

Download at Boykma.Com

PHP Cookbook ™

,TITLE.21458 Page i Monday, August 14, 2006 11:46 AM

Download at Boykma.Com

Other resources from O’Reilly

Related titles Building Scalable Web Sites

Essential PHP Security

Learning PHP

Learning PHP and MySQL

PHP Hacks™

PHP in a Nutshell

Programming PHP

Upgrading to PHP

Web Database Applications
with PHP and MySQL

oreilly.com oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms,
programming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit
conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

,TITLE.21458 Page ii Monday, August 14, 2006 11:46 AM

Download at Boykma.Com

SECOND EDITION

PHP Cookbook™

Adam Trachtenberg and David Sklar

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Download at Boykma.Com

PHP Cookbook™, Second Edition
by David Sklar and Adam Trachtenberg

Copyright © 2006, 2002 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Tatiana Apandi
Production Editor: Adam Witwer
Copyeditor: Adam Witwer
Proofreader: Sada Preisch

Indexer: Joe Wizda
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Jessamyn Read

Printing History:

November 2002: First Edition.

August 2006: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. PHP Cookbook, the image of a Galapagos land iguana, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-10101-5

ISBN-13: 978-0-596-10101-5

[M]

,COPYRIGHT.21830 Page iv Monday, August 14, 2006 11:48 AM

Download at Boykma.Com

Table of Contents

Preface . xvii

1. Strings . 1
1.0. Introduction 1
1.1. Accessing Substrings 4
1.2. Extracting Substrings 5
1.3. Replacing Substrings 7
1.4. Processing a String One Byte at a Time 8
1.5. Reversing a String by Word or Byte 10
1.6. Expanding and Compressing Tabs 11
1.7. Controlling Case 13
1.8. Interpolating Functions and Expressions Within Strings 15
1.9. Trimming Blanks from a String 16
1.10. Generating Comma-Separated Data 17
1.11. Parsing Comma-Separated Data 19
1.12. Generating Fixed-Width Field Data Records 20
1.13. Parsing Fixed-Width Field Data Records 21
1.14. Taking Strings Apart 24
1.15. Wrapping Text at a Certain Line Length 27
1.16. Storing Binary Data in Strings 28
1.17. Program: Downloadable CSV File 31

2. Numbers . 35
2.0. Introduction 35
2.1. Checking Whether a Variable Contains a Valid Number 36
2.2. Comparing Floating-Point Numbers 37
2.3. Rounding Floating-Point Numbers 38
2.4. Operating on a Series of Integers 39
2.5. Generating Random Numbers Within a Range 40
2.6. Generating Biased Random Numbers 42
2.7. Taking Logarithms 43
2.8. Calculating Exponents 44

v

Download at Boykma.Com

2.9. Formatting Numbers 45
2.10. Formatting Monetary Values 46
2.11. Printing Correct Plurals 48
2.12. Calculating Trigonometric Functions 49
2.13. Doing Trigonometry in Degrees, Not Radians 50
2.14. Handling Very Large or Very Small Numbers 51
2.15. Converting Between Bases 53
2.16. Calculating Using Numbers in Bases Other Than Decimal 54
2.17. Finding the Distance Between Two Places 55

3. Dates and Times . 57
3.0. Introduction 57
3.1. Finding the Current Date and Time 58
3.2. Converting Time and Date Parts to an Epoch Timestamp 61
3.3. Converting an Epoch Timestamp to Time and Date Parts 63
3.4. Printing a Date or Time in a Specified Format 63
3.5. Finding the Difference of Two Dates 68
3.6. Finding the Difference of Two Dates with Julian Days 70
3.7. Finding the Day in a Week, Month, or Year 72
3.8. Validating a Date 74
3.9. Parsing Dates and Times from Strings 75
3.10. Adding to or Subtracting from a Date 78
3.11. Calculating Time with Time Zones 79
3.12. Accounting for Daylight Savings Time 85
3.13. Generating a High-Precision Time 87
3.14. Generating Time Ranges 88
3.15. Using Non-Gregorian Calendars 89
3.16. Using Dates Outside the Range of an Epoch Timestamp 94
3.17. Program: Calendar 95

4. Arrays . 99
4.0. Introduction 99
4.1. Specifying an Array Not Beginning at Element 0 101
4.2. Storing Multiple Elements Per Key in an Array 103
4.3. Initializing an Array to a Range of Integers 104
4.4. Iterating Through an Array 105
4.5. Deleting Elements from an Array 107
4.6. Changing Array Size 109
4.7. Appending One Array to Another 111
4.8. Turning an Array into a String 113
4.9. Printing an Array with Commas 114
4.10. Checking if a Key Is in an Array 115
4.11. Checking if an Element Is in an Array 116

vi | Table of Contents

Download at Boykma.Com

4.12. Finding the Position of a Value in an Array 117
4.13. Finding Elements That Pass a Certain Test 118
4.14. Finding the Largest or Smallest Valued Element in an Array 119
4.15. Reversing an Array 120
4.16. Sorting an Array 121
4.17. Sorting an Array by a Computable Field 122
4.18. Sorting Multiple Arrays 124
4.19. Sorting an Array Using a Method Instead of a Function 126
4.20. Randomizing an Array 127
4.21. Removing Duplicate Elements from an Array 127
4.22. Applying a Function to Each Element in an Array 128
4.23. Finding the Union, Intersection, or Difference of Two Arrays 130
4.24. Making an Object Act like an Array 132
4.25. Program: Printing a Horizontally Columned HTML Table 135

5. Variables . 139
5.0. Introduction 139
5.1. Avoiding == Versus = Confusion 140
5.2. Establishing a Default Value 141
5.3. Exchanging Values Without Using Temporary Variables 142
5.4. Creating a Dynamic Variable Name 143
5.5. Using Static Variables 144
5.6. Sharing Variables Between Processes 145
5.7. Encapsulating Complex Data Types in a String 150
5.8. Dumping Variable Contents as Strings 151

6. Functions . 155
6.0. Introduction 155
6.1. Accessing Function Parameters 156
6.2. Setting Default Values for Function Parameters 157
6.3. Passing Values by Reference 158
6.4. Using Named Parameters 159
6.5. Creating Functions That Take a Variable Number of Arguments 161
6.6. Returning Values by Reference 163
6.7. Returning More Than One Value 165
6.8. Skipping Selected Return Values 166
6.9. Returning Failure 168
6.10. Calling Variable Functions 169
6.11. Accessing a Global Variable Inside a Function 171
6.12. Creating Dynamic Functions 172

7. Classes and Objects . 175
7.0. Introduction 175

Table of Contents | vii

Download at Boykma.Com

7.1. Instantiating Objects 179
7.2. Defining Object Constructors 180
7.3. Defining Object Destructors 181
7.4. Implementing Access Control 182
7.5. Preventing Changes to Classes and Methods 185
7.6. Defining Object Stringification 186
7.7. Specifying Interfaces 189
7.8. Creating Abstract Base Classes 191
7.9. Assigning Object References 193
7.10. Cloning Objects 194
7.11. Overriding Property Accesses 196
7.12. Calling Methods on an Object Returned by Another Method 201
7.13. Aggregating Objects 201
7.14. Accessing Overridden Methods 205
7.15. Using Method Polymorphism 206
7.16. Defining Class Constants 208
7.17. Defining Static Properties and Methods 210
7.18. Controlling Object Serialization 212
7.19. Introspecting Objects 214
7.20. Checking if an Object Is an Instance of a Specific Class 218
7.21. Autoloading Class Files upon Object Instantiation 220
7.22. Instantiating an Object Dynamically 222
7.23. Program: whereis 223

8. Web Basics . 227
8.0. Introduction 227
8.1. Setting Cookies 228
8.2. Reading Cookie Values 230
8.3. Deleting Cookies 231
8.4. Redirecting to a Different Location 231
8.5. Detecting Different Browsers 233
8.6. Building a Query String 234
8.7. Reading the Post Request Body 235
8.8. Generating HTML Tables with Alternating Row Styles 236
8.9. Using HTTP Basic or Digest Authentication 237
8.10. Using Cookie Authentication 242
8.11. Flushing Output to the Browser 244
8.12. Buffering Output to the Browser 245
8.13. Compressing Web Output 246
8.14. Reading Environment Variables 247
8.15. Setting Environment Variables 248
8.16. Communicating Within Apache 249
8.17. Program: Web Site Account (De)activator 250

viii | Table of Contents

Download at Boykma.Com

8.18. Program: Tiny Wiki 253

9. Form . 257
9.0. Introduction 257
9.1. Processing Form Input 259
9.2. Validating Form Input: Required Fields 260
9.3. Validating Form Input: Numbers 262
9.4. Validating Form Input: Email Addresses 264
9.5. Validating Form Input: Drop-Down Menus 266
9.6. Validating Form Input: Radio Buttons 268
9.7. Validating Form Input: Checkboxes 269
9.8. Validating Form Input: Dates and Times 270
9.9. Validating Form Input: Credit Cards 271
9.10. Preventing Cross-Site Scripting 273
9.11. Working with Multipage Forms 274
9.12. Redisplaying Forms with Inline Error Messages 275
9.13. Guarding Against Multiple Submission of the Same Form 278
9.14. Processing Uploaded Files 279
9.15. Preventing Global Variable Injection 282
9.16. Handling Remote Variables with Periods in Their Names 284
9.17. Using Form Elements with Multiple Options 285
9.18. Creating Drop-Down Menus Based on the Current Date 286

10. Database Access . 289
10.0. Introduction 289
10.1. Using DBM Databases 291
10.2. Using an SQLite Database 295
10.3. Connecting to an SQL Database 297
10.4. Querying an SQL Database 298
10.5. Retrieving Rows Without a Loop 301
10.6. Modifying Data in an SQL Database 302
10.7. Repeating Queries Efficiently 303
10.8. Finding the Number of Rows Returned by a Query 306
10.9. Escaping Quotes 307
10.10. Logging Debugging Information and Errors 309
10.11. Creating Unique Identifiers 311
10.12. Building Queries Programmatically 313
10.13. Making Paginated Links for a Series of Records 317
10.14. Caching Queries and Results 320
10.15. Accessing a Database Connection Anywhere in Your Program 322
10.16. Program: Storing a Threaded Message Board 325

Table of Contents | ix

Download at Boykma.Com

11. Sessions and Data Persistence . 333
11.0. Introduction 333
11.1. Using Session Tracking 334
11.2. Preventing Session Hijacking 335
11.3. Preventing Session Fixation 337
11.4. Storing Sessions in a Database 338
11.5. Storing Sessions in Shared Memory 340
11.6. Storing Arbitrary Data in Shared Memory 344
11.7. Caching Calculated Results in Summary Tables 346

12. XML . 349
12.0. Introduction 349
12.1. Generating XML as a String 352
12.2. Generating XML with the DOM 353
12.3. Parsing Basic XML Documents 356
12.4. Parsing Complex XML Documents 359
12.5. Parsing Large XML Documents 361
12.6. Extracting Information Using XPath 367
12.7. Transforming XML with XSLT 370
12.8. Setting XSLT Parameters from PHP 372
12.9. Calling PHP Functions from XSLT Stylesheets 374
12.10. Validating XML Documents 378
12.11. Handling Content Encoding 380
12.12. Reading RSS and Atom Feeds 381
12.13. Writing RSS Feeds 384
12.14. Writing Atom Feeds 387

13. Web Automation . 393
13.0. Introduction 393
13.1. Fetching a URL with the Get Method 394
13.2. Fetching a URL with the Post Method 399
13.3. Fetching a URL with Cookies 401
13.4. Fetching a URL with Arbitrary Headers 403
13.5. Fetching a URL with an Arbitrary Method 404
13.6. Fetching a URL with a Timeout 406
13.7. Fetching an HTTPS URL 408
13.8. Debugging the Raw HTTP Exchange 409
13.9. Marking Up a Web Page 414
13.10. Cleaning Up Broken or Nonstandard HTML 417
13.11. Extracting Links from an HTML File 418
13.12. Converting Plain Text to HTML 420
13.13. Converting HTML to Plain Text 421
13.14. Removing HTML and PHP Tags 422

x | Table of Contents

Download at Boykma.Com

13.15. Responding to an Ajax Request 423
13.16. Integrating with JavaScript 426
13.17. Program: Finding Stale Links 429
13.18. Program: Finding Fresh Links 432

14. Consuming Web Services . 437
14.0. Introduction 437
14.1. Calling a REST Method 438
14.2. Calling a SOAP Method with WSDL 439
14.3. Calling a SOAP Method Without WSDL 441
14.4. Debugging SOAP Requests 443
14.5. Using Complex SOAP Types 444
14.6. Setting SOAP Types 445
14.7. Using SOAP Headers 447
14.8. Using Authentication with SOAP 448
14.9. Redefining an Endpoint 449
14.10. Catching SOAP Faults 451
14.11. Mapping XML Schema Data Types to PHP Classes 454
14.12. Calling an XML-RPC Method 455
14.13. Using Authentication with XML-RPC 457

15. Building Web Services . 459
15.0. Introduction 459
15.1. Serving a REST Method 459
15.2. Serving a SOAP Method 465
15.3. Accepting Arguments in a SOAP Method 468
15.4. Generating WSDL Automatically 470
15.5. Throwing SOAP Faults 470
15.6. Processing a SOAP Header 473
15.7. Generating a SOAP Header 475
15.8. Using Authentication with SOAP 477
15.9. Serving an XML-RPC Method 482

16. Internet Services . 487
16.0. Introduction 487
16.1. Sending Mail 488
16.2. Sending MIME Mail 490
16.3. Reading Mail with IMAP or POP3 492
16.4. Posting Messages to Usenet Newsgroups 495
16.5. Reading Usenet News Messages 497
16.6. Getting and Putting Files with FTP 502
16.7. Looking Up Addresses with LDAP 504
16.8. Using LDAP for User Authentication 506

Table of Contents | xi

Download at Boykma.Com

16.9. Performing DNS Lookups 508
16.10. Checking if a Host Is Alive 509
16.11. Getting Information About a Domain Name 511

17. Graphics . 515
17.0. Introduction 515
17.1. Drawing Lines, Rectangles, and Polygons 518
17.2. Drawing Arcs, Ellipses, and Circles 520
17.3. Drawing with Patterned Lines 521
17.4. Drawing Text 523
17.5. Drawing Centered Text 525
17.6. Building Dynamic Images 530
17.7. Getting and Setting a Transparent Color 532
17.8. Reading EXIF Data 533
17.9. Serving Images Securely 535
17.10. Program: Generating Bar Charts from Poll Results 537

18. Security and Encryption . 541
18.0. Introduction 541
18.1. Preventing Session Fixation 542
18.2. Protecting Against Form Spoofing 543
18.3. Ensuring Input Is Filtered 544
18.4. Avoiding Cross-Site Scripting 545
18.5. Eliminating SQL Injection 546
18.6. Keeping Passwords Out of Your Site Files 547
18.7. Storing Passwords 548
18.8. Dealing with Lost Passwords 550
18.9. Verifying Data with Hashes 551
18.10. Encrypting and Decrypting Data 553
18.11. Storing Encrypted Data in a File or Database 558
18.12. Sharing Encrypted Data with Another Web Site 561
18.13. Detecting SSL 563
18.14. Encrypting Email with GPG 564

19. Internationalization and Localization . 567
19.0. Introduction 567
19.1. Listing Available Locales 569
19.2. Using a Particular Locale 569
19.3. Setting the Default Locale 570
19.4. Localizing Text Messages 571
19.5. Localizing Dates and Times 575
19.6. Localizing Currency Values 576
19.7. Localizing Images 580

xii | Table of Contents

Download at Boykma.Com

19.8. Localizing Included Files 582
19.9. Managing Localization Resources 583
19.10. Using gettext 585
19.11. Setting the Character Encoding of Outgoing Data 586
19.12. Setting the Character Encoding of Incoming Data 587
19.13. Manipulating UTF-8 Text 588

20. Error Handling, Debugging, and Testing . 593
20.0. Introduction 593
20.1. Finding and Fixing Parse Errors 594
20.2. Creating Your Own Exception Classes 596
20.3. Printing a Stack Trace 599
20.4. Reading Configuration Variables 600
20.5. Setting Configuration Variables 602
20.6. Hiding Error Messages from Users 603
20.7. Tuning Error Handling 604
20.8. Using a Custom Error Handler 606
20.9. Logging Errors 607
20.10. Eliminating “headers already sent” Errors 608
20.11. Logging Debugging Information 610
20.12. Using a Debugger Extension 612
20.13. Writing a Unit Test 618
20.14. Writing a Unit Test Suite 620
20.15. Applying a Unit Test to a Web Page 622
20.16. Setting Up a Test Environment 623

21. Performance Tuning and Load Testing . 625
21.0. Introduction 625
21.1. Timing Function Execution 626
21.2. Timing Program Execution 627
21.3. Profiling with a Debugger Extension 631
21.4. Stress Testing Your Web Site 633
21.5. Avoiding Regular Expressions 634
21.6. Using an Accelerator 636

22. Regular Expressions . 639
22.0. Introduction 639
22.1. Switching from ereg to preg 642
22.2. Matching Words 644
22.3. Finding the nth Occurrence of a Match 645
22.4. Choosing Greedy or Nongreedy Matches 646
22.5. Finding All Lines in a File That Match a Pattern 648
22.6. Capturing Text Inside HTML Tags 649

Table of Contents | xiii

Download at Boykma.Com

22.7. Preventing Parentheses from Capturing Text 651
22.8. Escaping Special Characters in a Regular Expression 652
22.9. Reading Records with a Pattern Separator 654
22.10. Using a PHP Function in a Regular Expression 655

23. Files . 661
23.0. Introduction 661
23.1. Creating or Opening a Local File 665
23.2. Creating a Temporary File 666
23.3. Opening a Remote File 668
23.4. Reading from Standard Input 669
23.5. Reading a File into a String 669
23.6. Counting Lines, Paragraphs, or Records in a File 671
23.7. Processing Every Word in a File 674
23.8. Picking a Random Line from a File 676
23.9. Randomizing All Lines in a File 677
23.10. Processing Variable-Length Text Fields 677
23.11. Reading Configuration Files 678
23.12. Modifying a File in Place Without a Temporary File 681
23.13. Flushing Output to a File 682
23.14. Writing to Standard Output 683
23.15. Writing to Many Filehandles Simultaneously 684
23.16. Escaping Shell Metacharacters 685
23.17. Passing Input to a Program 686
23.18. Reading Standard Output from a Program 687
23.19. Reading Standard Error from a Program 689
23.20. Locking a File 690
23.21. Reading and Writing Custom File Types 693
23.22. Reading and Writing Compressed Files 698

24. Directories . 701
24.0. Introduction 701
24.1. Getting and Setting File Timestamps 704
24.2. Getting File Information 705
24.3. Changing File Permissions or Ownership 707
24.4. Splitting a Filename into Its Component Parts 708
24.5. Deleting a File 709
24.6. Copying or Moving a File 710
24.7. Processing All Files in a Directory 711
24.8. Getting a List of Filenames Matching a Pattern 713
24.9. Processing All Files in a Directory Recursively 714
24.10. Making New Directories 715
24.11. Removing a Directory and Its Contents 715

xiv | Table of Contents

Download at Boykma.Com

24.12. Program: Web Server Directory Listing 717
24.13. Program: Site Search 721

25. Command-Line PHP . 725
25.0. Introduction 725
25.1. Parsing Program Arguments 727
25.2. Parsing Program Arguments with getopt 728
25.3. Reading from the Keyboard 731
25.4. Running PHP Code on Every Line of an Input File 733
25.5. Reading Passwords 735
25.6. Program: Command Shell 737

26. PEAR and PECL . 741
26.0. Introduction 741
26.1. Using the PEAR Installer 743
26.2. Finding PEAR Packages 746
26.3. Finding Information About a Package 748
26.4. Installing PEAR Packages 750
26.5. Upgrading PEAR Packages 752
26.6. Uninstalling PEAR Packages 753
26.7. Installing PECL Packages 754

Index . 757

Table of Contents | xv

Download at Boykma.Com

Download at Boykma.Com

Preface

PHP is the engine behind millions of dynamic web applications. Its broad feature set,
approachable syntax, and support for different operating systems and web servers have
made it an ideal language for both rapid web development and the methodical con-
struction of complex systems.

One of the major reasons for PHP’s success as a web scripting language is its origins as
a tool to process HTML forms and create web pages. This makes PHP very web-friendly.
Additionally, it is eagerly promiscuous when it comes to external applications and
libraries. PHP can speak to a multitude of databases, and it knows numerous Internet
protocols. PHP also makes it simple to parse form data and make HTTP requests. This
web-specific focus carries over to the recipes and examples in the PHP Cookbook.

This book is a collection of solutions to common tasks in PHP. We’ve tried to include
material that will appeal to everyone from newbies to wizards. If we’ve succeeded, you’ll
learn something (or perhaps many things) from PHP Cookbook. There are tips in here
for everyday PHP programmers as well as for people coming to PHP with experience
in another language.

PHP, in source code and binary forms, is available for download for free from http://
www.php.net/. The PHP web site also contains installation instructions, comprehensive
documentation, and pointers to online resources, user groups, mailing lists, and other
PHP resources.

Who This Book Is For
This book is for programmers who need to solve problems with PHP. If you don’t know
any PHP, make this your second PHP book. The first should be Learning PHP 5, also
from O’Reilly.

If you’re already familiar with PHP, this book helps you overcome a specific problem
and get on with your life (or at least your programming activities.) The PHP Cook-
book can also show you how to accomplish a particular task in PHP, such as sending
email or writing a SOAP server, that you may already know how to do in another

xvii

Download at Boykma.Com

language. Programmers converting applications from other languages to PHP will find
this book a trusty companion.

What Is in This Book
We don’t expect that you’ll sit down and read this book from cover to cover (although
we’ll be happy if you do!). PHP programmers are constantly faced with a wide variety
of challenges on a wide range of subjects. Turn to the PHP Cookbook when you en-
counter a problem you need to solve. Each recipe is a self-contained explanation that
gives you a head start toward finishing your task. When a recipe refers to topics outside
its scope, it contains pointers to related recipes and other online and offline resources.

If you choose to read an entire chapter at once, that’s okay. The recipes generally flow
from easy to hard, with example programs that “put it all together” at the end of many
chapters. The chapter introduction provides an overview of the material covered in the
chapter, including relevant background material, and points out a few highlighted rec-
ipes of special interest.

The book begins with four chapters about basic data types. Chapter 1 covers details
like processing substrings, manipulating case, taking strings apart into smaller pieces,
and parsing comma-separated data. Chapter 2 explains operations with floating-point
numbers, random numbers, converting between bases, and number formatting. Chap-
ter 3 shows you how to manipulate dates and times, format them, handle time zones
and daylight saving time, and find time to microsecond precision. Chapter 4 covers
array operations like iterating, merging, reversing, sorting, and extracting particular
elements.

Next are three chapters that discuss program building blocks. Chpater 5 covers notable
features of PHP’s variable handling, such as default values, static variables, and pro-
ducing string representations of complex data types. The recipes in Chpater 6 deal with
using functions in PHP: processing arguments, passing and returning variables by ref-
erence, creating functions at runtime, and scoping variables. Chapter 7 covers PHP’s
object-oriented capabilities, with recipes on OOP basics as well as PHP 5’s new features,
such as magic methods, destructors, access control, and reflection.

After the data types and building blocks come six chapters devoted to topics that are
central to web programming. Chapter 8 covers cookies, headers, authentication, work-
ing with query strings, and other fundamentals of web applications. Chapter 9 covers
processing and validating form input, displaying multipage forms, showing forms with
error messages, and guarding against problems such as cross-site scripting and multiple
submission of the same form. Chapter 10 explains the differences between DBM and
SQL databases and, using PHP 5’s PDO database access abstraction layer, shows how
to connect to a database, assign unique ID values, retrieve rows, change data, escape
quotes, and log debugging information. Chapter 11 covers PHP’s built-in sessions
module, which lets you maintain information about a user as he moves from page to
page on your web site. This chapter also highlights some of the security issues associated

xviii | Preface

Download at Boykma.Com

with sessions. Chapter 12 discusses all things XML: PHP 5’s SimpleXML extension and
revamped DOM functions, using XPath and XSLT, and reading and writing both RSS
and Atom feeds. Chapter 13 explores topics useful to PHP applications that integrate
with external web sites and client-side JavaScript such as retrieving remote URLs,
cleaning up HTML, and responding to an Ajax request.

The next three chapters are all about network interaction. Chapter 14 details the ins
and outs of consuming a web service—using an external REST, SOAP, or XML-RPC
service from within your code. Chapter 15 handles the other side of the web services
equation—serving up REST, SOAP, or XML-RPC requests to others. Both chapters
discuss WSDL, authentication, headers, and error handling. Chapter 16 discusses other
network services such as sending email messages, using LDAP, and doing DNS lookups.

The next section of the book is a series of chapters on features and extensions of PHP
that help you build applications that are robust, secure, user-friendly, and efficient.
Chpater 17 shows you how to create graphics, with recipes on drawing text, lines,
polygons, and curves. Chapter 18 focuses on security topics such as avoiding session
fixation and cross-site scripting, working with passwords, and encrypting data. Chapter
19 helps you make your applications globally friendly and includes recipes localizing
text, dates and times, currency values, and images, as well as working with text in
different character encodings, including UTF-8. Chapter 20 goes into detail on error
handling, debugging techniques, and writing tests for your code. Chapter 21 explains
how to compare the performance of two functions and provides tips on getting your
programs to run at maximum speed. Chapter 22 covers regular expressions, including
capturing text inside of HTML tags, calling a PHP function from inside a regular ex-
pression, and using greedy and nongreedy matching.

Chapters 23 and 24 cover the filesystem. Chapter 23 focuses on files: opening and
closing them, using temporary files, locking file, sending compressed files, and pro-
cessing the contents of files. Chapter 24 deals with directories and file metadata, with
recipes on changing file permissions and ownership, moving or deleting a file, and
processing all files in a directory.

Last, there are two chapters on topics that extend the reach of what PHP can do. Chap-
ter 25 covers using PHP outside of web programming. Its recipes cover command-line
topics such as parsing program arguments and reading passwords. Chapter 26 covers
PEAR (the PHP Extension and Application Repository) and PECL (the PHP Extension
Community Library). PEAR is a collection of PHP code that provides functions and
extensions to PHP. PECL is a similar collection, but of extensions to PHP written in C.
We use PEAR and PECL modules throughout the book and Chapter 26 shows you how
to install and upgrade them.

Preface | xix

Download at Boykma.Com

Other Resources

Web Sites
There is a tremendous amount of PHP reference material online. With everything from
the annotated PHP manual to sites with periodic articles and tutorials, a fast Internet
connection rivals a large bookshelf in PHP documentary usefulness. Here are some key
sites:

The Annotated PHP Manual: http://www.php.net/manual
Available in 17 languages, this site includes both official documentation of func-
tions and language features as well as user-contributed comments.

PHP mailing lists: http://www.php.net/mailing-lists.php
There are many PHP mailing lists covering installation, programming, extending
PHP, and various other topics. A read-only web interface to the mailing lists is at
http://news.php.net/.

PHP Presentation archive: http://talks.php.net
A collection of presentations on PHP given at various conferences.

PEAR: http://pear.php.net
PEAR calls itself “a framework and distribution system for reuseable PHP compo-
nents.” You’ll find lots of useful PHP classes and sample code there. Read more
about PEAR in Chapter 26.

PECL: http://pecl.php.net
PECL calls itself “a repository for PHP Extensions, providing a directory of all
known extensions and hosting facilities for downloading and development of PHP
extensions.” Read more about PECL in Chapter 26.

PHP.net: A Tourist’s Guide: http://www.php.net/sites.php
This is a guide to the various web sites under the php.net umbrella.

PHP Knowledge Base: http://php.faqts.com
Many questions and answers from the PHP community, as well as links to other
resources.

PHP DevCenter: http://www.onlamp.com/php
A collection of PHP articles and tutorials with a good mix of introductory and
advanced topics.

Planet PHP: http://www.planet-php.net
An aggregation of blog posts by PHP developers and about PHP.

Zend Developer Zone: http://devzone.zend.com
A regularly updated collection of articles, tutorials, and code samples.

SitePoint Blogs on PHP: http://www.sitepoint.com/blogs/category/php
A good collection of information about and exploration of PHP.

xx | Preface

Download at Boykma.Com

Books
This section lists books that are helpful references and tutorials for building applica-
tions with PHP. Most are specific to web-related programming; look for books on
MySQL, HTML, XML, and HTTP.

At the end of the section, we’ve included a few books that are useful for every pro-
grammer regardless of language of choice. These works can make you a better pro-
grammer by teaching you how to think about programming as part of a larger pattern
of problem solving:

• Learning PHP 5 by David Sklar (O’Reilly)

• Upgrading to PHP 5 by Adam Trachtenberg (O’Reilly)

• Programming PHP by Rasmus Lerdorf, Kevin Tatroe, and Peter MacIntyre (O’Re-
illy)

• Essential PHP Tools by David Sklar (Apress)

• Advanced PHP Programming by George Schlossnagle (Sams)

• Extending and Embedding PHP by Sara Golemon (Sams)

• HTML and XHTML: The Definitive Guide by Chuck Musciano and Bill Kennedy
(O’Reilly)

• Dynamic HTML: The Definitive Guide by Danny Goodman (O’Reilly)

• Mastering Regular Expressions by Jeffrey E. F. Friedl (O’Reilly)

• XML in a Nutshell by Elliotte Rusty Harold and W. Scott Means (O’Reilly)

• MySQL Reference Manual, by Michael “Monty” Widenius, David Axmark, and
MySQL AB (O’Reilly); also available at http://www.mysql.com/documentation/

• MySQL, by Paul DuBois (New Riders)

• Web Security, Privacy, and Commerce by Simson Garfinkel and Gene Spafford
(O’Reilly)

• HTTP Pocket Reference, by Clinton Wong (O’Reilly)

• The Practice of Programming, by Brian W. Kernighan and Rob Pike (Addison-
Wesley)

• Programming Pearls by Jon Louis Bentley (Addison-Wesley)

• The Mythical Man-Month, by Frederick P. Brooks (Addison-Wesley)

Conventions Used in This Book

Programming Conventions
The examples in this book were written to run under PHP version 5.1.4. Sample code
should work on both Unix and Windows, except where noted in the text. We’ve gen-

Preface | xxi

Download at Boykma.Com

erally noted in the text when we depend on a feature added to PHP after version 4.3.0
or 5.0.0.

We also call out when a feature will be available in an yet-to-be-unreleased version of
PHP, including PHP 6. In those cases, please double check our code, as things can
change during the development cycle.

Typesetting Conventions
The following typographic conventions are used in this book:

Italic
Used for file and directory names, email addresses, and URLs, as well as for new
terms where they are defined.

Constant width
Used for code listings and for keywords, variables, functions, command options,
parameters, class names, and HTML tags where they appear in the text.

Constant width bold
Used to mark lines of output in code listings and command lines to be typed by
the user.

Constant width italic
Used as a general placeholder to indicate items that should be replaced by actual
values in your own programs.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/phpckbk2

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http://www.oreilly.com

xxii | Preface

Download at Boykma.Com

Acknowledgments
Most importantly, a huge thanks to everyone who has contributed their time, creativity,
and skills to making PHP what it is today. This amazing volunteer effort has created
not only hundreds of thousands of lines of source code, but also comprehensive doc-
umentation, a QA infrastructure, lots of add-on applications and libraries, and a
thriving user community worldwide. It’s a thrill and an honor to add the PHP Cook-
book to the world of PHP.

Thanks also to our reviewers: Wez Furlong, James Nash, and Mark Oglia.

Thanks to Chris Shiflett and Clay Loveless for their important contributions. Without
Chris, Chapter 18 would be much slimmer. Without Clay, there’d be no Chapters 11,
20, 21, or 26. A special thanks to our tireless editor Tatiana Apandi. Her masterful
synthesis of the iron fist and the velvet glove provided the necessary glue to orchestrate
the successful completion of this edition. Without Tatiana, this book would have ended
up as a 27-page pamphlet completed sometime in 2012.

David Sklar
Thanks once again to Adam. We’ve been working together (in one way or another) for
11 years and PHPing together for 10. There is no one with whom I’d rather have written
this book (except, to be completely honest, maybe Ben Franklin, if he could somehow
be brought back to life).

Thanks to the folks at Ning for providing (among other things) an opportunity to do
fun things with PHP.

To my parents and my sister—thank you for your steady support and love, as well as
for being unwitting test subjects when I need to try out explanations of technical things
that I hope are intelligible to non-geeks.

For patience, inspiration, and a toad, thanks to Susannah, who continually amazes me.

Adam Trachtenberg
I can’t believe I’ve been using PHP for 10 years. I still remember the first time I used
the language formerly known as PHP/FI. Writing web applications in PHP was so much
easier than what I had used before that I immediately dumped everything else. The
defining moment for me was when writing text to the error log didn’t require a com-
plicated sequence of steps involving file handles, but sending a string of text to function
straightforwardly named error_log(  ). Genius.

A big shout out to David. I would not—and could not—have written this without him.
I, and PHP Cookbook, owe you a big debt of gratitude.

It’s tough to complete with Ben Franklin. However, please know that I, too, support
the turkey as the official animal of PHP.

Preface | xxiii

Download at Boykma.Com

Thanks to everyone at eBay for providing me with such a great opportunity to work
with so many amazing people that make up the entire eBay community.

Thanks to my parents, family, and friends for their support and encouragement.

Thanks to Elizabeth Hondl. I love you so very much. Stay tuned for my next book, the
Maritime Disaster Cookbook.

Clay Loveless
I would like to thank Adam Trachtenberg, David Sklar, Tatiana Apandi and the rest of
the crew at O’Reilly for making this book possible, and for including me in the process.
Special thanks to my wife, Kendra, and my son, Wade, for allowing the time for me to
be included.

Chris Shiflett
Thanks to Adam and David for writing such a great book and for giving me the op-
portunity to contribute.

xxiv | Preface

Download at Boykma.Com

CHAPTER 1

Strings

1.0 Introduction
Strings in PHP are sequences of bytes, such as “We hold these truths to be self-evident”
or “Once upon a time” or even “111211211.” When you read data from a file or output
it to a web browser, your data are represented as strings.

PHP strings are binary-safe (i.e., they can contain null bytes) and can grow and shrink
on demand. Their size is limited only by the amount of memory that is available to
PHP.

Usually, PHP strings are ASCII strings. You must do extra work to
handle non-ASCII data like UTF-8 or other multibyte character encod-
ings, see Chapter 19.

Similar in form and behavior to Perl and the Unix shell, strings can be initialized in
three ways: with single quotes, with double quotes , and with the “here docu-
ment” (heredoc) format. With single-quoted strings, the only special characters you
need to escape inside a string are backslash and the single quote itself. Example 1-1
shows four single-quoted strings.

Example 1-1. Single-quoted strings
print 'I have gone to the store.';
print 'I\'ve gone to the store.';
print 'Would you pay $1.75 for 8 ounces of tap water?';
print 'In double-quoted strings, newline is represented by \n';

Example 1-1 prints:

I have gone to the store.
I've gone to the store.
Would you pay $1.75 for 8 ounces of tap water?
In double-quoted strings, newline is represented by \n

Because PHP doesn’t check for variable interpolation or almost any escape sequences
in single-quoted strings, defining strings this way is straightforward and fast.

1

Download at Boykma.Com

Double-quoted strings don’t recognize escaped single quotes, but they do recognize
interpolated variables and the escape sequences shown in Table 1-1.

Table 1-1. Double-quoted string escape sequences

Escape sequence Character

\n Newline (ASCII 10)

\r Carriage return (ASCII 13)

\t Tab (ASCII 9)

\\ Backslash

\$ Dollar sign

\" Double quotes

\0 through \777 Octal value

\x0 through \xFF Hex value

Example 1-2 shows some double-quoted strings.

Example 1-2. Double-quoted strings
print "I've gone to the store.";
print "The sauce cost \$10.25.";
$cost = '$10.25';
print "The sauce cost $cost.";
print "The sauce cost \$\061\060.\x32\x35.";

Example 1-2 prints:

I've gone to the store.
The sauce cost $10.25.
The sauce cost $10.25.
The sauce cost $10.25.

The last line of Example 1-2 prints the price of sauce correctly because the character
1 is ASCII code 49 decimal and 061 octal. Character 0 is ASCII 48 decimal and 060
octal; 2 is ASCII 50 decimal and 32 hex; and 5 is ASCII 53 decimal and 35 hex.

Heredoc -specified strings recognize all the interpolations and escapes of double-quo-
ted strings, but they don’t require double quotes to be escaped. Heredocs start with
<<< and a token. That token (with no leading or trailing whitespace), followed by sem-
icolon a to end the statement (if necessary), ends the heredoc. Example 1-3 shows how
to define a heredoc.

Example 1-3. Defining a here document
print <<< END
It's funny when signs say things like:
 Original "Root" Beer
 "Free" Gift
 Shoes cleaned while "you" wait

2 | Chapter 1: Strings

Download at Boykma.Com

or have other misquoted words.
END;

Example 1-3 prints:

It's funny when signs say things like:
 Original "Root" Beer
 "Free" Gift
 Shoes cleaned while "you" wait
or have other misquoted words.

Newlines, spacing, and quotes are all preserved in a heredoc. By convention, the end-
of-string identifier is usually all caps, and it is case sensitive. Example 1-4 shows two
more valid heredocs.

Example 1-4. More here documents

print <<< PARSLEY
It's easy to grow fresh:
Parsley
Chives
on your windowsill
PARSLEY;

print <<< DOGS
If you like pets, yell out:
DOGS AND CATS ARE GREAT!
DOGS;

Heredocs are especially useful for printing out HTML with interpolated variables, since
you don’t have to escape the double quotes that appear in the HTML elements. Ex-
ample 1-5 uses a heredoc to print HTML.

Example 1-5. Printing HTML with a here document

if ($remaining_cards > 0) {
 $url = '/deal.php';
 $text = 'Deal More Cards';
} else {
 $url = '/new-game.php';
 $text = 'Start a New Game';
}
print <<< HTML
There are $remaining_cards left.
<p>
$text
HTML;

In Example 1-5, the semicolon needs to go after the end-of-string delimiter to tell PHP
the statement is ended. In some cases, however, you shouldn’t use the semicolon. One
of these cases is shown in Example 1-6, which uses a heredoc with the string concate-
nation operator .

1.0 Introduction | 3

Download at Boykma.Com

Example 1-6. Concatenation with a here document
$html = <<< END
<div class="$divClass">
<ul class="$ulClass">

END
. $listItem . '</div>';

print $html;

Assuming some reasonable values for the $divClass, $ulClass, and $listItem variables,
Example 1-6 prints:

<div class="class1">
<ul class="class2">
 The List Item </div>

In Example 1-6, the expression needs to continue on the next line, so you don’t use a
semicolon. Note also that in order for PHP to recognize the end-of-string delimiter,
the . string concatenation operator needs to go on a separate line from the end-of-string
delimiter.

Individual bytes in strings can be referenced with square brackets. The first byte in the
string is at index 0. Example 1-7 grabs one byte from a string.

Example 1-7. Getting an individual byte in a string
$neighbor = 'Hilda';
print $neighbor[3];

Example 1-7 prints:

d

You can also use curly braces to access individual byte in a string. That is,
$neighbor{3} is the same as $neighbor[3]. The curly brace syntax is a newer addition to
PHP. It provides a visual distinction between string indexing and array indexing.

1.1 Accessing Substrings

Problem
You want to know if a string contains a particular substring. For example, you want to
find out if an email address contains a @.

Solution
Use strpos(  ) , as in Example 1-8.

Example 1-8. Finding a substring with strpos(  )
<?php

4 | Chapter 1: Strings

Download at Boykma.Com

if (strpos($_POST['email'], '@') === false) {
 print 'There was no @ in the e-mail address!';
 }

?>

Discussion
The return value from strpos(  ) is the first position in the string (the “haystack”) at
which the substring (the “needle”) was found. If the needle wasn’t found at all in the
haystack, strpos(  ) returns false. If the needle is at the beginning of the haystack,
strpos(  ) returns 0, since position 0 represents the beginning of the string. To differ-
entiate between return values of 0 and false, you must use the identity operator (===)
or the not–identity operator (!==) instead of regular equals (==) or not-equals (!=).
Example 1-8 compares the return value from strpos(  ) to false using ===. This test only
succeeds if strpos returns false, not if it returns 0 or any other number.

See Also
Documentation on strpos(  ) at http://www.php.net/strpos.

1.2 Extracting Substrings

Problem
You want to extract part of a string, starting at a particular place in the string. For
example, you want the first eight characters of a username entered into a form.

Solution
Use substr(  ) to select your substring, as in Example 1-9.

Example 1-9. Extracting a substring with substr(  )
<?php
$substring = substr($string,$start,$length);
$username = substr($_GET['username'],0,8);
?>

Discussion
If $start and $length are positive, substr(  ) returns $length characters in the string,
starting at $start. The first character in the string is at position 0. Example 1-10 has
positive $start and $length.

Example 1-10. Using substr(  ) with positive $start and $length
print substr('watch out for that tree',6,5);

Example 1-10 prints:

1.2 Extracting Substrings | 5

Download at Boykma.Com

out f

If you leave out $length, substr(  ) returns the string from $start to the end of the
original string, as shown in Example 1-11.

Example 1-11. Using substr(  ) with positive start and no length

print substr('watch out for that tree',17);

Example 1-11 prints:

t tree

If $start is bigger than the length of the string, substr(  ) returns false..

If $start plus $length goes past the end of the string, substr(  ) returns all of the string
from $start forward, as shown in Example 1-12.

Example 1-12. Using substr(  ) with length past the end of the string

print substr('watch out for that tree',20,5);

Example 1-12 prints:

ree

If $start is negative, substr(  ) counts back from the end of the string to determine where
your substring starts, as shown in Example 1-13.

Example 1-13. Using substr(  ) with negative start

print substr('watch out for that tree',-6);
print substr('watch out for that tree',-17,5);

Example 1-13 prints:

t tree
out f

With a negative $start value that goes past the beginning of the string (for example, if
$start is −27 with a 20-character string), substr(  ) behaves as if $start is 0.

If $length is negative, substr(  ) counts back from the end of the string to determine
where your substring ends, as shown in Example 1-14.

Example 1-14. Using substr(  ) with negative length

print substr('watch out for that tree',15,-2);
print substr('watch out for that tree',-4,-1);

Example 1-14 prints:

hat tr
tre

6 | Chapter 1: Strings

Download at Boykma.Com

See Also
Documentation on substr(  ) at http://www.php.net/substr.

1.3 Replacing Substrings

Problem
You want to replace a substring with a different string. For example, you want to
obscure all but the last four digits of a credit card number before printing it.

Solution
Use substr_replace(), as in Example 1-15.

Example 1-15. Replacing a substring with substr_replace(  )
// Everything from position $start to the end of $old_string
// becomes $new_substring
$new_string = substr_replace($old_string,$new_substring,$start);

// $length characters, starting at position $start, become $new_substring
$new_string = substr_replace($old_string,$new_substring,$start,$length);

Discussion
Without the $length argument, substr_replace(  ) replaces everything from $start to
the end of the string. If $length is specified, only that many characters are replaced:

print substr_replace('My pet is a blue dog.','fish.',12);
print substr_replace('My pet is a blue dog.','green',12,4);
$credit_card = '4111 1111 1111 1111';
print substr_replace($credit_card,'xxxx ',0,strlen($credit_card)-4);

My pet is a fish.
My pet is a green dog.
xxxx 1111

If $start is negative, the new substring is placed at $start characters counting from the
end of $old_string, not from the beginning:

print substr_replace('My pet is a blue dog.','fish.',-9);
print substr_replace('My pet is a blue dog.','green',-9,4);

My pet is a fish.
My pet is a green dog.

If $start and $length are 0, the new substring is inserted at the start of $old_string:
print substr_replace('My pet is a blue dog.','Title: ',0,0);

Title: My pet is a blue dog.

The function substr_replace(  ) is useful when you’ve got text that’s too big to display
all at once, and you want to display some of the text with a link to the rest. Exam-

1.3 Replacing Substrings | 7

Download at Boykma.Com

ple 1-16 displays the first 25 characters of a message with an ellipsis after it as a link to
a page that displays more text.

Example 1-16. Displaying long text with an ellipsis
$r = mysql_query("SELECT id,message FROM messages WHERE id = $id") or die();
$ob = mysql_fetch_object($r);
printf('%s',
 $ob->id, substr_replace($ob->message,' ...',25));

The more-text.php page referenced in Example 1-16 can use the message ID passed in
the query string to retrieve the full message and display it.

See Also
Documentation on substr_replace(  ) at http://www.php.net/substr-replace.

1.4 Processing a String One Byte at a Time

Problem
You need to process each byte in a string individually.

Solution
Loop through each byte in the string with for. Example 1-17 counts the vowels in a
string.

Example 1-17. Processing each byte in a string
<?php
$string = "This weekend, I'm going shopping for a pet chicken.";
$vowels = 0;
for ($i = 0, $j = strlen($string); $i < $j; $i++) {
 if (strstr('aeiouAEIOU',$string[$i])) {
 $vowels++;
 }
}
?>

Discussion
Processing a string a character at a time is an easy way to calculate the “Look and Say”
sequence, as shown in Example 1-18.

Example 1-18. The “Look and Say” sequence
<?php
function lookandsay($s) {
 // initialize the return value to the empty string
 $r = '';
 // $m holds the character we're counting, initialize to the first

8 | Chapter 1: Strings

Download at Boykma.Com

 // character in the string
 $m = $s[0];
 // $n is the number of $m's we've seen, initialize to 1
 $n = 1;
 for ($i = 1, $j = strlen($s); $i < $j; $i++) {
 // if this character is the same as the last one
 if ($s[$i] == $m) {
 // increment the count of this character
 $n++;
 } else {
 // otherwise, add the count and character to the return value
 $r .= $n.$m;
 // set the character we're looking for to the current one
 $m = $s[$i];
 // and reset the count to 1
 $n = 1;
 }
 }
 // return the built up string as well as the last count and character
 return $r.$n.$m;
}

for ($i = 0, $s = 1; $i < 10; $i++) {
 $s = lookandsay($s);
 print "$s
\n";
}

Example 1-18 prints:

1
11
21
1211
111221
312211
13112221
1113213211
31131211131221
13211311123113112211

It’s called the “Look and Say” sequence because each element is what you get by looking
at the previous element and saying what’s in it. For example, looking at the first element,
1, you say “one one.” So the second element is “11.” That’s two ones, so the third
element is “21.” Similarly, that’s one two and one one, so the fourth element is “1211,”
and so on.

See Also
Documentation on for at http://www.php.net/for; more about the “Look and Say” se-
quence at http://mathworld.wolfram.com/LookandSaySequence.html.

1.4 Processing a String One Byte at a Time | 9

Download at Boykma.Com

1.5 Reversing a String by Word or Byte

Problem
You want to reverse the words or the bytes in a string.

Solution
Use strrev(  ) to reverse by byte, as in Example 1-19.

Example 1-19. Reversing a string by byte

<?php
print strrev('This is not a palindrome.');
?>

Example 1-19 prints:

.emordnilap a ton si sihT

To reverse by words, explode the string by word boundary, reverse the words, and
then rejoin, as in Example 1-20.

Example 1-20. Reversing a string by word

<?php
$s = "Once upon a time there was a turtle.";
// break the string up into words
$words = explode(' ',$s);
// reverse the array of words
$words = array_reverse($words);
// rebuild the string
$s = implode(' ',$words);
print $s;
?>

Example 1-20 prints:

turtle. a was there time a upon Once

Discussion
Reversing a string by words can also be done all in one line with the code in Exam-
ple 1-21.

Example 1-21. Concisely reversing a string by word

<?php
$reversed_s = implode(' ',array_reverse(explode(' ',$s)));
?>

10 | Chapter 1: Strings

Download at Boykma.Com

See Also
Recipe 23.7 discusses the implications of using something other than a space character
as your word boundary; documentation on strrev(  ) at http://www.php.net/strrev and
array_reverse(  ) at http://www.php.net/array-reverse.

1.6 Expanding and Compressing Tabs

Problem
You want to change spaces to tabs (or tabs to spaces) in a string while keeping text
aligned with tab stops. For example, you want to display formatted text to users in a
standardized way.

Solution
Use str_replace(  ) to switch spaces to tabs or tabs to spaces, as shown in Exam-
ple 1-22.

Example 1-22. Switching tabs and spaces
<?php
$r = mysql_query("SELECT message FROM messages WHERE id = 1") or die();
$ob = mysql_fetch_object($r);
$tabbed = str_replace(' ',"\t",$ob->message);
$spaced = str_replace("\t",' ',$ob->message);

print "With Tabs: <pre>$tabbed</pre>";
print "With Spaces: <pre>$spaced</pre>";
?>

Using str_replace(  ) for conversion, however, doesn’t respect tab stops. If you want
tab stops every eight characters, a line beginning with a five-letter word and a tab should
have that tab replaced with three spaces, not one. Use the pc_tab_expand(  ) function
shown in Example 1-23 into turn tabs to spaces in a way that respects tab stops.

Example 1-23. pc_tab_expand(  )
<?php
function pc_tab_expand($text) {
 while (strstr($text,"\t")) {
 $text = preg_replace_callback('/^([^\t\n]*)(\t+)/m','pc_tab_expand_helper', $text);
 }
 return $text;
}

function pc_tab_expand_helper($matches) {
 $tab_stop = 8;

 return $matches[1] .
 str_repeat(' ',strlen($matches[2]) *

1.6 Expanding and Compressing Tabs | 11

Download at Boykma.Com

 $tab_stop - (strlen($matches[1]) % $tab_stop));
}

$spaced = pc_tab_expand($ob->message);
?>

You can use the pc_tab_unexpand(  ) function shown in Example 1-24 to turn spaces
back to tabs.

Example 1-24. pc_tab_unexpand(  )
<?php
function pc_tab_unexpand($text) {
 $tab_stop = 8;
 $lines = explode("\n",$text);
 foreach ($lines as $i => $line) {
 // Expand any tabs to spaces
 $line = pc_tab_expand($line);
 $chunks = str_split($line, $tab_stop);
 $chunkCount = count($chunks);
 // Scan all but the last chunk
 for ($j = 0; $j < $chunkCount - 1; $j++) {
 $chunks[$j] = preg_replace('/ {2,}$/',"\t",$chunks[$j]);
 }
 // If the last chunk is a tab-stop's worth of spaces
 // convert it to a tab; Otherwise, leave it alone
 if ($chunks[$chunkCount-1] == str_repeat(' ', $tab_stop)) {
 $chunks[$chunkCount-1] = "\t";
 }
 // Recombine the chunks
 $lines[$i] = implode('',$chunks);
 }
 // Recombine the lines
 return implode("\n",$lines);
}

$tabbed = pc_tab_unexpand($ob->message);
?>

Both functions take a string as an argument and return the string appropriately modi-
fied.

Discussion
Each function assumes tab stops are every eight spaces, but that can be modified by
changing the setting of the $tab_stop variable.

The regular expression in pc_tab_expand(  ) matches both a group of tabs and all the
text in a line before that group of tabs. It needs to match the text before the tabs because
the length of that text affects how many spaces the tabs should be replaced with so that
subsequent text is aligned with the next tab stop. The function doesn’t just replace each
tab with eight spaces; it adjusts text after tabs to line up with tab stops.

12 | Chapter 1: Strings

Download at Boykma.Com

Similarly, pc_tab_unexpand(  ) doesn’t just look for eight consecutive spaces and then
replace them with one tab character. It divides up each line into eight-character chunks
and then substitutes ending whitespace in those chunks (at least two spaces) with tabs.
This not only preserves text alignment with tab stops; it also saves space in the string.

See Also
Documentation on str_replace(  ) at http://www.php.net/str-replace, on
preg_replace_callback(  ) at http://www.php.net/preg_replace_callback, and on
str_split(  ) at http://www.php.net/str_split. Recipe 22.10 has more information on
preg_replace_callback(  ) .

1.7 Controlling Case

Problem
You need to capitalize, lowercase, or otherwise modify the case of letters in a string.
For example, you want to capitalize the initial letters of names but lowercase the rest.

Solution
Use ucfirst(  ) or ucwords(  ) to capitalize the first letter of one or more words, as shown
in Example 1-25.

Example 1-25. Capitalizing letters

<?php
print ucfirst("how do you do today?");
print ucwords("the prince of wales");
?>

Example 1-25 prints:

How do you do today?
The Prince Of Wales

Use strtolower(  ) or strtoupper(  ) to modify the case of entire strings, as in Exam-
ple 1-26.

Example 1-26. Changing case of strings

print strtoupper("i'm not yelling!");
// Tags must be lowercase to be XHTML compliant
print strtolower('one');

Example 1-26 prints:

I'M NOT YELLING!
one

1.7 Controlling Case | 13

Download at Boykma.Com

Discussion
Use ucfirst(  ) to capitalize the first character in a string:

<?php
print ucfirst('monkey face');
print ucfirst('1 monkey face');
?>

This prints:

Monkey face
1 monkey face

Note that the second phrase is not “1 Monkey face.”

Use ucwords(  ) to capitalize the first character of each word in a string:

<?php
print ucwords('1 monkey face');
print ucwords("don't play zone defense against the philadelphia 76-ers");
?>

This prints:

1 Monkey Face
Don't Play Zone Defense Against The Philadelphia 76-ers

As expected, ucwords(  ) doesn’t capitalize the “t” in “don’t.” But it also doesn’t capi-
talize the “e” in “76-ers.” For ucwords(  ), a word is any sequence of nonwhitespace
characters that follows one or more whitespace characters. Since both ' and - aren’t
whitespace characters, ucwords(  ) doesn’t consider the “t” in “don’t” or the “e” in “76-
ers” to be word-starting characters.

Both ucfirst(  ) and ucwords() don’t change the case of non-first letters:

<?php
print ucfirst('macWorld says I should get an iBook');
print ucwords('eTunaFish.com might buy itunaFish.Com!');
?>

This prints:

MacWorld says I should get an iBook
ETunaFish.com Might Buy ItunaFish.Com!

The functions strtolower(  ) and strtoupper(  ) work on entire strings, not just individ-
ual characters. All alphabetic characters are changed to lowercase by strtolower(  ) and
strtoupper(  ) changes all alphabetic characters to uppercase:

<?php
print strtolower("I programmed the WOPR and the TRS-80.");
print strtoupper('"since feeling is first" is a poem by e. e. cummings.');
?>

This prints:

i programmed the wopr and the trs-80.
"SINCE FEELING IS FIRST" IS A POEM BY E. E. CUMMINGS.

14 | Chapter 1: Strings

Download at Boykma.Com

When determining upper- and lowercase, these functions respect your locale settings.

See Also
For more information about locale settings, see Chapter 19; documentation on
ucfirst(  ) at http://www.php.net/ucfirst, ucwords(  ) at http://www.php.net/ucwords,
strtolower(  ) at http://www.php.net/strtolower, and strtoupper(  ) at http://
www.php.net/strtoupper.

1.8 Interpolating Functions and Expressions Within Strings

Problem
You want to include the results of executing a function or expression within a string.

Solution
Use the string concatenation operator (.), as shown in Example 1-27, when the value
you want to include can’t be inside the string.

Example 1-27. String concatenation

<?php
print 'You have '.($_REQUEST['boys'] + $_REQUEST['girls']).' children.';
print "The word '$word' is ".strlen($word).' characters long.';
print 'You owe '.$amounts['payment'].' immediately';
print "My circle's diameter is ".$circle->getDiameter().' inches.';
?>

Discussion
You can put variables, object properties, and array elements (if the subscript is unquo-
ted) directly in double-quoted strings:

<?php
print "I have $children children.";
print "You owe $amounts[payment] immediately.";
print "My circle's diameter is $circle->diameter inches.";
?>

Interpolation with double-quoted strings places some limitations on the syntax of what
can be interpolated. In the previous example, $amounts['payment'] had to be written as
$amounts[payment] so it would be interpolated properly. Use curly braces around more
complicated expressions to interpolate them into a string. For example:

<?php
print "I have less than {$children} children.";
print "You owe {$amounts['payment']} immediately.";
print "My circle's diameter is {$circle->getDiameter()} inches.";
?>

1.8 Interpolating Functions and Expressions Within Strings | 15

Download at Boykma.Com

Direct interpolation or using string concatenation also works with heredocs. Interpo-
lating with string concatenation in heredocs can look a little strange because the closing
heredoc delimiter and the string concatenation operator have to be on separate lines:

<?php
print <<< END
Right now, the time is
END
. strftime('%c') . <<< END
 but tomorrow it will be
END
. strftime('%c',time() + 86400);
?>

Also, if you’re interpolating with heredocs, make sure to include appropriate spacing
for the whole string to appear properly. In the previous example, Right now the time
has to include a trailing space, and but tomorrow it will be has to include leading and
trailing spaces.

See Also
For the syntax to interpolate variable variables (such as ${"amount_$i"}), see Rec-
ipe 5.4; documentation on the string concatenation operator at http://www.php.net/
language.operators.string.

1.9 Trimming Blanks from a String

Problem
You want to remove whitespace from the beginning or end of a string. For example,
you want to clean up user input before validating it.

Solution
Use ltrim(  ), rtrim(  ), or trim(  ). ltrim(  ) removes whitespace from the beginning of
a string, rtrim(  ) from the end of a string, and trim(  ) from both the beginning and end
of a string:

<?php
$zipcode = trim($_REQUEST['zipcode']);
$no_linefeed = rtrim($_REQUEST['text']);
$name = ltrim($_REQUEST['name']);
?>

Discussion
For these functions, whitespace is defined as the following characters: newline, carriage
return, space, horizontal and vertical tab, and null.

Trimming whitespace off of strings saves storage space and can make for more precise
display of formatted data or text within <pre> tags, for example. If you are doing com-

16 | Chapter 1: Strings

Download at Boykma.Com

parisons with user input, you should trim the data first, so that someone who mistak-
enly enters “98052” as their zip code isn’t forced to fix an error that really isn’t one.
Trimming before exact text comparisons also ensures that, for example, “salami\n”
equals “salami.” It’s also a good idea to normalize string data by trimming it before
storing it in a database.

The trim(  ) functions can also remove user-specified characters from strings. Pass the
characters you want to remove as a second argument. You can indicate a range of
characters with two dots between the first and last characters in the range:

<?php
// Remove numerals and space from the beginning of the line
print ltrim('10 PRINT A$',' 0..9');
// Remove semicolon from the end of the line
print rtrim('SELECT * FROM turtles;',';');
?>

This prints:

PRINT A$
SELECT * FROM turtles

PHP also provides chop(  ) as an alias for rtrim(  ). However, you’re best off using
rtrim(  ) instead because PHP’s chop(  ) behaves differently than Perl’s chop(  ) (which is
deprecated in favor of chomp(  ) , anyway), and using it can confuse others when they
read your code.

See Also
Documentation on trim(  ) at http://www.php.net/trim, ltrim(  ) at http://www.php.net/
ltrim, and rtrim(  ) at http://www.php.net/rtrim.

1.10 Generating Comma-Separated Data

Problem
You want to format data as comma-separated values (CSV) so that it can be imported
by a spreadsheet or database.

Solution
Use the fputcsv(  ) function to generate a CSV-formatted line from an array of data.
Example 1-28 writes the data in $sales into a file.

Example 1-28. Generating comma-separated data
<?php

$sales = array(array('Northeast','2005-01-01','2005-02-01',12.54),
 array('Northwest','2005-01-01','2005-02-01',546.33),
 array('Southeast','2005-01-01','2005-02-01',93.26),

1.10 Generating Comma-Separated Data | 17

Download at Boykma.Com

 array('Southwest','2005-01-01','2005-02-01',945.21),
 array('All Regions','--','--',1597.34));

$fh = fopen('sales.csv','w') or die("Can't open sales.csv");
foreach ($sales as $sales_line) {
 if (fputcsv($fh, $sales_line) === false) {
 die("Can't write CSV line");
 }
}
fclose($fh) or die("Can't close sales.csv");

?>

Discussion
To print the CSV-formatted data instead of writing it to a file, use the special output
stream php://output , as shown in Example 1-29.

Example 1-29. Printing comma-separated data
<?php

$sales = array(array('Northeast','2005-01-01','2005-02-01',12.54),
 array('Northwest','2005-01-01','2005-02-01',546.33),
 array('Southeast','2005-01-01','2005-02-01',93.26),
 array('Southwest','2005-01-01','2005-02-01',945.21),
 array('All Regions','--','--',1597.34));

$fh = fopen('php://output','w');
foreach ($sales as $sales_line) {
 if (fputcsv($fh, $sales_line) === false) {
 die("Can't write CSV line");
 }
}
fclose($fh);
?>

To put the CSV-formatted data into a string instead of printing it or writing it to a file,
combine the technique in Example 1-29 with output buffering, as shown in Exam-
ple 1-30.

Example 1-30. Putting comma-separated data into a string
<?php

$sales = array(array('Northeast','2005-01-01','2005-02-01',12.54),
 array('Northwest','2005-01-01','2005-02-01',546.33),
 array('Southeast','2005-01-01','2005-02-01',93.26),
 array('Southwest','2005-01-01','2005-02-01',945.21),
 array('All Regions','--','--',1597.34));

ob_start();
$fh = fopen('php://output','w') or die("Can't open php://output");
foreach ($sales as $sales_line) {
 if (fputcsv($fh, $sales_line) === false) {

18 | Chapter 1: Strings

Download at Boykma.Com

 die("Can't write CSV line");
 }
}
fclose($fh) or die("Can't close php://output");
$output = ob_get_contents();
ob_end_clean();
?>

See Also
Documentation on fputcsv(  ) at http://www.php.net/fputcsv; Recipe 8.12 more infor-
mation about output buffering.

1.11 Parsing Comma-Separated Data

Problem
You have data in comma-separated values (CSV) format—for example, a file exported
from Excel or a database—and you want to extract the records and fields into a format
you can manipulate in PHP.

Solution
If the CSV data is in a file (or available via a URL), open the file with fopen(  ) and read
in the data with fgetcsv(  ) . Example 1-31 prints out CSV data in an HTML table.

Example 1-31. Reading CSV data from a file
<?php
$fp = fopen('sample2.csv','r') or die("can't open file");
print "<table>\n";
while($csv_line = fgetcsv($fp)) {
 print '<tr>';
 for ($i = 0, $j = count($csv_line); $i < $j; $i++) {
 print '<td>'.htmlentities($csv_line[$i]).'</td>';
 }
 print "</tr>\n";
}
print '</table>\n';
fclose($fp) or die("can't close file");
?>

Discussion
In PHP 4, you must provide a second argument to fgetcsv(  ) that is a value larger than
the maximum length of a line in your CSV file. (Don’t forget to count the end-of-line
whitespace.) In PHP 5 the line length is optional. Without it, fgetcsv(  ) reads in an
entire line of data. (Or, in PHP 5.0.4 and later, you can pass a line length of 0 to do the
same thing.) If your average line length is more than 8,192 bytes, your program may
run faster if you specify an explicit line length instead of letting PHP figure it out.

1.11 Parsing Comma-Separated Data | 19

Download at Boykma.Com

You can pass fgetcsv(  ) an optional third argument, a delimiter to use instead of a
comma (,). However, using a different delimiter somewhat defeats the purpose of CSV
as an easy way to exchange tabular data.

Don’t be tempted to bypass fgetcsv(  ) and just read a line in and explode(  ) on the
commas. CSV is more complicated than that, able to deal with field values that have,
for example, literal commas in them that should not be treated as field delimiters. Using
fgetcsv(  ) protects you and your code from subtle errors.

See Also
Documentation on fgetcsv(  ) at http://www.php.net/fgetcsv .

1.12 Generating Fixed-Width Field Data Records

Problem
You need to format data records such that each field takes up a set amount of char-
acters.

Solution
Use pack(  ) with a format string that specifies a sequence of space-padded strings.
Example 1-32 transforms an array of data into fixed-width records.

Example 1-32. Generating fixed-width field data records
<?php

$books = array(array('Elmer Gantry', 'Sinclair Lewis', 1927),
 array('The Scarlatti Inheritance','Robert Ludlum',1971),
 array('The Parsifal Mosaic','William Styron',1979));

foreach ($books as $book) {
 print pack('A25A15A4', $book[0], $book[1], $book[2]) . "\n";
}

?>

Discussion
The format string A25A14A4 tells pack(  ) to transform its subsequent arguments into a
25-character space-padded string, a 14-character space-padded string, and a 4-charac-
ter space-padded string. For space-padded fields in fixed-width records, pack(  ) pro-
vides a concise solution.

To pad fields with something other than a space, however, use substr(  ) to ensure that
the field values aren’t too long and str_pad(  ) to ensure that the field values aren’t too
short. Example 1-33 transforms an array of records into fixed-width records
with .-padded fields.

20 | Chapter 1: Strings

Download at Boykma.Com

Example 1-33. Generating fixed-width field data records without pack(  )
<?php

$books = array(array('Elmer Gantry', 'Sinclair Lewis', 1927),
 array('The Scarlatti Inheritance','Robert Ludlum',1971),
 array('The Parsifal Mosaic','William Styron',1979));

foreach ($books as $book) {
 $title = str_pad(substr($book[0], 0, 25), 25, '.');
 $author = str_pad(substr($book[1], 0, 15), 15, '.');
 $year = str_pad(substr($book[2], 0, 4), 4, '.');
 print "$title$author$year\n";
}

?>

See Also
Documentation on pack(  ) at http://www.php.net/pack and on str_pad(  ) at http://
www.php.net/str_pad. Recipe 1.16 discusses pack(  ) format strings in more detail.

1.13 Parsing Fixed-Width Field Data Records

Problem
You need to break apart fixed-width records in strings.

Solution
Use substr(  ) as shown in Example 1-34.

Example 1-34. Parsing fixed-width records with substr(  )
<?php
$fp = fopen('fixed-width-records.txt','r') or die ("can't open file");
while ($s = fgets($fp,1024)) {
 $fields[1] = substr($s,0,10); // first field: first 10 characters of the line
 $fields[2] = substr($s,10,5); // second field: next 5 characters of the line
 $fields[3] = substr($s,15,12); // third field: next 12 characters of the line
 // a function to do something with the fields
 process_fields($fields);
}
fclose($fp) or die("can't close file");
?>

Or unpack(  ) , as shown in Example 1-35.

Example 1-35. Parsing fixed-width records with unpack(  )
<?php
$fp = fopen('fixed-width-records.txt','r') or die ("can't open file");
while ($s = fgets($fp,1024)) {
 // an associative array with keys "title", "author", and "publication_year"

1.13 Parsing Fixed-Width Field Data Records | 21

Download at Boykma.Com

 $fields = unpack('A25title/A14author/A4publication_year',$s);
 // a function to do something with the fields
 process_fields($fields);
}
fclose($fp) or die("can't close file");
?>

Discussion
Data in which each field is allotted a fixed number of characters per line may look like
this list of books, titles, and publication dates:

<?php
$booklist=<<<END
Elmer Gantry Sinclair Lewis1927
The Scarlatti InheritanceRobert Ludlum 1971
The Parsifal Mosaic Robert Ludlum 1982
Sophie's Choice William Styron1979
END;
?>

In each line, the title occupies the first 25 characters, the author’s name the next 14
characters, and the publication year the next 4 characters. Knowing those field widths,
you can easily use substr(  ) to parse the fields into an array:

<?php
$books = explode("\n",$booklist);

for($i = 0, $j = count($books); $i < $j; $i++) {
 $book_array[$i]['title'] = substr($books[$i],0,25);
 $book_array[$i]['author'] = substr($books[$i],25,14);
 $book_array[$i]['publication_year'] = substr($books[$i],39,4);
}
?>

Exploding $booklist into an array of lines makes the looping code the same whether
it’s operating over a string or a series of lines read in from a file.

The loop can be made more flexible by specifying the field names and widths in a
separate array that can be passed to a parsing function, as shown in the
pc_fixed_width_substr(  ) function in Example 1-36.

Example 1-36. pc_fixed_width_substr(  )
<?php
function pc_fixed_width_substr($fields,$data) {
 $r = array();
 for ($i = 0, $j = count($data); $i < $j; $i++) {
 $line_pos = 0;
 foreach($fields as $field_name => $field_length) {
 $r[$i][$field_name] = rtrim(substr($data[$i],$line_pos,$field_length));
 $line_pos += $field_length;
 }
 }
 return $r;

22 | Chapter 1: Strings

Download at Boykma.Com

}

$book_fields = array('title' => 25,
 'author' => 14,
 'publication_year' => 4);

$book_array = pc_fixed_width_substr($book_fields,$books);
?>

The variable $line_pos keeps track of the start of each field and is advanced by the
previous field’s width as the code moves through each line. Use rtrim(  ) to remove
trailing whitespace from each field.

You can use unpack(  ) as a substitute for substr(  ) to extract fields. Instead of specifying
the field names and widths as an associative array, create a format string for
unpack(  ). A fixed-width field extractor using unpack(  ) looks like the
pc_fixed_width_unpack(  ) function shown in Example 1-37.

Example 1-37. pc_fixed_width_unpack(  )
<?php

function pc_fixed_width_unpack($format_string,$data) {
 $r = array();
 for ($i = 0, $j = count($data); $i < $j; $i++) {
 $r[$i] = unpack($format_string,$data[$i]);
 }
 return $r;
}

$book_array = pc_fixed_width_unpack('A25title/A14author/A4publication_year',
 $books);

?>

Because the A format to unpack(  ) means “space-padded string,” there’s no need to
rtrim(  ) off the trailing spaces.

Once the fields have been parsed into $book_array by either function, the data can be
printed as an HTML table, for example:

<?php
$book_array = pc_fixed_width_unpack('A25title/A14author/A4publication_year',
 $books);
print "<table>\n";
// print a header row
print '<tr><td>';
print join('</td><td>',array_keys($book_array[0]));
print "</td></tr>\n";
// print each data row
foreach ($book_array as $row) {
 print '<tr><td>';
 print join('</td><td>',array_values($row));
 print "</td></tr>\n";

1.13 Parsing Fixed-Width Field Data Records | 23

Download at Boykma.Com

}
print '</table>\n';
?>

Joining data on </td><td> produces a table row that is missing its first <td> and last
</td>. We produce a complete table row by printing out <tr><td> before the joined data
and </td></tr> after the joined data.

Both substr(  ) and unpack(  ) have equivalent capabilities when the fixed-width fields
are strings, but unpack(  ) is the better solution when the elements of the fields aren’t
just strings.

If all of your fields are the same size, str_split(  ) is a handy shortcut for chopping up
incoming data. Available in PHP 5, it returns an array made up of sections of a string.
Example 1-38 uses str_split(  ) to break apart a string into 32-byte pieces.

Example 1-38. Chopping up a string with str_split(  )
<?php
$fields = str_split($line_of_data,32);
// $fields[0] is bytes 0 - 31
// $fields[1] is bytes 32 - 63
// and so on

See Also
For more information about unpack(  ), see Recipe 1.16 and http://www.php.net/
unpack; documentation on str_split(  ) at http://www.php.net/str_split; Recipe 4.8 dis-
cusses join(  ) .

1.14 Taking Strings Apart

Problem
You need to break a string into pieces. For example, you want to access each line that
a user enters in a <textarea> form field.

Solution
Use explode(  ) if what separates the pieces is a constant string:

<?php
$words = explode(' ','My sentence is not very complicated');
?>

Use split(  ) or preg_split(  ) if you need a POSIX or Perl-compatible regular expres-
sion to describe the separator:

<?php
$words = split(' +','This sentence has some extra whitespace in it.');
$words = preg_split('/\d\. /','my day: 1. get up 2. get dressed 3. eat toast');
$lines = preg_split('/[\n\r]+/',$_REQUEST['textarea']);
?>

24 | Chapter 1: Strings

Download at Boykma.Com

Use spliti(  ) or the /i flag to preg_split(  ) for case-insensitive separator matching:

<?php
$words = spliti(' x ','31 inches x 22 inches X 9 inches');
$words = preg_split('/ x /i','31 inches x 22 inches X 9 inches');
?>

Discussion
The simplest solution of the bunch is explode(  ). Pass it your separator string, the string
to be separated, and an optional limit on how many elements should be returned:

<?php
$dwarves = 'dopey,sleepy,happy,grumpy,sneezy,bashful,doc';
$dwarf_array = explode(',',$dwarves);
?>

This makes $dwarf_array a seven-element array, so print_r($dwarf_array) prints:

Array
(
 [0] => dopey
 [1] => sleepy
 [2] => happy
 [3] => grumpy
 [4] => sneezy
 [5] => bashful
 [6] => doc
)

If the specified limit is less than the number of possible chunks, the last chunk contains
the remainder:

<?php
$dwarf_array = explode(',',$dwarves,5);
print_r($dwarf_array);
?>

This prints:

Array
(
 [0] => dopey
 [1] => sleepy
 [2] => happy
 [3] => grumpy
 [4] => sneezy,bashful,doc
)

The separator is treated literally by explode(  ). If you specify a comma and a space as
a separator, it breaks the string only on a comma followed by a space, not on a comma
or a space.

With split(  ), you have more flexibility. Instead of a string literal as a separator, it uses
a POSIX regular expression:

1.14 Taking Strings Apart | 25

Download at Boykma.Com

<?php
$more_dwarves = 'cheeky,fatso, wonder boy, chunky,growly, groggy, winky';
$more_dwarf_array = split(', ?',$more_dwarves);
?>

This regular expression splits on a comma followed by an optional space, which treats
all the new dwarves properly. A dwarf with a space in his name isn’t broken up, but
everyone is broken apart whether they are separated by “,” or “, ”.
print_r($more_dwarf_array) prints:

Array
(
 [0] => cheeky
 [1] => fatso
 [2] => wonder boy
 [3] => chunky
 [4] => growly
 [5] => groggy
 [6] => winky
)

Similar to split(  ) is preg_split(  ), which uses a Perl-compatible regular expression
engine instead of a POSIX regular expression engine. With preg_split(  ), you can take
advantage of various Perl-ish regular expression extensions, as well as tricks such as
including the separator text in the returned array of strings:

<?php
$math = "3 + 2 / 7 - 9";
$stack = preg_split('/ *([+\-\/*]) */',$math,-1,PREG_SPLIT_DELIM_CAPTURE);
print_r($stack);
?>

This prints:

Array
(
 [0] => 3
 [1] => +
 [2] => 2
 [3] => /
 [4] => 7
 [5] => -
 [6] => 9
)

The separator regular expression looks for the four mathematical operators (+, -, /, *),
surrounded by optional leading or trailing spaces. The PREG_SPLIT_DELIM_CAPTURE flag
tells preg_split(  ) to include the matches as part of the separator regular expression in
parentheses in the returned array of strings. Only the mathematical operator character
class is in parentheses, so the returned array doesn’t have any spaces in it.

26 | Chapter 1: Strings

Download at Boykma.Com

See Also
Regular expressions are discussed in more detail in Chapter 22; documentation on
explode(  ) at http://www.php.net/explode, split(  ) at http://www.php.net/split, and
preg_split(  ) at http://www.php.net/preg-split .

1.15 Wrapping Text at a Certain Line Length

Problem
You need to wrap lines in a string. For example, you want to display text in <pre>/
</pre> tags but have it stay within a regularly sized browser window.

Solution
Use wordwrap(  ) :

<?php
$s = "Four score and seven years ago our fathers brought forth↵
on this continent a new nation, conceived in liberty and↵
dedicated to the proposition that all men are created equal.";

print "<pre>\n".wordwrap($s)."\n</pre>";
?>

This prints:

<pre>
Four score and seven years ago our fathers brought forth on this continent
a new nation, conceived in liberty and dedicated to the proposition that
all men are created equal.
</pre>

Discussion
By default, wordwrap(  ) wraps text at 75 characters per line. An optional second argu-
ment specifies different line length:

<?php
print wordwrap($s,50);
?>

This prints:

Four score and seven years ago our fathers brought
forth on this continent a new nation, conceived in
liberty and dedicated to the proposition that all
men are created equal.

Other characters besides \n can be used for line breaks. For double spacing, use
"\n\n":

1.15 Wrapping Text at a Certain Line Length | 27

Download at Boykma.Com

<?php
print wordwrap($s,50,"\n\n");
?>

This prints:

Four score and seven years ago our fathers brought

forth on this continent a new nation, conceived in

liberty and dedicated to the proposition that all

men are created equal.

There is an optional fourth argument to wordwrap(  ) that controls the treatment of words
that are longer than the specified line length. If this argument is 1, these words are
wrapped. Otherwise, they span past the specified line length:

<?php
print wordwrap('jabberwocky',5);
print wordwrap('jabberwocky',5,"\n",1);
?>

This prints:

jabberwocky

jabbe
rwock
y

See Also
Documentation on wordwrap(  ) at http://www.php.net/wordwrap .

1.16 Storing Binary Data in Strings

Problem
You want to parse a string that contains values encoded as a binary structure or encode
values into a string. For example, you want to store numbers in their binary represen-
tation instead of as sequences of ASCII characters.

Solution
Use pack(  ) to store binary data in a string:

<?php
$packed = pack('S4',1974,106,28225,32725);
?>

Use unpack(  ) to extract binary data from a string:

28 | Chapter 1: Strings

Download at Boykma.Com

<?php
$nums = unpack('S4',$packed);
?>

Discussion
The first argument to pack(  ) is a format string that describes how to encode the data
that’s passed in the rest of the arguments. The format string S4 tells pack(  ) to produce
four unsigned short 16-bit numbers in machine byte order from its input data. Given
1974, 106, 28225, and 32725 as input on a little-endian machine, this returns eight
bytes: 182, 7, 106, 0, 65, 110, 213, and 127. Each two-byte pair corresponds to one of
the input numbers: 7 * 256 + 182 is 1974; 0 * 256 + 106 is 106; 110 * 256 + 65 = 28225;
127 * 256 + 213 = 32725.

The first argument to unpack(  ) is also a format string, and the second argument is the
data to decode. Passing a format string of S4, the eight-byte sequence that pack(  ) pro-
duced returns a four-element array of the original numbers. print_r($nums) prints:

Array
(
 [1] => 1974
 [2] => 106
 [3] => 28225
 [4] => 32725
)

In unpack(  ), format characters and their count can be followed by a string to be used
as an array key. For example:

<?php
$nums = unpack('S4num',$packed);
print_r($nums);
?>

This prints:

Array
(
 [num1] => 1974
 [num2] => 106
 [num3] => 28225
 [num4] => 32725
)

Multiple format characters must be separated with / in unpack(  ):

<?php
$nums = unpack('S1a/S1b/S1c/S1d',$packed);
print_r($nums);
?>

This prints:

Array
(
 [a] => 1974

1.16 Storing Binary Data in Strings | 29

Download at Boykma.Com

 [b] => 106
 [c] => 28225
 [d] => 32725
)

The format characters that can be used with pack(  ) and unpack(  ) are listed in Ta-
ble 1-2.

Table 1-2. Format characters for pack(  ) and unpack(  )

Format character Data type

a NUL-padded string

A Space-padded string

h Hex string, low nibble first

H Hex string, high nibble first

c signed char

C unsigned char

s signed short (16 bit, machine byte order)

S unsigned short (16 bit, machine byte order)

n unsigned short (16 bit, big endian byte order)

v unsigned short (16 bit, little endian byte order)

i signed int (machine-dependent size and byte order)

I unsigned int (machine-dependent size and byte order)

l signed long (32 bit, machine byte order)

L unsigned long (32 bit, machine byte order)

N unsigned long (32 bit, big endian byte order)

V unsigned long (32 bit, little endian byte order)

f float (machine-dependent size and representation)

d double (machine-dependent size and representation)

x NUL byte

X Back up one byte

@ NUL-fill to absolute position

For a, A, h, and H, a number after the format character indicates how long the string is.
For example, A25 means a 25-character space-padded string. For other format charac-
ters, a following number means how many of that type appear consecutively in a string.
Use * to take the rest of the available data.

You can convert between data types with unpack(  ). This example fills the array
$ascii with the ASCII values of each character in $s:

<?php
$s = 'platypus';

30 | Chapter 1: Strings

Download at Boykma.Com

$ascii = unpack('c*',$s);
print_r($ascii);
?>

This prints:

Array
(
 [1] => 112
 [2] => 108
 [3] => 97
 [4] => 116
 [5] => 121
 [6] => 112
 [7] => 117
 [8] => 115
)

See Also
Documentation on pack(  ) at http://www.php.net/pack and unpack(  ) at http://
www.php.net/unpack .

1.17 Program: Downloadable CSV File
Combining the header(  ) function to change the content type of what your PHP
program outputs with the fputcsv(  ) function for data formatting lets you send CSV
files to browsers that will be automatically handed off to a spreadsheet program (or
whatever application is configured on a particular client system to handle CSV files).
Example 1-39 formats the results of an SQL SELECT query as CSV data and provides the
correct headers so that it is properly handled by the browser.

Example 1-39. Downloadable CSV file
<?php

require_once 'DB.php';
// Connect to the database
$db = DB::connect('mysql://david:hax0r@localhost/phpcookbook');

// Retrieve data from the database
$sales_data = $db->getAll('SELECT region, start, end, amount FROM sales');
// Open filehandle for fputcsv()
$output = fopen('php://output','w') or die("Can't open php://output");
$total = 0;

// Tell browser to expect a CSV file
header('Content-Type: application/csv');
header('Content-Disposition: attachment; filename="sales.csv"');

// Print header row
fputcsv($output,array('Region','Start Date','End Date','Amount'));
// Print each data row and increment $total
foreach ($sales_data as $sales_line) {

1.17 Program: Downloadable CSV File | 31

Download at Boykma.Com

 fputcsv($output, $sales_line);
 $total += $sales_line[3];
}
// Print total row and close file handle
fputcsv($output,array('All Regions','--','--',$total));
fclose($output) or die("Can't close php://output");

?>

Example 1-39 sends two headers to ensure that the browser handles the CSV output
properly. The first header, Content-Type, tells the browser that the output is not HTML,
but CSV. The second header, Content-Disposition, tells the browser not to display the
output but to attempt to load an external program to handle it. The filename attribute
of this header supplies a default filename for the browser to use for the downloaded
file.

If you want to provide different views of the same data, you can combine the formatting
code in one page and use a query string variable to determine which kind of data for-
matting to do. In Example 1-40, the format query string variable controls whether the
results of an SQL SELECT query are returned as an HTML table or CSV.

Example 1-40. Dynamic CSV or HTML
<?php

$db = new PDO('sqlite:/usr/local/data/sales.db');

$query = $db->query('SELECT region, start, end, amount FROM sales', PDO::FETCH_NUM);
$sales_data = $db->fetchAll();
$total = 0;
$column_headers = array('Region','Start Date','End Date','Amount');
// Decide what format to use
$format = $_GET['format'] == 'csv' ? 'csv' : 'html';

// Print format-appropriate beginning
if ($format == 'csv') {
 $output = fopen('php://output','w') or die("Can't open php://output");
 header('Content-Type: application/csv');
 header('Content-Disposition: attachment; filename="sales.csv"');
 fputcsv($output,$column_headers);
 } else {
 echo '<table><tr><th>';
 echo implode('</th><th>', $column_headers);
 echo '</th></tr>';
 }

foreach ($sales_data as $sales_line) {
 // Print format-appropriate line
 if ($format == 'csv') {
 fputcsv($output, $sales_line);
 } else {
 echo '<tr><td>' . implode('</td><td>', $sales_line) . '</td></tr>';
 }
 $total += $sales_line[3];

32 | Chapter 1: Strings

Download at Boykma.Com

}
$total_line = array('All Regions','--','--',$total);

// Print format-appropriate footer
if ($format == 'csv') {
 fputcsv($output,$total_line);
 fclose($output) or die("Can't close php://output");
 } else {
 echo '<tr><td>' . implode('</td><td>', $total_line) . '</td></tr>';
 echo '</table>';
 }
?>

Accessing the program in Example 1-40 with format=csv in the query string causes it
to return CSV-formatted output. Any other format value in the query string causes it
to return HTML output. The logic that sets $format to CSV or HTML could easily be
extended to other output formats like XML. If you have many places where you want
to offer for download the same data in multiple formats, package the code in Exam-
ple 1-40 into a function that accepts an array of data and a format specifier and then
displays the right results.

1.17 Program: Downloadable CSV File | 33

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 2

Numbers

2.0 Introduction
In everyday life, numbers are easy to identify. They’re 3:00 P.M., as in the current time,
or $1.29, as in the cost of a pint of milk. Maybe they’re like π, the ratio of the circum-
ference to the diameter of a circle. They can be pretty large, like Avogadro’s number,
which is about 6 × 1023. In PHP, numbers can be all these things.

However, PHP doesn’t treat all these numbers as “numbers.” Instead, it breaks them
down into two groups: integers and floating-point numbers. Integers are whole num-
bers, such as −4, 0, 5, and 1,975. Floating-point numbers are decimal numbers, such
as −1.23, 0.0, 3.14159, and 9.9999999999.

Conveniently, most of the time PHP doesn’t make you worry about the differences
between the two because it automatically converts integers to floating-point numbers
and floating-point numbers to integers. This conveniently allows you to ignore the
underlying details. It also means 3/2 is 1.5, not 1, as it would be in some programming
languages. PHP also automatically converts from strings to numbers and back. For
instance, 1+"1" is 2.

However, sometimes this blissful ignorance can cause trouble. First, numbers can’t be
infinitely large or small; there’s a minimum size of 2.2e−308 and a maximum size of
about 1.8e308.* If you need larger (or smaller) numbers, you must use the BCMath or
GMP libraries, which are discussed in Recipe 2.14.

Next, floating-point numbers aren’t guaranteed to be exactly correct but only correct
plus or minus a small amount. This amount is small enough for most occasions, but
you can end up with problems in certain instances. For instance, humans automatically
convert 6 followed by an endless string of 9s after the decimal point to 7, but PHP thinks
it’s 6 with a bunch of 9s. Therefore, if you ask PHP for the integer value of that number,
it returns 6, not 7. For similar reasons, if the digit located in the 200th decimal place is
significant to you, don’t use floating-point numbers—instead, use the BCMath and

* These numbers are actually platform-specific, but the values are common because they are from the 64-
bit IEEE standard 754.

35

Download at Boykma.Com

GMP libraries. But for most occasions, PHP behaves very nicely when playing with
numbers and lets you treat them just as you do in real life.

2.1 Checking Whether a Variable Contains a Valid Number

Problem
You want to ensure that a variable contains a number, even if it’s typed as a string.
Alternatively, you want to check if a variable is not only a number, but is also specifically
typed as a one.

Solution
Use is_numeric(  ) to discover whether a variable contains a number:

<?php
if (is_numeric(5)) { /* true */ }
if (is_numeric('5')) { /* true */ }
if (is_numeric("05")) { /* true */ }
if (is_numeric('five')) { /* false */ }

if (is_numeric(0xDECAFBAD)) { /* true */ }
if (is_numeric("10e200")) { /* true */ }
?>

Discussion
Numbers come in all shapes and sizes. You cannot assume that something is a number
simply because it only contains the characters 0 through 9. What about decimal points,
or negative signs? You can’t simply add them into the mix because the negative must
come at the front, and you can only have one decimal point. And then there’s hexa-
decimal numbers and scientific notation.

Instead of rolling your own function, use is_numeric(  ) to check whether a variable
holds something that’s either an actual number (as in it’s typed as an integer or floating
point), or it’s a string containing characters that can be translated into a number.

There’s an actual difference here. Technically, the integer 5 and the string 5 aren’t the
same in PHP. However, most of the time you won’t actually be concerned about the
distinction, which is why the behavior of is_numeric(  ) is useful.

Helpfully, is_numeric(  ) properly parses decimal numbers, such as 5.1; however, num-
bers with thousands separators, such as 5,100, cause is_numeric(  ) to return false.

To strip the thousands separators from your number before calling is_numeric(  ), use
str_replace(  ):

<?php
is_numeric(str_replace($number, ',', ''));
?>

36 | Chapter 2: Numbers

Download at Boykma.Com

To check if your number is a specific type, there are a variety of related functions with
self-explanatory names: is_float(  ) (or is_double(  ) or is_real(  ); they’re all the
same) and is_int(  ) (or is_integer(  ) or is_long(  )).

To validate input data, use the techniques from Recipe 9.3 instead of is_numeric(  ).
That recipe describes how to check for positive or negative integers, decimal numbers,
and a handful of other formats.

See Also
Recipe 9.3 for validating numeric user input; documentation on is_numeric(  ) at http://
www.php.net/is-numeric and str_replace(  ) at http://www.php.net/str-replace.

2.2 Comparing Floating-Point Numbers

Problem
You want to check whether two floating-point numbers are equal.

Solution
Use a small delta value, and check if the numbers have a difference smaller than that
delta:

<?php
$delta = 0.00001;

$a = 1.00000001;
$b = 1.00000000;

if (abs($a - $b) < $delta) { /* $a and $b are equal */ }
?>

Discussion
Floating-point numbers are represented in binary form with only a finite number of
bits for the mantissa and the exponent. You get overflows when you exceed those bits.
As a result, sometimes PHP (just like some other languages) doesn’t believe that two
equal numbers are actually equal because they may differ toward the very end.

To avoid this problem, instead of checking if $a == $b, make sure the first number is
within a very small amount ($delta) of the second one. The size of your delta should
be the smallest amount of difference you care about between two numbers. Then use
abs(  ) to get the absolute value of the difference.

2.2 Comparing Floating-Point Numbers | 37

Download at Boykma.Com

See Also
Recipe 2.3 for information on rounding floating-point numbers; documentation on
floating-point numbers in PHP at http://www.php.net/language.types.float.

2.3 Rounding Floating-Point Numbers

Problem
You want to round a floating-point number, either to an integer value or to a set number
of decimal places.

Solution
To round a number to the closest integer, use round(  ) :

$number = round(2.4); // $number = 2

To round up, use ceil(  ) :

$number = ceil(2.4); // $number = 3

To round down, use floor(  ) :

$number = floor(2.4); // $number = 2

Discussion
If a number falls exactly between two integers, PHP rounds away from 0:

$number = round(2.5); // 3

$number = round(-2.5); // -3

You may remember from Recipe 2.2 that floating-point numbers don’t always work
out to exact values because of how the computer stores them. This can create confusion.
A value you expect to have a decimal part of “0.5” might instead be “.499999...9” (with
a whole bunch of 9s) or “.500000...1” (with many 0s and a trailing 1).

PHP automatically incorporates a little “fuzz factor” into its rounding calculations, so
you don’t need to worry about this.

To keep a set number of digits after the decimal point, round(  ) accepts an optional
precision argument. For example, perhaps you are calculating the total price for the
items in a user’s shopping cart:

<?php
$cart = 54.23;
$tax = $cart * .05;
$total = $cart + $tax; // $total = 56.9415

$final = round($total, 2); // $final = 56.94
?>

38 | Chapter 2: Numbers

Download at Boykma.Com

To round a number down, use the floor(  ) function:

$number = floor(2.1); // 2

$number = floor(2.9); // 2

$number = floor(-2.1); // -3

$number = floor(-2.9); // -3

While to round up, use the ceil(  ) function:

$number = ceil(2.1); // 3

$number = ceil(2.9); // 3

$number = ceil(-2.1); // -2

$number = ceil(-2.9); // -2

These two functions are named because when you’re rounding down, you’re rounding
“toward the floor,” and when you’re rounding up, you’re rounding “toward the ceil-
ing.”

See Also
Recipe 2.2 for information on comparing floating-point numbers; documentation on
ceil(  ) at http://www.php.net/ceil, on floor(  ) at http://www.php.net/floor, and on
round(  ) at http://www.php.net/round .

2.4 Operating on a Series of Integers

Problem
You want to apply a piece of code to a range of integers.

Solution
Use a for loop:

<?php
for ($i = $start; $i <= $end; $i++) {
 plot_point($i);
}
?>

You can increment using values other than 1. For example:

<?php
for ($i = $start; $i <= $end; $i += $increment) {
 plot_point($i);
}
?>

2.4 Operating on a Series of Integers | 39

Download at Boykma.Com

If you want to preserve the numbers for use beyond iteration, use the range(  ) method:
<?php
$range = range($start, $end);
?>

Discussion
Loops like this are common. For instance, you could be plotting a function and need
to calculate the results for multiple points on the graph. Or you could be a student
counting down the number of seconds until the end of school.

The for loop method uses a single integer and you have great control over the loop,
because you can increment and decrement $i freely. Also, you can modify $i from inside
the loop.

In the last example in the Solution, range(  ) returns an array with values from $start
to $end. The advantage of using range(  ) is its brevity, but this technique has a few
disadvantages. For one, a large array can take up unnecessary memory. Also, you’re
forced to increment the series one number at a time, so you can’t loop through a series
of even integers, for example.

It’s valid for $start to be larger than $end. In this case, the numbers returned by
range(  ) are in descending order. Also, you can use it to retrieve character sequences:

<?php
print_r(range('l', 'p'));
?>

Array
(
 [0] => l
 [1] => m
 [2] => n
 [3] => o
 [4] => p
)

See Also
Recipe 4.3 for details on initializing an array to a range of integers; documentation on
range(  ) at http://www.php.net/range.

2.5 Generating Random Numbers Within a Range

Problem
You want to generate a random number within a range of numbers.

Solution
Use mt_rand(  ):

40 | Chapter 2: Numbers

Download at Boykma.Com

// random number between $upper and $lower, inclusive
$random_number = mt_rand($lower, $upper);

Discussion
Generating random numbers is useful when you want to display a random image on a
page, randomize the starting position of a game, select a random record from a data-
base, or generate a unique session identifier.

To generate a random number between two endpoints, pass mt_rand(  ) two arguments:

$random_number = mt_rand(1, 100);

Calling mt_rand(  ) without any arguments returns a number between 0 and the maxi-
mum random number, which is returned by mt_getrandmax(  ) .

Generating truly random numbers is hard for computers to do. Computers excel at
following instructions methodically; they’re not so good at spontaneity. If you want to
instruct a computer to return random numbers, you need to give it a specific set of
repeatable commands; the fact that they’re repeatable undermines the desired ran-
domness.

PHP has two different random number generators, a classic function called rand(  ) and
a better function called mt_rand(  ). MT stands for Mersenne Twister , which is named
for the French monk and mathematician Marin Mersenne and the type of prime num-
bers he’s associated with. The algorithm is based on these prime numbers. Since
mt_rand(  ) is less predictable and faster than rand(  ), we prefer it to rand(  ).

If you’re running a version of PHP earlier than 4.2, before using mt_rand(  ) (or
rand(  )) for the first time in a script, you need to seed the generator by calling
mt_srand(  ) (or srand(  )). The seed is a number the random function uses as the basis
for generating the random numbers it returns; it’s used to solve the repeatable versus
random dilemma mentioned earlier. Use the value returned by microtime(  ), a high-
precision time function, to get a seed that changes very quickly and is unlikely to repeat
—qualities desirable in a good seed. After the initial seed, you don’t need to reseed the
randomizer. PHP 4.2 and later automatically handle seeding for you, but if you man-
ually provide a seed before calling mt_rand(  ) for the first time, PHP doesn’t alter it by
substituting a new seed of its own.

If you want to select a random record from a database, an easy way is to find the total
number of fields inside the table, select a random number in that range, and then re-
quest that row from the database, as in Example 2-1.

Example 2-1. Selecting a random row from a database
<?php
$sth = $dbh->query('SELECT COUNT(*) AS count FROM quotes');
if ($row = $sth->fetchRow()) {
 $count = $row[0];
} else {
 die ($row->getMessage());

2.5 Generating Random Numbers Within a Range | 41

Download at Boykma.Com

}

$random = mt_rand(0, $count - 1);

$sth = $dbh->query("SELECT quote FROM quotes LIMIT $random,1");
while ($row = $sth->fetchRow()) {
 print $row[0] . "\n";
}
?>

This snippet finds the total number of rows in the table, computes a random number
inside that range, and then uses LIMIT $random,1 to SELECT one line from the table start-
ing at position $random.

Alternatively, if you’re using MySQL 3.23 or above, you can do this:

$sth = $dbh->query('SELECT quote FROM quotes ORDER BY RAND() LIMIT 1');
while ($row = $sth->fetchRow()) {
 print $row[0] . "\n";
}

In this case, MySQL randomizes the lines, and then the first row is returned.

See Also
Recipe 2.6 for how to generate biased random numbers; documentation on
mt_rand(  ) at http://www.php.net/mt-rand and rand(  ) at http://www.php.net/rand; the
MySQL Manual on rand(  ) is found at http://www.mysql.com/doc/M/a/Mathemati
cal_functions.html.

2.6 Generating Biased Random Numbers

Problem
You want to generate random numbers, but you want these numbers to be somewhat
biased, so that numbers in certain ranges appear more frequently than others. For ex-
ample, you want to spread out a series of banner ad impressions in proportion to the
number of impressions remaining for each ad campaign.

Solution
Use the pc_rand_weighted(  ) function shown in Example 2-2.

Example 2-2. pc_rand_weighted(  )
<?php
// returns the weighted randomly selected key
function pc_rand_weighted($numbers) {
 $total = 0;
 foreach ($numbers as $number => $weight) {
 $total += $weight;
 $distribution[$number] = $total;

42 | Chapter 2: Numbers

Download at Boykma.Com

 }
 $rand = mt_rand(0, $total - 1);
 foreach ($distribution as $number => $weights) {
 if ($rand < $weights) { return $number; }
 }
}
?>

Discussion
Imagine if instead of an array in which the values are the number of remaining impres-
sions, you have an array of ads in which each ad occurs exactly as many times as its
remaining number of impressions. You can simply pick an unweighted random place
within the array, and that’d be the ad that shows.

This technique can consume a lot of memory if you have millions of impressions re-
maining. Instead, you can calculate how large that array would be (by totaling the
remaining impressions), pick a random number within the size of the make-believe
array, and then go through the array figuring out which ad corresponds to the number
you picked. For instance:

$ads = array('ford' => 12234, // advertiser, remaining impressions
 'att' => 33424,
 'ibm' => 16823);

$ad = pc_rand_weighted($ads);

See Also
Recipe 2.5 for how to generate random numbers within a range .

2.7 Taking Logarithms

Problem
You want to take the logarithm of a number.

Solution
For logs using base e (natural log), use log(  ):

$log = log(10); // 2.30258092994

For logs using base 10, use log10(  ):

$log10 = log10(10); // 1

For logs using other bases, pass the base as the second argument to log(  ):

$log2 = log(10, 2); // 3.3219280948874

2.7 Taking Logarithms | 43

Download at Boykma.Com

Discussion
Both log(  ) and log10(  ) are defined only for numbers that are greater than zero. If you
pass in a number equal to or less than zero, they return NAN, which stands for “not a
number.”

See Also
Documentation on log(  ) at http://www.php.net/log and log10(  ) at http://www.php.net/
log10.

2.8 Calculating Exponents

Problem
You want to raise a number to a power.

Solution
To raise e to a power, use exp(  ):

$exp = exp(2); // 7.3890560989307

To raise it to any power, use pow(  ):

$exp = pow(2, M_E); // 6.5808859910179

$pow = pow(2, 10); // 1024
$pow = pow(2, -2); // 0.25
$pow = pow(2, 2.5); // 5.6568542494924

$pow = pow(-2, 10); // 1024
$pow = pow(2, -2); // 0.25
$pow = pow(-2, -2.5); // NAN (Error: Not a Number)

Discussion
The built-in constant M_E is an approximation of the value of e. It equals
2.7182818284590452354. So exp($n) and pow(M_E, $n) are identical.

It’s easy to create very large numbers using exp(  ) and pow(  ); if you outgrow PHP’s
maximum size (almost 1.8e308), see Recipe 2.14 for how to use the arbitrary precision
functions. With exp(  ) and pow(  ), PHP returns INF (infinity) if the result is too large and
NAN (not a number) on an error.

See Also
Documentation on pow(  ) at http://www.php.net/pow, exp(  ) at http://www.php.net/
exp, and information on predefined mathematical constants at http://www.php.net/
math.

44 | Chapter 2: Numbers

Download at Boykma.Com

2.9 Formatting Numbers

Problem
You have a number and you want to print it with thousands and decimals separators.
For example, you want to display the number of people who have viewed a page, or
the percentage of people who have voted for an option in a poll.

Solution
Use the number_format(  ) function to format as an integer:

$number = 1234.56;
print number_format($number); // 1,235 because number is rounded up

Specify a number of decimal places to format as a decimal:

print number_format($number, 2); // 1,234.56

Discussion
The number_format(  ) function formats a number by inserting the correct decimal and
thousands separators for your locale. If you want to manually specify these values, pass
them as the third and fourth parameters:

$number = 1234.56;
print number_format($number, 2, '@', '#'); // 1#234@56

The third argument is used as the decimal point and the last separates thousands. If
you use these options, you must specify both arguments.

By default, number_format(  ) rounds the number to the nearest integer. If you want to
preserve the entire number, but you don’t know ahead of time how many digits follow
the decimal point in your number, use this:

$number = 1234.56; // your number
list($int, $dec) = explode('.', $number);
print number_format($number, strlen($dec));

The localeconv(  ) function provides locale-specific data, including number format in-
formation. For example:

setlocale(LC_ALL, 'zh_CN');

print_r(localeconv());

Array
(
 [decimal_point] => .
 [thousands_sep] => ,
 [int_curr_symbol] => CNY
 [currency_symbol] => ￥

2.9 Formatting Numbers | 45

Download at Boykma.Com

 [mon_decimal_point] => .
 [mon_thousands_sep] => ,
 [positive_sign] =>
 [negative_sign] => -
 [int_frac_digits] => 0
 [frac_digits] => 0
 [p_cs_precedes] => 1
 [p_sep_by_space] => 0
 [n_cs_precedes] => 1
 [n_sep_by_space] => 0
 [p_sign_posn] => 1
 [n_sign_posn] => 4
 [grouping] => Array
 (
 [0] => 3
 [1] => 3
)

 [mon_grouping] => Array
 (
 [0] => 3
 [1] => 3
)

)

Use the decimal_point, thousands_sep, and other settings to see how to format a number
for that locale.

See Also
Chapter 19 for information on internationalization and localization; documentation
on localeconv(  ) at http://www.php.net/localeconv and number_format(  ) at http://
www.php.net/number-format.

2.10 Formatting Monetary Values

Problem
You have a number and you want to print it with thousands and decimals separators.
For instance, you want to display prices for items in a shopping cart.

Solution
Use the money_format(  ) function with the %n formatting option for a national currency
format:

$number = 1234.56;
setlocale(LC_MONETARY, 'en_US');
print money_format('%n', $number); // $1,234.56

46 | Chapter 2: Numbers

Download at Boykma.Com

For an international format, pass %i:

print money_format('%i', $number); // USD 1,234.56

Discussion
The money_format(  ) function formats a number by inserting the correct currency sym-
bol, decimal, and thousands separators for your locale. It takes a formatting string and
a number to format.

For easy formatting, use the %n and %i specifiers, for in-country and international
standard currency displays, respectively.

To get the correct country format, change the locale, as shown in Example 2-3.

Example 2-3. Displaying currency using standard formats

<?php
$number = 1234.56;
setlocale(LC_MONETARY, 'en_US');
print money_format('%n', $number); // $1,234.56
print money_format('%i', $number); // USD 1,234.56

setlocale(LC_MONETARY, 'fr_FR');
print money_format('%n', $number); // 1 234,56 Eu
print money_format('%i', $number); // 1 234,56 EUR

setlocale(LC_MONETARY, 'it_IT');
print money_format('%n', $number); // Eu 1.235
print money_format('%i', $number); // EUR 1.235
?>

If your locale is not set, the function returns the same string you provide. For more on
setting locales, see Chapter 19.

You can also use printf-like formatting options, including (to wrap negative numbers
inside of parentheses, and ! to suppress the currency symbol, as shown in Exam-
ple 2-4.

Example 2-4. Displaying currency using custom formats

<?php
$number = -1234.56;
setlocale(LC_MONETARY, 'en_US');
print money_format('%n', $number); // -$1,234.56

print money_format('%(n', $number); // ($1,234.56)

print money_format('%!n', $number); // -1,234.56
?>

A complete list of options, including left and right precision, fill characters, and disa-
bling grouping is available at http://www.php.net/money-format.

2.10 Formatting Monetary Values | 47

Download at Boykma.Com

This function uses the underlying Unix strfmon(  ) system function , so it is unavailable
on Windows machines.

For more on currency formatting, including a substitute algorithm for Windows, see
Recipe 19.6.

See Also
Recipe 19.6; documentation on money_format(  ) at http://www.php.net/money-format.

2.11 Printing Correct Plurals

Problem
You want to correctly pluralize words based on the value of a variable. For instance,
you are returning text that depends on the number of matches found by a search.

Solution
Use a conditional expression:

$number = 4;
print "Your search returned $number " . ($number == 1 ? 'hit' : 'hits') . '.';

Your search returned 4 hits.

Discussion
The line is slightly shorter when written as:

print "Your search returned $number hit" . ($number == 1 ? '' : 's') . '.';

However, for odd pluralizations, such as “person” versus “people,” we find it clearer
to break out the entire word rather than just the letter.

Another option is to use one function for all pluralization, as shown in the
pc_may_pluralize(  ) function in Example 2-5.

Example 2-5. pc_may_pluralize(  )
<?php
function pc_may_pluralize($singular_word, $amount_of) {

 // array of special plurals
 $plurals = array(
 'fish' => 'fish',
 'person' => 'people',
);

 // only one
 if (1 == $amount_of) {
 return $singular_word;
 }

48 | Chapter 2: Numbers

Download at Boykma.Com

 // more than one, special plural
 if (isset($plurals[$singular_word])) {
 return $plurals[$singular_word];
 }

 // more than one, standard plural: add 's' to end of word
 return $singular_word . 's';
}
?>

Here are some examples:

$number_of_fish = 1;
print "I ate $number_of_fish " . pc_may_pluralize('fish', $number_of_fish) . '.';

$number_of_people = 4;
print 'Soylent Green is ' . pc_may_pluralize('person', $number_of_people) . '!';

I ate 1 fish.
Soylent Green is people!

If you plan to have multiple plurals inside your code, using a function such as
pc_may_pluralize(  ) increases readability. To use the function, pass
pc_may_pluralize(  ) the singular form of the word as the first argument and the amount
as the second. Inside the function, there’s a large array, $plurals, that holds all the
special cases. If the $amount is 1, you return the original word. If it’s greater, you return
the special pluralized word, if it exists. As a default, just add an “s” to the end of the
word.

2.12 Calculating Trigonometric Functions

Problem
You want to use trigonometric functions, such as sine, cosine, and tangent.

Solution
PHP supports many trigonometric functions natively: sin(  ) , cos(  ), and tan(  ):

$cos = cos(2.1232);

You can also use their inverses: asin(  ), acos(  ), and atan(  ):

$atan = atan(1.2);

Discussion
These functions assume all angles are in radians, not degrees. (See Recipe 2.13 if this
is a problem.)

2.12 Calculating Trigonometric Functions | 49

Download at Boykma.Com

The function atan2(  ) takes two variables $x and $y, and computes atan($x/$y). How-
ever, it always returns the correct sign because it uses both parameters when finding
the quadrant of the result.

For secant, cosecant, and cotangent, you should manually calculate the reciprocal val-
ues of sin(  ), cos(  ), and tan(  ):

$n = .707;

$secant = 1 / sin($n);
$cosecant = 1 / cos($n);
$cotangent = 1 / tan($n);

You can also use hyperbolic functions: sinh(  ), cosh(  ), and tanh(  ), plus, of course,
asin(  ), acosh(  ), and atanh(  ). The inverse functions, however, aren’t supported on
Windows.

See Also
Recipe 2.13 for how to perform trig operations in degrees, not radians; documentation
on sin(  ) at http://www.php.net/sin, cos(  ) at http://www.php.net/cos, tan(  ) at http://
www.php.net/tan, asin(  ) at http://www.php.net/asin, acos(  ) at http://www.php.net/
acos, atan(  ) at http://www.php.net/atan, and atan2(  ) at http://www.php.net/atan2.

2.13 Doing Trigonometry in Degrees, Not Radians

Problem
You have numbers in degrees but want to use the trigonometric functions.

Solution
Use deg2rad(  ) and rad2deg(  ) on your input and output:

$cosine = cos(deg2rad($degree));

Discussion
By definition, 360 degrees is equal to 2π radians, so it’s easy to manually convert be-
tween the two formats. However, these functions use PHP’s internal value of π, so
you’re assured a high-precision answer. To access this number for other calculations,
use the constant M_PI, which is 3.14159265358979323846.

There is no built-in support for radians. This is considered a feature, not a bug.

See Also
Recipe 2.12 for trig basics; documentation on deg2rad(  ) at http://www.php.net/
deg2rad and rad2deg(  ) at http://www.php.net/rad2deg .

50 | Chapter 2: Numbers

Download at Boykma.Com

2.14 Handling Very Large or Very Small Numbers

Problem
You need to use numbers that are too large (or small) for PHP’s built-in floating-point
numbers.

Solution
Use either the BCMath or GMP libraries.

Using BCMath:

$sum = bcadd('1234567812345678', '8765432187654321');

// $sum is now the string '9999999999999999'
print $sum;

Using GMP:

$sum = gmp_add('1234567812345678', '8765432187654321');

// $sum is now a GMP resource, not a string; use gmp_strval() to convert
print gmp_strval($sum);

Discussion
The BCMath library is easy to use. You pass in your numbers as strings, and the function
returns the sum (or difference, product, etc.) as a string. However, the range of actions
you can apply to numbers using BCMath is limited to basic arithmetic.

Another option is the GMP library. While most members of the GMP family of func-
tions accept integers and strings as arguments, they prefer to pass numbers around as
resources, which are essentially pointers to the numbers. So unlike BCMath functions,
which return strings, GMP functions return only resources. You then pass the resource
to any GMP function, and it acts as your number.

The only downside is when you want to view or use the resource with a non-GMP
function, you need to explicitly convert it using gmp_strval(  ) or gmp_intval(  ).

GMP functions are liberal in what they accept. For instance, see Example 2-6.

Example 2-6. Adding numbers using GMP
<?php
$four = gmp_add(2, 2); // You can pass integers
$eight = gmp_add('4', '4'); // Or strings
$twelve = gmp_add($four, $eight); // Or GMP resources
print gmp_strval($twelve); // Prints 12
?>

However, you can do many more things with GMP numbers than addition, such as
raising a number to a power, computing large factorials very quickly, finding a greatest

2.14 Handling Very Large or Very Small Numbers | 51

Download at Boykma.Com

common divisor (GCD), and other fancy mathematical stuff, as shown in Exam-
ple 2-7.

Example 2-7. Computing fancy mathematical stuff using GMP

<?php
// Raising a number to a power
$pow = gmp_pow(2, 10); // 1024

// Computing large factorials very quickly
$factorial = gmp_fact(20); // 2432902008176640000

// Finding a GCD
$gcd = gmp_gcd (123, 456); // 3

// Other fancy mathematical stuff
$legdendre = gmp_legendre(1, 7); // 1
?>

The BCMath and GMP libraries aren’t necessarily enabled with all PHP configurations.
BCMath is bundled with PHP, so it’s likely to be available. However, GMP isn’t bundled
with PHP, so you’ll need to download, install it, and instruct PHP to use it during the
configuration process. Check the values of function_defined('bcadd') and func
tion_defined('gmp_init') to see if you can use BCMath and GMP. If you’re using Win-
dows, you need to be running PHP 5.1 or higher to use GMP.

Another options for high-precision mathematics is PECL’s big_int library, shown in
Example 2-8.

Example 2-8. Adding numbers using big_int

<?php
$two = bi_from_str('2');
$four = bi_add($two, $two);
print bi_to_str($four) // Prints 4

// Computing large factorials very quickly
$factorial = bi_fact(20); // 2432902008176640000
?>

It’s faster than BCMath, and almost as powerful as GMP. However, while the GMP is
licensed under the LGPL, big_int is under a BSD-style license.

See Also
Documentation on BCMath at http://www.php.net/bc, big_int at http://pecl.php.net/
big_int, and GMP at http://www.php.net/gmp.

52 | Chapter 2: Numbers

Download at Boykma.Com

2.15 Converting Between Bases

Problem
You need to convert a number from one base to another.

Solution
Use the base_convert(  ) function:

$hex = 'a1'; // hexadecimal number (base 16)

// convert from base 16 to base 10
$decimal = base_convert($hex, 16, 10); // $decimal is now 161

Discussion
The base_convert(  ) function changes a string in one base to the correct string in an-
other. It works for all bases from 2 to 36 inclusive, using the letters a through z as
additional symbols for bases above 10. The first argument is the number to be conver-
ted, followed by the base it is in and the base you want it to become.

There are also a few specialized functions for conversions to and from base 10 and the
most commonly used other bases of 2, 8, and 16. They’re bindec(  ) and decbin(  ),
octdec(  ) and decoct(  ), and hexdec(  ) and dechex(  ) :

// convert to base 10
print bindec(11011); // 27
print octdec(33); // 27
print hexdec('1b'); // 27

// convert from base 10
print decbin(27); // 11011
print decoct(27); // 33
print dechex(27); // 1b

Another alternative is to use printf(  ), which allows you to convert decimal numbers
to binary, octal, and hexadecimal numbers with a wide range of formatting, such as
leading zeros and a choice between upper- and lowercase letters for hexadecimal num-
bers.

For instance, say you want to print out HTML color values:

printf('#%02X%02X%02X', 0, 102, 204); // #0066CC

See Also
Documentation on base_convert(  ) at http://www.php.net/base-convert and sprintf(  )
formatting options at http://www.php.net/sprintf.

2.15 Converting Between Bases | 53

Download at Boykma.Com

2.16 Calculating Using Numbers in Bases Other Than Decimal

Problem
You want to perform mathematical operations with numbers formatted not in decimal,
but in octal or hexadecimal. For example, you want to calculate web-safe colors in
hexadecimal.

Solution
Prefix the number with a leading symbol, so PHP knows it isn’t in base 10. The fol-
lowing values are all equal:

0144 // base 8
 100 // base 10
0x64 // base 16

Here’s how to count from decimal 1 to 15 using hexadecimal notation:

for ($i = 0x1; $i < 0x10; $i++) { print "$i\n"; }

Discussion
Even if you use hexadecimally formatted numbers in a for loop, by default all numbers
are printed in decimal. In other words, the code in the Solution doesn’t print out “…,
8, 9, a, b, ….” To print in hexadecimal, use one of the methods listed in Recipe 2.15.
Here’s an example:

for ($i = 0x1; $i < 0x10; $i++) { print dechex($i) . "\n"; }

For most calculations, it’s easier to use decimal. Sometimes, however, it’s more logical
to switch to another base—for example, when using the 216 web-safe colors. Every
web color code is of the form RRGGBB, where RR is the red color, GG is the green color,
and BB is the blue color. Each color is actually a two-digit hexadecimal number between
0 and FF.

What makes web-safe colors special is that RR, GG, and BB each must be one of the
following six numbers: 00, 33, 66, 99, CC, or FF (in decimal: 0, 51, 102, 153, 204, or
255). So 003366 is web safe, but 112233 is not. Web-safe colors render without dith-
ering on a 256-color display.

When creating a list of these numbers, use hexadecimal notation in this triple-loop to
reinforce the list’s hexadecimal basis, as shown in Example 2-9.

Example 2-9. Printing out all the web-safe color codes
<?php
for ($rr = 0; $rr <= 0xFF; $rr += 0x33)
 for ($gg = 0; $gg <= 0xFF; $gg += 0x33)
 for ($bb = 0; $bb <= 0xFF; $bb += 0x33)
 printf("%02X%02X%02X\n", $rr, $gg, $bb);
?>

54 | Chapter 2: Numbers

Download at Boykma.Com

Here the loops compute all possible web-safe colors. However, instead of stepping
through them in decimal, you use hexadecimal notation, because it reinforces the hex-
adecimal link between the numbers. Print them out using printf(  ) to format them as
uppercase hexadecimal numbers at least two digits long. One-digit numbers are printed
with a leading zero.

See Also
Recipe 2.15 for details on converting between bases; Chapter 3, “Web Design Principles
for Print Designers,” in Web Design in a Nutshell by Jennifer Niederst Robbins (O’Re-
illy).

2.17 Finding the Distance Between Two Places

Problem
You want to find the distance between two coordinates on planet Earth.

Solution
Use pc_sphere_distance, as shown in Example 2-10.

Example 2-10. Finding the distance between two points

<?php
function pc_sphere_distance($lat1, $lon1, $lat2, $lon2, $radius = 6378.135) {
 $rad = doubleval(M_PI/180.0);

 $lat1 = doubleval($lat1) * $rad;
 $lon1 = doubleval($lon1) * $rad;
 $lat2 = doubleval($lat2) * $rad;
 $lon2 = doubleval($lon2) * $rad;

 $theta = $lon2 - $lon1;
 $dist = acos(sin($lat1) * sin($lat2) + cos($lat1) * cos($lat2) * cos($theta));
 if ($dist < 0) { $dist += M_PI; }

 return $dist = $dist * $radius; // Default is Earth equatorial radius in kilometers
}

// NY, NY (10040)
$lat1 = 40.858704;
$lon1 = -73.928532;

// SF, CA (94144)
$lat2 = 37.758434;
$lon2 = -122.435126;

$dist = pc_sphere_distance($lat1, $lon1, $lat2, $lon2);
printf("%.2f\n", $dist * 0.621); // Format and convert to miles
?>

2.17 Finding the Distance Between Two Places | 55

Download at Boykma.Com

2570.18

Discussion
Since the Earth is not flat, you cannot get an accurate distance between two locations
using a standard Pythagorean distance formula. You must use a Great Circle algorithm
instead, such as the one in pc_sphere_distance(  ).

Pass in the latitude and longitude of your two points as the first four arguments. First
come the latitude and longitude of the origin, and then come the latitude and longitude
of the destination. The value returned is the distance between them in kilometers:

// NY, NY (10040)
$lat1 = 40.858704;
$lon1 = -73.928532;

// SF, CA (94144)
$lat2 = 37.758434;
$lon2 = -122.435126;

$dist = pc_sphere_distance($lat1, $lon1, $lat2, $lon2);
printf("%.2f\n", $dist * 0.621); // Format and convert to miles

This code finds the distance between New York City and San Francisco, converts the
distance to miles, formats it to have two decimal places, and then prints out the result.

Because the Earth is not a perfect sphere, these calculations are somewhat approximate
and could have an error up to 0.5%.

pc_sphere_distance(  ) accepts an alternative sphere radius as an optional fifth argu-
ment. This lets you, for example, discover the distance between points on Mars:

$martian_radius = 3397;
$dist = pc_sphere_distance($lat1, $lon1, $lat2, $lon2, $martian_radius);
printf("%.2f\n", $dist * 0.621); // Format and convert to miles

See Also
Recipe 2.12 for trig basics; the Wikipedia entry on Earth Radius at http://en.wikipe
dia.org/wiki/Earth_radius; and the article “Trip Mapping with PHP” at http://www.on
lamp.com/pub/a/php/2002/11/07/php_map.html .

56 | Chapter 2: Numbers

Download at Boykma.Com

CHAPTER 3

Dates and Times

3.0 Introduction
Displaying and manipulating dates and times seems simple at first but gets more dif-
ficult depending on how diverse and complicated your users are. Do your users span
more than one time zone? Probably so, unless you are building an intranet or a site with
a very specific geographical audience. Is your audience frightened away by timestamps
that look like “2002-07-20 14:56:34 EDT” or do they need to be calmed with familiar
representations like “Saturday July 20, 2000 (2:56 P.M.)”? Calculating the number of
hours between today at 10 A.M. and today at 7 P.M. is pretty easy. How about between
today at 3 A.M. and noon on the first day of next month? Finding the difference between
dates is discussed in Recipes 3.5 and 3.6.

These calculations and manipulations are made even more hectic by daylight saving
(or summer) time (DST). Because of DST, there are times that don’t exist (in most of
the United States, 2 A.M. to 3 A.M. on a day in the spring) and times that exist twice
(in most of the United States, 1 A.M. to 2 A.M. on a day in the fall). Some of your users
may live in places that observe DST, some may not. Recipes 3.11 and 3.12 provide ways
to work with time zones and DST.

Programmatic time handling is made much easier by two conventions. First, treat time
internally as Coordinated Universal Time (abbreviated UTC and also known as GMT,
Greenwich Mean Time) , the patriarch of the time-zone family with no DST or summer
time observance. This is the time zone at 0 degrees longitude, and all other time zones
are expressed as offsets (either positive or negative) from it. Second, treat time not as
an array of different values for month, day, year, minute, second, etc., but as seconds
elapsed since the Unix epoch: midnight on January 1, 1970 (UTC, of course). This
makes calculating intervals much easier, and PHP has plenty of functions to help you
move easily between epoch timestamps and human-readable time representations.

The function mktime(  ) produces epoch timestamps from a given set of time parts, while
date(  ), given an epoch timestamp, returns a formatted time string. Example 3-1 uses
these functions to find on what day of the week New Year’s Day 1986 occurred.

57

Download at Boykma.Com

Example 3-1. Using mktime(  ) and date(  )
<?php
$stamp = mktime(0,0,0,1,1,1986);
print date('l',$stamp);
?>

Example 3-1 prints:
Wednesday

In Example 3-1, mktime(  ) returns the epoch timestamp at midnight on January 1, 1986.
The l format character to date(  ) tells it to return the full name of the day of the week
that corresponds to the given epoch timestamp. Recipe 3.4 details the many format
characters available to date(  ).

In this book, the phrase epoch timestamp refers to a count of seconds since the Unix
epoch. Time parts (or date parts or time and date parts) means an array or group of time
and date components such as day, month, year, hour, minute, and second. Formatted
time string (or formatted date string, etc.) means a string that contains some particular
grouping of time and date parts—for example, “2002-03-12,” “Wednesday, 11:23
A.M.,” or “February 25.”

If you used epoch timestamps as your internal time representation, you avoided any
Y2K issues, because the difference between 946702799 (1999-12-31 23:59:59 UTC)
and 946702800 (2000-01-01 00:00:00 UTC) is treated just like the difference between
any other two timestamps. You may, however, run into a Y2038 problem. January 19,
2038 at 3:14:07 A.M. (UTC) is 2147483647 seconds after midnight January 1, 1970.
What’s special about 2147483647? It’s 231 − 1, which is the largest integer expressible
when 32 bits represent a signed integer. (The 32nd bit is used for the sign.)

The solution? At some point before January 19, 2038, make sure you trade up to hard-
ware that uses, say, a 64-bit quantity for time storage. This buys you about another 292
billion years. (Just 39 bits would be enough to last you until about 10680, well after
the impact of the Y10K bug has leveled the Earth’s cold fusion factories and faster-than-
light travel stations.) The year 2038 might seem far off right now, but so did 2000 to
COBOL programmers in the 1950s and 1960s. Don’t repeat their mistake!

3.1 Finding the Current Date and Time

Problem
You want to know what the time or date is.

Solution
Use strftime(  ) or date(  ) for a formatted time string, as in Example 3-2.

Example 3-2. Finding the current date and time
<?php
print strftime('%c');

58 | Chapter 3: Dates and Times

Download at Boykma.Com

print "\n";
print date('r');
?>

Example 3-2 prints:

Wed May 10 18:29:59 2006
Wed, 10 May 2006 18:29:59 -0400

Use getdate(  ) or localtime(  ) if you want time parts. Example 3-3 shows how these
functions work.

Example 3-3. Finding time parts

<?php
$now_1 = getdate();
$now_2 = localtime();
print "{$now_1['hours']}:{$now_1['minutes']}:{$now_1['seconds']}\n";
print "$now_2[2]:$now_2[1]:$now_2[0]";

Example 3-3 prints:

18:23:45
18:23:45

Discussion
The functions strftime(  ) and date(  ) can produce a variety of formatted time and date
strings. They are discussed in more detail in Recipe 3.4. Both localtime(  ) and
getdate(  ), on the other hand, return arrays whose elements are the different pieces of
the specified date and time.

The associative array getdate(  ) returns the key/value pairs listed in Table 3-1.

Table 3-1. Return array from getdate(  )

Key Value

seconds Seconds

minutes Minutes

hours Hours

mday Day of the month

wday Day of the week, numeric (Sunday is 0, Saturday is 6)

mon Month, numeric

year Year, numeric (4 digits)

yday Day of the year, numeric (e.g., 299)

weekday Day of the week, textual, full (e.g., “Friday")

month Month, textual, full (e.g., “January")

0 Seconds since epoch (what time(  ) returns)

3.1 Finding the Current Date and Time | 59

Download at Boykma.Com

Example 3-4 shows how to use getdate(  ) to print out the month, day, and year.

Example 3-4. Finding the month, day, and year
<?php
$a = getdate();
printf('%s %d, %d',$a['month'],$a['mday'],$a['year']);
?>

Example 3-4 prints:

May 5, 2007

Pass getdate(  ) an epoch timestamp as an argument to make the returned array the
appropriate values for local time at that timestamp. The month, day, and year at epoch
timestamp 163727100 is shown in Example 3-5.

Example 3-5. getdate(  ) with a specific timestamp
<?php
$a = getdate(163727100);
printf('%s %d, %d',$a['month'],$a['mday'],$a['year']);
?>

Example 3-5 prints:

March 10, 1975

The function localtime(  ) returns an array of time and date parts. It also takes an epoch
timestamp as an optional first argument, as well as a boolean as an optional second
argument. If that second argument is true, localtime(  ) returns an associative array
instead of a numerically indexed array. The keys of that array are the same as the mem-
bers of the tm_struct structure that the C function localtime(  ) returns, as shown in
Table 3-2.

Table 3-2. Return array from localtime(  )

Numeric position Key Value

0 tm_sec Second

1 tm_min Minutes

2 tm_hour Hour

3 tm_mday Day of the month

4 tm_mon Month of the year (January is 0)

5 tm_year Years since 1900

6 tm_wday Day of the week (Sunday is 0)

7 tm_yday Day of the year

8 tm_isdst Is daylight savings time in effect?

Example 3-6 shows how to use localtime(  ) to print out today’s date in month/day/
year format.

60 | Chapter 3: Dates and Times

Download at Boykma.Com

Example 3-6. Using localtime(  )
<?php
$a = localtime();
$a[4] += 1;
$a[5] += 1900;
print "$a[4]/$a[3]/$a[5]";

Example 3-6 prints:
6/23/2006

The month is incremented by 1 before printing since localtime(  ) starts counting
months with 0 for January, but we want to display 1 if the current month is January.
Similarly, the year is incremented by 1900 because localtime(  ) starts counting years
with 0 for 1900.

See Also
Documentation on strftime(  ) at http://www.php.net/strftime, date(  ) at http://
www.php.net/date, getdate(  ) at http://www.php.net/getdate, and localtime(  ) at http://
www.php.net/localtime .

3.2 Converting Time and Date Parts to an Epoch Timestamp

Problem
You want to know what epoch timestamp corresponds to a set of time and date parts.

Solution
Use mktime(  ) if your time and date parts are in the local time zone, as shown in Ex-
ample 3-7.

Example 3-7. Getting a specific epoch timestamp
<?php
// 7:45:03 PM on March 10, 1975, local time
$then = mktime(19,45,3,3,10,1975);
?>

Use gmmktime(  ) , as in Example 3-8, if your time and date parts are in GMT.

Example 3-8. Getting a specific GMT-based epoch timestamp
<?php
// 7:45:03 PM on March 10, 1975, in GMT
$then = gmmktime(19,45,3,3,10,1975);
?>

Discussion
The functions mktime(  ) and gmmktime(  ) each take a date and time’s parts (hour, minute,
second, month, day, year) and return the appropriate Unix epoch timestamp. The

3.2 Converting Time and Date Parts to an Epoch Timestamp | 61

Download at Boykma.Com

components are treated as local time by mktime(  ), while gmmktime(  ) treats them as a
date and time in UTC. These functions return sensible results only for times within the
epoch. Most systems store epoch timestamps in a 32-bit signed integer, so “within the
epoch” means between 8:45:51 P.M. December 13, 1901 UTC and 3:14:07 A.M. Jan-
uary 19, 2038 UTC.

In Example 3-9, $stamp_future is set to the epoch timestamp for 3:25 P.M. on June 4,
2012. The epoch timestamp can be fed back to strftime(  ) to produce a formatted time
string.

Example 3-9. Working with epoch timestamps
<?php
$stamp_future = mktime(15,25,0,6,4,2012);

print $stamp_future;
print strftime('%c',$stamp_future);
?>

Example 3-9 prints:

1338837900
Mon Jun 4 15:25:00 2012

Because the calls to mktime(  ) in Example 3-9 were made on a computer set to EDT
(which is four hours behind GMT), using gmmktime(  ) instead produces epoch
timestamps that are 14,400 seconds (four hours) smaller, as shown in Example 3-10.

Example 3-10. Epoch timestamps and gmmktime(  )
<?php
$stamp_future = gmmktime(15,25,0,6,4,2012);

print $stamp_future;
print strftime('%c',$stamp_future);

Example 3-10 prints:

1338823500
Mon Jun 4 11:25:00 2012

Feeding a gmmktime(  )-generated epoch timestamp back to strftime(  ) produces for-
matted time strings that are also four hours earlier.

In versions of PHP before 5.1.0, mktime(  ) and gmmktime(  ) could accept an optional
boolean seventh argument indicating a DST flag (1 if DST is being observed, 0 if not).
In PHP 5.1.0 and up, whether daylight savings time is being observed is controlled by
the currently active default time zone, set with date_default_timezone_set(  ) .

See Also
Recipe 3.3 for how to convert an epoch timestamp back to time and date parts; docu-
mentation on mktime(  ) at http://www.php.net/mktime and gmmktime(  ) at http://

62 | Chapter 3: Dates and Times

Download at Boykma.Com

www.php.net/gmmktime, and on date_default_timezone_set(  ) at http://www.php.net/
date_default_timezone_set.

3.3 Converting an Epoch Timestamp to Time and Date Parts

Problem
You want the set of time and date parts that corresponds to a particular epoch
timestamp.

Solution
Pass an epoch timestamp to getdate(  ): $time_parts = getdate(163727100);.

Discussion
The time parts returned by getdate(  ) are detailed in Table 3-1. These time parts are in
local time. If you want time parts in another time zone corresponding to a particular
epoch timestamp, see Recipe 3.11.

See Also
Recipe 3.2 for how to convert time and date parts back to epoch timestamps; Rec-
ipe 3.11 for how to deal with time zones; documentation on getdate(  ) at http://
www.php.net/getdate .

3.4 Printing a Date or Time in a Specified Format

Problem
You need to print out a date or time formatted in a particular way.

Solution
Use date(  ) or strftime(  ), as shown in Example 3-11.

Example 3-11. Using date(  ) and strftime(  )
<?php
print strftime('%c');
print date('m/d/Y');
?>

Example 3-11 prints something like:

Mon Dec 3 11:31:08 2007
12/03/2007

3.3 Converting an Epoch Timestamp to Time and Date Parts | 63

Download at Boykma.Com

Discussion
Both date(  ) and strftime(  ) are flexible functions that can produce a formatted time
string with a variety of components. The formatting characters for these functions are
listed in Table 3-3. The Windows column indicates whether the formatting character
is supported by strftime(  ) on Windows systems.

Table 3-3. strftime(  ) and date(  ) format characters

Type strftime(  ) date(  ) Description Range Win-
dows

Hour %H H Hour, numeric, 24-hour clock 00–23 Yes

Hour %I h Hour, numeric, 12-hour clock 01–12 Yes

Hour %k Hour, numeric, 24-hour clock, leading zero as
space

0–23 No

Hour %l Hour, numeric, 12-hour clock, leading zero as
space

1–12 No

Hour %p A A.M. or P.M. designation for current locale Yes

Hour %P a A.M. or P.M. designation for current locale No

Hour G Hour, numeric, 24-hour clock, leading zero
trimmed

0–23 No

Hour g Hour, numeric, 12-hour clock, leading zero
trimmed

0–1 No

Minute %M i Minute, numeric 00–59 Yes

Second %S s Second, numeric 00–611 Yes

Day %d d Day of the month, numeric 01–31 Yes

Day %e Day of the month, numeric, leading zero as
space

1–31 No

Day %j z Day of the year, numeric 001–366 for
strftime(  ); 0–
365 for date(  )

Yes

Day %u N Day of the week, numeric (Monday is 1) 1–7 No

Day %w w Day of the week, numeric (Sunday is 0) 0–6 Yes

Day j Day of the month, numeric, leading zero trim-
med

1–31 No

Day S English ordinal suffix for day of the month,
textual

“st,” “th,” “nd,” “rd” No

Week %a D Abbreviated weekday name, text for current
locale

 Yes

Week %A l Full weekday name, text for current locale Yes

Week %U Week number in the year, numeric, first Sun-
day is the first day of the first week

00–53 Yes

64 | Chapter 3: Dates and Times

Download at Boykma.Com

Type strftime(  ) date(  ) Description Range Win-
dows

Week %V W ISO 8601:1988 week number in the year, nu-
meric, week 1 is the first week that has at least
4 days in the current year, Monday is the first
day of the week

01–53 No

Week %W Week number in the year, numeric, first Mon-
day is the first day of the first week

00–53 Yes

Month %B F Full month name, text for current locale Yes

Month %b M Abbreviated month name, text for current lo-
cale

 Yes

Month %h Same as %b No

Month %m m Month, numeric 01–12 Yes

Month n Month, numeric, leading zero trimmed 1–12 No

Month t Month length in days, numeric 28, 29, 30, 31 No

Year %C Century, numeric 00–99 No

Year %g Like %G, but without the century 00–99 No

Year %G o ISO 8601 year with century; numeric; the four-
digit year corresponding to the ISO week
number; same as %y except if the ISO week
number belongs to the previous or next year,
that year is used instead

 No

Year %y y Year without century, numeric 00–99 Yes

Year %Y Y Year, numeric, including century Yes

Year L Leap year flag (yes is 1) 0, 1 No

Time zone %z O Hour offset from GMT, ±HHMM (e.g., −0400,
+0230)

−1200–+1200 Yes, but
acts like
%Z

Time zone P Time zone offset including colon (e.g. −04:00,
+02:30)

−12:00 –+12:00

Time zone %Z T Time zone, name, or abbreviation; textual Yes

Time zone e Timezone identifier, e.g., America/
New_York

Time zone I Daylight savings time flag (yes is 1) 0, 1 No

Time zone Z Seconds offset from GMT; west of GMT is neg-
ative, east of GMT is positive

−43200–43200 No

Compound %c Standard date and time format for current lo-
cale

 Yes

Compound c ISO 8601–formatted date and time Yes

Compound %D Same as %m/%d/%y No

3.4 Printing a Date or Time in a Specified Format | 65

Download at Boykma.Com

Type strftime(  ) date(  ) Description Range Win-
dows

Compound %F Same as %Y-%m-%d No

Compound %r Time in A.M. or P.M. notation for current locale No

Compound %R Time in 24-hour notation for current locale No

Compound %T Time in 24-hour notation (same as %H:%M:%
S)

 No

Compound %x Standard date format for current locale (with-
out time)

 Yes

Compound %X Standard time format for current locale (with-
out date)

 Yes

Compound r RFC 822–formatted date (e.g., “Thu, 22 Aug
2002 16:01:07 +0200")

 No

Other %s U Seconds since the epoch No

Other B Swatch Internet time No

Format-
ting

%% Literal % character Yes

Format-
ting

%n Newline character No

Format-
ting

%t Tab character No

1 The range for seconds extends to 61 to account for leap seconds.

The c formatting character was added to date(  ) in PHP 5.0.0. The N, o, and e characters
were added to date(  ) in PHP 5.1.0. The P character was added in PHP 5.1.3.

The first argument to each function is a format string, and the second argument is an
epoch timestamp. If you leave out the second argument, both functions default to the
current date and time. While date(  ) and strftime(  ) operate over local time, they each
have UTC-centric counterparts (gmdate(  ) and gmstrftime(  )).

In PHP 5.1.1 and later, there are some handy constants that represent the format string
to be passed to date(  ) for common date formats. These constants are listed in Ta-
ble 3-4.

Table 3-4. Constants for use with date(  )

Constant Value Example Usage

DATE_ATOM Y-m-d\TH:i:sO 2010-12-03

T06:23:39-0500

Section 3.3 of the Atom Syndication format
(http://www.atomenabled.org/developers/syndi
cation/atom-format-spec.php#date.constructs)

DATE_COOKIE D, d M Y H:i:s T Fri, 03 Dec 2010

06:23:39 EST

HTTP Cookies (as defined at http://wp.net
scape.com/newsref/std/cookie_spec.html)

66 | Chapter 3: Dates and Times

Download at Boykma.Com

Constant Value Example Usage

DATE_ISO8601 Y-m-d\TH:i:sO 2010-12-03

T06:23:39-0500

ISO 8601 (as discussed at http://www.w3.org/TR/
NOTE-datetime)

DATE_RFC822 D, d M Y H:i:s T Fri, 03 Dec 2010

06:23:39 EST

Email messages (as defined in http://
www.faqs.org/rfcs/rfc822.html)

DATE_RFC850 l, d-M-y H:i:s T Friday, 03-Dec-10

06:23:39 EST

Usenet messages (as defined in http://
www.faqs.org/rfcs/rfc850.html)

DATE_RFC1036 l, d-M-y H:i:s T Friday, 03-Dec-10

06:23:39 EST

Usenet messages (as defined in http://
www.faqs.org/rfcs/rfc1036.html)

DATE_RFC1123 D, d M Y H:i:s T Fri, 03 Dec 2010

06:23:39 EST

As defined in http://www.faqs.org/rfcs/
rfc1123.html

DATE_RFC2822 D, d M Y H:i:s O Fri, 03 Dec 2010

06:23:39 -0500

E-mail messages (as defined in http://
www.faqs.org/rfcs/rfc2822.html)

DATE_RSS D, d M Y H:i:s T Fri, 03 Dec 2010

06:23:39 EST

RSS feeds (as defined in http://blogs.law.har
vard.edu/tech/rss)

DATE_W3C Y-m-d\TH:i:sO 2010-12-03

T06:23:39-0500

Same as DATE_ISO8601

The formatting characters for date(  ) are PHP-specific, but strftime(  ) uses the C-li-
brary strftime(  ) function. This may make strftime(  ) more understandable to some-
one coming to PHP from another language, but it also makes its behavior slightly
different on various platforms. Windows doesn’t support as many strftime(  ) format-
ting commands as most Unix-based systems. Also, strftime(  ) expects each of its
formatting characters to be preceded by a % (think printf(  )), so it’s easier to produce
strings with lots of interpolated time and date values in them.

For example, at 12:49 P.M. on July 15, 2002, the code to print out:
It's after 12 pm on July 15, 2002

with strftime(  ) looks like:
print strftime("It's after %I %P on %B %d, %Y");

With date(  ) it looks like:
print "It's after ".date('h a').' on '.date('F d, Y');

Non-date-related characters in a format string are fine for strftime(  ), because it looks
for the % character to decide where to interpolate the appropriate time information.
However, date(  ) doesn’t have such a delimiter, so about the only extras you can tuck
into the formatting string are spaces and punctuation. If you pass strftime(  )’s for-
matting string to date(  ):

print date("It's after %I %P on %B%d, %Y");

3.4 Printing a Date or Time in a Specified Format | 67

Download at Boykma.Com

you’d almost certainly not want what you’d get:

131'44 pmf31eMon, 15 Jul 2002 12:49:44 -0400 %1 %P o7 %742%15, %2002

To generate time parts with date(  ) that are easy to interpolate, group all time and date
parts from date(  ) into one string, separating the different components with a delimiter
that date(  ) won’t translate into anything and that isn’t itself part of one of your sub-
strings. Then, using explode(  ) with that delimiter character, put each piece of the return
value from date(  ) in an array, which is easily interpolated in your output string. Ex-
ample 3-12 does this, using a | character as a delimiter.

Example 3-12. Using explode(  ) with date(  )
<?php
$ar = explode('|',date("h a|F d, Y"));
print "It's after $ar[0] on $ar[1]";
?>

See Also
Documentation on date(  ) at http://www.php.net/date and strftime(  ) at http://
www.php.net/strftime; on Unix-based systems, man strftime for your system-specific
strftime(  ) options; on Windows, see http://msdn.microsoft.com/library/default.asp?
url=/library/en-us/vclib/html/_crt_strftime.2c_.wcsftime.asp for strftime(  ) details.

3.5 Finding the Difference of Two Dates

Problem
You want to find the elapsed time between two dates. For example, you want to tell a
user how long it’s been since she last logged onto your site.

Solution
Convert both dates to epoch timestamps and subtract one from the other. Exam-
ple 3-13 separates the difference into weeks, days, hours, minutes, and seconds.

Example 3-13. Calculating the difference between two dates
<?php
// 7:32:56 pm on May 10, 1965
$epoch_1 = mktime(19,32,56,5,10,1965);
// 4:29:11 am on November 20, 1962
$epoch_2 = mktime(4,29,11,11,20,1962);

$diff_seconds = $epoch_1 - $epoch_2;
$diff_weeks = floor($diff_seconds/604800);
$diff_seconds -= $diff_weeks * 604800;
$diff_days = floor($diff_seconds/86400);
$diff_seconds -= $diff_days * 86400;
$diff_hours = floor($diff_seconds/3600);

68 | Chapter 3: Dates and Times

Download at Boykma.Com

$diff_seconds -= $diff_hours * 3600;
$diff_minutes = floor($diff_seconds/60);
$diff_seconds -= $diff_minutes * 60;

print "The two dates have $diff_weeks weeks, $diff_days days, ";
print "$diff_hours hours, $diff_minutes minutes, and $diff_seconds ";
print "seconds elapsed between them.";
?>

Example 3-13 prints:

The two dates have 128 weeks, 6 days, 14 hours, 3 minutes,
and 45 seconds elapsed between them.

Note that the difference isn’t divided into larger chunks than weeks (i.e., months or
years) because those chunks have variable length and wouldn’t give an accurate count
of the time difference calculated.

Discussion
There are a few strange things going on here that you should be aware of. First of all,
1962 and 1965 precede the beginning of the epoch. Fortunately, mktime(  ) fails grace-
fully here and produces negative epoch timestamps for each. This is okay because the
absolute time value of either of these questionable timestamps isn’t necessary, just the
difference between the two. As long as epoch timestamps for the dates fall within the
range of a signed integer, their difference is calculated correctly.

Next, a wall clock (or calendar) reflects a slightly different amount of time change
between these two dates, because they are on different sides of a DST switch. The result
subtracting epoch timestamps gives is the correct amount of elapsed time, but the per-
ceived human time change is an hour off. For example, on the Sunday morning in April
when DST is activated, what’s the difference between 1:30 A.M. and 4:30 A.M.? It
seems like three hours, but the epoch timestamps for these two times are only 7,200
seconds apart—two hours. When a local clock springs forward an hour (or falls back
an hour in October), the steady march of epoch timestamps takes no notice. Truly,
only two hours have passed, although our clock manipulations make it seem like three.

If you want to measure actual elapsed time (and you usually do), this method is fine.
If you’re more concerned with the difference in what a clock says at two points in time,
use Julian days to compute the interval, as discussed in Recipe 3.6.

