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Abstract
In a factory of automobile component primer painting, various automobile parts are attached to overhead hangers in a 
conveyor line and undergo a series of coating processes. Thereafter, the components are wrapped at a packaging station. 
The packaging process should be fully balanced by an appropriate sequence of components to prevent the bottleneck effect 
because each component requires different packaging times and materials. An overhead hanger has a capacity limit and 
can hold varying numbers of components depending on the component type. Capacity loss can occur if the hanger capacity 
is not fully utilized. To increase hanger utilization, companies sometimes mix two or more component types on the same 
hangers, and these hangers are called mixed hangers. However, mixed hangers generally cause heavy workload because dif-
ferent items require additional setup times during hanging and packing processes. Hence, having many mixed hangers is not 
recommended. A good production schedule requires a small number of mixed hangers and maximizes hanger utilization and 
packaging workload balance. We show that the scheduling problem is NP-hard and develop a mathematical programming 
model and efficient solution approaches for the problem. When applying the methods to solve real problems, we also use an 
initial solution-generating method that minimizes the mixing cost, set a rule for hanging the items on hangers considering 
eligibility constraint, and decrease the size of tabu list in proportion to the remaining computational time for assuring inten-
sification in the final iterations of the search. Experimental results demonstrate the effectiveness of the proposed approaches.

Keywords  Flow shop scheduling · Automobile component primer painting · Mixed-integer programming · Heuristic 
algorithms

Introduction

In recent years, an increasing number of studies have dis-
cussed specific scheduling cases (Fuchigami and Rangel 
2018). Each case study has its unique characteristics that 
must be considered for developing appropriate scheduling 
methods (Baykasoğlu and Ozsoydan 2018; Dallasega et al. 
2019; Mohammadi et al. 2020). In addition to the specific 
requirements of each system, many studies have focused on 

addressing sustainability (related to economic, environmen-
tal, and social aspects) and stochastic trends (Yin et al. 2015; 
Henao et al. 2019; Johansen 2019).

We study a scheduling problem in a factory of automobile 
component primer painting, in which thousands of automo-
bile parts undergo anticorrosion electrodeposition coating. 
The company uses a continuous hanger line. Component 
items are hung on hangers and undergo the painting (coat-
ing) steps. After coating, the component items are wrapped 
at a packaging station.

All component items undergo the same painting processes 
in a pre-determined order, and the conveyor line moves at a 
constant speed. Thus, the line productivity depends on the 
hanger occupancy rate. An overhead hanger has a capacity 
limit and can hold different numbers of items depending 
on the item type. Low hanger occupancy rate and capacity 
loss will arise if the hanger capacity is not fully utilized. 
To increase the hanger occupancy rate or utilization, the 
company under study sometimes mixes two or more types 
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of item on the same hangers, and these are called mixed 
hangers. Placing mixed items on hangers increases the hang-
ing workload for the coating process and additional setup 
time for the packaging process. If mixing is necessary, then 
items with similar characteristics must be hung on the same 
hangers to minimize the workload and packaging setup time. 
The conflict between maximizing the hanger occupancy rate 
and minimizing the number of mixed hangers and the dis-
similarity of mixed items on the same hangers should be 
considered, and the component items of an order must be 
hung on consecutive hangers, such that the items of an order 
are processed and packaged together.

The workload in the packaging process must also be 
fully balanced during working hours because the company 
employs different levels of packaging workforce depending 
on the time of day. Different items require different work-
load levels. At the packaging step, each item is manually 
packed in accordance with its specifications. Packing speci-
fications can be categorized into three groups depending on 
the workload. The packaging workload for several export 
items is considerably higher than that for others. Given the 
continuous movement of the hanger line, cumulative packag-
ing workloads within a certain period or a certain number of 
consecutive hangers should be fully balanced to avoid heavy 
fatigue on workers at the packaging step.

A mixed-integer programming (MIP) model for the 
scheduling problem is developed. However, we cannot use 
the model for real-size problems because it requires exten-
sive computation time due to its NP-hardness. Therefore, we 
develop a 2-Opt improvement algorithm and a tabu search 
metaheuristic algorithm. Computational results show that 
the proposed algorithms can effectively solve the problem.

The remainder of this paper is organized as follows. “Lit-
erature review” section reviews the related literature. “Prob-
lem description” section describes the problem in detail. 
“Mathematical formulation” section presents our math-
ematical model and its NP-hardness. “Solution approaches 
and computational results” section provides the solution 
approaches and their computational results. “Conclusions” 
section elaborates the conclusions.

