and draw a line that traces the walk

as it progresses.

15. (Advanced) Here is a puzzle problem that can be solved with either some

fancy analytic geometry (calculus) or a (relatively) simple simulation.

Suppose you are located at the exact center of a cube. If you could look

all around you in every direction, each wall of the cube would occupy �
of your field of vision. Suppose you move toward one of the walls so that
you are now halfway between it and the center of the cube. What fraction

of your field of vision is now taken up by the closest wall? Hint: Use a

Monte Carlo simulation that repeatedly "looks" in a random direction and

counts how many times it sees the wall.

Chapter 10 Defining Classes

Objectives

• To appreciate how defining new classes can provide structure for a com­
plex program.

• To be able to read and write Python class definitions.

• To understand the concept of encapsulation and how it contributes to
building modular and maintainable programs.

• To be able to write programs involving simple class definitions.

• To be able to write interactive graphics programs involving novel (programmer­
designed) widgets.

ltO .ll Quick Review of Objects

In the last three chapters, we have developed techniques for structuring the
computations of a program. In the next few chapters, we will take a look at
techniques for structuring the data that our programs use. You already know
that objects are one important tool for managing complex data. So far, our
programs have made use of objects created from pre-defined classes such as
Circle. In this chapter, you will learn how to write new classes of your own.

Remember back in Chapter 4 I defined an object as an active data type that
knows stuff and can do stuff. More precisely, an object consists of

1 . A collection of related information.

2. A set of operations to manipulate that information.

313

314 Cha pter 10. Defin ing Classes

The information is stored inside the object in instance variables. The operations,
called methods, are functions that "live" inside the object. Collectively, the in­
stance variables and methods are called the attributes of an object.

To take a now-familiar example, a Circle object will have instance variables
such as center, which remembers the center point of the circle, and radius,

which stores the length of the circle's radius. The methods of the circle will
need this data to perform actions. The draw method examines the center and
radius to decide which pixels in a window should be colored. The move method
will change the value of center to reflect the new position of the circle.

Recall that every object is said to be an instance of some class. The class of
the object determines what attributes the object will have. Basically a class is
a description of what its instances will know and do. New objects are created
from a class by invoking a constructor. You can think of the class itself as a sort
of factory for creating new instances.

Consider making a new circle object:

myCircle = Circle (Point (O , O) , 20)

Circle, the name of the class, is used to invoke the constructor. This state­
ment creates a new Circle instance and stores a reference to it in the variable
myCircle. The parameters to the constructor are used to initialize some of the
instance variables (namely center and radius) inside myCircle. Once the in­
stance has been created, it is manipulated by calling on its methods:

myCircle.draw (win)

myCircle.move (dx , dy)

• • •

110.21 Example Program: Cannonball

Before launching into a detailed discussion of how to write your own classes,
let's take a short detour to see how useful new classes can be.

110.2.11 Program Specification

Suppose we want to write a program that simulates the flight of a cannonball (or
any other projectile such as a bullet, baseball, or shot put) . We are particularly
interested in finding out how far the cannonball will travel when fired at various
launch angles and initial velocities. The input to the program will be the launch

10.2. Exam ple Progra m: Ca nnonbal l

angle (in degrees) , the initial velocity (in meters per second), and the initial
height (in meters) of the cannonball. The output will be the distance that the
projectile travels before striking the ground (in meters) .

If we ignore the effects of wind resistance and assume that the cannonball
stays close to earth's surface (i.e., we're not trying to put it into orbit), this is
a relatively simple classical physics problem. The acceleration of gravity near
the earth's surface is about 9.8 meters per second, per second. That means if an
object is thrown upward at a speed of 20 meters per second, after one second
has passed, its upward speed will have slowed to 20- 9.8 = 10.2 meters per
second. After another second, the speed will be only 0.4 meters per second, and
shortly thereafter it will start coming back down.

For those who know a little bit of calculus, it's not hard to derive a for­
mula that gives the position of our cannonball at any given moment in its flight.
Rather than take the calculus approach, however, our program will use simu­
lation to track the cannonball moment by moment. Using just a bit of simple
trigonometry to get started, along with the obvious relationship that the dis­
tance an object travels in a given amount of time is equal to its rate times the
amount of time (d = rt), we can solve this problem algorithmically.

110.2.21 Designing the Program

Let's start by designing an algorithm. Given the problem statement, it's clear
that we need to consider the flight of the cannonball in two dimensions: height,
so we know when it hits the ground; and distance, to keep track of how far it
goes. We can think of the position of the cannonball as a point (x, y) in a 2D
graph where the value of y gives the height above the ground and the value of
x gives the distance from the starting point.

Our simulation will have to update the position of the cannonball to account
for its flight. Suppose the ball starts at position (0, 0), and we want to check its
position, say, every tenth of a second. In that interval, it will have moved some
distance upward (positive y) and some distance forward (positive x). The exact
distance in each dimension is determined by its velocity in that direction.

Separating out the x and y components of the velocity makes the problem
easier. Since we are ignoring wind resistance, the x velocity remains constant for
the entire flight. However, the y velocity changes over time due to the influence
of gravity. In fact, the y velocity will start out being positive and then become
negative as the cannonball starts back down.

Given this analysis, it's pretty clear what our simulation will have to do. Here

315

316 Cha pter 10. Defin ing Classes

is a rough outline:

input the simulation parameters: angle , velocity , height , interval

calculate the initial position of the cannonball: xpos , ypos

calculate the initial velocities of the cannonball: xvel , yvel

while the cannonball is still flying:

update the values of xpos , ypos , and yvel for interval seconds

further into the flight

output the distance traveled as xpos

Let's turn this into a program using stepwise refinement.
The first line of the algorithm is straightforward. We just need an appropriate

sequence of input statements. Here's a start:

def main ():

angle = float (input ("Enter the launch angle (in degrees): "))

vel = float (input ("Enter the initial velocity (in meters/sec): "))

hO = float (input ("Enter the initial height (in meters): "))

time = float (input (

"Enter the time interval between position calculations: "))

Calculating the initial position for the cannonball is also easy. It will start at
distance 0 and height hO. We just need a couple of assignment statements:

xpos - 0.0

ypos - hO

Next we need to calculate the x andy components of the initial velocity. We'll
need a little high-school trigonometry. (See, they told you you'd use that some
day.) If we consider the initial velocity as consisting of some amount of change
in y and some amount of change in x, then these three components (velocity,
x velocity andy velocity) form a right triangle. Figure 10.1 illustrates the situ­
ation. If we know the magnitude of the velocity and the launch angle (labeled
theta, because the Greek letter(} is often used as the measure of angles), we can
easily calculate the magnitude of xvel by the equation xvel = velocity cos theta.
A similar formula (using sin theta) provides yvel.

Even if you don't completely understand the trigonometry, the important
thing is that we can translate these formulas into Python code. There's still one
subtle issue to consider. Our input angle is in degrees, and the Python math

library uses radian measures. We'll have to convert our angle before applying
the formulas. There are 21r radians in a circle (360 degrees), so theta= 7r*f;gze.

10.2. Exam ple Progra m: Ca nnonbal l

(.\\.'J I

�e\O 1 yvel =velocity* sin(theta)
I _t�e� ___ [i

xvel = velocity* cos(theta)
Figure 10.1: Finding the x and y components of velocity

This is such a common conversion that the math library provides a convenient
function called radians that does this computation. These three formulas give
us the code for computing the initial velocities:

theta = math.radians (angle)

xvel = velocity * math.cos (theta)

yvel = velocity * math.sin (theta)

That brings us to the main loop in our program. We want to keep updating
the position and velocity of the cannonball until it reaches the ground. We can
do this by examining the value of ypos:

while ypos > = 0.0:

I used >= as the relationship so that we can start with the cannonball on the
ground (= 0) and still get the loop going. The loop will quit as soon as the value
of ypos dips just below 0, indicating the cannonball has embedded itself slightly
in the ground.

Now we arrive at the crux of the simulation. Each time we go through the
loop, we want to update the state of the cannonball to move it time seconds far­
ther in its flight. Let's start by considering movement in the horizontal direction.
Since our specification says that we can ignore wind resistance, the horizontal
speed of the cannonball will remain constant and is given by the value of xvel.

As a concrete example, suppose the ball is traveling at 30 meters per second
and is currently 50 meters from the firing point. In another second, it will go
30 more meters and be 80 meters from the firing point. If the interval is only
0.1 second (rather than a full second), then the cannonball will only fly another
0.1(30) = 3 meters and be at a distance of 53 meters. You can see that the
distance traveled is always given by time * xvel. To update the horizontal
position, we need just one statement:

317

318 Cha pter 10. Defin ing Classes

xpos = xpos + time * xvel

The situation for the vertical component is slightly more complicated, since
gravity causes they velocity to change over time. Each second, yvel must de­
crease by 9.8 meters per second, the acceleration of gravity. In 0.1 seconds the
velocity will decrease by 0.1(9.8) = 0.98 meters per second. The new velocity at
the end of the interval is calculated as

yvel1 = yvel - time * 9 . 8

To calculate how far the cannonball travels during this interval, we need
to know its average vertical velocity. Since the acceleration due to gravity is
constant, the average velocity will just be the average of the starting and ending
velocities: (yvel +yvel1) /2 . 0. Multiplying this average velocity by the amount
of time in the interval gives us the change in height.

Here is the completed loop:

while ypos > = 0 . 0:

xpos = xpos + time * xvel

yvel1 = yvel - time * 9 . 8

ypos - ypos + time * (yvel + yvell)/2 . 0

yvel = yvel1

Notice how the velocity at the end of the time interval is first stored in the
temporary variable yvel1. This is done to preserve the initial yvel so that the
average velocity can be computed from the two values. Finally, the value of
yvel is assigned its new value at the end of the loop. This represents the correct
vertical velocity of the cannonball at the end of the interval.

The last step of our program simply outputs the distance traveled. Adding
this step gives us the complete program:

cball1 . py

from math import sin , cos , radians

def main ():

angle = float (input ("Enter the launch angle (in degrees): "))

vel = float (input ("Enter the initial velocity (in meters/sec): "))

hO = float (input ("Enter the initial height (in meters): "))

time = float (input (

"Enter the time interval between position calculations: "))

10.2. Exam ple Progra m: Ca nnonbal l

convert angle to radians

theta = radians (angle)

319

set the initial position and velocities in x and y directions

xpos - 0

ypos - hO

xvel - vel * cos (theta)

yvel - vel * sin (theta)

loop until the ball hits the ground

while ypos > = 0.0:

calculate position and velocity in time seconds

xpos = xpos + time * xvel

yvel1 = yvel - time * 9.8

ypos - ypos + time * (yvel + yvel1)/2.0

yvel = yvel1

print ("\nDistance traveled: {0: 0.1f} meters.".format (xpos))

lt0.2.3l Modularizing the Program

You may have noticed during the design discussion that I employed stepwise
refinement (top-down design) to develop the program, but I did not divide the
program into separate functions. We are going to modularize the program in
two different ways. First, we'll use functions (a la top-down design) .

While the final program is not too long, it is fairly complex for its length.
One cause of the complexity is that it uses ten variables, and that is a lot for the
reader to keep track of. Let's try dividing the program into functional pieces to
see if that helps. Here's a version of the main algorithm using helper functions:

def main():

angle, vel, hO, time = getinputs()

xpos, ypos = 0, hO

xvel, yvel = getXYComponents(vel, angle)

while ypos >= 0:

xpos, ypos, yvel = updateCannonBall(time, xpos, ypos, xvel, yvel)

print("\nDistance traveled: {0:0.1f} meters.".format(xpos))

It should be obvious what each of these functions does based on their names
and the original program code. You might take a couple of minutes to code the
three helper functions.

320 Cha pter 10. Defin ing Classes

This second version of the main algorithm is certainly more concise. The
number of variables has been reduced to eight, since theta and yvel1 have been
eliminated from the main algorithm. Do you see where they went? The value
of theta is only needed locally inside of getXYComponents. Similarly, yvel1 is
now local to updateCannonBall. Being able to hide some of the intermediate
variables is a major benefit of the separation of concerns provided by top-down
design.

Even this version seems overly complicated. Look especially at the loop.
Keeping track of the state of the cannonball requires four pieces of information,
three of which must change from moment to moment. All four variables along
with the value of time are needed to compute the new values of the three that
change. That results in an ugly function call having five parameters and three
return values. An explosion of parameters is often an indication that there might
be a better way to organize a program. Let's try another approach.

The original problem specification itself suggests a better way to look at the
variables in our program. There is a single real-world cannonball object, but
describing it in the current program requires four pieces of information: xpos,

ypos, xvel, and yvel. Suppose we had a Projectile class that "understood"
the physics of objects like cannonballs. Using such a class, we could express the
main algorithm in terms of creating and updating a suitable object using a single
variable. With this object-based approach, we might write main like this:

def main ():

angle , vel , hO , time = get!nputs ()

cball = Projectile (angle , vel , hO)

while cball.getY () > = 0:

cball.update (time)

print ("\nDistance traveled: {0: 0 .if} meters.". format (cball.getXO))

Obviously, this is a much simpler and more direct expression of the algorithm.
The initial values of angle, vel, and hO are used as parameters to create a
Projectile called cball. Each time through the loop, cball is asked to update
its state to account for time. We can get the position of cball at any moment
by using its getX and getY methods. To make this work, we just need to define
a suitable Projectile class that implements the methods update, getX, and
getY.

10.3. Defin i ng New Classes

lt0.3l Defining New Classes

Before designing a Projectile class, let's take an even simpler example to ex­
amine the basic ideas.

ltO.J.ll Example: Multi-sided Dice

You know that a normal die (the singular of dice) is a cube, and each face shows
a number from one to six. Some games employ nonstandard dice that may have
fewer (e.g., four) or more (e.g., thirteen) sides. Let's design a general class
MSDie to model multi-sided dice. We could use such an object in any number of
simulation or game programs.

Each MSDie object will know two things:

1 . How many sides it has.

2. Its current value.

When a new MSDie is created, we specify how many sides it will have, n. We
can then operate on the die through three provided methods: roll, to set the
die to a random value between 1 and n, inclusive; set Value, to set the die to a
specific value (i.e., cheat); and getValue, to see what the current value is.

Here is an interactive example showing what our class will do:

> > > die1 = MSDie (6)

> > > die1. get Value ()

1

> > > die1.roll ()

> > > die1.getValue ()

4

> > > die2 = MSDie (13)

> > > die2. get Value ()

1

> > > die2. roll ()

> > > die2.getValue ()

12

> > > die2.setValue (8)

> > > die2.getValue ()

8

321

322 Cha pter 10. Defin ing Classes

Do you see how this might be useful? I can define any number of dice having
arbitrary numbers of sides. Each die can be rolled independently and will always
produce a random value in the proper range determined by the number of sides.

Using our object-oriented terminology, we create a die by invoking the MSDie

constructor and providing the number of sides as a parameter. Our die object
will keep track of this number internally using an instance variable. Another
instance variable will be used to store the current value of the die. Initially, the
value of the die will be set to be 1, since that is a legal value for any die. The
value can be changed by the roll and setValue methods and returned from
the getValue method.

Writing a definition for the MSDie class is really quite simple. A class is a col­
lection of methods, and methods are just functions. Here is the class definition
for MSDie:

msdie.py

Class definition for an n-sided die.

from random import randrange

class MSDie:

def __ init __ (self , sides):

self.sides- sides

self.value = 1

def roll (self):

self.value = randrange (1, self.sides+1)

def getValue (self):

return self.value

def setValue (self , value):

self.value =value

As you can see, a class definition has a simple form:

class <class-name> :

<method-definitions>

Each method definition looks like a normal function definition. Placing the

10.3. Defin i ng New Classes

function inside a class makes it a method of that class, rather than a stand­
alone function.

Let's take a look at the three methods defined in this class. You'll notice that
each method has a first parameter named self. The first parameter of a method
is special-it always contains a reference to the object on which the method is
acting. As usual, you can use any name you want for this parameter, but the
traditional name is self, so that is what I will always use.

An example might be helpful in making sense of self. Suppose we have a
main function that executes die! . set Value (8). A method invocation is a func­
tion call. Just as in normal function calls, Python executes a four-step sequence:

1 . The calling program (main) suspends at the point of the method applica­
tion. Python locates the appropriate method definition inside the class of
the object to which the method is being applied. In this case, control is
transferring to the setValue method in the MSDie class, since die! is an
instance of MSDie.

2. The formal parameters of the method get assigned the values supplied by
the actual parameters of the call. In the case of a method call, the first
formal parameter corresponds to the object. In our example, it is as if the
following assignments are done before executing the method body:

self = die!

value = 8

3. The body of the method is executed.

4. Control returns to the point just after where the method was called, in this
case, the statement immediately following die! . set Value (8).

Figure 10.2 illustrates the method-calling sequence for this example. No­
tice how the method is called with one parameter (the value) , but the method
definition has two parameters, due to self. Generally speaking, we would say
setValue requires one parameter. The self parameter in the definition is a
bookkeeping detail. Some languages do this implicitly; Python requires us to
add the extra parameter. To avoid confusion, I will always refer to the first
formal parameter of a method as the self parameter and any others as normal

parameters. So I would say set Value uses one normal parameter.

323

324 Cha pter 10. Defin ing Classes

class MSDie:
def main():

diel = MSDie(12) self=diel; value=S d:f setValue(self,value)
die 1 . set Value (8) _...::.::.==-..==.;=.=..!._..:..::::.=..=.:......:��, self . value = value
print(diel.getValue())

Figure 10.2: Flow of control in call: die1 . set Value (8)

OK, so self is a parameter that represents an object. But what exactly can
we do with it? The main thing to remember is that objects contain their own
data. Conceptually, instance variables provide a way to remember data inside
an object. Just as with regular variables, instance variables are accessed by
name. We can use our familiar dot notation: <object>.<instance-var>. Look
at the definition of set Value; self . value refers to the instance variable value

that is associated with the object. Each instance of a class has its own instance
variables, so each MSDie object has its very own value.

Certain methods in a class have special meaning to Python. These meth­
ods have names that begin and end with two underscores. The special method

__ ini t __ is the object constructor. Python calls this method to initialize a new
MSDie. The role of __ ini t __ is to provide initial values for the instance variables
of an object. From outside the class, the constructor is called by the class name.

die1 = MSDie (6)

This statement causes Python to create a new MSDie and execute __ init __ on
that object. The net result is that die1 . sides is 6 and die1 . value is 1 .

The power of instance variables is that we can use them to remember the
state of a particular object, and this information then gets passed around the
program as part of the object. The values of instance variables can be referred
to again in other methods or even in successive calls to the same method. This
is different from regular local function variables, whose values disappear once
the function terminates.

Here is a simple illustration:

> > > die1 = Die (13)

> > > print (die1 . getValue ())

1

> > > die1 . setValue (8)

> > > print (die1 . getValue ())

8

10.3. Defin i ng New Classes

The call to the constructor sets the instance variable die1. value to 1 . The next
line prints out this value. The value set by the constructor persists as part of the
object, even though the constructor is over and done with. Similarly, executing
die1. set Value (8) changes the object by setting its value to 8. When the object
is asked for its value the next time, it responds with 8.

That's just about all there is to know about defining new classes in Python.
Now it's time to put this new knowledge to use.

110.3.21 Example: The Projectile Class

Returning to the cannonball example, we want a class that can represent projec­
tiles. This class will need a constructor to initialize instance variables, an update

method to change the state of the projectile, and getX and getY methods so that
we can find the current position.

Let's start with the constructor. In the main program, we will create a can­
nonball from the initial angle, velocity and height:

cball = Projectile (angle , vel , hO)

The Projectile class must have an __ init __ method that uses these values to
initialize the instance variables of cball. But what should the instance variables
be? Of course, they will be the four pieces of information that characterize the
flight of the cannonball: xpos, ypos, xvel, and yvel. We will calculate these
values using the same formulas that were in the original program.

Here is how our class looks with the constructor:

class Projectile:

def __ init __ (self , angle , velocity , height):

self.xpos = 0.0

self.ypos =height

theta = math.radians (angle)

self.xvel =velocity* math.cos (theta)

self.yvel =velocity* math.sin (theta)

Notice how we have created four instance variables inside the object using the
self dot notation. The value of theta is not needed after __ ini t __ terminates,
so it is just a normal (local) function variable.

The methods for accessing the position of our projectiles are straightforward;
the current position is given by the instance variables xpos and ypos. We just
need a couple of methods that return these values.

325

326 Cha pter 10. Defin ing Classes

def getX (self):

return self . xpos

def getY (self):

return self . ypos

Finally, we come to the update method. This method takes a single normal
parameter that represents an interval of time. We need to update the state of
the projectile to account for the passage of that much time. Here's the code:

def update (self , time):

self . xpos = self . xpos + time * self . xvel

yvel1 = self . yvel - time* 9.8

self . ypos- self . ypos + time * (self . yvel + yvel1)/2 . 0

self . yvel = yvel1

Basically, this is the same code that we used in the original program updated
to use and modify instance variables. Notice the use of yvel1 as a temporary
(ordinary) variable. This new value is saved by storing it into the object in the
last line of the method.

That completes our projectile class. We now have a complete object-based
solution to the cannonball problem:

cball3 . py

from math import sin , cos , radians

class Projectile:

def __ init __ (self , angle , velocity , height):

self . xpos = 0 . 0

self . ypos =height

theta = radians (angle)

self . xvel- velocity* cos (theta)

self . yvel =velocity* sin (theta)

def update (self , time):

self . xpos = self . xpos + time * self . xvel

yvel1 = self . yvel - 9.8 * time

self . ypos - self . ypos + time * (self . yvel + yvel1) I 2 . 0

self . yvel = yvel1

def

10.4. Data Processing with Class

def getY (self):

return self.ypos

def getX (self):

return self.xpos

getlnputs ():

327

a = float (input ("Enter

v = float (input ("Enter

h = float (input ("Enter

the

the

the

launch angle (in degrees): "))

initial velocity (in meters/sec): "))

initial height (in meters): "))

t = float (input (

"Enter the time interval between position calculations: "))

return a , v , h , t

def main ():

angle , vel , hO , time = getlnputs ()

cball = Projectile (angle , vel , hO)

while cball.getY () > = 0:

cball.update (time)

print ("\nDistance traveled: {0: 0 .if} meters.". format (cball.getXO))

lt0.41 Data Processing with Class

The projectile example shows how useful a class can be for modeling a real­
world object that has complex behavior. Another common use for objects is
simply to group together a set of information that describes a person or thing.
For example, a company needs to keep track of information about all of its
employees. Their personnel system might make use of an Employee object that
contains data such as the employee's name, Social Security number, address,
salary, department, etc. A grouping of information of this sort is often called a
record.

Let's try our hand at some simple data processing involving university stu­
dents. In a typical university, courses are measured in terms of credit hours,
and grade point averages are calculated on a 4-point scale where an "X' is 4
points, a "B" is 3 points, etc. Grade point averages are generally computed us­
ing quality points. If a class is worth 3 credit hours and the student gets an ''A,"
then he or she earns 3(4) = 12 quality points. To calculate a student's grade

328 Cha pter 10. Defin ing Classes

point average (GPA), we divide the total quality points by the number of credit
hours completed.

Suppose we have a data file that contains student grade information. Each
line of the file consists of a student's name, credit hours, and quality points.
These three values are separated by a tab character. For example, the contents
of the file might look something like this:

Adams , Henry 127

Computewell , Susan

DibbleBit , Denny

Jones , Jim 48 . 5

Smith , Frank 37

228

100 400

18 41 . 5

155

125.33

Our job is to write a program that reads through this file to find the student
with the best GPA and print out his/her name, credits hours, and GPA. We can
begin by creating a Student class. An object of type Student will be a record
of information for a single student. In this case, we have three pieces of infor­
mation: name, credit hours, and quality points. We can save this information as
instance variables that are initialized in the constructor:

class Student:

def __ init __ (self , name , hours , qpoints):

self . name =name

self . hours = float (hours)

self . qpoints = float (qpoints)

Notice that I have used parameter names that match the instance variable names.
This looks a bit strange at first, but it is a very common style for this sort of class.
I have also floated the values of hours and qpoints. This makes the construc­
tor a bit more versatile by allowing it to accept parameters that may be floats,
ints, or even strings.

Now that we have a constructor, it's easy to create student records. For
example, we can make a record for Henry Adams like this:

aStudent = Student ("Adams , Henry" , 127 , 228)

Using objects allows us to collect all of the information about an individual in a
single variable.

Next we must decide what methods a student object should have. Obviously,
we would like to be able to access the student's information, so we should define
a set of accessor methods.

def getName (self):

return self . name

def getHours (self):

return self . hours

10.4. Data Processing with Class

def getQPoints (self):

return self . qpoints

These methods allow us to get information back out of a student record. For
example, to print a student's name we could write:

print (aStudent . getName ())

One method that we have not yet included in our class is a way of com put­
ing GPA. We could compute it separately using the getHours and getQPoints

methods, but GPA is so handy that it probably warrants its own method.

def gpa (self):

return self . qpoints/self . hours

With this class in hand, we are ready to attack the problem of finding the
best student. Our algorithm will be similar to the one used for finding the max
of n numbers. We'll look through the file of students one by one, keeping track
of the best student seen so far. Here's the algorithm for our program:

Get the file name from the user

Open the file for reading

Set best to be the first student

For each student s in the file

if s . gpa () > best . gpa ()

set best to s

print out information about best

The completed program looks like this:

gpa . py

Program to find student with highest GPA

class Student:

329

330 Cha pter 10. Defin ing Classes

def __ init __ (self , name , hours , qpoints):

self . name =name

self . hours = float (hours)

self . qpoints = float (qpoints)

def getName (self):

return self . name

def getHours (self):

return self . hours

def getQPoints (self):

return self . qpoints

def gpa (self):

return self . qpoints/self . hours

def makeStudent (infoStr):

infoStr is a tab-separated line: name hours qpoints

returns a corresponding Student object

name , hours , qpoints = infoStr . split ("\t")

return Student (name , hours , qpoints)

def main ():

open the input file for reading

filename - input ("Enter the name of the grade file: ")

infile = open (filename , 'r')

set best to the record for the first student in the file

best = makeStudent (infile . readline ())

process subsequent lines of the file

for line in infile:

turn the line into a student record

s = makeStudent (line)

if this student is best so far , remember it .

if s . gpa () > best . gpa ():

best = s

10.5. Objects and Enca psu lation

infile . close ()

print information about the best student

print ("The best student is: " , best . getName ())

print ("hours: " , best . getHours ())

print ("GPA: " , best . gpa ())

if _ _ name _ _ -- , __ main __ ' :

main ()

You will notice that I added a helper function called makeStudent. This
function takes a single line of the file, splits it into its three tab-separated fields,
and returns a corresponding Student object. Right before the loop, this function
is used to create a record for the first student in the file:

best = makeStudent (infile . readline ())

It is called again inside the loop to process each subsequent line of the file:

s = makeStudent (line)

Here's how it looks running the program on the sample data:

Enter name the grade file: students . dat

The best student is: Computewell , Susan

hours: 100.0

GPA: 4.0

One unresolved issue with this program is that it only reports back a single
student. If multiple students are tied for the best GPA, only the first one found is
reported. I leave it as an interesting design issue for you to modify the program
so that it reports all students having the highest GPA.

lt0.5l Objects and Encapsulation

lto.s.tl Encapsulating Useful Abstractions

Hopefully, you are seeing how defining new classes like Projectile and Student

can be a good way to modularize a program. Once we identify some useful

331

332 Cha pter 10. Defin ing Classes

objects, we can write an algorithm using those objects and push the implemen­
tation details into a suitable class definition. This gives us the same kind of
separation of concerns that we had using functions in top-down design. The
main program only has to worry about what objects can do, not about how they
are implemented.

Computer scientists call this separation of concerns encapsulation. The im­
plementation details of an object are encapsulated in the class definition, which
insulates the rest of the program from having to deal with them. This is another
application of abstraction (ignoring irrelevant details) , which is the essence of
good design.

For completeness, I should mention that encapsulation is only a program­
ming convention in Python. It is not enforced by the language, per se. In our
Projectile class we included two short methods, getX and getY, that sim­
ply returned the values of instance variables xpos and ypos, respectively. Our
Student class has similar accessor methods for its instance variables. Strictly
speaking, these methods are not absolutely necessary. In Python, you can access
the instance variables of any object with the regular dot notation. For example,
we could test the constructor for the Projectile class interactively by creating
an object and then directly inspecting the values of the instance variables:

> > > c = Projectile (60 , 50 , 20)

> > > c . xpos

0 . 0

> > > c . ypos

20
> > > c . xvel

25 . 0

> > > c . yvel

43 . 301270

Accessing the instance variables of an object is very handy for testing pur­
poses, but it is generally considered poor practice to do this in programs. One
of the main reasons for using objects is to hide the internal complexities of
those objects from the programs that use them. References to instance variables
should generally remain inside the class definition with the rest of the imple­
mentation details. From outside the class, all interaction with an object should
generally be done using the interface provided by its methods. However, this
is not a hard-and-fast rule, and Python program designers often specify that

10.5. Objects and Enca psu lation

certain instance variables are accessible as part of the interface. 1

One immediate advantage of encapsulation is that it allows us to modify and
improve classes independently, without worrying about "breaking" other parts
of the program. As long as the interface provided by a class stays the same, the
rest of the program can't even tell that a class has changed. As you begin to
design classes of your own, you should strive to provide each with a complete
set of methods to make it useful.

lt0.5.2l Putting Classes in Modules

Often a well-defined class or set of classes provides useful abstractions that can
be leveraged in many different programs. For example, we might want to turn
our projectile class into its own module file so that it can be used in other pro­
grams. In doing so, it would be a good idea to add documentation that describes
how the class can be used so that programmers who want to use the module
don't have to study the code to figure out (or remember) what the class and its
methods do.

lt0.5.3l Module Documentation

You are already familiar with one way of documenting programs, namely com­
ments. It's always a good idea to provide comments explaining the contents of a
module and its uses. In fact, comments of this sort are so important that Python
incorporates a special kind of commenting convention called a docstring. You
can insert a plain string literal as the first line of a module, class, or function
to document that component. The advantage of docstrings is that, while ordi­
nary comments are simply ignored by Python, docstrings are actually carried
along during execution in a special attribute called __ doc __ . These strings can be
examined dynamically.

Most of the Python library modules have extensive docstrings that you can
use to get help on using the module or its contents. For example, if you can't
remember how to use the random function, you can print its docstring directly
like this:

> > > import random

> > > print (random . random . __ doc __)

1 In fact, Python provides an interesting mechanism called "properties" that makes providing
access to instance variables safe and elegant. You can consult the Python documentation for the
details.

333

334 Cha pter 10. Defin ing Classes

random () -> x in the interval [0 , 1) .

Docstrings are also used by the Python online help system and by a utility called
pydoc that automatically builds documentation for Python modules. You could
get the same information using interactive help like this:

> > > import random

> > > help (random . random)

Help on built-in function random:

random (. . .)

random () -> x in the interval [0 , 1) .

If you want to see a whole bunch of information about the entire random
module, try typing help (random).

Here is a version of our Projectile class as a module file with docstrings
included:

projectile . py

"""projectile . py

Provides a simple class for modeling the

flight of projectiles . 11 11 11

from math import sin , cos , radians

class Projectile:

"""Simulates the flight of simple projectiles near the earth's

surface , ignoring wind resistance . Tracking is done in two

dimensions , height (y) and distance (x) . """

def __ init __ (self , angle , velocity , height):

"""Create a projectile with given launch angle , initial

velocity and height . """

self . xpos = 0 . 0

self . ypos =height

theta = radians (angle)

self . xvel - velocity * cos (theta)

self . yvel =velocity* sin (theta)

10.5. Objects and Enca psu lation 335

def update (self , time):

'""'Update the state of this projectile to move it time seconds

farther into its flight"""

self . xpos = self . xpos + time * self . xvel

yvel1 = self . yvel- 9 . 8 * time

self . ypos - self . ypos + time * (self . yvel + yvel1) I 2.0

self . yvel = yvel1

def getY (self):

"Returns the y position (height) of this projectile . "

return self . ypos

def getX (self):

"Returns the x position (distance) of this projectile . "

return self . xpos

You might notice that many of the docstrings in this code are enclosed in
triple quotes (" " ") . This is a third way that Python allows string literals to be
delimited. Triple quoting allows us to directly type multi-line strings. Here is an
example of how the docstrings appear when they are printed:

> > > print (projectile . Projectile . __ doc __)

Simulates the flight of simple projectiles near the earth's

surface , ignoring wind resistance . Tracking is done in two

dimensions , height (y) and distance (x) .

You might try help (projectile) to see how the complete documentation looks
for this module.

lt0.5.4l Working with Multiple Modules

Our main program can now simply import from the projectile module in order
to solve the original problem:

cball4 . py

from projectile import Projectile

def getlnputs ():

a = float (input ("Enter the launch angle (in degrees): "))

336 Cha pter 10. Defin ing Classes

v = float (input (11 Enter the initial velocity (in meters/sec): 11))

h = float (input (11 Enter the initial height (in meters): 11))

t = float (input (11 Enter the time interval between position calculations:

return a , v , h , t

def main ():

angle , vel , hO , time = getinputs ()

cball = Projectile (angle , vel , hO)

while cball . getY () >= 0:

cball . update (time)

print (11 \nDistance traveled: {0: 0 . 1f} meters . 11 • format (cball . get X ()))

In this version, details of projectile motion are now hidden in the projectile

module file.

If you are testing multi-module Python projects interactively (a good thing to
do), you need to be aware of a subtlety in the Python module-importing mech­
anism. When Python first imports a given module, it creates a module object
that contains all of the things defined in the module (technically, this is called
a namespace). If a module imports successfully (it has no syntax errors), subse­
quent imports do not reload the module; they just create additional references
to the existing module object. Even if a module has been changed (its source
file edited), re-importing it into an ongoing interactive session will not get you
an updated version.

It is possible to interactively replace a module object using the function
reload (<module>) in the imp module of the standard library (consult the
Python documentation for details) . But often this won't give you the results
you want. That's because reloading a module doesn't change the values of any
identifiers in the current session that already refer to objects from the old ver­
sion of the module. In fact, it's pretty easy to create a situation where objects
from both the old and new version of a module are active at the same time,
which is confusing to say the least.

The simplest way to avoid this confusion is to make sure you start a new
interactive session for testing each time any of the modules involved in your
tests is modified. That way you are guaranteed to get a fresh (updated) import
of all the modules that you are using. If you are using IDLE, you will notice
that it takes care of this for you by doing a shell restart when you select "run
module."

10.6. Widgets

lt0.6l Widgets

One very common use of objects is in the design of graphical user interfaces
(GUis) . Back in Chapter 4, we talked about GUis being composed of visual in­
terface objects called widgets. The Entry object defined in our graphics library
is one example of a widget. Now that we know how to define new classes, we
can create our own custom widgets.

110.6.11 Example Program: Dice Roller

Let's try our hand at building a couple of useful widgets. As an example applica­
tion, consider a program that rolls a pair of standard (six-sided) dice. The pro­
gram will display the dice graphically and provide two buttons, one for rolling
the dice and one for quitting the program. Figure 10.3 shows a snapshot of the
user interface.

•
•

•

Figure 10.3: Snapshot of dice roller in action

You can see that this program has two kinds of widgets: buttons and dice.
We can start by developing suitable classes. The two buttons will be instances
of a Button class, and the class that provides a graphical view of the value of a
die will be DieView.

337

338 Cha pter 10. Defin ing Classes

110.6.21 Building Buttons

Buttons, of course, are standard elements of virtually every GUI these days.
Modern buttons are very sophisticated, usually having a 3D look and feel. Our
simple graphics package does not have the machinery to produce buttons that
appear to depress as they are clicked. The best we can do is find out where the
mouse was clicked after the click has already completed. Nevertheless, we can
make a useful, if less pretty, button class.

Our buttons will be rectangular regions in a graphics window where user
clicks can influence the behavior of the running application. We will need to
create buttons and determine when they have been clicked. In addition, it is
also nice to be able to activate and deactivate individual buttons. That way, our
applications can signal which options are available to the user at any given mo­
ment. Typically, an inactive button is grayed out to show that it is not available.

Summarizing this description, our buttons will support the following meth­
ods:

constructor Creates a button in a window. We will have to specify the window
in which the button will be displayed, the location/size of the button, and
the label that will be on the button.

activate Sets the state of the button to active.

deactivate Sets the state of the button to inactive.

clicked Indicates whether the button was clicked. If the button is active, this
method will determine if the point clicked is inside the button region. The
point will have to be sent as a parameter to the method.

getLabel Returns the label string of the button. This is provided so that we can
identify a particular button.

In order to support these operations, our buttons will need a number of in­
stance variables. For example, the button itself will be drawn as a rectangle with
some text centered in it. Invoking the activate and deactivate methods will
change the appearance of the button. Saving the Rectangle and Text objects as
instance variables will allow us to change the width of the outline and the color
of the label. We might start by implementing the various methods to see what
other instance variables might be needed. Once we have identified the relevant
variables, we can write a constructor that initializes these values.

10.6. Widgets

Let's start with the activate method. We can signal that the button is active
by making the outline thicker and making the label text black. Here is the code
(remember the self parameter refers to the button object):

def activate (self):

"Sets this button to 'active' . "

self . label . setFill ('black')

self . rect . setWidth (2)

self . active =True

As I mentioned above, in order for this code to work, our constructor will
have to initialize self . label as an appropriate Text object and self . rect as
a Rectangle object. In addition, the self . active instance variable stores a
Boolean value to remember whether or not the button is currently active.

Our deactivate method will do the inverse of activate. It looks like this:

def deactivate (self):

"Sets this button to 'inactive' . "

self . label . setFill ('darkgrey')

self . rect . setWidth (1)

self . active =False

Of course, the main point of a button is being able to determine if it has
been clicked. Let's try to write the clicked method. As you know, the graphics

package provides a getMouse method that returns the point where the mouse
was clicked. If an application needs to get a button click, it can call getMouse

and then check which active button (if any) the point is inside of. We could
imagine the button-processing code looking something like the following:

pt = win . getMouse ()

if button1 . clicked (pt):

Do button! stuff

elif button2 . clicked (pt):

Do button2 stuff

elif button3 . clicked (pt)

Do button3 stuff

• • •

The main job of the clicked method is to determine whether a given point
is inside the rectangular button. The point is inside the rectangle if its x and y
coordinates lie between the extreme x and y values of the rectangle. This would

339

340 Cha pter 10. Defin ing Classes

be easiest to figure out if we just assume that the button object has instance
variables that record the min and max values of x and y.

Assuming the existence of instance variables xmin, xmax, ymin, and ymax, we
can implement the clicked method with a single Boolean expression:

def clicked (self , p):
11 Returns true if button is active and p is inside11

return (self . active and

self . xmin <= p . getX () <= self . xmax and

self . ymin <= p . getY () <= self . ymax)

Here we have a single large Boolean expression composed by anding together
three simpler expressions; all three must be true for the function to return a true
value.

The first of the three subexpressions simply retrieves the value of the in­
stance variable self . active. This ensures that only active buttons will report
that they have been clicked. If self . active is false, then clicked will return
false. The second two subexpressions are compound conditions to check that
the x and y values of the point fall between the edges of the button rectan­
gle. (Remember, x <= y <= z means the same as the mathematical expression
x < y < z (Section 7.5.1).)

Now that we have the basic operations of the button ironed out, we just need
a constructor to get all the instance variables properly initialized. It's not hard,
but it is a bit tedious. Here is the complete class with a suitable constructor:

button . py

from graphics import *

class Button:

11 11 11 A button is a labeled rectangle in a window .

It is activated or deactivated with the activate ()

and deactivate () methods . The clicked (p) method

returns true if the button is active and p is inside it . 11 11 11

def __ init __ (self , win , center , width , height , label):
11 11 11 Creates a rectangular button , eg:

qb = Button (myWin , centerPoint , width , height , 'Quit')

w , h = width/2 . 0 , height/2 . 0

11 11 11

10.6. Widgets

x,y = center.getX(), center.getY()

self.xmax, self.xmin = x+w, x-w

self.ymax, self.ymin = y+h, y-h

p1 = Point(self.xmin, self.ymin)

p2 = Point(self.xmax, self.ymax)

self.rect = Rectangle(p1,p2)

self.rect.setFill('lightgray')

self.rect.draw(win)

self.label = Text(center, label)

self.label.draw(win)

self.deactivate()

def clicked(self, p):

"Returns true if button active and p is inside"

return (self.active and

self.xmin <= p.getX() <= self.xmax and

self.ymin <= p.getY() <= self.ymax)

def getLabel(self):

"Returns the label string of this button."

return self.label.getText()

def activate(self):

"Sets this button to 'active'."

self.label.setFill('black')

self.rect.setWidth(2)

self.active = True

def deactivate(self):

"Sets this button to 'inactive'."

self.label.setFill('darkgrey')

self.rect.setWidth(1)

self.active = False

You should study the constructor in this class to make sure you understand
all of the instance variables and how they are initialized. A button is positioned
by providing a center point, width, and height. Other instance variables are
calculated from these parameters.