To tell a user the elapsed time since her last login, you need to find the difference
between the login time and her last login time, as shown in Example 3-14.

Example 3-14. Finding elapsed time since last login
<?php
$db = new PDO('mysql:host=db.example.com', $user, $password);
$epoch_1 = time();
$st = $db->prepare("SELECT UNIX_TIMESTAMP(last_login) AS login " .
 "FROM user WHERE id = ?");
$st->execute(array($id));

3.5 Finding the Difference of Two Dates | 69

Download at Boykma.Com

$row = $st->fetch();
$epoch_2 = $row['login'];

$diff_seconds = $epoch_1 - $epoch_2;
$diff_weeks = floor($diff_seconds/604800);
$diff_seconds -= $diff_weeks * 604800;
$diff_days = floor($diff_seconds/86400);
$diff_seconds -= $diff_days * 86400;
$diff_hours = floor($diff_seconds/3600);
$diff_seconds -= $diff_hours * 3600;
$diff_minutes = floor($diff_seconds/60);
$diff_seconds -= $diff_minutes * 60;

print "You last logged in $diff_weeks weeks, $diff_days days, ";
print "$diff_hours hours, $diff_minutes minutes, and $diff_seconds ago.";

See Also
Recipe 3.6 to find the difference between two dates with Julian days; Recipe 3.10 for
adding to and subtracting from a date; documentation on MySQL’s
UNIX_TIMESTAMP(  ) function can be found at http://www.mysql.com/doc/D/a/
Date_and_time_functions.html.

3.6 Finding the Difference of Two Dates with Julian Days

Problem
You want to find the difference of two dates measured by what a clock would say, not
the actual elapsed time.

Solution
Use gregoriantojd(  ) to get the Julian day for a set of date parts and then subtract one
Julian day from the other to find the date difference. Then, convert the time parts to
seconds and subtract one from the other to find the time difference. If the time differ-
ence is less than 0, decrease the date difference by one and adjust the time difference
to apply to the previous day. Example 3-15 shows how to do this.

Example 3-15. Finding date differences with Julian days

<?php
$diff_date = gregoriantojd($date_1_mo, $date_1_dy, $date_1_yr) -
 gregoriantojd($date_2_mo, $date_2_dy, $date_2_yr);
$diff_time = $date_1_hr * 3600 + $date_1_mn * 60 + $date_1_sc -
 $date_2_hr * 3600 - $date_2_mn * 60 - $date_2_sc;
if ($diff_time < 0) {
 $diff_date--;
 $diff_time = 86400 - $diff_time;
}
?>

70 | Chapter 3: Dates and Times

Download at Boykma.Com

Discussion
Finding differences with Julian days lets you operate outside the range of epoch seconds
and also accounts for DST differences.

Example 3-16 does the calculation with date parts from arrays.

Example 3-16. Calculating difference with arrays of date parts

<?php
// 7:32:56 pm on May 10, 1965
list($date_1_yr, $date_1_mo, $date_1_dy, $date_1_hr, $date_1_mn, $date_1_sc)=
 array(1965, 5, 10, 19, 32, 56);
// 4:29:11 am on November 20, 1962
list($date_2_yr, $date_2_mo, $date_2_dy, $date_2_hr, $date_2_mn, $date_2_sc)=
 array(1962, 11, 20, 4, 29, 11);

$diff_date = gregoriantojd($date_1_mo, $date_1_dy, $date_1_yr) -
 gregoriantojd($date_2_mo, $date_2_dy, $date_2_yr);
$diff_time = $date_1_hr * 3600 + $date_1_mn * 60 + $date_1_sc -
 $date_2_hr * 3600 - $date_2_mn * 60 - $date_2_sc;
if ($diff_time < 0) {
 $diff_date--;
 $diff_time = 86400 - $diff_time;
}
$diff_weeks = floor($diff_date/7); $diff_date -= $diff_weeks * 7;
$diff_hours = floor($diff_time/3600); $diff_time -= $diff_hours * 3600;
$diff_minutes = floor($diff_time/60); $diff_time -= $diff_minutes * 60;

print "The two dates have $diff_weeks weeks, $diff_date days, ";
print "$diff_hours hours, $diff_minutes minutes, and $diff_time ";
print "seconds between them.";
?>

Example 3-16 prints:

The two dates have 128 weeks, 6 days, 15 hours, 3 minutes,
and 45 seconds between them.

This method produces a time difference based on clock time, which is why the result
shows an hour more of difference than in Recipe 3.5. May 10 is during DST, and No-
vember 20 is during standard time.

The function gregoriantojd(  ) is part of PHP’s calendar extension, and so is available
only if that extension is loaded.

See Also
Recipe 3.5 to find the difference between two dates in elapsed time; Recipe 3.10 for
adding and subtracting from a date; documentation on gregoriantojd(  ) at http://
www.php.net/gregoriantojd; an overview of the Julian day system is at http://tycho.us
no.navy.mil/mjd.html.

3.6 Finding the Difference of Two Dates with Julian Days | 71

Download at Boykma.Com

3.7 Finding the Day in a Week, Month, or Year

Problem
You want to know the day or week of the year, the day of the week, or the day of the
month. For example, you want to print a special message every Monday, or on the first
of every month.

Solution
Use the appropriate arguments to date(  ) or strftime(  ) , as shown in Example 3-17.

Example 3-17. Finding days of the week, month, and year
<?php
print strftime("Today is day %d of the month and %j of the year.");
print 'Today is day '.date('d').' of the month and '.date('z').' of the year.';
?>

Discussion
The two functions date(  ) and strftime(  ) don’t behave identically. Days of the year
start with 0 for date(  ), but with 1 for strftime(  ). Table 3-4 contains all the day and
week number format characters date(  ) and strftime(  ) understand.

Table 3-4. Day and week number format characters

Type strftime(  ) date(  ) Description Range Win-
dows

Day %d d Day of the month, numeric 01–31 Yes

Day %e Day of the month, numeric, leading zero as space 1–31 No

Day %j z Day of the year, numeric 001–366 for
strftime(  );

0–365 for date(  )

Yes

Day %u N Day of the week, numeric (Monday is 1) 1–7 No

Day %w w Day of the week, numeric (Sunday is 0) 0–6 Yes

Day j Day of the month, numeric, leading zero trimmed 1–31 No

Day S English ordinal suffix for day of the month, textual “st,” “th,” “nd,” “rd” No

Week %a D Abbreviated weekday name, text for current locale Yes

Week %A l Full weekday name, text for current locale Yes

Week %U Week number in the year, numeric, first Sunday is
the first day of the first week

00–53 Yes

Week %V W ISO 8601:1988 week number in the year, numeric,
week 1 is the first week that has at least 4 days in
the current year, Monday is the first day of the week

01–53 No

72 | Chapter 3: Dates and Times

Download at Boykma.Com

Type strftime(  ) date(  ) Description Range Win-
dows

Week %W Week number in the year, numeric, first Monday
is the first day of the first week

00–53 Yes

To print out something only on Mondays, use the w formatting character with date(  )
or the %w string with strftime(  ), as in Example 3-18.

Example 3-18. Checking for the day of the week
<?php
if (1 == date('w')) {
 print "Welcome to the beginning of your work week.";
}

if (1 == strftime('%w')) {
 print "Only 4 more days until the weekend!";
}

There are different ways to calculate week numbers and days in a week, so take care to
choose the appropriate one. The ISO standard (ISO 8601), says that weeks begin on
Mondays and that the days in the week are numbered 1 (Monday) through 7 (Sunday).
Week 1 in a year is the first week in a year with a Thursday in that year. This means
the first week in a year is the first week with a majority of its days in that year. These
week numbers range from 01 to 53.

Other week number standards range from 00 to 53, with days in a year’s week 53
potentially overlapping with days in the following year’s week 00.

As long as you’re consistent within your programs, you shouldn’t run into any trouble,
but be careful when interfacing with other PHP programs or your database. For exam-
ple, MySQL’s DAYOFWEEK(  ) function treats Sunday as the first day of the week, but
numbers the days 1 to 7, which is the ODBC standard. Its WEEKDAY(  ) function, however,
treats Monday as the first day of the week and numbers the days from 0 to 6. Its
WEEK(  ) function lets you choose whether weeks should start on Sunday or Monday,
but it’s incompatible with the ISO standard.

See Also
Documentation on date(  ) at http://www.php.net/date and strftime(  ) at http://
www.php.net/strftime; MySQL’s DAYOFWEEK(  ), WEEKDAY(  ), and WEEK(  ) functions are
documented at http://www.mysql.com/doc/D/a/Date_and_time_functions.html .

3.7 Finding the Day in a Week, Month, or Year | 73

Download at Boykma.Com

3.8 Validating a Date

Problem
You want to check if a date is valid. For example, you want to make sure a user hasn’t
provided a birthdate such as February 30, 1962.

Solution
Use checkdate(  ):

$valid = checkdate($month,$day,$year);

Discussion
The function checkdate(  ) returns true if $month is between 1 and 12, $year is between
1 and 32767, and $day is between 1 and the correct maximum number of days for
$month and $year. Leap years are correctly handled by checkdate(  ), and dates are ren-
dered using the Gregorian calendar.

Because checkdate(  ) has such a broad range of valid years, you should do additional
validation on user input if, for example, you’re expecting a valid birthdate. The longest
confirmed human lifespan is 122 years old. To check that a birthdate indicates that a
user is between 18 and 122 years old, use the pc_checkbirthdate(  ) function shown in
Example 3-19.

Example 3-19. pc_checkbirthdate(  )
<?php
function pc_checkbirthdate($month,$day,$year) {
 $min_age = 18;
 $max_age = 122;

 if (! checkdate($month,$day,$year)) {
 return false;
 }

 list($this_year,$this_month,$this_day) = explode(',',date('Y,m,d'));

 $min_year = $this_year - $max_age;
 $max_year = $this_year - $min_age;

 print "$min_year,$max_year,$month,$day,$year\n";

 if (($year > $min_year) && ($year < $max_year)) {
 return true;
 } elseif (($year == $max_year) &&
 (($month < $this_month) ||
 (($month == $this_month) && ($day <= $this_day)))) {
 return true;
 } elseif (($year == $min_year) &&
 (($month > $this_month) ||

74 | Chapter 3: Dates and Times

Download at Boykma.Com

 (($month == $this_month && ($day > $this_day))))) {
 return true;
 } else {
 return false;
 }
}

// check December 3, 1974
if (pc_checkbirthdate(12,3,1974)) {
 print "You may use this web site.";
} else {
 print "You are too young to proceed.";
 exit();
}
?>

The function first uses checkdate(  ) to make sure that $month, $day, and $year represent
a valid date. Various comparisons then make sure that the supplied date is in the range
set by $min_age and $max_age.

If $year is noninclusively between $min_year and $max_year, the date is definitely within
the range, and the function returns true. If not, some additional checks are required.
If $year equals $max_year (e.g., in 2002, $year is 1984), $month must be before the current
month. If $month equals the current month, $day must be before or equal to the current
day. If $year equals $min_year (e.g., in 2002, $year is 1880), $month must be after the
current month. If $month equals the current month, $day must be after the current day.
If none of these conditions are met, the supplied date is outside the appropriate range,
and the function returns false.

The function returns true if the supplied date is exactly $min_age years before the current
date, but false if the supplied date is exactly $max_age years after the current date. That
is, it would let you through on your 18th birthday, but not on your 123rd.

See Also
Documentation on checkdate(  ) at http://www.php.net/checkdate; information about
Jeanne Calment, the person with the longest confirmed lifespan, is at http://en.wikipe
dia.org/wiki/Jeanne_Calment .

3.9 Parsing Dates and Times from Strings

Problem
You need to get a date or time in a string into a format you can use in calculations.
For example, you want to convert date expressions such as “last Thursday” into an
epoch timestamp.

3.9 Parsing Dates and Times from Strings | 75

Download at Boykma.Com

Solution
The simplest way to parse a date or time string of arbitrary format is with
strtotime(  ), which turns a variety of human-readable date and time strings into epoch
timestamps, as shown in Example 3-20.

Example 3-20. Parsing strings with strtotime(  )
<?php
$a = strtotime('march 10'); // defaults to the current year
$b = strtotime('last thursday');
$c = strtotime('now + 3 months');

Discussion
The grammar strtotime(  ) uses is both complicated and comprehensive. It uses the
GNU Date Input Formats specification, which is available at the following address:
http://www.gnu.org/software/coreutils/manual/html_chapter/coreutils_27.html.

The function strtotime(  ) understands words about the current time:
<?php
$a = strtotime('now');
print strftime('%c',$a);
$a = strtotime('today');
print strftime('%c',$a);
?>

Mon Aug 12 20:35:10 2002
Mon Aug 12 20:35:10 2002

It understands different ways to identify a time and date:
<?php
$a = strtotime('5/12/1994');
print strftime('%c',$a);
$a = strtotime('12 may 1994');
print strftime('%c',$a);
?>

Thu May 12 00:00:00 1994
Thu May 12 00:00:00 1994

It understands relative times and dates:
<?php
$a = strtotime('last thursday'); // On August 12, 2002
print strftime('%c',$a);
$a = strtotime('2001-07-12 2pm + 1 month');
print strftime('%c',$a);
?>

Thu Aug 8 00:00:00 2002
Mon Aug 12 14:00:00 2002

It understands time zones. When the following is run from a computer in EDT, it prints
out the same time:

76 | Chapter 3: Dates and Times

Download at Boykma.Com

<?php
$a = strtotime('2002-07-12 2pm edt + 1 month');
print strftime('%c',$a);
?>

Mon Aug 12 14:00:00 2002

However, when the following is run from a computer in EDT, it prints out the time in
EDT when it is 2 P.M. in MDT (two hours before EDT):

<?php
$a = strtotime('2002-07-12 2pm mdt + 1 month');
print strftime('%c',$a);
?>

Mon Aug 12 16:00:00 2002

If the date and time you want to parse out of a string are in a format you know in
advance, instead of calling strtotime(  ), you can build a regular expression that grabs
the different date and time parts you need. Example 3-21 shows how to parse “YYYY-
MM-DD HH:MM:SS” dates, such as a MySQL DATETIME field.

Example 3-21. Parsing a date with a regular expression
<?php
$date = '1974-12-03 05:12:56';
preg_match('/(\d{4})-(\d{2})-(\d{2}) (\d{2}):(\d{2}):(\d{2})/',$date,$date_parts);
?>

This puts the year, month, day, hour, minute, and second into $date_parts[1] through
$date_parts[6]. (preg_match(  ) puts the entire matched expression into
$date_parts[0].)

You can use regular expressions to pull the date and time out of a larger string that
might also contain other information (from user input, or a file you’re reading), but if
you’re sure about the position of the date in the string you’re parsing, you can use
substr(  ) to make it even faster, as shown in Example 3-22.

Example 3-22. Parsing a date with substr(  )
$date_parts[0] = substr($date,0,4);
$date_parts[1] = substr($date,5,2);
$date_parts[2] = substr($date,8,2);
$date_parts[3] = substr($date,11,2);
$date_parts[4] = substr($date,14,2);
$date_parts[5] = substr($date,17,2);
?>

You can also use preg_split(  ), as in Example 3-23.

Example 3-23. Parsing a date with preg_split(  )
<?php $ar = preg_split('/[- :]/',$date);
var_dump($ar);
?>

3.9 Parsing Dates and Times from Strings | 77

Download at Boykma.Com

Example 3-23 prints:

array(6) {
 [0]=>
 string(4) "1974"
 [1]=>
 string(2) "12"
 [2]=>
 string(2) "03"
 [3]=>
 string(2) "05"
 [4]=>
 string(2) "12"
 [5]=>
 string(2) "56"
}

Be careful: PHP converts between numbers and strings without any prompting, but
numbers beginning with a 0 are considered to be in octal (base 8). So 03 and 05 are 3
and 5, but 08 and 09 are not 8 and 9.

In PHP 5.1 and later, preg_match(  ) is faster than strtotime(  ) in parsing a date format
such as “YYYY-MM-DD HH:MM:SS.” In earlier versions of PHP, strtotime(  ) is slight-
ly faster. If you need the individual parts of the date string, preg_match(  ) is more
convenient, but strtotime(  ) is obviously much more flexible.

See Also
Documentation on strtotime(  ) at http://www.php.net/strtotime. The rules describing
what strtotime(  ) can parse are at http://www.gnu.org/software/coreutils/manual/
html_chapter/coreutils_27.html.

3.10 Adding to or Subtracting from a Date

Problem
You need to add or subtract an interval from a date.

Solution
Depending on how your date and interval are represented, use strtotime(  ) or some
simple arithmetic.

If you have your date and interval in appropriate formats, the easiest thing to do is use
strtotime(  ), as in Example 3-24.

Example 3-24. Calculating a date interval with strtotime(  )
<?php
$birthday = 'March 10, 1975';
$whoopee_made = strtotime("$birthday - 9 months ago");
?>

78 | Chapter 3: Dates and Times

Download at Boykma.Com

If your date is an epoch timestamp and you can express your interval in seconds, sub-
tract the interval from the timestamp, as in Example 3-25.

Example 3-25. Calculating a date interval with epoch timestamps
<?php
$birthday = 163727100;
$gestation = 36 * 7 * 86400; // 36 weeks
$whoopee_made = $birthday - $gestation;
?>

Discussion
Using strtotime(  ) is good for intervals that are of varying lengths, such as months. If
you can’t use strtotime(  ), convert your date to an epoch timestamp and add or subtract
the appropriate interval in seconds. This is mostly useful for intervals of a fixed time,
such as days or weeks. Example 3-26 adds seven days’ worth of seconds to a timestamp.

Example 3-26. Another date interval with epoch timestamps
<?php
$now = time();
$next_week = $now + 7 * 86400;
?>

Using this method, however, you can run into problems if the endpoints of your interval
are on different sides of a DST switch. In this case, one of your fixed-length days isn’t
86,400 seconds long; it’s either 82,800 or 90,000 seconds long, depending on the sea-
son.

See Also
Recipe 3.5 for finding the difference between two dates in elapsed time; Recipe 3.6 for
finding the difference between two dates in Julian days; documentation on
strtotime(  ) at http://www.php.net/strtotime.

3.11 Calculating Time with Time Zones

Problem
You need to calculate times in different time zones. For example, you want to give
users information adjusted to their local time, not the local time of your server.

Solution
For simple calculations, you can explicitly add or subtract the offsets between two time
zones, as in Example 3-27.

Example 3-27. Simple time zone calculation
<?php
// If local time is EST

3.11 Calculating Time with Time Zones | 79

Download at Boykma.Com

$time_parts = localtime();
// California (PST) is three hours earlier
$california_time_parts = localtime(time() - 3 * 3600);
?>

In PHP 5.1.0 and later, use date_default_timezone_set(  ) to adjust the time zone that
PHP uses. Example 3-28 prints the current time twice—once as appropriate for New
York and once for Paris.

Example 3-28. Changing time zone with date_default_timezone_set(  )
<?php
$now = time();
date_default_timezone_set('America/New York');
print date('c', $now);
date_default_timezone_set('Europe/Paris');
print date('c', $now);
?>

On Unix-based systems with earlier versions of PHP, if you don’t know the offsets
between time zones, just set the TZ environment variable to your target time zone, as
in Example 3-29.

Example 3-29. Changing time zone with an environment variable
<?php
putenv('TZ=PST8PDT');
$california_time_parts = localtime();
?>

Discussion
Before we sink too deeply into the ins and outs of time zones, we want to pass along
the disclaimer that the U.S. Naval Observatory offers at http://tycho.usno.navy.mil/
tzones.html. Namely, official worldwide time zone information is somewhat fragile
“because nations are sovereign powers that can and do change their timekeeping sys-
tems as they see fit.” So, remembering that we are at the mercy of the vagaries of
international relations, here are some ways to cope with Earth’s many time zones.

The time and date functions were overhauled in PHP 5.1.0, and one of the best parts
of that overhaul was greatly improved time zone handling. The added
date_default_timezone_get(  ) and date_default_timezone_set(  ) functions make it a
breeze to twiddle time zones to get appropriately formatted output. There is also a new
configuration directive, date.timezone, that sets the default time zone to use if you don’t
call date_default_timezone_set(  ).

With these functions available, all you have to do before generating a formatted time
or date string with date(  ) or strftime(  ) is make sure that the currently set default time
zone (either from date.timezone or date_default_timezone_set(  )) is the one you want
to use. If you’re building an app that is used by people in multiple time zones, a handy
technique is to make the default time zone GMT and then explicitly set the appropriate

80 | Chapter 3: Dates and Times

Download at Boykma.Com

time zone (based, perhaps, on user preference) before creating a date or time string.
This makes it clear in your code that you’re generating a time zone–specific value.

The time zones that PHP understands are listed in Appendix H of the PHP Manual
(http://www.php.net/timezones). The names of these time zones—such as America/
New_York, Europe/Paris, and Africa/Dar_es_Salaam—mirror the structure of the popular
zoneinfo database.

If you’re using an earlier version of PHP, you have to do the time zone math yourself.
For a relatively simple treatment of offsets between time zones, use an array in your
program that has the various time zone offsets from UTC. Once you determine what
time zone your user is in, just add that offset to the appropriate UTC time and the
functions that print out UTC time (e.g., gmdate(  ), gmstrftime(  )) can print out the
correct adjusted time. Example 3-30 adjusts the time from UTC to PST.

Example 3-30. Adjusting time from UTC to another time zone
<?php
// Find the current time
$now = time();

// California is 8 hours behind UTC
$now += $pc_timezones['PST'];

// Use gmdate() or gmstrftime() to print California-appropriate time
print gmstrftime('%c',$now);
?>

Example 3-30 uses the $pc_timezones array defined in Example 3-31, which contains
offsets from UTC.

Example 3-31. Offsets from UTC
// From Perl's Time::Timezone
$pc_timezones = array(
 'GMT' => 0, // Greenwich Mean
 'UTC' => 0, // Universal (Coordinated)
 'WET' => 0, // Western European
 'WAT' => -1*3600, // West Africa
 'AT' => -2*3600, // Azores
 'NFT' => -3*3600-1800, // Newfoundland
 'AST' => -4*3600, // Atlantic Standard
 'EST' => -5*3600, // Eastern Standard
 'CST' => -6*3600, // Central Standard
 'MST' => -7*3600, // Mountain Standard
 'PST' => -8*3600, // Pacific Standard
 'YST' => -9*3600, // Yukon Standard
 'HST' => -10*3600, // Hawaii Standard
 'CAT' => -10*3600, // Central Alaska
 'AHST' => -10*3600, // Alaska-Hawaii Standard
 'NT' => -11*3600, // Nome
 'IDLW' => -12*3600, // International Date Line West
 'CET' => +1*3600, // Central European
 'MET' => +1*3600, // Middle European

3.11 Calculating Time with Time Zones | 81

Download at Boykma.Com

 'MEWT' => +1*3600, // Middle European Winter
 'SWT' => +1*3600, // Swedish Winter
 'FWT' => +1*3600, // French Winter
 'EET' => +2*3600, // Eastern Europe, USSR Zone 1
 'BT' => +3*3600, // Baghdad, USSR Zone 2
 'IT' => +3*3600+1800, // Iran
 'ZP4' => +4*3600, // USSR Zone 3
 'ZP5' => +5*3600, // USSR Zone 4
 'IST' => +5*3600+1800, // Indian Standard
 'ZP6' => +6*3600, // USSR Zone 5
 'SST' => +7*3600, // South Sumatra, USSR Zone 6
 'WAST' => +7*3600, // West Australian Standard
 'JT' => +7*3600+1800, // Java
 'CCT' => +8*3600, // China Coast, USSR Zone 7
 'JST' => +9*3600, // Japan Standard, USSR Zone 8
 'CAST' => +9*3600+1800, // Central Australian Standard
 'EAST' => +10*3600, // Eastern Australian Standard
 'GST' => +10*3600, // Guam Standard, USSR Zone 9
 'NZT' => +12*3600, // New Zealand
 'NZST' => +12*3600, // New Zealand Standard
 'IDLE' => +12*3600 // International Date Line East
);

On Unix systems, you can use the zoneinfo library to do the conversions. This makes
your code more compact and also transparently handles DST , as discussed in Rec-
ipe 3.12.

To take advantage of zoneinfo in PHP, do all your internal date math with epoch
timestamps. Generate them from time parts with the pc_mktime(  ) function shown in
Example 3-32.

Example 3-32. pc_mktime(  )
<?php
function pc_mktime($tz,$hr,$min,$sec,$mon,$day,$yr) {
 putenv("TZ=$tz");
 $a = mktime($hr,$min,$sec,$mon,$day,$yr);
 putenv('TZ=EST5EDT'); // change EST5EDT to your server's time zone!
 return $a;
}
?>

Calling putenv(  ) before mktime(  ) fools the system functions mktime(  ) uses into think-
ing they’re in a different time zone. After the call to mktime(  ), the correct time zone has
to be restored. On the East Coast of the United States, that’s EST5EDT. Change this to
the appropriate value for your computer’s location (see Table 3-5). Manipulating en-
vironment variables, however, can cause problems in multithreaded environments. If
you’re using PHP with a multithreaded web server, it is an extremely good idea to
upgrade to at least PHP 5.1.0, so you can use date_default_timezone_set(  ).

Time parts are turned into epoch timestamps by pc_mktime(  ). Its counterpart, which
turns epoch timestamps into formatted time strings and time parts, is pc_strftime(  ),
shown in Example 3-33.

82 | Chapter 3: Dates and Times

Download at Boykma.Com

Example 3-33. pc_strftime(  )
<?php
function pc_strftime($tz,$format,$timestamp) {
 putenv("TZ=$tz");
 $a = strftime($format,$timestamp);
 putenv('TZ=EST5EDT'); // change EST5EDT to your server's time zone!
 return $a;
}
?>

Example 3-33 uses the same system function–fooling pc_mktime(  ) does to get the right
results from strftime(  ).

The great thing about these functions is that you don’t have to worry about the offsets
from UTC of different time zones, whether DST is in effect, or any other irregularities
of time zone differences. You just set the appropriate zone and let your system libraries
do the rest.

Note that the value of the $tz variable in both these functions should not be a time zone
name but a zoneinfo zone. zoneinfo zones are more specific than time zones because
they correspond to particular places. Table 3-5 contains mappings for appropriate
zoneinfo zones for some UTC offsets. The last column indicates whether the zone
observes DST.

Table 3-5. zoneinfo zones

UTC offset (hours) UTC offset (seconds) zoneinfo zone DST?

−12 −43,200 Etc/GMT+12 No

−11 −39,600 Pacific/Midway No

−10 −36,000 US/Aleutian Yes

−10 −36,000 Pacific/Honolulu No

−9 −32,400 America/Anchorage Yes

−9 −32,400 Etc/GMT+9 No

−8 −28,800 PST8PDT Yes

−8 −28,800 America/Dawson_Creek No

−7 −25,200 MST7MDT Yes

−7 −25,200 MST No

−6 −21,600 CST6CDT Yes

−6 −21,600 Canada/Saskatchewan No

−5 −18,000 EST5EDT Yes

−5 −18,000 EST No

−4 −14,400 America/Halifax Yes

−4 −14,400 America/Puerto_Rico No

−3.5 −12,600 America/St_Johns Yes

3.11 Calculating Time with Time Zones | 83

Download at Boykma.Com

UTC offset (hours) UTC offset (seconds) zoneinfo zone DST?

−3 −10,800 America/Buenos_Aires No

0 0 Europe/London Yes

0 0 GMT No

1 3,600 CET Yes

1 3,600 GMT-1 No

2 7,200 EET No

2 7,200 GMT-2 No

3 10,800 Asia/Baghdad Yes

3 10,800 GMT-3 No

3.5 12,600 Asia/Tehran Yes

4 14,400 Asia/Dubai No

4 14,400 Asia/Baku Yes

4.5 16,200 Asia/Kabul No

5 18,000 Asia/Tashkent No

5.5 19,800 Asia/Calcutta No

5.75 20,700 Asia/Katmandu No

6 21,600 Asia/Novosibirsk Yes

6 21,600 Etc/GMT-6 No

6.5 23,400 Asia/Rangoon No

7 25,200 Asia/Jakarta No

8 28,800 Hongkong No

9 32,400 Japan No

9.5 34,200 Australia/Darwin No

10 36,000 Australia/Sydney Yes

10 36,000 Pacific/Guam No

12 43,200 Etc/GMT-13 No

12 43,200 Pacific/Auckland Yes

Countries around the world don’t begin and end DST observance on the same days or
at the same times. To calculate time appropriately for an international DST–observing
location, pick a zoneinfo zone that matches your desired location as specifically as pos-
sible.

See Also
Recipe 3.12 for dealing with DST; documentation on date_default_timezone_set(  ) at
http://www.php.net/date_default_timezone_set, on date_default_timezone_get(  ) at

84 | Chapter 3: Dates and Times

Download at Boykma.Com

http://www.php.net/date_default_timezone_get, on putenv(  ) at http://www.php.net/
putenv, on localtime(  ) at http://www.php.net/localtime, on gmdate(  ) at http://
www.php.net/gmdate, and on gmstrftime(  ) at http://www.php.net/gmstrftime; the time
zones that PHP knows about are listed at http://www.php.net/timezones; zoneinfo zone
names and longitude and latitude coordinates for hundreds of places around the world
are available at ftp://elsie.nci.nih.gov/pub/—look for the most recent file whose name
begins with tzdata; many links to historical and technical information about time zones,
as well as information on the zoneinfo database, can be found at the following address:
http://www.twinsun.com/tz/tz-link.htm.

3.12 Accounting for Daylight Savings Time

Problem
You need to make sure your time calculations properly consider DST.

Solution
If you’re using PHP 5.1.0 or later, set the appropriate time zone with
date_default_timezone_set(  ). These time zones are DST-aware. Example 3-34 uses
date_default_timezone_set(  ) to print out an appropriately DST-formatted time string.

Example 3-34. Handling DST with date_default_timezone_set(  )
<?php
// Denver, Colorado observes DST
date_default_timezone_set('America/Denver');
// July 4, 2008 is in the summer
$summer = mktime(12,0,0,7,4,2008);
print date('c', $summer) . "\n";
// Phoenix, Arizona does not observe DST
date_default_timezone_set('America/Phoenix');
print date('c', $summer) . "\n";
?>

Example 3-34 prints:

2008-07-04T12:00:00-06:00
2008-07-04T11:00:00-07:00

With an earlier version of PHP, you must use another method. The zoneinfo library
calculates the effects of DST properly. If you are using a Unix-based system, take ad-
vantage of zoneinfo with putenv(  ), as shown in Example 3-35.

Example 3-35. Handling DST with zoneinfo
<?php
// Denver, Colorado observes DST
putenv('TZ=America/Denver');
// July 4, 2008 is in the summer
$summer = mktime(12,0,0,7,4,2008);

3.12 Accounting for Daylight Savings Time | 85

Download at Boykma.Com

print date('c', $summer) . "\n";
// Phoenix, Arizona does not observe DST
putenv('TZ=America/Phoenix');
print date('c', $summer) . "\n";
?>

If you can’t use zoneinfo, you can modify hardcoded time zone offsets based on whether
the local time zone is currently observing DST. Use localtime(  ) to determine the cur-
rent DST observance status, as shown in Example 3-36.

Example 3-36. Handling DST with explicit offsets

<?php
// Find the current UTC time
$now = time();

// California is 8 hours behind UTC
$now -= 8 * 3600;

// Is it DST?
$ar = localtime($now,true);
if ($ar['tm_isdst']) { $now += 3600; }

// Use gmdate() or gmstrftime() to print California-appropriate time
print gmstrftime('%c',$now);
?>

Discussion
Altering an epoch timestamp by the amount of a time zone’s offset from UTC and then
using gmdate(  ) or gmstrftime(  ) to print out time zone–appropriate functions is flexible
—it works from any time zone—but the DST calculations are slightly inaccurate. For
the brief intervals when the server’s DST status is different from that of the target time
zone, the results are incorrect. For example, at 3:30 A.M. EDT on the first Sunday in
April (after the switch to DST), it’s still before the switch (11:30 P.M.) in the Pacific
time zone. A server in Eastern time using this method calculates California time to be
seven hours behind UTC, whereas it’s actually eight hours. At 6:00 A.M. EDT (3:00
A.M. PDT), both Pacific and Eastern time are observing DST, and the calculation is
correct again (putting California at seven hours behind UTC).

See Also
Recipe 3.11 for dealing with time zones; documentation on
date_default_timezone_set(  ) at http://www.php.net/date_default_timezone_set, on
putenv(  ) at http://www.php.net/putenv, localtime(  ) at http://www.php.net/localtime,
gmdate(  ) at http://www.php.net/gmdate, and gmstrftime(  ) at http://www.php.net/
gmstrftime; a detailed presentation on DST is at http://webexhibits.org/daylightsaving/.

86 | Chapter 3: Dates and Times

Download at Boykma.Com

3.13 Generating a High-Precision Time

Problem
You need to measure time with finer than one-second resolution—for example, to
generate a unique ID or benchmark a function call.

Solution
Use microtime(true) to get the current time in seconds and microseconds. Exam-
ple 3-37 uses microtime(true) to time how long it takes to do 1,000 regular expression
matches.

Example 3-37. Timing with microtime(  )
<?php
$start = microtime(true);
for ($i = 0; $i < 1000; $i++) {
 preg_match('/age=\d+/',$_SERVER['QUERY_STRING']);
}
$end = microtime(true);
$elapsed = $end - $start;

Discussion
Support for the optional argument microtime(  ) was added in PHP 5.0.0. Without that
argument, with an argument that doesn’t evaluate to true, or in an earlier version of
PHP, microtime(  ) returns a string that contains the microseconds part of elapsed time
since the epoch, a space, and seconds since the epoch. For example, a return value of
0.41644100 1026683258 means that 1026683258.41644100 seconds have elapsed since
the epoch.

Time including microseconds is useful for generating unique IDs. When combined with
the current process ID, it guarantees a unique ID, as long as a process doesn’t generate
more than one ID per microsecond. Example 3-38 uses microtime(  ) (with its string
return format) to generate just such an ID.

Example 3-38. Generating an ID with microtime(  )
<?php
[list($microseconds,$seconds) = explode(' ',microtime());
$id = $seconds.$microseconds.getmypid();
?>

Note that the method in Example 3-38 is not as foolproof on multithreaded systems,
where there is a non-zero (but very tiny) chance that two threads of the same process
could call microtime(  ) during the same microsecond.

3.13 Generating a High-Precision Time | 87

Download at Boykma.Com

See Also
Documentation on microtime(  ) at http://www.php.net/microtime. The uniqid(  ) func-
tion is good for generating unique IDs.

3.14 Generating Time Ranges

Problem
You need to know all the days in a week or a month. For example, you want to print
out a list of appointments for a week.

Solution
Identify your start date using time(  ) and strftime(  ). If your interval has a fixed length,
you can loop through that many days. If not, you need to test each subsequent day for
membership in your desired range.

For example, a week has seven days, so you can use a fixed loop to generate all the days
in the current week, as in Example 3-39.

Example 3-39. Generating the days in a week
<?php
// generate a time range for this week
$now = time();

// If it's before 3 AM, increment $now, so we don't get caught by DST
// when moving back to the beginning of the week
if (3 < strftime('%H', $now)) { $now += 7200; }

// What day of the week is today?
$today = strftime('%w', $now);

// How many days ago was the start of the week?
$start_day = $now - (86400 * $today);

// Print out each day of the week
for ($i = 0; $i < 7; $i++) {
 print strftime('%c',$start_day + 86400 * $i);
}
?>

Discussion
A particular month or year could have a variable number of days, so you need to com-
pute the end of the time range based on the specifics of that month or year. To loop
through every day in a month, find the epoch timestamps for the first day of the month
and the first day of the next month. In Example 3-40, the loop variable $day is incre-
mented a day at a time (86,400 seconds) until it’s no longer less than the epoch
timestamp at the beginning of the next month.

88 | Chapter 3: Dates and Times

Download at Boykma.Com

Example 3-40. Generating the days in a month
<?php
// Generate a time range for this month
$now = time();

// If it's before 3 AM, increment $now, so we don't get caught by DST
// when moving back to the beginning of the month
if (3 < strftime('%H', $now)) { $now += 7200; }

// What month is this?
$this_month = strftime('%m',$now);

// Epoch timestamp for midnight on the first day of this month
$day = mktime(0,0,0,$this_month,1);
// Epoch timestamp for midnight on the first day of next month
$month_end = mktime(0,0,0,$this_month+1,1);

while ($day < $month_end) {
 print strftime('%c',$day);
 $day += 86400;
}
?>

See Also
Documentation on time(  ) at http://www.php.net/time and strftime(  ) at http://
www.php.net/strftime .

3.15 Using Non-Gregorian Calendars

Problem
You want to use a non-Gregorian calendar, such as a Julian, Jewish, or French Re-
publican calendar.

Solution
PHP’s calendar extension provides conversion functions for working with the Julian
calendar, as well as the French Republican and Jewish calendars. To use these func-
tions, the calendar extension must be loaded.

These functions use the Julian day count (which is different than the Julian calendar)
as their intermediate format to move information between them. cal_to_jd(  ) converts
a month, day, and year to a Julian day count value; cal_from_jd(  ) converts a Julian day
count value to a month, day, and year in a particular calendar. Example 3-41 converts
between Julian days and the familiar Gregorian calendar.

Example 3-41. Converting between Julian days and the Gregorian calendar
<?php
// March 8, 1876

3.15 Using Non-Gregorian Calendars | 89

Download at Boykma.Com

$jd = gregoriantojd(3,9,1876);
// $jd = 2406323

$gregorian = cal_from_jd($jd, CAL_GREGORIAN);
/* $gregorian is an array:
array(9) {
 ["date"]=>
 string(8) "3/9/1876"
 ["month"]=>
 int(3)
 ["day"]=>
 int(9)
 ["year"]=>
 int(1876)
 ["dow"]=>
 int(4)
 ["abbrevdayname"]=>
 string(3) "Thu"
 ["dayname"]=>
 string(8) "Thursday"
 ["abbrevmonth"]=>
 string(3) "Mar"
 ["monthname"]=>
 string(5) "March"
}
*/
?>

The valid range for the Gregorian calendar is 4714 BCE to 9999 CE.

Discussion
To convert between Julian days and the Julian calendar, use the CAL_JULIAN constant,
as shown in Example 3-42.

Example 3-42. Using the Julian calendar
<?php
// February 29, 1900 (not a Gregorian leap year)
$jd = cal_to_jd(CAL_JULIAN, 2, 29, 1900);
// $jd = 2415092

$julian = cal_from_jd($jd, CAL_JULIAN);
/* $julian is an array:
array(9) {
 ["date"]=>
 string(9) "2/29/1900"
 ["month"]=>
 int(2)
 ["day"]=>
 int(29)
 ["year"]=>
 int(1900)
 ["dow"]=>
 int(2)

90 | Chapter 3: Dates and Times

Download at Boykma.Com

 ["abbrevdayname"]=>
 string(3) "Tue"
 ["dayname"]=>
 string(7) "Tuesday"
 ["abbrevmonth"]=>
 string(3) "Feb"
 ["monthname"]=>
 string(8) "February"
}
*/

$gregorian = cal_from_jd($jd, CAL_GREGORIAN);
/* $gregorian is an array:
array(9) {
 ["date"]=>
 string(9) "3/13/1900"
 ["month"]=>
 int(3)
 ["day"]=>
 int(13)
 ["year"]=>
 int(1900)
 ["dow"]=>
 int(2)
 ["abbrevdayname"]=>
 string(3) "Tue"
 ["dayname"]=>
 string(7) "Tuesday"
 ["abbrevmonth"]=>
 string(3) "Mar"
 ["monthname"]=>
 string(5) "March"
}
*/
?>

The valid range for the Julian calendar is 4713 BCE to 9999 CE, but since it was created
in 46 BCE, you run the risk of annoying Julian calendar purists if you use it for dates
before that.

To convert between Julian days and the French Republican calendar, use the
CAL_FRENCH constant, as shown in Example 3-43.

Example 3-43. Using the French Republican calendar
<?php
// 13 Floréal XI
$jd = cal_to_jd(CAL_FRENCH, 8, 13, 11);
// $jd = 2379714

$french = cal_from_jd($jd, CAL_FRENCH);
/* $french is an array:
array(9) {
 ["date"]=>
 string(7) "8/13/11"

3.15 Using Non-Gregorian Calendars | 91

Download at Boykma.Com

 ["month"]=>
 int(8)
 ["day"]=>
 int(13)
 ["year"]=>
 int(11)
 ["dow"]=>
 int(2)
 ["abbrevdayname"]=>
 string(3) "Tue"
 ["dayname"]=>
 string(7) "Tuesday"
 ["abbrevmonth"]=>
 string(7) "Floreal"
 ["monthname"]=>
 string(7) "Floreal"
}
*/

// May 3, 1803 - sale of Louisiana to the US
$gregorian = cal_from_jd($jd, CAL_GREGORIAN);
/* $gregorian is an array:
array(9) {
 ["date"]=>
 string(8) "5/3/1803"
 ["month"]=>
 int(5)
 ["day"]=>
 int(3)
 ["year"]=>
 int(1803)
 ["dow"]=>
 int(2)
 ["abbrevdayname"]=>
 string(3) "Tue"
 ["dayname"]=>
 string(7) "Tuesday"
 ["abbrevmonth"]=>
 string(3) "May"
 ["monthname"]=>
 string(3) "May"
}
*/
?>

The valid range for the French Republican calendar is September 1792 to September
1806, which is small, but since the calendar was only in use from October 1793 to
January 1806, that’s comprehensive enough. Note that the month names that
cal_from_jd(  ) returns do not have proper accents—they are, for example, Floreal in-
stead of Floréal.

To convert between Julian days and the Jewish calendar, use the CAL_JEWISH constant,
as shown in Example 3-44.

92 | Chapter 3: Dates and Times

Download at Boykma.Com

Example 3-44. Using the Jewish calendar
<?php
// 14 Adar 5761
$jd = cal_to_jd(CAL_JEWISH, 6, 14, 5761);
// $jd = 2451978

$jewish = cal_from_jd($jd, CAL_JEWISH);
/* $jewish is an array:
array(9) {
 ["date"]=>
 string(9) "6/14/5761"
 ["month"]=>
 int(6)
 ["day"]=>
 int(14)
 ["year"]=>
 int(5761)
 ["dow"]=>
 int(5)
 ["abbrevdayname"]=>
 string(3) "Fri"
 ["dayname"]=>
 string(6) "Friday"
 ["abbrevmonth"]=>
 string(5) "AdarI"
 ["monthname"]=>
 string(5) "AdarI"
}
*/

$gregorian = cal_from_jd($jd, CAL_GREGORIAN);
/* $gregorian is an array:
array(9) {
 ["date"]=>
 string(8) "3/9/2001"
 ["month"]=>
 int(3)
 ["day"]=>
 int(9)
 ["year"]=>
 int(2001)
 ["dow"]=>
 int(5)
 ["abbrevdayname"]=>
 string(3) "Fri"
 ["dayname"]=>
 string(6) "Friday"
 ["abbrevmonth"]=>
 string(3) "Mar"
 ["monthname"]=>
 string(5) "March"
}
*/
?>

3.15 Using Non-Gregorian Calendars | 93

Download at Boykma.Com

The valid range for the Jewish calendar starts with 3761 BCE (year 1 on the Jewish
calendar). Note that whether or not it falls within a leap year, the month Adar is always
returned as AdarI. In leap years, Adar II is returned as AdarII.

See Also
Documentation for the calendar functions at http://www.php.net/calendar; the history
of the Gregorian calendar is explained at http://scienceworld.wolfram.com/astronomy/
GregorianCalendar.html .

3.16 Using Dates Outside the Range of an Epoch Timestamp

Problem
You want to use dates that are outside the range of what a 32-bit epoch timestamp can
handle: roughly before 1901 or after 2038.

Solution
Use the PEAR Date_Calc class, which can handle dates from January 1, 1 CE to De-
cember 31, 9999 CE. Example 3-45 prints formatted dates for two days in the 9th
century CE.

Example 3-45. Using Date_Calc
<?php
require_once 'Date/Calc.php';

// April 17, 1790
$date = Date_Calc::dateFormat(17, 4, 1790, '%A %B %e, %Y');

print "Benjamin Franklin died on $date.";
?>

Example 3-45 prints:

Benjamin Franklin died on Saturday April 17, 1790.

Discussion
Because Date_Calc uses its own internal representation for dates, it’s not subject to the
limits of storing an epoch timestamp in a 32-bit integer. Its dateFormat(  ) method works
similarly to strftime(  )—it turns a format string into a formatted date and time string.
Table 3-7 lists the formatting characters that dateFormat(  ) understands.

Table 3-7. Formatting characters for Date_Calc::dateFormat(  )

Character Description

%d Day of month, with leading 0

94 | Chapter 3: Dates and Times

Download at Boykma.Com

Character Description

%e Day of month, no leading 0

%w Day of week, no leading 0, Sunday is 0

%j Day of year, with leading 0

%E Day count according to internal Date_Calc epoch

%a Weekday name, short

%A Weekday name, full

%U Week number of current year

%m Month number, no leading 0, January is 1

%b Month name, short

%B Month name, long

%y Year, 2-digit with leading 0

%Y Year, 4-digit with leading 0

%n Newline

%t Tab

%% %

Date_Calc makes it easy to work with a wide range of Gregorian calendar dates, but it
does not have comprehensive knowledge of the religious, political, and cultural factors
that have caused modification to the calendar over time.

See Also
The PEAR Date package at http://pear.php.net/package/Date. The tip of the calendar-
changing-over-time-wackiness iceberg is explored at http://en.wikipedia.org/wiki/
Old_Style_and_New_Style_dates.

3.17 Program: Calendar
The pc_calendar(  ) function shown in Example 3-47 prints out a month’s calendar,
similar to the Unix cal program. Example 3-46 shows how you can use the function,
including default styles for its layout.

Example 3-46. Using pc_calendar(  )
<style type="text/css">
.prev { text-align: left; }
.next { text-align: right; }
.day, .month, .weekday { text-align: center; }
.today { background: yellow; }
.blank { }
</style>
<?php
// print the calendar for the current month if a month

3.17 Program: Calendar | 95

Download at Boykma.Com

// or year isn't in the query string
$month = isset($_GET['month']) ? intval($_GET['month']) : date('m');
$year = isset($_GET['year']) ? intval($_GET['year']) : date('y');
?>

The pc_calendar(  ) function prints out a table with a month’s calendar in it. It provides
links to the previous and next month and highlights the current day, as shown in
Example 3-47.

Example 3-47. pc_calendar(  )
<?php
function pc_calendar($month,$year,$opts = '') {
 // set default options
 if (! is_array($opts)) { $opts = array(); }
 if (! isset($opts['id'])) { $opts['id'] = 'calendar'; }
 if (! isset($opts['month_link'])) {
 $opts['month_link'] =
 '%s';
 }
 $classes = array();
 foreach (array('prev','month','next','weekday','blank','day','today') as $class) {
 if (isset($opts[$class.'_class'])) {
 $classes[$class] = htmlentities($opts[$class.'_class']);
 } else {
 $classes[$class] = $class;
 }
 }

 list($this_month,$this_year,$this_day) = split(',',strftime('%m,%Y,%d'));
 $day_highlight = (($this_month == $month) && ($this_year == $year));

 list($prev_month,$prev_year) =
 split(',',strftime('%m,%Y',mktime(0,0,0,$month-1,1,$year)));
 $prev_month_link = sprintf($opts['month_link'],$prev_month,$prev_year,'«');

 list($next_month,$next_year) =
 split(',',strftime('%m,%Y',mktime(0,0,0,$month+1,1,$year)));
 $next_month_link = sprintf($opts['month_link'],$next_month,$next_year,'»');

?>
<table id="<?php echo htmlentities($opts['id']) ?>">
 <tr>
 <td class="<?php echo $classes['prev'] ?>">
 <?php print $prev_month_link ?>
 </td>
 <td class="<?php echo $classes['month'] ?>" colspan="5">
 <?php print strftime('%B %Y',mktime(0,0,0,$month,1,$year)); ?>
 </td>
 <td class="<?php echo $classes['next'] ?>">
 <?php print $next_month_link ?>
 </td>
 </tr>
<?php
 $totaldays = date('t',mktime(0,0,0,$month,1,$year));

96 | Chapter 3: Dates and Times

Download at Boykma.Com

 // print out days of the week
 print '<tr>';
 $weekdays = array('Su','Mo','Tu','We','Th','Fr','Sa');
 while (list($k,$v) = each($weekdays)) {
 print '<td class="'.$classes['weekday'].'">'.$v.'</td>';
 }
 print '</tr><tr>';
 // align the first day of the month with the right week day
 $day_offset = date("w",mktime(0, 0, 0, $month, 1, $year));
 if ($day_offset > 0) {
 for ($i = 0; $i < $day_offset; $i++) {
 print '<td class="'.$classes['blank'].'"> </td>';
 }
 }
 $yesterday = time() - 86400;

 // print out the days
 for ($day = 1; $day <= $totaldays; $day++) {
 $day_secs = mktime(0,0,0,$month,$day,$year);
 if ($day_secs >= $yesterday) {
 if ($day_highlight && ($day == $this_day)) {
 print '<td class="' . $classes['today'] .'">' . $day . '</td>';
 } else {
 print '<td class="' . $classes['day'] .'">' . $day . '</td>';
 }
 } else {
 print '<td class="' . $classes['day'] .'">' . $day .'</td>';
 }
 $day_offset++;

 // start a new row each week //
 if ($day_offset == 7) {
 $day_offset = 0;
 if ($day < $totaldays) { print "</tr>\n<tr>"; }
 }
 }
 // fill in the last week with blanks //
 if ($day_offset > 0) { $day_offset = 7 - $day_offset; }
 if ($day_offset > 0) {
 for ($i = 0; $i < $day_offset; $i++) {
 print '<td class="'.$classes['blank'].'"> </td>';
 }
 }
 print '</tr></table>';
}
?>

The pc_calendar(  ) function begins by checking options passed to it in $opts. You can
pass a printf(  )-style format string in $opts['month_link'] to change how the links to
the previous and next months are printed as well as an id attribute for the table. The
id defaults to calendar if not specified.

Additionally, you can pass in class names to use for various elements in the layout. The
option names for these classes are prev_class, month_class, next_class, week

3.17 Program: Calendar | 97

Download at Boykma.Com

day_class, blank_class, day_class, and today_class. The default values are prev,
month, next, weekday, blank, day, and today. Example 3-46 includes styles that provide
a basic pleasant layout for the table, including highlighting the current day in yellow.

Next, the function sets $day_highlight to true if the month and year for the calendar
match the current month and year. The links to the previous month and next month
are put into $prev_month_link and $next_month_link using the format string in
$opts['month_link'].

pc_calendar(  ) then prints out the top of the HTML table that contains the calendar
and a table row of weekday abbreviations. Using the day of the week returned from
strftime('%w'), blank table cells are printed so the first day of the month is aligned with
the appropriate day of the week. For example, if the first day of the month is a Tuesday,
two blank cells have to be printed to occupy the slots under Sunday and Monday in
the first row of the table.

After this preliminary information has been printed, pc_calendar(  ) loops through all
the days in the month. It prints a plain table cell for most days, but a table cell with a
different background color for the current day. When $day_offset reaches 7, a week
has completed, and a new table row needs to start.

Once a table cell has been printed for each day in the month, blank cells are added to
fill out the last row of the table. For example, if the last day of the month is a Thursday,
two cells are added to occupy the slots under Friday and Saturday. Last, the table is
closed, and the calendar is complete .

98 | Chapter 3: Dates and Times

Download at Boykma.Com

CHAPTER 4

Arrays

4.0 Introduction
Arrays are lists: lists of people, lists of sizes, lists of books. To store a group of related
items in a variable, use an array. Like a list on a piece of paper, the elements in array
have an order. Usually, each new item comes after the last entry in the array, but just
as you can wedge a new entry between a pair of lines already in a paper list, you can
do the same with arrays in PHP.

In many languages, there is only one type of array: this is called a numerical array (or
just an array). In a numerical array, if you want to find an entry, you need to know its
position within the array, known as an index. Positions are identified by numbers: they
start at 0 and work upward one by one.

In some languages, there is also another type of array: an associative array, also known
as a hash. In an associative array, indexes aren’t integers, but strings. So in a numerical
array of U.S. presidents, “Abraham Lincoln” might have index 16; in the associative-
array version, the index might be “Honest.” However, while numerical arrays have a
strict ordering imposed by their keys, associative arrays frequently make no guarantees
about the key ordering. Elements are added in a certain order, but there’s no way to
determine the order later.

In a few languages, there are both numerical and associative arrays. But usually the
numerical array $presidents and the associative array $presidents are distinct arrays.
Each array type has a specific behavior, and you need to operate on it accordingly. PHP
has both numerical and associative arrays, but they don’t behave independently.

In PHP, numerical arrays are associative arrays, and associative arrays are numerical
arrays. So which kind are they really? Both and neither. The line between them con-
stantly blurs back and forth from one to another. At first, this can be disorienting,
especially if you’re used to rigid behavior, but soon you’ll find this flexibility an asset.

To assign multiple values to an array in one step, use array(  ):

$fruits = array('Apples', 'Bananas', 'Cantaloupes', 'Dates');

99

Download at Boykma.Com

Now, the value of $fruits[2] is 'Cantaloupes'.

array(  ) is very handy when you have a short list of known values. The same array is
also produced by:

$fruits[0] = 'Apples';
$fruits[1] = 'Bananas';
$fruits[2] = 'Cantaloupes';
$fruits[3] = 'Dates';

and:

$fruits[] = 'Apples';
$fruits[] = 'Bananas';
$fruits[] = 'Cantaloupes';
$fruits[] = 'Dates';

Assigning a value to an array with an empty subscript is shorthand for adding a new
element to the end of the array. So PHP looks up the length of $fruits and uses that as
the position for the value you’re assigning. This assumes, of course, that $fruits isn’t
set to a scalar value, such as 3, and isn’t an object. PHP complains if you try to treat a
non-array as an array; however, if this is the first time you’re using this variable, PHP
automatically converts it to an array and begins indexing at 0.

An identical feature is the function array_push(  ), which pushes a new value on top of
the array stack. However, the $foo[] notation is the more traditional PHP style; it’s also
faster. But sometimes, using array_push(  ) more accurately conveys the stack nature of
what you’re trying to do, especially when combined with array_pop(  ) , which removes
the last element from an array and returns it.

So far, we’ve placed integers and strings only inside arrays. However, PHP allows you
to assign any data type you want to an array element: booleans, integers, floating-point
numbers, strings, objects, resources, NULL, and even other arrays. So you can pull arrays
or objects directly from a database and place them into an array:

while ($row = mysql_fetch_row($r)) {
 $fruits[] = $row;
}

while ($obj = mysql_fetch_object($s)) {
 $vegetables[] = $obj;
}

The first while statement creates an array of arrays; the second creates an array of ob-
jects. See Recipe 4.2 for more on storing multiple elements per key.

To define an array using not integer keys but string keys, you can also use array(  ), but
specify the key/value pairs with =>:

$fruits = array('red' => 'Apples', 'yellow' => 'Bananas',
 'beige' => 'Cantaloupes', 'brown' => 'Dates');

Now, the value of $fruits['beige'] is 'Cantaloupes'. This is shorthand for:

100 | Chapter 4: Arrays

Download at Boykma.Com

$fruits['red'] = 'Apples';
$fruits['yellow'] = 'Bananas';
$fruits['beige'] = 'Cantaloupes';
$fruits['brown'] = 'Dates';

Each array can only hold one unique value for each key. Adding:

$fruits['red'] = 'Strawberry';

overwrites the value of 'Apples'. However, you can always add another key at a later
time:

$fruits['orange'] = 'Orange';

The more you program in PHP, the more you find yourself using associative arrays
instead of numerical ones. Instead of creating a numeric array with string values, you
can create an associative array and place your values as its keys. If you want, you can
then store additional information in the element’s value. There’s no speed penalty for
doing this, and PHP preserves the ordering. Plus, looking up or changing a value is easy
because you already know the key.

The easiest way to cycle though an array and operate on all or some of the elements
inside is to use foreach:

$fruits = array('red' => 'Apples', 'yellow' => 'Bananas',
 'beige' => 'Cantaloupes', 'brown' => 'Dates');

foreach ($fruits as $color => $fruit) {
 print "$fruit are $color.\n";
}
Apples are red.
Bananas are yellow.
Cantaloupes are beige.
Dates are brown.

Each time through the loop, PHP assigns the next key to $color and the key’s value to
$fruit. When there are no elements left in the array, the loop finishes.

To break an array apart into individual variables, use list(  ):

$fruits = array('Apples', 'Bananas', 'Cantaloupes', 'Dates');

list($red, $yellow, $beige, $brown) = $fruits;

4.1 Specifying an Array Not Beginning at Element 0

Problem
You want to assign multiple elements to an array in one step, but you don’t want the
first index to be 0.

Solution
Instruct array(  ) to use a different index using the => syntax:

4.1 Specifying an Array Not Beginning at Element 0 | 101

Download at Boykma.Com

$presidents = array(1 => 'Washington', 'Adams', 'Jefferson', 'Madison');

Discussion
Arrays in PHP—like most, but not all, computer languages—begin with the first entry
located at index 0. Sometimes, however, the data you’re storing makes more sense if
the list begins at 1. (And we’re not just talking to recovering Pascal programmers here.)

In the Solution, George Washington is the first president, not the zeroth, so if you wish
to print a list of the presidents, it’s simpler to do this:

foreach ($presidents as $number => $president) {
 print "$number: $president\n";
}

than this:

foreach ($presidents as $number => $president) {
 $number++;
 print "$number: $president\n";
}

The feature isn’t restricted to the number 1; any integer works:

$reconstruction_presidents = array(16 => 'Lincoln', 'Johnson', 'Grant');

Also, you can use => multiple times in one call:

$whig_presidents = array(9 => 'Harrison', 'Tyler',* 12 => 'Taylor', 'Fillmore');

PHP even allows you to use negative numbers in the array(  ) call. (In fact, this method
works for non-integer keys, too.) What you’ll get is technically an associative array,
although as we said, the line between numeric arrays and associative arrays is often
blurred in PHP; this is just another one of these cases:

$us_leaders = array(-1 => 'George II', 'George III', 'Washington');

If Washington is the first U.S. leader, George III is the zeroth, and his grandfather
George II is the negative-first.

Of course, you can mix and match numeric and string keys in one array(  ) definition,
but it’s confusing and very rarely needed:

$presidents = array(1 => 'Washington', 'Adams', 'Honest' => 'Lincoln', 'Jefferson');

This is equivalent to:

$presidents[1] = 'Washington'; // Key is 1
$presidents[] = 'Adams'; // Key is 1 + 1 => 2
$presidents['Honest'] = 'Lincoln'; // Key is 'Honest'
$presidents[] = 'Jefferson'; // Key is 2 + 1 => 3

* John Tyler was elected as Harrison’s vice president under the Whig Party platform but was expelled from the
party shortly after assuming the presidency following the death of Harrison.

102 | Chapter 4: Arrays

Download at Boykma.Com

See Also
Documentation on array(  ) at http://www.php.net/array.

4.2 Storing Multiple Elements Per Key in an Array

Problem
You want to associate multiple elements with a single key.

Solution
Store the multiple elements in an array:

$fruits = array('red' => array('strawberry','apple'),
 'yellow' => array('banana'));

Or use an object:
while ($obj = mysql_fetch_object($r)) {
 $fruits[] = $obj;
}

Discussion
In PHP, keys are unique per array, so you can’t associate more than one entry in a key
without overwriting the old value. Instead, store your values in an anonymous array:

$fruits['red'][] = 'strawberry';
$fruits['red'][] = 'apple';
$fruits['yellow'][] = 'banana';

Or, if you’re processing items in a loop:
while (list($color,$fruit) = mysql_fetch_array($r)) {
 $fruits[$color][] = $fruit;
}

To print the entries, loop through the array:
foreach ($fruits as $color=>$color_fruit) {
 // $color_fruit is an array
 foreach ($color_fruit as $fruit) {
 print "$fruit is colored $color.
";
 }
}

Or use the pc_array_to_comma_string(  ) function from Recipe 4.9.
foreach ($fruits as $color=>$color_fruit) {
 print "$color colored fruits include " .
 pc_array_to_comma_string($color_fruit) . "
";
}

In PHP 5.0.0 and above, you don't need pc_array_range(  ): just pass an increment to
range(  ) as a third argument:

4.2 Storing Multiple Elements Per Key in an Array | 103

Download at Boykma.Com

$odd = range(1, 52, 2);
$even = range(2, 52, 2);

See Also
Recipe 4.9 for how to print arrays with commas.

4.3 Initializing an Array to a Range of Integers

Problem
You want to assign a series of consecutive integers to an array.

Solution
Use range($start, $stop):

$cards = range(1, 52);

Discussion
For increments other than 1, you can use:

function pc_array_range($start, $stop, $step) {
 $array = array();
 for ($i = $start; $i <= $stop; $i += $step) {
 $array[] = $i;
 }
 return $array;
}

So for odd numbers:

$odd = pc_array_range(1, 52, 2);

And for even numbers:

$even = pc_array_range(2, 52, 2);

In PHP 5.0.0 and above, you don't need pc_array_range(  ): just pass an increment to
range(  ) as a third argument:

$odd = range(1, 52, 2);
$even = range(2, 52, 2);

See Also
Recipe 2.4 for how to operate on a series of integers; documentation on range(  ) at
http://www.php.net/range.

104 | Chapter 4: Arrays

Download at Boykma.Com

4.4 Iterating Through an Array

Problem
You want to cycle though an array and operate on all or some of the elements inside.

Solution
Use foreach:

foreach ($array as $value) {
 // Act on $value
}

Or to get an array’s keys and values:

foreach ($array as $key => $value) {
 // Act II
}

Another technique is to use for:

for ($key = 0, $size = count($array); $key < $size; $key++) {
 // Act III
}

Finally, you can use each(  ) in combination with list(  ) and while:

reset($array) // reset internal pointer to beginning of array
while (list($key, $value) = each ($array)) {
 // Final Act
}

Discussion
A foreach loop is the most concise to iterate through an array:

// foreach with values
foreach ($items as $cost) {
 ...
}

// foreach with keys and values
foreach($items as $item => $cost) {
 ...
}

With foreach, PHP iterates over a copy of the array instead of the actual array. In con-
trast, when using each(  ) and for, PHP iterates over the original array. So if you modify
the array inside the loop, you may (or may not) get the behavior you expect.

If you want to modify the array, reference it directly:

reset($items);
while (list($item, $cost) = each($items)) {
 if (! in_stock($item)) {

4.4 Iterating Through an Array | 105

Download at Boykma.Com

 unset($items[$item]); // address the array directly
 }
}

The variables returned by each(  ) aren’t aliases for the original values in the array:
they’re copies, so if you modify them, it’s not reflected in the array. That’s why you
need to modify $items[$item] instead of $item.

When using each(  ), PHP keeps track of where you are inside the loop. After completing
a first pass through, to begin again at the start, call reset(  ) to move the pointer back
to the front of the array. Otherwise, each(  ) returns false.

The for loop works only for arrays with consecutive integer keys. Unless you’re mod-
ifying the size of your array, it’s inefficient to recompute the count(  ) of $items each
time through the loop, so we always use a $size variable to hold the array’s size:

for ($item = 0, $size = count($items); $item < $size; $item++) {
 ...
}

If you prefer to count efficiently with one variable, count backward:

for ($item = count($items) - 1; $item >= 0; $item--) {
 ...
}

The associative array version of the for loop is:

for (reset($array); $key = key($array); next($array)) {
 ...
}

This fails if any element holds a string that evaluates to false, so a perfectly normal
value such as 0 causes the loop to end early.

Finally, use array_map(  ) to hand off each element to a function for processing:

// lowercase all words
$lc = array_map('strtolower', $words);

The first argument to array_map(  ) is a function to modify an individual element, and
the second is the array to be iterated through.

Generally, we find this function less flexible than the previous methods, but it is well-
suited for the processing and merging of multiple arrays.

If you’re unsure if the data you’ll be processing is a scalar or an array, you need to
protect against calling foreach with a non-array. One method is to use is_array(  ):

if (is_array($items)) {
 // foreach loop code for array
} else {
 // code for scalar
}

Another method is to coerce all variables into array form using settype(  ):

106 | Chapter 4: Arrays

Download at Boykma.Com

settype($items, 'array');
// loop code for arrays

This turns a scalar value into a one-element array and cleans up your code at the expense
of a little overhead.

See Also
Documentation on for at http://www.php.net/for, foreach at http://www.php.net/
foreach, while at http://www.php.net/while, each(  ) at http://www.php.net/each,
reset(  ) at http://www.php.net/reset, and array_map(  ) at http://www.php.net/array-
map .

4.5 Deleting Elements from an Array

Problem
You want to remove one or more elements from an array.

Solution
To delete one element, use unset(  ):

unset($array[3]);
unset($array['foo']);

To delete multiple noncontiguous elements, also use unset(  ):
unset($array[3], $array[5]);
unset($array['foo'], $array['bar']);

To delete multiple contiguous elements, use array_splice(  ):
array_splice($array, $offset, $length);

Discussion
Using these functions removes all references to these elements from PHP. If you want
to keep a key in the array, but with an empty value, assign the empty string to the
element:

$array[3] = $array['foo'] = '';

Besides syntax, there’s a logical difference between using unset(  ) and assigning '' to
the element. The first says, “This doesn’t exist anymore,” while the second says, “This
still exists, but its value is the empty string.”

If you’re dealing with numbers, assigning 0 may be a better alternative. So if a company
stopped production of the model XL1000 sprocket, it would update its inventory with:

unset($products['XL1000']);

However, if the company temporarily ran out of XL1000 sprockets but was planning
to receive a new shipment from the plant later this week, this is better:

4.5 Deleting Elements from an Array | 107

Download at Boykma.Com

$products['XL1000'] = 0;

If you unset(  ) an element, PHP adjusts the array so that looping still works correctly.
It doesn’t compact the array to fill in the missing holes. This is what we mean when we
say that all arrays are associative, even when they appear to be numeric. Here’s an
example:

// create a "numeric" array
$animals = array('ant', 'bee', 'cat', 'dog', 'elk', 'fox');
print $animals[1]; // prints 'bee'
print $animals[2]; // prints 'cat'
count($animals); // returns 6

// unset()
unset($animals[1]); // removes element $animals[1] = 'bee'
print $animals[1]; // prints '' and throws an E_NOTICE error
print $animals[2]; // still prints 'cat'
count($animals); // returns 5, even though $array[5] is 'fox'

// add new element
$animals[] = 'gnu'; // add new element (not Unix)
print $animals[1]; // prints '', still empty
print $animals[6]; // prints 'gnu', this is where 'gnu' ended up
count($animals); // returns 6

// assign ''
$animals[2] = ''; // zero out value
print $animals[2]; // prints ''
count($animals); // returns 6, count does not decrease

To compact the array into a densely filled numeric array, use array_values(  ):

$animals = array_values($animals);

Alternatively, array_splice(  ) automatically reindexes arrays to avoid leaving holes:

// create a "numeric" array
$animals = array('ant', 'bee', 'cat', 'dog', 'elk', 'fox');
array_splice($animals, 2, 2);
print_r($animals);
Array
(
 [0] => ant
 [1] => bee
 [2] => elk
 [3] => fox
)

This is useful if you’re using the array as a queue and want to remove items from the
queue while still allowing random access. To safely remove the first or last element
from an array, use array_shift(  ) and array_pop(  ), respectively.

However, if you find yourself often running into problems because of holes in arrays,
you may not be “thinking PHP.” Look at the ways to iterate through the array in
Recipe 4.4 that don’t involve using a for loop.

108 | Chapter 4: Arrays

Download at Boykma.Com

See Also
Recipe 4.4 for iteration techniques; documentation on unset(  ) at http://www.php.net/
unset, array_splice(  ) at http://www.php.net/array-splice, and array_values(  ) at http://
www.php.net/array-values .

4.6 Changing Array Size

Problem
You want to modify the size of an array, either by making it larger or smaller than its
current size.

Solution
Use array_pad(  ) to make an array grow:

// start at three
$array = array('apple', 'banana', 'coconut');

// grow to five
$array = array_pad($array, 5, '');

Now, count($array) is 5, and the last two elements, $array[3] and $array[4], contain
the empty string.

To reduce an array, you can use array_splice(  ):

// no assignment to $array
array_splice($array, 2);

This removes all but the first two elements from $array.

Discussion
Arrays aren’t a predeclared size in PHP, so you can resize them on the fly.

To pad an array, use array_pad(  ). The first argument is the array to be padded. The
next argument is the size and direction you want to pad. To pad to the right, use a
positive integer; to pad to the left, use a negative one. The third argument is the value
to be assigned to the newly created entries. The function returns a modified array and
doesn’t alter the original.

Here are some examples:

// make a four-element array with 'dates' to the right
$array = array('apple', 'banana', 'coconut');
$array = array_pad($array, 4, 'dates');
print_r($array);
Array
(
 [0] => apple
 [1] => banana

4.6 Changing Array Size | 109

Download at Boykma.Com

 [2] => coconut
 [3] => dates
)

// make a six-element array with 'zucchinis' to the left
$array = array_pad($array, -6, 'zucchini');
print_r($array);
Array
(
 [0] => zucchini
 [1] => zucchini
 [2] => apple
 [3] => banana
 [4] => coconut
 [5] => dates
)

Be careful: array_pad($array, 4, 'dates') makes sure an $array is at least four elements
long; it doesn’t add four new elements. In this case, if $array was already four elements
or larger, array_pad(  ) would return an unaltered $array.

Also, if you declare a value for a fourth element, $array[4]:

$array = array('apple', 'banana', 'coconut');
$array[4] = 'dates';

you end up with a four-element array with indexes 0, 1, 2, and 4:

Array
(
 [0] => apple
 [1] => banana
 [2] => coconut
 [4] => dates
)

PHP essentially turns this into an associative array that happens to have integer keys.

The array_splice(  ) function, unlike array_pad(  ), has the side effect of modifying the
original array. It returns the spliced-out array. That’s why you don’t assign the return
value to $array. However, like array_pad(  ), you can splice from either the right or left.
So calling array_splice(  ) with a value of -2 chops off the last two elements from the
end:

// make a four-element array
$array = array('apple', 'banana', 'coconut', 'dates');

// shrink to three elements
array_splice($array, 3);

// remove last element, equivalent to array_pop()
array_splice($array, -1);

// only remaining fruits are apple and banana
print_r($array);
Array

110 | Chapter 4: Arrays

Download at Boykma.Com

(
 [0] => apple
 [1] => banana
)

See Also
Documentation on array_pad(  ) at http://www.php.net/array-pad and array_splice(  )
at http://www.php.net/array-splice .

4.7 Appending One Array to Another

Problem
You want to combine two arrays into one.

Solution
Use array_merge(  ):

$garden = array_merge($fruits, $vegetables);

Discussion
The array_merge(  ) function works with both predefined arrays and arrays defined in
place using array(  ) :

$p_languages = array('Perl', 'PHP');
$p_languages = array_merge($p_languages, array('Python'));
print_r($p_languages);
Array
(
 [0] => PHP
 [1] => Perl
 [2] => Python
)

Accordingly, merged arrays can be either preexisting arrays, as with $p_languages, or
anonymous arrays, as with array('Python').

You can’t use array_push(  ), because PHP won’t automatically flatten out the array
into a series of independent variables, and you’ll end up with a nested array. Thus:

array_push($p_languages, array('Python'));
print_r($p_languages);
Array
(
 [0] => PHP
 [1] => Perl
 [2] => Array
 (
 [0] => Python
)

4.7 Appending One Array to Another | 111

Download at Boykma.Com

)

Merging arrays with only numerical keys causes the arrays to get renumbered, so values
aren’t lost. Merging arrays with string keys causes the second array to overwrite the
value of any duplicated keys. Arrays with both types of keys exhibit both types of
behavior. For example:

$lc = array('a', 'b' => 'b'); // lower-case letters as values
$uc = array('A', 'b' => 'B'); // upper-case letters as values
$ac = array_merge($lc, $uc); // all-cases?
print_r($ac);
Array
(
 [0] => a
 [b] => B
 [1] => A
)

The uppercase A has been renumbered from index 0 to index 1, to avoid a collision,
and merged onto the end. The uppercase B has overwritten the lowercase b and replaced
it in the original place within the array.

The + operator can also merge arrays. The array on the right overwrites any identically
named keys found on the left. It doesn’t do any reordering to prevent collisions. Using
the previous example:

print_r($uc + $lc);
print_r($lc + $uc);
Array
(
 [0] => a
 [b] => b
)
Array
(
 [0] => A
 [b] => B
)

Since a and A both have a key of 0, and b and B both have a key of b, you end up with a
total of only two elements in the merged arrays.

In the first case, $a + $b becomes just $b, and in the other, $b + $a becomes $a.

However, if you had two distinctly keyed arrays, this wouldn’t be a problem, and the
new array would be the union of the two arrays.

See Also
Documentation on array_merge(  ) at http://www.php.net/array-merge .

112 | Chapter 4: Arrays

Download at Boykma.Com

4.8 Turning an Array into a String

Problem
You have an array, and you want to convert it into a nicely formatted string.

Solution
Use join(  ):

// make a comma delimited list
$string = join(',', $array);

Or loop yourself:
$string = '';

foreach ($array as $key => $value) {
 $string .= ",$value";
}

$string = substr($string, 1); // remove leading ","

Discussion
If you can use join(  ), do; it’s faster than any PHP-based loop. However, join(  ) isn’t
very flexible. First, it places a delimiter only between elements, not around them. To
wrap elements inside HTML bold tags and separate them with commas, do this:

$left = '';
$right = '';

$html = $left . join("$right,$left", $html) . $right;

Second, join(  ) doesn’t allow you to discriminate against values. If you want to include
a subset of entries, you need to loop yourself:

$string = '';

foreach ($fields as $key => $value) {
 // don't include password
 if ('password' != $key) {
 $string .= ",$value";
 }
}

$string = substr($string, 1); // remove leading ","

Notice that a separator is always added to each value and then stripped off outside the
loop. While it’s somewhat wasteful to add something that will be subtracted later, it’s
far cleaner and efficient (in most cases) than attempting to embed logic inside of the
loop. To wit:

$string = '';
foreach ($fields as $key => $value) {

4.8 Turning an Array into a String | 113

Download at Boykma.Com

 // don't include password
 if ('password' != $value) {
 if (!empty($string)) { $string .= ','; }
 $string .= "$value";
 }
}

Now you have to check $string every time you append a value. That’s worse than the
simple substr(  ) call. Also, prepend the delimiter (in this case a comma) instead of
appending it because it’s faster to shorten a string from the front than the rear.

See Also
Recipe 4.9 for printing an array with commas; documentation on join(  ) at http://
www.php.net/join and substr(  ) at http://www.php.net/substr.

4.9 Printing an Array with Commas

Problem
You want to print out an array with commas separating the elements and with an “and”
before the last element if there are more than two elements in the array.

Solution
Use the pc_array_to_comma_string(  ) function shown in Example 4-1, which returns
the correct string.

Example 4-1. pc_array_to_comma_string(  )
function pc_array_to_comma_string($array) {

 switch (count($array)) {
 case 0:
 return '';

 case 1:
 return reset($array);

 case 2:
 return join(' and ', $array);

 default:
 $last = array_pop($array);
 return join(', ', $array) . ", and $last";
 }
}

Discussion
If you have a list of items to print, it’s useful to print them in a grammatically correct
fashion. It looks awkward to display text like this:

114 | Chapter 4: Arrays

Download at Boykma.Com

$thundercats = array('Lion-O', 'Panthro', 'Tygra', 'Cheetara', 'Snarf');
print 'ThunderCat good guys include ' . join(', ', $thundercats) . '.';
ThunderCat good guys include Lion-O, Panthro, Tygra, Cheetara, Snarf.

This implementation of this function isn’t completely straightforward, since we want
pc_array_to_comma_string(  ) to work with all arrays, not just numeric ones beginning
at 0. If restricted only to that subset, for an array of size one, you return $array[0]. But
if the array doesn’t begin at 0, $array[0] is empty. So you can use the fact that
reset(  ), which resets an array’s internal pointer, also returns the value of the first array
element.

For similar reasons, you call array_pop(  ) to grab the end element, instead of assuming
it’s located at $array[count($array)-1]. This allows you to use join(  ) on $array.

Also note that the code for case 2 actually works correctly for case 1, too. And the
default code works (though inefficiently) for case 2; however, the transitive property
doesn’t apply, so you can’t use the default code on elements of size 1.

See Also
Recipe 4.8 for turning an array into a string; documentation on join(  ) at http://
www.php.net/join, array_pop(  ) at http://www.php.net/array-pop, and reset(  ) at http://
www.php.net/reset.

4.10 Checking if a Key Is in an Array

Problem
You want to know if an array contains a certain key.

Solution
Use array_key_exists(  ) to check for a key no matter what the associated value is:

if (array_key_exists('key', $array)) {
 /* there is a value for $array['key'] */
}

Use isset(  ) to find a key whose associated value is anything but null:

if (isset($array['key'])) { /* there is a non-null value for 'key' in $array */ }

Discussion
The array_key_exists(  ) function completely ignores array values—it just reports
whether there is an element in the array with a particular key. isset(  ), however, be-
haves the same way on array keys as it does with other variables. A null value causes
isset(  ) to return false. See the Introduction to Chapter 5 for more information about
the truth value of variables.

4.10 Checking if a Key Is in an Array | 115

Download at Boykma.Com

See Also
Documentation on isset(  ) at http://www.php.net/isset and on array_key_exists(  ) at
http://www.php.net/array_key_exists.

4.11 Checking if an Element Is in an Array

Problem
You want to know if an array contains a certain value.

Solution
Use in_array(  ):

if (in_array($value, $array)) {
 // an element has $value as its value in array $array
}

Discussion
Use in_array(  ) to check if an element of an array holds a value:

$book_collection = array('Emma', 'Pride and Prejudice', 'Northhanger Abbey');
$book = 'Sense and Sensibility';

if (in_array($book, $book_collection) {
 echo 'Own it.';
} else {
 echo 'Need it.';
}

The default behavior of in_array(  ) is to compare items using the == operator. To use
the strict equality check, ===, pass true as the third parameter to in_array(  ):

$array = array(1, '2', 'three');

in_array(0, $array); // true!
in_array(0, $array, true); // false
in_array(1, $array); // true
in_array(1, $array, true); // true
in_array(2, $array); // true
in_array(2, $array, true); // false

The first check, in_array(0, $array), evaluates to true because to compare the number
0 against the string three, PHP casts three to an integer. Since three isn’t a numeric
string, as is 2, it becomes 0. Therefore, in_array(  ) thinks there’s a match.

Consequently, when comparing numbers against data that may contain strings, it’s
safest to use a strict comparison.

If you find yourself calling in_array(  ) multiple times on the same array, it may be better
to use an associative array, with the original array elements as the keys in the new

116 | Chapter 4: Arrays

Download at Boykma.Com

associative array. Looking up entries using in_array(  ) takes linear time; with an asso-
ciative array, it takes constant time.

If you can’t create the associative array directly but need to convert from a traditional
one with integer keys, use array_flip(  ) to swap the keys and values of an array:

$book_collection = array('Emma',
 'Pride and Prejudice',
 'Northhanger Abbey');

// convert from numeric array to associative array
$book_collection = array_flip($book_collection);
$book = 'Sense and Sensibility';

if (isset($book_collection[$book])) {
 echo 'Own it.';
} else {
 echo 'Need it.';
}

Note that doing this condenses multiple keys with the same value into one element in
the flipped array.

See Also
Recipe 4.12 for determining the position of a value in an array; documentation on
in_array(  ) at http://www.php.net/in-array and array_flip(  ) at the following address:
http://www.php.net/array-flip.

4.12 Finding the Position of a Value in an Array

Problem
You want to know if a value is in an array. If the value is in the array, you want to know
its key.

Solution
Use array_search(  ) . It returns the key of the found value. If the value is not in the
array, it returns false:

$position = array_search($value, $array);
if ($position !== false) {
 // the element in position $position has $value as its value in array $array
}

Discussion
Use in_array(  ) to find if an array contains a value; use array_search(  ) to discover
where that value is located. However, because array_search(  ) gracefully handles
searches in which the value isn’t found, it’s better to use array_search(  ) instead of

4.12 Finding the Position of a Value in an Array | 117

Download at Boykma.Com

in_array(  ). The speed difference is minute, and the extra information is potentially
useful:

$favorite_foods = array(1 => 'artichokes', 'bread', 'cauliflower', 'deviled eggs');
$food = 'cauliflower';
$position = array_search($food, $favorite_foods);

if ($position !== false) {
 echo "My #$position favorite food is $food";
} else {
 echo "Blech! I hate $food!";
}

Use the !== check against false because if your string is found in the array at position
0, the if evaluates to a logical false, which isn’t what is meant or wanted.

If a value is in the array multiple times, array_search(  ) is only guaranteed to return one
of the instances, not the first instance.

See Also
Recipe 4.11 for checking whether an element is in an array; documentation on
array_search(  ) at http://www.php.net/array-search; for more sophisticated searching
of arrays using regular expression, see preg_replace(  ), which is found at http://
www.php.net/preg-replace and Chapter 22.

4.13 Finding Elements That Pass a Certain Test

Problem
You want to locate entries in an array that meet certain requirements.

Solution
Use a foreach loop:

$movies = array(...);

foreach ($movies as $movie) {
 if ($movie['box_office_gross'] < 5000000) { $flops[] = $movie; }
}

Or array_filter(  ):

$movies = array(...);

function flops($movie) {
 return ($movie['box_office_gross'] < 5000000) ? 1 : 0;
}

$flops = array_filter($movies, 'flops');

118 | Chapter 4: Arrays

Download at Boykma.Com

Discussion
The foreach loops are simple: you iterate through the data and append elements to the
return array that match your criteria.

If you want only the first such element, exit the loop using break:

foreach ($movies as $movie) {
 if ($movie['box_office_gross'] > 200000000) { $blockbuster = $movie; break; }
}

You can also return directly from a function:

function blockbuster($movies) {
 foreach ($movies as $movie) {
 if ($movie['box_office_gross'] > 200000000) { return $movie; }
 }
}

With array_filter(  ), however, you first create a callback function that returns true
for values you want to keep and false for values you don’t. Using array_filter(  ), you
then instruct PHP to process the array as you do in the foreach.

It’s impossible to bail out early from array_filter(  ), so foreach provides more flexi-
bility and is simpler to understand. Also, it’s one of the few cases in which the built-in
PHP function doesn’t clearly outperform user-level code.

See Also
Documentation on array_filter(  ) at http://www.php.net/array-filter.

4.14 Finding the Largest or Smallest Valued Element in an
Array

Problem
You have an array of elements, and you want to find the largest or smallest valued
element. For example, you want to find the appropriate scale when creating a histo-
gram.

Solution
To find the largest element, use max(  ):

$largest = max($array);

To find the smallest element, use min(  ):

$smallest = min($array);

4.14 Finding the Largest or Smallest Valued Element in an Array | 119

Download at Boykma.Com

Discussion
Normally, max(  ) returns the larger of two elements, but if you pass it an array, it searches
the entire array instead. Unfortunately, there’s no way to find the index of the largest
element using max(  ). To do that, you must sort the array in reverse order to put the
largest element in position 0:

arsort($array);

Now the value of the largest element is $array[0].

If you don’t want to disturb the order of the original array, make a copy and sort the
copy:

$copy = $array;
arsort($copy);

The same concept applies to min(  ) but uses asort(  ) instead of arsort(  ).

See Also
Recipe 4.16 for sorting an array; documentation on max(  ) at http://www.php.net/max,
min(  ) at http://www.php.net/min, arsort(  ) at http://www.php.net/arsort, and asort(  )
at http://www.php.net/asort.

4.15 Reversing an Array

Problem
You want to reverse the order of the elements in an array.

Solution
Use array_reverse(  ):

$array = array('Zero', 'One', 'Two');
$reversed = array_reverse($array);

Discussion
The array_reverse(  ) function reverses the elements in an array. However, it’s often
possible to avoid this operation. If you wish to reverse an array you’ve just sorted,
modify the sort to do the inverse. If you want to reverse a list you’re about to loop
through and process, just invert the loop. Instead of:

for ($i = 0, $size = count($array); $i < $size; $i++) {
 ...
}

do the following:

120 | Chapter 4: Arrays

Download at Boykma.Com

for ($i = count($array) - 1; $i >=0 ; $i--) {
 ...
}

However, as always, use a for loop only on a tightly packed array.

Another alternative would be, if possible, to invert the order elements are placed into
the array. For instance, if you’re populating an array from a series of rows returned
from a database, you should be able to modify the query to ORDER DESC. See your data-
base manual for the exact syntax for your database.

See Also
Documentation on array_reverse(  ) at http://www.php.net/array-reverse.

4.16 Sorting an Array

Problem
You want to sort an array in a specific way.

Solution
To sort an array using the traditional definition of sort, use sort(  ):

$states = array('Delaware', 'Pennsylvania', 'New Jersey');
sort($states);

To sort numerically, pass SORT_NUMERIC as the second argument to sort(  ):

$scores = array(1, 10, 2, 20);
sort($scores, SORT_NUMERIC);

This resorts the numbers in ascending order (1, 2, 10, 20) instead of lexicographical
order (1, 10, 2, 20).

Discussion
The sort(  ) function doesn’t preserve the key/value association between elements; in-
stead, entries are reindexed starting at 0 and going upward. (The one exception to this
rule is a one-element array; its lone element doesn’t have its index reset to 0. This is
fixed as of PHP 4.2.3.)

To preserve the key/value links, use asort(  ). The asort(  ) function is normally used
for associative arrays, but it can also be useful when the indexes of the entries are
meaningful:

$states = array(1 => 'Delaware', 'Pennsylvania', 'New Jersey');
asort($states);

while (list($rank, $state) = each($states)) {
 print "$state was the #$rank state to join the United States\n";

4.16 Sorting an Array | 121

Download at Boykma.Com

}

Use natsort(  ) to sort the array using a natural sorting algorithm. Under natural sorting,
you can mix strings and numbers inside your elements and still get the right answer:

$tests = array('test1.php', 'test10.php', 'test11.php', 'test2.php');
natsort($tests);

The elements are now ordered 'test1.php', 'test2.php', 'test10.php', and
'test11.php'. With natural sorting, the number 10 comes after the number 2; the op-
posite occurs under traditional sorting. For case-insensitive natural sorting, use
natcasesort(  ).

To sort the array in reverse order, use rsort(  ) or arsort(  ), which is like rsort(  ) but
also preserves keys. There is no natrsort(  ) or natcasersort(  ). You can also pass
SORT_NUMERIC into these functions.

See Also
Recipe 4.17 for sorting with a custom comparison function and Recipe 4.18 for sorting
multiple arrays; documentation on sort(  ) at http://www.php.net/sort, asort(  ) at http://
www.php.net/asort, natsort(  ) at http://www.php.net/natsort, natcasesort(  ) at http://
www.php.net/natcasesort, rsort(  ) at http://www.php.net/rsort, and arsort(  ) at http://
www.php.net/arsort.

4.17 Sorting an Array by a Computable Field

Problem
You want to define your own sorting routine.

Solution
Use usort(  ) in combination with a custom comparison function:

// sort in reverse natural order
function natrsort($a, $b) {
 return strnatcmp($b, $a);
}

$tests = array('test1.php', 'test10.php', 'test11.php', 'test2.php');
usort($tests, 'natrsort');

Discussion
The comparison function must return a value greater that 0 if $a > $b, 0 if $a == $b,
and a value less than 0 if $a < $b. To sort in reverse, do the opposite. The function in
the Solution, strnatcmp(  ), obeys those rules.

122 | Chapter 4: Arrays

Download at Boykma.Com

To reverse the sort, instead of multiplying the return value of strnatcmp($a, $b) by
-1, switch the order of the arguments to strnatcmp($b, $a).

The sort function doesn’t need to be a wrapper for an existing sort. For instance, the
pc_date_sort(  ) function, shown in Example 4-2, shows how to sort dates.

Example 4-2. pc_date_sort(  )
// expects dates in the form of "MM/DD/YYYY"
function pc_date_sort($a, $b) {
 list($a_month, $a_day, $a_year) = explode('/', $a);
 list($b_month, $b_day, $b_year) = explode('/', $b);

 if ($a_year > $b_year) return 1;
 if ($a_year < $b_year) return -1;

 if ($a_month > $b_month) return 1;
 if ($a_month < $b_month) return -1;

 if ($a_day > $b_day) return 1;
 if ($a_day < $b_day) return -1;

 return 0;
}

$dates = array('12/14/2000', '08/10/2001', '08/07/1999');
usort($dates, 'pc_date_sort');

While sorting, usort(  ) frequently recomputes the sort function’s return values each
time it’s needed to compare two elements, which slows the sort. To avoid unnecessary
work, you can cache the comparison values, as shown in pc_array_sort(  ) in Exam-
ple 4-3.

Example 4-3. pc_array_sort(  )
function pc_array_sort($array, $map_func, $sort_func = '') {
 $mapped = array_map($map_func, $array); // cache $map_func() values

 if ('' == $sort_func) {
 asort($mapped); // asort() is faster then usort()
 } else {
 uasort($mapped, $sort_func); // need to preserve keys
 }

 while (list($key) = each($mapped)) {
 $sorted[] = $array[$key]; // use sorted keys
 }

 return $sorted;
}

To avoid unnecessary work, pc_array_sort(  ) uses a temporary array, $mapped, to cache
the return values. It then sorts $mapped, using either the default sort order or a user-
specified sorting routine. Importantly, it uses a sort that preserves the key/value

4.17 Sorting an Array by a Computable Field | 123

Download at Boykma.Com

relationship. By default, it uses asort(  ) because asort(  ) is faster than uasort(  ).
(Slowness in uasort(  ) is the whole reason for pc_array_sort(  ) after all.) Finally, it
creates a sorted array, $sorted, using the sorted keys in $mapped to index the values in
the original array.

For small arrays or simple sort functions, usort(  ) is faster, but as the number of com-
putations grows, pc_array_sort(  ) surpasses usort(  ). The following example sorts
elements by their string lengths, a relatively quick custom sort:

function pc_u_length($a, $b) {
 $a = strlen($a);
 $b = strlen($b);

 if ($a == $b) return 0;
 if ($a > $b) return 1;
 return -1;
}

function pc_map_length($a) {
 return strlen($a);
}

$tests = array('one', 'two', 'three', 'four', 'five',
 'six', 'seven', 'eight', 'nine', 'ten');

// faster for < 5 elements using pc_u_length()
usort($tests, 'pc_u_length');

// faster for >= 5 elements using pc_map_length()
$tests = pc_array_sort($tests, 'pc_map_length');

Here, pc_array_sort(  ) is faster than usort(  ) once the array reaches five elements.

See Also
Recipe 4.16 for basic sorting and Recipe 4.18 for sorting multiple arrays; documenta-
tion on usort(  ) at http://www.php.net/usort, asort(  ) at http://www.php.net/asort, and
array_map(  ) at http://www.php.net/array-map .

4.18 Sorting Multiple Arrays

Problem
You want to sort multiple arrays or an array with multiple dimensions.

Solution
Use array_multisort(  ):

To sort multiple arrays simultaneously, pass multiple arrays to array_multisort(  ):
$colors = array('Red', 'White', 'Blue');
$cities = array('Boston', 'New York', 'Chicago');

124 | Chapter 4: Arrays

Download at Boykma.Com

array_multisort($colors, $cities);
print_r($colors);
print_r($cities);
Array
(
 [0] => Blue
 [1] => Red
 [2] => White
)
Array
(
 [0] => Chicago
 [1] => Boston
 [2] => New York
)

To sort multiple dimensions within a single array, pass the specific array elements:

$stuff = array('colors' => array('Red', 'White', 'Blue'),
 'cities' => array('Boston', 'New York', 'Chicago'));

array_multisort($stuff['colors'], $stuff['cities']);
print_r($stuff);
Array
(
 [colors] => Array
 (
 [0] => Blue
 [1] => Red
 [2] => White
)

 [cities] => Array
 (
 [0] => Chicago
 [1] => Boston
 [2] => New York
)

)

To modify the sort type, as in sort(  ), pass in SORT_REGULAR, SORT_NUMERIC, or
SORT_STRING after the array. To modify the sort order, unlike in sort(  ), pass in
SORT_ASC or SORT_DESC after the array. You can also pass in both a sort type and a sort
order after the array.

Discussion
The array_multisort(  ) function can sort several arrays at once or a multidimensional
array by one or more dimensions. The arrays are treated as columns of a table to be
sorted by rows. The first array is the main one to sort by; all the items in the other arrays
are reordered based on the sorted order of the first array. If items in the first array
compare as equal, the sort order is determined by the second array, and so on.

4.18 Sorting Multiple Arrays | 125

Download at Boykma.Com

The default sorting values are SORT_REGULAR and SORT_ASC, and they’re reset after each
array, so there’s no reason to pass either of these two values, except for clarity:

$numbers = array(0, 1, 2, 3);
$letters = array('a', 'b', 'c', 'd');
array_multisort($numbers, SORT_NUMERIC, SORT_DESC,
 $letters, SORT_STRING , SORT_DESC);

This example reverses the arrays.

See Also
Recipe 4.16 for simple sorting and Recipe 4.17 for sorting with a custom function;
documentation on array_multisort(  ) at http://www.php.net/array-multisort .

4.19 Sorting an Array Using a Method Instead of a Function

Problem
You want to define a custom sorting routine to order an array. However, instead of
using a function, you want to use an object method.

Solution
Pass in an array holding a class name and method in place of the function name:

usort($access_times, array('dates', 'compare'));

Discussion
As with a custom sort function, the object method needs to take two input arguments
and return 1, 0, or −1, depending if the first parameter is larger than, equal to, or less
than the second:

class pc_sort {
 // reverse-order string comparison
 function strrcmp($a, $b) {
 return strcmp($b, $a);
 }
}

usort($words, array('pc_sort', 'strrcmp'));

See Also
Chapter 7 for more on classes and objects; Recipe 4.17 for more on custom sorting of
arrays.

126 | Chapter 4: Arrays

Download at Boykma.Com

4.20 Randomizing an Array

Problem
You want to scramble the elements of an array in a random order.

Solution
Use shuffle(  ):

shuffle($array);

Discussion
It’s suprisingly tricky to properly shuffle an array. In fact, up until PHP 4.3, PHP’s
shuffle(  ) routine wasn’t a truly random shuffle. It would mix elements around, but
certain combinations were more likely than others.

Therefore, you should use PHP’s shuffle(  ) function whenever possible.

See Also
Documentation on shuffle(  ) at http://www.php.net/shuffle.

4.21 Removing Duplicate Elements from an Array

Problem
You want to eliminate duplicates from an array.

Solution
If the array is already complete, use array_unique(  ), which returns a new array that
contains no duplicate values:

$unique = array_unique($array);

If you create the array while processing results, here is a technique for numerical arrays:

foreach ($_REQUEST['fruits'] as $fruit) {
 if (!in_array($array, $fruit)) { $array[] = $fruit; }
}

Here’s one for associative arrays:

foreach ($_REQUEST['fruits'] as $fruit) {
 $array[$fruit] = $fruit;
}

4.20 Randomizing an Array | 127

Download at Boykma.Com

Discussion
Once processing is completed, array_unique(  ) is the best way to eliminate duplicates.
But if you’re inside a loop, you can eliminate the duplicate entries from appearing by
checking if they’re already in the array.

An even faster method than using in_array(  ) is to create a hybrid array in which the
key and the value for each element are the same. This eliminates the linear check of
in_array(  ) but still allows you to take advantage of the array family of functions that
operate over the values of an array instead of the keys.

In fact, it’s faster to use the associative array method and then call array_values(  ) on
the result (or, for that matter, array_keys(  ) , but array_values(  ) is slightly faster) than
to create a numeric array directly with the overhead of in_array(  ).

See Also
Documentation on array_unique(  ) at http://www.php.net/array-unique.

4.22 Applying a Function to Each Element in an Array

Problem
You want to apply a function or method to each element in an array. This allows you
to transform the input data for the entire set all at once.

Solution
Use array_walk(  ):

function escape_data(&$value, $key) {
 $value = htmlentities($value, ENT_QUOTES);
}

$names = array('firstname' => "Baba",
 'lastname' => "O'Riley");

array_walk($names, 'escape_data');

foreach ($names as $name) {
 print "$name\n";
}

Baba
O'Riley

For nested data, use array_walk_recursive(  ):

function escape_data(&$value, $key) {
 $value = htmlentities($value, ENT_QUOTES);
}

128 | Chapter 4: Arrays

Download at Boykma.Com

$names = array('firstnames' => array("Baba", "Bill"),
 'lastnames' => array("O'Riley", "O'Reilly"));

array_walk_recursive($names, 'escape_data');

foreach ($names as $nametypes) {
 foreach ($nametypes as $name) {
 print "$name\n";
 }
}

Baba
Bill
O'Riley
O'Reilly

Discussion
It’s frequently useful to loop through all the elements of an array. One option is to
foreach through the data. However, an alternative choice is the array_walk(  ) function.

This function takes an array and the name of a callback function, which is the function
that processes the elements of the array. The callback function takes two parameters,
a value and a key. It can also take an optional third parameter, which is any additional
data you wish to expose within the callback.

Here’s an example that ensures all the data in the $names array is properly HTML en-
coded. The callback function, escape_data(  ), takes the array values, passes them to
htmlentities(  ) to encode the key HTML entities, and assigns the result back to
$value:

function escape_data(&$value, $key) {
 $value = htmlentities($value, ENT_QUOTES);
}

$names = array('firstname' => "Baba",
 'lastname' => "O'Riley");

array_walk($names, 'escape_data');

foreach ($names as $name) {
 print "$name\n";
}

Baba
O'Riley

Since array_walk operates in-place instead of returning a modified copy of the array,
you must pass in values by reference when you want to modify the elements. In those
cases, as in this example, there is an & before the parameter name. However, this is only
necessary when you wish to alter the array.

When you have a series of nested arrays, use the array_walk_recursive(  ) function:

4.22 Applying a Function to Each Element in an Array | 129

Download at Boykma.Com

function escape_data(&$value, $key) {
 $value = htmlentities($value, ENT_QUOTES);
}

$names = array('firstnames' => array("Baba", "Bill"),
 'lastnames' => array("O'Riley", "O'Reilly"));

array_walk_recursive($names, 'escape_data');

foreach ($names as $nametypes) {
 foreach ($nametypes as $name) {
 print "$name\n";
 }
}

Baba
Bill
O'Riley
O'Reilly

The array_walk_recursive(  ) function only passes non-array elements to the callback,
so you don’t need to modify a callback when switching from array_walk(  ).

See Also
Documentation on array_walk(  ) at http://www.php.net/array-walk,
array_walk_recursive(  ) at http://www.php.net/array_walk_recursive, and
htmlentities(  ) at http://www.php.net/htmlentities .

4.23 Finding the Union, Intersection, or Difference of Two
Arrays

Problem
You have a pair of arrays, and you want to find their union (all the elements), inter-
section (elements in both, not just one), or difference (in one but not both).

Solution
To compute the union:

$union = array_unique(array_merge($a, $b));

To compute the intersection:

$intersection = array_intersect($a, $b);

To find the simple difference:

$difference = array_diff($a, $b);

And for the symmetric difference:

130 | Chapter 4: Arrays

Download at Boykma.Com

$difference = array_merge(array_diff($a, $b), array_diff($b, $a));

Discussion
Many necessary components for these calculations are built into PHP; it’s just a matter
of combining them in the proper sequence.

To find the union, you merge the two arrays to create one giant array with all of the
values. But array_merge(  ) allows duplicate values when merging two numeric arrays,
so you call array_unique(  ) to filter them out. This can leave gaps between entries
because array_unique(  ) doesn’t compact the array. It isn’t a problem, however, as
foreach and each(  ) handle sparsely filled arrays without a hitch.

The function to calculate the intersection is simply named array_intersection(  ) and
requires no additional work on your part.

The array_diff(  ) function returns an array containing all the unique elements in
$old that aren’t in $new. This is known as the simple difference:

$old = array('To', 'be', 'or', 'not', 'to', 'be');
$new = array('To', 'be', 'or', 'whatever');
$difference = array_diff($old, $new);

$old = array('To', 'be', 'or', 'not', 'to', 'be');
$new = array('To', 'be', 'or', 'whatever');
$difference = array_diff($old, $new);
Array
(
 [3] => not
 [4] => to
)

The resulting array, $difference contains 'not' and 'to' because array_diff(  ) is case-
sensitive. It doesn’t contain 'whatever' because it doesn’t appear in $old.

To get a reverse difference, or in other words, to find the unique elements in $new that
are lacking in $old, flip the arguments:

$old = array('To', 'be', 'or', 'not', 'to', 'be');
$new = array('To', 'be', 'or', 'whatever');
$reverse_diff = array_diff($new, $old);

$old = array('To', 'be', 'or', 'not', 'to', 'be');
$new = array('To', 'be', 'or', 'whatever');
$reverse_diff = array_diff($new, $old);
Array
(
 [3] => whatever
)

The $reverse_diff array contains only 'whatever'.

If you want to apply a function or other filter to array_diff(  ), roll your own diffing
algorithm:

4.23 Finding the Union, Intersection, or Difference of Two Arrays | 131

Download at Boykma.Com

// implement case-insensitive diffing; diff -i

$seen = array();
foreach ($new as $n) {
 $seen[strtolower($n)]++;
}

foreach ($old as $o) {
 $o = strtolower($o);
 if (!$seen[$o]) { $diff[$o] = $o; }
}

The first foreach builds an associative array lookup table. You then loop through
$old and, if you can’t find an entry in your lookup, add the element to $diff.

It can be a little faster to combine array_diff(  ) with array_map(  ):

$diff = array_diff(array_map('strtolower', $old), array_map('strtolower', $new));

The symmetric difference is what’s in $a but not $b, and what’s in $b but not $a:

$difference = array_merge(array_diff($a, $b), array_diff($b, $a));

Once stated, the algorithm is straightforward. You call array_diff(  ) twice and find the
two differences. Then you merge them together into one array. There’s no need to call
array_unique(  ) since you’ve intentionally constructed these arrays to have nothing in
common.

See Also
Documentation on array_unique(  ) at http://www.php.net/array-unique,
array_intersect(  ) at http://www.php.net/array-intersect, array_diff(  ) at http://
www.php.net/array-diff, array_merge(  ) at http://www.php.net/array-merge, and
array_map(  ) at http://www.php.net/array-map .

4.24 Making an Object Act like an Array

Problem
You have an object, but you want to be able to treat it as an array. This allows you to
combine the benefits from an object-oriented design with the familiar interface of an
array.

Solution
Implement SPL’s ArrayAccess interface:

class FakeArray implements ArrayAccess {

 private $elements;

 public function __construct() {

132 | Chapter 4: Arrays

Download at Boykma.Com

 $this->elements = array();
 }

 public function offsetExists($offset) {
 return isset($this->elements[$offset]);
 }

 public function offsetGet($offset) {
 return $this->elements[$offset];
 }

 public function offsetSet($offset, $value) {
 return $this->elements[$offset] = $value;
 }

 public function offsetUnset($offset) {
 unset($this->elements[$offset]);
 }
}

$array = new FakeArray;

// What's Opera, Doc?
$array['animal'] = 'wabbit';

// Be very quiet I'm hunting wabbits
if (isset($array['animal']) &&
 // Wabbit tracks!!!
 $array['animal'] == 'wabbit') {

 // Kill the wabbit, kill the wabbit, kill the wabbit
 unset($array['animal']);
 // Yo ho to oh! Yo ho to oh! Yo ho...
}

// What have I done?? I've killed the wabbit....
// Poor little bunny, poor little wabbit...
if (!isset($array['animal'])) {
 print "Well, what did you expect in an opera? A happy ending?\n";
}
Well, what did you expect in an opera? A happy ending?

Discussion
The ArrayAccess interface allows you to manipulate data in an object using the same
set of conventions you use for arrays. This allows you to leverage the benefits of an
object-oriented design, such as using a class hierarchy or implementing additional
methods on the object, but still allow people to interact with the object using a familiar
interface. Alternatively, it allows you create an “array” that stores its data in an external
location, such as shared memory or a database.

An implementation of ArrayAccess requires four methods: offsetExists(  ), which in-
dicates whether an element is defined; offsetGet(  ), which returns an element’s value;

4.24 Making an Object Act like an Array | 133

Download at Boykma.Com

offsetSet(  ) , which sets an element to a new value; and offsetUnset(  ), which removes
an element and its value.

This example stores the data locally in an object property:

class FakeArray implements ArrayAccess {

 private $elements;

 public function __construct() {
 $this->elements = array();
 }

 public function offsetExists($offset) {
 return isset($this->elements[$offset]);
 }

 public function offsetGet($offset) {
 return $this->elements[$offset];
 }

 public function offsetSet($offset, $value) {
 return $this->elements[$offset] = $value;
 }

 public function offsetUnset($offset) {
 unset($this->elements[$offset]);
 }
}

The object constructor initializes the $elements property to a new array. This provides
you with a place to store the keys and values of your array. That property is defined as
private, so people can only access the data through one of the accessor methods defined
as part of the interface.

The next four methods implement everything you need to manipulate an array. Since
offsetExists(  ) checks if an array element is set, the method returns the value of
isset($this->elements[$offset]).

The offsetGet(  ) and offsetSet(  ) methods interact with the $elements property as
you would normally use those features with an array.

Last, the offsetUnset(  ) method simply calls unset(  ) on the element. Unlike the other
three methods, it does not return the value from its operation. That’s because
unset(  ) is a statement, not a function, and doesn’t return a value.

Now you can instantiate an instance of FakeArray and manipulate it like an array:

$array = new FakeArray;

// What's Opera, Doc?
$array['animal'] = 'wabbit';

// Be very quiet I'm hunting wabbits
if (isset($array['animal']) &&

134 | Chapter 4: Arrays

Download at Boykma.Com

 // Wabbit tracks!!!
 $array['animal'] == 'wabbit') {

 // Kill the wabbit, kill the wabbit, kill the wabbit
 unset($array['animal']);
 // Yo ho to oh! Yo ho to oh! Yo ho...
}

// What have I done?? I've killed the wabbit....
// Poor little bunny, poor little wabbit...
if (!isset($array['animal'])) {
 print "Well, what did you expect in an opera? A happy ending?\n";
}
Well, what did you expect in an opera? A happy ending?

Each operation calls one of your methods: assigning a value to $array['animal'] triggers
offsetSet(  ), checking isset($array['animal']) invokes offsetExists(  ), offsetGet(  )
comes into play when you do the comparison $array['animal'] == 'wabbit', and
offsetUnset(  ) is called for unset($array['animal']).

As you can see, after all this, the wabbit is “dead.”

See Also
More on objects in Chapter 7; the ArrayAccess reference page at http://www.php.net/
~helly/php/ext/spl/interfaceArrayAccess.html; and the Wikipedia entry on “What’s Op-
era, Doc?” at http://en.wikipedia.org/wiki/What%27s_Opera%2C_Doc .

4.25 Program: Printing a Horizontally Columned HTML Table
Converting an array into a horizontally columned table places a fixed number of ele-
ments in a row. The first set goes in the opening table row, the second set goes in the
next row, and so forth. Finally, you reach the final row, where you might need to
optionally pad the row with empty table data cells.

The function pc_grid_horizontal(  ), shown in Example 4-4, lets you specify an array
and number of columns. It assumes your table width is 100%, but you can alter the
$table_width variable to change this.

Example 4-4. pc_grid_horizontal(  )
function pc_grid_horizontal($array, $size) {

 // compute <td> width %ages
 $table_width = 100;
 $width = intval($table_width / $size);

 // define how our <tr> and <td> tags appear
 // sprintf() requires us to use %% to get literal %
 $tr = '<tr align="center">';
 $td = "<td width=\"$width%%\">%s</td>";

 // open table

4.25 Program: Printing a Horizontally Columned HTML Table | 135

Download at Boykma.Com

 $grid = "<table width=\"$table_width%%\">$tr";

 // loop through entries and display in rows of size $sized
 // $i keeps track of when we need a new table tow
 $i = 0;
 foreach ($array as $e) {
 $grid .= sprintf($td, $e);
 $i++;

 // end of a row
 // close it up and open a new one
 if (!($i % $size)) {
 $grid .= "</tr>$tr";
 }
 }

 // pad out remaining cells with blanks
 while ($i % $size) {
 $grid .= sprintf($td, ' ');
 $i++;
 }

 // add </tr>, if necessary
 $end_tr_len = strlen($tr) * -1;
 if (substr($grid, $end_tr_len) != $tr) {
 $grid .= '</tr>';
 } else {
 $grid = substr($grid, 0, $end_tr_len);
 }

 // close table
 $grid .= '</table>';

 return $grid;
}

The function begins by calculating the width of each <td> as a percentage of the total
table size. Depending on the number of columns and the overall size, the sum of the
<td> widths might not equal the <table> width, but this shouldn’t affect the displayed
HTML in a noticeable fashion. Next, define the <td> and <tr> tags, using printf-style
formatting notation. To get the literal % needed for the <td> width percentage, use a
double %%.

The meat of the function is the foreach loop through the array in which we append
each <td> to the $grid. If you reach the end of a row, which happens when the total
number of elements processed is a multiple of the number of elements in a row, you
close and then reopen the <tr>.

Once you finish adding all the elements, you need to pad the final row with blank or
empty <td> elements. Put a non-breaking space inside the data cell instead of leaving
it empty to make the table render properly in the browser. Now, make sure there isn’t
an extra <tr> at the end of the grid, which occurs when the number of elements is an

136 | Chapter 4: Arrays

Download at Boykma.Com

exact multiple of the width (in other words, if you didn’t need to add padding cells).
Finally, you can close the table.

For example, let’s print the names of the 50 U.S. states in a six-column table:

// establish connection to database
$dsn = 'mysql://user:password@localhost/table';
$dbh = DB::connect($dsn);
if (DB::isError($dbh)) { die ($dbh->getMessage()); }

// query the database for the 50 states
$sql = "SELECT state FROM states";
$sth = $dbh->query($sql);

// load data into array from database
while ($row = $sth->fetchRow(DB_FETCHMODE_ASSOC)) {
 $states[] = $row['state'];
}

// generate the HTML table
$grid = pc_grid_horizontal($states, 6);

// and print it out
print $grid;

When rendered in a browser, it looks like Figure 4-1.

Because 50 doesn’t divide evenly by 6, there are four extra padding cells in the last
row.

Figure 4-1. The United States of America

4.25 Program: Printing a Horizontally Columned HTML Table | 137

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 5

Variables

5.0 Introduction
Along with conditional logic, variables are the core of what makes computer programs
powerful and flexible. If you think of a variable as a bucket with a name that holds a
value, PHP lets you have plain old buckets, buckets that contain the name of other
buckets, buckets with numbers or strings in them, buckets holding arrays of other
buckets, buckets full of objects, and just about any other variation on that analogy you
can think of.

A variable is either set or unset. A variable with any value assigned to it, true or
false, empty or nonempty, is set. The function isset(  ) returns true when passed a
variable that’s set. To turn a variable that’s set into one that’s unset, call unset(  ) on
the variable or assign null to the variable. Scalars, arrays, and objects can all be passed
to unset(  ). You can also pass unset(  ) multiple variables to unset them all:

unset($vegetables);
unset($vegetables[12]);
unset($earth, $moon, $stars);

If a variable is present in the query string of a URL, even if it has no value assigned to
it, it is set. Thus:

http://www.example.com/set.php?chimps=&monkeys=12

sets $_GET['monkeys'] to 12 and $_GET['chimps'] to the empty string.

All unset variables are also empty. Set variables may be empty or nonempty. Empty
variables have values that evaluate to false as a boolean: the integer 0, the double 0.0,
the empty string, the string "0", the boolean false, an array with no elements, an object
with no properties (in versions of PHP prior to PHP 5) and NULL. Everything else is
nonempty. This includes the string "00", and the string " ", containing just a space
character.

Variables evaluate to either true or false. The values listed earlier that evaluate to
false as a boolean are the complete set of what’s false in PHP. Every other value is

139

Download at Boykma.Com

true. The distinction between empty and false is that emptiness is only possible for
variables.

Constants and return values from functions can be false, but they can’t be empty. For
example, Example 5-1 shows a valid use of empty(  ) because $first_name is a variable.

Example 5-1. Correctly checking if a variable is empty
if (empty($first_name)) { .. }

On the other hand, the code in Example 5-2 returns parse errors because 0 (a constant)
and the return value from get_first_name(  ) can’t be empty.

Example 5-2. Incorrectly checking if a constant is empty
if (empty(0)) { .. }
if (empty(get_first_name())) { .. }

5.1 Avoiding == Versus = Confusion

Problem
You don’t want to accidentally assign values when comparing a variable and a con-
stant.

Solution
Use:

if (12 == $dwarves) { ... }

instead of:

if ($dwarves == 12) { ... }

Putting the constant on the left triggers a parse error with the assignment operator. In
other words, PHP complains when you write:

if (12 = $dwarves) { ... }

but:

if ($dwarves = 12) { ... }

silently executes, assigning 12 to the variable $dwarves, and then executing the code
inside the block. ($dwarves = 12 evaluates to 12, which is true.)

Discussion
Putting a constant on the left side of a comparison coerces the comparison to the type
of the constant. This causes problems when you are comparing an integer with a var-
iable that could be an integer or a string. 0 == $dwarves is true when $dwarves is 0, but
it’s also true when $dwarves is sleepy. Since an integer (0) is on the left side of the

140 | Chapter 5: Variables

Download at Boykma.Com

comparison, PHP converts what’s on the right (the string sleepy) to an integer (0) before
comparing. To avoid this, use the identity operator, 0 === $dwarves, instead.

See Also
Documentation for = at http://www.php.net/language.operators.assignment.php and for
== and === at http://www.php.net/manual/language.operators.comparison.php.

5.2 Establishing a Default Value

Problem
You want to assign a default value to a variable that doesn’t already have a value. It
often happens that you want a hardcoded default value for a variable that can be over-
ridden from form input or through an environment variable.

Solution
Use isset(  ) to assign a default to a variable that may already have a value:

if (! isset($cars)) { $cars = $default_cars; }

Use the ternary (a ? b : c) operator to give a new variable a (possibly default) value:

$cars = isset($_REQUEST['cars']) ? $_REQUEST['cars'] : $default_cars;

Discussion
Using isset(  ) is essential when assigning default values. Without it, the nondefault
value can’t be 0 or anything else that evaluates to false. Consider this assignment:

$cars = $_REQUEST['cars'] ? $_REQUEST['cars'] : $default_cars;

If $_REQUEST['cars'] is 0, $cars is set to $default_cars even though 0 may be a valid
value for $cars.

An alternative syntax for checking arrays is the array_key_exists(  ) function:

$cars = array_key_exists('cars', $_REQUEST) ? $_REQUEST['cars'] : $default_cars;

The one difference between isset(  ) and array_key_exists(  ) is that when a key exists
but its value is null, then array_key_exists(  ) returns true, while isset(  ) returns false:

$vehicles = array('cars' => null);
array_key_exists('cars', $vehicles); // true
isset($vehicles['cars']); // false

You can use an array of defaults to set multiple default values easily. The keys in the
defaults array are variable names, and the values in the array are the defaults for each
variable:

$defaults = array('emperors' => array('Rudolf II','Caligula'),
 'vegetable' => 'celery',

5.2 Establishing a Default Value | 141

Download at Boykma.Com

 'acres' => 15);

foreach ($defaults as $k => $v) {
 if (! isset($GLOBALS[$k])) { $GLOBALS[$k] = $v; }
}

Because the variables are set in the global namespace, the previous code doesn’t work
for setting function-private defaults. To do that, use variable variables:

foreach ($defaults as $k => $v) {
 if (! isset($$k)) { $$k = $v; }
}

In this example, the first time through the loop, $k is emperors, so $$k is $emperors.

See Also
Documentation on isset(  ) at http://www.php.net/isset.

5.3 Exchanging Values Without Using Temporary Variables

Problem
You want to exchange the values in two variables without using additional variables
for storage.

Solution
To swap $a and $b:

list($a,$b) = array($b,$a);

Discussion
PHP’s list(  ) language construct lets you assign values from an array to individual
variables. Its counterpart on the right side of the expression, array(  ), lets you construct
arrays from individual values. Assigning the array that array(  ) returns to the variables
in the list(  ) lets you juggle the order of those values. This works with more than two
values, as well:

list($yesterday,$today,$tomorrow) = array($today,$tomorrow,$yesterday);

This method isn’t faster than using temporary variables, so you should use it for clarity,
but not speed.

See Also
Documentation on list(  ) at http://www.php.net/list and array(  ) at http://
www.php.net/array.

142 | Chapter 5: Variables

Download at Boykma.Com

5.4 Creating a Dynamic Variable Name

Problem
You want to construct a variable’s name dynamically. For example, you want to use
variable names that match the field names from a database query.

Solution
Use PHP’s variable variable syntax by prepending a $ to a variable whose value is the
variable name you want:

$animal = 'turtles';
$turtles = 103;
print $$animal;

103

Discussion
Placing two dollar signs before a variable name causes PHP to de-reference the right
variable name to get a value. It then uses that value as the name of your “real” variable.
For example:

$animal = 'turtles';
$turtles = 103;
print $$animal;

103

This prints 103. Because $animal = 'turtles', $$animal is $turtles, which equals 103.

Using curly braces , you can construct more complicated expressions that indicate
variable names:

$stooges = array('Moe','Larry','Curly');
$stooge_moe = 'Moses Horwitz';
$stooge_larry = 'Louis Feinberg';
$stooge_curly = 'Jerome Horwitz';

foreach ($stooges as $s) {
 print "$s's real name was ${'stooge_'.strtolower($s)}.\n";
}
Moe's real name was Moses Horwitz.
Larry's real name was Louis Feinberg.
Curly's real name was Jerome Horwitz.

PHP evaluates the expression between the curly braces and uses it as a variable name.
That expression can even have function calls in it, such as strtolower(  ).

Variable variables are also useful when iterating through similarly named variables. Say
you are querying a database table that has fields named title_1, title_2, etc. If you

5.4 Creating a Dynamic Variable Name | 143

Download at Boykma.Com

want to check if a title matches any of those values, the easiest way is to loop through
them like this:

for ($i = 1; $i <= $n; $i++) {
 $t = "title_$i";
 if ($title == $$t) { /* match */ }
}

Of course, it would be more straightforward to store these values in an array, but if you
are maintaining old code that uses this technique (and you can’t change it), variable
variables are helpful.

The curly brace syntax is also necessary in resolving ambiguity about array elements.
The variable variable $$donkeys[12] could have two meanings. The first is “take what’s
in the 12th element of the $donkeys array and use that as a variable name.” Write this
as: ${$donkeys[12]}. The second is “use what’s in the scalar $donkeys as an array name
and look in the 12th element of that array.” Write this as: ${$donkeys}[12].

You are not limited by two dollar signs. You can use three, or more, but in practice it’s
rare to see greater than two levels of indirection.

See Also
http://www.php.net/language.variables.variable for documentation on variable varia-
bles.

5.5 Using Static Variables

Problem
You want a local variable to retain its value between invocations of a function.

Solution
Declare the variable as static:

function track_times_called() {
 static $i = 0;
 $i++;
 return $i;
}

Discussion
Declaring a variable static causes its value to be remembered by a function. So, if there
are subsequent calls to the function, you can access the value of the saved variable.
The pc_check_the_count(  ) function shown in Example 5-3 uses static variables to keep
track of the strikes and balls for a baseball batter.

144 | Chapter 5: Variables

Download at Boykma.Com

Example 5-3. pc_check_the_count(  )
<?php
function pc_check_the_count($pitch) {
 static $strikes = 0;
 static $balls = 0;

 switch ($pitch) {
 case 'foul':
 if (2 == $strikes) break; // nothing happens if 2 strikes
 // otherwise, act like a strike
 case 'strike':
 $strikes++;
 break;
 case 'ball':
 $balls++;
 break;
 }

 if (3 == $strikes) {
 $strikes = $balls = 0;
 return 'strike out';
 }
 if (4 == $balls) {
 $strikes = $balls = 0;
 return 'walk';
 }
 return 'at bat';
}

$what_happened = pc_check_the_count($pitch);
?>

In pc_check_the_count(  ), the logic of what happens to the batter depending on the pitch
count is in the switch statement inside the function. You can instead return the number
of strikes and balls, but this requires you to place the checks for striking out, walking,
and staying at the plate in multiple places in the code.

While static variables retain their values between function calls, they do so only during
one invocation of a script. A static variable accessed in one request doesn’t keep its
value for the next request to the same page.

See Also
Documentation on static variables at http://www.php.net/language.variables.scope.

5.6 Sharing Variables Between Processes

Problem
You want a way to share information between processes that provides fast access to
the shared data.

5.6 Sharing Variables Between Processes | 145

Download at Boykma.Com

Solution
Use one of the two bundled shared memory extensions, shmop or System V shared
memory.

With shmop, you create a block and read and write to and from it, as shown in Exam-
ple 5-4.

Example 5-4. Using the shmop shared memory functions

<?php
// create key
$shmop_key = ftok(__FILE__, 'p');
// create 16384 byte shared memory block
$shmop_id = shmop_open($shmop_key, "c", 0600, 16384);
// retrieve the entire shared memory segment
$population = shmop_read($shmop_id, 0, 0);
// manipulate the data
$population += ($births + $immigrants - $deaths - $emigrants);
// store the value back in the shared memory segment
$shmop_bytes_written = shmop_write($shmop_id, $population, 0);
// check that it fit
if ($shmop_bytes_written != strlen($population)) {
 echo "Can't write the all of: $population\n";
}
// close the handle
shmop_close($shmop_id);
?>

With System V shared memory, you store the data in a shared memory segment, and
guarantee exclusive access to the shared memory with a semaphore, as shown in Ex-
ample 5-5.

Example 5-5. Using the System V shared memory functions

<?php
$semaphore_id = 100;
$segment_id = 200;
// get a handle to the semaphore associated with the shared memory
// segment we want
$sem = sem_get($semaphore_id,1,0600);
// ensure exclusive access to the semaphore
sem_acquire($sem) or die("Can't acquire semaphore");
// get a handle to our shared memory segment
$shm = shm_attach($segment_id,16384,0600);
// retrieve a value from the shared memory segment
$population = shm_get_var($shm,'population');
// manipulate the value
$population += ($births + $immigrants - $deaths - $emigrants);
// store the value back in the shared memory segment
shm_put_var($shm,'population',$population);
// release the handle to the shared memory segment
shm_detach($shm);
// release the semaphore so other processes can acquire it

146 | Chapter 5: Variables

Download at Boykma.Com

sem_release($sem);
?>

Discussion
A shared memory segment is a slice of your machine’s RAM that different processes
(such as the multiple web server processes that handle requests) can access. These two
extensions solve the similar problem of allowing you to save information between re-
quests in a fast and efficient manner, but they take slightly different approaches and
have slightly different interfaces as a result.

The shmop functions have an interface similar to the familiar file manipulation. You
can open a segment, read in data, write to it, and close it. Like a file, there’s no built-
in segmentation of the data, it’s all just a series of consecutive characters.

In Example 5-4, you first create the shared memory block. Unlike a file, you must pre-
declare the maximum size. In this example, it’s 16,384 bytes:

// create key
$shmop_key = ftok(__FILE__, 'p');
// create 16384 byte shared memory block
$shmop_id = shmop_open($shmop_key, "c", 0600, 16384);

Just as you distinguish files by using filenames, shmop segments are differentiated by
keys. Unlike filenames, these keys aren’t strings but integers, so they’re not easy to
remember. Therefore, it’s best to use the ftok(  ) function to convert a human-friendly
name, in this case the filename in the form of __FILE__ , to a format suitable for
shmop_open(  ). The ftok(  ) function also takes a one-fscharacter “project identifier.”
This helps you avoid collisions in case you accidently reuse the same string. Here it’s
p, for PHP.

Once you have a key, pass it to shmop_create(  ), along with the “flag” you want, the file
permissions (in octal), and the block size. See Table 5-1 for a list of suitable flags.

These permissions work just like file permissions, so 0600 means that the user that
created the block can read it and write to it. In this context, user doesn’t just mean the
process that created the semaphore but any process with the same user ID. Permissions
of 0600 should be appropriate for most uses, in which web server processes run as the
same user.

Table 5-1. shmop_open(  ) flags

Flag Description

a Opens for read-only access.

c Creates a new segment. If it already exists, opens it for read and write access.

w Opens for read and write access.

n Creates a new segment, but fails if one already exists. Useful to avoid race conditions.

5.6 Sharing Variables Between Processes | 147

Download at Boykma.Com

Once you have a handle, you can read from the segment using shmop_read(  ) and ma-
nipulate the data:

// retrieve the entire shared memory segment
$population = shmop_read($shmop_id, 0, 0);
// manipulate the data
$population += ($births + $immigrants - $deaths - $emigrants);

This code reads in the entire segment. To read in a shorter amount, adjust the second
and third parameters. The second parameter is the start, and the third is the length. As
a shortcut, you can set the length to 0 to read to the end of the segment.

Once you have the adjusted data, store it back with shmop_write(  ) and release the
handle with shmop_close(  ):

// store the value back in the shared memory segment
$shmop_bytes_written = shmop_write($shmop_id, $population, 0);
// check that it fit
if ($shmop_bytes_written != strlen($population)) {
 echo "Can't write the all of: $population\n";
}
// close the handle
shmop_close($shmop_id);

Since shared memory segments are of a fixed length, if you’re not careful, you can try
to write more data than you have room. Check to see if this happened by comparing
the value returned from shmop_write(  ) with the string length of your data. They should
be the same. If shmop_write(  ) returned a smaller value, then it was only able to fit that
many bytes in the segment before running out of space.

In constrast to shmop, the System V shared memory functions behave similar to an
array. You access slices of the segment by specifying a key, such as population, and
manipulate them directly. Depending on what you’re storing, this direct access can be
more convenient.

However, the interface is more complex as a result, and System V shared memory also
requires you to do manage locking in the form of semaphore.

A semaphore makes sure that the different processes don’t step on each other’s toes
when they access the shared memory segment. Before a process can use the segment,
it needs to get control of the semaphore. When it’s done with the segment, it releases
the semaphore for another process to grab.

To get control of a semaphore, use sem_get(  ) to find the semaphore’s ID. The first
argument to sem_get(  ) is an integer semaphore key. You can make the key any integer
you want, as long as all programs that need to access this particular semaphore use the
same key. If a semaphore with the specified key doesn’t already exist, it’s created; the
maximum number of processes that can access the semaphore is set to the second
argument of sem_get(  ) (in this case, 1); and the semaphore’s permissions are set to
sem_get(  )’s third argument (0600). Permissions here behave like they do with files and
shmop. For example:

148 | Chapter 5: Variables

Download at Boykma.Com

$semaphore_id = 100;
$segment_id = 200;
// get a handle to the semaphore associated with the shared memory
// segment we want
$sem = sem_get($semaphore_id,1,0600);
// ensure exclusive access to the semaphore
sem_acquire($sem) or die("Can't acquire semaphore");

sem_get(  ) returns an identifier that points to the underlying system semaphore. Use
this ID to gain control of the semaphore with sem_acquire(  ). This function waits until
the semaphore can be acquired (perhaps waiting until other processes release the sem-
aphore) and then returns true. It returns false on error. Errors include invalid permis-
sions or not enough memory to create the semaphore. Once the semaphore is acquired,
you can read from the shared memory segment:

// get a handle to our shared memory segment
$shm = shm_attach($segment_id,16384,0600);
// retrieve a value from the shared memory segment
$population = shm_get_var($shm,'population');
// manipulate the value
$population += ($births + $immigrants - $deaths - $emigrants);

First, establish a link to the particular shared memory segment with shm_attach(  ). As
with sem_get(  ), the first argument to shm_attach(  ) is an integer key. This time, how-
ever, it identifies the desired segment, not the semaphore. If the segment with the
specified key doesn’t exist, the other arguments create it. The second argument
(16384) is the size in bytes of the segment, and the last argument (0600) is the permissions
on the segment. shm_attach(200,16384,0600) creates a 16K shared memory segment
that can be read from and written to only by the user who created it. The function
returns the identifier you need to read from and write to the shared memory segment.

After attaching to the segment, pull variables out of it with
shm_get_var($shm, 'population'). This looks in the shared memory segment identified
by $shm and retrieves the value of the variable called population. You can store any type
of variable in shared memory. Once the variable is retrieved, it can be operated on like
other variables. shm_put_var($shm,'population',$population) puts the value of $popu
lation back into the shared memory segment as a variable called population.

You’re now done with the shared memory statement. Detach from it with
shm_detach(  ) and release the semaphore with sem_release(  ) so another process can
use it:

// release the handle to the shared memory segment
shm_detach($shm);
// release the semaphore so other processes can acquire it
sem_release($sem);

Shared memory’s chief advantage is that it’s fast. But since it’s stored in RAM, it can’t
hold too much data, and it doesn’t persist when a machine is rebooted (unless you take
special steps to write the information in shared memory to disk before shutdown and
then load it into memory again at startup).

5.6 Sharing Variables Between Processes | 149

Download at Boykma.Com

You cannot use System V shared memory under Windows, but the shmop functions
work fine. Besides these two bundled extensions, another option is to use the APC
extension, which beyond its main purpose of caching and optimization support for
PHP, also provides a way to store data.

See Also
APC at http://pecl.php.net/apc; documentation on shmop at http://www.php.net/
shmop and System V shared memory and semaphore functions at http://www.php.net/
sem .

5.7 Encapsulating Complex Data Types in a String

Problem
You want a string representation of an array or object for storage in a file or database.
This string should be easily reconstitutable into the original array or object.

Solution
Use serialize(  ) to encode variables and their values into a textual form:

$pantry = array('sugar' => '2 lbs.','butter' => '3 sticks');
$fp = fopen('/tmp/pantry','w') or die ("Can't open pantry");
fputs($fp,serialize($pantry));
fclose($fp);

To recreate the variables, use unserialize(  ):

$new_pantry = unserialize(file_get_contents('/tmp/pantry'));

Discussion
The serialized string that is reconstituted into $pantry looks like:

a:2:{s:5:"sugar";s:6:"2 lbs.";s:6:"butter";s:8:"3 sticks";}

This stores enough information to bring back all the values in the array, but the variable
name itself isn’t stored in the serialized representation.

When passing serialized data from page to page in a URL, call urlencode(  ) on the data
to make sure URL metacharacters are escaped in it:

$shopping_cart = array('Poppy Seed Bagel' => 2,
 'Plain Bagel' => 1,
 'Lox' => 4);
print 'Next';

The magic_quotes_gpc and magic_quotes_runtime configuration settings affect data be-
ing passed to unserialize(  ). If magic_quotes_gpc is on, data passed in URLs, POST
variables, or cookies must be processed with stripslashes(  ) before it’s unserialized:

150 | Chapter 5: Variables

Download at Boykma.Com

$new_cart = unserialize(stripslashes($cart)); // if magic_quotes_gpc is on
$new_cart = unserialize($cart); // if magic_quotes_gpc is off

If magic_quotes_runtime is on, serialized data stored in a file must be processed with
addslashes(  ) when writing and stripslashes(  ) when reading:

$fp = fopen('/tmp/cart,'w');
fputs($fp,addslashes(serialize($a)));
fclose($fp);

// if magic_quotes_runtime is on
$new_cart = unserialize(stripslashes(file_get_contents('/tmp/cart')));
// if magic_quotes_runtime is off
$new_cart = unserialize(file_get_contents('/tmp/cart'));

Serialized data read from a database must also be processed with stripslashes(  ) when
magic_quotes_runtime is on:

mysql_query(
 "INSERT INTO cart (id,data) VALUES (1,'".addslashes(serialize($cart))."')");

$r = mysql_query('SELECT data FROM cart WHERE id = 1');
$ob = mysql_fetch_object($r);
// if magic_quotes_runtime is on
$new_cart = unserialize(stripslashes($ob->data));
// if magic_quotes_runtime is off
$new_cart = unserialize($ob->data);

Serialized data going into a database always needs to have addslashes(  ) called on it
(or, better yet, the database-appropriate escaping method) to ensure it’s saved properly.

When you unserialize an object, PHP automatically invokes its __wakeUp(  ) method.
This allows the object to reestablish any state that’s not preserved across serialization,
such as database connection. This can alter your environment, so be sure you know
what you’re unserializing. See Recipe 7.18 for more details.

See Also
Recipe 10.9 for information on escaping data for a database.

5.8 Dumping Variable Contents as Strings

Problem
You want to inspect the values stored in a variable. It may be a complicated nested
array or object, so you can’t just print it out or loop through it.

Solution
Use print_r(  ) or var_dump(  ):

$array = array("name" => "frank", 12, array(3, 4));

5.8 Dumping Variable Contents as Strings | 151

Download at Boykma.Com

print_r($array);
Array
(
 [name] => frank
 [0] => 12
 [1] => Array
 (
 [0] => 3
 [1] => 4
)
)
var_dump($array);
array(3) {
 ["name"]=>
 string(5) "frank"
 [0]=>
 int(12)
 [1]=>
 array(2) {
 [0]=>
 int(3)
 [1]=>
 int(4)
 }
}

Discussion
The output of print_r(  ) is more concise and easier to read. The output of
var_dump(  ), however, gives data types and lengths for each variable.

Since these functions recursively work their way through variables, if you have refer-
ences within a variable pointing back to the variable itself, you can end up with an
infinite loop. Both functions stop themselves from printing variable information for-
ever, though. Once print_r(  ) has seen a variable once, it prints *RECURSION* instead of
printing information about the variable again and continues iterating through the rest
of the information it has to print. var_dump(  ) prints a variable twice before printing
RECURSION and skipping it. Consider the arrays $user_1 and $user_2, which reference
each other through their friend elements:

$user_1 = array('name' => 'Max Bialystock',
 'username' => 'max');

$user_2 = array('name' => 'Leo Bloom',
 'username' => 'leo');

// Max and Leo are friends
$user_2['friend'] = &$user_1;
$user_1['friend'] = &$user_2;

// Max and Leo have jobs
$user_1['job'] = 'Swindler';
$user_2['job'] = 'Accountant';

152 | Chapter 5: Variables

Download at Boykma.Com

The output of print_r($user_2) is:

Array
(
 [name] => Leo Bloom
 [username] => leo
 [friend] => Array
 (
 [name] => Max Bialystock
 [username] => max
 [friend] => Array
 (
 [name] => Leo Bloom
 [username] => leo
 [friend] => Array
 RECURSION
 [job] => Accountant
)

 [job] => Swindler
)

 [job] => Accountant
)

When print_r(  ) sees the reference to $user_1 the second time, it prints *RECURSION*
instead of descending into the array. It then continues on its way, printing the remaining
elements of $user_1 and $user_2.

Confronted with recursion, var_dump(  ) behaves differently:

array(4) {
 ["name"]=>
 string(9) "Leo Bloom"
 ["username"]=>
 string(3) "leo"
 ["friend"]=>
 &array(4) {
 ["name"]=>
 string(14) "Max Bialystock"
 ["username"]=>
 string(3) "max"
 ["friend"]=>
 &array(4) {
 ["name"]=>
 string(9) "Leo Bloom"
 ["username"]=>
 string(3) "leo"
 ["friend"]=>
 &array(4) {
 ["name"]=>
 string(14) "Max Bialystock"
 ["username"]=>
 string(3) "max"
 ["friend"]=>
 &array(4) {

5.8 Dumping Variable Contents as Strings | 153

Download at Boykma.Com

 ["name"]=>
 string(9) "Leo Bloom"
 ["username"]=>
 string(3) "leo"
 ["friend"]=>
 RECURSION
 ["job"]=>
 string(10) "Accountant"
 }
 ["job"]=>
 string(8) "Swindler"
 }
 ["job"]=>
 string(10) "Accountant"
 }
 ["job"]=>
 string(8) "Swindler"
 }
 ["job"]=>
 string(10) "Accountant"
}

It’s not until the third appearance of the reference to $user_1 that var_dump(  ) stops
recursing.

Even though print_r(  ) and var_dump(  ) print their results instead of returning them,
you can capture the data without printing it in one of two ways.

First, you can pass true as the second parameter to print_r(  ):

$output = print_r($user, true);

This does not work with var_dump(  ); however, you can use output buffering instead:

ob_start();
var_dump($user);
$dump = ob_get_contents();
ob_end_clean();

This puts the results of var_dump($user) in $dump.

See Also
Output buffering is discussed in Recipe 8.12; documentation on print_r(  ) at http://
www.php.net/print-r and var_dump(  ) at http://www.php.net/var-dump .

154 | Chapter 5: Variables

Download at Boykma.Com

CHAPTER 6

Functions

6.0 Introduction
Functions help you create organized and reusable code. They allow you to abstract out
details so your code becomes more flexible and more readable. Without functions, it
is impossible to write easily maintainable programs because you’re constantly updating
identical blocks of code in multiple places and in multiple files.

With a function you pass a number of arguments in and get a value back:

// add two numbers together
function add($a, $b) {
 return $a + $b;
}

$total = add(2, 2); // 4

Declare a function using the function keyword, followed by the name of the function
and any parameters in parentheses. To invoke a function, simply use the function name,
specifying argument values for any parameters to the function. If the function returns
a value, you can assign the result of the function to a variable, as shown in the previous
example.

You don’t need to predeclare a function before you call it. PHP parses the entire file
before it begins executing, so you can intermix function declarations and invocations.
You can’t, however, redefine a function in PHP. If PHP encounters a function with a
name identical to one it’s already found, it throws a fatal error and dies.

Sometimes, the standard procedure of passing in a fixed number of arguments and
getting one value back doesn’t quite fit a particular situation in your code. Maybe you
don’t know ahead of time exactly how many parameters your function needs to accept.
Or you do know your parameters, but they’re almost always the same values, so it’s
tedious to continue to repass them. Or you want to return more than one value from
your function.

This chapter helps you use PHP to solve these types of problems. We begin by detailing
different ways to pass arguments to a function. Recipes 6.1 through 6.5 cover passing

155

Download at Boykma.Com

arguments by value, reference, and as named parameters; assigning default parameter
values; and functions with a variable number of parameters.

The four recipes after 6.5 are all about returning values from a function. Recipe 6.6
describes returning by reference; Recipe 6.7 covers returning more than one variable;
Recipe 6.8 describes how to skip selected return values; and Recipe 6.9 talks about the
best way to return and check for failure from a function. The final three recipes show
how to call variable functions, deal with variable scoping problems, and dynamically
create a function. If you want a variable to maintain its value between function invo-
cations, see Recipe 5.5.

6.1 Accessing Function Parameters

Problem
You want to access the values passed to a function.

Solution
Use the names from the function prototype:

function commercial_sponsorship($letter, $number) {
 print "This episode of Sesame Street is brought to you by ";
 print "the letter $letter and number $number.\n";
}

commercial_sponsorship('G', 3);
commercial_sponsorship($another_letter, $another_number);

Discussion
Inside the function, it doesn’t matter whether the values are passed in as strings, num-
bers, arrays, or another kind of variable. You can treat them all the same and refer to
them using the names from the prototype.

Unless specified, all non-object values being passed into and out of a function are passed
by value, not by reference. (By default, objects are passed by reference.) This means
PHP makes a copy of the value and provides you with that copy to access and manip-
ulate. Therefore, any changes you make to your copy don’t alter the original value.
Here’s an example:

function add_one($number) {
 $number++;
}

$number = 1;
add_one($number);
print "$number\n";
1

If the variable was passed by reference, the value of $number would be 2.

156 | Chapter 6: Functions

Download at Boykma.Com

In many languages, passing variables by reference has the additional benefit of being
significantly faster than passing them by value. While the passing-by-reference is faster
in PHP, the speed difference is marginal. For that reason, we suggest passing variables
by reference only when actually necessary and never as a performance-enhancing trick.

See Also
Recipe 6.3 to pass values by reference and Recipe 6.6 to return values by reference.

6.2 Setting Default Values for Function Parameters

Problem
You want a parameter to have a default value if the function’s caller doesn’t pass it. For
example, a function to draw a table might have a parameter for border width, which
defaults to 1 if no width is given.

Solution
Assign the default value to the parameters inside the function prototype:

function wrap_html_tag($string, $tag = 'b') {
 return "<$tag>$string</$tag>";
}

Discussion
The example in the Solution sets the default tag value to b, for bold. For example:

$string = 'I am some HTML';
wrap_html_tag($string);

returns:
I am some HTML

This example:
wrap_html_tag($string, 'i');

returns:
<i>I am some HTML</i>

There are two important things to remember when assigning default values. First, all
parameters with default values must appear after parameters without defaults. Other-
wise, PHP can’t tell which parameters are omitted and should take the default value
and which arguments are overriding the default. So wrap_html_tag(  ) can’t be defined
as:

function wrap_html_tag($tag = 'i', $string)

If you do this and pass wrap_html_tag(  ) only a single argument, PHP assigns the value
to $tag and issues a warning complaining of a missing second argument.

6.2 Setting Default Values for Function Parameters | 157

Download at Boykma.Com

Second, the assigned value must be a constant, such as a string or a number. It can’t
be a variable. Again, using wrap_html_tag(  ), such as our example, you can’t do this:

$my_favorite_html_tag = 'i';

function wrap_html_tag($string, $tag = $my_favorite_html_tag) {
 ...
}

If you want to assign a default of nothing, one solution is to assign the empty string to
your parameter:

function wrap_html_tag($string, $tag = '') {
 if (empty($tag)) return $string;
 return "<$tag>$string</$tag>";
}

This function returns the original string, if no value is passed in for the $tag. Or if a
(nonempty) tag is passed in, it returns the string wrapped inside of tags.

Depending on circumstances, another option for the $tag default value is either 0 or
NULL. In wrap_html_tag(  ), you don’t want to allow an empty-valued tag. However, in
some cases, the empty string can be an acceptable option. For instance, join(  ) is often
called on the empty string, after calling file(  ), to place a file into a string. Also, as the
following code shows, you can use a default message if no argument is provided but
an empty message if the empty string is passed:

function pc_log_db_error($message = NULL) {
 if (is_null($message)) {
 $message = 'Couldn't connect to DB';
 }

 error_log("[DB] [$message]");
}

See Also
Recipe 6.5 on creating functions that take a variable number of arguments.

6.3 Passing Values by Reference

Problem
You want to pass a variable to a function and have it retain any changes made to its
value inside the function.

Solution
To instruct a function to accept an argument passed by reference instead of value,
prepend an & to the parameter name in the function prototype:

158 | Chapter 6: Functions

Download at Boykma.Com

function wrap_html_tag(&$string, $tag = 'b') {
 $string = "<$tag>$string</$tag>";
}

Now there’s no need to return the string because the original is modified in place.

Discussion
Passing a variable to a function by reference allows you to avoid the work of returning
the variable and assigning the return value to the original variable. It is also useful when
you want a function to return a boolean success value of true or false, but you still
want to modify argument values with the function.