Literature review

The problem studied in this work can be considered a per-
mutation batch flow shop problem. Ruiz and Maroto (2005) 
explained that in a permutation flow shop problem, jobs 
are scheduled to be processed in a set of machines in the 
same order, and the jobs are processed in the same sequence 
in all machines. In our work, items hung on a hanger are 
considered a batch. All batches are processed in the same 
sequence in all machines because the hangers move at a con-
stant speed through the coating line. Reviews of the flow 

shop problem were presented in Ruiz and Maroto (2005), 
Hejazi and Saghafian (2005), and Behnamian and Fatemi 
Ghomi (2016).

The batch scheduling problem has been studied exten-
sively. A classification of batch scheduling based on batch 
size, batch processing time, and other factors was provided 
by Mendez et al. (2006). Potts and Kovalyov (2000) and 
Sun et al. (2011) reviewed this subject. The batch schedul-
ing problem in a flow shop environment with two stages 
was discussed by Tang and Liu (2009a, b), Behnamian et al. 
(2012), Wang et al. (2012), and Liu et al. (2018). Batching 
problems in systems with more than two stages were also 
studied by Salmasi et al. (2011), Damodaran et al. (2013), 
Li et al. (2015), and Matin et al. (2017). Studies on flow 
shop batch scheduling with more than one item type, which 
is similar to the problem discussed in the present work, are 
also available (Sawik 2002; Kim et al. 2009; Masmoudi et al. 
2016). Although these studies investigated the flow shop 
batch scheduling problem with multiple item types, waiting 
time was allowed between machines. By contrast, in our 
problem, no waiting time exists between machines, which 
is an important characteristic of a well-known, no-wait flow 
shop scheduling problem or flow shop scheduling problem 
with no in-process waiting (Selen and Hott 1986).

Product processing in chemical baths, in which each 
product must be immersed in baths in the same order, is 
similar to the problem in the present study. The problem 
is classified as a no-wait flow shop scheduling with batch-
ing considerations (Oulamara et al. 2005). Lin and Cheng 
(2001) studied a problem in steel and plastic production, in 
which jobs were processed as batches sequentially in two 
machines. Oulamara (2007) proposed an algorithm to solve 
a no-wait flow shop batch scheduling problem for minimiz-
ing makespan. Zhou et al. (2016) considered a problem of 
minimizing makespan with parallel and serial batch process-
ing machines, non-identical job sizes, and unequal ready 
times. Stefansdottir et al. (2017) addressed a no-wait flow 
shop batch scheduling problem with consideration of setups 
and cleaning processes. The studied problems above only 
considered two stages of machines, whereas our problem 
includes more than two stages of machines.

Some studies addressed the no-wait flow shop scheduling 
problem with several machines, but considered job sched-
uling instead of the batches (Tasgetiren et al. 2011; Sapkal 
and Laha 2013; Allahverdi and Aydilek 2013, 2014; Samar-
ghandi and Behroozi 2017; Koulamas and Panwalkar 2018). 
A survey of research on no-wait flow shop batching schedul-
ing problems was conducted by Oulamara (2012) and Allah-
verdi (2016). These studies examined various no-wait flow 
shop batch scheduling problems; however, the characteristics 
of scheduling problems for product processing in chemical 
baths, which are important in the present study, were not 
considered.
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We review the literature related to this study. The clos-
est references are Lin and Cheng (2001), Oulamara (2007), 
Zhou et al. (2016), and Stefansdottir et al. (2017). These 
studies only consider two machines, whereas ours consider 
more than two machines. In addition, various characteris-
tics make the present problem unique; these characteristics 
include item-hanger eligibility, different item sizes and 
packaging workloads, effect of a generated schedule on 
the packaging stage, continuous hanging requirement of 
orders, allowance for mixed items, and multiple conflicting 
objectives. Such characteristics will be explained in detail 
in the next section. To our knowledge, no study has been 
conducted on the flow shop batch scheduling problem con-
sidered in this work.

Problem description

Figure 1 shows an aerial view of the factory of automobile 
component painting. The numbers in the figure indicate 
the coating steps that the items move through after they are 
attached to hangers. Among the steps, five steps (labeled 4, 
8, 10, 12, and 14) use coating pools in which the items are 
sunk. The lengths of the five liquid coating pools (labeled 4, 
8, 10, 12, and 14 in Fig. 1) are accurately designed to obtain 
the desired thickness of the electrodeposition layer of items. 
The items are coated appropriately based on the conveyor’s 
constant speed and pool lengths. A fixed number of hangers 
are hung to the conveyor rail line and pass through the paint-
ing areas. Figure 2 shows items on hangers attached to the 
conveyor line. After the coating process, the workers at the 
packaging station carry the items and pack them in accord-
ance with their specifications.