341

342 Cha pter 10. Defin ing Classes

lt0.6.3l Building Dice

Now we'll tum our attention to the Die View class. The purpose of this class is
to display the value of a die in a graphical fashion. The face of the die will be a
square (via Rectangle) and the pips will be circles.

Our Die View will have the following interface:

constructor Creates a die in a window. We will have to specify the window, the
center point of the die, and the size of the die as parameters.

setValue Changes the view to show a given value. The value to display will be
passed as a parameter.

Obviously, the heart of DieView is turning various pips "on" and "off" to
indicate the current value of the die. One simple approach is to pre-place circles
in all the possible locations where a pip might be and then tum them on or off
by changing their colors.

Using the standard position of pips on a die, we will need seven circles:
three down the left edge, three down the right edge, and one in the center.
The constructor will create the background square and the seven circles. The
set Value method will set the colors of the circles based on the value of the die.

Without further ado, here is the code for our Die View class. The comments
will help you to follow how it works:

dieview.py

from graphics import *

class DieView:

""" DieView is a widget that displays a graphical representation

of a standard six-sided die."""

def __ init __ (self, win, center, size):

"""Create a view of a die, e.g. :

d1 = DieView(myWin, Point(40,50), 20)

creates a die centered at (40,50) having sides

of length 20."""

first define some standard values

self.win = win

self.background ­

self.foreground -

save this for drawing pips later

"white" # color of die face

"black" # color of the pips

10.6. Widgets 343

radius of each pip

half the size of the die

self.psize = 0.1 * size

hsize = size I 2.0

offset = 0.6 * hsize # distance from center to outer pips

create a square for the face

ex, cy = center.getX(), center.getY()

p1 = Point(cx-hsize, cy-hsize)

p2 = Point(cx+hsize, cy+hsize)

rect = Rectangle(p1,p2)

rect.draw(win)

rect.setFill(self.background)

Create 7 circles for standard pip locations

self.pip1 - self. __ makePip(cx-offset, cy-offset)

self.pip2 - self. __ makePip(cx-offset, cy)

self.pip3 - self. __ makePip(cx-offset, cy+offset)

self.pip4 - self. __ makePip(cx, cy)

self.pip5 - self. __ makePip(cx+offset, cy-offset)

self.pip6 - self. __ makePip(cx+offset, cy)

self.pip7 - self. __ makePip(cx+offset, cy+offset)

Draw an initial value

self.setValue(1)

def __ makePip(self, x, y):

"Internal helper method to draw a pip at (x,y)"

pip = Circle(Point(x,y), self.psize)

pip.setFill(self.background)

pip.setOutline(self.background)

pip.draw(self.win)

return pip

def setValue(self, value):

"Set this die to display value."

turn all pips off

self.pipl.setFill(self.background)

self.pip2.setFill(self.background)

self.pip3.setFill(self.background)

344 Cha pter 10. Defin ing Classes

self.pip4.setFill(self.background)

self.pip5.setFill(self.background)

self.pip6.setFill(self.background)

self.pip7.setFill(self.background)

turn correct pips on

if value == 1:

self.pip4.setFill(self.foreground)

elif value == 2:

self.pip1.setFill(self.foreground)

self.pip7.setFill(self.foreground)

elif value == 3:

self.pip1.setFill(self.foreground)

self.pip7.setFill(self.foreground)

self.pip4.setFill(self.foreground)

elif value == 4:

self.pip1.setFill(self.foreground)

self.pip3.setFill(self.foreground)

self.pip5.setFill(self.foreground)

self.pip7.setFill(self.foreground)

elif value == 5:

self.pip1.setFill(self.foreground)

self.pip3.setFill(self.foreground)

self.pip4.setFill(self.foreground)

self.pip5.setFill(self.foreground)

self.pip7.setFill(self.foreground)

else:

self.pip1.setFill(self.foreground)

self.pip2.setFill(self.foreground)

self.pip3.setFill(self.foreground)

self.pip5.setFill(self.foreground)

self.pip6.setFill(self.foreground)

self.pip7.setFill(self.foreground)

There are a couple of things worth noticing in this code. First, in the con­
structor, I have defined a set of values that determine various aspects of the
die such as its color and the size of the pips. Calculating these values in the
constructor and then using them in other places allows us to easily tweak the
appearance of the die without having to search through the code to find all the

10.6. Widgets

places where those values are used. I actually figured out the specific calcula­
tions (such as the pip size being one-tenth of the die size) through a process of
trial and error.

Another important thing to notice is that I have added an extra method
_ _makePip that was not part of the original specification. This method is just a
helper function that executes the four lines of code necessary to draw each of
the seven pips. Since this is a function that is only useful within the DieView

class, it is appropriate to put this function inside the class. The constructor then
invokes it via lines such as self . _ _makePi p (ex , cy). Method names beginning
with a single or double underscore are used in Python to indicate that a method
is "private" to the class and not intended for use by outside programs.

lt0.6.4l The Main Program

Now we are ready to write our main program. The Button and Dieview classes
are imported from their respective modules. Here is the program that uses our
new widgets:

roller . py

Graphics program to roll a pair of dice . Uses custom widgets

Button and DieView .

from random import randrange

from graphics import GraphWin, Point

from button import Button

from dieview import DieView

def main():

create the application window

win = GraphWin(11 Dice Roller11)

win . setCoords(O, 0, 10, 10)

win . setBackground(11 green2 11)

Draw the interface widgets

die1 = DieView(win, Point(3,7), 2)

die2 = DieView(win, Point(7,7), 2)

rollButton = Button(win, Point(5,4 . 5), 6, 1, 11Roll Dice 11)

rollButton . activate()

quitButton = Button(win, Point(5,1), 2, 1, 11 Quit11)

345

346 Cha pter 10. Defin ing Classes

Event loop

pt = win . getMouse()

while not quitButton . clicked(pt) :

if rollButton . clicked(pt) :

value! = randrange(1,7)

die1 . setValue(value1)

value2 = randrange(1,7)

die2 . setValue(value2)

quitButton . activate()

pt = win . getMouse()

close up shop

win . close()

main()

Notice that near the top of the program I have built the visual interface by
creating the two DieViews and two Buttons. To demonstrate the activation
feature of buttons, the Roll Dice button is initially active, but the Quit button is
left deactivated. The Quit button is activated inside the event loop below when
the Roll Dice button is clicked. This approach forces the user to roll the dice at
least once before quitting.

The heart of the program is the event loop. It is just a sentinel loop that
gets mouse clicks and processes them until the user successfully clicks the Quit
button. The if inside the loop ensures that the rolling of the dice only happens
when the Roll Dice button is clicked. Clicking a point that is not inside either
button causes the loop to iterate, but nothing is actually done.

I tO . 71 Animated Cannonball

As one more example, let's use our new object ideas to add a nicer interface
to the cannonball example that started the chapter. Instead of having a boring
text -based interface, the program would be more fun to use if it had a graphical
interface. It would be nice to actually "see" where the canonball ends up and
how it gets there. Figure 10.4 shows what I have in mind. Here you can see a
cannonball currently in flight as well as where two previous shots ended.

10.7. Animated Cannonball

�/ � Projectile Animation
v 0

•

0 50 100 ��0 • 200

Figure 10.4: Graphical depiction of cannonball flight

Ito. 7.11 Drawing the Animation Window

The first step in the program is to create a graphics window and draw the appro­
priate scale line across the bottom. Using our graphics library; this is straightfor­
ward. Here's the start of the program:

def main() :

create animation window

347

win = GraphWin("Projectile Animation" , 640, 480 , autoflush-False)

win. setCoords (-10, -10, 210, 155)

draw baseline

Line (Point (-10 , 0) , Point (210 , 0)) . draw (win)

draw labeled ticks every 50 meters

for x in range (O, 210, 50) :

Text (Point (x , -5) , str(x)) . draw(win)

Line (Point (x,O) , Point (x , 2)) . draw(win)

348 Cha pter 10. Defin ing Classes

One twist you may notice here is the addition of an extra keyword parameter in
the GraphWin constructor: autoflush=False. By default, the appearance of a
graphics object is immediately updated any time the object is asked to change.
For example, changing the color of a circle via mycircle. setFill (11 green 11)
causes an immediate change on the screen. If you think of a sequence of graphics
commands following each other in a sort of pipeline, it's as though the pipe
is automatically "flushed out" each time a command is executed. By setting
autoflush to false we are telling the graphics library that it's OK to allow a few
commands to build up in the pipeline before actually performing them.

You might think it strange not to have the graphics commands take effect
immediately, but it's actually a very handy option. Turning off autoflush can
often make graphics programs much more efficient. Graphics commands can be
(relatively) time consuming because they require communication with the un­
derlying operating system to exchange information with the display hardware.
Rather than stopping the program many times to carry out a sequence of small
graphics commands, they can be allowed to pile up and then all be carried out
together with just a single interruption.

Another reason for turning off aut of lush is that it gives the program control
over exactly when the updates occur. During animations, there may be many
changes occurring on the screen that we need to synchronize. When aut of lush

is off, we can make numerous changes that will then all show up simultaneously
when the update function is called. This is the way animations are typically
done. The program sets up the changes for the next frame the user will see,
and then the call to update () causes the frame to be shown. Of course, in this
animation, we only have one object moving at a time, so there is no need to
compose a frame. Even so, you'll see in a bit that using explicit updates gives
the program precise control over the speed of the animation. You will almost
always want autoflush off for animations.

I to. 7.21 Creating a Shot Tracker

The next thing we need is a graphical object that acts like a cannonball. We
can use our existing Proj ectile class to model the flight of a cannonball, but
a Proj ectile is not a graphics object; we can't draw it in the window. On the
other hand, a Circle is a good candidate for the graphical representation of the
cannonball, but it does not know how to model projectile flight. What we really
want is something that has elements of both. We can create this new hybrid
circle-projectile by defining a suitable class for it. Let's call it a ShotTracker.

10.7. Animated Ca nnonba l l

Our Shot Tracker will contain both a Proj ectile and a Circle. Its job is to
make sure that these instance variables stay in sync with each other. The con­
structor for the class looks like this:

def __ init __ (self, win, angle, velocity, height):

349

11 11 11 win is the GraphWin to display the shot . angle, velocity,

and height are initial proj ectile parameters .
11 11 11

self . proj = Proj ectile(angle, velocity, height)

self . marker = Circle(Point(O,height), 3)

self . marker . setFill(11red 11)

self . marker . set0utline(11red 11)

self . marker . draw(win)

Notice how the parameters provide all of the information needed to create both
a Proj ectile and a Circle, which are stored in the instance variables proj and
marker, respectively. I used the name marker because the circle is graphically
marking the projectile's current location. I chose the radius 3 because it shows
up nicely in the animation. Realistically, a 3-meter radius would be way too
large for an actual cannonball.

Now that we have a suitable projectile and circle, we just need to ensure that
whenever an update occurs, both the projectile and the position of the circle are
modified appropriately. We can do that by giving our ShotTracker an update

method that handles both pieces. Updating the Proj ectile object is a simple
matter of calling its own update method with the appropriate time interval. For
the circle, we calculate the distance it must move in the x and y directions to
put the center of the circle where the updated projectile is located.

def update(self, dt):
11 11 11 Move the shot dt seconds farther along its flight 11 11 11

update the proj ectile

self . proj . update(dt)

move the circle to the new proj ectile location

center = self . marker . getCenter()

dx = self . proj . getX() - center . getX()

dy = self . proj . getY() - center . getY()

self . marker . move(dx,dy)

350 Cha pter 10. Defin ing Classes

That takes care of the hard work for our Shot Tracker. Now we just need to
finish out the class with a couple accessors and a way to undraw shots, should
we no longer want to see them.

def getX(self):
11 11 11 return the current x coordinate of the shot's center 11 11 11

return self.proj .getX()

def getY(self):
11 11 11 return the current y coordinate of the shot's center 11 11 11

return self.proj .getY()

def undraw(self):
11 11 11 undraw the shot 11 11 11

self.marker.undraw()

See how easy those are? It's just a matter of delegating each operation to the
appropriate component.

I to. 7.31 Creating an Input Dialog

Before we actually put a cannonball in flight, we'll need to get the projectile
parameters angle, velocity, and initial height from the user. We could do this
using input, just as in the original program. But as long as we're designing a
graphical interface, we may as well handle the input in a more graphical fashion
as well. A common way of getting user input in a GUI is to use a dialog box.
For example, in Chapter 5 I discussed using pre-built system dialogs that allow
users to select file names. Using the graphics library, we can easily create our
own simple dialogs to get information from the user.

A dialog box is a sort of miniGUI that serves as an independent component
of a larger program. Something like Figure 10.5 will do the trick. The user can
change the input values and select either "Fire!" to launch the cannonball or
"Quit" to exit the program. As you can see, this is just a Graph Win containing a
few Text, Entry, and Button objects.

It's useful to think of this dialog as just another object that the main program
can manipulate. It will have operations to create the dialog, allow a user to
interact with it, and extract the user inputs from it. To define our new object
type, we will, of course, create a new class. We can create the window itself and
draw its contents in the constructor. It takes a fair bit of code, but it's really just a
straightforward translation of our picture into the corresponding GUI elements:

10.7. Animated Ca nnonba l l

' / . � � - � In 1 . . . u e s v ��

Angle

Velocity

Height

Fire! Quit

Figure 10.5: Custom input dialog for cannonball animation

class InputDialog:

351

11 11 11 A custom window for getting simulation values (angle, velocity,

and height) from the user."""

def __ init __ (self, angle, vel, height):
11 11 11 Build and display the input window 11 11 11

self.win = win = GraphWin("Initial Values", 200, 300)

win.setCoords(0,4.5,4,.5)

Text(Point(1,1), "Angle").draw(win)

self.angle = Entry(Point(3,1), 5).draw(win)

self.angle.setText(str(angle))

Text(Point(1,2), "Velocity").draw(win)

self.vel = Entry(Point(3,2), 5).draw(win)

352 Cha pter 10. Defin ing Classes

self.vel.setText(str(vel))

Text(Point(1,3), "Height").draw(win)

self.height = Entry(Point(3,3), 5).draw(win)

self.height.setText(str(height))

self.fire = Button(win, Point(1,4), 1.25, .5, "Fire ! ")

self.fire.activate()

self.quit = Button(win, Point(3,4), 1.25, .5, "Quit")

self.quit.activate()

In this code, the constructor accepts parameters that provide default values for
the three inputs. That allows the program to seed the dialog with useful inputs
as a prompt to the user.

When it's time for the user to interact with the dialog, we will make it go
modal with its own event loop that waits for mouse clicks and does not exit
until one of the buttons has been pressed:

def interact(self):

""" wait for user to click Quit or Fire button

Returns a string indicating which button was clicked
11 11 11

while True:

pt = self.win.getMouse()

if self.quit.clicked(pt):

return "Quit"

if self.fire.clicked(pt):

return "Fire ! "

The return value from the method is used to indicate which button was clicked
to end the interaction.

Finally, we add an operation to get the data back out and to close up the
dialog when we're finished with it:

def getValues(self):

""" return input values """

10.7. Animated Ca nnonba l l

a = f loat (self.angle.getText ())

v = f loat (self.vel.getText ())

h - float (self.height.getText ())

return a,v,h

def close (self):
11 11 11 close the input window 11 11 11

self.win.close ()

For simplicity, all three inputs are retrieved with a single method call. Notice
that the strings from the entries are converted to floating-point values, so the
main program just gets numbers back.

With this class available, getting values from the user will require just a few
lines of code:

dialog = InputDialog (45, 40, 2)

choice = dialog.interact ()

if choice == '' Fire ! '' :

angle, vel, height = dialog.getValues ()

Since closing the dialog is a separate operation, the program has the flexibility
to either pop up a new dialog each time input is required or to keep a single
dialog open and interact with it multiple times.

I to. 7.41 The Main Event Loop

Now we are ready to finish our program by filling in the main event loop. Here's
the completed main function:

file: animation.py

def main ():

create animation window

353

win = GraphWin (11 Proj ectile Animation11 , 640, 480, autoflush=False)

win.setCoords (-10, -10, 210, 155)

Line (Point (-10,0), Point (210,0)).draw (win)

for x in range (O, 210, 50):

Text (Point (x,-5), str (x)).draw (win)

Line (Point (x,O), Point (x,2)).draw (win)

354 Cha pter 10. Defin ing Classes

event loop, each time through fires a single shot

angle, vel, height = 45 . 0, 40 . 0, 2 . 0

while True:

interact with the user

inputwin = InputDialog(angle, vel, height)

choice = inputwin . interact()

inputwin . close()

if choice == " Quit " : # loop exit

break

create a shot and track until it hits ground or leaves window

angle, vel, height = inputwin . getValues()

shot = ShotTracker(win, angle, vel, height)

while 0 <= shot . getY() and -10 < shot . getX() <= 210:

shot . update(1/50)

update(50)

win . close()

Each pass through the event loop fires one cannon shot.
Look closely at the animation loop embedded at the bottom of the overall

event loop:

while 0 <= shot . getY() and -10 < shot . getX() <= 210:

shot . update(1/50)

update(50)

This while loop keeps updating the shot until it hits the ground or leaves the
window horizontally. Each time through, the position of the shot is updated
to move it 1/50th of a second into the future. Because we set autoflush to
False, the changes won't appear in the window until the update(50) line at
the bottom of the loop executes. The parameter to update specifies the rate at
which updates are allowed. So the 50 here says that this loop will spin around
50 times per second. This establishes the effective frame rate for our animation.
The 1/50th of a second shot update combined with the 50 times per second
loop rate gives us a real-time simulation. That is, the simulated cannonball
will stay in flight for the same clock time that the corresponding cannonball
would be airborne in real life. That may seem unnaturally slow on our small

10.8. Chapter Summary

computer screen. You might want to play around with the values to see how
they affect animation speed. Be careful about setting the update parameter too
high, though; it will affect the quality of the graphics when there is insufficient
time to draw each frame.

That completes our simple animation. The big lesson here is how using
separate classes to encapsulate functionality (like tracking shots and interacting
with the user) makes the main program much simpler. One limitation of the
approach taken here is that the program only animates a single shot at a time.
In effect, we made the flight of the shot modal by embedding the animation loop
inside of the event loop. That would not be a suitable design for something like
a video game, where we would almost certainly need to have multiple objects
in motion while the user is interacting with them. The next couple chapters will
help you develop the design skills needed to tackle a full-fledged multi-object
animation, and we'll polish up this example a bit at the end of Chapter 1 1 .

lto.al Chapter Summary

This chapter has shown you how to work with class definitions. Here is a sum­
mary of some key points:

• An object comprises a collection of related data and a set of operations to
manipulate that data. Data is stored in instance variables and manipulated
via methods.

• Every object is an instance of some class. It is the class definition that
determines what the attributes of the object will be. Programmers can
create new kinds of objects by writing suitable class definitions.

• A Python class definition is a collection of function definitions. These func­
tions implement the methods of the class. Every method definition has a
special first parameter called self. The actual parameter of self is the
object to which the method is being applied. The self parameter is used
to access the attributes of the object via dot notation.

• The special method __ ini t __ is the constructor for a class. Its job is to
initialize the instance variables of an object.

• Defining new objects (via class) can simplify the structure of a program
by allowing a single variable to store a constellation of related data. Ob­
jects are useful for modeling real-world entities. These entities may have

355

356 Cha pter 10. Defin ing Classes

complex behavior that is captured in method algorithms (e.g., a projec­
tile), or they may be little more than a collection of relevant information
about some individual (e.g., a student record) .

• Correctly designed classes provide encapsulation. The internal details of
an object are hidden inside the class definition so that other portions of
the program do not need to know how an object is implemented. This
separation of concerns is a programming convention in Python; the in­
stance variables of an object should only be accessed or modified through
the interface methods of the class.

• Most GUI systems are built using an object -oriented approach. We can
build novel GUI widgets by defining suitable classes. GUI widgets can be
used to construct custom dialogs for user interaction.

I t 0. 91 Exercises

Review Questions

True/False

1 . New objects are created by invoking a constructor.

2. Functions that live in objects are called instance variables.

3. The first parameter of a Python method definition is called this.

4. An object may have only one instance variable.

5. In data processing, a collection of information about a person or thing is
called a file.

6. In a Python class, the constructor is called __ ini t __ .

7. A docstring is the same thing as a comment.

8. Instance variables go away once a method terminates.

9. Method names should always begin with one or two underscores.

10. It is considered bad style to directly access an instance variable outside of
a class definition.

10.9. Exercises

Multiple Choice

1 . What Python reserved word starts a class definition?
a) def b) class c) obj ect d) __ init __

2. A method definition with four formal parameters is generally called with
how many actual parameters?
a) three b) four c) five d) it depends

3. A method definition is similar to a(n)
a) loop b) module c) import statement d) function definition

4. Within a method definition, the instance variable x could be accessed via
which expression?
a) x b) self . x c) self [x] d) self . get X ()

5 . A Python convention for defining methods that are "private" to a class is
to begin the method name with
a) "private" b) a pound sign (#)
c) an underscore (_) d) a hyphen (-)

6. The term applied to hiding details inside class definitions is
a) obscuring b) subclassing
c) documentation d) encapsulation

7. A Python string literal can span multiple lines if enclosed with
a) " b) ' c) """ d) \

8. In a Button widget, what is the data type of the instance variable active?

a) bool b) int c) float d) str

9. Which of the following methods is not part of the Button class in this
chapter?
a) activate b) deactivate c) setLabel d) clicked

10. Which of the following methods is part of the Die View class in this chap­
ter?
a) activate b) setColor c) setValue d) clicked

Discussion

1 . Explain the similarities and differences between instance variables and
"regular" function variables.

357

358 Cha pter 10. Defin ing Classes

2. Explain the following in terms of actual code that might be found in a class
definition:

a) method

b) instance variable

c) constructor

d) accessor

e) mutator

3. Show the output that would result from the following nonsense program:

class Bozo:

def __ init __ (self, value):

print("Creating a Bozo from: ", value)

self.value = 2 * value

def clown(self, x):

print("Clowning: ", x)

print(x * self.value)

return x + self.value

def main():

print("Clowning around now.")

c1 = Bozo(3)

c2 = Bozo(4)

print c1.clown(3)

print c2.clown(c1.clown(2))

main()

Programming Exercises

1 . Modify the cannonball simulation from the chapter so that it also calcu­
lates the maximum height achieved by the cannonball.

2. Use the Button class discussed in this chapter to build a GUI for one (or
more) of your projects from previous chapters.

10.9. Exercises

3. Write a program to play "Three Button Monte." Your program should draw
three buttons labeled "Door 1 " "Door 2 " and "Door 3" in a window and ' '

randomly select one of the buttons (without telling the user which one
is selected) . The program then prompts the user to click on one of the
buttons. A click on the special button is a win, and a click on one of the
other two is a loss. You should tell the user whether they won or lost, and
in the case of a loss, which was the correct button. Your program should be
entirely graphical; that is, all prompts and messages should be displayed
in the graphics window.

4. Extend the program from the previous problem by allowing the player to
play multiple rounds and displaying the number of wins and losses. Add a
"Quit" button for ending the game.

5. Modify the Student class from the chapter by adding a mutator method
that records a grade for the student. Here is the specification of the new
method:

addGrade (self , gradePoint , credits) gradePoint is a float that rep­
resents a grade (e.g., A = 4.0, A- = 3.7, B+ = 3.3, etc.) , and credits

is a float indicating the number of credit hours for the class. Modify
the student object by adding this grade information.

Use the updated class to implement a simple program for calculating GPA.
Your program should create a new student object that has 0 credits and 0
quality points (the name is irrelevant) . Your program should then prompt
the user to enter course information (gradePoint and credits) for a se­
ries of courses, and then print out the final GPA achieved.

6. Extend the previous exercise by implementing an addLetterGrade method.
This is similar to addGrade except that it accepts a letter grade as a string
(instead of gradePoint) . Use the updated class to improve the GPA calcu­
lator by allowing the entry of letter grades.

7. Write a modified Button class that creates circular buttons. Call your class
CButton and implement the exact same methods that are in the exist­
ing Button class. Your constructor should take the center of the button
and its radius as normal parameters. Place your class in a module called
cbutton . py. Test your class by modifying roller . py to use your buttons.

8. Modify the Die View class from the chapter by adding a method that allows
the color of the pips to be specified.

359

360 Cha pter 10. Defin ing Classes

setColor (self , color) Changes the color of the pips to color.

Hints: You can change the color by changing the value of the instance
variable foreground, but you also need to redraw the die after doing this.
Modify set Value so that it remembers the value of the die in an instance
variable. Then setColor can call setValue and pass the stored value to
redraw the die. You can test your new class with the roller . py program.
Have the dice change to a random color after each roll (you can generate
a random color with the color _rgb function).

9. Write a class to represent spheres. Your class should implement the fol­
lowing methods:

__ init __ (self, radius) Creates a sphere having the given radius.

getRadius (self) Returns the radius of this sphere.

surfaceArea(self) Returns the surface area of the sphere.

volume (self) Returns the volume of the sphere.

Use your new class to solve Programming Exercise 1 from Chapter 3.

10. Same as the previous problem, but for a cube. The constructor should
accept the length of a side as a parameter.

1 1 . Implement a class to represent a playing card. Your class should have the
following methods:

__ init __ (self, rank, suit) rank is an int in the range 1-13 indicating
the ranks ace-king and suit is a single character "d " "c " "h " or "s" ' ' ' '

indicating the suit (diamonds, clubs, hearts, or spades). Create the
corresponding card.

getRank(self) Returns the rank of the card.

get Suit (self) Returns the suit of the card.

value(self) Returns the Blackjack value of a card. Ace counts as 1, face
cards count as 10.

__ str __ (self) Returns a string that names the card. For example, "Ace

of Spades".

Note: A method named __ str __ is special in Python. If asked to convert an
object into a string, Python uses this method, if it's present. For example,

c = Card(l,"s")

print c

will print '�ce of Spades."

10.9. Exercises

Test your card class with a program that prints out n randomly gener­
ated cards and the associated Blackjack value where n is a number sup­
plied by the user.

12. Extend your card class from the previous problem with a draw(self,

win, center) method that displays the card in a graphics window. Use
your extended class to create and display a hand of five random cards.
Hint: The easiest way to do this is to search the Internet for a free set of
card images and use the Image object in the graphics library to display
them.

13. Here is a simple class that draws a (grim) face in a graphics window:

face . py

from graphics import *

class Face:

def __ init __ (self, window, center, size):

eyeSize = 0 . 15 * size

eyeOff = size I 3 . 0

mouthSize = 0 . 8 * size

mouthOff = size I 2 . 0

self . head = Circle(center, size)

self . head . draw(window)

self . leftEye = Circle(center, eyeSize)

self . leftEye . move(-eyeOff, -eyeOff)

self . rightEye = Circle(center, eyeSize)

self . rightEye . move(eyeOff, -eyeOff)

self . leftEye . draw(window)

self . rightEye . draw(window)

p1 = center . clone()

p1 . move(-mouthSizel2, mouthOff)

p2 = center . clone()

p2 . move(mouthSizel2, mouthOff)

361

362 Cha pter 10. Defin ing Classes

self.mouth = Line(p1,p2)

self.mouth.draw(window)

Add methods to this class that cause the face to change expression. For
example you might add methods such as smile, wink, frown, flinch, etc.
Your class should implement at least three such methods.

Use your class to write a program that draws a face and provides the
user with buttons to change the facial expression.

14. Modify the Face class from the previous problem to include a move method
similar to other graphics objects. Using the move method, create a program
that makes a face bounce around in a window (see Programming Exer­
cise 17 from Chapter 7) . Bonus: have the face change expression each
time it "hits" the edge of the window.

15 . Modify the cannonball animation so that the input dialog window stays on
screen at all times.

16. Advanced: Add a Target class to the cannonball animation. A target
should be a rectangle placed at a random x position at the bottom of the
window. Allow users to keep firing until they hit the target.

17. Redo the regression problem from Chapter 8 (Programming Exercise 13)
using a Regression class. Your new class will keep track of the various
quantities that are needed to compute a line of regression (the running
sums of x, y, x2, and xy) . The Regression class should have the following
methods:

_ _init__ Creates a new regression object to which points can be added.

addPoint Adds a point to the regression object.

predict Accepts a value of x as a parameter, and returns the value of the
corresponding y on the line of best fit.

Note: Your class might also use some internal helper methods to do such
things as compute the slope of the regression line.

Chapter 11 Data Collections

Objectives

• To understand the use of lists (arrays) to represent a collection of related

data.

• To be familiar with the functions and methods available for manipulating

Python lists.

• To be able to write programs that use lists to manage a collection of

information.

• To be able to write programs that use lists and classes to structure complex

data.

• To understand the use of Python dictionaries for storing non-sequential

collections.

111.11 Example Problem: Simple Statistics

As you saw in the last chapter, classes are one mechanism for structuring the

data in our programs. Classes alone, however, are not enough to satisfy all of

our data-handling needs.

If you think about the kinds of data that most real-world programs manipu­

late, you will quickly realize that many programs deal with large collections of

similar information. A few examples of the collections that you might find in a
modern program include:

363

364 Chapter 11. Data Col lections

• Words in a document

• Students in a course

• Data from an experiment

• Customers of a business

• Graphics objects drawn on the screen

• Cards in a deck

In this chapter, you will learn techniques for writing programs that manipulate

collections like these.

Let's start with a simple example: a collection of numbers. Back in Chapter 8,

we wrote a simple but useful program to compute the mean (average) of a set

of numbers entered by the user. Just to refresh your memory (as if you could

forget it), here is the program again:

average4 . py
def main () :

total = 0 . 0
count = 0

xStr = input ("Enter a number (<Enter> to quit) >> ")
whi le xStr ! = " " :

x = float (xStr)

total = total + x

count = count + 1

xStr = input ("Enter a number (<Enter> to quit) >> ")

print (" \nThe average of the numbers i s " , total I count)

main ()

This program allows the user to enter a sequence of numbers, but the program

itself does not keep track of what numbers were entered. Instead, it just keeps a

summary of the numbers in the form of a running total. That's all that's needed

to compute the mean.

Suppose we want to extend this program so that it computes not only the

mean, but two other standard statistical measures-median and standard devia­
tion -of the data. You are probably familiar with the concept of a median. This

is the value that splits the data set into equal-sized parts. For the data [2, 4, 6,

11.2. Applying Lists

9, 13], the median value is 6, since there are two values greater than 6 and two

that are smaller. One way to calculate the median is to store all the numbers

and put them in order so that we can identify the middle value.
The standard deviation is a measure of how spread out the data is relative

to the mean. If the data is tightly clustered around the mean, then the standard

deviation is small. When the data is more spread out, the standard deviation is

larger. The standard deviation provides a yardstick for determining how excep­

tional a value is. For example, some teachers define an ''N.' as any score that is

at least two standard deviations above the mean.

The standard deviation, s, is defined as

s=

In this formula xis the mean, Xi represents the ith data value and n is the num­

ber of data values. The formula looks complicated, but it is not hard to compute.

The expression (x- xi? is the square of the "deviation" of an individual item
from the mean. The numerator of the fraction is the sum of the deviations

(squared) across all the data values.

Let's take a simple example. If we again use the values [2, 4, 6, 9, 13], the

mean of this data (x) is 6.8. So the numerator of the fraction is computed as

(6.8- 2)2 + (6.8- 4)2 + (6.8- 6)2 + (6.8- 9)2 + (6.8- 13)2 = 74.8

Finishing out the calculation gives us

The standard deviation is about 4.3. You can see how the first step of this cal­

culation uses both the mean (which can't be computed until all of the numbers

have been entered) and each individual value as well. Computing the standard

deviation this way requires some method to remember all of the individual val­
ues that were entered.

111.21 Applying Lists

In order to complete our enhanced statistics program, we need a way to store
and manipulate an entire collection of numbers. We can't just use a bunch of

365

366 Chapter 11. Data Col lections

independent variables, because we don't know how many numbers there will
be.

What we need is some way of combining an entire collection of values into

one object. Actually, we've already done something like this, but we haven't

discussed all of the details. Take a look at these interactive examples:

>>> list (range (10))

[0 ' 1 ' 2 ' 3' 4' 5 ' 6 ' 7 ' 8' 9]
>>> "This is an ex-parrot ! " . split ()

[' This ' , ' is ' , ' an ' , ' ex-parrot ! ']

Both of these familiar functions return a collection of values denoted by the

enclosing square brackets. These are lists, of course.

ltt.2.tl Lists and Arrays

As you know, Python lists are ordered sequences of items. In fact, the ideas and
notations that we use for manipulating lists are borrowed from the mathematical
notion of sequence. Mathematicians sometimes give an entire sequence of items
a single name. For instance, a sequence of n numbers might just be called S:

When they want to refer to specific values in the sequence, these values are
denoted by subscripts. In this example, the first item in the sequence is denoted

with the subscript 0, 80•
By using numbers as subscripts, mathematicians are able to succinctly sum­

marize computations over items in the sequence using subscript variables. For
example, the sum of the above sequence is written using standard summation
notation as

A similar idea can be applied to computer programs. With a list, we can use
a single variable to represent an entire sequence, and the individual items in the
sequence can be accessed through subscripting. Well, almost; we don't have a
way of typing subscripts, but we use indexing instead.

Suppose that our sequence is stored in a variable called s. We could write a
loop to calculate the sum of the items in the sequence like this:

11.2. Applying Lists

total = 0

for i in range (n) :

total = total + s [i]

Virtually all computer languages provide some sort of sequence structure similar
to Python's list; in other languages, it is called an array. To summarize, a list or
array is a sequence of items where the entire sequence is referred to by a single
name (in this case, s) and individual items can be selected by indexing (e.g.,

s [i]) .

Arrays in other programming languages are generally fixed size. When you
create an array, you have to specify how many items it will hold. If you don't

know how many items you will have, then you have to allocate a large array,
just in case, and keep track of how many "slots" you actually fill. Arrays are
also usually homogeneous. That means they are restricted to holding objects of a
single data type. You can have an array of ints or an array of strings, but cannot

mix strings and ints in a single array.

In contrast, Python lists are dynamic. They can grow and shrink on demand.
They are also heterogeneous. You can mix arbitrary data types in a single list. In
a nutshell, Python lists are mutable sequences of arbitrary objects.

1 11 .2 .2 1 list Operations

Because lists are sequences, you know that all of the Python built-in sequence
operations also apply to lists. To jog your memory, here's a summary of those

operations:

operator I meaning

<seq> + <seq>
•

concatenation

<seq>* <int-expr> repetition

<seq>[] indexing

len(<seq>) length

<seq>[:] slicing

for <var> in <seq>: iteration
•

membership check (Returns a Boolean) <expr> In <seq>

Except for the last (membership check), these are the same operations that we

used before on strings. The membership operation can be used to see if a certain
value appears anywhere in a sequence. Here are a couple of quick examples
checking for membership in lists and strings:

367

368

>>> lst = [1 , 2 , 3 , 4]

>>> 3 in lst
True

>>> 5 in lst

False

>>> ans = 'Y'

>>> ans in 'Yy'
True

Chapter 11. Data Col lections

By the way, since we can iterate through lists, the summing example from
above can be written more simply and clearly this way:

total = 0

for x in s :

total = total + x

Recall that one important difference between lists and strings is that lists are
mutable. You can use assignment to change the value of items in a list:

>>> lst = [1 , 2 , 3 , 4]

>>> lst [3]
4
>>> lst [3] = ''Hello ''

>>> lst
[1 , 2 , 3 , 'Hello ']

>>> lst [2] = 7

>>> lst
[1 , 2 , 7 , 'Hello ']

>>> lst [1 : 3] - [" Slice " , "Assignment "]

>>> lst
[1 , 'Slice ', 'Assignment ', 'Hello ']

As the last example shows, it's even possible to change an entire subsequence in

a list by assigning a list into a slice. Python lists are very flexible. Don't attempt
this in other languages!

As you know, lists can be created by listing items inside square brackets:

odds = [1 , 3 , 5 , 7 , 9]
food = [" spam" , " eggs " , "back bacon"]

silly - [1 , " spam" , 4 , " U"]
empty = []

11.2. Applying Lists

In the last example, empty is a list containing no items at all-an empty list.
A list of identical items can be created using the repetition operator. This

example creates a list containing 50 zeroes:

zeroes = [0] * 50

As we discussed in Chapter 5, lists are often built up one piece at a time
using the append method. Here is a fragment of code that fills a list with positive

numbers typed by the user:

nums = []

x = float (input ('Enter a number : '))

while x >= 0 :
nums . append (x)
x = float (input ("Enter a number : "))

In essence, nums is being used as an accumulator. The accumulator starts out
empty, and each time through the loop a new value is tacked on.

The append method is just one example of a number of useful list -specific

methods. This table briefly summarizes some things you can do to a list:

method I meaning

<list> . append (x) Adds element x to end of list.

<list> . sort () Sorts (orders) the list.

<list> . reverse () Reverses the list.

<list> . index (x) Returns index of first occurrence of x.

<list> . insert (i , x) Inserts x into list at index i.

<list> . count (x) Returns the number of occurrences of x in list.

<list> . remove (x) Deletes the first occurrence of x in list.

369

<list> . pop (i) Deletes the ith element of the list and returns its value.

We have seen how lists can grow by appending new items. Lists can also
shrink when items are deleted. Individual items or entire slices can be removed

from a list using the del operator:

>>> myList

[34 , 26 , 0 , 10]
>>> del myList [1]
>>> myList

370

[34 , 0 , 10]
>>> del myList [1 : 3]

>>> myList

[34]

Chapter 11. Data Col lections

Notice that del is not a list method, but a built-in operation that can be used on
list items.

As you can see, Python lists provide a very flexible mechanism for handling

arbitrarily large sequences of data. Using lists is easy if you keep these basic
principles in mind:

• A list is a sequence of items stored as a single object.

• Items in a list can be accessed by indexing, and sublists can be accessed by

slicing.

• Lists are mutable; individual items or entire slices can be replaced through

assignment statements.

• Lists support a number of convenient and frequently used methods.

• Lists will grow and shrink as needed.

ltt.2.3l Statistics with Lists

Now that you know more about lists, we are ready to solve our little statistics

problem. Recall that we are trying to develop a program that can compute the
mean, median, and standard deviation of a sequence of numbers entered by the

user. One obvious way to approach this problem is to store the numbers in a list.
We can write a series of functions-mean, std.Dev, and median-that take a list
of numbers and calculate the corresponding statistics.

Let's start by using lists to rewrite our original program that only computes
the mean. First, we need a function that gets the numbers from the user. Let's
call it getNumbers. This function will implement the basic sentinel loop from our
original program to input a sequence of numbers. We will use an initially empty

list as an accumulator to collect the numbers. The list will then be returned from
the function.

Here's the code for get Numbers :

def getNumbers () :
nums = [] # start with an empty list

11.2. Applying Lists

sentinel loop to get numbers

xStr = input ("Enter a number (<Enter> to quit) >> ")
while xStr ! = " " :

x = float (xStr)
nums . append (x) # add this value to the list

xStr = input ("Enter a number (<Enter> to quit) >> ")
return nums

Using this function, we can get a list of numbers from the user with a single line
of code:

data = getNumbers ()

Next, let's implement a function that computes the mean of the numbers in a

list. This function takes a list of numbers as a parameter and returns the mean.
We will use a loop to go through the list and compute the sum:

def mean (nums) :
total = 0 . 0
for num in nums :

total = total + num

return total I len (nums)

Notice how the average is computed and returned in the last line of this function.
The len operation returns the length of a list; we don't need a separate loop
accumulator to determine how many numbers there are.

With these two functions, our original program to average a series of num­

bers can now be done in two simple lines:

def main () :
data = getNumbers ()

print ('The mean i s ', mean (data))

Next, let's tackle the standard deviation function, stdDev. In order use the

standard deviation formula discussed above, we first need to compute the mean.
We have a design choice here. The value of the mean can either be calculated
inside stdDev or passed to the function as a parameter. Which way should we

do it?