You can’t switch between passing a parameter by value or reference; it’s either one or
the other. In other words, there’s no way to tell PHP to optionally treat the variable as
a reference or as a value.

Also, if a parameter is declared to accept a value by reference, you can’t pass a constant
string (or number, etc.), or PHP will die with a fatal error.

See Also
Recipe 6.6 on returning values by reference.

6.4 Using Named Parameters

Problem
You want to specify your arguments to a function by name, instead of simply their
position in the function invocation.

Solution
Have the function use one parameter but make it an associative array:

function image($img) {
 $tag = '<img src="' . $img['src'] . '" ';
 $tag .= 'alt="' . ($img['alt'] ? $img['alt'] : '') .'">';
 return $tag;
}

$image = image(array('src' => 'cow.png', 'alt' => 'cows say moo'));
$image = image(array('src' => 'pig.jpeg'));

Discussion
While using named parameters makes the code inside your functions more complex,
it ensures the calling code is easier to read. Since a function lives in one place but is
called in many, this makes for more understandable code.

When you use this technique, PHP doesn’t complain if you accidentally misspell a
parameter’s name, so you need to be careful because the parser won’t catch these types

6.4 Using Named Parameters | 159

Download at Boykma.Com

of mistakes. Also, you can’t take advantage of PHP’s ability to assign a default value
for a parameter. Luckily, you can work around this deficit with some simple code at
the top of the function:

function image($img) {
 if (! isset($img['src'])) { $img['src'] = 'cow.png'; }
 if (! isset($img['alt'])) { $img['alt'] = 'milk factory'; }
 if (! isset($img['height'])) { $img['height'] = 100; }
 if (! isset($img['width'])) { $img['width'] = 50; }
 ...
}

Using the isset(  ) function, check to see if a value for each parameter is set; if not,
assign a default value.

Alternatively, you can write a short function to handle this:

function pc_assign_defaults($array, $defaults) {
 $a = array();
 foreach ($defaults as $d => $v) {
 $a[$d] = isset($array[$d]) ? $array[$d] : $v;
 }

 return $a;
}

This function loops through a series of keys from an array of defaults and checks if a
given array, $array, has a value set. If it doesn’t, the function assigns a default value
from $defaults. To use it in the previous snippet, replace the top lines with:

function image($img) {
 $defaults = array('src' => 'cow.png',
 'alt' => 'milk factory',
 'height' => 100,
 'width' => 50
);
 $img = pc_assign_defaults($img, $defaults);
 ...
}

This is nicer because it introduces more flexibility into the code. If you want to modify
how defaults are assigned, you only need to change it inside pc_assign_defaults(  ) and
not in hundreds of lines of code inside various functions. Also, it’s clearer to have an
array of name/value pairs and one line that assigns the defaults instead of intermixing
the two concepts in a series of almost identical repeated lines.

See Also
Recipe 6.5 on creating functions that accept a variable number of arguments.

160 | Chapter 6: Functions

Download at Boykma.Com

6.5 Creating Functions That Take a Variable Number of
Arguments

Problem
You want to define a function that takes a variable number of arguments.

Solution
Pass an array and place the variable arguments inside the array:

// find the "average" of a group of numbers
function mean($numbers) {
 // initialize to avoid warnings
 $sum = 0;

 // the number of elements in the array
 $size = count($numbers);

 // iterate through the array and add up the numbers
 for ($i = 0; $i < $size; $i++) {
 $sum += $numbers[$i];
 }

 // divide by the amount of numbers
 $average = $sum / $size;

 // return average
 return $average;
}

$mean = mean(array(96, 93, 97));

Discussion
There are two good solutions, depending on your coding style and preferences. The
more traditional PHP method is the one described in the Solution. We prefer this
method because using arrays in PHP is a frequent activity; therefore, all programmers
are familiar with arrays and their behavior.

So while this method creates some additional overhead, bundling variables is com-
monplace. It’s done in Recipe 6.4 to create named parameters and in Recipe 6.7 to
return more than one value from a function. Also, inside the function, the syntax to
access and manipulate the array involves basic commands such as $array[$i] and
count($array).

However, this can seem clunky, so PHP provides an alternative and allows you direct
access to the argument list, as shown in Example 6-1.

6.5 Creating Functions That Take a Variable Number of Arguments |
161

Download at Boykma.Com

Example 6-1. Accessing function parameters without using the argument list
// find the "average" of a group of numbers
function mean() {
 // initialize to avoid warnings
 $sum = 0;

 // the number of arguments passed to the function
 $size = func_num_args();

 // iterate through the arguments and add up the numbers
 for ($i = 0; $i < $size; $i++) {
 $sum += func_get_arg($i);
 }

 // divide by the amount of numbers
 $average = $sum / $size;

 // return average
 return $average;
}

$mean = mean(96, 93, 97);

This example uses a set of functions that return data based on the arguments passed
to the function they are called from. First, func_num_args(  ) returns an integer with the
number of arguments passed into its invoking function—in this case, mean(  ). From
there, you can then call func_get_arg(  ) to find the specific argument value for each
position.

When you call mean(96, 93, 97), func_num_args(  ) returns 3. The first argument is in
position 0, so you iterate from 0 to 2, not 1 to 3. That’s what happens inside the for
loop where $i goes from 0 to less than $size. As you can see, this is the same logic used
in Example 6-1 in which an array was passed. If you’re worried about the potential
overhead from using func_get_arg(  ) inside a loop, don’t be. This version is actually
faster than the array passing method.

There is a third version of this function that uses func_get_args(  ) to return an array
containing all the values passed to the function. It ends up looking like a hybrid between
the previous two functions, as shown in Example 6-2.

Example 6-2. Accessing function parameters without using the argument list
// find the "average" of a group of numbers
function mean() {
 // initialize to avoid warnings
 $sum = 0;

 // load the arguments into $numbers
 $numbers = func_get_args();

 // the number of elements in the array
 $size = count($numbers);

162 | Chapter 6: Functions

Download at Boykma.Com

 // iterate through the array and add up the numbers
 for ($i = 0; $i < $size; $i++) {
 $sum += $numbers[$i];
 }

 // divide by the amount of numbers
 $average = $sum / $size;

 // return average
 return $average;
}

$mean = mean(96, 93, 97);

Here you have the dual advantages of not needing to place the numbers inside a tem-
porary array when passing them into mean(  ), but inside the function you can continue
to treat them as if you did. Unfortunately, this method is slightly slower than the first
two.

See Also
Recipe 6.7 on returning multiple values from a function; documentation on
func_num_args(  ) at http://www.php.net/func-num-args, func_get_arg(  ) at http://
www.php.net/func-get-arg, and func_get_args(  ) at http://www.php.net/func-get-args.

6.6 Returning Values by Reference

Problem
You want to return a value by reference, not by value. This allows you to avoid making
a duplicate copy of a variable.

Solution
The syntax for returning a variable by reference is similar to passing it by reference.
However, instead of placing an & before the parameter, place it before the name of the
function:

function &pc_array_find_value($needle, &$haystack) {
 foreach ($haystack as $key => $value) {
 if ($needle == $value) {
 return $haystack[$key];
 }
 }
}

Also, you must use the =& assignment operator instead of plain = when invoking the
function:

$html =& pc_array_find_value('The Doors', $artists);

6.6 Returning Values by Reference | 163

Download at Boykma.Com

Discussion
Returning a reference from a function allows you to directly operate on the return value
and have those changes directly reflected in the original variable.

For instance, Example 6-3 searches through an array looking for the first element that
matches a value. It returns the first matching value. For instance, you need to search
through a list of famous people from Minnesota looking for Prince, so you can update
his name.

Example 6-3. Returning an array value from a function by reference
function &pc_array_find_value($needle, &$haystack) {
 foreach ($haystack as $key => $value) {
 if ($needle == $value) {
 return $haystack[$key];
 }
 }
}

$minnesota = array('Bob Dylan', 'F. Scott Fitzgerald', 'Prince', 'Charles Schultz');

$prince =& pc_array_find_value('Prince', $minnesota);

$prince = 'O(+>'; // The ASCII version of Prince's unpronounceable symbol

print_r($minnesota);
Array
(
 [0] => Bob Dylan
 [1] => F. Scott Fitzgerald
 [2] => O(+>
 [3] => Charles Schultz
)

Without the ability to return values by reference, you would need to return the array
key and then re-reference the original array:

function pc_array_find_value($needle, &$haystack) {
 foreach ($haystack as $key => $value) {
 if ($needle == $value) {
 return $key;
 }
 }
}

$minnesota = array('Bob Dylan', 'F. Scott Fitzgerald', 'Prince', 'Charles Schultz');

$prince =& pc_array_find_value('Prince', $minnesota);

$minnesota[$prince] = 'O(+>'; // The ASCII version of Prince's unpronounceable symbol

When returning a reference from a function, you must return a reference to a variable,
not a string. For example, this is not legal:

164 | Chapter 6: Functions

Download at Boykma.Com

function &pc_array_find_value($needle, &$haystack) {
 foreach ($haystack as $key => $value) {
 if ($needle == $value) {
 $match = $haystack[$key];
 }
 }

 return "$match is found in position $key";
}

That’s because "$match is found in position $key" is a string, and it doesn’t make
logical sense to return a reference to non-variables. As of PHP 5, you’re warned when
you do this.

Unlike passing values into functions, in which an argument is either passed by value
or by reference, you can optionally choose not to assign a reference and just take the
returned value. Just use = instead of =&, and PHP assigns the value instead of the refer-
ence.

See Also
Recipe 6.3 on passing values by reference.

6.7 Returning More Than One Value

Problem
You want to return more than one value from a function.

Solution
Return an array and use list(  ) to separate elements:

function averages($stats) {
 ...
 return array($median, $mean, $mode);
}

list($median, $mean, $mode) = averages($stats);

Discussion
From a performance perspective, this isn’t a great idea. There is a bit of overhead be-
cause PHP is forced to first create an array and then dispose of it. That’s what is
happening in this example:

function time_parts($time) {
 return explode(':', $time);
}

list($hour, $minute, $second) = time_parts('12:34:56');

6.7 Returning More Than One Value | 165

Download at Boykma.Com

You pass in a time string as you might see on a digital clock and call explode(  ) to break
it apart as array elements. When time_parts(  ) returns, use list(  ) to take each element
and store it in a scalar variable. Although this is a little inefficient, the other possible
solutions are worse because they can lead to confusing code.

One alternative is to pass the values in by reference. However, this is somewhat clumsy
and can be nonintuitive since it doesn’t always make logical sense to pass the necessary
variables into the function. For instance:

function time_parts($time, &$hour, &$minute, &$second) {
 list($hour, $minute, $second) = explode(':', $time);
}

time_parts('12:34:56', $hour, $minute, $second);

Without knowledge of the function prototype, there’s no way to look at this and know
$hour, $minute, and $second are, in essence, the return values of time_parts(  ).

You can also use global variables, but this clutters the global namespace and also makes
it difficult to easily see which variables are being silently modified in the function. For
example:

function time_parts($time) {
 global $hour, $minute, $second;
 list($hour, $minute, $second) = explode(':', $time);
}

time_parts('12:34:56');

Again, here it’s clear because the function is directly above the call, but if the function
is in a different file or written by another person, it’d be more mysterious and thus open
to creating a subtle bug.

Our advice is that if you modify a value inside a function, return that value and assign
it to a variable unless you have a very good reason not to, such as significant perform-
ance issues. It’s cleaner and easier to understand and maintain.

See Also
Recipe 6.3 on passing values by reference and Recipe 6.11 for information on variable
scoping.

6.8 Skipping Selected Return Values

Problem
A function returns multiple values, but you only care about some of them.

Solution
Omit variables inside of list(  ):

166 | Chapter 6: Functions

Download at Boykma.Com

// Only care about minutes
function time_parts($time) {
 return explode(':', $time);
}

list(, $minute,) = time_parts('12:34:56');

Discussion
Even though it looks like there’s a mistake in the code, the code in the Solution is valid
PHP. This is most frequently seen when a programmer is iterating through an array
using each(  ), but cares only about the array values:

while (list(,$value) = each($array)) {
 process($value);
}

However, this is more clearly written using foreach:

foreach ($array as $value) {
 process($value);
}

To reduce confusion, don’t use this feature; but if a function returns many values, and
you only want one or two of them, this technique can come in handy. One example of
this case is if you read in fields using fgetcsv(  ), which returns an array holding the
fields from the line. In that case, you can use the following:

while ($fields = fgetcsv($fh, 4096)) {
 print $fields[2] . "\n"; // the third field
}

If it’s an internally written function and not built-in, you could also make the returning
array have string keys, because it’s hard to remember, for example, that array element
2 is associated with 'rank':

while ($fields = read_fields($filename)) {
 $rank = $fields['rank']; // the third field is now called rank
 print "$rank\n";
}

However, here’s the most efficient method:

while (list(,,$rank,,) = fgetcsv($fh, 4096)) {
 print "$rank\n"; // directly assign $rank
}

Be careful you don’t miscount the amount of commas; you’ll end up with a bug.

See Also
Recipe 1.11 for more on reading files using fgetcsv(  ).

6.8 Skipping Selected Return Values | 167

Download at Boykma.Com

6.9 Returning Failure

Problem
You want to indicate failure from a function.

Solution
Return false:

function lookup($name) {
 if (empty($name)) { return false; }
 ...
}

if (false !== lookup($name)) { /* act upon lookup */ } else { /* log an error */ }

Discussion
In PHP, non-true values aren’t standardized and can easily cause errors. As a result,
your functions should return the defined false keyword because this works best when
checking a logical value.

Other possibilities are '' or 0. However, while all three evaluate to non-true inside an
if, there’s actually a difference among them. Also, sometimes a return value of 0 is a
meaningful result, but you still want to be able to also return failure.

For example, strpos(  ) returns the location of the first substring within a string. If the
substring isn’t found, strpos(  ) returns false. If it is found, it returns an integer with
the position. Therefore, to find a substring position, you might write:

if (strpos($string, $substring)) { /* found it! */ }

However, if $substring is found at the exact start of $string, the value returned is 0.
Unfortunately, inside the if, this evaluates to false, so the conditional is not executed.
Here’s the correct way to handle the return value of strpos(  ):

if (false !== strpos($string, $substring)) { /* found it! */ }

Also, false is always guaranteed to be false in the current version of PHP and forever
more. Other values may not guarantee this. For example, in PHP 3, empty('0') was
true, but it changed to false in PHP 4.

See Also
The introduction to Chapter 5 for more on the truth values of variables; documentation
on strpos(  ) at http://www.php.net/strpos and empty(  ) at http://www.php.net/empty.

168 | Chapter 6: Functions

Download at Boykma.Com

6.10 Calling Variable Functions

Problem
You want to call different functions depending on a variable’s value.

Solution
Use call_user_func(  ):

function get_file($filename) { return file_get_contents($filename); }

$function = 'get_file';
$filename = 'graphic.png';

// calls get_file('graphic.png')
call_user_func($function, $filename);

Use call_user_func_array(  ) when your functions accept differing argument counts:

function get_file($filename) { return file_get_contents($filename); }
function put_file($filename, $data) { return file_put_contents($filename, $data); }

if ($action == 'get') {
 $function = 'get_file';
 $args = array('graphic.png');
} elseif ($action == 'put') {
 $function = 'put_file';
 $args = array('graphic.png', $graphic);
}

// calls get_file('graphic.png')
// calls put_file('graphic.png', $graphic)
call_user_func_array($function, $args);

Discussion
The call_user_func(  ) and call_user_func_array(  ) functions are a little different from
your standard PHP functions. Their first argument isn’t a string to print, or a number
to add, but the name of a function that’s executed. The concept of passing a function
name that the language invokes is known as a callback, or a callback function.

The prototype of call_user_func_array(  ) comes in quite handy when you’re invoking
a callback inside a function that can accept a variable number of arguments. In these
cases, instead of embedding the logic inside your function, you can grab all the argu-
ments directly using func_get_args(  ):

// logging function that accepts printf-style formatting
// it prints a time stamp, the string, and a new line
function logf() {
 $date = date(DATE_RSS);
 $args = func_get_args();

6.10 Calling Variable Functions | 169

Download at Boykma.Com

 return print "$date: " . call_user_func_array('sprintf', $args) . "\n";
}

logf('%s','http://developer.ebay.com','eBay Developer Program');

Sat, 23 Sep 2006 18:32:51 PDT:
eBay Developer Program

The logf(  ) function has the same interface as the printf family: the first argument is
a formatting specifier and the remaining arguments are data that’s interpolated into the
string based on the formatting codes. Since there could be any number of arguments
following the formatting code, you cannot use call_user_func(  ).

Instead, you grab all the arguments in an array using func_get_args(  ) and pass that
array to sprintf using call_user_func_array(  ).

In this particular example, you can also use vsprintf(  ), which is a version of
sprintf(  ) that, like call_user_func_array(  ), accepts an array of arguments:

// logging function that accepts printf-style formatting
// it prints a time stamp, the string, and a new line
function logf() {
 $date = date(DATE_RSS);
 $args = func_get_args();
 $format = array_shift($args);

 return print "$date: " . vsprintf($format, $args) . "\n";
}

If you have more than two possibilities to call, use an associative array of function
names:

$dispatch = array(
 'add' => 'do_add',
 'commit' => 'do_commit',
 'checkout' => 'do_checkout',
 'update' => 'do_update'
);

$cmd = (isset($_REQUEST['command']) ? $_REQUEST['command'] : '');

if (array_key_exists($cmd, $dispatch)) {
 $function = $dispatch[$cmd];
 call_user_func($function); // call function
} else {
 error_log("Unknown command $cmd");
}

This code takes the command name from a request and executes that function. Note
the check to see that the command is in a list of acceptable commands. This prevents
your code from calling whatever function was passed in from a request, such as
phpinfo(  ). This makes your code more secure and allows you to easily log errors.

170 | Chapter 6: Functions

Download at Boykma.Com

Another advantage is that you can map multiple commands to the same function, so
you can have a long and a short name:

$dispatch = array(
 'add' => 'do_add',
 'commit' => 'do_commit', 'ci' => 'do_commit',
 'checkout' => 'do_checkout', 'co' => 'do_checkout',
 'update' => 'do_update', 'up' => 'do_update'
);

See Also
Documentation on array_key_exists(  ) at http://www.php.net/array-key-exists,
call_user_func(  ) at http://www.php.net/call-user-func, call_user_func_array(  ) at
http://www.php.net/call-user-func-array, and isset(  ) at http://www.php.net/isset.

6.11 Accessing a Global Variable Inside a Function

Problem
You need to access a global variable inside a function.

Solution
Bring the global variable into local scope with the global keyword:

function eat_fruit($fruit) {
 global $chew_count;

 for ($i = $chew_count; $i > 0; $i--) {
 ...
 }
}

Or reference it directly in $GLOBALS:
function eat_fruit($fruit) {
 for ($i = $GLOBALS['chew_count']; $i > 0; $i--) {
 ...
 }
}

Discussion
If you use a number of global variables inside a function, the global keyword may make
the syntax of the function easier to understand, especially if the global variables are
interpolated in strings.

You can use the global keyword to bring multiple global variables into local scope by
specifying the variables as a comma-separated list:

global $age,$gender,shoe_size;

You can also specify the names of global variables using variable variables:

6.11 Accessing a Global Variable Inside a Function | 171

Download at Boykma.Com

$which_var = 'age';
global $$which_var; // refers to the global variable $age

However, if you call unset(  ) on a variable brought into local scope using the global
keyword, the variable is unset only within the function. To unset the variable in the
global scope, you must call unset(  ) on the element of the $GLOBALS array:

$food = 'pizza';
$drink = 'beer';

function party() {
 global $food, $drink;

 unset($food); // eat pizza
 unset($GLOBALS['drink']); // drink beer
}

print "$food: $drink\n";
party();
print "$food: $drink\n";

pizza: beer
pizza:

You can see that $food stayed the same, while $drink was unset. Declaring a variable
global inside a function is similar to assigning a reference of the global variable to the
local one:

$food = &GLOBALS['food'];

See Also
Documentation on variable scope at http://www.php.net/variables.scope and variable
references at http://www.php.net/language.references.

6.12 Creating Dynamic Functions

Problem
You want to create and define a function as your program is running.

Solution
Use create_function(  ):

$add = create_function('$i,$j', 'return $i+$j;');

$add(1, 1); // returns 2

172 | Chapter 6: Functions

Download at Boykma.Com

Discussion
The first parameter to create_function(  ) is a string that contains the arguments for the
function, and the second is the function body. Using create_function(  ) is exceptionally
slow, so if you can predefine the function, it’s best to do so.

The most frequently used case of create_function(  ) in action is to create custom sorting
functions for usort(  ) or array_walk(  ):

// sort files in reverse natural order
usort($files, create_function('$a, $b', 'return strnatcmp($b, $a);'));

See Also
Recipe 4.17 for information on usort(  ); documentation on create_function(  ) at http://
www.php.net/create-function and on usort(  ) at http://www.php.net/usort .

6.12 Creating Dynamic Functions | 173

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 7

Classes and Objects

7.0 Introduction
PHP 5 has significantly improved support for object-oriented programming (OOP).
This is a major change and a key reason to upgrade your code from PHP 4. If you’re a
fan of OOP, you will be very happy with the tools PHP 5 provides you.

Early versions of PHP were strictly procedural: you could define functions, but not
objects. PHP 3 introduced an extremely rudimentary form of objects, written as a late-
night hack. Back in 1997, nobody expected the explosion in the number of PHP
programmers, or that people would write large-scale programs in PHP. Therefore, these
limitations weren’t considered a problem.

Over the years, PHP gained additional object-oriented features; however, the develop-
ment team never redesigned the core OO code to gracefully handle objects and classes.
As a result, although PHP 4 improved overall performance, writing complex OO pro-
grams with it is still difficult, if not nearly impossible.

PHP 5 fixes these problems by using Zend Engine 2 (ZE2). ZE2 enables PHP to include
more advanced object-oriented features, while still providing a high degree of backward
compatibility to the millions of PHP scripts already written.

If you don’t have experience with object-oriented programming outside of PHP, then
you’re in for a bit of a surprise. While some of the new features allow you to do things
more easily, many features don’t let you do anything new at all. In many ways, they
restrict what you can do.

Even though it seems counterintuitive, these limitations actually help you quickly write
safe code because they promote code reuse and data encapsulation. These key OO
programming techniques are explained throughout the chapter. But first, here’s an
introduction to object-oriented programming, its vocabulary, and its concepts.

A class is a package containing two things: data and methods to access and modify that
data. The data portion consists of variables; they’re known as properties. The other
part of a class is a set of functions that can use its properties—they’re called methods.

175

Download at Boykma.Com

When you define a class, you don’t define an object that can be accessed and manip-
ulated. Instead, you define a template for an object. From this blueprint, you create
malleable objects through a process known as instantiation. A program can have mul-
tiple objects of the same class, just as a person can have more than one book or many
pieces of fruit.

Classes also live in a defined hierarchy. Each class down the line is more specialized
than the one above it. These specialized classes are called child classes, while the class
they’re modifying is called the parent class. For example, a parent class could be a
building. Buildings can be further divided into residential and commercial. Residential
buildings can be further subdivided into houses and apartment buildings, and so forth.
The top-most parent class is also called the base class.

Both houses and apartment buildings have the same set of properties as all residential
buildings, just as residential and commercial buildings share some things in common.
When classes are used to express these parent-child relationships, the child class in-
herits the properties and methods defined in the parent class. This allows you to reuse
the code from the parent class and requires you to write code only to adapt the new
child to its specialized circumstances. This is called inheritance and is one of the major
advantages of classes over functions. The process of defining a child class from a parent
is known as subclassing or extending.

Objects play another role in PHP outside their traditional OO position. Since PHP can’t
use more than one namespace, the ability for a class to package multiple properties into
a single object is extremely helpful. It allows clearly demarcated separate areas for var-
iables.

Classes in PHP are easy to define and create:
class guest_book {
 public $comments;
 public $last_visitor;

 function update($comment, $visitor) {
 ...
 }

}

The class keyword defines a class, just as function defines a function. Properties are
declared using the public keyword. Method declaration is identical to function defini-
tion.

The new keyword instantiates an object:
$gb = new guest_book;

Object instantiation is covered in more detail in Recipe 7.1.

Inside a class, you can optionally declare properties using public. There’s no require-
ment to do so, but it is a useful way to reveal all the variables of the class. Since PHP
doesn’t force you to predeclare all your variables, it’s possible to create one inside a

176 | Chapter 7: Classes and Objects

Download at Boykma.Com

class without PHP throwing an error or otherwise letting you know. This can cause the
list of variables at the top of a class definition to be misleading, because it’s not the
same as the list of variables actually in the class.

In PHP 4, you declared a property using var instead of public. You can still use var,
but public was added as a synonym because PHP 5 actually offers three different types
of properties: public, protected, and private properties. Public properties are identical
to properties in PHP 4, but the other two types behave differently. This is explained in
more detail in Recipe 7.4.

Besides declaring a property, you can also assign it a value:

public $last_visitor = 'Donnan';

You can assign constant values only using this construct:

public $last_visitor = 'Donnan'; // okay
public $last_visitor = 9; // okay
public $last_visitor = array('Jesse'); // okay
public $last_visitor = pick_visitor(); // bad
public $last_visitor = 'Chris' . '9'; // bad

If you try to assign something else, PHP dies with a parse error.

To assign a non-constant value to a variable, do it from a method inside the class:

class guest_book {
 public $last_visitor;

 public function update($comment, $visitor) {
 if (!empty($comment)) {
 array_unshift($this->comments, $comment);
 $this->last_visitor = $visitor;
 }
 }
}

If the visitor left a comment, you add it to the beginning of the array of comments and
set that person as the latest visitor to the guest book. The variable $this is a special
variable that refers to the current object. So to access the $last_visitor property of an
object from inside that object, refer to $this->last_visitor.

To assign nonconstant values to variables upon instantiation, assign them in the class
constructor. The class constructor is a method automatically called when a new object
is created, and it is named __construct(  ), as shown in Example 7-1.

Example 7-1. Assigning values to properties within a class constructor
class guest_book {
 public $comments;
 public $last_visitor;

 public function __construct($user) {
 $dbh = mysqli_connect('localhost', 'username', 'password', 'sites');
 $user = mysqli_real_escape_string($dbh, $user);

7.0 Introduction | 177

Download at Boykma.Com

 $sql = "SELECT comments, last_visitor FROM guest_books WHERE user='$user'";
 $r = mysqli_query($dbh, $sql);

 if ($obj = mysqli_fetch_object($dbh, $r)) {
 $this->comments = $obj->comments;
 $this->last_visitor = $obj->last_visitor;
 }
 }
}

$gb = new guest_book('stewart');

Constructors are covered in Recipe 7.2. Note that in PHP 4, constructors had the same
name as the class. In this example, that would be guest_book.

Be careful not to mistakenly type $this->$size. This is legal, but it’s not the same as
$this->size. Instead, it accesses the property of the object whose name is the value
stored in the $size variable. More often than not, $size is undefined, so $this->$size
appears empty. For more on variable property names, see Recipe 5.4.

Besides using -> to access a method or member variable, you can also use :: . This
syntax accesses static methods in a class. These methods are identical for every instance
of a class, because they can’t rely on instance-specific data. There’s no $this in a static
method. For example:

class convert {
 // convert from Celsius to Fahrenheit
 public static function c2f($degrees) {
 return (1.8 * $degrees) + 32;
 }
}

$f = convert::c2f(100); // 212

To implement inheritance by extending an existing class, use the extends keyword:

class xhtml extends xml {
 // ...
}

Child classes inherit parent methods and can optionally choose to implement their own
specific versions, as shown in Example 7-2.

Example 7-2. Overriding parent methods
class DB {
 public $result;

 function getResult() {
 return $this->result;
 }

 function query($sql) {
 error_log("query() must be overridden by a database-specific child");
 return false;

178 | Chapter 7: Classes and Objects

Download at Boykma.Com

 }
}

class MySQL extends DB {
 function query($sql) {
 $this->result = mysql_query($sql);
 }
}

The MySQLclass above inherits the getResult(  )method unchanged from the parent DB
class, but has its own MySQL-specific query(  )method.

Preface the method name with parent:: to explicitly call a parent method, as shown in
Example 7-3.

Example 7-3. Calling parent methods explicitly
function escape($sql) {
 $safe_sql = mysql_real_escape_string($sql); // escape special characters
 $safe_sql = parent::escape($safe_sql); // parent method adds '' around $sql
 return $safe_sql;
}

Recipe 7-14 covers accessing overridden methods.

7.1 Instantiating Objects

Problem
You want to create a new instance of an object.

Solution
Define the class, then use new to create an instance of the class:

class user {
 function load_info($username) {
 // load profile from database
 }
}

$user = new user;
$user->load_info($_GET['username']);

Discussion
You can instantiate multiple instances of the same object:

$adam = new user;
$adam->load_info('adam');

$dave = new user;
$dave->load_info('adam');

7.1 Instantiating Objects | 179

Download at Boykma.Com

These are two independent objects that happen to have identical information. They’re
like identical twins; they may start off the same, but they go on to live separate lives.

See Also
Recipe 7.10 for more on copying and cloning objects; documentation on classes and
objects at http://www.php.net/oop.

7.2 Defining Object Constructors

Problem
You want to define a method that is called when an object is instantiated. For example,
you want to automatically load information from a database into an object upon cre-
ation.

Solution
Define a method named __construct(  ):

class user {
 function __construct($username, $password) {
 ...
 }
}

Discussion
The method named __construct(  ) (that’s two underscores before the word con
struct) acts as a constructor, as shown in Example 7-4.

Example 7-4. Defining an object constructor
class user {
 public $username;

 function __construct($username, $password) {
 if ($this->validate_user($username, $password)) {
 $this->username = $username;
 }
 }
}

$user = new user('Grif', 'Mistoffelees'); // using built-in constructor

In PHP 4, constructors had the same name as the class, as shown in Example 7-5.

Example 7-5. Defining object constructors in PHP 4
class user {
 function user($username, $password) {
 ...

180 | Chapter 7: Classes and Objects

Download at Boykma.Com

 }
}

For backward compatibilty, if PHP 5 does not find a method named __construct(  ),
but does find one with the same name as the class (the PHP 4 constructor naming
convention), it will use that method as the class constructor.

Having a standard name for all constructors, such as what PHP 5 implements, makes
it easier to call your parent’s constructor (because you don’t need to know the name
of the parent class) and also doesn’t require you to modify the constructor if you rename
your class.

See Also
Recipe 7.14 for more on calling parent constructors; documentation on object con-
structors at http://www.php.net/oop.constructor.

7.3 Defining Object Destructors

Problem
You want to define a method that is called when an object is destroyed. For example,
you want to automatically save information from a database into an object when it’s
deleted.

Solution
Objects are automatically destroyed when a script terminates. To force the destruction
of an object, use unset(  ), as shown in Example 7-6.

Example 7-6. Deleting an object
$car = new car; // buy new car
...
unset($car); // car wreck

To make PHP call a method when an object is eliminated, define a method named
__destruct(  ), as shown in Example 7-7.

Example 7-7. Defining an object destructor
class car {
 function __destruct() {
 // head to car dealer
 }
}

Discussion
It’s not normally necessary to manually clean up objects, but if you have a large loop,
unset(  ) can help keep memory usage from spiraling out of control.

7.3 Defining Object Destructors | 181

Download at Boykma.Com

PHP 5 supports object destructors. Destructors are like constructors, except that
they’re called when the object is deleted. Even if you don’t delete the object yourself
using unset(  ), PHP still calls the destructor when it determines that the object is no
longer used. This may be when the script ends, but it can be much earlier.

You use a destructor to clean up after an object. For instance, the Database destructor
would disconnect from the database and free up the connection. Unlike constructors,
you cannot pass information to a destructor, because you’re never sure when it’s going
to be run.

Therefore, if your destructor needs any instance-specific information, store it as a
property, as shown in Example 7-8.

Example 7-8. Accessing instance-specific data within a destructor
// Destructor
class Database {
 function __destruct() {
 db_close($this->handle); // close the database connection
 }
}

Destructors are executed before PHP terminates the request and finishes sending data.
Therefore, you can print from them, write to a database, or even ping a remote server.

You cannot, however, assume that PHP will destroy objects in any particular order.
Therefore, you should not reference another object in your destructor, as PHP may
have already destroyed it. Doing so will not cause a crash, but it will cause your code
to behave in an unpredictable (and buggy) manner.

There are no backward compatibility issues with destructors, because they aren’t avail-
able in PHP 4. However, that doesn’t mean people didn’t try to recreate them using
other language features. If you emulated destructors, you will want to port your code,
because PHP 5’s destructors are more efficient and easier to use.

See Also
Documentation on unset(  ) at http://www.php.net/unset.

7.4 Implementing Access Control

Problem
You want to assign a visibility to methods and properties so they can only be accessed
within classes that have a specific relationship to the object.

Solution
Use the public, protected, and private keywords, as shown in Example 7-9.

182 | Chapter 7: Classes and Objects

Download at Boykma.Com

Example 7-9. Class using access control

class Person {
 public $name; // accesible anywhere
 protected $age; // accesible within the class and child classes
 private $salary; // accesible only within this specific class

 public function __construct() {
 // ...
 }

 protected function set_age() {
 // ...
 }

 private function set_salary() {
 // ...
 }
}

Discussion
PHP allows you to enforce where you can access methods and properties. There are
three levels of visibility:

• public

• protected

• private

Making a method or property public means anyone can call or edit it. This is the same
behavior as versions of PHP before PHP 5.

You can also label a method or property as protected, which restricts access to only the
current class and any child classes that extend that class.

The final visibility is private, which is the most restrictive. Properties and methods that
are private can only be accessed within that specific class.

If you’re unfamiliar with this concept, access control can seem like an odd thing. How-
ever, when you use access control, you can actually create more robust code because
it promotes data encapsulation, a key tenet of OO programming.

Inevitably, whenever you write code, there’s some part—the way you store the data,
what parameters the functions take, how the database is organized—that doesn’t work
as well as it should. It’s too slow, too awkward, or doesn’t allow you to add new fea-
tures, so you clean it up.

Fixing code is a good thing, unless you accidently break other parts of your system in
the process. When a program is designed with a high degree of encapsulation, the
underlying data structures and database tables are not accessed directly. Instead, you
define a set of functions and route all your requests through these functions.

7.4 Implementing Access Control | 183

Download at Boykma.Com

For example, you have a database table that stores names and email addresses. A pro-
gram with poor encapsulation directly accesses the table whenever it needs to fetch a
person’s email address, as shown in Example 7-10.

Example 7-10. Selecting an email address

$name = 'Rasmus Lerdorf';
$db = mysqli_connect();
$result = mysqli_query($db, "SELECT email FROM users
 WHERE name LIKE '$name'");
$row = mysqli_fetch_assoc($db, $r);
$email = $row['email'];

A better encapsulated program uses a function instead, as shown in Example 7-11.

Example 7-11. Selecting an email address using a function

function getEmail($name) {
 $db = mysqli_connect();
 $result = mysqli_query($db, "SELECT email FROM users
 WHERE name LIKE '$name'");
 $row = mysqli_fetch_assoc($db, $r);
 $email = $row['email'];
 return $email
}

$email = getEmail('Rasmus Lerdorf');

Using getEmail(  ) has many benefits, including reducing the amount of code you need
to write to fetch an email address. However, it also lets you safely alter your database
schema because you only need to change the single query in getEmail(  ) instead of
searching through every line of every file, looking for places where you SELECT data from
the users table.

It’s hard to write a well-encapsulated program using functions, because the only way
to signal to people “Don’t touch this!” is through comments and programming con-
ventions.

Objects allow you to wall off implementation internals from outside access. This pre-
vents people from relying on code that may change and forces them to use your
functions to reach the data. Functions of this type are known as accessors, because they
allow access to otherwise protected information. When redesigning code, if you update
the accessors to work as before, none of the code will break.

Marking something as protected or private signals that it may change in the future, so
people shouldn’t access it or they’ll violate encapsulation.

This is more than a social convention. PHP actually prevents people from calling a
private method or reading a private property outside of the class. Therefore, from an
external perspective, these methods and properties might as well not exist because
there’s no way to access them.

184 | Chapter 7: Classes and Objects

Download at Boykma.Com

In object-oriented programming, there is an implicit contract between the author and
the users of the class. The users agree not to worry about the implementation details.
The author agrees that as long as a person uses public methods they’ll always work,
even if the author redesigns the class.

When deciding between protected and private, both provide protection against usage
outside of the class. Therefore, the decision to choose one visibility versus the other
really comes down to a judgement call—do you expect someone will need to invoke
that method in a child class?

Since it’s hard to come up ahead of time with a complete list, it’s best to lean toward
using protected over private unless you’re 110 percent sure that private is the right
choice, and there’s really no reason someone should ever need that method.

7.5 Preventing Changes to Classes and Methods

Problem
You want to prevent another developer from redefining specific methods within a
child class, or even from subclassing the entire class itself.

Solution
Label the particular methods or class as final:

final public function connect($server, $username, $password) {
 // Method definition here
}

And:

final class MySQL {
 // Class definition here
}

Discussion
Inheritance is normally a good thing, but it can make sense to restrict it.

The best reason to declare a method final is that a real danger could arise if someone
overrides it. For example, data corruption, a race condition, or a potential crash or
deadlock from forgetting (or forgetting to release) a lock or a semaphore.

Another common reason to declare a method final is that the method is “perfect.”
When you believe there’s no way to update the method to make it better, declare it
using the final keyword. This prevents subclasses from ruining it by reimplementing
the method in an inferior manner.

However, think hard before you choose final in this case. It’s impossible to come up
with all the reasons someone may need to override a method. If you’re distributing a

7.5 Preventing Changes to Classes and Methods | 185

Download at Boykma.Com

third-party library (such as a PEAR package), you will cause a real headache if you
incorrectly mark a method as final.

Make a method final by placing the final keyword at the beginning of the method
declaration, as shown in Example 7-12.

Example 7-12. Defining a final method

final public function connect($server, $username, $password) {
 // Method definition here
}

This prevents someone from subclassing the class and creating a different connect(  )
method.

To prevent subclassing of an entire class, don’t mark each method final. Instead, make
a final class as shown in Example 7-13.

Example 7-13. Defining a final class

final class MySQL {
 // Class definition here
}

A final class cannot be subclassed. This differs from a class in which every method is
final because that class can be extended and provided with additional methods, even
if you cannot alter any of the preexisting methods.

7.6 Defining Object Stringification

Problem
You want to control how PHP displays an object when you print it.

Solution
Implement a __toString(  ) method, as shown in Example 7-14.

Example 7-14. Defining a class’s stringification

class Person {
 // Rest of class here

 public function __toString() {
 return "$this->name <$this->email>";
 }
}

186 | Chapter 7: Classes and Objects

Download at Boykma.Com

Discussion
PHP provides objects with a way to control how they are converted to strings. This
allows you to print an object in a friendly way without resorting to lots of additional
code.

PHP calls an object’s __toString(  ) method when you echo or print the object by itself,
as shown in Example 7-15.

Example 7-15. Defining a class’s stringification
class Person {
 protected $name;
 protected $email;

 public function setName($name) {
 $this->name = $name;
 }

 public function setEmail($email) {
 $this->email = $email;
 }

 public function __toString() {
 return "$this->name <$this->email>";
 }
}

You can write:

$rasmus = new Person;
$rasmus->setName('Rasmus Lerdorf');
$rasmus->setEmail('rasmus@php.net');
print $rasmus;
Rasmus Lerdorf <rasmus@php.net>

This causes PHP to invoke the __toString(  ) method behind the scenes and return the
stringified version of the object.

Your method must return a string; otherwise, PHP will issue an error. While this seems
obvious, you can sometimes get tripped up by PHP’s auto-casting features, which do
not apply here.

For example, it’s easy to treat the string '9' and the integer 9 identically, since PHP
generally switches seamlessly between the two depending on context, almost always
to the correct result.

However, in this case, you cannot return integers from __toString(  ). If you suspect
you may be in a position to return a non-string value from this method, consider ex-
plicitly casting the results, as shown in Example 7-16.

Example 7-16. Casting the return value
class TextInput {
 // Rest of class here

7.6 Defining Object Stringification | 187

Download at Boykma.Com

 public function __toString() {
 return (string) $this->label;
 }
}

By casting $this->label to a string, you don’t need to worry if someone decided to label
that text input with a number.

The __toString(  ) feature has a number of limitations in versions of PHP prior to PHP
5.2. For example, it does not work for interpolated or concatenated strings (see Ex-
ample 7-17).

Example 7-17. Invoking __toString(  )
print "PHP was created by $rasmus";
print 'PHP was created by '. $rasmus;
printf('PHP was created by %s', $rasmus);

The one exception is a dusty corner of PHP that uses echo and a comma (,) instead of
period (.) to combine items, as shown in Example 7-18.

Example 7-18. Invoking object stringification and concateination

echo 'PHP was created by ', $rasmus;
PHP was created by Rasmus Lerdorf <rasmus@php.net>

Earlier version of PHP 5 will also not autoconvert objects to strings when you pass them
to a function that requires a string argument. You should call __toString(  ) on them
instead (see Example 7-19).

Example 7-19. Invoking __toString(  ) directly

print htmlentities($rasmus); // bad
print htmlentities($rasmus->__toString()); // good

This also applies when you:

• Place the object inside double quotes or a heredoc

• Concatenate with the object using dot (.)

• Cast the object to a string using (string) or strval(  )
• Treat the object as a string in printf(  ) by indicating it should be formatted with

%s

Therefore, if you’re using __toString(  ) heavily in your code, it’s best to use PHP 5.2
or greater.

188 | Chapter 7: Classes and Objects

Download at Boykma.Com

7.7 Specifying Interfaces

Problem
You want to ensure a class implements one or more methods with specific names,
visibilities, and prototypes.

Solution
Define an interface and declare that your class will implement that interface:

interface Nameable {
 public function getName();
 public function setName($name);
}

class Book implements Nameable {
 private $name;

 public function getName() {
 return $this->name;
 }

 public function setName($name) {
 return $this->name = $name;
 }
}

The Nameable interface defines two methods necessary to name an object. Since books
are nameable, the Book class says it implements the Nameable interface, and then defines
the two methods in the class body.

Discussion
In object-oriented programming, objects must work together. Therefore, you should
be able to require a class (or more than one class) to implement methods that are
necessary for the class to interact properly in your system.

For instance, an e-commerce application needs to know a certain set of information
about every item up for sale. These items may be represented as different classes:
Book, CD, DVD, etc. However, at the very minimum you need to know that every item in
your catalog has a name, regardless of its type. (You probably also want them to have
a price and maybe even an ID, while you’re at it.)

The mechanism for forcing classes to support the same set of methods is called an
interface. Defining an interface is similar to defining a class (see Example 7-20).

Example 7-20. Defining an interface

interface Nameable {
 public function getName();

7.7 Specifying Interfaces | 189

Download at Boykma.Com

 public function setName($name);
}

Instead of using the keyword class, an interface uses the keyword interface . Inside
the interface, define your method prototypes, but don’t provide an implementation.

This creates an interface named Nameable. Any class that’s Nameable must implement
the two methods listed in the interface: getName(  ) and setName(  ).

When a class supports all the methods in the interface, it’s said to implement the inter-
face. You agree to implement an interface in your class definition (see Example 7-21).

Example 7-21. Implementing an interface
class Book implements Nameable {
 private $name;

 public function getName() {
 return $this->name;
 }

 public function setName($name) {
 return $this->name = $name;
 }
}

Failing to implement all the methods listed in an interface, or implementing them with
a different prototype, causes PHP to emit a fatal error.

A class can agree to implement as many interfaces as you want. For instance, you may
want to have a Listenable interface that specifies how you can retrieve an audio clip
for an item. In this case, the CD and DVD classes would also implement Listenable,
whereas the Book class wouldn’t. (Unless, of course, it is an audio book.)

When you use interfaces, it’s important to declare your classes before you instantiate
objects. Otherwise, when a class implements interfaces, PHP 5 can sometimes become
confused. To avoid breaking existing applications, this requirement is not enforced,
but it’s best not to rely on this behavior.

To check if a class implements a specific interface, use class_implements(  ), as shown
in Example 7-22.

Example 7-22. Checking if a class implements an interface
class Book implements Nameable {
 // .. Code here
}

$interfaces = class_implements('Book');
if (isset($interfaces['Nameable'])) {
 // Book implements Nameable
}

You can also use the Reflection classes, shown in Example 7-23.

190 | Chapter 7: Classes and Objects

Download at Boykma.Com

Example 7-23. Checking if a class implements an interface using the Reflection classes
class Book implements Nameable {
// .. Code here
}
$rc = new ReflectionClass('Book');
if ($rc->implementsInterface('Nameable')) {
 print "Book implements Nameable\n";
}

See Also
Recipe 7.19 for more on the Reflection classes; documentation on
class_implements(  ) at http://www.php.net/class_implements and interfaces at http://
www.php.net/interfaces.

7.8 Creating Abstract Base Classes

Problem
You want to create an “abstract” class, or, in other words, one that is not directly
instantiable, but acts as a common base for children classes.

Solution
Label the class as abstract:

abstract class Database {
 // ...
}

Do this by placing the abstract keyword before the class definition.

You must also define at least one abstract method in your class. Do this by placing the
abstract keyword in front of the method definition:

abstract class Database {
 abstract public function connect();
 abstract public function query();
 abstract public function fetch();
 abstract public function close();
}

Discussion
Abstact classes are best used when you have a series of objects that are related using
the “is a” relationship. Therefore, it makes logical sense to have them descend from a
common parent. However, while the children are tangible, the parent is abstract.

Take, for example, a Database class. A database is a real object, so it makes sense to
have a Database class. However, although Oracle, MySQL, Postgres, MSSQL, and hun-
dreds of other databases exist, you cannot download and install a generic database.
You must choose a specific database.

7.8 Creating Abstract Base Classes | 191

Download at Boykma.Com

PHP provides a way for you to create a class that cannot be instantiated. This class is
known as an abstract class. For example, see the Database class in Example 7-24.

Example 7-24. Defining an abstract class
abstract class Database {
 abstract public function connect();
 abstract public function query();
 abstract public function fetch();
 abstract public function close();
}

Mark a class as abstract by placing the abstract keyword before class.

Abstract classes must contain at least one method that is also marked abstract. These
methods are called abstract methods. Database contains four abstract methods:
connect(  ), query(  ), fetch(  ), and close(  ). These four methods are the basic set of
functionality necessary to use a database.

If a class contains an abstract method, the class must also be declared abstract. How-
ever, abstract classes can contain non-abstract methods (even though there are no
regular methods in Database).

Abstract methods, like methods listed in an interface, are not implemented inside the
abstract class. Instead, abstract methods are implemented in a child class that extends
the abstract parent. For instance, you could use a MySQL class, as shown in Exam-
ple 7-25.

Example 7-25. Implementing a class based on an abstract class
class MySQL extends Database {
 protected $dbh;
 protected $query;

 public function connect($server, $username, $password, $database) {
 $this->dbh = mysqli_connect($server, $username,
 $password, $database);
 }

 public function query($sql) {
 $this->query = mysqli_query($this->dbh, $sql);
 }

 public function fetch() {
 return mysqli_fetch_row($this->dbh, $this->query);
 }

 public function close() {
 mysqli_close($this->dbh);
 }
}

If a subclass fails to implement all the abstract methods in the parent class, then it itself
is abstract and another class must come along and further subclass the child. You might

192 | Chapter 7: Classes and Objects

Download at Boykma.Com

do this if you want to create two MySQL classes: one that fetches information as objects
and another that returns arrays.

There are two requirements for abstract methods:

• Abstract methods cannot be defined private, because they need to be inherited.

• Abstract methods cannot be defined final, because they need to be overridden.

Abstract classes and interfaces are similar concepts, but are not identical. For one, you
can implement multiple interfaces, but extend only one abstract class. Additionally, in
an interface you can only define method prototypes—you cannot implement them. An
abstract class, in comparison, needs only one abstract method to be abstract, and can
have many non-abstract methods and even properties.

You should also use abstract classes when the “is a” rule applies. For example, since
you can say “MySQL is a Database,” it makes sense for Database to be abstract class.
In constrast, you cannot say, “Book is a Nameable” or “Book is a Name,” so Namea
ble should be an interface.

7.9 Assigning Object References

Problem
You want to link two objects, so when you update one, you also update the other.

Solution
Use = to assign one object to another by reference:

$adam = new user;
$dave = $adam;

Discussion
When you do an object assignment using =, you don’t create a new copy of an object,
but a reference to the first. So, modifying one alters the other.

This is different from how PHP 5 treats other types of variables, where it does a copy-
by-value. It is also different from PHP 4, where all variables are copied by value,
regardless of their type.

So where you used to use =& in PHP 4 to make two objects point at each other, you
can now use only =:

$adam = new user;
$adam->load_info('adam');

$dave = $adam;

Now $dave and $adam are two names for the exact same object.

7.9 Assigning Object References | 193

Download at Boykma.Com

See Also
Recipe 7.10 for more on cloning objects; documentation on references at http://
www.php.net/references.

7.10 Cloning Objects

Problem
You want to copy an object.

Solution
Copy objects by reference using =:

$rasmus = $zeev;

Copy objects by value using clone:

$rasmus = clone $zeev;

Discussion
PHP 5 copies objects by reference instead of value. When you assign an existing object
to a new variable, that new variable is just another name for the existing object. Ac-
cessing the object by the old or new name produces the same results.

To create an independent instance of a value with the same contents, otherwise known
as copying by value, use the clone keyword. Otherwise, the second object is simply a
reference to the first.

This cloning process copies every property in the first object to the second. This in-
cludes properties holding objects, so the cloned object may end up sharing object
references with the original.

This is frequently not the desired behavior. For example, consider the aggregated ver-
sion of Person that holds an Address object in Example 7-26.

Example 7-26. Using an aggregated class
class Address {
 protected $city;
 protected $country;

 public function setCity($city) { $this->city = $city; }
 public function getCity() { return $this->city; }
 public function setCountry($country) { $this->country = $country; }
 public function getCountry() { return $this-> country;}
}

class Person {
 protected $name;

194 | Chapter 7: Classes and Objects

Download at Boykma.Com

 protected $address;

 public function __construct() { $this->address = new Address; }
 public function setName($name) { $this->name = $name; }
 public function getName() { return $this->name; }
 public function __call($method, $arguments) {
 if (method_exists($this->address, $method)) {
 return call_user_func_array(array($this->address, $method), $arguments);
 }
 }
}

An aggregated class is one that embeds another class inside in a way that makes it easy
to access both the original and embedded classes. The key point to remember is that
the $address property holds an Address object.

With this class, Example 7-27 shows what happens when you clone an object.

Example 7-27. Cloning an aggregated class
$rasmus = new Person;
$rasmus->setName('Rasmus Lerdorf');
$rasmus->setCity('Sunnyvale');

$zeev = clone $rasmus;
$zeev->setName('Zeev Suraski');
$zeev->setCity('Tel Aviv');

print $rasmus->getName() . ' lives in ' . $rasmus->getCity() . '.';
print $zeev->getName() . ' lives in ' . $zeev->getCity() . '.';

Rasmus Lerdorf lives in Tel Aviv.

Zeev Suraski lives in Tel Aviv.

Interesting. Calling setName(  ) worked correctly because the $name property is a string,
so it’s copied by value. However, since $address is an object, it’s copied by reference,
so getCity(  ) doesn’t produce the correct results, and you end up relocating Rasmus to
Tel Aviv.

This type of object cloning is known as a shallow clone or a shallow copy. In contrast,
a “deep clone” occurs when all objects involved are cloned. This is PHP 4’s cloning
method.

Control how PHP 5 clones an object by implementing a __clone(  ) method in your
class. When this method exists, PHP allows __clone(  ) to override its default behavior,
as shown in Example 7-28.

Example 7-28. Properly implementing cloning in aggregated classes
class Person {
 // ... everything from before
 public function __clone() {
 $this->address = clone $this->address;

7.10 Cloning Objects | 195

Download at Boykma.Com

 }
}

Inside of __clone(  ), you’re automatically presented with a shallow copy of the variable,
stored in $this , the object that PHP provides when __clone(  ) does not exist.

Since PHP has already copied all the properties, you only need to overwrite the ones
you dislike. Here, $name is okay, but $address needs to be explicitly cloned.

Now the clone behaves correctly, as shown in Example 7-29.

Example 7-29. Cloning an aggregated class

$rasmus = new Person;
$rasmus->setName('Rasmus Lerdorf');
$rasmus->setCity('Sunnyvale');

$zeev = clone $rasmus;
$zeev->setName('Zeev Suraski');
$zeev->setCity('Tel Aviv');

print $rasmus->getName() . ' lives in ' . $rasmus->getCity() . '.';
print $zeev->getName() . ' lives in ' . $zeev->getCity() . '.';

Rasmus Lerdorf lives in Sunnyvale.

Zeev Suraski lives in Tel Aviv.

Using the clone operator on objects stored in properties causes PHP to check whether
any of those objects contain a __clone(  ) method. If one exists, PHP calls it. This repeats
for any objects that are nested even further.

This process correctly clones the entire object and demonstrates why it’s called a deep
copy.

See Also
Recipe 7.9 for more on assigning objects by reference.

7.11 Overriding Property Accesses

Problem
You want handler functions to execute whenever you read and write object properties.
This lets you write generalized code to handle property access in your class.

Solution
Use the magical methods __get(  ) and __set(  ) to intercept property requests.

196 | Chapter 7: Classes and Objects

Download at Boykma.Com

To improve this abstraction, also implement __isset(  ) and __unset(  ) methods to
make the class behave correctly when you check a property using isset(  ) or delete
it using unset(  ).

Discussion
Property overloading allows you to seamlessly obscure from the user the actual location
of your object’s properties and the data structure you use to store them.

For example, the Person class shown in Example 7-30 stores variables in an array,
$__data.

Example 7-30. Implementing magic accessor methods
class Person {
 private $__data = array();

 public function __get($property) {
 if (isset($this->__data[$property])) {
 return $this->__data[$property];
 } else {
 return false;
 }
 }

 public function __set($property, $value) {
 $this->__data[$property] = $value;
 }
}

Example 7-31 shows how to use the Person class.

Example 7-31. Using magic accessor methods
$johnwood = new Person;
$johnwood->email = 'jonathan@wopr.mil'; // sets $user->__data['email']
print $johnwood->email; // reads $user->__data['email']
jonathan@wopr.mil

When you set data, __set(  ) rewrites the element inside of $__data. Likewise, use
__get(  ) to trap the call and return the correct array element.

Using these methods and an array as the alternate variable storage source makes it less
painful to implement object encapsulation. Instead of writing a pair of accessor meth-
ods for every class property, you use __get(  ) and __set(  ).

With __get(  ) and __set(  ), you can use what appear to be public properties, such as
$johnwood->name, without violating encapsulation. This is because the programmer isn’t
reading from and writing to those properties directly, but is instead being routed
through accessor methods.

The __get(  ) method takes the property name as its single parameter. Within the meth-
od, you check to see whether that property has a value inside $__data. If it does, the
method returns that value; otherwise, it returns false.

7.11 Overriding Property Accesses | 197

Download at Boykma.Com

When you read $johnwood->name, you actually call __get('name')
and it’s returning $__data['name'], but for all external purposes that’s
irrelevant.

The __set(  ) method takes two arguments: the property name and the new value. Oth-
erwise, the logic inside the method is similar to __get(  ).

Besides reducing the number of methods in your classes, these magical methods also
make it easy to implement a centralized set of input and output validation.

Additionally, Example 7-32 shows how you can also enforce exactly what properties
are legal and illegal for a given class.

Example 7-32. Enforcing property access using magic accessor methods

class Person {
 // list person and email as valid properties
 protected $__data = array('person', 'email');

 public function __get($property) {
 if (isset($this->__data[$property])) {
 return $this->__data[$property];
 } else {
 return false;
 }
 }

 // enforce the restriction of only setting
 // pre-defined properties
 public function __set($property, $value) {
 if (isset($this->__data[$property])) {
 return $this->__data[$property] = $value;
 } else {
 return false;
 }
 }
}

In this updated version of the code, you explicitly list the object’s valid properties names
when you define the $__data property. Then, inside __set(  ), you use isset(  ) to confirm
that all property writes are going to allowable names.

Preventing rogue reads and writes is why the visibility of the $__data property isn’t
public, but protected. Otherwise, someone could do this:

$person = new Person;
$person->__data['fake_property'] = 'fake_data';

because the magical accessors aren’t used for existing properties.

Pay attention to this important implementation detail. In particular, if you’re expecting
people to extend the class, they could introduce a property that conflicts with a property

198 | Chapter 7: Classes and Objects

Download at Boykma.Com

you’re expecting to handle using __get(  ) and __set(  ). For that reason, the property
in Example 7-32 is called $__data with two leading underscores.

You should consider prefixing all your “actual” properties in classes where you use
magical accessors to prevent collisions between properties that should be handled using
normal methods and ones that should be routed through __get(  ) and __set(  ).

There are three downsides to using __get(  ) and __set(  ). First, these methods only
catch missing properties. If you define a property for your class, __get(  ) and __set(  )
are not invoked by PHP when that property is accessed.

This is the case even if the property you’re trying to access isn’t visible in the current
scope (for instance, when you’re reading a property that exists in the class but isn’t
accessible to you, because it’s declared private). Doing this causes PHP to emit a fatal
error:

PHP Fatal error: Cannot access private property...

Second, these methods completely destroy any notion of property inheritance. If a
parent object has a __get(  ) method and you implement your own version of __get(  )
in the child, your object won’t function correctly because the parent’s __get(  ) method
is never called.

You can work around this by calling parent::__get(  ), but it is something you need to
explicitly manage instead of “getting for free” as part of OO design.

The illusion is incomplete because it doesn’t extend to the isset(  ) and unset(  ) meth-
ods. For instance, if you try to check if an overloaded property isset(  ), you will not
get an accurate answer, as PHP doesn’t know to invoke __get(  ).

You can fix this by implementing your own version of these methods in the class, called
__isset(  ) and __unset(  ), shown in Example 7-33.

Example 7-33. Implementing magic methods for isset(  ) and unset(  )
class Person {
 // list person and email as valid properties
 protected $data = array('person', 'email');

 public function __get($property) {
 if (isset($this->data[$property])) {
 return $this->data[$property];
 } else {
 return false;
 }
 }

 // enforce the restriction of only setting
 // pre-defined properties
 public function __set($property, $value) {
 if (isset($this->data[$property])) {
 return $this->data[$property] = $value;
 } else {
 return false;

7.11 Overriding Property Accesses | 199

Download at Boykma.Com

 }
 }

 public function __isset($property) {
 if (isset($this->data[$property])) {
 return true;
 } else {
 return false;
 }

 public function __unset($property) {
 if (isset($this->data[$property])) {
 return unset($this->data[$property]);
 } else {
 return false;
 }
 }
}

The __isset(  ) method checks inside the $data element and returns true or false de-
pending on the status of the property you’re checking.

Likewise, __unset(  ) passes back the value of unset(  ) applied to the “real” property, or
false if it’s not set.

Implementing these two methods isn’t required when using __get(  ) and __set(  ), but
it’s best to do so as it’s hard to predict how you may use object properties. Failing to
code these methods will lead to confusion when someone (perhaps even yourself)
doesn’t know (or forgets) that this class is using magic accessor methods.

However, the __isset(  ) and __unset(  ) methods are only available as of PHP 5.1.

Other reasons to consider not using magical accessors are:

• They’re relatively slow. They’re both slower than direct property access and ex-
plicitly writing accessor methods for all your properties.

• They make it impossible for the Reflection classes and tools such as phpDocu-
mentor to automatically document your code.

• You cannot use them with static properties.

See Also
Documentation on magic methods found at http://www.php.net/manual/en/lan
guage.oop5.magic.php.

200 | Chapter 7: Classes and Objects

Download at Boykma.Com

7.12 Calling Methods on an Object Returned by Another
Method

Problem
You need to call a method on an object returned by another method.

Solution
Call the second method directly from the first:

$orange = $fruit->get('citrus')->peel();

Discussion
PHP is smart enough to first call $fruit->get('citrus') and then invoke the peel(  )
method on what’s returned.

This is an improvement over PHP 4, where you needed to use a temporary variable:

$orange = $fruit->get('citrus');
$orange->peel();

Another victory for PHP 5!

7.13 Aggregating Objects

Problem
You want to compose two or more objects together so that they appear to behave as
a single object.

Solution
Aggregate the objects together and use the __call(  ) magic method to intercept method
invocations and route them accordingly:

class Address {
 protected $city;

 public function setCity($city) {
 $this->city = $city;
 }

 public function getCity() {
 return $this->city;
 }
}

class Person {
 protected $name;

7.12 Calling Methods on an Object Returned by Another Method | 201

Download at Boykma.Com

 protected $address;

 public function __construct() {
 $this->address = new Address;
 }

 public function setName($name) {
 $this->name = $name;
 }

 public function getName() {
 return $this->name;
 }

 public function __call($method, $arguments) {
 if (method_exists($this->address, $method)) {
 return call_user_func_array(
 array($this->address, $method), $arguments);
 }
 }
}

$rasmus = new Person;
$rasmus->setName('Rasmus Lerdorf');
$rasmus->setCity('Sunnyvale');

print $rasmus->getName() . ' lives in ' . $rasmus->getCity() . '.';
Rasmus Lerdorf lives in Sunnyvale.

An instance of the Address object is created during the construction of every Person.
When you invoke methods not defined in Person, the __call(  ) method catches them
and, when applicable, dispatches them using call_user_func_array(  ).

Discussion
In this recipe, you cannot say a Person “is an” Address or vice versa. Therefore, it doesn’t
make sense for one class to extend the other.

However, it makes sense for them to be separate classes so that they provide maximum
flexibility and reuse, as well as reduced duplicated code. So you check if another rule
—the “has a” rule—applies. Since a Person “has an” Address, it makes sense to aggregate
the classes together.

With aggregation, one object acts as a container for one or more additional objects.
This is another way of solving the problem of multiple inheritance because you can
easily piece together an object out of smaller components.

For example, a Person object can contain an Address object. Clearly, People have ad-
dresses. However, addresses aren’t unique to people; they also belong to businesses
and other entities. Therefore, instead of hardcoding address information inside of
Person, it makes sense to create a separate Address class that can be used by multiple
classes.

202 | Chapter 7: Classes and Objects

Download at Boykma.Com

Example 7-34 shows how this works in practice.

Example 7-34. Aggregating an address object
class Address {
 protected $city;

 public function setCity($city) {
 $this->city = $city;
 }

 public function getCity() {
 return $this->city;
 }
}

class Person {
 protected $name;
 protected $address;

 public function __construct() {
 $this->address = new Address;
 }

 public function setName($name) {
 $this->name = $name;
 }

 public function getName() {
 return $this->name;
 }

 public function __call($method, $arguments) {
 if (method_exists($this->address, $method)) {
 return call_user_func_array(
 array($this->address, $method), $arguments);
 }
 }
}

The Address class stores a city and has two accessor methods to manipulate the data,
setCity(  ) and getCity(  ).

Person has setName(  ) and getName(  ), similar to Address, but it also has two other meth-
ods: __construct(  ) and __call(  ).

Its constructor instantiates an Address object and stores it in a protected $address prop-
erty. This allows methods inside Person to access $address, but prevents others from
talking directly to the class.

Ideally, when you call a method that exists in Address, PHP would automatically execute
it. This does not occur, since Person does not extend Address. You must write code to
glue these calls to the appropriate methods yourself.

Wrapper methods are one option. For example:

7.13 Aggregating Objects | 203

Download at Boykma.Com

public function setCity($city) {
 $this->address->setCity($city);
}

This setCity(  ) method passes along its data to the setCity(  ) method stored in
$address. This is simple, but it is also tedious because you must write a wrapper for
every method.

Using __call(  ) lets you automate this process by centralizing these methods into a
single place, as shown in Example 7-35.

Example 7-35. Centralizing method invocation using __call(  )
public function __call($method, $arguments) {
 if (method_exists($this->address, $method)) {
 return call_user_func_array(
 array($this->address, $method), $arguments);
 }
}

The __call(  ) method captures any calls to undefined methods in a class. It is invoked
with two arguments: the name of the method and an array holding the parameters
passed to the method. The first argument lets you see which method was called, so you
can determine whether it’s appropriate to dispatch it to $address.

Here, you want to pass along the method if it’s a valid method of the Address class.
Check this using method_exists(  ) , providing the object as the first parameter and the
method name as the second.

If the function returns true, you know this method is valid, so you can call it. Unfortu-
nately, you’re still left with the burden of unwrapping the arguments out of the
$arguments array. That can be painful.

The seldom used and oddly named call_user_func_array(  ) function solves this prob-
lem. This function lets you call a user function and pass along arguments in an array.
Its first parameter is your function name, and the second is the array of arguments.

In this case, however, you want to call an object method instead of a function. There’s
a special syntax to cover this situation. Instead of passing the function name, you pass
an array with two elements. The first element is the object, and the other is the method
name.

This causes call_user_func_array(  ) to invoke the method on your object. You must
then return the result of call_user_func_array(  ) back to the original caller, or your
return values will be silently discarded.

Here’s an example of Person that calls both a method defined in Person and one from
Address:

$rasmus = new Person;
$rasmus->setName('Rasmus Lerdorf');
$rasmus->setCity('Sunnyvale');

204 | Chapter 7: Classes and Objects

Download at Boykma.Com

print $rasmus->getName() . ' lives in ' . $rasmus->getCity() . '.';
Rasmus Lerdorf lives in Sunnyvale.

Even though setCity(  ) and getCity(  ) aren’t methods of Person, you have aggregated
them into that class.

You can aggregate additional objects into a single class, and also be more selective as
to which methods you expose to the outside user. This requires some basic filtering
based on the method name.

See Also
Documentation on magic methods at http://www.php.net/manual/en/lan
guage.oop5.magic.php.

7.14 Accessing Overridden Methods

Problem
You want to access a method in the parent class that’s been overridden in the child.

Solution
Prefix parent:: to the method name:

class shape {
 function draw() {
 // write to screen
 }
}

class circle extends shape {
 function draw($origin, $radius) {
 // validate data
 if ($radius > 0) {
 parent::draw();
 return true;
 }

 return false;
 }
}

Discussion
When you override a parent method by defining one in the child, the parent method
isn’t called unless you explicitly reference it.

In the Solution, we override the draw(  ) method in the child class, circle, because you
want to accept circle-specific parameters and validate the data. However, in this case,
we still want to perform the generic shape::draw(  ) action, which does the actual draw-
ing, so we call parent::draw(  ) inside your method if $radius is greater than 0.

7.14 Accessing Overridden Methods | 205

Download at Boykma.Com

Only code inside the class can use parent::. Calling parent::draw(  ) from outside the
class gets you a parse error. For example, if circle::draw(  ) checked only the radius,
but you also wanted to call shape::draw(  ), this wouldn’t work:*

$circle = new circle;
if ($circle->draw($origin, $radius)) {
 $circle->parent::draw();
}

This also applies to object constructors, so it’s quite common to see the following:

class circle {
 function __construct($x, $y, $r) {
 // call shape's constructor first
 parent::__construct();
 // now do circle-specific stuff
 }
}

The simplicity of invoking a parent constructor is one advantage of PHP 5’s consistent
naming scheme for constructors, as you need to jump through all sorts of hoops to
implement this in PHP 4 in a non-brittle way.fs

See Also
Recipe 7.2 for more on object constructors; documentation on class parents at http://
www.php.net/keyword.parent and on get_parent_class(  ) at http://www.php.net/get-pa
rent-class.

7.15 Using Method Polymorphism

Problem
You want to execute different code depending on the number and type of arguments
passed to a method.

Solution
PHP doesn’t support method polymorphism as a built-in feature. However, you can
emulate it using various type-checking functions. The following combine(  ) function
uses is_numeric(  ), is_string(  ) , is_array(  ), and is_bool(  ):

// combine() adds numbers, concatenates strings, merges arrays,
// and ANDs bitwise and boolean arguments
function combine($a, $b) {
 if (is_int($a) && is_int($b)) {
 return $a + $b;
 }

* In fact, it fails with the error unexpected T_PAAMAYIM_NEKUDOTAYIM, which is Hebrew for “double-
colon.”

206 | Chapter 7: Classes and Objects

Download at Boykma.Com

 if (is_float($a) && is_float($b)) {
 return $a + $b;
 }

 if (is_string($a) && is_string($b)) {
 return "ab";
 }

 if (is_array($a) && is_array($b)) {
 return array_merge($a, $b);
 }

 if (is_bool($a) && is_bool($b)) {
 return $a & $b;
 }

 return false;
}

Discussion
Because PHP doesn’t allow you to declare a variable’s type in a method prototype, it
can’t conditionally execute a different method based on the method’s signature, as Java
and C++ can. You can, instead, make one function and use a switch statement to
manually recreate this feature.

For example, PHP lets you edit images using GD. It can be handy in an image class to
be able to pass in either the location of the image (remote or local) or the handle PHP
has assigned to an existing image stream. Example 7-36 shows a pc_Image class that
does just that.

Example 7-36. pc_Image class

class pc_Image {

 protected $handle;

 function ImageCreate($image) {
 if (is_string($image)) {
 // simple file type guessing

 // grab file suffix
 $info = pathinfo($image);
 $extension = strtolower($info['extension']);
 switch ($extension) {
 case 'jpg':
 case 'jpeg':
 $this->handle = ImageCreateFromJPEG($image);
 break;
 case 'png':
 $this->handle = ImageCreateFromPNG($image);
 break;
 default:

7.15 Using Method Polymorphism | 207

Download at Boykma.Com

 die('Images must be JPEGs or PNGs.');
 }
 } elseif (is_resource($image)) {
 $this->handle = $image;
 } else {
 die('Variables must be strings or resources.');
 }
 }
}

In this case, any string passed in is treated as the location of a file, so we use
pathinfo(  ) to grab the file extension. Once we know the extension, we try to guess
which ImageCreateFrom(  ) function accurately opens the image and create a handle.

If it’s not a string, we’re dealing directly with a GD stream, which is a type of
resource. Since there’s no conversion necessary, we assign the stream directly to
$handle. Of course, if you’re using this class in a production environment, you’d be
more robust in your error handling.

Method polymorphism also encompasses methods with differing numbers of argu-
ments. The code to find the number of arguments inside a method is identical to how
you process variable argument functions using func_num_args(  ). This is discussed in
Recipe 6.5.

See Also
Recipe 6.5 for variable argument functions; documentation on is_string(  ) at http://
www.php.net/is-string, is_resource(  ) at http://www.php.net/is-resource, and
pathinfo(  ) at http://www.php.net/pathinfo .

7.16 Defining Class Constants

Problem
You want to define constants on a per-class basis, not on a global basis.

Solution
Define them like class properties, but use the const label instead:

class Math {
 const pi = 3.14159; // universal
 const e = 2.71828; // constants
}

$area = math::pi * $radius * $radius;

Discussion
PHP reuses its concept of global constants and applies them to classes. Essentially, these
are final properties.

208 | Chapter 7: Classes and Objects

Download at Boykma.Com

Declare them using the const label:

class Math {
 const pi = 3.14159; // universal
 const e = 2.71828; // constants
}

$area = math::pi * $radius * $radius;

Like static properties, you can access constants without first instantiating a new in-
stance of your class, and they’re accessed using the double colon (::) notation. Prefix
the word self:: to the constant name to use it inside of a class.

Unlike properties, constants do not have a dollar sign ($) before them:

class Circle {
 const pi = 3.14159;
 protected $radius;

 public function __construct($radius) {
 $this->radius = $radius;
 }

 public function circumference() {
 return 2 * self::pi * $this->radius;
 }
}

$c = new circle(1);
print $c->circumference();
6.28318

This example creates a circle with a radius of 1 and then calls the circumference method
to calculate its circumference. To use the class’s pi constant, refer to it as circumfer
ence; otherwise, PHP tries to access circumference value of the global pi constant:

define('pi', 10); // global pi constant

class Circle {
 const pi = 3.14159; // class pi constant
 protected $radius;

 public function __construct($radius) {
 $this->radius = $radius;
 }

 public function circumference() {
 return 2 * pi * $this->radius;
 }

}

$c = new circle(1);
print $c->circumference();
20

7.16 Defining Class Constants | 209

Download at Boykma.Com

Oops! PHP has used the value of 10 instead of 3.14159, so the new answer is 20 instead
of 6.28318.

Although it’s unlikely that you will accidentally redefine π (you’ll probably use the
built-in M_PI constant anyway), this can still slip you up.

You cannot assign the value of an expression to a constant, nor can they use information
passed into your script:

// invalid
class permissions {
 const read = 1 << 2;
 const write = 1 << 1;
 const execute = 1 << 0;
}

// invalid and insecure
class database {
 const debug = $_REQUEST['debug'];
}

Neither the constants in permissions nor the debug constant in database are acceptable
because they are not fixed. Even the first example, 1 << 2, where PHP does not need
to read in external data, is not allowed.

Since you need to access constants using an explicit name, either self:: or the name
of the class, you cannot dynamically calculate the class name during runtime. It must
be declared beforehand. For example:

class Constants {
 const pi = 3.14159;

 // rest of class here
}

$class = 'Constants';

print $class::pi;

This produces a parse error, even though this type of construct is legal for non-constant
expressions, such as $class->pi.

See Also
Documentation on class constants is available at http://www.php.net/manual/en/lan
guage.oop5.constants.php.

7.17 Defining Static Properties and Methods

Problem
You want to define methods in an object, and be able to access them without instan-
tiating a object.

210 | Chapter 7: Classes and Objects

Download at Boykma.Com

Solution
Declare the method as static:

class Format {
 public static function number($number, $decimals = 2,
 $decimal = ',', $thousands = '.') {
 return number_format($number, $decimals, $decimal, $thousands);
 }
}

print Format::number(1234.567);
1,234.57

Discussion
Occasionally, you want to define a collection of methods in an object, but you want to
be able to invoke those methods without instantiating a object. In PHP 5, declaring a
method static lets you call it directly:

class Format {
 public static function number($number, $decimals = 2,
 $decimal = ',', $thousands = '.') {
 return number_format($number, $decimals, $decimal, $thousands);
 }
}

print Format::number(1234.567);
1,234.57

Since static methods don’t require an object instance, use the class name instead of the
object. Don’t place a dollar sign ($) before the class name.

Static methods aren’t referenced with an arrow (->), but with double colons (::)—this
signals to PHP that the method is static. So in the example, the number(  ) method of the
Format class is accessed using Format::number(  ).

Number formatting doesn’t depend on any other object properties or methods. There-
fore, it makes sense to declare this method static. This way, for example, inside your
shopping cart application, you can format the price of items in a pretty manner with
just one line of code and still use an object instead of a global function.

Static methods do not operate on a specific instance of the class where they’re defined.
PHP does not “construct” a temporary object for you to use while you’re inside the
method. Therefore, you cannot refer to $this inside a static method, because there’s
no $this on which to operate. Calling a static method is just like calling a regular func-
tion.

PHP 5 also has a feature known as static properties. Every instance of a class shares
these properties in common. Thus, static properties act as class-namespaced global
variables.

One reason for using a static property is to share a database connection among multiple
Database objects. For efficiency, you shouldn’t create a new connection to your database

7.17 Defining Static Properties and Methods | 211

Download at Boykma.Com

every time you instantiate Database. Instead, negotiate a connection the first time and
reuse that connection in each additional instance, as shown in Example 7-37.

Example 7-37. Sharing a static method across instances

class Database {
 private static $dbh = NULL;

 public function __construct($server, $username, $password) {
 if (self::$dbh == NULL) {
 self::$dbh = db_connect($server, $username, $password);
 } else {
 // reuse existing connection
 }
 }
}

$db = new Database('db.example.com', 'web', 'jsd6w@2d');
// Do a bunch of queries

$db2 = new Database('db.example.com', 'web', 'jsd6w@2d');
// Do some additional queries

Static properties, like static methods, use the double colon notation. To refer to a static
property inside of a class, use the special prefix of self. self is to static properties and
methods as $this is to instantiated properties and methods.

The constructor uses self::$dbh to access the static connection property. When $db is
instantiated, dbh is still set to NULL, so the constructor calls db_connect(  ) to negotiate a
new connection with the database.

This does not occur when you create $db2, since dbh has been set to the database handle.

See Also
Documentation on the static keyword at http://www.php.net/manual/en/lan
guage.oop5.static.php.

7.18 Controlling Object Serialization

Problem
You want to control how an object behaves when you serialize(  ) and
unserialize(  ) it. This is useful when you need to establish and close connections to
remote resources, such as databases, files, and web services.

Solution
Define the magical methods __sleep(  ) and __wakeUp(  ), as shown in Example 7-38.

212 | Chapter 7: Classes and Objects

Download at Boykma.Com

Example 7-38. Controlling serialization using __sleep(  ) and __wakeUp(  )
<?php
class LogFile {
 protected $filename;
 protected $handle;

 public function __construct($filename) {
 $this->filename = $filename;
 $this->open();
 }

 private function open() {
 $this->handle = fopen($this->filename, 'a');
 }

 public function __destruct($filename) {
 fclose($this->handle);
 }

 // called when object is serialized
 // should return an array of object properties to serialize
 public function __sleep() {
 return array('filename');
 }

 // called when object is unserialized
 public function __wakeUp() {
 $this->open();
 }
}
?>

Discussion
When you serialize an object in PHP, it preserves all your object properties. However,
this does not include connections or handles that you hold to outside resources, such
as databases, files, and web services.

These must be reestablished when you unserialize the object, or the object will not
behave correctly. You can do this explicitly within your code, but it’s better to abstract
this away and let PHP handle everything behind the scenes.

Do this through the __sleep(  ) and __wakeUp(  ) magic methods. When you call
serialize(  ) on a object, PHP invokes __sleep(  ); when you unserialize(  ) it, it calls
__wakeUp(  ).

The LogFile class in Example 7-38 has five simple methods. The constructor takes a
filename and saves it for future access. The open(  ) method opens this file and stores
the file handle, which is closed in the object’s destructor.

The __sleep(  ) method returns an array of properties to store during object serialization.
Since file handles aren’t preserved across serializations, it only returns
array('filename') because that’s all you need to store.

7.18 Controlling Object Serialization | 213

Download at Boykma.Com

That’s why when the object is reserialized, you need to reopen the file. This is handled
inside of __wakeUp(  ), which calls the same open(  ) method used by the constructor.
Since you cannot pass arguments to __wakeUp(  ), it needs to get the filename from
somewhere else. Fortunately, it’s able to access object properties, which is why the
filename is saved there.

It’s important to realize that the same instance can be serialized multiple times in a
single request, or even continued to be used after its serialized. Therefore, you shouldn’t
do anything in __sleep(  ) that could prevent either of these two actions. The
__sleep(  ) method should only be used to exclude properties that shouldn’t be serial-
ized because they take up too much disk space, or are calculated based on other data
and should be recalculated or otherwise made fresh during object unserialization.

That’s why the call to fclose(  ) appears in the destructor and not in __sleep(  ).

See Also
Documentation on magic methods at http://www.php.net/manual/en/lan
guage.oop5.magic.php; the unserialize(  ) function at http://www.php.net/unserialize
and the serialize(  ) function is found at http://www.php.net/serialize .

7.19 Introspecting Objects

Problem
You want to inspect an object to see what methods and properties it has, which lets
you write code that works on any generic object, regardless of type.

Solution
Use the Reflection classes to probe an object for information.

For a quick overview of the class, call Reflection::export(  ):

// learn about cars
Reflection::export(new ReflectionClass('car'));

Or probe for specific data:

$car = new ReflectionClass('car');
if ($car->hasMethod('retractTop')) {
 // car is a convertible
}

Discussion
It’s rare to have an object and be unable to examine the actual code to see how it’s
described. Still, with the Reflection classes, you can programmatically extract infor-
mation about both object-oriented features, such as classes, methods, and properties,
but also non-OO features, such as functions and extensions.

214 | Chapter 7: Classes and Objects

Download at Boykma.Com

This is useful for projects you want to apply to a whole range of different classes, such
as creating automated class documentation, generic object debuggers, and state savers,
like serialize(  ).

To help show how the Reflection classes work, Example 7-39 contains an example
Person class that uses many of PHP 5’s OO features.

Example 7-39. Person class
class Person {
 public $name;
 protected $spouse;
 private $password;

 public function __construct($name) {
 $this->name = $name
 }

 public function getName() {
 return $name;
 }

 protected function setSpouse(Person $spouse) {
 if (!isset($this->spouse)) {
 $this->spouse = $spouse;
 }
 }

 private function setPassword($password) {
 $this->password = $password;
 }
}

For a quick overview of the class, call Reflection::export(  ):

Reflection::export(new ReflectionClass('Person'));
Class [<user> class Person] {
 @@ /www/reflection.php 3-25

 - Constants [0] {
 }

 - Static properties [0] {
 }

 - Static methods [0] {
 }

 - Properties [3] {
 Property [<default> public $name]
 Property [<default> protected $spouse]
 Property [<default> private $password]
 }

 - Methods [4] {

7.19 Introspecting Objects | 215

Download at Boykma.Com

 Method [<user> <ctor> public method _ _construct] {
 @@ /www/reflection.php 8 - 10

 - Parameters [1] {
 Parameter #0 [$name]
 }
 }

 Method [<user> public method getName] {
 @@ /www/reflection.php 12 - 14
 }

 Method [<user> protected method setSpouse] {
 @@ /www/reflection.php 16 - 20

 - Parameters [1] {
 Parameter #0 [Person or NULL $spouse]
 }
 }

 Method [<user> private method setPassword] {
 @@ /www/reflection.php 22 - 24

 - Parameters [1] {
 Parameter #0 [$password]
 }
 }
 }
 }

The Reflection::export(  ) static method takes an instance of the ReflectionClass class
and returns a copious amount of information. As you can see, it details the number of
constants, static properties, static methods, properties, and methods in the class. Each
item is broken down into component parts. For instance, all the entries contain visibility
identifiers (private, protected, or public), and methods have a list of their parameters
underneath their definition.

Reflection::export(  ) not only reports the file where everything is defined, but even
gives the line numbers! This lets you extract code from a file and place it in your doc-
umentation.

Example 7-40 shows a short command-line script that searches for the filename and
starting line number of a method or function.

Example 7-40. Using reflection to locate function and method definitions

<?php
if ($argc < 2) {
 print "$argv[0]: function/method, classes1.php [, ... classesN.php]\n";
 exit;
}

// Grab the function name

216 | Chapter 7: Classes and Objects

Download at Boykma.Com

$function = $argv[1];

// Include the files
foreach (array_slice($argv, 2) as $filename) {
 include_once $filename;
}

try {
 if (strpos($function, '::')) {
 // It's a method
 list ($class, $method) = explode('::', $function);
 $reflect = new ReflectionMethod($class, $method);
 } else {
 // It's a function
 $reflect = new ReflectionFunction($function);
 }

 $file = $reflect->getFileName();
 $line = $reflect->getStartLine();

 printf ("%s | %s | %d\n", "$function()", $file, $line);
} catch (ReflectionException $e) {
 printf ("%s not found.\n", "$function()");
}

?>

Pass the function or method name as the first argument, and the include files as the
remaining arguments. These files are then included, so make sure they don’t print out
anything.

The next step is to determine whether the first argument is a method or a function.
Since methods are in the form class::method, you can use strpos(  ) to tell them apart.

If it’s a method, use explode(  ) to separate the class from the method, passing both to
ReflectionMethod. If it’s a function, you can directly instantiate a ReflectionFunction
without any difficulty.

Since ReflectionMethod extends ReflectionFunction, you can then call both
getFileName(  ) and getStartLine(  ) of either class. This gathers the information that
you need to print out, which is done via printf(  ).

When you try to instantiate a ReflectionMethod or ReflectionFunction with the name
of an undefined method, these classes throw a ReflectionException. Here, it’s caught
and an error message is displayed.

A more complex script that prints out the same type of information for all user-defined
methods and functions appears in Recipe 7.23.

If you just need a quick view at an object instance, and don’t want to fiddle with the
Reflection classes, use either var_dump(  ), var_export(  ), or print_r(  ) to print the ob-
ject’s values. Each of these three functions prints out information in a slightly different
way; var_export(  ) can optionally return the information, instead of displaying it.

7.19 Introspecting Objects | 217

Download at Boykma.Com

See Also
Recipe 5.8 for more on printing variables; documentation on Reflection at http://
www.php.net/manual/en/language.oop5.reflection.php, var_dump(  ) at http://
www.php.net/var-dump, var_export(  ) at http://www.php.net/var-export, and
print_r(  ) at http://www.php.net/print-r .

7.20 Checking if an Object Is an Instance of a Specific Class

Problem
You want to check if an object is an instance of a specific class.

Solution
To check that a value passed as a function argument is an instance of a specific class,
specify the class name in your function prototype:

public function add(Person $person) {
 // add $person to address book
 }
}

In other contexts, use the instanceof operator:

<?php
$media = get_something_from_catalog();
if ($media instanceof Book) {
 // do bookish things
} else if ($media instanceof DVD) {
 // watch the movie
}
?>

Discussion
One way of enforcing controls on your objects is by using type hints. A type hint is a
way to tell PHP that an object passed to a function or method must be of a certain class.

To do this, specify a class name in your function and method prototypes. As of PHP
5.1, you can also require that an argument is an array, by using the keyword array.
This only works for classes and arrays, though, not for any other variable types. You
cannot, for example, specify strings or integers.

For example, to require the first argument to your AddressBook class’s add(  ) method to
be of type Person:

class AddressBook {

 public function add(Person $person) {
 // add $person to address book

218 | Chapter 7: Classes and Objects

Download at Boykma.Com

 }
}

Then, if you call add(  ) but pass a string, you get a fatal error:

$book = new AddressBook;

$person = 'Rasmus Lerdorf';

$book->add($person);
PHP Fatal error: Argument 1 must be an object of class Person in...

Placing a type hint of Person in the first argument of your function declaration is equiv-
alent to adding the following PHP code to the function:

public function add($person) {
 if (!($person instanceof Person)) {
 die("Argument 1 must be an instance of Person");
 }
}

The instanceof operator checks whether an object is an instance of a particular class.
This code makes sure $person is a Person.

PHP 4 does not have an instanceof operator. You need to use the is_a(  ) function,
which is deprecated in PHP 5.

The instanceof operator also returns true with classes that are subclasses of the one
you’re comparing against. For instance:

class Person { /* ... */ }

class Kid extends Person { /* ... */ }

$kid = new Kid;

if ($kid instanceof Person) {
 print "Kids are people, too.\n";
}

Kids are people, too.

Last, you can use instanceof to see if a class has implemented a specific interface:

interface Nameable {
 public function getName();
 public function setName($name);
}

class Book implements Nameable {
 private $name;

 public function getName() {
 return $this->name;
 }

7.20 Checking if an Object Is an Instance of a Specific Class | 219

Download at Boykma.Com

 public function setName($name) {
 return $this->name = $name;
 }
}

$book = new Book;
if ($book instanceof Book) {
 print "You can name a Book.\n";
}

You can name a Book

Type hinting has the side benefit of integrating API documentation directly into the
class itself. If you see that a class constructor takes an Event type, you know exactly
what to provide the method. Additionally, you know that the code and the “docu-
mentation” must always be in sync, because it’s baked directly into the class definition.

You can also use type hinting in interface definitions, which lets you further specify all
your interface details.

However, type hinting does come at the cost of less flexibility. There’s no way to allow
a parameter to accept more than one type of object, so this places some restrictions on
how you design your object hierarchy.

Also, the penalty for violating a type hint is quite drastic—the script aborts with a fatal
error. In a web context, you may want to have more control over how errors are handled
and recover more gracefully from this kind of mistake. Implementing your own form
of type checking inside of methods lets you print out an error page if you choose.

Last, unlike some languages, you cannot use type hinting for return values, so there’s
no way to mandate that a particular function always returns an object of a particular
type.

See Also
Documentation on type hints at http://www.php.net/manual/language.oop5.typehint
ing.php and instanceof at http://www.php.net/manual/language.operators.type.php

7.21 Autoloading Class Files upon Object Instantiation

Problem
You don’t want to include all your class definitions within every page. Instead, you
want to dynamically load only the ones necessary in that page.

Solution
Use the __autoload(  ) magic method:

function __autoload($class_name) {
 include "$class_name.php";

220 | Chapter 7: Classes and Objects

Download at Boykma.Com

}

$person = new Person;

Discussion
When you normally attempt to instantiate a class that’s not defined, PHP dies with a
fatal error because it can’t locate what you’re looking for. Therefore, it’s typical to load
in all the potential classes for a page, regardless of whether they’re actually invoked.

This has the side effect of increasing processing time, as PHP must parse every class,
even the unused ones. One solution is to load missing code on the fly using the
__autoload(  ) method, which is invoked when you instantiate undefined classes.

For example, here’s how you include all the classes used by your script:
function __autoload($class_name) {
 include "$class_name.php";
}

$person = new Person;

The __autoload(  ) function receives the class name as its single parameter. This example
appends a .php extension to that name and tries to include a file based on
$class_name. So when you instantiate a new Person, it looks for Person.php in your
include_path.

When __autoload(  ) fails to successfully load a class definition for the object you’re
trying to instantiate, PHP fails with a fatal error, just as it does when it can’t find a class
definition without autoload.

If you adopt the PEAR-style naming convention of placing an underscore between
words to reflect the file hierarchy, use the code in Example 7-41.

Example 7-41. Autoloading classes using PEAR naming conventions
function __autoload($package_name) {
 // split on underscore
 $folders = split('_', $package_name);
 // rejoin based on directory structure
 // use DIRECTORY_SEPARATOR constant to work on all platforms
 $path = join(DIRECTORY_SEPARATOR, $folders);
 // append extension
 $path .= '.php';

 include $path;
}

With the code in Example 7-41, you can do the following:
$person = new Animals_Person;

If the class isn’t defined, Animals_Person gets passed to __autoload(  ). The function splits
the class name on underscore (_) and joins it on DIRECTORY_SEPARATOR. This turns the
string into Animals/Person on Unix machines (and Animals\Person on Windows).

7.21 Autoloading Class Files upon Object Instantiation | 221

Download at Boykma.Com

Next, a .php extension is appended, and then the file Animals/Person.php is included
for use.

While using __autoload(  ) slightly increases processing time during the addition of a
class, it is called only once per class. Multiple instances of the same class does not result
in multiple calls to __autoload(  ).

Before deploying __autoload(  ), be sure to benchmark that the overhead of opening,
reading, and closing the multiple files necessary isn’t actually more of a performance
penalty than the additional parsing time of the unused classes.

In particular if you’re using an opcode cache, such as APC or Zend Accelerator, using
__autoload(  ) and include_once can hurt performance. For best results, you should
include all your files at the top of the script and make sure you don’t reinclude a file
twice.

See Also
Documentation on autoloading is available at http://www.php.net/manual/lan
guage.oop5.autoload.php.

7.22 Instantiating an Object Dynamically

Problem
You want to instantiate an object, but you don’t know the name of the class until your
code is executed. For example, you want to localize your site by creating an object
belonging to a specific language. However, until the page is requested, you don’t know
which language to select.

Solution
Use a variable for your class name:

$language = $_REQUEST['language'];
$valid_langs = array('en_US' => 'US English',
 'en_UK' => 'British English',
 'es_US' => 'US Spanish',
 'fr_CA' => 'Canadian French');

if (isset($valid_langs[$language]) && class_exists($language)) {
 $lang = new $language;
}

Discussion
Sometimes you may not know the class name you want to instantiate at runtime, but
you know part of it. For instance, to provide your class hierarchy a pseudonamespace,
you may prefix a leading series of characters in front of all class names; this is why we

222 | Chapter 7: Classes and Objects

Download at Boykma.Com

often use pc_ to represent PHP Cookbook or PEAR uses Net_ before all networking
classes.

However, while this is legal PHP:

$class_name = 'Net_Ping';
$class = new $class_name; // new Net_Ping

This is not:

$partial_class_name = 'Ping';
$class = new "Net_$partial_class_name"; // new Net_Ping

This, however, is okay:

$partial_class_name = 'Ping';
$class_prefix = 'Net_';

$class_name = "$class_prefix$partial_class_name";
$class = new $class_name; // new Net_Ping

So you can’t instantiate an object when its class name is defined using variable con-
catenation in the same step. However, because you can use simple variable names, the
solution is to preconcatenate the class name.

See Also
Documentation on class_exists(  ) at http://www.php.net/class-exists.

7.23 Program: whereis
While tools such as phpDocumentor provide quite detailed information about an entire
series of classes, it can be useful to get a quick dump that lists all the functions and
methods defined in a list of files.

The program in Example 7-42 loops through a list of files, includes them, and then uses
the Reflection classes to gather information about them. Once the master list is com-
piled, the functions and methods are sorted alphabetically and printed out.

Example 7-42. whereis
<?php
if ($argc < 2) {
 print "$argv[0]: classes1.php [, ...]\n";
 exit;
}

// Include the files
foreach (array_slice($argv, 1) as $filename) {
 include_once $filename;
}

// Get all the method and function information
// Start with the classes
$methods = array();

7.23 Program: whereis | 223

Download at Boykma.Com

foreach (get_declared_classes() as $class) {
 $r = new ReflectionClass($class);
 // Eliminate built-in classes
 if ($r->isUserDefined()) {
 foreach ($r->getMethods() as $method) {
 // Eliminate inherited methods
 if ($method->getDeclaringClass()->getName() == $class) {
 $signature = "$class::" . $method->getName();
 $methods[$signature] = $method;
 }
 }
 }
}

// Then add the functions
$functions = array();
$defined_functions = get_defined_functions();
foreach ($defined_functions['user'] as $function) {
 $functions[$function] = new ReflectionFunction($function);
}

// Sort methods alphabetically by class
function sort_methods($a, $b) {
 list ($a_class, $a_method) = explode('::', $a);
 list ($b_class, $b_method) = explode('::', $b);

 if ($cmp = strcasecmp($a_class, $b_class)) {
 return $cmp;
 }

 return strcasecmp($a_method, $b_method);
}
uksort($methods, 'sort_methods');

// Sort functions alphabetically
// This is less complicated, but don't forget to
// remove the method sorting function from the list
unset($functions['sort_methods']);
// Sort 'em
ksort($functions);

// Print out information
foreach (array_merge($functions, $methods) as $name => $reflect) {
 $file = $reflect->getFileName();
 $line = $reflect->getStartLine();

 printf ("%-25s | %-40s | %6d\n", "$name()", $file, $line);
}
?>

This code uses both the Reflection classes and also a couple of PHP functions,
get_declared_classes(  ) and get_declared_functions(  ), that aren’t part of the Reflec-
tion classes, but help with introspection.

224 | Chapter 7: Classes and Objects

Download at Boykma.Com

It’s important to filter out any built-in PHP classes and functions; otherwise, the report
will be less about your code and more about your PHP installation. This is handled in
two different ways. Since get_declared_classes(  ) doesn’t distinguish between user and
internal classes, the code calls ReflectionClass::isUserDefined(  ) to check. The
get_defined_function(  ) call, on the other hand, actually computes this for you, putting
the information in the user array element.

Since it’s easier to scan the output of a sorted list, the script sorts the arrays of methods
and functions. Since multiple classes can have the same method, you need to use a user-
defined sorting method, sort_methods(  ), which first compares two methods by their
class names and then by their method names.

Once the data is sorted, it’s a relatively easy task to loop though the merged arrays,
gather up the filename and starting line numbers, and print out a report.

Here’s the results of running the PEAR HTTP class through the script:

HTTP::Date() | /usr/lib/php/HTTP.php | 38
HTTP::head() | /usr/lib/php/HTTP.php | 144
HTTP::negotiateLanguage() | /usr/lib/php/HTTP.php | 77
HTTP::redirect() | /usr/lib/php/HTTP.php | 186

7.23 Program: whereis | 225

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 8

Web Basics

8.0 Introduction
Web programming is probably why you’re reading this book. It’s why the first version
of PHP was written and what continues to make it so popular today. With PHP, it’s
easy to write dynamic web programs that do almost anything. Other chapters cover
various PHP capabilities, like graphics, regular expressions, database access, and file
I/O. These capabilities are all part of web programming, but this chapter focuses on
some web-specific concepts and organizational topics that will make your web pro-
gramming stronger.

Recipes 8.1, 8.2, and 8.3 show how to set, read, and delete cookies. A cookie is a small
text string that the server instructs the browser to send along with requests the browser
makes. Normally, HTTP requests aren’t “stateful”; each request can’t be connected to
a previous one. A cookie, however, can link different requests by the same user. This
makes it easier to build features such as shopping carts or to keep track of a user’s search
history.

Recipe 8.4 shows how to redirect users to a different web page than the one they re-
quested. Discovering the features of a user’s browser is shown in Recipe 8.5. Rec-
ipe 8.6 shows the details of constructing a URL that includes a get query string,
including proper encoding of special characters and handling of HTML entities. Sim-
ilarly, Recipe 8.7 provides information on reading the data submitted in the body of a
post request. Recipe 8.8 discusses a common web formatting need: displaying rows of
an HTML table such that alternating rows have different colors or styles.

The next three recipes demonstrate how to use authentication, which lets you protect
your web pages with passwords. PHP’s special features for dealing with HTTP Basic
authentication are explained in Recipe 8.9. Sometimes it’s a better idea to roll your own
authentication method using cookies, as shown in Recipe 8.10.

The three following recipes deal with output control. Recipe 8.11 shows how to force
output to be sent to the browser. Recipe 8.12 explains the output buffering functions.
Output buffers enable you to capture output that would otherwise be printed or delay

227

Download at Boykma.Com

output until an entire page is processed. Automatic compression of output is shown in
Recipe 8.13.

The next two recipes show how to interact with external variables: environment vari-
ables and PHP configuration settings. Recipes 8.14 and 8.15 discuss environment
variables. If Apache is your web server, you can use the techniques in Recipe 8.16 to
communicate with other Apache modules from within your PHP programs.

This chapter also includes two programs that demonstrate some of the concepts in the
recipes. Recipe 8.17 validates user accounts by sending an email message with a cus-
tomized link to each new user. If the user doesn’t visit the link within a week of receiving
the message, the account is deleted. Recipe 8.18 is a small example of a Wiki—a system
that makes any page on your web site editable from within the web browser.

8.1 Setting Cookies

Problem
You want to set a cookie so that your web site can recognize subsequent requests from
the same web browser.

Solution
Call setcookie(  ) with a cookie name and value, as in Example 8-1.

Example 8-1. Setting a cookie
<?php
setcookie('flavor','chocolate chip');
?>

Discussion
Cookies are sent with the HTTP headers, so if you’re not using output buffering,
setcookie(  ) must be called before any output is generated.

Pass additional arguments to setcookie(  ) to control cookie behavior. The third argu-
ment to setcookie(  ) is an expiration time, expressed as an epoch timestamp. For
example, the cookie set in Example 8-2 expires at noon GMT on December 3, 2004.

Example 8-2. Setting an expiring cookie
<?php
setcookie('flavor','chocolate chip',1259841600);
?>

If the third argument to setcookie(  ) is missing (or empty), the cookie expires when the
browser is closed. Also, many systems can’t handle a cookie expiration time greater
than 2147483647, because that’s the largest epoch timestamp that fits in a 32-bit in-
teger, as discussed in the introduction to Chapter 3.

228 | Chapter 8: Web Basics

Download at Boykma.Com

The fourth argument to setcookie(  ) is a path. The cookie is sent back to the server
only when pages whose path begin with the specified string are requested. For example,
the cookie set in Example 8-3 is sent back only to pages whose path begins with /prod-
ucts/.

Example 8-3. Setting a cookie with a path restriction

<?php
setcookie('flavor','chocolate chip','','/products/');
?>

The page that’s setting the cookie in Example 8-3 doesn’t have to have a URL whose
path component begins with /products/, but the cookie is sent back only to pages that
do.

The fifth argument to setcookie(  ) is a domain. The cookie is sent back to the server
only when pages whose hostname ends with the specified domain are requested. For
example, the first cookie in Example 8-4 is sent back to all hosts in the example.com
domain, but the second cookie is sent only with requests to the host jeannie.exam-
ple.com.

Example 8-4. Setting a cookie with a domain restriction

<?php
setcookie('flavor','chocolate chip','','','.example.com');
setcookie('flavor','chocolate chip','','','jeannie.example.com');
?>

If the first cookie’s domain was just example.com instead of .example.com, it would be
sent only to the single host example.com (and not www.example.com or jeannie.exam-
ple.com). If a domain is not specified when setcookie(  ) is called, then the browser
sends back the cookie only with requests to the same hostname as the request in which
the cookie was set.

The last optional argument to setcookie(  ) is a flag that, if set to true, instructs the
browser only to send the cookie over an SSL connection. This can be useful if the cookie
contains sensitive information, but remember that the data in the cookie is stored as
unencrypted plain text on the user’s computer.

Different browsers handle cookies in slightly different ways, especially with regard to
how strictly they match path and domain strings and how they determine priority be-
tween different cookies of the same name. The setcookie(  ) page of the online manual
has helpful clarifications of these differences.

See Also
Recipe 8.2 shows how to read cookie values; Recipe 8.3 shows how to delete cookies;
Recipe 8.12 explains output buffering; documentation on setcookie(  ) at http://

8.1 Setting Cookies | 229

Download at Boykma.Com

www.php.net/setcookie; an expanded cookie specification is detailed in RFC 2965 at
http://www.faqs.org/rfcs/rfc2965.html.

8.2 Reading Cookie Values

Problem
You want to read the value of a cookie that you’ve previously set.

Solution
Look in the $_COOKIE auto-global array, as shown in Example 8-5.

Example 8-5. Reading a cookie value

<?php
if (isset($_COOKIE['flavor'])) {
 print "You ate a {$_COOKIE['flavor']} cookie.";
}
?>

Discussion
A cookie’s value isn’t available in $_COOKIE during the request in which the cookie is
set. In other words, the setcookie(  ) function doesn’t alter the value of $_COOKIE. On
subsequent requests, however, each cookie sent back to the server is stored in
$_COOKIE. If register_globals is on, cookie values are also assigned to global variables.

When a browser sends a cookie back to the server, it sends only the value. You can’t
access the cookie’s domain, path, expiration time, or secure status through $_COOKIE
because the browser doesn’t send that to the server.

To print the names and values of all cookies sent in a particular request, loop through
the $_COOKIE array, as in Example 8-6.

Example 8-6. Reading all cookie values

<?php
foreach ($_COOKIE as $cookie_name => $cookie_value) {
 print "$cookie_name = $cookie_value
";
}
?>

See Also
Recipe 8.1 shows how to set cookies; Recipe 8.3 shows how to delete cookies; Rec-
ipe 8.12 explains output buffering; Recipe 9.15 for information on register_globals.

230 | Chapter 8: Web Basics

Download at Boykma.Com

8.3 Deleting Cookies

Problem
You want to delete a cookie so a browser doesn’t send it back to the server. For example,
you’re using cookies to track whether a user is logged in to your web site, and a user
logs out.

Solution
Call setcookie(  ) with no value for the cookie and an expiration time in the past, as in
Example 8-7.

Example 8-7. Deleting a cookie

<?php
setcookie('flavor','',1);
?>

Discussion
It’s a good idea to make the expiration time a long time in the past, in case your server
and the user’s computer have unsynchronized clocks. For example, if your server thinks
it’s 3:06 P.M. and a user’s computer thinks it’s 3:02 P.M., a cookie with an expiration
time of 3:05 P.M. isn’t deleted by that user’s computer even though the time is in the
past for the server.

The call to setcookie(  ) that deletes a cookie has to have the same arguments (except
for value and time) that the call to setcookie(  ) that set the cookie did, so include the
path, domain, and secure flag if necessary.

See Also
Recipe 8.1 shows how to set cookies; Recipe 8.2 shows how to read cookie values;
Recipe 8.12 explains output buffering; documentation on setcookie(  ) at http://
www.php.net/setcookie.

8.4 Redirecting to a Different Location

Problem
You want to automatically send a user to a new URL. For example, after successfully
saving form data, you want to redirect a user to a page that confirms that the data has
been saved.

8.3 Deleting Cookies | 231

Download at Boykma.Com

Solution
Before any output is printed, use header(  ) to send a Location header with the new URL,
and then call exit(  ) so that nothing else is printed. Example 8-8 shows how to do this.

Example 8-8. Redirecting to a different location
<?php
header('Location: http://www.example.com/confirm.html');
exit();
?>

Discussion
If you want to pass variables to the new page, you can include them in the query string
of the URL, as in Example 8-9.

Example 8-9. Redirecting with query string variables
<?php
header('Location: http://www.example.com/?monkey=turtle');
exit();
?>

Redirect URLs should include the protocol and hostname. They shouldn’t be just a
pathname. Example 8-10 shows a good Location header and a bad one.

Example 8-10. Good and bad Location headers
<?php
// Good Redirect
header('Location: http://www.example.com/catalog/food/pemmican.php');

// Bad Redirect
header('Location: /catalog/food/pemmican.php');
?>

The URL that you are redirecting a user to is retrieved with get. You can’t redirect
someone to retrieve a URL via post. With JavaScript, however, you can simulate a
redirect via post by generating a form that gets submitted (via post) automatically.
When a (JavaScript-enabled) browser receives the page in Example 8-11, it will imme-
diately post the form that is included.

Example 8-11. Redirecting via a posted form
<html>
 <body onload="document.getElementById('redirectForm').submit()">
 <form id='redirectForm' method='POST' action='/done.html'>
 <input type='hidden' name='status' value='complete'/>
 <input type='hidden' name='id' value='0u812'/>
 <input type='submit' value='Please Click Here To Continue'/>
 </form>
 </body>
</html>

232 | Chapter 8: Web Basics

Download at Boykma.Com

The form in Example 8-11 has an id of redirectForm, so the code in the <body/> element’s
onload attribute submits the form. The onload action does not execute if the browser
has JavaScript disabled. In that situation, the user sees a Please Click Here To Con
tinue button.

See Also
Documentation on header(  ) at http://www.php.net/header.

8.5 Detecting Different Browsers

Problem
You want to generate content based on the capabilities of a user’s browser.

Solution
Use the object returned by get_browser(  ) to determine a browser’s capabilities, as
shown in Example 8-12.

Example 8-12. Getting browser information

<?php
$browser = get_browser();
if ($browser->frames) {
 // print out a frame-based layout
} elseif ($browser->tables) {
 // print out a table-based layout
} else {
 // print out a boring layout
}
?>

Discussion
The get_browser(  ) function examines the environment variable (set by the web server)
and compares it to browsers listed in an external browser capability file. Due to licens-
ing issues, PHP isn’t distributed with a browser capability file. The “Obtaining PHP”
section of the PHP FAQ (http://www.php.net/faq.obtaining) lists http://www.gary
keith.com/browsers/downloads.asp as a source for a browser capability file. Download
the php_browscap.ini file from that site.

Once you download a browser capability file, you need to tell PHP where to find it by
setting the browscap configuration directive to the pathname of the file. If you use PHP
as a CGI, set the directive in the php.ini file, as in Example 8-13.

Example 8-13. Setting browscap in php.ini

browscap=/usr/local/lib/php_browscap.ini

8.5 Detecting Different Browsers | 233

Download at Boykma.Com

Many of the capabilities get_browser(  ) finds are shown in Table 8-1. For user-config-
urable capabilities such as javascript or cookies, though, get_browser(  ) just tells you
if the browser can support those functions. It doesn’t tell you if the user has disabled
the functions. If JavaScript is turned off in a JavaScript-capable browser or a user refuses
to accept cookies when the browser prompts him, get_browser(  ) still indicates that the
browser supports those functions.

Table 8-1. Browser capability object properties

Property Description

platform Operating system the browser is running on (e.g., Windows, Macintosh, Unix, Win32, Linux, MacPPC)

version Full browser version (e.g., 5.0, 3.5, 6.0b2)

majorver Major browser version (e.g., 5, 3, 6)

minorver Minor browser version (e.g., 0, 5, 02)

frames 1 if the browser supports frames

tables 1 if the browser supports tables

cookies 1 if the browser supports cookies

backgroundsounds 1 if the browser supports background sounds with <embed> or <bgsound>

vbscript 1 if the browser supports VBScript

javascript 1 if the browser supports JavaScript

javaapplets 1 if the browser can run Java applets

activexcontrols 1 if the browser can run ActiveX controls

See Also
Documentation on get_browser(  ) at http://www.php.net/get-browser.

8.6 Building a Query String

Problem
You need to construct a link that includes name/value pairs in a query string.

Solution
Use the http_build_query(  ) function, as in Example 8-14.

Example 8-14. Building a query string

<?php
$vars = array('name' => 'Oscar the Grouch',
 'color' => 'green',
 'favorite_punctuation' => '#');
$query_string = http_build_query($vars);

234 | Chapter 8: Web Basics

Download at Boykma.Com

$url = '/muppet/select.php?' . $query_string;
?>

Discussion
The URL built in Example 8-14 is:

/muppet/select.php?name=Oscar+the+Grouch&color=green&favorite_punctuation=%23

The query string has spaces encoded as +. Special characters such as # are hex encoded
as %23 because the ASCII value of # is 35, which is 23 in hexadecimal.

Although the encoding that http_build_query(  ) does prevents any special characters
in the variable names or values from disrupting the constructed URL, you may have
problems if your variable names begin with the names of HTML entities. Consider this
partial URL for retrieving information about a stereo system:

/stereo.php?speakers=12&cdplayer=52&=10

The HTML entity for ampersand (&) is & so a browser may interpret that URL as:

/stereo.php?speakers=12&cdplayer=52&=10

To prevent embedded entities from corrupting your URLs, you have three choices. The
first is to choose variable names that can’t be confused with entities, such as _amp instead
of amp. The second is to convert characters with HTML entity equivalents to those
entities before printing out the URL. Use htmlentities(  ):

$url = '/muppet/select.php?' . htmlentities($query_string);

The resulting URL is:

/muppet/select.php?name=Oscar+the+Grouch&color=green&favorite_punctuation=%23

Your third choice is to change the argument separator from & to & by setting the
configuration directive arg_separator.input to &. Then, http_build_query(  ) joins
the different name=value pairs with &:

/muppet/select.php?name=Oscar+the+Grouch&color=green&favorite_punctuation=%23

See Also
Documentation on http_build_query(  ) at http://www.php.net/http_build_query and
htmlentities(  ) at http://www.php.net/htmlentities.

8.7 Reading the Post Request Body

Problem
You want direct access to the body of a post request, not just the parsed data that PHP
puts in $_POST for you. For example, you want to handle an XML document that’s
been posted as part of a web services request.

8.7 Reading the Post Request Body | 235

Download at Boykma.Com

Solution
Read from the php://input stream, as in Example 8-15.

Example 8-15. Reading the post request body
<?php
$body = file_get_contents('php://input');
?>

Discussion
The auto-global array $_POST is great when you just need access to submitted form
variables, but it doesn’t cut it when you need raw, uncut access to the whole request
body. That’s where the php://input stream comes in. Read the entire thing with
file_get_contents(  ), or if you’re expecting a large request body, read it in chunks
with fread(  ).

If the configuration directive always_populate_raw_post_data is on, then raw post data
is also put into the global variable $HTTP_RAW_POST_DATA. But to write maximally portable
code, you should use php://input instead—that works even when always_popu
late_raw_post_data is turned off.

See Also
Documentation on php://input at http://www.php.net/wrappers and on always_popu
late_raw_post_data at http://www.php.net/ini.core#ini.always-populate-raw-post-data.

8.8 Generating HTML Tables with Alternating Row Styles

Problem
You want to display a table of information with alternating rows having different visual
appearance. For example, you want to have even-numbered rows in a table have a white
background and odd-numbered rows have a gray background.

Solution
Switch back and forth between two CSS styles as you generate the HTML for the table.
Example 8-16 uses this technique with data retrieved from a database.

Example 8-16. Generating an HTML table with alternating row styles
<style type="text/css">
.even-row {
 background: white;
}
.odd-row {
 background: gray;
}

236 | Chapter 8: Web Basics

Download at Boykma.Com

</style>
<table>
<tr><th>Quantity</th><th>Ingredient</th></tr>
<?php
$styles = array('even-row','odd-row');
$db = new PDO('sqlite:altrow.db');
foreach ($db->query('SELECT quantity, ingredient FROM ingredients') as $i => $row) { ?>
<tr class="<?php echo $styles[$i % 2]; ?>">
 <td><?php echo htmlentities($row['quantity']) ?></td>
 <td><?php echo htmlentities($row['ingredient']) ?></td></tr>
<?php } ?>
</table>

Discussion
The key to the concise code in Example 8-16 is the array of CSS class names in
$styles and the use of %, PHP’s “remainder” operator. The remainder operator returns
the remainder after dividing two numbers. The remainder when dividing something by
two (in this case, the row number in the result set—$i) is either 0 or 1. This provides
a handy way to alternate between the first and second elements of the $styles array.

See Also
Documentation on PHP’s arithmetic operators at http://www.php.net/language.opera
tors.arithmetic.

8.9 Using HTTP Basic or Digest Authentication

Problem
You want to use PHP to protect parts of your web site with passwords. Instead of
storing the passwords in an external file and letting the web server handle the authen-
tication, you want the password verification logic to be in a PHP program.

Solution
The $_SERVER['PHP_AUTH_USER'] and $_SERVER['PHP_AUTH_PW'] global variables contain
the username and password supplied by the user, if any. To deny access to a page, send
a WWW-Authenticate header identifying the authentication realm as part of a response
with status code 401, as shown in Example 8-17.

Example 8-17. Enforcing Basic authentication

<?php
header('WWW-Authenticate: Basic realm="My Website"');
header('HTTP/1.0 401 Unauthorized');
echo "You need to enter a valid username and password.";
exit();
?>

8.9 Using HTTP Basic or Digest Authentication | 237

Download at Boykma.Com

Discussion
When a browser sees a 401 header, it pops up a dialog box for a username and password.
Those authentication credentials (the username and password), if accepted by the
server, are associated with the realm in the WWW-Authenticate header. Code that checks
authentication credentials needs to be executed before any output is sent to the brows-
er, since it might send headers. For example, you can use a function such as
pc_validate(  ), shown in Example 8-18.

Example 8-18. pc_validate(  )
<?php
function pc_validate($user,$pass) {
 /* replace with appropriate username and password checking,
 such as checking a database */
 $users = array('david' => 'fadj&32',
 'adam' => '8HEj838');

 if (isset($users[$user]) && ($users[$user] == $pass)) {
 return true;
 } else {
 return false;
 }
}
?>

Example 8-19 shows how to use pc_validate(  ).

Example 8-19. Using a validation function
<?php
if (! pc_validate($_SERVER['PHP_AUTH_USER'], $_SERVER['PHP_AUTH_PW'])) {
 header('WWW-Authenticate: Basic realm="My Website"');
 header('HTTP/1.0 401 Unauthorized');
 echo "You need to enter a valid username and password.";
 exit;
}
?>

Replace the contents of the pc_validate(  ) function with appropriate logic to determine
if a user entered the correct password. You can also change the realm string from “My
Website” and the message that gets printed if a user hits “cancel” in her browser’s
authentication box from “You need to enter a valid username and password.”

PHP 5.1.0 and later support Digest authentication in addition to Basic authentication.
With Basic authentication, usernames and passwords are sent in the clear on the net-
work, just minimally obscured by Base64 encoding. With Digest authentication,
however, the password itself is never sent from the browser to the server. Instead, only
a hash of the password with some other values is sent. This reduces the possibility that
the network traffic could be captured and replayed by an attacker. The increased se-
curity provided by Digest authentication means that the code to implement is more

238 | Chapter 8: Web Basics

Download at Boykma.Com

complicated than just a simple password comparison. Example 8-20 provides functions
that compute digest authentication as specified in RFC 2617.

Example 8-20. Using Digest authentication
<?php

/* replace with appropriate username and password checking,
 such as checking a database */
$users = array('david' => 'fadj&32',
 'adam' => '8HEj838');
$realm = 'My website';

$username = pc_validate_digest($realm, $users);

// Execution never reaches this point if invalid auth data is provided
print "Hello, " . htmlentities($username);

function pc_validate_digest($realm, $users) {
 // Fail if no digest has been provided by the client
 if (! isset($_SERVER['PHP_AUTH_DIGEST'])) {
 pc_send_digest($realm);
 }
 // Fail if digest can't be parsed
 $username = pc_parse_digest($_SERVER['PHP_AUTH_DIGEST'], $realm, $users);
 if ($username === false) {
 pc_send_digest($realm);
 }
 // Valid username was specified in the digest
 return $username;
}

function pc_send_digest($realm) {
 header('HTTP/1.0 401 Unauthorized');
 $nonce = md5(uniqid());
 $opaque = md5($realm);
 header("WWW-Authenticate: Digest realm=\"$realm\" qop=\"auth\" ".
 "nonce=\"$nonce\" opaque=\"$opaque\"");
 echo "You need to enter a valid username and password.";
 exit;
}

function pc_parse_digest($digest, $realm, $users) {
 // We need to find the following values in the digest header:
 // username, uri, qop, cnonce, nc, and response
 $digest_info = array();
 foreach (array('username','uri','nonce','cnonce','response') as $part) {
 // Delimiter can either be ' or " or nothing (for qop and nc)
 if (preg_match('/'.$part.'=([\'"]?)(.*?)\1/', $digest, $match)) {
 // The part was found, save it for calculation
 $digest_info[$part] = $match[2];
 } else {
 // If the part is missing, the digest can't be validated;
 return false;
 }
 }

8.9 Using HTTP Basic or Digest Authentication | 239

Download at Boykma.Com

 // Make sure the right qop has been provided
 if (preg_match('/qop=auth(,|$)/', $digest)) {
 $digest_info['qop'] = 'auth';
 } else {
 return false;
 }
 // Make sure a valid nonce count has been provided
 if (preg_match('/nc=([0-9a-f]{8})(,|$)/', $digest, $match)) {
 $digest_info['nc'] = $match[1];
 } else {
 return false;
 }

 // Now that all the necessary values have been slurped out of the
 // digest header, do the algorithmic computations necessary to
 // make sure that the right information was provided.
 //
 // These calculations are described in sections 3.2.2, 3.2.2.1,
 // and 3.2.2.2 of RFC 2617.
 // Algorithm is MD5
 $A1 = $digest_info['username'] . ':' . $realm . ':' . $users[$digest_info['username']];
 // qop is 'auth'
 $A2 = $_SERVER['REQUEST_METHOD'] . ':' . $digest_info['uri'];
 $request_digest = md5(implode(':', array(md5($A1), $digest_info['nonce'], $digest_info['nc'],
 $digest_info['cnonce'], $digest_info['qop'], md5($A2))));

 // Did what was sent match what we computed?
 if ($request_digest != $digest_info['response']) {
 return false;
 }

 // Everything's OK, return the username
 return $digest_info['username'];
}
?>

If you’re not using PHP 5.1.0 or later but are using PHP as an Apache module, you can
use Digest authentication with code such as the HTTPDigest class by Paul James, which
is available at http://www.peej.co.uk/projects/phphttpdigest.html.

Neither HTTP Basic nor Digest authentication can be used if you’re running PHP as a
CGI program. If you can’t run PHP as a server module, you can use cookie authenti-
cation, discussed in Recipe 8.10.

Another issue with HTTP authentication is that it provides no simple way for a user to
log out, other than to exit his browser. The PHP online manual has a few suggestions
for log out methods that work with varying degrees of success with different server and
browser combinations at http://www.php.net/features.http-auth.

There is a straightforward way, however, to force a user to log out after a fixed time
interval: include a time calculation in the realm string. Browsers use the same username
and password combination every time they’re asked for credentials in the same realm.

240 | Chapter 8: Web Basics

Download at Boykma.Com

By changing the realm name, the browser is forced to ask the user for new credentials.
Example 8-21 uses Basic authentication and forces a log out every night at midnight.

Example 8-21. Forcing logout with Basic authentication

<?php
if (! pc_validate($_SERVER['PHP_AUTH_USER'],$_SERVER['PHP_AUTH_PW'])) {
 $realm = 'My Website for '.date('Y-m-d');
 header('WWW-Authenticate: Basic realm="'.$realm.'"');
 header('HTTP/1.0 401 Unauthorized');
 echo "You need to enter a valid username and password.";
 exit;
}
?>

You can also have a user-specific timeout without changing the realm name by storing
the time that a user logs in or accesses a protected page. The pc_validate2(  ) function
in Example 8-22 stores login time in a database and forces a logout if it’s been more
than 15 minutes since the user last requested a protected page.

Example 8-22. pc_validate2(  )
<?php
function pc_validate2($user,$pass) {
 $safe_user = strtr(addslashes($user),array('_' => '_', '%' => '\%'));
 $r = mysql_query("SELECT password,last_access
 FROM users WHERE user LIKE '$safe_user'");

 if (mysql_numrows($r) == 1) {
 $ob = mysql_fetch_object($r);
 if ($ob->password == $pass) {
 $now = time();
 if (($now - $ob->last_access) > (15 * 60)) {
 return false;
 } else {
 // update the last access time
 mysql_query("UPDATE users SET last_access = NOW()
 WHERE user LIKE '$safe_user'");
 return true;
 }
 }
 } else {
 return false;
 }
}

See Also
Recipe 8.10; the HTTP Authentication section of the PHP online manual at http://
www.php.net/features.http-auth.

8.9 Using HTTP Basic or Digest Authentication | 241

Download at Boykma.Com

8.10 Using Cookie Authentication

Problem
You want more control over the user login procedure, such as presenting your own
login form.

Solution
Store authentication status in a cookie or as part of a session. When a user logs in
successfully, put her username in a cookie. Also include a hash of the username and a
secret word so a user can’t just make up an authentication cookie with a username in
it, as shown in Example 8-23.

Example 8-23. Using cookie authentication
<?php
$secret_word = 'if i ate spinach';
if (pc_validate($_POST['username'],$_POST['password'])) {
 setcookie('login',
 $_POST['username'].','.md5($_POST['username'].$secret_word));
}
?>

Discussion
When using cookie authentication, you have to display your own login form, such as
the form in Example 8-24.

Example 8-24. Sample cookie authentication login form
<form method="POST" action="login.php">
Username: <input type="text" name="username">

Password: <input type="password" name="password">

<input type="submit" value="Log In">
</form>

You can use the same pc_validate(  ) function from Example 8-18 to verify the username
and password. The only difference is that you pass it $_POST['username'] and
$_POST['password'] as the credentials instead of $_SERVER['PHP_AUTH_USER'] and
$_SERVER['PHP_AUTH_PW']. If the password checks out, send back a cookie that contains
a username and a hash of the username, and a secret word. The hash prevents a user
from faking a login just by sending a cookie with a username in it.

Once the user has logged in, a page just needs to verify that a valid login cookie was
sent in order to do special things for that logged-in user. Example 8-25 shows one way
to do this.

Example 8-25. Verifying a login cookie
<?php
unset($username);

242 | Chapter 8: Web Basics

Download at Boykma.Com

if ($_COOKIE['login']) {
 list($c_username,$cookie_hash) = split(',',$_COOKIE['login']);
 if (md5($c_username.$secret_word) == $cookie_hash) {
 $username = $c_username;
 } else {
 print "You have sent a bad cookie.";
 }
}

if ($username) {
 print "Welcome, $username.";
} else {
 print "Welcome, anonymous user.";
}
?>

If you use the built-in session support, you can add the username and hash to the session
and avoid sending a separate cookie. When someone logs in, set an additional variable
in the session instead of sending a cookie, as shown in Example 8-26.

Example 8-26. Storing login info in a session
<?php
if (pc_validate($_POST['username'],$_POST['password'])) {
 $_SESSION['login'] =
 $_POST['username'].','.md5($_POST['username'].$secret_word));
}
?>

The verification code, shown in Example 8-27, is almost the same; it just uses
$_SESSION instead of $_COOKIE.

Example 8-27. Verifying session info
<?php
unset($username);
if (isset($_SESSION['login'])) {
 list($c_username,$cookie_hash) = explode(',',$_SESSION['login']);
 if (md5($c_username.$secret_word) == $cookie_hash) {
 $username = $c_username;
 } else {
 print "You have tampered with your session.";
 }
}
?>

Using cookie or session authentication instead of HTTP Basic authentication makes it
much easier for users to log out: you just delete their login cookie or remove the login
variable from their session. Another advantage of storing authentication information
in a session is that you can link users’ browsing activities while logged in to their
browsing activities before they log in or after they log out. With HTTP Basic authen-
tication, you have no way of tying the requests with a username to the requests that
the same user made before they supplied a username. Looking for requests from the

8.10 Using Cookie Authentication | 243

Download at Boykma.Com

same IP address is error prone, especially if the user is behind a firewall or proxy server.
If you are using sessions, you can modify the login procedure to log the connection
between session ID and username using code such as that in Example 8-28.

Example 8-28. Connecting logged-out and logged-in usage
<?php
if (pc_validate($_POST['username'],$_POST['password'])) {
 $_SESSION['login'] =
 $_POST['username'].','.md5($_POST['username'].$secret_word));
 error_log('Session id '.session_id().' log in as '.$_REQUEST['username']);
}

Example 8-28 writes a message to the error log, but it could just as easily record the
information in a database that you could use in your analysis of site usage and traffic.

One danger of using session IDs is that sessions are hijackable. If Alice guesses Bob’s
session ID, she can masquerade as Bob to the web server. The session module has two
optional configuration directives that help you make session IDs harder to guess. The
session.entropy_file directive contains a path to a device or file that generates ran-
domness, such as /dev/random or /dev/urandom. The session.entropy_length directive
holds the number of bytes to be read from the entropy file when creating session IDs.

No matter how hard session IDs are to guess, they can also be stolen if they are sent in
clear text between your server and a user’s browser. HTTP Basic authentication also
has this problem. Use SSL to guard against network sniffing, as described in Rec-
ipe 18.13.

See Also
Recipe 8.9; Recipe 20.9 discusses logging errors; Recipe 18.9 discusses verifying data
with hashes; documentation on setcookie(  ) at http://www.php.net/setcookie and on
md5(  ) at http://www.php.net/md5.

8.11 Flushing Output to the Browser

Problem
You want to force output to be sent to the browser. For example, before doing a slow
database query, you want to give the user a status update.

Solution
Use flush(  ), as in Example 8-29.

Example 8-29. Flushing output to the browser
<?php
print 'Finding identical snowflakes...';
flush();

244 | Chapter 8: Web Basics

Download at Boykma.Com

$sth = $dbh->query(
 'SELECT shape,COUNT(*) AS c FROM snowflakes GROUP BY shape HAVING c > 1');
?>

Discussion
The flush(  ) function sends all output that PHP has internally buffered to the web
server, but the web server may have internal buffering of its own that delays when the
data reaches the browser. Additionally, some browsers don’t display data immediately
upon receiving it, and some versions of Internet Explorer don’t display a page until it
has received at least 256 bytes. To force IE to display content, print blank spaces at the
beginning of the page, as shown in Example 8-30.

Example 8-30. Forcing IE to display content immediately
<?php
print str_repeat(' ',300);
print 'Finding identical snowflakes...';
flush();
$sth = $dbh->query(
 'SELECT shape,COUNT(*) AS c FROM snowflakes GROUP BY shape HAVING c > 1');
?>

See Also
Recipe 23.13; documentation on flush(  ) at http://www.php.net/flush.

8.12 Buffering Output to the Browser

Problem
You want to start generating output before you’re finished sending headers or cookies.

Solution
Call ob_start(  ) at the top of your page and ob_end_flush(  ) at the bottom. You can
then intermix commands that generate output and commands that send headers. The
output won’t be sent until ob_end_flush(  ) is called. This is demonstrated in Exam-
ple 8-31.

Example 8-31. Buffering output
<?php ob_start(); ?>

I haven't decided if I want to send a cookie yet.

<?php setcookie('heron','great blue'); ?>

Yes, sending that cookie was the right decision.

<?php ob_end_flush(); ?>

8.12 Buffering Output to the Browser | 245

Download at Boykma.Com

Discussion
You can pass ob_start(  ) the name of a callback function to process the output buffer
with that function. This is useful for postprocessing all the content in a page, such as
hiding email addresses from address-harvesting robots. Such a callback is shown in
Example 8-32.

Example 8-32. Using a callback with ob_start(  )
<?php
function mangle_email($s) {
 return preg_replace('/([^@\s]+)@([-a-z0-9]+\.)+[a-z]{2,}/is',
 '<$1@...>',
 $s);
}

ob_start('mangle_email');
?>

I would not like spam sent to ronald@example.com!

<?php ob_end_flush(); ?>

The mangle_email(  ) function transforms the output to:

I would not like spam sent to <ronald@...>!

The output_buffering configuration directive turns output buffering on for all pages:

output_buffering = On

Similarly, output_handler sets an output buffer processing callback to be used on all
pages:

output_handler=mangle_email

Setting an output_handler automatically sets output_buffering to on.

See Also
Documentation on ob_start(  ) at http://www.php.net/ob-start, ob_end_flush(  ) at http://
www.php.net/ob-end-flush, and output buffering at http://www.php.net/outcontrol.

8.13 Compressing Web Output

Problem
You want to send compressed content to browsers that support automatic decompres-
sion.

Solution
Add this setting to your php.ini file:

246 | Chapter 8: Web Basics

Download at Boykma.Com

zlib.output_compression=1

Discussion
Browsers tell the server that they can accept compressed responses with the Accept-
Encoding header. If a browser sends Accept-Encoding: gzip or Accept-Encoding:
deflate, and PHP is built with the zlib extension, the zlib.output_compression config-
uration directive tells PHP to compress the output with the appropriate algorithm
before sending it back to the browser. The browser uncompresses the data before dis-
playing it.

You can adjust the compression level with the zlib.output_compression_level config-
uration directive:

; minimal compression
zlib.output_compression_level=1

; maximal compression
zlib.output_compression_level=9

At higher compression levels, less data needs to be sent from the server to the browser,
but more server CPU time must be used to compress the data.

See Also
Documentation on the zlib extension at http://www.php.net/zlib.

8.14 Reading Environment Variables

Problem
You want to get the value of an environment variable.

Solution
Read the value from the $_ENV auto-global array as shown in Example 8-33.

Example 8-33. Reading an environment variable

<?php
$name = $_ENV['USER'];
?>

Discussion
Environment variables are named values associated with a process. For instance, in
Unix, you can check the value of $_ENV['HOME'] to find the home directory of a user, as
shown in Example 8-34.

8.14 Reading Environment Variables | 247

Download at Boykma.Com

Example 8-34. Reading another environment variable

<?php
print $_ENV['HOME']; // user's home directory
?>

Early versions of PHP automatically created PHP variables for all environment variables
by default. As of 4.1.0, php.ini-recommended disables this because of speed consider-
ations; however, php.ini-dist continues to enable $_ENV for backward compatibility.

The $_ENV array is created only if the value of the variables_order configuration directive
contains E. If $_ENV isn’t available, use getenv(  ) to retrieve an environment variable, as
shown in Example 8-35.

Example 8-35. Using getenv(  )
<?php
$path = getenv('PATH');
?>

The getenv(  ) function isn’t available if you’re running PHP as an ISAPI module.

See Also
Recipe 8.15 on setting environment variables; documentation on getenv(  ) at http://
www.php.net/getenv; information on environment variables in PHP at http://
www.php.net/reserved.variables.php#reserved.variables.environment.

8.15 Setting Environment Variables

Problem
You want to set an environment variable in a script or in your server configuration.
Setting environment variables in your server configuration on a host-by-host basis al-
lows you to configure virtual hosts differently.

Solution
To set an environment variable in a script, use putenv(  ), as in Example 8-36.

Example 8-36. Setting an environment variable

<?php
putenv('ORACLE_SID=ORACLE'); // configure oci extension
?>

To set an environment variable in your Apache httpd.conf file, use SetEnv as shown in
Example 8-37. Note that variables set this way show up in the PHP auto-global array
$_SERVER, not $_ENV.

248 | Chapter 8: Web Basics

Download at Boykma.Com

Example 8-37. Setting an environment variable in Apache configuration
<?php
SetEnv DATABASE_PASSWORD password
?>

Discussion
An advantage of setting variables in httpd.conf is that you can set more restrictive read
permissions on it than on your PHP scripts. Since PHP files need to be readable by the
web server process, this generally allows other users on the system to view them. By
storing passwords in httpd.conf, you can avoid placing a password in a publicly available
file. Also, if you have multiple hostnames that map to the same document root, you
can configure your scripts to behave differently based on the hostnames.

For example, you could have members.example.com and guests.example.com. The
members version requires authentication and allows users additional access. The guests
version provides a restricted set of options, but without authentication. Exam-
ple 8-38 shows how this could work.

Example 8-38. Adjusting behavior based on an environment variable
<?php
$version = $_SERVER['SITE_VERSION'];

// redirect to http://guest.example.com, if user fails to sign in correctly
if ('members' == $version) {
 if (!authenticate_user($_POST['username'], $_POST['password'])) {
 header('Location: http://guest.example.com/');
 exit;
 }
}
include_once "${version}_header"; // load custom header

See Also
Recipe 8.14 on getting the values of environment variables; documentation on
putenv(  ) at http://www.php.net/putenv; information on setting environment variables
in Apache at http://httpd.apache.org/docs/mod/mod_env.html.

8.16 Communicating Within Apache

Problem
You want to communicate from PHP to other parts of the Apache request process.
This includes setting variables in the access_log.

Solution
Use apache_note(  ) as shown in Example 8-39.

8.16 Communicating Within Apache | 249

Download at Boykma.Com

Example 8-39. Communicating within Apache
<?php
// get value
$session = apache_note('session');

// set value
apache_note('session', $session);
?>

Discussion
When Apache processes a request from a client, it goes through a series of steps; PHP
plays only one part in the entire chain. Apache also remaps URLs, authenticates users,
logs requests, and more. While processing a request, each handler has access to a set
of key/value pairs called the notes table. The apache_note(  ) function provides access
to the notes table to retrieve information set by handlers earlier on in the process and
leave information for handlers later on.

For example, if you use the session module to track users and preserve variables across
requests, you can integrate this with your logfile analysis so you can determine the
average number of page views per user. Use apache_note(  ) in combination with the
logging module to write the session ID directly to the access_log for each request. First,
add the session ID to the notes table with the code in Example 8-40.

Example 8-40. Adding the session ID to the notes table
<?php
// retrieve the session ID and add it to Apache's notes table
apache_note('session_id', session_id());
?>

Then, modify your httpd.conf file to add the string %{session_id}n to your LogFormat.
The trailing n tells Apache to use a variable stored in its notes table by another module.

If PHP is built with the --enable-memory-limit configuration option, it stores the peak
memory usage of each request in a note called mod_php_memory_usage. Add the memory
usage information to a LogFormat with %{mod_php_memory_usage}n.

See Also
Documentation on apache_note(  ) at http://www.php.net/apache-note; information on
logging in Apache at http://httpd.apache.org/docs/mod/mod_log_config.html.

8.17 Program: Web Site Account (De)activator
When users sign up for your web site, it’s helpful to know that they’ve provided you
with a correct email address. To validate the email address they provide, send an email
to the address they supply when they sign up. If they don’t visit a special URL included
in the email after a few days, deactivate their account.

250 | Chapter 8: Web Basics

Download at Boykma.Com

This system has three parts. The first is the notify-user.php program that sends an email
to a new user and asks that user to visit a verification URL, shown in Example 8-42.
The second, shown in Example 8-43, is the verify-user.php page that handles the veri-
fication URL and marks users as valid. The third is the delete-user.php program that
deactivates accounts of users who don’t visit the verification URL after a certain amount
of time. This program is shown in Example 8-44.

Example 8-41 contains the SQL to create the table in which the user information is
stored.

Example 8-41. SQL for user verification table
CREATE TABLE users (
 email VARCHAR(255) NOT NULL,
 created_on DATETIME NOT NULL,
 verify_string VARCHAR(16) NOT NULL,
 verified TINYINT UNSIGNED
);

What’s in Example 8-41 is the minimum amount of information necessary for user
verification. You probably want to store more information than this about your users.
When creating a user’s account, save information to the users table, and send the user
an email telling him how to verify his account. The code in Example 8-42 assumes that
the user’s email address is stored in the variable $email.

Example 8-42. notify-user.php
<?php
// Connect to the database
$db = new PDO('sqlite:users.db');

$email = 'david';

// generate verify_string
$verify_string = '';
for ($i = 0; $i < 16; $i++) {
 $verify_string .= chr(mt_rand(32,126));
}

// insert user into database
// This uses an SQLite-specific datetime() function
$sth = $db->prepare("INSERT INTO users " .
 "(email, created_on, verify_string, verified) " .
 "VALUES (?, datetime('now'), ?, 0)");
$sth->execute(array($email, $verify_string));

$verify_string = urlencode($verify_string);
$safe_email = urlencode($email);

$verify_url = "http://www.example.com/verify-user.php";

$mail_body=<<<_MAIL_
To $email:

8.17 Program: Web Site Account (De)activator | 251

Download at Boykma.Com

Please click on the following link to verify your account creation:

$verify_url?email=$safe_email&verify_string=$verify_string

If you do not verify your account in the next seven days, it will be
deleted.
MAIL;

// mail($email,"User Verification",$mail_body);
print "$email, $mail_body";

The verification page that users are directed to when they follow the link in the email
message updates the users table if the proper information has been provided, as shown
in Example 8-43.

Example 8-43. verify-user.php
<?php
// Connect to the database
$db = new PDO('sqlite:users.db');

$sth = $db->prepare('UPDATE users SET verified = 1 WHERE email = ? '.
 ' AND verify_string = ? AND verified = 0');

$res = $sth->execute(array($_GET['email'], $_GET['verify_string']));
var_dump($res, $sth->rowCount());
if (! $res) {
 print "Please try again later due to a database error.";
} else {
 if ($sth->rowCount() == 1) {
 print "Thank you, your account is verified.";
 } else {
 print "Sorry, you could not be verified.";
 }
}
?>

The user’s verification status is updated only if the email address and verify string pro-
vided match a row in the database that has not already been verified. The last step is
the short program that deletes unverified users after the appropriate interval, as shown
in Example 8-44.

Example 8-44. delete-user.php
<?php
// Connect to the database
$db = new PDO('sqlite:users.db');

$window = '-7 days';

$sth = $db->prepare("DELETE FROM users WHERE verified = 0 AND ".
 "created_on < datetime('now',?)");
$res = $sth->execute(array($window));

if ($res) {

252 | Chapter 8: Web Basics

Download at Boykma.Com

 print "Deactivated " . $sth->rowCount() . " users.\n";
} else {
 print "Can't delete users.\n";
}
?>

Run the program in Example 8-44 once a day to scrub the users table of users that
haven’t been verified. If you want to change how long users have to verify themselves,
adjust the value of $window, and update the text of the email message sent to users to
reflect the new value.

8.18 Program: Tiny Wiki
The program in Example 8-45 puts together various concepts discussed in this chapter
and implements a complete Wiki system—a web site whose pages are all user-editable.
It follows a structure common among simple PHP programs of its type. The first part
of the code defines various configuration settings. Then comes an if/else section that
decides what to do (display a page, save page edits, etc.) based on the values of sub-
mitted form or URL variables. The remainder of the program consists of the functions
invoked from that if/else section—functions to print the page header and footer, load
saved page contents, and display a page-editing form.

The tiny Wiki relies on an external library, PHP Markdown by Michel Fortin, to handle
translating from the handy and compact Markdown syntax to HTML. You can get PHP
Markdown from http://www.michelf.com/projects/php-markdown/.

Example 8-45. Tiny Wiki
<?php

// Use the Markdown function from
// http://www.michelf.com/projects/php-markdown/
// for Wiki-like text markup
require_once 'markdown.php';

// The directory where the Wiki pages will be stored
// Make sure the web server user can write to it
define('PAGEDIR',dirname(__FILE__) . '/pages');

// Get page name, or use default
$page = isset($_GET['page']) ? $_GET['page'] : 'Home';

// Figure out what to do: display an edit form, save an
// edit form, or display a page

// Display an edit form that's been asked for
if (isset($_GET['edit'])) {
 pageHeader($page);
 edit($page);
 pageFooter($page, false);
}
// Save a submitted edit form

8.18 Program: Tiny Wiki | 253

Download at Boykma.Com

else if (isset($_POST['edit'])) {
 file_put_contents(pageToFile($_POST['page']), $_POST['contents']);
 // Redirect to the regular view of the just-edited page
 header('Location: http://'.$_SERVER['HTTP_HOST'] . $_SERVER['SCRIPT_NAME'] .
 '?page='.urlencode($_POST['page']));
 exit();
}
// Display a page
else {
 pageHeader($page);
 // If the page exists, display it and the footer with an "Edit" link
 if (is_readable(pageToFile($page))) {
 // Get the contents of the page from the file it's saved in
 $text = file_get_contents(pageToFile($page));
 // Convert Markdown syntax (using Markdown() from markdown.php)
 $text = Markdown($text);
 // Make bare [links] link to other wiki pages
 $text = wikiLinks($text);
 // Display the page
 echo $text;
 // Display the footer
 pageFooter($page, true);
 }
 // If the page doesn't exist, display an edit form
 // and the footer without an "Edit" link
 else {
 edit($page, true);
 pageFooter($page, false);
 }
}

// The page header -- pretty simple, just the title and the usual HTML
// pleasantries
function pageheader($page) { ?>
<html>
<head>
<title>Wiki: <?php echo htmlentities($page) ?></title>
</head>
<body>
<h1><?php echo htmlentities($page) ?></h1>
<hr/>
<?php
}

// The page footer -- a "last modified" timestamp, an optional
// "Edit" link, and a link back to the front page of the Wiki
function pageFooter($page, $displayEditLink) {
 $timestamp = @filemtime(pageToFile($page));
 if ($timestamp) {
 $lastModified = strftime('%c', $timestamp);
 } else {
 $lastModified = 'Never';
 }
 if ($displayEditLink) {
 $editLink = ' - Edit';

254 | Chapter 8: Web Basics

Download at Boykma.Com

 } else {
 $editLink = '';
 }
?>
<hr/>
Last Modified: <?php echo $lastModified ?>
<?php echo $editLink ?> - <a href="<?php echo $_SERVER['SCRIPT_NAME'] ?>">Home
</body>
</html>
<?php
}

// Display an edit form. If the page already exists, include its current
// contents in the form
function edit($page, $isNew = false) {
 if ($isNew) {
 $contents = '';
?>
<p>This page doesn't exist yet. To create it, enter its contents below
and click the Save button.</p>
 <?php } else {
 $contents = file_get_contents(pageToFile($page));
 }
?>
<form method='post' action='<?php echo htmlentities($_SERVER['SCRIPT_NAME']) ?>'>
<input type='hidden' name='edit' value='true'/>
<input type='hidden' name='page' value='<?php echo htmlentities($page) ?>'/>
<textarea name='contents' rows='20' cols='60'>
<?php echo htmlentities($contents) ?></textarea>

<input type='submit' value='Save'/>
</form>
<?php
}

// Convert a submitted page to a filename. Using md5() prevents naughty
// characters in $page from causing security problems
function pageToFile($page) {
 return PAGEDIR.'/'.md5($page);
}

// Turn text such as [something] in a page into an HTML link to the
// Wiki page "something"
function wikiLinks($page) {
 if (preg_match_all('/\[([^\]]+?)\]/', $page, $matches, PREG_SET_ORDER)) {
 foreach ($matches as $match) {
 $page = str_replace($match[0], '<a href="'.$_SERVER['SCRIPT_NAME'].
'?page='.urlencode($match[1]).'">'.htmlentities($match[1]).'', $page);
 }
 }
 return $page;
}
?>

8.18 Program: Tiny Wiki | 255

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 9

Form

9.0 Introduction
The genius of PHP is its seamless integration of form variables into your programs. It
makes web programming smooth and simple, speeding the cycle from web form to
PHP code to HTML output.