The daily working period of the company is from 9 a.m. 
to 6 p.m., and the scheduling horizon is the same. At the end 
of work in a day, the conveyor rail is stopped, and the items 

already hung on the hanger are processed on the following 
day. Therefore, the hangers located in the five pools should 
be empty (that is, no items are hung on the hangers in the 
pools) or only contain eligible item types when the line stops 
to guarantee painting quality. Otherwise, items that stay too 
long in the pools cannot meet the quality requirements. In 
other words, restrictions should be observed for items on 
these hangers at the end of a working day. In addition, the 
number of packaging workers decreases during lunch and 
break times. Hence, delivering hard packing items to the 
packing area during these times should be avoided. With 
these constraints considered, the eligibility of hangers for 
items is determined. Given that the hangers circulate more 
than three times in a day, each physical hanger has multiple 
indices in our model. A total of 181 physical hangers are in 
the factory; however, the total number of logical hangers 
processed per day is set to 600.Fig. 1   Aerial view of the painting factory

Fig. 2   Component items and hangers
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The input data, objectives, and output form of the sched-
uling problem will be explained in the following subsections.

Input data

Items and hangers are given as input data. Several item types 
are considered, and each item has its own characteristics and 
unique item code, as shown in Table 1. The input amount 
is the number of items to be scheduled. Occupied hanger 
capacity pertains to the hanger area required by an item; 
if the occupied capacity is 1/5, then a hanger can contain 
up to 5 units of this item. Each item should be hung on one 
or two hangers. Long items, such as I1, I4, and I5, require 
two hangers, whereas a short item can be hung on a single 
hanger. The column “Required number of hangers per item” 
in Table 1 shows the information. If the number of hang-
ers required to hang an item is two, then two consecutive 
hangers should be assigned to hang the item. If the required 
number is two, then the occupied hanger capacity also cor-
responds to two hangers. We use I1 in Table 1 as an exam-
ple. Given that the occupied hanger capacity is 1/10 and the 
required number of hangers per item is 2, 2 hangers together 
can contain 10 items. The column “Packing type” in Table 1 
is used to identify packing specifications.

The eligibility of logical hangers can be obtained by con-
sidering the physical hanger locations on the conveyor rail, 
the rail speed, the hanger stopping positions at the end of 
the day, and the workforce schedule. Morning and afternoon 
break times are from 10:00 a.m. to 10:10 a.m. and from 
3:00 p.m. to 3:10 p.m., respectively, and lunch break is from 
12:00 p.m. to 1:00 p.m. Given that 600 hangers are used in a 
day, an example of their eligibility data is shown in Table 2. 
Eligibility codes 1, 2, and 3 indicate that the hanger can be 
attached with all items, items with a packing workload equal 

to one, and no items at all, respectively. A point of consid-
eration used in determining hanger eligibility is that certain 
items are not allowed to be immersed in the pools for more 
than the prescribed time for electrodeposition overnight.

Different items may be hung on the same hanger. How-
ever, mixed items on hangers affect the workload in the 
packaging area. Items that have the same packing specifica-
tions and belong to the same sub-assembly can be packed 
without an extra setup; otherwise, an additional setup is 
required. Moreover, mixed items on hangers increase the 
hanging workload for the coating process. Mixing costs 
(penalty) between pairs of items are used to identify the 
degree of differences between items. Table 3 presents these 
data. A high mixing penalty is imposed when different items 
are hung on the same hanger and cause difficulties in the 
packaging stage; this penalty contributes to the total mixing 