On the one hand, calculating the mean inside stdDev seems cleaner, as it
makes the interface to the function simpler. To get the standard deviation of

371

372 Chapter 11. Data Col lections

a set of numbers, we just call std.Dev and pass it the list of numbers. This is

exactly analogous to how mean (and median below) works. On the other hand,
programs that need to compute the standard deviation will almost certainly
need to compute the mean as well. Computing it again in std.Dev results in the
calculations being done twice. If our data set is large, this seems inefficient.

Since our program is going to output both the mean and the standard devia­
tion, let's have the main program compute the mean and pass it as a parameter
to std.Dev. Other options are explored in the exercises at the end of the chapter.

Here is the code to compute the standard deviation using the mean (xbar)

as a parameter:

def std.Dev (nums , xbar) :

s umDevSq = 0 . 0
for num in nums :

dev = xbar - num

sumDevSq = sumDevSq + dev * dev

return sqrt (sumDevSq/ (len (nums) - 1))

Notice how the summation from the standard deviation formula is computed
using a loop with an accumulator. The variable sumDevSq stores the running
sum of the squares of the deviations. Once this sum has been computed, the last

line of the function calculates the rest of the formula.

Finally, we come to the median function. This one is a little bit trickier, as we
do not have a formula to calculate the median. We need an algorithm that picks

out the middle value. The first step is to arrange the numbers in increasing order.
Whatever value ends up in the middle of the pack is, by definition, the median.
There is just one small complication. If we have an even number of values, there

is no exact middle number. In that case, the median is determined by averaging

the two middle values. So the median of 3, 5, 6, and 9 is (5 + 6) /2 = 5.5.
In pseudocode our median algorithm looks like this:

sort the numbers into ascending order

if the size of data is odd :
med = the middle value

else :

med = the average of the two middle values

return med

This algorithm translates almost directly into Python code. We can take advan­
tage of the sort method to put the list in order. To test whether the size is

11.2. Applying Lists

even, we need to see if it is divisible by two. This is a perfect application of the
remainder operation. The size is even if size % 2 == 0, that is, dividing by 2

leaves a remainder of 0.
With these insights, we are ready to write the code:

def median (nums) :

nums . sort O
size = len (nums)
midPos = size II 2

if size % 2 == 0 :
med - (nums [midPos] + nums [midPos-1]) I 2

else :
med - nums [midPos]

return med

You should study this code carefully to be sure you understand how it selects
the correct median from the sorted list.

373

The middle position of the list is calculated using integer division as size I I 2.
If size is 3, then midPos is 1 (2 goes into 3 just one time) . This is the correct
middle position, since the three values in the list will have the indexes 0, 1, 2.

Now suppose size is 4. In this case, midPos will be 2, and the four values will
be in locations 0, 1, 2, 3. The correct median is found by averaging the values

at midPos (2) and midPos-1 (1).

Now that we have all the basic functions, finishing out the program is a

cinch:

def main () :

print ("This program computes mean , median , and standard deviation . ")

data = getNumbers ()
xbar = mean (data)
std = stdDev (data, xbar)

med = median (data)

print (" \nThe mean i s " , xbar)

print ("The standard deviation i s " , std)

print ("The median i s " , med)

Many computational tasks from assigning grades to monitoring flight sys­
tems on the space shuttle require some sort of statistical analysis. By using the

374 Chapter 11. Data Col lections

i f _ _name _ _ == ' _ _main _ _ , technique, we can make our code useful as a stand­

alone program and as a general statistical library module. Here's the program:

stats . py
from math import sqrt

de f getNumbers () :

nums = [] # start with an empty list
sentinel loop to get numbers

xStr = input ("Enter a number (<Enter> to quit) >> ")
while xStr ! = " " :

x = float (xStr)
nums . append (x) # add this value to the list

xStr = input ("Enter a number (<Enter> to quit) >> ")
return nums

de f mean (nums) :

total = 0 . 0

for num in nums :
total = total + num

return total I len (nums)

de f stdDev (nums , xbar) :

sumDevSq = 0 . 0

for num in nums :

dev = num - xbar
sumDevSq = sumDevSq + dev * dev

return sqrt (sumDevSql(len (nums)-1))

de f median (nums) :
nums . sort O

size = len (nums)
midPos = size II 2

i f size % 2 == 0 :

med - (nums [midPos] + nums [midPos-1]) I 2 . 0

else :
med - nums [midPos]

return med

11 .3. Lists of Records 375

def main () :

print ("This program computes mean , median , and standard deviation . ")

data = getNumbers ()

xbar = mean (data)

std = stdDev (data, xbar)

med = median (data)

print (" \nThe mean i s " , xbar)

print ("The standard deviation i s " , std)

print ("The median i s " , med)

if __ name -- ' __ main __ ' : main ()

ltt.3l Lists of Records

All of the list examples we've looked at so far have involved lists of simple types

like numbers and strings. However, a list can be used to store collections of any
type. One particularly useful application is storing a collection of records. We

can illustrate this idea by building on the student GPA data-processing program
from last chapter.

Recall that our previous grade-processing program read through a file of

student grade information to find and print information about the student with

the highest GPA. One of the most common operations performed on this kind of
data is sorting. We might want the list in different orders for different purposes.
An academic advisor might like to have a file with grade information sorted

alphabetically by the name of the student. To determine which students have
enough credit hours for graduation, it would be useful to have the file in order
according to credit hours. And a GPA sort would be useful for deciding which

students are in the top lOo/o of the class.

Let's write a program that sorts a file of students according to their GPA. The
program will make use of a list of Student objects. We just need to borrow the

Student class from our previous program and add a bit of list processing. The

basic algorithm for our program is very simple:

Get the name of the input f ile from the user
Read student information into a list

376 Chapter 11. Data Col lections

Sort the list by GPA
Get the name of the output file from the user

Write the student information from the list into a f ile

Let's begin with the file processing. We want to read through the data file and
create a list of students. Here's a function that takes a file name as a parameter
and returns a list of Student objects from the file:

def readStudents (f ilename) :
inf ile = open (filename , ' r ')

students = []
for line in inf i le :

students . append (makeStudent (line))
inf ile . close ()

return students

This function first opens the file for reading and then reads line by line, append­

ing a student object to the students list for each line of the file. Notice that
I am borrowing the makeStudent function from the GPA program; it creates a

student object from a line of the file. We will have to be sure to import this
function (along with the Student class) at the top of our program.

While we're thinking about files, let's also write a function that can write the

list of students back out to a file. Remember, each line of the file should contain

three pieces of information (name, credit hours, and quality points) separated
by tabs. The code to do this is straightforward:

def writeStudents (students , filename) :

students is a list of Student obj ects
outfile = open (filename , ' w ')

for s in students :
print (" {O}\t{1}\t{2} " .

format (s . getName () , s . get Hours () , s . get QPoints ()) ,
f ile=outf ile)

outfile . c lose ()

Notice that I used the string-formatting method to generate the appropriate line
of output; the \ t represents a tab character.

Using the functions readStudents and wri teStudents , we can easily con­
vert our data file into a list of students and then write it back out to a file. All
we have to do now is figure out how to sort the records by GPA.

11 .3. Lists of Records

In the statistics program, we used the sort method to sort a list of numbers.
What happens if we try to sort a list that contains something other than num­

bers? In this case, we want to sort a list of student objects. Let's try that out and
see what happens:

>>> 1st = gpasort . readStudents (" students . dat ")
>>> 1st

377

[< gpa.Student obj ect at Oxb7b1554c> , < gpa . Student obj ect at Oxb7b156cc> ,

< gpa.Student obj ect at Oxb7b1558c> , < gpa . Student obj ect at Oxb7b155cc> ,
< gpa.Student obj ect at Oxb7b156ec>]

>>> lst .sort O

Traceback (most recent call last) :

File "<stdin> " , line 1 , in <module>

TypeError : unorderable types : Student () < Student ()

As you can see, Python gives us an error message because it does not know
how our Student objects should be ordered. If you think about it, that makes

sense. We have not defined any implicit ordering for students, and we might

want to arrange them in different order for different purposes. In this example,
we want them ranked by GPA; in another context, we may want them in alpha­
betical order. In data processing, the field on which records are sorted is called

a key. To put the students in alphabetical order, we would use the name as the

key. For our GPA problem, obviously, we want the GPA to be used as the key for
sorting the students.

The built-in sort method gives us a way to specify the key that is used when

sorting a list. By supplying an optional keyword parameter, key, we can pass
along a function that computes a key value for each item in the list:

<list> . sort (key=<key_function>)

The key _function must be a function that takes an item from the list as a pa­

rameter and returns the key value for that item. In our case, the list item will
be an instance of Student, and we want to use GPA as the key. Here's a suitable

key function:

def use_gpa(aStudent) :

return aStudent . gpa ()

This function simply uses the gpa method defined in the Student class to provide
the key value. Having defined this little helper function, we can use it to sort a
list of Students with call to sort :

378 Chapter 11. Data Col lections

data.sort (key=use_gpa)

An important point to notice here is that I did not put parentheses on the func­
tion name (use_gpaO). I do not want to call the function. Rather, I am sending

use_gpa to the sort method, and it will call this function anytime it needs to

compare two items to see what their relative ordering should be in the sorted
list.

It's often useful to write this sort of helper function to provide keys for sorting

a list; however, in this particular case, writing an additional function is not really

necessary. We have already written a function that computes the GPA for a

student-it's the gpa method in the Student class. If you go back and look at
the definition of that method, you'll see that it takes a single parameter (self)
and returns the computed GPA. Since methods are just functions, we can use
this as our key and save ourselves the trouble of writing the helper. In order to

use a method as a stand-alone function, we just need to use our standard dot
notation:

data . sort (key=Student . gpa)

This snippet says to use the function/method called gpa defined in the Student

class.

I think we now have all the components in place for our program. Here's the

completed code:

gpasort .py
A program to sort student information into GPA order .

from gpa import Student , makeStudent

def readStudents (f ilename) :

inf i le = open (filename , ' r ')

students = []
for line in inf ile :

students . append (makeStudent (line))
inf i le . close ()

return students

def writeStudents (students , filename) :

outfile = open (filename , ' w ')

11 .4. Design ing with Lists and Classes

for s in students :

print (" {O}\t{1}\t{2} " .

379

format (s . getName () , s . get Hours () , s . get QPoints ()) ,
f ile=outf ile)

outfile . close ()

def main () :
print ("This program sorts student grade information by GPA ")

f ilename = input ("Enter the name of the data file : ")
data = readStudents (f ilename)

data . sort (key=Student . gpa)
f ilename = input ("Enter a name for the output file : ")

writeStudents (data , f ilename)

print ("The data has been written to" , f ilename)

if __ name
main ()

-- ' __ main __ ' :

ltt.41 Designing with Lists and Classes

Lists and classes taken together give us powerful tools for structuring the data

in our programs. Let's put these tools to work in some more sophisticated ex­
amples.

Remember the Die View class from last chapter? In order to display the six

possible values of a die, each Die View object keeps track of seven circles rep­
resenting the position of pips on the face of a die. In the previous version, we
saved these circles using instance variables pip!, pip2, pip3, etc.

Let's consider how the code looks using a collection of circle objects stored
as a list. The basic idea is to replace our seven instance variables with a single

list called pips. Our first problem is to create a suitable list. This will be done
in the constructor for the Die View class.

In our previous version, the pips were created with this sequence of state­
ments inside __ ini t __ :

self . pip1 - self . __ makePip (cx-off set , cy-off set)

self . pip2 - self . __ makePip (cx-off set , cy)
self . pip3 - self . _ _ makePip (cx-off set , cy+off set)

380 Chapter 11. Data Col lections

self .pip4 - self . __ makePip (cx , cy)
self .pip5 - self . _ _ makePip (cx+off set , cy-off set)

self .pip6 - se lf . __ makePip (cx+off set , cy)
self .pip7 - self . _ _ makePip (cx+off set , cy+off set)

Recall that _...lilakePip is a local method of the Die View class that creates a circle
centered at the position given by its parameters.

We want to replace these lines with code to create a list of pips. One ap­
proach would be to start with an empty list of pips and build up the final list one
pip at a time:

pips = []

pips .append (self . _ _ makePip (cx-off set , cy-off set))
pips .append (self . __ makePip (cx-off set , cy))

pips .append (self . __ makePip (cx-off set , cy+offset))
pips .append (self . __ makePip (cx , cy))

pips .append (self . __ makePip (cx+off set , cy-off set))
pips .append (self . __ makePip (cx+off set , cy))

pips .append (self . __ makePip (cx+off set , cy+offset))

self .pips = pips

An even more straightforward approach is to create the list directly, enclosing

the calls to _...lilakePip inside list construction brackets, like this:

self .pips = [self . __ makePip (cx-offset , cy-offset)) ,

]

self . __ makePip (cx-offset , cy)) ,

self . __ makePip (cx-offset , cy+off set)) ,
self . __ makePip (cx , cy)) ,

self . __ makePip (cx+offset , cy-offset)) ,
self . __ makePip (cx+offset , cy)) ,

self . __ makePip (cx+offset , cy+off set))

Notice how I have formatted this statement. Rather than making one giant line,
I put one list element on each line. Again, Python is smart enough to know that
the end of the statement has not been reached until it finds the matching square

bracket. Listing complex objects one per line like this makes it much easier to
see what is happening. Just make sure to include the commas at the end of
intermediate lines to separate the items of the list.

The advantage of a pip list is that it is much easier to perform actions on the

entire set. For example, we can blank out the die by setting all of the pips to
have the same color as the background:

11 .4. Design ing with Lists and Classes

for pip in self .pips :

pip.setFill (self .background)

See how these two lines of code loop through the entire collection of pips to

change their color? This required seven lines of code in the previous version

using separate instance variables.

Similarly, we can turn a set of pips back on by indexing the appropriate spot
in the pips list. In the original program, pips 1, 4, and 7 were turned on for the

value 3:

self .pip1 .setFill (self .foreground)

self .pip4 .setFill (self .foreground)

self .pip7 .setFi ll(se lf .foreground)

In the new version, this corresponds to pips in positions 0, 3, and 6, since the

pips list is indexed starting at 0. A parallel approach could accomplish this task
with these three lines of code:

self .pips [O] .setFil l(self .foreground)

self .pips [3] .setFill (self .foreground)

self .pips [6] .setFill (self .foreground)

Doing it this way makes explicit the correspondence between the individual
instance variables used in the first version and the list elements used in the

second version. By subscripting the list, we can get at the individual pip objects,

just as if they were separate variables. However, this code does not really take
advantage of the new representation.

Here is an easier way to turn on the same three pips:

for i in [0 , 3 , 6] :
self .pips [i] .setFill (self .foreground)

Using an index variable in a loop, we can tum all three pips on using the same

line of code.
The second approach considerably shortens the code needed in the set Value

method of the Die View class. Here is the updated algorithm:

Loop through pips and turn all off

Determine the list of pip indexes to turn on
Loop through the list of indexes and turn on those pips .

We could implement this algorithm using a multi-way selection followed by a
loop:

381

382 Chapter 11. Data Col lections

for pip in self .pips :

self .pip.setFill (self .background)

if value == 1 :

on = [3]
elif value == 2 :

on = [0 , 6]

elif value == 3 :

on = [0 , 3 , 6]
elif value == 4 :

on = [0 , 2 , 4 , 6]

elif value == 5 :

on = [0 , 2 , 3 , 4 , 6]

else :
on = [0 , 1 , 2 , 4 , 5 , 6]

for i in on :
self .pips [i] .setFill (self .foreground)

The version without lists required 36 lines of code to accomplish the same task.
But we can do even better than this.

Notice that this code still uses the if-elif structure to determine which pips
should be turned on. Since the correct list of indexes is determined by value

(a number between 1 and 6), we could make this decision table-driven instead.
The idea is to use a list where each item in the list is itself a list of pip indexes.
For example, the item in position 3 should be the list [0 , 3 , 6] , since these are

the pips that must be turned on to show a value of 3.

Here is how a table-driven approach can be coded:

on Table = [[] , [3] , [2 , 4] , [2 , 3 , 4] ,

[0 , 2 , 4 , 6] ' [0 , 2 , 3 , 4 , 6] ' [0 , 1 , 2 , 4 , 5 , 6]]

for pip in self .pips :

self .pip.setFill (self .background)
on = onTable [value]

for i in on :

self .pips [i] .setFill (self .foreground)

I have called the table of pip indexes on Table. Notice that I padded the table
by placing an empty list in the first position. If value is 0, the Die View will
be blank. Now we have reduced our 36 lines of code to seven. In addition, this

11 .4. Design ing with Lists and Classes

version is much easier to modify; if you want to change which pips are displayed
for various values, you simply modify the entries in on Table.

There is one last issue to address. The onTable will remain unchanged
throughout the life of any particular Die View. Rather than (re)creating this
table each time a new value is displayed, it would be better to create the table
in the constructor and save it in an instance variable.1 Putting the definition of

on Table into __ ini t __ yields this nicely completed class:

dieview2 . py
from graphics import *

class Die View :

" " " Die View is a widget that displays a graphical
representation of a standard six-sided die . " " "

def __ init __ (self , win , center , size) :

" " " Create a view of a die , e . g . :

d1 = GDie (myWin , Point (40 , 50) , 20)
creates a die centered at (40 , 50) having sides

of length 20 . " " "

first define some standard values
self . win = win

self . background = "white " # color of die face

self . foreground = "black" # color of the pips
self . psize = 0 . 1 * size # radius of each pip

hsize = size I 2 . 0 # half of size
offset = 0 . 6 * hsize # distance from center

to outer pips

create a square for the face

ex , cy = center . getX () , center . getY ()
p1 = Point (cx-hsize , cy-hsize)

p2 = Point (cx+hsize , cy+hsize)
rect = Rectangle (p1 , p2)

rect . draw (win)
rect . setFill (self . background)

1 An even better approach would be to use a class variable, but class variables are beyond the
scope of the current discussion.

383

384 Chapter 11. Data Col lections

Create 7 circles for standard pip locations

self . pips = [self . _ _ makePip (cx-off set , cy-offset) ,

self . __ makePip (cx-offset , cy) ,

self . __ makePip (cx-offset , cy+off set) ,
self . __ makePip (cx , cy) ,
self . __ makePip (cx+off set , cy-off set) ,

self . __ makePip (cx+off set , cy) ,

self . __ makePip (cx+off set , cy+off set)]

Create a table for which pips are on for each value

self . on Table = [[] , [3] , [2 , 4] , [2 , 3 , 4] ,

[0 , 2 , 4 , 6] ' [0 , 2 , 3 , 4 , 6] ' [0 , 1 , 2 , 4 , 5 , 6]]

self . set Value (1)

def __ makePip (self , x , y) :
'""'Internal helper method to draw a pip at (x , y) " " "

pip = Circle (Point (x , y) , self . psize)

pip . setFill (self . background)
pip . setOutline (self . background)

pip . draw (self . win)
return pip

def set Value (self , value) :

" " " Set this die to display value . " " "

Turn all the pips off
for pip in self . pips :

pip . setFill (self . background)

Turn the appropriate pips back on
for i in self . onTable [value] :

self . pips [i] . setFill (self . foreground)

This example also showcases the advantages of encapsulation that I talked
about in Chapter 10. We have significantly improved the implementation of the

Die View class, but we have not changed the set of methods that it supports.

We can substitute this improved version into any program that uses a Die View

without having to modify any of the other code. The encapsulation of objects
allows us to build complex software systems as a set of "pluggable modules."

11 .5 . Case Study: Python Calculator

ltt.SI Case Study: Python Calculator

The reworked Die View class shows how lists can be used effectively as instance

variables of objects. Interestingly, our pips list and onTable list contain circles
and lists, respectively, which are themselves objects. By nesting and combin­

ing collections and objects we can devise elegant ways of storing data in our

programs.

We can even go one step further and view a program itself as a collection
of data structures (collections and objects) and a set of algorithms that operate
on those data structures. Now, if a program contains data and operations, one

natural way to organize the program is to treat the entire application itself as an

object.

ltt.5.tl A Calculator as an Object

As an example, we'll develop a program that implements a simple Python calcu­
lator. Our calculator will have buttons for the ten digits (0-9), a decimal point

(.), four operations (+, -, *, /), and a few special buttons: C to clear the display,
<- to backspace over characters in the display, and = to do the calculation.

We'll take a very simple approach to performing calculations. As buttons
are clicked, the corresponding characters will show up in the display, allowing
the user to create a formula. When the = key is pressed, the formula will be
evaluated and the resulting value shown in the display. Figure 11.1 shows a
snapshot of the calculator in action.

Basically, we can divide the functioning of the calculator into two parts:
creating the interface and interacting with the user. The user interface in this

case consists of a display widget and a bunch of buttons. We can keep track of
these GUI widgets with instance variables. The user interaction can be managed
by a set of methods that manipulate the widgets.

To implement this division of labor, we will create a Calculator class that
represents the calculator in our program. The constructor for the class will cre­

ate the initial interface. We will make the calculator respond to user interaction

by invoking a special run method.

ltt.5.2l Constructing the Interface

Let's take a detailed look at the constructor for the Calculator class. First, we'll
need to create a graphics window to draw the interface:

385

386 Chapter 11. Data Col lections

Figure 11.1: Python calculator in action

def __ init _ _ (self) :
create the window for the calculator

win = GraphWin (" Calculator ")

win.set Coords (0 , 0 , 6 , 7)
win.set Background (" slategray")

self . win = win

The coordinates for the window were chosen to simplify the layout of the but­
tons. In the last line, the window object is tucked into an instance variable so
that other methods can refer to it.

The next step is to create the buttons. We will reuse the button class from

the previous chapter. Since there are a lot of similar buttons, we will use a list
to store them. Here is the code that creates the button list:

create list of buttons
start with all the standard sized buttons
bSpecs gives center coords and label of buttons

bSpecs = [(2 , 1 , ' 0 ') , (3 , 1 , ' . ') ,

(1 , 2 , ' 1 ') , (2 , 2 , ' 2 ') , (3 , 2 , ' 3 ') , (4 , 2 , ' + ') , (5 , 2 , ' - ') ,

(1 , 3 , ' 4 ') , (2 , 3 , ' 5 ') , (3 , 3 , ' 6 ') , (4 , 3 , ' * ') , (5 , 3 , ' / ') ,

(1 , 4 , ' 7 ') , (2 , 4 , ' 8 ') , (3 , 4 , ' 9 ') , (4 , 4 , ' <- ') , (5 , 4 , ' C')]

self .buttons = []

11 .5 . Case Study: Python Calculator

for (cx , cy , label) in bSpecs :

self . buttons . append (Button (self . win , Point (cx , cy) ,

. 75 , . 75 , label))

create the larger '=' button
self . buttons . append (Button (self . win , Point (4 . 5 , 1) ,

1 . 75 , . 75 , 11=11))

activate all buttons

for b in self . buttons :
b . activate ()

Study this code carefully. A button is normally specified by providing a center

point, width, height, and label. Typing out calls to the Button constructor with

all this information for each button would be tedious. Rather than creating the
buttons directly, this code first creates a list of button specifications, bSpecs.
This list of specifications is then used to create the buttons.

Each specification is a tuple consisting of the x and y coordinates of the center
of the button and its label. A tuple looks like a list except that it is enclosed in

round parentheses () instead of square brackets [] . A tuple is just another kind
of sequence in Python. Tuples are like lists except that tuples are immutable­

the items can't be changed. If the contents of a sequence won't be changed after

it is created, using a tuple is more efficient than using a list.
The next step is to iterate through the specification list and create a corre­

sponding button for each entry. Take a look at the loop heading:

for (cx , cy , label) in bSpecs :

According to the definition of a for loop, the tuple (cx , cy , label) will be as­

signed each successive item in the list bSpecs.
Put another way, conceptually, each iteration of the loop starts with an as­

signment:

(cx , cy , label) = <next item from bSpecs>

Of course, each item in bSpecs is also a tuple. When a tuple of variables is used
on the left side of an assignment, the corresponding components of the tuple on
the right side are unpacked into the variables on the left side. In fact, this is how

Python actually implements all simultaneous assignments.
The first time through the loop, it is as if we had done this simultaneous

assignment:

ex , cy , label - 2 , 1 , 11 0 11

387

388 Chapter 11. Data Col lections

Each time through the loop, another tuple from bSpecs is unpacked into the
variables in the loop heading. The values are then used to create a Button that

is appended to the list of buttons.

After all of the standard-sized buttons have been created, the larger = button
is created and tacked onto the list:

self .buttons .append (Button (self .win , Point (4.5 , 1) , 1 .75 , .75 , "="))

I could have written a line like this for each of the previous buttons, but I think
you can see the appeal of the specification-list/loop approach for creating the
17 similar buttons.

In contrast to the buttons, creating the calculator display is quite simple. The

display will just be a rectangle with some text centered on it. We need to save
the text object as an instance variable so that its contents can be accessed and
changed during processing of button clicks. Here is the code that creates the

display:

bg = Rectangle (Point (.5 , 5 .5) , Point (5.5 , 6 .5))

bg.setFill (' white ')
bg.draw (self .win)

text = Text (Point (3 , 6) , '"')

text .draw (self .win)
text .setFace (" courier ")

text .setStyle ("bo ld")

text .setSize (16)
self .display = text

ltt.5.3l Processing Buttons

Now that we have an interface drawn, we need a method that actually gets the

calculator running. Our calculator will use a classic event loop that waits for a
button to be clicked and then processes that button. Let's encapsulate this in a
method called run:

def run (self) :

whi le True :

key = self .getKeyPress ()

self .processKey (key)

11 .5 . Case Study: Python Calculator

Notice that this is an infinite loop. To quit the program, the user will have to
"kill" the calculator window. All that's left is to implement the getKeyPress and

processKey methods.
Getting key presses is easy; we continue getting mouse clicks until one of

those mouse clicks is on a button. To determine whether a button has been

clicked, we loop through the list of buttons and check each one. The result is a
nested loop:

def getKeyPress (self) :

Waits for a button to be clicked

Returns the label of the button that was clicked .
while True :

loop for each mouse click

p = self . win . get Mouse ()
for b in self . buttons :

loop for each button

if b . clicked (p) :
return b . getLabel () # method exit

You can see how having the buttons in a list is a big win here. We can use a for

loop to look at each button in turn. If the clicked point p turns out to be in one

of the buttons, the label of that button is returned, providing an exit from the
otherwise infinite while loop.

The last step is to update the display of the calculator according to which

button was clicked. This is accomplished in processKey. Basically, this is a
multi-way decision that checks the key label and takes the appropriate action. A
digit or operator is simply appended to the display. If key contains the label of

the button and text contains the current contents of the display, the appropriate

line of code looks like this:

self . display . setText (text+key)

The clear key blanks the display:

self . display . setText (" ")

The backspace strips off one character:

self . display . setText (text [: -1])

Finally, the equal key causes the expression in the display to be evaluated and
the result displayed:

389

390 Chapter 11. Data Col lections

try :
result - eval (text)

except :
result = ' ERROR'

self . display . setText (str (result))

The try-except statement here is necessary to catch run-time errors caused by

entries that are not legal Python expressions. If an error occurs, the calculator
will display ERROR rather than causing the program to crash.

Here is the complete program:

calc . pyw -- A four function calculator using Python arit hmetic .

Illustrates use of obj ects and lists to build a simple GUI .

from graphics import *
from button import Button

class Calculator :

This class implements a simple calculator GUI

def __ init __ (self) :
create the window for the calculator

win = GraphWin (" calculator ")

win . set Coords (0 , 0 , 6 , 7)
win . set Background (" slategray")

self . win = win

Now create the widgets
self . __ createButtons ()
self . __ createDisplay ()

def __ createButtons (self) :

create list of buttons

start with all the standard sized buttons
bSpecs gives center coords and label of buttons

bSpecs = [(2 , 1 , ' 0 ') , (3 , 1 , ' . ') ,

(1 , 2 , ' 1 ') , (2 , 2 , ' 2 ') , (3 , 2 , ' 3 ') , (4 , 2 , ' + ') , (5 , 2 , ' - ') ,

(1 , 3 , ' 4 ') , (2 , 3 , ' 5 ') , (3 , 3 , ' 6 ') , (4 , 3 , ' * ') , (5 , 3 , ' / ') ,

(1 , 4 , ' 7 ') , (2 , 4 , ' 8 ') , (3 , 4 , ' 9 ') , (4 , 4 , ' <- ') , (5 , 4 , ' C')]
self . buttons = []

11 .5 . Case Study: Python Calculator 391

for (cx , cy , label) in bSpecs :

self .buttons .append (Button (self .win , Point (cx , cy) , .75 , .75 , label))

create the larger = button

self .buttons .append (Button (self .win , Point (4.5 , 1) , 1 .75 , .75 , "="))

activate all buttons
for b in self .buttons :

b.activateO

def __ createDisplay (self) :

bg = Rectangle (Point (.5 , 5 .5) , Point (5.5 , 6 .5))
bg.setFill (' white ')

bg.draw (self .win)
text = Text (Point (3 , 6) , '"')

text .draw (self .win)
text .setFace (" courier ")

text .setStyle ("bold")

text .setSize (16)

self .display = text

def get Button (self) :
Waits for a button to be clicked and returns the label of
the button that was clicked.

while True :

p = self .win.get Mouse ()

for b in self .buttons :
if b .clicked (p) :

return b.getLabel () # method exit

def proces s Button (self , key) :

Updates the display of the calculator for press of this key
text = self .display.getText ()

if key == ' C' :

self .display.setText (" ")

elif key == ' <- ' :

Backspace , slice off the last character .

self .display.setText (text [: -1])
elif key == ' = ' :

Evaluate the expresssion and display the result .

392 Chapter 11. Data Col lections

the try . . . except mechanism " catches " errors in the

formula being evaluated .

try :
result - eval (text)

except :

result - ' ERROR'
self . display . setText (str (result))

else :
Normal key press , append it to the end of the display

self . display . setText (text+key)

def run (self) :

Infinite event loop to process button clicks .

while True :
key = self . get Button ()

self . process Button (key)

This runs the program .

if __ name == ' __ main __ ' :

First create a calculator obj ect

the Calc = Calculator ()
Now cal l the calculator ' s run method .

the Calc . run ()

Notice especially the very end of the program. To run the application, we

create an instance of the Calculator class and then call its run method.

ltt.6l Case Study: Better Cannonball Animation

The calculator example used a list of Button objects to simplify the code. In this
case, maintaining a collection of similar objects as a list was strictly a program­
ming convenience, as the contents of the button list never changed. Lists (or

other collection types) become essential when the collection changes dynami­

cally during program execution.

Consider the cannonball animation from the last chapter. As we left it, the
program could show only a single shot at a time. In this section we will extend
the program to allow multiple shots. Doing this requires keeping track of all the

11.6. Case Study: Better Cannonball Animation

cannonballs currently in flight. That's a constantly varying collection, and we'll
use a list to manage it.

ltt.6.tl Creating a Launcher

Before jumping into the use of a list to animate multiple shots, we need to

update the program,s user interface a bit so that firing multiple shots is feasible.
In the previous version of the program, we got information from the user via a
simple dialog window. For this version we want to add a new widget that allows
the user to rapidly fire shots with various starting angles and velocities, more
like in a video game.

The launcher widget will show a cannonball ready to be launched along with
an arrow representing the current settings for the launch angle and velocity. Fig­
ure 11.2 shows the animation with the launcher at the left edge and multiple
shots in flight. The angle of the arrow indicates the launch direction, and the
length of the arrow represents the initial speed. (Mathematically inclined read­
ers might recognize the arrow as the standard vector representation of the initial
velocity.) The entire simulation will be under keyboard control, with keys as­
signed to increase/ decrease the launch angle, increase/ decrease the speed, and
fire the shot.

�/ � Projectile Animation
v 0

0 50

•
•

•

100 150

Figure 11.2: Enhanced cannon animation

200

393

394 Chapter 11. Data Col lections

We start by defining a suitable class describing the behavior of a Launcher.

A Launcher will obviously need to keep track of a current angle and velocity;
let's use instance variables se lf . angle and self . ve l for these values. We have
to decide on units of measurement for these. The obvious choice for velocity is
meters per second, since that is what the Proj ect i le class uses. For the angle,
either degrees or radians is a reasonable choice. Internally, it's most efficient to

work with radians, since that is what the Python libary uses. For passing values

in, degrees are useful as they are more intuitive for most programmers.

The constructor for the class will be the hardest method to write, since it

draws the launcher and initializes all the instance variables. Let's write some
other methods first to gain insight into what the constructor will have to ac­

complish. First up, we need mutator methods to change the angle and velocity.
When we press a certain key, we want the angle to increase or decrease a fixed

amount. The exact amount of change is up to the interface, so we will pass that

as a parameter to the method. When the angle changes, we will also need to

redraw the Launcher to reflect the new value. Here's a suitable method:

c lass Launcher :

def adj Angle (self , amt) :
11 11 11 Change launch angle by amt degrees 11 11 11

self . angle = se lf . angle + radians (amt)

self . redraw ()

Notice that the redrawing is done by a separate (as yet unwritten) method.

Since adjusting the velocity will also require redrawing, it makes sense to factor
this operation out into a helper method. You can also see that the amount of
adjustment, amt, is converted from degrees to radians and simply added to the

existing value. Positive values will raise the launch angle, while negative values

will decrease it.

Following the same pattern, we can easily write a method for adjusting the

velocity:

def adj Ve l(self , amt) :
11 11 11 change launch ve locity by amt 11 11 11

self . ve l = self . ve l + amt

self . redraw ()

11.6. Case Study: Better Cannonba l l Animation

As with adj Angle, we can use positive or negative values of amt to increase or

decrease the velocity, respectively.

To complete these two methods, we need to supply the redraw method.

What does it do? It should undraw the current arrow and then use the values
of self . angle and self . vel to draw a new one. But what is an arrow? It's
really just a Line. If you look back at the documentation for the Line class at

the end of Chapter 4, you'll see that you can use the setArrow method to put
an arrowhead at either or both ends of a line. Now, in order to undraw the
previous Line (arrow) we'll need an instance variable that stores it so that we

can ask it to undraw itself. Let's call that instance variable self . arrow. Using

this insight, along with a bit of trigonometry for getting the x and y components
of the velocity (covered in Section 10.2), our redraw method looks like this:

def redraw (self) :

11 11 11 redraw the arrow to show current angle and velocity11 11 11

self .arrow.undraw ()

pt2 = Point (self .vel*cos (self .angle) ,
self .vel*sin (self .angle))

self .arrow = Line (Point (O , O) , pt2) .draw (self .win)
self .arrow.setArrow (11 last 11)

self .arrow.setWidth (3)

This code undraws the existing Line stored in the instance variable self . arrow
and then creates a new one. You can see that the start of the arrow is al­

ways at (0,0) with the endpoint determined by the angle and velocity. The
new Line is created, drawn, and then saved into the instance variable. Calling

setArrow (11 last 11) is what causes the line to have an arrowhead at the second
point.

We also need a method to "fire" a shot from the Launcher. Remember we

already designed a ShotTracker class back in Chapter 10, so we can reuse that
class to create a suitable shot. A ShotTracker requires window, angle, velocity,

and height as parameters. The initial height will just be 0, and the angle and
velocity are instance variables, but what about the window? We do not want to

create a new window-we want to use the existing window where the launcher
is drawn. That means we need another instance variable, self . win. With that
assumption, the method practically writes itself:

def f ire (self) :

395

return ShotTracker (self .win , degrees (self .angle) , self .vel , 0 .0)

396 Chapter 11. Data Col lections

Notice that the method simply returns an appropriate ShotTracker object. It

will be up to the interface to actually animate the shot. The fire method is not
the appropriate place for the animation loop. Do you see why? (Hint: Should

launcher interaction be modal?)

All we have left is writing a suitable constructor. It needs to draw the base
cannonball, initialize the instance variables (win, angle, vel, and arrow) and

call redraw to make the correct arrow show up:

def __ init __ (self , win) :

draw the base shot of the launcher

base = Circle (Point (O , O) , 3)

base . setFill ("red")
base .setOutline ("red")

base .draw (win)

save the window and create initial angle and velocity
self .win = win

self .angle = radians (45 .0)
self .vel - 40 .0

create initial "dummy" arrow (needed by redraw)

self .arrow = Line (Point (O , O) , Point (O , O)) .draw (win)

replace it with the correct arrow
self .redraw ()

1 11.6.2 1 Tracking Multiple Shots

With the launcher in hand, we can turn to the interesting issue in this program,

namely having multiple things happening at the same time. We want to be able

to adjust the launcher and fire more shots while some shots are still in the air.
In order for that to happen, the event loop that monitors keyboard input has
to run (to keep interaction active) while the cannonballs are flying. Essentially

our event loop has to do double-duty, also serving as an animation loop for all
the shots that are currently "alive." The basic idea is to have the event loop go
around at a decent rate for animation, say 30 iterations per second, and each
time through the loop we move all the shots that are in flight and also perform

any action requested by the user.

Given the complexity of this program, it is probably a good idea to proceed
as we did with the calculator example and create an application object. I'll call it

11.6. Case Study: Better Cannonba l l Animation

a Proj ectileApp. The class will contain a constructor that draws the interface

and initializes all the necessary variables, as well as a run method to implement
the combined event/animation loop. Here is the beginning of the class with a

suitable constructor:

class Proj ectileApp :

def __ init __ (self) :

create graphics window with a scale line at the bottom
self . win = GraphWin ("Proj ectile Animation" , 640 , 480)
self . win . set Coords (-10 , -10 , 210 , 155)

Line (Point (-10 , 0) , Point (210 , 0)) . draw (self . win)
for x in range (O , 210 , 50) :

Text (Point (x , -7) , str (x)) . draw (self . win)

Line (Point (x , O) , Point (x , 2)) . draw (self . win)

add the launcher to the window

self . launcher = Launcher (self . win)

start with an empty list of " live " shots
self . shots = []

The code for creating the animation window is just like it was in the previous

version of the program. The lines at the bottom of the method add new instance
variables for the launcher and the list of live shots that are being animated.

Here is the run method implementing the event/animation loop:

def run (self) :

main event/animation loop

while True :

self . updateShots (1/30)

key = self . win . checkKey ()
if key in [" q" , " Q"] :

break

if key == " Up" :

self . launcher . adj Angle (5)
elif key == "Down" :

397

398 Chapter 11. Data Col lections

self .launcher .adj Angle (-5)
elif key == "Right " :

self . launcher . adj Ve l(5)
elif key == ''Left '' :

self .launcher .adj Vel (-5)
elif key in [" f 11 , " F "] :

se lf . shots . append (launcher . f ire ())

update (30)

win . c lose ()

There is not really much to this loop. The first line invokes a helper method
that moves all of the live shots. We still have to write that one, but the intent

is pretty obvious; it's the animation portion of the loop. The rest of the loop
handles keyboard events. We use checkKey ensuring that the loop keeps going

around to keep the shots moving even when no key has been pressed. The

" Up " , "Down", " Left " , and "Right " key designations refer to the corresponding
arrows on the keyboard. Up and down are used to change the launcher angle,
while left and right alter the launcher velocity.

Do you see how easy it is to actually fire a cannonball? When the user hits
the f key, we get a Shot Tracker object from the launcher and simply add this to

the list of live shots. The Shot Tracker created by the launcher's f ire method

is automatically drawn in the window, and adding it to the list of shots (via
self . shots . append) ensures that its position changes each time through the
loop, due to the updateShots call at the top. The last line of the loop ensures

that all of the graphics updates are drawn and serves to throttle the loop to a
maximum of 30 iterations per second, thus matching the time interval (1/30)
used in the call at the top of the loop. Again, you can play with those two values
to alter the apparent speed of the animation.

Finally, we are left with writing the updateShots method that handles the

animation of shots. This method has two jobs: moving all the live shots and
updating the list to remove any that have "died" (either landed or flown hori­
zontally out of the window) . The second task keeps the list trimmed to just the

collection of shots that need animating. The code to do the first task is straight­

forward. We just need to loop through the list of ShotTracker objects and ask
each to update. Something like this would do the job:

11.6. Case Study: Better Cannonba l l Animation

def updateShots (self , dt) :

for shot in self . shots :

shot . update (dt)

Remember, the parameter dt tells the amount of time into the future to move

the shot.

The second task is to remove the dead shots. We can tell whether a shot is

still alive by testing that its y position is above 0 and x is between -10 and 210.
It's tempting to add an if statement that checks this and then simply deletes a
dead shot from the list.

if shot . getY () < 0 or shot . getX () < -10 or shot . getX () > 210 :
self . shots . remove (shot)

But this is a BAD idea and can lead to erratic behavior. The reason is that
the loop is iterating through self . shots, and modifying that list while looping
through it can produce strange anomalies.