With that convenience, however, comes the responsibility to make sure that the user-
provided information that flows so easily into your program contains appropriate
content. External input can never be trusted, so it’s imperative always to validate all
incoming data. Recipes 9.2 through 9.9 show how to validate common kinds of infor-
mation as well as providing general guidelines on arbitrary form validation you might
need to do. Recipe 9.10 discusses escaping HTML entities to allow the safe display of
user-entered data. Recipe 9.14 covers how to process files uploaded by a user.

HTTP is a “stateless” protocol—it has no built-in mechanism that helps you to save
information from one page so you can access it in other pages. Recipes 9.11, 9.12, and
9.13 all show ways to work around the fundamental problem of figuring out which
user is making which requests to your web server.

Whenever PHP processes a page, it checks for URL and form variables, uploaded files,
applicable cookies, and web server and environment variables. These are then directly
accessible in the following arrays: $_GET, $_POST, $_FILES, $_COOKIE, $_SERVER, and
$_ENV. They hold, respectively, all variables set in the query string, in the body of a
post request, by uploaded files, by cookies, by the web server, and by the environment
in which the web server is running. There’s also $_REQUEST, which is one giant array that
contains the values from the other six arrays.

When placing elements inside of $_REQUEST, if two arrays both have a key with the same
name, PHP breaks the tie by relying on the variables_order configuration directive. By
default, variables_order is EGPCS (or GPCS, if you’re using the php.ini-recommended con-
figuration file). So PHP first adds environment variables to $_REQUEST and then adds
query string, post, cookie, and web server variables to the array, in this order. For
instance, since C comes after P in the default order, a cookie named username overwrites

257

Download at Boykma.Com

a posted variable named username. Note that the GPCS value from php.ini-recommen-
ded means that the $_ENV array doesn’t get populated with environment variables.

While $_REQUEST can be convenient, it’s usually a better idea to look in the more detailed
array directly. That way, you know exactly what you’re getting and don’t have to be
concerned that a change in variables_order affects the behavior of your program.

All of these arrays are auto-global. That means global inside of a function or class—
they’re always in scope.

Prior to PHP 4.1, these auto-global variables didn’t exist. Instead, there were regular
arrays named $HTTP_COOKIE_VARS, $HTTP_ENV_VARS, $HTTP_GET_VARS, $HTTP_POST_VARS,
$HTTP_POST_FILES, and $HTTP_SERVER_VARS. These arrays are still available for legacy rea-
sons, but the newer arrays are easier to work with. These older arrays are populated
only if the track_vars configuration directive is on, but as of PHP 4.0.3, this feature is
always enabled.

Finally, if the register_globals configuration directive is on, all these variables are also
available as variables in the global namespace. So $_GET['password'] is also just $pass
word. While convenient, this introduces major security problems because malicious
users can easily set variables from the outside and overwrite trusted internal variables.
Starting with PHP 4.2, register_globals defaults to off.

Example 9-1 is a basic form. The form asks the user to enter his first name. When the
form is submitted the information is sent to hello.php.

Example 9-1. Basic HTML form

<form action="hello.php" method="post">
What is your first name?
<input type="text" name="first_name" />
<input type="submit" value="Say Hello" />
</form>

The name of the text input element inside the form is first_name. Also, the method of the
form is post. This means that when the form is submitted, $_POST['first_name'] will
hold whatever string the user typed in. (It could also be empty, of course, if he didn’t
type anything.)

Example 9-2 shows the contents of hello.php, which will display information from the
form.

Example 9-2. Basic PHP form processing

<?php
echo 'Hello, ' . $_POST['first_name'] . '!';
?>

If you type Twinkle into the form in Example 9-1, Example 9-2 prints:

Hello, Twinkle!

258 | Chapter 9: Form

Download at Boykma.Com

Example 9-2 is so basic that it omits two important steps that should be in all PHP
form-processing applications: data validation (to make sure what’s typed into the form
is acceptable to your program), and output escaping (to make sure that malicious users
can’t use your web site to attack others). Recipes 9.2 through 9.9 discuss data validation
and Recipe 9.10 discusses output escaping.

9.1 Processing Form Input

Problem
You want to use the same HTML page to emit a form and then process the data entered
into it. In other words, you’re trying to avoid a proliferation of pages that each handle
different steps in a transaction.

Solution
Use the $_SERVER['REQUEST_METHOD'] variable to determine whether the request was
submitted with the get or post method. If the get method was used, print the form. If
the post method was used, process the form. Example 9-3 combines the form from
Example 9-1 and the code from Example 9-2 into one program, deciding what to do
based on $_SERVER['REQUEST_METHOD'].

Example 9-3. Deciding what to do based on request method
<?php if ($_SERVER['REQUEST_METHOD'] == 'GET') { ?>
<form action="<?php echo $_SERVER['SCRIPT_NAME'] ?>" method="post">
What is your first name?
<input type="text" name="first_name" />
<input type="submit" value="Say Hello" />
</form>
<?php } else {
 echo 'Hello, ' . $_POST['first_name'] . '!';
}
?>

Discussion
Back in the hazy past, in the early days of the Web, when our ancestors scratched out
forms, they usually made two files: a static HTML page with the form and a script that
processed the form and returned a dynamically generated response to the user. This
was a little unwieldy because form.html led to form.cgi and, if you changed one page,
you needed to also remember to edit the other, or your script might break.

Usually, forms are easier to maintain when all parts live in the same file and context
dictates which sections to display. The get method (what your browser uses when you
just type in a URL or click on a link) means “Hey, server, give me something you’ve
got.” The post method (what your browser uses when you submit a form whose
method attribute is set to post) means “Hey, server, here’s some data that changes some-

9.1 Processing Form Input | 259

Download at Boykma.Com

thing.” So the characteristic response to a get request is the HTML form, and the
response to the post request is the results of processing that form. In Example 9-3, the
“processing” is extremely simple—just printing a greeting. In more typical applications,
the processing is more complicated—saving information to a database or sending an
email message.

Note that although the XHTML specification requires that the method attribute of a
<form/> element be lowercase (get or post), the HTTP specification requires that a web
browser use all uppercase (GET or POST) when sending the request method to the server.
The value in $_SERVER['REQUEST_METHOD'] is whatever the browser sends, so in practice
it will always be uppercase.

One other technique also makes pages easier to maintain: don’t hardcode the path to
your page directly into the form action. This makes it impossible to rename or relocate
your page without also editing it. Instead, use the $_SERVER['SCRIPT_NAME'] variable as
the form action. This is set up by PHP on each request to contain the filename (relative
to the document root) of the current script.

See Also
Recipe 9.11 for handling multipage forms.

9.2 Validating Form Input: Required Fields

Problem
You want to make sure a value has been supplied for a form element. For example,
you want to make sure a text box hasn’t been left blank.

Solution
Use strlen(  ) to test the element in $_GET or $_POST, as in Example 9-4.

Example 9-4. Testing a required field
<?php
if (! strlen($_POST['flavor'])) {
 print 'You must enter your favorite ice cream flavor.';
}
?>

Discussion
Different types of form elements cause different types of behavior in $_GET and $_POST
when left empty. Blank text boxes, text areas, and file-upload boxes result in elements
whose value is a zero-length string. Unchecked checkboxes and radio buttons don’t
produce any elements in $_GET or $_POST. Browsers generally force a selection in a drop-
down menu that only allows one choice, but drop-down menus that allow multiple

260 | Chapter 9: Form

Download at Boykma.Com

choices and have no choices selected act like checkboxes—they don’t produce any
elements in $_GET or $_POST.

What’s worse, requests don’t have to come from web browsers. Your PHP program
may receive a request from another program, a curious hacker constructing requests
by hand, or a malicious attacker building requests in an attempt to find holes in your
system. To make your code as robust as possible, always check that a particular element
exists in $_GET or $_POST before applying other validation strategies to the element.
Additionally, if the validation strategy assumes that the element is an array of values
(as in Example 9-15), ensure that the value really is an array by using is_array(  ).

Example 9-5 uses isset(  ), strlen(  ), and is_array(  ) for maximally strict form vali-
dation.

Example 9-5. Strict form validation
<?php
// Making sure $_POST['flavor'] exists before checking its length
if (! (isset($_POST['flavor']) && strlen($_POST['flavor']))) {
 print 'You must enter your favorite ice cream flavor.';
}

// $_POST['color'] is optional, but if it's supplied, it must be
// more than 5 characters
if (isset($_POST['color']) && (strlen($_POST['color']) <=5)) {
 print 'Color must be more than 5 characters.';
}

// Making sure $_POST['choices'] exists and is an array
if (! (isset($_POST['choices']) && is_array($_POST['choices']))) {
 print 'You must select some choices.';
}
?>

In a moment of weakness, you may be tempted to use empty(  ) instead of strlen(  ) to
test if a value has been entered in a text box. Succumbing to such weakness leads to
problems since the one character string 0 is false according to the rules of PHP’s boo-
lean calculations. That means if someone types 0 into the children text box, causing
$_POST['children'] to contain 0, empty($_POST['children']) is true—which, from a
form validation perspective, is wrong.

See Also
Recipe 9.5 for information about validating drop-down menus, Recipe 9.6 for infor-
mation about validating radio buttons, and Recipe 9.7 for information about validating
checkboxes.

9.2 Validating Form Input: Required Fields | 261

Download at Boykma.Com

9.3 Validating Form Input: Numbers

Problem
You want to make sure a number is entered in a form input box. For example, you
don’t want someone to be able to say that her age is “old enough” or “tangerine,” but
instead want values such as 13 or 56.

Solution
If you’re looking for an integer larger than or equal to zero, use ctype_digit(  ), as shown
in Example 9-6.

Example 9-6. Validating a number with ctype_digit(  )
<?php
if (! ctype_digit($_POST['age'])) {
 print 'Your age must be a number bigger than or equal to zero.';
}
?>

If you’re looking for a positive or negative integer, compare the submitted value to what
you get when casting it to an integer and then back to a string, as in Example 9-7.

Example 9-7. Validating an integer with typecasting
<?php
if ($_POST['rating'] != strval(intval($_POST['rating']))) {
 print 'Your rating must be an integer.';
}
?>

If you’re looking for a positive or negative decimal number, compare the submitted
value to what you get when casting it to a floating-point number and then back to a
string, as in Example 9-8.

Example 9-8. Validating a decimal number with typecasting
<?php
if ($_POST['temperature'] != strval(floatval($_POST['temperature']))) {
 print 'Your temperature must be a number.';
}
?>

Discussion
Number validation is one of those things in PHP that seems like it’s simple, but is a
little trickier than it first appears. A common impulse is to use the built-in
is_numeric(  ) function for number validation. Unforunately, what is_numeric(  ) thinks
is “numeric” is more in line with how a computer behaves than a human. For example,

262 | Chapter 9: Form

Download at Boykma.Com

is_numeric(  ) considers hexadecimal number strings such as 0xCAFE and exponentially
notated number strings such as 10e40 as numbers.

Something else to keep in mind when validating numbers (and all form input): values
in $_GET and $_POST are always strings. That means that if someone submits a form with
06520 typed into a text box named zip_code, the value of $_POST['zip_code'] is the five
character string 06520, not the integer 6,520.

So if what you need to validate is “this value consists only of digits,” then
ctype_digit(  ) is the way to go. It is the fastest way to validate a number.
ctype_digit(  ), like all the ctype functions, requires its input to be a string, but that’s
taken care of for you when validating form input, since all values in $_GET and $_POST
are strings.

Before PHP 5.1, ctype_digit(  ) doesn’t do what you expect if you give it an empty string
(ctype_digit('') returns true), so be sure to check an input as described in Rec-
ipe 9.2 before passing it to ctype_digit(  ). Also, a downside to ctype_digit(  ) (in all
versions of PHP) is that it’s not very flexible. All it knows about are digits. If you want
to accept negative numbers or decimal numbers, it can’t help you.

In those cases, turn to two of PHP’s typecasting functions: intval(  ), which “integeri-
fies” a string, and floatval(  ), which “floatifies” it. Each of these functions, when given
a string, do their best to produce a number from what’s in the string. If the string just
contains a valid number, that’s what you get back. For example, intval('06520') re-
turns the integer 6520, intval('-2853') returns the integer −2853, floatval
('3.1415') returns the floating-point number 3.1415, and floatval('-473.20') returns
the floating-point number −473.2.

Where these functions come in handy in input validation, however, is how they treat
strings that aren’t valid numbers. Each returns as much number as it can find in the
string, starting from the beginning and ignoring initial whitespace. That is, intval('-6
weeks') returns −6, intval('30x bigger') returns 30, intval('3.1415') returns 3, and
intval('21+up') returns 21. floatval(  ) behaves similarly, but allows decimal points.
For example, floatval('127.128.129.130') returns 127.128. When given a string with
no valid number characters in it, both functions return 0.

This means that passing the user input through either intval(  ) or floatval(  ) works
as a filter, leaving valid values unmodified, but changing invalid values to just their
numerical essence. The resulting comparison with the original input succeeds if the
value has passed through the filter without being modified—in other words, the com-
parison succeeds if the original input is a valid integer or decimal number.

It is necessary to convert what comes out of intval(  ) or floatval(  ) to a string with
strval(  ) to make sure PHP does the comparison properly. When PHP compares two
strings, the comparison behaves as you’d expect. (The result is true if the strings are
the same, and false otherwise.) However, when PHP compares a string and a number
(such as the result of intval(  ) or floatval(  )), it attempts to convert the string to a
number (using the rules outlined above). This would counteract the “filter” properties

9.3 Validating Form Input: Numbers | 263

Download at Boykma.Com

of intval(  ) or floatval(  ), so we need to prevent it from happening. Ensuring that two
strings are compared accomplishes this.

If all of this typecasting has you feeling a bit queasy and you’re a fan of regular expres-
sions, feel free to use those instead. Example 9-9 shows regular expressions that validate
an integer and a decimal number.

Example 9-9. Validating numbers with regular expressions
<?php
// The pattern matches an optional - sign and then
// at least one digit
if (! preg_match('/^-?\d+$/'$_POST['rating'])) {
 print 'Your rating must be an integer.';
}

// The pattern matches an optional - sign and then
// Optional digits to go before a decimal point
// An optional decimal point
// And then at least one digit
if (! preg_match('/^-?\d*\.?\d+$/',$_POST['temperature'])) {
 print 'Your temperature must be a number.';
}
?>

It is a common refrain among performance-tuning purists that regular expressions
should be avoided because they are comparatively slow. In this case, however, with
such simple regular expressions, they are about equally efficient as the typecasting. If
you’re more comfortable with regular expressions, or you’re using them in other vali-
dation contexts as well, they can be a handy choice. The regular expression also allows
you to consider valid numbers, such as 782364.238723123, that cannot be stored as a
PHP float without losing precision. This can be useful with data such as a longitude or
latitude that you plan to store as a string. The regular expression also allows you to
consider valid numbers, such as 782364.238723123, that cannot be stored as a PHP
float without losing precision. This can be useful with data such as a longitude or
latitude that you plan to store as a string. That said, the ctype_digit(  ) function is much
faster than either typecasting or a regular expression, so if that does what you need,
use it.

See Also
Recipe 9.2 for information on validating required fields; documentation on
ctype_digit(  ) at http://www.php.net/ctype_digit.

9.4 Validating Form Input: Email Addresses

Problem
You want to know whether an email address a user has provided is valid.

264 | Chapter 9: Form

Download at Boykma.Com

Solution
Use the is_valid_email_address(  ) function in Example 9-10. It tells you whether an
email address is valid according to the rules in RFC 822.

Example 9-10. Validating an email address

function is_valid_email_address($email){
 $qtext = '[^\\x0d\\x22\\x5c\\x80-\\xff]';
 $dtext = '[^\\x0d\\x5b-\\x5d\\x80-\\xff]';
 $atom = '[^\\x00-\\x20\\x22\\x28\\x29\\x2c\\x2e\\x3a-\\x3c'.
 '\\x3e\\x40\\x5b-\\x5d\\x7f-\\xff]+';
 $quoted_pair = '\\x5c[\\x00-\\x7f]';
 $domain_literal = "\\x5b($dtext|$quoted_pair)*\\x5d";
 $quoted_string = "\\x22($qtext|$quoted_pair)*\\x22";
 $domain_ref = $atom;
 $sub_domain = "($domain_ref|$domain_literal)";
 $word = "($atom|$quoted_string)";
 $domain = "$sub_domain(\\x2e$sub_domain)*";
 $local_part = "$word(\\x2e$word)*";
 $addr_spec = "$local_part\\x40$domain";
 return preg_match("!^$addr_spec$!", $email) ? 1 : 0;
}

if (is_valid_email_address('cal@example.com')) {
 print 'cal@example.com is a valid e-mail address';
} else {
 print 'cal@example.com is not a valid e-mail address';
}

Discussion
RFC 822 defines the standards for a valid email address. The function in Exam-
ple 9-10, by Cal Henderson, uses the grammar rules laid out in that RFC to build a
regular expression. You can read more about how the function is constructed at http://
www.iamcal.com/publish/articles/php/parsing_email. Cal has also written a function
that validates according to the more complicated rules in RFC 2822. That function is
available for download from http://code.iamcal.com/php/rfc822/rfc822.phps.

The function in Example 9-10 only checks that a particular address is syntactically
correct. This is useful for preventing a user from accidentally telling you that her email
address is bingolover2261@example instead of bingolover2261@example.com. What it
doesn’t tell you, however, is what happens if you send a message to that address. Fur-
thermore, it doesn’t let you know that the person providing the email address is in
control of the address. For those sorts of validations, you need to send a confirmation
message to the address. The confirmation message can ask the user to take some affir-
mative task (reply to the message, click on a link) to indicate they’re the same person
that entered the address on the form. Or, the confirmation message can tell the user
what to do (reply to the message, click on a link), if she’s not the same person that
entered the address on the form. Recipe 8.17 demonstrates a system that sends an email

9.4 Validating Form Input: Email Addresses | 265

Download at Boykma.Com

message containing a link that the recipient must click on to confirm that she provided
the address.

See Also
RFC 822 at http://www.faqs.org/rfcs/rfc822.html, RFC 2822 at http://www.faqs.org/rfcs/
rfc2822.html, “Parsing Email Addresses in PHP” by Cal Henderson at http://www.iam
cal.com/publish/articles/php/parsing_email, and the functions available for download at
http://code.iamcal.com/php/rfc822/.

9.5 Validating Form Input: Drop-Down Menus

Problem
You want to make sure that a valid choice was selected from a drop-down menu
generated by the HTML <select/> element.

Solution
Use an array of values to generate the menu. Then validate the input by checking that
the value is in the array. Example 9-11 uses in_array(  ) to do the validation.

Example 9-11. Validating a drop-down menu with in_array(  )
<?php
// Generating the menu
$choices = array('Eggs','Toast','Coffee');
echo "<select name='food'>\n";
foreach ($choices as $choice) {
 echo "<option>$choice</option>\n";
}
echo "</select>";

// Then, later, validating the menu
if (! in_array($_POST['food'], $choices)) {
 echo "You must select a valid choice.";
}
?>

The menu that Example 9-11 generates is:

<select name='food'>
<option>Eggs</option>
<option>Toast</option>
<option>Coffee</option>
</select>

To work with a menu that sets value attributes on each <option/> element, use
array_key_exists(  ) to validate the input, as shown in Example 9-12.

266 | Chapter 9: Form

Download at Boykma.Com

Example 9-12. Validating a drop-down menu with array_key_exists(  )
<?php
// Generating the menu
$choices = array('eggs' => 'Eggs Benedict',
 'toast' => 'Buttered Toast with Jam',
 'coffee' => 'Piping Hot Coffee');
echo "<select name='food'>\n";
foreach ($choices as $key => $choice) {
 echo "<option value='$key'>$choice</option>\n";
}
echo "</select>";

// Then, later, validating the menu
if (! array_key_exists($_POST['food'], $choices)) {
 echo "You must select a valid choice.";
}
?>

The menu that Example 9-12 generates is:

<select name='food'>
<option value='eggs'>Eggs Benedict</option>
<option value='toast'>Buttered Toast with Jam</option>
<option value='coffee'>Piping Hot Coffee</option>
</select>

Discussion
The methods in Example 9-11 and Example 9-12 differ in the kinds of menus that they
generate. Example 9-11 has a $choices array with automatic numeric keys and outputs
<option/> elements. Example 9-12 has a $choices array with explicit keys and outputs
<option/> elements with value attributes drawn from those keys.

In either case, the validation strategy is the same: make sure that the value submitted
for the form element is one of the allowed choices. For requests submitted by well-
behaved browsers, this validation rule never fails—web browsers generally don’t let
you make up your choice for a drop-down menu. Remember, though, that there’s
nothing requiring that requests to your PHP program come from a well-behaved web
browser. They could come from a buggy browser or from a bored 11-year-old with a
copy of the HTTP specification in one hand and a command-line telnet client in the
other. Because you always need to be mindful of malicious, hand-crafted HTTP re-
quests, it’s important to validate input even in circumstances where most users will
never encounter an error.

See Also
Documentation on in_array(  ) at http://www.php.net/in_array and on
array_key_exists(  ) at http://www.php.net/array_key_exists.

9.5 Validating Form Input: Drop-Down Menus | 267

Download at Boykma.Com

9.6 Validating Form Input: Radio Buttons

Problem
You want to make sure a valid radio button is selected from a group of radio buttons.

Solution
Use an array of values to generate the menu. Then validate the input by checking that
the submitted value is in the array. Example 9-13 uses array_key_exists(  ) to do the
validation.

Example 9-13. Validating a radio button
<?php
// Generating the radio buttons
$choices = array('eggs' => 'Eggs Benedict',
 'toast' => 'Buttered Toast with Jam',
 'coffee' => 'Piping Hot Coffee');
foreach ($choices as $key => $choice) {
 echo "<input type='radio' name='food' value='$key'/> $choice \n";
}

// Then, later, validating the radio button submission
if (! array_key_exists($_POST['food'], $choices)) {
 echo "You must select a valid choice.";
}
?>

Discussion
The radio button validation in Example 9-13 is very similar to the drop-down menu
validation in Example 9-12. They both follow the same pattern—define the data that
describes the choices, generate the appropriate HTML, and then use the defined data
to ensure that a valid value was submitted. The difference is in what HTML is generated.

Another difference between drop-down menus and radio buttons is how defaults are
handled. When the HTML doesn’t explicitly specify a default choice for a drop-down
menu, the first choice in the menu is used. However, when the HTML doesn’t explicitly
specify a default choice for a set of radio buttons, no choice is used as a default.

To ensure that one of a set of radio buttons is chosen in a well-behaved web browser,
give the default choice a checked="checked" attribute. In addition, to guard against
missing values in hand-crafted malicious requests, use isset(  ) to ensure that some-
thing was submitted for the radio button, as described in Recipe 9.2.

268 | Chapter 9: Form

Download at Boykma.Com

See Also
Recipe 9.2 for information on validating required fields; documentation on
array_key_exists(  ) at http://www.php.net/array_key_exists.

9.7 Validating Form Input: Checkboxes

Problem
You want to make sure only valid checkboxes are checked.

Solution
For a single checkbox, ensure that if a value is supplied, it’s the correct one. If a value
isn’t supplied for the checkbox, then the box wasn’t checked. Example 9-14 figures out
whether a checkbox was checked, unchecked, or had an invalid value submitted.

Example 9-14. Validating a single checkbox
<?php
// Generating the checkbox
$value = 'yes';
echo "<input type='checkbox' name='subscribe' value='yes'/> Subscribe?";

// Then, later, validating the checkbox
if (isset($_POST['subscribe'])) {
 // A value was submitted and it's the right one
 if ($_POST['subscribe'] == $value) {
 $subscribed = true;
 } else {
 // A value was submitted and it's the wrong one
 $subscribed = false;
 print 'Invalid checkbox value submitted.';
 }
} else {
 // No value was submitted
 $subscribed = false;
}

if ($subscribed) {
 print 'You are subscribed.';
} else {
 print 'You are not subscribed';
}

For a group of checkboxes, use an array of values to generate the checkboxes. Then,
use array_intersect(  ) to ensure that the set of submitted values is contained within
the set of acceptable values, as shown in Example 9-15.

Example 9-15. Validating a group of checkboxes
<?php
// Generating the checkboxes

9.7 Validating Form Input: Checkboxes | 269

Download at Boykma.Com

$choices = array('eggs' => 'Eggs Benedict',
 'toast' => 'Buttered Toast with Jam',
 'coffee' => 'Piping Hot Coffee');
foreach ($choices as $key => $choice) {
 echo "<input type='checkbox' name='food[]' value='$key'/> $choice \n";
}
?>

// Then, later, validating the radio button submission
if (array_intersect($_POST['food'], array_keys($choices)) != $_POST['food']) {
 echo "You must select only valid choices.";
}
?>

Discussion
For PHP to handle multiple checkbox values properly, the checkboxes’ name attribute
must end with [], as described in Recipe 9.17. Those multiple values are formatted
in $_POST as an array. Since the checkbox name in Example 9-15 is food[], $_POST
['food'] holds the array of values from the checked boxes.

The array_intersect(  ) function finds all of the elements in $_POST['food'] that are also
in array_keys($choices). That is, it filters the submitted choices ($_POST['food']), only
allowing through values that are acceptable—keys in the $choices array. If all of the
values in $_POST['food'] are acceptable, then the result of
array_intersect($_POST['food'], array_keys($choices)) is an unmodified copy of
$_POST['food']. So if the result isn’t equal to $_POST['food'], something invalid was
submitted.

Checkboxes have the same issues with default values as do radio buttons. So just as
with radio buttons, use the rules in Recipe 9.2 to determine that something was sub-
mitted for the checkbox before proceeding with further validation.

See Also
Recipe 9.2 for information about validating required fields; documentation on
array_intersect(  ) at http://www.php.net/array_intersect.

9.8 Validating Form Input: Dates and Times

Problem
You want to make sure that a date or time a user entered is valid. For example, you
want to ensure that a user hasn’t attempted to schedule an event for the 45th of August
or provided a credit card that has already expired.

270 | Chapter 9: Form

Download at Boykma.Com

Solution
If your form provides month, day, and year as separate elements, plug those values
into checkdate(  ), as in Example 9-16. This tells you whether or not the month, day,
and year are valid.

Example 9-16. Checking a particular date

<?php
if (! checkdate($_POST['month'], $_POST['day'], $_POST['year'])) {
 print "The date you entered doesn't exist!";
}
?>

To check that a date is before or after a particular value, convert the user-supplied values
to a timestamp, compute the timestamp for the threshhold date, and compare the two.
Example 9-17 checks that the supplied credit card expiration month and year are after
the current month.

Example 9-17. Checking credit card expiration

<?php
// The beginning of the month in which the credit card expires
$expires = mktime(0, 0, 0, $_POST['month'], 1, $_POST['year']);
// The beginning of next month
// If date('n') + 1 == 13, mktime() does the right thing and uses
// January of the following year.
$nextMonth = mktime(0, 0, 0, date('n') + 1, 1);
if ($expires < $nextMonth) {
 print "Sorry, that credit card expires too soon.";
}
?>

Discussion
checkdate(  ) is handy because it knows about leap year and how many days are in each
month, saving you from tedious comparisons of each component of the date. For range
validations—making sure a date or time is before, after, or between other dates or times
—it’s easiest to work with epoch timestamps.

See Also
Chapter 3 discusses the finer points of date and time handling.

9.9 Validating Form Input: Credit Cards

Problem
You want to make sure a user hasn’t entered a bogus credit card number.

9.9 Validating Form Input: Credit Cards | 271

Download at Boykma.Com

Solution
The is_valid_credit_card(  ) function in Example 9-18 tells you whether a provided
credit card number is syntactically valid.

Example 9-18. Validating a credit card number
<?php
function is_valid_credit_card($s) {
 // Remove non-digits and reverse
 $s = strrev(preg_replace('/[^\d]/','',$s));
 // compute checksum
 $sum = 0;
 for ($i = 0, $j = strlen($s); $i < $j; $i++) {
 // Use even digits as-is
 if (($i % 2) == 0) {
 $val = $s[$i];
 } else {
 // Double odd digits and subtract 9 if greater than 9
 $val = $s[$i] * 2;
 if ($val > 9) { $val -= 9; }
 }
 $sum += $val;
 }
 // Number is valid if sum is a multiple of ten
 return (($sum % 10) == 0);
}

if (! is_valid_credit_card($_POST['credit_card'])) {
 print 'Sorry, that card number is invalid.';
}

?>

Discussion
Credit cards use the Luhn algorithm to prevent against accidental error. This algorithm,
which the is_valid_credit_card(  ) function in Example 9-18 uses, does some manip-
ulations on the individual digits of the card number to tell whether the number is
acceptable.

Validating a credit card is a bit like validating an email address. Syntactic validation—
making sure the provided value is a sequence of characters that matches a standard—
is relatively easy. Semantic validation, however, is trickier. The credit card number 4111
1111 1111 1111 sails through the function in Example 9-18 but isn’t valid. It’s a well-
known test number that looks like a Visa card number. (And, as such, is handy for
using in books when one needs an example.)

Just as strong email address validation requires external verification (usually by sending
a message to the address with a confirmation link in it), credit card validation requires
external validation by submitting the credit card number to a payment processor along
with associated account info (card holder name and address) and making sure you get
back an approval.

272 | Chapter 9: Form

Download at Boykma.Com

Syntactic validation is good protection against inadvertent user typos but, obviously,
is not all you need to do when checking credit card numbers.

See Also
Recipe 9.4 for information about validating email addresses; http://en.wikipedia.org/
wiki/Luhn for information about the Luhn algorithm.

9.10 Preventing Cross-Site Scripting

Problem
You want to securely display user-entered data on an HTML page. For example, you
want to allow users to add comments to a blog post without worrying that HTML or
JavaScript in a comment will cause problems.

Solution
Pass user input through htmlentities(  ) before displaying it, as in Example 9-19.

Example 9-19. Escaping HTML

<?php
print 'The comment was: ';
print htmlentities($_POST['comment']);
?>

Discussion
PHP has a pair of functions to escape HTML entities. The most basic is
htmlspecialchars(  ), which escapes four characters: < > " and &. Depending on optional
parameters, it can also translate ' instead of or in addition to ". For more complex
encoding, use htmlentities(  ); it expands on htmlspecialchars(  ) to encode any char-
acter that has an HTML entity. Example 9-20 shows htmlspecialchars(  ) in action.

Example 9-20. Escaping HTML entities

<?php
$html = "Stew's favorite movie.\n";
print htmlspecialchars($html); // double-quotes
print htmlspecialchars($html, ENT_QUOTES); // single- and double-quotes
print htmlspecialchars($html, ENT_NOQUOTES); // neither

Example 9-20 prints:

Stew's favorite movie.
Stew's favorite movie.
Stew's favorite movie.

9.10 Preventing Cross-Site Scripting | 273

Download at Boykma.Com

By default, both htmlentities(  ) and htmlspecialchars(  ) use the ISO-8859-1 character
set. To use a different character set, pass the character set as a third argument. For
example, to use UTF-8, call htmlentities($string, ENT_QUOTES, 'UTF-8').

See Also
Recipes 18.4 and 19.13; documentation on htmlentities(  ) at http://www.php.net/
htmlentities and htmlspecialchars(  ) at http://www.php.net/htmlspecialchars.

9.11 Working with Multipage Forms

Problem
You want to use a form that displays more than one page and preserves data from one
page to the next. For example, your form is for a survey that has too many questions
to put them all on one page.

Solution
Use session tracking to store form information for each stage as well as a variable to
keep track of what stage to display. Example 9-21 displays a two-page form and then
the collected results.

Example 9-21. Making a multipage form
<?php
// Turn on sessions
session_start();

// Figure out what stage to use
if (($_SERVER['REQUEST_METHOD'] == 'GET') || (! isset($_POST['stage']))) {
 $stage = 1;
} else {
 $stage = (int) $_POST['stage'];
}

// Save any submitted data
if ($stage > 1) {
 foreach ($_POST as $key => $value) {
 $_SESSION[$key] = $value;
 }
}

if ($stage == 1) { ?>

<form action='<?php echo $_SERVER['SCRIPT_NAME'] ?>' method='post'>

Name: <input type='text' name='name'/>

Age: <input type='text' name='age'/> </br/>

<input type='hidden' name='stage' value='<?php echo $stage + 1 ?>'/>

274 | Chapter 9: Form

Download at Boykma.Com

<input type='submit' value='Next'/>
</form>

<?php } else if ($stage == 2) { ?>

<form action='<?php echo $_SERVER['SCRIPT_NAME'] ?>' method='post'>

Favorite Color: <input type='text' name='color'/>

Favorite Food: <input type='text' name='food'/> </br/>

<input type='hidden' name='stage' value='<?php echo $stage + 1 ?>'/>
<input type='submit' value='Done'/>
</form>

<?php } else if ($stage == 3) { ?>

 Hello <?php echo $_SESSION['name'] ?>.
 You are <?php echo $_SESSION['age'] ?> years old.
 Your favorite color is <?php echo $_SESSION['color'] ?>
 and your favorite food is <?php echo $_SESSION['food'] ?>.

<?php } ?>

Discussion
At the beginning of each stage in Example 9-21, all the submitted form variables are
copied into $_SESSION. This makes them available on subsequent requests, including
the code that runs in stage 3, which displays everything that’s been saved.

PHP’s sessions are perfect for this kind of task since all of the data in a session is stored
on the server. This keeps each request small—no need to resubmit stuff that’s been
entered on a previous stage—and reduces the validation overhead. You only have to
validate each piece of submitted data when it’s submitted.

See Also
Recipe 11.1 for information about session handling.

9.12 Redisplaying Forms with Inline Error Messages

Problem
When there’s a problem with data entered in a form, you want to print out error mes-
sages alongside the problem fields, instead of a generic error message at the top of the
form. You also want to preserve the values the user entered in the form, so they don’t
have to redo the entire thing.

Solution
As you validate, keep track of form errors in an array keyed by element name. Then,
when it’s time to display the form, print the appropriate error message next to each

9.12 Redisplaying Forms with Inline Error Messages | 275

Download at Boykma.Com

element. To preserve user input, use the appropriate HTML idiom: a value attribute
(with entity encoding) for most <input/> elements, a checked='checked' attribute for
radio buttons and checkboxes, and a selected='selected' attribute on <option/> ele-
ments in drop-down menus. Example 9-22 displays and validates a form with a text
box, a checkbox, and a drop-down menu.

Example 9-22. Redisplaying a form with error messages and preserved input
<?php
// Set up some options for the drop-down menu
$flavors = array('Vanilla','Chocolate','Rhinoceros');

if ($_SERVER['REQUEST_METHOD'] == 'GET') {
 // Just display the form if the request is a GET
 display_form(array());
} else {
 // The request is a POST, so validate the form
 $errors = validate_form();
 if (count($errors)) {
 // If there were errors, redisplay the form with the errors
 display_form($errors);
 } else {
 // The form data was valid, so congratulate the user
 print 'The form is submitted!';
 }
}

function display_form($errors) {
 global $flavors;

 // Set up defaults
 $defaults['name'] = isset($_POST['name']) ? htmlentities($_POST['name']) : '';
 $defaults['age'] = isset($_POST['age']) ? "checked='checked'" : '';
 foreach ($flavors as $flavor) {
 if (isset($_POST['flavor']) && ($_POST['flavor'] == $flavor)) {
 $defaults['flavor'][$flavor] = "selected='selected'";
 } else {
 $defaults['flavor'][$flavor] = '';
 }
 }
 ?>

<form action='<?php echo $_SERVER['SCRIPT_NAME'] ?>' method='post'>
<dl>
<dt>Your Name:</dt>
<?php print_error('name', $errors) ?>
<dd><input type='text' name='name' value='<?php echo $defaults['name'] ?>'/></dd>
<dt>Are you over 18 years old?</dt>
<?php print_error('age', $errors) ?>
<dd><input type='checkbox' name='age' value='1' <?php echo $defaults['age'] ?>/> Yes</dd>
<dt>Your favorite ice cream flavor:</dt>
<?php print_error('flavor', $errors) ?>
<dd><select name='flavor'>
<?php foreach ($flavors as $flavor) {
 echo "<option {$defaults['flavor'][$flavor]}>$flavor</option>";

276 | Chapter 9: Form

Download at Boykma.Com

} ?>
</select></dd>
</dl>
<input type='submit' value='Send Info'/>
</form>
<?php }

// A helper function to make generating the HTML for an error message easier
function print_error($key, $errors) {
 if (isset($errors[$key])) {
 print "<dd class='error'>{$errors[$key]}</dd>";
 }
}

function validate_form() {
 global $flavors;

 // Start out with no errors
 $errors = array();

 // name is required and must be at least 3 characters
 if (! (isset($_POST['name']) && (strlen($_POST['name']) > 3))) {
 $errors['name'] = 'Enter a name of at least 3 letters';
 }
 if (isset($_POST['age']) && ($_POST['age'] != '1')) {
 $errors['age'] = 'Invalid age checkbox value.';
 }
 // flavor is optional but if submitted must be in $flavors
 if (isset($_POST['flavor']) && (! in_array($_POST['flavor'], $flavors))) {
 $errors['flavor'] = 'Choose a valid flavor.';
 }

 return $errors;
}
?>

Discussion
When a form is submitted with invalid data, it’s more pleasant for the user if the form
is redisplayed with error messages in appropriate places rather than a generic “the form
is invalid” message at the top of the form. The validate_form(  ) function in Exam-
ple 9-22 builds up an array of error messages that display_form(  ) uses to print the
messages in the right places.

Extending Example 9-22 is a matter of expanding the checks in validate_form(  ) to
handle the appropriate validation needs of your form and including the correct HTML
generation in display_form(  ) so that the form includes the input elements you want.

See Also
Recipes 9.2 to 9.9 for various form validation strategies.

9.12 Redisplaying Forms with Inline Error Messages | 277

Download at Boykma.Com

9.13 Guarding Against Multiple Submission of the Same Form

Problem
You want to prevent a user from submitting the same form more than once.

Solution
Include a hidden field in the form with a unique value. When validating the form, check
if a form has already been submitted with that value. If it has, reject the submission. If
it hasn’t, process the form and record the value for later use. Additionally, use Java-
Script to disable the form Submit button once the form has been submitted.

Example 9-23 uses the uniqid(  ) and md5(  ) functions to insert a unique ID field in a
form. It also sets the form’s onsubmit handler to a small bit of JavaScript that disables
the submit button once the form’s been submitted.

Example 9-23. Insert a unique ID into a form
<form method="post" action="<?php echo $_SERVER['SCRIPT_NAME'] ?>"
 onsubmit="document.getElementById('submit-button').disabled = true;">
<!-- insert all the normal form elements you need -->
<input type='hidden' name='token' value='<?php echo md5(uniqid()) ?>'/>
<input type='submit' value='Save Data' id='submit-button'/>
</form>

Example 9-24 checks the submitted token against saved data in an SQLite database to
see if the form has already been submitted.

Example 9-24. Checking a form for resubmission
if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 $db = new PDO('sqlite:/tmp/formjs.db');
 $db->beginTransaction();
 $sth = $db->prepare('SELECT * FROM forms WHERE token = ?');
 $sth->execute(array($_POST['token']));
 if (count($sth->fetchAll())) {
 print "This form has already been submitted!";
 $db->rollBack();
 } else {
 /* Validation code for the rest of the form goes here --
 * validate everything before inserting the token */
 $sth = $db->prepare('INSERT INTO forms (token) VALUES (?)');
 $sth->execute(array($_POST['token']));
 $db->commit();
 print "The form is submitted successfully.";
 }
}
?>

Discussion
For a variety of reasons, users often resubmit a form. Usually it’s a slip-of-the-mouse:
double-clicking the Submit button. They may hit their web browser’s Back button to

278 | Chapter 9: Form

Download at Boykma.Com

edit or recheck information, but then they re-hit Submit instead of Forward. It can be
intentional: they’re trying to stuff the ballot box for an online survey or sweepstakes.
Our Solution prevents the non-malicious attack and can slow down the malicious user.
It won’t, however, eliminate all fraudulent use: more complicated work is required for
that.

The Solution does prevent your database from being cluttered with too many copies of
the same record. By generating a token that’s placed in the form, you can uniquely
identify that specific instance of the form, even when cookies are disabled. The
uniqid(  ) function generates an acceptable one-time token. The md5(  ) function doesn’t
add any additional randomness to the token, but restricts the characters that could be
in it. The results of uniqid(  ) can be a mix of different letters and other characters. The
results of md5(  ) consist only of digits and the letters abcdef. For English-speaking users
at least, this ensures that the token doesn’t contain any naughty words.

It’s tempting to avoid generating a random token and instead use a number one greater
than the number of records already in your database table. There are (at least) two
problems with this method. First, it creates a race condition. What happens when a
second person starts the form before the first person has completed it? The second form
will then have the same token as the first, and conflicts will occur. This can be worked
around by creating a new blank record in the database when the form is requested, so
the second person will get a number one higher than the first. However, this can lead
to empty rows in the database if users opt not to complete the form.

The other reason not do this is because it makes it trivial to edit another record in the
database by manually adjusting the ID to a different number. Depending on your se-
curity settings, a fake get or post submission allows the data to be altered without
difficulty. A random token, however, can’t be guessed merely by moving to a different
integer.

See Also
Recipe 18.9 for more details on verifying data with hashes; documentation on
uniqid(  ) at http://www.php.net/uniqid and on md5(  ) at http://www.php.net/md5.

9.14 Processing Uploaded Files

Problem
You want to process a file uploaded by a user. For example, you’re building a photo-
sharing web site and you want to store user-supplied photos.

Solution
Use the $_FILES array to get information about uploaded files. Example 9-25 saves an
uploaded file to the /tmp directory on the web server.

9.14 Processing Uploaded Files | 279

Download at Boykma.Com

Example 9-25. Uploading a file
<?php if ($_SERVER['REQUEST_METHOD'] == 'GET') { ?>
<form method="post" action="<?php echo $_SERVER['SCRIPT_NAME'] ?>"
 enctype="multipart/form-data">
<input type="file" name="document"/>
<input type="submit" value="Send File"/>
</form>
<?php } else {
 if (isset($_FILES['document']) &&
 ($_FILES['document']['error'] == UPLOAD_ERR_OK)) {
 $newPath = '/tmp/' . basename($_FILES['document']['name']);
 if (move_uploaded_file($_FILES['document']['tmp_name'], $newPath)) {
 print "File saved in $newPath";
 } else {
 print "Couldn't move file to $newPath";
 }
 } else {
 print "No valid file uploaded.";
 }
}
?>

Discussion
Starting in PHP 4.1, all uploaded files appear in the $_FILES auto-global array. For each
file element in the form, an array is created in $_FILES whose key is the file element’s
name. For example, the form in Example 9-25 has a file element named document, so
$_FILES['document'] contains the information about the uploaded file. Each of these
per-file arrays has five elements:

name
The name of the uploaded file. This is supplied by the browser so it could be a full
pathname or just a filename.

type
The MIME type of the file, as supplied by the browser.

size
The size of the file in bytes, as calculated by the server.

tmp_name
The location in which the file is temporarily stored on the server.

error
An error code describing what (if anything) went wrong with the file upload. (This
element is available in PHP 4.2.0 and later versions.)

If you’re using a version of PHP earlier than 4.1, this information is in
$HTTP_POST_FILES instead of $_FILES.

The possible values of the error element are:

UPLOAD_ERR_OK (0)
Upload succeeded (no error).

280 | Chapter 9: Form

Download at Boykma.Com

UPLOAD_ERR_INI_SIZE (1)
The size of the uploaded file is bigger than the value of the upload_max_filesize
configuration directive.

UPLOAD_ERR_FORM_SIZE (2)
The size of the uploaded file is bigger than the value of the form’s MAX_FILE_SIZE
element.

UPLOAD_ERR_PARTIAL (3)
Only part of the file was uploaded.

UPLOAD_ERR_NO_FILE (4)
There was no file uploaded.

UPLOAD_ERR_NO_TMP_DIR (6)
The upload failed because there was no temporary directory to store the file (avail-
able in PHP 4.3.10, 5.0.3, and later).

UPLOAD_ERR_CANT_WRITE (7)
PHP couldn’t write the file to disk (available in PHP 5.1.0 and later).

For all of the error values, the listed constants are available in PHP 4.3.0 and later. In
earlier versions of PHP, use the number in parentheses next to the constant instead.

The is_uploaded_file(  ) function confirms that the file you’re about to process is a
legitimate file resulting from a user upload. Always check the tmp_name value before
processing it as any other file. This ensures that a malicious user can’t trick your code
into processing a system file as an upload.

You can also move the file to a permanent location; use move_uploaded_file(  ), as in
Example 9-25. It also does a check to make sure that the file being moved is really an
uploaded file. Note that the value stored in tmp_name is the complete path to the file,
not just the base name. Use basename(  ) to chop off the leading directories if needed.

Be sure to check that PHP has permission to read and write to both the directory in
which temporary files are saved (set by the upload_tmp_dir configuration directive)
and the location to which you’re trying to copy the file. PHP is often running under a
special username such as nobody or apache, instead of your personal username. Because
of this, if you’re running under safe_mode, copying a file to a new location will probably
not allow you to access it again.

Processing files can be a subtle task because not all browsers submit the same infor-
mation. It’s important to do it correctly, however, or you open yourself up to security
problems. You are, after all, allowing strangers to upload any file they choose to your
machine; malicious people may see this as an opportunity to crack into or crash the
computer.

As a result, PHP has a number of features that allow you to place restrictions on up-
loaded files, including the ability to completely turn off file uploads altogether. So if
you’re experiencing difficulty processing uploaded files, check that your file isn’t being
rejected because it seems to pose a security risk.

9.14 Processing Uploaded Files | 281

Download at Boykma.Com

To do such a check, first make sure file_uploads is set to On inside your configuration
file. Next, make sure your file size isn’t larger than upload_max_filesize; this defaults
to 2 MB, which stops someone from trying to crash the machine by filling up the hard
drive with a giant file. Additionally, there’s a post_max_size directive, which controls
the maximum size of all the post data allowed in a single request; its initial setting is 8
MB.

From the perspective of browser differences and user error, if you don’t see what you
expect in $_FILES, make sure you add enctype="multipart/form-data" to the form’s
opening tag. PHP needs this to process the file information properly.

Also, if no file is selected for uploading, versions of PHP prior to 4.1 set tmp_name to
none; newer versions set it to the empty string. PHP 4.2.1 allows files of length 0. To be
sure a file was uploaded and isn’t empty (although blank files may be what you want,
depending on the circumstances), you need to make sure tmp_name is set and size is
greater than 0. Last, not all browsers necessarily send the same MIME type for a file;
what they send depends on their knowledge of different file types.

See Also
Documentation on handling file uploads at http://www.php.net/features.file-upload and
on basename(  ) at http://www.php.net/basename .

9.15 Preventing Global Variable Injection

Problem
You want to access form input variables without allowing malicious users to set arbi-
trary global variables in your program.

Solution
Disable the register_globals configuration directive and access variables only from
the $_GET, $_POST, and $_COOKIE arrays to make sure you know exactly where your
variables are coming from.

To do this, make sure register_globals = Off appears in your php.ini file.

As of PHP 4.2, this is the default configuration.

Discussion
When register_globals is set to on, external variables, including those from forms and
cookies, are imported directly into the global namespace. This is a great convenience,
but it can also open up some security holes if you’re not very diligent about checking
your variables and where they’re defined. Why? Because there may be a variable you
use internally that isn’t supposed to be accessible from the outside but has its value
rewritten without your knowledge.

282 | Chapter 9: Form

Download at Boykma.Com

Example 9-26 contains a simple example: imagine you have a page in which a user
enters a username and password. If they are validated, you return her user identification
number and use that numerical identifier to look up and print out her personal infor-
mation.

Example 9-26. Insecure register_globals code

<?php
// assume magic_quotes_gpc is set to Off
$username = $dbh->quote($_GET['username']);
$password = $dbh->quote($_GET['password']);

$sth = $dbh->query("SELECT id FROM users WHERE username = $username AND
 password = $password");

if (1 == $sth->numRows()) {
 $row = $sth->fetchRow(DB_FETCHMODE_OBJECT);
 $id = $row->id;
} else {
 "Print bad username and password";
}

if (!empty($id)) {
 $sth = $dbh->query("SELECT * FROM profile WHERE id = $id");
}

Normally, $id is set only by your program and is a result of a verified database lookup.
However, if someone alters the query string, and passes in a value for $id, you’ll have
problems. With register_globals enabled, your script could still execute the second
database query and return results even after a bad username and password lookup.
Without register_globals, $id remains unset because only $_REQUEST['id'] and $_GET
['id'] are set.

Of course, there are other ways to solve this problem, even when using
register_globals. You can restructure your code not to allow such a loophole. One
way to do this is in Example 9-27.

Example 9-27. Avoiding register_globals problems

<?php
$sth = $dbh->query("SELECT id FROM users WHERE username = $username AND
 password = $password");

if (1 == $sth->numRows()) {
 $row = $sth->fetchRow(DB_FETCHMODE_OBJECT);
 $id = $row->id;
 if (!empty($id)) {
 $sth = $dbh->query("SELECT * FROM profile WHERE id = $id");
 }
} else {
 "Print bad username and password";
}

9.15 Preventing Global Variable Injection | 283

Download at Boykma.Com

In Example 9-27 $id has a value only when it’s been explicitly set from a database call.
Sometimes, however, it is difficult to do this because of how your program is laid out.
Another solution is to manually unset(  ) or initialize all variables at the top of your
script. This removes the bad $id value before it gets a chance to affect your code. How-
ever, because PHP doesn’t require variable initialization, it’s possible to forget to do
this in one place; a bug can then slip in without a warning from PHP.

See Also
Documentation on register_globals can be found at http://www.php.net/security.reg
isterglobals.php.

9.16 Handling Remote Variables with Periods in Their Names

Problem
You want to process a variable with a period in its name, but when a form is submitted,
you can’t find the variable in $_GET or $_POST.

Solution
Replace the period in the variable’s name with an underscore. For example, if you have
a form input element named hot.dog, you access it inside PHP as the variable $_GET
['hot_dog'] or $_POST['hot_dog'].

Discussion
During PHP’s pimply adolescence when register_globals was on by default, a form
variable named hot.dog couldn’t become $hot.dog—periods aren’t allowed in variable
names. To work around that, the . was changed to _. While $_GET['hot.dog'] and
$_POST['hot.dog'] don’t have this problem, the translation still happens for legacy and
consistency reasons, no matter your register_globals setting.

You usually run into this translation when there’s an element of type image in a form
that’s used to submit the form. For example, a form element such as <input
type="image" name="locations" src="locations.gif">, when clicked, submits the form.
The x and y coordinates of the click are submitted as locations.x and locations.y. So
in PHP, to find where a user clicked, you need to check $_POST['locations_x'] and
$_POST['locations_y'].

See Also
Documentation on variables from outside PHP at http://www.php.net/language.varia
bles.external.

284 | Chapter 9: Form

Download at Boykma.Com

9.17 Using Form Elements with Multiple Options

Problem
You have form elements that let a user select multiple choices, such as a drop-down
menu or a group of checkboxes, but PHP sees only one of the submitted values.

Solution
End the form element’s name with a pair of square brackets ([]). Example 9-28 shows
a properly named group of checkboxes.

Example 9-28. Naming a checkbox group

<input type="checkbox" name="boroughs[]" value="bronx"> The Bronx
<input type="checkbox" name="boroughs[]" value="brooklyn"> Brooklyn
<input type="checkbox" name="boroughs[]" value="manhattan"> Manhattan
<input type="checkbox" name="boroughs[]" value="queens"> Queens
<input type="checkbox" name="boroughs[]" value="statenisland"> Staten Island

Then, treat the submitted data as an array inside of $_GET or $_POST, as in Exam-
ple 9-29.

Example 9-29. Handling a submitted checkbox group

<?php
print 'I love ' . join(' and ', $_POST['boroughs']) . '!';
?>

Discussion
Putting [] at the end of the form element name tells PHP to treat the incoming data
as an array instead of a scalar. When PHP sees more than one submitted value assigned
to that variable, it keeps them all. If the first three boxes in Example 9-28 were checked,
it’s as if you’d written the code in Example 9-30 at the top of your program.

Example 9-30. Code equivalent of a multiple-value form element submission

<?php
$_POST['boroughs'][] = "bronx";
$_POST['boroughs'][] = "brooklyn";
$_POST['boroughs'][] = "manhattan";
?>

A similar syntax also works with multidimensional arrays. For example, you can have
a checkbox such as <input type="checkbox" name="population[NY][NYC]"
value="8008278">. If checked, this form element sets $_POST['population']['NY']
['NYC'] to 8008278.

9.17 Using Form Elements with Multiple Options | 285

Download at Boykma.Com

See Also
The introduction to Chapter 4 for more on arrays.

9.18 Creating Drop-Down Menus Based on the Current Date

Problem
You want to create a series of drop-down menus that are based automatically on the
current date.

Solution
Use date(  ) to find the current time in the web server’s time zone and loop through the
days with mktime(  ) .

Example 9-31 generates <option/> values for today and the six days that follow. In this
case, “today” is December 3, 2008.

Example 9-31. Generating date-based drop-down menu options
<?php
list($hour, $minute, $second, $month, $day, $year) =
 split(':', date('h:i:s:m:d:Y'));
// print out one week's worth of days
for ($i = 0; $i < 7; ++$i) {
 $timestamp = mktime($hour, $minute, $second, $month, $day + $i, $year);
 $date = date("D, F j, Y", $timestamp);
 print "<option value='$timestamp'>$date</option>\n";
}
?>

When run on December 3, 2008, Example 9-31 prints:

<option value='1228305600'>Wed, December 3, 2008</option>
<option value='1228392000'>Thu, December 4, 2008</option>
<option value='1228478400'>Fri, December 5, 2008</option>
<option value='1228564800'>Sat, December 6, 2008</option>
<option value='1228651200'>Sun, December 7, 2008</option>
<option value='1228737600'>Mon, December 8, 2008</option>
<option value='1228824000'>Tue, December 9, 2008</option>

Discussion
In Example 9-31 we set the value for each date as its Unix timestamp representation
because we find this easier to handle inside our programs. Of course, you can use any
format you find most useful and appropriate.

Don’t be tempted to eliminate the calls to mktime(  ); dates and times aren’t as consistent
as you’d hope. Depending on what you’re doing, you might not get the results you
want. Example 9-32 takes the shortcut of just incrementing the timestamp by the num-

286 | Chapter 9: Form

Download at Boykma.Com

ber of seconds in each day (60 seconds per minute × 60 minutes per hour × 24 hours
per day = 86,400 seconds).

Example 9-32. Incorrectly generating date-based drop-down menu options
<?php
$timestamp = mktime(0, 0, 0, 10, 30, 2008); // October 30, 2008
$one_day = 60 * 60 * 24; // number of seconds in a day

// print out one week's worth of days
for ($i = 0; $i < 7; ++$i) {
 $date = date("D, F j, Y", $timestamp);
 print "<option value='$timestamp'>$date</option>\n";
 $timestamp += $one_day;
}
?>

Example 9-32 prints:

<option value='1225339200'>Thu, October 30, 2008</option>
<option value='1225425600'>Fri, October 31, 2008</option>
<option value='1225512000'>Sat, November 1, 2008</option>
<option value='1225598400'>Sun, November 2, 2008</option>
<option value='1225684800'>Sun, November 2, 2008</option>
<option value='1225771200'>Mon, November 3, 2008</option>
<option value='1225857600'>Tue, November 4, 2008</option>

Example 9-32 should print out the month, day, and year for a seven-day period starting
October 30, 2008. However, it doesn’t work as expected.

Why are there two Sun, November 2, 2008 in the list? The answer: daylight saving time.
It’s not true that the number of seconds in a day stays constant; in fact, it’s almost
guaranteed to change. Worst of all, if you’re not near either of the changeover dates,
you’re liable to miss this bug during testing.

See Also
Chapter 3, particularly Recipe 3.12, but also Recipes 3.2, 3.3, 3.4, 3.5, 3.6, 3.11, and
3.14; documentation on date(  ) at http://www.php.net/date and mktime(  ) at http://
www.php.net/mktime.

9.18 Creating Drop-Down Menus Based on the Current Date | 287

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 10

Database Access

10.0 Introduction
Databases are central to many web applications. A database can hold almost any col-
lection of information you may want to search and update, such as a user list, a product
catalog, or recent headlines. One reason why PHP is such a great web programming
language is its extensive database support. PHP can interact with (at last count) more
than 20 different databases, some relational and some not. The relational databases it
can talk to are Apache Derby, DB++, FrontBase, IBM Cloudscape, IBM DB2, Informix,
Interbase, Ingres II, Microsoft SQL Server, mSQL, MySQL, MySQL MaxDB, Oracle,
Ovrimos SQL Server, PostgreSQL, SQLite, and Sybase. The nonrelational databases it
can talk to are dBase, filePro, HyperWave, Paradox, and the DBM family of flat-file
databases. It also has ODBC support, so even if your favorite database isn’t in the list,
as long as it supports ODBC, you can use it with PHP.

DBM databases, discussed in Recipe 10.1, are simple, robust, and efficient flat files but
limit the structure of your data to key/value pairs. If your data can be organized as a
mapping of keys to values, DBM databases are a great choice.

PHP really shines, though, when paired with an SQL database. This combination is
used for most of the recipes in this chapter. SQL databases can be complicated, but
they are extremely powerful. To use PHP with a particular SQL database, PHP must
be explicitly told to include support for that database when it is compiled. If PHP is
built to support dynamic module loading, the database support can also be built as a
dynamic module.

The SQL database examples in this chapter use PHP 5’s PDO database access layer.
With PDO, you use the same PHP functions no matter what database engine you’re
talking to. Although the syntax of the SQL may differ from database to database, the
PHP code remains similar. In this regard, PDO offers data access abstraction, not total
database abstraction. Other PHP libraries, such as PEAR DB (http://pear.php.net/pack
age/db), ADODb (http://adodb.sourceforge.net/), and MDB2 (http://pear.php.net/pack
age/MDB2) attempt to solve the total database abstraction problem—they hide differ-
ent databases’ implementation details such as date handling and column types behind

289

Download at Boykma.Com

a layer of code. While this sort of abstraction can save you some work if you’re writing
software that is intended to be used with lots of different types of databases, but it can
cause other problems. When you write SQL focused on a particular type of database,
you can take advantage of that database’s features for maximum performance.

PHP 5 comes bundled with SQLite, a powerful database that doesn’t require a separate
server. It’s a great choice when you have a moderate amount of traffic and don’t want
to deal with the hassles of running a database server. Recipe 10.2 discusses some of the
ins and outs of SQLite. With PHP 4, you can use SQLite via the PECL SQLite extension
(http://pecl.php.net/package/SQLite).

Many SQL examples in this chapter use a table of information about Zodiac signs. The
table’s structure is shown in Example 10-1. The data in the table is shown in Exam-
ple 10-2.

Example 10-1. Sample table structure
CREATE TABLE zodiac (
 id INT UNSIGNED NOT NULL,
 sign CHAR(11),
 symbol CHAR(13),
 planet CHAR(7),
 element CHAR(5),
 start_month TINYINT,
 start_day TINYINT,
 end_month TINYINT,
 end_day TINYINT,
 PRIMARY KEY(id)
);

Example 10-2. Sample table data
INSERT INTO zodiac VALUES (1,'Aries','Ram','Mars','fire',3,21,4,19);
INSERT INTO zodiac VALUES (2,'Taurus','Bull','Venus','earth',4,20,5,20);
INSERT INTO zodiac VALUES (3,'Gemini','Twins','Mercury','air',5,21,6,21);
INSERT INTO zodiac VALUES (4,'Cancer','Crab','Moon','water',6,22,7,22);
INSERT INTO zodiac VALUES (5,'Leo','Lion','Sun','fire',7,23,8,22);
INSERT INTO zodiac VALUES (6,'Virgo','Virgin','Mercury','earth',8,23,9,22);
INSERT INTO zodiac VALUES (7,'Libra','Scales','Venus','air',9,23,10,23);
INSERT INTO zodiac VALUES (8,'Scorpio','Scorpion','Mars','water',10,24,11,21);
INSERT INTO zodiac VALUES (9,'Sagittarius','Archer','Jupiter','fire',11,22,12,21);
INSERT INTO zodiac VALUES (10,'Capricorn','Goat','Saturn','earth',12,22,1,19);
INSERT INTO zodiac VALUES (11,'Aquarius','Water Carrier','Uranus','air',1,20,2,18);
INSERT INTO zodiac VALUES (12,'Pisces','Fishes','Neptune','water',2,19,3,20);

Recipes 10.3 through 10.8 cover the basics of connecting to a database server, sending
queries and getting the results back, as well as using queries that change the data in the
database.

Typical PHP programs capture information from HTML form fields and store that
information in the database. Some characters, such as the apostrophe and backslash,
have special meaning in SQL, so you have to be careful if your form data contains those
characters. PHP has a feature called “magic quotes” that attempts to make this easier.

290 | Chapter 10: Database Access

Download at Boykma.Com

When the configuration setting magic_quotes_gpc is on, variables coming from get re-
quests, post requests, and cookies have single quotes, double quotes, backslashes, and
nulls escaped with a backslash. You can also turn on magic_quotes_runtime to auto-
matically escape quotes, backslashes, and nulls from external sources such as database
queries or text files. For example, if magic_quotes_runtime is on and you read a file into
an array with file(  ), the special characters in that array are backslash-escaped.

Unfortunately, “magic quotes” usually turns out to be more like “annoying quotes.” If
you want to use submitted form data in any other context than just an SQL query (for
example, displaying it in a page), then you need to undo the escaping so the page looks
right. If you’ve run into a PHP web site in which backslashes seem to accumulate before
single quotes in text fields, the culprit is almost certainly magic quotes. Recipe 10.7
explains PDO’s bound parameters support, which is a better way to make sure that
special characters in user input are properly escaped when the user input is incorporated
into SQL queries. Recipe 10.9 discusses escaping special characters in queries in more
detail. General debugging techniques you can use to handle errors resulting from da-
tabase queries are covered in Recipe 10.10.

The remaining recipes cover database tasks that are more involved than just simple
queries. Recipe 10.11 shows how to automatically generate unique ID values you can
use as record identifiers. Recipe 10.12 covers building queries at runtime from a list of
fields. This makes it easier to manage INSERT and UPDATE queries that involve a lot of
columns. Recipe 10.13 demonstrates how to display links that let you page through a
result set, displaying a few records on each page. To speed up your database access,
you can cache queries and their results, as explained in Recipe 10.14.

Recipe 10.15 shows some techniques for managing access to a single database connec-
tion from various places in a large program. Last, Recipe 10.16 ties together some of
the topics discussed in the chapter in a complete program that stores a threaded message
board in a database.

10.1 Using DBM Databases

Problem
You have data that can be easily represented as key/value pairs, want to store it safely,
and have very fast lookups based on those keys.

Solution
Use the DBA abstraction layer to access a DBM-style database, as shown in Exam-
ple 10-3.

Example 10-3. Using a DBM database

<?php
$dbh = dba_open('fish.db','c','gdbm') or die($php_errormsg);

10.1 Using DBM Databases | 291

Download at Boykma.Com

// retrieve and change values
if (dba_exists('flounder',$dbh)) {
 $flounder_count = dba_fetch('flounder',$dbh);
 $flounder_count++;
 dba_replace('flounder',$flounder_count, $dbh);
 print "Updated the flounder count.";
} else {
 dba_insert('flounder',1, $dbh);
 print "Started the flounder count.";
}

// no more tilapia
dba_delete('tilapia',$dbh);

// what fish do we have?
for ($key = dba_firstkey($dbh); $key !== false; $key = dba_nextkey($dbh)) {
 $value = dba_fetch($key, $dbh);
 print "$key: $value\n";
}

dba_close($dbh);
?>

Discussion
PHP can support a few different kinds of DBM backends: GDBM, NDBM, DB2,
DB3, DBM, and CDB. The DBA abstraction layer lets you use the same functions on
any DBM backend. All these backends store key/value pairs. You can iterate through
all the keys in a database, retrieve the value associated with a particular key, and find
if a particular key exists. Both the keys and the values are strings.

The program in Example 10-4 maintains a list of usernames and passwords in a DBM
database. The username is the first command-line argument, and the password is the
second argument. If the given username already exists in the database, the password is
changed to the given password; otherwise, the user and password combination are
added to the database.

Example 10-4. Tracking users and passwords with a DBM database
<?php
$user = $_SERVER['argv'][1];
$password = $_SERVER['argv'][2];

$data_file = '/tmp/users.db';

$dbh = dba_open($data_file,'c','gdbm') or die("Can't open db $data_file");

if (dba_exists($user,$dbh)) {
 print "User $user exists. Changing password.";
} else {
 print "Adding user $user.";
}

292 | Chapter 10: Database Access

Download at Boykma.Com

dba_replace($user,$password,$dbh) or die("Can't write to database $data_file");

dba_close($dbh);
?>

The dba_open(  ) function returns a handle to a DBM file (or false on error). It takes
three arguments. The first is the filename of the DBM file. The second argument is the
mode for opening the file. A mode of r opens an existing database for read-only access,
and w opens an existing database for read-write access. The c mode opens a database
for read-write access and creates the database if it doesn’t already exist. Last, n does
the same thing as c, but if the database already exists, n empties it. The third argument
to dba_open(  ) is which DBM handler to use; this example uses 'gdbm'. To find what
DBM handlers are compiled into your PHP installation, look at the “DBA” section of
the output from phpinfo(  ). The “Supported handlers” line gives you your choices.

To find if a key has been set in a DBM database, use dba_exists(  ). It takes two argu-
ments: a string key and a DBM filehandle. It looks for the key in the DBM file and
returns true if it finds the key (or false if it doesn’t). The dba_replace(  ) function takes
three arguments: a string key, a string value, and a DBM filehandle. It puts the key/
value pair into the DBM file. If an entry already exists with the given key, it overwrites
that entry with the new value.

To close a database, call dba_close(  ) . A DBM file opened with dba_open(  ) is auto-
matically closed at the end of a request, but you need to call dba_close(  ) explicitly to
close persistent connections created with dba_open(  ).

You can use dba_firstkey(  ) and dba_nextkey(  ) to iterate through all the keys in a
DBM file and dba_fetch(  ) to retrieve the values associated with each key. The program
in Example 10-5 calculates the total length of all passwords in a DBM file.

Example 10-5. Calculating password length with DBM
<?php
$data_file = '/tmp/users.db';
$total_length = 0;
if (! ($dbh = dba_open($data_file,'r','gdbm'))) {
 die("Can't open database $data_file");
}

$k = dba_firstkey($dbh);
while ($k) {
 $total_length += strlen(dba_fetch($k,$dbh));
 $k = dba_nextkey($dbh);
}

print "Total length of all passwords is $total_length characters.";

dba_close($dbh);

The dba_firstkey(  ) function initializes $k to the first key in the DBM file. Each time
through the while loop, dba_fetch(  ) retrieves the value associated with key $k and

10.1 Using DBM Databases | 293

Download at Boykma.Com

$total_length is incremented by the length of the value (calculated with strlen(  )).
With dba_nextkey(  ), $k is set to the next key in the file.

One way to store complex data in a DBM database is with serialize(  ). Exam-
ple 10-6 stores structured user information in a DBM database by serializing the
structure before storing it and unserializing when retrieving it.

Example 10-6. Storing structured data in a DBM database

<?php
$dbh = dba_open('users.db','c','gdbm') or die($php_errormsg);

// read in and unserialize the data
if ($exists = dba_exists($_POST['username'], $dbh)) {
 $serialized_data = dba_fetch($_POST['username'], $dbh) or die($php_errormsg);
 $data = unserialize($serialized_data);
} else {
 $data = array();
}

// update values
if ($_POST['new_password']) {
 $data['password'] = $_POST['new_password'];
}
$data['last_access'] = time();

// write data back to file
if ($exists) {
 dba_replace($_POST['username'],serialize($data), $dbh);
} else {
 dba_insert($_POST['username'],serialize($data), $dbh);
}

dba_close($dbh);
?>

While Example 10-6 can store multiple users’ data in the same file, you can’t search
for, for example, a user’s last access time, without looping through each key in the file.
If you need to do those kinds of searches, put your data in an SQL database.

Each DBM handler has different behavior in some areas. For example, GDBM provides
internal locking. If one process has opened a GDBM file in read-write mode, other calls
to dba_open(  ) to open the same file in read-write mode will fail. For other DBM han-
dlers, add an l to the mode you pass to dba_open(  ) to lock the database with a
separate .lck file or a d to lock the database file itself. Two DBA functions are also
database-specific: dba_optimize(  ) and dba_sync(  ). The dba_optimize(  ) function calls
a handler-specific DBM file-optimization function. Currently, this is implemented only
for GDBM, for which its gdbm_reorganize(  ) function is called. The dba_sync(  ) function
calls a handler-specific DBM file synchronizing function. For DB2 and DB3, their
sync(  ) function is called. For GDBM, its gdbm_sync(  ) function is called. Nothing hap-
pens for other DBM handlers.

294 | Chapter 10: Database Access

Download at Boykma.Com

Using a DBM database is a step up from a plain text file but it lacks most features of
an SQL database. Your data structure is limited to key/value pairs, and locking ro-
bustness varies greatly depending on the DBM handler. Still, DBM handlers can be a
good choice for heavily accessed read-only data.

See Also
Recipe 5.7 discusses serializing data; documentation on the DBA functions at http://
www.php.net/dba; for more information on the DB2 and DB3 DBM handlers, see http://
www.sleepycat.com/products/bdb.html (note that these handlers are not generally free
for commercial use); for GDBM, check out http://www.gnu.org/directory/gdbm.html or
http://www.mit.edu:8001/afs/athena.mit.edu/project/gnu/doc/html/gdbm_toc.html .

10.2 Using an SQLite Database

Problem
You want to use a relational database that doesn’t involve a separate server process.

Solution
Use SQLite. This robust, powerful database program comes with PHP 5 and doesn’t
require running a separate server. An SQLite database is just a file. Example 10-7 creates
an SQLite database, populates it with a table if it doesn’t already exist, and then puts
some data into the table.

Example 10-7. Creating an SQLite database

<?php
$db = new PDO('sqlite:/usr/local/zodiac');

// Create the table and insert the data atomically
$db->beginTransaction();
// Try to find a table named 'zodiac'
$q = $db->query("SELECT name FROM sqlite_master WHERE type = 'table'" .
 " AND name = 'zodiac'");
// If the query didn't return a row, then create the table
// and insert the data
if ($q->fetch() === false) {
 $db->exec(<<<_SQL_
CREATE TABLE zodiac (
 id INT UNSIGNED NOT NULL,
 sign CHAR(11),
 symbol CHAR(13),
 planet CHAR(7),
 element CHAR(5),
 start_month TINYINT,
 start_day TINYINT,
 end_month TINYINT,
 end_day TINYINT,

10.2 Using an SQLite Database | 295

Download at Boykma.Com

 PRIMARY KEY(id)
)
SQL
);

 // The individual SQL statements
 $sql=<<<_SQL_
INSERT INTO zodiac VALUES (1,'Aries','Ram','Mars','fire',3,21,4,19);
INSERT INTO zodiac VALUES (2,'Taurus','Bull','Venus','earth',4,20,5,20);
INSERT INTO zodiac VALUES (3,'Gemini','Twins','Mercury','air',5,21,6,21);
INSERT INTO zodiac VALUES (4,'Cancer','Crab','Moon','water',6,22,7,22);
INSERT INTO zodiac VALUES (5,'Leo','Lion','Sun','fire',7,23,8,22);
INSERT INTO zodiac VALUES (6,'Virgo','Virgin','Mercury','earth',8,23,9,22);
INSERT INTO zodiac VALUES (7,'Libra','Scales','Venus','air',9,23,10,23);
INSERT INTO zodiac VALUES (8,'Scorpio','Scorpion','Mars','water',10,24,11,21);
INSERT INTO zodiac VALUES (9,'Sagittarius','Archer','Jupiter','fire',11,22,12,21);
INSERT INTO zodiac VALUES (10,'Capricorn','Goat','Saturn','earth',12,22,1,19);
INSERT INTO zodiac VALUES (11,'Aquarius','Water Carrier','Uranus','air',1,20,2,18);
INSERT INTO zodiac VALUES (12,'Pisces','Fishes','Neptune','water',2,19,3,20);
SQL;

 // Chop up each line of SQL and execute it
 foreach (explode("\n",trim($sql)) as $q) {
 $db->exec(trim($q));
 }
 $db->commit();
} else {
 // Nothing happened, so end the transaction
 $db->rollback();
}
?>

Discussion
Because SQLite databases are just regular files, all the precautions and gotchas that
apply to file access in PHP apply to SQLite databases. The user that your PHP process
is running as must have permission to read from and write to the location where the
SQLite database is. It is an extremely good idea to make this location somewhere out-
side your web server’s document root. If the database file can be read directly by the
web server, then a user who guesses its location can retrieve the entire thing, bypassing
any restrictions you’ve built into the queries in your PHP programs.

In PHP, the sqlite extension provides regular SQLite access as well as a PDO driver
for SQLite version 2. The pdo_sqlite extension provides a PDO driver for SQLite ver-
sion 3. If you’re starting from scratch, use the PDO driver for SQLite 3, since it’s faster
and has more features. If you already have an SQLite 2 database, consider using the
PDO drivers to migrate to SQLite 3.

The sqlite_master table referenced in Example 10-7 is special system table that holds
information about other tables—so it’s useful in determining whether a particular table
exists yet. Other databases have their own ways of providing this sort of system meta-
data.

296 | Chapter 10: Database Access

Download at Boykma.Com

See Also
Documentation on SQLite at http://www.sqlite.org/docs.html and on sqlite_master at
http://www.sqlite.org/faq.html#q9.

10.3 Connecting to an SQL Database

Problem
You want access to a SQL database to store or retrieve information. Without a data-
base, dynamic web sites aren’t very dynamic.

Solution
Create a new PDO object with the appropriate connection string. Example 10-8 shows
PDO object creation for a few different kinds of databases.

Example 10-8. Connecting with PDO
<?php
// MySQL expects parameters in the string
$mysql = new PDO('mysql:host=db.example.com', $user, $password);
// Separate multiple parameters with ;
$mysql = new PDO('mysql:host=db.example.com;port=31075', $user, $password)
$mysql = new PDO('mysql:host=db.example.com;port=31075;dbname=food', $user, $password)
// Connect to a local MySQL Server
$mysql = new PDO('mysql:unix_socket=/tmp/mysql.sock', $user, $password)

// PostgreSQL also expects parameters in the string
$pgsql = new PDO('pgsql:host=db.example.com', $user, $password);
// But you separate multiple parameters with ' '
$pgsql = new PDO('pgsql:host=db.example.com port=31075', $user, $password)
$pgsql = new PDO('pgsql:host=db.example.com port=31075 dbname=food', $user, $password)
// You can put the user and password in the DSN if you like.
$pgsql = new PDO("pgsql:host=db.example.com port=31075 dbname=food user=$user password
=$password");

// Oracle
// If a database name is defined in tnsnames.ora, just put that in the DSN
$oci = new PDO('oci:food', $user, $password)
// Otherwise, specify an Instant Client URI
$oci = new PDO('oci:dbname=//db.example.com:1521/food', $user, $password)

// Sybase (If PDO is using FreeTDS)
$sybase = new PDO('sybase:host=db.example.com;dbname=food', $user, $password)
// Microsoft SQL Server (If PDO is using MS SQL Server libraries)
$mssql = new PDO('mssql:host=db.example.com;dbname=food', $user, $password);
// DBLib (for other versions of DB-lib)
$dblib = new PDO('dblib:host=db.example.com;dbname=food', $user, $password);

// ODBC -- a predefined connection
$odbc = new PDO('odbc:DSN=food');
// ODBC -- an ad-hoc connection. Provide whatever the underlying driver needs

10.3 Connecting to an SQL Database | 297

Download at Boykma.Com

$odbc = new PDO('odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=
C:\\data\\food.mdb;Uid=Chef');

// SQLite just expects a filename -- no user or password
$sqlite = new PDO('sqlite:/usr/local/zodiac.db');
$sqlite = new PDO('sqlite:c:/data/zodiac.db');
// SQLite can also handle in-memory, temporary databases
$sqlite = new PDO('sqlite::memory:');
// SQLite v2 DSNs look similar to v3
$sqlite2 = new PDO('sqlite2:/usr/local/old-zodiac.db');
?>

Discussion
If all goes well, the PDO constructor returns a new object that can be used for querying
the database. If there’s a problem, a PDOException is thrown.

As you can see from Example 10-8, the format of the DSN is highly dependent on which
kind of database you’re attempting to connect to. In general, though, the first argument
to the PDO constructor is a string that describes the location and name of the database
you want and the second and third arguments are the username and password to con-
nect to the database with. Note that to use a particular PDO backend, PHP must be
built with support for that backend. Use the output from phpinfo(  ) to determine what
PDO backends your PHP setup has.

See Also
Recipe 10.4 for querying an SQL database; Recipe 10.6 for modifying an SQL database;
documentation on PDO at http://www.php.net/PDO.

10.4 Querying an SQL Database

Problem
You want to retrieve some data from your database.

Solution
Use PDO::query(  ) to send the SQL query to the database, and then a foreach loop to
retrieve each row of the result, as shown in Example 10-9.

Example 10-9. Sending a query to the database

<?php
$st = $db->query('SELECT symbol,planet FROM zodiac');
foreach ($st->fetchAll() as $row) {
 print "{$row['symbol']} goes with {$row['planet']}
\n";
}
?>

298 | Chapter 10: Database Access

Download at Boykma.Com

Discussion
The query(  ) method returns a PDOStatement object. Its fetchAll(  ) provides a concise
way to do something with each row returned from a query.

The fetch(  ) method returns a row at a time, as shown in Example 10-10.

Example 10-10. Fetching individual rows

<?php
$rows = $db->query('SELECT symbol,planet FROM zodiac');
$firstRow = $rows->fetch();
print "The first results are that {$row['symbol']} goes with {$row['planet']}";
?>

Each call to fetch(  ) returns the next row in the result set. When there are no more
rows available, fetch(  ) returns false.

By default, fetch(  ) returns an array containing each column in the result set row twice
—once with an index corresponding to the column name and once with a numerical
index. That means that the $firstRow variable in Example 10-10 has four elements:
$firstRow[0] is Ram, $firstRow[1] is Mars, $firstRow['symbol'] is Ram, and $firstRow
['planet'] is Mars.

To have fetch(  ) return rows in a different format, pass a PDO::FETCH_* constant to
query(  ) as a second argument. You can also pass one of the constants as the first ar-
gument to fetch(  ). The allowable constants and what they make fetch(  ) return are
listed in Table 10-1.

Table 10-1. PDO::FETCH_* constants

Constant Row format

PDO::FETCH_BOTH Array with both numeric and string (column names) keys. The default format.

PDO::FETCH_NUM Array with numeric keys.

PDO::FETCH_ASSOC Array with string (column names) keys.

PDO::FETCH_OBJ Object of class stdClass with column names as property names.

PDO::FETCH_LAZY Object of class PDORow with column names as property names. The properties aren’t populated until
accessed, so this is a good choice if your result row has a lot of columns. Note that if you store the
returned object and fetch another row, the stored object is updated with values from the new row.

In addition to the choices in Table 10-1, there are additional ways a row can be struc-
tured. These other ways require more than just passing a constant to query(  ) or
fetch(  ), however.

In combination with bindColumn(  ), the PDO::FETCH_BOUND fetch mode lets you set up
variables whose values get refreshed each time fetch(  ) is called. Example 10-11 shows
how this works.

10.4 Querying an SQL Database | 299

Download at Boykma.Com

Example 10-11. Binding result columns
<?php
$row = $db->query('SELECT symbol,planet FROM zodiac',PDO::FETCH_BOUND);
// Put the value of the 'symbol' column in $symbol
$row->bindColumn('symbol', $symbol);
// Put the value of the second column ('planet') in $planet
$row->bindColumn(2, $planet);
while ($row->fetch()) {
 print "$symbol goes with $planet.
\n";
}
?>

In Example 10-11, each time fetch(  ) is called, $symbol and $planet are assigned new
values. Note that you can use either a column name or number with bindColumn(  ).
Column numbers start at 1.

When used with query(  ), the PDO::FETCH_INTO and PDO::FETCH_CLASS constants put re-
sult rows into specialized objects of particular classes. To use these modes, first create
a class that extends the built-in PDOStatement class. Example 10-12 extends PDOState
ment with a method that reports the average length of all the column values and then
sets up a query to use it.

Example 10-12. Extending PDOStatement
<?php
class AvgStatement extends PDOStatement {
 public function avg() {
 $sum = 0;
 $vars = get_object_vars($this);
 // Remove PDOStatement's built-in 'queryString' variable
 unset($vars['queryString']);
 foreach ($vars as $var => $value) {
 $sum += strlen($value);
 }
 return $sum / count($vars);
 }
}
$row = new AvgStatement;
$results = $db->query('SELECT symbol,planet FROM zodiac',PDO::FETCH_INTO, $row);
// Each time fetch() is called, $row is repopulated
while ($results->fetch()) {
 print "$row->symbol belongs to $row->planet (Average: {$row->avg()})
\n";
}
?>

In Example 10-12, the second and third arguments to query(  ) tell PDO “each time you
fetch a new row, stuff the values into properties of the $row variable.” Then, inside the
while(  ) loop, the properties of $row are available, as well as the newly defined avg(  )
method.

PDO::FETCH_INTO is useful when you want to keep data around in the same object, such
as whether you’re displaying an odd- or even-numbered row, throughout all the calls
to fetch(  ). But when you want a new object for each row, use PDO::FETCH_CLASS. Pass

300 | Chapter 10: Database Access

Download at Boykma.Com

it to query(  ) like PDO::FETCH_INTO, but make the third argument to query(  ) a class name,
not an object instance. The class name you provide with PDO::FETCH_CLASS must extend
PDOStatement.

See Also
Recipe 10.5 for other ways to retrieve data; Recipe 10.6 for modifying an SQL database;
Recipe 10.7 for repeating queries efficiently; documentation on PDO at http://
www.php.net/PDO .

10.5 Retrieving Rows Without a Loop

Problem
You want a concise way to execute a query and retrieve the data it returns.

Solution
Use fetchAll(  ) to get all the results from a query at once, as shown in Exam-
ple 10-13.

Example 10-13. Getting all results at once

<?php
$st = $db->query('SELECT planet, element FROM zodiac');
$results = $st->fetchAll();
foreach ($results as $i => $result) {
 print "Planet $i is {$result['planet']}
\n";
}
?>

Discussion
The fetchAll(  ) method is useful when you need to do something that depends on all
the rows a query returns, such as counting how many rows there are or handling rows
out of order. Like fetch(  ), fetchAll(  ) defaults to representing each row as an array
with both numeric and string keys and accepts the various PDO::FETCH_* constants to
change that behavior.

fetchAll(  ) also accepts a few other constants that affect the results it returns. To re-
trieve just a single column from the results, pass PDO::FETCH_COLUMN and a second
argument, the index of the column you want. The first column is 0, not 1.

See Also
Recipe 10.4 for querying an SQL database and more information on fetch modes;
Recipe 10.6 for modifying an SQL database; Recipe 10.7 for repeating queries effi-
ciently; documentation on PDO at http://www.php.net/PDO.

10.5 Retrieving Rows Without a Loop | 301

Download at Boykma.Com

10.6 Modifying Data in an SQL Database

Problem
You want to add, remove, or change data in an SQL database.

Solution
Use PDO::exec(  ) to send an INSERT, DELETE, or UPDATE command, as shown in Exam-
ple 10-14.

Example 10-14. Using PDO::exec(  )
<?php
$db->exec("INSERT INTO family (id,name) VALUES (1,'Vito')");

$db->exec("DELETE FROM family WHERE name LIKE 'Fredo'");

$db->exec("UPDATE family SET is_naive = 1 WHERE name LIKE 'Kay'");
?>

You can also prepare a query with PDO::prepare(  ) and execute it with
PDOStatement::execute(  ), as shown in Example 10-15.

Example 10-15. Preparing and executing a query
<?php
$st = $db->prepare('INSERT INTO family (id,name) VALUES (?,?)');
$st->execute(array(1,'Vito'));

$st = $db->prepare('DELETE FROM family WHERE name LIKE ?');
$st->execute(array('Fredo'));

$st = $db->prepare('UPDATE family SET is_naive = ? WHERE name LIKE ?');
$st->execute(array(1,'Kay');
?>

Discussion
The exec(  ) method sends to the database whatever it’s passed. For INSERT, UPDATE, and
DELETE queries, it returns the number of rows affected by the query.

The prepare(  ) and execute(  ) methods are especially useful for queries that you want
to execute multiple times. Once you’ve prepared a query, you can execute it with new
values without re-preparing it. Example 10-16 reuses the same prepared query three
times.

Example 10-16. Reusing a prepared statement
<?php
$st = $db->prepare('DELETE FROM family WHERE name LIKE ?');
$st->execute(array('Fredo'));
$st->execute(array('Sonny'));

302 | Chapter 10: Database Access

Download at Boykma.Com

$st->execute(array('Luca Brasi'));
?>

See Also
Recipe 10.7 for information on repeating queries; documentation on PDO::exec(  ) at
http://www.php.net/PDO::exec, on PDO::prepare(  ) at http://www.php.net/PDO::pre
pare, and on PDOStatement::execute(  ) at http://www.php.net/PDOStatement::execute.

10.7 Repeating Queries Efficiently

Problem
You want to run the same query multiple times, substituting in different values each
time.

Solution
Set up the query with PDO::prepare(  ) and then run it by calling execute(  ) on the
prepared statement that prepare(  ) returns. The placeholders in the query passed to
prepare(  ) are replaced with data by execute(  ), as shown in Example 10-17.

Example 10-17. Running prepared statements

<?php
// Prepare
$st = $db->prepare("SELECT sign FROM zodiac WHERE element LIKE ?");
// Execute once
$st->execute(array('fire'));
while ($row = $st->fetch()) {
 print $row[0] . "
\n";
}
// Execute again
$st->execute(array('water'));
while ($row = $st->fetch()) {
 print $row[0] . "
\n";
}
?>

Discussion
The values passed to execute(  ) are called bound parameters—each value is associated
with (or “bound to”) a placeholder in the query. Two great things about bound pa-
rameters are security and speed. With bound parameters, you don’t have to worry about
SQL injection attacks. PDO appropriately quotes and escapes each parameter so that
special characters are neutralized. Also, upon prepare(  ), many database backends do
some parsing and optimizing of the query, so each call to execute(  ) is faster than calling
exec(  ) or query(  ) with a fully formed query in a string you’ve built yourself.

10.7 Repeating Queries Efficiently | 303

Download at Boykma.Com

In Example 10-17, the first execute(  ) runs the query SELECT sign FROM zodiac WHERE
element LIKE 'fire'. The second execute(  ) runs SELECT sign FROM zodiac WHERE ele
ment LIKE 'water'.

Each time, execute(  ) substitutes the value in its second argument for the ? placeholder.
If there is more than one placeholder, put the arguments in the array in the order they
should appear in the query. Example 10-18 shows prepare(  ) and execute(  ) with two
placeholders.

Example 10-18. Multiple placeholders
<?php
$st = $db->prepare(
 "SELECT sign FROM zodiac WHERE element LIKE ? OR planet LIKE ?");

// SELECT sign FROM zodiac WHERE element LIKE 'earth' OR planet LIKE 'Mars'
$st->execute(array('earth','Mars'));
?>

In addition to the ? placeholder style, PDO also supports named placeholders. If you’ve
got a lot of placeholders in a query, this can make them easier to read. Instead of ?, put
a placeholder name (which has to begin with a colon) in the query, and then use those
placeholder names (without the colons) as keys in the parameter array you pass to
execute(  ). Example 10-19 shows named placeholders in action.

Example 10-19. Using named placeholders
<?php
$st = $db->prepare(
 "SELECT sign FROM zodiac WHERE element LIKE :element OR planet LIKE :planet");
// SELECT sign FROM zodiac WHERE element LIKE 'earth' OR planet LIKE 'Mars'
$st->execute(array('planet' => 'Mars', 'element' => 'earth'));
$row = $st->fetch();

With named placeholders, your queries are easier to read and you can provide the values
to execute(  ) in any order. Note, though, that each placeholder name can only appear
in a query once. If you want to provide the same value more than once in a query, use
two different placeholder names and include the value twice in the array passed to
execute(  ).

Aside from ? and named placeholders, prepare(  ) offers a third way to stuff values into
queries: bindParam(  ). This method automatically associates what’s in a variable with a
particular placeholder. Example 10-20 shows how to use bindParam(  ).

Example 10-20. Using bindParam(  )
<?php
$pairs = array('Mars' => 'water',
 'Moon' => 'water',
 'Sun' => 'fire');
$st = $db->prepare(
 "SELECT sign FROM zodiac WHERE element LIKE :element AND planet LIKE :planet");
$st->bindParam(':element', $element);

304 | Chapter 10: Database Access

Download at Boykma.Com

$st->bindparam(':planet', $planet);
foreach ($pairs as $planet => $element) {
 // No need to pass anything to execute() --
 // the values come from $element and $planet
 $st->execute();
 var_dump($st->fetch());
}
?>

In Example 10-20, there’s no need to pass any values to execute(  ). The two calls to
bindParam(  ) tell PDO “whenever you execute $st, use whatever’s in the $element var-
iable for the :element placeholder and whatever’s in the $planet variable for
the :planet placeholder.” The values in those variables when you call bindParam(  ) don’t
matter—it’s the values in those variables when execute(  ) is called that counts. Since
the foreach statement puts array keys in $planet and array values in $element, the keys
and values from $pairs are substituted into the query.

If you use ? placeholders with prepare(  ), provide a placeholder position as the first
argument to bindParam(  ) instead of a parameter name. Placeholder positions start at
1, not 0.

bindParam(  ) takes its cue on how to deal with the provided value based on that value’s
PHP type. Force bindParam(  ) to treat the value as a particular type by passing a type
constant as a third argument. The type constants that bindParam(  ) understands are
listed in Table 10-2.

Table 10-2. PDO::PARAM_* constants

Constant Type

PDO::PARAM_NULL NULL

PDO::PARAM_BOOL Boolean

PDO::PARAM_INT Integer

PDO::PARAM_STR String

PDO::PARAM_LOB “Large Object”

The PDO::PARAM_LOB type is particularly handy because it treats the parameter as a
stream. It makes for an efficient way to stuff the contents of files (or anything that can
be represented by a stream, such as a remote URL) into a database table. Exam-
ple 10-21 uses glob(  ) to slurp the contents of all the files in a directory into a database
table.

Example 10-21. Putting file contents into a database with PDO::PARAM_LOB
<?php
$st = $db->prepare('INSERT INTO files (path,contents) VALUES (:path,:contents)');
$st->bindParam(':path',$path);
$st->bindParam(':contents',$fp,PDO::PARAM_LOB);
foreach (glob('c:/documents/*.*') as $path) {
 // Get a filehandle that PDO::PARAM_LOB can work with

10.7 Repeating Queries Efficiently | 305

Download at Boykma.Com

 $fp = fopen($path,'r');
 $st->execute();
}
?>

Using PDO::PARAM_LOB effectively depends on your underlying database. For example,
with Oracle your query must create an empty LOB handle and be inside a transaction.
The “Inserting an image into a database: Oracle” example of the PDO manpage at
http://www.php.net/PDO shows the proper syntax to do this.

See Also
Documentation on PDO::prepare(  ) at http://www.php.net/PDO::prepare,
PDOStatement::execute(  ) at http://www.php.net/PDOStatement::execute, on
PDO::bindParam(  ) at http://www.php.net/PDO::bindParam, and on PDO::PARAM_LOB in
the “Large Objects” section of http://www.php.net/PDO.

10.8 Finding the Number of Rows Returned by a Query

Problem
You want to know how many rows a SELECT query returned, or you want to know how
many rows were changed by an INSERT, UPDATE, or DELETE query.

Solution
If you’re issuing an INSERT, UPDATE, or DELETE with PDO::exec(  ), the return value from
exec(  ) is the number of modified rows.

If you’re issuing an INSERT, UPDATE, or DELETE with PDO::prepare(  ) and
PDOStatement::execute(  ), call PDOStatement::rowCount(  ) to get the number of modified
rows, as shown in Example 10-22.

Example 10-22. Counting rows with rowCount(  )
<?php
$st = $db->prepare('DELETE FROM family WHERE name LIKE ?');
$st->execute(array('Fredo'));
print "Deleted rows: " . $st->rowCount();
$st->execute(array('Sonny'));
print "Deleted rows: " . $st->rowCount();
$st->execute(array('Luca Brasi'));
print "Deleted rows: " . $st->rowCount();
?>

If you’re issuing a SELECT statement, the only foolproof way to find out how many rows
are returned is to retrieve them all with fetchAll(  ) and then count how many rows
you have, as shown in Example 10-23.

306 | Chapter 10: Database Access

Download at Boykma.Com

Example 10-23. Counting rows from a SELECT
<?php
$st = $db->query('SELECT symbol,planet FROM zodiac');
$all= $st->fetchAll(PDO::FETCH_COLUMN, 1);
print "Retrieved ". count($all) . " rows";
?>

Discussion
Although some database backends provide information to PDO about the number of
rows retrieved by a SELECT so that rowCount(  ) can work in those circumstances, not all
do. So relying on that behavior isn’t a good idea.

However, retrieving everything in a large result set can be inefficient. As an alternative,
ask the database to calculate a result set size with the COUNT(*) function. Use the same
WHERE clause as you would otherwise, but ask SELECT to return COUNT(*) instead of a list
of fields.

See Also
Documentation on PDO::rowCount at http://www.php.net/PDO::rowCount and on
PDO::exec(  ) at http://www.php.net/exec.

10.9 Escaping Quotes

Problem
You need to make text or binary data safe for queries.

Solution
Write all your queries with placeholders so that prepare(  ) and execute(  ) can escape
strings for you. Recipe 10.7 details the different ways to use placeholders.

If you need to apply escaping yourself, use the PDO::quote(  ) method. The rare circum-
stance you might need to do this could be if you want to escape SQL wildcards coming
from user input, as shown in Example 10-24.

Example 10-24. Manual quoting
<?php
$safe = $db->quote($_GET['searchTerm']);
$safe = strtr($safe,array('_' => '_', '%' => '\%'));
$st = $db->query("SELECT * FROM zodiac WHERE planet LIKE $safe");
?>

Discussion
The PDO::quote(  ) method makes sure that text or binary data is appropriately quoted,
but you may also need to quote the SQL wildcard characters % and _ to ensure that

10.9 Escaping Quotes | 307

Download at Boykma.Com

SELECT statements using the LIKE operator return the right results. If
$_GET['searchTerm'] is set to Melm% and Example 10-24 doesn’t call strtr(  ), its query
returns rows with planet set to Melmac, Melmacko, Melmacedonia, or anything else begin-
ning with Melm.

Because % is the SQL wildcard meaning “match any number of characters” (like * in
shell globbing) and _ is the SQL wildcard meaning “match one character” (like ? in
shell globbing), those need to be backslash-escaped as well.

strtr(  ) must be called after PDO::quote(  ). Otherwise, PDO::quote(  ) would backslash-
escape the backslashes strtr(  ) adds. With PDO::quote(  ) first, Melm_ is turned into Melm
_, which is interpreted by the database to mean “the string M e l m followed by a literal
underscore character.” With PDO::quote(  ) after strtr(  ), Melm_ is turned into Melm_,
which is interpreted by the database to mean “the string Melm followed by a literal
backslash character, followed by the underscore wildcard.” This is the same thing that
would happen if we escaped the SQL wildcards and then used the resulting value as a
bound parameter.

Quoting of placeholder values happens even if magic_quotes_gpc or magic_quotes_run
time is turned on. Similarly, if you call PDO::quote(  ) on a value when magic quotes are
active, the value gets quoted anyway. For maximum portability, remove the magic
quotes–supplied backslashes before you use a query with placeholders or call
PDO::quote(  ). Example 10-25 shows this check.

Example 10-25. Checking for magic quotes
<?php
// The behavior of magic_quotes_sybase can also affect things
if (get_magic_quotes_gpc() && (! ini_get('magic_quotes_sybase'))) {
 $fruit = stripslashes($_GET['fruit']);
} else {
 $fruit = $_GET['fruit'];
}
$st = $db->prepare('UPDATE orchard SET trees = trees - 1 WHERE fruit = ?');
$st->execute(array($fruit));
?>

If you have any control over your server, turn magic quotes off and make your life a lot
easier. However, if you’re trying to write maximally portable code that could run in an
environment you don’t control, you need to look out for this problem.

See Also
Documentation on PDO::quote(  ) at http://www.php.net/PDO::quote and on magic
quotes at http://www.php.net/manual/en/ref.info.php#ini.magic-quotes-gpc.

308 | Chapter 10: Database Access

Download at Boykma.Com

10.10 Logging Debugging Information and Errors

Problem
You want access to information to help you debug database problems. For example,
when a query fails, you want to see what error message the database returns.

Solution
Use PDO::errorCode(  ) or PDOStatement::errorCode(  ) after an operation to get an error
code if the operation failed. The corresponding errorInfo(  ) method returns more
information about the error. Example 10-26 handles the error that results from trying
to access a nonexistent table.

Example 10-26. Printing error information
<?php
$st = $db->prepare('SELECT * FROM imaginary_table');
if (! $st) {
 $error = $db->errorInfo();
 print "Problem ({$error[2]})";
}
?>

Discussion
The errorCode(  ) method returns a five-character error code. PDO uses the SQL 92
SQLSTATE error codes. By that standard, 00000 means “no error,” so a call to
errorCode(  ) that returns 00000 indicates success.

The errorInfo(  ) method returns a three-element array. The first element contains the
five-character SQLSTATE code (the same thing that errorCode(  ) returns). The second
element is a database backend-specific error code. The third element is a database
backend-specific error message.

Make sure to call errorCode(  ) or errorInfo(  ) on the same object on which you called
the method that you’re checking for an error. In Example 10-26, the prepare(  ) method
is called on the PDO object, so errorInfo(  ) is called on the PDO object. If you want to
check whether a fetch(  ) called on a PDOStatement object succeeded, call errorCode(  )
or errorInfo(  ) on the PDOStatement object.

One exception to this rule is when creating a new PDO object. If that fails, PDO throws
an exception. It does this because otherwise there’d be no object on which you could
call errorCode(  ) or errorInfo(  ). The message in the exception details why the con-
nection failed.

To have PDO throw exceptions every time it encounters an error, call setAttribute
(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION) on your PDO object after it’s created. This
way, you can handle database problems uniformly instead of larding your code with

10.10 Logging Debugging Information and Errors | 309

Download at Boykma.Com

repeated calls to errorCode(  ) and errorInfo(  ). Example 10-27 performs a series of
database operations wrapped inside a try/catch block.

Example 10-27. Catching database exceptions

<?php
try {
 $db = new PDO('sqlite:/usr/local/zodiac.db');
 // Make all DB errors throw exceptions
 $db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 $st = $db->prepare('SELECT * FROM zodiac');
 $st->execute();
 while ($row = $st->fetch(PDO::FETCH_NUM)) {
 print implode(',',$row). "
\n";
 }
} catch (Exception $e) {
 print "Database Problem: " . $e->getMessage();
}
?>

Handling PDO errors as exceptions is useful inside of transactions, too. If there’s a
problem with a query once the transaction’s started, just roll back the transaction when
handling the exception.

Similar to the exception error mode is the “warning” error mode. setAttribute
(PDO::ATTR_ERRMODE, PDO::ERRMODE_WARNING) tells PDO to issue warnings when a data-
base error is encountered. If you prefer to work with regular PHP errors instead of
exceptions, this is the error mode for you. Set up a custom error handler with
set_error_handler(  ) to handle E_WARNING level events and you can deal with your da-
tabase problems in the error handler.

Whatever the error mode, PDO throws an exception if the initial PDO object creation
fails. When using PDO, it’s an extremely good idea to set up a default exception handler
with set_exception_handler(  ). Without a default exception handler, an uncaught ex-
ception causes the display of a complete stack trace if display_errors is on. If an
exception is thrown when connecting to the database, this stack trace may contain
sensitive information, including database connection credentials.

See Also
Documentation on PDO::errorCode(  ) at http://www.php.net/PDO::errorCode, on
PDO::errorInfo(  ) at http://www.php.net/PDO::errorInfo, on
PDOStatement::errorCode(  ) at http://www.php.net/PDOStatement::errorCode, on
PDOStatement::errorInfo(  ) at http://www.php.net/PDOStatement::errorInfo, on
set_exception_handler(  ) at http://www.php.net/set_exception_handler, and on
set_error_handler(  ) at http://www.php.net/set-error-handler. A list of some SQL 92
SQLSTATE error codes that PDO knows about is available at http://cvs.php.net/
viewcvs.cgi/php-src/ext/pdo/pdo_sqlstate.c?view=markup, but some database backends
may raise errors other than the ones listed.

310 | Chapter 10: Database Access

Download at Boykma.Com

10.11 Creating Unique Identifiers

Problem
You want to assign unique IDs to users, articles, or other objects as you add them to
your database.

Solution
Use PHP’s uniqid(  ) function to generate an identifier. To restrict the set of characters
in the identifier, pass it through md5(  ), which returns a string containing only numerals
and the letters a through f. Example 10-28 creates identifiers using both techniques.

Example 10-28. Creating unique identifiers
<?php
$st = $db->prepare('INSERT INTO users (id, name) VALUES (?,?)');
$st->execute(array(uniqid(), 'Jacob'));
$st->execute(array(md5(uniqid()), 'Ruby'));
?>

You can also use a database-specific method to have the database generate the ID. For
example, SQLite 3 and MySQL support AUTOINCREMENT columns that automatically as-
sign increasing integers to a column as rows are inserted.

Discussion
uniqid(  ) uses the current time (in microseconds) and a random number to generate a
string that is extremely difficult to guess. md5(  ) computes a hash of whatever you give
it. It doesn’t add any randomness to the identifier, but restricts the characters that
appear in it. The results of md5(  ) don’t contain any punctuation, so you don’t have to
worry about escaping issues. Plus, you can’t spell any naughty words with just the first
six letters of the alphabet (in English, at least).

If you’d rather give your database the responsibility of generating the unique identifier,
use the appropriate syntax when creating a table. Example 10-29 shows how to create
a table in SQLite with a column that gets an auto-incremented integer ID each time a
new row is inserted.

Example 10-29. Creating an auto-increment column with SQLite
<?php
// the type INTEGER PRIMARY KEY AUTOINCREMENT tells SQLite
// to assign ascending IDs
$db->exec(<<<_SQL_
 CREATE TABLE users (
 id INTEGER PRIMARY KEY AUTOINCREMENT,
 name VARCHAR(255)
)
SQL

10.11 Creating Unique Identifiers | 311

Download at Boykma.Com

);

// No need to insert a value for 'id' -- SQLite assigns it
$st = $db->prepare('INSERT INTO users (name) VALUES (?)');

// These rows are assigned 'id' values
foreach (array('Jacob','Ruby') as $name) {
 $st->execute(array($name));
}
?>

Example 10-30 shows the same thing for MySQL.

Example 10-30. Creating an auto-increment column with MySQL

<?php
// the AUTO_INCREMENT tells MySQL to assign ascending IDs
// that column must be the PRIMARY KEY
$db->exec(<<<_SQL_
 CREATE TABLE users (
 id INT NOT NULL AUTO_INCREMENT,
 name VARCHAR(255),
 PRIMARY KEY(id)
)
SQL
);

// No need to insert a value for 'id' -- MySQL assigns it
$st = $db->prepare('INSERT INTO users (name) VALUES (?)');

// These rows are assigned 'id' values
foreach (array('Jacob','Ruby') as $name) {
 $st->execute(array($name));
}
?>

When the database creates ID values automatically, the PDO::lastInsertId(  ) method
retrieves them. Call lastInsertId(  ) on your PDO object to get the auto-generated ID
of the last inserted row. Some database backends also let you pass a sequence name to
lastInsertId(  ) to get the last value from the sequence.

See Also
Documentation on uniqid(  ) at http://www.php.net/uniqid, on md5(  ) at http://
www.php.net/md5, on PDO::lastInsertId(  ) at http://www.php.net/PDO::lastInsertId,
on SQLite and AUTOINCREMENT at http://www.sqlite.org/faq.html#q1, and on MySQL and
is found AUTO_INCREMENT at http://dev.mysql.com/doc/refman/5.0/en/example-auto-incre
ment.html .

312 | Chapter 10: Database Access

Download at Boykma.Com

10.12 Building Queries Programmatically

Problem
You want to construct an INSERT or UPDATE query from an array of field names. For
example, you want to insert a new user into your database. Instead of hardcoding each
field of user information (such as username, email address, postal address, birthdate,
etc.), you put the field names in an array and use the array to build the query. This is
easier to maintain, especially if you need to conditionally INSERT or UPDATE with the same
set of fields.

Solution
To construct an UPDATE query, build an array of field/value pairs and then implode(  )
together each element of that array, as shown in Example 10-31.

Example 10-31. Building an UPDATE query
<?php
// A list of field names
$fields = array('symbol','planet','element');

$update_fields = array();
$update_values = array();
foreach ($fields as $field) {
 $update_fields[] = "$field = ?";
 // Assume the data is coming from a form
 $update_values[] = $_POST[$field];
}

$st = $db->prepare("UPDATE zodiac SET " .
 implode(',', $update_fields) .
 'WHERE sign = ?');

// Add 'sign' to the values array
$update_values[] = $_GET['sign'];

// Execute the query
$st->execute($update_values);
?>

For an INSERT query, do the same thing, although the SQL syntax is a little different, as
Example 10-32 demonstrates.

Example 10-32. Building an INSERT query
<?php
// A list of field names
$fields = array('symbol','planet','element');
$placeholders = array();
$values = array();
foreach ($fields as $field) {

10.12 Building Queries Programmatically | 313

Download at Boykma.Com

 // One placeholder per field
 $placeholders[] = '?';
 // Assume the data is coming from a form
 $values[] = $_POST[$field];
}

$st = $db->prepare('INSERT INTO zodiac (' .
 implode(',',$fields) .
 ') VALUES (' .
 implode(',', $placeholders) .
 ')');
// Execute the query
$st->execute($values);
?>

Discussion
Placeholders make this sort of thing a breeze. Because they take care of escaping the
provided data, you can easily stuff user-submitted data into programatically generated
queries.

If you use sequence-generated integers as primary keys, you can combine the two query-
construction techniques into one function. That function determines whether a record
exists and then generates the correct query, including a new ID, as shown in the
pc_build_query(  ) function in Example 10-33.

Example 10-33. pc_build_query(  )
<?php
function pc_build_query($db,$key_field,$fields,$table) {
 $values = array();
 if (! empty($_POST[$key_field])) {
 $update_fields = array();
 foreach ($fields as $field) {
 $update_fields[] = "$field = ?";
 // Assume the data is coming from a form
 $values[] = $_POST[$field];
 }
 // Add the key field's value to the $values array
 $values[] = $_POST[$key_field];
 $st = $db->prepare("UPDATE $table SET " .
 implode(',', $update_fields) .
 "WHERE $key_field = ?");
 } else {
 // Start values off with a unique ID
 // If your DB is set to generate this value, use NULL instead
 $values[] = md5(uniqid());
 $placeholders = array('?');
 foreach ($fields as $field) {
 // One placeholder per field
 $placeholders[] = '?';
 // Assume the data is coming from a form
 $values[] = $_POST[$field];
 }
 $st = $db->prepare("INSERT INTO $table ($key_field," .

314 | Chapter 10: Database Access

Download at Boykma.Com

 implode(',',$fields) . ') VALUES ('.
 implode(',',$placeholders) .')');
 }
 $st->execute($values);
 return $st;
}
?>

Using this function, you can make a simple page to edit all the information in the
zodiac table, shown in Example 10-34.

Example 10-34. A simple add/edit record page
<?php
$db = new PDO('sqlite:/usr/local/data/zodiac.db');
$db->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$fields = array('sign','symbol','planet','element',
 'start_month','start_day','end_month','end_day');

$cmd = isset($_REQUEST['cmd']) ? $_REQUEST['cmd'] : 'show';

switch ($cmd) {
 case 'edit':
 try {
 $st = $db->prepare('SELECT ' . implode(',',$fields) .
 ' FROM zodiac WHERE id = ?');
 $st->execute(array($_REQUEST['id']));
 $row = $st->fetch(PDO::FETCH_ASSOC);
 } catch (Exception $e) {
 $row = array();
 }
 case 'add':
 print '<form method="post" action="' .
 htmlentities($_SERVER['PHP_SELF']) . '">';
 print '<input type="hidden" name="cmd" value="save">';
 print '<table>';
 if ('edit' == $_REQUEST['cmd']) {
 printf('<input type="hidden" name="id" value="%d">',
 $_REQUEST['id']);
 }
 foreach ($fields as $field) {
 if ('edit' == $_REQUEST['cmd']) {
 $value = htmlentities($row[$field]);
 } else {
 $value = '';
 }
 printf('<tr><td>%s: </td><td><input type="text" name="%s" value="%s">',
 $field,$field,$value);
 printf('</td></tr>');
 }
 print '<tr><td></td><td><input type="submit" value="Save"></td></tr>';
 print '</table></form>';
 break;
 case 'save':
 try {

10.12 Building Queries Programmatically | 315

Download at Boykma.Com

 $st = pc_build_query($db,'id',$fields,'zodiac');
 print 'Added info.';
 } catch (Exception $e) {
 print "Couldn't add info: " . htmlentities($e->getMessage());
 }
 print '<hr>';
 case 'show':
 default:
 $self = htmlentities($_SERVER['PHP_SELF']);
 print '';
 foreach ($db->query('SELECT id,sign FROM zodiac') as $row) {
 printf(' %s',
 $self,$row['id'],$row['sign']);
 }
 print '<hr> Add New';
 print '';
 break;
}?>

The switch statement controls what action the program takes based on the value of
$_REQUEST['cmd']. If $_REQUEST['cmd'] is add or edit, the program displays a form with
text boxes for each field in the $fields array, as shown in Figure 10-1. If
$_REQUEST['cmd'] is edit, values for the row with the supplied $id are loaded from the
database and displayed as defaults. If $_REQUEST['cmd'] is save, the program uses
pc_build_query(  ) to generate an appropriate query to either INSERT or UPDATE the data
in the database. After saving (or if no $_REQUEST['cmd'] is specified), the program dis-
plays a list of all zodiac signs, as shown in Figure 10-2.

Whether pc_build_query(  ) builds an INSERT or UPDATE statement is based on the pres-
ence of the request variable $_REQUEST['id'] (because id is passed in $key_field). If

Figure 10-1. Adding and editing a record

316 | Chapter 10: Database Access

Download at Boykma.Com

$_REQUEST['id'] is not empty, the function builds an UPDATE query to change the row
with that ID. If $_REQUEST['id'] is empty (or it hasn’t been set at all), the function
generates a new ID and uses that new ID in an INSERT query that adds a row to the table.
To have pc_build_query(  ) respect a database’s AUTOINCREMENT setting, start $values off
with null instead of md5(uniqid(  )).

See Also
Recipe 10.7 for information about placeholders, prepare(  ), and execute(  ); documen-
tation on PDO::prepare(  ) at http://www.php.net/PDO::prepare and on
PDOStatement::execute(  ) at http://www.php.net/PDOStatement::execute(  ).

10.13 Making Paginated Links for a Series of Records

Problem
You want to display a large dataset a page at a time and provide links that move through
the dataset.

Solution
Use database-appropriate syntax to grab just a section of all the rows that match your
query. Example 10-35 shows how this works with SQLite.

Figure 10-2. Listing records

10.13 Making Paginated Links for a Series of Records | 317

Download at Boykma.Com

Example 10-35. Paging with SQLite

<?php
// Select 5 rows, starting after the first 3
foreach ($db->query('SELECT * FROM zodiac ' .
 'ORDER BY sign LIMIT 5 ' .
 'OFFSET 3') as $row) {
 // Do something with each row
}
?>

The pc_indexed_links(  ) and pc_print_link(  ) functions in this recipe assist with print-
ing paging information. Example 10-36 shows them in action.

Example 10-36. Displaying paginated results

<?php
$offset = isset($_GET['offset']) ? intval($_GET['offset']) : 1;
if (! $offset) { $offset = 1; }
$per_page = 5;
$total = $db->query('SELECT COUNT(*) FROM zodiac')->fetchColumn(0);

$limitedSQL = 'SELECT * FROM zodiac ORDER BY id ' .
 "LIMIT $per_page OFFSET " . ($offset-1);
$lastRowNumber = $offset - 1;

foreach ($db->query($limitedSQL) as $row) {
 $lastRowNumber++;
 print "{$row['sign']}, {$row['symbol']} ({$row['id']})
\n";
}

pc_indexed_links($total,$offset,$per_page);
print "
";
print "(Displaying $offset - $lastRowNumber of $total)";
?>

Discussion
pc_print_link(  ) is shown in Example 10-37 and pc_indexed_links(  ) in Exam-
ple 10-38.

Example 10-37. pc_print_link(  )
<?php
function pc_print_link($inactive,$text,$offset='') {
 if ($inactive) {
 print "$text";
 } else {
 print "".
 "<a href='" . htmlentities($_SERVER['PHP_SELF']) .
 "?offset=$offset'>$text";
 }
}
?>

318 | Chapter 10: Database Access

Download at Boykma.Com

Example 10-38. pc_indexed_links(  )
<?php
function pc_indexed_links($total,$offset,$per_page) {
 $separator = ' | ';

 // print "<<Prev" link
 pc_print_link($offset == 1, '<< Prev', $offset - $per_page);

 // print all groupings except last one
 for ($start = 1, $end = $per_page;
 $end < $total;
 $start += $per_page, $end += $per_page) {
 print $separator;
 pc_print_link($offset == $start, "$start-$end", $start);
 }

 /* print the last grouping -
 * at this point, $start points to the element at the beginning
 * of the last grouping
 */

 /* the text should only contain a range if there's more than
 * one element on the last page. For example, the last grouping
 * of 11 elements with 5 per page should just say "11", not "11-11"
 */
 $end = ($total > $start) ? "-$total" : '';

 print $separator;
 pc_print_link($offset == $start, "$start$end", $start);

 // print "Next>>" link
 print $separator;
 pc_print_link($offset == $start, 'Next >>',$offset + $per_page);
}
?>

To use these functions, retrieve the correct subset of the data using and then print it
out. Call pc_indexed_links(  ) to display the indexed links.

After connecting to the database, you need to make sure $offset has an appropriate
value. $offset is the beginning record in the result set that should be displayed. To start
at the beginning of the result set, $offset should be 1. The variable $per_page is set to
how many records to display on each page, and $total is the total number of records
in the entire result set. For this example, all the zodiac records are displayed, so
$total is set to the count of all the rows in the entire table.

The SQL query that retrieves information in the proper order is:
<?php
$limitedSQL = 'SELECT * FROM zodiac ORDER BY id ' .
"LIMIT $per_page OFFSET " . ($offset-1);
?>

The LIMIT and OFFSET keywords are how you tell SQLite to return just a subset of all
matching rows.

10.13 Making Paginated Links for a Series of Records | 319

Download at Boykma.Com

The relevant rows are retrieved by $db->query($limitedSQL), and then information is
displayed from each row. After the rows, pc_indexed_links(  ) provides navigation links.
The output when $offset is not set (or is 1) is shown in Figure 10-3.

In Figure 10-3, “6-10,” “11-12,” and “Next >>” are links to the same page with adjusted
$offset arguments, while “<< Prev” and “1-5” are grayed out, because what they would
link to is what’s currently displayed.

See Also
A discussion of paging in the Solar framework at http://paul-m-jones.com/blog/?p=185
and information on different database paging syntaxes at http://troels.arvin.dk/db/
rdbms/#select-limit-offset.

10.14 Caching Queries and Results

Problem
You don’t want to rerun potentially expensive database queries when the results haven’t
changed.

Solution
Use PEAR’s Cache_Lite package. It makes it simple to cache arbitrary data. In this case,
cache the results of a SELECT query and use the text of the query as a cache key. Exam-
ple 10-39 shows how to cache query results with Cache_Lite.

Example 10-39. Caching query results
<?php
require_once 'Cache/Lite.php';

Figure 10-3. Paginated results with pc_indexed_links(  )

320 | Chapter 10: Database Access

Download at Boykma.Com

$opts = array(
 // Where to put the cached data
 'cacheDir' => 'c:/tmp',
 // Let us store arrays in the cache
 'automaticSerialization' => true,
 // How long stuff lives in the cache
 'lifeTime' => 600 /* ten minutes */);

// Create the cache
$cache = new Cache_Lite($opts);

// Connect to the database
$db = new PDO('sqlite:c:/data/zodiac.db');

// Define our query and its parameters
$sql = 'SELECT * FROM zodiac WHERE planet = ?';
$params = array($_GET['planet']);

// Get the unique cache key
$key = cache_key($sql, $params);

// Try to get results from the cache
$results = $cache->get($key);

if ($results === false) {
 // No results found, so do the query and put the results in the cache
 $st = $db->prepare($sql);
 $st->execute($params);
 $results = $st->fetchAll();
 $cache->save($results);
}

// Whether from the cache or not, $results has our data
foreach ($results as $result) {
 print "$result[id]: $result[planet], $result[sign]
\n";
}

function cache_key($sql, $params) {
 return md5($sql .
 implode('|',array_keys($params)) .
 implode('|',$params));
}
?>

Discussion
Cache_Lite is a generic, lightweight mechanism for caching arbitrary information. It
uses files to store the information it’s caching. The Cache_Lite constructor takes an
array of options that control its behavior. The two most important ones in Exam-
ple 10-39 are automaticSerialization, which makes it easier to store arrays in the cache,
and cacheDir, which defines where the cache files go. Make sure cacheDir ends with
a /.

10.14 Caching Queries and Results | 321

Download at Boykma.Com

The cache is just a mapping of keys to values. It’s up to us to make sure that we supply
a cache key that uniquely identifies the data we want to cache—in this case, the SQL
query and the parameters bound to it. The cache_key function computes an appropriate
key. After that, Example 10-39 just checks to see if the results are already in the cache.
If not, it executes the query against the database and stuffs the results in the cache for
next time.

Note that you can’t put a PDO or PDOStatement object in the cache—you have to fetch
results and then put the results in the cache.

By default, entries stay in the cache for one hour. You can adjust this by passing a
different value (in seconds) as the lifeTime option when creating a new Cache_Lite
object. Pass in null if you don’t want data to automatically expire.

The cache isn’t altered if you change the database with an INSERT, UPDATE, or DELETE
query. If there are cached SELECT statements that refer to data no longer in the database,
you need to explicitly remove everything from the cache with the
Cache_Lite::clean(  ) method. You can also remove an individual element from the
cache by passing a cache key to Cache_Lite::remove(  ).

The cache_key(  ) function in Example 10-39 is case sensitive. This means that if the
results of SELECT * FROM zodiac are in the cache, and you run the query SELECT * from
zodiac, the results aren’t found in the cache and the query is run again. Maintaining
consistent capitalization, spacing, and field ordering when constructing your SQL
queries results in more efficient cache usage.

See Also
Documentation on Cache_Lite found at http://pear.php.net/manual/en/package.cach
ing.cache-lite.php.

10.15 Accessing a Database Connection Anywhere in Your
Program

Problem
You’ve got a program with lots of functions and classes in it, and you want to maintain
a single database connection that’s easily accessible from anywhere in the program.

Solution
Use a static class method that creates the connection if it doesn’t exist and returns the
connection (see Example 10-40).

Example 10-40. Creating a database connection in a static class method
<?php
class DBCxn {

322 | Chapter 10: Database Access

Download at Boykma.Com

 // What DSN to connect to?
 public static $dsn = 'sqlite:c:/data/zodiac.db';
 public static $user = null;
 public static $pass = null;
 public static $driverOpts = null;

 // Internal variable to hold the connection
 private static $db;
 // No cloning or instantiating allowed
 final private function __construct() { }
 final private function __clone() { }

 public static function get() {
 // Connect if not already connected
 if (is_null(self::$db)) {
 self::$db = new PDO(self::$dsn, self::$user, self::$pass,
 self::$driverOpts);
 }
 // Return the connection
 return self::$db;
 }
}
?>

Discussion
The DBCxn::get(  ) method defined in Example 10-40 accomplishes two things: you can
call it from anywhere in your program without worrying about variable scope and it
prevents more than one connection from being created in a program.

To change what kind of connection DBCxn::get(  ) provides, just alter the $dsn, $user,
$pass, and $driverOpts properties of the class. If you need to manage multiple different
database connections during the same script execution, change $dsn and $db to an array
and have get(  ) accept an argument identifying which connection to use. Exam-
ple 10-41 shows a version of DBCxn that provides access to three different databases.

Example 10-41. Handling connections to multiple databases
<?php
class DBCxn {
 // What DSNs to connect to?
 public static $dsn =
 array('zodiac' => 'sqlite:c:/data/zodiac.db',
 'users' => array('mysql:host=db.example.com','monty','7f2iuh'),
 'stats' => array('oci:statistics', 'statsuser','statspass'));

 // Internal variable to hold the connection
 private static $db = array();
 // No cloning or instantiating allowed
 final private function __construct() { }
 final private function __clone() { }

 public static function get($key) {

10.15 Accessing a Database Connection Anywhere in Your Program |
323

Download at Boykma.Com

 if (! isset(self::$dsn[$key])) {
 throw new Exception("Unknown DSN: $key");
 }
 // Connect if not already connected
 if (! isset(self::$db[$key])) {
 if (is_array(self::$dsn[$key])) {
 // The next two lines only work with PHP 5.1.3 and above
 $c = new ReflectionClass('PDO');
 self::$db[$key] = $c->newInstanceArgs(self::$dsn[$key]);
 } else {
 self::$db[$key] = new PDO(self::$dsn[$key]);
 }
 }
 // Return the connection
 return self::$db[$key];
 }
}
?>

In Example 10-41, you must pass a key to DBCxn::get(  ) that identifies which entry in
$dsn to use. The code inside get(  ) is a little more complicated, too, because it has to
handle variable numbers of arguments to the PDO constructor. Some databases, such
as SQLite, just need one argument. Others may provide two, three, or four arguments.
Example 10-41 uses the ReflectionClass::newInstanceArgs(  ) method, added in PHP
5.1.3, to concisely call a constructor and provide arguments in an array. If you’re using
an earlier version of PHP, replace the calls to new ReflectionClass('PDO') and to
newInstanceArgs(  ) with the code in Example 10-42.

Example 10-42. Calling the PDO constructor with older PHP versions
<?php
$args = self::$dsn[$key];
$argCount = count($args);
if ($argCount == 1) {
 self::$db[$key] = new PDO($args[0]);
} else if ($argCount == 2) {
 self::$db[$key] = new PDO($args[0],$args[1]);
} else if ($argCount == 3) {
 self::$db[$key] = new PDO($args[0],$args[1],$args[2]);
} else if ($argCount == 4) {
 self::$db[$key] = new PDO($args[0],$args[1],$args[2],$args[3]);
}
?>

Example 10-42 checks for each possible count of arguments to provide to the PDO
constructor and invokes the constructor accordingly.

See Also
Documentation on PDO::__construct(  ) at http://www.php.net/PDO::__construct and
on ReflectionClass::newInstanceArgs(  ) can be found at http://www.php.net/lan
guage.oop5.reflection.

324 | Chapter 10: Database Access

Download at Boykma.Com

10.16 Program: Storing a Threaded Message Board
Storing and retrieving threaded messages requires extra care to display the threads in
the correct order. Finding the children of each message and building the tree of message
relationships can easily lead to a recursive web of queries. Users generally look at a list
of messages and read individual messages far more often then they post messages. With
a little extra processing when saving a new message to the database, the query that
retrieves a list of messages to display is simpler and much more efficient.

Store messages in a table structured like this:

CREATE TABLE pc_message (
 id INT UNSIGNED NOT NULL,
 posted_on DATETIME NOT NULL,
 author CHAR(255),
 subject CHAR(255),
 body MEDIUMTEXT,
 thread_id INT UNSIGNED NOT NULL,
 parent_id INT UNSIGNED NOT NULL,
 level INT UNSIGNED NOT NULL,
 thread_pos INT UNSIGNED NOT NULL,
 PRIMARY KEY(id)
);

The primary key, id, is a unique integer that identifies a particular message. The time
and date that a message is posted is stored in posted_on, and author, subject, and
body are (surprise!) a message’s author, subject, and body. The remaining four fields
keep track of the threading relationships between messages. The integer thread_id
identifies each thread. All messages in a particular thread have the same thread_id. If
a message is a reply to another message, parent_id is the id of the replied-to message.
level is how many replies into a thread a message is. The first message in a thread has
level 0. A reply to that level message has level 1, and a reply to that level 1 message has
level 2. Multiple messages in a thread can have the same level and the same
parent_id. For example, if someone starts off a thread with a message about the merits
of BeOS over CP/M, the angry replies to that message from CP/M’s legions of fans all
have level 1 and a parent_id equal to the id of the original message.

The last field, thread_pos, is what makes the easy display of messages possible. When
displayed, all messages in a thread are ordered by their thread_pos value.

Here are the rules for calculating thread_pos:

• The first message in a thread has thread_pos = 0.

• For a new message N, if there are no messages in the thread with the same parent
as N, N’s thread_pos is one greater than its parent’s thread_pos.

• For a new message N, if there are messages in the thread with the same parent as
N, N’s thread_pos is one greater than the biggest thread_pos of all the messages with
the same parent as N.

10.16 Program: Storing a Threaded Message Board | 325

Download at Boykma.Com

• After new message N’s thread_pos is determined, all messages in the same thread
with a thread_pos value greater than or equal to N‘s have their thread_pos value
incremented by 1 (to make room for N).

The message board program, message.php, shown in Example 10-43 saves messages
and properly calculates thread_pos. Sample output is shown in Figure 10-4.

Example 10-43. message.php
<?php

$board = new MessageBoard();
$board->go();

class MessageBoard {
 protected $db;
 protected $form_errors = array();
 protected $inTransaction = false;

 public function __construct() {
 set_exception_handler(array($this,'logAndDie'));
 $this->db = new PDO('sqlite:/usr/local/data/message.db');
 $this->db->setAttribute(PDO::ATTR_ERRMODE,PDO::ERRMODE_EXCEPTION);
 }

 public function go() {
 // The value of $_REQUEST['cmd'] tells us what to do
 $cmd = isset($_REQUEST['cmd']) ? $_REQUEST['cmd'] : 'show';
 switch ($cmd) {
 case 'read': // read an individual message
 $this->read();
 break;

Figure 10-4. A threaded message board

326 | Chapter 10: Database Access

Download at Boykma.Com

 case 'post': // display the form to post a message
 $this->post();
 break;
 case 'save': // save a posted message
 if ($this->valid()) { // if the message is valid,
 $this->save(); // then save it
 $this->show(); // and display the message list
 } else {
 $this->post(); // otherwise, redisplay the posting form
 }
 break;
 case 'show': // show a message list by default
 default:
 $this->show();
 break;
 }
 }

 // save() saves the message to the database
 protected function save() {

 $parent_id = isset($_REQUEST['parent_id']) ?
 intval($_REQUEST['parent_id']) : 0;

 // Make sure pc_message doesn't change while we're working with it.
 $this->db->beginTransaction();
 $this->inTransaction = true;

 // is this message a reply?
 if ($parent_id) {
 // get the thread, level, and thread_pos of the parent message
 $st = $this->db->prepare("SELECT thread_id,level,thread_pos
 FROM pc_message WHERE id = ?");
 $st->execute(array($parent_id));
 $parent = $st->fetch();

 // a reply's level is one greater than its parent's
 $level = $parent['level'] + 1;

 /* what's the biggest thread_pos in this thread among messages
 with the same parent? */
 $st = $this->db->prepare('SELECT MAX(thread_pos) FROM pc_message
 WHERE thread_id = ? AND parent_id = ?');
 $st->execute(array($parent['thread_id'], $parent_id));
 $thread_pos = $st->fetchColumn(0);

 // are there existing replies to this parent?
 if ($thread_pos) {
 // this thread_pos goes after the biggest existing one
 $thread_pos++;
 } else {
 // this is the first reply, so put it right after the parent
 $thread_pos = $parent['thread_pos'] + 1;
 }

10.16 Program: Storing a Threaded Message Board | 327

Download at Boykma.Com

 /* increment the thread_pos of all messages in the thread that
 come after this one */
 $st = $this->db->prepare('UPDATE pc_message SET thread_pos = thread_pos + 1
 WHERE thread_id = ? AND thread_pos >= ?');
 $st->execute(array($parent['thread_id'], $thread_pos));

 // the new message should be saved with the parent's thread_id
 $thread_id = $parent['thread_id'];
 } else {
 // the message is not a reply, so it's the start of a new thread
 $thread_id = $this->db->query('SELECT MAX(thread_id) + 1 FROM pc_message')
 ->fetchColumn(0);
 $level = 0;
 $thread_pos = 0;
 }

 /* insert the message into the database. Using prepare() and execute()
 makes sure that all fields are properly quoted */
 $st = $this->db->prepare("INSERT INTO pc_message (id,thread_id,parent_id,
 thread_pos,posted_on,level,author,subject,body)
 VALUES (?,?,?,?,?,?,?,?,?)");

 $st->execute(array(null,$thread_id,$parent_id,$thread_pos,
 date('c'),$level,$_REQUEST['author'],
 $_REQUEST['subject'],$_REQUEST['body']));

 // Commit all the operations
 $this->db->commit();
 $this->inTransaction = false;
 }

 // show() displays a list of all messages
 protected function show() {
 print '<h2>Message List</h2><p>';

 /* order the messages by their thread (thread_id) and their position
 within the thread (thread_pos) */
 $st = $this->db->query("SELECT id,author,subject,LENGTH(body) AS body_length,
 posted_on,level FROM pc_message
 ORDER BY thread_id,thread_pos");
 while ($row = $st->fetch()) {
 // indent messages with level > 0
 print str_repeat(' ',4 * $row['level']);
 // print out information about the message with a link to read it
 print "<a href='" . htmlentities($_SERVER['PHP_SELF']) .
 "?cmd=read&id={$row['id']}'>" .
 htmlentities($row['subject']) . ' by ' .
 htmlentities($row['author']) . ' @ ' .
 htmlentities($row['posted_on']) .
 " ({$row['body_length']} bytes)
";
 }

 // provide a way to post a non-reply message
 print "<hr/><a href='" .
 htmlentities($_SERVER['PHP_SELF']) .

328 | Chapter 10: Database Access

Download at Boykma.Com

 "?cmd=post'>Start a New Thread";
 }

 // read() displays an individual message
 public function read() {

 /* make sure the message id we're passed is an integer and really
 represents a message */
 if (! isset($_REQUEST['id'])) {
 throw new Exception('No message ID supplied');
 }
 $id = intval($_REQUEST['id']);
 $st = $this->db->prepare("SELECT author,subject,body,posted_on
 FROM pc_message WHERE id = ?");
 $st->execute(array($id));
 $msg = $st->fetch();
 if (! $msg) {
 throw new Exception('Bad message ID');
 }

 /* don't display user-entered HTML, but display newlines as
 HTML line breaks */
 $body = nl2br(htmlentities($msg['body']));

 // display the message with links to reply and return to the message list
 $self = htmlentities($_SERVER['PHP_SELF']);
 $subject = htmlentities($msg['subject']);
 $author = htmlentities($msg['author']);
 print<<<_HTML_
<h2>$subject</h2>
<h3>by $author</h3>
<p>$body</p>
<hr/>
Reply

List Messages
HTML;
 }

 // post() displays the form for posting a message
 public function post() {
 $safe = array();
 foreach (array('author','subject','body') as $field) {
 // escape characters in default field values
 if (isset($_POST[$field])) {
 $safe[$field] = htmlentities($_POST[$field]);
 } else {
 $safe[$field] = '';
 }
 // make the error messages display in red
 if (isset($this->form_errors[$field])) {
 $this->form_errors[$field] = '' .
 $this->form_errors[$field] . '
';
 } else {
 $this->form_errors[$field] = '';

10.16 Program: Storing a Threaded Message Board | 329

Download at Boykma.Com

 }
 }

 // is this message a reply
 if (isset($_REQUEST['parent_id']) &&
 $parent_id = intval($_REQUEST['parent_id'])) {

 // send the parent_id along when the form is submitted
 $parent_field =
 sprintf('<input type="hidden" name="parent_id" value="%d" />',
 $parent_id);

 // if no subject's been passed in, use the subject of the parent
 if (! strlen($safe['subject'])) {
 $st = $this->db->prepare('SELECT subject FROM pc_message WHERE id = ?');
 $st->execute(array($parent_id));
 $parent_subject = $st->fetchColumn(0);

 /* prefix 'Re: ' to the parent subject if it exists and
 doesn't already have a 'Re:' */
 $safe['subject'] = htmlentities($parent_subject);
 if ($parent_subject && (! preg_match('/^re:/i',$parent_subject))) {
 $safe['subject'] = "Re: {$safe['subject']}";
 }
 }
 } else {
 $parent_field = '';
 }

 // display the posting form, with errors and default values
 $self = htmlentities($_SERVER['PHP_SELF']);
 print<<<_HTML_
<form method="post" action="$self">
<table>
<tr>
 <td>Your Name:</td>
 <td>{$this->form_errors['author']}
 <input type="text" name="author" value="{$safe['author']}" />
</td>
<tr>
 <td>Subject:</td>
 <td>{$this->form_errors['subject']}
 <input type="text" name="subject" value="{$safe['subject']}" />
</td>
<tr>
 <td>Message:</td>
 <td>{$this->form_errors['body']}
 <textarea rows="4" cols="30" wrap="physical"
 name="body">{$safe['body']}</textarea>
</td>
<tr><td colspan="2"><input type="submit" value="Post Message" /></td></tr>
</table>
$parent_field
<input type="hidden" name="cmd" value="save" />

330 | Chapter 10: Database Access

Download at Boykma.Com

</form>
HTML;
 }

 // validate() makes sure something is entered in each field
 public function valid() {
 $this->form_errors = array();
 if (! (isset($_POST['author']) && strlen(trim($_POST['author'])))) {
 $this->form_errors['author'] = 'Please enter your name.';
 }
 if (! (isset($_POST['subject']) && strlen(trim($_POST['subject'])))) {
 $this->form_errors['subject'] = 'Please enter a message subject.';
 }
 if (! (isset($_POST['body']) && strlen(trim($_POST['body'])))) {
 $this->form_errors['body'] = 'Please enter a message body.';
 }

 return (count($this->form_errors) == 0);
 }

 public function logAndDie(Exception $e) {
 print 'ERROR: ' . htmlentities($e->getMessage());
 if ($this->db && $this->db->inTransaction) {
 $this->db->rollback();
 }
 exit();
 }
}
?>

To properly handle concurrent usage, save(  ) needs exclusive access to the msg table
between the time it starts calculating the thread_pos of the new message and when it
actually inserts the new message into the database. We’ve used PDO’s
beginTransaction(  ) and commit(  ) methods to accomplish this. Note that
logAndDie(  ), the exception handler, rolls back the transaction when appropriate if an
error occured inside the transaction. Although PDO always calls rollback(  ) at the end
of a script if a transaction was started, explicitly including the call inside logAndDie(  )
makes clearer what’s happening to someone reading the code.

The level field can be used when displaying messages to limit what you retrieve from
the database. If discussion threads become very deep, this can help prevent your pages
from growing too large. Example 10-44 shows how to display just the first message in
each thread and any replies to that first message.

Example 10-44. Limiting thread depth
<?php
$st = $this->db->query(
 "SELECT * FROM pc_message WHERE level <= 1 ORDER BY thread_id,thread_pos");
while ($row = $st->fetch()) {
 // display each message
}
?>

10.16 Program: Storing a Threaded Message Board | 331

Download at Boykma.Com

If you’re interested in having a discussion group on your web site, you may want to use
one of the existing PHP message board packages. A popular one is FUDForum (http://
fudforum.org/forum/), and there are a number of others listed at http://www.zend.com/
apps.php?CID=261 .

332 | Chapter 10: Database Access

Download at Boykma.Com

CHAPTER 11

Sessions and Data Persistence

11.0 Introduction
As web applications have matured, the need for statefulness has become a common
requirement. Stateful web applications, meaning applications that keep track of a par-
ticular visitor’s information as he travels throughout a site, are now so common that
they are taken for granted.

Given the prevalence of web applications that keep track of things for their visitors—
such as shopping carts, online banking, personalized home page portals, and social
networking community sites—it is hard to imagine the Internet we use every day with-
out stateful applications.

HTTP, the protocol that web servers and clients use to talk to each other, is a stateless
protocol by design. However, since PHP 4.0, developers who’ve built applications with
PHP have had a convenient set of session management functions that have made the
challenge of implementing statefulness much easier. This chapter focuses on several
good practices to keep in mind while developing stateful applications.

Sessions are focused on maintaining visitor-specific state between requests. Some ap-
plications also require an equivalent type of lightweight storage of non-visitor-specific
state for a period of time at the server-side level. This is known as data persistence.

Recipe 11.1 explains PHP’s session module, which lets you easily associate persistent
data with a user as he moves through your site. Recipes 11.2 and 11.3 explore session
hijacking and session fixation vulnerabilities and how to avoid them.

Session data is stored in flat files in the server’s /tmp directory by default. Recipes
11.4 and 11.5 explain how to store session data in alternate locations, such as a database
and shared memory, and discusses the pros and cons of these different approaches.

Recipe 11.6 demonstrates how to use shared memory for more than just session data
storage, and Recipe 11.7 illustrates techniques for longer-term storage of summary
information that has been gleaned from logfiles.

333

Download at Boykma.Com

11.1 Using Session Tracking

Problem
You want to maintain information about a user as she moves through your site.

Solution
Use the sessions module. The session_start(  ) function initializes a session, and ac-
cessing an element in the auto-global $_SESSION array tells PHP to keep track of the
corresponding variable:

<?php
session_start();
$_SESSION['visits']++;
print 'You have visited here '.$_SESSION['visits'].' times.';
?>

Discussion
The session function keep track of users by issuing them cookies with randomly gen-
erated session IDs.

By default, PHP stores session data in files in the /tmp directory on your server. Each
session is stored in its own file. To change the directory in which the files are saved, set
the session.save_path configuration directive to the new directory in php.ini or with
ini_set(  ). You can also call session_save_path(  ) with the new directory to change
directories, but you need to do this before starting the session or accessing any session
variables.

To start a session automatically on each request, set session.auto_start to 1 in
php.ini. With session.auto_start, there’s no need to call session_start(  ).

With the session.use_trans_sid configuration directive turned on, if PHP detects that
a user doesn’t accept the session ID cookie, it automatically adds the session ID to URLs
and forms.* For example, consider this code that prints a URL:

<?php
print 'Take the A Train';
?>

If sessions are enabled, but a user doesn’t accept cookies, what’s sent to the browser is
something like:

<?php
Take the A Train
?>

In this example, the session name is PHPSESSID and the session name is
2eb89f3344520d11969a79aea6bd2fdd. PHP adds those to the URL so they are passed along

* Before PHP 4.2.0, this behavior had to be explicitly enabled by building PHP with the --enable-trans-
sid configuration setting.

334 | Chapter 11: Sessions and Data Persistence

Download at Boykma.Com

to the next page. Forms are modified to include a hidden element that passes the session
ID.

Due to a variety of security concerns relating to embedding session IDs in URLs, this
behavior is disabled by default. To enable transparent session IDs in URLs, you need
to turn on session.use_trans_sid in php.ini or through the use of
ini_set('session.use_trans_sid', true) in your scripts before the session is started.

Although session.use_trans_sid is convenient, it can cause you some security-related
headaches. Because URLs have session IDs in them, distribution of such a URL lets
anybody who receives the URL act as the user to whom the session ID was given. A
user that copies a URL from his web browser and pastes it into an email message sent
to friends unwittingly allows all those friends (and anybody else to whom the message
is forwarded) to visit your site and impersonate him.

What’s worse, when a user clicks on a link on your site that takes him to another site,
the user’s browser passes along the session ID–containing URL as the referring URL to
the external site. Even if the folks who run that external site don’t maliciously mine
these referrer URLs, referrer logs are often inadvertently exposed to search engines.
Search for PHPSESSID referer on your favorite search engine, and you’ll probably find
some referrer logs with PHP session IDs embedded in them.

Separately, redirects with the Location header aren’t automatically modified, so you
have to add a session ID to them yourself using the SID constant:

$redirect_url = 'http://www.example.com/airplane.php';
if (defined('SID') && (!isset($_COOKIE[session_name()]))) {
 $redirect_url .= '?' . SID;
}

header("Location: $redirect_url");

The session_name(  ) function returns the name of the cookie to the session ID is stored
in, so this code appends the SID constant to $redirect_url if the constant is defined,
and the session cookie isn’t set.

See Also
Documentation on session_start(  ) at http://www.php.net/session-start and
session_save_path(  ) at http://www.php.net/session-save-path. The session module has
a number of configuration directives that help you do things like manage how long
sessions can last and how they are cached. These options are detailed in the “Sessions”
section of the online manual at http://www.php.net/session.

11.2 Preventing Session Hijacking

Problem
You want make sure an attacker can’t access another user’s session.

11.2 Preventing Session Hijacking | 335

Download at Boykma.Com

Solution
Allow passing of session IDs via cookies only, and generate an additional session token
that is passed via URLs. Only requests that contain a valid session ID and a valid session
token may access the session:

<?php
ini_set('session.use_only_cookies', true);
session_start();

$salt = 'YourSpecialValueHere';
$tokenstr = (str) date('W') . $salt;
$token = md5($tokenstr);

if (!isset($_REQUEST['token']) || $_REQUEST['token'] != $token) {
 // prompt for login
 exit;
}

$_SESSION['token'] = $token;
output_add_rewrite_var('token', $token);
?>

If you’re using a PHP version earlier than 4.3.0, output_add_rewrite_var(  ) is not avail-
able. Instead, use the code in Example 11-1.