Table 1   Input data of item order

Item code Input amount Occupied 
hanger 
capacity

Required 
number of 
hangers per 
item

Item name Item type 
code

Sub-assembly 
name

Car model Packing type Packing load

I1 60 1/10 2 Large Etc DH Member 
Assy-Rear 
Floor Siderh

3A0 NC 1

I2 111 1/12 1 Fender EH Panel-Fend-
erlh

2V0 BW 3

I3 34 1/14 1 Back Pnl DH Panel Assy-
Back

3S0 FL 2

I4 109 1/6 2 Qtr DH Panel Assy-
Quarter 
Outerrh

2V0 AF 2

I5 121 1/5 2 Qtr DH Panel Assy-
Quarter 
Outerrh

2V0 AF 2

Table 2   Hanger eligibility Hanger Eligi-
bility 
code

1 3
2 3
3 3
… …
250 2
251 2
… …
515 1
516 1
… …
599 2
600 2
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cost, as presented in “Objectives” section. The mixing pen-
alty is 0 when all item characteristics are equal and is 10,000 
when two items have the same characteristics, except for the 
sub-assembly names. An example of the calculation for the 
mixing cost is as follows. Supposing that four hangers exist, 
items A, B, and C are hung on hangers 1 and 2, items B and 
C are hung on hanger 3, and item B is hung on hanger 4, and 
the mixing penalty for items A and B, A and C, and B and 
C are 1000, 7, and 4, respectively. Then, the total mixing 
cost for hangers 1–4 is (1000 + 7 + 4), (1000 + 7 + 4), 4, and 
0, respectively.

Objectives

The following objectives are considered in the scheduling 
problem: minimization of the total capacity loss of the hang-
ers, total penalty for partially hung order items, total mix-
ing cost, and maximum workload of packing workers on 
consecutive numbers of hangers. Total capacity loss is the 
remaining capacity on the hangers after assigning the items.

Order items may be hung partially. In other words, not 
all of the required numbers of an item order are hung on the 
hangers. Several items are left and handled in the following 

days. The remaining ones delay the packaging process 
because the order items should be packaged together and 
shipped to customers. Items are not considered to be par-
tially hung when no or all items are hung on the hangers. For 
example, suppose that an item order consists of 100 units. 
When the number of scheduled units is between 1 and 99, 
the item order is considered partially hung. Imposing a pen-
alty encourages generating schedules in which same-order 
items are processed on the same day to avoid delay in the 
packing process.

Given that the input number of an item is not an exact 
multiple of the occupied hanger capacity of the item, a few 
of these items should be mixed with other item types to 
minimize capacity loss. However, we should consider the 
packing workload caused by the mixed items. To ease the 
hanging and packaging processes, the mixing cost must be 
minimized by prioritizing hanging items with similar char-
acteristics on the same hangers.

The packing workload must also be balanced through-
out the work time by minimizing the total packing work-
load for each number of consecutive hangers. Each item 
is categorized into three packing workload levels (heavy, 
medium, and light), as shown in Table 1, in accordance with 

Table 3   Item mixing costs

a 1 = same; 0 = different

Mixing penalty Same characteristicsa

Item type 
code

Packing type Item name Sub-assembly 
name

Car model

0 1 1 1 1 1
0 1 1 1 1 0
2 1 1 0 0 1
2 1 1 0 0 0
3 1 0 1 0 1
3 1 0 1 0 0
4 1 0 0 0 1
4 1 0 0 0 0
5 0 1 1 1 1
5 0 1 1 1 0
6 0 1 0 0 1
6 0 1 0 0 0
7 0 0 1 0 1
7 0 0 1 0 0
1000 0 0 0 0 1
1000 0 0 0 0 0
10,000 1 1 1 0 1
10,000 1 1 1 0 0
10,000 1 0 1 1 1
10,000 1 0 1 1 0
10,000 0 1 1 0 1
10,000 0 1 1 0 0
100,000 Other cases
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its packing specification. If items with heavy packing work-
load are assigned continuously, then the packing workload 
will greatly increase and cause fatigue to packing opera-
tors. The total packing workloads are measured for each g 
consecutive hangers. The solution quality is evaluated by 
obtaining the largest among all g consecutive total packing 
workloads (defined as MaxP). For example, we suppose that 
the total packing workloads on hangers 1–6 are 10, 30, 30, 
10, 50, and 60, respectively, and g equals 3. The total pack-
ing workload of the first three hangers (hangers 1–3) equals 
70. Similarly, the total packing workloads for hangers 2–4, 
3–5, and 4–6 are 70, 90, and 120, respectively. Thus, MaxP 
is 120. In this study, the value of g is set to 10.

Output

Table 4 presents the desired scheduling output format. The 
scheduling result contains information related to the number 
of items hung and their initial and final hanger numbers. We 
calculate the time for hanging each type of item using the 
hanger numbers.