A better approach is to use another list to keep track of which shots are

still alive and then change self . shots at the end of the method. Taking this
approach, here is the code for updateShots :

def updateShots (self , dt) :

alive = []

for shot in self . shots :

shot . update (dt)
if shot . getY () >= 0 and - 1 0 < shot . getX () < 210 :

alive . append (shot)

else :

shot . undraw ()

self . shots = alive

Notice how this code accumulates the list of shots that are still alive and then

updates self . shots after the loop has completed. Also, I have added an else

to undraw the dead shots. If we're going to be firing lots of shots, we probably
don't want all the dead ones piling up at the bottom of the window.

The last step is to add a line of code at the bottom that actually runs the

application:

1• f __ name II • II == __ maln__ :
Proj ectileApp () . run ()

399

400 Chapter 11. Data Col lections

This animation is a lot of fun to play with; you'll want to grab the example
program animation2 . py from the supporting materials and give it a run. The

exercises at the end of the chapter include ideas for some modifications. Before
tackling those exercises, however, it is crucial that you have a solid grasp of what
we've built so far.

The key to understanding the final program is to keep in mind what each

class does and how they all work together. Figure 1 1 .3 depicts the main classes.

Launcher
. w1n

angle
vel
arrow

ad jAngle(a mt)
adjVel(amt)
redraw()
fire()

1
--

P rojecti leApp

. w1n
launcher
shots

run()
updateS hots()

1
,.

Graph Win

· ·· · · · · · · · · -�
creates

ShotT racker
. proJ

marker

update()

Figure 1 1 .3: Class diagram for the multi-shot animation

The boxes show the instance variables and methods of a class, and the arrows

show how one class depends on another. The number at the end of an arrow

is a count of the number of "depended on" ojects of the class pointed to. For
example, a Proj ectileApp has an instance variable for a single GraphWin and
for a single Launcher, but it maintains a list of multiple ShotTrackers (indi­

cated by the count, n) . I used a dashed arrow from Launcher to ShotTracker
because the launcher creates instances of ShotTracker, but it does not store or
manipulate a shot after creating it; that's the Pro j ectileApp's job.

11 .7. Non-sequentia l Collections

A class diagram like this is the object -oriented analog to the structure charts
that we used back in Chapter 9. It captures the overall structure of the final

system without getting bogged down in all the details of the code. In fact,

this is only a partial diagram of our completed program. Did you notice that
the dependencies for ShotTracker were not included? I purposely left those

out to focus on the main classes. I leave it as an exercise for you to complete

the picture. Class diagrams are often useful for thinking about object -oriented
programs, and you should get some practice drawing them.

I tt. 7 1 Non-sequential Collections

Python provides a number of built-in data types for collections. After lists, a
collection type called a dictionary is probably the most widely used. While dic­
tionaries are incredibly powerful, they are not as common in other languages as

lists (arrays) . The example programs in the rest of the book will not use dic­
tionaries, so you can safely skip the rest of this section if you've learned all you
want to about collections for the moment.

I tt. 7 .tl Dictionary Basics

Lists allow us to store and retrieve items from sequential collections. When we

want to access an item in the collection, we look it up by index-its position

in the collection. Many applications require a more flexible way to look up
information. For example, we might want to retrieve information about students
or employees based on their ID numbers. In programming terminology, this is

a key-value pair. We access the value (student information) associated with a
particular key (ID number) . If you think a bit, you can come up with lots of other
examples of useful key-value pairs: names and phone numbers, usernames and

passwords, zip codes and shipping costs, state names and capitals, sales items

and quantity in stock, etc.
A collection that allows us to look up information associated with arbitrary

keys is called a mapping. Python dictionaries are mappings. Some other pro­

gramming languages provide similar structures called hashes or associative ar­

rays. A dictionary can be created in Python by listing key-value pairs inside of
curly braces. Here is a simple dictionary that stores some fictional usernames

and passwords:

>>> passwd = { "guido " : " superprogrammer" , "turing" : "genius " ,

"bill " : "monopoly " }

401

402 Chapter 11. Data Col lections

Notice that keys and values are joined with a ":", and commas are used to sepa­

rate the pairs.
The main use for a dictionary is to look up the value associated with a par­

ticular key. This is done through indexing notation.

>>> passwd ["guido "]

' superprogrammer '
>>> passwd ["bill "]

' monopoly '

In general,

<dictionary> [<key>]

returns the object associated with the given key.

Dictionaries are mutable; the value associated with a key can be changed
through assignment.

>>> passwd ["bill "] = "bluescreen"

>>> passwd

{ ' turing ' : ' genius ' , ' bill ' : ' bluescreen ' , \

' guido ' : ' superprogrammer ' }

In this example, you can see that the value associated with ' bill ' has changed

to ' bluescreen ' .
Also notice that the dictionary prints out in a different order from how it was

originally created. This is not a mistake. Mappings are inherently unordered.

Internally, Python stores dictionaries in a way that makes key lookup very effi­
cient. When a dictionary is printed out, the order of keys will look essentially

random. If you want to keep a collection of items in a certain order, you need a
sequence, not a mapping.

To summarize, dictionaries are mutable collections that implement a map­
ping from keys to values. Our password example showed a dictionary having
strings as both keys and values. In general, keys can be any immutable type, and

values can be any type at all, including programmer-defined classes. Python dic­
tionaries are very efficient and can routinely store even hundreds of thousands
of items.

I tt. 7 .2 1 Dictionary Operations

Like lists, Python dictionaries support a number of handy built-in operations.
You have already seen how dictionaries can be defined by explicitly listing the

11 .7. Non-sequentia l Collections

key-value pairs in curly braces. You can also extend a dictionary by adding new
entries. Suppose a new user is added to our password system. We can expand
the dictionary by assigning a password for the new username:

>>> passwd [' newuser '] = ' ImANewbie '

>>> passwd

{ ' turing ' : ' genius ' , ' bill ' : ' bluescreen ' , \

' newuser ' : ' ImANewbie ' , ' guido ' : ' superprogrammer ' }

In fact, a common method for building dictionaries is to start with an empty
collection and add the key-value pairs one at a time. Suppose that usernames

and passwords were stored in a file called passwords, where each line of the
file contains a username and password with a space between. We could easily
create the passwd dictionary from the file:

passwd = {}

for line in open (' passwords ' , ' r ') :
user , pass = line . split ()

passwd [user] = pass

To manipulate the contents of a dictionary, Python provides the following
methods:

method I meaning

<key> in <diet> Returns true if dictionary contains
the specified key, false if it doesn't.

<diet> . keys () Returns a sequence of keys.

<diet> . values () Returns a sequence of values.

403

<diet> . i terns () Returns a sequence of tuples (key , value)
representing the key-value pairs.

<diet> . get (<key> , <default>) If dictionary has key returns its value;

otherwise returns default.

del <diet> [<key>] Deletes the specified entry.

<diet> . clear () Deletes all entries.

for <var> in <diet> : Loops over the keys.

These methods are mostly self-explanatory. For illustration, here is an inter­
active session using our password dictionary:

404 Chapter 11. Data Col lections

>>> list (passwd . keys ())

[' turing ' , ' bill ' , ' newuser ' , ' guido ']

>>> list (passwd . values ())
[' genius ' , ' bluescreen ' , ' ImANewbie ' , ' superprogrammer ']
>>> list (passwd . items ())

[(' turing ' , ' genius ') , (' bill ' , ' bluescreen ') , \

(' newuser ' , ' ImANewbie ') , (' guido ' , ' superprogrammer ')]

>>> "bill " in passwd

True

>>> ' fred ' in passwd

False
>>> passwd . get (' bill ' , ' unknown ')

' bluescreen '

>>> passwd . get (' j ohn ' , ' unknown ')

' unknown '
>>> passwd . clear ()

>>> passwd

{}

1 11 .7 .3 1 Example Program : Word Frequency

Let's write a program that analyzes text documents and counts how many times

each word appears in the document. This kind of analysis is sometimes used
as a crude measure of the style similarity between two documents and is also

used by automatic indexing and archiving programs (such as Internet search
engines) .

At the highest level, this is just a multi-accumulator problem. We need a
count for each word that appears in the document. We can use a loop that iter­
ates through each word in the document and adds one to the appropriate count.

The only catch is that we will need hundreds or thousands of accumulators, one
for each unique word in the document. This is where a Python dictionary comes

in handy.

We will use a dictionary where the keys are strings representing words in the
document and the values are ints that count how many times the word appears.

Let's call our dictionary counts. To update the count for a particular word, w,

we just need a line of code something like this:

counts [w] = counts [w] + 1

11 .7. Non-sequentia l Collections

This says to set the count associated with word w to be one more than the current
count for w.

There is one small complication with using a dictionary here. The first time

we encounter a word, it will not yet be in counts. Attempting to access a non­

existent key produces a run-time KeyError. To guard against this, we need a
decision in our algorithm:

if w is already in counts :

add one to the count for w
else :

set count for w to 1

This decision ensures that the first time a word is encountered, it will be entered

into the dictionary with a count of 1.

One way to implement this decision is to use the in operator:

if w in counts :
counts [w] - counts [w] + 1

else :
counts [w] = 1

A more elegant approach is to use the get method:

counts [w] = counts . get (w , O) + 1

If w is not already in the dictionary, this get will return 0, and the result is that

the entry for w is set to 1.
The dictionary updating code will form the heart of our program. We just

need to fill in the parts around it. We will need to split our text document into a

sequence of words. Before splitting, though, it's useful to convert all the text to
lowercase (so occurrences of "Foo" match "foo") and eliminate punctuation (so
"foo," matches "foo") . Here's the code to do those three tasks:

fname = input ("File to analyze : ")

read file as one long string

text = open (fname , " r ") . read ()

convert all letters t o lower case

text = text . lower ()

405

406 Chapter 11. Data Col lections

replace each punctuation character with a space

for ch in ' ! "#$%& 0 *+ , - . / : ; <=>?<Q [\\] - _ ' { 1 }- ' :

text = text . replace (ch , " ")

split string at whitespace to form a list of words
words = text . split ()

Now we can easily loop through the words to build the counts dictionary.

counts = {}
for w in words :

counts [w] = counts . get (w , O) + 1

Our last step is to print a report that summarizes the contents of counts.
One approach might be to print out the list of words and their associated counts

in alphabetical order. Here's how that could be done:

get list of words that appear in document

uniqueWords = list (counts . keys ())

put list of words in alphabetical order

uniqueWords . sort ()

print words and associated counts

for w in uniqueWords :
print (w , counts [w])

For a large document, however, this is unlikely to be useful. There will be
far too many words, most of which only appear a few times. A more interesting
analysis is to print out the counts for the n most frequent words in the document.

In order to do that, we will need to create a list that is sorted by counts (most to
fewest) and then select the first n items in the list.

We can start by getting a list of key-value pairs using the items method for
dictionaries:

items = list (counts . items ())

Here i terns will be a list of tuples (e.g., [(' foo ' , 5) , (' bar ' , 7) , (' spam ' , 376) ,

. . .]) . If we simply sort this list (i terns . sort ()) Python will put them in a stan­

dard order. Unfortunately, when Python compares tuples, it orders them by
components, left to right. Since the first component of each pair is the word,
i terns . sort () will put this list in alphabetical order, which is not what we want.

11 .7. Non-sequentia l Collections

To sort our list of items according to frequency, we can use the key-function

trick again. This time, our function will take a pair as a parameter and return
the second item in the pair:

def byFreq(pair) :

return pair [1]

Notice that tuples, like lists, are indexed starting at 0. So returning pair [1]
hands back the frequency part of the tuple. With this comparison function, it is

now a simple matter to sort our items by frequency:

items . sort (key=byFreq)

But we're not quite finished yet. When we have multiple words with the

same frequency, it would be nice if those words appeared in the list in alpha­
betical order within their frequency group. That is, we want the list of pairs
primarily sorted by frequency, but sorted alphabetically within each level. How

can we handle this double-sortedness?
Looking at the documentation for the sort method (via help ([] . sort))

you'll see that this method performs a "stable sort *IN PLACE*." As you can
probably infer, being "in place" means that the method modifies the list that it

is applied to rather than producing a new sorted version of the list. But the

critical point for us here is the word "stable." A sorting algorithm is stable if
equivalent items (items that have equal keys) stay in the same relative position
to each other in the resulting list as they were in the original. Since the Python

sorting algorithm is stable, if all the words were in alphabetical order before
sorting them by frequency, then words having the same frequency will still be in
alphabetical order. To get the result we want, we just need to sort the list twice,

first by words and then by frequency:

407

items . sort () # orders pairs alphabetically
items . sort (key=byFreq, reverse=True) # orders by frequency

I have added one last wrinkle here. Supplying the keyword parameter reverse

and setting it to True tells Python to sort the list in reverse order. The resulting

list will go from highest frequency to lowest.
Now that our items are sorted in order from most to least frequent, we are

ready to print a report of the n most frequent words. Here's a loop that does the
trick:

for i in range (n) :

word , count = items [i]
print (" {0 : < 15}{1 : >5} " . format (word , count)

408 Chapter 11 . Data Col lections

The loop index i is used to get the next pair from the list of items, and that item

is unpacked into its word and count components. The word is then printed left­
justified in fifteen spaces, followed by the count right -justified in five spaces. 2

That about does it. Here is the complete program (wordfreq . py) :

def byFreq(pair) :
return pair [1]

def main () :

print ("This program analyzes word frequency in a f ile ")

print (" and prints a report on the n most frequent words . \n")

get the sequence of words from the f ile
fname = input ("File to analyze : ")

text = open (fname , ' r ') . read ()

text = text . lower ()

for ch in ' ! "#$%& 0 *+ , - . / : ; <=>?<0 [\\] -_ ' { 1 }- ' :

text = text . replace (ch , ' ')

words = text . split ()

construct a dictionary of word counts
counts = {}

for w in words :
counts [w] = counts . get (w , O) + 1

output analysis of n most frequent words .

n = eval (input (" Output analysis of how many words? "))

items = list (counts . items ())
items . sort ()

items . sort (key=byFreq, reverse=True)
for i in range (n) :

word , count = items [i]

print (" {0 : < 15}{1 : >5} " . format (word , count))

if __ name == ' __ main __ ' : main ()

2 An experienced Python programmer would probably write this loop body as a single line us­
ing the tuple unpacking operator * = print (" {0 : <15}{ 1 : >5} " . format (*items [i]) . The curious
should consult the Python documentation to learn more about this handy operator.

11 .8. Chapter Summary

Just for fun, here's the result of running this program to find the twenty most
frequent words in a draft of the book you're reading right now:

This program analyzes word frequency in a f ile

and prints a report on the n most frequent words .

File to analyze : book . txt
Output analysis of how many words? 20

the 6428
a 2845
of 2622

to 2468
is 1936
that 1332
and 1259

.

1240 1n

we 1030
this 985
for 719
you 702
program 684
be 670

it 618
are 612
as 607

can 583
will 480
an 470

ltt.BI Chapter Summary

This chapter has discussed techniques for handling collections of related infor­

mation. Here is a summary of some key ideas:

• A list object is a mutable sequence of arbitrary objects. Items can be ac­
cessed by indexing and slicing. The items of a list can be changed by
assignment.

409

410 Chapter 11 . Data Col lections

• Python lists are similar to arrays in other programming languages. Python

lists are more flexible because their size can vary and they are heteroge­

neous. Python lists also support a number of useful methods.

• One particularly important data-processing operation is sorting. Python

lists have a sort method that can be customized by supplying a suitable

key function. This allows programs to sort lists of arbitrary objects.

• Classes can use lists to maintain collections stored as instance variables.

Oftentimes using a list is more flexible than using separate instance vari­
ables. For example, a GUI application might use a list of buttons instead
of an instance variable for each button.

• An entire program can be viewed as a collection of data and a set of

operations-an object. This is a common approach to structuring GUI
applications.

• A Python dictionary implements an arbitrary mapping from keys into val­
ues. This is very useful for representing non-sequential collections.

I tt. 9 1 Exercises

Review Questions

True/False

1. The median is the average of a set of data.

2. Standard deviation measures how spread out a data set is.

3. Arrays are usually heterogeneous, but lists are homogeneous.

4. A Python list cannot grow and shrink in size.

5. Unlike strings, Python lists are not mutable.

6. A list must contain at least one item.

7. Items can be removed from a list with the del operator.

8. A tuple is similar to an immutable list.

9. A Python dictionary is a kind of sequence.

11 .9. Exercises

Multiple Choice

1. Where mathematicians use subscripting, computer programmers use
a) slicing b) indexing c) Python d) caffeine

2. Which of the following is not a built-in sequence operation in Python?
a) sorting b) concatenation c) slicing d) repetition

3. The method that adds a single item to the end of a list is
a) extend b) add c) plus d) append

4. Which of the following is not a Python list method?
a) index b) insert c) get d) pop

5. Which of the following is not a characteristic of a Python list?
a) It is an object. b) It is a sequence.

c) It can hold objects. d) It is immutable.

6. Which of the following expressions correctly tests if x is even?
a) x % 2 == 0 b) even (x) c) not odd (x) d) x % 2 == x

7. The parameter xbar in std.Dev is what?

a) median b) mode c) spread d) mean

411

8. What keyword parameter is used to send a key-function to the sort method?

a) reverse b) reversed c) cmp d) key

9. Which of the following is not a dictionary method?
a) get b) keys c) sort d) clear

10. The items dictionary method returns a(n)
a) int b) sequence of tuples c) bool d) dictionary

Discussion

1. Given the initial statements

s 1 - [2 , 1 , 4 , 3]
s2 - [' c ' , ' a ' , ' b ']

show the result of evaluating each of the following sequence expressions:

412 Chapter 11 . Data Col lections

a) s 1 + s2

b) 3 * s 1 + 2 * s2

c) s 1 [1]

d) s 1 [1 : 3]

e) s 1 + s2 [-1]

2. Given the same initial statements as in the previous problem, show the val­
ues of s 1 and s2 after executing each of the following statements. Treat

each part independently (i.e., assume that s 1 and s2 start with their orig­
inal values each time) .

a) s 1 . remove (2)

b) s 1 . sort 0

c) s 1 . append ([s2 . index (' b ')])

d) s2 . pop (s 1 . pop (2))

e) s2 . insert (s 1 [0] , ' d ')

Programming Exercises

1 . Modify the statistics program from this chapter so that client programs

have more flexibility in computing the mean and/ or standard deviation.
Specifically, redesign the library to have the following functions:

mean (nums) Returns the mean of numbers in nums.

stdDev (nums) Returns the standard deviation of nums.

meanStdDev (nums) Returns both the mean and standard deviation of nums.

2. Extend the gpasort program so that it allows the user to sort a file of
students based on GPA, name, or credits. Your program should prompt for

the input file, the field to sort on, and the output file.

3. Extend your solution to the previous problem by adding an option to sort
the list in either ascending or descending order.

4. Give the program from the previous exercise(s) a graphical interface. You

should have Entrys for the input and output file names and a button for
each sorting order. Bonus: Allow the user to do multiple sorts and add a
button for quitting.

11 .9. Exercises

5. Most languages do not have the flexible built-in list (array) operations
that Python has. Write an algorithm for each of the following Python

operations and test your algorithm by writing it up in a suitable func­
tion. For example, as a function, reverse (myList) should do the same as
my List . reverse () . Obviously, you are not allowed to use the correspond­
ing Python method to implement your function.

a) count (my List , x) (like my List . count (x))

b) isin (myList , x) (like x in myList))

c) index (my List , x) (like my List . index (x))

d) reverse (myList) (like myList . reverse ())

e) sort (myList) (like my List . sort ())

6. Write and test a function shuffle (my List) that scrambles a list into a

random order, like shuffling a deck of cards.

7. Write and test a function innerProd (x , y) that computes the inner product
of two (same length) lists. The inner product of x and y is computed as:

n-1
L XiYi
i=O

8. Write and test a function removeDuplicates (somelist) that removes du­

plicate values from a list.

9. One disadvantage of passing a function to the list sort method is that it
makes the sorting slower, since this function is called repeatedly as Python
compares various items.

An alternative to creating a special key function is to create a "deco­

rated" list that will sort in the desired order using the standard Python

ordering. For example, to sort Student objects by GPA, we could first
create a list of tuples [(gpaO , StudentO) , (gpa1 , Student 1) , . .] and
then sort this list without passing a key function. These tuples will get

sorted into GPA order. The resulting list can then be traversed to rebuild a
list of student objects in GPA order. Redo the gpasort program using this
approach.

413

414 Chapter 11 . Data Col lections

10. The Sieve of Eratosthenes is an elegant algorithm for finding all of the
prime numbers up to some limit n. The basic idea is to first create a list

of numbers from 2 to n. The first number is removed from the list, and

announced as a prime number, and all multiples of this number up to n

are removed from the list. This process continues until the list is empty.

For example, if we wished to find all the primes up to 10, the list
would originally contain 2, 3, 4, 5, 6, 7, 8, 9, 10. The 2 is removed
and announced to be prime. Then 4, 6, 8, and 10 are removed, since

they are multiples of 2. That leaves 3, 5, 7, 9. Repeating the process,
3 is announced as prime and removed, and 9 is removed because it is a

multiple of 3. That leaves 5 and 7. The algorithm continues by announcing

that 5 is prime and removing it from the list. Finally, 7 is announced and

removed, and we're done.

Write a program that prompts a user for n and then uses the sieve

algorithm to find all the primes less than or equal to n.

11. Write an automated censor program that reads in the text from a file and

creates a new file where all of the four-letter words have been replaced by
11 * * * * 11 • You can ignore punctuation, and you may assume that no words

in the file are split across multiple lines.

12. Extend the program from the previous exercise to accept a file of censored

words as another input. The words in the original file that appear in the

censored words file are replaced by a string of 11 * 11 s with length equal to
the number of characters in the censored word.

13. Write a program that creates a list of card objects (see Programming Exer­

cise 11 from Chapter 10) and prints out the cards grouped by suit and in
rank order within suit. Your program should read the list of cards from a
file, where each line in the file represents a single card with the rank and
suit separated by a space. Hint: First sort by rank and then by suit.

14. Extend the previous program to analyze a list of five cards as a poker hand.
After printing the cards, the program categorizes accordingly.

Royal Flush 10, jack, queen, king, ace, all of the same suit.

Straight Flush Five ranks in a row, all of the same suit.

Four of a Kind Four of the same rank.

Full House Three of one rank and two of another.

11 .9. Exercises

Flush Five cards of the same suit.

Straight Five ranks in a row.

Three of a kind Three of one rank (but not a full house or four of a kind) .

Two pair Two each of two different ranks.

Pair Two of the same rank (but not two pair, three or four of a kind) .

X High If none of the previous categories fit, X is the value of the highest
rank. For example, if the largest rank is 1 1, the hand is 'jack high."

15. Create a class Deck that represents a deck of cards. Your class should have

the following methods:

constructor Creates a new deck of 52 cards in a standard order.

shuffie Randomizes the order of the cards.

deal Card Returns a single card from the top of the deck and removes the
card from the deck.

cardsLeft Returns the number of cards remaining in the deck.

Test your program by having it deal out a sequence of n cards from a
shuffled deck where n is a user input. You could also use your deck object
to implement a Blackjack simulation where the pool of cards is finite. See

Programming Exercises 8 and 9 in Chapter 9.

16. Create a class called StatSet that can be used to do simple statistical
calculations. The methods for the class are:

__ init __ (self) Creates a StatSet with no data in it.

415

addNumber (self , x) x is a number. Adds the value x to the statSet.

mean (self) Returns the mean of the numbers in this statSet.

median (self) Returns the median of the numbers in this statSet.

stdDev (self) Returns the standard deviation of the numbers in this statSet.

count (self) Returns the count of numbers in this statSet.

min (self) Returns the smallest value in this statSet.

max (self) Returns the largest value in this statSet.

Test your class with a program similar to the simple statistics program
from this chapter.

416 Chapter 11 . Data Col lections

17. In graphics applications, it is often useful to group separate pieces of
a drawing together into a single object. For example, a face might be

drawn from individual shapes, but then positioned as a whole group.
Create a new class GraphicsGroup that can be used for this purpose. A
GraphicsGroup will manage a list of graphics objects and have the follow­

ing methods:

_ _ init _ _ (self , anchor) anchor is a Point. Creates an empty group with
the given anchor point.

get Anchor (self) Returns a clone of the anchor point.

addObj ect (self , gObj ect) gObj ect is a graphics object. Adds gObj ect

to the group.

move (self , dx , dy) Moves all of the objects in the group (including the

anchor point) .

draw (self , win) Draws all the objects in the group into win. The anchor

point is not drawn.

undraw (self) Undraws all the objects in the group.

Use your new class to write a program that draws some simple picture

with multiple components and moves it to wherever the user clicks.

18. Extend the random walk program from Chapter 9 (Programming Exer­

cise 12) . Consider the sidewalk as a sequence of squares, and each step
moves the walker one square. Your program should keep track of how

many times each square of the sidewalk is stepped on. Start your walker
in the middle of a sidewalk of length n where n is a user input, and con­
tinue the simulation until it drops off one of the ends. Then print out the

counts of how many times each square was landed on.

19. Create and test a Set class to represent a classical set. Your sets should
support the following methods:

Set (elements) Creates a set (elements is the initial list of items in the
set) .

addElement (x) Adds x to the set.

deleteElement (x) Removes x from the set, if present. If x is not in the

set, the set is left unchanged.

member (x) Returns true if x is in the set and false otherwise.

11 .9. Exercises

intersection (set2) Returns a new set containing just those elements
that are common to this set and set2.

union (set2) Returns a new set containing all of elements that are in this

set, set2, or both.

subtract (set2) Returns a new set containing all the elements of this set

that are not in set2.

By the way, sets are so useful that Python actually has a built-in set

datatype. While you may want to investigate Python's set, you should not

use it here. The point of this exercise is to help you develop your skills in
algorithm development using lists and dictionaries.

20. Extend the cannonball animation from the chapter to allow the user to
adjust the initial height of the launcher. The height adjustment should be
handled similar to the way angle and velocity are. Pick a pair of keys of
your own choosing for adjusting the height up and down.

21. Extend the cannonball animation example to include target objects. A
target is a randomly sized rectangle that is placed somewhere downrange
in the animation. When a target is hit, it disappears and a new target is
generated. Further extensions could involve moving targets and keeping

track of the number of hits.

417

Chapter 12

Objectives

Object-Oriented

Design

• To understand the process of object -oriented design.

• To be able to read and understand object -oriented programs.

• To understand the concepts of encapsulation, polymorphism, and inheri­

tance as they pertain to object -oriented design and programming.

• To be able to design moderately complex software using object -oriented

design.

112.11 The Process of OOD

Now that you know some data-structuring techniques, it's time to stretch your
wings and really put those tools to work. Most modem computer applications
are designed using a data-centered view of computing. This so-called object­

oriented design (OOD) process is a powerful complement to top-down design

for the development of reliable, cost -effective software systems. In this chapter,
we will look at the basic principles of OOD and apply them in a couple of case

studies.

The essence of design is describing a system in terms of magical black boxes

and their interfaces. Each component provides a set of services through its in­
terface. Other components are users or clients of the services.

419

420 Chapter 12. Object-Oriented Design

A client only needs to understand the interface of a service; the details of
how that service is implemented are not important. In fact, the internal details

may change radically and not affect the client at all. Similarly, the component

providing the service does not have to consider how the service might be used.
The black box just has to make sure that the service is faithfully delivered. This

separation of concerns is what makes the design of complex systems possible.

In top-down design, functions serve the role of our magical black boxes. A
client program can use a function as long as it understands what the function

does. The details of how the task is accomplished are encapsulated in the func­

tion definition.

In object -oriented design, the black boxes are objects. The magic behind

objects lies in class definitions. Once a suitable class definition has been written,
we can completely ignore how the class works and just rely on the external
interface-the methods. This is what allows you to draw circles in graphics
windows without so much as a glance at the code in the graphics module. All

the nitty-gritty details are encapsulated in the class definitions for Graph W in and
Circle.

If we can break a large problem into a set of cooperating classes, we dras­
tically reduce the complexity that must be considered to understand any given

part of the program. Each class stands on its own. Object -oriented design is the
process of finding and defining a useful set of classes for a given problem. Like
all design, it is part art and part science.

There are many different approaches to OOD, each with its own special tech­
niques, notations, gurus, and textbooks. I can't pretend to teach you all about
OOD in one short chapter. On the other hand, I'm not convinced that reading

many thick volumes will help much either. The best way to learn about design
is to do it. The more you design, the better you will get.

Just to get you started, here are some intuitive guidelines for object -oriented
design:

1. Look for object candidates. Your goal is to define a set of objects that

will be helpful in solving the problem. Start with a careful consideration
of the problem statement. Objects are usually described by nouns. You

might underline all of the nouns in the problem statement and consider
them one by one. Which of them will actually be represented in the pro­
gram? Which of them have "interesting" behavior? Things that can be

represented as primitive data types (numbers or strings) are probably not

important candidates for objects. Things that seem to involve a grouping
of related data items probably are.

12.1. The Process of OOD

2. Identify instance variables. Once you have uncovered some possible ob­

jects, think about the information that each object will need to do its job.
What kinds of values will the instance variables have? Some object at­
tributes will have primitive values; others might themselves be complex
types that suggest other useful objects/ classes. Strive to find good "home"

classes for all the data in your program.

3. Think about interfaces. When you have identified a potential object/class
and some associated data, think about what operations would be required
for objects of that class to be useful. You might start by considering the

verbs in the problem statement. Verbs are used to describe actions-what
must be done. List the methods that the class will require. Remember that

all manipulation of the object's data should be done through the methods

you provide.

4. Refine the nontrivial methods. Some methods will look like they can be

accomplished with a couple of lines of code. Other methods will require
considerable work to develop an algorithm. Use top-down design and

stepwise refinement to flesh out the details of the more difficult methods.
As you go along, you may very well discover that some new interactions

with other classes are needed, and this might force you to add new meth­
ods to other classes. Sometimes you may discover a need for a brand-new

kind of object that calls for the definition of another class.

5. Design iteratively. As you work through the design, you will bounce back
and forth between designing new classes and adding methods to existing

classes. Work on whatever seems to be demanding your attention. No
one designs a program top to bottom in a linear, systematic fashion. Make

progress wherever it seems progress needs to be made.

6. Try out alternatives. Don't be afraid to scrap an approach that doesn't
seem to be working or to follow an idea and see where it leads. Good
design involves a lot of trial and error. When you look at the programs of

others, you are seeing finished work, not the process they went through
to get there. If a program is well designed, it probably is not the result of
a first try. Fred Brooks, a legendary software engineer, coined the maxim:

"Plan to throw one away." Often you won't really know how a system

should be built until you've already built it the wrong way.

7. Keep it simple. At each step in the design, try to find the simplest ap-

421

422 Chapter 12. Object-Oriented Design

proach that will solve the problem at hand. Don't design in extra complex­

ity until it is clear that a more complex approach is needed.

The next sections will walk you through a couple of case studies that illus­
trate aspects of 000. Once you thoroughly understand these examples, you will

be ready to tackle your own programs and refine your design skills.

112.21 Case Study: Racquetball Simulation

For our first case study, let's return to the racquetball simulation from Chapter 9.

You might want to go back and review the program that we developed the first

time around using top-down design.

The crux of the problem is to simulate multiple games of racquetball where

the ability of the two opponents is represented by the probability that they win
a point when they are serving. The inputs to the simulation are the probability

for player A, the probability for player B, and the number of games to simulate.
The output is a nicely formatted summary of the results.

In the version of the program in Chapter 9, we ended a game when one of

the players reached a total of 15 points. This time around, let's also consider
shutouts. If one player gets to 7 before the other player has scored a point, the
game ends. Our simulation should keep track of both the number of wins for

each player and the number of wins that are shutouts.

112.2.11 Candidate Objects and Methods

Our first task is to find a set of objects that could be useful in solving this prob­

lem. We need to simulate a series of racquetball games between two players and
record some statistics about the series of games. This short description already

suggests one way of dividing up the work in the program. We need to do two

basic things: simulate a game and keep track of some statistics.

Let's tackle simulation of the game first. We can use an object to represent a
single game of racquetball. A game will have to keep track of information about
two players. When we create a new game, we will specify the skill levels of the

players. This suggests a class-let's call it RBallGame-with a constructor that

requires parameters for the probabilities of the two players.

What does our program need to do with a game? Obviously, it needs to play
it. Let's give our class a play method that simulates the game until it is over. We
could create and play a racquetball game with two lines of code:

12.2. Case Study: Racquetball Simulation

theGame = RBallGame (prob A , probB)

theGame . play ()

To play lots of games, we just need to put a loop around this code. That's all we

really need in RB allGame to write the main program. Let's turn our attention to
collecting statistics about the games.

Obviously, we will have to keep track of at least four counts in order to print a

summary of our simulations: wins for A, wins for B, shutouts for A, and shutouts

for B. We will also print out the number of games simulated, but this can be
calculated by adding the wins for A and B. Here we have four related pieces of

information. Rather than treating them independently, let's group them into a

single object. This object will be an instance of a class called SimStats.

A SimStats object will keep track of all the information about a series of
games. We have already analyzed the four crucial pieces of information. Now

we have to decide what operations will be useful. For starters, we need a con­
structor that initializes all of the counts to 0.

We also need a way of updating the counts as each new game is simulated.
Let's give our object an update method. The update of the statistics will be

based on the outcome of a game. We will have to send some information to

the statistics object so that the update can be done appropriately. An easy ap­
proach would be to just send the entire game and let update extract whatever

information it needs.

Finally, when all of the games have been simulated, we need to print out a
report of the results. This suggests a printReport method that prints out a nice
report of the accumulated statistics.

We have now done enough design that we can actually write the main func­

tion for our program. Most of the details have been pushed off into the definition
of our two classes.

def main () :

printintro ()

prob A , probB , n = getinputs ()

Play the games

stats = SimStats ()

for i in range (n) :

probB) # create a new game

play it

423

theGame = RBallGame (probA ,

theGame . play ()

stats . update (theGame) # get info ab out completed game

Print the results

stats . printR eport ()

424 Chapter 12. Object-Oriented Design

I have also used a couple of helper functions to print an introduction and get
the inputs. You should have no trouble writing these functions.

Now we have to flesh out the details of our two classes. The SimStats class
looks pretty easy-let's tackle that one first.

112.2.21 I mplementing SimStats

The constructor for SimStats just needs to initialize the four counts to 0. Here
is an obvious approach:

class SimStats :

def __ init __ (self) :

self . winsA = 0

self . winsB = 0

self . shutsA- 0

self . shutsB = 0

Now let's take a look at the update method. It takes a game as a normal

parameter and must update the four counts accordingly. The heading of the
method will look like this:

def update (self , aGame) :

But how exactly do we know what to do? We need to know the final score

of the game, but this information resides inside aGame. Remember, we are not
allowed to directly access the instance variables of aGame. We don't even know

yet what those instance variables will be.

Our analysis suggests the need for a new method in the RBallGame class. We

need to extend the interface so that aGame has a way of reporting the final score.
Let's call the new method getScores and have it return the score for player A
and the score for player B.

Now the algorithm for update is straightforward:

def update (self , aGame) :

a , b = aGame . getScores ()

if a > b :

self . winsA = self . winsA + 1

if b == 0 :

self . shutsA = self . shutsA + 1

else :

A won the game

B won the game

12.2. Case Study: Racquetball Simulation

self . winsB = self . winsB + 1

if a == 0 :

self . shutsB = self . shutsB + 1

We can complete the SimStats class by writing a method to print out the

results. Our printR eport method will generate a table that shows the wins,
win percentage, shutouts, and shutout percentage for each player. Here is a

sample output:

Summary of 500 games :

Player A :

Player B :

wins (% total)

4 1 1 82 .2%

89 17 .8%

shutouts (% wins)

60 14 .6%

7 7 .9%

It is easy to print out the headings for this table, but the formatting of the

lines takes a little more care. We want to get the columns lined up nicely, and we
must avoid division by zero in calculating the shutout percentage for a player
who didn't get any wins. Let's write the basic method, but procrastinate a bit

and push off the details of formatting the line into another method, printL ine.

The printL ine method will need the player label (A or B), number of wins and
shutouts, and the total number of games (for calculation of percentages).

def printR eport (self) :

Print a nicely formatted report

n = self . winsA + self . winsB

print (" Summ ary of" , n , "games : \n")

print (" wins (% total) shutouts (% wins) ")

print ("--")

self . printL ine ("A" , self . winsA , self . shutsA , n)

self . printL ine ("B" , self . winsB , self . shutsB , n)

To finish out the class, we implement the printL ine method. This method
will make heavy use of string formatting. A good start is to define a template
for the information that will appear in each line:

def printL ine (self , lab el , wins , shuts , n) :

template = "Player {0} :{ 1 :5} ({2 :5 . 1%}) {3 : 1 1}

if wins == 0 : # Avoid division by z ero !

shutStr = "-----"

({4})"

425

426 Chapter 12. Object-Oriented Design

else :

shutStr = "{0 :4 . 1%}" . format (float (shuts)/wins)

print (template . format (lab el , wins , float (wins)/n , shuts , shutStr))

Notice how the shutout percentage is handled. The main template includes it as

a fifth slot, and the if statement takes care of formatting this piece to prevent

division by zero.

112.2.31 I mplementing RBaiiGame

Now that we have wrapped up the SimStats class, we need to turn our attention

to RBallGame. Summarizing what we have decided so far, this class needs a
constructor that accepts two probabilities as parameters, a play method that

plays the game, and a getScores method that reports the scores.

What will a racquetball game need to know? To actually play the game,

we have to remember the probability for each player, the score for each player,
and which player is serving. If you think about this carefully, you will see that
probability and score are properties related to particular players, while the server

is a property of the game between the two players. That suggests that we might

simply consider that a game needs to know who the players are and which is
serving. The players themselves can be objects that know their probability and

score. Thinking about the RB allGame class this way leads us to design some new
objects.

If the players are objects, then we will need another class to define their
behavior. Let's name that class Player. A Player object will keep track of its

probability and current score. When a Player is first created the probability will
be supplied as a parameter, but the score will just start out at 0. We'll flesh out
the design of Player class methods as we work on RBallGame.

We are now in a position to define the constructor for RBallGame. The game
will need instance variables for the two players and another variable to keep

track of which player is serving:

class RB allGame :

def __ init __ (self , probA , probB) :

self . playerA = Player (probA)

self . playerB = Player (probB)

self . server = self . playerA # Player A always serves first

Sometimes it helps to draw a picture of the relationships among the objects
that we are creating. Suppose we create an instance of RB allGame like this:

12.2. Case Study: Racquetball Simulation

theGame = RBallGame (.6 , .5)

Figure 12.1 shows an abstract picture of the objects created by this statement
and their interrelationships.

RBaiiGame

server:

Player

prob: I 0.6

score: I 0

Player

prob: I 0.5

score: I 0

Figure 12.1: Abstract view of RBallGame object

OK, now that we can create an RBallGame, we need to figure out how to
play it. Going back to the discussion of racquetball from Chapter 9, we need
an algorithm that continues to serve rallies and either award points or change

the server as appropriate until the game is over. We can translate this loose
algorithm almost directly into our object-based code.

First, we need a loop that continues as long as the game is not over. Obvi­

ously, the decision of whether the game has ended can only be made by looking

at the game object itself. Let's just assume that an appropriate is Over method
can be written. The beginning of our play method can make use of this (yet-to­

be-written) method:

def play (self) :

while not self . isOver () :

Inside the loop, we need to have the serving player serve and, based on
the result, decide what to do. This suggests that Player objects should have a

method that performs a serve. Mter all, whether the serve is won or not depends
on the probability that is stored inside of each player object. We'll just ask the
server if the serve is won or lost:

427

428 Chapter 12. Object-Oriented Design

if self . server . winsServe () :

Based on this result, we either award a point or change the server. To award

a point, we need to change a player's score. This again requires the player to do
something, namely increment the score. Changing servers, on the other hand,
is done at the game level, since this information is kept in the server instance

variable of RB allGame.

Putting it all together, here is our play method:

def play (self) :

while not self . isOver () :

if self . server . winsServe () :

self . server . incScore ()

else :

self . changeServer ()

As long as you remember that self is an RBallGame, this code should be clear.
While the game is not over, if the server wins a serve, award a point to the

server; otherwise change the server.

Of course, the price we pay for this simple algorithm is that we now have
two new methods (i s Over and change Server) that need to be implemented in
the RB allGame class and two more (winsServe and incScore) for the Player

class.

Before attacking these new methods, let's go back and finish up the other top­

level method of the RB allGame class, namely getScores. This one just returns

the scores of the two players. Of course, we run into the same problem again.