Example 11-1. Adding a session token to links
<?php
ini_set('session.use_only_cookies', true);
session_start();

$salt = 'YourSpecialValueHere';
$tokenstr = (str) date('W') . $salt;
$token = md5($tokenstr);

if (!isset($_REQUEST['token']) || $_REQUEST['token'] != $token) {
 // prompt for login
 exit;
}

$_SESSION['token'] = $token;

ob_start('inject_session_token');

function inject_session_token($buffer)
{
 $hyperlink_pattern = "/<a[^>]+href=\"([^\"]+)/i";
 preg_match_all($hyperlink_pattern, $buffer, $matches);

 foreach ($matches[1] as $link) {
 if (strpos($link, '?') === false) {
 $newlink = $link . '?token=' . $_SESSION['token'];
 } else {
 $newlink = $link .= '&token=' . $_SESSION['token'];
 }

336 | Chapter 11: Sessions and Data Persistence

Download at Boykma.Com

 $buffer = str_replace($link, $newlink, $buffer);
 }

 return $buffer;
}

The regular expression for matching hyperlinks in the inject_session_token(  ) function
isn’t bulletproof; it will not catch hyperlinks with href attributes quoted with single
quotes.

Discussion
This example creates an auto-shifting token by joining the current week number to-
gether with a salt term of your choice. With this technique, tokens will be valid for a
reasonable period of time without being fixed.

We then check for the token in the request, and if it’s not found, we prompt for a new
login.

If it is found, it needs to be added to generated links. output_add_rewrite_var(  ) does
this easily. Without output_add_rewrite_var(  ), we continue generating the page and
declare an output buffer callback function that will make sure that any hyperlinks on
the page are modified to contain the current token before the page is displayed.

Note that the inject_session_token(  ) function in the example does not address im-
agemaps, form submissions, or Ajax calls; make sure that you adjust any such func-
tionality on a page to include the session token that’s been generated and stored in the
session.

See Also
Recipe 18.1 for more information on regenerating IDs to prevent session fixation.

11.3 Preventing Session Fixation

Problem
You want to make sure that your application is not vulnerable to session fixation at-
tacks.

Solution
Require the use of session cookies without session identifiers appended to URLs, and
generate a new session ID frequently:

ini_set('session.use_only_cookies', true);
session_start();
if (!isset($_SESSION['generated'])
 || $_SESSION['generated'] < (time() - 30)) {
 session_regenerate_id();

11.3 Preventing Session Fixation | 337

Download at Boykma.Com

 $_SESSION['generated'] = time();
}

Discussion
In this example, we start by setting PHP’s session behavior to use cookies only. This
overrides PHP’s default behavior of transparently appending values such
as ?PHPSESSID=12345678 to any URL on a page whenever a visitor’s session is started if
he doesn’t have cookies enabled in his browser.

Once the session is started, we set a value that will keep track of the last time a session
ID was generated. By requiring a new one to be generated on a regular basis—every 30
seconds in this example—the opportunity for an attacker to obtain a valid session ID
is dramatically reduced.

These two approaches combine to virtually eliminate the risk of session fixation. An
attacker has a hard time obtaining a valid session ID because it changes so often, and
since sessions IDs can only be passed in cookies, a URL-based attack is not possible.
Finally, since we enabled the session.use_only_cookies setting, no session cookies will
be left lying around in browser histories or in server referrer logs.

See Also
“Session Fixation Vulnerability in Web-based Applications,” http://www.acros.si/
papers/session_fixation.pdf; Recipe 18.1 for information about regenerating session IDs
on privilege escalation.

11.4 Storing Sessions in a Database

Problem
You want to store session data in a database instead of in files. If multiple web servers
all have access to the same database, the session data is then mirrored across all the
web servers.

Solution
Use a class or a set of functions in conjunction with the session_set_save_handler(  )
function to define database-aware routines for session management. For example, use
PEAR’s HTTP_Session package for convenient database session storage:

<?php
require_once 'HTTP/Session/Container/DB.php';

$s = new HTTP_Session_Container_DB('mysql://user:password@localhost/db');
ini_get('session.auto_start') or session_start();
?>

338 | Chapter 11: Sessions and Data Persistence

Download at Boykma.Com

Discussion
One of the most powerful aspects of the session module is its abstraction of how ses-
sions get saved. The session_set_save_handler(  ) function tells PHP to use different
functions for the various session operations such as saving a session and reading session
data.

The PEAR HTTP_Session package provides classes that take advantage of PEAR’s DB,
MDB, and MDB2 database abstraction packages to store session data in a database. If the
database is shared between multiple web servers, users’ session information is portable
across all those web servers. So if you have a bunch of web servers behind a load bal-
ancer, you don’t need any fancy tricks to ensure that a user’s session data is accurate
no matter which web server she gets sent to.

To use HTTP_Session_Container_DB, pass a data source name (DSN) to the class when
you instantiate it. The session data is stored in a table called sessiondata whose struc-
ture is:

CREATE TABLE sessiondata
(
 id CHAR(32) NOT NULL,
 data MEDIUMBLOB,
 expiry INT UNSIGNED NOT NULL,
 PRIMARY KEY (id)
);

If you want the table name to be different than sessiondata, you can set a new table
name with an options array when instantiating the HTTP_Session_Container_DB class:

<?php
require_once 'HTTP/Session/Container/DB.php';

$options = array(
 'table' => 'php_session',
 'dsn' => 'mysql://user:password@localhost/db'
);
$s = new HTTP_Session_Container_DB($options);
ini_get('session.auto_start') or session_start();
?>

To customize an aspect of how the container classes provided by HTTP_Session manip-
ulate session data, you can modify the behavior by extending one of the container
classes. This is better than writing a completely new session handler class.

See Also
Documentation on session_set_save_handler(  ) at http://www.php.net/session-set-
save-handler; information on installing PEAR packages, such as HTTP_Session, is cov-
ered in Recipe 26.4.

11.4 Storing Sessions in a Database | 339

Download at Boykma.Com

11.5 Storing Sessions in Shared Memory

Problem
You want to store session data in shared memory to maximize performance.

Solution
Use the pc_Shm_Session class shown in Example 11-2. For example:

<?php
$s = new pc_Shm_Session();
ini_get('session.auto_start') or session_start();
?>

Discussion
As discussed in Recipe 11.4, the session module allows users to define their own session
handling methods. While this flexibility is most commonly used to store session data
in a database, you may find that performance suffers with the overhead of the database
connection and the subsequent queries. If sharing session data across a bunch of web
servers is not a concern, you can boost session handling performance by storing that
data in shared memory.

Before deciding to use shared memory for session storage, make sure that you can spare
the amount of memory that your traffic plus your average session data size will con-
sume. The performance boost of shared memory session storage won’t matter if your
site’s sessions consume all available memory on your system!

To store session data in shared memory, you need to have the shared memory functions
explicitly enabled by building PHP with --enable-shmop. You will also need the
pc_Shm class shown in Example 11-2, as well as the pc_Shm_Session class shown in
Example 11-3.

Example 11-2. pc_Shm class

class pc_Shm {

 var $tmp;
 var $size;
 var $shm;
 var $keyfile;

 function pc_Shm($tmp = '') {
 if (!function_exists('shmop_open')) {
 trigger_error('pc_Shm: shmop extension is required.', E_USER_ERROR);
 return;
 }

 if ($tmp != '' && is_dir($tmp) && is_writable($tmp)) {
 $this->tmp = $tmp;

340 | Chapter 11: Sessions and Data Persistence

Download at Boykma.Com

 } else {
 $this->tmp = '/tmp';
 }

 // default to 16k
 $this->size = 16384;

 return true;
 }

 function __construct($tmp = '') {
 return $this->pc_Shm($tmp);
 }

 function setSize($size) {
 if (ctype_digit($size)) {
 $this->size = $size;
 }
 }

 function open($id) {
 $key = $this->_getKey($id);
 $shm = shmop_open($key, 'c', 0644, $this->size);
 if (!$shm) {
 trigger_error('pc_Shm: could not create shared memory segment', E_USER_ERROR);
 return false;
 }
 $this->shm = $shm;
 return true;
 }

 function write($data) {
 $written = shmop_write($this->shm, $data, 0);
 if ($written != strlen($data)) {
 trigger_error('pc_Shm: could not write entire length of data', E_USER_ERROR);
 return false;
 }
 return true;
 }

 function read() {
 $data = shmop_read($this->shm, 0, $this->size);
 if (!$data) {
 trigger_error('pc_Shm: could not read from shared memory block', E_USER_ERROR);
 return false;
 }
 return $data;
 }

 function delete() {
 if (shmop_delete($this->shm)) {
 if (file_exists($this->tmp . DIRECTORY_SEPARATOR . $this->keyfile)) {
 unlink($this->tmp . DIRECTORY_SEPARATOR . $this->keyfile);
 }
 }

11.5 Storing Sessions in Shared Memory | 341

Download at Boykma.Com

 return true;
 }

 function close() {
 return shmop_close($this->shm);
 }

 function fetch($id) {
 $this->open($id);
 $data = $this->read();
 $this->close();
 return $data;
 }

 function save($id, $data) {
 $this->open($id);
 $result = $this->write($data);
 if (! (bool) $result) {
 return false;
 } else {
 $this->close();
 return $result;
 }
 }

 function _getKey($id) {
 $this->keyfile = 'pcshm_' . $id;
 if (!file_exists($this->tmp . DIRECTORY_SEPARATOR . $this->keyfile)) {
 touch($this->tmp . DIRECTORY_SEPARATOR . $this->keyfile);
 }
 return ftok($this->tmp . DIRECTORY_SEPARATOR . $this->keyfile, 'R');
 }
}

The pc_Shm class provides an object-oriented wrapper around PHP’s shmop functions.
The pc_Shm::_getKey(  ) method provides a convenient way to transparently calculate a
memory address, which is often the biggest obstacle for people getting familiar with
the shmop functions. By abstracting the memory address, reading and writing from
shared memory is as easy as manipulating a value in an associative array.

pc_Shm creates 16k memory blocks by default. To adjust the size of the blocks used,
pass a value in bytes to the pc_Shm::setSize(  ) method.

With pc_Shm defined, pc_Shm_Session has what it needs to easily provide custom meth-
ods for session_set_save_handler(  ). Example 11-3 shows the pc_Shm_Session class.

Example 11-3. pc_Shm_Session class
class pc_Shm_Session {

 var $shm;

 function pc_Shm_Session($tmp = '') {
 if (!function_exists('shmop_open')) {
 trigger_error("pc_Shm_Session: shmop extension is required.",E_USER_ERROR);

342 | Chapter 11: Sessions and Data Persistence

Download at Boykma.Com

 return;
 }

 if (! session_set_save_handler(array(&$this, '_open'),
 array(&$this, '_close'),
 array(&$this, '_read'),
 array(&$this, '_write'),
 array(&$this, '_destroy'),
 array(&$this, '_gc'))) {
 trigger_error('pc_Shm_Session: session_set_save_handler() failed', E_USER_ERROR);
 return;
 }

 $this->shm = new pc_Shm();

 return true;
 }

 function __construct() {
 return $this->pc_Shm_Session();
 }

 function setSize($size) {
 if (ctype_digit($size)) {
 $this->shm->setSize($size);
 }
 }

 function _open() {
 return true;
 }

 function _close() {
 return true;
 }

 function _read($id) {
 $this->shm->open($id);
 $data = $this->shm->read();
 $this->shm->close();
 return $data;
 }

 function _write($id, $data) {
 $this->shm->open($id);
 $this->shm->write($data);
 $this->shm->close();
 return true;

 }

 function _destroy($id) {
 $this->shm->open($id);
 $this->shm->delete();
 $this->shm->close();

11.5 Storing Sessions in Shared Memory | 343

Download at Boykma.Com

 }

 function _gc($maxlifetime) {
 $d = dir($this->tmp);
 while (false !== ($entry = $d->read())) {
 if (substr($entry, 0, 6) == 'pcshm_') {
 $tmpfile = $this->tmp . DIRECTORY_SEPARATOR . $entry;
 $id = substr($entry, 6);
 $fmtime = filemtime($tmpfile);
 $age = now() - $fmtime;
 if ($age >= $maxlifetime) {
 $this->shm->open($id);
 $this->shm->delete();
 $this->shm->close();
 }
 }
 }
 $d->close();
 return true;
 }

}

Versions of Microsoft Windows prior to Windows 2000 do not support shared mem-
ory. Also, when using PHP in a Windows server environment, shmop functions will
only work if PHP is running as a web server module, such those provided by Apache
or IIS. CLI and CGI interfaces to PHP do not support shmop functions under Windows.

It’s possible that you may not need to use these classes at all. If your web server can be
configured to mount a ramdisk partition such as /dev/shm, using shared memory for
session storage may be as simple as:

<?php
ini_set('session.save_path', '/dev/shm');
ini_get('session.auto_start') or session_start();
?>

See Also
Documentation on session_set_save_handler(  ) at http://www.php.net/session-set-
save-handler; documentation on shmop functions at http://www.php.net/shmop. Infor-
mation on configuring ramdisks on Linux-based systems is available at http://
www.linuxhq.com/kernel/file/Documentation/ramdisk.txt.

11.6 Storing Arbitrary Data in Shared Memory

Problem
You want a chunk of data to be available to all web server processes through shared
memory.

344 | Chapter 11: Sessions and Data Persistence

Download at Boykma.Com

Solution
Use the pc_Shm class shown in Example 11-2. For example, to store a string in shared
memory, used the pc_Shm::save(  ) method, which accepts a key/value pair:

<?php
$shm = new pc_Shm();
$secret_code = 'land shark';
$shm->save('mysecret', $secret_code);
?>

Another process can then access that data from shared memory with the
pc_Shm::fetch(  ) method:

<?php
$shm = new pc_Shm();
print $shm->fetch('mysecret');
?>

Discussion
Occasionally there are times when you want to cache a value or set of values in shared
memory for rapid retrieval. If your web server is busy with disk I/O, it may make sense
to leverage the shmop functions to achieve greater performance with storage and re-
trieval of information in that cache.

The pc_Shm class has two convenient methods, pc_Shm::fetch(  ) and pc_Shm::save(  ),
which abstract away the need to set memory addresses or explictly open and close the
shared memory segments.

It’s important to remember that, unlike setting a key/value pair in a regular PHP array,
the shmop functions need to allocate a specific amount of space that the data stored
there is expected to consume. The pc_Shm class allocates 16k for each value by default.
If data you need to store is larger than 16k, you need to increase the amount of space
the shmop functions should reserve. For example:

<?php
$shm = new pc_Shm();
$shm->setSize(24576); // 24k
$shm->save('longstring', 'Lorem ipsum pri eu simul nominati...');
?>

See Also
Recipe 11.5 and Recipe 5.6; the Memcache section of the PHP online manual at http://
www.php.net/memcache. Memcache is a very fast and efficient alternative to the shmop
functions. More information about memcache can be found at http://www.danga.com/
memcached/. Also, the PECL apc module (http://pecl.php.net/apc) offers functions for
storing data in shared memory.

11.6 Storing Arbitrary Data in Shared Memory | 345

Download at Boykma.Com

11.7 Caching Calculated Results in Summary Tables

Problem
You need to collect statistics from log tables that are too large to efficiently query in
real time.

Solution
Create a table that stores summary data from the complete log table, and query the
summary table to generate reports in nearly real time.

Discussion
Let’s say that you are logging search queries that web site visitors use on search engines
like Google and Yahoo! to find your web site, and tracking those queries in MySQL.
Your search term tracking log table has this structure:

CREATE TABLE searches
(
 searchterm VARCHAR(255) NOT NULL, # search term determined from HTTP_REFERER
 parsing
 dt DATETIME NOT NULL, # request date
 source VARCHAR(15) NOT NULL # site where search was performed
);

If you are fortunate enough to be logging thousands or tens of thousands of visits from
the major search engines per hour, the searches table could grow to an unmanageable
size over a period of several months.

You may wish to generate reports that illustrate trends of search terms that have driven
traffic to your web site over time from each major search engine so that you can deter-
mine which search engine to purchase advertising with.

Create a summary table that reflects what your report needs to display, and then query
the full dataset hourly and store the result in the summary table for speedy retrieval
during report generation. Your summary table would have this structure:

CREATE TABLE searchsummary
(
 searchterm VARCHAR(255) NOT NULL, # search term
 source VARCHAR(15) NOT NULL, # site where search was performed
 sdate DATE NOT NULL, # date search performed
 searches INT UNSIGNED NOT NULL, # number of searches
 PRIMARY KEY (searchterm, source, sdate)
);

Your report generation script can then use PDO to query the searchsummary table, and
if results are not available, collect them from the searches table and cache the result in
searchsummary:

$st = $db->prepare('SELECT COUNT(*)

346 | Chapter 11: Sessions and Data Persistence

Download at Boykma.Com

 FROM
 searchsummary
 WHERE
 sdate = ?');
$st->execute(array(date('Y-m-d', strtotime('yesterday'))));

$row = $st->fetch();

// no matches in cache
if ($row[0] == 0) {
 $st2 = $db->prepare('SELECT
 searchterm,
 source,
 FROM_DAYS(TO_DAYS(dt)) AS sdate,
 COUNT(*) as searches
 WHERE
 TO_DAYS(dt) = ?');
 $st2->execute(array(date('Y-m-d', strtotime('yesterday'))));

 $stInsert = $db->prepare('INSERT INTO searchsummary
 (searchterm,source,sdate,searches)
 VALUES (?,?,?,?)');
 while ($row->fetch(PDO::FETCH_NUM)) {
 $stInsert->execute($row);
 }
}
?>

Using this technique, your script will only incur the overhead of querying the full log
table once, and all subsequent requests will retrieve a single row of summary data per
search term.

See Also
Recipe 10.7 for information about PDO::prepare(  ) and PDOStatement::execute(  ) .

11.7 Caching Calculated Results in Summary Tables | 347

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 12

XML

12.0 Introduction
XML has gained popularity as a data-exchange and message-passing format. As web
services become more widespread, XML plays an even more important role in a devel-
oper’s life. With the help of a few extensions, PHP lets you read and write XML for
every occasion.

XML provides developers with a structured way to mark up data with tags arranged in
a tree-like hierarchy. One perspective on XML is to treat it as CSV on steroids. You can
use XML to store records broken into a series of fields. But instead of merely separating
each field with a comma, you can include a field name, a type, and attributes alongside
the data.

Another view of XML is as a document representation language. For instance, this book
was written using XML. The book is divided into chapters; each chapter into recipes;
and each recipe into Problem, Solution, and Discussion sections. Within any individual
section, we further subdivide the text into paragraphs, tables, figures, and examples.
An article on a web page can similarly be divided into the page title and headline, the
authors of the piece, the story itself, and any sidebars, related links, and additional
content.

XML content looks similar to HTML. Both use tags bracketed by < and > for marking
up text. But XML is both stricter and looser than HTML. It’s stricter because all con-
tainer tags must be properly closed. No opening elements are allowed without a
corresponding closing tag. It’s looser because you’re not forced to use a set list of tags,
such as <a>, , and <h1>. Instead, you have the freedom to choose a set of tag names
that best describe your data.

Other key differences between XML and HTML are case sensitivity, attribute quoting,
and whitespace. In HTML, and are the same bold tag; in XML, they’re two
different tags. In HTML, you can often omit quotation marks around attributes; XML,
however, requires them. So you must always write:

<element attribute="value">

349

Download at Boykma.Com

Additionally, HTML parsers generally ignore whitespace, so a run of 20 consecutive
spaces is treated the same as one space. XML parsers preserve whitespace, unless ex-
plicitly instructed otherwise. Because all elements must be closed, empty elements must
end with />. For instance, in HTML, the line break is
, while in XHTML, which is
HTML that validates as XML, it’s written as
.*

There is another restriction on XML documents. When XML documents are parsed
into a tree of elements, the outermost element is known as the root element. Just as a
tree has only one trunk, an XML document must have exactly one root element. In the
previous book example, this means chapters must be bundled inside a book tag. If you
want to place multiple books inside a document, you need to package them inside a
bookcase or another container. This limitation applies only to the document root.
Again, just like trees can have multiple branches off of the trunk, it’s legal to store
multiple books inside a bookcase.

This chapter doesn’t aim to teach you XML; for an introduction to XML, see Learning
XML by Erik T. Ray (O’Reilly). A solid nuts-and-bolts guide to all aspects of XML is
XML in a Nutshell by Elliotte Rusty Harold and W. Scott Means (O’Reilly).

Now that we’ve covered the rules, here’s an example: if you are a librarian and want
to convert your card catalog to XML, start with this basic set of XML tags:

<book>
 <title>PHP Cookbook</title>
 <author>Sklar, David and Trachtenberg, Adam</author>
 <subject>PHP</subject>
</book>

From there, you can add new elements or modify existing ones. For example,
<author> can be divided into first and last name, or you can allow for multiple records
so two authors aren’t placed in one field.

PHP 5 has a completely new set of XML extensions that address major problems in
PHP 4’s XML extensions. While PHP 4 allows you to manipulate XML, its XML tools
are only superficially related. Each tool covers one part of the XML experience, but
they weren’t designed to work together, and PHP 4 support for the more advanced
XML features is often patchy. Not so in PHP 5. The new XML extensions:

• Work together as a unified whole

• Are standardized on a single XML library: libxml2

• Fully comply with W3C specifications

• Efficiently process data

• Provide you with the right XML tool for your job

Additionally, following the PHP tenet that creating web applications should be easy,
there’s a new XML extension that makes it simple to read and alter XML documents.

* This is why nl2br(  ) outputs
; its output is XML compatible.

350 | Chapter 12: XML

Download at Boykma.Com

The aptly named SimpleXML extension allows you to interact with the information in
an XML document as though these pieces of information are arrays and objects, iter-
ating through them with foreach loops and editing them in place merely by assigning
new values to variables.

The first two recipes in this chapter cover parsing XML. Recipe 12.1 shows how to
write XML without additional tools. To use the DOM extension to write XML in a
standardized fashion, see Recipe 12.2.

The complement to writing XML is parsing XML. That’s the subject of the next three
recipes. They’re divided based upon the complexity and size of the XML document
you’re trying to parse. Recipe 12.3 covers how to parse basic XML documents. If you
need more sophisticated XML parsing tools, move onto Recipe 12.4. When your XML
documents are extremely large and memory intensive, turn to Recipe 12.5. If this is
your first time using XML, and you’re unsure which recipe is right for you, try them in
order, as the code becomes increasingly complex as your requirements go up.

XPath is the topic of Recipe 12.6. It’s a W3C standard for extracting specific informa-
tion from XML documents. We like to think of it as regular expressions for XML. XPath
is one of the most useful, yet unused parts of the XML family of specifications. If you
process XML on a regular basis, you should be familiar with XPath.

With XSLT, you can take an XSL stylesheet and turn XML into viewable output. By
separating content from presentation, you can make one stylesheet for web browsers,
another for PDAs, and a third for cell phones, all without changing the content itself.
This is the subject of Recipe 12.7.

After introducing XSLT, the two recipes that follow show how to pass information back
and forth between PHP and XSLT. Recipe 12.8 tells how to send data from PHP to an
XSLT stylesheet; Recipe 12.9 shows how to call out to PHP from within an XSLT
stylesheet.

As long as your XML document abides by the structural rules of XML, it is known as
well-formed. However, unlike HTML, which has a specific set of elements and attrib-
utes that much appear in set places, XML has no such restrictions.

Yet, in some cases, such as XHTML, the XML version of HTML, it’s useful to make
sure your XML documents abide by a specification. This allows tools, such as web
browsers, RSS readers, or your own scripts, to easily process the input. When an XML
document follows all the rules set out by a specification, then it is known as valid.
Recipe 12.10 covers how to validate an XML document.

One of PHP 5’s major limitations is its handling of character sets and document en-
codings. PHP strings are not associated with a particular encoding, but all the XML
extensions require UTF-8 input and emit UTF-8 output. Therefore, if you use a char-
acter set incompatible with UTF-8, you must manually convert your data both before
sending it into an XML extension and after you receive it back. Recipe 12.11 explores
the best ways to handle this process.

12.0 Introduction | 351

Download at Boykma.Com

The chapter concludes with a number of recipes dedicated to reading and writing a
number of common types of XML documents, specifically RSS and Atom. These are
the two most popular data syndication formats, and are useful for exchanging many
types of data, including blog posts, podcasts, and even mapping information.

PHP Cookbook also covers all the popular types of web services: REST, XML-RPC, and
SOAP. This topic is so important, it gets two dedicated chapters of its own. Chap-
ter 14 describes how to consume web services, while Chapter 15 tells how to can
implement web services of your very own.

12.1 Generating XML as a String

Problem
You want to generate XML. For instance, you want to provide an XML version of your
data for another program to parse.

Solution
Loop through your data and print it out surrounded by the correct XML tags:

<?php
header('Content-Type: text/xml');
print '<?xml version="1.0"?>' . "\n";
print "<shows>\n";

$shows = array(array('name' => 'Simpsons',
 'channel' => 'FOX',
 'start' => '8:00 PM',
 'duration' => '30'),

 array('name' => 'Law & Order',
 'channel' => 'NBC',
 'start' => '8:00 PM',
 'duration' => '60'));

foreach ($shows as $show) {
 print " <show>\n";
 foreach($show as $tag => $data) {
 print " <$tag>" . htmlspecialchars($data) . "</$tag>\n";
 }
 print " </show>\n";
}

print "</shows>\n";
?>

Discussion
Printing out XML manually mostly involves lots of foreach loops as you iterate through
arrays. However, there are a few tricky details. First, you need to call header(  ) to set

352 | Chapter 12: XML

Download at Boykma.Com

the correct Content-Type header for the document. Since you’re sending XML instead
of HTML, it should be text/xml.

Next, depending on your settings for the short_open_tag configuration directive, trying
to print the XML declaration may accidentally turn on PHP processing. Since the <? of
<?xml version="1.0"?> is the short PHP open tag, to print the declaration to the browser
you need to either disable the directive or print the line from within PHP. We do the
latter in the Solution.

Last, entities must be escaped. For example, the & in the show Law & Order needs to be
&. Call htmlspecialchars(  ) to escape your data.

The output from the example in the Solution is shown in Example 12-1.

Example 12-1. Tonight’s TV listings
<?xml version="1.0"?>
<shows>
 <show>
 <name>Simpsons</name>
 <channel>FOX</channel>
 <start>8:00 PM</start>
 <duration>30</duration>
 </show>
 <show>
 <name>Law & Order</name>
 <channel>NBC</channel>
 <start>8:00 PM</start>
 <duration>60</duration>
 </show>
</shows>

See Also
Recipe 12.2 for generating XML using DOM; documentation on htmlspecialchars(  )
at http://www.php.net/htmlspecialchars.

12.2 Generating XML with the DOM

Problem
You want to generate XML but want to do it in an organized way instead of using
print and loops.

Solution
Use the DOM extension to create a DOMDocument object. After building up the document,
call DOMDocument::save(  ) or DOMDocument::saveXML(  ) to generate a well-formed XML
document:

<?php
// create a new document

12.2 Generating XML with the DOM | 353

Download at Boykma.Com

$dom = new DOMDocument('1.0');

// create the root element, <book>, and append it to the document
$book = $dom->appendChild($dom->createElement('book'));

// create the title element and append it to $book
$title = $book->appendChild($dom->createElement('title'));

// set the text and the cover attribute for $title
$title->appendChild($dom->createTextNode('PHP Cookbook'));
$title->setAttribute('cover', 'soft');

// create and append author elements to $book
$sklar = $book->appendChild($dom->createElement('author'));
// create and append the text for each element
$sklar->appendChild($dom->createTextNode('Sklar'));

$trachtenberg = $book->appendChild($dom->createElement('author'));
$trachtenberg->appendChild($dom->createTextNode('Trachtenberg'));

// print a nicely formatted version of the DOM document as XML
$dom->formatOutput = true;
echo $dom->saveXML();
?>

<?xml version="1.0"?>
<book>
 <title cover="soft">PHP Cookbook</title>
 <author>Sklar</author>
 <author>Trachtenberg</author>
</book>

Discussion
The DOM methods follow a pattern. You create an object as either an element or a text
node, add and set any attributes you want, and then append it to the tree in the spot it
belongs.

Before creating elements, create a new document, passing the XML version as the sole
argument:

$dom = new DOMDocument('1.0');

Now create new elements belonging to the document. Despite being associated with a
specific document, nodes don’t join the document tree until appended:

$book_element = $dom->createElement('book');
$book = $dom->appendChild($book_element);

Here a new book element is created and assigned to the object $book_element. To create
the document root, append $book_element as a child of the $dom document. The result,
$book, refers to the specific element and its location within the DOM object.

All nodes are created by calling a method on $dom. Once a node is created, it can be
appended to any element in the tree. The element from which we call the

354 | Chapter 12: XML

Download at Boykma.Com

appendChild(  ) method determines the location in the tree where the node is placed. In
the previous case, $book_element is appended to $dom. The element appended to $dom is
the top-level node, or the root node.

You can also append a new child element to $book. Since $book is a child of $dom, the
new element is, by extension, a grandchild of $dom:

$title_element = $dom->createElement('title');
$title = $book->appendChild($title_element);

By calling $book->appendChild(  ), this code places the $title_element element under the
$book element.

To add the text inside the <title></title> tags, create a text node using
createTextNode(  ) and append it to $title:

$text_node = $dom->createTextNode('PHP Cookbook');
$title->appendChild($text_node);

Since $title is already added to the document, there’s no need to re-append it to
$book.

The order in which you append children to nodes isn’t important. The following four
lines, which first append the text node to $title_element and then to $book, are equiv-
alent to the previous code:

$title_element = $dom->createElement('title');
$text_node = $dom->createTextNode('PHP Cookbook');

$title_element->appendChild($text_node);
$book->appendChild($title_element);

To add an attribute, call setAttribute(  ) upon a node, passing the attribute name and
value as arguments:

$title->setAttribute('cover', 'soft');

If you print the title element now, it looks like this:

<title cover="soft">PHP Cookbook</title>

Once you’re finished, you can output the document as a string or to a file:

// put the string representation of the XML document in $books
$books = $dom->saveXML();

// write the XML document to books.xml
$dom->save('books.xml');

By default, these methods generate XML output in one long line without any
whitespace, including indentations and line breaks. To fix this, set the formatOutput
attribute of your DOMDocument to true:

// print a nicely formatted version of the DOM document as XML
$dom->formatOutput = true;

This causes the DOM extension to generate XML like this:

12.2 Generating XML with the DOM | 355

Download at Boykma.Com

<?xml version="1.0"?>
<book>
 <title cover="soft">PHP Cookbook</title>
</book>

See Also
Recipe 12.1 for writing XML without DOM; Recipe 12.4 for parsing XML with DOM;
documentation on DOMDocument at http://www.php.net/function.dom-domdocument-con
struct.php and the DOM functions in general at http://www.php.net/dom; more infor-
mation about the underlying libxml2 C library at http://xmlsoft.org/.

12.3 Parsing Basic XML Documents

Problem
You want to parse a basic XML document that follows a known schema, and you don’t
need access to more esoteric XML features, such as processing instructions.

Solution
Use the SimpleXML extension. Here’s how to read XML from a file:

<?php
$sx = simplexml_load_file('address-book.xml');

foreach ($sx->person as $person) {
 $firstname_text_value = $person->firstname;
 $lastname_text_value = $person->lastname;

 print "$firstname_text_value $lastname_text_value\n";
}
?>
David Sklar
 Adam Trachtenberg

Discussion
SimpleXML has been described as “the mostest bestest thing ever.” While it’s hard to
live up to such grand praise, SimpleXML does do a remarkable job of making it—dare
we say—simple to interact with XML. When you want to read a configuration file
written in XML, parse an RSS feed, or process the result of a REST request, SimpleXML
excels at these tasks. It doesn’t work well for more complex XML-related jobs, such as
reading a document where you don’t know the format ahead of time or when you need
to access processing instructions or comments.

SimpleXML turns elements into object properties. The text between the tags is assigned
to the property. If more than one element with the same name lives in the same place
(such as multiple <people>s), then they’re placed inside a list.

356 | Chapter 12: XML

Download at Boykma.Com

Element attributes become array elements, where the array key is the attribute name
and the key’s value is the attribute’s value.

To access a single value, reference it directly using object method notation. Let’s use
this XML fragment as example:

<firstname>David</firstname>

If you have this in a SimpleXML object, $firstname, here’s all you need to do to access
David:

$firstname

SimpleXML assumes that when you have a node that contains only text, you’re inter-
ested in the text. Therefore, print $firstname does what you expect it to: it prints
David.

Iteration methods, like foreach, are the best choice for cycling through multiple ele-
ments. Code for this is shown in later examples.

Attributes are stored as array elements. For example, this prints out the id attribute for
the first person element:

<?php
$ab = simplexml_load_file('address-book.xml');

// the id attribute of the first person
print $ab->person['id'] . "\n";
?>

which gives you:

 1

Example 12-2 contains a more complete example based on this simple address book
in XML. It’s used in the code examples that follow.

Example 12-2. Simple address book in XML
<?xml version="1.0"?>
<address-book>
 <person id="1">
 <!--David Sklar-->
 <firstname>David</firstname>
 <lastname>Sklar</lastname>
 <city>New York</city>
 <state>NY</state>
 <email>sklar@php.net</email>
 </person>

 <person id="2">
 <!--Adam Trachtenberg-->
 <firstname>Adam</firstname>
 <lastname>Trachtenberg</lastname>
 <city>San Francisco</city>

12.3 Parsing Basic XML Documents | 357

Download at Boykma.Com

 <state>CA</state>
 <email>amt@php.net</email>
 </person>
</address-book>

Example 12-3 shows how you use SimpleXML to pull out all the first and last names.

Example 12-3. Using SimpleXML to extract data

$sx = simplexml_load_file('address-book.xml');

foreach ($sx->person as $person) {
 $firstname_text_value = $person->firstname;
 $lastname_text_value = $person->lastname;

 print "$firstname_text_value $lastname_text_value\n";
}

David Sklar
 Adam Trachtenberg

When you use SimpleXML, you can directly iterate over elements using foreach. Here,
the iteration occurs over $sx->person, which holds all the person nodes.

You can also directly print SimpleXML objects, as shown in Example 12-4.

Example 12-4. Printing SimpleXML objects

<?php
foreach ($sx->person as $person) {
 print "$person->firstname $person->lastname\n";
}
?>
David Sklar
 Adam Trachtenberg

PHP interpolates SimpleXML objects inside of quoted strings and retrieves the text
stored in them.

See Also
Recipe 12.4 for parsing complex XML documents; Recipe 12.5 for parsing large XML
documents; documentation on SimpleXML at http://www.php.net/simplexml; more in-
formation about the underlying libxml2 C library at http://xmlsoft.org/.

358 | Chapter 12: XML

Download at Boykma.Com

12.4 Parsing Complex XML Documents

Problem
You have a complex XML document, such as one where you need to introspect the
document to determine its schema, or you need to use more esoteric XML features,
such as processing instructions or comments.

Solution
Use the DOM extension. It provides a complete interface to all aspects of the XML
specification.

<?php
$dom = new DOMDocument;
$dom->load('address-book.xml');

foreach ($dom->getElementsByTagname('person') as $person) {
 $firstname = $person->getElementsByTagname('firstname');
 $firstname_text_value = $firstname->item(0)->firstChild->nodeValue;

 $lastname = $person->getElementsByTagname('lastname');
 $lastname_text_value = $lastname->item(0)->firstChild->nodeValue;

 print "$firstname_text_value $lastname_text_value\n";
}
?>
David Sklar
 Adam Trachtenberg

Discussion
The W3C’s DOM provides a platform- and language-neutral method that specifies the
structure and content of a document. Using the DOM, you can read an XML document
into a tree of nodes and then maneuver through the tree to locate information about a
particular element or elements that match your criteria. This is called tree-based pars-
ing.

Additionally, you can modify the structure by creating, editing, and deleting nodes. In
fact, you can use the DOM functions to author a new XML document from scratch;
see Recipe 12.2.

One of the major advantages of the DOM is that by following the W3C’s specification,
many languages implement DOM functions in a similar manner. Therefore, the work
of translating logic and instructions from one application to another is considerably
simplified. PHP 5 comes with a new series of DOM methods that are in stricter com-
pliance with the DOM standard than previous versions of PHP.

The DOM is large and complex. For more information, read the specification at http://
www.w3.org/DOM/ or pick up a copy of XML in a Nutshell.

12.4 Parsing Complex XML Documents | 359

Download at Boykma.Com

DOM functions in PHP are object oriented. To move from one node to another, access
properties such as $node->childNodes, which contains an array of node objects, and
$node->parentNode, which contains the parent node object. Therefore, to process a
node, check its type and call a corresponding method, as shown in Example 12-5.

Example 12-5. Parsing a DOM object
<?php
// $node is the DOM parsed node <book cover="soft">PHP Cookbook</book>
$type = $node->nodeType;

switch($type) {
case XML_ELEMENT_NODE:
 // I'm a tag. I have a tagname property.
 print $node->tagName; // prints the tagname property: "book"
 break;
case XML_ATTRIBUTE_NODE:
 // I'm an attribute. I have a name and a value property.
 print $node->name; // prints the name property: "cover"
 print $node->value; // prints the value property: "soft"
 break;
case XML_TEXT_NODE:
 // I'm a piece of text inside an element.
 // I have a name and a content property.
 print $node->nodeName; // prints the name property: "#text"
 print $node->nodeValue; // prints the text content: "PHP Cookbook"
 break;
default:
 // another type
 break;
}
?>

To automatically search through a DOM tree for specific elements, use
getElementsByTagname(  ). Example 12-6 shows how to do so with multiple book re-
cords.

Example 12-6. Card catalog in XML
<books>
 <book>
 <title>PHP Cookbook</title>
 <author>Sklar</author>
 <author>Trachtenberg</author>
 <subject>PHP</subject>
 </book>
 <book>
 <title>Perl Cookbook</title>
 <author>Christiansen</author>
 <author>Torkington</author>
 <subject>Perl</subject>
 </book>
</books>

Example 12-7 shows how to find all authors.

360 | Chapter 12: XML

Download at Boykma.Com

Example 12-7. Printing all authors using DOM
// find and print all authors
$authors = $dom->getElementsByTagname('author');

// loop through author elements
foreach ($authors as $author) {
 // childNodes holds the author values
 $text_nodes = $author->childNodes;

 foreach ($text_nodes as $text) {
 print $text->nodeValue . "\n";
 }
}

Sklar
 Trachtenberg
 Christiansen
 Torkington

The getElementsByTagname(  ) method returns an array of element node objects. By
looping through each element’s children, you can get to the text node associated with
that element. From there, you can pull out the node values, which in this case are the
names of the book authors, such as Sklar and Trachtenberg.

See Also
Recipe 12.3 for parsing simple XML documents; Recipe 12.5 for parsing large XML
documents; documentation on DOM at http://www.php.net/dom; more information
about the underlying libxml2 C library at http://xmlsoft.org/.

12.5 Parsing Large XML Documents

Problem
You want to parse a large XML document. This document is so large that it’s impractical
to use SimpleXML or DOM because you cannot hold the entire document in memory.
Instead, you must load the document in one section at a time.

Solution
Use the XMLReader extension:

<?php
$reader = new XMLReader();
$reader->open('card-catalog.xml');

/* Loop through document */
while ($reader->read()) {
 /* If you're at an element named 'author' */
 if ($reader->nodeType == XMLREADER::ELEMENT && $reader->localName == 'author') {

12.5 Parsing Large XML Documents | 361

Download at Boykma.Com

 /* Move to the text node and print it out */
 $reader->read();
 print $reader->value . "\n";
 }
}
?>

Discussion
There are two major types of XML parsers: ones that hold the entire document in
memory at once, and ones that hold only a small portion of the document in memory
at any given time.

The first kind are called tree-based parsers, since they store the document into a data
structure known as a tree. The SimpleXML and DOM extensions, from Recipes 12.3
and 12.4, are tree-based parsers. Using a tree-based parser is easier for you, but requires
PHP to use more RAM. With most XML documents, this isn’t a problem. However,
when your XML document is quite large, then this can cause major performance issues.

The other kind of XML parser is a stream-based parser. Stream-based parsers don’t
store the entire document in memory; instead, they read in one node at a time and allow
you to interact with it in real time. Once you move onto the next node, the old one is
thrown away—unless you explicitly store it yourself for later use. This makes stream-
based parsers faster and less memory consuming, but you may have to write more code
to process the document.

The easiest way to process XML data using a stream-based parser is using the
XMLReader extension. This extension is based on the C# XmlTextReader API. If
you’re familiar with the SAX (Simple API for XML) interface from PHP 4, it’s still
available in PHP 5, but the XMLReader extension is more intuitive, feature-rich, and
faster.

XMLReader is enabled by default as of PHP 5.1. If you’re running PHP 5.0.x, grab the
extension from PECL at http://pecl.php.net/package/xmlReader and install it yourself.

Begin by creating a new instance of the XMLReader class and specifying the location of
your XML data:

<?php
// Create a new XMLReader object
$reader = new XMLReader();

// Load from a file or URL
$reader->open('document.xml');

// Or, load from a PHP variable
$reader->XML($document);
?>

Most of the time, you’ll use the XMLReader::open(  ) method to pull in data from an
external source, but you can also load it from an existing PHP variable with
XMLReader::XML(  ).

362 | Chapter 12: XML

Download at Boykma.Com

Once the object is configured, you begin processing the data. At the start, you’re posi-
tioned at the top of the document. You can maneuver through the document using a
combination of the two navigation methods XMLReader provides:
XMLReader::read(  ) and XMLReader::next(  ). The first method reads in the piece of XML
data that immediately follows the current position. The second method moves to the
next sibling element after the current position.

For example, look at the XML in Example 12-8.

Example 12-8. Card catalog in XML
<books>
 <book isbn="1565926811">
 <title>PHP Cookbook</title>
 <author>Sklar</author>
 <author>Trachtenberg</author>
 <subject>PHP</subject>
 </book>
 <book isbn="0596003137">
 <title>Perl Cookbook</title>
 <author>Christiansen</author>
 <author>Torkington</author>
 <subject>Perl</subject>
 </book>
</books>

When the object is positioned at the first <book> element, the read(  ) method moves
you to the next element underneath <book>. (This is technically the whitespace between
<book> and <title>.) In comparison, next(  ) moves you to the next <book> element and
skips the entire PHP Cookbook subtree.

These methods return true when they’re able to successfully move to another node,
and false when they cannot. So, it’s typical to use them inside a while loop, as such:

/* Loop through document */
while ($reader->read()) {
 /* Process XML */
}

This causes the object to read in the entire XML document one piece at a time. Inside
the while(  ), examine $reader and process it accordingly.

A common aspect to check is the node type. This lets you know if you’ve reached an
element (and then check the name of that element), a closing element, an attribute, a
piece of text, some whitespace, or any other part of an XML document. Do this by
referencing the nodeType attribute:

/* Loop through document */
while ($reader->read()) {
 /* If you're at an element named 'author' */
 if ($reader->nodeType == XMLREADER::ELEMENT && $reader->localName == 'author') {
 /* Process author element */
 }
}

12.5 Parsing Large XML Documents | 363

Download at Boykma.Com

This code checks if the node is an element and, if so, that its name is author. For a
complete list of possible values stored in nodeType, check out Table 12-1.

Table 12-1. XMLReader node type values

Node type Description

XMLReader::NONE No node type

XMLReader::ELEMENT Start element

XMLReader::ATTRIBUTE Attribute node

XMLReader::TEXT Text node

XMLReader::CDATA CDATA node

XMLReader::ENTITY_REF Entity Reference node

XMLReader::ENTITY Entity Declaration node

XMLReader::PI Processing Instruction node

XMLReader::COMMENT Comment node

XMLReader::DOC Document node

XMLReader::DOC_TYPE Document Type node

XMLReader::DOC_FRAGMENT Document Fragment node

XMLReader::NOTATION Notation node

XMLReader::WHITESPACE Whitespace node

XMLReader::SIGNIFICANT_WHITESPACE Significant Whitespace node

XMLReader::END_ELEMENT End Element

XMLReader::END_ENTITY End Entity

XMLReader::XML_DECLARATION XML Declaration node

From there, you can decide how to handle that element and the data it contains. For
example, printing out all the author names in the card catalog:

$reader = new XMLReader();
$reader->open('card-catalog.xml');

/* Loop through document */
while ($reader->read()) {
 /* If you're at an element named 'author' */
 if ($reader->nodeType == XMLREADER::ELEMENT && $reader->localName == 'author') {
 /* Move to the text node and print it out */
 $reader->read();
 print $reader->value . "\n";
 }
}

Sklar
 Trachtenberg
 Christiansen

364 | Chapter 12: XML

Download at Boykma.Com

 Torkington

Once you’ve reached the <author> element, call $reader->read(  ) to advance to the text
inside it. From there, you can find the author names inside of $reader->value.

The XMLReader::value attribute provides you access with a node’s value. This only ap-
plies to nodes where this is a meaningful concept, such as text nodes or CDATA nodes.
In all other cases, such as element nodes, this attribute is set to the empty string.

Table 12-2 contains a complete listing of XMLReader object properties, including
value.

Table 12-2. XMLReader node type values

Name Type Description

attributeCount int Number of node attributes

baseURI string Base URI of the node

depth int Tree depth of the node, starting at 0

hasAttributes bool If the node has attributes

hasValue bool If the node has a text value

isDefault bool If the attribute value is defaulted from DTD

isEmptyElement bool If the node is an empty element tag

localName string Local name of the node

name string Qualified name of the node

namespaceURI string URI of the namespace associated with the node

nodeType int Node type of the node

prefix string Namespace prefix associated with the node

value string Text value of the node

xmlLang string xml:lang scope of the node

There’s one remaining major piece of XMLReader functionality: attributes. XMLRead-
er has a special set of methods to access attribute data when it’s on top of an element
node, including the following: moveToAttribute(  ), moveToFirstAttribute(  ), and
moveToNextAttribute(  ).

The moveToAttribute(  ) method lets you specify an attribute name. For example, here’s
code using the card catalog XML to print out all the ISBN numbers:

<?php
$reader = new XMLReader();
$reader->XML($catalog);

/* Loop through document */
while ($reader->read()) {
 /* If you're at an element named 'book' */

12.5 Parsing Large XML Documents | 365

Download at Boykma.Com

 if ($reader->nodeType == XMLREADER::ELEMENT && $reader->localName == 'book') {
 $reader->moveToAttribute('isbn');
 print $reader->value . "\n";
 }
}
?>

Once you’ve found the <book> element, call moveToAttribute('isbn') to advance to the
isbn attribute, so you can read its value and print it out.

In the examples in this recipe, we print out information on all books. However, it’s easy
to modify them to retrieve data only for one specific book. For example, this code
combines pieces of the examples to print out all the data for Perl Cookbook in an effi-
cient fashion:

<?php
$reader = new XMLReader();
$reader->XML($catalog);

// Perl Cookbook ISBN is 0596003137
// Use array to make it easy to add additional ISBNs
$isbns = array('0596003137' => true);

/* Loop through document to find first <book> */
while ($reader->read()) {
 /* If you're at an element named 'book' */
 if ($reader->nodeType == XMLREADER::ELEMENT &&
 $reader->localName == 'book') {
 break;
 }
}

/* Loop through <book>s to find right ISBNs */
do {
 if ($reader->moveToAttribute('isbn') &&
 isset($isbns[$reader->value])) {
 while ($reader->read()) {
 switch ($reader->nodeType) {
 case XMLREADER::ELEMENT:
 print $reader->localName . ": ";
 break;
 case XMLREADER::TEXT:
 print $reader->value . "\n";
 break;
 case XMLREADER::END_ELEMENT;
 if ($reader->localName == 'book') {
 break 2;
 }
 }
 }
 }
} while ($reader->next());
?>

title: Perl Cookbook

366 | Chapter 12: XML

Download at Boykma.Com

 author: Christiansen
 author: Torkington
 subject: Perl

The first while(  ) iterates sequentially until it finds the first <book> element.

Having lined yourself up correctly, you then break out of the loop and start checking
ISBN numbers. That’s handled inside a do... while(  ) loop that uses
$reader->next(  ) to move down the <book> list. You cannot use a regular while(  ) here
or you’ll skip over the first <book>. Also, this is a perfect example of when to use
$reader->next(  ) instead of $reader->read(  ).

If the ISBN matches a value in $isbns, then you want to process the data inside the
current <book>. This is handled using yet another while(  ) and a switch(  ).

There are three different switch(  ) cases: an opening element, element text, and a clos-
ing element. If you’re opening an element, you print out the element’s name and a
colon. If you’re text, you print out the textual data. And if you’re closing an element,
you check to see whether you’re closing the <book>. If so, then you’ve reached the end
of the data for that particular book, and you need to return to the do... while(  ) loop.
This is handled using a break 2;; while jumps back two levels, instead of the usual one
level.

See Also
Recipe 12.3 for parsing simple XML documents; Recipe 12.4 for parsing complex XML
documents; documentation on XMLReader at http://www.php.net/xmlreader; more in-
formation about the underlying libxml2 C library’s XMLReader functions at http://
xmlsoft.org/xmlreader.html.

12.6 Extracting Information Using XPath

Problem
You want to make sophisticated queries of your XML data without parsing the docu-
ment node by node.

Solution
Use XPath.

XPath is available in SimpleXML:

<?php
$s = simplexml_load_file('address-book.xml');
$emails = $s->xpath('/address-book/person/email');

foreach ($emails as $email) {
 // do something with $email

12.6 Extracting Information Using XPath | 367

Download at Boykma.Com

}
?>

And in DOM:

<?php
$dom = new DOMDocument;
$dom->load('address-book.xml');
$xpath = new DOMXPath($dom);
$email = $xpath->query('/address-book/person/email');

foreach ($emails as $email) {
 // do something with $email
}
?>

Discussion
Except for the simplest documents, it’s rarely easy to access the data you want one
element at a time. As your XML files become increasingly complex and your parsing
desires grow, using XPath is easier than filtering the data inside a foreach.

PHP has an XPath class that takes a DOM object as its constructor. You can then search
the object and receive DOM nodes in reply. SimpleXML also supports XPath, and it’s
easier to use because it’s integrated into the SimpleXML object.

DOM supports XPath queries, but you do not perform the query directly on the DOM
object itself. Instead, you create a DOMXPath object, as shown in Example 12-9.

Example 12-9. Using XPath and DOM
$dom = new DOMDocument;
$dom->load('address-book.xml');
$xpath = new DOMXPath($dom);
$email = $xpath->query('/address-book/person/email');

Instantiate DOMXPath by passing in a DOMDocument to the constructor. To execute the
XPath query, call query(  ) with the query text as your argument. This returns an iterable
DOM node list of matching nodes (see Example 12-10).

Example 12-10. Using XPath with DOM in a basic example
$dom = new DOMDocument;
$dom->load('address-book.xml');
$xpath = new DOMXPath($dom);
$emails = $xpath->query('/address-book/person/email');

foreach ($emails as $e) {
 $email = $e->firstChild->nodeValue;
 // do something with $email
}

After creating a new DOMXPath object, query this object using DOMXPath::query(  ), passing
the XPath query as the first parameter (in this example, it’s /people/person/email). This
function returns a node list of matching DOM nodes.

368 | Chapter 12: XML

Download at Boykma.Com

By default, DOMXPath::query(  ) operates on the entire XML document. Search a sub-
section of the tree by passing in the subtree as a final parameter to query(  ). For instance,
to gather all the first and last names of people in the address book, retrieve all the
people nodes and query each node individually, as shown in Example 12-11.

Example 12-11. Using XPath with DOM in a more complicated example
$dom = new DOMDocument;
$dom->load('address-book.xml');
$xpath = new DOMXPath($dom);
$person = $xpath->query('/address-book/person');

foreach ($person as $p) {
 $fn = $xpath->query('firstname', $p);
 $firstname = $fn->item(0)->firstChild->nodeValue;

 $ln = $xpath->query('lastname', $p);
 $lastname = $ln->item(0)->firstChild->nodeValue;

 print "$firstname $lastname\n";
}

David Sklar
Adam Trachtenberg

Inside the foreach, call DOMXPath::query(  ) to retrieve the firstname and lastname nodes.
Now, in addition to the XPath query, also pass $p to the method. This makes the search
local to the node.

In contrast to DOM, all SimpleXML objects have an integrated xpath(  ) method. Calling
this method queries the current object using XPath and returns a SimpleXML object
containing the matching nodes, so you don’t need to instantiate another object to use
XPath. The method’s one argument is your XPath query.

Use Example 12-12 to find all the matching email addresses in the sample address book.

Example 12-12. Using XPath and SimpleXML in a basic example
$s = simplexml_load_file('address-book.xml');
$emails = $s->xpath('/address-book/person/email');

foreach ($emails as $email) {
 // do something with $email
}

This is shorter because there’s no need to dereference the firstNode or to take the
nodeValue.

SimpleXML handles the more complicated example, too. Since xpath(  ) returns Sim-
pleXML objects, you can query them directly, as in Example 12-13.

Example 12-13. Using XPath with SimpleXML in a more complicated example
$s = simplexml_load_file('address-book.xml');
$people = $s->xpath('/address-book/person');

12.6 Extracting Information Using XPath | 369

Download at Boykma.Com

foreach($people as $p) {
 list($firstname) = $p->xpath('firstname');
 list($lastname) = $p->xpath('lastname');

 print "$firstname $lastname\n";
}

David Sklar
Adam Trachtenberg

Since the inner XPath queries return only one element, use list to grab it from the
array.

See Also
Documentation on DOM XPath at http://www.php.net/function.dom-domxpath-con
struct.php; the offical XPath specification at http://www.w3.org/TR/xpath; the XPath
chapter from XML in a Nutshell at http://www.oreilly.com/catalog/xmlnut/chapter/
ch09.html.

12.7 Transforming XML with XSLT

Problem
You have an XML document and an XSL stylesheet. You want to transform the docu-
ment using XSLT and capture the results. This lets you apply stylesheets to your data
and create different versions of your content for different media.

Solution
Use PHP’s XSLT extension:

// Load XSL template
$xsl = newDOMDocument;
$xsl->load('stylesheet.xsl');

// Create new XSLTProcessor
$xslt = new XSLTProcessor();
// Load stylesheet
$xslt->importStylesheet($xsl);

// Load XML input file
$xml = new DOMDocument;
$xml->load('data.xml');

// Transform to string
$results = $xslt->transformToXML($xml);

// Transform to a file
$results = $xslt->transformToURI($xml, 'results.txt');

370 | Chapter 12: XML

Download at Boykma.Com

// Transform to DOM object
$results = $xslt->transformToDoc($xml);

The transformed text is stored in $results.

Discussion
XML documents describe the content of data, but they don’t contain any information
about how that data should be displayed. However, when XML content is coupled with
a stylesheet described using XSL (eXtensible Stylesheet Language), the content is dis-
played according to specific visual rules.

The glue between XML and XSL is XSLT (eXtensible Stylesheet Language Transfor-
mations). These transformations apply the series of rules enumerated in the stylesheet
to your XML data. So just as PHP parses your code and combines it with user input to
create a dynamic page, an XSLT program uses XSL and XML to output a new page that
contains more XML, HTML, or any other format you can describe.

There are a few XSLT programs available, each with different features and limitations.
PHP 5 supports only the libxslt processor. This is a different processor than PHP 4
used.

Using XSLT in PHP 5 involves two main steps: preparing the XSLT object and then
triggering the actual transformation for each XML file.

To begin, load in the stylesheet using DOM. Then, instantiate a new XSLTProcessor
object, and import the XSLT document by passing in your newly created DOM object
to the importStylesheet(  ) method, as shown in Example 12-14.

Example 12-14. Configuring the XSLT processor
// Load XSL template
$xsl = newDOMDocument;
$xsl->load('stylesheet.xsl');

// Create new XSLTProcessor
$xslt = new XSLTProcessor();
// Load stylesheet
$xslt->importStylesheet($xsl);

Now the transformer is up and running. You can transform any DOM object in one of
three ways: into a string, into a file, or back into another DOM object, as shown in
Example 12-15.

Example 12-15. Transforming the XML data
// Load XML input file
$xml = new DOMDocument;
$xml->load('data.xml');

// Transform to string
$results = $xslt->transformToXML($xml);

12.7 Transforming XML with XSLT | 371

Download at Boykma.Com

// Transform to a file
$results = $xslt->transformToURI($xml, 'results.txt');

// Transform to DOM object
$results = $xslt->transformToDoc($xml);

When you call transformToXML(  ) or transformToDoc(  ), the extension returns the result
string or object. In contrast, transformToURI(  ) returns the number of bytes written to
the file, not the actual document.

These methods return false when they fail, so to accurately check for failure, write:

if (false === ($results = $xslt->transformToXML($xml))) {
 // an error occurred
}

Using === prevents a return value of 0 from being confused with an actual error.

See Also
Documentation on XSL functions at http://www.php.net/xsl; XSLT by Doug Tidwell
(O’Reilly).

12.8 Setting XSLT Parameters from PHP

Problem
You want to set parameters in your XSLT stylesheet from PHP.

Solution
Use the XSLTProcessor::setParameter(  ) method:

// This could also come from $_GET['city'];
$city = 'San Francisco';

$dom = new DOMDocument
$dom->load('address-book.xml');
$xsl = new DOMDocument
$xsl->load('stylesheet.xsl');

$xslt = new XSLTProcessor();
$xslt->importStylesheet($xsl);
$xslt->setParameter(NULL, 'city', $city);
print $xslt->transformToXML($dom);

This code sets the XSLT city parameter to the value stored in the PHP variable $city.

372 | Chapter 12: XML

Download at Boykma.Com

Discussion
You can pass data from PHP into your XSLT stylesheet with the setParameter(  ) meth-
od. This allows you to do things such as filter data in your stylesheet based on user
input.

For example, the program in Example 12-16 allows you to find people based on their
city.

Example 12-16. Setting XSLT parameters from PHP
// This could also come from $_GET['city'];
$city = 'San Francisco';

$dom = new DOMDocument
$dom->load('address-book.xml');
$xsl = new DOMDocument
$xsl->load('stylesheet.xsl');

$xslt = new XSLTProcessor();
$xslt->importStylesheet($xsl);
$xslt->setParameter(NULL, 'city', $city);
print $xslt->transformToXML($dom);

The program uses the following stylesheet:

<?xml version="1.0" ?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="/address-book/person">
 <xsl:if test="city=$city">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:if>
</xsl:template>
</xsl:stylesheet>

The program and stylesheet combine to produce the following results:

 <?xml version="1.0"?>
 <address-book>

 <person id="2">
 <!--Adam Trachtenberg-->
 <firstname>Adam</firstname>
 <lastname>Trachtenberg</lastname>

12.8 Setting XSLT Parameters from PHP | 373

Download at Boykma.Com

 <city>San Francisco</city>
 <state>CA</state>
 <email>amt@php.net</email>
 </person>
 </address-book>

The PHP script does a standard XSLT transformation, except that it calls
$xslt->setParameter(NULL, 'city', $city). The first argument is the parameter’s
namespace, the second is the parameter’s name, and the third is the parameter’s value.

Here, the value stored in the PHP variable $city—in this case, San Francisco—is as-
signed to the XSLT parameter city, which does not live under a namespace. This is
equal to placing the following in an XSLT file:

<xsl:param name="city">San Francisco</xsl:param>

You usually access a parameter inside a stylesheet like you do a PHP variable, by placing
a dollar sign ($) in front of its name. The stylesheet example creates a template that
matches /address-book/person nodes.

Inside the template, you test whether city=$city; in other words, is the city child of
the current node equal to the value of the city parameter? If there’s a match, the children
are copied along; otherwise, the records are eliminated.

In this case, city is set to San Francisco, so David’s record is removed and Adam’s
remains.

See Also
Documentation on XSLTProcessor::setParameter at http://www.php.net/manual/func
tion.xsl-xsltprocessor-set-parameter.php; XSLT by Doug Tidwell (O’Reilly).

12.9 Calling PHP Functions from XSLT Stylesheets

Problem
You want to call PHP functions from within an XSLT stylesheet.

Solution
Invoke the XSLTProcessor::registerPHPFunctions(  ) method to enable this functional-
ity:

$xslt = new XSLTProcessor();
$xslt->registerPHPFunctions();

And use the function(  ) or functionString(  ) function within your stylesheet:

<?xml version="1.0" ?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

374 | Chapter 12: XML

Download at Boykma.Com

 xmlns:php="http://php.net/xsl"
 xsl:extension-element-prefixes="php">

<xsl:template match="/">
 <xsl:value-of select="php:function('strftime', '%c')" />
</xsl:template>

</xsl:stylesheet>

Discussion
XSLT parameters are great when you need to communicate from PHP to XSLT. How-
ever, they’re not very useful when you require the reverse. You can’t use parameters to
extract information from the stylesheet during the transformation. Ideally, you could
call PHP functions from a stylesheet and pass information back to PHP.

Fortunately, there’s a method that implements this functionality:
registerPHPFunctions(  ). Here’s how it’s enabled:

$xslt = new XSLTProcessor();
$xslt->registerPHPFunctions();

This allows you to call any PHP function from your stylesheets. It’s not available by
default because it presents a security risk if you’re processing stylesheets controlled by
other people.

Both built-in and user-defined functions work. Inside your stylesheet, you must define
a namespace and call the function(  ) or functionString(  ) methods, as shown in Ex-
ample 12-17.

Example 12-17. Calling PHP from an XSL stylesheet

<?xml version="1.0" ?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:php="http://php.net/xsl"
 xsl:extension-element-prefixes="php">

<xsl:template match="/">
 <xsl:value-of select="php:function('strftime', '%c')" />
</xsl:template>

</xsl:stylesheet>

At the top of the stylesheet, define the namespace for PHP: http://php.net/xsl. This
example sets the namespace prefix to php. Also, set the extension-element-prefixes
value to php so XSLT knows these are functions.

To call a PHP function, reference php:function(  ). The first parameter is the function
name; additional parameters are the function arguments. In this case, the function
name is strftime and the one argument is %c. This causes strftime to return the current
date and time.

12.9 Calling PHP Functions from XSLT Stylesheets | 375

Download at Boykma.Com

Example 12-18 uses this stylesheet, stored as stylesheet.xsl, to process a single-element
XML document.

Example 12-18. Transforming XML with XSLT and PHP functions
$dom = new DOMDocument;
$dom->loadXML('<blank/>');
$xsl = new DOMDocument
$xsl->load('stylesheet.xsl');

$xslt = new XSLTProcessor();
$xslt->importStylesheet($xsl);
$xslt->registerPHPFunctions();
print $xslt->transformToXML($dom);

Mon Jul 22 19:10:21 2004

This works like standard XSLT processing, but there’s an additional call to
registerPHPFunctions(  ) to activate PHP function support.

You can also return DOM objects. Example 12-19 takes the XML address book and
mangles all the email addresses to turn the hostname portion into three dots. Everything
else in the document is left untouched.

Example 12-19. Spam protecting email addresses
function mangle_email($nodes) {
 return preg_replace('/([^@\s]+)@([-a-z0-9]+\.)+[a-z]{2,}/is',
 '$1@...',
 $nodes[0]->nodeValue);
}

$dom = new DOMDocument;
$dom->load('address-book.xml');
$xsl = new DOMDocument
$xsl->load('stylesheet.xsl');

$xslt = new XSLTProcessor();
$xslt->importStylesheet($xsl);
$xslt->registerPhpFunctions();
print $xslt->transformToXML($dom);

Inside your stylesheet, create a special template for /address-book/person/email ele-
ments, as shown in Example 12-20.

Example 12-20. XSL stylesheet to spam protect email address
<?xml version="1.0" ?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:php="http://php.net/xsl"
 xsl:extension-element-prefixes="php">

<xsl:template match="@*|node()">

376 | Chapter 12: XML

Download at Boykma.Com

 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
</xsl:template>

<xsl:template match="/address-book/person/email">
 <xsl:copy>
 <xsl:value-of select="php:function('mangle_email', node())" />
 </xsl:copy>
</xsl:template>
</xsl:stylesheet>

The first template ensures that the elements aren’t modified, while the second passes
the current node to PHP for mangling. In the second template, the mangle_email(  )
function is passed the current node, represented in XPath as node(  ), instead of a string.
Be sure not to place the node inside quotation marks, or you’ll pass the literal text
node(  ).

Nodes becomes DOM objects inside PHP and always arrive in an array. In this case,
mangle_email(  ) knows there’s always only one object and it’s a DOMText object, so the
email address is located in $nodes[0]->nodeValue.

When you know that you’re only interested in the text portion of a node, use the
functionString(  ) function. This function converts nodes to PHP strings, which allows
you to omit the array access and nodeValue dereference:

function mangle_email($email) {
 return preg_replace('/([^@\s]+)@([-a-z0-9]+\.)+[a-z]{2,}/is',
 '$1@...',
 $email);
}

// all other code is the same as before

The new stylesheet template for /address-book/person/email is:

<xsl:template match="/address-book/person/email">
 <xsl:copy>
 <xsl:value-of
 select="php:functionString('mangle_email', node())" />
 </xsl:copy>
</xsl:template>

The mangle_email(  ) function now processes $email instead of $nodes[0]->nodeValue
because the template now calls the functionString(  ) function.

The function(  ) and functionString(  ) methods are incredibly useful, but using them
undermines the premise of XSL as a language-neutral transformation engine. When
you call PHP from XSLT, you cannot easily reuse your stylesheets in projects that use
Java, Perl, and other languages, because they cannot call PHP. Therefore, you should
consider the trade-off between convenience and portability before using this feature.

12.9 Calling PHP Functions from XSLT Stylesheets | 377

Download at Boykma.Com

See Also
Documentation on XSLTProcessor::registerPHPFunctions(  ) at http://www.php.net/
manual/function.xsl-xsltprocessor-register-php-functions.php; XSLT by Doug Tidwell
(O’Reilly).

12.10 Validating XML Documents

Problem
You want to make sure your XML document abides by a schema, such as XML Schema,
RelaxNG, and DTDs.

Solution
Use the DOM extension.

With existing DOM objects, call DOMDocument::schemaValidate(  ) or
DOMDocument::relaxNGValidate(  ):

$file = 'address-book.xml';
$schema = 'address-book.xsd';
$ab = new DOMDocument
$ab->load($file);

if ($ab->schemaValidate($schema)) {
 print "$file is valid.\n";
} else {
 print "$file is invalid.\n";
}

If your XML document specifies a DTD at the top, call DOMDocument::validate(  ) to
validate it against the DTD.

With XML in a string, call DOMDocument::schemaValidateSource(  ) or
DOMDocument::relaxNGValidateSource(  ):

$xml = '<person><firstname>Adam</firstname></person>';
$schema = 'address-book.xsd';
$ab = new DOMDocument
$ab->>load($file);

if ($ab->>schemaValidateSource($schema)) {
 print "XML is valid.\n";
} else {
 print "XML is invalid.\n";
}

Discussion
Schemas are a way of defining a specification for your XML documents. While the goal
is the same, there are multiple ways to encode a schema, each with a different syntax.

378 | Chapter 12: XML

Download at Boykma.Com

Some popular formats are DTDs (Document Type Definitions), XML Schema, and
RelaxNG. DTDs have been around longer, but they are not written in XML and have
other issues, so they can be difficult to work with. XML Schema and RelaxNG are more
recent schemas and attempt to solve some of the issues surrounding DTDs.

PHP 5 uses the libxml2 library to provide its validation support. Therefore, it lets you
validate files against all three types. It is most flexible when you’re using XML Schema
and RelaxNG, but its XML Schema support is incomplete. You shouldn’t run into
issues in most XML Schema documents; however, you may find that libxml2 cannot
handle some complex schemas or schemas that use more esoteric features.

Within PHP, the DOM extension supports DTD, XML Schema, and RelaxNG valida-
tion, while SimpleXML provides only an XML Schema validator.

Validating any file using DOM is a similar process, regardless of the underlying schema
format. To validate, call a validation method on a DOM object (see Example 12-21).
It returns true if the file passes. If there’s an error, it returns false and prints a message
to the error log. There is no method for “capturing” the error message.

Example 12-21. Validating an XML document

$file = 'address-book.xml';
$schema = 'address-book.xsd';
$ab = new DOMDocument
$ab->load($file);

if ($ab->schemaValidate($schema)) {
 print "$file is valid.\n";
} else {
 print "$file is invalid.\n";
}

If the schema is stored in a string, use DOMDocument::schemaValidateSource(  ) instead of
schemaValidate(  ).

Table 12-3 lists all the validation methods.

Table 12-3. DOM schema validation methods

Method name Schema type Data location

schemaValidate XML Schema File

schemaValidateSource XML Schema String

relaxNGValidate RelaxNG File

relaxNGValidateSource RelaxNG String

validate DTD N/A

All of the validation methods behave in a similar manner, so you only need to switch
the method name in the previous example to switch to a different validation scheme.

12.10 Validating XML Documents | 379

Download at Boykma.Com

Both XML Schema and RelaxNG support validation against files and strings. You can
validate a DOM object only against the DTD defined at the top of the XML document.

See Also
The XML Schema specification at http://www.w3.org/XML/Schema; the Relax NG
specification at http://www.relaxng.org/.

12.11 Handling Content Encoding

Problem
PHP XML extensions use UTF-8, but your data is in a different content encoding.

Solution
Use the iconv library to convert it before passing it into an XML extension:

$utf_8 = iconv('ISO-8859-1', 'UTF-8', $iso_8859_1);

Then convert it back when you are finished:

$iso_8859_1 = iconv('UTF-8', 'ISO-8859-1', $utf_8);

Discussion
Character encoding is a major PHP 5 weakness. Fortunately, Unicode support is the
major driver behind PHP 6. Since PHP 6 is still under development, in the meantime,
you can run into problems if you’re trying to use XML extensions with arbitrary enco-
ded data.

For simplicity, the XML extensions all exclusively use the UTF-8 character encoding.
That means they all expect data in UTF-8 and output all data in UTF-8. If your data is
ASCII, then you don’t need to worry, UTF-8 is a superset of ASCII. However, if you’re
using other encodings, then you will run into trouble sooner or later.

To work around this issue, use the iconv extension to manually encode data back and
forth between your character sets and UTF-8. For example, to convert from ISO-8859-1
to UTF-8:

$utf_8 = iconv('ISO-8859-1', 'UTF-8', $iso_8859_1);

The iconv function supports two special modifiers for the destination encod-
ing: //TRANSLIT and //IGNORE. The first option tells iconv that whenever it cannot exactly
duplicate a character in the destination encoding, it should try to approximate it using
a series of other characters. The other option makes iconv silently ignore any uncon-
vertible characters.

For example, the string $geb holds the text Gödel, Escher, Bach. A straight conversion
to ASCII produces an error:

380 | Chapter 12: XML

Download at Boykma.Com

echo iconv('UTF-8', 'ASCII', $geb);
PHP Notice: iconv(): Detected an illegal character in input string...

Enabling the //IGNORE feature allows the conversion to occur:

echo iconv('UTF-8', 'ASCII//IGNORE', $geb);

However, the output isn’t nice, because the ö is missing:

 Gdel, Escher, Bach

The best solution is to use //TRANSLIT:

echo iconv('UTF-8', 'ASCII//TRANSLIT', $geb);

This produces a better-looking string:

 G"odel, Escher, Bach

However, be careful when you use //TRANSLIT, as it can increase the number of char-
acters. For example, the single character ö becomes two characters: " and o.

See Also
More information about working with UTF-8 text is in Recipe 19.13; documentation
on iconv at http://www.php.net/iconv; the GNU libiconv home page at http://
www.gnu.org/software/libiconv/.

12.12 Reading RSS and Atom Feeds

Problem
You want to retrieve RSS and Atom feeds and look at the items. This allows you to
incorporate newsfeeds from multiple web sites into your application.

Solution
Use the MagpieRSS parser. Here’s an example that reads the RSS feed for the php.an
nounce mailing list:

<?php
require 'rss_fetch.inc';

$feed = 'http://news.php.net/group.php?group=php.announce&format=rss';

$rss = fetch_rss($feed);

print "\n";
foreach ($rss->items as $item) {

12.12 Reading RSS and Atom Feeds | 381

Download at Boykma.Com

 print '' . $item['title'] . "\n";
}
print "\n";
?>

Discussion
RSS (RDF Site Summary) is an easy-to-use headline or article syndication format written
in XML.† Many news web sites, such as the New York Times and the Washington
Post, provide RSS feeds that update whenever new stories are published. Weblogs have
also embraced RSS and having an RSS feed for your blog is a standard feature. The PHP
web site also publishes RSS feeds for most PHP mailing lists.

Atom is a similar XML syndication format. It extends many of the concepts in RSS,
including a way to read and write Atom data. It also attempts to provide a more well-
defined syntax for syndication than RSS, as the RSS specification doesn’t always clearly
enumerate exactly what is or isn’t permissible in a feed.

Using MagpieRSS, retrieving and parsing RSS and Atom feeds are simple:
<?php
$feed = 'http://news.php.net/group.php?group=php.announce&format=rss';

$rss = fetch_rss($feed);
?>

This example reads in the RSS feed for the php.announce mailing list. The feed is then
parsed by fetch_rss(  ) and stored internally within $rss.

While this feed is RSS 0.93, there’s no need to specify this to MagpieRSS. Its
fetch_rss(  ) function detects the syndication format, including Atom, and formats the
document accordingly.

Each RSS item is then retrieved as an associative array using the items property:
<?php
print "\n";

foreach ($rss->items as $item) {
 print '' . $item['title'] . "\n";
}

print "\n";
?>

This foreach loop creates an unordered list of items with the item title linking back to
the URL associated with the complete article, as shown in Figure 12-1. Besides the
required title and link fields, an item can have an optional description field that
contains a brief write-up about the item.

Each channel also has an entry with information about the feed, as shown in Fig-
ure 12-2. To retrieve that data, call access the channel attribute:

† RDF stands for Resource Definition Framework. RSS also stands for Rich Site Summary.

382 | Chapter 12: XML

Download at Boykma.Com

<?php
$feed = 'http://news.php.net/group.php?group=php.announce&format=rss';
$rss = fetch_rss($feed);

print "\n";

foreach ($rss->channel as $key => $value) {
 print "$key: $value\n";
}

print "\n";
?>

See Also
The Magpie RSS home page at http://magpierss.sourceforge.net/; more information on
RSS at http://en.wikipedia.org/wiki/RSS_(protocol).

Figure 12-1. php.announce RSS feed

12.12 Reading RSS and Atom Feeds | 383

Download at Boykma.Com

12.13 Writing RSS Feeds

Problem
You want to generate RSS feeds from your data. This will allow you to syndicate your
content.

Solution
Use this class:

<?php
class rss2 extends DOMDocument {
 private $channel;

 public function __construct($title, $link, $description) {
 parent::__construct();
 $this->formatOutput = true;

 $root = $this->appendChild($this->createElement('rss'));
 $root->setAttribute('version', '2.0');

 $channel= $root->appendChild($this->createElement('channel'));

 $channel->appendChild($this->createElement('title', $title));
 $channel->appendChild($this->createElement('link', $link));
 $channel->appendChild($this->createElement('description', $description));

 $this->channel = $channel;
 }

 public function addItem($title, $link, $description) {
 $item = $this->createElement('item');
 $item->appendChild($this->createElement('title', $title));
 $item->appendChild($this->createElement('link', $link));
 $item->appendChild($this->createElement('description', $description));

 $this->channel->appendChild($item);
 }
}

$rss = new rss2('Channel Title', 'http://www.example.org',

Figure 12-2. php.announce RSS channel information

384 | Chapter 12: XML

Download at Boykma.Com

 'Channel Description');

$rss->addItem('Item 1', 'http://www.example.org/item1',
 'Item 1 Description');
$rss->addItem('Item 2', 'http://www.example.org/item2',
 'Item 2 Description');

print $rss->saveXML();
?>

<?xml version="1.0"?>
<rss version="2.0">
 <channel>
 <title>Channel Title</title>
 <link>http://www.example.org</link>
 <description>Channel Description</description>
 <item>
 <title>Item 1</title>
 <link>http://www.example.org/item1</link>
 <description>Item 1 Description</description>
 </item>
 <item>
 <title>Item 2</title>
 <link>http://www.example.org/item2</link>
 <description>Item 2 Description</description>
 </item>
 </channel>
</rss>

Discussion
RSS is XML, so you can leverage all the XML generation features of the DOM extension.
The code in the Solution extends the DOMDocument class to build up a DOM tree by
creating elements and appending them in the appropriate structure.

The class constructor sets up the <rss> and <channel> elements. It takes three argu-
ments: the channel title, link, and description:

 public function __construct($title, $link, $description) {
 parent::__construct();
 $this->formatOutput = true;

 $root = $this->appendChild($this->createElement('rss'));
 $root->setAttribute('version', '2.0');

 $channel= $root->appendChild($this->createElement('channel'));

 $channel->appendChild($this->createElement('title', $title));
 $channel->appendChild($this->createElement('link', $link));
 $channel->appendChild($this->createElement('description', $description));

 $this->channel = $channel;
 }

12.13 Writing RSS Feeds | 385

Download at Boykma.Com

Inside the method, you call parent::__construct(  ) method to invoke the actual
DOMDocument::__construct(  ). Now you can begin building up the document.

First, set the formatOutput attribute to true. This adds indention and carriage returns
to the output, so it’s easy to read.

From there, create the document’s root element, rss, and set its version attribute to
2.0, since this is an RSS 2.0 feed.

All the actual data lives inside a channel element underneath the rss node, so the next
step is to make that element and also to set its title, link, and description child
elements.

That data comes from the arguments passed to the constructor. It’s set using a handy
feature of the createElement(  ) method, which lets you specify both an element’s name
and a text node with data in one call. This is a PHP 5 extension to the DOM specifi-
cation.

Last, the channel element is saved for easy access later on.

With the main content defined, use the addItem(  ) method to add item entries:

 public function addItem($title, $link, $description) {
 $item = $this->createElement('item');
 $item->appendChild($this->createElement('title', $title));
 $item->appendChild($this->createElement('link', $link));
 $item->appendChild($this->createElement('description', $description));

 $this->channel->appendChild($item);
 }

Since item elements contain the same data as the channel, this code is almost identical
to what appears in the constructor.

While a title, link, and description are required elements of the channel, they are ac-
tually optional in the item. The only requirement of an item is that it contains either a
title or a description. That’s it.

For simplicity, this code requires all three elements. Likewise, it doesn’t provide a way
to add in additional channel or item elements, such as the date the item was published
or a GUID that uniquely identifies the item.

But 43 lines later, the basic RSS 2.0 class is finished. Use it like this:

$rss = new rss2('Channel Title', 'http://www.example.org',
 'Channel Description');

$rss->addItem('Item 1', 'http://www.example.org/item1',
 'Item 1 Description');
$rss->addItem('Item 2', 'http://www.example.org/item2',
 'Item 2 Description');

print $rss->saveXML();

<?xml version="1.0"?>

386 | Chapter 12: XML

Download at Boykma.Com

<rss version="2.0">
 <channel>
 <title>Channel Title</title>
 <link>http://www.example.org</link>
 <description>Channel Description</description>
 <item>
 <title>Item 1</title>
 <link>http://www.example.org/item1</link>
 <description>Item 1 Description</description>
 </item>
 <item>
 <title>Item 2</title>
 <link>http://www.example.org/item2</link>
 <description>Item 2 Description</description>
 </item>
 </channel>
</rss>

Create a new instance of the rss2 class and pass along the channel data. Then call its
addItem(  ) method to add individual items to the channel. Once you’re finished, you
can convert the class to XML by using the parent DOMDocument::saveXML(  ) method.

12.14 Writing Atom Feeds

Problem
You want to generate Atom feeds from your data. This will allow you to syndicate your
content.

Solution
Use this class:

class atom1 extends DOMDocument {
 private $ns;

 public function __construct($title, $href, $name, $id) {
 parent::__construct();
 $this->formatOutput = true;

 $this->ns = 'http://www.w3.org/2005/Atom';

 $root = $this->appendChild($this->createElementNS($this->ns, 'feed'));

 $root->appendChild($this->createElementNS($this->ns, 'title', $title));
 $link = $root->appendChild($this->createElementNS($this->ns, 'link'));
 $link->setAttribute('href', $href);
 $root->appendChild($this->createElementNS($this->ns, 'updated',
 date('Y-m-d\\TH:i:sP')));
 $author = $root->appendChild($this->createElementNS($this->ns, 'author'));
 $author->appendChild($this->createElementNS($this->ns, 'name', $name));
 $root->appendChild($this->createElementNS($this->ns, 'id', $id));
 }

12.14 Writing Atom Feeds | 387

Download at Boykma.Com

 public function addEntry($title, $link, $summary) {
 $entry = $this->createElementNS($this->ns, 'entry');
 $entry->appendChild($this->createElementNS($this->ns, 'title', $title));
 $entry->appendChild($this->createElementNS($this->ns, 'link', $link));

 $id = uniqid('http://example.org/atom/entry/ids/');
 $entry->appendChild($this->createElementNS($this->ns, 'id', $id));

 $entry->appendChild($this->createElementNS($this->ns, 'updated',
 date(DATE_ATOM)));
 $entry->appendChild($this->createElementNS($this->ns, 'summary',
 $summary));

 $this->documentElement->appendChild($entry);
 }
}

$atom = new atom1('Channel Title', 'http://www.example.org',
 'John Quincy Atom', 'http://example.org/atom/feed/ids/1');

$atom->addEntry('Item 1', 'http://www.example.org/item1',
 'Item 1 Description', 'http://example.org/atom/entry/ids/1');

$atom->addEntry('Item 2', 'http://www.example.org/item2',
 'Item 2 Description', 'http://example.org/atom/entry/ids/2');

print $atom->saveXML();

<?xml version="1.0"?>
<feed xmlns="http://www.w3.org/2005/Atom">
 <title>Channel Title</title>
 <link href="http://www.example.org"/>
 <updated>2006-10-23T22:33:59-07:00</updated>
 <author>
 <name>John Quincy Atom</name>
 </author>
 <id>http://example.org/atom/feed/ids/1</id>
 <entry>
 <title>Item 1</title>
 <link>http://www.example.org/item1</link>
 <id>http://example.org/atom/entry/ids/1</id>
 <updated>2006-10-23T20:23:32-07:00</updated>
 <summary>Item 1 Description</summary>
 </entry>
 <entry>
 <title>Item 2</title>
 <link>http://www.example.org/item2</link>
 <id>http://example.org/atom/entry/ids/2</id>
 <updated>2006-10-23T21:53:44-07:00</updated>
 <summary>Item 2 Description</summary>
 </entry>
</feed>

388 | Chapter 12: XML

Download at Boykma.Com

Discussion
The atom1 class is structured similar to the rss2 class from Recipe 12.13. Read its
Discussion for a more detailed explanation of the overall code structure and DOM
extension behavior. This recipe covers the differences between RSS and Atom and how
the class is updated to handle them.

The Atom Specification is more complex than RSS. It requires you to place elements
inside a namespace and also forces the generation of unique identifiers for a feed and
individual items, along with the last updated times for those entries.

Also, while its general structure is similar to RSS, it uses different terminology. The root
element is now a feed and an item is now an entry. You don’t need a feed description,
but you do need an author. And inside the entries, the description is a summary.

Last, there is no concept of a channel. Both feed data and entries are located directly
under the document element.

Here’s the updated constructor:

 public function __construct($title, $href, $name, $id) {
 parent::__construct();
 $this->formatOutput = true;

 $this->ns = 'http://www.w3.org/2005/Atom';

 $root = $this->appendChild($this->createElementNS($this->ns, 'feed'));

 $root->appendChild(
 $this->createElementNS($this->ns, 'title', $title));
 $link = $root->appendChild(
 $this->createElementNS($this->ns, 'link'));
 $link->setAttribute('href', $href);
 $root->appendChild($this->createElementNS(
 $this->ns, 'updated', date(DATE_ATOM)));
 $author = $root->appendChild(
 $this->createElementNS($this->ns, 'author'));
 $author->appendChild(
 $this->createElementNS($this->ns, 'name', $name));
 $root->appendChild(
 $this->createElementNS($this->ns, 'id', $id'));
 }

All Atom elements live under the http://www.w3.org/2005/Atom XML namespace.
Therefore, all atom1 methods use DOMDocument::createElementNS(  ), which is the
namespace version of DOMDocument::createElement(  ). The Atom namespace is stored
in atom1::ns, so it’s easy to access.

The constructor now takes four arguments: title, link, author name, and feed ID. The
title and id are defined similar to RSS channel elements. However, the link is actually
set as the href attribute of the link element, and the name is a child of the author
element.

12.14 Writing Atom Feeds | 389

Download at Boykma.Com

Additionally, there is an updated element, which is set to the last update time. In this
case, it’s set to the current time and formatted using PHP’s built-in DATE_ATOM constant
formatting specification. This is only available as of PHP 5.1.1; if you’re using an earlier
version of PHP, substitute the string Y-m-d\\TH:i:sP.

The addItem(  ) method is renamed to addEntry(  ) to be consistent with the Atom spec-
ification:

 public function addEntry($title, $link, $summary, $id) {
 $entry = $this->createElementNS($this->ns, 'entry');
 $entry->appendChild(
 $this->createElementNS($this->ns, 'title', $title));
 $entry->appendChild(
 $this->createElementNS($this->ns, 'link', $link));
 $entry->appendChild(
 $this->createElementNS($this->ns, 'id', $id));
 $entry->appendChild(
 $this->createElementNS($this->ns, 'updated', date(DATE_ATOM)));
 $entry->appendChild(
 $this->createElementNS($this->ns, 'summary', $summary));

 $this->documentElement->appendChild($entry);
 }

It behaves very similar to its counterpart, with the few additions of new elements, such
as id and updated.

Everything comes together like this:

$atom = new atom1('Channel Title', 'http://www.example.org',
 'John Quincy Atom', 'http://example.org/atom/feed/ids/1');

$atom->addEntry('Item 1', 'http://www.example.org/item1',
 'Item 1 Description', 'http://example.org/atom/entry/ids/1');

$atom->addEntry('Item 2', 'http://www.example.org/item2',
 'Item 2 Description', 'http://example.org/atom/entry/ids/2');

print $atom->saveXML();

<?xml version="1.0"?>
<feed xmlns="http://www.w3.org/2005/Atom">
 <title>Channel Title</title>
 <link href="http://www.example.org"/>
 <updated>2006-10-23T22:33:59-07:00</updated>
 <author>
 <name>John Quincy Atom</name>
 </author>
 <id>http://example.org/atom/feed/ids/1</id>
 <entry>
 <title>Item 1</title>
 <link>http://www.example.org/item1</link>
 <id>http://example.org/atom/entry/ids/1</id>
 <updated>2006-10-23T20:23:32-07:00</updated>
 <summary>Item 1 Description</summary>
 </entry>

390 | Chapter 12: XML

Download at Boykma.Com

 <entry>
 <title>Item 2</title>
 <link>http://www.example.org/item2</link>
 <id>http://example.org/atom/entry/ids/2</id>
 <updated>2006-10-23T21:53:44-07:00</updated>
 <summary>Item 2 Description</summary>
 </entry>
</feed>

Like the rss2 class, atom1 implements only a small subset of the full specification. It’s
enough to generate a valid feed, but if you need to do more, then you will need to extend
the class.

See Also
The Atom home page http://www.atomenabled.org/; the Atom Wiki at http://www.in
tertwingly.net/wiki/pie/; more information on Atom at http://en.wikipedia.org/wiki/
Atom_(standard) .

12.14 Writing Atom Feeds | 391

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 13

Web Automation

13.0 Introduction
Most of the time, PHP is part of a web server, sending content to browsers. Even when
you run it from the command line, it usually performs a task and then prints some
output. PHP can also be useful, however, playing the role of a web client, retrieving
URLs and then operating on the content. Most recipes in this chapter cover retrieving
URLs and processing the results, although there are a few other tasks in here as well,
such as cleaning up URLs and some JavaScript-related operations.

There are many ways retrieve a remote URL in PHP. Choosing one method over another
depends on your needs for simplicity, control, and portability. The three methods dis-
cussed in this chapter are standard file functions, the cURL extension, and the
HTTP_Request class from PEAR. These three methods can generally do everything you
need and at least one of them should be available to you whatever your server config-
uration or ability to install custom extensions. Other ways to retrieve remote URLs
include the pecl_http extension (http://pecl.php.net/package/pecl_http), which, while
still in development, offers some promising features, and using the fsockopen(  ) func-
tion to open a socket over which you send an HTTP request that you construct piece
by piece.

Using a standard file function such as file_get_contents(  ) is simple and convenient.
It automatically follows redirects, so if you use this function to retrieve the directory
http://www.example.com/people and the server redirects you to http://www.exam
ple.com/people/, you’ll get the contents of the directory index page, not a message telling
you that the URL has moved. Standard file functions also work with both HTTP and
FTP. The downside to this method is that it requires the allow_url_fopen configuration
directive to be turned on.

The cURL extension is a powerful jack-of-all-request-trades. It relies on the popular
libcurl (http://curl.haxx.se/) to provide a fast, configurable mechanism for handling a
wide variety of network requests. If this extension is available on your server, we rec-
ommend you use it.

393

Download at Boykma.Com

If allow_url_fopen is turned off and cURL is not available, the PEAR HTTP_Request
module saves the day. Like all PEAR modules, it’s plain PHP, so if you can save a PHP
file on your server, you can use it. HTTP_Request supports just about anything you’d
like to do when requesting a remote URL, including modifying request headers and
body, using an arbitrary method, and retrieving response headers.

Recipes 13.1 through 13.7 explain how to make various kinds of HTTP requests,
tweaking headers, method, body, and timing. Recipe 13.8 helps you go behind the
scenes of an HTTP request to examine the headers in a request and response. If a request
you’re making from a program isn’t giving you the results you’re looking for, examining
the headers often provides clues as to what’s wrong.

Once you’ve retrieved the contents of a web page into a program, use Recipes 13.9
through 13.14 to help you manipulate those page contents. Recipe 13.9 demonstrates
how to mark up certain words in a page with blocks of color. This technique is useful
for highlighting search terms, for example. Recipe 13.11 provides a function to find all
the links in a page. This is an essential building block for a web spider or a link checker.
Converting between plain text and HTML is covered in Recipes 13.12 and 13.13.
Recipe 13.14 shows how to remove all HTML and PHP tags from a web page.

Recipes 13.15 and 13.16 discuss how PHP and JavaScript can work together. Rec-
ipe 13.15 explores using PHP to respond to requests made by JavaScript, in which you
have to be concerned about caching and using alternate content types. Recipe 13.16
provides a full-fledged example of PHP–JavaScript integration using the popular and
powerful Dojo toolkit.

Two sample programs use the link extractor from Recipe 13.11. The program in Rec-
ipe 13.17 scans the links in a page and reports which are still valid, which have been
moved, and which no longer work. The program in Recipe 13.18 reports on the fresh-
ness of links. It tells you when a linked-to page was last modified and if it’s been moved.

13.1 Fetching a URL with the Get Method

Problem
You want to retrieve the contents of a URL. For example, you want to include part of
one web page in another page’s content.

Solution
Provide the URL to file_get_contents(  ), as shown in Example 13-1.

Example 13-1. Fetching a URL with file_get_contents(  )
<?php
$page = file_get_contents('http://www.example.com/robots.txt');
?>

Or you can use the cURL extension, as shown in Example 13-2.

394 | Chapter 13: Web Automation

Download at Boykma.Com

Example 13-2. Fetching a URL with cURL
<?php
$c = curl_init('http://www.example.com/robots.txt');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
$page = curl_exec($c);
curl_close($c);
?>

You can also use the HTTP_Request class from PEAR, as shown in Example 13-3.

Example 13-3. Fetching a URL with HTTP_Request
<?php
require_once 'HTTP/Request.php';
$r = new HTTP_Request('http://www.example.com/robots.txt');
$r->sendRequest();
$page = $r->getResponseBody();
?>

Discussion
file_get_contents(  ), like all PHP file-handling functions, uses PHP’s streams feature.
This means that it can handle local files as well as a variety of network resources, in-
cluding HTTP URLs. There’s a catch, though—the allow_url_fopen configuration
setting must be turned on (which it usually is).

This makes for extremely easy retrieval of remote documents. As Example 13-4 shows,
you can use the same technique to grab a remote XML document.

Example 13-4. Fetching a remote XML document
<?php
$url = 'http://rss.news.yahoo.com/rss/oddlyenough';
$rss = simplexml_load_file($url);
print '';
foreach ($rss->channel->item as $item) {
 print '<a href="' .
 htmlentities($item->link) .
 '">' .
 htmlentities($item->title) .
 '';
}
print '';
?>

To retrieve a page that includes query string variables, use http_build_query(  ) to create
the query string. It accepts an array of key/value pairs and returns a single string with
everything properly escaped. You’re still responsible for the ? in the URL that sets off
the query string. Example 13-5 demonstrates http_build_query(  ).

Example 13-5. Building a query string with http_build_query(  )
<?php
$vars = array('page' => 4, 'search' => 'this & that');

13.1 Fetching a URL with the Get Method | 395

Download at Boykma.Com

$qs = http_build_query($vars);
$url = 'http://www.example.com/search.php?' . $qs;
$page = file_get_contents($url);
?>

To retrieve a protected page, put the username and password in the URL. In Exam-
ple 13-6, the username is david, and the password is hax0r.

Example 13-6. Retrieving a protected page
<?php
$url = 'http://david:hax0r@www.example.com/secrets.php';
$page = file_get_contents($url);
?>

Example 13-7 shows how to retrieve a protected page with cURL.

Example 13-7. Retrieving a protected page with cURL
<?php
$c = curl_init('http://www.example.com/secrets.php');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
curl_setopt($c, CURLOPT_USERPWD, 'david:hax0r');
$page = curl_exec($c);
curl_close($c);
?>

Example 13-8 shows how to retrieve a protected page with HTTP_Request.

Example 13-8. Retrieving a protected page with HTTP_Request
<?php
$r = new HTTP_Request('http://www.example.com/secrets.php');
$r->setBasicAuth('david','hax0r');
$r->sendRequest();
$page = $r->getResponseBody();

PHP’s http stream wrapper automatically follows redirects. Since PHP 5.0.0,
file_get_contents(  ) and fopen(  ) support a stream context argument that allows for
specifying options about how the stream is retrieved. In PHP 5.1.0 and later, one of
those options is max_redirects—the maximum number of redirects to follow. Exam-
ple 13-9 sets max_redirects to 1, which turns off redirect following.

Example 13-9. Not following redirects
<?php
$url = 'http://www.example.com/redirector.php';
// Define the options
$options = array('max_redirects' => 1);
// Create a context with options for the http stream
$context = stream_context_create(array('http' => $options));
// Pass the options to file_get_contents. The second
// argument is whether to use the include path, which
// we don't want here.
print file_get_contents($url, false, $context);

396 | Chapter 13: Web Automation

Download at Boykma.Com

The max_redirects stream wrapper option really indicates not how many redirects
should be followed, but the maximum number of requests that should be made when
following the redirect chain. That is, a value of 1 tells PHP to make at most 1 request
—follow no redirects. A value of 2 tells PHP to make at most 2 requests—follow no
more than 1 redirect. (A value of 0, however, behaves like a value of 1—PHP makes
just 1 request.)

If the redirect chain would have PHP make more requests than are allowed by max_redi
rects, PHP issues a warning.

cURL only follows redirects when the CURLOPT_FOLLOWLOCATION option is set, as shown
in Example 13-10.

Example 13-10. Following redirects with cURL

<?php
$c = curl_init('http://www.example.com/redirector.php');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
curl_setopt($c, CURLOPT_FOLLOWLOCATION, true);
$page = curl_exec($c);
curl_close($c);
?>

To set a maximum number of redirects that cURL should follow, set
CURLOPT_FOLLOWLOCATION to true and then set the CURLOPT_MAXREDIRS option to that max-
imum number.

HTTP_Request does not follow redirects, but another PEAR module, HTTP_Client, can.
HTTP_Client wraps around HTTP_Request and provides additional capabilities. Exam-
ple 13-11 shows how to use HTTP_Client to follow redirects.

Example 13-11. Following redirects with HTTP_Client

<?php
require_once 'HTTP/Client.php';

// Create a client
$client = new HTTP_Client();
// Issue a GET request
$client->get($url);
// Get the response
$response = $client->currentResponse();
// $response is an array with three elements:
// code, headers, and body
print $response['body'];
?>

cURL can do a few different things with the page it retrieves. As you’ve seen in previous
examples, if CURLOPT_RETURNTRANSFER is set, curl_exec(  ) returns the body of the page
requested. If CURLOPT_RETURNTRANSFER is not set, curl_exec(  ) prints the response body.

13.1 Fetching a URL with the Get Method | 397

Download at Boykma.Com

To write the retrieved page to a file, open a file handle for writing with fopen(  ) and
set the CURLOPT_FILE option to that file handle. Example 13-12 uses cURL to copy a
remote web page to a local file.

Example 13-12. Writing a response body to a file with cURL

<?php
$fh = fopen('local-copy-of-files.html','w') or die($php_errormsg);
$c = curl_init('http://www.example.com/files.html');
curl_setopt($c, CURLOPT_FILE, $fh);
curl_exec($c);
curl_close($c);
?>

To pass the cURL resource and the contents of the retrieved page to a function, set the
CURLOPT_WRITEFUNCTION option to a callback for that function (either a string function
name or an array of object name or instance and method name). The “write function”
must return the number of bytes it was passed. Note that with large responses, the write
function might get called more than once as cURL processes the response in chunks.
Example 13-13 uses a cURL write function to save page contents in a database.

Example 13-13. Saving a page to a database table with cURL

<?php
class PageSaver {
 protected $db;
 protected $page ='';

 public function __construct() {
 $this->db = new PDO('sqlite:./pages.db');
 }

 public function write($curl, $data) {
 $this->page .= $data;
 return strlen($data);
 }

 public function save($curl) {
 $info = curl_getinfo($curl);
 $st = $this->db->prepare('INSERT INTO pages '.
 '(url,page) VALUES (?,?)');
 $st->execute(array($info['url'], $this->page));
 }
}

// Create the saver instance
$pageSaver = new PageSaver();
// Create the cURL resources
$c = curl_init('http://www.sklar.com/');
// Set the write function
curl_setopt($c, CURLOPT_WRITEFUNCTION, array($pageSaver,'write'));
// Execute the request
curl_exec($c);

398 | Chapter 13: Web Automation

Download at Boykma.Com

// Save the accumulate data
$pageSaver->save($c);

See Also
Recipe 13.2 for fetching a URL with the POST method; documentation on
file_get_contents(  ) at http://www.php.net/file_get_contents, simplexml_load_file(  )
at http://www.php.net/simplexml_load_file, stream_context_create(  ) at http://
www.php.net/stream_context_create, curl_init(  ) at http://www.php.net/curl-init,
curl_setopt(  ) at http://www.php.net/curl-setopt, curl_exec(  ) at http://www.php.net/
curl-exec, curl_getinfo(  ) at http://www.php.net/curl_getinfo, and curl_close(  ) at
http://www.php.net/curl-close; the PEAR HTTP_Request class at http://pear.php.net/pack
age/HTTP_Request; and the PEAR HTTP_Client class at http://pear.php.net/package/
HTTP_Client.

13.2 Fetching a URL with the Post Method

Problem
You want to retrieve a URL with the post method, not the default get method. For
example, you want to submit a form.

Solution
Set the method and content stream context options when using the http stream, as in
Example 13-14.

Example 13-14. Using POST with the http stream
<?php
$url = 'http://www.example.com/submit.php';
// The submitted form data, encoded as query-string-style
// name-value pairs
$body = 'monkey=uncle&rhino=aunt';
$options = array('method' => 'POST', 'content' => $body);
// Create the stream context
$context = stream_context_create(array('http' => $options));
// Pass the context to file_get_contents()
print file_get_contents($url, false, $context);
?>

With cURL, set the CURLOPT_POST and CURLOPT_POSTFIELDS options, as in Exam-
ple 13-15.

Example 13-15. Using POST with cURL
<?php
$url = 'http://www.example.com/submit.php';
// The submitted form data, encoded as query-string-style
// name-value pairs

13.2 Fetching a URL with the Post Method | 399

Download at Boykma.Com

$body = 'monkey=uncle&rhino=aunt';
$c = curl_init($url);
curl_setopt($c, CURLOPT_POST, true);
curl_setopt($c, CURLOPT_POSTFIELDS, $body);
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
$page = curl_exec($c);
curl_close($c);
?>

Example 13-16 shows how to post with HTTP_Request: pass HTTP_REQUEST_METHOD_POST
to the constructor and call addPostData(  ) once for each name/value pair in the data to
submit.

Example 13-16. Using POST with HTTP_Request
<?php
require 'HTTP/Request.php';
$url = 'http://www.example.com/submit.php';
$r = new HTTP_Request($url);
$r->setMethod(HTTP_REQUEST_METHOD_POST);
$r->addPostData('monkey','uncle');
$r->addPostData('rhino','aunt');
$r->sendRequest();
$page = $r->getResponseBody();
?>

Discussion
Sending a post method request requires special handling of any arguments. In a get
request, these arguments are in the query string, but in a post request, they go in the
request body. Additionally, the request needs a Content-Length header that tells the
server the size of the content to expect in the request body.

Although they each have different mechanisms by which you specify the request meth-
od and the body content, each of the examples in the Solution automatically add the
proper Content-Length header for you.

If you use a stream context to send a post request, make sure to set the method option
to post—case matters.

Retrieving a URL with post instead of get is especially useful if the get query string is
very long, more than 200 characters or so. The HTTP 1.1 specification in RFC 2616
doesn’t place a maximum length on URLs, so behavior varies among different web and
proxy servers. If you retrieve URLs with get and receive unexpected results or results
with status code 414 (“Request-URI Too Long”), convert the request to a post request.

See Also
Recipe 13.1 for fetching a URL with the get method; documentation on
curl_setopt(  ) at http://www.php.net/curl-setopt and on stream options at http://
www.php.net/wrappers.http; the PEAR HTTP_Request class at http://pear.php.net/pack

400 | Chapter 13: Web Automation

Download at Boykma.Com

age/HTTP_Request; RFC 2616 is available at http://www.w3.org/Protocols/rfc2616/
rfc2616.html.

13.3 Fetching a URL with Cookies

Problem
You want to retrieve a page that requires a cookie to be sent with the request for the
page.

Solution
Use the CURLOPT_COOKIE option with cURL, as shown in Example 13-17.

Example 13-17. Sending cookies with cURL
<?php
$c = curl_init('http://www.example.com/needs-cookies.php');
curl_setopt($c, CURLOPT_COOKIE, 'user=ellen; activity=swimming');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
$page = curl_exec($c);
curl_close($c);
?>

With HTTP_Request, use the addHeader(  ) method to add a Cookie header, as shown in
Example 13-18.

Example 13-18. Sending cookies with HTTP_Request
<?php
require 'HTTP/Request.php';
$r = new HTTP_Request('http://www.example.com/needs-cookies.php');
$r->addHeader('Cookie','user=ellen; activity=swimming');
$r->sendRequest();
$page = $r->getResponseBody();
?>

Discussion
Cookies are sent to the server in the Cookie request header. The cURL extension has a
cookie-specific option, but with HTTP_Request, you have to add the Cookie header just
as with other request headers. Multiple cookie values are sent in a semicolon-delimited
list. The examples in the Solution send two cookies: one named user with value
ellen and one named activity with value swimming.

To request a page that sets cookies and then make subsequent requests that include
those newly set cookies, use cURL’s “cookie jar” feature. On the first request, set
CURLOPT_COOKIEJAR to the name of a file to store the cookies in. On subsequent requests,
set CURLOPT_COOKIEFILE to the same filename, and cURL reads the cookies from the file
and sends them along with the request. This is especially useful for a sequence of re-

13.3 Fetching a URL with Cookies | 401

Download at Boykma.Com

quests in which the first request logs into a site that sets session or authentication
cookies, and then the rest of the requests need to include those cookies to be valid.
Example 13-19 shows such a sequence of requests.

Example 13-19. Tracking cookies with cURL’s cookie jar

<?php
// A temporary file to hold the cookies
$cookie_jar = tempnam('/tmp','cookie');

// log in
$c = curl_init('https://bank.example.com/login.php?user=donald&password=b1gmoney$');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
curl_setopt($c, CURLOPT_COOKIEJAR, $cookie_jar);
$page = curl_exec($c);
curl_close($c);

// retrieve account balance
$c = curl_init('http://bank.example.com/balance.php?account=checking');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
curl_setopt($c, CURLOPT_COOKIEFILE, $cookie_jar);
$page = curl_exec($c);
curl_close($c);

// make a deposit
$c = curl_init('http://bank.example.com/deposit.php');
curl_setopt($c, CURLOPT_POST, true);
curl_setopt($c, CURLOPT_POSTFIELDS, 'account=checking&amount=122.44');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
curl_setopt($c, CURLOPT_COOKIEFILE, $cookie_jar);
$page = curl_exec($c);
curl_close($c);

// remove the cookie jar
unlink($cookie_jar) or die("Can't unlink $cookie_jar");
?>

Be careful where you store the cookie jar. It needs to be in a place your web server has
write access to, but if other users can read the file, they may be able to poach the
authentication credentials stored in the cookies.

HTTP_Client offers a similar cookie-tracking feature. You don’t have to do anything
special to enable it. If you make multiple requests with the same HTTP_Client object,
cookies are automatically preserved from one request to the next.

See Also
Documentation on curl_setopt(  ) at http://www.php.net/curl-setopt; the PEAR
HTTP_Request class at http://pear.php.net/package/HTTP_Request, the PEAR HTTP_Cli
ent class at http://pear.php.net/package/HTTP_Client; “Persistent Client State - HTTP
Cookies” at http://wp.netscape.com/newsref/std/cookie_spec.html and “HTTP Cookies:

402 | Chapter 13: Web Automation

Download at Boykma.Com

Standards, Privacy, and Politics” by David M. Kristol at http://arxiv.org/abs/cs.SE/
0105018.

13.4 Fetching a URL with Arbitrary Headers

Problem
You want to retrieve a URL that requires specific headers to be sent with the request
for the page.

Solution
Set the header stream context option when using the http stream as in Exam-
ple 13-20. The header value must be a single string. Separate multiple headers with a
carriage return and newline (\r\n inside a double-quoted string).

Example 13-20. Sending a header with the http stream
<?php
$url = 'http://www.example.com/special-header.php';
$header = "X-Factor: 12\r\nMy-Header: Bob";
$options = array('header' => $header);
// Create the stream context
$context = stream_context_create(array('http' => $options));
// Pass the context to file_get_contents()
print file_get_contents($url, false, $context);
?>

With cURL, set the CURLOPT_HTTPHEADER option to an array of headers to send, as shown
in Example 13-21.

Example 13-21. Sending a header with cURL
<?php
$c = curl_init('http://www.example.com/special-header.php');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
curl_setopt($c, CURLOPT_HTTPHEADER, array('X-Factor: 12', 'My-Header: Bob'));
$page = curl_exec($c);
curl_close($c);
?>

With HTTP_Request, use the addHeader(  ) method, as shown in Example 13-22.

Example 13-22. Sending a header with HTTP_Request
<?php
require 'HTTP/Request.php';

$r = new HTTP_Request('http://www.example.com/special-header.php');
$r->addHeader('X-Factor',12);
$r->addHeader('My-Header','Bob');
$r->sendRequest();

13.4 Fetching a URL with Arbitrary Headers | 403

Download at Boykma.Com

$page = $r->getResponseBody();
?>

Discussion
cURL has special options for setting the Referer and User-Agent request headers—
CURLOPT_REFERER and CURLOPT_USERAGENT. Example 13-23 uses each of these options.

Example 13-23. Setting Referer and User-Agent with cURL
<?php
$c = curl_init('http://www.example.com/submit.php');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
curl_setopt($c, CURLOPT_REFERER, 'http://www.example.com/form.php');
curl_setopt($c, CURLOPT_USERAGENT, 'cURL via PHP');
$page = curl_exec($c);
curl_close($c);
?>

See Also
Documentation on on the http stream wrapper at http://www.php.net/wrappers.http,
on curl_setopt(  ) at http://www.php.net/curl-setopt, and on the PEAR HTTP_Request
class at http://pear.php.net/package/HTTP_Request. The mailing-list message at http://
lists.w3.org/Archives/Public/ietf-http-wg-old/1996MayAug/0734.html explains the am-
bitious and revolutionary goals behind spelling “Referer” with one “r.”

13.5 Fetching a URL with an Arbitrary Method

Problem
You want to retrieve a URL using a method more exotic than get or post, such as
put or delete.

Solution
Just as when using post, set the method and content stream context options when using
the http stream, as in Example 13-24.

Example 13-24. Using put with the http stream
<?php
$url = 'http://www.example.com/put.php';
// The request body, in arbitrary format
$body = '<menu>
 <dish type="appetizer">Chicken Soup</dish>
 <dish type="main course">Fried Monkey Brains</dish>
</menu>';
$options = array('method' => 'PUT', 'content' => $body);
// Create the stream context
$context = stream_context_create(array('http' => $options));

404 | Chapter 13: Web Automation

Download at Boykma.Com

// Pass the context to file_get_contents()
print file_get_contents($url, false, $context);
?>

With cURL, set the CURLOPT_CUSTOMREQUEST option to the method name. To include a
request body, set CURLOPT_POSTFIELDS to the the body, as in Example 13-25.

Example 13-25. Using put with cURL
<?php
// The request body, in arbitrary format
$body = '<menu>
 <dish type="appetizer">Chicken Soup</dish>
 <dish type="main course">Fried Monkey Brains</dish>
</menu>';
$c = curl_init($url);
curl_setopt($c, CURLOPT_CUSTOMREQUEST, 'PUT');
curl_setopt($c, CURLOPT_POSTFIELDS, $body);
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
$page = curl_exec($c);
curl_close($c);
?>

Example 13-26 shows how to put with HTTP_Request: pass HTTP_REQUEST_METHOD_PUT to
the constructor and call setBody(  ) with the contents of the request body.

Example 13-26. Using put with HTTP_Request
<?php
require 'HTTP/Request.php';
$url = 'http://www.example.com/put.php';
$body = '<menu>
 <dish type="appetizer">Chicken Soup</dish>
 <dish type="main course">Fried Monkey Brains</dish>
</menu>';
$r = new HTTP_Request($url);
$r->setMethod(HTTP_REQUEST_METHOD_PUT);
$r->setBody($body);
$page = $r->getResponseBody();
?>

Discussion
As REST-style web services APIs grow more common, so do HTTP requests using lesser
lights of the request-method pantheon, such as put and delete.

The put method is often used for uploading the contents of a particular file. cURL has
three special options to help with this: CURLOPT_PUT, CURLOPT_INFILE, and CURLOPT_INFI
LESIZE. To upload a file with put and cURL, set CURLOPT_PUT to true, CURLOPT_INFILE a
filehandle opened to the file that should be uploaded, and CURLOPT_INFILESIZE to the
size of that file. Example 13-27 uploads a file with put.

Example 13-27. Uploading a file with cURL and put
<?php
$url = 'http://www.example.com/upload.php';

13.5 Fetching a URL with an Arbitrary Method | 405

Download at Boykma.Com

$filename = '/usr/local/data/pictures/piggy.jpg';
$fp = fopen($filename,'r');
$c = curl_init($url);
curl_setopt($c, CURLOPT_PUT, true);
curl_setopt($c, CURLOPT_INFILE, $fp);
curl_setopt($c, CURLOPT_INFILESIZE, filesize($filename));
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
$page = curl_exec($c);
print $page;
curl_close($c);
?>

See Also
Documentation on curl_setopt(  ) at http://www.php.net/curl-setopt and on stream op-
tions at http://www.php.net/wrappers.http; the PEAR HTTP_Request class at http://
pear.php.net/package/HTTP_Request; Section 5.1.1 of RFC 2616, which discusses re-
quest methods, is available at http://www.w3.org/Protocols/rfc2616/rfc2616-
sec5.html#sec5.1.1 .

13.6 Fetching a URL with a Timeout

Problem
You want to fetch a remote URL, but don’t want to wait around too long if the remote
server is busy or slow.

Solution
With the http stream, set the default_socket_timeout configuration option. Exam-
ple 13-28 waits no more than 15 seconds to establish the connection with the remote
server.

Example 13-28. Setting a timeout with the http stream
<?php
// 15 second timeout
ini_set('default_socket_timeout', 15);
$page = file_get_contents('http://slow.example.com/');

Note that changing default_socket_timeout affects all new sockets or remote connec-
tions created in a particular script execution.

With cURL, set the CURLOPT_CONNECTTIMEOUT option, as shown in Example 13-29.

Example 13-29. Setting a timeout with cURL

<?php
$c = curl_init('http://slow.example.com/');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);

406 | Chapter 13: Web Automation

Download at Boykma.Com

curl_setopt($c, CURLOPT_CONNECTTIMEOUT, 15);
$page = curl_exec($c);
curl_close($c);
?>

With HTTP_Request, set the timeout element in a parameter array passed to the
HTTP_Request constructor, as shown in Example 13-30.

Example 13-30. Setting a timeout with HTTP_Request

<?php
require_once 'HTTP/Request.php';
$opts = array('timeout' => 15);
$req = new HTTP_Request('http://slow.example.com/', $opts);
$req->sendRequest();
?>

Discussion
Remote servers are fickle beasts. Even the most most robust, enterprise-class, mission-
critical service can experience an outage. Alternatively, a remote service you depend on
can be up and running, but be unable to handle your requests because of network
problems between your server and the remote server. Limiting the amount of time that
PHP waits to connect to a remote server is a good idea if using data from remote sources
is part of your page construction process.

All of the techniques outlined in the Solution limit the amount of time PHP waits to
connect to a remote server. Once the connection is made, though, all bets are off in
terms of response time. If you’re truly concerned about speedy responses, additionally
set a limit on how long PHP waits to receive data from the already connected socket.
For a stream connection, use the stream_set_timeout(  ) function. This function needs
to be passed a stream resource, so you have to open a stream with fopen(  )—no
file_get_contents(  ) here. Example 13-31 limits the read timeout to 20 seconds.

Example 13-31. Setting the read timeout with the http stream

<?php
$url = 'http://slow.example.com';
$stream = fopen($url, 'r');
stream_set_timeout($stream, 20);
$response_body = stream_get_contents($stream);
?>

With cURL, set the CURLOPT_TIMEOUT to the maximum amount of time curl_exec(  )
should operate. This includes both the connection timeout and the time to read the
entire response body.

With HTTP_Request, add a readTimeout value to the parameter array you pass to the
constructor. This value must be a two-element array of seconds and microseconds.
Example 13-32 sets the read timeout to 20 seconds.

13.6 Fetching a URL with a Timeout | 407

Download at Boykma.Com

Example 13-32. Setting a read timeout with HTTP_Request
<?php
require_once 'HTTP/Request.php';
$opts = array('readTimeout' => array(20,0));
$req = new HTTP_Request('http://slow.example.com/', $opts);
$req->sendRequest();
?>

Although setting connection and read timeouts can improve performance, it can also
lead to garbled responses. Your script could read just a partial response before a timeout
expires. If you’ve set timeouts, be sure to validate the entire response that you’ve re-
ceived. Alternatively, in situations where fast page generation is crucial, retrieve
external data in a separate process and write it to a local cache. This way, your pages
can use the cache without fear of timeouts or partial responses.

See Also
Documentation on curl_setopt(  ) at http://www.php.net/curl-setopt, on
stream_set_timeout(  ) at http://www.php.net/stream_set_timeout, on
default_socket_timeout at http://www.php.net/filesystem, and on the PEAR
HTTP_Request class at http://pear.php.net/package/HTTP_Request.

13.7 Fetching an HTTPS URL

Problem
You want to retrieve a secure URL.

Solution
Use any of the techniques described in Recipes 13.1 or 13.2, providing a URL that
begins with https.

Discussion
As long as PHP has been built with an SSL library such as OpenSSL, all of the functions
that can retrieve regular URLs can retrieve secure URLs. Look for the “openssl” section
in the output of phpinfo(  ) to see if your PHP setup has SSL support.

See Also
Recipes 13.1 and 13.2 for retrieving URLs, the OpenSSL Project at http://
www.openssl.org/.

408 | Chapter 13: Web Automation

Download at Boykma.Com

13.8 Debugging the Raw HTTP Exchange

Problem
You want to analyze the HTTP request a browser makes to your server and the corre-
sponding HTTP response. For example, your server doesn’t supply the expected
response to a particular request so you want to see exactly what the components of the
request are.

Solution
For simple requests, connect to the web server with Telnet and type in the request
headers. A sample exchange is shown in Example 13-33.

Example 13-33. Sending a request with Telnet
% telnet www.example.com 80
Trying 10.3.75.31...
Connected to www.example.com (10.3.75.31).
Escape character is '^]'.
GET / HTTP/1.0
Host: www.example.com

HTTP/1.1 200 OK
Date: Sun, 03 Dec 2006 02:54:01 GMT
Server: Apache/2.2.2 (Unix)
Last-Modified: Fri, 20 Oct 2006 20:16:24 GMT
ETag: "1348010-2c-4c23b600"
Accept-Ranges: bytes
Content-Length: 44
Connection: close
Content-Type: text/html

[the body of the response]

Discussion
When you type in request headers, the web server doesn’t know that it’s just you typing
and not a web browser submitting a request. However, some web servers have timeouts
on how long they’ll wait for a request, so it can be useful to pretype the request and
then just paste it into Telnet. The first line of the request contains the request method
(get), a space and the path of the file you want (/), and then a space and the protocol
you’re using (HTTP/1.0). The next line, the Host header, tells the server which virtual
host to use if many are sharing the same IP address. A blank line tells the server that
the request is over; it then spits back its response: first headers, then a blank line, and
then the body of the response. The Netcat program (http://netcat.sourceforge.net/) is
also useful for this sort of task.

Pasting text into Telnet can get tedious, and it’s even harder to make requests with the
post method that way. If you make a request with HTTP_Request, you can retrieve the

13.8 Debugging the Raw HTTP Exchange | 409

Download at Boykma.Com

response headers and the response body with the getResponseHeader(  ) and
getResponseBody(  ) methods, as shown in Example 13-34.

Example 13-34. Getting response headers with HTTP_Request
<?php
require 'HTTP/Request.php';
$r = new HTTP_Request('http://www.example.com/submit.php');
$r->setMethod(HTTP_REQUEST_METHOD_POST);
$r->addPostData('monkey','uncle');
$r->sendRequest();

$response_headers = $r->getResponseHeader();
$response_body = $r->getResponseBody();
?>

To retrieve a specific response header, pass the header name to getResponseHeader(  ).
The header name must be all lowercase. Without an argument, getResponseHeader(  )
returns an array containing all the response headers. HTTP_Request doesn’t save the
outgoing request in a variable, but you can reconstruct it by calling the
_buildRequest(  ) method, as shown in Example 13-35.

Example 13-35. Getting request headers with HTTP_Request
<?php
require 'HTTP/Request.php';

$r = new HTTP_Request('http://www.example.com/submit.php');
$r->setMethod(HTTP_REQUEST_METHOD_POST);
$r->addPostData('monkey','uncle');

print $r->_buildRequest();
?>

The request that Example 13-35 is something like:

POST /submit.php HTTP/1.1
User-Agent: PEAR HTTP_Request class (http://pear.php.net/)
Content-Type: application/x-www-form-urlencoded
Connection: close
Host: www.example.com
Content-Length: 12

monkey=uncle

Accessing response headers with the http stream is possible, but you have to use a
function such as fopen(  ) that gives you a stream resource. One piece of the metadata
you get when passing that stream resource to stream_get_meta_data(  ) after the request
has been made is the set of response headers. Example 13-36 demonstrates how to
access response headers with a stream resource.

Example 13-36. Getting response headers with the http stream
<?php
$url = 'http://www.example.com/submit.php';

410 | Chapter 13: Web Automation

Download at Boykma.Com

$stream = fopen($url, 'r');
$metadata = stream_get_meta_data($stream);
// The headers are stored in the 'wrapper_data'
foreach ($metadata['wrapper_data'] as $header) {
 print $header . "\n";
}
// The body can be retrieved with
// stream_get_contents()
$response_body = stream_get_contents($stream);
?>

stream_get_meta_data(  ) returns an array of information about the stream. The wrap
per_data element of that array contains wrapper-specific data. For the http wrapper,
that means the response headers, one per subarray element. Example 13-36 prints
something like:

HTTP/1.1 200 OK
Date: Sun, 07 May 2006 18:24:37 GMT
Server: Apache/2.2.2 (Unix)
Last-Modified: Sun, 07 May 2006 01:58:12 GMT
ETag: "1348011-7-16167500"
Accept-Ranges: bytes
Content-Length: 7
Connection: close
Content-Type: text/plain

The fopen(  ) function accepts an optional stream context. Pass it as the fourth argument
to fopen(  ) if you want to use one. (The second argument is the mode and the third
argument is the optional flag indicating whether to use include_path in looking for a
file.)

With cURL, include response headers in the output from curl_exec(  ) by setting the
CURLOPT_HEADER option, as shown in Example 13-37.

Example 13-37. Getting response headers with cURL
<?php
$c = curl_init('http://www.example.com/submit.php');
curl_setopt($c, CURLOPT_HEADER, true);
curl_setopt($c, CURLOPT_POST, true);
curl_setopt($c, CURLOPT_POSTFIELDS, 'monkey=uncle&rhino=aunt');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
$response_headers_and_page = curl_exec($c);
curl_close($c);
?>

To write the response headers directly to a file, open a filehandle with fopen(  ) and set
CURLOPT_WRITEHEADER to that filehandle, as shown in Example 13-38.

Example 13-38. Writing response headers to a file with cURL
<?php
$fh = fopen('/tmp/curl-response-headers.txt','w') or die($php_errormsg);
$c = curl_init('http://www.example.com/submit.php');
curl_setopt($c, CURLOPT_POST, true);

13.8 Debugging the Raw HTTP Exchange | 411

Download at Boykma.Com

curl_setopt($c, CURLOPT_POSTFIELDS, 'monkey=uncle&rhino=aunt');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
curl_setopt($c, CURLOPT_WRITEHEADER, $fh);
$page = curl_exec($c);
curl_close($c);
fclose($fh) or die($php_errormsg);
?>

cURL’s CURLOPT_VERBOSE option causes curl_exec(  ) and curl_close(  ) to print out de-
bugging information to standard error, including the contents of the request, as shown
in Example 13-39.

Example 13-39. Verbose output from cURL

$c = curl_init('http://www.example.com/submit.php');
curl_setopt($c, CURLOPT_VERBOSE, true);
curl_setopt($c, CURLOPT_POST, true);
curl_setopt($c, CURLOPT_POSTFIELDS, 'monkey=uncle&rhino=aunt');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
$page = curl_exec($c);
curl_close($c);

Example 13-39 prints something like:

* Connected to www.example.com (10.1.1.1)
> POST /submit.php HTTP/1.1
Host: www.example.com
Pragma: no-cache
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Content-Length: 23
Content-Type: application/x-www-form-urlencoded

monkey=uncle&rhino=aunt* Connection #0 left intact
* Closing connection #0

Because cURL prints the debugging information to standard error and not standard
output, it can’t be captured with output buffering. You can, however, open a filehandle
for writing and set CURLOUT_STDERR to that filehandle to divert the debugging information
to a file. This is shown in Example 13-40.

Example 13-40. Writing cURL verbose output to a file

<?php
$fh = fopen('/tmp/curl.out','w') or die($php_errormsg);
$c = curl_init('http://www.example.com/submit.php');
curl_setopt($c, CURLOPT_VERBOSE, true);
curl_setopt($c, CURLOPT_POST, true);
curl_setopt($c, CURLOPT_POSTFIELDS, 'monkey=uncle&rhino=aunt');
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
curl_setopt($c, CURLOPT_STDERR, $fh);
$page = curl_exec($c);
curl_close($c);
fclose($fh) or die($php_errormsg);
?>

412 | Chapter 13: Web Automation

Download at Boykma.Com

Another way to access response headers with cURL is to write a “header function.”
This is similar to a cURL “write function” except it is called to handle response headers
instead of the response body. Example 13-41 defines a HeaderSaver class whose
header(  ) method can be used as a header function to accumulate response headers.

Example 13-41. Using a cURL header function

<?php

class HeaderSaver {
 public $headers = array();
 public $code = null;

 public function header($curl, $data){
 if (is_null($this->code) &&
 preg_match('@^HTTP/\d\.\d (\d+) @',$data,$matches)) {
 $this->code = $matches[1];
 } else {
 // Remove the trailing newline
 $trimmed = rtrim($data);
 if (strlen($trimmed)) {
 // If this line begins with a space or tab, it's a
 // continuation of the previous header
 if (($trimmed[0] == ' ') || ($trimmed[0] == "\t")) {
 // Collapse the leading whitespace into one space
 $trimmed = preg_replace('@^[\t]+@',' ', $trimmed);
 $this->headers[count($this->headers)-1] .= $trimmed;
 }
 // Otherwise, it's a new header
 else {
 $this->headers[] = $trimmed;
 }
 }
 }
 return strlen($data);
 }

}

$h = new HeaderSaver();
$c = curl_init('http://www.example.com/plankton.php');
// Register the header function
curl_setopt($c, CURLOPT_HEADERFUNCTION, array($h,'header'));
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
$page = curl_exec($c);
// Now $h is populated with data
print 'The response code was: ' . $h->code . "\n";
print "The response headers were: \n";
foreach ($h->headers as $header) {
 print " $header\n";
}

The HTTP 1.1 standard specifies that headers can span multiple lines by putting at
least one space or tab character at the beginning of the additional lines of the header.

13.8 Debugging the Raw HTTP Exchange | 413

Download at Boykma.Com

The header arrays returned by stream_get_meta_data(  ) and
HTTP_Request::getResponseHeader(  ) do not properly handle multiline headers, though.
The additional lines in a header are treated as separate headers. The code in Exam-
ple 13-41, however, correctly combines the additional lines in multiline headers.

See Also
Documentation on curl_setopt(  ) at http://www.php.net/curl-setopt, on
stream_get_meta_data(  ) at http://www.php.net/stream_get_meta_data, on fopen(  ) at
http://www.php.net/fopen, and on the PEAR HTTP_Request class at http://pear.php.net/
package/HTTP_Request; the syntax of an HTTP request is defined in RFC 2616 and
available at http://www.w3.org/Protocols/rfc2616/rfc2616.html. The rules about multi-
line message headers are in Section 4.2: http://www.w3.org/Protocols/rfc2616/rfc2616-
sec4.html#sec4.2. The netcat program is available from the GNU Netcat project at
http://netcat.sourceforge.net/.

13.9 Marking Up a Web Page

Problem
You want to display a web page—for example, a search result—with certain words
highlighted.

Solution
Build an array replacement for each word you want to highlight. Then, chop up the
page into “HTML elements” and “text between HTML elements” and apply the re-
placements to just the text between HTML elements. Example 13-42 applies high-
lighting in the HTML in $body to the words found in $words.

Example 13-42. Marking up a web page

$body = '
<p>I like pickles and herring.</p>

A pickle picture

I have a herringbone-patterned toaster cozy.

<herring>Herring is not a real HTML element!</herring>
';

$words = array('pickle','herring');
$replacements = array();
foreach ($words as $i => $word) {
 $replacements[] = "$word";
}

// Split up the page into chunks delimited by a

414 | Chapter 13: Web Automation

Download at Boykma.Com

// reasonable approximation of what an HTML element
// looks like.
$parts = preg_split("{(<(?:\"[^\"]*\"|'[^']*'|[^'\">])*>)}",
 $body,
 -1, // Unlimited number of chunks
 PREG_SPLIT_DELIM_CAPTURE);
foreach ($parts as $i => $part) {
 // Skip if this part is an HTML element
 if (isset($part[0]) && ($part[0] == '<')) { continue; }
 // Wrap the words with s
 $parts[$i] = str_replace($words, $replacements, $part);
}

// Reconstruct the body
$body = implode('',$parts);

print $body;
?>

Discussion
Example 13-42 prints:

<p>I like pickles and herring.
</p>

A pickle
picture

I have a herringbone-patterned toaster cozy.

<herring>Herring is not a real HTML element!</herring>

Each of the words in $words (pickle and herring) has been wrapped with a
that has a specific class attribute. Use a CSS stylesheet to attach particular display
attributes to these classes, such as a bright yellow background or a border.

The regular expression in Example 13-42 chops up $body into a series of chunks de-
limited by HTML elements. This lets us just replace the text between HTML elements
and leaves HTML elements or attributes alone whose values might contain a search
term. The regular expression does a pretty good job of matching HTML elements, but
if you have some particularly crazy, malformed markup with mismatched or unescaped
quotes, it might get confused.

Because str_replace(  ) is case sensitive, only strings that exactly match words in
$words are replaced. The last Herring in Example 13-42 doesn’t get highlighted because
it begins with a capital letter. To do case-insensitive matching, we need to switch from
str_replace(  ) to regular expressions. (We can’t use str_ireplace(  ) because the re-
placement has to preserve the case of what matched.) Example 13-43 shows the altered
code that uses regular expressions to do the replacement.

Example 13-43. Marking up a web page with regular expressions
<?php
$body = '

13.9 Marking Up a Web Page | 415

Download at Boykma.Com

<p>I like pickles and herring.</p>

A pickle picture

I have a herringbone-patterned toaster cozy.

<herring>Herring is not a real HTML element!</herring>
';

$words = array('pickle','herring');
$patterns = array();
$replacements = array();
foreach ($words as $i => $word) {
 $patterns[] = '/' . preg_quote($word) .'/i';
 $replacements[] = "\\0";
}

// Split up the page into chunks delimited by a
// reasonable approximation of what an HTML element
// looks like.
$parts = preg_split("{(<(?:\"[^\"]*\"|'[^']*'|[^'\">])*>)}",
 $body,
 -1, // Unlimited number of chunks
 PREG_SPLIT_DELIM_CAPTURE);
foreach ($parts as $i => $part) {
 // Skip if this part is an HTML element
 if (isset($part[0]) && ($part[0] == '<')) { continue; }
 // Wrap the words with s
 $parts[$i] = preg_replace($patterns, $replacements, $part);
}

// Reconstruct the body
$body = implode('',$parts);

print $body;
?>

The two differences in Example 13-43 are that it builds a $patterns array in the loop at
the top and it uses the preg_replace(  ) (with the $patterns array) instead of
str_replace(  ). The i at the end of each element in $patterns makes the match case
insensitive. The \\0 in the replacement preserves the case in the replacement with the
case of what it matched.

Switching to regular expressions also makes it easy to prevent substring matching. In
both Example 13-42 and Example 13-43, the herring in herringbone gets highlighted.
To prevent this, change $patterns[] = '/' . preg_quote($word) .'/i'; in Exam-
ple 13-43 to $patterns[] = '/\b' . preg_quote($word) .'\b/i';. The additional \b
items in the pattern tell preg_replace(  ) only to match a word if it stands on its own.

416 | Chapter 13: Web Automation

Download at Boykma.Com

See Also
Documentation on str_replace(  ) at http://www.php.net/str_replace, on
str_ireplace(  ) at http://www.php.net/str_ireplace, on preg_replace(  ) at http://
www.php.net/preg_replace, and on preg_split(  ) at http://www.php.net/preg_split.

13.10 Cleaning Up Broken or Nonstandard HTML

Problem
You’ve got some HTML with malformed syntax that you’d like to clean up. This makes
it easier to parse and ensures that the pages you produce are standards compliant.

Solution
Use PHP’s Tidy extension. It relies on the popular, powerful, HTML Tidy library to
turn frightening piles of tag soup into well-formed, standards-compliant HTML or
XHTML. Example 13-44 shows how to repair a file.

Example 13-44. Repairing an HTML file with Tidy
<?php
$fixed = tidy_repair_file('bad.html');
file_put_contents('good.html', $fixed);
?>

Discussion
The HTML Tidy library has a large number of rules and features built up over time that
creatively handle a wide variety of HTML abominations. Fortunately, you don’t have
to care about what all those rules are to reap the benefits of Tidy. Just pass a filename
to tidy_repair_file(  ) and you get back a cleaned-up version. For example, if
bad.html contains:

I love monkeys.

then Example 13-44 writes the following out to good.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<title></title>
</head>
<body>
 I love monkeys.
</body>
</html>

Tidy has a large number of configuration options that affect the output it produces.
You can read about them at http://tidy.sourceforge.net/docs/quickref.html. Pass config-

13.10 Cleaning Up Broken or Nonstandard HTML | 417

Download at Boykma.Com

uration to tidy_repair_file(  ) by providing a second argument that is an array of
configuration options and values. Example 13-45 uses the output-xhtml option, which
tells Tidy to produce valid XHTML.

Example 13-45. Production of XHTML with Tidy
<?php
$config = array('output-xhtml' => true);
$fixed = tidy_repair_file('bad.html', $config);
file_put_contents('good.xhtml', $fixed);
?>

Example 13-45 writes the following to good.xhtml:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title></title>
</head>
<body>
 I love monkeys.
</body>
</html>

If your source HTML is in a string instead of a file, use tidy_repair_string(  ). It expects
a first argument that contains HTML, not a filename.

See Also
Documentation on tidy_repair_file(  ) at http://www.php.net/tidy_repair_file, on
tidy_repair_string(  ) at http://www.php.net/tidy_repair_string, and on Tidy configu-
ration options at http://tidy.sourceforge.net/docs/quickref.html.

13.11 Extracting Links from an HTML File

Problem
You need to extract the URLs that are specified inside an HTML document.

Solution
Use Tidy to convert the document to XHTML, then use an XPath query to find all the
links, as shown in Example 13-46.

Example 13-46. Extracting links with Tidy and XPath
<?php
$doc = new DOMDocument();
$opts = array('output-xml' => true,
 // Prevent DOMDocument from being confused about entities
 'numeric-entities' => true);

418 | Chapter 13: Web Automation

Download at Boykma.Com

$doc->loadXML(tidy_repair_file('linklist.html',$opts));
$xpath = new DOMXPath($doc);
// Tell $xpath about the XHTML namespace
$xpath->registerNamespace('xhtml','http://www.w3.org/1999/xhtml');
foreach ($xpath->query('//xhtml:a/@href') as $node) {
 $link = $node->nodeValue;
 print $link . "\n";
}

If Tidy isn’t available, use the pc_link_extractor(  ) function shown in Exam-
ple 13-47.

Example 13-47. Extracting links without Tidy
<?php
$html = file_get_contents('linklist.html');
$links = pc_link_extractor($html);
foreach ($links as $link) {
 print $link[0] . "\n";
}

function pc_link_extractor($html) {
 $links = array();
 preg_match_all('/<a\s+.*?href=[\"\']?([^\"\' >]*)[\"\']?[^>]*>(.*?)<\/a>/i',
 $html,$matches,PREG_SET_ORDER);
 foreach($matches as $match) {
 $links[] = array($match[1],$match[2]);
 }
 return $links;
}

Discussion
The XHTML document that Tidy generates when the output-xhtml option is turned on
may contain entities other than the four that are defined by the base XML specification
(< > & "). Turning on the numeric-entities option prevents those other
entities from appearing in the generated XHTML document. Their presence would
cause DOMDocument to complain about undefined entities. An alternative is to leave out
the numeric-entities option but set $doc->resolveExternals to true. This tells DOMDocu
ment to fetch any Document Type Definition referenced in the file it’s loading and use
that to resolve the entities. Tidy generates XML with an appropriate DTD in it. The
downside of this approach is that the DTD URL points to a resource on an external
web server, so your program would have to download that resource each time it runs.

XHTML is an XML application—a defined XML vocabulary for expressing HTML. As
such, all of its elements (the familiar <a/>, <h1/>, and so on) live in a namespace. The
URI for that namespace is http://www.w3.org/1999/xhtml. For XPath queries to work
properly, the namespace has to be attached to a prefix (that’s what the
registerNamespace(  ) method does) and then used in the XPath query.

The pc_link_extractor(  ) function is a useful alternative if Tidy isn’t available. Its reg-
ular expression won’t work on all links, such as those that are constructed with some

13.11 Extracting Links from an HTML File | 419

Download at Boykma.Com

hexadecimal escapes, but it should function on the majority of reasonably well-formed
HTML. The function returns an array. Each element of that array is itself a two-element
array. The first element is the target of the link, and the second element is the link
anchor—text that is linked.

The XPath expression in Example 13-46 only grabs links, not anchors. Exam-
ple 13-48 shows an alternative that produces both links and anchors.

Example 13-48. Extracting links and anchors with Tidy and XPath
<?php
$doc = new DOMDocument();
$opts = array('output-xhtml'=>true,
 // Prevent DOMDocument from being confused about entities
 'numeric-entities' => true);
$doc->loadXML(tidy_repair_file('linklist.html',$opts));
$xpath = new DOMXPath($doc);
// Tell $xpath about the XHTML namespace
$xpath->registerNamespace('xhtml','http://www.w3.org/1999/xhtml');
foreach ($xpath->query('//xhtml:a') as $node) {
 $anchor = trim($node->textContent);
 $link = $node->getAttribute('href');
 print "$anchor -> $link \n";
}

In Example 13-48, the XPath query finds all the <a/> element nodes. The textContent
property of the node holds the anchor text and the link is in the href attribute.

See Also
Documentation on on DOMDocument at http://www.php.net/DOM, on
DOMXPath::query(  ) at http://www.php.net/DOM_DOMXPath::query, on
DOMXPath::registerNamespace(  ) at http://www.php.net/DOM_DOMXPath::registerNa
mespace, on tidy_repair_file(  ) at http://www.php.net/tidy_repair_file, and on
preg_match_all(  ) at http://www.php.net/preg_match_all; Recipe 13.10 has more infor-
mation about Tidy; http://www.w3.org/TR/xpath describes XPath; http://www.w3.org/
TR/xhtml1/ details XHTML.

13.12 Converting Plain Text to HTML

Problem
You want to turn plain text into reasonably formatted HTML.

Solution
First, encode entities with htmlentities(  ). Then, transform the text into various
HTML structures. The pc_text2html(  ) function shown in Example 13-49 has basic
transformations for links and paragraph breaks.

420 | Chapter 13: Web Automation

Download at Boykma.Com

Example 13-49. pc_text2html(  )
<?php
function pc_text2html($s) {
 $s = htmlentities($s);
 $grafs = split("\n\n",$s);
 for ($i = 0, $j = count($grafs); $i < $j; $i++) {
 // Link to what seem to be http or ftp URLs
 $grafs[$i] = preg_replace('/((ht|f)tp:\/\/[^\s&]+)/',
 '$1',$grafs[$i]);

 // Link to email addresses
 $grafs[$i] = preg_replace('/[^@\s]+@([-a-z0-9]+\.)+[a-z]{2,}/i',
 '$1',$grafs[$i]);

 // Begin with a new paragraph
 $grafs[$i] = '<p>'.$grafs[$i].'</p>';
 }
 return implode("\n\n",$grafs);
}
?>

Discussion
The more you know about what the plain text looks like, the better your HTML con-
version can be. For example, if emphasis is indicated with *asterisks* or /slashes/ around
words, you can add rules that take care of that, as shown in Example 13-50.

Example 13-50. More text-to-HTML rules

<?php
$grafs[$i] = preg_replace('/(\A|\s)*([^*]+)*(\s|\z)/',
 '$1$2$3',$grafs[$i]);
$grafs[$i] = preg_replace('{(\A|\s)/([^/]+)/(\s|\z)}',
 '$1<i>$2</i>$3',$grafs[$i]);
?>

See Also
Documentation on preg_replace(  ) at http://www.php.net/preg_replace.

13.13 Converting HTML to Plain Text

Problem
You need to convert HTML to readable, formatted plain text.

Solution
Use the html2text class available from http://www.chuggnutt.com/html2text.php. Ex-
ample 13-51 shows it in action.

13.13 Converting HTML to Plain Text | 421

Download at Boykma.Com

Example 13-51. Converting HTML to plain text
<?php
require_once 'class.html2text.inc';
$html = file_get_contents('http://www.example.com/article.html');
$converter = new html2text($html);
$plain_text = $converter->get_text();
?>

Discussion
The html2text class has a large number of formatting rules built in so your generated
plain text has some visual layout for headings, paragraphs, and so on. It also includes
a list of all the links in the HTML at the bottom of the text it generates.

See Also
http://www.chuggnutt.com/html2text.php for more information on html2text and links
to download it.

13.14 Removing HTML and PHP Tags

Problem
You want to remove HTML and PHP tags from a string or file. For example, you want
to make sure there is no HTML in a string before printing it or PHP in a string before
passing it to eval(  ).

Solution
Use strip_tags(  ) to remove HTML and PHP tags from a string, as shown in Exam-
ple 13-52.

Example 13-52. Removing HTML and PHP tags
<?php

$html = 'I love computer books.
 <?php echo "Hello!" ?>';
print strip_tags($html);
?>

Example 13-52 prints:

I love computer books.

To strip tags from a stream as you read it, use the string.strip_tags stream filter, as
shown in Example 13-53.

Example 13-53. Removing HTML and PHP tags from a stream
<?php
$stream = fopen('elephant.html','r');

422 | Chapter 13: Web Automation

Download at Boykma.Com

stream_filter_append($stream, 'string.strip_tags');
print stream_get_contents($stream);
?>

Discussion
Both strip_tags(  ) and the string.strip_tags filter can be told not to remove certain
tags. Provide a string containing of allowable tags to strip_tags(  ) as a second argu-
ment. The tag specification is case insensitive, and for pairs of tags, you only have to
specify the opening tag. For example, to remove all but <i></i> tags from
$html, call strip_tags($html,'<i>').

With the string.strip_tags filter, pass a similar string as a fourth argument to
stream_filter_append(  ). The third argument to stream_filter_append(  ) controls
whether the filter is applied on reading (STREAM_FILTER_READ), writing (STREAM_FIL
TER_WRITE), or both (STREAM_FILTER_ALL). Example 13-54 does what Example 13-53
does, but allows <i></i> tags.

Example 13-54. Removing some HTML and PHP tags from a stream
<?php
$stream = fopen('elephant.html','r');
stream_filter_append($stream, 'string.strip_tags',STREAM_FILTER_READ,'<i>');
print stream_get_contents($stream);
?>

stream_filter_append(  ) also accepts an array of tag names instead of a string:
array('b','i') instead of '<i>'.

Whether with strip_tags(  ) or the stream filter, attributes are not removed from al-
lowed tags. This means that an attribute that changes display (such as style) or executes
JavaScript (any event handler) is preserved. If you are displaying “stripped” text of
arbitrary origin in a web browser to a user, this could result in cross-site scripting at-
tacks.

See Also
Documentation on strip_tags(  ) at http://www.php.net/strip-tags, on
stream_filter_append(  ) at http://www.php.net/stream_filter_append, and stream filters
at http://www.php.net/filters. The PEAR package HTML_Safe attempts to remove un-
safe content from HTML and is available at http://pear.php.net/package/HTML_Safe.
Recipe 18.4 has more details on cross-site scripting.

13.15 Responding to an Ajax Request

Problem
You’re using JavaScript to make in-page requests with XMLHTTPRequest and need to send
data in reply to one of those requests.

13.15 Responding to an Ajax Request | 423

Download at Boykma.Com

Solution
Set an appropriate Content-Type header and then emit properly formatted data. Exam-
ple 13-55 sends a small XML document as a response.

Example 13-55. Sending an XML response
<?php header('Content-Type: text/xml'); ?>
<menu>
 <dish type="appetizer">Chicken Soup</dish>
 <dish type="main course">Fried Monkey Brains</dish>
</menu>

Example 13-56 uses the PEAR Services_JSON package to send a JSON response.