Mathematical formulation

An MIP formulation is developed for the problem. We let i 
and j be the item indices (1, …, I) and h be the hanger index 
(1, …, H). H is 600 because a hanger on the conveyor rail 
passes the interval length between two consecutive hangers 
in 54 s, and the total work time equals 32,400 s (9 h). The 
parameters are as follows:

ai	� input number of items i
bij	� penalty value given when items i and j are hung on the 

same hanger
ci	� occupied hanger capacity used by item i (0–1, real 

number)
di	� required number of hangers per item i
eih	� 1, if item i is allowed to be hung on hanger h while 

considering the hanger stopping position at the end of 
the day; 0, otherwise

g	� number of consecutive hangers from which the work-
load is measured and the MaxP value is calculated

k1	� weight coefficient of the total capacity loss
k2	� weight coefficient of the partially scheduled items

k3	� weight coefficient of the total mixing value
k4	� weight coefficient of the maximum workload of con-

secutive g hangers
li	� packing workload level of item i

The decision variables are as follows:

MaxP	� maximum packing workload among g consecutive 
hangers

ri	� final hanger number that has item i
si	� initial hanger number that has item i
ti	� 1, if the number of items i hung on the hangers is 

more than 0 and less than the required amount; 0, 
otherwise

uih	� 1, if item i (with di = 2) is hung on h and h is the 
initial hanger for xih items; 0, otherwise

vijh	� 1, if items i and j are hung together on hanger h; 0, 
otherwise

wi	� 1, if no item i is hung on any hangers; 0, otherwise
xih	� number of items i on hanger h
yih	� 1, if item i is hung on hanger h; 0, otherwise
zi	� 1, if item i is mixed with other items; 0, otherwise

The MIP model is formulated as follows.

(1)

min k1

∑

h

(
1 −

∑

i

cixih

)
+ k2

∑

i

ti + k3

∑

h

∑

i

∑

j>i

bijvijh + k4MaxP

(2)s.t yih + yjh − 1 ≤ vijh ∀j > i, h

(3)yih ≤ eih ∀i, h

(4)
∑

i

cixih ≤ 1 ∀h

(5)yih ≤ xih ∀i, h

(6)cixih ≤ yih ∀i, h

(7)
∑

h

xih ≤ aidi ∀i

(8)
�

h

yih ≤
�
⌈ciai⌉ + zi

�
di ∀i

(9)Mzi ≥
∑

h

∑

j

vijh ∀i

(10)
∑

h

∑

j

vijh ≥ zi ∀i

Table 4   Scheduled output data form

Item code Amount Start hanger Finish hanger

I1 60 1 12
I10 53 13 23
I3 34 23 26
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The objective function (1) minimizes the weighted sum 
of total capacity loss, total penalty for items that are partially 
hung, total mixing cost, and maximum workload for g con-
secutive hangers. Constraints (2) ensure that vijh is 1 if items 
i and j are hung on the same hanger. Constraints (3) restrict 
items that can be hung on hangers based on the eligibility of 
hangers. Constraints (4) indicate that the number of items i, 
which is hung on a hanger, cannot exceed the hanger capac-
ity. Constraints (5) and (6) set yih to be 0 or 1 depending 
on whether any item is hung on hanger h. Constraints (7) 
indicate that the total number of scheduled items cannot be 
more than the demand amount.

(11)
xih ≥ xi,h+1 −M

(
1 − ui,h

)
∀i ∈

{
i|di = 2

}
, h = 1,… ,H − 1

(12)
xih ≤ xi,h+1 +M

(
1 − ui,h

)
∀i ∈

{
i|di = 2

}
, h = 1,… ,H − 1

(13)xi1 ≤ Mui1 ∀i ∈
{
i|di = 2

}

(14)uiH = 0 ∀i ∈
{
i|di = 2

}

(15)uih + ui,h+1 ≤ 1 ∀i ∈
{
i|di = 2

}
, h = 1,… ,H − 1

(16)MaxP ≥

h+g−1∑

h

∑

i

li

di
xih ∀i, h ≤ H − g + 1

(17)si ≤ H
(
1 − yih

)
+ hyih ∀i, h

(18)ri ≥ hyih ∀i, h

(19)ri − si ≤
∑

h

yih − 1 ∀i

(20)ti ≤
∑

h

xih ∀i

(21)ti ≤ aidi −
∑

h

xih ∀i

(22)M
(
1 − wi

)
≥

∑

h

xih ∀i

(23)M
(
wi + ti

)
≥ aidi −

∑

h

xih ∀i

(24)ti, uih, vijh,wi, yih, zi ∈ {0, 1} ∀i, j, h

(25)xih ∈ Z+ ∪ {0} ∀i, h

Constraints (8)–(10) limit the maximum number of 
required hangers for each item. Given that item i has 
ci = 1/5, ai = 8, and di = 1 if item i is not mixed with any 
other item (zi = 0), then item i can only be hung on a maxi-
mum of 2 hangers (the summation of yih cannot be larger 
than 2). Otherwise, item i can be hung on a maximum of 
three hangers (the summation of yih cannot be larger than 
three). When item i fully utilizes the hangers (e.g., ai = 10 
and zi = 1), the item can be hung on a maximum of 3 hang-
ers. Constraints (8) consider the values of di.