It is the player objects that actually know the scores, so we will need a method
that asks a player to return its score.

def getScores (self) :

return self . playerA . getScore () , self . playerB . getScore ()

This adds one more method to be implemented in the Player class. Make sure

you put that on our list to complete later.

To finish out the RB allGame class, we need to write the methods isOver

and change Server. Given what we have developed already and our previous

version of this program, these methods are straightforward. I'll leave those as
an exercise for you at the moment. If you're looking for my solutions, skip to
the complete code at the end of this section.

12.2. Case Study: Racquetball Simulation

112.2.41 I mplementing Player

In developing the RBallGame class, we discovered the need for a Player class

that encapsulates the service probability and current score for a player. The
Player class needs a suitable constructor and methods for wins Serve, incScore,

and getScore.

If you are getting the hang of this object -oriented approach, you should have

no trouble coming up with a constructor. We just need to initialize the instance
variables. The player's probability will be passed as a parameter, and the score

starts at 0:

def __ init __ (self , prob) :

Create a player with this prob ab ility

self . prob = prob

self . score = 0

The other methods for our Player class are even simpler. To see whether a

player wins a serve, we compare the probability to a random number between

0 and 1:

def winsServe (self) :

return random () < self . prob

To give a player a point, we simply add one to the score:

def incScore (self) :

self . score = self . score + 1

The final method just returns the value of the score:

def getScore (self) :

return self . score

Initially, you may think that it's silly to create a class with a bunch of one- or
two-line methods. Actually, it's quite common for a well-modularized, objected­
oriented program to have lots of trivial methods. The point of design is to break

a problem down into simpler pieces. If those pieces are so simple that their
implementations are obvious, that gives us confidence that we must have gotten
it right.

429

430 Chapter 12. Object-Oriented Design

lt2.2.5l The Complete Program

That pretty much wraps up our object-oriented version of the racquetball sim­
ulation. The complete program follows. You should read through it and make

sure you understand exactly what each class does and how it does it. If you have
questions about any parts, go back to the discussion above to figure it out.

obj rb all . py -- Simulation of a racquet game .

Illustrates design with ob j ects .

from random import random

class Player :

A Player keeps track of service prob ab ility an d score

def __ init __ (self , prob) :

Create a player with this prob ab ility

self . prob = prob

self . score = 0

def winsServe (self) :

R eturns a B oolean that is true with prob ab ility self . prob

return random () < self . prob

def incScore (self) :

Add a point to this player ' s score

self . score = self . score + 1

def getScore (self) :

R eturns this player ' s current score

return self . score

class RB allGame :

A RB allGame represents a game in progress . A game has two players

an d keeps track of which one is currently serving .

def __ init __ (self , probA , probB) :

Create a new game having players with the given prob s .

self . playerA = Player (probA)

12.2. Case Study: Racquetball Simulation

self . playerB = Player (probB)

self . server = self . playerA # Player A always serves first

def play (self) :

Play the game to completion

while not self . isOver () :

if self . server . winsServe () :

self . server . incScore ()

else :

self . changeServer ()

def isOver (self) :

431

R eturns game is f inished (i . e . one of the players has won) .

a ,b = self . getScores ()

return a == 15 or b == 15 or \

(a == 7 an d b == 0) or (b==7 and a -- 0)

def changeServer (self) :

Switch which player is serving

if self . server == self . playerA :

self . server- self . playerB

else :

self . server- self . playerA

def getScores (self) :

R eturns the current scores of player A an d player B

return self . playerA . getScore () , self . playerB . getScore ()

class SimStats :

SimStats handles accumulation of statistics across multiple

(completed) games . This version tracks the wins an d shutouts for

each player .

def __ init _ _ (self) :

Create a new accumulator for a series of games

self . winsA = 0

self . winsB = 0

self . shutsA = 0

432 Chapter 12. Object-Oriented Design

self . shutsB = 0

def update (self , aGame) :

Determine the outcome of aGame an d update statistics

a, b = aGame . getScores ()

if a > b : # A won the game

self . winsA = self . winsA + 1

if b == 0 :

self . shutsA = self . shutsA + 1

else : # B won the game

self . winsB = self . winsB + 1

if a == 0 :

self . shutsB = self . shutsB + 1

def printR eport (self) :

Print a nicely formatted report

n = self . winsA + self . winsB

print (" Summ ary of" , n , "games : \n")

print (" wins (% total) shutouts (% wins) ")

print ("--")

self . printL ine ("A" , self . winsA , self . shutsA , n)

self . printL ine ("B" , self . winsB , self . shutsB , n)

def printL ine (self , lab el , wins , shuts , n) :

template = "Player {0} :{ 1 :5} ({2 :5 . 1%}) {3 : 1 1}

if wins == 0 : # Avoid division by z ero !

shutStr - "-----"

else :

({4})"

shutStr = "{0 :4 . 1%}" . format (float (shuts)/wins)

print (template . format (lab el , wins , float (wins)/n , shuts , shutStr))

def printintro () :

print ("This program simulates games of racquetb all b etween two")

print (' players called "A" and "B ." The ab ility of each player is ')

print (" indicated by a prob ab ility (a numb er b etween 0 an d 1) that")

print ("the player wins the point when serving . Player A always")

print ("has the f irst serve .\n")

12.3. Case Study: Dice Poker

def get!nput s () :

R eturns the three simulat ion paramet ers

a = float (input ("What is the prob . player A wins a serve? "))

b = float (input ("What is the prob . player B wins a serve? "))

n = int (input ("How many games t o simulat e? "))

return a , b , n

def main () :

printintro ()

prob A , probB , n = get!nput s ()

P lay the games

st at s = SimSt at s ()

for i in range (n) :

theGame = RBallGame (probA ,

theGame . play ()

st at s . updat e (theGame)

Print the result s

st at s . printReport ()

main ()

input ("\nPress <Ent er> t o quit")

probB) # creat e a new game

play it

extract info

112.31 Case Study: Dice Poker

Back in Chapter 10, I suggested that objects are particularly useful for the design

of graphical user interfaces. Let's finish up this chapter by looking at a graphical
application using some of the widgets that we developed in previous chapters.

lt2.3.tl Program Specification

Our goal is to write a game program that allows a user to play video poker using
dice. The program will display a hand consisting of five dice. The basic set of
rules is as follows:

433

434 Chapter 12. Object-Oriented Design

• The player starts with $100.

• Each round costs $10 to play. This amount is subtracted from the player's

money at the start of the round.

• The player initially rolls a completely random hand (i.e., all five dice are

rolled).

• The player gets two chances to enhance the hand by rerolling some or all

of the dice.

• At the end of the hand, the player's money is updated according to the

following payout schedule:

hand pay

Two Pairs $5

Three of a Kind $ 8

Full House (A Pair and a Three of a Kind) $ 12
Four of a Kind $ 15

Straight (1-5 or 2-6) $ 20

Five of a Kind $ 30

Ultimately, we want this program to present a nice graphical interface. Our

interaction will be through mouse clicks. The interface should have the follow­

ing characteristics:

• The current score (amount of money) is constantly displayed.

• The program automatically terminates if the player goes broke.

• The player may choose to quit at appropriate points during play.

• The interface will present visual cues to indicate what is going on at any

given moment and what the valid user responses are.

112.3.21 Identifying Candidate Objects

Our first step is to analyze the program description and identify some objects

that will be useful in attacking this problem. This is a game involving dice and

money. Are either of these good candidates for objects? Both the money and
an individual die can be simply represented as numbers. By themselves, they

12.3. Case Study: Dice Poker

do not seem to be good object candidates. However, the game uses five dice,

and this sounds like a collection. We will need to be able to roll all the dice or a

selection of dice as well as analyze the collection to see what it scores.

We can encapsulate the information about the dice in a Dice class. Here are
a few obvious operations that this class will have to implement:

constructor Creates the initial collection.

rollAll Assigns random values to each of the five dice.

roll Assigns a random value to some subset of the dice, while maintaining the

current value of others.

values Returns the current values of the five dice.

score Returns the score for the dice.

We can also think of the entire program as an object. Let's call the class

P okerApp. A P okerApp object will keep track of the current amount of money,

the dice, the number of rolls, etc. It will implement a run method that we use
to get things started and also some helper methods that are used to implement
run. We won't know exactly what methods are needed until we design the main

algorithm.

Up to this point, I have concentrated on the actual game that we are imple­
menting. Another component to this program will be the user interface. One
good way to break down the complexity of a more sophisticated program is to

separate the user interface from the main guts of the program. This is often

called the model-view approach. Our program implements some model (in this
case, it models a poker game), and the interface is a view of the current state of

the model.

One way of separating out the interface is to encapsulate the decisions about
the interface in a separate interface object. An advantage of this approach is
that we can change the look and feel of the program simply by substituting a

different interface object. For example, we might have a text -based version of a
program and a graphical version.

Let's assume that our program will make use of an interface object, call it a

P oker Int erface. It's not clear yet exactly what behaviors we will need from this

class, but as we refine the P okerApp class, we will need to get information from
the user and also display information about the game. These will correspond to
methods implemented by the P oker!nt erface class.

435

436 Chapter 12. Object-Oriented Design

lt2.3.3l I mplementing the Model

So far, we have a pretty good picture of what the Dice class will do and a starting

point for implementing the P oker App class. We could proceed by working on
either of these classes. We won't really be able to try out the P okerApp class
until we have dice, so let's start with the lower-level Dice class.

Implementing Dice

The Dice class implements a collection of dice, which are just changing num­

bers. The obvious representation is to use a list of five ints. Our constructor
needs to create a list and assign some initial values:

class Dice :

def __ init __ (self) :

self . dice = [0] *5

self . rollAll ()

This code first creates a list of five zeroes. These need to be set to some random
values. Since we are going to implement a rollAll function anyway, calling it
here saves duplicating that code.

We need methods to roll selected dice and also to roll all of the dice. Since
the latter is a special case of the former, let's turn our attention to the roll

function, which rolls a subset. We can specify which dice to roll by passing a list
of indexes. For example, roll ([0 , 3 , 4]) would roll the dice in positions 0, 3
and 4 of the dice list. We just need a loop that goes through the parameter and

generates a new random value for each listed position:

def roll (self , which) :

for pos in which :

self . dice[pos] = randrange (1 ,7)

Next, we can use roll to implement rollAll as follows:

def rollAll (self) :

self . roll (range (5))

I used range (5) to generate a sequence of all the indexes.

The values function is used to return the values of the dice so that they can
be displayed. Another one-liner suffices:

12.3. Case Study: Dice Poker

def values (self) :

return self . dice[:]

Notice that I created a copy of the dice list by slicing it. That way, if a Dice client

modifies the list that it gets back from values, it will not affect the original copy
stored in the Dice object. This defensive programming prevents other parts of
the code from accidentally messing with our object.

Finally, we come to the score method. This is the function that will de­
termine the worth of the current dice. We need to examine the values and

determine whether we have any of the patterns that lead to a payoff, namely
five of a kind, four of a kind, full house, three of a kind, two pairs, or straight.

Our function will need some way to indicate what the payoff is. Let's return a
string labeling what the hand is and an int that gives the payoff amount.

We can think of this function as a multi-way decision. We simply need to
check for each possible hand. If we do so in a sensible order, we can guarantee
giving the correct payout. For example, a full house also contains a three of a

kind. We need to check for the full house before checking for three of a kind,

since the full house is more valuable.

One simple way of checking the hand is to generate a list of the counts

of each value. That is, count s [i] will be the number of times that the value
i occurs in dice. If the dice are: [3 , 2 , 5 , 2 , 3] then the count list would be

[0 , 0 , 2 , 2 , 0 , 1 , 0] . Notice that count s [0] will always be zero, since dice values
are in the range 1-6. Checking for various hands can then be done by looking
for various values in count s . For example, if count s contains a 3 and a 2, the
hand contains a triple and a pair; hence, it is a full house.

Here's the code:

def score (self) :

Creat e the count s list

count s = [0] * 7

for value in self . dice :

count s[value] = count s[value] + 1

score the hand

if 5 in count s :

return "F ive of a K ind" , 30

elif 4 in count s :

return "F our of a K ind" , 15

elif (3 in count s) and (2 in count s) :

437

438 Chapter 12. Object-Oriented Design

return "Full House" , 12

elif 3 in count s :

return "Three of a K ind" , 8

elif not (2 in count s) an d (count s[1] ==0 or count s[6] -- 0) :

return " Straight" , 20

elif count s . count (2) == 2 :

return "Two P airs" , 5

else :

return "Garb age" , 0

The only tricky part is the testing for straights. Since we have already checked

for 5, 4, and 3 of a kind, checking that there are no pairs-not (2 in count s)­

guarantees that the dice show five distinct values. If there is no 6, then the
values must be 1-5; likewise, no 1 means the values must be 2-6.

At this point, we could try out the Dice class to make sure that it is working

correctly. Here is a short interaction showing some of what the class can do:

>>> from dice import Dice

>>> d = Dice ()

>>> d . values ()

[6' 3' 3' 6' 5]

>>> d . scoreO

('Two P airs ' , 5)

>>> d . roll ([4])

>>> d . values ()

[6' 3' 3' 6' 4]
>>> d . roll ([4])

>>> d . values ()

[6' 3' 3' 6' 3]

>>> d . score ()

(' Full House ' , 12)

We would want to be sure that each kind of hand scores properly.

Implementing PokerApp

Now we are ready to turn our attention to the task of actually implementing the

poker game. We can use top-down design to flesh out the details and also sug­
gest what methods will have to be implemented in the P oker Int erface class.

12.3. Case Study: Dice Poker

Initially, we know that the P okerApp will need to keep track of the dice, the
amount of money, and some user interface. Let's initialize these values in the

constructor:

class P okerApp :

def __ init __ (self) :

self . dice = Dice ()

self . money = 100

self . int erface = P okerint erface ()

To run the program, we will create an instance of this class and call its run

method. Basically, the program will loop, allowing the user to continue playing
hands until he or she is either out of money or chooses to quit. Since it costs
$10 to play a hand, we can continue as long as self . money >= 10 . Determining

whether the user actually wants to play another hand must come from the user

interface. Here is one way we might code the run method:

def run (self) :

while self . money >= 10 and self . int erface . wantT oP lay () :

self . playR ound ()

self . int erface . close ()

Notice the call to int erface . close at the bottom. This will allow us to do any

necessary cleaning up such as printing a final message for the user or closing a
graphics window.

Most of the work of the program has now been pushed into the playR ound

method. Let's continue the top-down process by focusing our attention here.
Each round will consist of a series of rolls. Based on these rolls, the program
will have to adjust the player's score:

def playR ound (self) :

self . money = self . money - 10

self . int erface . setM oney (self . money)

self . doR olls ()

result , score = self . dice . score ()

self . int erface . showR esult (result , score)

self . money = self . money + score

self . int erface . setM oney (self . money)

This code really handles only the scoring aspect of a round. Anytime new infor­
mation must be shown to the user, a suitable method from int erface is invoked.

439

440 Chapter 12. Object-Oriented Design

The $10 fee to play a round is first deducted and the interface is updated with

the new amount of money remaining. The program then processes a series of

rolls (doR olls), shows the user the result, and updates the amount of money
accordingly.

Finally, we are down to the nitty-gritty details of implementing the dice­
rolling process. Initially, all of the dice will be rolled. Then we need a loop that
continues rolling user-selected dice until either the user chooses to quit rolling

or the limit of three rolls is reached. Let's use a local variable rolls to keep
track of how many times the dice have been rolled. Obviously, displaying the
dice and getting the list of dice to roll must come from interaction with the user
through int erface.

def doR olls (self) :

self . dice . rollAll ()

roll = 1

self . int erface . setDice (self . dice . values ())

t oR oll = self . int erface . chooseDice ()

while roll < 3 an d t oR oll ! = [] :

self . dice . roll (t oR oll)

roll = roll + 1

self . int erface . setDice (self . dice . values ())

if roll < 3 :

t oR oll = self . int erface . chooseDice ()

At this point, we have completed the basic functions of our interactive poker
program. That is, we have a model of the process for playing poker. We can't
really test out this program yet, however, because we don't have a user interface.

lt2.3.4l A Text-Based Ul

In designing P okerApp, we have also developed a specification for a generic

P okerint erface class. Our interface must support the methods for displaying

information: setM oney, setDice, and showR esul t . It must also have methods
that allow for input from the user: wantT oP lay and chooseDice. These methods
can be implemented in many different ways, producing programs that look quite
different even though the underlying model, P okerApp, remains the same.

Usually, graphical interfaces are much more complicated to design and build
than text -based ones. If we are in a hurry to get our application running, we
might first try building a simple text-based interface. We can use this for testing

12.3. Case Study: Dice Poker

and debugging of the model without all the extra complication of a full-blown

GUI.
First, let's tweak our PokerApp class a bit so that the user interface is supplied

as a parameter to the constructor:

class PokerApp:

def __ init __ (self , int erface):

self . dice = Dice ()

self . money = 100

self . int erface = int erface

Then we can easily create versions of the poker program using different inter­

faces.
Now let's consider a bare-bones interface to test out the poker program. Our

text -based version will not present a finished application, but rather, it provides

a minimalist interface solely to get the program running. Each of the necessary
methods can be given a trivial implementation.

Here is a complete T ext!nt erface class using this approach:

t extpoker

class T ext!nt erface:

def __ init __ (self):

print ("W elcome t o video poker . ")

def setMoney (self , amt):

print ("Y ou current ly have ${0} ." . format (amt))

def setDice (self , values):

print ("Dice:" , values)

def wantT oPlay (self):

an s = input ("Do you wish t o try your luck? ")

return an s[O] in "yY"

def close (self):

print ("\nThanks for playing ! ")

def showR esult (self , msg , score):

441

442 Chapter 12. Object-Oriented Design

print ("{O} . Y ou win ${ 1} ." . format (msg , score))

def chooseDice (self):

return eval (input ("Ent er list of which t o change ([] t o st op) "))

As is usual for test code, I have tried to implement each required method in

the simplest possible way. Notice especially the use of eval in chooseDice as a

simple (though potentially unsafe) way of directly inputting the list of indexes
for the dice that should be rolled again. Using this interface, we can test out our
PokerApp program to see whether we have implemented a correct model. Here

is a complete program making use of the modules that we have developed:

t extpoker . py -- video dice poker using a t ext-b ased int erface .

from pokerapp import PokerApp

from t extpoker import T extint erface

int er = T extint erface ()

app = PokerApp (int er)

app . runO

Basically, all this program does is create a text -based interface and then build a
PokerApp using this interface and start it running. Instead of creating a separate

module for this, we could also just add the necessary launching code at the end

of our t extpoker module.

When running this program, we get a rough but usable interaction:

Welcome t o video poker .

Do you wish t o try your luck? y
Y ou current ly have $90 .

Dice: [6 , 4 , 4 , 2 , 4]

Ent er list of which t o change ([] t o st op) [0 ,4]

Dice: [1 , 4 , 4 , 2 , 2]

Ent er list of which t o change ([] t o st op) [0]

Dice: [2 , 4 , 4 , 2 , 2]

Full H ouse . Y ou win $ 12 .

Y ou current ly have $ 102 .

Do you wish t o try your luck? y

Y ou current ly have $92 .

Dice: [5 , 6 , 4 , 4 , 5]

12.3. Case Study: Dice Poker

Ent er list of which t o change ([] t o st op) [1]
Dice: [5' 5' 4' 4' 5]

Ent er list of which t o change ([] t o st op) []

Full H ouse . Y ou win $ 12 .

Y ou current ly have $ 104 .

Do you wish t o try your luck? y

Y ou current ly have $94 .

Dice: [3' 2 , 1 , 1 , 1]

Ent er list of which t o change ([] t o st op) [0' 1]

Dice: [5' 6' 1 , 1 , 1]

Ent er list of which t o change ([] t o st op) [0' 1]

Dice: [1' 5' 1 , 1 , 1]

F our of a K ind . Y ou win $ 15 .

Y ou current ly have $ 109 .

Do you wish t o try your luck? n

Thanks for playing !

You can see how this interface provides just enough so that we can test out the
model. In fact, we've got a game that's already quite a bit of fun to play!

lt2.3.5l Developing a GUI

Now that we have a working program, let's turn our attention to a graphical
interface. Our first step must be to decide exactly how we want our interface to

look and function. The interface will have to support the various methods found
in the text-based version and will also probably have some additional helper

methods.

Designing the Interaction

Let's start with the basic methods that must be supported and decide exactly
how interaction with the user will occur. Clearly, in a graphical interface, the

faces of the dice and the current score should be continuously displayed. The
setDice and setM oney methods will be used to change those displays. That

leaves one output method, showR esult , that we need to accommodate. One
common way to handle this sort of transient information is with a message at
the bottom of the window. This is sometimes called a status bar.

443

444 Chapter 12. Object-Oriented Design

To get information from the user, we will make use of buttons. In wantT oPlay,

the user will have to decide between either rolling the dice or quitting. We could

include "Roll Dice" and "Quit" buttons for this choice. That leaves us with figur­
ing out how the user should choose dice.

To implement chooseDice, we could provide a button for each die and have

the user click the buttons for the dice they want to roll. When the user is done
choosing the dice, they could click the "Roll Dice" button again to roll the se­

lected dice. Elaborating on this idea, it would be nice if we allowed the user to

change his or her mind while selecting the dice. Perhaps clicking the button of a

currently selected die would cause it to become deselected. The clicking of the
button will serve as a sort of toggle that selects/unselects a particular die. The
user commits to a certain selection by clicking on "Roll Dice."

Our vision for chooseDice suggests a couple of tweaks for the interface.
First, we should have some way of showing the user which dice are currently

selected. There are lots of ways we could do this. One simple approach would

be to change the color of the dice. Let's "gray out" the pips on the dice selected
for rolling. Second, we need a good way for the user to indicate that they wish

to stop rolling. That is, they would like the dice scored just as they stand. We

could handle this by having them click the "Roll Dice" button when no dice are
selected, hence asking the program to roll no dice. Another approach would be
to provide a separate button to click that causes the dice to be scored. The latter

approach seems a bit more intuitive/informative. Let's add a "Score" button to

the interface.

Now we have a basic idea of how the interface will function. We still need to
figure out how it will look. What is the exact layout of the widgets? Figure 12.2

is a sample of how the interface might look. I'm sure those of you with a more
artistic eye can come up with a more pleasing interface, but we'll use this one as
our working design.

Managing the Widgets

The graphical interface that we are developing makes use of buttons and dice.
Our intent is to reuse the Butt on and DieView classes for these widgets that

were developed in previous chapters. The Butt on class can be used as is, and
since we have quite a number of buttons to manage, we can use a list of Buttons,

similar to the approach we used in the calculator program from Chapter 11.

Unlike the buttons in the calculator program, the buttons of our poker inter­
face will not be active all of the time. For example, the dice buttons will only

•

•
•

12.3. Case Study: Dice Poker

Figure 12.2: GUI interface for video dice poker

be active when the user is actually in the process of choosing dice. When user
input is required, the valid buttons for that interaction will be set to active and

the others will be inactive. To implement this behavior, we can add a helper

method called choose to the Pokerint erface class.

The choose method takes a list of button labels as a parameter, activates
them, and then waits for the user to click one of them. The return value of
the function is the label of the button that was clicked. We can call the choose

method whenever we need input from the user. For example, if we are waiting
for the user to choose either the "Roll Dice" or "Quit" button, we would use a
sequence of code like this:

choice = self . choose ([" R oll Dice" , "Quit"])

if choice == '' R oll Dice'' :

• • •

Assuming the buttons are stored in an instance variable called butt ons, here
is one possible implementation of choose:

445

446 Chapter 12. Object-Oriented Design

def choose (self , choices):

butt ons = self .butt ons

act ivat e choice butt ons , deact ivat e others

for b in butt ons:

if b . getL ab el () in choices:

b . act ivat e ()

else:

b . deact ivat e ()

get mouse clicks unt il an act ive butt on is clicked

while True:

p- self . win . getM ouse ()

for b in butt ons:

if b . clicked (p):

return b . getLab el () # funct ion ex it here .

The other widgets in our interface will be our DieView that we developed
in the last two chapters. Basically, we will use the same class as before, but

we need to add just a bit of new functionality. As discussed above, we want to
change the color of a die to indicate whether it is selected for rerolling.

You might want to go back and review the DieView class. Remember, the
class constructor draws a square and seven circles to represent the positions
where the pips of various values will appear. The setValue method turns on the

appropriate pips to display a given value. To refresh your memory a bit, here is

the setValue method as we left it:

def setValue (self , value):

Turn all the pips off

for pip in self . pips:

pip . setF ill (self .background)

Turn the appropriat e pips b ack on

for i in self . onT ab le[value] :

self . pips [i] . setF ill (self . foreground)

We need to modify the DieView class by adding a setColor method. This

method will be used to change the color that is used for drawing the pips. As
you can see in the code for setValue, the color of the pips is determined by
the value of the instance variable fore ground. Of course, changing the value of

12.3. Case Study: Dice Poker

fore ground will not actually change the appearance of the die until it is redrawn

using the new color.

The algorithm for setColor seems straightforward. We need two steps:

change foreground to the new color

redraw the current value of the die

Unfortunately, the second step presents a slight snag. We already have code
that draws a value, namely setValue. But setValue requires us to send the

value as a parameter, and the current version of DieView does not store this

value anywhere. Once the proper pips have been turned on, the actual value is

discarded.

In order to implement setColor, we need to tweak setValue so that it re­

members the current value. Then setColor can redraw the die using its current

value. The change to set Value is easy; we just need to add a single line:

self . value = value

This line stores the value parameter in an instance variable called value.

With the modified version of set Value, implementing setColor is a breeze.

def setColor (self , color):

self . foreground = color

self . setValue (self . value)

Notice how the last line simply calls set Value to (re)draw the die, passing along
the value that was saved from the last time set Value was called.

Creating the Interface

Now that we have our widgets under control, we are ready to actually imple­
ment our GUI poker interface. The constructor will create all of our widgets,
setting up the interface for later interactions:

class Graphicsinterface:

def __ init __ (self):

self . win = GraphW in ("Dice Poker" , 600 , 400)

self . win . setB ackground ("green3")

bann er = T ext (Point (300 ,30) , "Python Poker Parlor")

bann er . setSiz e (24)

banner . setF ill ("yellow2")

447

448 Chapter 12. Object-Oriented Design

bann er . set Style ('' b old'')

bann er . draw (self . win)

self . msg = T ext (Point (300 ,380) , "Welcome t o the Dice T ab le")

self . msg . set Siz e (18)

self . msg . draw (self . win)

self . creat eDice (Point (300 , 100) , 75)

self .butt ons = []

self . addDiceButt ons (Point (300 , 170) , 75 , 30)

b = Butt on (self . win , Point (300 , 230) , 400 , 40 , "R oll Dice")

self .butt ons . append (b)

b = Butt on (self . win , Point (300 , 280) , 150 , 40 , "Score")

self .butt ons . append (b)

b = Butt on (self . win , Point (570 ,375) , 40 , 30 , "Quit")

self .butt ons . append (b)

self . money = T ext (Point (300 ,325) , " $ 100")

self . money . set Siz e (18)

self . money . draw (self . win)

You should compare this code to Figure 12.2 to make sure you understand how
the elements of the interface are created and positioned.

I hope you noticed that I pushed the creation of the dice and their associated

buttons into a couple of helper methods. Here are the necessary definitions:

def creat eDice (self , cent er , size):

cent er . move (-3* siz e ,O)

self . dice = []

for i in range (5):

view = DieView (self . win , cent er , size)

self . dice . append (view)

cent er . move (1 .5* siz e ,O)

def addDiceButt ons (self , cent er , width , height):

cent er . move (-3*width , 0)

for i in range (1 ,6):

lab el = "Die {O}" . format (i)

b = Butt on (self . win , cent er , width , height , lab el)

self .butt ons . append (b)

cent er . move (1 .5*width , 0)

These two methods are similar in that they employ a loop to draw five similar

12.3. Case Study: Dice Poker

widgets. In both cases, a Point variable, cent er, is used to calculate the correct
position of the next widget.

Implementing the Interaction

You might be a little scared at this point that the constructor for our GUI in­
terface was so complex. Even simple graphical interfaces involve many inde­
pendent components. Getting them all set up and initialized is often the most

tedious part of coding the interface. Now that we have that part out of the
way, actually writing the code that handles the interaction will not be too hard,

provided we attack it one piece at a time.

Let's start with the simple output methods setM oney and showR esul t . These

two methods display some text in our interface window. Since our constructor
took care of creating and positioning the relevant T ext objects, all our methods
have to do is call the setT ext methods for the appropriate objects:

def setMoney (self , amt):

self . money . setT ext ("${0}" . format (amt))

def showR esult (self , msg , score):

if score > 0:

t ext - "{0} ! Y ou win ${ 1}" . format (msg , score)

else:

t ext- "Y ou rolled {O}" . format (msg)

self . msg . setT ext (t ext)

In a similar spirit, the output method setDice must make a call to the
setValue method of the appropriate DieView objects in dice. We can do this

with a for loop:

def setDice (self , values):

for i in range (5):

self . dice[i] . setValue (values[i])

Take a good look at the line in the loop body. It sets the ith die to show the ith
value.

As you can see, once the interface has been constructed, making it functional

is not overly difficult. Our output methods are completed with just a few lines

of code. The input methods are only slightly more complicated.
The wantT oPlay method will wait for the user to click either "Roll Dice" or

"Quit." We can use our choose helper method to do this.

449

450 Chapter 12. Object-Oriented Design

def wantT oPlay (self):

an s = self . choose (["R oll Dice" , "Quit"])

self . msg . setT ext ("")

return an s == "R oll Dice"

After waiting for the user to click an appropriate button, this method then clears
out any message-such as the previous results-by setting the msg text to the
empty string. The method then returns a Boolean value by examining the label

returned by choose.

That brings us to the chooseDice method. Here we must implement a more

extensive user interaction. The chooseDice method returns a list of the indexes
of the dice that the user wishes to roll.

In our GUI, the user will choose dice by clicking on corresponding buttons.

We need to maintain a list of which dice have been chosen. Each time a die
button is clicked, that die is either chosen (its index is appended to the list)
or unchosen (its index is removed from the list). In addition, the color of the

corresponding Die View reflects the status of the die. The interaction ends when
the user clicks either the roll button or the score button. If the roll button is

clicked, the method returns the list of currently chosen indexes. If the score
button is clicked, the function returns an empty list to signal that the player is

done rolling.

Here is one way to implement the choosing of dice. The comments in this
code explain the algorithm:

def chooseDice (self):

choices is a list of the index es of the select ed dice

choices = [] # No dice chosen yet

while True:

wait for user t o click a valid butt on

b - self . choose (["Die 1" , "Die 2" , "Die 3" , "Die 4" , "Die 5" ,

"Roll Dice" , "Score"])

if b [0] == "D":

i = int (b[4]) - 1

if i in choices:

choices . remove (i)

User clicked a die butt on

Tran slat e lab el t o die index

Currently select ed , unselect it

self . dice[i] . set Color ("b lack")

else: # Currently

choices . append (i)

deselect ed , select it

12.4. 00 Concepts 451

self . dice [i] . setColor ("gray")

else: # User clicked R oll or Score

for d in self . dice: # R evert appearan ce of all dice

d . setColor ("b lack")

if b == "Score": # Score clicked , ignore choices

return []

elif choices ! = [] :

return choices

Don 't accept R oll unless some

dice are actually select ed

That about wraps up our program. The only missing piece of our interface

class is the close method. To close up the graphical version, we just need to
close the graphics window:

def close (self):

self . win . close ()

Finally, we need a few lines to actually get our graphical poker-playing pro­
gram started. This code is exactly like the start code for the textual version,
except that we use a Graphicsint erface in place of the T extint erface :

int er = Graphicsint erface ()

app = PokerApp (int er)

app . runO

We now have a complete, usable video dice poker game. Of course, our
game is lacking a lot of bells and whistles such as printing a nice introduction,
providing help with the rules, and keeping track of high scores. I have tried to

keep this example relatively simple, while still illustrating important issues in
the design of GUis using objects. Improvements are left as exercises for you.
Have fun with them!

112.41 00 Concepts

My goal for the racquetball and video poker case studies was to give you a taste
for what OOD is all about. Actually, what you've seen is only a distillation of the
design process for these two programs. Basically, I have walked you through the

algorithms and rationale for two completed designs. I did not document every
single decision, false start, and detour along the way. Doing so would have
at least tripled the size of this (already long) chapter. You will learn best by

452 Chapter 12. Object-Oriented Design

making your own decisions and discovering your own mistakes, not by reading

about mine.

Still, these smallish examples illustrate much of the power and allure of

the object -oriented approach. Hopefully, you can see why 00 techniques have
become standard practice in software development. The bottom line is that the
00 approach helps us to produce complex software that is more reliable and

cost-effective. However, I still have not defined exactly what counts as objected­
oriented development.

Most 00 gurus talk about three features that together make development

truly object-oriented: encapsulation, polymorphism, and inheritance. I don't want

to belabor these concepts too much, but your introduction to object -oriented
design and programming would not be complete without at least some under­

standing of what is meant by these terms.

lt2.4.tl Encapsulation

I have already mentioned the term encapsulation in previous discussion of ob­

jects. As you know, objects know stuff and do stuff. They combine data and

operations. This process of packaging some data along with the set of opera­
tions that can be performed on the data is called encapsulation.

Encapsulation is one of the major attractions of using objects. It provides

a convenient way to compose complex solutions, a way that corresponds to
our intuitive view of how the world works. We naturally think of the world
around us as consisting of interacting objects. Each object has its own identity,

and knowing what kind of object it is allows us to understand its nature and
capabilities. I look out my window and I see houses, cars, and trees, not a
swarming mass of countless molecules or atoms.

From a design standpoint, encapsulation also provides a critical service of

separating the concerns of ''what" vs. "how." The actual implementation of an
object is independent of its use. The implementation can change, but as long
as the interface is preserved, other components that rely on the object will not

break. Encapsulation allows us to isolate major design decisions, especially ones
that are subject to change.

Another advantage of encapsulation is that it supports code reuse. It allows

us to package up general components that can be used from one program to

the next. The Die View class and Butt on classes are good examples of reusable
components.

Encapsulation is probably the chief benefit of using objects, but alone it only

12.4. 00 Concepts

makes a system object-based. To be truly objected-oriented, the approach must

also have the characteristics of polymorphism and inheritance.

112.4.21 Polymorphism

Literally, the word polymorphism means "many forms." When used in object­

oriented literature, this refers to the fact that what an object does in response to
a message (a method call) depends on the type or class of the object.

453

Our poker program illustrated one aspect of polymorphism. The Poker App

class was used both with a T extint erface and a Graphicsint erface. There
were two different forms of interface, and the PokerApp class could function

quite well with either. When the PokerApp called the showDice method, for ex­
ample, the T ext Int erface showed the dice one way and the Graphicsint erface

did it another way.

In our poker example, we used either the text interface or the graphics inter­

face. The remarkable thing about polymorphism, however, is that a given line in
a program may invoke a completely different method from one moment to the

next. As a simple example, suppose you had a list of graphics objects to draw

on the screen. The list might contain a mixture of Circle, Rectangle, Polygon,

etc. You could draw all the items in a list with this simple code:

for obj in ob j ect s:

obj . draw (win)

Now ask yourself, what operation does this loop actually execute? When obj

is a circle, it executes the draw method from the circle class. When obj is a
rectangle, it is the draw method from the rectangle class, etc.

Polymorphism gives object -oriented systems the flexibility for each object

to perform an action just the way that it should be performed for that object.
Before object orientation, this kind of flexibility was much harder to achieve.

112.4.31 I nheritance

The third important property for object -oriented approaches, inheritance, is one

that we have not yet used. The idea behind inheritance is that a new class can be

defined to borrow behavior from another class. The new class (the one doing the
borrowing) is called a subclass, and the existing class (the one being borrowed
from) is its superclass.

454 Chapter 12. Object-Oriented Design

For example, if we are building a system to keep track of employees, we
might have a class Employee that contains the general information that is com­

mon to all employees. One example attribute would be a homeAddress method
that returns the home address of an employee. Within the class of all employ­
ees, we might distinguish between SalariedEmployee and HourlyEmployee.

We could make these subclasses of Employee, so they would share methods like

homeAddress. However, each subclass would have its own monthlyPay function,

since pay is computed differently for these different classes of employees.

Inheritance provides two benefits. One is that we can structure the classes of
a system to avoid duplication of operations. We don't have to write a separate
homeAddress method for the HourlyEmployee and SalariedEmployee classes.

A closely related benefit is that new classes can often be based on existing

classes, promoting code reuse.

We could have used inheritance to build our poker program. When we first

wrote the Die View class, it did not provide a way of changing the appearance of
the die. We solved this problem by modifying the original class definition. An
alternative would have been to leave the original class unchanged and create a

new subclass ColorDieView. A ColorDieView is just like a Die View except that

it contains an additional method that allows us to change its color. Here is how
it would look in Python:

class ColorDieView (DieView) :

def setValue (self , value) :

self . value = value

DieView . setValue (self , value)

def setColor (self , color) :

self . foreground = color

self . setValue (self . value)

The first line of this definition says that we are defining a new ColorDieView

class that is based on (i.e., a subclass of) DieView. Inside the new class, we
define two methods. The second method, setColor, adds the new operation. Of

course, in order to make setColor work, we also need to modify the setValue

operation slightly.

The setValue method in ColorDieView redefines or overrides the definition
of setValue that was provided in the DieView class. The setValue method in
the new class first stores the value and then relies on the setValue method

12.5. Chapter Summary 455

of the superclass DieView to actually draw the pips. Notice especially how
the call to the method from the superclass is made. The normal approach
self . set Value (value) would refer to the set Value method of the ColorDieView

class, since self is an instance of ColorDieView. In order to call the original
setValue method from the superclass, it is necessary to put the class name
where the object would normally go.

DieView . setValue (self , value)

The actual object to which the method is applied is then sent as the first param­

eter.

112.51 Chapter Summary

This chapter has not introduced very much in the way of new technical con­

tent. Rather it has illustrated the process of object -oriented design through the
racquetball simulation and dice poker case studies. The key ideas of OOD are
summarized here:

• Object-oriented design (OOD) is the process of developing a set of classes

to solve a problem. It is similar to top-down design in that the goal is to

develop a set of black boxes and associated interfaces. Where top-down

design looks for functions, OOD looks for objects.

• There are many different ways to do OOD. The best way to learn is by

doing it. Some intuitive guidelines can help:

1. Look for object candidates.

2. Identify instance variables.

3. Think about interfaces.

4. Refine nontrivial methods.

5. Design iteratively.

6. Try out alternatives.

7. Keep it simple.

• In developing programs with sophisticated user interfaces, it's useful to

separate the program into model and view components. One advantage
of this approach is that it allows the program to sport multiple looks (e.g.,

text and GUI interfaces).

456 Chapter 12. Object-Oriented Design

• There are three fundamental principles that make software object ori­

ented:

Encapsulation Separating the implementation details of an object from
how the object is used. This allows for modular design of complex
programs.

Polymorphism Different classes may implement methods with the same
signature. This makes programs more flexible, allowing a single line

of code to call different methods in different situations.

Inheritance A new class can be derived from an existing class. This sup­

ports sharing of methods among classes and code reuse.

112.61 Exercises

Review Questions

True/False

1. Object -oriented design is the process of finding and defining a useful set
of functions for solving a problem.

2. Candidate objects can be found by looking at the verbs in a problem de­
scription.

3. Typically, the design process involves considerable trial and error.

4. GUis are often built with a model-view architecture.

5. Hiding the details of an object in a class definition is called instantiation.

6. Polymorphism literally means "many changes."

7. A superclass inherits behaviors from its subclasses.

8. GUis are generally easier to write than text-based interfaces.

Multiple Choice

1. Which of the following was not a class in the racquetball simulation?
a) Player b) SimStats c) RBallGame d) Score

12.6. Exercises

2. What is the data type of server in an RBallGame?
a) int b) Player c) bool d) SimStats

3. The isOver method is defined in which class?
a) SimStats b) RBallGame c) Player d) PokerApp

4. Which of the following is not one of the fundamental characteristics of
object -oriented design/programming?
a) inheritance b) polymorphism
c) generality d) encapsulation

5. Separating the user interface from the "guts" of an application is called
a(n) approach.
a) abstract b) object -oriented

c) model-theoretic d) model-view

Discussion

1. In your own words, describe the process of 000.

2. In your own words, define encapsulation, polymorphism, and inheritance.

Programming Exercises

1. Modify the Dice Poker program from this chapter to include any or all of

the following features:

a) Splash Screen. When the program first fires up, have it print a short

introductory message about the program and buttons for "Let's Play''

and "Exit." The main interface shouldn't appear unless the user se­
lects "Let's Play."

b) Add a "Help" button that pops up another window displaying the
rules of the game (the payoffs table is the most important part).

c) Add a high score feature. The program should keep track of the 10

best scores. When a user quits with a good enough score, he/she is

invited to type in a name for the list. The list should be printed in

the splash screen when the program first runs. The high-scores list

will have to be stored in a file so that it persists between program
invocations.