Example 13-56. Sending a JSON response
<?php
require_once 'Services/JSON.php';
$menu = array();
$menu[] = array('type' => 'appetizer',
 'dish' => 'Chicken Soup');
$menu[] = array('type' => 'main course',
 'dish' => 'Fried Monkey Brains');
header('Content-Type: application/json');
$json = new Services_JSON();
print $json->encode($menu);
?>

Example 13-57 uses the PECL json extension (which is bundled with PHP 5.2 and later)
to send a JSON response.

Example 13-57. Sending a JSON response with PECL json
<?php
$menu = array();
$menu[] = array('type' => 'appetizer',
 'dish' => 'Chicken Soup');
$menu[] = array('type' => 'main course,'
 'dish' => 'Fried Monkey Brains');
header('Content-Type: application/json');
print json_encode($menu);
?>

Discussion
From a purely PHP perspective, sending a response to an XMLHTTPRequest-based request
is no different than any other response. You send any necessary headers and then spit
out some text. What’s different, however, is what those headers are and, usually, what
the text looks like.

JSON is a particularly useful format for these sorts of responses, because it’s super easy
to deal with the JSON-formatted data from within JavaScript. The output from Exam-
ple 13-56 looks like this:

424 | Chapter 13: Web Automation

Download at Boykma.Com

[{"type":"appetizer","dish":"Chicken Soup"},
{"type":"main course","dish":"Fried Monkey Brains"}]

This encodes a two-element JavaScript array of hashes. The PEAR Services_JSON
module is an easy way to turn PHP data structures (scalars, arrays, and objects) into
JSON strings and vice versa. Since it’s a PEAR module, you can use it even if you don’t
have access to your php.ini file or can’t install binary extensions. If you can install your
own extensions, consider using the PECL json extension instead for a big speed boost.
Its json_encode(  ) and json_decode(  ) functions turn PHP data structures to JSON
strings and back again.

With these types of responses, it’s also important to pay attention to caching. Different
browsers have a creative variety of caching strategies when it comes to requests made
from within JavaScript. If your responses are sending dynamic data (which they usually
are), then you probably don’t want them to be cached. The two tools in your anti-
caching toolbox are headers and URL poisoning. Example 13-58 shows the full
complement of anti-caching headers you can issue from PHP to prevent a browser from
caching a response.

Example 13-58. Anti-caching headers

<?php
header("Expires: 0");
header("Last-Modified: " . gmdate("D, d M Y H:i:s") . " GMT");
header("Cache-Control: no-store, no-cache, must-revalidate");
// Add some IE-specific options
header("Cache-Control: post-check=0, pre-check=0", false);
// For HTTP/1.0
header("Pragma: no-cache");
?>

The other anti-caching tool, URL poisoning, requires cooperation from the JavaScript
that is making the request. It adds a name/value pair to the query string of each request
it makes using an arbitrary value. This makes the request URL different each time the
request is made, preventing any misbehaving caches from getting in the way. The Java-
Script Math.random(  ) function is useful for generating these values.

See Also
Documentation on on header(  ) at http://www.php.net/header. Read more about
XMLHTTPRequest at http://en.wikipedia.org/wiki/XMLHttpRequest, JSON at http://
www.json.org, Services_JSON at http://pear.php.net/pepr/pepr-proposal-show.php?
id=198, and the PECL json extension at http://pecl.php.net/package/json. Michael Rad-
win’s “HTTP Caching and Cache-Busting for Content Publishers” (http://public.ya
hoo.com/~radwin/talks/http-caching-apachecon2005.htm) is a good introduction to
HTTP caching. Section 13 of RFC 2616 (http://www.w3.org/Protocols/rfc2616/rfc2616-
sec13.html#sec13) has the gory details on HTTP caching.

13.15 Responding to an Ajax Request | 425

Download at Boykma.Com

13.16 Integrating with JavaScript

Problem
You want part of your page to update with server-side data without reloading the whole
page. For example, you want to populate a list with search results.

Solution
Use a JavaScript toolkit such as Dojo to wire up the client side of things so that a
particular user action (such as clicking a button) fires off a request to the server. Write
appropriate PHP code to generate a response containing the right data. Then, use your
JavaScript toolkit to put the results in the page correctly.

Example 13-59 shows a simple HTML document that loads Dojo and the code in
Example 13-60. Example 13-60 is the JavaScript glue that sends a request off to the
server when the Search button is clicked and makes sure the results end up on the page
in the right place when they come back. Example 13-61 is the PHP code that does the
searching and sends back a JSON-formatted response.

Example 13-59. Basic HTML for JavaScript integration
<!-- Load Dojo -->
<script type="text/javascript" src="/dojo.js"></script>
<!-- Load our JavaScript -->
<script type="text/javascript" src="/search.js"></script>

<!-- Some input elements -->
<input type="text" id="q" />
<input type="button" id="go" value="Search"/>
<hr/>
<!-- Where the output goes -->
<div id="output"></div>

Example 13-60. JavaScript integration glue
// When the page loads, run this code
dojo.addOnLoad(function() {
 // Call the search() function when the 'go' button is clicked
 dojo.event.connect(dojo.byId('go'), 'onclick', 'search');
});

function search() {
 // What's in the text box?
 var q = dojo.byId('q').value;
 // Send request to the server
 // The url should be to wherever you save the search page
 dojo.io.bind({ 'url': '/search.php',
 'content': { 'q': q },
 // Type of the response
 'mimetype': 'text/json',
 // Function to call when the response comes
 'load': showResults });

426 | Chapter 13: Web Automation

Download at Boykma.Com

}

// Handle the results
function showResults(type, results, evt) {
 var html = '';
 // If we got some results...
 if (results.length > 0) {
 html = '';
 // Build a list of them
 for (var i in results) {
 html += '' + dojo.string.escapeXml(results[i]) + '';
 }
 html += '';
 } else {
 html = 'No results.';
 }
 // Put the result HTML in the page
 dojo.byId('output').innerHTML = html;
}

Example 13-61. PHP to generate a response for JavaScript

<?php
// Initialize JSON
require_once 'Services/JSON.php';
$json = new Services_JSON();

$results = array();
$q = isset($_GET['q']) ? $_GET['q'] : '';

// Connect to the database from Chapter 10
$db = new PDO('sqlite:/usr/local/data/zodiac.db');

// Do the query
$st = $db->prepare('SELECT symbol FROM zodiac WHERE planet LIKE ? ');
$st->execute(array($q.'%'));

// Build an array of results
while ($row = $st->fetch()) {
 $results[] = $row['symbol'];
}

// Splorp out all the anti-caching stuff
header("Expires: 0");
header("Last-Modified: " . gmdate("D, d M Y H:i:s") . " GMT");
header("Cache-Control: no-store, no-cache, must-revalidate");
// Add some IE-specific options
header("Cache-Control: post-check=0, pre-check=0", false);
// For HTTP/1.0
header("Pragma: no-cache");

// The response is JSON
header('Content-Type: application/json');

// Output the JSON data

13.16 Integrating with JavaScript | 427

Download at Boykma.Com

print $json->encode($results);
?>

Discussion
The HTML in Example 13-59 is pretty minimal by design. All that’s there are a few
elements and calls to load external scripts. Separating JavaScript from HTML is good
development practice—similar to segregating your presentation logic and your busi-
ness logic on the server side. The first <script/> tag in Example 13-59 should point to
wherever you’ve installed Dojo. The second should point to wherever you’ve put the
code in Example 13-60. That handful of JavaScript functions provides the bridge be-
tween the HTML elements in Example 13-59 and the server-side code in Exam-
ple 13-61. The first call to dojo.addOnLoad(  ) tells the web browser, “When the page is
finished loading, run the JavaScript code that tells the web browser, “When the go
button is clicked, run the search(  ) function.”

A lot of JavaScript programming is event based—along the lines of setting up rules like
“when such-and-such happens, run this function.” A web page studded with JavaScript
does not have a strictly procedural flow from start to finish. Instead, it presents the user
with lots of possibilities—clicking buttons, typing stuff in text boxes, clicking on links,
and so on. Your JavaScript code usually sets up various event handlers—functions that
run in response to clicking, typing, and other events.

In Example 13-60, the search(  ) function uses Dojo’s dojo.io.bind(  ) function to send
a request back to the server, passing whatever’s in the text box as the q query string
parameter. The other arguments to dojo.io.bind(  ) indicate that a JSON response is
expected, and when the request arrives, it should be passed to the showResults(  ) func-
tion.

The showResults(  ) function, in turn, takes those results and builds an HTML list out
of them. Once the list has been built up, it sets the content of the output <div/> to
contain that HTML.

Example 13-61 is the familiar part of this triumvirate. It’s very similar to any “search
the database for some stuff based on user input” PHP script, except for how it returns
results. Instead of printing HTML, it uses the techniques described in Recipe 13.15 to
send back an uncacheable JSON response.

Writing applications that rely on JavaScript-based client-side activity requires a differ-
ent programming paradigm than your typical PHP application. Instead of thinking
about how to generate entire dynamic pages, you have to think about how to generate
bits of dynamic data that client-side logic can display or manipulate in convenient ways.
A toolkit such as Dojo gives you a robust platform on which to build such applications.
It abstracts away many of the messy practicalities of JavaScript programming—cross-
browser incompatibilities, the guts of asynchronous I/O, and other housekeeping.

There are PHP-centric JavaScript toolkits available, such as PEAR’s HTML_Ajax and
xajax. They aim to let you write PHP functions and methods and then call them easily

428 | Chapter 13: Web Automation

Download at Boykma.Com

from JavaScript, taking care of the tedious glue of mapping particular JavaScript func-
tions to particular PHP functions. While these toolkits provide PHP-focused conven-
ience, they do so at the cost of JavaScript-focused robustness. While either HTML_Ajax
or xajax can be useful and convenient in quickly tying some server-side PHP code to
client-side logic, they are not built to handle applications that are designed from the
ground up as client focused.

That said, comfortably intersecting PHP and JavaScript is a problem for which many
folks are actively developing solutions. Easier paths undoubtedly will emerge after these
words are written.

See Also
Recipe 13.15 details sending JSON responses. Dojo is at http://www.dojotoolkit.org/,
xajax at http://www.xajaxproject.org/, and HTML_Ajax at http://pear.php.net/package/
HTML_Ajax. “Getting Rich with PHP” (http://talks.php.net/show/tek06) explores the
performance implications of responding to lots of JavaScript-based requests. Other
JavaScript toolkits include script.aculo.us (http://script.aculo.us/), Prototype (http://pro
totype.conio.net/), and the Yahoo! User Interface Library (http://developer.yahoo.com/
yui/index.html).

13.17 Program: Finding Stale Links
The stale-links.php program in Example 13-62 produces a list of links in a page and
their status. It tells you if the links are okay, if they’ve been moved somewhere else, or
if they’re bad. Run the program by passing it a URL to scan for links:

% php stale-links.php http://www.oreilly.com
http://www.oreilly.com/: OK
http://oreillynet.com/: OK
http://www.oreilly.com/store/: OK
http://safari.oreilly.com: OK
http://conferences.oreillynet.com/: OK
http://www.oreillylearning.com: OK
http://academic.oreilly.com: MOVED: http://academic.oreilly.com/index.csp
http://www.oreilly.com/about/: OK
...

The stale-links.php program uses the cURL extension to retrieve web pages (see Ex-
ample 13-62). First, it retrieves the URL specified on the command line. Once a page
has been retrieved, the program uses the XPath technique from Recipe 13.11 to get a
list of links in the page. Then, after prepending a base URL to each link if necessary,
the link is retrieved. Because we need just the headers of these responses, we use the
HEAD method instead of GET by setting the CURLOPT_NOBODY option. Setting CUR
LOPT_HEADER tells curl_exec(  ) to include the response headers in the string it returns.
Based on the response code, the status of the link is printed, along with its new location
if it’s been moved.

13.17 Program: Finding Stale Links | 429

Download at Boykma.Com

Example 13-62. stale-links.php
<?php

if (! isset($_SERVER['argv'][1])) {
 die("No URL provided.\n");
}

$url = $_SERVER['argv'][1];

// Load the page
list($page,$pageInfo) = load_with_curl($url);

if (! strlen($page)) {
 die("No page retrieved from $url");
}

// Convert to XML for easy parsing
$opts = array('output-xhtml' => true,
 'numeric-entities' => true);
$xml = tidy_repair_string($page, $opts);
$doc = new DOMDocument();
$doc->loadXML($xml);
$xpath = new DOMXPath($doc);
$xpath->registerNamespace('xhtml','http://www.w3.org/1999/xhtml');

// Compute the Base URL for relative links
$baseURL = '';
// Check if there is a <base href=""/> in the page
$nodeList = $xpath->query('//xhtml:base/@href');
if ($nodeList->length == 1) {
 $baseURL = $nodeList->item(0)->nodeValue;
}
// No <base href=""/>, so build the Base URL from $url
else {
 $URLParts = parse_url($pageInfo['url']);
 if (! (isset($URLParts['path']) && strlen($URLParts['path']))) {
 $basePath = '';
 } else {
 $basePath = preg_replace('#/[^/]*$#','',$URLParts['path']);
 }
 if (isset($URLParts['username']) || isset($URLParts['password'])) {
 $auth = isset($URLParts['username']) ? $URLParts['username'] : '';
 $auth .= ':';
 $auth .= isset($URLParts['password']) ? $URLParts['password'] : '';
 $auth .= '@';
 } else {
 $auth = '';
 }
 $baseURL = $URLParts['scheme'] . '://' .
 $auth . $URLParts['host'] .
 $basePath;
}

// Keep track of the links we visit so we don't visit each more than once
$seenLinks = array();

430 | Chapter 13: Web Automation

Download at Boykma.Com

// Grab all links
$links = $xpath->query('//xhtml:a/@href');

foreach ($links as $node) {
 $link = $node->nodeValue;
 // resolve relative links
 if (! preg_match('#^(http|https|mailto):#', $link)) {
 if (((strlen($link) == 0)) || ($link[0] != '/')) {
 $link = '/' . $link;
 }
 $link = $baseURL . $link;
 }
 // Skip this link if we've seen it already
 if (isset($seenLinks[$link])) {
 continue;
 }
 // Mark this link as seen
 $seenLinks[$link] = true;
 // Print the link we're visiting
 print $link.': ';
 flush();

 list($linkHeaders, $linkInfo) = load_with_curl($link, 'HEAD');
 // Decide what to do based on the response code
 // 2xx response codes mean the page is OK
 if (($linkInfo['http_code'] >= 200) && ($linkInfo['http_code'] < 300)) {
 $status = 'OK';
 }
 // 3xx response codes mean redirection
 else if (($linkInfo['http_code'] >= 300) && ($linkInfo['http_code'] < 400)) {
 $status = 'MOVED';
 if (preg_match('/^Location: (.*)$/m',$linkHeaders,$match)) {
 $status .= ': ' . trim($match[1]);
 }
 }
 // Other response codes mean errors
 else {
 $status = "ERROR: {$linkInfo['http_code']}";
 }
 // Print what we know about the link
 print "$status\n";
}

function load_with_curl($url, $method = 'GET') {
 $c = curl_init($url);
 curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
 if ($method == 'GET') {
 curl_setopt($c,CURLOPT_FOLLOWLOCATION, true);
 }
 else if ($method == 'HEAD') {
 curl_setopt($c, CURLOPT_NOBODY, true);
 curl_setopt($c, CURLOPT_HEADER, true);
 }
 $response = curl_exec($c);

13.17 Program: Finding Stale Links | 431

Download at Boykma.Com

 return array($response, curl_getinfo($c));
}
?>

13.18 Program: Finding Fresh Links
Example 13-63 is a modification of the program in Example 13-62 that produces a list
of links and their last-modified time. If the server on which a URL lives doesn’t provide
a last-modified time, the program reports the URL’s last-modified time as the time the
URL was requested. If the program can’t retrieve the URL successfully, it prints out the
status code it got when it tried to retrieve the URL. Run the program by passing it a
URL to scan for links:

% php fresh-links.php http://www.oreilly.com
https://epoch.oreilly.com/account/default.orm: MOVED: https://epoch.oreilly.com/
lib/p_sso.orm?d=account
https://epoch.oreilly.com/shop/cart.orm: OK
http://www.oreilly.com/: OK; Last Modified: Mon, 08 May 2006 22:11:04 GMT
http://oreillynet.com/: OK
http://www.oreilly.com/store/: OK
http://safari.oreilly.com: OK
http://conferences.oreillynet.com/: OK
http://www.oreillylearning.com: OK
http://academic.oreilly.com: MOVED: http://academic.oreilly.com/index.csp
...

This output is from a run of the program at about 11:48 P.M. GMT on May 8, 2006.
Most links aren’t accompanied by a last modified time—this means the server didn’t
provide one, so the page is probably dynamic. The link to http://www.oreilly.com/
shows that page being about 90 minutes old. The link to http://academic.oreilly.com
shows that it has been moved elsewhere, as reported by the output of stale-links.php in
Recipe 13.17.

The program to find fresh links is conceptually almost identical to the program to find
stale links. It uses the same techniques to pull links out of a page; however, it uses the
HTTP_Request class instead of cURL to retrieve URLs. The code to get the base URL
specified on the command line is inside a loop so that it can follow any redirects that
are provided and easily return the final URL in a redirect chain.

Once a page has been retrieved, each linked URL is retrieved with the head method.
Instead of just printing out a new location for moved links, however, it prints out a
formatted version of the Last-Modified header if it’s available.

Example 13-63. fresh-links.php
<?php
error_reporting(E_ALL);
require_once 'HTTP/Request.php';

if (! isset($_SERVER['argv'][1])) {
 die("No URL provided.\n");
}

432 | Chapter 13: Web Automation

Download at Boykma.Com

$url = $_SERVER['argv'][1];

// Load the page
$r = load_with_http_request($url);

if (! strlen($r->getResponseBody())) {
 die("No page retrieved from $url");
}

// Convert to XML for easy parsing
$opts = array('output-xhtml' => true,
 'numeric-entities' => true);
$xml = tidy_repair_string($r->getResponseBody(), $opts);
$doc = new DOMDocument();
$doc->loadXML($xml);
$xpath = new DOMXPath($doc);
$xpath->registerNamespace('xhtml','http://www.w3.org/1999/xhtml');

// Compute the Base URL for relative links.
$baseURL = '';
// Check if there is a <base href=""/> in the page
$nodeList = $xpath->query('//xhtml:base/@href');
if ($nodeList->length == 1) {
 $baseURL = $nodeList->item(0)->nodeValue;
}
// No <base href=""/>, so build the Base URL from $url
else {
 $URLParts = parse_url($r->_url->getURL());
 if (! (isset($URLParts['path']) && strlen($URLParts['path']))) {
 $basePath = '';
 } else {
 $basePath = preg_replace('#/[^/]*$#','',$URLParts['path']);
 }
 if (isset($URLParts['username']) || isset($URLParts['password'])) {
 $auth = isset($URLParts['username']) ? $URLParts['username'] : '';
 $auth .= ':';
 $auth .= isset($URLParts['password']) ? $URLParts['password'] : '';
 $auth .= '@';
 } else {
 $auth = '';
 }
 $baseURL = $URLParts['scheme'] . '://' .
 $auth . $URLParts['host'] .
 $basePath;
}

// Keep track of the links we visit so we don't visit each more than once
$seenLinks = array();

// Grab all links
$links = $xpath->query('//xhtml:a/@href');

foreach ($links as $node) {
 $link = $node->nodeValue;

13.18 Program: Finding Fresh Links | 433

Download at Boykma.Com

 // Resolve relative links
 if (! preg_match('#^(http|https|mailto):#', $link)) {
 if (((strlen($link) == 0)) || ($link[0] != '/')) {
 $link = '/' . $link;
 }
 $link = $baseURL . $link;
 }
 // Skip this link if we've seen it already
 if (isset($seenLinks[$link])) {
 continue;
 }
 // Mark this link as seen
 $seenLinks[$link] = true;
 // Print the link we're visiting
 print $link.': ';
 flush();

 $r = load_with_http_request($link, 'HEAD');
 // Decide what to do based on the response code
 // 2xx response codes mean the page is OK

 if (($r->getResponseCode() >= 200) && ($r->getResponseCode() < 300)) {
 $status = 'OK';
 }
 // 3xx response codes mean redirection
 else if (($r->getResponseCode() >= 300) && ($r->getResponseCode() < 400)) {
 $status = 'MOVED';
 if (strlen($location = $r->getResponseHeader('location'))) {
 $status .= ": $location";
 }
 }
 // Other response codes mean errors
 else {
 $status = "ERROR: {$r->getResponseCode()}";
 }
 if (strlen($lastModified = $r->getResponseHeader('last-modified'))) {
 $status .= "; Last Modified: $lastModified";
 }
 // Print what we know about the link
 print "$status\n";
}

function load_with_http_request($url, $method = 'GET') {
 if ($method == 'GET') {
 $done = false; $max_redirects = 10;
 while ((! $done) && ($max_redirects > 0)) {
 $r = new HTTP_Request($url);
 $r->sendRequest();
 $responseCode = $r->getResponseCode();
 if (($responseCode >= 300) && ($responseCode < 400) &&
 strlen($location = $r->getResponseHeader('location'))) {
 $url = $location;
 $max_redirects--;
 } else {
 $done = true;

434 | Chapter 13: Web Automation

Download at Boykma.Com

 }
 }
 } else {
 $r = new HTTP_Request($url);
 $r->setMethod(HTTP_REQUEST_METHOD_HEAD);
 $r->sendRequest();
 }
 return $r;
}
?>

13.18 Program: Finding Fresh Links | 435

Download at Boykma.Com

Download at Boykma.Com

CHAPTER 14

Consuming Web Services

14.0 Introduction
Web services allow you to exchange information over HTTP using XML. When you
want to find out the weather forecast for New York City, the current stock price of
IBM, or the cost of a flat screen TV on eBay, you can write a short script to gather that
data in a format you can easily manipulate. From a developer’s perspective, it’s as if
you’re calling a local function that returns a value.

The key behind web services is platform-independent communication. Your PHP script
running on Linux can talk to someone else’s IIS server on a Windows box using ASP
without any communication problems. Likewise, you can talk to a box running Solaris,
Apache, and JSP using the same sets of tools and interfaces.

There are two major types of web services: REST and SOAP. A REST request is rela-
tively straightforward, as they involve making an HTTP request of a server and
processing an XML document that’s returned as the response. Since most developers
are familiar with HTTP and XML, the learning curve for REST is short and shallow.

The one downside to REST is that beyond these two conventions, there’s not much in
terms of standards as to how data should be passed in or returned. Every site is free to
use what it feels is the best. While this is not a problem for small services, if not designed
properly, this can cause complexity when a service grows.

Still, REST is a very popular format and its simplicity is a key factor in its success.
Recipe 14.1 covers making REST requests.

The other popular web services format is SOAP, which is a W3C standard for passing
messages across the network and calling functions on remote computers. SOAP pro-
vides developers with many options; however, this flexibility comes at a price. SOAP
is quite complex, and the full specification is large and growing.

Ideally, SOAP should make things simpler. Communication between services is han-
dled by a client and server that automatically serialize data types from one language to
another. Therefore, you can pass and retrieve complex data structures back and forth
without needing to worry about interoperability woes.

437

Download at Boykma.Com

When this occurs, things are absolutely great and everything just works. However,
because of the abstraction layer that SOAP places over communication, it can be dif-
ficult to debug when you run into a problem. Since you’re not familiar with the
underlying XML, it can take a while to get up to speed just to diagnose the issue.

PHP 5 bundles a SOAP extension, ext/soap. Right now, this extension implements
most, but not all, of SOAP 1.2. Overall, this implementation is as good or better than
other PHP SOAP toolkits, but it’s possible that you’ll find an area or two that are deal
breakers.

It’s enabled by default as of PHP 5.1, but you can enable SOAP support on earlier
versions by adding --enable-soap to your PHP configure line. The only external library
you need is libxml2, which is the same requirement for any of PHP 5’s XML extensions.

SOAP is the subject of Recipes 14.2 to 14.11.

Complete details on SOAP are available on the W3 web site at http://www.w3.org/2000/
xp/Group/ and in Programming Web Services with SOAP by James Snell, Doug Tidwell,
and Pavel Kulchenko (O’Reilly).

Beyond REST and SOAP, there’s one other web services format that’s relatively com-
mon, XML-RPC. XML-RPC is similar in spirit to SOAP, as it also converts native data
into a language-netural format that you can pass into functions and receive replies.
However, XML-RPC is far less complex than SOAP.

This is a great benefit when everything you need to do fits within the feature set of
XML-RPC, but will cause issues when you try to break out of the box. The XML-RPC
specification is not being actively worked on, so if you can’t make it work, you’ll need
to switch to using REST or SOAP instead.

XML-RPC is the subject of Recipes 14.12 and 14.13.

14.1 Calling a REST Method

Problem
You want to make a REST request.

Solution
Use file_get_contents(  ):

<?php
$base = 'http://music.example.org/search.php';
$params = array('composer' => 'beethoven',
 'instrument' => 'cello');

$url = $base . '?' . http_build_query($params);

$response = file_get_contents($url);
?>

438 | Chapter 14: Consuming Web Services

Download at Boykma.Com

Or use cURL:
<?php
$base = 'http://music.example.org/search.php';
$params = array('composer' => 'beethoven',
 'instrument' => 'cello');

$url = $base . '?' . http_build_query($params);

$c = curl_init($url);
curl_setopt($c, CURLOPT_RETURNTRANSFER, true);
$response = curl_exec($c);
curl_close($c);
?>

Discussion
REST is a style of web services in which you make requests using HTTP methods such
as get and post, and the method type tells the server what action it should take. For
example, get tells the server you want to retrieve existing data, whereas post means you
want to update existing data. The server then replies with the results in an XML docu-
ment that you can process.

The brilliance of REST is in its simplicity and use of existing standards. PHP’s been
letting you make HTTP requests and process XML documents for years, so everything
you need to make and process REST requests is old hat.

There are many ways to execute HTTP requests in PHP, including
file_get_contents(  ), the cURL extension, and PEAR packages. The ins and outs of
these options are covered in the beginning of Chapter 13.

Once you’ve retrieved the XML document, use any of PHP’s XML extensions to process
it. Given the nature of REST documents, and that you’re usually familiar with the
schema of the response, the SimpleXML extension is often the best choice. It’s covered
in Recipe 12.3. However, there are times when you may want to use other extensions,
such as DOM, XMLReader , or even XSLT. These are covered throughout Chap-
ter 12.

See Also
Chapter 13 goes into detail on retrieving remote URLs; Recipe 15.1 for more on serving
REST requests.

14.2 Calling a SOAP Method with WSDL

Problem
You want to send a SOAP request. Creating a SOAP client allows you to gather in-
formation from SOAP servers, regardless of their operating system and middleware
software.

14.2 Calling a SOAP Method with WSDL | 439

Download at Boykma.Com

Solution
Use the ext/soap extension. Here’s client code that finds current stock quotes:

<?php
$wsdl_url =
 'http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl';

$client = new SOAPClient($wsdl_url);

$quote = $client->getQuote('EBAY'); // eBay, Inc.
print $quote;
?>
31.49

Discussion
There are a handful of SOAP implementations for PHP. If you’re using PHP 5, it’s highly
recommended to use the bundled ext/soap extension. While this extension is not com-
patible with PHP 4, it has many advantages over PEAR::SOAP and NuSOAP, the two
main PHP SOAP extensions that are PHP 4 compatible. In particular, ext/soap is:

• Written in C, not PHP, so it’s fast and efficient.

• Bundled with PHP as of PHP 5, and enabled by default as of PHP 5.1.

• Compatible with many parts of the SOAP specifications.

• Written to take advantage of PHP 5 features, including exceptions.

To make a SOAP request, you instantiate a new SOAPClient object and pass the con-
structor the location of the web services’ WSDL:

$client = new SOAPClient('http://api.example.com/service.wsdl');

WSDL (Web Services Description Language) is an XML vocabulary that lets the im-
plementor create a file that defines what methods and arguments his web service
supports. This file is then placed on the Web for others to read.

WSDL is not particularly friendly for humans, but it’s great for machines. When you
point the SOAP extension at a WSDL file, the extension automatically creates an object
for the web service, and you can manipulate this object as you would a PHP class.

The object even knows what parameters each method takes and each parameter’s type.
This is important because, unlike PHP, SOAP is strictly typed. You cannot provide a
string 1 when SOAP wants an integer 1. WSDL allows the SOAP extension to coerce
PHP variables into the appropriate types without any action on your part.

Therefore, whenever possible, you want to know the location of the server’s WSDL
file. This makes it much easier to make SOAP requests. Example 14-1 shows how to
make a query using WSDL.

440 | Chapter 14: Consuming Web Services

Download at Boykma.Com

Example 14-1. SOAP client using WSDL
<?php
$wsdl_url =
 'http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl';

$client = new SOAPClient($wsdl_url);

$quote = $client->getQuote('EBAY'); // eBay, Inc.
print $quote;
?>
31.49

From XMethods’s web site, you know that the WSDL file for this service is at http://
services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl.

You now instantiate a new SOAPClient object by passing $wsdl_url, the location of the
WSDL file, to the constructor. This returns a client object, $client, that you use to
make SOAP requests.

The constructor creates a SOAP client, but you still need to make the actual query itself,
which is called getQuote(  ). It takes one argument, the stock ticker. Pass your stock
ticker, in this case EBAY, directly to the method.

When you call $client->getQuote(10001), the SOAP extension converts the PHP string
EBAY to a SOAP message written in XML and sends an HTTP request to the XMethods
server. After XMethods receives and processes your query, it replies with a SOAP mes-
sage of its own. The SOAP extension listens for this response and parses the XML into
a PHP object, which is then returned by the method and stored in $quote.

The $quote variable now holds the current stock price of the EBAY stock. Right now it’s
trading at $31.49 a share.

See Also
Recipe 14.3 for making SOAP requests without WSDL; Recipe 15.2 for more on SOAP
servers; the ext/soap documentation at http://www.php.net/soap; Programming Web
Services with SOAP by Doug Tidwell, James Snell, and Pavel Kulchenko (O’Reilly).

14.3 Calling a SOAP Method Without WSDL

Problem
You want to send a SOAP request to a service that does not expose a WSDL file, so
you must specify the information usually provided there yourself.

Solution
Pass a null value for the location of the WSDL, and the main service settings, such as
location and namespace URI, in the options array:

14.3 Calling a SOAP Method Without WSDL | 441

Download at Boykma.Com

<?php
$opts = array('location' => 'http://64.124.140.30:9090/soap',
 'uri' => 'urn:xmethods-delayed-quotes',
$client = new SOAPClient(null, $opts);
?>

Make requests using the __soapCall(  ) method, passing the method name as the first
parameter, and an array of method arguments as the second:

$quote = $client->__soapCall('getQuote', array('EBAY')); // eBay, Inc.

print $quote;
31.49

Discussion
Since you’re not using WSDL, pass null as the first argument to SOAPClient. This tells
the SOAP extension that you’re passing the details about the web service in the second
parameter of options.

This information is stored as an array. At a minimum, you must provide two entries:
the URL where the SOAP server is located and the namespace URI that identifies the
service. For example:

<?php
$opts = array('location' => 'http://64.124.140.30:9090/soap',
 'uri' => 'urn:xmethods-delayed-quotes',
$client = new SOAPClient(null, $opts);
?>

The server’s URL is the location element; here, the server is at http://
64.124.140.30:9090/soap. The server’s namespace is set using the uri element. This is
urn:xmethods-delayed-quotes.

Now you have a SOAP client, but with a non-WSDL-based client, you can’t directly
invoke SOAP methods on the $client object. Instead, you reference the __soapCall(  )
method, passing the method name as your first argument and an array of parameters
as the second:

<?php
$quote = $client->__soapCall('getQuote', array('EBAY')); // eBay, Inc.

print $quote;
?>
31.49

Since the SOAP client no longer knows how many parameters to expect, you must
bundle your parameters to __soapCall(  ) inside of an array. Therefore, the stock quote
is now passed as array('EBAY') instead of 'EBAY‘.

442 | Chapter 14: Consuming Web Services

Download at Boykma.Com

This code is more complex than the WSDL solution, and it even takes advantage of
some default SOAP settings assumed by SOAPClient. This interface for calling SOAP
methods is also less elegant.

However, this is the only way to pass or read additional information, such as SOAP
headers.

See Also
Recipe 14.2 for making SOAP requests with WSDL; Recipe 15.2 for more on SOAP
servers; the ext/soap documentation at http://www.php.net/soap; Programming Web
Services with SOAP, by Doug Tidwell, James Snell, and Pavel Kulchenko (O’Reilly).

14.4 Debugging SOAP Requests

Problem
Your SOAP request is not working as expected, but you’re not sure why.

Solution
Enable the trace option when you create the SOAPClient:

<?php
$opts = array('trace' => true);
$client = new SOAPClient($wsdl_url, $opts);
?>

Now you can access data sent across the wire:

<?php
$response = $client->getQuote('EBAY');

// going...
print $client->__getRequestHeaders() . "\n";
print $client->__getRequest() . "\n";

// and coming...
print $client->__getReponseHeaders() . "\n";
print $client->__getRequest() . "\n";
?>

Discussion
SOAP requests can be difficult to debug. When all else fails, it can be necessary to
visually inspect the actual HTTP and XML data being sent back and across forth the
wire.

This can be tricky when the data is secured over SSL or you don’t control the server.
In these cases, it’s easiest to ask the ext/soap extension to give you a complete ac-
counting of everything sent and received.

14.4 Debugging SOAP Requests | 443

Download at Boykma.Com

First, you must enable the trace option. This tells the extension to store this information
for later retrieval:

<?php
$opts = array('trace' => true);
$client = new SOAPClient($wsdl_url, $opts);
?>

Now whenever you make a request, the most recent request data is available through
four functions: two handle the outgoing request from PHP, and another handling the
incoming response from the server:

<?php
$response = $client->getQuote('EBAY');

// going...
print $client->__getRequestHeaders() . "\n";
print $client->__getRequest() . "\n";

// and coming...
print $client->__getReponseHeaders() . "\n";
print $client->__getRequest() . "\n";
?>

Now you can inspect the data to see what appears to be the problem. Usually, the SOAP
envelope contains the wrong XML. It’s well-formed; it’s just not laid out how the SOAP
server expects it.

At this level, it can be very helpful to have a few sample SOAP requests and replies that
you know are valid. You can then attempt to reconstruct those requests using ext/soap
one section at a time.

Debugging at this level can require an understanding of HTTP, XML, XML
namespaces, XML Schema, SOAP, and WSDL. In particular, you may end up with two
XML documents that are semantically equivalent, but appear different due to XML
namespaces, prefixes, and default namespaces. If you are absolutely positive two docu-
ments are similar, but one is not working, you may want to use cURL to explicitly
post the two different XML files to the server.

14.5 Using Complex SOAP Types

Problem
You need to pass data structures more complicated than strings, integers, and other
simple types. Instead, you need to pass arrays and objects.

Solution
Pass the data as an associative array:

$args = array('ticker' => array('EBAY', 'YHOO', 'GOOG'));

444 | Chapter 14: Consuming Web Services

Download at Boykma.Com

$client->getQuotes($args);

Discussion
It can be tricky figuring out how to map PHP data structures into the XML that’s
described in the WSDL—especially since the premise of SOAP is that general consum-
ers of a SOAP service shouldn’t be worrying about the underlying XML.

The ext/soap extension does a pretty good job of doing the right thing of properly
converting data. However, sometimes you need to get down and dirty and read the
WSDL yourself, or see if the service publishes a few SOAP examples that reveal the
XML that it’s expecting.

As a rule of thumb, when you’re expected to pass multiple elements of the same name
at the same level, such as:

<ticker>EBAY</ticker>
<ticker>YHOO</ticker>
<ticker>GOOG</ticker>

You should define an array containing a key of ticker and a value of another array.
This array should contain the data that needs to get wrapped around <ticker> tags.

See Also
Recipe 14.6 for setting SOAP types.

14.6 Setting SOAP Types

Problem
You need to explicitly set an XML Schema type, but there’s no way to tell ext/soap how
to set that value through a normal PHP data structure.

Solution
Create a SOAPVar and pass the type and namespace in the constructor:

$ns = 'https://adwords.google.com/api/adwords/v2';
$job = new SOAPVar($data, SOAP_ENC_OBJECT, 'CustomReportJob', $ns);
$response = $client->scheduleReportJob(array('job' => $job));

This creates XML that looks like:

<ns1:job xsi:type="ns1:CustomReportJob">
...
</ns1:job>

Where the ns1 namespace prefix is https://adwords.google.com/api/adwords/v2.

14.6 Setting SOAP Types | 445

Download at Boykma.Com

Discussion
The SOAP extension exposes a number of classes to help you create the data that you
pass into SOAP clients. These are rarely necessary when you’re using a WSDL file.
However, sometimes it’s unavoidable.

One such case is when you must set an XML Schema type attribute. SOAP uses XML
Schema as its behind-the-scenes way of encoding data using XML. One feature of XML
Schema is the ability to define the type of structure. Normally, this is one of the built-
in XML Schema types, such as a string, integer, or object. However, you can extend
XML Schema to create custom types.

When a service requires a custom type, you must set it using the SOAPVar class. This
class takes six parameters. The first four are most important here. They are the data to
be sent, the general class of XML Schema type, the name of the value assigned to the
xsi:type attribute, and the namespace that value lives in.

For example, here’s a piece of code that creates a CustomReportJob for the Google Ad-
Words reporting web services:

$ns = 'https://adwords.google.com/api/adwords/v2';
$job = new SOAPVar($data, SOAP_ENC_OBJECT, 'CustomReportJob', $ns);
$response = $client->scheduleReportJob(array('job' => $job));

You can ignore the specific details as to what information is actually being passed into
the service (it’s stored in $data), or that it’s an object (so you pass in
SOAP_ENC_OBJECT as the second parameter). They’re important, but not relevant to the
XML Schema type.

For that, you must look at the third and fourth parameters to the SOAPVar constructor:
'CustomReportJob' and $ns.

In this example, you’re creating a job of type CustomReportJob that lives under the XML
namespace https://adwords.google.com/api/adwords/v2, which is the value of $ns.

Now when ext/soap serializes the data into XML, it adds the necessary attribute:

<ns1:job xsi:type="ns1:CustomReportJob">
...
</ns1:job>

Depending on the number of XML namespaces your code is using, you may or may
not get the same prefix of ns1. The specific prefix string doesn’t matter, what does matter
is that your prefix is mapped to https://adwords.google.com/api/adwords/v2 in the
SOAP-Envelope element, as it is here:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns1="https://adwords.google.com/api/adwords/v2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

446 | Chapter 14: Consuming Web Services

Download at Boykma.Com

See Also
Recipe 14.5 for using complex SOAP types.

14.7 Using SOAP Headers

Problem
You need to create a SOAP header and pass it along with your request. This is often a
place where a service requires authentication credentials or other information not di-
rectly related to the request.

Solution
Use the SOAPHeader class to create the header.

To use the same headers for all requests to a service, call __setSoapHeaders(  ):
$client = new SOAPClient('http://www.example.com/service.wsdl');

$username = new SOAPHeader('urn:service-namespace', 'Username', 'elvis');
$password = new SOAPHeader('urn:service-namespace', 'Password', 'the-king');

$headers = array($username, $password);

$client->__setSoapHeaders($headers);

You can also pass in headers on a per-call basis as the fourth argument to
__soapCall(  ) :

$client = new SOAPClient('http://www.example.com/service.wsdl');

$username = new SOAPHeader('urn:service-namespace', 'Username', 'elvis');
$password = new SOAPHeader('urn:service-namespace', 'Password', 'the-king');

$headers = array($username, $password);

$client->__soapCall($function, $args, $options, $headers);

This creates XML that looks like this:
<SOAP-ENV:Header>
 <ns2:Username>elvis</ns2:Username>
 <ns2:Password>the-king</ns2:Password>
</SOAP-ENV:Header>

The namespace prefix may vary, but it will be mapped to the urn:service-namespace
namespace URI.

Discussion
The SOAP envelope is divided into two parts, a SOAP header and a SOAP body. This
division is similar to how HTTP has a header and a body. Most of the time you only
need to access the body, but sometimes you also need to set headers, too.

14.7 Using SOAP Headers | 447

Download at Boykma.Com

The ext/soap extension does an excellent job making it simple to pass in data that’s
part of the SOAP body. However, while it supports everything you need to create SOAP
headers, it doesn’t make it easy.

Depending on the design of the SOAP headers, it can be of varying difficulty to create
what you need. When all you need is data wrapped around elements, create SOAP
Header objects and package them in an array:

$client = new SOAPClient('http://www.example.com/service.wsdl');

$username = new SOAPHeader('urn:service-namespace', 'Username', 'elivs');
$password = new SOAPHeader('urn:service-namespace', 'Password', 'the-king');

$headers = array($username, $password);

These headers can then be added on all requests for a particular SOAP client instance
or on a per-call basis:

$client = new SOAPClient('http://www.example.com/service.wsdl');

// Use __setSoapHeaders() to add header to *all* requests
$client->__setSoapHeaders($headers);

// Or do it on a per-call basis
$client->__soapCall($function, $args, $options, $headers);

This adds the following XML to your request:
<SOAP-ENV:Header>
 <ns2:Username>elivs</ns2:Username>
 <ns2:Password>the-king</ns2:Password>
</SOAP-ENV:Header>

In your case, the namespace prefix may be something other than ns2, but it will be
mapped to the urn:service-namespace namespace URI.

See Also
Recipe 15.6 for processing SOAP headers and Recipe 15.7 for sending SOAP headers
from a SOAP server.

14.8 Using Authentication with SOAP

Problem
You need to authenticate your SOAP requests using HTTP Basic Authentication.

Solution
Pass a username and password in via the options array by setting the login and pass
word keys:

$options = array('login' => 'elvis',
 'password' => 'the-king');

448 | Chapter 14: Consuming Web Services

Download at Boykma.Com

$client = new SOAPClient('http://www.example.com/service.wsdl',
 $options);

Discussion
There are a number of ways to handle authentication within SOAP requests. A few
popular ways are HTTP Basic Authentication, placing data inside the SOAP header,
and using the WS-* specifications, including WS-Security.

To make ext/soap add HTTP Basic Authentication credentials to every request, pass
your username and password in as options when you create the SOAP client:

<?php
$options = array('login' => 'elvis',
 'password' => 'the-king');

$client = new SOAPClient('http://www.example.com/service.wsdl',
 $options);
?>

Now every request will have an additional HTTP header of Authorization.

If your service requires data set in the SOAP request header, see Recipe 14.7 for details
on handling that.

As of this writing, you cannot use any XML Security specifications with ext/soap.
However, Rob Richards is working on it. For more information, check out http://
www.cdatazone.org/index.php?/archives/9-WSSE-and-extsoap.html.

See Also
Recipe 15.8 for handling SOAP authentication in a SOAP server.

14.9 Redefining an Endpoint

Problem
The WSDL file defines an endpoint for the service, but you need to change it to another
URL. This happens when the service has testing and production sites, or requires you
to pass additional query arguments as part of the URL.

Solution
If you want the same endpoint for all requests, specify a new location to the constructor
in the options array:

<?php
$options = array('location' => 'http://www.example.com/testing-endpoint');

$client = new SOAPClient('http://www.example.com/service.wsdl',

14.9 Redefining an Endpoint | 449

Download at Boykma.Com

 $options);
?>

If it changes from request to request, use the __soapCall(  ) method to pass a request-
specific location:

<?php
$client = new SOAPClient('http://www.example.com/service.wsdl');

$method = 'getTemp';
$args = array('94114');
$options = array('location' => 'http://www.example.com/endpoint?method=getTemp');

$request = $client->__soapCall($method, $args, $options);
?>

Discussion
In most cases, you never need to modify the endpoint specified in the WSDL. Most
services have a singular fixed endpoint, so they put it in their WSDL and you’re done.

However, some sites require you to modify the endpoint location depending on a num-
ber of conditions. For example, they have both testing and production sites. This is not
an issue with read-only services, but when you can both read and write to a site, it’s
important to have a sandbox environment where you can test your code.

For simplicity, the site may only publish a single WSDL file that targets the production
server by default, and require you to switch it to point at the testing server during
development. In these cases, it’s easiest to specify the new location as a one-time con-
figuration option in the SOAPClient constructor:

<?php
$options = array('location' => 'http://www.example.com/testing-endpoint');

$client = new SOAPClient('http://www.example.com/service.wsdl',
 $options);
?>

The SOAPClient object takes an array of options as its second parameter. When you set
the location element, it will override what’s in the WSDL and use that URL as the
location for all requests.

This method works best when you need to hit against the same URL for all requests.
However, sometimes the endpoint can vary from request to request. For example, you
may need to put the method name or other information within the URL itself.

Placing data in the URL allows the service to more efficiently route the request because
it doesn’t need to parse the XML document before dispatching it. For example, a large
web service could have one pool of machines to handle searches and another pool of
machines to handle updates. It can process requests faster if it can hand off the SOAP
request directly to the proper pool simply by examining the URL.

450 | Chapter 14: Consuming Web Services

Download at Boykma.Com

This requires you to modify each request on a one-off basis. Therefore, you cannot use
SOAPClient’s method overriding abstraction. Instead, you need to use the
__soapCall(  ) method directly, passing the method name, arguments, and options:

<?php
$client = new SOAPClient('http://www.example.com/service.wsdl');

$method = 'getTemp';
$args = array('94114');
$options = array('location' => 'http://www.example.com/endpoint?method=getTemp');

$request = $client->__soapCall($method, $args, $options);
?>

This code is equivalent to:

<?php
$client = new SOAPClient('http://www.example.com/service.wsdl');

$request = $client->getTemp('94114');
?>

However, it also changes the endpoint URL to point at http://www.example.com/end
point?method=getTemp instead of the WSDL default.

To preserve the simple calling convention, subclass SOAPClient for your service and
provide a custom __call(  ) method:

<?php
class TemperatureService extends SOAPClient {
 public function __call($method, $args) {

 // Modify endpoint to include method name
 // Assumes consistent naming convention
 $location = "http://www.example.com/endpoint?method={$method}";
 $options = array('location' => $location);

 return $this->__soapCall($function, $args, array('location' => $location));
 }
}

$client = new TemperatureService('http://www.example.com/service.wsdl');

$request = $client->getTemp('94114');
?>

14.10 Catching SOAP Faults

Problem
You want to handle a SOAP server returning an error in the form of a SOAP fault. This
allows you to fail gracefully when there’s a problem with your request or the service.

14.10 Catching SOAP Faults | 451

Download at Boykma.Com

Solution
Wrap your code inside a try/catch block and check for a SOAPFault:

<?php
try {
 $wsdl_url =
 'http://www.example.com/TemperatureService.wsdl';

 $client = new SOAPClient($wsdl_url);

 $temp = $client->getTemp('New York'); // This should be a Zip Code
 print $temp;
} catch (SOAPFault $exception) {
 print $exception;
}
?>

Or configure your SOAPClient not to use exceptions, and check the return value of
is_soap_fault(  ):

<?php
$wsdl_url =
 'http://www.example.com/TemperatureService.wsdl';

// Disable exceptions
$opts = array('exceptions' => 0);
$client = new SOAPClient($wsdl_url, $opts);

$temp = $client->getTemp('New York'); // This should be a zip code
if (is_soap_fault($temp)) {
 print $exception;
} else {
 print $temp;
}
?>

Discussion
When a SOAP server generates an error, it returns a SOAP fault. This can be a mistake
on your part, such as calling a method that doesn’t exist or passing the incorrect number
(or type) of parameters, or it can be a server error. For instance, the service lacks tem-
perature information for a particular zip code, but for reasons external to your SOAP
request.

The SOAP extension transforms SOAP faults into PHP exceptions, as shown in Exam-
ple 14-2.

Example 14-2. Detecting SOAP faults with exceptions
<?php
try {
 $wsdl_url =
 'http://www.example.com/TemperatureService.wsdl';

452 | Chapter 14: Consuming Web Services

Download at Boykma.Com

 $client = new SOAPClient($wsdl_url);

 $temp = $client->getTemp('New York'); // This should be a zip code
 print $temp;
} catch (SOAPFault $exception) {
 print $exception;
}
?>
SOAPFault exception: [SOAP-ENV:Server] Zip Code New York is unknown.
 in /www/www.example.com/soap.php:8
 Stack trace:
 #0 /www/www.example.com/soap.php(8): SOAPClient->getTemp('getTemp', Array)
 #1 {main}

Since the server requires a zip code but Example 14-2 passed New York, the server re-
turned a SOAP fault. Printing the exception gives you, among other debugging infor-
mation, the error Zip Code New York is unknown.

If you dislike exceptions, make SOAP handle faults via a return code by setting the
exceptions configuration setting to 0. This is done in Example 14-3.

Example 14-3. Detecting SOAP faults without exceptions

<?php
$wsdl_url =
 'http://www.example.com/TemperatureService.wsdl';

// Disable exceptions
$opts = array('exceptions' => 0);
$client = new SOAPClient($wsdl_url, $opts);

$temp = $client->>getTemp('New York'); // This should be a Zip Code
if (is_soap_fault($temp)) {
 print $exception;
} else {
 print $temp;
}
?>
SOAPFault exception: [SOAP-ENV:Server] Zip Code New York is unknown.
 in /www/www.example.com/soap.php:8
 #0 {main}

To alter the default settings for a SOAPClient object, pass in an array as the second
argument to the constructor. This is the same array that you use to specify information
about non-WSDL servers.

When exceptions are disabled, $temp contains either the valid response or a SOAP fault.
Check is_soap_fault(  ) to discover if there’s an error.

14.10 Catching SOAP Faults | 453

Download at Boykma.Com

See Also
Recipe 15.5 for throwing SOAP faults from a SOAP server.

14.11 Mapping XML Schema Data Types to PHP Classes

Problem
You want to automatically convert a SOAP object to a PHP object.

Solution
Define a PHP class and tell the SOAPClient to map a SOAP object to it using the class
map option:

class PHPStockType {}; // stub class

$opts = array('classmap' => array('StockType' => 'PHPStockType'));
$client = new SOAPClient($wsdl_url, $opts);

Now any StockType structure will be converted to a PHPStockType.

Discussion
Class mapping can be very helpful in making SOAP objects easier to use. In particular,
look to see where you can define a __toString(  ) method to control how an object
displays. It can also be useful to implement the IteratorAggregate and the
ArrayAccess interfaces.

For example, a stock quote object may return a large amount of data about a stock: the
current price, the 52-week high and low prices, the ticket symbol, etc. However, the
key piece of data is the current price, so you may want to implement code such as this:

<?php
class PHPStockType {
 public function __toString() {
 return (string) $this->currentPrice;
 }
}
?>

All the other data is still available, but when you print out the object, you get the most
important value.

454 | Chapter 14: Consuming Web Services

Download at Boykma.Com

14.12 Calling an XML-RPC Method

Problem
You want to be an XML-RPC client and make requests of a server. XML-RPC lets PHP
make function calls to web servers, even if they don’t use PHP. The retrieved data is
then automatically converted to PHP variables for use in your application.

Solution
Use PHP’s built-in XML-RPC extension with some helper functions. PHP bundles
the xmlrpc-epi extension. Unfortunately, xmlrpc-epi does not have any native C func-
tions for taking an XML-RPC-formatted string and making a request. However, the
folks behind xmlrpc-epi have a series of helper functions written in PHP available for
download at http://xmlrpc-epi.sourceforge.net/. The only file used here is the one
named utils.php, which is located in sample/utils. To install it, just copy that file to a
location where PHP can find it in its include_path.

Here’s client code that calls a function on an XML-RPC server that returns state names:

<?php
// this is the default file name from the package
// kept here to avoid confusion over the file name
require 'utils.php';

// server settings
$host = 'betty.userland.com';
$port = 80;
$uri = '/RPC2';

// request settings
// pass in a number from 1-50; get the nth state in alphabetical order
// 1 is Alabama, 50 is Wyoming
$method = 'examples.getStateName';
$args = array(32); // data to be passed

// make associative array out of these variables
$request = compact('host', 'port', 'uri', 'method', 'args');

// this function makes the XML-RPC request
$result = xu_rpc_http_concise($request);

print "I love $result!\n";
?>

Discussion
XML-RPC, a format created by Userland Software, allows you to make a request to a
web server using HTTP. The request itself is a specially formatted XML document. As
a client, you build up an XML request to send that fits with the XML-RPC specification.
You then send it to the server, and the server replies with an XML document. You then

14.12 Calling an XML-RPC Method | 455

Download at Boykma.Com

parse the XML to find the results. In the Solution, the XML-RPC server returns a state
name, so the code prints:

I love New York!

Unlike earlier implementations of XML-RPC, which were coded in PHP, the current
bundled extension is written in C, so there is a significant speed increase in processing
time. To enable this extension while configuring PHP, add --with-xmlrpc.

The server settings tell PHP which web site to contact to make the request. The $host
is the hostname of the machine; $port is the port the web server is running on, which
is usually port 80; and $uri is the pathname to the XML-RPC server you wish to contact.
This request is equivalent to http://betty.userland.com:80/RPC2. If no port is given, the
function defaults to port 80, and the default URI is the web server root, /.

The request settings are the function to call and the data to pass to the function. The
method examples.getStateName takes an integer from 1 to 50 and returns a string with
the name of the U.S. state, in alphabetical order. In XML-RPC, method names can have
periods, while in PHP, they cannot. If they could, the PHP equivalent to passing 32 as
the argument to the XML-RPC call to examples.getStateName is calling a function named
examples.getStateName(  ):

examples.getStateName(32);

In XML-RPC, it looks like this:

<?xml version='1.0' encoding="iso-8859-1" ?>
<methodCall>
<methodName>examples.getStateName</methodName>
<params><param><value>
 <int>32</int>
 </value>
 </param>
</params>
</methodCall>

The server settings and request information go into a single associative array that is
passed to xu_rpc_http_concise(  ). As a shortcut, call compact(  ), which is identical to:

$request = array('host' => $host,
 'port' => $port,
 'uri' => $uri,
 'method' => $method,
 'args' => $args);

The xu_rpc_http_concise(  ) function makes the XML-RPC call and returns the results.
Since the return value is a string, you can print $results directly. If the XML-RPC call
returns multiple values, xu_rpc_http_concise(  ) returns an array.

There are 10 different parameters that can be passed in the array to
xu_rpc_http_concise(  ), but the only one that’s required is host. The parameters are
shown in Table 14-1.

456 | Chapter 14: Consuming Web Services

Download at Boykma.Com

Table 14-1. Parameters for xu_rpc_http_concise(  )

Name Description

host Server hostname

uri Server URI (default /)

port Server port (default 80)

method Name of method to call

args Arguments to pass to method

debug Debug level (0 to 2: 0 is none, 2 is lots)

timeout Number of seconds before timing out the request; a value of 0 means never timeout

user Username for Basic HTTP Authentication, if necessary

pass Password for Basic HTTP Authentication, if necessary

secure Use SSL for encrypted transmissions; requires PHP to be built with SSL support (pass any true value)

See Also
Recipe 15.9 for more on XML-RPC servers; PHP helper functions for use with the
xmlrpc-epi extension at http://xmlrpc-epi.sourceforge.net/; Programming Web Services
with XML-RPC by Simon St.Laurent, Joe Johnston, and Edd Dumbill (O’Reilly);
more on XML-RPC at http://www.xml-rpc.com .

14.13 Using Authentication with XML-RPC

Problem
You need to pass a username and password along with your XML-RPC request.

Solution
Set the user and pass options and call the xu_rpc_http_concise(  ) method:

<?php
require 'utils.php';

// ... other request parameters set here
$user = 'elvis';
$pass = 'the-king';

// make associative array out of these variables
$request = compact('host', 'port', 'uri', 'method', 'args', 'user', 'pass');

// this function makes the XML-RPC request
$result = xu_rpc_http_concise($request);
?>

14.13 Using Authentication with XML-RPC | 457

Download at Boykma.Com

Discussion
The XML-RPC library does not support HTTP Basic Authentication out of the box.
However, the utils.php file mentioned in Recipe 14.12, will create the correct HTTP
header for you when you pass in user and pass elements to xu_rpc_http_concise(  ). For
instance:

<?php
require 'utils.php';

// ... other request parameters set here
$user = 'elvis';
$pass = 'the-king';

// make associative array out of these variables
$request = compact('host', 'port', 'uri', 'method', 'args', 'user', 'pass');

// this function makes the XML-RPC request
$result = xu_rpc_http_concise($request);
?>

In this code, the user is elvis and the pass is the-king. These variables are turned into
an associative array, $request, along with the other necessary request data. (The other
data is omitted for clarity.)

When you pass this information to xu_rpc_http_concise(  ), the helper function will
base64-encode the data and construct the header for you.

Assuming you have the correct credentials, the rest of the transaction should operate
exactly the same as nonauthenticated requests.

458 | Chapter 14: Consuming Web Services

Download at Boykma.Com

CHAPTER 15

Building Web Services

15.0 Introduction
This chapter covers building web services. If you’re unfamiliar with the fundamental
concepts of web services, including REST, SOAP, and XML-RPC, jump back a chapter
and read through Chapter 14. It provides the building blocks for the web services servers
described here.

Recipe 15.1 covers building a REST method. With a REST server, you accept an HTTP
request, process the incoming data, and reply, usually with XML.

From there, the chapter moves to SOAP. Recipes 15.2 and 15.3 show how to serve a
SOAP method with and without input arguments.

Recipe 15.4 breaks the bad news that PHP cannot automatically generate WSDL files
from PHP classes, while Recipe 15.5 shows how to throw SOAP faults.

SOAP headers are the topic of the next two recipes. First, in Recipe 15.6, you learn how
to process a SOAP header. Then, Recipe 15.7 shows how to generate a SOAP header.

The SOAP portion concludes with a discussion on how to combine authentication with
SOAP in Recipe 15.8.

The chapter concludes with a Recipe 15.9, a recipe on serving XML-RPC requests.

15.1 Serving a REST Method

Problem
You want to expose a server via REST. This allows people to make HTTP requests and
receive XML in response.

Solution
The most basic REST server is a page that accepts query arguments and returns XML:

459

Download at Boykma.Com

<?php
// data
$music_database = <<<_MUSIC_
<?xml version="1.0" encoding="utf-8" ?>
<music>
 <album id="1">
 <name>Revolver</name>
 <artist>The Beatles</artist>
 </album>
 <!-- 941 more albums here -->
 <album id="943">
 <name>Miles And Coltrane</name>
 <artist>Miles Davis</artist>
 <artist>John Coltrane</artist>
 </album>
</music>
MUSIC;

// load data
$s = simplexml_load_string($music_database);

// query data
$artist = addslashes($_GET['artist']);
$query = "/music/album[artist = '$artist']";
$albums = $s->xpath($query);

// display query results as XML
print "<?xml version=\"1.0\" encoding=\"utf-8\" ?>\n";
print "<music>\n\t";
foreach ($albums as $a) {
 print $a->asXML();
}
print "\n</music>";
?>

When this page is stored at http://api.example.org/music, an HTTP GET request to
http://api.example.org/music?artist=The+Beatles returns:

<?xml version="1.0" encoding="utf-8" ?>
<music>
 <album id="1">
 <name>Revolver</name>
 <artist>The Beatles</artist>
 </album>
</music>

Discussion
At its most basic level, serving a REST request is no different than processing an HTML
form. The key difference is that you’re replying with XML instead of HTML.

Input parameters come in as query parameters, so PHP parses them into $_GET. You
then process the values in $_GET to determine the correct query for your data, which
you use to retrieve the proper records to return.

460 | Chapter 15: Building Web Services

Download at Boykma.Com

For instance, Example 15-1 uses code that queries an XML document using XPath for
all the albums put out by the artist passed in via the artist get variable.

Example 15-1. Implementing a REST query server
<?php
// data
$music_database = <<<_MUSIC_
<?xml version="1.0" encoding="utf-8" ?>
<music>
 <album id="1">
 <name>Revolver</name>
 <artist>The Beatles</artist>
 </album>
 <!-- 941 more albums here -->
 <album id="943">
 <name>Miles And Coltrane</name>
 <artist>Miles Davis</artist>
 <artist>John Coltrane</artist>
 </album>
</music>
MUSIC;

// load data
$s = simplexml_load_string($music_database);

// query data
$artist = addslashes($_GET['artist']);
$query = "/music/album[artist = '$artist']";
$albums = $s->xpath($query);

// display query results as XML
print "<?xml version=\"1.0\" encoding=\"utf-8\" ?>\n";
print "<music>\n\t";
foreach ($albums as $a) {
 print $a->asXML();
}
print "\n</music>";
?>

For simplicity, Example 15-1 uses XML as the data source and XPath as the query
language. This eliminates the need to convert the results to XML. It’s likely that you
will query a database using SQL. That’s okay! For the purposes of REST, the particular
backend system is irrelevant.

The important part is outputting your results as XML. In this case, since the data started
as XML, you can wrap it inside a root element and echo it without any conversion:

<?php
// display query results as XML
print "<?xml version=\"1.0\" encoding=\"utf-8\" ?>\n";
print "<music>\n\t";
foreach ($albums as $a) {
 print $a->asXML();
}

15.1 Serving a REST Method | 461

Download at Boykma.Com

print "\n</music>";
?>

This gives you:

<?xml version="1.0" encoding="utf-8" ?>
<music>
 <album id="1">
 <name>Revolver</name>
 <artist>The Beatles</artist>
 </album>
</music>

Now your work is done and it’s up to the REST client to process the XML you returned,
using the XML-processing tool of its choice. In PHP 5, this is frequently SimpleXML.

It’s useful to publish a data schema for your REST responses. This lets people know
what to expect from your replies and lets them validate the data to ensure its properly
formatted. XML Schema and RelaxNG are two good choices for your schema.

REST isn’t restricted to read-only operations, such as search. REST supports reading
and writing data, including adding, updating, and deleting records.

There are two popular ways to expose this complete set of features:

1. Accepting an additional parameter on the query string.

2. Using HTTP verbs, such as post and put.

Both options are relatively straightforward to implement. This first is marginally easier,
on both you and REST clients, but limits the size of the data you can accept and has
potentially negative side effects.

When you use get for everything, it’s very easy for people to construct requests because
they can use just standard URLs with a query string. This is a familiar operation and
people can even test their code by replicating their requests through the location bars
on their web browsers.

However, many web servers place a limit on the size of the URLs they can process.
People often need to pass large amounts of data when they add a new record. There’s
no such limitation on the size of post data. Therefore, get is not a good choice for adding
or updating records.

Additionally, according to the HTTP specification, get requests are not supposed to
alter backend data. You should design your site so that when a person makes two
identical get requests, she gets two identical replies.

When you allow people to add, update, or delete records via get, you’re violating this
principle of HTTP. While this is normally not a problem, it can bite you when you’re
not looking. For instance, automated scripts, such as the Google spider, try to index
your pages. If you expose destructive operations as URLs in the href attribute inside of
HTML anchor tags, the spider may follow them, and delete information from your
database in the process.

462 | Chapter 15: Building Web Services

Download at Boykma.Com

The initial release of the Google Web Accelerator caused problems on some web sites
that used query-string-less URLs for delete operations. A discussion of the issue is at
http://radar.oreilly.com/archives/2005/05/google_web_acce_1.html.

Still, adding another get parameter is straightforward and requires minimal edits, as
shown in Example 15-2.

Example 15-2. Implementing a REST server with multiple operations

<?php
// Add more action specific logic inside switch()
switch ($_GET['action']) {
case 'search':
 $action = 'search';
 break;
case 'add':
 $action = 'add';
 break;
case 'update':
 $action = 'update';
 break;
case 'delete':
 $action = 'delete';
 break;
default:
 // invalid action
 exit();
}

// Music Database XML document moved to file
$s = simplexml_load_string('music_database.xml');

if ($action == 'search') {
 $artist = $_GET['artist'];
 $query = "/music/album[artist = '$artist']";
 $albums = $s->xpath($query);

 // Display results here
} elseif ($action == 'add') {
 $artist = $_GET['artist'];
 $album = $_GET['album'];

 // Insert new node from input data
}

// ... other actions here
?>

At the top of the page, check $_GET['action'] for a valid set of actions, and set the
$action variable when you find one.

Then, load in the data source (which is where the XML flat file is less of a good choice,
since you don’t get locking out of the box like you do with databases).

15.1 Serving a REST Method | 463

Download at Boykma.Com

Now you can perform your operation. For a search, query your data and print it out,
just like in Example 15-1.

For an addition, you should update the data store, and then reply with a brief message
saying everything succeeded. For example:

<?xml version="1.0" encoding="UTF-8"?>
<response code="200">Album added</response>

Alternatively, if there’s a failure, send an error message:

<?xml version="1.0" encoding="UTF-8"?>
<response code="400">Invalid request</response>

While most people use this method of checking an action query parameter to decide
what action to take, your other option is to use HTTP verbs, such as get, post, put,
and delete. This is more “true” REST style, and allows you to not only comfortably
process larger requests, but is also safer because it’s far less likely that your data will
be accidentally deleted.

Table 15-1 shows the general link between between SQL commands and HTTP verbs.

Table 15-1. SQL commands, HTTP verbs, and REST actions

SQL REST

CREATE POST

SELECT GET

UPDATE PUT

DELETE DELETE

To use HTTP verbs, check the value of $_SERVER['REQUEST_METHOD'] instead of
$_GET['action'], as shown in Example 15-3.

Example 15-3. Implementing a REST server that uses HTTP verbs
<?php
// Add more action specific logic inside switch()

// Convert to UPPER CASE
$request_method = strtoupper($_SERVER['REQUEST_METHOD']);

switch ($request_method) {
case 'GET':
 $action = 'search';
 break;
case 'POST':
 $action = 'add';
 break;
case 'PUT':
 $action = 'update';
 break;
case 'DELETE':
 $action = 'delete';

464 | Chapter 15: Building Web Services

 break;
default:
 // invalid action
 exit();
}

// ... other actions here
?>

Beyond switching to use the REQUEST_METHOD at the top of Example 15-3, you must also
update your code to check the HTTP verb names of get, post, put, and delete. And you
must now use $_POST instead of $_GET when the verb isn’t get.

Remember that $_SERVER['REQUEST_METHOD'] is just as secure as $_GET['action'], which
is to say not secure at all. Both of these values are easy to set, so if you’re exposing
sensitive data or allowing operations that can destroy data, make sure that the person
making the request has permission to do so.

See Also
Recipe 14.1 for how to call REST methods; Recipe 9.1 for more on checking the value
of the REQUEST_METHOD.

15.2 Serving a SOAP Method

Problem
You want to create a SOAP server to respond to SOAP requests.

Solution
Use ext/soap’s SOAPServer class. Here’s a server that returns the current date and time:

<?php
class pc_SOAP_return_time {
 public function return_time() {
 return date('Ymd\THis');
 }
}

$server = new SOAPServer(null, array('uri'=>'urn:pc_SOAP_return_time'));
$server->setClass('pc_SOAP_return_time');
$server->handle();
?>

Discussion
There are three steps to creating a SOAP server with ext/soap’s SOAPServer class:

1. Create a class to process SOAP methods.

15.2 Serving a SOAP Method | 465

2. Create an instance of a SOAP server and associate the processing class with the
instance.

3. Instruct the SOAP server to process the request and reply to the SOAP client.

The ext/soap SOAPServer class can use functions or classes to handle SOAP requests.
Example 15-4 shows the pc_SOAP_return_time class, which has one method,
return_time(  ).

Example 15-4. pc_SOAP_return_time class
<?php
class pc_SOAP_return_time {
 public function return_time() {
 return date('Ymd\THis');
 }
}
?>

Once the class is defined, instantiate a SOAPServer object. If you have a WSDL file for
your service, pass it as your first argument; otherwise, as in this case, pass null. The
second argument contains your configuration options. Here, there’s only uri, which
specifies the SOAP server namespace. In Example 15-5, it’s urn:pc_SOAP_return_time.

Example 15-5. Instantiating SOAPServer
<?php
$server = new SOAPServer(null, array('uri'=>'urn:pc_SOAP_return_time'));
?>

When ext/soap processes a SOAP request, it doesn’t pay attention to the name of your
PHP class, such as pc_SOAP_return_time. What really matters is the XML namespace,
which you’ve just set as urn:pc_SOAP_return_time.

Next, call SOAPServer::setClass(  ) with a class name. When a SOAP server receives a
request for a method, it will try to call a class method with the same name:

<?php
$server->setClass('pc_SOAP_return_time');
$server->handle();
?>

Last, tell the server to respond to the request by calling SOAPServer::handle(  ). The
SOAPServer automatically processes the $GLOBALS['HTTP_RAW_POST_DATA'] variable,
which is where PHP stores POST data.

If your SOAP request comes from another source, say an email message, you can pass
that data to SOAPServer::handle(  ):

<?php
$server->handle($soap_message_from_someplace_else);
?>

In both cases, the SOAPServer takes care of parsing the SOAP data and routing everything
accordingly.

466 | Chapter 15: Building Web Services

To call this procedure using an ext/soap client, use the code in Example 15-6.

Example 15-6. Getting the time using SOAP

<?php
$opts = array('location' => 'http://api.example.org/getTime',
 'uri' => 'urn:pc_SOAP_return_time');

$client = new SOAPClient(null, $opts);

$result = $client->__soapCall('return_time', array());

print "The local time is $result.\n";
?>

This prints:

The local time is 20060816T083225.

Instead of binding an entire class, you can also associate an individual function:

<?php
function return_time() {
 return date('Ymd\THis');
}

$server = new SOAPServer(null, array('uri'=>'urn:pc_SOAP_return_time'));
$server->addfunction('return_time');
$server->handle();
?>

You can call SOAPServer::addFunction(  ) with an array of function names to bind more
than one function:

<?php
$server = new SOAPServer(null, array('uri'=>'urn:pc_SOAP_return_time'));

// array of functions to expose
$functions = array('return_time', 'return_date');
$server->addfunction($functions);
?>

Another option is to bind all functions:

<?php
$server = new SOAPServer(null, array('uri'=>'urn:pc_SOAP_return_time'));

// add *all* functions
$server->addfunction(SOAP_FUNCTIONS_ALL);
?>

This is strongly discouraged, as it’s a giant security risk. You may accidentally include
a function with secret information, which is then exposed since you’re using SOAP_FUNC
TIONS_ALL. You should always explicitly enumerate the functions you wish to expose
on an opt-in basis.

15.2 Serving a SOAP Method | 467

If the method isn’t labeled as public or isn’t defined at all, such as set_time, the server
replies with a SOAP fault, with a faultstring of Function 'set_time' doesn't exist
and a faultcode of SOAP-ENV:Server.

To change this behavior, bind a class with a __call(  ) method:
<?php
class pc_SOAP_Process_All_Methods {

 // Handle any undefined methods here
 public function __call($name, $args) {
 // ...
 }
}

$server = new SOAPServer(null, array('uri'=>'urn:pc_SOAP_Process_All_Methods'));
$server->setClass('pc_SOAP_Process_All_Methods');
$server->handle();
?>

If you build PHP with the zlib extension, SOAPServer will automatically support gzipped
and compressed requests. It will uncompress the data before processing it.

See Also
Recipe 14.2 for calling a SOAP method; Recipe 15.3 for accepting arguments in a SOAP
method; Recipe 15.5 for throwing SOAP faults; documentation on ext/soap at http://
www.php.net/soap.

15.3 Accepting Arguments in a SOAP Method

Problem
You want your SOAP method to accept parameters.

Solution
Update the method prototype to include arguments:

<?php
class pc_SOAP_return_time {
 public function return_time($tz = '') {
 // set the time zone based on the input
 if ($tz) { $my_tz = date_default_timezone_set($tz); }
 // get the new timestamp
 $date = date('Ymd\THis');
 // reset the time zone to default
 if ($tz) { date_default_timezone_set(ini_get('date.timezone')); }
 // return the timestamp
 return $date;
 }
}

468 | Chapter 15: Building Web Services

$server = new SOAPServer(null,array('uri'=>'urn:pc_SOAP_return_time'));
$server->setClass('pc_SOAP_return_time');
$server->handle();
?>

Discussion
The basics of serving SOAP requests are covered in Recipe 15.2. This recipe extends
that example to demonstrate how to accept method arguments.

Read in parameters by altering the method prototype to include parameter names. Then
modify the client request to include data for the additional arguments. Example 15-7
modifies the SOAP procedure to accept an optional time zone argument.

Example 15-7. Processing SOAP methods with parameters

<?php
class pc_SOAP_return_time {
 public function return_time($tz = '') {
 // set the time zone based on the input
 if ($tz) { $my_tz = date_default_timezone_set($tz); }
 // get the new timestamp
 $date = date('Ymd\THis');
 // reset the time zone to default
 if ($tz) { date_default_timezone_set(ini_get('date.timezone')); }
 // return the timestamp
 return $date;
 }
}

$server = new SOAPServer(null,array('uri'=>'urn:pc_SOAP_return_time'));
$server->setClass('pc_SOAP_return_time');
$server->handle();
?>

The SOAP client can now pass in a tz option. Here it’s Europe/Oslo:

<?php
$opts = array('location' => 'http://api.example.org/getTime',
 'uri' => 'urn:pc_SOAP_return_time');

$client = new SOAPClient(null, $opts);

$result = $client->__soapCall('return_time', array('tz' => 'Europe/Oslo'));

print "The local time is $result.\n";
?>

With the new setting, the server returns a time nine hours ahead of the previous one:

The local time is 20060816T173225.

You can pass strings, numbers, arrays, and objects to a SOAP method. The ext/soap
extension converts them from XML to native PHP data types.

15.3 Accepting Arguments in a SOAP Method | 469

See Also
Recipe 15.2 for processing SOAP requests without parameters.

15.4 Generating WSDL Automatically

Problem
You want to expose a set of methods via a SOAP web service. You want to automatically
generate a WSDL file that describes this service.

Solution
The ext/soap extension does not support WSDL generation. However, there are a few
other PHP scripts that you can use.

Discussion
Given the nature of SOAP, it’s vital to provide clients with a WSDL file they can use to
configure themselves for your server. Unfortunately, ext/soap does not support WSDL
generation.

Therefore, you must either generate WSDL by hand from scratch, modify an existing
document that supports a similar set of operations, or use an unofficial script, such as:

WSDL_Gen, by George Schlossnagle
http://www.schlossnagle.org/~george/blog/index.php?/archives/234-WSDLGenera
tion.html

wsdl-writer, by Katy Coe based on code by David Griffin
http://www.djkaty.com/drupal/php-wsdl

Web service helper, by David Kingma
http://jool.nl/new/

None of these scripts supports the entire SOAP and WSDL specifications, and each
one uses a slightly different syntax to accomplish its goal. You should investigate all of
them to see if they do what you need and fit your programming styles.

See Also
The WSDL specification at http://www.w3.org/TR/wsdl.

15.5 Throwing SOAP Faults

Problem
You want to generate a SOAP fault, which is the mechanism SOAP uses to indicate
errors.

470 | Chapter 15: Building Web Services

Solution
Call the SOAPServer::fault(  ) method:

<?php
class pc_SOAP_return_time {
 public function return_time() {
 $date = date('Ymd\THis');
 if ($date === false) {
 $GLOBALS['server']->fault(1, 'Bad dates.');
 }
 return $date;
 }
}

$server = new SOAPServer(null,array('uri'=>'urn:pc_SOAP_return_time'));
$server->setClass('pc_SOAP_return_time');

?>

Or throw a SOAPFault:

<?php
class pc_SOAP_return_time {
 public function return_time() {
 $date = date('Ymd\THis');
 if ($date === false) {
 throw new SOAPFault(1, 'Bad dates.');
 }
 return $date;
 }
}

$server = new SOAPServer(null,array('uri'=>'urn:pc_SOAP_return_time'));
$server->setClass('pc_SOAP_return_time');

?>

You can also return a SOAPFault instead of throwing it.

Discussion
The SOAP specification has a standard way of indicating errors: SOAP faults. SOAP
faults are very similar to the OO concept of exceptions. In fact, ext/soap allows you to
treat SOAP faults, from both a SOAP server and SOAP client perspective, in a very
similar manner to how PHP handles exceptions.

While you can indicate SOAP faults in a number of ways, the easiest is to throw an
instance of the SOAPFault class, passing an error code and an error string to the con-
structor, as shown in Example 15-8.

Example 15-8. Throwing a SOAP fault
<?php
class pc_SOAP_return_time {

15.5 Throwing SOAP Faults | 471

 public function return_time() {
 $date = date('Ymd\THis');
 if ($date === false) {
 throw new SOAPFault(1, 'Bad dates.');
 }
 return $date;
 }
}

$server = new SOAPServer(null, array('uri'=>'urn:pc_SOAP_return_time'));
$server->setClass('pc_SOAP_return_time');

$server->handle();
}
?>

In Example 15-8, you throw a SOAPFault when date(  ) returns false. The error code is
1, and in a moment of Indiana Jones–inspired whimsy, the error message is Bad
dates..

These two values are mapped to the SOAP 1.1 specification’s faultcode and fault
string elements, respectively. At the time of this writing, there is not support for SOAP
1.2–style SOAP faults.

Normally, the error code is used to allow a program to process the error, while the error
message is used to let a human understand what occurred—usually through a logfile
or by printing it out.

Unlike HTTP and status codes, there is no convention for SOAP error codes. For ex-
ample, the 500 block is not reserved for server errors. You have the freedom to make
up whatever set of codes you want.

However, the SOAP extension will automatically set the HTTP status code to 500 when
you issue a SOAP fault. This is required by the SOAP specification. You cannot use an
HTTP status code other than 500.

Besides throwing a SOAPFault, you can also return one from your method, or invoke
the SOAPServer::fault(  ) method. These all generate the same SOAP fault data, so it’s
a matter of personal preference or coding situation.

Instead of using SOAPFault directly, you can also subclass it and use that class instead.
This allows you to implement an integrated logging system, for example:

<?php
class pc_My_SOAPFault extends SOAPFault {
 public function __construct($code, $string) {
 parent::__construct($code, $string);
 error_log($this);
 }
}
?>

SOAP faults are automatically generated when you do something that generates an
error, such as calling an undefined function.

472 | Chapter 15: Building Web Services

See Also
Recipe 14.10 for catching SOAP faults in a SOAP client.

15.6 Processing a SOAP Header

Problem
You want to be able to read a SOAP header passed in from a SOAP in your SOAP
server.

Solution
Bind a function or method with the same name as the SOAP header:

class pc_SOAP_return_time {
 public function set_timezone($tz) {
 date_default_timezone_set($tz);
 }

 public function return_time() {
 return date('Ymd\THis');
 }
}

When ext/soap gets a SOAP header named set_timezone, it calls the set_timezone(  )
method. Data placed inside the set_timezone element is passed as an argument.

SOAP headers are processed before the SOAP body.

Discussion
Like HTTP, SOAP lets you define both a SOAP header and a SOAP body element.
While you must define a SOAP body, SOAP headers are optional. A SOAP header
usually contains information such as authentication credentials or other data that’s
applicable to all requests you make to the service, instead of being specifically related
to that particular method you’re invoking.

When ext/soap sees a client request with a SOAP header, it will first try to invoke a
function with that name. When that function ends, it will then invoke the function
specified in the SOAP body. This allows you to take care of any pre-request work based
on SOAP header data. For example, if there are authentication credentials in the header,
you can validate the user or throw a SOAP fault if he's unauthorized.

Example 15-9 shows a version of the return_time SOAP server from Example 15-7 that
lets you modify the time zone by setting a SOAP header instead of passing it as an
optional parameter.

Example 15-9. Processing a SOAP header
<?php
class pc_SOAP_return_time {

15.6 Processing a SOAP Header | 473

 public function set_timezone($tz) {
 date_default_timezone_set($tz);
 }

 public function return_time() {
 return date('Ymd\THis');
 }
}

$server = new SOAPServer(null, array('uri'=>'urn:pc_SOAP_return_time'));
$server->setClass('pc_SOAP_return_time');

$server->handle();
?>

Example 15-9 supports two methods: set_timezone(  ) and return_time(  ). In practice,
the first method is supposed to be invoked via a SOAP header and the second from the
SOAP body, but ext/soap doesn’t really distinguish between the two in a programmatic
fashion.

However, when ext/soap sees a SOAP header, it will try to call the method with that
before processing the body. Therefore, now you can pass a SOAP header named
set_timezone to set the time zone to one other than the web server default. The header
should contain the name of the time zone as data.

Then, after setting the time zone, the SOAP server will examine the SOAP body. When
it finds the usual return_time request, it returns the date. However, the altered time
zone value will still persist, so the date is shifted accordingly.

Example 15-10 shows how you call this from PHP.

Example 15-10. Getting the time using SOAP and setting the time zone using a SOAP header

<?php
$opts = array('location' => 'http://api.example.org/getTime',
 'uri' => 'urn:pc_SOAP_return_time');

$client = new SOAPClient(null, $opts);

$set_timezone = new SOAPVar('Europe/Oslo', XSD_STRING);
$tz = new SOAPHeader('urn:pc_SOAP_return_time', 'set_timezone', $set_timezone);

$result = $client->__soapCall('return_time', array(), array(), array($tz));

print "The local time is $result.\n";
?>

After creating a SOAPClient for the service, you create the SOAPHeader. This SOAP
Header element lives in the urn:pc_SOAP_return_time XML namespace and is named
set_timezone. The ext/soap extension doesn’t actually use the XML namespace value,
(this may differ on other SOAP servers), but the header name is important, as that
controls which method the SOAPServer invokes.

474 | Chapter 15: Building Web Services

The third argument to the SOAPHeader constructor, $set_timezone, is the data contained
inside the SOAP header. In Example 15-10, it’s a SOAPVar.

The SOAPVar class is a low-level class used for creating SOAP variables, such as strings
and arrays. When you are sending data in the SOAP body, you rarely need to use this
class. However, due to limitations in ext/soap, it comes in handy when dealing with
SOAP headers.

While building parts of the SOAP request using SOAPVar is cumbersome, it does give
you complete control over what’s sent. This code creates a string with a value of Europe/
Oslo. The XSD_STRING constant is one of many XML Schema and SOAP constants reg-
istered by the ext/soap extension. See the SOAP page in the PHP manual at http://
www.php.net/soap for the complete list.

The request in Example 15-10 serializes as:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns1="urn:pc_SOAP_return_time"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <SOAP-ENV:Header>
 <ns1:set_timezone>Europe/Oslo</ns1:set_timezone>
 </SOAP-ENV:Header>

 <SOAP-ENV:Body>
 <ns1:return_time/>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

If the SOAP client specifies a header, but you lack a method to process it, ext/soap will
skip the method and move directly to the body. However, if the header’s mustUnder
stand attribute is flagged as true, then the SOAPServer will issue a SOAP fault with a
fault code of SOAP-ENV:MustUnderstand and a fault string of Header not understood.

See Also
Recipe 15.7 for generating a SOAP header; Recipe 14.7 for using a a SOAP header;
documentation on SOAPHeader at the following address: http://www.php.net/manual/
function.soap-soapheader-construct.php.

15.7 Generating a SOAP Header

Problem
You want to emit a SOAP header from your SOAP server.

15.7 Generating a SOAP Header | 475

Solution
Call the addSoapHeader(  ) method:

<?php
class pc_SOAP_return_time {
 public function return_time() {
 $tz = date_default_timezone_get();
 $header = new SoapHeader('urn:pc_SOAP_return_time', 'get_timezone', $tz)
 $GLOBALS['server']->addSoapHeader($header);

 return date('Ymd\THis');
 }
}

$server = new SOAPServer(null, array('uri'=>'urn:pc_SOAP_return_time'));
$server->setClass('pc_SOAP_return_time');

$server->handle();
?>

This adds the following XML to the SOAP response:

<SOAP-ENV:Header><ns1:get_timezone>America/Los Angeles</ns1:get_timezone>
</SOAP-ENV:Header>

Discussion
It’s typical to process SOAP headers sent by a SOAP client. That’s the subject of Rec-
ipe 15.6. However, you can also create new SOAP headers from within your SOAP
server and send them back to the client.

This breaks down into two steps:

1. Creating a new instance of SOAPHeader.

2. Adding that header to the reply using SOAPServer::addHeader(  ).

Example 15-11 shows how that’s implemented in PHP.

Example 15-11. Sending a SOAP header from a SOAP server

<?php
class pc_SOAP_return_time {
 public function return_time() {
 $tz = date_default_timezone_get();
 $header = new SoapHeader('urn:pc_SOAP_return_time', 'get_timezone', $tz)
 $GLOBALS['server']->addSoapHeader($header);

 return date('Ymd\THis');
 }
}

$server = new SOAPServer(null, array('uri'=>'urn:pc_SOAP_return_time'));
$server->setClass('pc_SOAP_return_time');

476 | Chapter 15: Building Web Services

$server->handle();
?>

In Example 15-11, the pc_SOAP_return_time(  ) method creates a new SOAP header
named get_timezone that contains the default time zone.

This header is then added to the reply by calling $GLOBALS['server']->addSoapHeader
($header);. Since there’s no easy way to access the $server object from within the scope
of the method, you access it directly through the $GLOBALS array.

Now, when ext/soap responds, it will embed the SOAP header in its reply. For example:

<SOAP-ENV:Header><ns1:get_timezone>America/Los Angeles</ns1:get_timezone>
</SOAP-ENV:Header>

It’s then up to the SOAP client to decide how to process this header. You can access it
using SOAPClient by passing a fifth argument to __soapCall(  ):

$result = $client->__soapCall('return_time', array(), array(), array(), $output);
print_r($output);

Array
(
 [timezone] => America/Los_Angeles
)

See Also
Recipe 15.6 for processing a SOAP header; Recipe 14.7 for using a a SOAP header;
documentation on SOAPHeader at the following address: http://www.php.net/manual/
function.soap-soapheader-construct.php.

15.8 Using Authentication with SOAP

Problem
You want to authenticate SOAP requests. This allows you to restrict services to only
trusted clients.

Solution
Authenticate using HTTP Basic authentication:

<?php
// Your authentication logic
// Which is probably decoupled from your SOAP Server
function pc_authenticate_user($username, password) {
 // authenticate user
 $is_valid = true; // Implement your lookup here

15.8 Using Authentication with SOAP | 477

 if ($is_valid) {
 return true;
 } else {
 return false;
 }
}

class pc_SOAP_return_time {
 public function __construct() {
 // Throw SOAP fault for invalid username and password combo
 if (! pc_authenticate_user($_SERVER['PHP_AUTH_USER'],
 $_SERVER['PHP_AUTH_PW'])) {

 throw new SOAPFault("Incorrect username and password combination.", 401);
 }
 }

 // Rest of SOAP Server methods here...
}

$server = new SOAPServer(null,array('uri'=>"urn:pc_SOAP_return_time"));
$server->setClass("pc_SOAP_return_time");

$server->handle();
?>

Or use a SOAP header:

<?php
// Your authentication logic
// Which is probably decoupled from your SOAP Server
function pc_authenticate_user($username, password) {
 // authenticate user
 $is_valid = true; // Implement your lookup here

 if ($is_valid) {
 return true;
 } else {
 return false;
 }
}

class pc_SOAP_return_time {
 public function authenticate_user($args) {
 // Throw SOAP fault for invalid username and password combo
 if (! pc_authenticate_user($args->username,
 $args->password)) {

 throw new SOAPFault("Incorrect username and password combination.", 401);
 }
 }

 // Rest of SOAP Server methods here...
}

478 | Chapter 15: Building Web Services

$server = new SOAPServer(null, array('uri'=>'urn:pc_SOAP_return_time'));
$server->setClass('pc_SOAP_return_time');

$server->handle();
?>

Discussion
Compared to the standard authentication in the rest of your applications, SOAP au-
thentication isn’t too complicated. There are two easy ways of integrating it into your
SOAP server: using HTTP Basic authentication or processing a custom SOAP header.

If you’re unfamiliar with these concepts, you should first read Recipe 8.9 for a review
of HTTP Basic and Digest authentication and Recipe 15.6 for information on SOAP
headers and how to handle them.

Example 15-12 shows how it’s done using HTTP Basic authentication.

Example 15-12. Authenticating using HTTP Basic authentication and a SOAP server

<?php
// Your authentication logic
// Which is probably decoupled from your SOAP Server
function pc_authenticate_user($username, password) {
 // authenticate user
 $is_valid = true; // Implement your lookup here

 if ($is_valid) {
 return true;
 } else {
 return false;
 }
}

class pc_SOAP_return_time {
 public function __construct() {
 // Throw SOAP fault for invalid username and password combo
 if (! pc_authenticate_user($_SERVER['PHP_AUTH_USER'],
 $_SERVER['PHP_AUTH_PW'])) {

 throw new SOAPFault("Incorrect username and password combination.", 401);
 }
 }

 // Rest of SOAP Server methods here...
}

$server = new SOAPServer(null, array('uri'=>'urn:pc_SOAP_return_time'));
$server->setClass('pc_SOAP_return_time');

$server->handle();
?>

15.8 Using Authentication with SOAP | 479

Example 15-12 defines pc_authenticate_user(  ). This function isn’t SOAP specific, it’s
your standard code to handle user authentication. In this example, it’s a separate func-
tion to emphasize its decoupled nature. However, you could also define this as a
private method inside of pc_SOAP_return_time if you wanted to have it save state or
access other object properties.

By defining a constructor for pc_SOAP_return_time, you force the SOAP server to exe-
cute that code before it handles any SOAP headers or the SOAP body. Inside of
__construct(  ), call out to pc_authenticate_user, passing the variables where PHP stores
HTTP Basic Authentication credentials, $_SERVER['PHP_AUTH_USER'] and $_SERVER
['PHP_AUTH_PW'].

If the authentication fails, throw a SOAP fault. Remember, you must send an HTTP
Status Code of 500 on SOAP faults, so PHP will not return 401.

You can pass HTTP Basic authentication credentials like this:

<?php
$opts = array('location' => 'http://api.example.org/getTime',
 'uri' => 'urn:pc_SOAP_return_time',
 'login' => 'elvis',
 'password' => 'the-king',

$client = new SOAPClient(null, $opts);

$result = $client->__soapCall('return_time');
?>

The SOAPClient accepts the login and password options. These should be set to the
proper username and password and ext/soap will do the rest to send them using HTTP
Basic authentication.

The other option is to use not HTTP Basic authentication, but pass the username and
password in a custom SOAP header. This allows you additional control over what
information you gather and lets you extend into using a protocol other than HTTP.

The downside is that HTTP Basic authentication is a familiar concept, so people will
need to learn how to construct your custom header.

Example 15-13 outlines the basic setup.

Example 15-13. Authenticating using a SOAP header and a SOAP server
<?php
// Your authentication logic
// Which is probably decoupled from your SOAP Server
function pc_authenticate_user($username, password) {
 // authenticate user
 $is_valid = true; // Implement your lookup here

 if ($is_valid) {
 return true;
 } else {
 return false;

480 | Chapter 15: Building Web Services

 }
}

class pc_SOAP_return_time {
 private $authenticated;

 public function __construct() {
 $this->authenticated = false;
 }

 public function authenticate_user($args) {
 // Throw SOAP fault for invalid username and password combo
 if (! pc_authenticate_user($args->username,
 $args->password)) {

 throw new SOAPFault("Incorrect username and password combination.", 401);
 }

 $this->authenticated = true;
 }

 // Rest of SOAP Server methods here...
 public function soap_method() {
 if ($this->authenticated) {
 // Method body here...
 } else {
 throw new SOAPFault("Must pass authenticate_user Header.", 401);
 }
 }

}

$server = new SOAPServer(null, array('uri'=>'urn:pc_SOAP_return_time'));
$server->setClass('pc_SOAP_return_time');

$server->handle();
?>

The pc_authenticate_user(  ) function is identical, as there’s no need for that low-level
system to change merely because you altered the interface for passing the username
and password.

However, instead of implementing the authentication check inside of the constructor,
you place it inside a method named after your authentication header. Since there’s no
way to force ext/soap to require a SOAP header, use this method to set the authentica
ted property to true.

Then, make sure each of your SOAP body methods wraps the “real” code inside an if
($this->authenticated) check. If the SOAP client failed to pass the credentials, throw
a SOAP fault.

Here’s how you pass the credentials using SOAPClient:

15.8 Using Authentication with SOAP | 481

<?php
$opts = array('location' => 'http://api.example.org/getTime',
 'uri' => 'urn:pc_SOAP_return_time');

$client = new SOAPClient(null, $opts);

class SOAPAuth {
 public $username;
 public $password;

 public function __construct($username, $password) {
 $this->username = $username;
 $this->password = $password;
 }
}

$auth = new SOAPAuth('elvis', 'the-king');
$header = new SOAPHeader('urn:example.org/auth', 'authenticate_user', $auth);
$result = $client->__soapCall('return_time', array(), array(), array($header));
?>

The easiest way to create a SOAP header with both username and password variables is
to create a simple class with properties with those names and then pass an instance of
that class to SOAPHeader.

The entire SOAP header is then sent as the fourth argument in your __soapCall(  ).

See Also
Recipe 14.8 for using authentication in a SOAP client; Recipe 8.9 for information on
HTTP Basic and Digest authentication in general.

15.9 Serving an XML-RPC Method

Problem
You want to create an XML-RPC server and respond to XML-RPC requests. This allows
any XML-RPC-enabled client to ask your server questions and you to reply with data.

Solution
Use PHP’s XML-RPC extension. Here is a PHP version of the Userland XML-RPC
demonstration application that returns an ISO 8601 string with the current date and
time:

// this is the function exposed as "get_time()"
function return_time($method, $args) {
 return date('Ymd\THis');
}

$server = xmlrpc_server_create() or die("Can't create server");
xmlrpc_server_register_method($server, 'return_time', 'get_time')

482 | Chapter 15: Building Web Services

 or die("Can't register method.");

$request = $GLOBALS['HTTP_RAW_POST_DATA'];
$options = array('output_type' => 'xml', 'version' => 'xmlrpc');

print xmlrpc_server_call_method($server, $request, NULL, $options)
 or die("Can't call method");

xmlrpc_server_destroy($server);

Discussion
Since the bundled XML-RPC extension xmlrpc-epi is written in C, it processes XML-
RPC requests in a speedy and efficient fashion. Add --with-xmlrpc to your configure
string to enable this extension during compile time. For more on XML-RPC, see Rec-
ipe 14.12.

The Solution begins with a definition of the PHP function to associate with the XML-
RPC method. The name of the function is return_time(  ) . This is later linked with
the get_time(  ) XML-RPC method:

function return_time($method, $args) {
 return date('Ymd\THis');
}

The function returns an ISO 8601–formatted string with the current date and time.
Escape the T inside the call to date(  ) because the specification requires a literal T to
divide the date part and the time part. At August 21, 2002 at 3:03:51 P.M., the return
value is 20020821T150351.

The function is automatically called with two parameters: the name of the XML-RPC
method the server is responding to and an array of method arguments passed by the
XML-RPC client to the server. In this example, the server ignores both variables.

Next, create the XML-RPC server and register the get_time(  ) method:

$server = xmlrpc_server_create() or die("Can't create server");
xmlrpc_server_register_method($server, 'return_time', 'get_time');

Create a new server and assign it to $server and then call
xmlrpc_server_register_method(  ) with three parameters. The first is the newly created
server, the second is the name of the method to register, and the third is the name of
the PHP function to handle the request.

Now that everything is configured, tell the XML-RPC server to dispatch the method
for processing and print the results to the client:

$request = $GLOBALS['HTTP_RAW_POST_DATA'];
$options = array('output_type' => 'xml', 'version' => 'xmlrpc');

print xmlrpc_server_call_method($server, $request, NULL, $options);

The client request comes in as POST data. PHP converts HTTP POST data to variables,
but this is XML-RPC data, so the server needs to access the unparsed data, which is

15.9 Serving an XML-RPC Method | 483

stored in $GLOBALS['HTTP_RAW_POST_DATA']. In this example, the request XML looks like
this:

<?xml version="1.0" encoding="iso-8859-1"?>
<methodCall>
<methodName>get_time</methodName>
<params/></methodCall>

Thus, the server is responding to the get_time(  ) method, and it expects no parameters.

You must also configure the response options to output the results in XML and interpret
the request as XML-RPC. These two variables are then passed to
xmlrpc_server_call_method(  ) along with the XML-RPC server, $server. The third pa-
rameter to this function is for any user data you wish to provide; in this case, there is
none, so pass NULL.

The xmlrpc_server_call_method(  ) function decodes the variables, calls the correct
function to handle the method, and encodes the response into XML-RPC. To reply to
the client, all you need to do is print out what xmlrpc_server_call_method(  ) returns.

Finally, clean up with a call to xmlrpc_server_destroy(  ):

xmlrpc_server_destroy($server);

Using the XML-RPC client code from Recipe 14.12, you can make a request and find
the time, as follows:

require 'utils.php';

$output = array('output_type' => 'xml', 'version' => 'xmlrpc');
$result = xu_rpc_http_concise(array(
 'method' => 'get_time',
 'host' => 'clock.example.com',
 'port' => 80,
 'uri' => '/time-xmlrpc.php',
 'output' => $output));

print "The local time is $result.\n";

The local time is 20020821T162615.

It is legal to associate multiple methods with a single XML-RPC server. You can also
associate multiple methods with the same PHP function. For example, you can create
a server that replies to two methods: get_gmtime(  ) and get_time(  ). The first method,
get_gmtime(  ), is similar to get_time(  ), but it replies with the current time in GMT. To
handle this, you can extend get_time(  ) to take an optional parameter, which is the
name of a time zone to use when computing the current time.

Here’s how to change the return_time(  ) function to handle both methods:

function return_time($method, $args) {
 if ('get_gmtime' == $method) {
 $tz = 'GMT';
 } elseif (!empty($args[0])) {
 $tz = $args[0];

484 | Chapter 15: Building Web Services

 } else {
 // use local time zone
 $tz = '';
 }

 if ($tz) { putenv("TZ=$tz"); }
 $date = date('Ymd\THis');
 if ($tz) { putenv('TZ=EST5EDT'); } // change EST5EDT to your server's zone

 return $date;
}

This function uses both the $method and $args parameters. At the top of the function,
we check if the request is for get_gmtime. If so, the time zone is set to GMT. If it isn’t,
see if an alternate time zone is specified as an argument by checking $args[0]. If neither
check is true, keep the current time zone.

To configure the server to handle the new method, add only one new line:
xmlrpc_server_register_method($server, 'return_time', 'get_gmtime');

This maps get_gmtime(  ) to return_time(  ).

Here’s an example of a client in action. The first request is for get_time(  ) with no
parameters; the second calls get_time(  ) with a time zone of PST8PDT, which is three
hours behind the server; the last request is for the new get_gmtime(  ) method, which is
four hours ahead of the server’s time zone:

require 'utils.php';

$output = array('output_type' => 'xml', 'version' => 'xmlrpc');

// get_time()
$result = xu_rpc_http_concise(array(
 'method' => 'get_time',
 'host' => 'clock.example.com',
 'port' => 80,
 'uri' => '/time.php',
 'output' => $output));

print "The local time is $result.\n";

// get_time('PST8PDT')
$result = xu_rpc_http_concise(array(
 'method' => 'get_time',
 'args' => array('PST8PDT'),
 'host' => 'clock.example.com',
 'port' => 80,
 'uri' => '/time.php',
 'output' => $output));

print "The time in PST8PDT is $result.\n";

// get_gmtime()
$result = xu_rpc_http_concise(array(
 'method' => 'get_gmtime',

15.9 Serving an XML-RPC Method | 485

 'host' => 'clock.example.com',
 'port' => 80,
 'uri' => '/time.php',
 'output' => $output));

print "The time in GMT is $result.\n";

The local time is 20020821T162615.
The time in PST8PDT is 20020821T132615.
The time in GMT is 20020821T202615.

See Also
Recipe 14.12 for more information about XML-RPC clients; documentation on
xmlrpc_server_create(  ) can be found at http://www.php.net/xmlrpc-server-create,
xmlrpc_server_register_method(  ) at http://www.php.net/xmlrpc-server-register-meth
od, xmlrpc_server_call_method(  ) at http://www.php.net/xmlrpc-server-call-method,
and xmlrpc_server_destroy(  ) at http://www.php.net/xmlrpc-server-destroy; Program-
ming Web Services with XML-RPC by Simon St.Laurent, Joe Johnston, and Edd
Dumbill (O’Reilly); more on XML-RPC at http://www.xml-rpc.com; the original cur-
rent time XML-RPC server at http://www.xmlrpc.com/currentTime.

486 | Chapter 15: Building Web Services

CHAPTER 16

Internet Services

16.0 Introduction
Before there was HTTP, there was FTP, NNTP, IMAP, POP3, and a whole alphabet
soup of other protocols. Many people quickly embraced web browsers because the
browser provided an integrated program that let them check their email, read news-
groups, transfer files, and view documents without worrying about the details sur-
rounding the underlying means of communication. PHP provides functions, both
natively and through PEAR, to use these other protocols. With them, you can use PHP
to create web frontend applications that perform all sorts of network-enabled tasks,
such as looking up domain names or sending web-based email. While PHP simplifies
these jobs, it is important to understand the strengths and limitations of each protocol.

Recipes 16.1 to 16.3 cover the most popular feature of all: email. Recipe 16.1 shows
how to send basic email messages. Recipe 16.2 describes MIME-encoded email, which
enables you to send plain text and HTML-formatted messages. The IMAP and POP3
protocols, which are used to read mailboxes, are discussed in Recipe 16.3.

The next two recipes discuss how to read newsgroups with NNTP. Newsgroups are
similar to mailing lists, but instead of every person on the list receiving an email mes-
sage, people can access a news server and view just the messages they’re interested in.
Newsgroups also allow threaded discussions, so its easy to trace a conversation through
the archives. Recipe 16.4 discusses posting messages, while Recipe 16.5 covers retriev-
ing messages.

Recipe 16.6 covers how to exchange files using FTP (file transfer protocol), which is a
method for sending and receiving files across the Internet. FTP servers can require users
to log in with a password or allow anonymous usage.

Searching LDAP servers is the topic of Recipe 16.7, while Recipe 16.8 discusses how
to authenticate users against an LDAP server. LDAP servers are used as address books
and as centralized stores for user information. They’re optimized for information re-
trieval and can be configured to replicate their data to ensure high reliability and quick
response times.

487

The chapter concludes with recipes on networking. Recipe 16.9 covers DNS lookups,
both from domain name to IP and vice versa. Recipe 16.10 tells how to check if a host
is up and accessible with PEAR’s ping module.

Other parts of the book deal with some network protocols as well. HTTP is covered in
detail in Chapter 13. Those recipes discuss how to fetch URLs in a variety of different
ways. Protocols that combine HTTP and XML are covered in Chapters 14 and 15.
Those two chapters discuss consuming and serving web services, including the REST,
SOAP, and XML-RPC protocols.

16.1 Sending Mail

Problem
You want to send an email message. This can be in direct response to a user’s action,
such as signing up for your site, or a recurring event at a set time, such as a weekly
newsletter.

Solution
Use PEAR’s Mail class:

require 'Mail.php';

$to = 'adam@example.com';

$headers['From'] = 'webmaster@example.com';
$headers['Subject'] = 'New Version of PHP Released!';

$body = 'Go to http://www.php.net and download it today!';

$message =& Mail::factory('mail');
$message->send($to, $headers, $body);

If you can’t use PEAR’s Mail class, use PHP’s built-in mail(  ) function:

$to = 'adam@example.com';
$subject = 'New Version of PHP Released!';
$body = 'Go to http://www.php.net and download it today!';

mail($to, $subject, $body);

Discussion
PEAR’s Mail class allows you to send mail three ways. You indicate the method to use
when instantiating a mail object with Mail::factory(  ).

• To send mail using an external program such as sendmail or qmail, pass send
mail.

• To use an SMTP server, pass smtp.

488 | Chapter 16: Internet Services

• To use the built-in mail(  ) function, pass mail. This tells Mail to apply the settings
from your php.ini.

To use sendmail or smtp, you have to pass a second parameter indicating your settings.
To use sendmail, specify a sendmail_path and sendmail_args:

$params['sendmail_path'] = '/usr/sbin/sendmail';
$params['sendmail_args'] = '-oi -t';

$message =& Mail::factory('sendmail', $params);

One good value for sendmail_path is /usr/lib/sendmail. Unfortunately, sendmail tends
to jump around from system to system, so it can be hard to track down. If you can’t
find it, try /usr/sbin/sendmail or ask your system administrator.

Two useful flags to pass sendmail are -oi and -t. The -oi flag tells sendmail not to
think a single dot (.) on a line is the end of the message. The -t flag makes sendmail
parse the file for To: and other header lines.

If you prefer qmail, try using /var/qmail/bin/qmail-inject or /var/qmail/bin/sendmail.

If you’re running Windows, you may want to use an SMTP server because most Win-
dows machines don’t have copies of sendmail installed. To do so, pass smtp:

$params['host'] = 'smtp.example.com';

$message =& Mail::factory('smtp', $params);

In smtp mode, you can pass five optional parameters. The host is the SMTP server
hostname; it defaults to localhost. The port is the connection port; it defaults to 25.
To enable SMTP authentication, set auth to true. To allow the server to validate you,
set username and password. SMTP functionality isn’t restricted to Windows; it also works
on Unix servers.

If you don’t have PEAR’s Mail class, you can use the built-in mail(  ) function. The
program mail(  ) uses to send mail is specified in the sendmail_path configuration vari-
able in your php.ini file. If you’re running Windows, set the SMTP variable to the
hostname of your SMTP server. Your From address comes from the sendmail_from var-
iable.

Here’s an example that uses mail(  ):

$to = 'adam@example.com';
$subject = 'New Version of PHP Released!';
$body = 'Go to http://www.php.net and download it today!';

mail($to, $subject, $body);

The first parameter is the recipient’s email address, the second is the message subject,
and the last is the message body. You can also add extra headers with an optional fourth
parameter. For example, here’s how to add Reply-To and Organization headers:

$to = 'adam@example.com';
$subject = 'New Version of PHP Released!';

16.1 Sending Mail | 489

$body = 'Go to http://www.php.net and download it today!';
$header = "Reply-To: webmaster@example.com\r\n"
 ."Organization: The PHP Group";

mail($to, $subject, $body, $header);

Separate each header with \r\n, but don’t add \r\n following the last header.

Regardless of which method you choose, it’s a good idea to write a wrapper function
to assist you in sending mail. Forcing all your mail through this function makes it easy
to add logging and other checks to every message sent:

function pc_mail($to, $headers, $body) {
 $message =& Mail::factory('mail');

 $message->send($to, $headers, $body);
 error_log("[MAIL][TO: $to]");
}

Here a message is written to the error log, recording the recipient of each message that’s
sent. This provides a timestamp that allows you to more easily track complaints that
someone is trying to use the site to send spam. Another option is to create a list of “do
not send” email addresses, which prevent those people from ever receiving another
message from your site. You can also validate all recipient email addresses, which re-
duces the number of bounced messages.

See Also
Recipe 9.4 for a regular expression to validate email addresses; Recipe 16.2 for sending
MIME email; Recipe 16.3 for more on retrieving mail; documentation on mail(  ) at
http://www.php.net/mail; the PEAR Mail class at http://pear.php.net/package-info.php?
package=Mail; RFC 822 at http://www.faqs.org/rfcs/rfc822.html; O’Reilly publishes
two books on sendmail: sendmail by Bryan Costales with Eric Allman and sendmail
Desktop Reference by Bryan Costales and Eric Allman.

16.2 Sending MIME Mail

Problem
You want to send MIME email. For example, you want to send multipart messages
with both plain text and HTML portions and have MIME-aware mail readers auto-
matically display the correct portion.

Solution
Use the Mail_mime class in PEAR:

require 'Mail.php';
require 'Mail/mime.php';

490 | Chapter 16: Internet Services

$to = 'adam@example.com, sklar@example.com';

$headers['From'] = 'webmaster@example.com';
$headers['Subject'] = 'New Version of PHP Released!';

// create MIME object
$mime = new Mail_mime;

// add body parts
$text = 'Text version of email';
$mime->setTXTBody($text);

$html = '<html><body>HTML version of email</body></html>';
$mime->setHTMLBody($html);

$file = '/path/to/file.png';
$mime->addAttachment($file, 'image/png');

// get MIME formatted message headers and body
$body = $mime->get();
$headers = $mime->headers($headers);

$message =& Mail::factory('mail');
$message->send($to, $headers, $body);

Discussion
PEAR’s Mail_mime class provides an object-oriented interface to all the behind-the-
scenes details involved in creating an email message that contains both text and HTML
parts. The class is similar to PEAR’s Mail class, but instead of defining the body as a
string of text, you create a Mail_mime object and call its methods to add parts to the
body:

// create MIME object
$mime = new Mail_mime;

// add body parts
$text = 'Text version of email';
$mime->setTXTBody($text);

$html = '<html><body>HTML version of email</body></html>';
$mime->setHTMLBody($html);

$file = '/path/to/file.txt';
$mime->addAttachment($file, 'text/plain');

// get MIME formatted message headers and body
$body = $mime->get();
$headers = $mime->headers($headers);

The Mail_mime::setTXTBody(  ) and Mail_mime::setHTMLBody(  ) methods add the plain
text and HTML body parts, respectively. Here, we pass in variables, but you can also
pass a filename for Mail_mime to read. To use this option, pass true as the second pa-
rameter:

16.2 Sending MIME Mail | 491

$text = '/path/to/email.txt';
$mime->setTXTBody($text, true);

To add an attachment to the message, such as a graphic or an archive, call
Mail_mime::addAttachment(  ):

$file = '/path/to/file.png';
$mime->addAttachment($file,'image/png');

Pass the function to the location to the file and its MIME type.

Once the message is complete, do the final preparation and send it out:

// get MIME formatted message headers and body
$body = $mime->get();
$headers = $mime->headers($headers);

$message =& Mail::factory('mail');
$message->send($to, $headers, $body);

First, you have the Mail_mime object provide properly formatted headers and body. You
then use the parent Mail class to format the message and send it out with
Mail_mime::send(  ) .

See Also
Recipe 16.1 for sending regular email; Recipe 16.3 for more on retrieving mail; the
PEAR Mail_Mime class at http://pear.php.net/package-info.php?package=Mail_Mime.

16.3 Reading Mail with IMAP or POP3

Problem
You want to read mail using IMAP or POP3, which allows you to create a web-based
email client.

Solution
Use PHP’s IMAP extension, which speaks both IMAP and POP3:

// open IMAP connection
$mail = imap_open('{mail.server.com:143}', 'username', 'password');
// or, open POP3 connection
$mail = imap_open('{mail.server.com:110/pop3}', 'username', 'password');

// grab a list of all the mail headers
$headers = imap_headers($mail);

// grab a header object for the last message in the mailbox
$last = imap_num_msg($mail);
$header = imap_header($mail, $last);

// grab the body for the same message

492 | Chapter 16: Internet Services

$body = imap_body($mail, $last);

// close the connection
imap_close($mail);

Discussion
The underlying library PHP uses to support IMAP and POP3 offers a seemingly un-
ending number of features that allow you to essentially write an entire mail client. With
all those features, however, comes complexity. In fact, there are currently 63 different
functions in PHP beginning with the word imap, and that doesn’t take into account that
some also speak POP3 and NNTP.

However, the basics of talking with a mail server are straightforward. Like many fea-
tures in PHP, you begin by opening the connection and grabbing a handle:

$mail = imap_open('{mail.server.com:143}', 'username', 'password');

This opens an IMAP connection to the server named mail.server.com on port 143. It
also passes along a username and password as the second and third arguments.

To open a POP3 connection instead, append /pop3 to the end of the server and port.
Since POP3 usually runs on port 110, add :110 after the server name:

$mail = imap_open('{mail.server.com:110/pop3}', 'username', 'password');

To encrypt your connection with SSL, add /ssl on to the end, just as you did with
pop3. You also need to make sure your PHP installation is built with the --with-imap-
ssl configuration option in addition to --with-imap. Also, you need to build the system
IMAP library itself with SSL support. If you’re using a self-signed certificate and wish
to prevent an attempted validation, also add /novalidate-cert. Finally, most SSL con-
nections talk on either port 993 or 995. All these options can come in any order, so the
following is perfectly legal:

$mail = imap_open('{mail.server.com:993/novalidate-cert/pop3/ssl}',
 'username', 'password');

Surrounding a variable with curly braces inside of a double-quoted string, such as
{$var}, is a way to tell PHP exactly which variable to interpolate. Therefore, to use
interpolated variables in this first parameter to imap_open(  ), escape the opening {:

$server = 'mail.server.com';
$port = 993;

$mail = imap_open("\{$server:$port}", 'username', 'password');

Once you’ve opened a connection, you can ask the mail server a variety of questions.
To get a listing of all the messages in your inbox, use imap_headers(  ):

$headers = imap_headers($mail);

This returns an array in which each element is a formatted string corresponding to a
message:

16.3 Reading Mail with IMAP or POP3 | 493

 A 189) 5-Aug-2007 Beth Hondl an invitation (1992 chars)

Alternatively, to retrieve a specific message, use imap_header(  ) and imap_body(  ) to pull
the header object and body string:

$header = imap_header($message_number);
$body = imap_body($message_number);

The imap_header(  ) function returns an object with many fields. Useful ones include
subject, fromaddress, and udate. All the fields are listed in Table 16-2 in Recipe 16.5.

The body element is just a string, but if the message is a multipart message, such as one
that contains both an HTML and a plain text version, $body holds both parts and the
MIME lines describing them:

------=_Part_1046_3914492.1008372096119
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

Plain-Text Message

------=_Part_1046_3914492.1008372096119
Content-Type: text/html
Content-Transfer-Encoding: 7bit

<html>HTML Message</html>
------=_Part_1046_3914492.1008372096119--

To avoid this occurrence, use imap_fetchstructure(  ) in combination with
imap_fetchbody(  ) to discover how the body is formatted and to extract just the parts
you want:

// pull the plain text for message $n
$st = imap_fetchstructure($mail, $n);
if (!empty($st->parts)) {
 for ($i = 0, $j = count($st->parts); $i < $j; $i++) {
 $part = $st->parts[$i];
 if ($part->subtype == 'PLAIN') {
 $body = imap_fetchbody($mail, $n, $i+1);
 }
 }
} else {
 $body = imap_body($mail, $n));
}

If a message has multiple parts, $st->parts holds an array of objects describing them.
The part property holds an integer describing the main body MIME type. Table 16-1
lists which numbers go with which MIME types. The subtype property holds the MIME
subtype and tells if the part is plain, html, png, or another type, such as octet-stream.

Table 16-1. IMAP MIME type values

Number MIME type PHP constant Description Examples

0 text TYPETEXT Unformatted text Plain text, HTML, XML

494 | Chapter 16: Internet Services

Number MIME type PHP constant Description Examples

1 multipart TYPEMULTIPART Multipart message Mixed, form data, signed

2 message TYPEMESSAGE Encapsulated message News, HTTP

3 application TYPEAPPLICATION Application data Octet stream, PDF, Zip

4 audio TYPEAUDIO Music file MP3, RealAudio

5 image TYPEIMAGE Graphic image GIF, JPEG, PNG

6 video TYPEVIDEO Video clip MPEG, Quicktime

7 other TYPEOTHER Everything else VRML models

See Also
Recipes 16.1 and 16.2 for more on sending mail; documentation on imap_open(  ) at
http://www.php.net/imap_open, imap_header(  ) at http://www.php.net/imap-header,
imap-body(  ) at http://www.php.net/imap-body, and IMAP in general at http://
www.php.net/imap.

16.4 Posting Messages to Usenet Newsgroups

Problem
You want to post a message to a Usenet newsgroup, such as comp.lang.php.

Solution
Use imap_mail_compose(  ) to format the message, and then write the message to the
server using sockets:

$headers['from'] = 'adam@example.com';
$headers['subject'] = 'New Version of PHP Released!';
$headers['custom_headers'][] = 'Newsgroups: comp.lang.php';

$body[0]['type'] = TYPETEXT;
$body[0]['subtype'] = 'plain';
$body[0]['contents.data'] = 'Go to http://www.php.net and download it today!';

$post = imap_mail_compose($headers, $body);

$server = 'nntp.example.com';
$port = 119;

$sh = fsockopen($server, $port) or die ("Can't connect to $server.");
fputs($sh, "POST\r\n");
fputs($sh, $post);
fputs($sh, ".\r\n");
fclose($sh);

16.4 Posting Messages to Usenet Newsgroups | 495

Discussion
No built-in PHP functions can post a message to a newsgroup. Therefore, you must
open a direct socket connection to the news server and send the commands to post the
message. However, you can use imap_mail_compose(  ) to format a post and create the
headers and body for the message. Every message must have three headers: the From:
address, the message Subject:, and the name of the newsgroup:

$headers['from'] = 'adam@example.com';
$headers['subject'] = 'New Version of PHP Released!';
$headers['custom_headers'][] = 'Newsgroups: comp.lang.php';

Create an array, $headers, to hold the message headers. You can directly assign the
values for the From: and Subject: headers, but you can’t do so for the Newsgroups: header.
Because imap_mail_compose(  ) is most frequently used to create email messages, the
Newsgroups: header is not a predefined header. To work around this, you must instead
add it with the custom_headers array element.

There is a different syntax for custom_headers. Instead of placing the lowercase header
name as the element name and the header value as the array value, place the entire
header as an array value. Between the header name and value, add a colon followed by
a space. Be sure to correctly spell Newsgroups: with a capital N and final s.

The message body can contain multiple parts. As a result, the body parameter passed
to imap_mail_compose(  ) is an array of arrays. In the Solution, there was only one part,
so you directly assign values to $body[0]:

$body[0]['type'] = TYPETEXT;
$body[0]['subtype'] = 'plain';
$body[0]['contents.data'] = 'Go to http://www.php.net and download it today!';

Each message part needs a MIME type and subtype. This message is ASCII, so the type
is TYPETEXT, and the subtype is plain. Refer back to Table 16-1 in Recipe 16.3 for a listing
of IMAP MIME type constants and what they represent. The contents.data field holds
the message body.

To convert these arrays into a formatted string, call imap_mail_compose($body, $head
ers). It returns a post that looks like this:

From: adam@example.com
Subject: New Version of PHP Released!
MIME-Version: 1.0
Content-Type: TEXT/plain; CHARSET=US-ASCII
Newsgroups: comp.lang.php

Go to http://www.php.net and download it today!

Armed with a post the news server will accept, call fsockopen(  ) to open a connection:

$server = 'nntp.example.com';
$port = 119;

$sh = fsockopen($server, $port) or die ("Can't connect to $server.");

496 | Chapter 16: Internet Services

The first parameter to fsockopen(  ) is the hostname of the server, and the second is the
port to use. If you don’t know the name of your news server, try the hostnames news,
nntp, or news-server in your domain: for example, news.example.com, nntp.exam-
ple.com, or news-server.example.com. If none of these work, ask your system adminis-
trator. Traditionally, all news servers use port 119.

Once connected, you send the message:

fputs($sh, "POST\r\n");
fputs($sh, imap_mail_compose($headers, $body));
fputs($sh, ".\r\n");

The first line tells the news server that you want to post a message. The second is the
message itself. To signal the end of the message, place a period on a line by itself. Every
line must have both a carriage return and a newline at the end. Close the connection
by calling fclose($sh).

Every message on the server is given a unique name, known as a Message-ID. If you want
to reply to a message, take the Message-ID of the original message and use it as the value
for a References header:

// retrieved when reading original message
$message_id = '<20030410020818.33915.php@news.example.com>';

$headers['custom_headers'][] = "References: $message_id";

See Also
Recipe 16.5 for more on reading newsgroups; documentation on
imap_mail_compose(  ) at http://www.php.net/imap-mail-compose, fsockopen(  ) at http://
www.php.net/fsockopen, fputs(  ) at http://www.php.net/fputs, and fclose(  ) at http://
www.php.net/fclose; RFC 977 at http://www.faqs.org/rfcs/rfc977.html.

16.5 Reading Usenet News Messages

Problem
You want to read Usenet news messages using NNTP to talk to a news server.

Solution
Use PHP’s IMAP extension. It also speaks NNTP:

// open a connection to the nntp server
$server = '{news.php.net/nntp:119}';
$group = 'php.general'; // main PHP mailing list
$nntp = imap_open("$server$group", '', '', OP_ANONYMOUS);

// get header
$header = imap_header($nntp, $msg);

16.5 Reading Usenet News Messages | 497

// pull out fields
$subj = $header->subject;
$from = $header->from;
$email = $from[0]->mailbox."@".$from[0]->host;
$name = $from[0]->personal;
$date = date('m/d/Y h:i A', $header->udate);

// get body
$body = nl2br(htmlspecialchars(imap_fetchbody($nntp,$msg,1)));

// close connection
imap_close($nntp);

Discussion
Reading news from a news server requires you to connect to the server and specify a
group you’re interested in reading:

// open a connection to the nntp server
$server = "{news.php.net/nntp:119}";
$group = "php.general";
$nntp = imap_open("$server$group",'','',OP_ANONYMOUS);

The function imap_open(  ) takes four parameters. The first specifies the news server to
use and the newsgroup to read. The server here is news.php.net, the news server that
mirrors all the PHP mailing lists. Add /nntp to let the IMAP extension know you’re
reading news instead of mail, and specify 119 as a port; that’s typically the port reserved
for NNTP (Network News Transport Protocol), which is used to communicate with
news servers, just as HTTP communicates with web servers. The group is php.gener-
al, the main mailing list of the PHP community.

The middle two arguments to imap_open(  ) are a username and password, in case you
need to provide verification of your identity. Because news.php.net is open to all readers,
leave them blank. Finally, pass the flag OP_ANONYMOUS, which tells IMAP you’re an anon-
ymous reader; it will not then keep a record of you in a special .newsrc file.

Once you’re connected, you usually want to either get a general listing of recent mes-
sages or all the details about one specific message. Here’s some code that displays recent
messages:

// read and display posting index
$last = imap_num_msg($nntp);
$n = 10; // display last 10 messages

// table header
print <<<EOH
<table>
<tr>
 <th align="left">Subject</th>
 <th align="left">Sender</th>
 <th align="left">Date</th>
</tr>
EOH;

498 | Chapter 16: Internet Services

// the messages
for ($i = $last-$n+1; $i <= $last; $i++) {
 $header = imap_header($nntp, $i);

 if (! $header->Size) { continue; }

 $subj = $header->subject;
 $from = $header->from;
 $email = $from[0]->mailbox."@".$from[0]->host;
 $name = $from[0]->personal ? $from[0]->personal : $email;
 $date = date('m/d/Y h:i A', $header->udate);

print <<<EOM
<tr>
 <td>$subj</td>
 <td>$name</td>
 <td>$date</td>
</tr>
EOM;
 }

// table footer
echo "</table>\n";

To browse a listing of posts, you need to specify what you want by number. The first
post ever to a group gets number 1, and the most recent post is the number returned
from imap_num_msg(  ). So to get the last $n messages, loop from $last-$n+1 to $last.

Inside the loop, call imap_header(  ) to pull out the header information about a post.
The header contains all the metainformation but not the actual text of the message;
that’s stored in the body. Because the header is usually much smaller than the body,
this allows you to quickly retrieve data for many posts without taking too much time.

Now pass imap_header(  ) two parameters: the server connection handle and the message
number. It returns an object with many properties, which are listed in Table 16-2.

Table 16-2. imap_header(  ) fields from an NNTP server

Name Description Type Example

date or Date RFC 822–formatted date: date('r') String Fri, 16 Aug 2002 01:52:24 -0400

subject or Sub
ject

Message subject String Re: PHP Cookbook Revisions

message_id A unique ID identifying the message String <20030410020818.
33915.php@news.example.com>

newsgroups The name of the group the message was posted
to

String php.general

toaddress The address the message was sent to String php-general@lists.php.net

to Parsed version of toaddress field Object mailbox: “php-general", host: “lists-
php.net”

16.5 Reading Usenet News Messages | 499

Name Description Type Example

fromaddress The address that sent the message String Ralph Josephs <ralph@example.net>

from Parsed version of fromaddress field Object personal: “Ralph Josephs", mailbox:
“ralph", host: “example.net”

reply_toad
dress

The address you should reply to, if you’re trying
to contact the author

String rjosephs@example.net

reply_to Parsed version of reply_toaddress field Object Mailbox: “rjosephs", host: “exam-
ple.net”

senderaddress The person who sent the message; almost always
identical to the from field, but if the from field
doesn’t uniquely identify who sent the message,
this field does

String Ralph Josephs <ralph@example.net>

sender Parsed version of senderaddress field Object Personal: “Ralph Josephs", mailbox:
“ralph", host: “example.net”

Recent If the message is recent, or new since the last time
the user checked for mail

String Y or N

Unseen If the message is unseen String Y or " "

Flagged If the message is marked String Y or " "

Answered If a reply has been sent to this message String Y or " "

Deleted If the message is deleted String Y or " "

Draft If the message is a draft String Y or " "

Size Size of the message in bytes String 1345

udate Unix timestamp of message date Int 1013480645

Mesgno The number of the message in the group String 34943

Some of the more useful fields are: size, subject, the from list, and udate. The size
property is the size of the message in bytes; if it’s 0, the message was either deleted or
otherwise removed. The subject field is the subject of the post. The from list is more
complicated. It’s an array of objects; each element in the array holds an object with
three properties: personal, mailbox, and host. The personal field is the name of the
poster: Homer Simpson. The mailbox field is the part of the email address before the @
sign: homer. The host is the part of the email address after the @ sign: thesimp
sons.com. Usually, there’s just one element in the from list array, because a message
usually has just one sender.

Pull the $header->from object into $from because PHP can’t directly access
$header->from[0]->personal due to the array in the middle. Then combine $from[0]-
>mailbox and $from[0]->host to form the poster’s email address. Use the ternary
operator to assign the personal field as the poster’s name, if one is supplied; otherwise,
make it the email address.

500 | Chapter 16: Internet Services

The udate field is the posting time as an Unix timestamp. Use date(  ) to convert it from
seconds to a more human-friendly format.

You can also view a specific posting as follows:

// read and display a single message
$header = imap_header($nntp, $msg);

$subj = $header->subject;
$from = $header->from;
$email = $from[0]->mailbox."@".$from[0]->host;
$name = $from[0]->personal;
$date = date('m/d/Y h:i A', $header->udate);
$body = nl2br(htmlspecialchars(imap_fetchbody($nntp,$msg,1)));

print <<<EOM
<table>
<tr>
 <th align=left>From:</th>
 <td>$name <$email></td>
</tr>
<tr>
 <th align=left>Subject:</th>
 <td>$subj</td>
</tr>
<tr>
 <th align=left>Date:</th>
 <td>$date</td>
</tr>
<tr>
 <td colspan="2">$body</td>
</tr>
</table>
EOM;

The code to grab a single message is similar to one that grabs a sequence of message
headers. The main difference is that you define a $body variable that’s the result of three
chained functions. Innermost, you call imap_fetchbody(  ) to return the message body;
it takes the same parameters as imap_header(  ). You pass that to htmlspecialchars(  ) to
escape any HTML that may interfere with yours. That result then is passed to
nl2br(  ) , which converts all the carriage returns to XHTML
 tags; the message
should now look correct on a web page.

To disconnect from the IMAP server and close the stream, pass the IMAP connection
handle to imap_close(  ):

// close connection when finished
imap_close($nntp);

See Also
Recipe 16.4 for more on posting to newsgroups; documentation on imap_open(  ) at
http://www.php.net/imap-open, imap_header(  ) at http://www.php.net/imap-header,
imap_body(  ) at http://www.php.net/imap-body, and IMAP in general at http://

16.5 Reading Usenet News Messages | 501

www.php.net/imap; code to read newsgroups in PHP without using IMAP at http://
cvs.php.net/cvs.php/php-news-web; RFC 977 at http://www.faqs.org/rfcs/rfc977.html.

16.6 Getting and Putting Files with FTP

Problem
You want to transfer files using FTP.

Solution
Use PHP’s built-in FTP functions:

$c = ftp_connect('ftp.example.com') or die("Can't connect");
ftp_login($c, $username, $password) or die("Can't login");
ftp_put($c, $remote, $local, FTP_ASCII) or die("Can't transfer");
ftp_close($c); or die("Can't close");

You can also use the cURL extension:

$c = curl_init("ftp://$username:$password@ftp.example.com/$remote");
// $local is the location to store file on local machine
$fh = fopen($local, 'w') or die($php_errormsg);
curl_setopt($c, CURLOPT_FILE, $fh);
curl_exec($c);
curl_close($c);

Discussion
FTP is a method of exchanging files between one computer and another. Unlike with
HTTP servers, it’s easy to set up an FTP server to both send and receive files.

Using the built-in FTP functions doesn’t require additional libraries, but you must
specifically enable them with --enable-ftp. Because these functions are specialized to
FTP, they’re simple to use when transferring files.

All FTP transactions begin with establishing a connection from your computer, the
local client, to another computer, the remote server:

$c = ftp_connect('ftp.example.com') or die("Can't connect");

Once connected, you need to send your username and password; the remote server can
then authenticate you and allow you to enter:

ftp_login($c, $username, $password) or die("Can't login");

Some FTP servers support a feature known as anonymous FTP. Under anonymous
FTP, users can log in without an account on the remote system. When you use anon-
ymous FTP, your username is anonymous, and your password is your email address.

Here’s how to transfer files with ftp_put(  ) and ftp_get(  ):

ftp_put($c, $remote, $local, FTP_ASCII) or die("Can't transfer");
ftp_get($c, $local, $remote, FTP_ASCII) or die("Can't transfer");

502 | Chapter 16: Internet Services

The ftp_put(  ) function takes a file on your computer and copies it to the remote server;
ftp_get(  ) copies a file on the remote server to your computer. In the previous code,
$remote is the pathname to the remote file, and $local points at the file on your com-
puter.

There are two final parameters passed to these functions. The FTP_ASCII parameter,
used here, transfers the file as if it were ASCII text. Under this option, line-feed endings
are automatically converted as you move from one operating system to another. The
other option is FTP_BINARY, which is used for non–plain text files, so no line-feed con-
versions take place.

Use ftp_fget(  ) and ftp_fput(  ) to download or upload a file to an existing open file
pointer (opened using fopen(  )) instead of to a location on the filesystem. For example,
here’s how to retrieve a file and write it to the existing file pointer, $fp:

$fp = fopen($file, 'w');
ftp_fget($c, $fp, $remote, FTP_ASCII) or die("Can't transfer");

Finally, to disconnect from the remote host, call ftp_close(  ) to log out:

ftp_close($c); or die("Can't close");

To adjust the amount of seconds the connection takes to time out, use
ftp_set_option(  ) :

// Up the time out value to two minutes:
set_time_limit(120)
$c = ftp_connect('ftp.example.com');
ftp_set_option($c, FTP_TIMEOUT_SEC, 120);

The default value is 90 seconds; however, the default max_execution_time of a PHP script
is 30 seconds. So if your connection times out too early, be sure to check both values.

To use the cURL extension, you must download cURL from http://curl.haxx.se/ and
set the --with-curl configuration option when building PHP. To use cURL, start by
creating a cURL handle with curl_init(  ), and then specify what you want to do using
curl_setopt(  ) . The curl_setopt(  ) function takes three parameters: a cURL resource,
the name of a cURL constant to modify, and a value to assign to the second parameter.
In the Solution, the CURLOPT_FILE constant is used:

$c = curl_init("ftp://$username:$password@ftp.example.com/$remote");
// $local is the location to store file on local client
$fh = fopen($local, 'w') or die($php_errormsg);
curl_setopt($c, CURLOPT_FILE, $fh);
curl_exec($c);
curl_close($c);

You pass the URL to use to curl_init(  ). Because the URL begins with ftp://, cURL
knows to use the FTP protocol. Instead of a separate call to log on to the remote server,
you embed the username and password directly into the URL. Next, you set the location
to store the file on your server. Now you open a file named $local for writing and pass
the filehandle to curl_setopt(  ) as the value for CURLOPT_FILE. When cURL transfers the

16.6 Getting and Putting Files with FTP | 503

file, it automatically writes to the filehandle. Once everything is configured, you call
curl_exec(  ) to initiate the transaction and then curl_close(  ) to close the connection.

See Also
Documentation on the FTP extension at http://www.php.net/ftp and cURL at http://
www.php.net/curl; RFC 959 at http://www.faqs.org/rfcs/rfc969.html.

16.7 Looking Up Addresses with LDAP

Problem
You want to query an LDAP server for address information.

Solution
Use PHP’s LDAP extension:

$ds = ldap_connect('ldap.example.com') or die($php_errormsg);
ldap_bind($ds) or die($php_errormsg);
$sr = ldap_search($ds, 'o=Example Inc., c=US', 'sn=*') or die($php_errormsg);
$e = ldap_get_entries($ds, $sr) or die($php_errormsg);

for ($i=0; $i < $e['count']; $i++) {
 echo $info[$i]['cn'][0] . ' (' . $info[$i]['mail'][0] . ')
';
}

ldap_close($ds) or die($php_errormsg);

Discussion
A (LDAP) server stores directory information, such as names and addresses, and allows
you to query it for results. In many ways, it’s like a database, except that it’s optimized
for storing information about people.

In addition, instead of the flat structure provided by a database, an LDAP server allows
you to organize people in a hierarchical fashion. For example, employees may be divi-
ded into marketing, technical, and operations divisions, or they can be split regionally
into North America, Europe, and Asia. This makes it easy to find all employees of a
particular subset of a company.

When using LDAP, the address repository is called as a data source. Each entry in the
repository has a globally unique identifier, known as a distinguished name. The distin-
guished name includes both a person’s name, but also the company information. For
instance, John Q. Smith, who works at Example Inc., a U.S. company, has a distin-
guished name of cn=John Q. Smith, o=Example Inc., c=US. In LDAP, cn stands for
common name, o for organization, and c for country.

You must enable PHP’s LDAP support with --with-ldap. You can download an LDAP
server from http://www.openldap.org. This recipe assumes basic knowledge about

504 | Chapter 16: Internet Services

LDAP. For more information, read the articles on the O’Reilly Network at http://
www.onlamp.com/topics/apache/ldap.

Communicating with an LDAP server requires four steps: connecting, authenticating,
searching records, and logging off. Besides searching, you can also add, alter, and delete
records.

The opening transactions require you to connect to a specific LDAP server and then
authenticate yourself in a process known as binding:

$ds = ldap_connect('ldap.example.com') or die($php_errormsg);
ldap_bind($ds) or die($php_errormsg);

Passing only the connection handle, $ds, to ldap_bind(  ) does an anonymous bind. To
bind with a specific username and password, pass them as the second and third pa-
rameters, like so:

ldap_bind($ds, $username, $password) or die($php_errormsg);

Once logged in, you can request information. Because the information is arranged in a
hierarchy, you need to indicate the base distinguished name as the second parameter.
Finally, you pass in the search criteria. For example, here’s how to find all people with
a surname of Jones at company Example Inc. located in the country US:

$sr = ldap_search($ds, 'o=Example Inc., c=US', 'sn=Jones') or die($php_errormsg);
$e = ldap_get_entries($ds, $sr) or die($php_errormsg);

Once ldap_search(  ) returns results, use ldap_get_entries(  ) to retrieve the specific
data records. Then iterate through the array of entries, $e:

for ($i=0; $i < $e['count']; $i++) {
 echo $e[$i]['cn'][0] . ' (' . $e[$i]['mail'][0] . ')
';
}

Instead of doing count($e), use the precomputed record size located in $e['count'].
Inside the loop, print the first common name and email address for each record. For
example:

David Sklar (sklar@example.com)
Adam Trachtenberg (adam@example.com)

The ldap_search(  ) function searches the entire tree equal to and below the distin-
guished name base. To restrict the results to a specific level, use ldap_list(  ). Because
the search takes place over a smaller set of records, ldap_list(  ) can be significantly
faster than ldap_search(  ).

See Also
Recipe 16.8 for authenticating users with LDAP; documentation on LDAP at http://
www.php.net/ldap; RFC 2251 at http://www.faqs.org/rfcs/rfc2251.html.

16.7 Looking Up Addresses with LDAP | 505

16.8 Using LDAP for User Authentication

Problem
You want to restrict parts of your site to authenticated users. Instead of verifying people
against a database or using HTTP Basic Authorization, you want to use an LDAP server.
Holding all user information in an LDAP server makes centralized user administration
easier.

Solution
Use PEAR’s Auth class, which supports LDAP authentication:

$options = array('host' => 'ldap.example.com',
 'port' => '389',
 'base' => 'o=Example Inc., c=US',
 'userattr' => 'uid');

$auth = new Auth('LDAP', $options);

// begin validation
// print login screen for anonymous users
$auth->start();

if ($auth->getAuth()) {
 // content for validated users
} else {
 // content for anonymous users
}

// log users out
$auth->logout();

Discussion
LDAP servers are designed for address storage, lookup, and retrieval, and so are better
to use than standard databases like MySQL or Oracle. LDAP servers are very fast, you
can easily implement access control by granting different permissions to different
groups of users, and many different programs can query the server. For example, most
email clients can use an LDAP server as an address book, so if you address a message
to “John Smith,” the server replies with John’s email address, jsmith@example.com.

PEAR’s Auth class allows you to validate users against files, databases, and LDAP serv-
ers. The first parameter is the type of authentication to use, and the second is an array
of information on how to validate users. For example:

$options = array('host' => 'ldap.example.com',
 'port' => '389',
 'base' => 'o=Example Inc., c=US',
 'userattr' => 'uid');

$auth = new Auth('LDAP', $options);

506 | Chapter 16: Internet Services

This creates a new Auth object that validates against an LDAP server located at ldap.ex-
ample.com and communicates over port 389. The base directory name is o=Example
Inc., c=US, and usernames are checked against the uid attribute. The uid field stands
for user identifier. This is normally a username for a web site or a login name for a
general account. If your server doesn’t store uid attributes for each user, you can sub-
stitute the cn attribute. The common name field holds a user’s full name, such as “John
Q. Smith.”

The Auth::auth(  ) method also takes an optional third parameter—the name of a func-
tion that displays the sign-in form. This form can be formatted however you wish; the
only requirement is that the form input fields must be called username and password.
Also, the form must submit the data using POST:

$options = array('host' => 'ldap.example.com',
 'port' => '389',
 'base' => 'o=Example Inc., c=US',
 'userattr' => 'uid');

function pc_auth_ldap_signin() {
 print<<<_HTML_
<form method="post" action="$_SERVER[PHP_SELF]">
Name: <input name="username" type="text">

Password: <input name="password" type="password">

<input type="submit" value="Sign In">
</form>
HTML;
}

$auth = new Auth('LDAP', $options, 'pc_auth_ldap_signin');

Once the Auth object is instantiated, authenticate a user by calling Auth::start(  ):

$auth->start();

If the user is already signed in, nothing happens. If the user is anonymous, the sign-in
form is printed. To validate a user, Auth::start(  ) connects to the LDAP server, does
an anonymous bind, and searches for an address in which the user attribute specified
in the constructor matches the username passed in by the form:

$options['userattr'] = $_POST['username']

If Auth::start(  ) finds exactly one person that fits this criteria, it retrieves the designated
name for the user, and attempts to do an authenticated bind, using the designated name
and password from the form as the login credentials. The LDAP server then compares
the password to the userPassword attribute associated with the designated name. If it
matches, the user is authenticated.

You can call Auth::getAuth(  ) to return a boolean value describing a user’s status:

if ($auth->getAuth()) {
 print 'Welcome member! Nice to see you again.';
} else {
 print 'Welcome guest. First time visiting?';
}

16.8 Using LDAP for User Authentication | 507

The Auth class uses the built-in session module to track users, so once validated, a
person remains authenticated until the session expires, or you explicitly log him out
with:

$auth->logout();

See Also
Recipe 16.7 for searching LDAP servers; PEAR’s Auth class at http://pear.php.net/pack
age-info.php?package=Auth.

16.9 Performing DNS Lookups

Problem
You want to look up a domain name or an IP address.

Solution
Use gethostbyname(  ) and gethostbyaddr(  ):

$ip = gethostbyname('www.example.com'); // 192.0.34.72
$host = gethostbyaddr('192.0.34.72'); // www.example.com

Discussion
You can’t trust the name returned by gethostbyaddr(  ). A DNS server with authority
for a particular IP address can return any hostname at all. Usually, administrators set
up DNS servers to reply with a correct hostname, but a malicious user may configure
her DNS server to reply with incorrect hostnames. One way to combat this trickery is
to call gethostbyname(  ) on the hostname returned from gethostbyaddr(  ) and make sure
the name resolves to the original IP address.

If either function can’t successfully look up the IP address or the domain name, it
doesn’t return false, but instead returns the argument passed to it. To check for failure,
do this:

if ($host == ($ip = gethostbyname($host))) {
 // failure
}

This assigns the return value of gethostbyname(  ) to $ip and also checks that $ip is not
equal to the original $host.

Sometimes a single hostname can map to multiple IP addresses. To find all hosts, use
gethostbynamel(  ):

$hosts = gethostbynamel('www.yahoo.com');
print_r($hosts);

$hosts = gethostbynamel('www.yahoo.com');

508 | Chapter 16: Internet Services

print_r($hosts);
Array
(
 [0] => 64.58.76.176
 [1] => 64.58.76.224
 [2] => 64.58.76.177
 [3] => 64.58.76.227
 [4] => 64.58.76.179
 [5] => 64.58.76.225
 [6] => 64.58.76.178
 [7] => 64.58.76.229
 [8] => 64.58.76.223
)

In contrast to gethostbyname(  ) and gethostbyaddr(  ), gethostbynamel(  ) returns an ar-
ray, not a string.

You can also do more complicated DNS-related tasks. For instance, you can get the
MX records using getmxrr(  ):

getmxrr('yahoo.com', $hosts, $weight);
for ($i = 0; $i < count($hosts); $i++) {
 echo "$weight[$i] $hosts[$i]\n";
}

getmxrr('yahoo.com', $hosts, $weight);
for ($i = 0; $i < count($hosts); $i++) {
 echo "$weight[$i] $hosts[$i]\n";
}
5 mx4.mail.yahoo.com
1 mx2.mail.yahoo.com
1 mx1.mail.yahoo.com

To perform zone transfers, dynamic DNS updates, and more, see PEAR’s Net_DNS
package.

See Also
Documentation on gethostbyname(  ) at http://www.php.net/gethostbyname,
gethostbyaddr(  ) http://www.php.net/gethostbyaddr, gethostbynamel(  ) at http://
www.php.net/gethostbynamel, and getmxrr(  ) at http://www.php.net/getmxrr; PEAR’s
Net_DNS package at http://pear.php.net/package-info.php?package=Net_DNS; DNS and
BIND by Paul Albitz and Cricket Liu (O’Reilly).

16.10 Checking if a Host Is Alive

Problem
You want to ping a host to see if it is still up and accessible from your location.

Solution
Use PEAR’s Net_Ping package:

16.10 Checking if a Host Is Alive | 509

require 'Net/Ping.php';

$ping = new Net_Ping;
if ($ping->checkhost('www.oreilly.com')) {
 print 'Reachable';
} else {
 print 'Unreachable';
}

$data = $ping->ping('www.oreilly.com');

Discussion
The ping program tries to send a message from your machine to another. If everything
goes well, you get a series of statistics chronicling the transaction. An error means that
ping can’t reach the host for some reason.