Constraints (11)–(15) ensure that items with di = 2 are 
hung on consecutive hangers. Constraints (16) set MaxP 
to be the maximum value of the total packing workloads 
of each g consecutive hangers. Constraints (17) and (18) 
obtain the initial and final hanger indices, respectively. 
Constraints (17)–(19) ensure that each item is processed 
continuously from the initial to the final hanger, and its 
schedule cannot be interrupted by any other item. Con-
straints (20)–(23) identify the items that are partially hung 
on the hangers. Constraints (24) and (25) are the binary 
and integer constraints, respectively.

The scheduling problem is NP-hard, and we can prove 
this by restriction. If a special case of the considered prob-
lem generated by restriction is the same with a known NP-
hard problem, then the considered problem is also NP-hard 
because it contains the hard problem (Garey and Johnson 
1979). We can restrict the scheduling problem into a one-
dimensional bin packing problem (1DBPP), which is NP-
hard (Coffman et al. 1997). If we restrict the scheduling 
problem as follows, then the resulting special case is the 
same as the 1DBPP.

In the 1DBPP, given a set of items (each item has its 
weight) and an unlimited number of bins, each item is 
assigned to one bin to minimize the number of bins while 
following the capacity of each bin (Fleszar and Charalam-
bous 2011). In the restrictions above, setting ai = 1, di = 1, 
and eih = 1 for each item i and hanger h are equivalent to 
considering one item for each type; one item is inserted 
only into one bin, and any item can be placed into any bin 
in 1DBPP, respectively. k1 = 1 is set to minimize the total 
capacity loss of the hangers that is equivalent to minimiz-
ing the number of bins in 1DBPP. Thus, our scheduling 
problem is NP-hard.

ai = 1, ∀i

di = 1, ∀i

eih = 1, ∀i, h

k1 = 1

k2 = 0

k3 = 0

k4 = 0
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Solution approaches and computational 
results

To address the NP-hardness of the considered problem, we 
develop 2-Opt and tabu search metaheuristic algorithms. 
2-Opt is one of the simplest and most popular local search 
methods, and it is utilized to solve various scheduling 
problems (Potts and Strusevich 2009). Tabu search has 
also been successfully used in many scheduling studies, 
including those on no-wait scheduling problems (Schus-
ter 2006; Liaw 2008; Bożejko and Makuchowski 2009; 
Wang et al. 2010; Arabameri and Salmasi 2013; Ahani 
and Asyabani 2014; Ding et al. 2015). Later studies also 
confirmed that tabu search performs well in other schedul-
ing problems (e.g., parallel machine scheduling problem; 
Ahonen and de Alvarenga 2017; Bektur and Saraç 2019).

The 2-Opt algorithm is shown in <2-Opt algorithm>. 
We denote v as an item sequence, v′ as an updated item 
sequence after swapping the positions of two items in the 
sequence, and n(I) as the number of items in set I. item(i) 
is an item with position i in v. Given an item sequence in 
v, the items starting from the first one are assigned to the 
hangers serially starting from the initial hanger.

An initial item sequence v is generated in both algo-
rithms as follows. An item is selected randomly as the first 
one for a sequence and the subsequent items with the least 
mixing cost with the previously hung item. If more than 
one candidate is available for the next item, then the one 
with the least total mixing cost between the candidate and 
all the unhung items is selected.

We skip certain swapping pairs to reduce the search-
ing space of the proposed algorithms. Pairs of items with 

the same li value, total required number of hangers, item 
and packing types, item and sub-assembly names, and 
car model are skipped. Exchanging such pairs does not 
improve the objective values in terms of the MaxP value, 
mixing cost, and capacity loss of hangers.