457

458 Chapter 12. Object-Oriented Design

2. Using the ideas from this chapter, implement a simulation of another rac­
quet game. See the programming exercises from Chapter 9 for some ideas.

3. Write a program to keep track of conference attendees. For each attendee,
your program should keep track of name, company, state, and email ad­
dress. Your program should allow users to do things such as add a new
attendee, display information on an attendee, delete an attendee, list the

names and email addresses of all attendees, and list the names and email

addresses of all attendees from a given state. The attendee list should be
stored in a file and loaded when the program starts.

4. Write a program that simulates an automatic teller machine (ATM). Since

you probably don't have access to a card reader, have the initial screen ask
for user ID and a PIN. The user ID will be used to look up the information

for the user's accounts (including the PIN to see whether it matches what
the user types). Each user will have access to a checking account and a
savings account. The user should able to check balances, withdraw cash,

and transfer money between accounts. Design your interface to be similar
to what you see on your local ATM. The user account information should
be stored in a file when the program terminates. This file is read in again

when the program restarts.

5. Find the rules to an interesting dice game and write an interactive program

to play it. Some examples are craps, yacht, greed, and skunk.

6. Write a program that deals four bridge hands, counts how many points
they have, and gives opening bids. You will probably need to consult a

beginner's guide to bridge to help you out.

7. Find a simple card game that you like and implement an interactive pro­
gram to play that game. Some possibilities are war, blackjack, various
solitaire games, and crazy eights.

8. Write an interactive program for a board game. Some examples are Oth­

ello (reversi), Connect Four, Battleship, Sorry! , and Parcheesi.

9. (Advanced) Look up a classic video game such as Asteroids, Frogger, Break­

out, Tetris, etc. and create your own version using the animation techniques
from Chapter 11.

Chapter 13

Objectives

Algorithm Design
and Recursion

• To understand basic techniques for analyzing the efficiency of algorithms.

• To know what searching is and understand the algorithms for linear and
binary search.

• To understand the basic principles of recursive definitions and functions
and be able to write simple recursive functions.

• To understand sorting in depth and know the algorithms for selection sort
and merge sort.

• To appreciate how the analysis of algorithms can demonstrate that some
problems are intractable and others are unsolvable.

If you have worked your way through to this point in the book, you are well
on the way to becoming a programmer. Way back in Chapter 1, I discussed the
relationship between programming and the study of computer science. Now
that you have some programming skills, you are ready to start considering some
broader issues in the field. Here we will take up one of the central issues, namely
the design and analysis of algorithms. Along the way, you'll get a glimpse of
recursion, a particularly powerful way of thinking about algorithms.

459

460 Cha pter 13. Algorith m Design and Recu rsion

lt3.ll Searching

Let's begin by considering a very common and well-studied programming prob­
lem: searching. Searching is the process of looking for a particular value in a
collection. For example, a program that maintains the membership list for a club
might need to look up the information about a particular member. This involves
some form of search process.

113.1.11 A Simple Searching Problem

To make the discussion of searching algorithms as simple as possible, let's boil
the problem down to its essence. Here is the specification of a simple searching
function:

def search(x, nums):
nums is a list of numbers and x is a number
Returns the position in the list where x occurs or -1 if
x is not in the list.

Here are a couple of interactive examples that illustrate its behavior:

>>> search(4, [3, 1, 4, 2, 5])

2
>>> search(?, [3, 1, 4, 2, 5])

-1

In the first example, the function returns the index where 4 appears in the list.
In the second example, the return value -1 indicates that 7 is not in the list.

You may recall from our discussion of list operations that Python actually
provides a number of built-in search-related methods. For example, we can test
to see if a value appears in a sequence using in:

if x in nums:
do something

If we want to know the position of x in a list, the index method fills the bill
nicely:

>>> nums = [3, 1, 4, 2, 5]
>>> nums . index(4)
2

13.1. Searching

In fact, the only difference between our search function and index is that
the latter raises an exception if the target value does not appear in the list.
We could implement search using index by simply catching the exception and
returning -1 for that case:

def search(x, nums):
try:

return nums . index(x)
except:

return -1

This approach avoids the question, however. The real issue is how does Python
actually search the list? What is the algorithm?

lt3.1.2l Strategy 1: Linear Search

Let's try our hand at developing a search algorithm using a simple "be the com­
puter" strategy. Suppose that I gave you a page full of numbers in no particular
order and asked whether the number 13 is in the list. How would you solve
this problem? If you are like most people, you would simply scan down the list
comparing each value to 13. When you see 13 in the list, you quit and tell me
that you found it. If you get to the very end of the list without seeing 13, then
you tell me it's not there.

This strategy is called a linear search. You are searching through the list
of items one by one until the target value is found. This algorithm translates
directly into simple code:

def search(x, nums):
for i in range(len(nums)):

if nums[i] == x: # item found, return the index value
.

return 1

return -1 # loop finished, item was not in list

This algorithm was not hard to develop, and it will work very nicely for
modest -sized lists. For an unordered list, this algorithm is as good as any. The
Python in and index operations both implement linear searching algorithms.

If we have a very large collection of data, we might want to organize it in
some way so that we don't have to look at every single item to determine where,
or if, a particular value appears in the list. Suppose that the list is stored in
sorted order (lowest to highest). As soon as we encounter a value that is greater

461

462 Cha pter 13. Algorith m Design and Recu rsion

than the target value, we can quit the linear search without looking at the rest
of the list. On average, that saves us about half of the work. But if the list is
sorted, we can do even better than this.

113.1.31 Strategy 2: Binary Search

When a list is ordered, there is a much better searching strategy, one that you
probably already know. Have you ever played the number guessing game? I
pick a number between 1 and 100, and you try to guess what it is. Each time
you guess, I will tell you whether your guess is correct, too high, or too low.
What is your strategy?

If you play this game with a very young child, they might well adopt a strat­
egy of simply guessing numbers at random. An older child might employ a
systematic approach corresponding to linear search, guessing 1, 2, 3, 4, . . . until
the mystery value is found.

Of course, virtually any adult will first guess 50. If told that the number is
higher, then the range of possible values is 50-100. The next logical guess is 75.
Each time we guess the middle of the remaining numbers to try to narrow down
the possible range. This strategy is called a binary search. Binary means "two,"
and at each step, we are dividing the remaining numbers into two parts.

We can employ a binary search strategy to look through a sorted list. The
basic idea is that we use two variables to keep track of the endpoints of the range
in the list where the item could be. Initially, the target could be anywhere in the
list, so we start with variables low and high set to the first and last positions of
the list, respectively.

The heart of the algorithm is a loop that looks at the item in the middle of
the remaining range to compare it to x. If x is smaller than the middle item,
then we move high, so that the search is narrowed to the lower half. If x is
larger, then we move low, and the search is narrowed to the upper half. The
loop terminates when x is found or there are no longer any more places to look
(i.e., low > high). Here is the code:

def search(x, nums):
low = 0
high = len(nums) - 1
while low <= high:

mid= (low + high)//2
item = nums [mid]
if x == item :

There is still a range to search
position of middle item

Found it! Return the index

13.1. Searching

return mid
elif x < item:

high = mid - 1
else:

low = mid + 1
return -1

x is in lower half of range
move top marker down
x is in upper half
move bottom marker up
no range left to search,
x is not there

This algorithm is quite a bit more sophisticated than the simple linear search.
You might want to trace through a couple of example searches to convince your­
self that it actually works.

113.1.41 Comparing Algorithms

So far, we have developed two solutions to our simple searching problem. Which
one is better? Well, that depends on what exactly we mean by better. The linear
search algorithm is much easier to understand and implement. On the other
hand, we expect that the binary search is more efficient, because it doesn't have
to look at every value in the list. Intuitively, then, we might expect the linear
search to be a better choice for small lists and binary search a better choice for
larger lists. How could we actually confirm such intuitions?

One approach would be to do an empirical test. We could simply code up
both algorithms and try them out on various-sized lists to see how long the
search takes. These algorithms are both quite short, so it would not be difficult
to run a few experiments. When I tested the algorithms on my particular com­
puter (a somewhat dated laptop) , linear search was faster for lists of length 10
or fewer, and there was not much noticeable difference in the range of length
10-1000. After that, binary search was a clear winner. For a list of a million
elements, linear search averaged 2.5 seconds to find a random value, whereas
binary search averaged only 0.0003 seconds.

The empirical analysis has confirmed our intuition, but these are results from
one particular machine under specific circumstances (amount of memory, pro­
cessor speed, current load, etc.). How can we be sure that the results will always
be the same?

Another approach is to analyze our algorithms abstractly to see how efficient
they are. Other factors being equal, we expect the algorithm with the fewest
number of "steps" to be the more efficient. But how do we count the number of
steps? For example, the number of times that either algorithm goes through its

463

464 Cha pter 13. Algorith m Design and Recu rsion

main loop will depend on the particular inputs. We have already guessed that
the advantage of binary search increases as the size of the list increases.

Computer scientists attack these problems by analyzing the number of steps
that an algorithm will take relative to the size or difficulty of the specific problem
instance being solved. For searching, the difficulty is determined by the size of
the collection. Obviously, it takes more steps to find a number in a collection
of a million than it does in a collection of ten. The pertinent question is "How
many steps are needed to find a value in a list of size n ?" We are particularly
interested in what happens as n gets very large.

Let's consider the linear search first. If we have a list of ten items, the most
work our algorithm might have to do is to look at each item in turn. The loop
will iterate at most ten times. Suppose the list is twice as big. Then it might
have to look at twice as many items. If the list is three times as large, it will
take three times as long, etc. In general, the amount of time required is linearly
related to the size of the list n. This is what computer scientists call a linear time
algorithm. Now you really know why it's called a linear search.

What about the binary search? Let's start by considering a concrete example.
Suppose the list contains sixteen items. Each time through the loop, the remain­
ing range is cut in half. After one pass, there are eight items left to consider. The
next time through there will be four, then two, and finally one. How many times
will the loop execute? It depends on how many times we can halve the range
before running out of data. This table might help you to sort things out:

list size halvings
1 0
2 1
4 2
8 3
16 4

Can you see the pattern here? Each extra iteration of the loop doubles the
size of the list. If the binary search loops i times, it can find a single value in a
list of size 2i. Each time through the loop, it looks at one value (the middle) in
the list. To see how many items are examined in a list of size n, we need to solve
this relationship: n = 2i fori. In this formula, i is just an exponent with a base
of 2. Using the appropriate logarithm gives us this relationship: i = log2 n. If
you are not entirely comfortable with logarithms, just remember that this value
is the number of times that a collection of size n can be cut in half.

13.2. Recu rsive Problem Solving

OK, so what does this bit of math tell us? Binary search is an example of a
log time algorithm. The amount of time it takes to solve a given problem grows
as the log of the problem size. In the case of binary search, each additional
iteration doubles the size of the problem that we can solve.

You might not appreciate just how efficient binary search really is. Let me
try to put it in perspective. Suppose you have a New York City phone book with,
say, twelve million names listed in alphabetical order. You walk up to a typical
New Yorker on the street and make the following proposition (assuming their
number is listed): "I'm going to try guessing your name. Each time I guess a
name, you tell me whether your name comes alphabetically before or after the
name I guess." How many guesses will you need?

Our analysis above shows the answer to this question is log212, 000, 000. If
you don't have a calculator handy, here is a quick way to estimate the result.
210

= 1024 or roughly 1000, and 1000 x 1000 = 1, 000, 000. That means that
210

x 210
= 220

� 1, 000, 000. That is, 220 is approximately one million. So
searching a million items requires only 20 guesses. Continuing on, we need 21
guesses for two million, 22 for four million, 23 for eight million, and 24 guesses
to search among sixteen million names. We can figure out the name of a total
stranger in New York City using only 24 guesses ! By comparison, a linear search
would require (on average) 6 million guesses. Binary search is a phenomenally
good algorithm!

I said earlier that Python uses a linear search algorithm to implement its
built-in searching methods. If a binary search is so much better, why doesn't
Python use it? The reason is that the binary search is less general; in order to
work, the list must be in order. If you want to use binary search on an unordered
list, the first thing you have to do is put it in order or sort it. This is another well­
studied problem in computer science, and one that we should look at. Before we
turn to sorting, however, we need to generalize the algorithm design technique
that we used to develop the binary search.

lt3.2l Recursive Problem Solving

Remember, the basic idea behind the binary search algorithm was to succes­
sively divide the problem in half. This is sometimes referred to as a "divide­
and-conquer" approach to algorithm design, and it often leads to very efficient
algorithms.

One interesting aspect of divide-and-conquer algorithms is that the original
problem divides into subproblems that are just smaller versions of the original.

465

466 Cha pter 13. Algorith m Design and Recu rsion

To see what I mean, think about the binary search again. Initially, the range to
search is the entire list. Our first step is to look at the middle item in the list.
Should the middle item turn out to be the target, then we are finished. If it is
not the target, we continue by performing binary search on either the top half
or the bottom half of the list.

Using this insight, we might express the binary search algorithm in another
way:

Algorithm: binarySearch -- search for x in nums[low] . . . nums[high]

mid= (low + high) // 2
if low > high

x is not in nums
elif x < nums[mid]

perform binary search for x in nums[low] . . . nums[mid-1]
else

perform binary search for x in nums[mid+1] . . . nums[high]

Rather than using a loop, this definition of the binary search seems to refer to
itself. What is going on here? Can we actually make sense of such a thing?

lt3.2.ll Recursive Definitions

A description of something that refers to itself is called a recursive definition. In
our last formulation, the binary search algorithm makes use of its own descrip­
tion. A "call" to binary search "recurs" inside of the definition-hence, the label
"recursive definition."

At first glance, you might think recursive definitions are just nonsense. Surely
you have had a teacher who insisted that you can't use a word inside its own
definition? That's called a "circular definition" and is usually not worth much
credit on an exam.

In mathematics, however, certain recursive definitions are used all the time.
As long as we exercise some care in the formulation and use of recursive defini­
tions, they can be quite handy and surprisingly powerful. The classic recursive
example in mathematics is factorial.

Back in Chapter 3, we defined the factorial of a value like this:

n! = n(n - l)(n - 2) . . . (1)

13.2. Recu rsive Problem Solving

For example, we can compute

5! = 5(4)(3)(2)(1)

Recall that we implemented a program to compute factorials using a simple loop
that accumulates the factorial product.

Looking at the calculation of 5!, you will notice something interesting. If we
remove the 5 from the front, what remains is a calculation of 4!. In general,
n! = n(n - 1)!. In fact, this relation gives us another way of expressing what is
meant by factorial in general. Here is a recursive definition:

I- { 1 if n =O
n . -

n(n - 1)! otherwise

This definition says that the factorial of 0 is, by definition, 1, while the factorial
of any other number is defined to be that number times the factorial of one less
than that number.

Even though this definition is recursive, it is not circular. In fact, it provides
a very simple method of calculating a factorial. Consider the value of 4!. By
definition we have

4! = 4(4 - 1)! = 4(3!)

But what is 3!? To find out, we apply the definition again:

4! = 4(3!) = 4[(3)(3- 1)!] = 4(3)(2!)

Now, of course, we have to expand 2!, which requires 1!, which requires 0!. Since
0! is simply 1, that's the end of it.

4! = 4(3!) = 4(3)(2!) = 4(3)(2)(1!) = 4(3)(2)(1)(0!) = 4(3)(2)(1)(1) = 24

You can see that the recursive definition is not circular because each appli­
cation causes us to request the factorial of a smaller number. Eventually we get
down to 0, which doesn't require another application of the definition. This is
called a base case for the recursion. When the recursion bottoms out, we get a
closed expression that can be directly computed. All good recursive definitions
have these key characteristics:

1. There are one or more base cases for which no recursion is required.

2. All chains of recursion eventually end up at one of the base cases.

The simplest way to guarantee that these two conditions are met is to make
sure that each recursion always occurs on a smaller version of the original prob­
lem. A very small version of the problem that can be solved without recursion
then becomes the base case. This is exactly how the factorial definition works.

467

468 Cha pter 13. Algorith m Design and Recu rsion

lt3.2.2l Recursive Functions

You already know that the factorial can be computed using a loop with an ac­
cumulator. That implementation has a natural correspondence to the original
definition of factorial. Can we also implement a version of factorial that follows
the recursive definition?

If we write factorial as a separate function, the recursive definition translates
directly into code:

def fact(n):
if n == 0:

return 1
else:

return n * fact(n-1)

Do you see how the definition that refers to itself turns into a function that calls
itself? This is called a recursive function. The function first checks to see if we
are at the base case n == 0 and, if so, returns 1. If we are not yet at the base
case, the function returns the result of multiplying n by the factorial of n-1. The
latter is calculated by a recursive call to fact (n -1) .

I think you will agree that this is a reasonable translation of the recursive
definition. The really cool part is that it actually works ! We can use this recursive
function to compute factorial values:

>>> from recfact import fact
>>> fact(4)
24
>>> fact(10)
3628800

Some beginning programmers are surprised by this result, but it follows nat­
urally from the semantics for functions that we discussed way back in Chapter 6.
Remember that each call to a function starts that function anew. That means it
has its own copy of any local values, including the values of the parameters.
Figure 13.1 shows the sequence of recursive calls that computes 5!. Note espe­
cially how each return value is multiplied by a value of n appropriate for each
function invocation. The values of n are stored on the way down the chain and
then used on the way back up as the function calls return.

There are many problems for which recursion can yield an elegant and ef­
ficient solution. The next few sections present examples of recursive problem
solving.

13.2. Recu rsive Problem Solving

� � 5 �def fact(n): def fact(n):
� ifn==O: ifn==O:

fact(5) return 1 �� � return 1 return 1
�2n else: 24 else: 6 else:

� return n * fact(n-1)_•f----- return n * fact(n-1)_•f----- return n * fac (n-1)

469

n:l 5 n:l 4 I n:l 3 n=2

def fact(n): def fact(n):
ifn == 0: ifn == 0:

return 1 return 1
2 else: 1 else:

return n * fact(n-1) .. return n * fact(n-1)
n:l 2 n:l 1 I

Figure 13.1: Recursive computation of 5 !

113.2.31 Example: String Reversal

def fact(n):
ifn == 0:

return 1
else:

return n * fact(n-1)
n:l 0

Python lists have a built-in method that can be used to reverse the list. Sup­
pose that you want to compute the reverse of a string. One way to handle this
problem effectively would be to convert the string into a list of characters, re­
verse the list, and turn the list back into a string. Using recursion, however, we
can easily write a function that computes the reverse directly, without having to
detour through a list representation.

The basic idea is to think of a string as a recursive object; a large string is
composed out of smaller objects, which are also strings. In fact, one very handy
way to divide up virtually any sequence is to think of it as a single first item that
just happens to be followed by another sequence. In the case of a string, we can
divide it up into its first character and "all the rest." If we reverse the rest of the
string and then put the first character on the end of that, we'll have the reverse
of the whole string.

Let's code up that algorithm and see what happens:

def reverse(s):
return reverse(s[1:]) + s[O]

Notice how this function works. The slice s [1: J gives all but the first character
of the string. We reverse the slice (recursively) and then concatenate the first

470 Cha pter 13. Algorith m Design and Recu rsion

character (s [OJ) onto the end of the result. It might be helpful to think in terms
of a specific example. If s is the string "abc", then s [1 : J is the string "be".
Reversing this yields "cb" and tacking on s [OJ yields "cba". That's just what
we want.

Unfortunately, this function doesn't quite work. Here's what happens when
I try it out:

>>> reverse('' Hello'')
Traceback (most recent

File "<stdin>", line
File "<stdin>", line
File "<stdin>", line

• • •

call
1,

.
1n

2,
.
1n

2, in

last):
? .

reverse
reverse

File "<stdin>", line 2, in reverse
RuntimeError: maximum recursion depth exceeded

I've only shown a portion of the output; it actually consisted of 1000 lines !
What's happened here?

Remember, to build a correct recursive function we need a base case for
which no recursion is required-otherwise the recursion is circular. In our haste
to code up the function, we forgot to include a base case. What we have written
is actually an infinite recursion. Every call to reverse contains another call to
reverse, so none of them ever return. Of course, each time a function is called
it takes up some memory (to store the parameters and local variables), so this
process can't go on forever. Python puts a stop to it after 1000 calls, the default
"maximum recursion depth."

Let's go back and put in a suitable base case. When performing recursion on
sequences, the base case is often an empty sequence or a sequence containing
just one item. For our reversing problem we can use an empty string as the base
case, since an empty string is its own reverse. The recursive calls to reverse
are always on a string that is one character shorter than the original, so we'll
eventually end up at an empty string. Here's a correct version of reverse:

def reverse(s):
if S

== II II:

return s
else:

return reverse(s[1:]) + s[O]

This version works as advertised:

>>> reverse('' Hello'')
'olleH'

13.2. Recu rsive Problem Solving

113.2.41 Example: Anagrams

An anagram is formed by rearranging the letters of a word. Anagrams are often
used in word games, and forming anagrams is a special case of generating the
possible permutations (rearrangements) of a sequence, a problem that pops up
frequently in many areas of computing and mathematics.

Let's try our hand at writing a function that generates a list of all the possible
anagrams of a string. We'll apply the same approach that we used in the previous
example by slicing the first character off of the string. Suppose the original
string is "abc", then the tail of the string is "be". Generating the list of all
the anagrams of the tail gives us ["be", "cb"], as there are only two possible
arrangements of two characters. To add back the first letter, we need to place it
in all possible positions in each of these two smaller anagrams: ["abc" , "bac" ,
"bca", "acb", "cab", "cba"]. The first three anagrams come from placing
"a" in every possible place in "be", and the second three come from inserting
"a" into "cb".

Just as in our previous example, we can use an empty string as the base
case for the recursion. The only possible arrangement of characters in an empty
string is the empty string itself. Here is the completed recursive function:

def anagrams(s):
if S

== II II:

return [s]
else:

ans = []
for w in anagrams(s[1:]):

for pos in range(len(w)+1):
ans . append(w[: pos]+s[O]+w[pos:])

return ans

Notice in the else I have used a list to accumulate the final results. In the
nested for loops, the outer loop iterates through each anagram of the tail of s,
and the inner loop goes through each position in the anagram and creates a new
string with the original first character inserted into that position. The expression
w [: pos] +s [OJ +w [pos: J looks a bit tricky, but it's not too hard to decipher. Tak­
ing w [: pos] gives the portion of w up to (but not including) pos, and w [pos: J

471

472 Cha pter 13. Algorith m Design and Recu rsion

yields everything from pos through the end. Sticking s [0] between these two
effectively inserts it into w at pos. The inner loop goes up to len(w)+1 so that
the new character can be added to the very end of the anagram.

Here is our function in action:

>>> anagrams("abc")
['abc', 'bac', 'bca', 'acb', 'cab', 'cba']

I didn't use "Hello" for this example because that generates more anagrams
than I wanted to print. The number of anagrams of a word is the factorial of the
length of the word.

113.2.51 Example: Fast Exponentiation

Another good example of recursion is a clever algorithm for raising values to an
integer power. The naive way to compute an for a positive integer n is simply to
multiply a by itself n times: an = a* a * a* ... * a. We can easily implement this
using a simple accumulator loop:

def loopPower(a, n):
ans = 1
for i in range(n):

ans = ans * a
return ans

Divide and conquer suggests another way to perform this calculation. Sup­
pose we want to calculate 28• By the laws of exponents, we know that 28 =
24(24). So if we first calculate 24, we can just do one more multiplication to
get 28• To compute 24, we can use the fact that 24 = 22(22). And, of course,
22 = 2(2). Putting the calculation together, we start with 2(2) = 4 and 4(4) = 16
and 16(16) = 256. We have calculated the value of 28 using just three multipli­
cations. The basic insight is to use the relationship an= an12(an12).

In the example I gave, the exponents were all even. In order to turn this idea
into a general algorithm, we also have to handle odd values of n. This can be
done with one more multiplication. For example, 29 = 24(24)(2). Here is the
general relationship:

an/ f2(anl /2)
an/ f2(an/ f2)(a)

if n is even
if n is odd

In this formula I am exploiting integer division; if n is 9, then n/ /2 is 4.

13.2. Recu rsive Problem Solving

We can use this relationship as the basis of a recursive function-we just
need to find a suitable base case. Notice that computing the nth power requires
computing two smaller powers (n/ /2). If we keep using smaller and smaller
values of n, it will eventually get to 0 (1/ /2 = 0 in integer division). As you
know from math class, a0 = 1 for any value of a (except 0). There's our base
case.

If you've followed all the math, the implementation of the function is straight­
forward:

def recPower(a, n):
raises a to the int power n

if n == 0:
return 1

else:
factor= recPower(a, n//2)
if n%2 == 0: # n is even

return factor * factor
else: # n is odd

return factor * factor * a

One thing to notice is that I used an intermediate variable factor so that ani 12
only needs to be calculated once. This makes the function more efficient.

113.2.61 Example: Binary Search

Now that you know how to implement recursive functions, we are ready to go
back and look again at binary search recursively. Remember, the basic idea was
to look at the middle value and then recursively search either the lower half or
the upper half of the array.

The base cases for the recursion are the conditions when we can stop, namely
when the target value is found or we run out of places to look. The recursive
calls will cut the size of the problem in half each time. In order to do this,
we need to specify the range of locations in the list that are still "in play'' for
each recursive call. We can do this by passing the values of low and high as
parameters along with the list. Each invocation will search the list between the
low and high indexes.

Here is a direct implementation of the recursive algorithm using these ideas:

473

474 Cha pter 13. Algorith m Design and Recu rsion

def recBinSearch(x, nums,
if low > high:

low, high):

return -1
mid= (low + high) // 2
item = nums [mid]

No place left to look, return -1

if item== x: # Found it! Return the index
return mid

elif x < item: # Look in lower half
return recBinSearch(x, nums, low, mid-1)

else: # Look in upper half
return recBinSearch(x, nums, mid+1, high)

We can then implement our original search function using a suitable call to the
recursive binary search, telling it to start the search between 0 and len (nums) -1.

def search(x, nums):
return recBinSearch(x, nums, 0, len(nums)-1)

Of course, our original looping version is probably a bit faster than this re­
cursive version because calling functions is generally slower than iterating a
loop. The recursive version, however, makes the divide-and-conquer structure
of binary search much more obvious. Below we will see examples where recur­
sive divide-and-conquer approaches provide a natural solution to some problems
where loops are awkward.

lt3.2. 71 Recursion vs. Iteration

I'm sure by now you've noticed that there are some similarities between iteration
(looping) and recursion. In fact, recursive functions are a generalization of
loops. Anything that can be done with a loop can also be done by a simple
kind of recursive function. In fact, there are programming languages that use
recursion exclusively. On the other hand, some things that can be done very
simply using recursion are quite difficult to do with loops.

For a number of the problems we've looked at so far, we have had both
iterative and recursive solutions. In the case of factorial and binary search, the
loop version and the recursive version do basically the same calculations, and
they will have roughly the same efficiency. The looping versions are probably a

13.2. Recu rsive Problem Solving

bit faster because calling functions is generally slower than iterating a loop, but
in a modern language the recursive algorithms are probably fast enough.

In the case of the exponentiation algorithm, the recursive version and the
looping version actually implement very different algorithms. If you think about
it a bit, you will see that the looping version is linear and the recursive version
executes in log time. The difference between these two is similar to the dif­
ference between linear search and binary search, so the recursive algorithm is
clearly superior. In the next section, you'll be introduced to a recursive sorting
algorithm that is also very efficient.

As you have seen, recursion can be a very useful problem-solving technique
that can lead to efficient and effective algorithms. But you have to be careful.
It's also possible to write some very inefficient recursive algorithms. One classic
example is calculating the nth Fibonacci number.

The Fibonacci sequence is the sequence of numbers 1, 1, 2, 3, 5, 8, . . . It starts
with two ls and successive numbers are the sum of the previous two. One way
to compute the nth Fibonacci value is to use a loop that produces successive
terms of the sequence.

In order to compute the next Fibonacci number, we always need to keep
track of the previous two. We can use two variables, curr and prev, to keep
track these values. Then we just need a loop that adds these together to get the
next value. At that point, the old value of curr becomes the new value of prev.
Here is one way to do it in Python:

def loopfib(n):
returns the nth Fibonacci number

curr = 1
prev = 1
for i in range(n-2):

curr, prev = curr+prev, curr
return curr

I used simultaneous assignment to compute the next values of curr and prev
in a single step. Notice that the loop only goes around n - 2 times, because the
first two values have already been assigned and do not require an addition.

The Fibonacci sequence also has an elegant recursive definition:

f"b() _ { 1 if n < 3
"' n -

fib(n- 1) + fib(n- 2) otherwise

We can turn this recursive definition directly into a recursive function:

475

476 Cha pter 13. Algorith m Design and Recu rsion

def fib(n):
if n < 3:

return 1
else:

return fib(n-1) + fib(n-2)

This function obeys the rules that we've set out. The recursion is always on
smaller values, and we have identified some non-recursive base cases. There­
fore, this function will work, sort of. It turns out that this is a horribly inefficient
algorithm. While our looping version can easily compute results for very large
values of n (loopFib(50000) is almost instantaneous on my computer), the re­
cursive version is useful only up to around 30.

The problem with this recursive formulation of the Fibonacci function is that
it performs lots of duplicate computations. Figure 13.2 shows a diagram of the
computations that are performed to compute fib(6). Notice that fib(4) is
calculated twice, fib(3) is calculated three times, fib(2) five times, etc. If you
start with a larger number, you can see how this redundancy really piles up!

fib(5)

fib{4)/ ""' fib{3)

/ \ / \
fib(3) fib(2) fib(2) fib(1)

/ \ I I I
fib(2) fib(1) 1 1 1

I I
1 1

fib(6)

fib(4)
/ "'

fib(3) fib(2)

/ \ I
fib(2) fib(1) 1
I I
1 1

Figure 13.2: Computations performed for fib(6)

So what does this tell us? Recursion is just one more tool in your problem­
solving arsenal. Sometimes a recursive solution is a good one, either because
it is more elegant or more efficient than a looping version; in that case use
recursion. Often, the looping and recursive versions are quite similar; in that
case, the edge probably goes to the loop, as it will be slightly faster. Sometimes

13.3. Sorting Algorithms

the recursive version is terribly inefficient. In that case, avoid it, unless of course
you can't come up with an iterative algorithm. As you'll see later in the chapter,
sometimes there just isn't a good solution.

113.31 Sorting Algorithms

The sorting problem provides a nice test bed for the algorithm design techniques
we have been discussing. Remember, the basic sorting problem is to take a list
and rearrange it so that the values are in increasing (actually, nondecreasing)
order.

lt3.3.ll Naive Sorting: Selection Sort

Let's start with a simple "be the computer" approach to sorting. Suppose you
have a stack of index cards, each with a number on it. The stack has been shuf­
fled, and you need to put the cards back in order. How would you accomplish
this task?

There are any number of good systematic approaches. One simple method
is to look through the deck to find the smallest value and then place that value
at the front of the stack (or perhaps in a separate stack). Then you could go
through and find the smallest of the remaining cards and put it next in line, etc.
Of course, this means that you'll also need an algorithm for finding the smallest
remaining value. You can use the same approach we used for finding the max of
a list (see Chapter 7). As you go through, you keep track of the smallest value
seen so far, updating that value whenever you find a smaller one.

The algorithm I just described is called selection sort. Basically, the algorithm
consists of a loop and each time through the loop, we select the smallest of
the remaining elements and move it into its proper position. Applying this idea
to a list of n elements, we proceed by finding the smallest value in the list
and putting it into the oth position. Then we find the smallest remaining value
(from positions 1-(n-1)) and put it in position 1. Next, the smallest value from
positions 2-(n-1) goes into position 2, etc. When we get to the end of the list,
everything will be in its proper place.

There is one subtlety in implementing this algorithm. When we place a value
into its proper position, we need to make sure that we do not accidentally lose
the value that was originally stored in that position. For example, if the smallest
item is in position 10, moving it into position 0 involves an assignment:

nums[O] = nums[10]

477

478 Cha pter 13. Algorith m Design and Recu rsion

But this wipes out the value currently in nums [0]; it really needs to be moved
to another location in the list. A simple way to save the value is to swap it with
the one that we are moving. Using simultaneous assignment, the statement

nums[O], nums[10] = nums[10], nums[O]

places the value from position 10 at the front of the list, but preserves the origi­
nal first value by stashing it into location 10.

Using this idea, it is a simple matter to write a selection sort in Python. I
will use a variable called bottom to keep track of which position in the list we
are currently filling, and the variable mp will be used to track the location of the
smallest remaining value. The comments in this code explain this implementa­
tion of selection sort:

def selSort(nums):
sort nums into ascending order

n = len(nums)

For each position in the list (except the very last)
for bottom in range(n-1):

#find the smallest item in nums[bottom] . . nums[n-1]

mp = bottom # bottom is smallest initially
for i in range(bottom+1, n): #look at each position

if nums[i] < nums[mp]: #this one is smaller
mp = i # remember its index

swap smallest item to the bottom
nums[bottom], nums[mp] = nums[mp], nums[bottom]

One thing to notice about this algorithm is the accumulator for finding the min­
imum value. Rather than actually storing the minimum seen so far, mp just
remembers the position of the minimum. A new value is tested by comparing
the item in position i to the item in position mp. You should also notice that
bottom stops at the second-to-last item in the list. Once all of the items up to
the last have been put in the proper place, the last item has to be the largest, so
there is no need to bother looking at it.

The selection sort algorithm is easy to write and works well for moderately
sized lists, but it is not a very efficient sorting algorithm. We'll come back and
analyze it after we've developed another algorithm.

13.3. Sorting Algorithms

lt3.3.2l Divide and Conquer: Merge Sort

As discussed above, one technique that often works for developing efficient algo­
rithms is the divide-and-conquer approach. Suppose a friend and I were working
together trying to put our deck of cards in order. We could divide the problem
up by splitting the deck of cards in half with one of us sorting each of the halves.
Then we just need to figure out a way of combining the two sorted stacks.

The process of combining two sorted lists into a single sorted result is called
merging. The basic outline of our divide-and-conquer algorithm, called merge
sort, looks like this:

Algorithm: merge sort nums

split nums into two halves
sort the first half
sort the second half
merge the two sorted halves back into nums

The first step in the algorithm is simple; we can just use list slicing to handle
that. The last step is to merge the lists together. If you think about it, merging
is pretty simple. Let's go back to our card stack example to flesh out the details.
Since our two stacks are sorted, each has its smallest value on top. Whichever
of the top values is the smallest will be the first item in the merged list. Once
the smaller value is removed, we can look at the tops of the stacks again, and
whichever top card is smaller will be the next item in the list. We just continue
this process of placing the smaller of the two top values into the big list until
one of the stacks runs out. At that point, we finish out the list with the cards
from the remaining stack.

Here is a Python implementation of the merge process. In this code, lst 1
and lst2 are the smaller lists, and lst3 is the larger list where the results are
placed. In order for the merging process to work, the length of lst3 must be
equal to the sum of the lengths of lst 1 and lst2. You should be able to follow
this code by studying the accompanying comments:

def merge(lst1, lst2, lst3):
merge sorted lists lst1 and lst2 into lst3

these indexes keep track of current position in each list
i1, i2, i3 = 0, 0, 0 # all start at the front

479

480 Cha pter 13. Algorith m Design and Recu rsion

n1, n2 = len(lst1), len(lst2)

Loop while both lst1 and lst2 have more items
while i1 < n1 and i2 < n2:

if lst1[i1] < lst2[i2]: #top of lst1 is smaller
lst3[i3] = lst1[i1] # copy it into current spot in lst3
i1 = i1 + 1

else: # top of lst2 is smaller
lst3 [i3] = lst2 [i2] # copy it into current spot in lst3
i2 = i2 + 1

i3 = i3 + 1 # item added to lst3, update position

Here either lst1 or lst2 is done. One of the following loops will
execute to finish up the merge.

Copy remaining items (if any) from lst1
while i1 < n1:

lst3[i3] = lst1[i1]
i1 = i1 + 1
i3 = i3 + 1

Copy remaining items (if any) from lst2
while i2 < n2:

lst3[i3] = lst2[i2]
i2 - i2 + 1
i3 = i3 + 1

OK, now we can slice a list into two, and if those lists are sorted, we know
how to merge them back into a single list. But how are we going to sort the
smaller lists? Well, let's think about it. We are trying to sort a list, and our
algorithm requires us to sort two smaller lists. This sounds like a perfect place
to use recursion. Maybe we can use mergeSort itself to sort the two lists. Let's
go back to our recursion guidelines to develop a proper recursive algorithm.

In order for recursion to work, we need to find at least one base case that
does not require a recursive call, and we also have to make sure that recursive
calls are always made on smaller versions of the original problem. The recursion
in our mergeSort will always occur on a list that is about half as large as the
original, so the latter property is automatically met. Eventually, our lists will be
very small, containing only a single item or not items at all. Fortunately, these
lists are already sorted! Voila, we have a base case. When the length of the list
is less than two, we do nothing, leaving the list unchanged.

13.3. Sorting Algorithms

Given our analysis, we can update the merge sort algorithm to make it prop­
erly recursive:

if len(nums) > 1:
split nums into two halves
mergeSort the first half
mergeSort the second half
merge the two sorted halves back into nums

Then we can translate this algorithm directly into Python code:

def mergeSort(nums):
Put items of nums in ascending order
n = len(nums)
Do nothing if nums contains 0 or 1 items
if n > 1:

split into two sublists
m = n // 2
nums1, nums2 = nums[: m], nums[m:]
recursively sort each piece
mergeSort(nums1)
mergeSort(nums2)
merge the sorted pieces back into original list
merge(nums1, nums2, nums)

You might try tracing this algorithm with a small list (say eight elements) , just
to convince yourself that it really works. In general, though, tracing through
recursive algorithms can be tedious and often not very enlightening.

Recursion is closely related to mathematical induction, and it requires prac­
tice before it becomes comfortable. As long as you follow the rules and make
sure that every recursive chain of calls eventually reaches a base case, your al­
gorithms will work. You just have to trust and let go of the grungy details. Let
Python worry about that for you!

lt3.3.3l Comparing Sorts

Now that we have developed two sorting algorithms, which one should we use?
Before we actually try them out, let's do some analysis. As in the searching
problem, the difficulty of sorting a list depends on the size of the list. We need to

481

482 Cha pter 13. Algorith m Design and Recu rsion

figure out how many steps each of our sorting algorithms requires as a function
of the size of the list to be sorted.

Take a look back at the algorithm for selection sort. Remember, this algo­
rithm works by first finding the smallest item, then finding the smallest of the
remaining items, and so on. Suppose we start with a list of size n. In order to
find the smallest value, the algorithm has to inspect each of the n items. The
next time around the outer loop, it has to find the smallest of the remaining
n - 1 items. The third time around, there are n - 2 items of interest. This pro­
cess continues until there is only one item left to place. Thus, the total number
of iterations of the inner loop for the selection sort can be computed as the sum
of a decreasing sequence.

n + (n- 1) + (n- 2) + (n- 3) + ... + 1

In other words, the time required by selection sort to sort a list of n items is
proportional to the sum of the first n whole numbers. There is a well-known
formula for this sum, but even if you do not know the formula, it is easy to
derive. If you add the first and last numbers in the series you get n + 1. Adding
the second and second-to-last values gives (n- 1) + 2 = n + 1. If you keep
pairing up the values working from the outside in, all of the pairs add to n + 1.
Since there are n numbers, there must be ; pairs. That means the sum of all the

pairs is n(n2+l).
You can see that the final formula contains an n2 term. That means that the

number of steps in the algorithm is proportional to the square of the size of the
list. If the size of the list doubles, the number of steps quadruples. If the size
triples, it will take nine times as long to finish. Computer scientists call this a
quadratic or n2 algorithm.

Let's see how that compares to the merge sort algorithm. In the case of
merge sort, we divided a list into two pieces and sorted the individual pieces
before merging them together. The real work is done during the merge process
when the values in the sublists are copied back into the original list.