On error, Net_Ping::checkhost(  ) returns false, and Net_Ping::ping(  ) returns the con-
stant PING_HOST_NOT_FOUND. If there’s a problem running the ping program (because
Net_Ping is really just a wrapper for the program), PING_FAILED is returned.

If everything is okay, you receive an array similar to this:

$results = $ping->ping('www.oreilly.com');

foreach($results as $result) { print "$result\n"; }

$results = $ping->ping('www.oreilly.com');

foreach($results as $result) { print "$result\n"; }
PING www.oreilly.com (209.204.146.22) from 192.168.123.101 :
 32(60) bytes of data.
40 bytes from www.oreilly.com (209.204.146.22): icmp_seq=0 ttl=239
 time=96.704 msec
40 bytes from www.oreilly.com (209.204.146.22): icmp_seq=1 ttl=239
 time=86.567 msec
40 bytes from www.oreilly.com (209.204.146.22): icmp_seq=2 ttl=239
 time=86.563 msec
40 bytes from www.oreilly.com (209.204.146.22): icmp_seq=3 ttl=239
 time=136.565 msec
40 bytes from www.oreilly.com (209.204.146.22): icmp_seq=4 ttl=239
 time=86.627 msec

 -- - www.oreilly.com ping statistics -- -
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/mdev = 86.563/98.605/136.565/19.381 ms

Net_Ping doesn’t do any parsing of the data to pull apart the information, such as the
packet loss percentage or the average round-trip time. However, you can parse it your-
self:

$results = $ping->ping('www.oreilly.com');

// grab last line of array; equivalent to non-destructive array_pop()
// or $results[count($results) - 1]

510 | Chapter 16: Internet Services

$round_trip = end($results);
preg_match_all('#[/]([.\d]+)#', $round_trip, $times);

// pull out the data
list($min,$avg,$max,$mdev) = $times[1];
// or print it out
foreach($times[1] as $time) { print "$time\n"; }

$results = $ping->ping('www.oreilly.com');

// grab last line of array; equivalent to non-destructive array_pop()
// or $results[count($results) - 1]
$round_trip = end($results);
preg_match_all('#[/]([.\d]+)#', $round_trip, $times);

// pull out the data
list($min,$avg,$max,$mdev) = $times[1];
// or print it out
foreach($times[1] as $time) { print "$time\n"; }
83.229
91.230
103.223
7.485

This regular expression searches for either a space or a slash. It then captures a sequence
of one or more numbers and a decimal point. To avoid escaping /, we use the # non-
standard character as your delimiter.

See Also
PEAR’s Net_Ping package at http://pear.php.net/package-info.php?package=Net_Ping.

16.11 Getting Information About a Domain Name

Problem
You want to look up contact information or other details about a domain name.

Solution
Use PEAR’s Net_Whois class:

require 'Net/Whois.php';
$server = 'whois.networksolutions.com';
$query = 'example.org';
$data = Net_Whois::query($server, $query);

Discussion
The Net_Whois::query(  ) method returns a large text string whose contents reinforce
how hard it can be to parse different Whois results:

Registrant:
Internet Assigned Numbers Authority (EXAMPLE2-DOM)

16.11 Getting Information About a Domain Name | 511

 4676 Admiralty Way, Suite 330
 Marina del Rey, CA 90292
 US

 Domain Name: EXAMPLE.ORG

 Administrative Contact, Technical Contact, Billing Contact:
 Internet Assigned Numbers Authority (IANA) iana@IANA.ORG
 4676 Admiralty Way, Suite 330
 Marina del Rey, CA 90292
 US
 310-823-9358
 Fax- 310-823-8649

 Record last updated on 07-Jan-2002.
 Record expires on 01-Sep-2009.
 Record created on 31-Aug-1995.
 Database last updated on 6-Apr-2002 02:56:00 EST.

 Domain servers in listed order:

 A.IANA-SERVERS.NET 192.0.34.43
 B.IANA-SERVERS.NET 193.0.0.236

For instance, if you want to parse out the names and IP addresses of the domain name
servers, use this:

preg_match_all('/^\s*([\S]+)\s+([\d.]+)\s*$/m', $data, $dns,
 PREG_SET_ORDER);

foreach ($dns as $server) {
 print "$server[1] : $server[2]\n";
}

You must set $server to the correct Whois server for a domain to get information about
that domain. If you don’t know the server to use, query whois.internic.net:

require 'Net/Whois.php';

print Net_Whois::query('whois.internic.net','example.org');

require 'Net/Whois.php';

print Net_Whois::query('whois.internic.net','example.org');
[whois.internic.net]

Whois Server Version 1.3

Domain names in the .com, .net, and .org domains can now be registered
with many different competing registrars. Go to http://www.internic.net
for detailed information.

 Domain Name: EXAMPLE.ORG
 Registrar: NETWORK SOLUTIONS, INC.
 Whois Server: whois.networksolutions.com
 Referral URL: http://www.networksolutions.com

512 | Chapter 16: Internet Services

 Name Server: A.IANA-SERVERS.NET
 Name Server: B.IANA-SERVERS.NET
 Updated Date: 19-aug-2002

>>> Last update of whois database: Wed, 21 Aug 2002 04:56:56 EDT <<<

The Registry database contains ONLY .COM, .NET, .ORG, .EDU domains and
Registrars.

The Whois Server: line says that the correct server to ask for information about exam-
ple.org is whois.networksolutions.com.

See Also
PEAR’s Net_Whois class at http://pear.php.net/package-info.php?package=Net_Whois.

16.11 Getting Information About a Domain Name | 513

CHAPTER 17

Graphics

17.0 Introduction
With the assistance of the GD library, you can use PHP to create applications that use
dynamic images to display stock quotes, reveal poll results, monitor system perform-
ance, and even create games. However, it’s not like using Photoshop or GIMP; you
can’t draw a line by moving your mouse. Instead, you need to precisely specify a shape’s
type, size, and position.

GD has an existing API, and PHP tries to follows its syntax and function-naming con-
ventions. So if you’re familiar with GD from other languages, such as C or Perl, you
can easily use GD with PHP. If GD is new to you, it may take a few minutes to figure
it out, but soon you’ll be drawing like Picasso.

The feature set of GD varies greatly depending on which version of GD you’re running
and which features were enabled during configuration. GD can support GIFs, JPEGs,
PNGs, and WBMPs. GD reads in PNGs and JPEGs with almost no loss in quality. Also,
GD supports PNG alpha channels, which allow you to specify a transparency level for
each pixel.

Besides supporting multiple file formats, GD lets you draw pixels, lines, rectangles,
polygons, arcs, ellipses, and circles in any color you want. Recipe 17.1 covers straight
shapes, while Recipe 17.2 covers the curved ones. To fill shapes with a pattern instead
of a solid color, see Recipe 17.3.

You can also draw text using a variety of font types, including built-in, TrueType, and
PostScript Type 1 fonts. Recipe 17.4 shows the ins and outs of the three main text-
drawing functions, and Recipe 17.5 shows how to center text within a canvas. These
two recipes form the basis for Recipe 17.6, which combines an image template with
real-time data to create dynamic images. GD also lets you make transparent GIFs and
PNGs. Setting a color as transparent and using transparencies in patterns are discussed
in Recipe 17.7.

To extract image metadata from digital photos and other images that store information
using the EXIF standard, read Recipe 17.8.

515

Recipe 17.9 moves away from GD and shows how to securely serve images by restricting
user access. Last, there’s an example application taking poll results and producing a
dynamic bar graph showing what percentage of users voted for each answer.

All these features work with the version of GD bundled with PHP 5.1. If you have an
earlier version, you should not have a problem. However, if a particular recipe needs a
specific version of GD, it’s noted in the recipe.

GD is available for download from the official GD site at http://www.boutell.com/gd/.
The GD section of the online PHP Manual at http://www.php.net/image also lists the
location of the additional libraries necessary to provide support for JPEGs and Type 1
fonts. However, the PHP team has recently taken over development of the GD library,
so expect that it will be increasingly easy to use PHP and GD.

There are two easy ways to see which version, if any, of GD is installed on your server
and how it’s configured. One way is to call phpinfo(  ) . You should see --with-gd at
the top under “Configure Command”; further down the page there is also a section
titled “gd” that has more information about which version of GD is installed and what
features are enabled. The other option is to check the return value of
function_exists('imagecreate'). If it returns true, GD is installed. The imagetypes(  )
function returns a bit field indicating which graphics formats are available. See http://
www.php.net/imagetypes for more on how to use this function. If you want to use a
feature that isn’t enabled, you need to rebuild PHP yourself or get your ISP to do so.

The basic image generation process has three steps: creating the image, adding graphics
and text to the canvas, and displaying or saving the image. For example:

$image = ImageCreate(200, 50);
$background_color = ImageColorAllocate($image, 255, 255, 255); // white
$gray = ImageColorAllocate($image, 204, 204, 204); // gray

ImageFilledRectangle($image, 50, 10, 150, 40, $gray);

header('Content-type: image/png');
ImagePNG($image);

The output of this code, which prints a gray rectangle on a white background, is shown
in Figure 17-1.

To begin, you create an image canvas. The ImageCreate(  ) function doesn’t return an
actual image. Instead, it provides you with a handle to an image; it’s not an actual

Figure 17-1. A gray rectangle on a white background

516 | Chapter 17: Graphics

graphic until you specifically tell PHP to write the image out. Using ImageCreate(  ), you
can juggle multiple images at the same time.

The parameters passed to ImageCreate(  ) are the width and height of the graphic in
pixels. In this case, it’s 200 pixels across and 50 pixels high. Instead of creating a new
image, you can also edit existing images. To open a graphic, call
ImageCreateFromPNG(  ) or a similarly named function to open a different file format.
The filename is the only argument, and files can live locally or on remote servers:

// open a PNG from the local machine
$graph = ImageCreateFromPNG('/path/to/graph.png');

// open a JPEG from a remote server
$icon = ImageCreateFromJPEG('http://www.example.com/images/icon.jpeg');

Once you have an editable canvas, you get access to drawing colors by calling
ImageColorAllocate(  ) :

$background_color = ImageColorAllocate($image, 255, 255, 255); // white
$gray = ImageColorAllocate($image, 204, 204, 204); // gray

The ImageColorAllocate(  ) function takes an image handle to allocate the color to three
integers. The three integers each range from 0 to 255 and specify the red, green, and
blue components of the color. This is the same RGB color combination that is used in
HTML to set a font or background color. So white is 255, 255, 255; black is 0, 0, 0;
and everything else is somewhere in between.

The first call to ImageAllocateColor(  ) sets the background color. Additional calls al-
locate colors for drawing lines, shapes, or text. Therefore, set the background color to
255, 255, 255 and then grab a gray pen with ImageAllocateColor($image, 204, 204,
204). It may seem odd that the background color is determined by the order
ImageAllocateColor(  ) is called and not by a separate function. But that’s how things
work in GD, so PHP respects the convention.

Call ImageFilledRectangle(  ) to place a box onto the canvas. ImageFilledRectangle(  )
takes many parameters: the image to draw on, the x and y coordinates of the upper left
corner of the rectangle, the x and y coordinates of the lower right corner of the rectangle,
and finally, the color to use to draw the shape. Tell ImageFilledRectangle(  ) to draw a
rectangle on $image, starting at (50,10) and going to (150,40), in the color gray:

ImageFilledRectangle($image, 50, 10, 150, 40, $gray);

Unlike a Cartesian graph, (0,0) is not in the lower left corner; instead, it’s in the upper
left corner. So the vertical coordinate of the spot 10 pixels from the top of a 50-pixel-
high canvas is 10 because it’s 10 pixels down from the top of the canvas. It’s not 40,
because you measure from the top down, not the bottom up. And it’s not −10, because
down is considered the positive direction, not the negative one.

Now that the image is all ready to go, you can serve it up. First, send a Content-Type
header to let the browser know what type of image you’re sending. In this case, display

17.0 Introduction | 517

a PNG. Next, have PHP write the PNG image out using ImagePNG(  ). Once the image is
sent, your task is over:

header('Content-Type: image/png');
ImagePNG($image);

To write the image to disk instead of sending it to the browser, provide a second ar-
gument to ImagePNG(  ) with where to save the file:

ImagePng($image, '/path/to/your/new/image.png');

Since the file isn’t going to the browser, there’s no need to call header(  ). Make sure to
specify a path and an image name, and be sure PHP has permission to write to that
location.

PHP cleans up the image when the script ends, but if you wish to manually deallocate
the memory used by the image, calling ImageDestroy($image) forces PHP to get rid of
the image immediately.

17.1 Drawing Lines, Rectangles, and Polygons

Problem
You want to draw a line, rectangle, or polygon. You also want to be able to control if
the rectangle or polygon is open or filled in. For example, you want to be able to draw
bar charts or create graphs of stock quotes.

Solution
To draw a line, use ImageLine(  ):

ImageLine($image, $x1, $y1, $x2, $y2, $color);

To draw an open rectangle, use ImageRectangle(  ):
ImageRectangle($image, $x1, $y1, $x2, $y2, $color);

To draw a solid rectangle, use ImageFilledRectangle(  ):
ImageFilledRectangle($image, $x1, $y1, $x2, $y2, $color);

To draw an open polygon, use ImagePolygon(  ):
$points = array($x1, $y1, $x2, $y2, $x3, $y3);
ImagePolygon($image, $points, count($points)/2, $color);

To draw a filled polygon, use ImageFilledPolygon(  ):
$points = array($x1, $y1, $x2, $y2, $x3, $y3);
ImageFilledPolygon($image, $points, count($points)/2, $color);

Discussion
The prototypes for all five functions in the Solution are similar. The first parameter is
the canvas to draw on. The next set of parameters are the x and y coordinates to specify

518 | Chapter 17: Graphics

where GD should draw the shape. In ImageLine(  ), the four coordinates are the end-
points of the line, and in ImageRectangle(  ), they’re the opposite corners of the rectangle.
For example, ImageLine($image, 0, 0, 100, 100, $color) produces a diagonal line. Pass-
ing the same parameters to ImageRectangle(  ) produces a rectangle with corners at (0,0),
(100,0), (0,100), and (100,100). Both shapes are shown in Figure 17-2.

The ImagePolygon(  ) function is slightly different because it can accept a variable num-
ber of vertices. Therefore, the second parameter is an array of x and y coordinates. The
function starts at the first set of points and draws lines from vertex to vertex before
finally completing the figure by connecting back to the original point. You must have
a minimum of three vertices in your polygon (for a total of six elements in the array).
The third parameter is the number of vertices in the shape; since that’s always half of
the number of elements in the array of points, a flexible value for this is
count($points) / 2 because it allows you to update the array of vertices without breaking
the call to ImageLine(  ).

Last, all the functions take a final parameter that specifies the drawing color. This is
usually a value returned from ImageColorAllocate(  ) but can also be the constants
IMG_COLOR_STYLED or IMG_COLOR_STYLEDBRUSHED, if you want to draw nonsolid lines, as
discussed in Recipe 17.3.

These functions all draw open shapes. To get GD to fill the region with the drawing
color, use ImageFilledRectangle(  ) and ImageFilledPolygon(  ) with the identical set of
arguments as their unfilled cousins.

See Also
Recipe 17.2 for more on drawing other types of shapes; Recipe 17.3 for more on drawing
with styles and brushes; documentation on ImageLine(  ) at http://www.php.net/image
line, ImageRectangle(  ) at http://www.php.net/imagerectangle, ImagePolygon(  ) at http://
www.php.net/imagepolygon, and ImageColorAllocate(  ) at http://www.php.net/imageco
lorallocate.

Figure 17-2. A diagonal line and a square

17.1 Drawing Lines, Rectangles, and Polygons | 519

17.2 Drawing Arcs, Ellipses, and Circles

Problem
You want to draw open or filled curves. For example, you want to draw a pie chart
showing the results of a user poll.

Solution
To draw an arc, use ImageArc(  ):

ImageArc($image, $x, $y, $width, $height, $start, $end, $color);

To draw an ellipse, use ImageArc(  ) and set $start to 0 and $end to 360:

ImageArc($image, $x, $y, $width, $height, 0, 360, $color);

To draw a circle, use ImageArc(  ), set $start to 0, set $end to 360, and use the same value
for both $width and $height:

ImageArc($image, $x, $y, $diameter, $diameter, 0, 360, $color);

Discussion
Because the ImageArc(  ) function is highly flexible, you can easily create common curves
such as ellipses and circles by passing it the right values. Like many GD functions, the
first parameter is the canvas. The next two parameters are the x and y coordinates for
the center position of the arc. After that comes the arc width and height. Since a circle
is an arc with the same width and height, to draw a circle, set both numbers to the
diameter of the circle.

The sixth and seventh parameters are the starting and ending angles, in degrees. A value
of 0 is at three o’clock. The arc then moves clockwise, so 90 is at six o’clock, 180 is at
nine o’clock, and 270 is at the top of the hour. (Be careful—this behavior is not con-
sistent among all GD functions. For example, when you rotate text, you turn in a
counterclockwise direction.) Since the arc’s center is located at ($x,$y), if you draw a
semicircle from 0 to 180, it doesn’t start at ($x,$y); instead, it begins at ($x+($diameter/
2),$y).

As usual, the last parameter is the arc color.

For example, this draws an open black circle with a diameter of 100 pixels centered on
the canvas, as shown in the left half of Figure 17-3:

$image = ImageCreate(100,100);
$bg = ImageColorAllocate($image, 255, 255, 255);
$black = ImageColorAllocate($image, 0, 0, 0);
ImageArc($image, 50, 50, 100, 100, 0, 360, $black);

To produce a solid ellipse or circle, call ImageFillToBorder(  ):

ImageArc($image, $x, $y, $diameter, $diameter, 0, 360, $color);
ImageFillToBorder($image, $x, $y, $color, $color);

520 | Chapter 17: Graphics

The ImageFillToBorder(  ) function floods a region beginning at ($x,$y) with the color
specified as the last parameter until it hits the edge of the canvas or runs into a line with
the same color as the third parameter.

Incorporating this into the earlier example gives:

$image = ImageCreate(100,100);
$bg = ImageColorAllocate($image, 255, 255, 255);
$black = ImageColorAllocate($image, 0, 0, 0);
ImageArc($image, 50, 50, 100, 100, 0, 360, $black);
ImageFillToBorder($image, 50, 50, $black, $black);

The output is shown in the right half of Figure 17-3.

If you’re running GD 2.x, you can call ImageFilledArc(  ) and pass in a final parameter
that describes the fill style. GD 2.x also supports specific ImageEllipse(  ) and
ImageFilledEllipse(  ) functions.

See Also
Recipe 17.2 for more on drawing other types of shapes; Recipe 17.3 for more on drawing
with styles and brushes; documentation on ImageArc(  ) at http://www.php.net/image
arc, ImageFilledArc(  ) at http://www.php.net/imagefilledarc, and ImageFillToBorder(  )
at http://www.php.net/imagefilltoborder.

17.3 Drawing with Patterned Lines

Problem
You want to draw shapes using line styles other than the default, a solid line.

Solution
To draw shapes with a patterned line, use ImageSetStyle(  ) and pass in
IMG_COLOR_STYLED as the image color:

$black = ImageColorAllocate($image, 0, 0, 0);
$white = ImageColorAllocate($image, 255, 255, 255);

// make a two-pixel thick black and white dashed line
$style = array($black, $black, $white, $white);

Figure 17-3. An open black circle and a filled black circle

17.3 Drawing with Patterned Lines | 521

ImageSetStyle($image, $style);

ImageLine($image, 0, 0, 50, 50, IMG_COLOR_STYLED);
ImageFilledRectangle($image, 50, 50, 100, 100, IMG_COLOR_STYLED);

Discussion
The line pattern is defined by an array of colors. Each element in the array is another
pixel in the brush. It’s often useful to repeat the same color in successive elements, as
this increases the size of the stripes in the pattern.

For instance, here is code for a square drawn with alternating white and black pixels,
as shown in the left side of Figure 17-4:

$style = array($white, $black);
ImageSetStyle($image, $style);
ImageFilledRectangle($image, 0, 0, 49, 49, IMG_COLOR_STYLED);

This is the same square, but drawn with a style of five white pixels followed by five
black ones, as shown in the middle of Figure 17-4:

$style = array($white, $white, $white, $white, $white,
 $black, $black, $black, $black, $black);
ImageSetStyle($image, $style);
ImageFilledRectangle($image, 0, 0, 49, 49, IMG_COLOR_STYLED);

The patterns look completely different, even though both styles are just white and black
pixels.

If the brush doesn’t fit an integer number of times in the shape, it wraps around. In the
previous examples, the square is 50 pixels wide. Since the first brush is 2 pixels long,
it fits exactly 25 times; the second brush is 10 pixels, so it fits 5 times. But if you make
the square 45 by 45 and use the second brush, you don’t get straight lines as you did
previously, as shown in the right side of Figure 17-4:

ImageFilledRectangle($image, 0, 0, 44, 44, IMG_COLOR_STYLED);

See Also
Recipes 17.1 and 17.2 for more on drawing shapes; documentation on
ImageSetStyle(  ) at http://www.php.net/imagesetstyle.

Figure 17-4. Three squares with alternating white and black pixels

522 | Chapter 17: Graphics

17.4 Drawing Text

Problem
You want to draw text as a graphic. This allows you to make dynamic buttons or hit
counters.

Solution
For built-in GD fonts, use ImageString(  ):

ImageString($image, 1, $x, $y, 'I love PHP Cookbook', $text_color);

For TrueType fonts, use ImageTTFText(  ):

ImageTTFText($image, $size, 0, $x, $y, $text_color, '/path/to/font.ttf',
 'I love PHP Cookbook');

For PostScript Type 1 fonts, use ImagePSLoadFont(  ) and ImagePSText(  ):

$font = ImagePSLoadFont('/path/to/font.pfb');
ImagePSText($image, 'I love PHP Cookbook', $font, $size,
 $text_color, $background_color, $x, $y);

Discussion
Call ImageString(  ) to place text onto the canvas. Like other GD drawing functions,
ImageString(  ) needs many inputs: the image to draw on, the font number, the x and y
coordinates of the upper right position of the first characters, the text string to display,
and finally, the color to use to draw the string.

With ImageString(  ), there are five possible font choices, from 1 to 5. Font number 1
is the smallest, while font 5 is the largest, as shown in Figure 17-5. Anything above or
below that range generates a size equivalent to the closest legal number.

To draw text vertically instead of horizontally, use the function ImageStringUp(  ) in-
stead. Figure 17-6 shows the output:

ImageStringUp($image, 1, $x, $y, 'I love PHP Cookbook', $text_color);

To use TrueType fonts, you must also install the FreeType library and configure PHP
during installation to use FreeType. The FreeType main site is http://www.free

Figure 17-5. Built-in GD font sizes

17.4 Drawing Text | 523

type.org. To enable FreeType 1.x support, use --with-ttf and for FreeType 2.x, pass
--with-freetype-dir=DIR.

Like ImageString(  ), ImageTTFText(  ) prints a string to a canvas, but it takes slightly
different options and needs them in a different order:

ImageTTFText($image, $size, $angle, $x, $y, $text_color, '/path/to/font.ttf',
 $text);

The $size argument is the font size in pixels; $angle is an angle of rotation, in degrees
going counterclockwise; and /path/to/font.ttf is the pathname to the TrueType font file.
Unlike ImageString(  ), ($x,$y) are the lower left coordinates of the baseline for the first
character. (The baseline is where the bottom of most characters sit. Characters such as
“g” and “j” extend below the baseline; “a” and “z” sit on the baseline.)

PostScript Type 1 fonts require t1lib to be installed, which can be downloaded from
ftp://sunsite.unc.edu/pub/Linux/libs/graphics/ and built into PHP using --with-t1lib.

Again, the syntax for printing text is similar but not the same:

$font = ImagePSLoadFont('/path/to/font.pfb');
ImagePSText($image, $text, $font, $size, $text_color, $background_color, $x, $y);
ImagePSFreeFont($font);

First, PostScript font names can’t be directly passed into ImagePSText(  ). Instead, they
must be loaded using ImagePSLoadFont(  ). On success, the function returns a font re-
source usable with ImagePSText(  ). In addition, besides specifying a text color, you also
pass a background color to be used in antialiasing calculations. The ($x,$y) positioning
is akin to the how the TrueType library does it. Last, when you’re done with a font,
you can release it from memory by calling ImagePSFreeFont(  ).

Besides the mandatory arguments listed above, ImagePSText(  ) also accepts four op-
tional ones, in this order: space, tightness, angle, and antialias_steps. You must
include all four or none of the four (i.e., you can’t pass one, two, or three of these
arguments). The first controls the size of a physical space (i.e., what’s generated by
hitting the Space bar); the second is the tightness of the distance between letters; the
third is a rotation angle, in degrees, counterclockwise; and the last is an antialiasing
value. This number must be either 4 or 16. For better-looking, but more computation-
ally expensive graphics, use 16 instead of 4.

Figure 17-6. Vertical text

524 | Chapter 17: Graphics

By default, space, tightness, and angle are all 0. A positive number adds more space
between words and letters or rotates the graphic counterclockwise. A negative number
tightens words and letters or rotates in the opposite direction. The following example
has the output shown in Figure 17-7:

// normal image
ImagePSText($image, $text, $font, $size, $black, $white, $x, $y,
 0, 0, 0, 4);

// extra space between words
ImagePSText($image, $text, $font, $size, $black, $white, $x, $y + 30,
 100, 0, 0, 4);

// extra space between letters
ImagePSText($image, $text, $font, $size, $black, $white, $x, $y + 60,
 0, 100, 0, 4);

See Also
Recipe 17.5 for drawing centered text; documentation on ImageString(  ) at http://
www.php.net/imagestring, ImageStringUp(  ) at http://www.php.net/imagestringup,
ImageTTFText(  ) at http://www.php.net/imagettftext, ImagePSText(  ) at http://
www.php.net/imagepstext, and ImagePSLoadFont(  ) at http://www.php.net/imagepsload
font.

17.5 Drawing Centered Text

Problem
You want to draw text in the center of an image.

Solution
Find the size of the image and the bounding box of the text. Using those coordinates,
compute the correct spot to draw the text.

For built-in GD fonts, use the pc_ImageStringCenter(  ) function, shown in Exam-
ple 17-1.

Figure 17-7. Words with extra space and tightness

17.5 Drawing Centered Text | 525

Example 17-1. pc_ImageStringCenter(  )
function pc_ImageStringCenter($image, $text, $font) {

 // font sizes
 $width = array(1 => 5, 6, 7, 8, 9);
 $height = array(1 => 6, 8, 13, 15, 15);

 // find the size of the image
 $xi = ImageSX($image);
 $yi = ImageSY($image);

 // find the size of the text
 $xr = $width[$font] * strlen($text);
 $yr = $height[$font];

 // compute centering
 $x = intval(($xi - $xr) / 2);
 $y = intval(($yi - $yr) / 2);

 return array($x, $y);
}

For example:

list($x, $y) = pc_ImageStringCenter($image, $text, $font);
ImageString($image, $font, $x, $y, $text, $fore);

For PostScript fonts, use the pc_ImagePSCenter(  ) function, shown in Example 17-2.

Example 17-2. pc_ImagePSCenter(  )
function pc_ImagePSCenter($image, $text, $font, $size, $space = 0,
 $tightness = 0, $angle = 0) {

 // find the size of the image
 $xi = ImageSX($image);
 $yi = ImageSY($image);

 // find the size of the text
 list($xl, $yl, $xr, $yr) = ImagePSBBox($text, $font, $size,
 $space, $tightness, $angle);

 // compute centering
 $x = intval(($xi - $xr) / 2);
 $y = intval(($yi + $yr) / 2);

 return array($x, $y);
}

For example:

list($x, $y) = pc_ImagePSCenter($image, $text, $font, $size);
ImagePSText($image, $text, $font, $size, $fore, $back, $x, $y);

For TrueType fonts, use the pc_ImageTTFCenter(  ) function shown in Example 17-3.

526 | Chapter 17: Graphics

Example 17-3. pc_ImageTTFCenter(  )
function pc_ImageTTFCenter($image, $text, $font, $size) {

 // find the size of the image
 $xi = ImageSX($image);
 $yi = ImageSY($image);

 // find the size of the text
 $box = ImageTTFBBox($size, $angle, $font, $text);

 $xr = abs(max($box[2], $box[4]));
 $yr = abs(max($box[5], $box[7]));

 // compute centering
 $x = intval(($xi - $xr) / 2);
 $y = intval(($yi + $yr) / 2);

 return array($x, $y);
}

For example:

list($x, $y) = pc_ImageTTFCenter($image, $text, $font, $size);
ImageTTFText($image, $size, $angle, $x, $y, $fore, $font, $text);

Discussion
All three solution functions return the x and y coordinates for drawing. Of course,
depending on font type, size, and settings, the method used to compute these coordi-
nates differs.

For PostScript Type 1 fonts, pass pc_ImagePSCenter(  ) an image allocated from
ImageCreate(  ) (or one of its friends) and a number of parameters to specify how to
draw the text. The first three parameters are required: the text to be drawn, the font,
and the font size. The next three are optional: the space in a font, the tightness between
letters, and an angle for rotation in degrees.

Inside the function, use ImageSX(  ) and ImageSY(  ) to find the size of the canvas; they
return the width and height of the graphic. Then call ImagePSBBox(  ). It returns four
integers: the x and y coordinates of the lower-leftmost location the text and the x and
y coordinates of the upper-rightmost location. Because the coordinates are relative to
the baseline of the text, it’s typical for these not to be 0. For instance, a lowercase “g”
hangs below the bottom of the rest of the letters; so in that case, the lower left y value
is negative.

Armed with these six values, you can now calculate the correct centering values. Be-
cause coordinates of the canvas have (0,0) in the upper left corner, but
ImagePSText(  ) wants the lower left corner, the formula for finding $x and $y isn’t the
same. For $x, take the difference between the size of the canvas and the text. This gives
the amount of whitespace that surrounds the text. Then divide that number by two to
find the number of pixels you should leave to the left of the text. For $y, do the same,

17.5 Drawing Centered Text | 527

but add $yi and $yr. By adding these numbers, you can find the coordinate of the far
side of the box, which is what is needed here because of the inverted way the y coor-
dinate is entered in GD.

Intentionally ignore the lower left coordinates in making these calculations. Because
the bulk of the text sits above the baseline, adding the descending pixels into the cen-
tering algorithm actually worsens the code; it appears offcenter to the eye.

To center text, put it together like this:

function pc_ImagePSCenter($image, $text, $font, $size, $space = 0,
 $tightness = 0, $angle = 0) {

 // find the size of the image
 $xi = ImageSX($image);
 $yi = ImageSY($image);

 // find the size of the text
 list($xl, $yl, $xr, $yr) = ImagePSBBox($text, $font, $size,
 $space, $tightness, $angle);

 // compute centering
 $x = intval(($xi - $xr) / 2);
 $y = intval(($yi + $yr) / 2);

 return array($x, $y);
}

$image = ImageCreate(500,500);
$text = 'PHP Cookbook Rules!';
$font = ImagePSLoadFont('/path/to/font.pfb');
$size = 20;
$black = ImageColorAllocate($image, 0, 0, 0);
$white = ImageColorAllocate($image, 255, 255, 255);

list($x, $y) = pc_ImagePSCenter($image, $text, $font, $size);
ImagePSText($image, $text, $font, $size, $white, $black, $x, $y);
ImagePSFreeFont($font);

header('Content-type: image/png');
ImagePng($image);

ImageDestroy($image);

Unfortunately, this example doesn’t work for GD’s built-in fonts or for TrueType fonts.
There’s no function to return the size of a string using the built-in fonts, and
ImageTTFBBox(  ) returns eight values instead of four. With a few modifications, however,
you can accommodate these differences.

Because the built-in fonts are fixed width, you can easily measure the size of a character
to create a function that returns the size of the text based on its length. Table 17-1 isn’t
100 percent accurate, but it should return results within one or two pixels, which should
be good enough for most cases.

528 | Chapter 17: Graphics

Table 17-1. GD built-in font character sizes

Font number Width Height

1 5 6

2 6 8

3 7 13

4 8 15

5 9 15

Inside pc_ImageStringCenter(  ), calculate the length of the string as an integral multiple
based on its length; the height is just one character high. Note that ImageString(  ) takes
its y coordinate as the uppermost part of the text, so you should switch the sign back
to a minus when you compute $y.

Here is an example using all five fonts that centers text horizontally:

$text = 'The quick brown fox jumps over the lazy dog.';
for ($font = 1, $y = 5; $font <= 5; $font++, $y += 20) {
 list($x, $y) = pc_ImageStringCenter($image, $text, $font);
 ImageString($image, $font, $x, $y, $text, $color);
}

The output is shown in Figure 17-8.

For TrueType fonts, you need to use ImageTTFBBox(  ) or the more modern
ImageFtBBox(  ). (The function with TTF in the name is for FreeType version 1.x; the
one with Ft is for FreeType 2.x.) It returns eight numbers: the (x,y) coordinates of the
four corners of the text starting in the lower left and moving around counterclockwise.
So the second two coordinates are for the lower right spot, and so on.

To make pc_ImageTTFCenter(  ), begin with pc_ImagePSCenter(  ) and swap this line:

 // find the size of the text
 list($xl, $yl, $xr, $yr) = ImagePSBBox($text, $font, $size,
 $space, $tightness, $angle);

with these:

 // find the size of the text
 $box = ImageTTFBBox($size, $angle, $font, $text);

Figure 17-8. Centered GD built-in fonts

17.5 Drawing Centered Text | 529

 $xr = abs(max($box[2], $box[4]));
 $yr = abs(max($box[5], $box[7]));

Here’s an example of pc_ImageTTFCenter(  ) in use:
list($x, $y) = pc_ImageTTFCenter($image, $text, $font, $size);
ImageTTFText($image, $size, $angle, $x, $y, $white, $black,
 '/path/to/font.ttf', $text);

See Also
Recipe 17.4 for more on drawing text; Recipe 17.5 for more on centering text; docu-
mentation on ImageSX(  ) at http://www.php.net/imagesx, ImageSY(  ) at http://
www.php.net/imagesy, ImagePSBBox(  ) at http://www.php.net/imagepsbbox,
ImageTTFBBox(  ) at http://www.php.net/imagettfbbox, ImageFtBBox(  ) at http://
www.php.net/imageftbbox.

17.6 Building Dynamic Images

Problem
You want to create an image based on an existing image template and dynamic data
(typically text). For instance, you want to create a hit counter.

Solution
Load the template image, find the correct position to properly center your text, add the
text to the canvas, and send the image to the browser:

// Configuration settings
$image = ImageCreateFromPNG('button.png');
$text = $_GET['text'];
$font = ImagePSLoadFont('Times');
$size = 24;
$color = ImageColorAllocate($image, 0, 0, 0); // black
$bg_color = ImageColorAllocate($image, 255, 255, 255); // white

// Print-centered text
list($x, $y) = pc_ImagePSCenter($image, $text, $font, $size);
ImagePSText($image, $text, $font, $size, $color, $bg_color, $x, $y);

// Send image
header('Content-type: image/png');
ImagePNG($image);

// Clean up
ImagePSFreeFont($font);
ImageDestroy($image);

Discussion
Building dynamic images with GD is easy; all you need to do is combine a few recipes
together. At the top of the code in the Solution, you load in an image from a stock

530 | Chapter 17: Graphics

template button; it acts as the background on which you overlay the text. We define
the text to come directly from the query string. Alternatively, you can pull the string
from a database (in the case of access counters) or a remote server (stock quotes or
weather report icons).

After that, continue with the other settings: loading a font and specifying its size, color,
and background color. Before printing the text, however, you need to compute its
position; pc_ImagePSCenter(  ) from Recipe 17.5 nicely solves this task. Last, serve the
image, and deallocate the font and image from memory.

For example, the following code generates a page of HTML and image tags using dy-
namic buttons, as shown in Figure 17-9:

<?php
if (isset($_GET['button'])) {

 // Configuration settings
 $image = ImageCreateFromPNG('button.png');
 $text = $_GET['button']; // dynamically generated text
 $font = ImagePSLoadFont('Times');
 $size = 24;
 $color = ImageColorAllocate($image, 0, 0, 0); // black
 $bg_color = ImageColorAllocate($image, 255, 255, 255); // white

 // Print centered text
 list($x, $y) = pc_ImagePSCenter($image, $text, $font, $size);
 ImagePSText($image, $text, $font, $size, $color, $bg_color, $x, $y);

 // Send image
 header('Content-type: image/png');
 ImagePNG($image);

 // Clean up
 ImagePSFreeFont($font);
 ImageDestroy($image);

 $url = htmlentities($_SERVER['PHP_SELF']);

} else {
?>
<html>
<head>
 <title>Sample Button Page</title>
</head>
<body>
 <img src="<?php echo $url; ?>?button=Previous"
 alt="Previous" width="132" height="46">
 <img src="<?php echo $url; ?>?button=Next"
 alt="Next" width="132" height="46">
</body>
</html>
<?php
}
?>

17.6 Building Dynamic Images | 531

In this script, if a value is passed in for $_GET['button'], you generate a button and send
out the PNG. If $_GET['button'] isn’t set, you print a basic HTML page with two em-
bedded calls back to the script with requests for button images one for a Previous button
and one for a Next button. A more general solution is to create a separate button.php
page that returns only graphics and set the image source to point at that page.

See Also
Recipe 17.4 for more on drawing text; Recipe 17.5 for more on centering text; Chapter
9, “Graphics,” in Programming PHP, Second Edition, by Rasmus Lerdorf, Kevin Tatroe,
and Peter MacIntyre (O’Reilly).

17.7 Getting and Setting a Transparent Color

Problem
You want to set one color in an image as transparent. When the image is overlayed on
a background, the background shows through the transparent section of the image.

Solution
Use ImageColorTransparent(  ):

$color = ImageColorAllocate($image, $red, $green, $blue);
ImageColorTransparent($image, $color);

Discussion
Both GIFs and PNGs support transparencies; JPEGs, however, do not. To refer to the
transparent color within GD, use the constant IMG_COLOR_TRANSPARENT. For example,
here’s how to make a dashed line that alternates between black and transparent:

// make a two-pixel thick black and white dashed line
$style = array($black, $black, IMG_COLOR_TRANSPARENT, IMG_COLOR_TRANSPARENT);
ImageSetStyle($image, $style);

To find the current transparency setting, take the return value of
ImageColorTransparent(  ) and pass it to ImageColorsForIndex(  ):

Figure 17-9. Sample button page

532 | Chapter 17: Graphics

$transparent = ImageColorsForIndex($image, ImageColorTransparent($image));
print_r($transparent);

$transparent = ImageColorsForIndex($image, ImageColorTransparent($image));
print_r($transparent);
Array
(
 [red] => 255
 [green] => 255
 [blue] => 255
)

The ImageColorsForIndex(  ) function returns an array with the red, green, and blue
values. In this case, the transparent color is white.

See Also
Documentation on ImageColorTransparent(  ) at http://www.php.net/imagecolortrans
parent and on ImageColorsForIndex(  ) at http://www.php.net/imagecolorsforindex.

17.8 Reading EXIF Data

Problem
You want to extract metainformation from an image file. This lets you find out when
the photo was taken, the image size, and the MIME type.

Solution
Use the exif_read_data(  ) function:

$exif = exif_read_data('/beth-and-seth.jpeg');

print_r($exif);
Array
(
 [FileName] => beth-and-seth.jpg
 [FileDateTime] => 1096055414
 [FileSize] => 182080
 [FileType] => 2
 [MimeType] => image/jpeg
 [SectionsFound] => APP12
 [COMPUTED] => Array
 (
 [html] => width="642" height="855"
 [Height] => 855
 [Width] => 642
 [IsColor] => 1
)

 [Company] => Ducky
 [Info] =>
)

17.8 Reading EXIF Data | 533

Discussion
The Exchangeable Image File Format (EXIF) is a standard for embedding metadata
inside of pictures. Most digital cameras use EXIF, so it’s an increasingly popular way
of providing rich data in photo galleries such as Flickr.

PHP has a number of EXIF functions. They don’t require external libraries, but must
be enabled by passing the --enable-exif configuration flag.

The easiest way to extract data is through the exif_read_data(  ) method. It returns an
array of metadata, including the creation date of the photo, the MIME type (which you
can use to help serve up the image), and the image dimensions:

$exif = exif_read_data('/beth-and-seth.jpeg');

print_r($exif);
Array
(
 [FileName] => beth-and-seth.jpg
 [FileDateTime] => 1096055414
 [FileSize] => 182080
 [FileType] => 2
 [MimeType] => image/jpeg
 [SectionsFound] => APP12
 [COMPUTED] => Array
 (
 [html] => width="642" height="855"
 [Height] => 855
 [Width] => 642
 [IsColor] => 1
)

 [Company] => Ducky
 [Info] =>
)

Use the html value to directly embed within an source tag.

You can also use the EXIF functions to retrieve a thumbnail image associated with the
picture. To access this, call exif_thumbnail(  ):

$thumb = exif_thumbnail('beth-and-seth.jpeg', $width, $height, $type);

The exif_thumbnail(  ) function takes four parameters. The first is the filename. The
last three are variables passed by reference where the width, height, and image type will
be stored. The function returns the thumbnail image as a binary string, or false on
failure.

To serve up the image directly, use the image_type_to_mime_type(  ) to get the correct
MIME type. Pass that along as an HTTP header and then display the image:

$thumb = exif_thumbnail('beth-and-seth.jpeg', $width, $height, $type);

if ($thumb != false) {
 $mime = image_type_to_mime_type($type);

534 | Chapter 17: Graphics

 header("Content-type: $mime");
 print $image;
}

Alternatively, you can create an link:

$file = 'beth-and-seth.jpeg';
$thumb = exif_thumbnail($file, $width, $height, $type);

if ($thumb != false) {
 $img = "<img src=\"$file\" alt=\"Beth and Seth\"
 width=\"$width\" height=\"$height\" />
 print $img;
}

See Also
Documentation on exif_read_data(  ) at http://www.php.net/exif-read-data and on
exif_thumbnail(  ) at http://www.php.net/exif-thumbnail.

17.9 Serving Images Securely

Problem
You want to control who can view a set of images.

Solution
Don’t keep the images in your document root, but store them elsewhere. To deliver a
file, manually open it and send it to the browser:

header('Content-Type: image/png');
readfile('/path/to/graphic.png');

Discussion
The first line in the Solution sends the Content-Type header to the browser, so the
browser knows what type of object is coming and displays it accordingly. The second
opens a file off a disk (or from a remote URL) for reading, reads it in, dumps it directly
to the browser, and closes the file.

The typical way to serve up an image is to use an tag and set the src attribute to
point to a file on your web site. If you want to protect those images, you probably
should use some form of password authentication. Two methods are HTTP Basic and
Digest Authentication, which are covered in Recipe 8.9.

The typical way, however, may not always be the best. First, what happens if you want
to restrict the files people can view, but you don’t want to make things complex by
using usernames and passwords? One option is to link only to the files; if users can’t
click on the link, they can’t view the file. They might, however, bookmark old files, or

17.9 Serving Images Securely | 535

they may also try and guess other filenames based on your naming scheme and manually
enter the URL into the browser.

If your content is embargoed, you don’t want people to be able to guess your naming
scheme and view images. When information is embargoed, a select group of people,
usually reporters, are given a preview release, so they can write stories about the topic
or be ready to distribute it the moment the embargo is lifted. You can fix this by making
sure only legal content is under the document root, but this requires a lot of file shuffling
back and forth from directory to directory. Instead, you can keep all the files in one
constant place, and deliver only files that pass a check inside your code.

For example, let’s say you have a contract with a publishing corporation to redistribute
one of their comics on your web site. However, they don’t want you to create a virtual
archive, so you agree to let your users view only the last two weeks’ worth of strips. For
everything else, they’ll need to go to the official site. Also, you may get comics in advance
of their publication date, but you don’t want to let people get a free preview; you want
them to keep coming back to your site on a daily basis.

Here’s the solution. Files arrive named by date, so it’s easy to identify which files belong
to which day. Now, to lock out strips outside the rolling 14-day window, use code like
this:

// display a comic if it's less than 14 days old and not in the future

// calculate the current date
list($now_m,$now_d,$now_y) = explode(',',date('m,d,Y'));
$now = mktime(0,0,0,$now_m,$now_d,$now_y);

// two-hour boundary on either side to account for dst
$min_ok = $now - 14*86400 - 7200; // 14 days ago
$max_ok = $now + 7200; // today

$mo = (int) $_GET['mo'];
$dy = (int) $_GET['dy'];
$yr = (int) $_GET['yr'];

// find the time stamp of the requested comic
$asked_for = mktime(0,0,0,$mo,$dy,$yr);

// compare the dates
if (($min_ok > $asked_for) || ($max_ok < $asked_for)) {
 echo 'You are not allowed to view the comic for that day.';
} else {
 header('Content-type: image/png');
 readfile("/www/comics/{$mo}{$dy}{$yr}.png");
}

See Also
Recipe 23.5 for more on reading files.

536 | Chapter 17: Graphics

17.10 Program: Generating Bar Charts from Poll Results
When displaying the results of a poll, it can be more effective to generate a colorful
bar chart instead of just printing the results as text. The function shown in Exam-
ple 17-4 uses GD to create an image that displays the cumulative responses to a poll
question.

Example 17-4. Graphical bar charts
function pc_bar_chart($question, $answers) {

 // define colors to draw the bars
 $colors = array(array(255,102,0), array(0,153,0),
 array(51,51,204), array(255,0,51),
 array(255,255,0), array(102,255,255),
 array(153,0,204));

 $total = array_sum($answers['votes']);

 // define some spacing values and other magic numbers
 $padding = 5;
 $line_width = 20;
 $scale = $line_width * 7.5;
 $bar_height = 10;

 $x = $y = $padding;

 // allocate a large palette for drawing, since you don't know
 // the image length ahead of time
 $image = ImageCreate(150, 500);
 $bg_color = ImageColorAllocate($image, 224, 224, 224);
 $black = ImageColorAllocate($image, 0, 0, 0);

 // print the question
 $wrapped = explode("\n", wordwrap($question, $line_width));
 foreach ($wrapped as $line) {
 ImageString($image, 3, $x, $y , $line, $black);
 $y += 12;
 }

 $y += $padding;

 // print the answers
 for ($i = 0; $i < count($answers['answer']); $i++) {

 // format percentage
 $percent = sprintf('%1.1f', 100*$answers['votes'][$i]/$total);
 $bar = sprintf('%d', $scale*$answers['votes'][$i]/$total);

 // grab color
 $c = $i % count($colors); // handle cases with more bars than colors
 $text_color = ImageColorAllocate($image, $colors[$c][0],
 $colors[$c][1], $colors[$c][2]);

 // draw bar and percentage numbers

17.10 Program: Generating Bar Charts from Poll Results | 537

 ImageFilledRectangle($image, $x, $y, $x + $bar,
 $y + $bar_height, $text_color);
 ImageString($image, 3, $x + $bar + $padding, $y,
 "$percent%", $black);

 $y += 12;

 // print answer
 $wrapped = explode("\n", wordwrap($answers['answer'][$i], $line_width));
 foreach ($wrapped as $line) {
 ImageString($image, 2, $x, $y, $line, $black);
 $y += 12;
 }

 $y += 7;
 }

 // crop image by copying it
 $chart = ImageCreate(150, $y);
 ImageCopy($chart, $image, 0, 0, 0, 0, 150, $y);

 // deliver image
 header ('Content-type: image/png');
 ImagePNG($chart);

 // clean up
 ImageDestroy($image);
 ImageDestroy($chart);
}

To call this program, create an array holding two parallel arrays: $answers['answer']
and $answer['votes']. Element $i of each array holds the answer text and the total
number of votes for answer $i. Figure 17-10 shows this sample output:

// Act II. Scene II.
$question = 'What a piece of work is man?';

$answers['answer'][] = 'Noble in reason';
$answers['votes'][] = 29;

$answers['answer'][] = 'Infinite in faculty';
$answers['votes'][] = 22;

$answers['answer'][] = 'In form, in moving, how express and admirable';
$answers['votes'][] = 59;

$answers['answer'][] = 'In action how like an angel';
$answers['votes'][] = 45;

pc_bar_chart($question, $answers);

Here the answers are manually assigned, but for a real poll, this data could be pulled
from a database instead.

538 | Chapter 17: Graphics

This program is a good start, but because it uses the built-in GD fonts, there are a lot
of magic numbers embedded in the program corresponding to the font height and
width. Also, the amount of space between each answer is hardcoded. If you modify this
to handle more advanced fonts, such as PostScript or TrueType, you’ll need to update
the algorithms that control those numbers.

At the top of the function, a bunch of RGB combinations are defined; they are used as
the colors to draw the bars. A variety of constants are broken out, such as
$line_width, which is the maximum number of characters per line. The $bar_height
variable determines how high the bars should be, and $scale scales the length of the
bar as a function of the longest possible line. $padding is used to push the results five
pixels away from the edge of the canvas.

You then make a very large canvas to draw the chart; later, you will crop the canvas
down to size, but it can be difficult to know ahead of time how large our total size will
be. The default background color of the bar chart is (224, 224, 224), a light gray.

In order to restrict the width of the chart to a reasonable size, we use wordwrap(  ) to
break our $question down to size and explode(  ) it on \n. This gives us an array of
correctly sized lines, which you loop on to print out one line at a time.

After printing the question, move on to the answers. First, we format the results num-
bers with sprintf(  ). To format the total percentage of votes for an answer as a floating-
point number with one decimal point, use %1.1f. To find the length of the bar
corresponding to that number, you compute a similar number, but instead of multi-
plying it by 100, multiply by a magic number, $scale, and return an integer.

The text color is pulled from the $colors array of RGB triplets. Then, call
ImageFilledRectangle(  ) to draw the bar and ImageString(  ) to draw the percentage text
to the right of the bar. After adding some padding, print the answer using the same
algorithm used to print the question.

When all the answers have been printed, the total size of the bar chart is stored in $y.
Now you can correctly crop the graphic to size, but there’s no ImageCrop(  ) function.
To work around this, make a new canvas of the appropriate size and ImageCopy(  ) over

Figure 17-10. Graphical bar chart of poll results

17.10 Program: Generating Bar Charts from Poll Results | 539

the part of the original canvas you want to keep. Then, serve the correctly sized image
as a PNG using ImagePNG(  ), and clean up with two calls to ImageDestroy(  ) .

As mentioned at the beginning of this section, this is just a quick-and-dirty function to
print bar charts. It works and solves some problems, such a wrapped lines, but isn’t
100 percent perfect. For instance, it’s not very customizable. Many settings are baked
directly into the code. Still, it shows how to put together a variety of GD functions to
create a useful graphical application.

540 | Chapter 17: Graphics

CHAPTER 18

Security and Encryption

18.0 Introduction
Web application security is an important topic that’s gaining more attention from
both the developers who create web applications, and the attackers who try to exploit
them. As a PHP developer, your applications are sure to be the target of many attacks,
and you need to be prepared.

A large number of web application vulnerabilities are due to a misplaced trust in data
provided by third parties. Such data is known as input, and it should be considered
tainted until proven otherwise. If you display tainted data to your users, you create
cross-site scripting (XSS) vulnerabilities. Recipe 18.4 explains how to avoid these by
escaping your output. If you use tainted data in your SQL queries, you can create SQL
injection vulnerabilities. Recipe 18.5 shows you how to eliminate these.

When using data provided by third parties, including the data provided by your users,
it is important to first verify that it is valid. This process is known as filtering, and
Recipe 18.3 shows you how to guarantee that all input is filtered.

Not all security problems can be solved by filtering input and escaping output. Session
fixation, an attack discussed in Recipe 18.1, causes a victim to use a session identifier
chosen by an attacker. Cross-site request forgeries, a type of attack discussed in Rec-
ipe 18.2, cause a victim to send a request of an attacker’s choosing.

Closely related to security is encryption, a powerful tool that can help boost your ap-
plication’s security. Just like any other tool, however, it must be used properly.

Encryption scrambles data. Some data scrambling can’t be unscrambled without un-
reasonable amounts of processing. This is called one-way encryption or hashing. Other
encryption methods work in two directions: data is encrypted, and then it’s decrypted.

PHP supplies tools to encrypt and secure your data. Some tools, such as the md5(  )
function, are part of PHP’s base set of functions, and some are extensions that need to
be explicitly included when PHP is compiled (e.g., mcrypt, mhash, and cURL).

Recipe 18.7 discusses using md5(  ) . It is most widely used for encrypting passwords.

541

mcrypt is a more full-featured encryption library that offers different algorithms and
encryption modes. Because it supports different kinds of encryption, mcrypt is espe-
cially helpful when you need to exchange encrypted data with other systems or with
programs not written in PHP. mcrypt is discussed in detail in Recipe 18.10.

PHP gives you the tools to protect your data with robust encryption, but encryption is
just part of the large and often complex security picture. Your encrypted data can be
unlocked with a key, so protecting that key is very important. If your encryption keys
are accessible to unauthorized users (because they’re stored in a file accessible via your
web server or because they’re stored in a file accessible by other users in a shared hosting
environment, for example), your data is at risk, no matter how secure your chosen
encryption algorithm is.

Sensitive data needs to be protected not only on the server, but also when it’s traveling
over the network between the server and your users. Data sent over regular HTTP is
visible to anyone with access to the network at any point between your server and a
user. Recipe 18.13 discusses how to use SSL to prevent network snoopers from ob-
serving data as it passes by. For a complete discussion on securing PHP applications,
read PHP Security (O’Reilly) by Chris Shiflett.

18.1 Preventing Session Fixation

Problem
You need to ensure that a user’s session identifier cannot be provided by a third party,
such as an attacker who seeks to hijack the user’s session.

Solution
Regenerate the session identifier with session_regenerate_id(  ) whenever there is a
change in the user’s privilege, such as after a successful login:

<?php

session_regenerate_id();
$_SESSION['logged_in'] = true;

?>

Discussion
Sessions allow you to create variables that persist between requests. In order for sessions
to work, each of the users’ requests must include a session identifier that uniquely
identifies a session.

By default, PHP accepts a session identifier sent in either a cookie or in the URL. An
attacker can trick a victim into following a link to your application that includes an
embedded session identifier:

542 | Chapter 18: Security and Encryption

Click Here!

A user who follows this link will resume the session identified as 1234. Therefore, the
attacker now knows the user’s session identifier and can attempt to hijack the user’s
session by presenting the same session identifier.

If the user never logs in or performs any action that differentiates the user from among
the other users of your application, the attacker gains nothing by hijacking the session.
Therefore, by ensuring that the session identifier is regenerated whenever there is a
change in privilege level, you effectively eliminate session fixation attacks. PHP takes
care of updating the session data store and propagating the new session identifier, so
you must only call this one function as appropriate.

See Also
Recipe 11.2 for more information about session options that can help to prevent hi-
jacking and fixation. Recipe 11.3 shows a time-based session ID regeneration scheme.

18.2 Protecting Against Form Spoofing

Problem
You want to be sure that a form submission is valid and intentional.

Solution
Add a hidden form field with a one-time token, and store this token in the user’s session:

<?php

session_start();

$_SESSION['token'] = md5(uniqid(mt_rand(), true));

?>

<form action="buy.php" method="POST">
<input type="hidden" name="token" value="<?php echo $_SESSION['token']; ?>" />
<p>Stock Symbol: <input type="text" name="symbol" /></p>
<p>Quantity: <input type="text" name="quantity" /></p>
<p><input type="submit" value="Buy Stocks" /></p>
</form>

When you receive a request that represents a form submission, check the tokens to be
sure they match:

<?php

session_start();

if ($_POST['token'] != $_SESSION['token'] ||
 !isset($_SESSION['token'])) {

18.2 Protecting Against Form Spoofing | 543

 /* Prompt user for password. */
} else {
 /* Continue. */
}

?>

Discussion
This technique protects against a group of attacks known as cross-site request forgeries
(CSRF). These attacks all cause a victim to send requests to a target site without the
victim’s knowledge. Typically, the victim has an established level of privilege with the
target site, so these attacks allow an attacker to perform actions that the attacker cannot
otherwise perform.

Adding a token to your forms in this way does not prevent a user from forging his own
request from himself, but this is not something you can prevent, nor is it something to
be concerned with. If you filter input as discussed in Recipe 18.3, you force requests to
abide by your rules. The technique shown in this recipe helps to make sure the request
is intentional.

18.3 Ensuring Input Is Filtered

Problem
You need to be sure that all input is filtered before being used.

Solution
Initialize an empty array in which to store filtered data. After you’ve proven that some-
thing is valid, store it in this array:

<?php

/* Initialize an array for filtered data. */
$clean = array();

/* Allow alphabetic names. */
if (ctype_alpha($_POST['name'])) {
 $clean['name'] = $_POST['name'];
} else {
 /* Error */
}

?>

Discussion
By using a strict naming convention, you can more easily keep up with what input has
been filtered. Always initializing $clean to an empty array ensures that data cannot be
injected into the array; you must explicitly add it.

544 | Chapter 18: Security and Encryption

Once you adopt a technique such as the use of $clean, it is important that you only use
data from this array in your business logic.

See Also
Recipes 9.2 to 9.9 discuss form input validation for different types of data in detail.

18.4 Avoiding Cross-Site Scripting

Problem
You need to safely avoid cross-site scripting (XSS) attacks in your PHP applications.

Solution
Escape all HTML output with htmlentities(  ), being sure to indicate the correct char-
acter encoding:

<?php

/* Note the character encoding. */
header('Content-Type: text/html; charset=UTF-8');

/* Initialize an array for escaped data. */
$html = array();

/* Escape the filtered data. */
$html['username'] = htmlentities($clean['username'], ENT_QUOTES, 'UTF-8');

echo "<p>Welcome back, {$html['username']}.</p>";

?>

Discussion
The htmlentities(  ) function replaces each character with its HTML entity, if it has
one. For example, > is replaced with >. Although the immediate effect is that the
data is modified, the purpose of the escaping is to preserve the data in a different con-
text. Whenever a browser renders > as HTML, it appears on the screen as >.

XSS attacks try to take advantage of a situation where data provided by a third party is
included in the HTML without being escaped properly. A clever attacker can provide
code that can be very dangerous to your users when interpreted by their browsers. By
using htmlentities(  ), you can be sure that such third-party data is displayed properly
and not interpreted.

18.4 Avoiding Cross-Site Scripting | 545

See Also
Recipe 9.10 discusses cross-site scripting prevention in the context of submitted form
data.

18.5 Eliminating SQL Injection

Problem
You need to eliminate SQL injection vulnerabilities in your PHP applications.

Solution
Use a database library such as PDO that performs the proper escaping for your data-
base:

<?php

$db = new PDO('mysql:host=localhost;dbname=users',
 $_SERVER['DB_USER'],
 $_SERVER['DB_PASSWORD']);

$statement = $db->prepare("INSERT
 INTO users (username, password)
 VALUES (:username, :password)");

$statement->bindParam(':username', $clean['username']);
$statement->bindParam(':password', $clean['password']);

$statement->execute();

$db = NULL;

?>

Discussion
Using bound parameters ensures your data never enters a context where it is considered
to be anything except raw data, so no value can possibly modify the format of the SQL
query.

If you do not have access to PDO, you can use a database library written in PHP, such
as PEAR::DB, that offers a similar feature:

<?php

$st = $db->query('INSERT
 INTO users (username, password)
 VALUES (?, ?)',
 array($clean['username'], $clean['password']));

?>

546 | Chapter 18: Security and Encryption

Although this method still intermingles your data with the SQL query, PEAR::DB en-
sures that the data is quoted and escaped properly, so there is no practical risk of SQL
injection.

See Also
Chapter 10 for more information about PDO, particularly Recipes 10.4 and 10.7; doc-
umentation on PDO at http://www.php.net/pdo; on PEAR::DB at http://pear.php.net/
manual/en/package.database.db.php.

18.6 Keeping Passwords Out of Your Site Files

Problem
You need to use a password to connect to a database, for example. You don’t want to
put the password in the PHP files you use on your site in case those files are exposed.

Solution
Store the password in an environment variable in a file that the web server loads when
starting up. Then, just reference the environment variable in your code:

<?php

mysql_connect('localhost', $_SERVER['DB_USER'], $_SERVER['DB_PASSWORD']);

?>

Discussion
While this technique removes passwords from the source code of your pages, it makes
them available in other places that need to be protected. Most importantly, make sure
that there are no publicly viewable pages that call phpinfo(  ). Because phpinfo(  ) dis-
plays all of the environment variables, it exposes any passwords you store there. Also,
make sure not to expose the contents of $_SERVER in other ways, such as with the
print_r(  ) function.

Next, especially if you are using a shared host, make sure the environment variables
are set in such a way that they are only available to your virtual host, not to all users.
With Apache, you can do this by setting the variables in a separate file from the main
configuration file:

SetEnv DB_USER "susannah"
SetEnv DB_PASSWORD "y23a!t@ce8"

Inside the <VirtualHost> directive for the site in the main configuration file
(httpd.conf), include this separate file as follows:

Include "/usr/local/apache/database-passwords"

18.6 Keeping Passwords Out of Your Site Files | 547

Make sure that this separate file containing the password (e.g., /usr/local/apache/data-
base-passwords) is not readable by any user other than the one that controls the
appropriate virtual host. When Apache starts up and is reading in configuration files,
it’s usually running as root, so it is able to read the included file. A child process that
handles requests typically runs as an unprivileged user, so rogue scripts cannot read
the protected file.

See Also
Documentation on Apache’s Include directive at http://httpd.apache.org/docs/mod/
core.html#include.

18.7 Storing Passwords

Problem
You need to keep track of users’ passwords, so they can log in to your web site.

Solution
When a user signs up or registers, encrypt the chosen password with md5(  ) and store
the encrypted password in your database of users. For best results, use a salt:

<?php

/* Initialize an array for filtered data. */
$clean = array();

/* Define a salt. */
define('SALT', 'flyingturtle');

/* Encrypt the password. */
$encrypted_password = md5(SALT . $_POST['password']);

/* Allow alphanumeric usernames. */
if (ctype_alnum($_POST['username'])) {
 $clean['username'] = $_POST['username'];
} else {
 /* Error */
}

/* Store user in the database. */
$st = $db->prepare('INSERT
 INTO users (username, password)
 VALUES (?, ?)');
$st->execute(array($clean['username'], $encrypted_password));

?>

548 | Chapter 18: Security and Encryption

Then, when that user attempts to log in to your web site, encrypt the supplied password
with md5(  ) and compare it to the stored encrypted password. If the two encrypted
values match, the user has supplied the correct password:

<?php

/* Initialize an array for filtered data. */
$clean = array();

/* Define a salt. */
define('SALT', 'flyingturtle');

/* Allow alphanumeric usernames. */
if (ctype_alnum($_POST['username'])) {
 $clean['username'] = $_POST['username'];
} else {
 /* Error */
}

$encrypted_password = $db->getOne('SELECT password
 FROM users
 WHERE username = ?',
 array($clean['username']));

if (md5(SALT . $_POST['password']) == $encrypted_password) {
 /* Login succeeds. */
} else {
 /* Login fails. */
}

?>

Discussion
Storing encrypted passwords prevents users’ accounts from becoming compromised if
an unauthorized person gets a peek at your username and password database (although
such unauthorized peeks may foreshadow other security problems).

Using a salt as demonstrated helps protect against the presence of rainbow tables.
Rainbow tables are collections of strings along with the encrypted version of those
strings. For example, http://md5.rednoize.com/ is a rainbow table lookup facility for
MD5. If you enter a query such as 6b34fe24ac2ff8103f6fce1f0da2ef57 (the MD5 of
chris), you can see how easily plain MD5s can be broken. By using a salt, the effec-
tiveness of such a tool is significantly reduced.

Because MD5 is a one-way algorithm, your stored passwords are somewhat more se-
cure. This also means that you can’t get at the plain text of users’ passwords, even if
you need to. For example, if a user forgets his password, you won’t be able to tell him
what it is. The best you can do is reset the password to a new value and then tell the
user the new password. A method for dealing with lost passwords is covered in Rec-
ipe 18.8.

18.7 Storing Passwords | 549

See Also
Recipe 18.11 for information on storing encrypted data; documentation on md5(  ) at
http://php.net/md5.

18.8 Dealing with Lost Passwords

Problem
You want to issue a password to a user who has lost her password.

Solution
Generate a new password and send it to the user’s email address (which you should
have on file):

<?php

/* Generate new password. */
$new_password = '';

for ($i = 0; $i < 8; $i++) {
 $new_password .= chr(mt_rand(33, 126));
}

/* Define a salt. */
define('SALT', 'flyingturtle');

/* Encrypt new password. */
$encrypted_password = md5(SALT . $new_password);

/* Save new encrypted password to the database. */
$st = $db->prepare('UPDATE users
 SET password = ?
 WHERE username = ?');

$st->execute(array($encrypted_password, $clean['username']));

/* Email new plain text password to user. */
mail($clean['email'], 'New Password', "Your new password is: $new_password");

?>

Discussion
If a user forgets her password, and you store encrypted passwords as recommended in
Recipe 18.7, you can’t provide the forgotten password. The one-way nature of
md5(  ) prevents you from retrieving the plain-text password.

Instead, generate a new password and send that to her email address. If you send the
new password to an address you don’t already have on file for that user, you don’t have

550 | Chapter 18: Security and Encryption

a way to verify that the new address really belongs to the user. It may be an attacker
attempting to impersonate the real user.

Because the email containing the new password isn’t encrypted, the code in the Solution
doesn’t include the username in the email message to reduce the chances that an at-
tacker that eavesdrops on the email message can steal the password. To avoid disclosing
a new password by email at all, let a user authenticate herself without a password by
answering one or more personal questions (the answers to which you have on file).
These questions can be “What was the name of your first pet?” or “What’s your moth-
er’s maiden name?”—anything a malicious attacker is unlikely to know. If the user
provides the correct answers to your questions, you can let her choose a new password.

One way to compromise between security and readability is to generate a password for
a user out of actual words interrupted by some numbers:

<?php

$words = array('mother', 'basset', 'detain', 'sudden', 'fellow', 'logged',
 'remove', 'snails', 'direct', 'serves', 'daring', 'chirps',
 'reward', 'snakes', 'uphold', 'wiring', 'nurses', 'regent',
 'ornate', 'dogmas', 'mended', 'hinges', 'verbal', 'grimes',
 'ritual', 'drying', 'chests', 'newark', 'winged', 'hobbit');

$word_count = count($words);

$password = sprintf('%s%02d%s',
 $words[mt_rand(0,$word_count - 1)],
 mt_rand(0,99),
 $words[mt_rand(0,$word_count - 1)]);

echo $password;

?>

This code produces passwords that are two six-letter words with two numbers between
them, like mother43hobbit or verbal68nurses. The passwords are long, but remembering
them is made easier by the words in them.

See Also
Recipe 18.7 for information about storing encrypted passwords.

18.9 Verifying Data with Hashes

Problem
You want to make sure users don’t alter data you’ve sent them in a cookie or form
element.

18.9 Verifying Data with Hashes | 551

Solution
Along with the data, send an MD5 hash of the data that uses a salt. When you receive
the data back, compute the MD5 hash of the received value with the same salt. If they
don’t match, the user has altered the data.

Here’s how to generate an MD5 hash in a hidden form field:

<?php

/* Define a salt. */
define('SALT', 'flyingturtle');

$id = 1337;
$idcheck = md5(SALT . $id);

?>

<input type="hidden" name="id" value="<?php echo $id; ?>" />
<input type="hidden" name="idcheck" value="<?php echo $idcheck; ?>" />

Here’s how to verify the hidden form field data when it’s submitted:

<?php

/* Initialize an array for filtered data. */
$clean = array();

/* Define a salt. */
define('SALT', 'flyingturtle');

if (md5(SALT . $_POST['id']) == $_POST['idcheck']) {
 $clean['id'] = $_POST['id'];
} else {
 /* Error */
}

?>

Discussion
When processing the submitted form data, compute the MD5 hash of the submitted
value of $_POST['id'] with the same salt. If it matches $_POST['idcheck'], the value of
$_POST['id'] has not been altered by the user. If the values don’t match, you know that
the value of $_POST['id'] you received is not the same as the one you sent.

To use an MD5 hash with a cookie, add it to the cookie value with implode(  ):

<?php

/* Define a salt. */
define('SALT', 'flyingturtle');

$name = 'Ellen';

552 | Chapter 18: Security and Encryption

$namecheck = md5(SALT . $name);

setcookie('name', implode('|',array($name, $namecheck)));

?>

Parse the hash from the cookie value with explode(  ):

<?php

/* Define a salt. */
define('SALT', 'flyingturtle');

list($cookie_value, $cookie_check) = explode('|', $_COOKIE['name'], 2);

if (md5(SALT . $cookie_value) == $cookie_hash) {
 $clean['name'] = $cookie_value;
} else {
 /* Error */
}

?>

Using a data verification hash in a form or cookie obviously depends on the salt used
in hash computation. If a malicious user discovers your salt, the hash offers no pro-
tection. Besides guarding the salt zealously, changing it frequently is a good idea. For
an additional layer of protection, use different salts, choosing the specific salt to use in
the hash based on some property of the $id value (10 different words selected by $id%
10, for example). That way, the damage is slightly mitigated if one of the words is
compromised.

If you have the mhash module installed, you’re not limited to MD5 hashes. mhash
supports a number of different hash algorithms. For more information about mhash,
see the mhash material in the online PHP manual or the mhash home page at http://
mhash.sourceforge.net/.

See Also
Recipe 18.9 for an example of using hashes with hidden form variables; documentation
on md5(  ) at http://www.php.net/md5 and the mhash extension at http://www.php.net/
mhash.

18.10 Encrypting and Decrypting Data

Problem
You want to encrypt and decrypt data using one of a variety of popular algorithms.

Solution
Use PHP’s mcrypt extension:

18.10 Encrypting and Decrypting Data | 553

<?php

$algorithm = MCRYPT_BLOWFISH;
$key = 'That golden key that opens the palace of eternity.';
$data = 'The chicken escapes at dawn. Send help with Mr. Blue.';
$mode = MCRYPT_MODE_CBC;

$iv = mcrypt_create_iv(mcrypt_get_iv_size($algorithm, $mode),
 MCRYPT_DEV_URANDOM);

$encrypted_data = mcrypt_encrypt($algorithm, $key, $data, $mode, $iv);
$plain_text = base64_encode($encrypted_data);
echo $plain_text . "\n";

$encrypted_data = base64_decode($plain_text);
$decoded = mcrypt_decrypt($algorithm, $key, $encrypted_data, $mode, $iv);
echo $decoded . "\n";

?>
NNB9WnuCYjyd3Y7vUh7XDfWFCWnQY0BsMehHNmBHbGOdJ3cM+yghABb/XyrJ+w3xz9tms74/a70=
 The chicken escapes at dawn. Send help with Mr. Blue.

Discussion
The mcrypt extension is an interface with mcrypt, a library that implements many dif-
ferent encryption algorithms. The data is encrypted and decrypted by
mcrypt_encrypt(  ) and mcrypt_decrypt(  ), respectively. They each take five arguments.
The first is the algorithm to use. To find which algorithms mcrypt supports on your
system, call mcrypt_list_algorithms(  ) . The full list of mcrypt algorithms is shown in
Table 18-1. The second argument is the encryption key; the third argument is the data
to encrypt or decrypt. The fourth argument is the mode for the encryption or decryption
(a list of supported modes is returned by mcrypt_list_modes(  )). The fifth argument is
an initialization vector (IV), used by some modes as part of the encryption or decryption
process.

Table 18-1 lists all the possible mcrypt algorithms, including the constant value used
to indicate the algorithm, the key and block sizes in bits, and whether the algorithm is
supported by libmcrypt 2.2.x and 2.4.x.

Table 18-1. mcrypt algorithm constants

Algorithm constant Description Key size Block size 2.2.x 2.4.x

MCRYPT_3DES Triple DES 168 (112 ef-
fective)

64 Yes Yes

MCRYPT_TRIPLEDES Triple DES 168 (112 ef-
fective)

64 No Yes

MCRYPT_3WAY 3way (Joan Daemen) 96 96 Yes No

MCRYPT_THREEWAY 3way 96 96 Yes Yes

554 | Chapter 18: Security and Encryption

Algorithm constant Description Key size Block size 2.2.x 2.4.x

MCRYPT_BLOWFISH Blowfish (Bruce Schneier) Up to 448 64 No Yes

MCRYPT_BLOWFISH_COM
PAT

Blowfish with compatibility to other im-
plementations

Up to 448 64 No Yes

MCRYPT_BLOWFISH_128 Blowfish 128 64 Yes No

MCRYPT_BLOWFISH_192 Blowfish 192 64 Yes —

MCRYPT_BLOWFISH_256 Blowfish 256 64 Yes No

MCRYPT_BLOWFISH_448 Blowfish 448 64 Yes No

MCRYPT_CAST_128 CAST (Carlisle Adams and Stafford Ta-
vares)

128 64 Yes Yes

MCRYPT_CAST_256 CAST 256 128 Yes Yes

MCRYPT_CRYPT One-rotor Unix crypt 104 8 — Yes

MCRYPT_ENIGNA One-rotor Unix crypt 104 8 No Yes

MCRYPT_DES U.S. Data Encryption Standard 56 64 Yes Yes

MCRYPT_GOST Soviet Gosudarstvennyi Standard
(“Government Standard”)

256 64 Yes Yes

MCRYPT_IDEA International Data Encryption Algo-
rithm

128 64 Yes Yes

MCRYPT_LOKI97 LOKI97 (Lawrie Brown, Josef Pieprzyk) 128, 192, or
256

64 Yes Yes

MCRYPT_MARS MARS (IBM) 128–448 128 No Yes

MCRYPT_PANAMA PANAMA (Joan Daemen, Craig Clapp) - Stream No Yes

MCRYPT_RC2 Rivest Cipher 2 8–1024 64 No Yes

MCRYPT_RC2_1024 Rivest Cipher 2 1024 64 Yes No

MCRYPT_RC2_128 Rivest Cipher 2 128 64 Yes No

MCRYPT_RC2_256 Rivest Cipher 2 256 64 Yes No

MCRYPT_RC4 Rivest Cipher 4 Up to 2048 Stream Yes No

MCRYPT_ARCFOUR Non-trademarked RC4 compatible Up to 2048 Stream No Yes

MCRYPT_ARCFOUR_IV Arcfour with Initialization Vector Up to 2048 Stream No Yes

MCRYPT_RC6 Rivest Cipher 6 128, 192, or
256

128 No Yes

MCRYPT_RC6_128 Rivest Cipher 6 128 128 Yes No

MCRYPT_RC6_192 Rivest Cipher 6 192 128 Yes No

MCRYPT_RC6_256 Rivest Cipher 6 256 128 Yes No

MCRYPT_RIJNDAEL_128 Rijndael (Joan Daemen, Vincent Rij-
men)

128 128 Yes Yes

MCRYPT_RIJNDAEL_192 Rijndael 192 192 Yes Yes

MCRYPT_RIJNDAEL_256 Rijndael 256 256 Yes Yes

18.10 Encrypting and Decrypting Data | 555

Algorithm constant Description Key size Block size 2.2.x 2.4.x

MCRYPT_SAFERPLUS SAFER+ (based on SAFER) 128, 192, or
256

128 Yes Yes

MCRYPT_SAFER_128 Secure And Fast Encryption Routine with
strengthened key schedule

128 64 Yes Yes

MCRYPT_SAFER_64 Secure And Fast Encryption Routine with
strengthened key

64 64 Yes Yes

MCRYPT_SERPENT Serpent (Ross Anderson, Eli Biham, Lars
Knudsen)

128, 192, or
256

128 No Yes

MCRYPT_SERPENT_128 Serpent 128 128 Yes No

MCRYPT_SERPENT_192 Serpent 192 128 Yes No

MCRYPT_SERPENT_256 Serpent 256 128 Yes No

MCRYPT_SKIPJACK U.S. NSA Clipper Escrowed Encryption
Standard

80 64 No Yes

MCRYPT_TWOFISH Twofish (Counterpane Systems) 128, 192, or
256

128 No Yes

MCRYPT_TWOFISH_128 Twofish 128 128 Yes No

MCRYPT_TWOFISH_192 Twofish 192 128 Yes No

MCRYPT_TWOFISH_256 Twofish 256 128 Yes No

MCRYPT_WAKE Word Auto Key Encryption (David
Wheeler)

256 32 No Yes

MCRYPT_XTEA Extended Tiny Encryption Algorithm
(David Wheeler, Roger Needham)

128 64 Yes Yes

Except for the data to encrypt or decrypt, all the other arguments must be the same
when encrypting and decrypting. If you’re using a mode that requires an initialization
vector, it’s OK to pass the initialization vector in the clear with the encrypted text.

The different modes are appropriate in different circumstances. Cipher Block Chaining
(CBC) mode encrypts the data in blocks, and uses the encrypted value of each block
(as well as the key) to compute the encrypted value of the next block. The initialization
vector affects the encrypted value of the first block. Cipher Feedback (CFB) and Output
Feedback (OFB) also use an initialization vector, but they encrypt data in units smaller
than the block size. Note that OFB mode has security problems if you encrypt data in
smaller units than its block size. Electronic Code Book (ECB) mode encrypts data in
discrete blocks that don’t depend on each other. ECB mode doesn’t use an initialization
vector. It is also less secure than other modes for repeated use, because the same plain
text with a given key always produces the same cipher text. Constants to set each mode
are listed in Table 18-2.

556 | Chapter 18: Security and Encryption

Table 18-2. mcrypt mode constants

Mode constant Description

MCRYPT_MODE_ECB Electronic Code Book mode

MCRYPT_MODE_CBC Cipher Block Chaining mode

MCRYPT_MODE_CFB Cipher Feedback mode

MCRYPT_MODE_OFB Output Feedback mode with 8 bits of feedback

MCRYPT_MODE_NOFB Output Feedback mode with n bits of feedback, where n is the block size of the algorithm used
(libmcrypt 2.4 and higher only)

MCRYPT_MODE_STREAM Stream Cipher mode, for algorithms such as RC4 and WAKE (libmcrypt 2.4 and higher only)

Different algorithms have different block sizes. You can retrieve the block size for a
particular algorithm with mcrypt_get_block_size(  ). Similarly, the initialization vector
size is determined by the algorithm and the mode. mcrypt_create_iv(  ) and
mcrypt_get_iv_size(  ) make it easy to create an appropriate random initialization vec-
tor:

<?php

$iv = mcrypt_create_iv(mcrypt_get_iv_size($algorithm, $mode), MCRYPT_DEV_URANDOM);

?>

The first argument to mcrypt_create_iv(  ) is the size of the vector, and the second is a
source of randomness. You have three choices for the source of randomness:
MCRYPT_DEV_RANDOM reads from the pseudodevice /dev/random, MCRYPT_DEV_URANDOM reads
from the pseudodevice /dev/urandom, and MCRYPT_RAND uses an internal random number
generator. Not all operating systems support random-generating pseudodevices. Make
sure to call srand(  ) before using MCRYPT_RAND in order to get a nonrepeating random
number stream.

The code and examples in this recipe are compatible with mcrypt 2.4. PHP’s mcrypt
interface supports both mcrypt 2.2 and mcrypt 2.4, but there are differences between
the two. With mcrypt 2.2, PHP supports only the following mcrypt functions:
mcrypt_ecb(  ), mcrypt_cbc(  ), mcrypt_cfb(  ), mcrypt_ofb(  ), mcrypt_get_key_size(  ),
mcrypt_get_block_size(  ), mcrypt_get_cipher_name(  ), and mcrypt_create_iv(  ). To en-
crypt or decrypt data with mcrypt 2.2, call the appropriate mcrypt_ MODE (  ) function,
based on what mode you want to use, and pass it an argument that instructs it to encrypt
or decrypt. The following code is the mcrypt 2.2–compatible version of the code in the
Solution:

<?php

$algorithm = MCRYPT_BLOWFISH;
$key = 'That golden key that opens the palace of eternity.';
$data = 'The chicken escapes at dawn. Send help with Mr. Blue.';

$iv = mcrypt_create_iv(mcrypt_get_block_size($algorithm),

18.10 Encrypting and Decrypting Data | 557

 MCRYPT_DEV_URANDOM);

$encrypted_data = mcrypt_cbc($algorithm, $key, $data, MCRYPT_ENCRYPT, $iv);
$plain_text = base64_encode($encrypted_data);
echo $plain_text . "\n";

$encrypted_data = base64_decode($plain_text);
$decoded = mcrypt_cbc($algorithm, $key, base64_decode($plain_text), MCRYPT_DECRYPT, $iv);
echo $decoded . "\n";

?>

See Also
Documentation on the mcrypt extension at http://www.php.net/mcrypt; the mcrypt li-
brary is available at http://mcrypt.hellug.gr/; choosing an appropriate algorithm and
using it securely requires care and planning: for more information about mcrypt and
the cipher algorithms it uses, see the online PHP manual section on mcrypt, the
mcrypt home page, and the manual pages for /dev/random and /dev/urandom; good
books about cryptography include Applied Cryptography by Bruce Schneier (Wiley)
and Cryptography: Theory and Practice by Douglas R. Stinson (Chapman & Hall).

18.11 Storing Encrypted Data in a File or Database

Problem
You want to store encrypted data that needs to be retrieved and decrypted later by
your web server.

Solution
Store the additional information required to decrypt the data (such as algorithm, cipher
mode, and initialization vector) along with the encrypted information, but not the key:

<?php

/* Encrypt the data. */
$algorithm = MCRYPT_BLOWFISH;
$mode = MCRYPT_MODE_CBC;
$iv = mcrypt_create_iv(mcrypt_get_iv_size($algorithm, $mode), MCRYPT_DEV_URANDOM);
$ciphertext = mcrypt_encrypt($algorithm, $_POST['key'], $_POST['data'], $mode, $iv);

/* Store the encrypted data. */
$st = $db->prepare('INSERT
 INTO noc_list (algorithm, mode, iv, data)
 VALUES (?, ?, ?, ?)');
$st->execute(array($algorithm, $mode, $iv, $ciphertext));

?>

To decrypt the data, retrieve a key from the user and use it with the saved data:

558 | Chapter 18: Security and Encryption

<?php

$row = $db->query('SELECT *
 FROM noc_list
 WHERE id = 27')->fetch();
$plaintext = mcrypt_decrypt($row->algorithm,
 $_POST['key'],
 $row['data'],
 $row['mode'],
 $row['iv']);

?>

Discussion
The save-crypt.php script shown in Example 18-1 stores encrypted data to a file.

Example 18-1. save-crypt.php
<?php

function show_form() {
 $html = array();
 $html['action'] = htmlentities($_SERVER['PHP_SELF'], ENT_QUOTES, 'UTF-8');

 print<<<FORM
<form method="POST" action="{$html['action']}">
<textarea name="data" rows="10" cols="40">Enter data to be encrypted here.</textarea>

Encryption Key: <input type="text" name="key" />

<input name="submit" type="submit" value="Save" />
</form>
FORM;
}

function save_form() {
 $algorithm = MCRYPT_BLOWFISH;
 $mode = MCRYPT_MODE_CBC;

 /* Encrypt data. */
 $iv = mcrypt_create_iv(mcrypt_get_iv_size($algorithm, $mode), MCRYPT_DEV_URANDOM);
 $ciphertext = mcrypt_encrypt($algorithm,
 $_POST['key'],
 $_POST['data'],
 $mode,
 $iv);

 /* Save encrypted data. */
 $filename = tempnam('/tmp','enc') or exit($php_errormsg);
 $file = fopen($filename, 'w') or exit($php_errormsg);
 if (FALSE === fwrite($file, $iv.$ciphertext)) {
 fclose($file);
 exit($php_errormsg);
 }

18.11 Storing Encrypted Data in a File or Database | 559

 fclose($file) or exit($php_errormsg);

 return $filename;
}

if (isset($_POST['submit'])) {
 $file = save_form();
 echo "Encrypted data saved to file: $file";
} else {
 show_form();
}

?>

Example 18-2 shows the corresponding program, get-crypt.php, that accepts a filename
and key and produces the decrypted data.

Example 18-2. get-crypt.php

<?php

function show_form() {
 $html = array();
 $html['action'] = htmlentities($_SERVER['PHP_SELF'], ENT_QUOTES, 'UTF-8');

 print<<<FORM
<form method="POST" action="{$html['action']}">
Encrypted File: <input type="text" name="file" />

Encryption Key: <input type="text" name="key" />

<input name="submit" type="submit" value="Display" />
</form>
FORM;

function display() {
 $algorithm = MCRYPT_BLOWFISH;
 $mode = MCRYPT_MODE_CBC;

 $file = fopen($_POST['file'], 'r') or exit($php_errormsg);
 $iv = fread($file, mcrypt_get_iv_size($algorithm, $mode));
 $ciphertext = fread($file, filesize($_POST['file']));
 fclose($fh);

 $plaintext = mcrypt_decrypt($algorithm, $_POST['key'], $ciphertext, $mode, $iv);
 echo "<pre>$plaintext</pre>";
}

if (isset($_POST['submit'])) {
 display();
} else {
 show_form();
}

?>

560 | Chapter 18: Security and Encryption

These two programs have their encryption algorithm and mode hardcoded in them, so
there’s no need to store this information in the file. The file consists of the initialization
vector immediately followed by the encrypted data. There’s no need for a delimiter
after the initialization vector (IV), because mcrypt_get_iv_size(  ) returns exactly how
many bytes the decryption program needs to read to get the whole IV. Everything after
that in the file is encrypted data.

Encrypting files using the method in this recipe offers protection if an attacker gains
access to the server on which the files are stored. Without the appropriate key or tre-
mendous amounts of computing power, the attacker won’t be able to read the files.
However, the security that these encrypted file provides is undercut if the data to be
encrypted and the encryption keys travel between your server and your users’ web
browsers in the clear. Someone who can intercept or monitor network traffic can see
data before it even gets encrypted. To prevent this kind of eavesdropping, use SSL.

An additional risk when your web server encrypts data as in this recipe comes from
how the data is visible before it’s encrypted and written to a file. Someone with root or
administrator access to the server can look in the memory the web server process is
using and snoop on the unencrypted data and the key. If the operating system swaps
the memory image of the web server process to disk, the unencrypted data might also
be accessible in this swap file. This kind of attack can be difficult to pull off but can be
devastating. Once the encrypted data is in a file, it’s unreadable even to an attacker
with root access to the web server, but if the attacker can peek at the unencrypted data
before it’s in that file, the encryption offers little protection.

See Also
Recipe 18.13 discusses SSL and protecting data as it moves over the network; docu-
mentation on mcrypt_encrypt(  ) at http://www.php.net/mcrypt-encrypt,
mcrypt_decrypt(  ) at http://www.php.net/mcrypt-decrypt, mcrypt_create_iv(  ) at http://
www.php.net/mcrypt-create-iv, and mcrypt_get_iv_size(  ) at http://www.php.net/
mcrypt-get-iv-size.

18.12 Sharing Encrypted Data with Another Web Site

Problem
You want to exchange data securely with another web site.

Solution
If the other web site is pulling the data from your site, put the data up on a password-
protected page. You can also make the data available in encrypted form, with or without
a password. If you need to push the data to another web site, submit the potentially
encrypted data via post to a password-protected URL.

18.12 Sharing Encrypted Data with Another Web Site | 561

Discussion
The following page requires a username and password and then encrypts and displays
the contents of a file containing yesterday’s account activity:

<?php

$user = 'bank';
$password = 'fas8uj3';

if ($_SERVER['PHP_AUTH_USER'] != $user ||
 $_SERVER['PHP_AUTH_PW'] != $password) {
 header('WWW-Authenticate: Basic realm="Secure Transfer"');
 header('HTTP/1.0 401 Unauthorized');
 echo "You must supply a valid username and password for access.";
 exit;
}

header('Content-type: text/plain; charset=UTF-8');
$filename = strftime('/usr/local/account-activity.%Y-%m-%d', time() - 86400);
$data = implode('', file($filename));

$algorithm = MCRYPT_BLOWFISH;
$mode = MCRYPT_MODE_CBC;
$key = "There are many ways to butter your toast.";

/* Encrypt data. */
$iv = mcrypt_create_iv(mcrypt_get_iv_size($algorithm, $mode), MCRYPT_DEV_URANDOM);
$ciphertext = mcrypt_encrypt($algorithm, $key, $data, $mode, $iv);

echo base64_encode($iv.$ciphertext);

?>

Here’s the corresponding code to retrieve the encrypted page and decrypt the infor-
mation:

<?php

$user = 'bank';
$password = 'fas8uj3';
$algorithm = MCRYPT_BLOWFISH;
$mode = MCRYPT_MODE_CBC;
$key = "There are many ways to butter your toast.";

$file = fopen("http://$user:$password@bank.example.com/accounts.php", 'r')
 or exit($php_errormsg);
$data = '';

while (!feof($file)) {
 $data .= fgets($file, 1048576);
}

fclose($file) or exit($php_errormsg);
$binary_data = base64_decode($data);
$iv_size = mcrypt_get_iv_size($algorithm, $mode);

562 | Chapter 18: Security and Encryption

$iv = substr($binary_data, 0, $iv_size);
$ciphertext = substr($binary_data, $iv_size, strlen($binary_data));

echo mcrypt_decrypt($algorithm, $key, $ciphertext, $mode, $iv);

?>

The retrieval program does all the steps of the encryption program, but in reverse. It
retrieves the Base64-encoded encrypted data, supplying a username and password.
Then, it decodes the data with Base64 and separates out the initialization vector. Last,
it decrypts the data and prints it out.

In the previous examples, the username and password are still sent over the network
in clear text, unless the connections happen over SSL. However, if you’re using SSL,
it’s probably not necessary to encrypt the contents of the file. We included both pass-
word-prompting and file encryption in these examples to show how it can be done.

There’s one circumstance, however, in which both password protection and file en-
cryption is helpful: if the file isn’t automatically decrypted when it’s retrieved. An
automated program can retrieve the encrypted file and put it, still encrypted, in a place
that can be accessed later. The decryption key thus doesn’t need to be stored in the
retrieval program.

See Also
Recipe 18.13 discusses SSL and protecting data as it moves over the network; docu-
mentation on mcrypt_encrypt(  ) at http://php.net/mcrypt-encrypt and
mcrypt_decrypt(  ) at http://php.net/mcrypt-decrypt.

18.13 Detecting SSL

Problem
You want to know if a request arrived over SSL.

Solution
Test the value of $_SERVER['HTTPS']:

<?php

if ('on' == $_SERVER['HTTPS']) {
 echo 'The secret ingredient in Coca-Cola is Soylent Green.';
} else {
 echo 'Coca-Cola contains many delicious natural and artificial flavors.';
}

?>

18.13 Detecting SSL | 563

Discussion
SSL operates on a lower level than HTTP. The web server and a browser negotiate an
appropriately secure connection, based on their capabilities, and the HTTP messages
can pass over that secure connection. To an attacker intercepting the traffic, it’s just a
stream of nonsense bytes that can’t be read.

Different web servers have different requirements to use SSL, so check your server’s
documentation for specific details. No changes have to be made to PHP to work over
SSL.

In addition to altering code based on $_SERVER['HTTPS'], you can also set cookies to be
exchanged only over SSL connections. If the last argument to setcookie(  ) is TRUE, the
browser sends the cookie back to the server only over a secure connection:

<?php

/* Set an SSL-only cookie named "sslonly" with value "yes" that expires at the
 end of the current browser session. */

setcookie('sslonly', 'yes', '', '/', 'example.org', true);

?>

Although the browser sends these cookies back to the server only over an SSL connec-
tion, the server sends them to the browser (when you call setcookie(  ) in your page)
whether or not the request for the page that sets the cookie is over SSL. If you’re putting
sensitive data in the cookie, make sure that you set the cookie only in an SSL request
as well. Also, keep in mind that the cookie data is unencrypted on the user’s computer.

See Also
Documentation on setcookie(  ) at http://php.net/setcookie.

18.14 Encrypting Email with GPG

Problem
You want to send encrypted email messages. For example, you take orders on your
web site and need to send an email to your factory with order details for processing.
By encrypting the email message, you prevent sensitive data such as credit card numbers
from passing over the network in the clear.

Solution
Encrypt the body of the email message with GNU Privacy Guard (GPG) before sending
it:

<?php

564 | Chapter 18: Security and Encryption

$message_body = escapeshellarg($message_body);
$gpg_path = '/usr/local/bin/gpg';
$sender = 'web@example.com';
$recipient = 'ordertaker@example.com';
$home_dir = '/home/web';
$user_env = 'web';

$cmd = "echo $message_body | HOME=$home_dir USER=$user_env $gpg_path " .
 '--quiet --no-secmem-warning --encrypt --sign --armor ' .
 "--recipient $recipient --local-user $sender";

$message_body = `$cmd`;

mail($recipient, 'Web Site Order', $message_body);

?>

The email message can be decrypted by GPG, Pretty Good Privacy (PGP), or an email
client plug-in that supports either program.

Discussion
PGP is a popular public key encryption program; GPG is an open source program based
on PGP. Because PGP is encumbered by a variety of patent and control issues, it’s often
easier to use GPG.

The code in the Solution invokes /usr/local/bin/gpg to encrypt the message in $mes
sage_body. It uses the private key belonging to $sender and the public key belonging to
$recipient. This means that only $recipient can decrypt the email message and when
he does, he knows the message came from $sender.

Setting the HOME and USER environment variables tells GPG where to look for its keyring:
$HOME/.gnupg/secring.gpg. The --quiet and --no-secmem-warning options suppress
warnings GPG would otherwise generate. The --encrypt and --sign options tell GPG
to both encrypt and sign the message. Encrypting the message obscures it to anyone
other than the recipient. Signing it adds information so that the recipient knows who
generated the message and when it was generated. The --armor option produces plain-
text output instead of binary, so the encrypted message is suitable for emailing.

Normally, private keys are protected with a passphrase. If a private key protected by a
passphrase is copied by an attacker, the attacker can’t encrypt messages with the private
key unless she also knows the passphrase. GPG prompts for the passphrase when en-
crypting a message. In this recipe, however, we don’t want the private key of $sender
to have a passphrase. If it did, the web site couldn’t send new order email messages
without a human typing in the passphrase each time. Storing the passphrase in a file
and providing it to GPG each time you encrypt offers no additional security over not
having a passphrase in the first place.

The downside of using a key without a passphrase for encryption is that an attacker
who obtains the secret key can send fake order emails to your order processor. This is
a manageable risk. Since orders can be submitted via a web site in the first place, there

18.14 Encrypting Email with GPG | 565

is already a place where false information can be injected into the order process. Any
procedures for catching bad orders can also be triggered by these potential fake emails.
Also, once the key theft is discovered, and the problem that enabled the theft is fixed,
switching to a new private key easily disables the attacker.

See Also
The GNU Privacy Guard home page at http://gnupg.org/ and the MIT PGP distribution
site at http://web.mit.edu/network/pgp.html.

566 | Chapter 18: Security and Encryption

CHAPTER 19

Internationalization and Localization

19.0 Introduction
While everyone who programs in PHP has to learn some English eventually to get a
handle on its function names and language constructs, PHP can create applications that
speak just about any language. Some applications need to be used by speakers of many
different languages. Taking an application written for French speakers and making it
useful for German speakers is made easier by PHP’s support for internationalization
and localization.

Internationalization (often abbreviated I18N*) is the process of taking an application
designed for just one locale and restructuring it so that it can be used in many different
locales. Localization (often abbreviated L10N†) is the process of adding support for a
new locale to an internationalized application.

A locale is a group of settings that describe text formatting and language customs in a
particular area of the world. The settings are divided into six categories:

LC_COLLATE
These settings control text sorting: which letters go before and after others in al-
phabetical order.

LC_CTYPE
These settings control mapping between uppercase and lowercase letters as well
as which characters fall into the different character classes, such as alphanumeric
characters.

LC_MONETARY
These settings describe the preferred format of currency information, such as what
character to use as a decimal point and how to indicate negative amounts.

LC_NUMERIC
These settings describe the preferred format of numeric information, such as how
to group numbers and what character is used as a thousands separator.

* The word “internationalization” has 18 letters between the first “i” and the last “n.”
† The word “localization” has 10 letters between the first “l” and the “n.”

567

LC_TIME
These settings describe the preferred format of time and date information, such as
names of months and days and whether to use 24- or 12-hour time.

LC_MESSAGES
This category contains text messages used by applications that need to display
information in multiple languages.

There is also a metacategory, LC_ALL, that encompasses all the categories.

A locale name generally has three components. The first, an abbreviation that indicates
a language, is mandatory. For example, “en” for English or “pt” for Portuguese. Next,
after an underscore, comes an optional country specifier, to distinguish between dif-
ferent countries that speak different versions of the same language. For example,
“en_US” for U.S. English and “en_UK” for British English, or “pt_BR” for Brazilian
Portuguese and “pt_PT” for Portuguese Portuguese. Last, after a period, comes an
optional character set specifier. For example, “zh_TW.Big5” for Taiwanese Chinese
using the Big5 character set. While most locale names follow these conventions, some
don’t. One difficulty in using locales is that they can be arbitrarily named. Finding and
setting a locale is discussed in Recipes 19.1 through 19.3.

Different techniques are necessary for correct localization of plain text, dates and times,
and currency. Localization can also be applied to external entities your program uses,
such as images and included files. Localizing these kinds of content is covered in Recipes
19.4 through 19.8.

Systems for dealing with large amounts of localization data are discussed in Recipes
19.9 and 19.10. Recipe 19.9 shows some simple ways to manage the data, and Rec-
ipe 19.10 introduces GNU gettext, a full-featured set of tools that provide localization
support.

Recipes 19.11 through 19.13 discuss how to make sure your programs work well with
a variety of character encodings so they can handle strings such as à l'Opéra-Théâtre,
поленика, and 優之良品. One way to do this is to have all text your programs process
be encoded as UTF-8. This encoding scheme can handle the Western characters in the
familiar ISO-8859-1 encoding as well as characters for other writing systems around
the world. These recipes focus on using UTF-8 to provide a seamless, language-inde-
pendent experience for your users.

PHP 6, still in development when these words are being written, has greatly enhanced
support for Unicode, including more efficient operations on multibyte strings and a
completely revamped locale system. Andrei Zmievski’s “PHP 6 and Unicode” talk,
available at http://www.gravitonic.com/talks/, has an overview of the Unicode-related
changes coming in PHP 6.

568 | Chapter 19: Internationalization and Localization

19.1 Listing Available Locales

Problem
You want to know what locales your system supports.

Solution
Use the locale program to list available locales; locale -a prints the locales your system
supports.

Discussion
On Linux and Solaris systems, you can find locale at /usr/bin/locale. On Windows XP,
locales are listed in the “Standards and Formats” drop-down menu in the “Regional
Options” tab of the “Regional and Language Options” section of the Control Panel.

Your mileage varies on other operating systems. BSD, for example, includes locale
support but has no locale program to list locales. BSD locales are often stored in /usr/
share/locale, so looking in that directory may yield a list of usable locales.

While the locale system helps with many localization tasks, its lack of standardization
can be frustrating. Systems aren’t guaranteed to have the same locales or even use the
same names for equivalent locales.

See Also
Your system’s locale(1) manpage. A list of language strings that Windows understands
as locale names is at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vclib/html/_crt_language_strings.asphttp://msdn.microsoft.com/library/default.asp?
url=/library/en-us/vclib/html/_crt_language_strings.asp. A list of country/region strings
that Windows understands as locale names is at http://msdn.microsoft.com/library/de
fault.asp?url=/library/en-us/vclib/html/_crt_country_strings.asp.

19.2 Using a Particular Locale

Problem
You want PHP to use the settings of a particular locale.

Solution
Call setlocale(  ) with the appropriate category and locale. Here’s how to use the
es_MX (Mexican Spanish) locale for all categories:

setlocale(LC_ALL,'es_MX');

Here’s how to use the de_AT (Austrian German) locale for time and date formatting:

19.1 Listing Available Locales | 569

setlocale(LC_TIME,'de_AT');

On Windows, the equivalent locale names are Spanish_Mexico and German_Austria.

Discussion
To find the current locale without changing it, call setlocale(  ) with 0 for the locale,
as in Example 19-1.

Example 19-1. Getting the current locale

<?php
print setlocale(LC_ALL,0);
?>

Many systems also support a set of aliases for common locales, listed in a file such
as /usr/share/locale/locale.alias. This file is a series of lines including:

russian ru_RU.ISO-8859-5
slovak sk_SK.ISO-8859-2
slovene sl_SI.ISO-8859-2
slovenian sl_SI.ISO-8859-2
spanish es_ES.ISO-8859-1
swedish sv_SE.ISO-8859-1

The first column of each line is an alias; the second column shows the locale and char-
acter set the alias points to. You can use the alias in calls to setlocale(  ) instead of the
corresponding string the alias points to. For example, you can do setlocale
(LC_ALL,'swedish'); instead of setlocale(LC_ALL,'sv_SE.ISO-8859-1');.

Call setlocale(  ) to change the locale on Windows as well. As described in Rec-
ipe 19.1, however, the locale names are different. If PHP is running in a multithreaded
environment, changing the locale can have unexpected results. A call to setlocale(  )
changes the locale for all threads in the current process. This means that when one
thread changes the locale, it is immediately changed in other threads’ running scripts.
If you need to use setlocale(  ), consider using a single-threaded server setup.

See Also
Recipe 19.3 shows how to set a default locale; documentation on setlocale(  ) at http://
www.php.net/setlocale.

19.3 Setting the Default Locale

Problem
You want to set a locale that all your PHP programs can use.

570 | Chapter 19: Internationalization and Localization

Solution
At the beginning of a file loaded by the auto_prepend_file configuration directive,
call setlocale(  ) to set your desired locale, as in Example 19-2.

Example 19-2. Setting a default locale
<?php
setlocale(LC_ALL,'es_US');
?>

To use whatever default is set by the system environment variables, pass null as the
locale to setlocale(  ), as in Example 19-3.

Example 19-3. Setting a default locale based on system environment
<?php
setlocale(LC_ALL,null);
?>

Discussion
Even if you set up appropriate environment variables before you start your web server
or PHP binary, PHP doesn’t change its locale until you call setlocale(  ). After setting
environment variable LC_ALL to es_US, for example, PHP still runs in the default C locale.

See Also
Recipe 19.2 shows how to use a particular locale; documentation on setlocale(  ) at
http://www.php.net/setlocale and auto_prepend_file at http://www.php.net/manual/en/
configuration.directives.php#ini.auto-prepend-file.

19.4 Localizing Text Messages

Problem
You want to display text messages in a locale-appropriate language.

Solution
Maintain a message catalog of words and phrases and retrieve the appropriate string
from the message catalog before printing it. Example 19-4 shows a simple message
catalog with some foods in American and British English and a function to retrieve
words from the catalog.

Example 19-4. A simple message catalog
<?php
$messages = array ('en_US' =>
 array(
 'My favorite foods are' => 'My favorite foods are',

19.4 Localizing Text Messages | 571

 'french fries' => 'french fries',
 'candy' => 'candy',
 'potato chips' => 'potato chips',
 'eggplant' => 'eggplant'
),
 'en_UK' =>
 array(
 'My favorite foods are' => 'My favourite foods are',
 'french fries' => 'chips',
 'candy' => 'sweets',
 'potato chips' => 'crisps',
 'eggplant' => 'aubergine'
)
);

function msg($s) {
 global $LANG, $messages;
 if (isset($messages[$LANG][$s])) {
 return $messages[$LANG][$s];
 } else {
 error_log("l10n error: LANG: $lang, message: '$s'");
 }
}
?>

Discussion
Example 19-5 uses the message catalog to print out a list of foods.

Example 19-5. Using the message catalog
<?php
$LANG = 'en_UK';
print msg('My favorite foods are').":\n";
print msg('french fries')."\n";
print msg('potato chips')."\n";
print msg('candy')."\n";
?>

Example 19-5 prints:

My favourite foods are:
chips
crisps
sweets

To have Example 19-5 output in American English instead of British English, just set
$LANG to en_US.

You can combine the msg(  ) message retrieval function with sprintf(  ) to store phrases
that require values to be substituted into them. For example, consider the English sen-
tence “I am 12 years old.” In Spanish, the corresponding phrase is “Tengo 12 años.”
The Spanish phrase can’t be built by stitching together translations of “I am,” the nu-
meral 12, and “years old.” Instead, store them in the message catalogs as sprintf(  )-
style format strings, as in Example 19-6.

572 | Chapter 19: Internationalization and Localization

Example 19-6. A sprintf(  )-style message catalog
<?php
$messages = array ('en_US' => array('I am X years old.' => 'I am %d years old.'),
 'es_US' => array('I am X years old.' => 'Tengo %d años.')
);
?>

Example 19-7 passes the results of msg(  ) to sprintf(  ) as a format string.

Example 19-7. Using a sprintf(  )-style message catalog
<?php
$LANG = 'es_US';
print sprintf(msg('I am X years old.'),12);
?>

Example 19-7 prints:

Tengo 12 años.

For phrases that require the substituted values to be in a different order in a different
language, sprintf(  ) supports changing the order of the arguments. This is shown in
Example 19-8.

Example 19-8. Changing message catalog argument order
<?php
$messages = array ('en_US' =>
 array('I am X years and Y months old.' =>
 'I am %d years and %d months old.'),
 'es_US' =>
 array('I am X years and Y months old.' =>
 'Tengo %2$d meses y %1$d años.')
);
?>

With either language, call sprintf(  ) with the same order of arguments (i.e., first years,
then months), as in Example 19-9.

Example 19-9. Using a message catalog with variable argument order
<?php
$LANG = 'es_US';
print sprintf(msg('I am X years and Y months old.'),12,7);
$LANG = 'es_US';
print sprintf(msg('I am X years and Y months old.'),12,7);
?>

Example 19-9 prints:

I am 12 years and 7 months old.
Tengo 7 meses y 12 años.

In the format string, %2$ tells sprintf(  ) to use the second argument, and %1$ tells it to
use the first.

19.4 Localizing Text Messages | 573

These phrases can also be stored as a function’s return value instead of as a string in
an array. Storing the phrases as functions removes the need to use sprintf(  ). Exam-
ple 19-10 shows some functions that return entire sentences.

Example 19-10. Message catalog functions
<?php
// English version
function i_am_X_years_old($age) {
 return "I am $age years old.";
}

// Spanish version
function i_am_X_years_old($age) {
 return "Tengo $age años.";
}
?>

If some parts of the message catalog belong in an array, and some parts belong in
functions, an object is a helpful container for a language’s message catalog. Exam-
ple 19-11 contains a base object and two simple message catalogs.

Example 19-11. Message catalog objects
class pc_MC_Base {
 public $messages;
 public $lang;

 public function msg($s) {
 if (isset($this->messages[$s])) {
 return $this->messages[$s];
 } else {
 error_log("l10n error: LANG: $this->lang, message: '$s'");
 }
 }

}

class pc_MC_es_US extends pc_MC_Base {
 public $lang = 'es_US';
 public $messages = array ('chicken' => 'pollo',
 'cow' => 'vaca',
 'horse' => 'caballo'
);

 public function i_am_X_years_old($age) {
 return "Tengo $age años";
 }
}

class pc_MC_en_US extends pc_MC_Base {
 public $lang = 'en_US';
 public $messages = array ('chicken' => 'chicken',
 'cow' => 'cow',
 'horse' => 'horse'

574 | Chapter 19: Internationalization and Localization

);

 public function i_am_X_years_old($age) {
 return "I am $age years old.";
 }
}
?>

Each message catalog object extends the pc_MC_Base class to get the msg(  ) method, and
then defines its own messages (in its constructor) and its own functions that return
phrases. Example 19-12 uses the message catalog object to print text in Spanish.

Example 19-12. Using a message catalog object

<?php
$MC = new pc_MC_es_US;

print $MC->msg('cow');
print $MC->i_am_X_years_old(15);
?>

To print the same text in English, $MC just needs to be instantiated as a pc_MC_en_US
object instead of a pc_MC_es_US object. The rest of the code remains unchanged.

See Also
The introduction to Chapter 7 discusses object inheritance; documentation on
sprintf(  ) at http://www.php.net/sprintf.

19.5 Localizing Dates and Times

Problem
You want to display dates and times in a locale-specific manner.

Solution
Use strftime(  )’s %c format string: print strftime('%c');. This format string displays
a full time-and-date stamp in a locale-appropriate manner.

You can also store strftime(  ) format strings as messages in your message catalog and
pass the results to strftime(  ), as in Example 19-13.

Example 19-13. Using a message catalog with strftime(  )
<?php
$MC = new pc_MC_es_US;
print strftime($MC->msg('%Y-%m-%d'));
?>

19.5 Localizing Dates and Times | 575

Discussion
The %c format string tells strftime(  ) to return the preferred date and time representa-
tion for the current locale. It produces different results depending on the locale:

Sat May 13 13:53:31 2006 // in the default C locale
Sam 13 Mai 2006 13:53:31 EDT // in the de_AT locale
sam 13 mai 2006 13:53:31 EDT // in the fr_FR locale

The formatted time string that %c produces, while locale appropriate, isn’t very flexible.
If you just want the time, for example, you must pass a different format string to
strftime(  ). But these format strings themselves vary in different locales. In some lo-
cales, displaying an hour from 1 to 12 with an A.M./P.M. designation may be appro-
priate, while in others the hour should range from 0 to 23. To display appropriate time
strings for a locale, add elements to the locale’s $messages array for each time format
you want. The key for a particular time format, such as %H:%M, is always the same in
each locale. The value, however, can vary, such as %H:%M for 24-hour locales or
%I:%M %P for 12-hour locales. Then, look up the appropriate format string and pass it to
strftime(  ), as shown in Example 19-14.

Example 19-14. Using time formatting with a message catalog

<?php
$MC = new pc_MC_es_US;

print strftime($MC->msg('%H:%M'));
?>

Note that changing the locale doesn’t change the time zone; it changes only the for-
matting of the displayed result.

See Also
Recipe 3.4 discusses the format strings that strftime(  ) accepts; Recipe 3.11 covers
changing time zones in your program; documentation on strftime(  ) at http://
www.php.net/strftime.

19.6 Localizing Currency Values

Problem
You want to display currency amounts in a locale-specific format.

Solution
Use the money_format(  ) function to produce an appropriately formatted string. Ex-
ample 19-15 shows a few of the format characters that money_format(  ) understands.

576 | Chapter 19: Internationalization and Localization

Example 19-15. Formatting with money_format(  )
<?php
$income = 5549.3;
$debit = -25.95;

$formats = array('%i', // international
 '%n', // national
 '%+n', // + and -
 '%(n', // () for negative
);

setlocale(LC_ALL, 'en_US');
foreach ($formats as $format) {
 print "$income @ $format = " .
 money_format($format,$income) .
 "\n";
 print "$debit @ $format = " .
 money_format($format,$debit) .
 "\n";
}
?>

Example 19-15 prints:

5549.3 @ %i = USD 5,549.30
-25.95 @ %i = -USD 25.95
5549.3 @ %n = $5,549.30
-25.95 @ %n = -$25.95
5549.3 @ %+n = $5,549.30
-25.95 @ %+n = -$25.95
5549.3 @ %(n = $5,549.30
-25.95 @ %(n = ($25.95)

money_format(  ) is not available on Windows or before PHP 4.3.0. If you can’t use
money_format(  ), use the pc_format_currency(  ) function, shown in Example 19-17, to
produce an appropriately formatted string. Example 19-16 shows
pc_format_currency(  ) in action.

Example 19-16. Using pc_format_currency(  )
<?php
setlocale(LC_ALL,'turkish');
print pc_format_currency(-12345678.45);
?>

Example 19-16 prints:

-12.345.678,45 TL

Discussion
money_format(  ) is similar to sprintf(  ) or strftime(  )—you give it a formatting string
and a value. Special sequences in the formatting string indicate how the value is for-
matted. Just as sprintf(  ) requires the components of a format sequence to be in a

19.6 Localizing Currency Values | 577

particular order—percent sign, padding, type indicator, and so on—money_format(  )
requires that each format sequence be in a particular order: percent sign, flags, width,
left precision, right precision, conversion character. Only the percent sign and the con-
version character are mandatory. Table 19-1 lists the format characters that
money_format(  ) understands.

Table 19-1. Format characters for money_format(  )

Category Format char-
acter

Description

Flag = c Use the single character c as a fill character. The default is space.

Flag ^ Don’t use grouping characters.

Flag + Use locale-specified + and - characters to format positive and negative numbers. This is
the default if neither the + or (flag is used.

Flag (Surround negative numbers with (and).

Flag ! Don’t use the currency symbol in the output string.

Flag - Left-justify all fields. If this is not present, fields are right justified.

Width width Make the minimum field width width . Default minimum field with is 0.

Left precision # preci
sion

If there are less than precision digits to the left of the decimal point, then the fill
character is used to pad the width.

Right precision . preci
sion

The digits to the right of the decimal point are rounded to precision places before
being formatted. If precision is 0, then neither a decimal point nor digits to the right
of it are printed. The default is locale specific.

Conversion
character

i Use the international currency format. This usually means that a three-character code
such as USD is used for the currency symbol.

Conversion
character

n Use the national currency format. This usually means that a locale-appropriate value,
such as $, is used for the currency symbol.

Conversion
character

% A literal %.

Because money_format(  ) relies on the strfmon(  ) system function, it is only available
when that system function is available. Windows does not provide the strfmon(  ) sys-
tem function.

The pc_format_currency(  ) function, shown in Example 19-17, gets the currency for-
matting information from localeconv(  ) and then uses number_format(  ) and some logic
to construct the correct string.

Example 19-17. pc_format_currency
<?php
function pc_format_currency($amt) {
 // get locale-specific currency formatting information
 $a = localeconv();

 // compute sign of $amt and then remove it

578 | Chapter 19: Internationalization and Localization

 if ($amt < 0) { $sign = -1; } else { $sign = 1; }
 $amt = abs($amt);
 // format $amt with appropriate grouping, decimal point, and fractional digits
 $amt = number_format($amt,$a['frac_digits'],$a['mon_decimal_point'],
 $a['mon_thousands_sep']);

 // figure out where to put the currency symbol and positive or negative signs
 $currency_symbol = $a['currency_symbol'];
 // is $amt >= 0 ?
 if (1 == $sign) {
 $sign_symbol = 'positive_sign';
 $cs_precedes = 'p_cs_precedes';
 $sign_posn = 'p_sign_posn';
 $sep_by_space = 'p_sep_by_space';
 } else {
 $sign_symbol = 'negative_sign';
 $cs_precedes = 'n_cs_precedes';
 $sign_posn = 'n_sign_posn';
 $sep_by_space = 'n_sep_by_space';
 }
 if ($a[$cs_precedes]) {
 if (3 == $a[$sign_posn]) {
 $currency_symbol = $a[$sign_symbol].$currency_symbol;
 } elseif (4 == $a[$sign_posn]) {
 $currency_symbol .= $a[$sign_symbol];
 }
 // currency symbol in front
 if ($a[$sep_by_space]) {
 $amt = $currency_symbol.' '.$amt;
 } else {
 $amt = $currency_symbol.$amt;
 }
 } else {
 // currency symbol after amount
 if ($a[$sep_by_space]) {
 $amt .= ' '.$currency_symbol;
 } else {
 $amt .= $currency_symbol;
 }
 }
 if (0 == $a[$sign_posn]) {
 $amt = "($amt)";
 } elseif (1 == $a[$sign_posn]) {
 $amt = $a[$sign_symbol].$amt;
 } elseif (2 == $a[$sign_posn]) {
 $amt .= $a[$sign_symbol];
 }
 return $amt;
}
?>

The code in pc_format_currency(  ) that puts the currency symbol and sign in the correct
place is almost identical for positive and negative amounts; it just uses different ele-
ments of the array returned by localeconv(  ). The relevant elements of the array
returned by localeconv(  ) are shown in Table 19-2.

19.6 Localizing Currency Values | 579

Table 19-2. Currency-related information from localeconv(  )

Array element Description

currency_symbol Local currency symbol

mon_decimal_point Monetary decimal point character

mon_thousands_sep Monetary thousands separator

positive_sign Sign for positive values

negative_sign Sign for negative values

frac_digits Number of fractional digits

p_cs_precedes 1 if currency_symbol should precede a positive value, 0 if it should follow

p_sep_by_space 1 if a space should separate the currency symbol from a positive value, 0 if not

n_cs_precedes 1 if currency_symbol should precede a negative value, 0 if it should follow

n_sep_by_space 1 if a space should separate currency_symbol from a negative value, 0 if not

p_sign_posn Positive sign position:

• 0 if parentheses should surround the quantity and currency_symbol

• 1 if the sign string should precede the quantity and currency_symbol

• 2 if the sign string should follow the quantity and currency_symbol

• 3 if the sign string should immediately precede currency_symbol

• 4 if the sign string should immediately follow currency_symbol

n_sign_posn Negative sign position: same possible values as p_sign_posn

See Also
Recipe 2.10 also discusses money_format(  ); documentation on money_format(  ) at http://
www.php.net/money_format, on localeconv(  ) at http://www.php.net/localeconv, and
on number_format(  ) at http://www.php.net/number-format.

19.7 Localizing Images

Problem
You want to display images that have text in them and have that text in a locale-
appropriate language.

Solution
Make an image directory for each locale you want to support, as well as a global image
directory for images that have no locale-specific information in them. Create copies of
each locale-specific image in the appropriate locale-specific directory. Make sure that
the images have the same filename in the different directories. Instead of printing out
image URLs directly, use a wrapper function similar to the msg(  ) function in Rec-
ipe 19.4 that prints out locale-specific text.

580 | Chapter 19: Internationalization and Localization

Discussion
The img(  ) wrapper function in Example 19-18 looks for a locale-specific version of
an image first, then a global one. If neither are present, it prints a message to the error
log.

Example 19-18. Finding locale-specific images
<?php
$image_base_path = '/usr/local/www/images';
$image_base_url = '/images';

function img($f) {
 global $LANG;
 global $image_base_path;
 global $image_base_url;

 if (is_readable("$image_base_path/$LANG/$f")) {
 return "$image_base_url/$LANG/$f";
 } elseif (is_readable("$image_base_path/global/$f")) {
 return "$image_base_url/global/$f";
 } else {
 error_log("l10n error: LANG: $lang, image: '$f'");
 }
}

The img(  ) function needs to know both the path to the image file in the filesystem
($image_base_path) and the path to the image from the base URL of your site (/im-
ages). It uses the first to test if the file can be read and the second to construct an
appropriate URL for the image.

A localized image must have the same filename in each localization directory. For ex-
ample, an image that says “New!” on a yellow starburst should be called new.gif in both
the images/en_US directory and the images/es_US directory, even though the file images/
es_US/new.gif is a picture of a yellow starburst with "¡Nuevo!” on it.

Don’t forget that the alt text you display in your image tags also needs to be localized.
Example 19-19 prints a complete localized element.

Example 19-19. A localized element
<?php
print '<img src="' . img('cancel.png') . '" ' .
 'alt="' . msg('Cancel') . '"/>';
?>

If the localized versions of a particular image have varied dimensions, store image height
and width in the message catalog as well. Example 19-20 prints a localized
element with height and width attributes.

Example 19-20. A localized element with height and width
<?php
print '<img src="' . img('cancel.png') . '" ' .

19.7 Localizing Images | 581

 'alt="' . msg('Cancel') . '" ' .
 'height="' . msg('img-cancel-height') . '" ' .
 'width="' . msg('img-cancel-width') . '"/>';
?>

The localized messages for img-cancel-height and img-cancel-width are not text strings,
but integers that describe the dimensions of the cancel.png image in each locale.

See Also
Recipe 19.4 discusses locale-specific message catalogs.

19.8 Localizing Included Files

Problem
You want to include locale-specific files in your pages.

Solution
Modify include_path once you’ve determined the appropriate locale, as shown in Ex-
ample 19-21.

Example 19-21. Modifying include_path for localization

<?php
$base = '/usr/local/php-include';
$LANG = 'en_US';

$include_path = ini_get('include_path');
ini_set('include_path',"$base/$LANG:$base/global:$include_path");
?>

Discussion
In Example 19-21, the $base variable holds the name of the base directory for your
included localized files. Files that are not locale-specific go in the global subdirectory
of $base, and locale-specific files go in a subdirectory named after their locale (e.g.,
en_US). Prepending the locale-specific directory and then the global directory to the
include path makes them the first two places PHP looks when you include a file. Putting
the locale-specific directory first ensures that nonlocalized information is loaded only
if localized information isn’t available.

This technique is similar to what the img(  ) function does in the Recipe 19.7. Here,
however, you can take advantage of PHP’s include_path feature to have the directory
searching happen automatically. For maximum utility, reset include_path as early as
possible in your code, preferably at the top of a file loaded via auto_prepend_file on
every request.

582 | Chapter 19: Internationalization and Localization

See Also
Documentation on include_path at http://www.php.net/manual/en/configuration.direc
tives.php#ini.include-path and auto_prepend_file at http://www.php.net/manual/en/con
figuration.directives.php#ini.auto-prepend-file.

19.9 Managing Localization Resources

Problem
You need to keep track of your various message catalogs and images.

Solution
Two techniques simplify the management of your localization resources. The first is
making the new language of an object—for example, Canadian English—extend from
a similar existing language, such as American English. You only have to change the
words and phrases in the new object that differ from the original language.

The second technique: to track what phrases still need to be translated in new lan-
guages, put stubs in the new language object that have the same value as in your base
language. By finding which values are the same in the base language and the new lan-
guage, you can then generate a list of words and phrases to translate.

Discussion
The catalog-compare.php program shown in Example 19-22 prints out messages that
are the same in two catalogs, as well as messages that are missing from one catalog but
present in another.

Example 19-22. catalog-compare.php
<?php

if (! (isset($_SERVER['argv'][1]) && isset($_SERVER['argv'][2]))) {
 die("Specify two locales to compare.");
}

$base = 'pc_MC_'.$_SERVER['argv'][1];
$other = 'pc_MC_'.$_SERVER['argv'][2];

require_once 'pc_MC_Base.php';
require_once "$base.php";
require_once "$other.php";

$base_obj = new $base;
$other_obj = new $other;

/* Check for messages in the other class that
 * are the same as the base class or are in
 * the base class but missing from the other class */

19.9 Managing Localization Resources | 583

foreach ($base_obj->messages as $k => $v) {
 if (isset($other_obj->messages[$k])) {
 if ($v == $other_obj->messages[$k]) {
 print "SAME: $k\n";
 }
 } else {
 print "MISSING: $k\n";
 }
}

/* Check for messages in the other class but missing
 * from the base class */
foreach ($other_obj->messages as $k => $v) {
 if (! isset($base_obj->messages[$k])) {
 print "MISSING (BASE): $k\n";
 }
}

To use this program, put each message catalog object in a file with the same name as
the object (e.g., the pc_MC_en_US class should be in a file named pc_MC_en_US.php, and
the pc_MC_es_US class should be in a file named pc_MC_es_US.php). You then call the
program with the two locale names as arguments on the command line:

% php catalog-compare.php en_US es_US

In a web context, it can be useful to use a different locale and message catalog on a per-
request basis. The locale to use may come from the browser (in an Accept-Language
header), or it may be explicitly set by the server (different virtual hosts may be set up
to display the same content in different languages). If the same code needs to select a
message catalog on a per-request basis, the message catalog class can be instantiated
as in Example 19-23.

Example 19-23. Instantiating message catalogs

<?php
// $locale comes from headers or virtual host name
$classname = "pc_MC_$locale";

require_once 'pc_MC_Base.php';
require_once $classname.'.php';

$MC = new $classname;
?>

See Also
Recipe 19.4 for a discussion of message catalogs; Recipe 7.19 for information on finding
the methods and properties of an object.

584 | Chapter 19: Internationalization and Localization

19.10 Using gettext

Problem
You want a comprehensive system to create, manage, and deploy message catalogs.

Solution
Use PHP’s gettext extension, which allows you to use GNU’s gettext utilities. Exam-
ple 19-24 uses the gettext functions to print messages from a custom message catalog.

Example 19-24. Using gettext

<?php
// Define the directories where the "animals" catalog can be found
bindtextdomain('animals','/home/translator/custom/locale');
// Use the 'animals' catalog as a default
textdomain('animals');

$languages = array('en_US','fr_FR','de_DE');
foreach ($languages as $language) {
 // Change to the appropriate locale
 setlocale(LC_ALL, $language);
 // And get a localized string
 print gettext('Monkey');
 print "\n";
}
?>

Example 19-24 prints:

Monkey
Singe
Affe

Discussion
gettext is a set of tools that makes it easier for your application to produce multilingual
messages. Compiling PHP with the --with-gettext option enables functions to retrieve
the appropriate text from gettext-format message catalogs, and there are a number of
external tools to edit the message catalogs.

With gettext, messages are divided into domains, and all messages for a particular do-
main are stored in the same file. bindtextdomain(  ) tells gettext where to find the message
catalog for a particular domain. A call to:

bindtextdomain('animals','/home/translator/custom/locale')

indicates that the message catalog for the animals domain in the en_US locale is in the
file /home/translator/custom/locale/en_US/LC_MESSAGES/animals.mo.

19.10 Using gettext | 585

The textdomain('animals') function sets the default domain to animals. Calling
gettext(  ) retrieves a message from the default domain. There are other functions, such
as dgettext(  ), that let you retrieve a message from a different domain. When
gettext(  ) (or dgettext(  )) is called, it returns the appropriate message for the current
locale. If there’s no message in the catalog for the current locale that corresponds to
the argument passed to it, gettext(  ) (or dgettext(  )) returns just its argument. As a
result, if you haven’t translated all your messages, your code prints out in English (or
whatever your base language is) for those untranslated messages.

Setting the default domain with textdomain(  ) makes each subsequent retrieval of a
message from that domain more concise, because you just have to call gettext('Good
morning') instead of dgettext('domain','Good morning'). However, if even
gettext('Good morning') is too much typing, you can take advantage of an undocu-
mented function alias: _(  ) for gettext(  ). Instead of gettext('Good morning'), use _
('Good morning').

The gettext web site has helpful and detailed information for managing the information
flow between programmers and translators and how to efficiently use gettext. It also
includes information on other tools you can use to manage your message catalogs, such
as a special GNU Emacs mode.

A downside to gettext that you should be aware of: it’s not thread safe. If you use
gettext in a multithreaded web server, you may run into problems where changing
settings in one thread affects other threads.

See Also
Documentation on gettext at http://www.php.net/gettext; the gettext library at http://
www.gnu.org/software/gettext/gettext.html. “Gettext,” by Joao Prado Maia (http://
www.onlamp.com/pub/a/php/2002/06/13/php.html) explores how to use GNU utilities
such as xgettext and msgfmt to generate and maintain your own message catalogs.

19.11 Setting the Character Encoding of Outgoing Data

Problem
You want to make sure that browsers correctly handle the UTF-8-encoded text that
your programs emit.

Solution
Set PHP’s default_encoding configuration directive to utf-8. This ensures that the
Content-Type header PHP emits on HTML responses includes the charset=utf-8 piece,
which tells web browsers to interpret the page contents as UTF-8 encoded.

586 | Chapter 19: Internationalization and Localization

Discussion
Setting default_encoding gives web browsers a heads-up that your page contents should
be interpreted as UTF-8 encoded. However, you still have the responsibility to make
sure that the page contents really are properly UTF-8 encoded by using string functions
appropriately. Recipe 19.13 details how to do that.

If you can’t change the default_encoding configuration directive, send the proper
Content-Type header yourself with the header(  ) function, as shown in Exam-
ple 19-25.

Example 19-25. Setting character encoding
<?php
header('Content-Type: text/html;charset=utf-8');
?>

See Also
Recipe 19.13 for information on generating UTF-8-encoded text.

19.12 Setting the Character Encoding of Incoming Data

Problem
You want to make sure that data flowing into your program has a consistent character
encoding so you can handle it properly. For example, you want to treat all incoming
submitted form data as UTF-8.

Solution
You can’t guarantee that browsers will respect the instructions you give them with
regard to character encoding, but there are a number of things you can do that make
well-behaved browsers generally follow the rules.

First, follow the instructions in Recipe 19.11 so that your programs tell browsers that
they are emitting UTF-8-encoded text. A Content-Type header with a charset is a good
hint to a browser that submitted forms should be encoded using the character encoding
the header specifies.

Second, include an accept-charset="utf-8" attribute in <form/> elements that you out-
put. Although it’s not supported by all web browsers, it instructs the browser to encode
the user-entered data in the form as UTF-8 before sending it to the server.

Discussion
In general, browsers send back form data with the same encoding that was used to
generate the page containing the form. So if you standardize on UTF-8 output, you can
be reasonably sure that you’re always getting UTF-8 input. The accept-charset

19.12 Setting the Character Encoding of Incoming Data | 587

<form/> attribute is part of the HTML 4.0 specification, but is not implemented every-
where.

See Also
Recipe 19.11 for information about sending UTF-8-encoded output; the
accept-charset <form/> attribute is described at http://www.w3.org/TR/REC-html40/
interact/forms.html#adef-accept-charset.

19.13 Manipulating UTF-8 Text

Problem
You want to work with UTF-8-encoded text in your programs. For example, you want
to properly calculate the length of multibyte strings and make sure that all text is output
as proper UTF-8-encoded characters.

Solution
Use a combination of PHP functions for the variety of tasks that UTF-8 compliance
demands.

If the mbstring extension is available, use its string functions for UTF-8-aware string
manipulation. Example 19-26 uses the mb_strlen(  ) function to compute the number
of characters in each of two UTF-8-encoded strings.

Example 19-26. Using mb_strlen(  )
<?php
// Set the encoding properly
mb_internal_encoding('UTF-8');
// ö is two bytes
$name = 'Kurt Gödel';
// Each of these Hangul characters is three bytes
$dinner = '불고기';

$name_len_bytes = strlen($name);
$name_len_chars = mb_strlen($name);

$dinner_len_bytes = strlen($dinner);
$dinner_len_chars = mb_strlen($dinner);

print "$name is $name_len_bytes bytes and $name_len_chars chars\n";
print "$dinner is $dinner_len_bytes bytes and $dinner_len_chars chars\n";
?>

Example 19-26 prints:

Kurt Gödel is 11 bytes and 10 chars
불고기 is 9 bytes and 3 chars

588 | Chapter 19: Internationalization and Localization

The iconv extension, which is available by default in PHP 5, also offers a few multibyte-
aware string manipulation functions, as shown in Example 19-27.

Example 19-27. Using iconv
<?php
// Set the encoding properly
iconv_set_encoding('internal_encoding','UTF-8');
// ö is two bytes
$name = 'Kurt Gödel';
// Each of these Hangul characters is three bytes
$dinner = '불고기';

$name_len_bytes = strlen($name);
$name_len_chars = iconv_strlen($name);

$dinner_len_bytes = strlen($dinner);
$dinner_len_chars = iconv_strlen($dinner);

print "$name is $name_len_bytes bytes and $name_len_chars chars\n";
print "$dinner is $dinner_len_bytes bytes and $dinner_len_chars chars\n
";

print "The seventh character of $name is " . iconv_substr($name,6,1) . "\n";
print "The last two characters of $dinner are " . iconv_substr($dinner,-2);
?>

Use the optional third argument to functions such as htmlentities(  ) and
htmlspecialchars(  ) that instructs them to treat input as UTF-8 encoded, as shown in
Example 19-28.

Example 19-28. UTF-8 HTML encoding
<?php
$encoded_name = htmlspecialchars($_POST['name'], ENT_QUOTES, 'UTF-8');
$encoded_dinner = htmlentities($_POST['dinner'], ENT_QUOTES, 'UTF-8');
?>

Discussion
Eternal vigilance is the price of proper character encoding, at least until PHP 6 is re-
leased. If you’ve followed the instructions in Recipes 19.11 and 19.12, data coming into
your program should be UTF-8 encoded and browsers will properly handle data coming
out of your program as UTF-8 encoded. This leaves you with two responsibilities: to
operate on strings in a UTF-8-aware manner and to generate text that is UTF-8 encoded.

Fulfulling the first responsibility is made easier once you have adopted the fundamental
credo of internationalization awareness: a character is not a byte. The PHP-specific
correlary to this axiom is that PHP’s string functions only know about bytes, not char-
acters. For example, the strlen(  ) function counts the number of bytes in a string, not
the number of characters. In the prelapsarian days of ISO-8859-1 encoding, this wasn’t
a problem—each of the 256 characters in the character set took up one byte. A UTF-8-
encoded character, on the other hand, uses between one and four bytes. The

19.13 Manipulating UTF-8 Text | 589

mbstring and iconv extensions provide alternatives for some string functions that op-
erate on a character-by-character basis, not a byte-by-byte basis. These functions are
listed in Table 19-3.

Table 19-3. Character-Based Functions

Regular function mbstring function iconv function

strlen(  ) mb_strlen(  ) iconv_strlen(  )

strpos(  ) mb_strpos(  ) iconv_strpos(  )

strrpos(  ) mb_strrpos(  ) iconv_strrpos(  )

substr(  ) mb_substr(  ) iconv_substr(  )

strtolower(  ) mb_strtolower(  ) -

strtoupper(  ) mb_strtoupper(  ) -

substr_count(  ) mb_substr_count(  ) -

ereg(  ) mb_ereg(  ) -

eregi(  ) mb_eregi(  ) -

ereg_replace(  ) mb_ereg_replace(  ) -

eregi_replace(  ) mb_eregi_replace(  ) -

split(  ) mb_split(  ) -

mail(  ) mb_send_mail(  ) -

For mbstring to work properly, it needs to be told to use the UTF-8 encoding scheme.
As in Example 19-26, you can do this in script with the mb_internal_encoding(  ) func-
tion. Or to set this value system-wide, set the mbstring.internal_encoding configuration
directive to UTF-8.

iconv has similar needs. Use the iconv_set_encoding(  ) function as in Example 19-27
or set the iconv.internal_encoding configuration directive.

mbstring provides alternatives for the ereg family of regular expression functions. How-
ever, you can always use UTF-8 strings with the PCRE (preg_*(  )) regular expression
functions. The u modifier tells a preg function that the pattern string is UTF-8 encoded
and enables the use of various Unicode properties in patterns. Example 19-29 uses the
“lowercase letter” Unicode property to count the number of lowercase letters in each
of two strings.

Example 19-29. UTF-8 regular expression matching
<?php
$name = 'Kurt Gödel';
$dinner = '불고기';

$name_lower = preg_match_all('/\p{Ll}/u',$name,$match);
$dinner_lower = preg_match_all('/\p{Ll}/u',$dinner,$match);

print "There are $name_lower lowercase letters in $name. \n";

590 | Chapter 19: Internationalization and Localization

print "There are $dinner_lower lowercase letters in $dinner. \n";
?>

Example 19-29 prints:

There are 7 lowercase letters in Kurt Gödel.
There are 3 lowercase letters in 불고기.

Other functions help you translate between other character encodings and UTF-8.
The utf8_encode(  ) and utf8_decode(  ) functions move strings between the
ISO-8859-1 encoding and UTF-8. Because ISO-8859-1 is the default encoding in many
situations, these functions are a handy way to bring non-UTF-8-aware data into com-
pliance. For example, the dictionaries that the pspell extension uses often have their
entries encoded in ISO-8859-1. In Example 19-30, the utf8_encode(  ) function is nec-
essary to turn the output of pspell_suggest(  ) into a proper UTF-8-encoded string.

Example 19-30. Applying UTF-8 encoding to ISO-8859-1 strings

<?php
$lang = isset($_GET['lang']) ? $_GET['lang'] : 'en';
$word = isset($_GET['word']) ? $_GET['word'] : 'asparagus';

$ps = pspell_new($lang);
$check = pspell_check($ps, $word);

print htmlspecialchars($word,ENT_QUOTES,'UTF-8');
print $check ? ' is ' : ' is not ';
print ' found in the dictionary.';
print '<hr/>';

if (! $check) {
 $suggestions = pspell_suggest($ps, $word);
 if (count($suggestions)) {
 print 'Suggestions: ';
 foreach ($suggestions as $suggestion) {
 $utf8suggestion = utf8_encode($suggestion);
 $safesuggestion = htmlspecialchars($utf8suggestion,
 ENT_QUOTES,'UTF-8');
 print "$safesuggestion";
 }
 print '';
}
?>

It may ease the cognitive burden of proper character encoding to think of it as a task
similar to HTML entity encoding. In each case, text must be processed so that it is
appropriately formatted for a particular context. With entity encoding, that usually
means running data retrieved from an external source through htmlentities(  ) or
htmlspecialchars(  ). With character encoding, it means turning everything into UTF-8
before you process it, using a character-aware function for string operations, and en-
suring strings are UTF-8 encoded before outputting them.

19.13 Manipulating UTF-8 Text | 591

See Also
Recipes 19.11 and 19.12 for setting up your programs for receiving and sending UTF-8-
encoded strings; documentation on mbstring at http://www.php.net/mbstring, on
iconv at http://www.php.net/iconv, on htmlentities(  ) at http://www.php.net/htmlenti
ties, on htmlspecialchars(  ) at http://www.php.net/htmlspecialchars, on PCRE pattern
syntax at http://www.php.net/reference.pcre.pattern.syntax, on utf8_encode(  ) at http://
www.php.net/utf8_encode, and on utf8_decode(  ) at http://www.php.net/utf8_decode.

Good background resources on managing PHP and character set issues include:

• “An Overview on Globalizing Oracle PHP Applications” by Peter Linsley (http://
www.oracle.com/technology/tech/php/pdf/globalizing_oracle_php_applica
tions.pdf)

• Character Sets/Character Encoding Issues on the PHP WACT Wiki (http://
www.phpwact.org/php/i18n/charsets)

• “Characters vs. Bytes” by Tim Bray (http://www.tbray.org/ongoing/When/200x/
2003/04/26/UTF)

• “A Tutorial on Character Code Issues” by Jukka Korpela (http://www.cs.tut.fi/
~jkorpela/chars.html)

592 | Chapter 19: Internationalization and Localization

CHAPTER 20

Error Handling, Debugging, and 
Testing

20.0 Introduction
The name programmer for those who spend their time developing web applications
is misleading: the vast majority of time one spends “programming” is actually spent
debugging. Whether you’re fixing typos or refactoring chunks of code that are per-
forming poorly in a heavily loaded production environment, odds are you’ll spend a
large amount of your career debugging and testing, and debugging and testing again.
And again, and again, and again.

The raucous party that is a frantic, all-night debugging session was probably omitted
from your job description—who would sign up for that kind of fun? The fact is that
errors, bugs, debugging, and testing are a part of the programmer’s life. If you face this
head on with good practices and techniques, you can minimize the time you spend
debugging and maximize the time you spend on the good stuff.

Unfortunately, many developers don’t spend much time building error handling, de-
bugging, and testing skills; don’t make the same mistake. If you employ what’s
affectionately known as pessimistic programming, you’ll begin to plan for things to go
wrong—and your application will be prepared to handle it gracefully during those
moments.

Recipes 20.1 through 20.11 deal with errors: finding the source of errors, determining
what was going on when an error occurred, hiding errors from end users, and logging
errors so you can conduct informed debugging sessions after the error occurs.

Recipe 20.12 explores the use of Xdebug, an open source PHP extension that allows
for line-by-line debugging in real time, along with a robust set of code-profiling features.

Recipes 20.13, 20.14, and 20.15 explore the world of unit testing in PHP, and show
you how to turn your fixed bugs into a test suite that can help you ensure that once a
bug is fixed, it stays fixed.

593

Recipe 20.16 introduces you to XAMPP, an easy way to set up a testing environment
on your local computer, so that you can work in a sandbox environment without fear
of breaking a production web site while you’re trying to determine what’s gone wrong.

Developing good debugging and testing habits is the thing that many developers put
off for the longest time. Don’t wait until the next project to start learning good practices;
if you do, you may never get to it.

20.1 Finding and Fixing Parse Errors

Problem
Your PHP script fails to run due fatal parse errors, and you want to find the problem
quickly and continue coding.

Solution
Check the line that the PHP interpreter reports as having a problem. If that line is OK,
work your way backward in the program until you find the problematic line.

Or use a PHP-aware development environment that will alert you to syntax errors as
you code, and that can also help track down parse errors when they occur.

Discussion
Like most programming languages, the PHP interpreter is very picky about the way
scripts are written. When things aren’t written exactly as they they should be, the PHP
interpreter will halt parsing and let you know that things aren’t right. This is called a
parse error.

Take this flawed program:
<?php
if isset($user_firstname) {
 print "Howdy, $user_firstname!";
} else {
 print "Howdy!";
}
?>

Save that to a file called howdy.php and run it, and PHP will display this error message:

 Parse error: syntax error, unexpected T_ISSET, expecting '(' in
/var/www/howdy.php on line 2

Based on this message, we know that there’s a problem on line 2—specifically, a syntax
error; something about an unexpected T_ISSET.

When PHP parses scripts to convert them into a format that the computer can under-
stand, it breaks each line down into chunks called tokens. There are dozens of tokens

594 | Chapter 20: Error Handling, Debugging, and Testing

that PHP recognizes, and it knows the rules about what tokens are allowed to appear
in what order in a line of PHP code. In the parse error above, the bit about an unexpected
T_ISSET means that a T_ISSET token was encountered by the PHP interpreter where it’s
not supposed to be.

Reading a little further through the parse error, it’s suddenly clear that PHP interpreter
was expecting a '(' where it found the T_ISSET token. Looking back at line 2 of the
program, sure enough, the open parenthesis is missing after the if and before the
isset(  ) function.

Some PHP-aware editing tools can alert you to these problems before you get to the
stage of running the code and getting the parse error in the first place. Figure 20-1 shows
our buggy program in Zend Studio 5, complete with advance warning of the parse error
in our future.

It’s not always as easy as going directly to the line that the parse error tells you to go
to. Sometimes an error several lines prior to the one reported causes a problem that
may not seem like a problem when it is encountered, but is a problem within the context
of what is on the line that the parse error is referring to.

If you have difficulty finding the source of the error and don’t have access to a debugging
tool to help you root out the cause of the error, remember that when all else fails,
commenting is your friend. Start by commenting out blocks of code before the line
referred to in the parse error, and then rerunning the offending script. Through the
process of elimination, you will eventually find the line causing the problem.

Figure 20-1. Zend Studio 5 sees the parse error before it happens

20.1 Finding and Fixing Parse Errors | 595

See Also
The PHP parser token cheatsheet at http://www.php.net/tokens.

20.2 Creating Your Own Exception Classes

Problem
You want control over how (or if) error messages are displayed to users, even though
you’re using several third-party libraries that each have their own views on handling
errors.