Items are hung on the hangers while considering their 
hanger capacity requirement, length, and eligibility to the 
hangers. If possible, then all amounts of an item order 
are hung, followed by the subsequent item order. How-
ever, if an item cannot be hung on a certain hanger due 
to the eligibility constraint, then the subsequent eligible 
hanger is searched and filled with the item. Given a previ-
ously hung item i with di = 1, the next item j with dj = 2 in 
sequence v are hung on the subsequent empty new hanger 
to ensure an easy packaging operation. The total cost f(v’) 
is calculated using objective function (1). If the total cost 
of the swapped sequence is less than the incumbent solu-
tion, then the swapped sequence is stored as the current 
best solution (v).

The proposed tabu search algorithm is shown in <Tabu 
search algorithm>. When swapping is performed in the 
algorithm, the swapped item pair is stored in the tabu list. 
In the next iterations, a pair of items is not swapped if it is 
included in the tabu list. When the number of pairs in the 
tabu list (size(tabu list)) exceeds the size of the tabu list 
(tabu_list_size_limit), the earliest stored swapping pairs 
are removed. Given that I = number of items and combi-
nation = IC2, the tabu_list_size_limit is calculated as α · 
combination. The value of α and the size of the tabu list 
decrease in proportion to the remaining computational 
time. As the computational time reaches the time limit, 
the value becomes 0. By decreasing the value, the final 
iterations of the search focus on intensification rather than 
exploration.

An acceptance rule in Ropke and Pisinger (2006), 
which is similar to the simulated annealing, is used to 
accept worse non-tabu solutions for escaping from local 
optima. Given a current sequence (solution) v and tem-
perature T, a new worse sequence v’ is accepted with the 
probability of e−(f(v’)−f(v))/T. The temperature T initially 
equals Tstart and decreases by T = T · crate for each itera-
tion, where crate is the cooling rate. The value of Tstart 
is set to allow the acceptance of a ρ % worse solution 
to be 50%. If the best objective value is not updated for 
max_same_sol_iterations number of while loops or if the 
computation time reaches the given time_limit, then the 
algorithm stops.
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The MIP model is solved using CPLEX 12.9.0, and the 
2-Opt heuristic and tabu search algorithms are implemented 
in C++ using Microsoft Visual Studio 2010. Experiments 
are conducted on a computer with an Intel® Core™ i5-6400 
CPU at 2.70 GHz with 8 GB of RAM. In the experiments, 
various numbers of hangers, such as 30, 200, 400, and 600, 
and their corresponding working hours from 9:00 a.m. to 
9:45 a.m., 12:00 p.m., 3:00 p.m., and 6:00 p.m., respectively, 
are tested. Break times are arbitrarily allocated to consider 
hanger eligibility in cases with 30 hangers. Table 5 provides 
an example of the data set. Codes, inputs, and solutions for 
all instances are publicly accessible from (http://logis​tics.
poste​ch.ac.kr/Paint​ing_Line_Sched​uling​.html). The pro-
vided executable program can be used by researchers or 
practitioners to solve other instances after replacing the input 

data. Researchers can also improve the performance of the 
algorithms (e.g., through hybridization with other solution 
methods) by modifying the shared source code.

In the experiments, the values of k1, k2, k3, and k4 are 
3000, 50, 1, and 1, respectively. The company sets these 
weights based on the importance of the objectives. Through 
preliminary experiments by using Instances 31–35 in 
Table 10, we set the parameters of tabu search α, max_same_
sol_iterations, ρ, crate, and θ to 0.25, 20, 35, 0.99, and 3, 
respectively.

Tables 6 and 7 show the results of MIP and tabu search 
algorithm for the sample instance in Table 5. In the MIP 
result shown in Table 6, 36 of I4 items are hung on hangers 
1–6, 70 of I1 items are hung on hangers 7–20, and 32 of I3 
items are hung on hangers 23–30. The solution is represented 
with v = {I4, I1, I3, I2, I5}. The tabu search algorithm obtain 
the following solution for the sample instance, 47 of I4 items 
hung on hangers 1–8, 60 of I1 items on hangers 9–20, and 
32 of I3 items on hangers 23–30 (Table 7). The total cost 
of MIP is smaller than those of the proposed algorithms. 
Table 8 shows the objective values obtained using all of the 
approaches. The total objective value (total value) consists of 
four parts, namely, total capacity loss (cap), total penalty for 
items that are partially hung (part), total mixing cost (mix), 
and maximum workload for g consecutive hangers (MP).

Instances with various numbers of items and hangers are 
generated and solved. Instances with 30 hangers and 5, 30, 
60, and 86 items are experimented on, and the results are 
shown in Table 9. The example in Table 5 refers to Instance 
4 in Table 9. The average gap between MIP and the 2-Opt 
and tabu search solutions are 3.22% and 1.40%, respectively.