Figure 13.3 depicts the merging process to sort the list [3, 1, 4, 1, 5, 9,
2, 6] . The dashed lines show how the original list is continually halved until
each item is its own list with the values shown at the bottom. The single-item
lists are then merged back up into the two-item lists to produce the values shown
in the second level. The merging process continues up the diagram to produce
the final sorted version of the list shown at the top.

The diagram makes analysis of the merge sort easy. Starting at the bottom
level, we have to copy the n values into the second level. From the second to

,;

1
,

/

1 3

1
'

/ '

3 4

1

13.3. Sorting Algorithms

4 I
'

'
,; '

J
' /

,

4
5

5 I
2 I

9

6 I

5 I
/ '

9 I
'

'
'

6 I 9 1 '
'

2 6
I J\ ' � � ' J � ' J ' '

D' 'd D' 'd Q' 'G G 'G
Figure 13.3: Merges required to sort [3, 1, 4, 1, 5, 9, 2, 6]

third level, the n values need to be copied again. Each level of merging involves
copying n values. The only question left to answer is how many levels are there?
This boils down to how many times a list of size n can be split in half. You already
know from the analysis of binary search that this is just log2 n. Therefore, the
total work required to sort n items is n log2 n. Computer scientists call this an n
log n algorithm.

So which is going to be better, the n2
selection sort or the n log n merge sort?

If the input size is small, the selection sort might be a little faster because the
code is simpler and there is less overhead. What happens, though, as n gets
larger? We saw in the analysis of binary search that the log function grows very
slowly (log2 16, 000, 000 � 24) so n(log2 n) will grow much more slowly than
n(n).

Empirical testing of these two algorithms confirms this analysis. On my com­
puter, selection sort beats merge sort on lists up to size about 50, which takes
around 0.008 seconds. On larger lists, the merge sort dominates. Figure 13.4
shows a comparison of the time required to sort lists up to size 3000. You can
see that the curve for selection sort veers rapidly upward (forming half of a
parabola), while the merge sort curve looks almost straight (look at the bot­
tom). For 3000 items, selection sort requires over 30 seconds while merge sort
completes the task in about � of a second. Merge sort can sort a list of 20,000
items in less than six seconds; selection sort takes around 20 minutes. That's
quite a difference !

483

484

35

30

25

(/) 20 ""0 s:::::
0
� 15 fJ)

10

5

Cha pter 13. Algorith m Design and Recu rsion

'seiSort'
'mergeSort' -----><-----

0 ---- ---------- --------------- ---------------

0
-------------- ---------------

500 1000 1500
List Size

2000 2500 3000

Figure 13.4: Experimental comparison of selection sort and merge sort

I 13.4 I Hard Problems

Using our divide-and-conquer approach, we were able to design good algorithms
for the searching and sorting problems. Divide and conquer and recursion are
very powerful techniques for algorithm design. However, not all problems have
efficient solutions.

lt3.4.tl Tower of Hanoi

One very elegant application of recursive problem solving is the solution to a
mathematical puzzle usually called the Tower of Hanoi or Tower of Brahma.

,

This puzzle is generally attributed to the French mathematician Edouard Lucas,
who published an article about it in 1883. The legend surrounding the puzzle
goes something like this:

Somewhere in a remote region of the world is a monastery of a very devout

13.4. Hard Problems

religious order. The monks have been charged with a sacred task that keeps
time for the universe. At the beginning of all things, the monks were given a
table that supports three vertical posts. On one of the posts was a stack of 64
concentric golden disks. The disks are of varying radii and stacked in the shape
of a beautiful pyramid. The monks were charged with the task of moving the
disks from the first post to the third post. When the monks have completed their
task, all things will crumble to dust and the universe will end.

Of course, if that's all there were to the problem, the universe would have
ended long ago. To maintain divine order, the monks must abide by certain
rules:

1. Only one disk may be moved at a time.

2. A disk may not be "set aside." It may only be stacked on one of the three
posts.

3. A larger disk may never be placed on top of a smaller one.

Versions of this puzzle were quite popular at one time, and you can still find
variations on this theme in toy and puzzle stores. Figure 13.5 depicts a small
version containing only eight disks. The task is to move the tower from the first
post to the third post using the center post as sort of a temporary resting place
during the process. Of course, you have to follow the three rules given above.

Figure 13.5: Tower of Hanoi puzzle with eight disks

485

486 Cha pter 13. Algorith m Design and Recu rsion

We want to develop an algorithm for this puzzle. You can think of our algo­
rithm either as a set of steps that the monks need to carry out, or as a program
that generates a set of instructions. For example, if we label the three posts A,
B, and C, the instructions might start out like this:

Move disk from A to C .
Move disk from A t o B .
Move disk from C t o B .

• • •

This is a difficult puzzle for most people to solve. Of course, that is not
surprising, since most people are not trained in algorithm design. The solution
process is actually quite simple-if you know about recursion.

Let's start by considering some really easy cases. Suppose we have a version
of the puzzle with only one disk. Moving a tower consisting of a single disk is
simple enough; we just remove it from A and put it on C. Problem solved. OK,
what if there are two disks? I need to get the larger of the two disks over to post
C, but the smaller one is sitting on top of it. I need to move the smaller disk out
of the way, and I can do this by moving it to post B. Now the large disk on A is
clear; I can move it to C and then move the smaller disk from post B onto post
c.

Now let's think about a tower of size three. In order to move the largest disk
to post C, I first have to move the two smaller disks out of the way. The two
smaller disks form a tower of size two. Using the process I outlined above, I
could move this tower of two onto post B, and that would free up the largest
disk so that I can move it to post C. Then I just have to move the tower of two
disks from post B onto post C. Solving the three-disk case boils down to three
steps:

1. Move a tower of two from A to B.

2. Move one disk from A to C.

3. Move a tower of two from B to C.

The first and third steps involve moving a tower of size two. Fortunately, we
have already figured out how to do this. It's just like solving the puzzle with
two disks, except that we move the tower from A to B using C as the temporary
resting place, and then from B to C using A as the temporary resting place.

We have just developed the outline of a simple recursive algorithm for the
general process of moving a tower of any size from one post to another.

13.4. Hard Problems 487

Algorithm: move n-disk tower from source to destination via resting place

move n-1 disk tower from source to resting place
move 1 disk tower from source to destination
move n-1 disk tower from resting place to destination

What is the base case for this recursive process? Notice how a move of n disks
results in two recursive moves of n - 1 disks. Since we are reducing n by one
each time, the size of the tower will eventually be 1. A tower of size 1 can be
moved directly by just moving a single disk; we don't need any recursive calls to
remove disks above it.

Fixing up our general algorithm to include the base case gives us a working
moveTower algorithm. Let's code it up in Python. Our moveTower function will
need parameters to represent the size of the tower, n; the source post, source;
the destination post, dest; and the temporary resting post, temp. We can use an
int for n and strings to represent the posts. Here is the code for move Tower:

def moveTower(n, source, dest, temp):
if n == 1:

print("Move disk from", source, "to", dest+" . ")
else:

moveTower(n-1, source, temp, dest)
moveTower(1, source, dest, temp)
moveTower(n-1, temp, dest, source)

See how easy that was? Sometimes using recursion can make otherwise difficult
problems almost trivial.

To get things started, we just need to supply values for our four parameters.
Let's write a little function that prints out instructions for moving a tower of size
n from post A to post C.

def hanoi(n):
moveTower(n, "A", "C", "B")

Now we're ready to try it out. Here are solutions to the three- and four-disk
puzzles. You might want to trace through these solutions to convince yourself
that they work.

>>> hanoi(3)
Move disk from A to C .
Move disk from A to B .

488 Cha pter 13. Algorith m Design and Recu rsion

Move disk from C to B.
Move disk from A to c .
Move disk from B to A.
Move disk from B to c .
Move disk from A to c .

>>> hanoi(4)
Move disk from A to B.
Move disk from A to c .
Move disk from B to c .
Move disk from A to B.
Move disk from C to A .
Move disk from C to B.
Move disk from A to B.
Move disk from A to c .
Move disk from B to c .
Move disk from B to A.
Move disk from C to A.
Move disk from B to c .
Move disk from A to B.
Move disk from A to c .
Move disk from B to c .

So our solution to the Tower of Hanoi is a "trivial" algorithm requiring only
nine lines of code. What is this problem doing in a section labeled hard prob­
lems? To answer that question, we have to look at the efficiency of our solution.
Remember, when I talk about the efficiency of an algorithm I mean how many
steps it requires to solve a given-sized problem. In this case, the difficulty is de­
termined by the number of disks in the tower. The question we want to answer
is how many steps does it take to move a tower of size n?

Just looking at the structure of our algorithm, you can see that moving a
tower of size n requires us to move a tower of size n - 1 twice, once to move
it off the largest disk, and again to put it back on top. If we add another disk
to the tower, we essentially double the number of steps required to solve it.
The relationship becomes clear if you simply try out the program on increasing
puzzle sizes.

number of disks
1
2
3
4
5

13.4. Hard Problems

steps in solution
1
3
7
15
31

In general, solving a puzzle of size n will require 2n - 1 steps.

Computer scientists call this an exponential time algorithm, since the mea­
sure of the size of the problem, n, appears in the exponent of this formula.
Exponential algorithms blow up very quickly and can only be practically solved
for relatively small sizes, even on the fastest computers. Just to illustrate the
point, if our monks really started with a tower of just 64 disks and moved one
disk every second, 24 hours a day, every day, without making a mistake, it would
still take them over 580 billion years to complete their task. Considering that the
universe is roughly 15 billion years old now, I'm not too worried about turning
to dust just yet.

Even though the algorithm for Tower of Hanoi is easy to express, it belongs to
a class known as intractable problems. These are problems that require too much
computing power (either time or memory) to be solved in practice, except for
the simplest cases. And in this sense, our toy store puzzle does indeed represent
a hard problem. But some problems are even harder than intractable, and we'll
meet one of those in the next section.

113.4.21 The Halting Problem

Let's just imagine for a moment that this book has inspired you to pursue a
career as a computer professional. It's now six years later, and you are a well­
established software developer. One day, your boss comes to you with an im­
portant new project, and you are supposed to drop everything and get right on
it.

It seems that your boss has had a sudden inspiration on how your company
can double its productivity. You've recently hired a number of rather inexperi­
enced programmers, and debugging their code is taking an inordinate amount of
time. Apparently, these wet-behind-the-ears newbies tend to accidentally write
a lot of programs with infinite loops (you've been there, right?). They spend
half the day waiting for their computers to reboot so they can track down the
bugs. Your boss wants you to design a program that can analyze source code

489

490 Cha pter 13. Algorith m Design and Recu rsion

and detect whether it contains an infinite loop before actually running it on test
data. This sounds like an interesting problem, so you decide to give it a try.

As usual, you start by carefully considering the specifications. Basically, you
want a program that can read other programs and determine whether they con­
tain an infinite loop. Of course, the behavior of a program is determined not just
by its code, but also by the input it is given when it runs. In order to determine
if there is an infinite loop, you will have to know what the input will be. You
decide on the following specification:

Program: Halting Analyzer

Inputs: A Python program file.
The input for the program.

Outputs: "OK'' if the program will eventually stop.
"FAULTY'' if the program has an infinite loop.

Right away you notice something interesting about this program. This is a
program that examines other programs. You may not have written many of these
before, but you know that it's not a problem in principle. After all, compilers and
interpreters are common examples of programs that analyze other programs.
You can represent both the program that is being analyzed and the proposed
input to the program as Python strings.

There is something else very interesting about this assignment. You are be­
ing asked to solve a very famous puzzle known as the halting problem, and it's
unsolvable. There is no possible algorithm that can meet this specification! No­
tice, I'm not just saying that no one has been able to do this before; I'm saying
that this problem can never be solved, in principle.

How do I know that there is no solution to this problem? This is a question
that all the design skills in the world will not answer. Design can show that
problems are solvable, but it can never prove that a problem is not solvable. To
do that, we need to use our analytical skills.

One way to prove that something is impossible is to first assume that it is
possible and show that this leads to a contradiction. Mathematicians call this
"proof by contradiction." We'll use this technique to show that the halting prob­
lem cannot be solved.

We begin by assuming that there is some algorithm that can determine
whether any given program terminates when executed on a particular input.
If such an algorithm could be written, we could package it up in a function:

13.4. Hard Problems

def terminates(program, inputData):
program and inputData are both strings
Returns true if program would halt when run with inputData
as its input.

Of course, I can't actually write the function, but let's just assume that this func­
tion exists.

Using the terminates function, we can write an interesting program:

turing. py

def terminates(program, inputData):
program and inputData are both strings
Returns true if program would halt when run with inputData
as its input.

def main():
Read a program from standard input
lines = []
print("Type in a program (type 'done' to quit). ")
line = input("")
while line != "done":

lines. append(line)
line - input("")

testProg = "\n". j oin(lines)

491

If program halts on itself as input, go into an infinite loop
if terminates(testProg, testProg):

main()

while True:
pass # a pass statement does nothing

I have called this program turing in honor of Alan Turing, the British mathe­
matician considered by many to be the "Father of Computer Science." He was
the one who first proved that the halting problem could not be solved.

The first thing turing. py does is read in a program typed by the user. This is
accomplished with a sentinel loop that accumulates lines in a list one at a time.
The j oin method then concatenates the lines together using a newline character

492 Cha pter 13. Algorith m Design and Recu rsion

("\n") between them. This effectively creates a multi-line string representing
the program that was typed.

Turing. py then calls the terminates function and sends the input program
as both the program to test and the input data for the program. Essentially, this
is a test to see whether the program read from the input terminates when given
itself as input. The pass statement actually does nothing; if the terminates
function returns true, turing. py will go into an infinite loop.

OK, this seems like a silly program, but there is nothing in principle that
keeps us from writing it, provided that the terminates function exists. Turing. py
is constructed in this peculiar way simply to illustrate a point. Here's the million­
dollar question: What happens if we run turing. py and, when prompted to
type in a program, type in the contents of turing. py itself? Put more specifi­
cally, does turing. py halt when given itself as its input?

Let's think it through. We are running turing. py and providing turing. py
as its input. In the call to terminates, both the program and the data will be a
copy of turing. py, so if turing. py halts when given itself as input, terminates
will return true. But if terminates returns true, turing. py then goes into an
infinite loop, so it doesn't halt! That's a contradiction; turing. py can't both halt
and not halt. It's got to be one or the other.

Let's try it the other way around. Suppose that terminates returns a false
value. That means that turing. py, when given itself as input, goes into an
infinite loop. But as soon as terminates returns false, turing. py quits, so it
does halt! It's still a contradiction.

If you've gotten your head around the previous two paragraphs, you should
be convinced that turing. py represents an impossible program. The existence
of a function meeting the specification for terminates leads to a logical impos­
sibility. Therefore, we can safely conclude that no such function exists. That
means that there cannot be an algorithm for solving the halting problem.

There you have it. Your boss has assigned you an impossible task. Fortu­
nately, your knowledge of computer science is sufficient to recognize this. You
can explain to your boss why the problem can't be solved and then move on to
more productive pursuits.

lt3.4.3l Conclusion

I hope this chapter has given you a taste of what computer science is all about.
As the examples in this chapter have shown, computer science is much more

13.5. Chapter Summary

than ''just" programming. The most important computer for any computing
professional is still the one between the ears.

Hopefully this book has helped you on the road to becoming a computer pro­
grammer. Along the way, I have tried to pique your curiosity about the science
of computing. If you have mastered the concepts in this text, you can already
write interesting and useful programs. You should also have a firm foundation
of the fundamental ideas of computer science and software engineering. Should
you be interested in studying these fields in more depth, I can only say "go for
it." Perhaps one day you will also consider yourself a computer scientist; I would
be delighted if my book played even a very small part in that process.

lt3.5l Chapter Summary

This chapter has introduced you to a number of important concepts in computer
science that go beyond just programming. Here are the key ideas:

• One core subfield of computer science is analysis of algorithms. Computer
scientists analyze the time efficiency of an algorithm by considering how
many steps the algorithm requires as a function of the input size.

• Searching is the process of finding a particular item among a collection.
Linear search scans the collection from start to end and requires time lin­
early proportional to the size of the collection. If the collection is sorted,
it can be searched using the binary search algorithm. Binary search only
requires time proportional to the log of the collection size.

• Binary search is an example of a divide-and -conquer approach to algo­
rithm development. Divide-and-conquer often yields efficient solutions.

• A definition or function is recursive if it refers to itself. To be well-founded,
a recursive definition must meet two properties:

1. There must be one or more base cases that require no recursion.

2. All chains of recursion must eventually reach a base case.

A simple way to guarantee these conditions is for recursive calls to always
be made on smaller versions of the problem. The base cases are then
simple versions that can be solved directly.

• Sequences can be considered recursive structures containing a first item
followed by a sequence. Recursive functions can be written following this
approach.

493

494 Cha pter 13. Algorith m Design and Recu rsion

• Recursion is more general than iteration. Choosing between recursion and
looping involves the considerations of efficiency and elegance.

• Sorting is the process of placing a collection in order. A selection sort
requires time proportional to the square of the size of the collection. Merge
sort is a divide and conquer algorithm that can sort a collection in n log n
time.

• Problems that are solvable in theory but not in practice are called in­
tractable. The solution to the famous Tower of Hanoi can be expressed
as a simple recursive algorithm, but the algorithm is intractable.

• Some problems are in principle unsolvable. The halting problem is one
example of an unsolvable problem.

• You should consider becoming a computer scientist.

lt3. 61 Exercises

Review Questions

True/False

1. Linear search requires a number of steps proportional to the size of the list
being searched.

2. The Python operator in performs a binary search.

3. Binary search is an n log n algorithm.

4. The number of times n can be divided by 2 is exp(n).

5. All proper recursive definitions must have exactly one non-recursive base
case.

6. A sequence can be viewed as a recursive data collection.

7. A word of length n has n! anagrams.

8. Loops are more general than recursion.

9. Merge sort is an example of an n log n algorithm.

10. Exponential algorithms are generally considered intractable.

13.6. Exercises

Multiple Choice

1. Which algorithm requires time directly proportional to the size of the in­
put?
a) linear search b) binary search
c) merge sort d) selection sort

2. Approximately how many iterations will binary search need to find a value
in a list of 512 items?
a) 512 b) 256 c) 9 d) 3

3. Recursions on sequences often use this as a base case:
a) 0 b) 1 c) an empty sequence d) None

4. An infinite recursion will result in
a) a program that "hangs"
b) a broken computer
c) a reboot
d) a run-time exception

5. The recursive Fibonacci function is inefficient because
a) it does many repeated computations
b) recursion is inherently inefficient compared to iteration
c) calculating Fibonacci numbers is intractable
d) fibbing is morally wrong

6. Which is a quadratic time algorithm?
a) linear search b) binary search
c) Tower of Hanoi d) selection sort

7. The process of combining two sorted sequences is called
a) sorting b) shuffling c) dovetailing d) merging

8. Recursion is related to the mathematical technique called
a) looping b) sequencing c) induction d) contradiction

9. How many steps would be needed to solve the Tower of Hanoi for a tower
of size 5?
a) 5 b) 10 c) 25 d) 31

495

496 Cha pter 13. Algorith m Design and Recu rsion

10. Which of the following is not true of the halting problem?
a) It was studied by Alan Turing.
b) It is harder than intractable.
c) Someday a clever algorithm may be found to solve it.
d) It involves a program that analyzes other programs.

Discussion

1. Place these algorithm classes in order from fastest to slowest: n log n, n,
n2, log n, 2n.

2. In your own words, explain the two rules that a proper recursive definition
or function must follow.

3. What is the exact result of anagram("foo")?

4. Trace recPower (3, 6) and figure out exactly how many multiplications it
performs.

5. Why are divide-and-conquer algorithms often very efficient?

Programming Exercises

1. Modify the recursive Fibonacci program given in this chapter so that it
prints tracing information. Specifically, have the function print a message
when it is called and when it returns. For example, the output should
contain lines like these:

Computing fib(4)
0 0 0

Leaving fib(4) returning 3

Use your modified version of fib to compute fib(10) and count how
many times fib(3) is computed in the process.

2. This exercise is another variation on "instrumenting" the recursive Fi­
bonacci program to better understand its behavior. Write a program that
counts how many times the fib function is called to compute fib (n)
where n is a user input.

Hint: To solve this problem, you need an accumulator variable whose
value "persists" between calls to fib. You can do this by making the count

13.6. Exercises

an instance variable of an object. Create a FibCounter class with the
following methods:

_ _ ini t _ _ (self) Creates a new FibCounter, setting its count instance vari­
able to 0.

getCount (self) Returns the value of count.

fib(self , n) Recursive function to compute the nth Fibonacci number. It
increments the count each time it is called.

resetCount (self) Sets the count back to 0.

3. A palindrome is a sentence that contains the same sequence of letters read­
ing it either forwards or backwards. A classic example is '1\.ble was I, ere
I saw Elba." Write a recursive function that detects whether a string is a
palindrome. The basic idea is to check that the first and last letters of the
string are the same letter; if they are, then the entire string is a palindrome
if everything between those letters is a palindrome.

There are a couple of special cases to check for. If either the first or
last character of the string is not a letter, you can check to see if the rest
of the string is a palindrome with that character removed. Also, when you
compare letters, make sure that you do it in a case-insensitive way.

Use your function in a program that prompts a user for a phrase and
then tells whether or not it is a palindrome. Here's another classic for
testing: '1\. man, a plan, a canal, Panama!"

4. Write and test a recursive function max to find the largest number in a list.
The max is the larger of the first item and the max of all the other items.

497

5. Computer scientists and mathematicians often use numbering systems other
than base 10. Write a program that allows a user to enter a number and a
base and then prints out the digits of the number in the new base. Use a
recursive function baseConversion(num, base) to print the digits.

Hint: Consider base 10. To get the rightmost digit of a base 10 number,
simply look at the remainder after dividing by 10. For example, 153 % 10
is 3. To get the remaining digits, you repeat the process on 15, which is
just 153 I I 10. This same process works for any base. The only problem
is that we get the digits in reverse order (right to left).

The base case for the recursion occurs when num is less than base and
the output is simply num. In the general case, the function (recursively)

498 Cha pter 13. Algorith m Design and Recu rsion

prints the digits of num I I base and then prints num % base. You should
put a space between successive outputs, since bases greater than 10 will
print out with multi-character "digits." For example, baseConversion (1234,
16) should print 4 13 2.

6. Write a recursive function to print out the digits of a number in English.
For example, if the number is 153, the output should be "One Five Three."
See the hint from the previous problem for help on how this might be
done.

7. In mathematics, e;: denotes the number of different ways that k things
can be selected from among n different choices. For example, if you are
choosing among six desserts and are allowed to take two, the number
of different combinations you could choose is e�. Here's one formula to
compute this value:

en n!
k =

k! (n- k) !

This value also gives rise to an interesting recursion:

en - en-1 + en-1 k - k-1 k

Write both an iterative and a recursive function to compute combinations
and compare the efficiency of your two solutions. Hints: When k = 1,
e;: = n and when n < k, e;: = 0.

8. Some interesting geometric curves can be described recursively. One fa­
mous example is the Koch curve. It is a curve that can be infinitely long in
a finite amount of space. It can also be used to generate pretty pictures.

The Koch curve is described in terms of "levels" or "degrees." The
Koch curve of degree 0 is just a straight line segment. A first degree curve
is formed by placing a "bump" in the middle of the line segment (see
Figure 13.6). The original segment has been divided into four, each of
which is � the length of the original. The bump rises at 60 degrees, so it
forms two sides of an equilateral triangle. To get a second-degree curve,
you put a bump in each of the line segments of the first -degree curve.
Successive curves are constructed by placing bumps on each segment of
the previous curve.

13.6. Exercises

Degree 0

Degree 1

Degree 2

Figure 13.6: Koch curves of degree 0 to 2
•

You can draw interesting pictures by "Kochizing" the sides of a polygon.
Figure 13.7 shows the result of applying a fourth-degree curve to the sides
of an equilateral triangle. This is often called a "Koch snowflake." You are
to write a program to draw a snowflake.

Figure 13.7: Koch snowflake
•

Think of drawing a Koch curve as if you were giving instructions to a

499

500 Cha pter 13. Algorith m Design and Recu rsion

turtle. The turtle always knows where it currently sits and what direction
it is facing. To draw a Koch curve of a given length and degree, you might
use an algorithm like this:

Algorithm Koch(Turtle, length, degree):
if degree == 0 :

Tell the turtle to draw for length steps
else:

length! = length/3
degree! = degree-1
Koch(Turtle, length!, degree!)
Tell the turtle to turn left 60 degrees
Koch(Turtle, length!, degree!)
Tell the turtle to turn right 120 degrees
Koch(Turtle, length!, degree!)
Tell the turtle to turn left 60 degrees
Koch(Turtle, length!, degree!)

Implement this algorithm with a Turtle class that contains instance vari­
ables location (a Point) and Direction (a float) and methods such as
moveTo(somePoint), draw(length), and turn(degrees). If you main­
tain direction as an angle in radians, the point you are going to can eas­
ily be computed from your current location. Just use dx = length *

cos (direction) and dy = length * sin(direction).

9. Another interesting recursive curve (see previous problem) is the C-curve.
It is formed similarly to the Koch curve except whereas the Koch curve
breaks a segment into four pieces of length/3, the C-curve replaces each
segment with just two segments of lengthj-/2 that form a 90-degree el­
bow. Figure 13.8 shows a degree 12 C-curve.

Using an approach similar to the previous exercise, write a program
that draws a C-curve. Hint: Your turtle will do the following:

turn left 45 degrees
draw a c-curve of size length/sqrt(2)
turn right 90 degrees
draw a c-curve of size length/sqrt(2)
turn left 45 degrees

13.6. Exercises

Figure 13.8: C-culVe of degree 12
•

10. Automated spell-checkers are used to analyze documents and locate words
that might be misspelled. These programs work by comparing each word
in the document to a large dictionary (in the non-Python sense) of words.
Any word not found in the diction� it is flagged as potentially incorrect.

Write a program to perform spell-checking on a text file. 1b do this,
you will need to get a large file of English words in alphabetical order. If
you have a Unix or Linux system available, you might poke around for a
file called words, usually located in /usr/dict or /usr/share/dict. Oth­
erwise, a quick search on the Internet should tum up something usable.

Your program should prompt for a file to analyze and then try to look
up every word in the file using binary search. If a word is not found in the
dictionary, print it on the screen as potentially incorrect.

11. Write a program that solves word jumble problems. You will need a large
dictionary of English words (see previous problem). The user types in a
scrambled word, and your program generates all anagrams of the word
and then checks which (if any) are in the dictionary. The anagrams ap­
pearing in the dictionary are printed as solutions to the puzzle.

501

Appendix A Python Quick

Reference

Chapter 2: Writing Simple Programs

Reserved Words

False class finally is return
None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass

break except in raise

Built-in Functions

abs() diet() help() min() setattrO
all() dir() hex() next() slice()
any() divmod() id() object() sorted()
ascii() enumerate() input() octO staticmethod()
bin() eval() intO open() str()
bool() exec() is instance() ord() sum()
bytearray() filter() is subclass() pow() super()
bytes() float() iter() print() tuple()
callable() format() len() property() type()
chr() frozensetO list() range() vars()
classmethod() getattrO locals() repr() zip()
compile() globals() map() reversed() __ import __ ()
complex() hasattr() max() round()
delattr() hash() memoryview() set()

503

504 Appendix A. Python Quick Reference

Print Function

print(<expr>, <expr>,
print()
print(<expr>, <expr>,

<variable> = <expr>

. . . ' <expr>)

. . . ' <expr>, end="\n")

<variable!>, <variable2>, ... , <variableN> - <expr1>,<expr2>, ... , <exprN>

Input (numeric)

<variable> = eval(input(<prompt>))
<variable!>, <variable2>, ... , <variableN> - eval(input(<prompt>))

Definite loop

for <var> in <sequence>:
<body>

Chapter 3: Computing with Numbers

Numeric Operators

operator operation

+ addition
- subtraction
* multiplication

I float division
** exponentiation

abs() absolute value

II integer division
% remainder

Module Import

import <module_name>

Appendix A. Python Quick Reference

Math Library Functions

Python mathematics English
pi 7r An approximation of pi.
e e An approximation of e.
sqrt(x) Vx The square root of x.
sin(x)

.

The sine of x. smx
cos(x) cosx The cosine of x.
tan(x) tanx The tangent of x.
asin(x)

.

The inverse of sine x. arcsmx
acos(x) arccosx The inverse of cosine x.
atan(x) arctanx The inverse of tangent x.
log(x) lnx The natural (base e) logarithm of x
log10(x) log10 X The common (base 10) logarithm of x.
exp(x) ex The exponential of x.
ceil(x) fxl The smallest whole number >= x.
floor(x) LxJ The largest whole number <= x.

Built-in Functions

function description
range(stop) Returns list of ints from 0 to stop-1.
range(start, stop) Returns list of ints from start to stop-1.
range(start, stop, step) Returns a list of ints from start to stop

counting by step.
type(x) Returns the Python data type of x.
int(x) Returns value of x converted to int.

x may be either numeric or string.
float(x) Returns value of x converted to a float.

x may be either numeric or string.
round(x) Returns nearest whole value of x (as a float).

Chapter 4: Objects and Graphics

Direct Import from Module

from <module> import <name1>, <name2>, ...
from <module> import *

Object Constructor

<class-name>(<param1>, <param2>, ...)

505

506 Appendix A. Python Quick Reference

Object Method Call

<object>.<method-name>(<param1>, <param2>, ...)

For a summary of the objects and methods contained in the graphics module in­
cluded with this book, see Section 4.8.

Chapter 5: Sequences: Strings, Lists, and Files

Input (strings)

<variable> = input(<prompt>)

Sequence Operations (strings and lists)

operator
<sequence>+<sequence>

<sequence>*<n>

<sequence>[<n>]

<sequence> [<n>] where n < 0

len(<sequence>)
<sequence>[<start>: <end>]
for <var> in <sequence>:

•

meanmg
Returns concatenation of sequences.
Sequences must be of same type.
Returns sequence concatenated with itself n times.
n must be int.
Returns item at n (0 based from left).
n must be int.
Returns item at n (1 based from right).
n must be int.
Returns the length of the sequence.
Returns subsequence from start up to (not including) end.
Iterates through items in sequence.

Appendix A. Python Quick Reference

String Methods

function
s. capitalize 0
s. center(width)
s. count(sub)
s. find(sub)
s. join(list)
s. ljust(width)
s. lower()
s . lstripO
s. replace(oldsub, newsub)
s. rfind(sub)
s. rjust(width)
s. rstrip()
s. splitO
s. title()
s. upperO

Appending to a List

<list>. append(<item>)

.

meaning
Copy of s with only the first character capitalized.
Copy of s centered in a field of given width.
Count the number of occurrences of sub in s.
Find the first position where sub occurs ins.
Concatenate list into a string, using s as separator.
Like center, buts is left-justified.
Copy of s in all lowercase characters.
Copy of s with leading white space removed.
Replace all occurrences of oldsub in s with newsub.
Like find, but returns the rightmost position.
Like center, buts is right-justified.
Copy of s with trailing white space removed.
Split s into a list of substrings (see text).
Copy of s with first character of each word capitalized.
Copy of s with all characters converted to upper case.

Type Conversion Functions

function
•

meaning
float(<expr>) Converts expr to a floating-point value.
int(<expr>) Converts expr to an integer value.
str(<expr>) Returns a string representation of expr.
eval(<string>) Evaluates string as an expression.

String Formatting

Expression Syntax

<template-string>. format(<valueO>, <value1>, <value2>, . . .)

Specifier Syntax

{<index>}
{<index>: <width>}
{<index>: <width>. <precision>}
{<index>: <width>. <places>f}

507

508 Appendix A. Python Quick Reference

Notes:

• The last form is for a fixed number of decimal places.

• Width of 0 means use whatever space is required.

• Width with leading 0 means pad as necessary with 0 (space is default).

• Width may be preceded by < for left -justify, > for right -justify, or - for center.

File Processing

Opening and Closing Files

<variable> = open(<name>, <mode>)

Mode is "r" for reading, "w" for writing, "a" for appending.

<fileobj>. close()

Reading a File

<file> . read () Returns the entire remaining contents of the file as a single (po­
tentially large, multi-line) string.

<file>. readline 0 Returns the next line of the file. That is, all text up to and
including the next newline character.

<file>. readlines 0 Returns a list of the remaining lines in the file. Each list item
is a single line including the newline character at the end.

Note: The file object may also be used in a for loop where it is treated as a sequence
of lines.

Writing to a File

print(. . . , file=<outputFile>)

Chapter 6: Defining Functions

Function Definition

def <name>(<formal-param1>, <formal-param2>, . . .)
<body>

Function Call

<name>(<actual-param1>, <actual-param2>, . . .)

Appendix A. Python Quick Reference

Return Statement

return <value1>, <value2>, • • •

Chapter 7: Decision Structures

Simple Conditions

<expr><relop><expr>

Relational Operators
I Python I mathematics I •

meaning

< < less than
<= < less than or equal to -

-- - equal to -

>= > greater than or equal to -

> > greater than
•= # not equal to

Note: These operators return a bool value (True/False).

If Statements

if <condition>:
<statements>

if <condition>:
<statements1>

else:
<statements2>

if <condition1>:
<case1 statements>

elif <condition2>:
<case2 statements>

• • •

else:
<default statements>

Note: else clause is optional in elif form.

Preventing Execution on Import

1. f __ name 11 • 11 -- __ ma1n__ :
main()

509

510 Appendix A. Python Quick Reference

Exception Handling

try:
<statements>

except <ExceptionType>:
<handler!>

except <ExceptionType>:
<handler2>

... d
except:

<default handler>

Chapter 8: Loop Structures and Booleans

For Loop

for <var> in <sequence>:
<body>

While Loop

while <condition>:
<body>

Break Statement

while True:
• • •

if <cond>: break
• • • •

Boolean Expressions

Literals: True, False

Operators: and, or, not

I operator I operational definition

x and y If x is false, return x. Otherwise, return y.

x or y If x is true, return x. Otherwise, return y.

not x If x is false, return True. Otherwise, return False.

Type conversion function: bool

Appendix A. Python Quick Reference

Chapter 9: Simulation and Design

Random Library

random() Returns a uniformly distributed pseudo-random value in the range [0,1).

511

randrange (<params>) Returns a uniformly distributed pseudo-random from range (<params>).

Chapter 10: Defining Classes

Class Definition

class <class-name>:
<method-definitions>

Notes:

• A method definition is a function with a special first parameter, self, that refers
to the object to which the method is being applied.

• The constructor is a method named __ ini t --·

Documentation Strings

A string at the beginning of a module, class, function, or method can be used for doc­
umentation. Docstrings are carried along at runtime and are used for interactive help
and the pydoc utility.

Chapter 11: Data Collections

Sequence Operations (Lists and Strings)

operator I meaning

<seq> + <seq> concatenation
<seq> * <int-expr> repetition

<seq> [] indexing
len(<seq>) length

<seq> [:] slicing
for <var> in <seq>: iteration

<expr> in <seq> membership check (returns a Boolean)

512 Appendix A. Python Quick Reference

List Methods

method
.

meaning

<list> .append(x) Adds element x to end of list.
<list> . sort() Sorts (orders) the list. Keyword parameters: key, reverse.

<list> .reverse() Reverses the list.
<list> .index(x) Returns index of first occurrence of x.

<list> .insert(i,x) Inserts x into list at index i.
<list> .count(x) Returns the number of occurrences of x in list.

<list> .remove(x) Deletes the first occurrence of x in list.
<list> .pop(i) Deletes the ith element of the list and returns its value.

Dictionaries

Dictionary Literal: { <key1>: <value1>, <key2>: <value2>, ... }

method I meaning

<key> in <diet> Returns true if dictionary contains
the specified key, false if it doesn't.

<diet> . keys() Returns a sequence keys.
<diet> . values 0 Returns a sequence of values.

<diet> . items() Returns a sequence of tuples (key, value)
representing the key-value pairs.

<dict> .get(<key>, <default>) If dictionary has key returns its value;
otherwise returns default.

del <dict> [<key>] Deletes the specified entry.
<diet> . clear() Deletes all entries.

for <var> in <diet>: Loops over the keys.

Appendix B Glossary

abstraction The purposeful hiding or ignoring of some details in order to concentrate
on those that are relevant.

accessor method A method that returns the value of one or more of an object's in­
stance variable(s), but does not modify the object.

accumulator pattern A common programming pattern in which a final answer is built
a piece at a time in a loop.

accumulator variable A variable that is used to hold the result in the accumulator
programming pattern.

actual parameter A value that is passed to a function when it is called.

algorithm A detailed sequence of steps for carrying out some process. A recipe.

aliasing The situation in which two or more variables refer to exactly the same object.
If the object is mutable, then changes made through one variable will be seen by
the others.

analysis 1) In the context of the software development lifecycle, this refers to the pro­
cess of studying a problem and figuring out what a computer program might do to
solve it. 2) Studying a problem or algorithm mathematically to determine some
of its properties, such as time efficiency.

and A binary Boolean operator that returns true when both of its subexpressions are
true.

application programming interface (API) A specification of the functionality provided
by a library module. A programmer needs to understand the API to be able to use
a module.

argument An actual parameter.

array A collection of similar objects that can be accessed through indexing. Usually ar­
rays are fixed-sized and homogeneous (all elements are of the same type). Com­
pare to list.

513

514 Appendix B. Glossary

ASCII American Standard Code for Information Interchange. A standard for encoding
text where each character is represented by a number 0-127.

assignment The process of giving a value to a variable.

associative array A collection where values are associated with keys. Called a dictio­
nary in Python.

attributes The instance variables and methods of an object.

base case In a recursive function or definition, a situation in which recursion is not
required. All proper recursions must have one or more base cases.

batch A mode of processing in which input and output is done through files rather than
interactively.

binary The base-2 numbering system in which the only digits are 0 and 1.

binary search A very efficient searching algorithm for finding items in a sorted collec­
tion. Requires time proportional to log2 n where n is the size of the collection.

bit Binary digit. A fundamental unit of information. Usually represented using 0 and 1.

body A generic term for the block of statements inside a control structure such as a
loop or decision.

Boolean algebra The rules that govern simplification and rewriting of Boolean expressions.

Boolean expression A truth statement. A Boolean expression evaluates to either true
or false.

Boolean logic See Boolean algebra.

Boolean operations Connectives for constructing Boolean expressions. In Python, and,
or, and not.

bug An error in a program.

butterfly effect A classic example of dynamical systems in nature (chaos). Supposedly,
an event as small as the flapping of a butterfly's wing can significantly influence
subsequent large-scale weather patterns.

byte code An intermediate form of computer language. High-level languages are some­
times compiled into byte code, which is then interpreted. In Python, files with a
pyc extension are byte code.

call The process of invoking a function's definition.

central processing unit (CPU) The ''brain" of the computer where numeric and logical
operations are carried out.

cipher alphabet The symbols that are used to encrypt a message.

ciphertext The encrypted form of a message.

Appendix B. Glossary

class A class describes a set of related objects. The c lass mechanism in Python is used
as a "factory'' to produce objects.

client In programming, a module that interfaces with another component is called a
client for the component.

code injection A form of computer attack in which a malicious user introduces com­
puter instructions into an executing program, causing the application to deviate
from its original design.

coding The process of turning an algorithm into a computer program.

comment Text placed in a program for the benefit of human readers. Comments are
ignored by the computer.

compiler A complex program that translates a program written in a high-level language
into the machine language that can be executed by a particular computer.

computer A machine that stores and manipulates information under the control of a
changeable program.

computer science The study of what can be computed.

conditional Another term for a decision control structure.

constructor A function that creates a new object. In a Python class, it is the __ ini t __

method.

control codes Special characters that do not print, but are used in the interchange of
information.

control structure A programming language statement that controls the execution of
other statements (e.g., if and while).

coordinate transformation In graphical programming, the mathematics of changing
a point or set of points from one coordinate system to a related one.

counted loop A loop written to iterate a specific number of times.

CPU See central processing unit.

cryptography The study of techniques for encoding information to keep it secure.

data The information that a computer program manipulates.

data type A particular way of representing data. The data type of an item determines
what values it can have and what operations it supports.

debugging The process of finding and eliminating errors in a program.

decision structure A control structure that allows different parts of a program to ex­
ecute depending on the exact situation. Usually decisions are controlled by
Boolean expressions.

515

516 Appendix B. Glossary

decision tree A complex decision structure in which an initial decision branches into
more decisions, which branch into more decisions in a cascading fashion.

definite loop A kind of loop where the number of iterations is known at the time the
loop begins executing.

design The process of developing a system that can solve some problem. Also the
product of that process.

dictionary An unordered Python collection object that allows values to be associated
with arbitrary keys.

docstring A documentation technique in Python that associates a string with a program
component.

empty string An object that has the data type string, but contains no characters (11 11).

encapsulation Hiding the details of something. Usually this is the term used to de­
scribe the distinction between the implementation and use of an object or func­
tion. Details are encapsulated in the definition.

encryption The process of encoding information to keep it private.

end-of-file loop A programming pattern used to read a file line by line.

event In GUI programming, an outside action such a mouse click that causes some­
thing to happen in a program. Also used to describe the object that is created to
encapsulate the information about the event.

event-driven A style of programming in which the program waits for events to happen
and responds accordingly. This approach is frequently used in graphical user
interface (GUI) programming.

exception handling A programming language mechanism that allows the programmer
to gracefully deal with errors that are detected when a program is running.

execute To run a program or segment of a program.

exponential time An algorithm that requires a number of steps proportional to a func­
tion in which the problem size appears as an exponent. Such algorithms are
generally considered intractable.

expression A part of a program that produces data.

fetch-execute cycle The process a computer carries out to execute a machine code
program.

float A data type for representing numbers with fractional values. Short for "floating
point."

flowchart A graphical depiction of the flow of control in a program or algorithm.

Appendix B. Glossary

function A subprogram within a program. Functions take parameters as input and can
return values.

functional decomposition See top-down design.

garbage collection A process carried out by dynamic programming languages (e.g.,
Python, Lisp, Java) in which memory locations that contain values that are no
longer in use are freed up so that they can store new values.

graphical user interface (GUI) A style of interaction with a computer application that
involves heavy use of graphical components such as windows, menus, and but­
tons.

graphics window An on-screen window where graphics can be drawn.

GUI See graphical user interface.

halting problem A famous unsolvable problem. A program that determines if another
program will halt on a given input.

hardware The physical components of a computing system. If it goes "crash" when you
toss it out the window, then it's hardware.

hash Another term for associative array or dictionary.

hello, world The ubiquitous first computer program.

heterogeneous Capable of containing more than a single data type at one time. Python
lists, for example.

homogeneous Capable of holding values of only a single type.

identifiers The names that are given to program entities.

if statement A control structure for implementing decisions in a program.

import statement A statement that makes an external library module available for use
within a program.

indefinite loop A loop for which the number of iterations required is not necessarily
known at the time the loop begins to execute.

indexing Selecting a single item from a sequence based on its relative position in the
sequence.

infinite loop A loop that does not terminate. See loop, infinite.

inheritance Defining a new class as a specialization of another class.

input, process, output A common programming pattern. The program prompts for
input, processes it, and outputs a response.

input validation The process of checking the values supplied by a user to make sure
that they are legitimate before performing a computation with those values.

517

518 Appendix B. Glossary

instance A particular object of some class.

instance variable A piece of data stored inside an object.

int A data type for representing numbers with no fractional component. Int is short for
integer and represents a number with a fixed number of bits (commonly 32).

integer A positive or negative whole number. See int.

interactive loop A loop that allows part of a program to repeat according to the wishes
of the user.

interface The connection between two components. For a function or method, the
interface consists of the name of the function, its parameters and return values.
For an object, it is the set of methods (and their interfaces) that are used to
manipulate the object. The term user interface is used to describe how a person
interacts with a computer application.

interpreter A computer program that simulates the behavior of a computer that un­
derstands a high-level language. It executes the lines of source one by one and
carries out the operations.

intractable Too difficult to be solved in practice, usually because it would take too
long.

invoke To make use of a function.

iterate To do multiple times. Each execution of a loop body is called an iteration.

key 1) In encryption, a special value that must be known to either encode or decode
a message. 2) In the context of data collections, a way to look up a value in a
dictionary. Values are associated with keys for future access.

lexicographic Having to do with string ordering. Lexicographic order is like alphabet­
ical order, but based on the underlying numeric codes of the string's characters.

library An external collection of useful functions or classes that can be imported and
used in a program. For example, the Python math and string modules.

linear search A search process that examines items in a collection sequentially.

linear time algorithm An algorithm that requires a number of steps proportional to
the size of the input problem.

list A general Python data type for representing sequential collections. Lists are het­
erogeneous and can grow and shrink as needed. Items are accessed through
subscripting.

literal A notation for writing a specific value in a programming language. For example,
3 is an int literal and "Hello" is a string literal.

local variable A variable defined inside a function. It may only be referred to within
the function definition. See scope.

Appendix B. Glossary

log time algorithm An algorithm that requires a number of steps proportional to the
log of the size of the input problem.

loop and a half A loop structure that has an exit somewhere in the midst of the loop
body. In Python this is accomplished via a while True :/break combination.

loop A control construct for executing portions of a program multiple times.

loop index A variable that is used to control a loop. In the statement: for 1. in
range (n), i is being used as a loop index.

loop, infinite See infinite loop.

machine code A program in machine language.

machine language The low-level (binary) instructions that a given CPU can execute.

main memory The place where all data and program instructions that the CPU is cur-
rently working on resides. Also known as random access memory (RAM).

mapping A general association between keys and values. Python dictionaries imple-
ment a mapping.

merge The process of combining two sorted lists into a single sorted list.

merge sort An efficient divide-and-conquer sorting algorithm.

meta-language A notation used to describe the syntax of a computer language.

method A function that lives inside an object. Objects are manipulated by calling their
methods.

mixed-typed expression An expression involving more than one data type. Usually
used in the context of combining ints and floats in numeric computations.

519

model-view architecture Dividing up a GUI program by separating the problem (model)
from the user interface (view).

modal A window or dialog box is modal if it requires the user to interact with it in
some way before continuing to use the application that generated it.

modular Consisting of multiple, relatively independent pieces that work together.

module Generally, any relatively independent part of a program. In Python, the term
is also used to mean a file containing code that can be imported and executed.

module hierarchy chart A diagram showing the functional decomposition structure of
a program. A line between two components shows that the one above uses the
one below to accomplish its task.

Monte Carlo A simulation technique that involves probabilistic (random or pseudo­
random) elements.

520 Appendix B. Glossary

mutable Changeable. An object whose state can be changed is said to be mutable.
Python ints and strings are not mutable, but lists are.

mutator method A method that changes the state of an object (i.e., modifies one or
more of the instance variables).

n log n algorithm An algorithm that requires a number of steps that is proportional to
the size of the input times the log of the size of the input.

n-squared algorithm An algorithm that requires a number of steps that is proportional
to the square of the size of the input.

name error An exception that occurs when Python is asked to produce a value for a
variable that has not been assigned a value.

namespace An association between identifiers and the things that they represent in a
program. In Python, modules, classes, and objects act as namespaces.

nesting The process of placing one control structure inside of another. Loops and deci­
sions may be arbitrarily nested.

newline A special character that marks the division between lines in a file or a multi­
line string. In Python, it is denoted 11 \n 11•

not A unary Boolean operator to negate an expression.

object A program entity that has some data and a set of operations to manipulate that
data.

object-based Design and programming that uses objects as the principle form of abstraction.

object-oriented Object-based design or programming that includes characteristics of
polymorphism and inheritance.

open The process of associating a file in secondary memory with a variable in a pro­
gram through which the file can be manipulated.

operator A function for combining expressions into more complex expressions.

or A binary Boolean operator that returns true when either or both subexpressions are
true.

override The term applied to a situation when a subclass changes the behavior of an
inherited method.

parameters Special variables in a function that are initialized at the time of call with
information passed from the caller.

pass by value A parameter-passing technique used in Python. The formal parameters
are assigned the values from the actual parameters. The function cannot change
which object an actual parameter variable refers to.

Appendix B. Glossary

pass by reference A parameter-passing technique used in some computer languages
that allows the value of a variable used as an actual parameter to be changed by
the called function.

pixel Short for picture element. A single dot on a graphical display.

plaintext In encryption, this is the term used for an unencoded message.

polymorphism Literally "many forms." In object-oriented programming, the ability of
a particular line of code to be implemented by different methods depending on
the data type of the object involved.

portability The ability to run a program unmodified on various different systems.

post-test loop A loop construct where the loop condition is not tested until after the
loop body has been executed.

pre-test loop A loop construct where the loop condition is tested before executing the
body of the loop.

precision The number of digits of accuracy in a number.

priming read In a sentinel loop, a read before the loop condition is tested.

private key A kind of encryption where the same key is used to both encrypt and de-
crypt and must therefore be kept secret.

program A detailed set of instructions for a computer to carry out.

programming The process of creating a computer program to solve some problem.

programming environment A special computer program that provides facilities to
make programming easier. IDLE (in the standard Python distribution) is an ex­
ample of a simple programming environment.

programming language A notation for writing computer programs. Usually used to
refer to high-level languages such as Python, Java, C++, etc.

prompt A printed message that signals to the user of a program that input is expected.

prototype An initial simplified version of a program.

pseudocode A notation for writing algorithms using precise natural language, instead
of a computer language.

pseudo-random Sequences of numbers generated by computer algorithms and used to
simulate random events.

public key A form of encryption that uses two different keys. A message encoded with
a public key can only be decoded using a separate private key.

random access memory (RAM) See main memory.

521

522 Appendix B. Glossary

random walk A simulation process in which movement of some object is determined
probabilistically.

read A term used to describe computer input. A program is said to read information
from the keyboard or a file.

record A collection of information about a single individual or object. For example, a
personnel record contains information about an employee.

recursive Having a quality (for a function or definition) of referring to itself. See
•

recursive.

recursive function A function that calls itself, either directly or indirectly.

relational operator An operator that makes a comparison between values and returns

true or false (e.g., <, <=, ==, >=, >, ! =).

reserved words Identifiers that are part of the built-in syntax of a language.

resolution The number of pixels on a graphics screen. Usually expressed as horizontal
by vertical (e.g., 640x480).

RGB value A representation of a color as three numbers (typically in the range 0-255)
that represent the brightness of the red, green, and blue color components of a
pixel.

scope The area of a program where a given variable may be referenced. For example,
variables defined in functions are said to have local scope.

script Another name for a program. Usually used to refer to a relatively simple program
written in an interpreted language.

search The process of finding a particular item in a collection.

secondary memory A generic term referring to nonvolatile storage devices such as
hard disks, floppy disks, magentic tapes, CD-ROMs, DVDs, etc.

seed The value used to start generation of a pseudorandom sequence.

selection sort Ann-squared-time sorting algorithm.

self parameter In Python, the first parameter of a method. It is a reference to the
object to which the method is being applied.

semantics The meaning of a construct.

sentinel A special value used to signal the end of a series of inputs.

sentinel loop A loop that continues until a special value is encountered.

short-circuit evaluation An evaluation process that returns an answer as soon as the
result is known, without necessarily evaluating all of its subexpressions. In the
expression (True or is over()) the is over() function will not be called.

Appendix B. Glossary

signature Another term for the interface of a function. The signature includes the
name, parameter(s), and return value(s).

simulation A program designed to abstractly mimic some real-world process.

simultaneous assignment A statement that allows multiple variables to be assigned in
a single step. For example, x, y = y, x swaps two variables.

slicing Extracting a subsequence of a string, list, or other sequence object.

software Computer programs.

sorting The process of arranging a sequence of items into a pre-determined ordering.

source code The text of a program in a high-level language.

spiral design Creating a system by first designing a simplified prototype and then grad­
ually adding features.

statement A single command in a programming language.

step-wise refinement The process of designing a system by starting with a very high-
level, abstract description and gradually adding in details.

string A data type for representing a sequence of characters (text).

structure chart See module hierarchy chart.

subclass When one class inherits from another, the inheriting class is called a subclass
of the class from which it inherits.

substring A sequence of contiguous characters inside a string. See slicing.

superclass A class which is being inherited from.

syntax The form of a language.

tkinter The Standard GUI framework that comes with Python. The graphic s. py mod­
ule used in this book is built on this.

top-down design The process of building a system by starting with a very high-level
algorithm that describes a solution in terms of subprograms. Each subprogram is
then designed in tum. Other names for this process are step-wise refinement and
functional decomposition.

truth table A table showing the value of a Boolean expression for all possible combi-
nations of values of its subexpressions.

tuple A Python sequence type that acts like an immutable list.

unary An operator that acts on a single operand.

unicode An alternative to ASCII that encodes characters from virtually all of the world's
written languages. Unicode is designed to be ASCII-compatible.

523

524 Appendix B. Glossary

unit testing Trying out a component of a program independent of other pieces.

unpack In Python, the assignment of items in a sequence into independent variables.
For example, a list or tuple of two values can be unpacked into variables like this:
x,y = myList.

variable An identifier that labels a value for future reference. The value of a variable
can be changed through assignment.

widget A user interface component in a GUI.

write The process of outputting information. For example, data is said to be written to
a file.

__ doc _ _, 33
__ init _ _, 324
__ name _ _, 215

A
abstraction, 291
accessor, 92
accumulator, 69
acronym, 171
addinterest1. py, 193
addinterest2. py, 196
addinterest3. py, 196
algorithm

analysis, 4, 463
definition of, 4
design strategy, 234
divide and conquer, 465
exponential time, 489
intractable, 489
linear time, 464
log time, 465
quadratic (n-squared) time, 482

algorithms
average n numbers

counted loop, 244
empty string sentinel, 251
interactive loop, 248

binary search, 462
cannonball simulation, 316
future value, 48
future value graph, 96, 101
input validation, 262
linear search, 461
max-of-three

comparing each to all, 229
decision tree, 230

sequential, 232
median, 372
merge sort, 4 79
message decoding, 143
message encoding, 141
quadratic equation three-way

decision, 221
racquetball simulation
simOneGame, 295
selection sort, 4 77
simNGames, 293
temperature conversion, 30

alias, 95
anagrams

recursive function, 4 71
Analysis

software development, 27
analysis of algorithms, 4, 463
and, 257

operational definition, 26 7
Ants Go Marching, T he, 206
append, 369
archery, 126, 240
argument, 11, 184
array, 367

associative, 401
arrow (on Lines), 116
ASCII, 140
assignment statement, 18, 36-39

semantics, 3 7
simultaneous, 41
syntax, 37

associative array, 401
ATM simulation, 458
attendee list, 458
attributes, 314

525

Index

526

private, 345
average n numbers

algorithm
empty string sentinel, 251

problem description, 244
program

counted loop, 244
empty string sentinel, 252
end-of-file loop, 254
from file with readlines, 253
interactive loop, 248
negative sentinel, 250

average two numbers, 42
average 1. py, 244
average2. py, 248
average3. py, 250
average4.py, 252
average5.py, 253
average6. py, 254
avg2.py, 42

B
babysitting, 239
base conversion, 497
batch processing, 163

example program, 163
binary, 8
binary search, 462
bit, 72
black box, 419
Blackjack, 310
BMI (Body Mass Index), 239
Boolean

algebra (logic), 260
expression, 214, 256
operator, 25 7
values, 214

break statement, 263
implementing post-test loop, 263
style considerations, 265

bridge (card game), 458
Brooks, Fred, 421
bug, 28
butterfly effect, 19
Button

class definition, 340
description, 338
methods, 339, 340

button. py, 340
byte code, 15

c
C-Curve, 500
Caesar cipher, 172
calculator

problem description, 385

Index

program, 390
cannonball

algorithm, 316
problem description, 314
program, 318, 326, 335
Projectile class, 325

card, 360, 414
deck of, 415

cball1.py, 318
cball3. py, 326
cball4. py, 335
CButton, 359
Celsius, 28
censor, 414
change counter

program, 57, 157
change. py, 57
change2.py, 15 7
chaos

discussion, 18--19
program, 13

chaos. py, 13
checkKey, 114
checkMouse, 114
chr, 140
Christmas, 126
cipher, 150
ciphertext, 150
circle

area formula, 79
constructor, 116
intersection with line, 127
methods, 116

class, 91, 314
class diagram, 401
class standing, 239
class statement, 322
classes

Button, 340
Calculator, 390
Dice, 436
DieView, 342, 383
Graphicslnterface, 44 7
MSDie, 322
Player, 429
PokerApp, 438
Projectile, 325
Projectile as module file, 334
RBallGame, 426
SimStats, 424
Student, 328
Textlnterface, 441

client, 419
clone, 95, 115
close

GraphWin, 114

code duplication
in future value graph, 181
maintenance issues, 177
reducing with functions, 177

code injection, 40
coffee, 80
Collatz sequence, 280
color

changing graphics object, 103
changing Graph Win, 102
fill, 103
outline, 103
specifying, 121

color rgb, 121
combinations, 498
comments, 16
compiler, 8

diagram, 8
vs. interpreter, 8

compound condition, 228
computer

definition of, 1
functional view, 5
program, 2

computer science
definition of, 4
methods of investigation, 4

concatenation, 34
list, 367
string, 132

condition, 212
compound, 228
design issues, 228
for tenrr.rlnation, 262
syntax, 212

conditional loop, 245
constructor, 91, 314

--init _ _, 324
parameters in, 91

control codes, 140
control structure, 210

decision, 210
definition of, 46
loop, 46
nested loops, 254
nesting, 221

control structures
Boolean operators, 26 7
for statement, 46
if, 212
if-elif-else, 222
if-else, 218
while, 245

convert.py, 30, 210
convert2. py, 211
convert _gui.pyw, 110

Index

coordinates
as instance variables, 92
changing with setCoords, 104
in a Graph Win, 88
of a Point, 88
setCoords example, 104
transforming, 103

counted loop
definition of, 44
in Python, 45

CPU (Central Processing Unit), 5
craps, 310
createLabeledWindow, 200
cryptography, 150
cube, 360

D
data, 57, 313
data type

automatic conversion, 62
definition of, 58
explicit conversion, 63
mixed-type expressions, 62
string conversion, 153
string conversions, 145

data types
file, 158
float, 58
int, 58
long int, 74
string, 130

date, 240
date conversion

program, 152
dateconvert. py, 152
day number, 240
debugging, 28
decision, 210

implementation via Boolean
operator, 26 7

multi-way, 221
nested, 221
simple (one-way), 212
two-way, 218

decision tree, 230
deck, 415
decoding, 142

algorithm, 143
program, 145

definite loop, 245
definition of, 43
use as counted loop, 45

degree days, 281
delete, 369
DeMorgan's laws, 261
design, 28, 419

527

528

object-oriented, see object-oriented
design

top-down, 289
steps in, 300

design pattern
importance of, 245

design patterns
counted loop, 44, 244
end-of-file loop, 253
interactive loop, 248
IPO, 29
loop accumulator, 69, 244
model-view, 435
nested loops, 254, 256
sentinel loop, 250

loop and a half, 265
design techniques

divide and conquer, 465
spiral development, 304

when to use, 305
dice, 311
dice poker

classes
Dice, 435, 436
Graphicslnterface, 44 7
PokerApp, 438
Textlnterface, 441

problem description, 433
dice roller

problem description, 33 7
program, 345

dictionary, 401
creation, 403
empty, 403
methods, 403

DieView, 379
class definition, 342, 383
description, 342

Dijkstra, Edsger, 3
distance function, 189
division, 61
docstring, 333
dot notation, 92
draw, 115
drawBar, 182
duplicate removal, 413
duplication, see code duplication

E
Easter, 239, 240
elif, 222
empty list, 369
empty string, 251
encapsulation, 332, 452
encoding, 139

algorithm, 141

Index

program, 141
encryption, 150
Entry, 110, 119
epact, 80
equality, 213
Eratosthenes, 414
error checking, 223
errors

KeyError, 405
math domain, 67
name, 34

Euclid's algorithm, 280
event, 107
event loop, 269, 346
event -driven, 107
exam grader, 171, 239
exception handling, 224
exponential notation, 7 4
expression

as input, 40
Boolean, 214, 256
definition of, 32
spaces in, 34

F
face, 126, 361
fact. py, 468
factorial

definition of, 68
program, 71
recursive definition, 466

factorial.py, 71
Fahrenheit, 28
fetch-execute cycle, 6
fib

recursive function, 4 75
Fibonacci numbers, 82, 279, 475, 496
file, 158

closing, 160
opening, 159
processing, 159
program to print, 161
read operations, 160
representation, 158
write operations, 162

float, 58
literal, 59
representation, 7 4

flowchart, 46
flowcharts

for loop, 46
if semantics, 212
loop and a half sentinel, 265
max-of-three decision tree, 231
max-of-three sequential solution, 232
nested decisions, 222

post-test loop, 263
temperature conversion

with warnings, 211
two-way decision, 219
while loop, 246

for statement (for loop), 44, 243
as counted loop, 45
flowchart, 46
semantics, 44
syntax, 44
using simultaneous assignment, 387

formal parameter, 184
format specifier, 155
from .. import, 88
function, 11

actual parameters, 184
arguments, 11, 184
as black box, 420
as subprogram, 177
call, 11, 184
createLabeledWindow, 200
defining, 11, 184
for modularity, 199
invoking, see function, call
missing return, 192
multiple parameters, 186
None as default return, 192
parameters, 11
recursive, 468
return value, 188
returning multiple values, 192
signature (interface), 291
to reduce duplication, 177

function definition, 177
functions

anagrams, 471
built-in

chr, 140
float, 63
int, 63
len, 132
max, 234
open, 160
ord, 140
range, 70
read, 160
readline, 160
readlines, 160
round, 63
str, 153
type, 59
write, 162

distance, 189
drawBar, 182
fib, 475
gameOver, 298

Index

getlnputs, 292
getNumbers, 370
happy, 178
loopfib, 4 75
loop Power, 4 72
main, 14

why use, 16
makeStudent, 331
math library, see math

library, functions
mean, 371
median, 373
merge, 479
mergeSort, 481
moveTower, 487
random library, see random

library, functions
recPower, 4 73
recursive binary search, 4 7 4
recursive factorial, 468
reverse, 469, 470
selsort, 4 78
simNGames, 294
simOneGame, 297
singFred, 178
singLucy, 179
square, 188
stdDev, 372
string library, see string library

future value
algorithm, 48
problem description, 4 7
program, 49, 201
program specification, 4 7

future value graph
final algorithm, 101
problem, 96
program, 101, 105, 175, 182
rough algorithm, 96

futval. py, 49
futval graph. py, 101
futval graph2.py, 105, 175
futval graph3.py, 182
futval graph4. py, 201

G
gameOver, 298
GCD (Greatest Common Divisor), 280
getAnchor, 118-120
getCenter, 116, 117
getHeight, 120
getlnputs, 292
getKey, 114
getMouse, 107, 114

example use, 107
getNumbers, 370

529

530

getP1, 116, 117
getP2, 116, 117
getPixel, 120
getPoints, 118
getRadius, 117
getText, 118, 119
getWidth, 120
getX, 116
getY, 116
gozinta, 61
GPA, 327
gpa, 359

program, 329
GPA sort, 412

program, 378
gpa.py, 329
gpasort, 412
gpasort.py, 3 78
Graphics Group, 416
graphics library, 85, 112-122

methods
for Image, 120
setCoords, 104
drawing example, 89
generic methods summary, 115
graphical objects, 115-119
methods

for Text, 118
clone, 95
for Circle, 116
for Entry, 119
for Line, 116
for Oval, 117
for Point, 116
for Polygon, 118
for Rectangle, 117
getMouse, 107
move, 93

objects
Circle, 116
Entry, 110, 119
GraphWin, 86, 113-115
Image, 120
Line, 116
Oval, 117
Point, 88, 116
Polygon, 109, 118
Rectangle, 117
Text, 118

GraphWin, 86, 113-115
methods summary, 113

Gregorian epact, 80
Gill, 84

H
hailstone function, 280

Index

halting problem, 490
happy, 178
happy birthday

lyrics, 177
problem description, 177
program, 180

happy.py, 180
hardware, 3
hash array, 401
hierarchy chart, see structure chart
house, 128
house (of representatives), 239

1-K
identifier

definition of, 31
rules for forming, 31

if statement
flowchart, 212
semantics, 212
syntax, 212

if-elif-else statement
semantics, 222
syntax, 222

if-else statement
decision tree, 230
nested, 221, 230
semantics, 219
syntax, 218

Image, 120
implementation, 28
import statement, 6 7, 215

with "from", 88
indefinite loop, 245
indexing

dictionary, 403
from the right, 131
list, 366, 370
negative indexes, 131
string, 131

infinite loop, 247, 264
inheritance, 453
inner product, 413
innerProd, 413
input, 17

modal, 271
validation, 262

input statement, 39
multiple values, 42
semantics, 39
syntax, 39

Input/Output Devices, 6
instance, 91, 314
instance variable, 92, 314

accessing, 324
and object state, 324

int, 58
automatic conversion to float, 62
literal, 59
range of, 73
representation, 73

integer division, 61
interest calculation

program, 193, 196
interface, 291
interpreter, 8

diagram, 9
Python, 9
vs. compiler, 8

intractable problems, 4, 489
investment doubling, 279
IPO (Input, Process, Output), 29
iteration, 44
key

cipher, 150
private, 150
public, 150
shared, 151
with dictionary, 401

key-value pair, 401
KeyError, 405
keywords, 31
Koch Curve, 498

L
label, 98
ladder, 81
leap year, 240
len

with string, 132
with list, 367, 371

lexicographic ordering, 214
library

definition of, 65
lightning, 80
Line, 116
line continuation

using backslash (n), 158
using brackets, 380

linear time, 464
list, 45

as sequence, 367
creation, 369
empty, 369
indexing, 366
merging, 4 79
methods, 369
operators, 36 7
removing items, 369
slice, 370
vs. string, 367

lists

Index

decorated, 413
literal, 32
float, 59
int, 59
string, 130, 335

log time, 465
long int, 74
loop, 17

accumulator variable, 69
as control structure, 46
counted, 44, 45
definite, 43, 245
end-of-file, 253
event loop, 269
event loop, 346
for statement, 44
indefinite (conditional), 245
index variable, 44
infinite, 24 7, 264
interactive, 248
loop and a half, 264
nested, 254
over a sequence, 44
post-test, 263

using break, 263
using while, 263

pre-test, 246
while statement, 245

loop and a half, 264
loopfib, 4 75
loop Power, 4 72
lower, 164

,

Lucas, Edouard, 484

M
machine code, 8
machine language, 7
maintenance, 28
makeStudent, 331
mapping, 401
math domain error, 67
math library, 66

functions, 66, 68
using, 67

max, 234
max-of-n program, 233
max-of-three, 227, 229, 230, 232
maxn. py, 233
mean, 371
median, 364, 373
memory, 5

flash, 6
main, 5
secondary, 6

merge, 479
merge sort, 4 79

531

532

mergeSort, 481
analysis, 482

message decoding
algorithm, 143
problem description, 142
program, 145

message encoding
algorithm, 141
problem description, 139
program, 141

meta-language, 35
method, 92, 314

accessor, 92
call (invoke), 92, 323
mutator, 93
normal parameter, 323
object parameters, 93
parameterless, 92
self parameter, 323
string, 144

methods
activate, 339
clicked, 340
deactivate, 339
dictionary, 403
list, 369

modal input, 271
model-view, 435
module file, 13
module hierarchy chart,

see structure chart
molecular weight, 80
Monte Carlo, 286, 310
month abbreviation

problem description, 134
program, 135, 137

month.py, 135
month2.py, 137
move, 93, 115
moveTower, 487
MPG, 280
MSDie, 321
mutable, 138, 402
mutator, 93

N
NameError, 34
names, 31
nesting, 221
newline character (nn), 158

with readline, 254
Newton's method, 82
None, 192
numbers2text.py, 145
numerology, 171

Index

0
object, 313

aliasing, 95
application as, 385
as black box, 420
as parameter, 93
attributes, 314
definition of, 84
state, 93

object-oriented, 84
object-oriented design (OOD), 419, 420
objects

built-in
None, 192

graphics, see graphics
library, objects

objrball.py, 430
Old MacDonald, 206
one-way decision, 212
open, 160
operator

Boolean, 257
as control structure, 26 7

definition of, 34
precedence, 34, 258
relational, 213
short-circuit, 267

operators
Boolean, 257
del, 369
list, 367
mathematical, 34
Python numeric operators, 60
relational, 213

or, 257
operational definition, 26 7

ord, 140
output labeling, 36
output statements, 34
Oval, 117
override, 454
overtime, 238

p
palindrome, 497
parameter, 11

actual, 184
as function input, 187
formal, 184
matching by order, 187
multiple, 186
objects as, 93
removing code duplication, 179
scope issues, 183, 184
self, 323

pass statement, 2 73
.

pl
math library, 68
Monte Carlo approximation, 310
series approximation, 82

pixel, 88
pizza, 79
plaintext, 150
Player, 429
plot, 114
plotPixel, 114
Point, 88, 116
poker, see dice poker

cards, 414
Polygon, 109, 118
polymorphism, 453
portability, 9
post-test loop, 263
prime number, 280, 414
priming read, 250
print statement, 10

semantics, 35
syntax, 35

printfile.py, 161
private attributes, 345
private key encryption, 150
program, 2

.

programmmg
definition of, 3
event-driven, 107
why learn, 3

programming language
translation, 8

progrannrndng language, 6--9
and portability, 9
examples, 7
high-level, 7
syntax, 35
vs. natural language, 6

programs
average n numbers, 244, 248, 250, 252-254
average two numbers, 42
calculator, 390
cannonball simulation,

318, 326, 335
change counter, 57, 157
chaos, 13
date conversion, 152
dice roller, 345
factorial, 71
future value, 49
future value graph, 101, 105, 175, 182, 201
gpa, 329
GPA Sort, 378
happy birthday, 180

Index

interest calculation, 193, 196
max-of-n, 233
message decoding, 145
message encoding, 141
month abbreviation, 135, 137
print file, 161
quadratic equation, 66, 216, 217, 219, 223, 224
racquetball simulation, 298
racquetball simulation

(object version, 430
simple statistics, 3 7 4
temperature conversion,

30, 110, 210, 211
triangle, 108, 189
turing: an impossible program, 491
usemame generation, 134, 163
word frequency, 408

prompt
Python, 10
using Text object, 109

prototype, 304
pseudo-random numbers, 286
pseudocode, 30
public key encryption, 150
pyc file, 15
Python

Boolean operators, 25 7
mathematical operators, 34
numeric operators, 60
relational operators, 213
reserved words, 32
running programs, 14

pyw, 108

Q
quadratic equation, 66

algorithm with three-way decision, 221
decision flowchart, 219
program, 66, 216
program (simple if), 217
program (two-way decision), 219
program (using exception), 224
program (using if-elif-else), 223

quadratic time, 482
quadratic. py, 66, 216
quadratic2.py, 217
quadratic3. py, 219
quadratic4. py, 223
quadraticS. py, 224
quiz grader, 171, 239

R
racquetball, 259, 284
racquetball simulation

classes

533

534

RBallGame, 426
racquetball simulation

algorithms
simNGames, 293
simOneGmae, 295

classes
Player, 429
SimStats, 424

discussion, 303
problem description, 284
program, 298
program (object version), 430
specification, 285
structure charts

level 2, 294
level 3, 296
top-level, 292

RAM (random access memory), 5
random, 287
random library, 286

functions
random, 287
randrange, 286

random numbers, 286
random walk, 311, 416
randrange, 286
range, 45

general form, 70
RBallGame, 426
read, 160
readline, 160
readlines, 160
recBinSearch, 4 7 4
recPower

recursive function, 4 73
Rectangle, 117
recursion, 466
regression line, 281, 362
relational operator, 213
repetition

list, 367
string, 132

reserved words, 31
in Python, 32

resolution, 97
return statement, 188

multiple values, 192
reverse

recursive function, 469, 4 70
roller. py, 345
root beer, 68
round, 63

s
save, 120
scientific notation, 7 4

Index

scope, 183
screen resolution, 97
script, 13
search, 460
searching

binary search, 462
linear search, 461
problem description, 460
recursive formulation, 4 73

seed, 286
selection sort, see sorting, selection sort
self, 323
selSort, 4 78
semantics, 7
senate, 239
sentinel, 249
sentinel loop, 249
sequence operators, 36 7
setArrow, 116
setBackground, 114
setCoords, 104, 115

example, 104
setFace, 118, 119
setFill, 115
setOutline, 115
setPixel, 120
sets, 416
setSize, 118, 119
setStyle, 118, 119
setText, 118, 119
setWidth, 115
shuffle, 413
Sieve of Eratosthenes, 414
signature, 291
simNGames, 294
simOneGame, 297
simple decision, 212
simple statistics, 412

problem, 364
program, 37 4

SimStats, 424
simulation, 283
simultaneous assignment, 41

in for loop, 387
with multiple return values, 192

singFred, 178
singLucy, 179
slicing

list, 370
string, 132

slope of line, 80
snowman, 126
software, 3
software development, 27

phases
analysis, 27

design, 28
implementation, 28
maintenance, 28
specifications, 28
testing/ debugging, 28

sort
stable, 407

sorting, 465
merge sort

algorithm, 4 79
analysis, 482
implementation, 481

selection sort
algorithm, 477
analysis, 482
implementation, 4 78

space
between program lines, 49
blank line in output, 186
in expressions, 34
in prompts, 40

specifications, 28
speeding fine, 239
spell checker, 501
sphere, 79, 360

surface area formula, 79
volume formula, 79

split, 144
sqrt, 66
square function, 188
square root, 82
stable sort, 407
standard deviation, 365
statement, 10
statements

assignment, 18, 36-39
break, 263
class, 322
comment, 16
def (function definition), 11, 177
for, 44, 243
from .. import, 88
if, 212
if-elif-else, 222
if-else, 218
import, 67
input, 17, 39
multiple input, 42
print, 10, 35
return, 188
simultaneous assignment, 41
try-except, 225
while, 245

stats.py, 374
StatSet, 415
stdDev, 372

Index

step-wise refinement, 300
str, 153
string, 130

as lookup table, 135
ASCII encoding, 139
concatenation, 34, 132
converting to, 153
converting to other types, 145
definition of, 32
formatting, 154, see string formatting
indexing, 131

from back, 131
length, 132
literal, 130, 335
methods, 144
multi-line, 335
operators, 133
repetition, 132
representa tion, 139
slicing, 132
substring, 132
Unicode encoding, 140
vs. list, 367

string formatting
leading zeroes, 158

string method
lower, 164

string formatting, 154
examples, 155
format specifier, 155

string library
function summary, 148
split, 144

structure chart, 291
structure charts

racquetball simulation level 2, 294
racquetball simulation level 3, 296
racquetball simulation top level, 292

Student
class, 328

subprogram, 177
substitution cipher, 150
substring, 132
swap, 41

using simultaneous
assignment, 42

syntax, 7, 35
Syracuse numbers, 280

T
table tennis, 309
table-driven, 382
temperature conversion

program, 210
temperature conversion

algorithm, 30

535

536

problem description, 28
program, 30
program with Gill, 110

temperature conversion with warnings
design, 210
flowchart, 211
problem description, 210
program, 211

tennis, 309
testing, 28

unit, 302
Text, 118

as prompt, 109
methods, 118

text file, 158
text2numbers. py, 141
textpoker. py, 441
Three Button Monte, 359
Tkinter, 84
top-down design, 289

steps in process, 300
Tower of Hanoi (Brahma), 484

recursive solution, 487
triangle

area formula, 81
program, 108, 189

triangle. pyw, 108
triangle2.py, 189
truth table, 257
truth tables

definition of and, 25 7
definition of not, 258
definition of or, 25 7

try-except statement
semantics, 225
syntax, 225

tuple, 387
unpacking, 387

turing.py, 491
type conversion

automatic, 62
type conversion

to float, 63
explicit, 63

Index

from string, 145
summary of functions, 153
to int, 63
to string, 153

type function, 59

U-W
undraw, 115
Unicode, 140
unit testing, 302
unpacking, 387
update, 121
userfile. py, 163
usemame generation

program, 134, 163
usemame.py, 134
validation

of inputs, 262
value returning function, 188
ValueError, 67
variable

changing value, 37
definition of, 16
instance, 92, 314
local, 183
scope, 183

VGA, 97
volleyball, 259, 309
we, 173
while statement

as post-test loop, 263
flow chart, 246
semantics, 246
syntax, 245

widget, 107, 33 7
windchill, 279
winter, 126
word count, 173
word frequency

problem description, 404
program, 408

word jumble, 501
wordfreq. py, 408
write, 162

	Front Cover
	Title Page
	Copyright Page
	CONTENTS
	Foreword
	Preface
	1. Computers and
Programs
	1.1 The Universal Machine
	1.2 Program Power
	1.3 What Is Computer Science?
	1.4 Hardware Basics
	1.5 Programming Languages
	1.6 The Magic of Python
	1.7 Inside a Python Program
	1.8 Chaos and Computers
	1.9 Chapter Summary
	1.10 Exercises

	2. Writing Simple Programs
	2.1 The Software Development Process
	2.2 Example Program: Temperature Converter
	2.3 Elements of Programs
	2.4 0utput Statements
	2.5 Assignment Statements
	2.6 Definite Loops
	2.7 Example Program: Future Value
	2.8 Chapter Summary
	2.9 Exercises

	3. Computing with Numbers
	3.1 Numeric Data Types
	3.2 Type Conversions and Rounding
	3.3 Using the Math Library
	3.4 Accumulating Results: Factorials
	3.5 Limitations of Computer Arithmetic
	3.6 Chapter Summary
	3.7 Exercises

	4. Objects and Graphics
	4.1 Overview
	4.2 The Object of Objects
	4.3 Simple Graphics Programming
	4.4 Using Graphical Objects
	4.5 Graphing Future Value
	4.6 Choosing Coordinates
	4.7 Interactive Graphics
	4.8 Graphics Module Reference
	4.9 Chapter Summary
	4.10 Exercises

	5. Sequences: Strings, Lists, and Files
	5.1 The String Data Type
	5.2 Simple String Processing
	5.3 Lists as Sequences
	5.4 String Representation and Message Encoding
	5.5 String Methods
	5.6 Lists Have Methods, Too
	5.7 From Encoding to Encryption
	5.8 Input/Output as String Manipulation
	5.9 File Processing
	5.10 Chapter Summary
	5.11 Exercises

	6. Defining Functions
	6.1 The Function of Functions
	6.2 Functions, Informally
	6.3 Future Value with a Function
	6.4 Functions and Parameters: The Exciting DetaiIs
	6.5 Functions That Return Values
	6.6 Functions that Modify Parameters
	6.7 Functions and Program Structure
	6.8 Chapter Summary
	6.9 Exercises

	7. Decision Structures
	7.1 Simple Decisions
	7.2 Two-Way Decisions
	7.3 Multi-Way Decisions
	7.4 Exception Handling
	7.5 Study in Design: Max of Three
	7.6 Chapter Summary
	7.7 Exercises

	8. Loop Structures and Booleans
	8.1 For Loops: A Quick Review
	8.2 Indefinite Loops
	8.3 Common Loop Patterns
	8.4 Computing with Booleans
	8.5 Other Common Structures
	8.6 Example: A Simple Event Loop
	8.7 Chapter Summary
	8.8 Exercises

	9. Simulation and Design
	9.1 Simulating Racquetball
	9.2 Pseudo-random Numbers
	9.3 Top-Down Design
	9.4 Bottom-Up Implementation
	9.5 Other Design Techniques
	9.6 Chapter Summary
	9.7 Exercises

	10. Defining Classes
	10.1 Quick Review of Objects
	10.2 Example Program: Cannonball
	10.3 Defining New Classes
	10.4 Data Processing with Class
	10.5 0bjects and Encapsulation
	10.6 Widgets
	10.7 Animated Cannonball
	10.8 Chapter Summary
	10.9 Exercises

	11. Data Collections
	11.1 Example Problem: Simple Statistics
	11.2 Applying Lists
	11.3 Lists of Records
	11.4 Designing with Lists and Classes
	11.5 Case Study: Python Calculator
	11.6 Case Study: Better Cannonball Animation
	11.7 Non-sequential Collections
	11. 8 Chapter Summary
	11.9 Exercises

	12. Object-Oriented Design
	12.1 The Process of OOD
	12.2 Case Study: Racquetball Simulation
	12.3 Case Study: Dice Poker
	12.4 00 Concepts
	12.5 Chapter Summary
	12.6 Exercises

	13. Algorithm Design and Recursion
	13.1 Searching
	13.2 Recursive Problem Solving
	13.3 Sorting Algorithms
	13.4 Hard Problems
	13.5 Chapter Summary
	13.6 Exercises

	APPENDICES
	A: Python Quick Reference
	B: Glossary
	A
	B
	C
	D
	E
	F
	G
	H - I
	K - L
	M
	N
	O - P
	R
	S
	T - U
	V - W

	INDEX
	A
	B
	C
	D
	E - F
	G
	H
	I - K
	L - M
	N
	O
	P
	Q - R
	S
	T
	U - W