In the real situation, items with 86 types are hung onto 
600 hangers. Additional instances with 200 and 400 hangers 
are also considered to assess the performance of the MIP 
model and the proposed heuristic algorithms. Table 10 pro-
vides the results. The MIP model cannot solve large-size 
instances. The MIP model can only hang items on some 
hangers in the instances while having a large amount of 
total capacity loss. It finds solutions in which all hangers 
are empty within 3600 s for Instances 28, 33, 34, and 35. The 

Table 5   Input data of small-size instances

Input 
order

Item code Required 
number of 
hangers 
per item 
(di)

Amount 
(ai)

Capacity 
(1/ci)

Packing 
workload 
level (li)

1 I1 2 88 10 1
2 I2 1 122 12 2
3 I3 1 86 4 3
4 I4 1 47 6 2
5 I5 1 67 6 2

http://logistics.postech.ac.kr/Painting_Line_Scheduling.html
http://logistics.postech.ac.kr/Painting_Line_Scheduling.html
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average gap between MIP and each of 2-Opt algorithm and 
tabu search is − 73.2% and − 73.7%, respectively. The tabu 
search performs slightly better than 2-Opt. In conclusion, 
the proposed algorithms perform effectively when solving 
real-size instances.

Conclusions

We introduced a scheduling problem in a factory of auto-
mobile component primer painting, in which thousands of 
automobile parts undergo anticorrosion electrodeposition 
coating. The problem has various important and practical 
characteristics, such as item-hanger eligibility, different item 
sizes and packaging workloads, effect of a generated sched-
ule on the packaging stage, continuous hanging requirement 
of orders, allowance for mixed items, and multiple conflict-
ing objectives. These characteristics make the problem 
unique and have not been addressed previously. Our prob-
lem is classified as a no-wait flow shop batch scheduling 
problem. In our study, we use real data sets from a Korean 
company.

An MIP model was developed for the problem, and it 
shows that the problem is NP-hard. The MIP model cannot 
be used for real-size instances due to its complexity and 
long computational time. Therefore, we implemented cus-
tomized versions of the well-known 2-Opt and tabu search 
algorithms. We also proposed a method to generate an initial 
solution for both methods, in which the first item was deter-
mined randomly. Then, the subsequent items with the least 
mixing cost with the previously hung item were selected. To 
decrease the computational time of the algorithms, we skip 
certain swapping pairs that have the same characteristics 
(e.g., packing workload, total required number of hangers, 
item and packing types, item and sub-assembly names, and 
car model) because exchanging such pairs does not improve 
the objective values in terms of maximum packing work-
load among consecutive hangers, mixing cost, and capacity 
loss of hangers. In the tabu search, we decreased the size of 
the tabu list in proportion to the remaining computational 
time to ensure that the final iterations of the search focus on 
intensification.

The proposed algorithms were confirmed to obtain good 
solutions when solving real-size instances. For small-size 
instances, the average gap between MIP and 2-Opt and the 
tabu search solutions was 3.22% and 1.40%, respectively. 
Meanwhile, the 2-Opt and tabu search algorithms performed 
well in solving real-size instances. The average gap between 
MIP and each of the 2-Opt algorithm and tabu search was 
−73.2% and −73.7%, respectively.

This study can be extended to various directions. First, 
the scheduling problem can be solved with direct consid-
eration of the packaging process. In the present scheduling 

Table 6   MIP results for small-size instance data

Item Hanger

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4
4 6 6 6 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7   Results of tabu search algorithm for small-size instance data

Item Hanger

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4
4 6 6 6 6 6 6 6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8   Objective values of the example

Approach Total value cap part mix MP

MIP 6246 2 3 0 96
2-Opt 6792 2.16 2 0 192
Tabu search 6704 2.16 2 0 104
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problem, the packaging process is indirectly considered by 
controlling the packaging workload balance. If the schedul-
ing problems of the coating and packaging processes can be 
solved together, then the total productivity can be improved. 
Second, other metaheuristic approaches (e.g., adaptive large 
neighborhood search) and computational intelligence algo-
rithms (e.g., deep neural networks and evolutionary com-
putation) may be tested to improve the quality of obtained 
solutions. Third, uncertainty related to the quality of the 
processed item can be incorporated into the problem. After 
the possibility of defects is considered, a robust schedule 
can be generated to minimize the production loss caused by 
defective items.
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