Solution
Take advantage of PHP 5’s support for exceptions to create your own exception handler
that will do your bidding when errors occur in third-party libraries:

class CustomException extends Exception
{
 public function __construct($message, $code = 0) {
 // make sure everything is assigned properly
 parent::__construct($message, $code);

 // log what we know
 $msg = "--\n";
 $msg .= __CLASS__ . ": [{$this->code}]: {$this->message}\n";
 $msg .= $this->getTraceAsString() . "\n";
 error_log($msg);
 }

 // overload the __toString() method to suppress any "normal" output
 public function __toString() {
 return $this->printMessage();
 }

 // map error codes to output messages or templates
 public function printMessage() {

 $usermsg = '';
 $code = $this->getCode();

 switch ($code) {
 case SOME_DEFINED_ERROR_CODE:
 $usermsg = 'Ooops! Sorry about that.';
 break;
 case OTHER_DEFINED_ERROR_CODE:
 $usermsg = "Drat!";
 break;
 default:
 $usermsg = file_get_contents('/templates/general_error.html');
 break;
 }
 return $usermsg;

596 | Chapter 20: Error Handling, Debugging, and Testing

 }

 // static exception_handler for default exception handling
 public static function exception_handler($exception) {
 throw new CustomException($exception);
 }

}

// make sure to catch every exception
set_exception_handler('CustomException', 'exception_handler');

try {
 $obj = new CoolThirdPartyPackage();
} catch (CustomException $e) {
 echo $e;
}

Discussion
PHP 5 introduced the concept of exceptions to PHP. Exceptions are a common con-
struct in many other languages; they’re used to deal gracefully with unforeseen error
conditions. This is particularly useful when including third-party library code in your
scripts when you’re not 100 percent confident how that code will behave in unpre-
dictable circumstances, such as loss of database connectivity, an unresponsive remote
API server, or similar acts of randomness.

Exceptions provide your scripts with a try/catch structure you used to create a sand-
boxed section of your script where things can go horribly wrong without hurting
anything else:

try {
 // do something
 $obj = new CoolThing();
} catch (CustomException $e) {
 // at this point, the CoolThing wasn't cool
 print $e;
}

So why use a custom exception, when PHP 5 already provides a perfectly functional
exception class? The default exception class doesn’t exactly fulfill the graceful part of
handling unpredictable results. It just prints out an error message not much different
from regular errors. If you want truly flexible handling of these unfortunate events, a
custom exception handler allows you to do what you have determined is the most
appropriate given the condition.

In the CustomException above, there are two objectives. The first is to log everything
you can about what happened; the second is to be as cool as possible from the user’s
perspective.

20.2 Creating Your Own Exception Classes | 597

The __construct(  ) method sets up the exception by calling the parent’s constructor
(the constructor of the default exception class) to ensure that all possible values are set
for use by our custom exception’s methods.

Then, you immediately log what you can, using an error_log(  ) call that you can replace
with a custom error logger of your choice. In keeping with the goal of handling this
error gracefully, make sure that your error logger is capable of logging this error without
causing another one. For example, if the error you’re about to log is related to failed
database connectivity, it’s probably a good idea if you don’t try to log this error to an
error log table on that same database server.

From there, the CustomException class is written to expect the calling code to print out
the error. However, that is not required behavior. You could just as easily have a try/
catch block like this:

try {
 // do something
 $obj = new CoolThing();
} catch (CustomException $e) {
 // at this point, the CoolThing wasn't cool
 $e->redirectToOhNoPage();
}

The segment catch (CustomException $e) means that an instance of the
CustomException class will be instantiated and assigned to the variable $e. From there,
$e is just an object that has some predefined values and methods relating to the problem
that caused the exception, but is otherwise a regular object that can be as simple or as
complicated as you want it to be.

One primary difference between a standard error handler and exceptions is the concept
of recovery. The use case shown in this recipe thus far has a good correlation with the
set_error_handler(  ) usage from PHP 4 you may already be familiar with. The idea is
that your custom handler can contain a clean-up routine that checks the state of the
application at the time that the custom exception is caught, cleans up as best as it can,
and dies gracefully.

Exceptions can also be used to easily recover from an error in the midst of an applica-
tion’s flow. For example, a try block can have multiple catch blocks that are somewhat
neater than a bunch of if/else/else/else blocks:

try {
 // do something
 $obj = new CoolThing();
} catch (PossibleException $e) {
 // we thought this could possibly happen
 print "<!-- caught exception $e! -->";
 $obj = new PlanB();
} catch (AnotherPossibleException $e) {
 // we knew about this possibility as well
 print "<!-- aha! caught exception $e -->";
 $obj = new PlanC();
} catch (CustomException $e) {

598 | Chapter 20: Error Handling, Debugging, and Testing

 // if all else fails, go to clean-up
 $e->cleanUp();
 $e->bailOut();
}

In this example, we’re able to use the try/catch structure to check for exception con-
ditions without stepping out of the flow of this chunk of code, unless all else truly fails.
If we were unable to recover in any of the ways we knew how to in line with the flow
of the application, we still have the option of bailing out to a catchall custom exception.
We can even throw a new exception inside the catch blocks in order to influence the
order in which exceptions bubble up to a try/catch block that may be wrapping the
chunk of code currently executing.

See Also
Recipe 20.9 for more on logging errors; documentation on exceptions at http://
www.php.net/exceptions.

20.3 Printing a Stack Trace

Problem
You want to know what’s happening at a specific point in your program, and what
happened leading up to that point.

Solution
Use debug_print_backtrace(  ):

function stooges() {
 print "woo woo woo!\n";
 larry();
}

function larry() {
 curly();
}

function curly() {
 moe();
}

function moe() {
 debug_print_backtrace();
}

stooges();

This will print:

woo woo woo!
#0 moe() called at [backtrace.php:14]

20.3 Printing a Stack Trace | 599

#1 curly() called at [backtrace.php:10]
#2 larry() called at [backtrace.php:6]
#3 stooges() called at [backtrace.php:21]

Discussion
The debug_backtrace(  ) function was introduced in PHP 4.3.0, followed by the handy
debug_print_backtrace(  ) function in PHP 5.0.0. This combination allows you to
quickly get a sense of what has been been going on in your application immediately
before you called a particular function.

The more complicated your application, the more information you can expect to have
returned from the backtrace functions. For debugging larger codebases, you may ach-
ieve bug-hunting success more quickly using a full debugging extension, such as
Xdebug, or an integrated development environment (IDE), such as PHPEdit or Zend
Studio, that supports setting breakpoints, stepping in and out of blocks of code, watch-
ing the evolution of variables, and more.

If all you need is a little more information than you can get from sprinkling print 'Here
I am on line ' . __LINE__; statements throughout your code, debug_backtrace(  ) and/
or debug_print_backtrace(  ) will suit your needs well.

If you’re still using PHP 4 and want the PHP 5–only debug_print_backtrace(  ) function,
you can use PEAR’s PHP_Compat compatibility package. PHP_Compat provides an imple-
mentation of debug_print_backtrace(  ) that is identical to the native PHP 5 function.

See Also
Documentation on debug_backtrace(  ) at http://www.php.net/debug-backtrace and on
debug_print_backtrace(  ) at http://www.php.net/debug-print-backtrace; the PEAR
PHP_Compat package at http://pear.php.net/package/PHP_Compat; Zend Studio IDE at
http://www.zend.com/products/zend_studio; PHPEdit IDE at http://www.waterproof.fr/
products/PHPEdit/.

20.4 Reading Configuration Variables

Problem
You want to get the value of a PHP configuration setting.

Solution
Use ini_get(  ):

// find out the include path:
$include_path = ini_get('include_path');

600 | Chapter 20: Error Handling, Debugging, and Testing

Discussion
To get all the configuration variable values in one step, call ini_get_all(  ). It returns
the variables in an associative array, and each array element is itself an associative array.
The second array has three elements: a global value for the setting, a local value, and
an access code:

// put all configuration variables in an associative array
$vars = ini_get_all();
print_r($vars['include_path']);
Array
 (
 [global_value] => .:/usr/local/lib/php/
 [local_value] => .:/usr/local/lib/php/
 [access] => 7
)

The global_value is the value set from the php.ini file; the local_value is adjusted to
account for any changes made in the web server’s configuration file, any rele-
vant .htaccess files, and the current script. The value of access is a numeric constant
representing the places where this value can be altered. Table 20-1 explains the values
for access. Note that the name access is a little misleading in this respect, as the value
of the setting can always be checked, but not always adjusted.

Table 20-1. Access values

Value PHP constant Meaning

1 PHP_INI_USER Any script, using ini_set(  )

2 PHP_INI_PERDIR Directory level, using .htaccess

4 PHP_INI_SYSTEM System level, using php.ini or httpd.conf

7 PHP_INI_ALL Everywhere: scripts, directories, and the system

A value of 6 means the setting can be changed in both the directory and system level,
as 2 + 4 = 6. In practice, there are no variables modifiable only in PHP_INI_USER or
PHP_INI_PERDIR, and all variables are modifiable in PHP_INI_SYSTEM, so everything has a
value of 4, 6, or 7.

You can also get variables belonging to a specific extension by passing the extension
name to ini_get_all(  ):

// return just the session module specific variables
$session = ini_get_all('session');

By convention, the variables for an extension are prefixed with the extension name and
a period. So all the session variables begin with session. and all the Java variables begin
with java., for example.

Since ini_get(  ) returns the current value for a configuration directive, if you want to
check the original value from the php.ini file, use get_cfg_var(  ):

20.4 Reading Configuration Variables | 601

$original = get_cfg_var('sendmail_from'); // have we changed our address?

The value returned by get_cfg_var(  ) is the same as what appears in the global_value
element of the array returned by ini_get_all(  ).

See Also
Recipe 20.5 on setting configuration variables; documentation on ini_get(  ) at http://
www.php.net/ini-get, ini_get_all(  ) at http://www.php.net/ini-get-all, and
get_cfg_var(  ) at http://www.php.net/get-cfg-var; a complete list of configuration vari-
ables, their defaults, and when they can be modified at http://www.php.net/manual/en/
ini.php.ch20_configuration

20.5 Setting Configuration Variables

Problem
You want to change the value of a PHP configuration setting.

Solution
Use ini_set(  ):

// add a directory to the include path
ini_set('include_path', ini_get('include_path') . ':/home/fezzik/php');

Discussion
Configuration variables are not permanently changed by ini_set(  ). The new value
lasts only for the duration of the request in which ini_set(  ) is called. To make a per-
sistent modification, alter the values stored in the php.ini file.

It isn’t meaningful to alter certain variables, such as asp_tags, because by the time you
call ini_set(  ) to modify the setting, it’s too late to change the behavior the setting
affects. If a variable can’t be changed, ini_set(  ) returns false.

However, it is useful to alter configuration variables in certain pages. For example, if
you’re running a script from the command line, set html_errors to off.

To reset a variable back to its original setting, use ini_restore(  ):

ini_restore('sendmail_from'); // go back to the default value

See Also
Recipe 20.4 on getting values of configuration variables; documentation on
ini_set(  ) at http://www.php.net/ini-set and ini_restore(  ) at http://www.php.net/ini-
restore.

602 | Chapter 20: Error Handling, Debugging, and Testing

20.6 Hiding Error Messages from Users

Problem
You don’t want PHP error messages visible to users.

Solution
Set the following values in your php.ini or web server configuration file:

display_errors =off
log_errors =on

You may also set these values using ini_set(  ) if you do have access to edit your server’s
php.ini file.

ini_set('display_errors', 'off');
ini_set('log_errors', 'on');

These settings tell PHP not to display errors as HTML to the browser but to put them
in the server’s error log.

Discussion
When log_errors is set to on, error messages are written to the server’s error log. If you
want PHP errors to be written to a separate file, set the error_log configuration directive
with the name of that file:

error_log = /var/log/php.error.log

or:

ini_set('error_log', '/var/log/php.error.log');

If error_log is set to syslog, PHP error messages are sent to the system logger using
syslog(3) on Unix and to the Event Log on Windows .

There are lots of error messages you want to show your users, such as telling them
they’ve filled in a form incorrectly, but you should shield your users from internal errors
that may reflect a problem with your code. There are two reasons for this. First, these
errors appear unprofessional (to expert users) and confusing (to novice users). If some-
thing goes wrong when saving form input to a database, check the return code from
the database query and display a message to your users apologizing and asking them
to come back later. Showing them a cryptic error message straight from PHP doesn’t
inspire confidence in your web site.

Second, displaying these errors to users is a security risk. Depending on your database
and the type of error, the error message may contain information about how to log in
to your database or server and how it is structured. Malicious users can use this infor-
mation to mount an attack on your web site.

20.6 Hiding Error Messages from Users | 603

For example, if your database server is down, and you attempt to connect to it with
mysql_connect(  ), PHP generates the following warning:

Warning: Can't connect to MySQL server on 'db.example.com' (111) in
/www/docroot/example.php on line 3

If this warning message is sent to a user’s browser, he learns that your database server
is called db.example.com and can focus his cracking efforts on it.

See Also
Recipe 20.9 for how to log errors; Recipe 20.5 for more about setting configuration
values with ini_set(  ); documentation on PHP configuration directives at http://
www.php.net/configuration.

20.7 Tuning Error Handling

Problem
You want to alter the error-logging sensitivity on a particular page. This lets you control
what types of errors are reported.

Solution
To adjust the types of errors PHP complains about, use error_reporting(  ):

error_reporting(E_ALL); // everything
error_reporting(E_ERROR | E_PARSE); // only major problems
error_reporting(E_ALL & ~E_NOTICE); // everything but notices

Discussion
Every error generated has an error type associated with it. For example, if you try to
array_pop(  ) a string, PHP complains that “This argument needs to be an array,” since
you can only pop arrays. The error type associated with this message is E_NOTICE, a
nonfatal runtime problem.

By default, the error reporting level is E_ALL & ~E_NOTICE, which means all error types
except notices. The & is a logical AND, and the ~ is a logical NOT. However, the php.ini-
recommended configuration file sets the error reporting level to E_ALL, which is all error
types.

PHP 5 introduced a new error level, E_STRICT. Enabling E_STRICT during development
has the benefit of PHP alerting you of ways your code could be improved. You will
receive warnings about the use of deprecated functions, along with tips to nudge you
in the direction of the latest and greatest suggested methods of coding. E_STRICT is the
only error level not included in E_ALL; for maximum coverage during development, set
the error reporting level to E_ALL | E_STRICT.

604 | Chapter 20: Error Handling, Debugging, and Testing

Error messages flagged as notices are runtime problems that are less serious than warn-
ings. They’re not necessarily wrong, but they indicate a potential problem. One
example of an E_NOTICE is “Undefined variable,” which occurs if you try to use a variable
without previously assigning it a value:

// Generates an E_NOTICE
foreach ($array as $value) {
 $html .= $value;
}

// Doesn't generate any error message
$html = '';
foreach ($array as $value) {
 $html .= $value;
}

In the first case, the first time through the foreach, $html is undefined. So when you
append to it, PHP lets you know you’re appending to an undefined variable. In the
second case, the empty string is assigned to $html above the loop to avoid the
E_NOTICE. The previous two code snippets generate identical code because the default
value of a variable is the empty string. The E_NOTICE can be helpful because, for example,
you may have misspelled a variable name:

foreach ($array as $value) {
 $hmtl .= $value; // oops! that should be $html
}

$html = ''
foreach ($array as $value) {
 $hmtl .= $value; // oops! that should be $html
}

A custom error-handling function can parse errors based on their type and take an
appropriate action. A complete list of error types is shown in Table 20-2.

Table 20-2. Error types

Value Constant Description Catchable

1 E_ERROR Nonrecoverable error No

2 E_WARNING Recoverable error Yes

4 E_PARSE Parser error No

8 E_NOTICE Possible error Yes

16 E_CORE_ERROR Like E_ERROR but generated by the PHP core No

32 E_CORE_WARNING Like E_WARNING but generated by the PHP core No

64 E_COMPILE_ERROR Like E_ERROR but generated by the Zend Engine No

128 E_COMPILE_WARNING Like E_WARNING but generated by the Zend Engine No

256 E_USER_ERROR Like E_ERROR but triggered by calling trigger_error(  ) Yes

512 E_USER_WARNING Like E_WARNING but triggered by calling trigger_error(  ) Yes

20.7 Tuning Error Handling | 605

Value Constant Description Catchable

1024 E_USER_NOTICE Like E_NOTICE but triggered by calling trigger_error(  ) Yes

2047 E_ALL Everything except E_STRICT N/A

2048 E_STRICT Runtime notices in which PHP suggests changes to improve code quality
(since PHP 5)

N/A

Errors labeled catchable can be processed by the function registered using
set_error_handler(  ). The others indicate such a serious problem that they’re not safe
to be handled by users, and PHP must take care of them.

See Also
Recipe 20.8 shows how to set up a custom error handler; documentation on
error_reporting(  ) at http://www.php.net/error-reporting and set_error_handler(  ) at
http://www.php.net/set-error-handler; for more information about errors, see http://
www.php.net/manual/en/ref.errorfunc.php.

20.8 Using a Custom Error Handler

Problem
You want to create a custom error handler that lets you control how PHP reports errors.

Solution
To set up your own error function, use set_error_handler(  ):

set_error_handler('pc_error_handler');

function pc_error_handler($errno, $error, $file, $line) {
 $message = "[ERROR][$errno][$error][$file:$line]";
 error_log($message);
}

Discussion
A custom error handling function can parse errors based on their type and take the
appropriate action. See Table 20-2 in Recipe 20.7 for a list of error types.

Pass set_error_handler(  ) the name of a function, and PHP forwards all errors to that
function. The error handling function can take up to five parameters. The first param-
eter is the error type, such as 8 for E_NOTICE. The second is the message thrown by the
error, such as “Undefined variable: html.” The third and fourth arguments are the name
of the file and the line number in which PHP detected the error. The final parameter is
an array holding all the variables defined in the current scope and their values.

For example, in this code, $html is appended to without first being assigned an initial
value:

606 | Chapter 20: Error Handling, Debugging, and Testing

error_reporting(E_ALL);
set_error_handler('pc_error_handler');

function pc_error_handler($errno, $error, $file, $line, $context) {
 $message = "[ERROR][$errno][$error][$file:$line]";
 print "$message";
 print_r($context);
}

$form = array('one','two');

foreach ($form as $line) {
 $html .= "$line";
}

When the “Undefined variable” error is generated, pc_error_handler(  ) prints:

[ERROR][8][Undefined variable: html][err-all.php:16]

After the initial error message, pc_error_handler(  ) also prints a large array containing
all the globals, environment, request, and session variables.

Errors labeled catchable in Table 20-2 can be processed by the function registered using
set_error_handler(  ). The others indicate such a serious problem that they’re not safe
to be handled by users and PHP must take care of them.

See Also
Recipe 20.7 lists the different error types; documentation on set_error_handler(  ) at
http://www.php.net/set-error-handler.

20.9 Logging Errors

Problem
You want to save program errors to a log. These errors can include everything from
parser errors and files not being found to bad database queries and dropped connec-
tions.

Solution
Use error_log(  ) to write to the error log:

// LDAP error
if (ldap_errno($ldap)) {
 error_log("LDAP Error #" . ldap_errno($ldap) . ": " . ldap_error($ldap));
}

Discussion
Logging errors facilitates debugging. Smart error logging makes it easier to fix bugs.
Always log information about what caused the error:

20.9 Logging Errors | 607

$r = mysql_query($sql);
if (! $r) {
 $error = mysql_error();
 error_log('[DB: query @'.$_SERVER['REQUEST_URI']."][$sql]: $error");
} else {
 // process results
}

You’re not getting all the debugging help you could be if you simply log that an error
occurred without any supporting information:

$r = mysql_query($sql);
if (! $r) {
 error_log("bad query");
} else {
 // process result
}

Another useful technique is to include the __FILE__, __LINE__, __FUNCTION__,
__CLASS__, and __METHOD__ “magic” constants in your error messages:

error_log('['.__FILE__.']['.__LINE__."]: $error");

The __FILE__ constant is the current filename, and __LINE__ is the current line number.

The __FUNCTION__ constant was added in PHP 4.3.0. From that PHP version through
the rest of the PHP 4.x series, the __FUNCTION__ constant returns the current function
name in lowercase; beginning in PHP 5, the constant returns the function name as it
was declared. The __CLASS__ constant, which returns the current class name, was also
introduced in PHP 4.3.0. __CLASS__ behaves exactly the same way as __FUNCTION__ in
regard to case sensitivity in PHP 4.x and PHP 5.

PHP 5.0.0 introduced the __METHOD__ constant, which returns the current class method
name. The method name returned is case sensitive to how it was declared.

See Also
Recipe 20.6 for hiding error messages from users; documentation on error_log(  ) at
http://www.php.net/error-log; documentation on “magic” constants at http://
www.php.net/manual/en/language.constants.predefined.php.

20.10 Eliminating “headers already sent” Errors

Problem
You are trying to send an HTTP header or cookie using header(  ) or setcookie(  ), but
PHP reports a “headers already sent” error message.

Solution
This error happens when you send nonheader output before calling header(  ) or
setcookie(  ).

608 | Chapter 20: Error Handling, Debugging, and Testing

Rewrite your code so any output happens after sending headers:
// good
setcookie("name", $name);
print "Hello $name!";

// bad
print "Hello $name!";
setcookie("name", $name);

// good
<?php setcookie("name",$name); ?>
<html><title>Hello</title>

Discussion
An HTTP message has a header and a body, which are sent to the client in that order.
Once you begin sending the body, you can’t send any more headers. So if you call
setcookie(  ) after printing some HTML, PHP can’t send the appropriate Cookie header.

Also, remove trailing whitespace in any include files. When you include a file with blank
lines outside <?php ?> tags, the blank lines are sent to the browser. Use trim(  ) to remove
leading and trailing blank lines from files:

$file = '/path/to/file.php';

// backup
copy($file, "$file.bak") or die("Can't copy $file: $php_errormsg);

// read and trim
$contents = trim(join('',file($file)));

// write
$fh = fopen($file, 'w') or die("Can't open $file for writing: $php_errormsg);
if (-1 == fwrite($fh, $contents)) { die("Can't write to $file: $php_errormsg); }
fclose($fh) or die("Can't close $file: $php_errormsg);

Instead of processing files on a one-by-one basis, it may be more convenient to do so
on a directory-by-directory basis. Recipe 24.7 describes how to process all the files in
a directory.

Another perfectly legitimate approach to ensuring included files don’t have any trailing
whitespace is to just leave off the closing ?> tag. If the included file is purely PHP, this
method guarantees that you won’t have to go back to that file to clean up inadvertent
whitespace. See http://www.php.net/manual/en/language.basic-syntax.instruction-sepa
ration.php for a bit more discussion of this syntax.

If you don’t want to worry about blank lines disrupting the sending of headers, turn
on output buffering. Output buffering prevents PHP from immediately sending all
output to the client. If you buffer your output, you can intermix headers and body text
with abandon. However, it may seem to users that your server takes longer to fulfill
their requests since they have to wait slightly longer before the browser displays any
output.

20.10 Eliminating “headers already sent” Errors | 609

See Also
Recipe 8.12 for a discussion of output buffering; Recipe 24.7 for processing all files in
a directory; documentation on header(  ) at http://www.php.net/header.

20.11 Logging Debugging Information

Problem
You want to make debugging easier by adding statements to print out variables. But
you want to be able to switch back and forth easily between production and debug
modes.

Solution
Put a function that conditionally prints out messages based on a defined constant in a
page included using the auto_prepend_file configuration setting. Save the following
code to debug.php:

// turn debugging on
define('DEBUG',true);

// generic debugging function
function pc_debug($message) {
 if (defined('DEBUG') && DEBUG) {
 error_log($message);
 }
}

Set the auto_prepend_file directive in php.ini or your site .htaccess file:

auto_prepend_file=debug.php

Now call pc_debug(  ) from your code to print out debugging information:

$sql = 'SELECT color, shape, smell FROM vegetables';
pc_debug("[sql: $sql]"); // only printed if DEBUG is true
$r = mysql_query($sql);

Discussion
Debugging code is a necessary side effect of writing code. There are a variety of tech-
niques to help you quickly locate and squash your bugs. Many of these involve including
scaffolding that helps ensure the correctness of your code. The more complicated the
program, the more scaffolding needed. Fred Brooks, in The Mythical Man-Month (Ad-
dison-Wesley), guesses that there’s “half as much code in scaffolding as there is in
product.” Proper planning ahead of time allows you to integrate the scaffolding into
your programming logic in a clean and efficient fashion. This requires you to think out
beforehand what you want to measure and record and how you plan on sorting through
the data gathered by your scaffolding.

610 | Chapter 20: Error Handling, Debugging, and Testing

One technique for sifting through the information is to assign different priority levels
to different types of debugging comments. Then the debug function prints information
only if it’s higher than the current priority level:

define('DEBUG',2);

function pc_debug($message, $level = 0) {
 if (defined('DEBUG') && ($level > DEBUG) {
 error_log($message);
 }
}

$sql = 'SELECT color, shape, smell FROM vegetables';
pc_debug("[sql: $sql]", 1); // not printed, since 1 < 2
pc_debug("[sql: $sql]", 3); // printed, since 3 > 2

Another technique is to write wrapper functions to include additional information to
help with performance tuning, such as the time it takes to execute a database query:

function db_query($sql) {
 if (defined('DEBUG') && DEBUG) {
 // start timing the query if DEBUG is on
 $DEBUG_STRING = "[sql: $sql]
\n";
 $starttime = microtime(true);
 }

 $r = mysql_query($sql);

 if (! $r) {
 $error = mysql_error();
 error_log('[DB: query @'.$_SERVER['REQUEST_URI']."][$sql]: $error");
 } elseif (defined(DEBUG) && DEBUG) {
 // the query didn't fail and DEBUG is turned on, so finish timing it
 $endtime = microtime(true);
 $elapsedtime = $endtime - $starttime;
 $DEBUG_STRING .= "[time: $elapsedtime]
\n";
 error_log($DEBUG_STRING);
 }

 return $r;
}

Here, instead of just printing out the SQL to the error log, you also record the number
of seconds it takes MySQL to perform the request. This lets you see if certain queries
are taking too long. See Recipe 21.1 for more discussion of timing code execution and
for a PHP 4–compatible alternative to microtime(true).

Finally, you may also want to integrate PEAR’s Log package, which provides an efficient
framework for an abstracted logging system. PEAR Log predefines eight log levels:
PEAR_LOG_EMERG, PEAR_LOG_ALERT, PEAR_LOG_CRIT, PEAR_LOG_ERR, PEAR_LOG_WARNING,
PEAR_LOG_NOTICE, PEAR_LOG_INFO, and PEAR_LOG_DEBUG. The Log package provides a ro-
bust assortment of options for customizing error logging, including logging errors to
SQLite and/or to a pop-up browser window.

20.11 Logging Debugging Information | 611

See Also
Documentation on define(  ) at http://www.php.net/define, defined(  ) at http://
www.php.net/defined, and error_log(  ) at http://www.php.net/error-log; The Mythical
Man-Month by Frederick P. Brooks (Addison-Wesley); main page for PEAR Log at
http://pear.php.net/package/Log.

20.12 Using a Debugger Extension

Problem
You want to debug your scripts interactively during runtime.

Solution
Use the Xdebug extension. When used along with Xdebug’s remote debugger client,
you can examine data structure; set breakpoints; and step into, out of, or over sections
of code interactively.

Discussion
The Xdebug extension provides a number of helpful features to aid in a development
effort, such as code profiling that is compatible with Kcachegrind. In this recipe, focus
on Xdebug’s interactive debugging capability. In order to follow along with this recipe,
you need to be able to compile and install a Zend extension, which means permissions
to edit php.ini on your system. PHP’s dl(  ) extension-loading function does not work
with Xdebug. Finally, examples in this recipe are intended to work with Xdebug 2.0.0.

Installing the Xdebug extension is a straightforward procedure. You can build from
source, or you can install using the pecl command:

% pecl install xdebug-beta

Once you have the extension compiled and installed, you need to edit your php.ini file
with the full path to the xdebug.so module, such as zend_extension = /usr/lib/php/
extensions/no-debug-non-zts-20050922/xdebug.so.

For interactive debugging, you need to download a copy of the Xdebug source. The
bundled Xdebug application debugclient is not installed by default with the pecl install
procedure. This is because in many cases, the xdebug.so module is installed on a remote
server, while the debugclient tool is typically installed on a separate machine. However,
there is nothing that prevents the xdebug.so module from running alongside PHP and
the web server in a local test environment.

Once you’ve downloaded the Xdebug source code that corresponds to the version of
the module that was installed with the pecl command, unpack the source and chdir to
the debugclient directory of the distribution. Issue the following commands:

612 | Chapter 20: Error Handling, Debugging, and Testing

% cd debugclient
% ./configure
% make
% sudo make install

The debugclient binary will install in /usr/local/bin. Test the installation by simply
running the debugclient command. You should see something similar to:

% debugclient
Xdebug Simple DBGp client (0.9.1)
Copyright 2002-2005 by Derick Rethans.

Waiting for debug server to connect.

The debugclient tool listens for a connection from an Xdebug-enabled PHP script on
port 9000 by default. You can ask debugclient to listen on another port by using the -
p switch, like this:

% debugclient -p port

Just make sure that the setting in your script, or your php.ini file, matches the port that
your debugclient is listening on.

Interactive debugging with Xdebug can be triggered through a command-line invoca-
tion of a PHP script, or it can be started by passing the proper values to a web server
running Xdebug and a PHP script. To start an interactive session on the command line,
you need to set a few environment variables before triggering the script:

% export XDEBUG_CONFIG="idekey=session_name remote_enable=1"
% php myscript.php

If you’re debugging a web page running on a remote server, you just need to add
XDEBUG_SESSION_START=name to the request URL. A browser cookie will be set with the
name XDEBUG_SESSION. When the get or post variable of XDEBUG_SESSION_START is set or
if the XDEBUG_SESSION cookie is present, the Xdebug extension will attempt to connect
to the debugclient specified in php.ini’s xdebug.remote_host value.

Once a connection is made to the debugclient, the steps that follow are largely the same.
The primary actions taken during interactive debugging are listed in Table 20-3.

Table 20-3. Common Xdebug commands

Command Description

run Starts or resumes the script until a breakpoint is reached, or until the end of the script.

step_into Steps into the next statement. If there is a function call involved, Xdebug will break on the first statement
in that function.

20.12 Using a Debugger Extension | 613

Command Description

step_over Steps to the next statement. If there is a function call on the line you were on when you issued the
step_over command, the debugger will stop at the statement after the function call in the same
scope as where the command was issued.

step_out Steps out of the current scope and breaks on the statement after returning from the current function.

stop Ends execution of the script immediately.

set_breakpoint Sets a new breakpoint on the debugging session.

property_value Gets a property value.

context_get Returns an array of properties in a given context at a given stack depth. If the stack depth is omitted,
the current stack depth is used.

With those options in mind, it’s time to try debugging an application. Example 20-1
shows an overly complex application for saying hello to a visitor. The point of the over-
complexity is not to demonstrate how you should greet visitors to your web site; it’s
just to give us some options for stepping over function calls while debugging interac-
tively.

Example 20-1. Overly complex greeting application

<?php
$user = 'Curly';

function sayHello($user, $greeting = 'Hello, %s!') {
 if (!validUser($user)) {
 $greeting = 'Hey! What are you doing here, %s?!';
 }
 printf($greeting, $user);
}

function validUser($user) {
 // do some validation here
 return true;
}

sayHello($user);
?>

We’ll debug this program interactively after triggering it with a browser. See Rec-
ipe 20.16 if you need pointers on setting up a local test environment for this purpose.
First, start up the debugclient:

% debugclient
Xdebug Simple DBGp client (0.9.1)
Copyright 2002-2005 by Derick Rethans.

Waiting for debug server to connect.

Now, load up Example 20-1 in a file named overhello.php and visit it with a browser,
making sure to append the correct Xdebug values to the query string—for example,

614 | Chapter 20: Error Handling, Debugging, and Testing

http://localhost/overhello.php?XDEBUG_SESSION_START=foo. Your waiting debugclient
should register the connection and output the following:

Connect
<init fileuri="file:///Users/clay/Sites/overhello.php" language="PHP"
protocol_version="1.0" appid="4148" idekey="foo"><engine version="2.0.0beta5">
<![CDATA[Xdebug]]></engine><author><![CDATA[Derick Rethans]]></author><url>
<![CDATA[http://xdebug.org]]></url><copyright><![CDATA[Copyright (c)
2002-2005 by Derick Rethans]]></copyright></init>
(cmd)

You’ll notice that your browser has not yet generated any output; it’s waiting for you
to continue with the debugging session. To do that, step into the program one line at
a time. The DBGp protocol used by Xdebug requires that an identifier be sent with each
request, so the following command will pass the identifier we’ve already started with
back to the server:

(cmd) step_into -i foo
<response command="step_into" transaction_id="foo" status="break" reason="ok">
</response>
(cmd)

That response means that the Xdebug extension received your request to step forward
a line, and has paused the execution waiting for the next debugging request. To confirm
where you are in the execution, you may issue a stack_get request at any time:

(cmd) stack_get -i foo
<response command="stack_get" transaction_id="foo"><stack where="{main}"
level="0" type="file" filename="file:///Users/clay/Sites/overhello.php"
lineno="1"></stack></response>
(cmd)

The response from stack_get tells us that we’re in the {main} portion of the script; in
other words, we’re not inside of a function or a class. We’re running though the main
file, and we’re on line number 1. Looks good; let’s move on to another line:

(cmd) step_into -i foo
<response command="step_into" transaction_id="foo" status="break"
reason="ok"></response>
(cmd)

debugclient again returns with an ok response, and sets the status to break again to wait
for more instructions from us. So what’s going on in this line?

(cmd) context_get -i foo
<response command="context_get" transaction_id="foo">
<property name="user" fullname="$user" type="uninitialized">
</property></response>
(cmd)

We can see from getting the context that the variable $user has come into the picture.
The DBGp protocol is very careful about returning the values of variables and will not
do so unless explicitly asked. Even then, you’ll see that the values are always Base64-
encoded to protect debugclient from any unexpected data:

20.12 Using a Debugger Extension | 615

(cmd) property_value -n user -i foo
<response command="property_value" transaction_id="foo"
type="null"></response>
(cmd)

We instruct Xdebug to give us the value of the variable $user, and it returns a null type.
Why? Because the value of $user isn’t actually set until after the second line; the de-
bugclient is currently reading line 2 from the beginning. So issue another step_into
command, and ask for the property_value again:

(cmd) step_into -i foo
<response command="step_into" transaction_id="foo"
status="break" reason="ok"></response>
(cmd) property_value -n user -i foo
<response command="property_value" transaction_id=
"foo" type="string" encoding="base64">
<![CDATA[Q3VybHk=]]></response>
(cmd)

There’s the base64-encoded value of $user, but how do we know what it contains? In
a separate terminal window, just run a quick decoding of that value:

% php -r "echo base64_decode('Q3VybHk=');"
Curly

So far, so good. However, debugging a large program a line at a time like this could
become a painful, time-consuming experience. So let’s jump ahead to where the action
is. To do that, we’ll set a breakpoint and then run the program until it reaches that
breakpoint:

(cmd) breakpoint_set -i foo -t call -m sayHello
<response command="breakpoint_set" transaction_id="foo" id="41480001"></response>
(cmd)

The -t switch lets Xdebug know that we’re setting a breakpoint at a call type, and the
-m switch sets the break at the point where the sayHello function is called. The response
sets a unique ID for this breakpoint that we (or a full-blown IDE implementing the
DBGp protocol) could use to refer back to this breakpoint. Now we can run the program
until it pauses again, and then get our bearings again:

(cmd) run -i foo
<response command="run" transaction_id="foo" status="break" reason="ok"></response>
(cmd) stack_get -i foo
<response command="stack_get" transaction_id="foo"><stack where="sayHello" level="0"
type="file" filename="file:///Users/clay/Sites/overhello.php" lineno="5"></stack>
<stack where="{main}" level="1" type="file" filename=
"file:///Users/clay/Sites/overhello.php" lineno="16"></stack></response>
(cmd)

In our example program, we know that the sayHello function is defined on line 5 and
called on line 16, so this response is in alignment with what we know about the example
program. The debugger ran ahead to where the function was called, and then returned
to where the function was declared so that we can step into that function and see what’s
going on in there. Let’s do that now:

616 | Chapter 20: Error Handling, Debugging, and Testing

(cmd) step_into -i foo
<response command="step_into" transaction_id="foo" status="break" reason="ok">
</response>
(cmd) stack_get -i foo
<response command="stack_get" transaction_id="foo"><stack where="sayHello"
level="0" type="file" filename="file:///Users/clay/Sites/overhello.php"
lineno="5"></stack><stack where="{main}" level="1" type="file" filename=
"file:///Users/clay/Sites/overhello.php" lineno="16"></stack></response>
(cmd) context_get -i foo
<response command="context_get" transaction_id="foo"><property name="greeting"
 fullname="$greeting" address="60271800" type="string" encoding="base64">
<![CDATA[SGVsbG8sICVzIQ==]]></property><property name="user" fullname="$user"
address="60264872" type="string" encoding="base64"><![CDATA[Q3VybHk=]]>
</property></response>
(cmd)

This sequence of commands shows us that the program is now on line 16, and the
sayHello function has been called. We’re at the beginning of line 5 of the script, looking
at the call to sayHello, noting what was passed into it, and preparing to go into the
if(  ) block that checks whether the $user is valid by running the validUser(  ) function.
Since we know that our simple program isn’t finished yet, let’s skip over that block and
not waste time running through the incomplete function. After stepping over, check
again to see where we are:

(cmd) step_over -i foo
<response command="step_over" transaction_id="foo" status="break"
reason="ok"></response>
(cmd) stack_get -i foo
<response command="stack_get" transaction_id="foo">
<stack where="sayHello" level="0" type="file" filename=
"file:///Users/clay/Sites/overhello.php" lineno="8">
</stack><stack where="{main}" level="1" type="file" filename=
"file:///Users/clay/Sites/overhello.php" lineno="16">
</stack></response>
(cmd)

As you can see, we’re now on line 8, after the if(  ) block. Let’s go ahead and finish up
by letting the program run its course:

(cmd) run -i foo
<response command="run" transaction_id="foo" status="stopped"
reason="ok"></response>
(cmd)

Finally, the run command returns a stopped status because the program ran the rest of
the way through without encountering any additional breakpoints.

This is certainly a simple example, but you can see that it’s possible to drill down into
your application and see what’s going on in real time with Xdebug. You may find that
it is easier to use an Xdebug-enabled IDE, such as the free editor WeaverSlave, than it
is to use debugclient. However, debugclient can provide a great deal of insight into your
application in a hurry all by itself.

20.12 Using a Debugger Extension | 617

See Also
Documentation on Xdebug at http://www.xdebug.org/; on the DBGp protocol at http://
www.xdebug.org/docs-dbgp.php; Xdebug-enabled editor WeaverSlave at http://weaver
slave.ws/.

20.13 Writing a Unit Test

Problem
You’re working on a project that extends a set of core functionality, and you want an
easy way to make sure everything still works as the project grows.

Solution
Write a unit test that tests the core functionality of a function or class and alerts you if
something breaks.

A sample test using PHP-QA’s .phpt testing system is:

--TEST--
str_replace() function
--FILE--
<?php
$str = 'Hello, all!';
var_dump(str_replace('all', 'world', $str));
?>
--EXPECT--
string(13) "Hello, world!"

Discussion
There are a number of ways to write unit tests in PHP. A series of simple .phpt tests
may be adequate for your needs, or you may benefit from more structured testing sol-
utions such as PHPUnit or SimpleTest. We’ll discuss each approach, but the first
question is: why write a unit test in the first place?

Writing an application from scratch in any language is a lot like peeling an onion, only
in reverse. You start with the center of the onion, and build layers on top of layers until
you get to the finished product: an onion.

The more layers you build on top of your core, the more important it is for that core
to continue functioning as you expect it to. The easiset way to ensure that the core of
an application continues functioning as expected, especially after modifications, is
through unit tests.

In the earlier example, we’re testing that the str_replace(  ) function successfully re-
places one string with another. The test doesn’t care how the str_replace(  ) function
is written; all that matters is that it works as expected on a recurring basis.

618 | Chapter 20: Error Handling, Debugging, and Testing

The easiest way to run the .phpt test is to save it in a file ending in .phpt
(str_replace.phpt, for example), and then use PEAR’s built-in .phpt execution tool,
like this:

% pear run-tests str_replace.phpt

You’ll see output like this:

Running 1 tests
PASS str_replace() function[str_replace.phpt]
TOTAL TIME: 00:00
1 PASSED TESTS
0 SKIPPED TESTS

You can test a number of features of your core functionality by creating multiple .phpt
files, and executing:

% pear run-tests *.phpt

For full details on the structure of .phpt files, visit http://qa.php.net/write-test.php.

You can also write unit tests using the PHPUnit/PHPUnit2 unit testing framework.
PHPUnit2 is for PHP 5 only, whereas PHPUnit will work under PHP 4 or PHP 5.

The example above could be written as a PHPUnit2 test like this:

require_once 'PHPUnit2/Framework/TestCase.php';

class StrreplaceTest extends PHPUnit2_Framework_TestCase
{
 public function testStrreplaceWorks()
 {
 $str = 'Hello, all!';
 $this->assertEquals('Hello, world!', str_replace('all', 'world', $str));
 }
}

Save this code in a file named StrreplaceTest.php. Once PHPUnit2 is installed, you can
run the test like this:

% phpunit StrreplaceTest

That command will look for the file named StrreplaceTest.php and run the test defined
within it.

PHPUnit is a very powerful unit testing framework that can do much more than run a
simple test like in the example. For complete documentation, visit http://www.phpu
nit.de.

Another popular unit testing framework is called SimpleTest. By default, its tests are
intended to be run in a web browser (though a command-line option exists as well).
Our example test of the str_replace(  ) function would be written like this using Sim-
pleTest:

20.13 Writing a Unit Test | 619

require_once 'simpletest/unit_tester.php';
require_once 'simpletest/reporter.php';

class TestStrreplace extends UnitTestCase
{
 function testStrreplace()
 {
 $str = 'Hello, all!';
 $this->assertEqual('Hello, world!', str_replace('all', 'world', $str));
 }
}

As you can see in this simple example, SimpleTest is quite similar to PHPUnit. However,
the SimpleTest framework differs from PHPUnit in its full feature set, and it’s best to
conduct a thorough comparison of the two frameworks before deciding on which one
is best for you. Learn more about SimpleTest at http://www.lastcraft.com/sim
ple_test.php.

See Also
Documentation on .phpt unit tests at http://qa.php.net/write-test.php; on PHPUnit and
PHPUnit2 at http://www.phpunit.de; on SimpleTest at http://www.lastcraft.com/sim
ple_test.php.

20.14 Writing a Unit Test Suite

Problem
You want to be able to run more than one unit test conveniently on a regular basis.

Solution
Wrap your unit tests into a group known as a unit test suite.

Discussion
It’s rare to have a program simple enough that a single unit test will fulfill all the testing
needs that it will have during its lifespan. Over time, as applications grow there is a
need to add more and more tests, either to test new functionality or verify that fixed
bugs stay fixed.

Once your library of tests gets larger than a handful, you’ll find it much more convenient
to group your tests into a unit test suite. A test suite, despite its formal-sounding name,
is just a wrapper around a bunch of tests that can all be run by referring to the name
of the test suite.

Using the SimpleTest framework, let’s create a test suite to test more than just the
str_replace function in PHP. A number of tests related to string functions can be put
in a single file. For example, in a file named string_tests.php, let’s put:

620 | Chapter 20: Error Handling, Debugging, and Testing

class TestStringfunctions extends UnitTestCase
{
 function testStrreplace()
 {
 $str = 'Hello, all!';
 $this->assertEqual('Hello, world!', str_replace('all', 'world', $str));
 }

 function testSubstr()
 {
 $str = 'Hello, all!';
 $this->assertEqual('e', substr($str, 1, 1));
 }
}

Now we’ve got two tests that will be run from the TestStringfunctions class. Let’s create
a similar file called array_tests.php, with the following tests defined in it:

class TestArrayfunctions extends UnitTestCase
{
 function testArrayflip()
 {
 $array = ('foo' => 'bar', 'cheese' => 'hotdog');
 $flipped = array_flip($array);
 $this->assertEqual('foo', reset($flipped));
 }

 function testArraypop()
 {
 $array = ('foo' => 'bar', 'cheese' => 'hotdog');
 $popped = array_pop($array);
 $this->assertEqual('hotdog', $popped);
 $this->assertEqual(1, sizeof($array));
 }
}

With four tests to run, it’s time to put together a suite that will run all of these whenever
we want to check to make sure things are working as they should be. Our test suite
looks like this:

require_once 'simpletest/unit_tester.php';
require_once 'simpletest/reporter.php';

$test = new GroupTest('All tests');
$test->addTestFile('string_tests.php');
$test->addTestFile('array_tests.php');

if (TextReporter::inCli()) {
 exit ($test->run(new TextReporter()) ? 0 : 1);
} else {
 $test->run(new HtmlReporter());
}

20.14 Writing a Unit Test Suite | 621

Save this in a file named test_suite.php, and then run it with a browser that has PHP
installed properly and paths set properly in the script to reflect the Simple Test instal-
lation location.

When run from a shell using the PHP CLI, the result should be similar to:

% php test_suite.php
All tests
OK
Test cases run: 4/4. Failures: 0, Exceptions: 0

Using this approach, you can grow your automated testing system to include a large
number of tests and still be able to trigger them all through a single command.

Notice the use of the ternary operator when the tests are run in CLI mode; this method
of running the unit test suite allows the script to return a success or failure condition
when run as part of an external automated testing script.

See Also
Documentation on SimpleTest at http://www.lastcraft.com/simple_test.php; on
PHPUnit and PHPUnit2 at http://www.phpunit.de, which covers test suite creation in
PHPUnit.

20.15 Applying a Unit Test to a Web Page

Problem
Your application is not broken down into small testable chunks, or you just want to
apply unit testing to the web site that your visitors see.

Solution
Write a series of unit tests around SimpleTest’s WebTestCase class to test the finished
output of your web site.

Create a file to test something about your web site, example.com. In a file called exam
pledotcom_tests.php, put:

class TestOfExampledotcom extends WebTestCase
{
 // basic homepage loading
 function testHomepageLoading()
 {
 $this->assertTrue($this->get('http://www.example.com/'));
 }

 // test clicking on "FAQ", and the resulting generation of FAQ
 function testFaq()
 {
 $this->get('http://www.example.com/');
 $this->clickLink('FAQ');

622 | Chapter 20: Error Handling, Debugging, and Testing

 $this->assertTitle('Example FAQ');
 $this->assertWantedPattern('/have a question\?/i');
 }
}

require_once 'simpletest/web_tester.php';
require_once 'simpletest/reporter.php';

$test = new GroupTest('Web site tests');
$test->addTestFile('exampledotcom_tests.php');

if (TextReporter::inCli()) {
 exit ($test->run(new TextReporter()) ? 0 : 1);
} else {
 $test->run(new HtmlReporter());
}

Discussion
If you’re dealing with a site that’s driven in whole or in part by procedural PHP code,
it is sometimes difficult to write a smaller unit test that tests encapsulated functionality.
Instead, you just want to make sure that the web site is working; if it isn’t, you’ll debug
from there.

Web-page unit testing is a handy technique that is useful whether or not your code base
is easily broken into unit tests or not. After all, the real world environment doesn’t
always behave in the same way as your testing environment, so it can be beneficial to
set up a cron job to run a Web Test suite.

The SimpleTest WebTestCase supports testing navigation, content, cookies, and form
handling. It can even select frames within framesets to conduct tests within a particular
frame.

If your site makes extensive use of JavaScript, take a look at Selenium, an open source
testing framework designed to be run in a browser to test the complete user experience.
Selenium offers a browser-based IDE that can record actions to automate test genera-
tion, and supports a wide range of browsers on Windows, Mac OS X, and Linux.

See Also
Documentation on SimpleTest at http://www.lastcraft.com/simple_test.php; the Seleni-
um project page at http://www.openqa.org/selenium/.

20.16 Setting Up a Test Environment

Problem
You want to test out PHP scripts without worrying about bringing your web site down
or contaminating your production environment.

20.16 Setting Up a Test Environment | 623

Solution
Set up a test environment for your application on your desktop machine, using XAMPP.

Discussion
The complexity of setting up a localized running environment for your web application
frequently deters developers from taking that step. The result is often a breakdown in
development best practices, such as editing files on the production web site as a priv-
ileged user—never a good idea!

The XAMPP project provides single-installer solutions for four platforms: Windows
98/NT/2000/XP, Mac OS X, Linux (SuSE/RedHat/Mandrake/Debian), and Solaris.
The packages contain synchronized versions of Apache, MySQL, PHP and PEAR,
phpMyAdmin, and eAccelerator.

With an easy, step-by-step installation procedure, the XAMPP project makes creating
a web-application-running environment on your local machine a snap.

Dealing with a large dataset? Unfortunately, developers working with sites that deal
extensively with content that changes frequently find that they let best practices de-
velopment habits slip due to a lack of good test data to work with. Don’t let this happen
to you! Simply write a script that mirrors your data structure locally, and then peroid-
ically update your local copy of data with a subset snapshot of the complete data set.
That way you’re easily able to pull in a current copy of relevant data that’s large enough
to be used for real testing and development purposes.

See Also
The XAMPP project home page at http://www.apachefriends.org/en/xampp.html.

624 | Chapter 20: Error Handling, Debugging, and Testing

CHAPTER 21

Performance Tuning and Load Testing

21.0 Introduction
PHP is pretty speedy. Usually, the slow parts of your PHP programs have to do with
external resources—waiting for a database query to finish or for the contents of a re-
mote URL to be retrieved. That said, your PHP code itself may not be as efficient as it
could be. This chapter is about techniques for finding and fixing performance problems
in your code.

There’s plenty of debate in the world of software engineeering about the best time in
the development process to start optimizing. Optimize too early and you’ll spend too
much time nitpicking over details that may not be important in the big picture; optimize
too late and you may find that you have to rewrite large chunks of your application.

A failsafe approach to this dilemma is to get into the habit of making good choices
about approaching small problems; the benefits will add up in the end. Exam-
ple 21-1 shows three ways to produce the exact same MD5 hash in PHP 5.1.2.

Example 21-1. Hashing three ways
// PHP's basic md5() function
$hashA = md5('optimize this!');

// MD5 by way of the mhash extension
$hashB = bin2hex(mhash(MHASH_MD5, 'optimize this!'));

// MD5 with the hash() function in PHP 5.1.2+
$hashC = hash('md5', 'optimize this!');

$hashA, $hashB, and $hashC are all 83f0bb25be8de9106700840d66f261cf. However, the
third approach is over twice as fast as PHP’s basic md5(  ) function.

The dark side of optimization with head-to-head tests like these, though, is that you
need to figure in how frequently the function is called in your code and how readable
and maintainable the alternative is.

For example, in choosing hash functions, if you need your code to run on PHP versions
earlier than 5.1.2, you either have to use md5(  ) all the time or add a check that, based

625

on PHP’s version (and perhaps whether the mhash extension is installed), decides which
function to use. The absolute time difference between md5(  ) and hash(  ) is on the order
of a tenth of a millisecond. If you’re computing thousands or millions of hashes at a
time, it makes sense to insert the extra runtime calculations that choose the fastest
functions. But the fraction of a fraction of a breath of time saved in a handful of hash
computations isn’t worth the extra complexity.

Optimization doesn’t happen in a vacuum. As you tweak your code, you’re not just
adjusting raw execution time—you’re also affecting code size, readability, and main-
tainability. There are always circumstances that demand screamingly fast execution
time. More frequently, however, programmer time or ease of debugging is a more val-
uable commodity. Try to balance these concerns as you tackle optimization hurdles in
your code.

Get started with integrating some easy analysis methods into your development rou-
tine. Recipe 21.1 shows you how to time the execution of a function, and Rec-
ipe 21.2 expands on that to illustrate timing overall program execution. Learn how to
take these simple approaches even farther with Recipe 21.3, which covers the use of
debugger extensions for application profiling.

An overview of how to stress test your web site in Recipe 21.4 reminds you that there’s
more to performance tuning than the code itself—network latency and hardware also
play a big role.

One of the most common bottlenecks in many PHP scripts is misuse of regular ex-
pressions; Recipe 21.5 explains a few approaches to solving text-matching problems
without incurring the overhead of regular expressions.

Recipe 21.6 covers the various PHP accelerators by explaining the common approaches
used by the popular open source and commercial accelerators, and how you can expect
to benefit from them.

21.1 Timing Function Execution

Problem
You have a function and you want to see how long it takes to execute.

Solution
Compare time in milliseconds before running the function against the time in milli-
seconds after running the function to see the elapsed time spent in the function itself:

<?php

// create a long nonsense string
$long_str = uniqid(php_uname('a'), true);

// start timing from here

626 | Chapter 21: Performance Tuning and Load Testing

$start = microtime(true);

// function to test
$md5 = md5($long_str);

$elapsed = microtime(true) - $start;

echo "That took $elapsed seconds.\n";
?>

Discussion
To determine how much time a single function takes to execute, you may not need a
full benchmarking package like PEAR Benchmark (which is covered in Recipe 21.2).
Instead, you can get the information you need from the microtime(  ) function.

See Also
Using microtime(  ), including how it works in PHP 4, is discussed in Recipe 3.13; doc-
umentation on the microtime(  ) function is at http://www.php.net/microtime; Rec-
ipe 21.2 looks at PEAR Benchmark.

21.2 Timing Program Execution

Problem
You have a block of code and you want to profile it to see how long each statement
takes to execute.

Solution
Use the PEAR Benchmark module:

<?php
require_once 'Benchmark/Timer.php';

$timer =& new Benchmark_Timer(true);

$timer->start();
// some setup code here
$timer->setMarker('setup');
// some more code executed here
$timer->setMarker('middle');
// even yet still more code here
$timer->setmarker('done');
// and a last bit of code here
$timer->stop();

$timer->display();
?>

21.2 Timing Program Execution | 627

Discussion
Calling setMarker(  ) records the time. The display(  ) method prints out a list of mark-
ers, the time they were set, and the elapsed time from the previous marker:

marker time index ex time perct

Start 1029433375.42507400 - 0.00%

setup 1029433375.42554800 0.00047397613525391 29.77%

middle 1029433375.42568700 0.00013899803161621 8.73%

done 1029433375.42582000 0.00013303756713867 8.36%

Stop 1029433375.42666600 0.00084602832794189 53.14%

total - 0.0015920400619507 100.00%

The Benchmark module also includes the Benchmark_Iterate class, which can be used
to time many executions of a single function:

<?php
require 'Benchmark/Iterate.php';

$timer =& new Benchmark_Iterate;

// a sample function to time
function use_preg($ar) {
 for ($i = 0, $j = count($ar); $i < $j; $i++) {
 if (preg_match('/gouda/',$ar[$i])) {
 // it's gouda
 }
 }
}

// another sample function to time
function use_equals($ar) {
 for ($i = 0, $j = count($ar); $i < $j; $i++) {
 if ('gouda' == $ar[$i]) {
 // it's gouda
 }
 }
}

// run use_preg() 1000 times
$timer->run(1000,'use_preg',
 array('gouda','swiss','gruyere','muenster','whiz'));
$results = $timer->get();
print "Mean execution time for use_preg(): $results[mean]\n";

// run use_equals() 1000 times
$timer->run(1000,'use_equals',
 array('gouda','swiss','gruyere','muenster','whiz'));

628 | Chapter 21: Performance Tuning and Load Testing

$results = $timer->get();
print "Mean execution time for use_equals(): $results[mean]\n";
?>

The Benchmark_Iterate::get(  ) method returns an associative array. The mean element
of this array holds the mean execution time for each iteration of the function. The
iterations element holds the number of iterations. The execution time of each iteration
of the function is stored in an array element with an integer key. For example, the time
of the first iteration is in $results[1], and the time of the 37th iteration is in
$results[37].

To automatically record the elapsed execution time after every line of PHP code, use
the declare construct and the ticks directive:

function profile($display = false) {
 static $times;

 switch ($display) {
 case false:
 // add the current time to the list of recorded times
 $times[] = microtime();
 break;
 case true:
 // return elapsed times in microseconds
 $start = array_shift($times);

 $start_mt = explode(' ', $start);
 $start_total = doubleval($start_mt[0]) + $start_mt[1];

 foreach ($times as $stop) {
 $stop_mt = explode(' ', $stop);
 $stop_total = doubleval($stop_mt[0]) + $stop_mt[1];
 $elapsed[] = $stop_total - $start_total;
 }

 unset($times);
 return $elapsed;
 break;
 }
}

// register tick handler
register_tick_function('profile');

// clock the start time
profile();

// execute code, recording time for every statement execution
declare (ticks = 1) {
 foreach ($_SERVER['argv'] as $arg) {
 print strlen($arg);
 }
}

// print out elapsed times

21.2 Timing Program Execution | 629

$i = 0;
foreach (profile(true) as $time) {
 $i++;
 print "Line $i: $time\n";
}

The ticks directive allows you to execute a function on a repeatable basis for a block
of code. The number assigned to ticks is how many statements go by before the func-
tions that are registered using register_tick_function(  ) are executed.

In the previous example, we register a single function and have the profile(  ) function
execute for every statement inside the declare block. If there are two elements in
$_SERVER['argv'], profile(  ) is executed four times: once for each time through the
foreach loop, and once each time the print strlen($arg) line is executed.

You can also set things up to call two functions every three statements:

register_tick_function('profile');
register_tick_function('backup');

declare (ticks = 3) {
 // code...
}

You can also pass additional parameters into the registered functions, which can be
object methods instead of regular functions:

// pass "parameter" into profile()
register_tick_function('profile', 'parameter');

// call $car->drive();
$car = new Vehicle;
register_tick_function(array($car, 'drive'));

If you want to execute an object method, pass the object and the name of the method
encapsulated within an array. This lets the register_tick_function(  ) know you’re re-
ferring to an object instead of a function.

Call unregister_tick_function(  ) to remove a function from the list of tick functions:

unregister_tick_function('profile');

See Also
http://pear.php.net/package/Benchmark for information on the PEAR Benchmark class;
documentation on register_tick_function(  ) at http://www.php.net/register-tick-func
tion, unregister_tick_function(  ) at http://www.php.net/unregister-tick-function, and
declare at http://www.php.net/declare.

630 | Chapter 21: Performance Tuning and Load Testing

21.3 Profiling with a Debugger Extension

Problem
You want a robust solution for profiling your applications so that you can continually
monitor where the program spends most of its time.

Solution
Use a profiling and debugging extension such as the Advanced PHP Debugger (APD)
or Xdebug, both available from the PECL repository.

With APD installed, adding apd_set_pprof_trace(  ) to the top of your script dumps a
trace file in a configurable directory. Parsing that trace file gives you a breakdown of
how time was spent during that run of the PHP script:

<?php
$dumpdir = '/tmp';
$processid = posix_getpid();
ini_set('apd.dumpdir', $dumpdir);

// Prepare to output a basic report
$dumpfile = $dumpdir . '/pprof.' . $processid . '.0';

// Start the trace
apd_set_pprof_trace();

// Functions that we will profile
function pc_longString() {
 return uniqid(php_uname('a'), true);
}

function pc_md5($str) {
 return md5($str);
}

function pc_mhashmd5($str) {
 return bin2hex(mhash(MHASH_MD5, $str));
}

function pc_hashmd5($str) {
 return hash('md5', $str);
}

// Run the functions
$str = pc_longString();

$md5 = function_exists('md5') ? pc_md5($str) : false;
$md5 = function_exists('mhash') ? pc_mhashmd5($str) : false;
$md5 = function_exists('hash') ? pc_hashmd5($str) : false;

echo "now run:\n";

21.3 Profiling with a Debugger Extension | 631

echo " /usr/bin/pprofp -R $dumpfile\n";
echo "to view a report.\n";

Running the report generated by the pprofp tool, which is installed as part of the APD
package, results in something like this:

% /usr/bin/pprofp -R /tmp/pprof.16704.0

Trace for /home/clay/phpckbk2/apd/md5.php
Total Elapsed Time = 0.00
Total System Time = 0.00
Total User Time = 0.00

 Real User System secs/ cumm
%Time (excl/cumm) (excl/cumm) (excl/cumm) Calls call s/call Memory Usage Name
--
100.0 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0005 0.0042 0 main
77.8 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0033 0.0033 33554432 apd_set_pprof_trace
4.6 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0000 0.0002 0 pc_longString
2.6 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0001 0.0001 0 php_uname
2.3 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0000 0.0001 0 pc_mhashmd5
1.5 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0001 0.0001 0 uniqid
1.5 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0000 0.0001 0 pc_md5
1.5 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0001 0.0001 0 mhash
1.3 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0001 0.0001 0 md5
1.3 0.00 0.00 0.00 0.00 0.00 0.00 3 0.0000 0.0000 0 function_exists
1.2 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0000 0.0001 0 pc_hashmd5
1.0 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0000 0.0000 0 hash
0.6 0.00 0.00 0.00 0.00 0.00 0.00 1 0.0000 0.0000 0 bin2hex

Discussion
With APD installed, it’s a simple matter to start a profiling session that will store re-
porting on application runtime. The output files generated by APD can be stored
anywhere you want them—even in a dynamic location, if you want to integrate some
conditional trace executions into your script. Just use ini_set('apd.dumpdir', '/path/
to/writable/dump/directory') to pick a dump location prior to calling
apd_set_pprof_trace(  ).

The pprof output file is a machine-readable breakdown of how your script was pro-
cessed. The output file is stored in the apd.dumpdir location with a naming convention
of pprof. process ID.file number. The file number portion of the dump file is deter-
mined internally by APD, which will create sequential files as needed for each process
being traced.

Process the output files with the bundled pprofp shell application to get some basic
insight into what’s taking the most time in your application. The longest-running func-
tions are good places to start when looking for opportunities to optimize.

Beyond basic reporting on execution time, the pprof files can be converted to Kcache-
grind-compatible files using the pprof2calltree conversion tool. Kcachegrind is a GUI

632 | Chapter 21: Performance Tuning and Load Testing

application used to drill down deeply into applications to determine where bottlenecks
are occurring.

A number of profiling extensions exist; for the most effective debugging and profiling
experience, it’s recommended to give each one a try to see which one suits your needs
the best.

See Also
Documentation for APD at http://www.php.net/manual/en/ref.apd.php; the Xdebug
profiling and debugging extension at http://www.xdebug.org/; the DBG extension at
http://dd.cron.ru/dbg/; the Kcachegrind profiling visualization tool at http://kcache
grind.sourceforge.net.

21.4 Stress Testing Your Web Site

Problem
You want to find out how well your web site performs under a heavy load.

Solution
Use a stress-testing and benchmarking tool to simulate a variety of load levels.

Discussion
Stress testing is frequently confused with benchmarking, and it is important to recog-
nize the difference between the two activities.

Benchmarking a web site is often a somewhat casual activity when performed by an
individual developer. The most commonly used tool is the Apache HTTP server
benchmarking tool, ab, which is designed to test how many requests per second an
HTTP server is capable of serving. For example:

% /usr/bin/ab -n 1000 -c 100 -k
www.example.com/test.php

This test would return a report illustrating the average response time for requests to
http://www.example.com/test.php, based on 1,000 requests, grouped in batches of 100
concurrent requests.

While that sort of test has value—it gives you a reasonable estimation of how many
requests you can serve per second under normal load—it doesn’t tell you much about
how your entire web application will behave under heavy load. It only pounds on one
URL at a time, after all.

Stress testing is a testing technique whose intent is to break your web application. By
testing to a breaking point, you can identify and repair weaknesses in your application,

21.4 Stress Testing Your Web Site | 633

or gain a better understanding of when you will need to add additional hardware. When
combined with code profiling, you can also get an idea of what part of your application
will need to scale first; i.e., will you need to add more servers to your database cluster
before you need to add more frontend web server machines?

An excellent open source tool for stress testing is Siege. Siege can be configured to read
a large number of URLs from a configuration file and run through them in order (re-
gression testing), or it can read a list or URLs and hit them randomly, which better
approximates real-world usage of a web site. Siege can also pound on a single URL in
a similar fashion to ab.

If you are unable to install Siege on your system, Lincoln Stein’s torture.pl script is a
good alternative. Many of Siege’s design concepts were inspired by torture.pl, and the
two tools produce similar reports.

See Also
Source and documentation for Siege at http://www.joedog.org/JoeDog/Siege; ab at http://
httpd.apache.org/docs/2.0/programs/ab.html; source and documentation for torture.pl
at http://stein.cshl.org/~lstein/torture/.

21.5 Avoiding Regular Expressions

Problem
You want to improve script performance by optimizing string-matching operations.

Solution
Replace unnecessary regular expression calls with faster string and character type func-
tion alternatives.

Discussion
A common source of unnecessary computation is the use of regular expression func-
tions when they are not needed—for example, if you’re validating a form submission
for a valid username and want to make sure that the username contains only alphanu-
meric characters.

A common approach to this problem is a regular expression:

<?php
if (!preg_match('/^[a-z0-9]*$/i', $username)) {
 echo 'please enter a valid username.';
}
?>

The same test can be performed much faster with the ctype_alnum(  ) function.

634 | Chapter 21: Performance Tuning and Load Testing

Using code-timing techniques covered in Recipe 21.1, let’s compare the above test with
ctype_alnum(  ):

<?php
$username = 'foo411';

$start = microtime(true);

if (!preg_match('/^[a-z0-9]*/i', $username)) {
 echo 'please enter a valid username';
}

$regextime = microtime(true) - $start;

$start = microtime(true);

if (!ctype_alnum($username)) {
 echo 'please enter a valid username';
}

$ctypetime = microtime(true) - $start;

echo "preg_match took: $regextime seconds\n";
echo "ctype_alnum took: $ctypetime seconds\n";
?>

This will output results similar to:

preg_match took: 0.000163078308105 seconds
ctype_alnum took: 9.05990600586E-06 seconds

ctype_alnum(  ) is considerably faster; 9.05990600586E-06 is the same as 0.00000906 sec-
onds, which is 18 times faster than the preg_match(  ) regular expression, with exactly
the same result.

When applied to a complex application, replacing unnecessary regular expressions
with equivalent alternatives can add up to a significant performance gain.

A good litmus test when you’re coding and need to decide whether or not you need to
use a regular expression is whether or not the match you’re performing can be explained
in a brief sentence. Granted, there are some matches, such as “string is a valid email
address,” which cannot be adequately verified without a complex regular expression.
However, “check if string A contains string B” can be tested with several different ap-
proaches, but is ultimately a very simple test that does not require regular expressions:

$haystack = 'The quick brown fox jumps over the lazy dog';
$needle = 'lazy dog';

// slowest
if (ereg($needle, $haystack)) echo 'match!';

// slow
if (preg_match("/$needle/", $haystack)) echo 'match!';

21.5 Avoiding Regular Expressions | 635

// fast
if (strstr($haystack, $needle)) echo 'match!';

// fastest
if (strpos($haystack, $needle) !== false) echo 'match!';

There is certainly a benefit to double-checking the ctype and string functions before
making a commitment to a regular expression, particularly if you’re working a section
of code that will loop repeatedly.

See Also
Documentation on ctype functions at http://www.php.net/manual/en/ref.ctype.php; on
string functions at http://www.php.net/manual/en/ref.strings.php; on regular expres-
sion functions at http://www.php.net/manual/en/ref.pcre.php.

21.6 Using an Accelerator

Problem
You want to increase performance of your PHP applications.

Solution
Install a code-caching PHP accelerator to allow PHP to avoid compiling scripts into
opcodes on each request.

Discussion
PHP code accelerators do the bulk of their magic transparently by storing compiled
versions of PHP scripts on disk or in shared memory in order to skip the compiling step
with each request.

When the PHP interpreter is told to run a particular program, it reads the source code
of the program and compiles it into a compact internal representation. Then, it executes
the instructions in that compiled representation. When it’s done executing the script,
the interpreter throws away the compiled representation.

An accelerator, by contrast, keeps the compiled instructions around. The next time the
PHP interpreter gets a request to run the same program, the accelerator steps in and
checks whether it’s saved a compiled version of that program. If so, it tells the PHP
interpreter to skip recompilation and just execute the already compiled version. An
accelerator can be configured to update its compiled representations based on different
criteria, such as whenever the original program changes or only when you explicitly tell
it to.

The three most popular freely available PHP accelerators are the Alternative PHP Cache
(APC), eAccelerator, and the ionCube PHP Accelerator (PHPA). The freely available
Zend Optimizer can also help with small performance increases by transparently cor-

636 | Chapter 21: Performance Tuning and Load Testing

recting common but inefficient coding practices. However, the Zend Optimizer is not
an accelerator.

There are a few important distinctions between the freely available accelerators that
may influence your choice on which one to use. Issues such as Windows support, PHP
5 compatibility, Zend Optimizer compatibility, and functionality that goes beyond
code caching may all be important in your decision on which accelerator to use. Bench-
marks have shown that all the accelerators improve performance a roughly equivalent
amount, so the deciding factor will most likely be one of these other issues.

APC and eAccelerator are open source projects with ongoing development. (eAcceler-
ator is a fork of the Turck MMCache project, on which development has stopped.) The
ionCube Accelerator is a commercial product. Developer responsiveness to bugs should
also factor into your decision on which accelerator to use. Make sure to check the
current status of open bugs with each accelerator and how those issues may affect you
based on the version of PHP you’re using, and the type of code (OOP versus procedural)
your applications are based on.

Finally, it is important to recognize that accelerator compatibility often lags behind new
PHP releases. If running the latest and greatest version of PHP is important to you, you
may find that you are rarely able to take advantage of the benefits that an accelerator
can provide.

See Also
The APC web site at http://pecl.php.net/package/apc; the eAccelerator web site at http://
www.eaccelerator.net/; the PHPA web site at http://www.php-accelerator.co.uk/ .

21.6 Using an Accelerator | 637

CHAPTER 22

Regular Expressions

22.0 Introduction
Regular expressions are an intricate and powerful tool for matching patterns and ma-
nipulating text. While not as fast as plain vanilla string matching, regular expressions
are extremely flexible. They allow you to construct patterns to match almost any con-
ceivable combination of characters with a simple—albeit terse and punctuation-
studded—grammar. If your web site relies on data feeds that come in text files—data
feeds like sports scores, news articles, or frequently updated headlines—regular ex-
pressions can help you make sense of those data feeds.

This chapter gives a brief overview of basic regular expression syntax and then focuses
on the functions that PHP provides for working with regular expressions. For a bit more
detailed information about the ins and outs of regular expressions, check out the PCRE
section of the PHP online manual (http://www.php.net/pcre) and Appendix B of Learn-
ing PHP 5 by David Sklar (O’Reilly). To start on the path to regular expression wizardry,
read the comprehensive Mastering Regular Expressions by Jeffrey E.F. Friedl (O’Reilly).

Regular expressions are handy when transforming plain text into HTML and vice versa.
Luckily, since these are such helpful subjects, PHP has many built-in functions to han-
dle these tasks. Recipe 9.10 tells how to escape HTML entities; Recipe 13.14 covers
stripping HTML tags; and Recipes 13.12 and 13.13 show how to convert plain text to
HTML and HTML to plain text, respectively. For information on matching and vali-
dating email addresses, see Recipe 9.4.

Over the years, the functionality of regular expressions has grown from its basic roots
to incorporate increasingly useful features. As a result, PHP offers two different sets of
regular expression functions. The first set includes the traditional (or POSIX) functions,
whose names each begin with ereg (for “extended” regular expressions; the ereg func-
tions themselves are already an extension of the original feature set). The other set
includes the Perl-compatible family of functions, prefaced with preg (for Perl-compat-
ible regular expressions).

The preg functions use a library that mimics the regular expression functionality of the
Perl programming language. This is a good thing because Perl allows you to do a variety

639

of handy things with regular expressions, including nongreedy matching, forward and
backward assertions, and even recursive patterns.

In general, there’s no longer any reason to use the ereg functions. They offer fewer
features, and they’re slower than preg functions. However, the ereg functions existed
in PHP for many years prior to the introduction of the preg functions, so many pro-
grammers still use them because of legacy code or out of habit. Thankfully, the
prototypes for the two sets of functions are identical, so it’s easy to switch back and
forth from one to another without too much confusion. (We list how to do this while
avoiding the major gotchas in Recipe 22.1.)

Think of a regular expression as a program in a very restrictive programming language.
The only task of a regular expression program is to match a pattern in text. In regular
expression patterns, most characters just match themselves. That is, the regular ex-
pression rhino matches strings that contain the five-character sequence rhino. The fancy
business in regular expressions is due to a handful of punctuation and symbols called
metacharacters. These symbols don’t literally match themselves, but instead give com-
mands to the regular expression matcher.

The most frequently used metacharacters include the period (.), asterisk (*), plus
sign (+), and question mark (?). (To match a literal metacharacter in a pattern, precede
the character with a backslash.)

• The period means “match any character,” so the pattern .at matches bat, cat, and
even rat.

• The asterisk means “match 0 or more of the preceding object.” (So far, the only
objects we know about are characters.)

• The plus is similar to asterisk, but means “match one or more of the preceding
object.” So .+at matches brat, sprat, and even the cat inside of catastrophe, but
not plain at. To match at, replace the + with a *.

• The question mark means “the preceding object is optional.” That is, it matches 0
or 1 of the object that precedes it. colou?r matches both color and colour.

To apply * and + to objects greater than one character, place the sequence of characters
that make up the object inside parentheses. Parentheses allow you to group characters
for more complicated matching and also capture the part of the pattern that falls inside
them. A captured sequence can be referenced by preg_replace(  ) to alter a string, and
all captured matches can be stored in an array that’s passed as a third parameter to
 preg_match(  ) and preg_match_all(  ). The preg_match_all(  ) function is similar to
preg_match(  ), but it finds all possible matches inside a string, instead of stopping at the
first match. Example 22-1 shows a few examples of preg_match(  ), preg_match_all(  ),
and preg_replace(  ) at work.

Example 22-1. Using preg functions
<?php
if (preg_match('{<title>.+</title>}', $html)) {

640 | Chapter 22: Regular Expressions

 // page has a title
}

if (preg_match_all('//', $html, $matches)) {
 print 'Page has ' . count($matches[0]) . " list items\n";
}

// turn bold into italic
$italics = preg_replace('/(<\/?)b(>)/', '$1i$2', $bold);
?>

If you want to match strings with a specific set of characters, create a character class by
putting the characters you want inside square brackets. The character class [aeiou]
matches any one of the characters a, e, i, o, and u. You can also put ranges inside of
square brackets to form a character class. The class [a-z] matches all lowercase English
letters. The class [a-zA-Z0-9] matches digits and English letters. The class [a-zA-
Z0-9_] matches digits, English letters, and the underscore.

So far, all the patterns we’ve seen match anything that contains text that corresponds
to the pattern. That is, [a-z0-9]+ matches grapefruit and c3p0, but it also matches
grr!!! and *******p. All four of those strings meet the condition that [a-z0-9]+ sets
out: “one or more of a digit or lowercase English letter.”

Anchoring your pattern enables matching against strings that only contain characters
that the pattern describes. The caret (^) and the dollar sign ($) anchor the pattern at
the beginning and the end of the string, respectively. Without them, a match can occur
anywhere in the string. So while [a-z0-9]+ means “one or more of a digit or lowercase
English letter,” ^[a-z0-9]+ means “begins with one or more of a digit or lowercase
English letter,” [a-z0-9]+$ means “ends with one or more of a digit or lowercase English
letter,” and ^[a-z0-9]+$ means “contains only one or more of a digit or lowercase Eng-
lish letter.” Example 22-2 shows a few character classes at work.

Example 22-2. Matching with character classes and anchors
<?php
$thisFileContents = file_get_contents(__FILE__);
// http://php.net/language.variables gives a regular expression for
// valid variable names in php. Beginning the pattern with \$ matches
// a literal $
$matchCount = preg_match_all('/\$[a-zA-Z_\x7f-\xff][a-zA-Z0-9_\x7f-\xff]*/',
 $thisFileContents, $matches);
print "Matches: $matchCount\n";
foreach ($matches[0] as $variableName) {
 print "$variableName\n";
}
?>

Example 22-2 prints each variable name it uses:

Matches: 8
$thisFileContents
$matchCount

22.0 Introduction | 641

$thisFileContents
$matches
$matchCount
$matches
$variableName
$variableName

If it’s easier to define what you’re looking for by its complement, use that. To make a
character class match the complement of what’s inside it, begin the class with a
caret. A caret outside a character class anchors a pattern at the beginning of a string;
a caret inside a character class means “match everything except what’s listed in the
square brackets.” For example, the character class [^aeiou] matches everything but
lowercase English vowels.

Note that the opposite of [aeiou] isn’t [bcdfghjklmnpqrstvwxyz]. The character class
[^aeiou] also matches uppercase vowels such as AEIOU, numbers such as 123, URLs such
as http://www.cnpq.br/, and even emoticons such as :).

The vertical bar (|), also known as the pipe, specifies alternatives. Example 22-3 uses
the pipe to find various possibilities for image filenames in a block of text.

Example 22-3. Matching with |
<?php
$text = "The files are cuddly.gif, report.pdf, and cute.jpg.";
if (preg_match_all('/[a-zA-Z0-9]+\.(gif|jpe?g)/',$text,$matches)) {
 print "The image files are: " . implode(',',$matches[0]);
}
?>

Example 22-3 prints:

The image files are: cuddly.gif,cute.jpg

We’ve covered just a small subset of the world of regular expressions. We provide some
additional details in later recipes, but the PHP web site also has some very useful in-
formation on Perl-compatible regular expressions at http://www.php.net/pcre. The links
from this last page to “Pattern Modifiers” and “Pattern Syntax” are especially detailed
and informative.

22.1 Switching from ereg to preg

Problem
You want to convert from using ereg functions to preg functions.

Solution
First, you have to add delimiters to your patterns:

preg_match('/pattern/', 'string')

642 | Chapter 22: Regular Expressions

For eregi(  ) case-insensitive matching, use the /i modifier instead:

preg_match('/pattern/i', 'string');

When using integers instead of strings as patterns or replacement values, convert the
number to hexadecimal and specify it using an escape sequence:

$hex = dechex($number);
preg_match("/\x$hex/", 'string');

Discussion
There are a few major differences between ereg and preg. First, when you use preg
functions, the pattern isn’t just the string pattern; it also needs delimiters, as in Perl,
so it’s /pattern/ instead.* So:

ereg('pattern', 'string');

becomes:

preg_match('/pattern/', 'string');

When choosing your pattern delimiters, don’t put your delimiter character inside the
regular expression pattern, or you’ll close the pattern early. If you can’t find a way to
avoid this problem, you need to escape any instances of your delimiters using the back-
slash. Instead of doing this by hand, call addcslashes(  ).

For example, if you use / as your delimiter:

$ereg_pattern = '.+';
$preg_pattern = addcslashes($ereg_pattern, '/');

The value of $preg_pattern is now .+<\/b>.

The preg functions don’t have a parallel series of case-insensitive functions. They have
a case-insensitive modifier instead. To convert, change:

eregi('pattern', 'string');

to:

preg_match('/pattern/i', 'string');

Adding the i after the closing delimiter makes the change.

Finally, there is one last obscure difference. If you use a number (not a string) as a
pattern or replacement value in ereg_replace(  ), it’s assumed you are referring to the
ASCII value of a character. Therefore, since 9 is the ASCII representation of tab (i.e.,
\t), this code inserts tabs at the beginning of each line:

$tab = 9;
$replaced = ereg_replace('^', $tab, $string);

* Or {pattern}, <pattern>, |pattern|, #pattern#, or just about whatever your favorite delimiters are.
If you use an opening pair character such as (, <, [, or { as the starting delimiter, PHP expects the
corresponding closing pair character as the ending delimiter (), >,], or }). If you use another character
as the starting delimiter, PHP expects the same character as the ending delimiter.

22.1 Switching from ereg to preg | 643

Here’s how to convert linefeed endings:

$converted = ereg_replace(10, 12, $text);

To avoid this feature in ereg functions, use this instead:

$tab = '9';

On the other hand, preg_replace(  ) treats the number 9 as the number 9, not as a tab
substitute. To convert these character codes for use in preg_replace(  ), convert them
to hexadecimal and prefix them with \x. For example, 9 becomes \x9 or \x09, and 12
becomes \x0c. Alternatively, you can use \t , \r, and \n for tabs, carriage returns, and
linefeeds, respectively.

See Also
Documentation on ereg(  ) at http://www.php.net/ereg, preg_match(  ) at http://
www.php.net/preg-match, and addcslashes(  ) at http://www.php.net/addcslashes.

22.2 Matching Words

Problem
You want to pull out all words from a string.

Solution
The key to this is carefully defining what you mean by a word. Once you’ve created
your definition, use the special character types to create your regular expression:

/\S+/ // everything that isn't whitespace
/[A-Z'-]+/i // all upper and lowercase letters, apostrophes, and hyphens

Discussion
The simple question “What is a word?” is surprisingly complicated. While the Perl-
compatible regular expressions have a built-in word character type, specified by \w,
it’s important to understand exactly how PHP defines a word. Otherwise, your results
may not be what you expect.

Normally, because it comes directly from Perl’s definition of a word, \w encompasses
all letters, digits, and underscores; this means a_z is a word, but the email address
php@example.com is not.

In this recipe, we only consider English words, but other languages use different al-
phabets. Because Perl-compatible regular expressions use the current locale to define
its settings, altering the locale can switch the definition of a letter, which then redefines
the meaning of a word.

644 | Chapter 22: Regular Expressions

To combat this, you may want to explicitly enumerate the characters belonging to your
words inside a character class. To add a nonstandard character, use \xdd , where dd is
a character’s hex code.

See Also
Recipe 19.2 for information about setting locales and Recipe 19.13 for information
about using UTF-8-encoded strings with the PCRE regex functions.

22.3 Finding the nth Occurrence of a Match

Problem
You want to find the nth word match instead of the first one.

Solution
Use preg_match_all(  ) to pull all the matches into an array; then pick out the specific
matches in which you’re interested, as shown in Example 22-4.

Example 22-4. Finding the nth match
<?php
$todo = "1. Get Dressed 2. Eat Jelly 3. Squash every week into a day";

preg_match_all("/\d\. ([^\d]+)/", $todo, $matches);

print "The second item on the todo list is: ";
// $matches[1] is an array of each substring captured by ([^\d]+)
print $matches[1][1];

print "The entire todo list is: ";
foreach($matches[1] as $match) {
 print "$match\n";
}
?>

Discussion
Because the preg_match(  ) function stops after it finds one match, you need to use
preg_match_all(  ) instead if you’re looking for additional matches. The
preg_match_all(  ) function returns the number of full pattern matches it finds. If it finds
no matches, it returns 0. If it encounters an error, such as a syntax problem in the
pattern, it returns false.

The third argument to preg_match_all(  ) is populated with an array holding informa-
tion about the various substrings that the pattern has matched. The first element holds
an array of matches of the complete pattern. For Example 22-4, this means that
$matches[0] holds the parts of $todo that match /\d\. ([^\d]+)/: 1. Get Dressed, 2.
Eat Jelly, and 3. Squash every week into a day.

22.3 Finding the nth Occurrence of a Match | 645

Subsequent elements of the $matches array hold arrays of text matched by each paren-
thesized subpattern. The pattern in Example 22-4 has just one subpattern ([^\d]+). So
$matches[1] is an array of strings that match that subpattern: Get Dressed, Eat Jelly,
and Squash every week into a day.

If there were a second subpattern, the substrings that it matched would be in $matches
[2], a third subpattern’s matches would be in $matches[3], and so on.

Instead of returning an array divided into full matches and then submatches,
preg_match_all(  ) can return an array divided by matches, with each submatch inside.
To trigger this, pass PREG_SET_ORDER in as the fourth argument. This is particularly useful
when you’ve got multiple captured subpatterns and you want to iterate through the
subpattern groups one group at a time, as shown in Example 22-5.

Example 22-5. Grouping captured subpatterns

<?php
$todo = "
first=Get Dressed
next=Eat Jelly
last=Squash every week into a day
";

preg_match_all("/([a-zA-Z]+)=(.*)/", $todo, $matches, PREG_SET_ORDER);

foreach ($matches as $match) {
 print "The {$match[1]} action is {$match[2]} \n";
}
?>

Example 22-5 prints:

The first action is Get Dressed
The next action is Eat Jelly
The last action is Squash every week into a day

With PREG_SET_ORDER, each value of $match in the foreach loop contains all the subpat-
terns: $match[0] is the entire matched string, $match[1] the bit before the =, and $match
[2] the bit after the =.

See Also
Documentation on preg_match_all(  ) at http://www.php.net/preg-match-all.

22.4 Choosing Greedy or Nongreedy Matches

Problem
You want your pattern to match the smallest possible string instead of the largest.

646 | Chapter 22: Regular Expressions

Solution
Place a ? after a quantifier to alter that portion of the pattern, as in Example 22-6.

Example 22-6. Making a quantifier match as few characters as possible
<?php
// find all emphasized sections
preg_match_all('@.+?@', $html, $matches);
?>

Or use the U pattern-modifier ending to invert all quantifiers from greedy (“match as
many characters as possible”) to nongreedy (“match as few characters as possible”).
The code in Example 22-7 does the same thing as the code in Example 22-6.

Example 22-7. Making a quantifier match as few characters as possible
<?php
// find all emphasized sections
preg_match_all('@.+@U', $html, $matches);
?>

Discussion
By default, all regular expression quantifiers in PHP are greedy. For example, consider
the pattern .+, which matches “, one or more characters, ”, match-
ing against the string I simply love your work. A greedy regular
expression finds one match, because after it matches the opening , its .+ slurps up
as much as possible, finally grinding to a halt at the final . The .+ matches love</
em> your work.

A nongreedy regular expression, on the other hand, finds a pair of matches. The first
 is matched as before, but then .+ stops as soon as it can, only matching love. A
second match then goes ahead: the next .+ matches work.

Example 22-8 shows the greedy and nongreedy patterns at work.

Example 22-8. Greedy versus nongreedy matching
<?php
$html = 'I simply love your work';
// Greedy
$matchCount = preg_match_all('@.+@', $html, $matches);
print "Greedy count: " . $matchCount . "\n";
// Nongreedy
$matchCount = preg_match_all('@.+?@', $html, $matches);
print "First non-greedy count: " . $matchCount . "\n";
// Nongreedy
$matchCount = preg_match_all('@.+@U', $html, $matches);
print "Second non-greedy count: " . $matchCount . "\n";
?>

Example 22-8 prints:

22.4 Choosing Greedy or Nongreedy Matches | 647

Greedy count: 1
First non-greedy count: 2
Second non-greedy count: 2

Greedy matching is also known as maximal and nongreedy matching can be called
minimal matching , because these methods match either the maximum or minimum
number of characters possible.

The ereg(  ) and ereg_replace(  ) functions are always greedy. Being able to choose
between greedy and nongreedy matching is another reason to use the PCRE functions
instead.

While nongreedy matching is useful for simplistic HTML parsing, it can break down
if your markup isn’t 100 percent valid and there are, for example, stray tags lying
around.† If your goal is just to remove all (or some) HTML tags from a block of text,
you’re better off not using a regular expression. Instead, use the built-in function
strip_tags(  ); it’s faster and it works correctly. See Recipe 13.14 for more details.

Finally, even though the idea of nongreedy matching comes from Perl, the U modifier
is incompatible with Perl and is unique to PHP’s Perl-compatible regular expressions.
It inverts all quantifiers, turning them from greedy to nongreedy and also the reverse.
So to get a greedy quantifier inside of a pattern operating under a trailing /U, just add
a ? to the end, the same way you would normally turn a greedy quantifier into a
nongreedy one.

See Also
Recipe 22.6 for more on capturing text inside HTML tags; Recipe 13.14 for more on
stripping HTML tags; documentation on preg_match_all(  ) at http://www.php.net/
preg-match-all.

22.5 Finding All Lines in a File That Match a Pattern

Problem
You want to find all the lines in a file that match a pattern.

Solution
Read the file into an array and use preg_grep(  ).

Discussion
There are two ways to do this. Example 22-9 is faster, but uses more memory. It uses
the file(  ) function to put each line of the file into an array and preg_grep(  ) to filter
out the non-matching lines.

† It’s possible to have valid HTML and still get into trouble; for instance, if you have bold tags inside a
comment. A true HTML parser would ignore them, but our pattern won’t.

648 | Chapter 22: Regular Expressions

Example 22-9. Quickly finding lines that match a pattern

$pattern = "/\bo'reilly\b/i"; // only O'Reilly books
$ora_books = preg_grep($pattern, file('/path/to/your/file.txt'));

Example 22-10 is slower, but more memory efficient. It reads the file a line at a time
and uses preg_match(  ) to check each line after it’s read.

Example 22-10. Efficiently finding lines that match a pattern

$fh = fopen('/path/to/your/file.txt', 'r') or die($php_errormsg);
while (!feof($fh)) {
 $line = fgets($fh);
 if (preg_match($pattern, $line)) { $ora_books[] = $line; }
}
fclose($fh);

Since the code in Example 22-9 reads in everything all at once, it’s about three times
faster than the code in Example 22-10, which parses the file line by line but uses less
memory. Keep in mind that since both methods operate on individual lines of the file,
they can’t successfully use patterns that match text that spans multiple lines.

See Also
Recipe 23.5 on reading files into strings; documentation on preg_grep(  ) at http://
www.php.net/preg-grep.

22.6 Capturing Text Inside HTML Tags

Problem
You want to capture text inside HTML tags. For example, you want to find all the
heading tags in an HTML document.

Solution
Read the HTML file into a string and use nongreedy matching in your pattern, as shown
in Example 22-11.

Example 22-11. Capturing HTML headings

<?php
$html = file_get_contents('example.html');
preg_match_all('@<h([1-6])>(.+?)</h\1>@is', $html, $matches);
foreach ($matches[2] as $text) {
 print "Heading: $text \n";
}
?>

22.6 Capturing Text Inside HTML Tags | 649

Discussion
Robust parsing of HTML is difficult using a simple regular expression. This is one
advantage of using XHTML; it’s significantly easier to validate and parse.

For instance, the pattern in Example 22-11 can’t deal with attributes inside the heading
tags and is only smart enough to find matching headings, so
<h1>Dr. Strangelove</h1> is OK, because it’s wrapped inside <h1></h1> tags, but not
<h2>How I Learned to Stop Worrying and Love the Bomb</h3>, because the opening tag
is <h2> while the closing tag is not.

This technique also works for finding all text inside reasonably well constructed
 and tags, as in Example 22-12.

Example 22-12. Extracting text from HTML tags

<?php
$html = file_get_contents('example.html');
preg_match_all('@<(strong|em)>(.+?)</\1>@is', $html, $matches);
foreach ($matches[2] as $text) {
 print "Text: $text \n";
}
?>

However, Example 22-12 breaks on nested headings. If example.html contains
Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb</
em>, Example 22-12 doesn’t capture the text inside the tags as a
separate item.

This isn’t a problem in Example 22-11: because headings are block level elements, it’s
illegal to nest them. However, as inline elements, nested and tags are
valid.

Regular expressions can be moderately useful for parsing small amounts of HTML,
especially if the structure of that HTML is reasonably constrained (or you’re generating
it yourself). For more generalized and robust HTML parsing, use the tidy extension. It
provides an interface to the popular libtidy HTML cleanup library. Once tidy has
cleaned up your HTML, you can use its methods for getting at parts of the document.
Or if you’ve told tidy to convert your HTML to XHTML, you can use all of the XML
manipulation power of SimpleXML or the DOM extension to slice and dice your HTML
document.

See Also
Recipe 13.9 for information on marking up a web page and Recipe 13.11 for extracting
links from an HTML file; documentation on preg_match(  ) at http://www.php.net/preg-
match and on tidy at http://www.php.net/tidy.

650 | Chapter 22: Regular Expressions

22.7 Preventing Parentheses from Capturing Text

Problem
You’ve used parentheses for grouping in a pattern, but you don’t want the text that
matches what’s in the parentheses to show up in your array of captured matches.

Solution
Put ?: just after the opening parenthesis, as in Example 22-13.

Example 22-13. Preventing text capture
<?php
$html = '<link rel="icon" href="http://www.example.com/icon.gif"/>
<link rel="prev" href="http://www.example.com/prev.xml"/>
<link rel="next" href="http://www.example.com/next.xml"/>';

preg_match_all('/rel="(prev|next)" href="([^"]*?)"/', $html, $bothMatches);
preg_match_all('/rel="(?:prev|next)" href="([^"]*?)"/', $html, $linkMatches);

print '$bothMatches is: '; var_dump($bothMatches);
print '$linkMatches is: '; var_dump($linkMatches);

?>

In Example 22-13, $bothMatches contains the values of the rel and the href attributes.
$linkMatches, however, just contains the values of the href attributes. The code prints:

$bothMatches is: array(3) {
 [0]=>
 array(2) {
 [0]=>
 string(49) "rel="prev" href="http://www.example.com/prev.xml""
 [1]=>
 string(49) "rel="next" href="http://www.example.com/next.xml""
 }
 [1]=>
 array(2) {
 [0]=>
 string(4) "prev"
 [1]=>
 string(4) "next"
 }
 [2]=>
 array(2) {
 [0]=>
 string(31) "http://www.example.com/prev.xml"
 [1]=>
 string(31) "http://www.example.com/next.xml"
 }
}
$linkMatches is: array(2) {
 [0]=>

22.7 Preventing Parentheses from Capturing Text | 651

 array(2) {
 [0]=>
 string(49) "rel="prev" href="http://www.example.com/prev.xml""
 [1]=>
 string(49) "rel="next" href="http://www.example.com/next.xml""
 }
 [1]=>
 array(2) {
 [0]=>
 string(31) "http://www.example.com/prev.xml"
 [1]=>
 string(31) "http://www.example.com/next.xml"
 }
}

Discussion
Preventing capturing is particularly useful when a subpattern is optional. Since it might
not show up in the array of captured text, an optional subpattern can change the num-
ber of pieces of captured text. This makes it hard to reference a particular matched
piece of text at a given index. Making optional subpatterns non-capturing prevents this
problem. Example 22-14 illustrates this distinction.

Example 22-14. A non-capturing optional subpattern

<?php
$html = '<link rel="icon" href="http://www.example.com/icon.gif"/>
<link rel="prev" title="Previous" href="http://www.example.com/prev.xml"/>
<link rel="next" href="http://www.example.com/next.xml"/>';

preg_match_all('/rel="(?:prev|next)"(?: title="[^"]+?")? href=
"([^"]*?)"/', $html, $linkMatches);

print '$bothMatches is: '; var_dump($linkMatches);
?>

See Also
The PCRE Pattern Syntax documentation at http://php.net/reference.pcre.pattern.syn
tax.

22.8 Escaping Special Characters in a Regular Expression

Problem
You want to have characterssuch as * or + treated as literals, not as metacharacters,
inside a regular expression. This is useful when allowing users to type in search strings
you want to use inside a regular expression.

652 | Chapter 22: Regular Expressions

Solution
Use preg_quote(  ) to escape Perl-compatible regular-expression metacharacters:

<?php
$pattern = preg_quote('The Education of H*Y*M*A*N K*A*P*L*A*N').':(\d+)';
if (preg_match("/$pattern/",$book_rank,$matches)) {
 print "Leo Rosten's book ranked: ".$matches[1];
}
?>

Use quotemeta(  ) to escape POSIX metacharacters:

$pattern = quotemeta('M*A*S*H').':[0-9]+';
if (ereg($pattern,$tv_show_rank,$matches)) {
 print 'Radar, Hot Lips, and the gang ranked: '.$matches[1];
}

Discussion
Here are the characters that preg_quote(  ) escapes:

. \ + * ? ^ $ [] () { } < > = ! | :

Here are the characters that quotemeta(  ) escapes:

. \ + * ? ^ $ [] ()

These functions escape the metacharacters with backslash.

The quotemeta(  ) function doesn’t match all POSIX metacharacters. The characters
{, }, and | are also valid metacharacters but aren’t converted. This is another good
reason to use preg_match(  ) instead of ereg(  ).

You can also pass preg_quote(  ) an additional character to escape as a second argument.
It’s useful to pass your pattern delimiter (usually /) as this argument so it also gets
escaped. This is important if you incorporate user input into a regular expression pat-
tern. The following code expects $_GET['search_term'] from a web form and searches
for words beginning with $_GET['search_term'] in a string $s:

$search_term = preg_quote($_GET['search_term'],'/');
if (preg_match("/\b$search_term/i",$s)) {
 print 'match!';
}

Using preg_quote(  ) ensures the regular expression is interpreted properly if, for exam-
ple, a Magnum, P.I. fan enters t.c as a search term. Without preg_quote(  ), this matches
tic, tucker, and any other words whose first letter is t and third letter is c. Passing the
pattern delimiter to preg_quote(  ) as well makes sure that user input with forward
slashes in it, such as CP/M, is also handled correctly.

22.8 Escaping Special Characters in a Regular Expression | 653

See Also
Documentation on preg_quote(  ) at http://www.php.net/preg-quote and quotemeta(  ) at
http://www.php.net/quotemeta.

22.9 Reading Records with a Pattern Separator

Problem
You want to read in records from a file, in which each record is separated by a pattern
you can match with a regular expression.

Solution
Read the entire file into a string and then split on the regular expression:

$filename = '/path/to/your/file.txt';
$fh = fopen($filename, 'r') or die($php_errormsg);
$contents = fread($fh, filesize($filename));
fclose($fh);

$records = preg_split('/[0-9]+\) /', $contents);

Discussion
This breaks apart a numbered list and places the individual list items into array ele-
ments. So if you have a list like this:

1) Gödel
2) Escher
3) Bach

You end up with a four-element array, with an empty opening element. That’s because
preg_split(  ) assumes the delimiters are between items, but in this case, the numbers
are before items:

 Array
 (
 [0] =>
 [1] => Gödel
 [2] => Escher
 [3] => Bach
)

From one point of view, this can be a feature, not a bug, since the nth element holds
the nth item. But, to compact the array, you can eliminate the first element:

$records = preg_split('/[0-9]+\) /', $contents);
array_shift($records);

Another modification you might want is to strip newlines from the elements and sub-
stitute the empty string instead:

654 | Chapter 22: Regular Expressions

$records = preg_split('/[0-9]+\) /', str_replace("\n",'',$contents));
array_shift($records);

PHP doesn’t allow you to change the input record separator to anything other than a
newline, so this technique is also useful for breaking apart records divided by strings.
However, if you find yourself splitting on a string instead of a regular expression, sub-
stitute explode(  ) for preg_split(  ) for a more efficient operation.

See Also
Recipe 23.5 for reading from a file; Recipe 1.11 for parsing CSV files.

22.10 Using a PHP Function in a Regular Expression

Problem
You want to process matched text with a PHP function. For example, you want to
decode all HTML entities in captured subpatterns.

Solution
Use preg_replace_callback(  ). Instead of a replacement pattern, give it a callback func-
tion. This callback function is passed an array of matched subpatterns and should
return an appropriate replacement string. Example 22-15 decodes entities between
<code></code> tags.

Example 22-15. Generating replacement strings with a callback function
<?php
$html = 'The tag makes text bold: <code>bold</code>';
print preg_replace_callback('@<code>(.*?)</code>@','decode', $html);

// $matches[0] is the entire matched string
// $matches[1] is the first captured subpattern
function decode($matches) {
 return html_entity_decode($matches[1]);
}
?>

Example 22-15 prints:

The tag makes text bold: bold

Discussion
The second argument to preg_replace_callback(  ) specifies the function that is to be
called to calculate replacement strings. Like everywhere the PHP “callback” pseudotype
is used, this argument can be a string or an array. Use a string to specify a function
name. To use an object instance method as a callback, pass an array whose first element
is the object and whose second element is a string containing the method name. To use

22.10 Using a PHP Function in a Regular Expression | 655

a static class method as a callback, pass an array of two strings: the class name and the
method name.

The callback function is passed one argument: an array of matches. Element 0 of this
array is always the text that matched the entire pattern. If the pattern given to
preg_replace_callback(  ) has any parenthesized subpatterns, these are present in sub-
sequent elements of the matches array. The keys of the matches array are numeric, even
if there are named subpatterns in the pattern.

The PHP manpage on preg_replace_callback(  ) suggests using create_function(  ) to
create an anonymous function for use as a callback. Although this can be convenient,
it is memory intensive if the call to create_function(  ) is inline with the call to
preg_replace_callback(  ) and inside a loop. If you want to use an anonymous function
with preg_replace_callback(  ), call create_function(  ) once, storing the anonymous
function callback in a variable. Then, provide the variable to
preg_replace_callback(  ) as the callback function. Example 22-16 uses an anonymous
function to apply the transformation in Example 22-15 to every line in a file.

Example 22-16. Generating replacement strings with an anonymous function
<?php
$callbackFunction = create_function('$matches',
 'return html_entity_decode($matches[1]);');
$fp = fopen('html-to-decode.html','r');
while (! feof($fp)) {
 $line = fgets($fp);
 print preg_replace_callback('@<code>(.*?)</code>@',$callbackFunction, $line);
}
fclose($fp);
?>

An alternative to preg_replace_callback(  ) is to use the e pattern modifier. This causes
the replacement string to be evaluated as PHP code. We recommend you use
preg_replace_callback(  ) instead, though, for the backreference-related reasons ex-
plained below.

Example 22-17 uses the e pattern modifier to do the same entity decoding in Exam-
ple 22-15.

Example 22-17. Entity encoding matched text
<?php
$html = 'The tag makes text bold: <code>bold</code>';
print preg_replace('@<code>(.*?)</code>@e',"html_entity_decode('$1')", $html);
?>

Things can get a bit tricky when you use the e modifier and include backreferences in
the replacement string. There are multiple levels of escaping to be aware of (and, in
some cases, to work around).

The first level of escaping is PHP’s regular behavior that’s at work whenever you con-
struct a string. (Note that in Example 22-17, however, since $1 isn’t a valid regular

656 | Chapter 22: Regular Expressions

variable name, the $ doesn’t need to be escaped even though the entire replacement
string is delimited by double quotes.

The second level of escaping is how backreference replacements are delimited inside
the replacement string. In Example 22-17, html_entity_decode('$1') becomes
html_entity_decode('<code>bold</code>'). This causes
html_entity_decode(  ) to be called with one argument, a single-quoted string.

Both single and double quotes in the captured match are backslash escaped. The back-
reference replacements look a little different when they themselves contain single or
double quotes. For instance, examine Example 22-18.

Example 22-18. Quote escaping in backreference replacements
<?php
$html = "<code> It's bold </code>";
print preg_replace('@<code>(.*?)</code>@e',"html_entity_decode('$1')", $html);
print "\n";

$html = '<code><i> "This" is italic. </i></code>';
print preg_replace('@<code>(.*?)</code>@e',"html_entity_decode('$1')", $html);
print "\n";
?>

Example 22-18 prints:

 It's bold
<i> \"This\" is italic. </i>

Somehow, backslashes have crept into the second line. This is a consequence of how
the e modifier works. As mentioned above, both single and double quotes in the captured
match are backslash escaped. This means that, in the first call to preg_replace(  ) in
Example 22-18, what’s executed to calculate the replacement is:

html_entity_decode('<code> It\'s bold </code>)

html_entity_decode(  ) is passed a single-quoted string with a backslash-escaped single
quote in it. All is well—'It\'s' is really just It's. The second preg_replace(  ), however,
is problematic. What’s executed to calculate the replacement is html_entity_decode
('<code><i> \"This\" is italic. </i></code>'). In a single-quoted string,
a backslash before a double quote represents not a literal backslash, but the two char-
acter sequence \".

To work around this problem, use str_replace(  ) to replace \" with " in your code that’s
executed to calculate the replacement. (Don’t use stripslashes(  )—it also removes
backslashes before other characters, which we don’t want here.) Example 22-19 wraps
html_entity_decode(  ) with a function that does just that.

Example 22-19. Fixing quote escaping in backreference replacements
<?php
$html = "<code> It's bold </code>";
print preg_replace('@<code>(.*?)</code>@e',"preg_html_entity_decode('$1')", $html);

22.10 Using a PHP Function in a Regular Expression | 657

print "\n";

$html = '<code><i> "This" is italic. </i></code>';
print preg_replace('@<code>(.*?)</code>@e',"preg_html_entity_decode('$1')", $html);
print "\n";

function preg_html_entity_decode($s) {
 $s = str_replace('\\"','"', $s);
 return html_entity_decode($s);
}
?>

The use of the preg_html_entity_decode(  ) function in Example 22-19 ensures that it
prints correct results:

 It's bold
<i> "This" is italic. </i>

One final note on escaping and the e pattern modifier: inside your replacement-calcu-
lating expression, make sure to use single quotes (not double quotes) to delimit any
strings that include backreference values. That is, use preg_html_entity_decode('$1'),
not preg_html_entity_decode("$1"). Double quotes cause problems if the backreference
value contains what looks like a valid variable name. Example 22-20 illustrates this
problem.

Example 22-20. Variable names and double-quoted strings

<?php
$text = '<code>if ($temperature < 12) { fever(); }</code>';
print "Good: \n";
print preg_replace('@<code>(.*?)</code>@e',"preg_html_entity_decode('$1')", $text);
print "\n Bad: \n";
print preg_replace('@<code>(.*?)</code>@e','preg_html_entity_decode("$1")' , $text);

function preg_html_entity_decode($s) {
 $s = str_replace('\\"','"', $s);
 return html_entity_decode($s);
}
?>

Example 22-20 prints:

Good:
if ($temperature < 12) { fever(); }
 Bad:

Notice: Undefined variable: temperature in example.php(6) : regexp code on line 1
if (< 12) { fever(); }

With appropriate quoting, the first preg_replace(  ) works as expected: the only mod-
ification to $text is that < is replaced by <. The second preg_replace(  ), with double
quotes around $1, is broken. The PHP interpreter thinks that the string to be passed to
preg_html_entity_decode(  ) is "if ($temperature < 12) { fever(  ); }". Since that’s

658 | Chapter 22: Regular Expressions

a double-quoted string, the PHP interpreter attempts to replace $temperature with the
value of the corresponding variable, which, of course, doesn’t exist.

So the moral of the “using the e modifier with preg_replace(  )” story is twofold: correct
for backslash-escaped double-quote characters and use single quotes to delimit strings
inside your code expression to avoid accidental variable interpolation. This tricky
quoting and interpolation behavior makes preg_replace_callback(  ) a friendlier option.

See Also
Documentation on preg_replace_callback(  ) at http://www.php.net/preg_replace_call
back, on preg_replace(  ) at http://www.php.net/preg_replace, on create_function(  ) at
http://www.php.net/create_function, and on the callback pseudo-type at http://
www.php.net/language.pseudo-types#language.types.callback .

22.10 Using a PHP Function in a Regular Expression | 659

CHAPTER 23

Files

23.0 Introduction
The input and output in a web application usually flow between browser, server, and
database, but there are many circumstances in which files are involved too. Files are
useful for retrieving remote web pages for local processing, storing data without a da-
tabase, and saving information that other programs need access to. Plus, as PHP
becomes a tool for more than just pumping out web pages, the file I/O functions are
even more useful.

PHP’s interface for file I/O is similar to that of C, although less complicated. The fun-
damental unit of identifying a file to read from or write to is a filehandle. This handle
identifies your connection to a specific file, and you use it for operations on the file.
This chapter focuses on opening and closing files and manipulating filehandles in PHP,
as well as what you can do with the file contents once you’ve opened a file. Chap-
ter 24 deals with directories and file metadata such as permissions.

The code in Example 23-1 opens /tmp/cookie-data and writes the contents of a specific
cookie to the file.

Example 23-1. Writing data to a file
<?php
$fh = fopen('/tmp/cookie-data','w') or die("can't open file");
if (-1 == fwrite($fh,$_COOKIE['flavor'])) { die("can't write data"); }
fclose($fh) or die("can't close file");
?>

The function fopen(  ) returns a filehandle if its attempt to open the file is successful. If
it can’t open the file (because of incorrect permissions, for example), it returns false
and generates an E_WARNING-type error. Recipes 23.1 through 23.3 cover ways to open
files.

In Example 23-1, fwrite(  ) writes the value of the flavor cookie to the filehandle. It
returns the number of bytes written. If it can’t write the string (not enough disk space,
for example), it returns -1.

661

Last, fclose(  ) closes the filehandle. This is done automatically at the end of a request,
but it’s a good idea to explicitly close all files you open anyway. It prevents problems
using the code in a command-line context and frees up system resources. It also allows
you to check the return code from fclose(  ). Buffered data might not actually be written
to disk until fclose(  ) is called, so it’s here that “disk full” errors are sometimes repor-
ted.

As with other processes, PHP must have the correct permissions to read from and write
to a file. This is usually straightforward in a command-line context but can cause con-
fusion when running scripts within a web server. Your web server (and consequently
your PHP script) probably runs as a specific user dedicated to web serving (or perhaps
as user nobody). For good security reasons, this user often has restricted permissions on
what files it can access. If your script is having trouble with a file operation, make sure
the web server’s user or group—not yours—has permission to perform that file oper-
ation. Some web serving setups may run your script as you, though, in which case you
need to make sure that your scripts can’t accidentally read or write personal files that
aren’t part of your web site.

Because most file-handling functions just return false on error, you have to do some
additional work to find more details about that error. When the track_errors config-
uration directive is on, each error message is put in the global variable $php_errormsg.
Including this variable as part of your error output makes debugging easier, as shown
in Example 23-2.

Example 23-2. Using file-related error information
<?php
$fh = fopen('/tmp/cookie-data','w') or die("can't open: $php_errormsg");
if (-1 == fwrite($fh,$_COOKIE['flavor'])) { die("can't write: $php_errormsg") };
fclose($fh) or die("can't close: $php_errormsg");
?>

If you don’t have permission to write to the /tmp/cookie-data, Example 23-2 dies with
this error output:

can't open: fopen("/tmp/cookie-data", "w") - Permission denied

Windows and Unix treat files differently. To ensure your file access code works ap-
propriately on Unix and Windows, take care to handle line-delimiter characters and
pathnames correctly.

A line delimiter on Windows is two characters: ASCII 13 (carriage return) followed
by ASCII 10 (line feed or newline). On Unix, it’s just ASCII 10. The typewriter-era
names for these characters explain why you can get “stair-stepped” text when printing
out a Unix-delimited file. Imagine these character names as commands to the platen in
a typewriter or character-at-a-time printer. A carriage return sends the platen back to
the beginning of the line it’s on, and a line feed advances the paper by one line. A
misconfigured printer encountering a Unix-delimited file dutifully follows instructions
and does a line feed at the end of each line. This advances to the next line but doesn’t

662 | Chapter 23: Files

move the horizontal printing position back to the left margin. The next stair-stepped
line of text begins (horizontally) where the previous line left off.

PHP functions that use a newline as a line-ending delimiter (for example, fgets(  )) work
on both Windows and Unix because a newline is the character at the end of the line on
either platform.

To remove any line-delimiter characters, use the PHP function rtrim(  ), as shown in
Example 23-3.

Example 23-3. Trimming trailing whitespace
<?php
$fh = fopen('/tmp/lines-of-data.txt','r') or die($php_errormsg);
while($s = fgets($fh)) {
 $s = rtrim($s);
 // do something with $s ...
}
fclose($fh) or die($php_errormsg);
?>

This function removes any trailing whitespace in the line, including ASCII 13 and ASCII
10 (as well as tab and space). If there’s whitespace at the end of a line that you want to
preserve, but you still want to remove carriage returns and line feeds, provide
rtrim(  ) with a string containing the characters that it should remove. Other characters
are left untouched. This is shown in Example 23-4.

Example 23-4. Trimming trailing line-ending characters
<?php
$fh = fopen('/tmp/lines-of-data.txt','r') or die($php_errormsg);
while($s = fgets($fh)) {
 $s = rtrim($s, "\r\n");
 // do something with $s ...
}
fclose($fh) or die($php_errormsg);
?>

Unix and Windows also differ on the character used to separate directories in path-
names. Unix uses a slash (/), and Windows uses a backslash (\). PHP makes sorting
this out easy, however, because the Windows version of PHP also understands / as a
directory separator. For example, Example 23-5 successfully prints the contents of
C:\Alligator\Crocodile Menu.txt.

Example 23-5. Using forward slashes on Windows
<?php
$fh = fopen('c:/alligator/crocodile menu.txt','r') or die($php_errormsg);
while($s = fgets($fh)) {
 print $s;
}
fclose($fh) or die($php_errormsg);
?>

23.0 Introduction | 663

Example 23-5 also takes advantage of the fact that Windows filenames aren’t case-
sensitive. However, Unix filenames are.

Sorting out line-break confusion isn’t only a problem in your code that reads and writes
files but in your source code files as well. If you have multiple people working on a
project, make sure all developers configure their editors to use the same kind of line
breaks.

Once you’ve opened a file, PHP gives you many tools to process its data. In keeping
with PHP’s C-like I/O interface, the two basic functions to read data from a file are
fread(  ), which reads a specified number of bytes, and fgets(  ), which reads a line at a
time (up to an optional specified number of bytes). Example 23-6 handles lines up to
256 bytes long.

Example 23-6. Reading lines from a file
<?php
$fh = fopen('orders.txt','r') or die($php_errormsg);
while (! feof($fh)) {
 $s = fgets($fh,256);
 process_order($s);
}
fclose($fh) or die($php_errormsg);
?>

If orders.txt has a 300-byte line, fgets(  ) returns only the first 256 bytes. The next
fgets(  ) returns the next 44 bytes and stops when it finds the newline. The next
fgets(  ) after that moves to the next line of the file. Without the second argument,
fgets(  ) reads until it reaches the end of the line. (With PHP versions before 4.2.0, a
line length is required. From PHP 4.2.0 up to 4.3.0, the length defaults to 1,024 if not
specified.)

Many operations on file contents, such as picking a line at random (see Recipe 23.8)
are conceptually simpler (and require less code) if the entire file is read into a string or
array. The file_get_contents(  ) function reads an entire file into a string, and the
file(  ) function puts each line of a file into an array. The trade-off for simplicity, how-
ever, is memory consumption. This can be especially harmful when you are using PHP
as a server module. Generally, when a process (such as a web server process with PHP
embedded in it) allocates memory (as PHP does to read an entire file into a string or
array), it can’t return that memory to the operating system until it dies. This means that
calling file_get_contents(  ) on a 1 MB file from PHP running as an Apache module
increases the size of that Apache process by 1 MB until the process dies. Repeated a
few times, this decreases server efficiency. There are certainly good reasons for pro-
cessing an entire file at once, but be conscious of the memory-use implications when
you do.

Recipes 23.17 through 23.19 deal with running other programs from within a PHP
program. Some program execution operators or functions offer ways to run a program
and read its output all at once (backticks) or read its last line of output (system(  )). PHP

664 | Chapter 23: Files

can use pipes to run a program, pass it input, or read its output. Because a pipe is read
with standard I/O functions (fgets(  ) and fread(  )), you decide how you want the input
and you can do other tasks between reading chunks of input. Similarly, writing to a
pipe is done with fputs(  ) and fwrite(  ), so you can pass input to a program in arbitrary
increments.

Pipes have the same permission issues as regular files. The PHP process must have
execute permission on the program being opened as a pipe. If you have trouble opening
a pipe, especially if PHP is running as a special web server user, make sure the user is
allowed to execute the program to which you are opening a pipe.

23.1 Creating or Opening a Local File

Problem
You want to open a local file to read data from it or write data to it.

Solution
Use fopen(  ), as in Example 23-7.

Example 23-7. Opening a file
<?php
$fh = fopen('file.txt','r') or die("can't open file.txt: $php_errormsg");
?>

Discussion
The first argument to fopen(  ) is the file to open; the second argument is the mode in
which to open the file. The mode specifies what operations can be performed on the
file (reading and/or writing), where the file pointer is placed after the file is opened (at
the beginning or end of the file), whether the file is truncated to zero length after open-
ing, and whether the file is created if it doesn’t exist, as shown in Table 23-1.

Table 23-1. fopen(  ) file modes

Mode Readable? Writable? File pointer Truncate? Create?

r Yes No Beginning No No

r+ Yes Yes Beginning No No

w No Yes Beginning Yes Yes

w+ Yes Yes Beginning Yes Yes

a No Yes End No Yes

a+ Yes Yes End No Yes

x No Yes Beginning No Yes

x+ Yes Yes Beginning No Yes

23.1 Creating or Opening a Local File | 665

The x and x+ modes return false and generate a warning if the file already exists. They
are available in PHP 4.3.2 and later.

On non-POSIX systems, such as Windows, you need to add a b to the mode when
opening a binary file (as shown in Example 23-8), or reads and writes get tripped up
on NUL (ASCII 0) characters.

Example 23-8. Safely reading a binary file
<?php
$fh = fopen('c:/images/logo.gif','rb');
?>

Even though Unix systems handle binary files fine without the b in the mode, it’s a good
idea to use it always. That way, your code is maximally portable and runs well on both
Unix and Windows.

To operate on a file, pass the filehandle returned from fopen(  ) to other I/O functions
such as fgets(  ), fputs(  ), and fclose(  ).

If the file given to fopen(  ) doesn’t have a pathname, the file is opened in the directory
of the running script (web context) or in the current directory (command-line context).

You can also tell fopen(  ) to search for the file to open in the include_path specified in
your php.ini file by passing true as a third argument. Example 23-9 searches for
file.inc in the include_path.

Example 23-9. Opening files in the include_path
<?php
$fh = fopen('file.inc','r',true) or die("can't open file.inc: $php_errormsg");
?>

See Also
Documentation on fopen(  ) at http://www.php.net/fopen.

23.2 Creating a Temporary File

Problem
You need a file to temporarily hold some data.

Solution
Use tmpfile(  ) , as in Example 23-10, if the file needs to last only the duration of the
running script.

Example 23-10. Creating a temporary file with tmpfile(  )
<?php
$temp_fh = tmpfile();

666 | Chapter 23: Files

// write some data to the temp file
fputs($temp_fh,"The current time is ".strftime('%c'));
// the file goes away when the script ends
exit(1);
?>

If the file needs to last longer, generate a filename with tempnam(  ), and then use
fopen(  ), as in Example 23-11.

Example 23-11. Creating a temporary file with tempnam(  )
<?php
$tempfilename = tempnam('/tmp','data-');
$temp_fh = fopen($tempfilename,'w') or die($php_errormsg);
fputs($temp_fh,"The current time is ".strftime('%c'));
fclose($temp_fh) or die($php_errormsg);
?>

Discussion
The tmpfile(  ) function creates a file with a unique name and returns a filehandle. The
file is removed when fclose(  ) is called on that file handle, or the script ends.

Alternatively, tempnam(  ) generates a filename. It takes two arguments: the first is a
directory, and the second is a prefix for the filename. If the directory doesn’t exist or
isn’t writable, tempnam(  ) uses the system temporary directory—the TMPDIR environment
variable in Unix or the TMP environment variable in Windows. Example 23-12 shows
what tempnam(  ) generates.

Example 23-12. Generating a filename with tempnam(  )
<?php
$tempfilename = tempnam('/tmp','data-');
print "Temporary data will be stored in $tempfilename";
?>

Example 23-12 prints:

Temporary data will be stored in /tmp/data-GawVoL

Because of the way PHP generates temporary filenames, a file with the filename that
tempnam(  ) returns is actually created but left empty, even if your script never explicitly
opens the file. This ensures another program won’t create a file with the same name
between the time that you call tempnam(  ) and the time you call fopen(  ) with the file-
name.

See Also
Documentation on tmpfile(  ) at http://www.php.net/tmpfile and on tempnam(  ) at http://
www.php.net/tempnam.

23.2 Creating a Temporary File | 667

23.3 Opening a Remote File

Problem
You want to open a file that’s accessible to you via HTTP or FTP.

Solution
Pass the file’s URL to fopen(  ), as in Example 23-13.

Example 23-13. Opening a remote file

<?php
$fh = fopen('http://www.example.com/robots.txt','r') or die($php_errormsg);
?>

Discussion
When fopen(  ) is passed a filename that begins with http://, it retrieves the given page
with an HTTP/1.0 GET request (although a Host: header is also passed along to deal
with virtual hosts). Only the body of the reply can be accessed using the filehandle, not
the headers. Files can be read, not written, via HTTP.

When fopen(  ) is passed a filename that begins with ftp://, it returns a pointer to the
specified file, obtained via passive-mode FTP. You can open files via FTP for either
reading or writing, but not both.

To open URLs that require a username and a password with fopen(  ), embed the au-
thentication information in the URL as shown in Example 23-14.

Example 23-14. Using a password with FTP or HTTP

<?php
$fh = fopen('ftp://username:password@ftp.example.com/pub/Index','r');
$fh = fopen('http://username:password@www.example.com/robots.txt','r');
?>

Opening remote files with fopen(  ) is implemented via a PHP feature called the stream
wrapper. It’s enabled by default but is disabled by setting allow_url_fopen to off in your
php.ini or web server configuration file. If you can’t open remote files with fopen(  ),
check your server configuration.

See Also
Recipes 13.1 through 13.7, which discuss retrieving URLs; documentation on
fopen(  ) at http://www.php.net/fopen and on stream wrappers at http://www.php.net/
features.remote-files and http://www.php.net/wrappers.

668 | Chapter 23: Files

23.4 Reading from Standard Input

Problem
You want to read from standard input in a command-line context—for example, to get
user input from the keyboard or data piped to your PHP program.

Solution
Use fopen(  ) to open php://stdin, as in Example 23-15.

Example 23-15. Reading from standard input
<?php
$fh = fopen('php://stdin','r') or die($php_errormsg);
while($s = fgets($fh)) {
 print "You typed: $s";
}
?>

Discussion
Recipe 25.3 discusses reading data from the keyboard in a command-line context in
more detail. Reading data from standard input isn’t very useful in a web context, be-
cause information doesn’t arrive via standard input. The bodies of HTTP post and file-
upload requests are parsed by PHP and put into special variables. Non-file-upload
post request bodies can also be read with the php://input stream, as discussed in Rec-
ipe 8.7.

See Also
Recipe 25.3 for reading from the keyboard in a command-line context; Recipe 8.7 for
reading POST request bodies; documentation on fopen(  ) at http://www.php.net/fop
en.

23.5 Reading a File into a String

Problem
You want to load the entire contents of a file into a variable. For example, you want
to determine if the text in a file matches a regular expression.

Solution
Use file_get_contents(  ), as shown in Example 23-16.

Example 23-16. Reading a file into a string
<?php
$people = file_get_contents('people.txt');

23.4 Reading from Standard Input | 669

if (preg_match('/Names:.*(David|Susannah)/i',$people)) {
 print "people.txt matches.";
}
?>

Discussion
If you want the contents of a file in a string to manipulate, file_get_contents(  ) is great,
but if you just want to print the entire contents of a file, there are easier (and more
efficient) ways than reading it into a string and then printing the string. PHP provides
two functions for this. The first is fpassthru($fh), which prints everything left on the
file handle $fh and then closes it. The second, readfile($filename), prints the entire
contents of $filename.

You can use readfile(  ) to implement a wrapper around images that shouldn’t always
be displayed. The program in Example 23-17 makes sure a requested image is less than
a week old.

Example 23-17. Displaying recent images

<?php
$image_directory = '/usr/local/images';

if (preg_match('/^[a-zA-Z0-9]+\.(gif|jpe?g)$/',$image,$matches) &&
 is_readable($image_directory."/$image") &&
 (filemtime($image_directory."/$image") >= (time() - 86400 * 7))) {

 header('Content-Type: image/'.$matches[1]);
 header('Content-Length: '.filesize($image_directory."/$image"));

 readfile($image_directory."/$image");

} else {
 error_log("Can't serve image: $image");
}
?>

The directory in which the images are stored, $image_directory, needs to be outside the
web server’s document root for the wrapper to be effective. Otherwise, users can just
access the image files directly. The code tests the image file for three things. First, that
the filename passed in $image is just alphanumeric with an ending of either .gif, .jpg,
or .jpeg. We need to ensure that characters such as .. or / are not in the filename; this
prevents malicious users from retrieving files outside the specified directory. Second,
we use is_readable(  ) to make sure the program can read the file. Finally, we get the
file’s modification time with filemtime(  ) and make sure that time is after 86,400 × 7
seconds ago. There are 86,400 seconds in a day, so 86,400 × 7 is a week.* If all of
these conditions are met, we’re ready to send the image. First, we send two headers to

* When switching between standard time and daylight saving time, there are not 86,400 seconds in a day.
See Recipe 3.12 for details.

670 | Chapter 23: Files

tell the browser the image’s MIME type and file size. Then we use readfile(  ) to send
the entire contents of the file to the user.

See Also
Documentation on filesize(  ) at http://www.php.net/filesize, fread(  ) at http://
www.php.net/fread, fpassthru(  ) at http://www.php.net/fpassthru, and readfile(  ) at
http://www.php.net/readfile .

23.6 Counting Lines, Paragraphs, or Records in a File

Problem
You want to count the number of lines, paragraphs, or records in a file.

Solution
To count lines, use fgets(  ), as in Example 23-18. Because it reads a line at a time, you
can count the number of times it’s called before reaching the end of a file.

Example 23-18. Counting lines in a file

<?php
$lines = 0;

if ($fh = fopen('orders.txt','r')) {
 while (! feof($fh)) {
 if (fgets($fh)) {
 $lines++;
 }
 }
}
print $lines;
?>

To count paragraphs, increment the counter only when you read a blank line, as in
Example 23-19.

Example 23-19. Counting paragraphs in a file

<?php
$paragraphs = 0;

if ($fh = fopen('great-american-novel.txt','r')) {
 while (! feof($fh)) {
 $s = fgets($fh);
 if (("\n" == $s) || ("\r\n" == $s)) {
 $paragraphs++;
 }
 }
}

23.6 Counting Lines, Paragraphs, or Records in a File | 671

print $paragraphs;
?>

To count records, increment the counter only when the line read contains just the
record separator and whitespace. In Example 23-20, the record separator is stored in
$record_separator.

Example 23-20. Counting records in a file

<?php
$records = 0;
$record_separator = '--end--';

if ($fh = fopen('great-american-textfile-database.txt','r')) {
 while (! feof($fh)) {
 $s = rtrim(fgets($fh));
 if ($s == $record_separator) {
 $records++;
 }
 }
}
print $records;
?>

Discussion
In Example 23-18, $lines is incremented only if fgets(  ) returns a true value. As
fgets(  ) moves through the file, it returns each line it retrieves. When it reaches the last
line, it returns false, so $lines isn’t incremented incorrectly. Because EOF has been
reached on the file, feof(  ) returns true, and the while loop ends.

Example 23-19 works fine on simple text but may produce unexpected results when
presented with a long string of blank lines or a file without two consecutive line breaks.
These problems can be remedied with functions based on preg_split(  ). If the file is
small and can be read into memory, use the pc_split_paragraphs(  ) function shown in
Example 23-21. This function returns an array containing each paragraph in the file.

Example 23-21. pc_split_paragraphs(  )
<?php
function pc_split_paragraphs($file,$rs="\r?\n") {
 $text = file_get_contents($file);
 $matches = preg_split("/(.*?$rs)(?:$rs)+/s",$text,-1,
 PREG_SPLIT_DELIM_CAPTURE|PREG_SPLIT_NO_EMPTY);
 return $matches;
}
?>

In Example 23-21, the contents of the file are broken on two or more consecutive
newlines and returned in the $matches array. The default record-separation regular ex-
pression, \r?\n, matches both Windows and Unix line breaks.

672 | Chapter 23: Files

If the file is too big to read into memory at once, use the
pc_split_paragraphs_largefile(  ) function shown in Example 23-22, which reads the
file in 16 KB chunks.

Example 23-22. pc_split_paragraphs_largefile(  )
<?php
function pc_split_paragraphs_largefile($file,$rs="\r?\n") {
 global $php_errormsg;

 $unmatched_text = '';
 $paragraphs = array();

 $fh = fopen($file,'r') or die($php_errormsg);

 while(! feof($fh)) {
 $s = fread($fh,16384) or die($php_errormsg);
 $text_to_split = $unmatched_text . $s;

 $matches = preg_split("/(.*?$rs)(?:$rs)+/s",$text_to_split,-1,
 PREG_SPLIT_DELIM_CAPTURE|PREG_SPLIT_NO_EMPTY);

 // if the last chunk doesn't end with two record separators, save it
 // to prepend to the next section that gets read
 $last_match = $matches[count($matches)-1];
 if (! preg_match("/rsrs\$/",$last_match)) {
 $unmatched_text = $last_match;
 array_pop($matches);
 } else {
 $unmatched_text = '';
 }

 $paragraphs = array_merge($paragraphs,$matches);
 }

 // after reading all sections, if there is a final chunk that doesn't
 // end with the record separator, count it as a paragraph
 if ($unmatched_text) {
 $paragraphs[] = $unmatched_text;
 }
 return $paragraphs;
}
?>

This function uses the same regular expression as pc_split_paragraphs(  ) to split the
file into paragraphs. When it finds a paragraph end in a chunk read from the file, it
saves the rest of the text in the chunk in $unmatched_text and prepends it to the next
chunk read. This includes the unmatched text as the beginning of the next paragraph
in the file.

The record-counting function in Example 23-20 lets fgets(  ) figure out how long each
line is. If you can supply a reasonable upper bound on line length, stream_get_line(  )
provides a more concise way to count records. This function reads a line until it reaches

23.6 Counting Lines, Paragraphs, or Records in a File | 673

a certain number of bytes or it sees a particular delimiter. Supply it with the record
separator as the delimiter, as in Example 23-23.

Example 23-23. Counting records in a file with stream_get_line(  )
<?php
$records = 0;
$record_separator = '--end--';

if ($fh = fopen('great-american-textfile-database.txt','r')) {
 $done = false;
 while (! $done) {
 $s = stream_get_line($fh, 65536, $record_separator);
 if (feof($fh)) {
 $done = true;
 } else {
 $records++;
 }
 }
}
print $records;
?>

Example 23-23 assumes that each record is no more that 64 KB (65,536 bytes) long.
Each call to stream_get_line(  ) returns one record, not including the record separator.
When stream_get_line(  ) has advanced past the last record separator, it reaches the
end of the file, so $done is set to true to stop counting records.

See Also
Documentation on fgets(  ) at http://www.php.net/fgets, on feof(  ) at http://
www.php.net/feof, on preg_split(  ) at http://www.php.net/preg-split, and on
stream_get_line(  ) at http://www.php.net/stream_get_line.

23.7 Processing Every Word in a File

Problem
You want to do something with every word in a file. For example, you want to build a
concordance of how many times each word is used to compute similarities between
documents.

Solution
Read in each line with fgets(  ), separate the line into words, and process each word,
as in Example 23-24.

Example 23-24. Processing each word in a file
<?php
$fh = fopen('great-american-novel.txt','r') or die($php_errormsg);

674 | Chapter 23: Files

while (! feof($fh)) {
 if ($s = fgets($fh)) {
 $words = preg_split('/\s+/',$s,-1,PREG_SPLIT_NO_EMPTY);
 // process words
 }
}
fclose($fh) or die($php_errormsg);
?>

Discussion
Example 23-25 calculates the average word length in a file.

Example 23-25. Calculating average word length

<?php
$word_count = $word_length = 0;

if ($fh = fopen('great-american-novel.txt','r')) {
 while (! feof($fh)) {
 if ($s = fgets($fh)) {
 $words = preg_split('/\s+/',$s,-1,PREG_SPLIT_NO_EMPTY);
 foreach ($words as $word) {
 $word_count++;
 $word_length += strlen($word);
 }
 }
 }
}

print sprintf("The average word length over %d words is %.02f characters.",
 $word_count,
 $word_length/$word_count);
?>

Processing every word proceeds differently depending on how “word” is defined. The
code in this recipe uses the Perl-compatible regular expression engine’s \s whitespace
metacharacter, which includes space, tab, newline, carriage return, and formfeed. Rec-
ipe 1.5 breaks apart a line into words by splitting on a space, which is useful in that
recipe because the words have to be rejoined with spaces. The Perl-compatible engine
also has a word-boundary assertion (\b) that matches between a word character (al-
phanumeric) and a non-word character (anything else). Using \b instead of \s to delimit
words most noticeably treats differently words with embedded punctuation. The term
6 o'clock is two words when split by whitespace (6 and o'clock); it’s four words when
split by word boundaries (6, o, ', and clock).

See Also
Recipe 22.2 discusses regular expressions to match words; Recipe 1.5 for breaking apart
a line by words; documentation on fgets(  ) at http://www.php.net/fgets, on

23.7 Processing Every Word in a File | 675

preg_split(  ) at http://www.php.net/preg-split, and on the Perl-compatible regular ex-
pression extension at http://www.php.net/pcre.

23.8 Picking a Random Line from a File

Problem
You want to pick a line at random from a file; for example, you want to display a
selection from a file of sayings.

Solution
Use the pc_randomint(  ) function shown in Example 23-26, which spreads the selection
odds evenly over all lines in a file.

Example 23-26. Finding a random line of a file

<?php
function pc_randomint($max = 1) {
 $m = 1000000;
 return ((mt_rand(1,$m * $max)-1)/$m);
}
?>

$line_number = 0;

$fh = fopen('sayings.txt','r') or die($php_errormsg);
while (! feof($fh)) {
 if ($s = fgets($fh)) {
 $line_number++;
 if (pc_randomint($line_number) < 1) {
 $line = $s;
 }
 }
}
fclose($fh) or die($php_errormsg);
?>

Discussion
The pc_randomint(  ) function computes a random decimal number between 0 and
$max, including 0 but excluding $max. As each line is read, a line counter is incremented,
and pc_randomint(  ) generates a random number between 0 and $line_number. If the
number is less than 1, the current line is selected as the randomly chosen line. After all
lines have been read, the last line that was selected as the randomly chosen line is left
in $line.

This algorithm neatly ensures that each line in an n line file has a 1/ n chance of being
chosen without having to store all n lines into memory.

676 | Chapter 23: Files

See Also
Documentation on mt_rand(  ) at http://www.php.net/mt-rand.

23.9 Randomizing All Lines in a File

Problem
You want to randomly reorder all lines in a file. You have a file of funny quotes, for
example, and you want to pick out one at random.

Solution
Read all the lines in the file into an array with file(  ) , and then shuffle the elements
of the array, as in Example 23-27.

Example 23-27. Randomizing all lines in a file
<?php
$lines = file('quotes-of-the-day.txt');
$lines = shuffle($lines);
?>

Discussion
The shuffle(  ) function randomly reorders the array elements, so after shuffling, you
can pick out $lines[0] as a quote to display.

See Also
Recipe 4.20 for shuffle(  ); documentation on shuffle(  ) at http://www.php.net/shuf
fle.

23.10 Processing Variable-Length Text Fields

Problem
You want to read delimited text fields from a file. You might, for example, have a
database program that prints records one per line, with tabs between each field in the
record, and you want to parse this data into an array.

Solution
As shown in Example 23-28, read in each line and then split the fields based on their
delimiter.

Example 23-28. Processing variable-length text fields
<?php
$delim = '|';

23.9 Randomizing All Lines in a File | 677

$fh = fopen('books.txt','r') or die("can't open: $php_errormsg");
while (! feof($fh)) {
 $s = rtrim(fgets($fh));
 $fields = explode($delim,$s);
 // ... do something with the data ...
}
fclose($fh) or die("can't close: $php_errormsg");
?>

Discussion
To parse the following data in books.txt:

Elmer Gantry|Sinclair Lewis|1927
The Scarlatti Inheritance|Robert Ludlum|1971
The Parsifal Mosaic|Robert Ludlum|1982
Sophie's Choice|William Styron|1979

Process each record as shown in Example 23-29.

Example 23-29. Processing a list of books

<?php
$fh = fopen('books.txt','r') or die("can't open: $php_errormsg");
while (! feof($fh)) {
 $s = rtrim(fgets($fh));
 list($title,$author,$publication_year) = explode('|',$s);
 // ... do something with the data ...
}
fclose($fh) or die("can't close: $php_errormsg");
?>

If you supply a line-length argument to fgets(  ), it needs to be at least as long as the
longest record, so that a record doesn’t get truncated.

Calling rtrim(  ) is necessary because fgets(  ) includes the trailing whitespace in the
line it reads. Without rtrim(  ), each $publication_year would have a newline at its end.

See Also
Recipe 1.14 discusses ways to break strings into pieces; Recipes 1.11 and 1.13 cover
parsing comma-separated and fixed-width data; documentation on explode(  ) at http://
www.php.net/explode and rtrim(  ) at http://www.php.net/rtrim.

23.11 Reading Configuration Files

Problem
You want to use configuration files to initialize settings in your programs.

678 | Chapter 23: Files

Solution
Use parse_ini_file(  ), as in Example 23-30.

Example 23-30. Parsing a configuration file
<?php
$config = parse_ini_file('/etc/myapp.ini');
?>

Discussion
The function parse_ini_file(  ) reads configuration files structured like PHP’s main
php.ini file. Instead of applying the settings in the configuration file to PHP’s configu-
ration, however, parse_ini_file(  ) returns the values from the file in an array.

For example, when parse_ini_file(  ) is given a file with these contents:

; physical features
eyes=brown
hair=brown
glasses=yes

; other features
name=Susannah
likes=monkeys,ice cream,reading

The array it returns is:

Array
(
 [eyes] => brown
 [hair] => brown
 [glasses] => 1
 [name] => Susannah
 [likes] => monkeys,ice cream,reading
)

Blank lines and lines that begin with ; in the configuration file are ignored. Other lines
with name=value pairs are put into an array with the name as the key and the value,
appropriately, as the value. Words such as on and yes as values are returned as 1, and
words such as off and no are returned as the empty string.

To parse sections from the configuration file, pass 1 as a second argument to
parse_ini_file(  ). Sections are set off by words in square brackets in the file:

[physical]
eyes=brown
hair=brown
glasses=yes

[other]
name=Susannah
likes=monkeys,ice cream,reading

If this file is in /etc/myapp.ini, then:

23.11 Reading Configuration Files | 679

$conf = parse_ini_file('/etc/myapp.ini',1);

puts this array in $conf:

Array
(
 [physical] => Array
 (
 [eyes] => brown
 [hair] => brown
 [glasses] => 1
)

 [other] => Array
 (
 [name] => Susannah
 [likes] => monkeys,ice cream,reading
)

)

Another approach to configuration is to make your configuration file a valid PHP file
that you load with require instead of parse_ini_file(  ). If the file config.php contains:

<?php

// physical features
$eyes = 'brown';
$hair = 'brown';
$glasses = 'yes';

// other features
$name = 'Susannah';
$likes = array('monkeys','ice cream','reading');
?>

You can set the variables $eyes, $hair, $glasses, $name, and $likes with a simple require
'config.php';.

The configuration file loaded by require needs to be valid PHP—including the <?php
start tag and the ?> end tag. The variables named in config.php are set explicitly, not
inside an array, as in parse_ini_file(  ). For simple configuration files, this technique
may not be worth the extra attention to syntax, but it is useful for embedding logic in
the configuration file, such as the statement in Example 23-31.

Example 23-31. Logic in a configuration file

<?php

$time_of_day = (date('a') == 'am') ? 'early' : 'late';

?>

680 | Chapter 23: Files

See Also
Documentation on parse_ini_file(  ) at http://www.php.net/parse-ini-file.

23.12 Modifying a File in Place Without a Temporary File

Problem
You want to change a file without using a temporary file to hold the changes.

Solution
Read the file with file_get_contents(  ), make the changes, and rewrite the file with
file_put_contents(  ). This is shown in Example 23-32.

Example 23-32. Changing a file in place
<?php
$contents = file_get_contents('pickles.txt');
$contents = strtoupper($contents);
file_put_contents('pickles.txt', $contents);
?>

Discussion
Example 23-33 turns text emphasized with asterisks or slashes into text with HTML
 or <i> tags.

Example 23-33. HTML-ifying a file in place
<?php
$contents = file_get_contents('message.txt');
// convert *word* to word
$contents = preg_replace('@*(.*?)*@i','$1',$contents);
// convert /word/ to <i>word</i>
$contents = preg_replace('@/(.*?)/@i','<i>$1</i>',$contents);
file_put_contents('message.txt', $contents);

Because adding HTML tags makes the file grow, the entire file has to be read into
memory and then processed. If the changes to a file make each line shrink (or stay the
same size), the file can be processed line by line, saving memory. Example 23-34 con-
verts text marked with and <i> to text marked with asterisks and slashes.

Example 23-34. Text-ifying a file in place
<?php
$fh = fopen('message.txt','r+') or die($php_errormsg);

// figure out how many bytes to read
$bytes_to_read = filesize('message.txt');

// initialize variables that hold file positions

23.12 Modifying a File in Place Without a Temporary File | 681

$next_read = $last_write = 0;

// keep going while there are still bytes to read
while ($next_read < $bytes_to_read) {

 /* move to the position of the next read, read a line, and save
 * the position of the next read */
 fseek($fh,$next_read);
 $s = fgets($fh) or die($php_errormsg);
 $next_read = ftell($fh);

 // convert word to *word*
 $s = preg_replace('@<b[^>]*>(.*?)@i','*$1*',$s);
 // convert <i>word</i> to /word/
 $s = preg_replace('@<i[^>]*>(.*?)</i>@i','/$1/',$s);

 /* move to the position where the last write ended, write the
 * converted line, and save the position for the next write */
 fseek($fh,$last_write);
 if (-1 == fwrite($fh,$s)) { die($php_errormsg); }
 $last_write = ftell($fh);
}

// truncate the file length to what we've already written
ftruncate($fh,$last_write) or die($php_errormsg);

// close the file
fclose($fh) or die($php_errormsg);

See Also
Recipes 13.12 and 13.13 for additional information on converting between plain text
and HTML; documentation on fseek(  ) at http://www.php.net/fseek, rewind(  ) at http://
www.php.net/rewind, ftruncate(  ) at http://www.php.net/ftruncate,
file_get_contents(  ) at http://www.php.net/file_get_contents, and
file_put_contents(  ) at http://www.php.net/file_put_contents.

23.13 Flushing Output to a File

Problem
You want to force all buffered data to be written to a filehandle.

Solution
Use fflush(  ), as in Example 23-35.

Example 23-35. Flushing output
<?php
fwrite($fh,'There are twelve pumpkins in my house.');
fflush($fh);
?>

682 | Chapter 23: Files

Example 23-35 ensures that “There are twelve pumpkins in my house.” is written to
$fh.

Discussion
To be more efficient, system I/O libraries generally don’t write something to a file when
you tell them to. Instead, they batch the writes together in a buffer and save all of them
to disk at the same time. Using fflush(  ) forces anything pending in the write buffer to
be actually written to disk.

Flushing output can be particularly helpful when generating an access or activity log.
Calling fflush(  ) after each message to logfile makes sure that any person or program
monitoring the logfile sees the message as soon as possible.

See Also
Documentation on fflush(  ) at http://www.php.net/fflush.

23.14 Writing to Standard Output

Problem
You want to write to standard output.

Solution
Use echo or print(  ) print, as in Example 23-36.

Example 23-36. Writing to standard output
<?php
print "Where did my pastrami sandwich go?";
echo "It went into my stomach.";
?>

Discussion
While print(  ) is a function, echo is a language construct. This means that print(  )
returns a value, while echo doesn’t. You can include print(  ) but not echo in larger
expressions, as shown in Example 23-37.

Example 23-37. echo versus print
<?php
// this is OK
(12 == $status) ? print 'Status is good' : error_log('Problem with status!');

// this gives a parse error
(12 == $status) ? echo 'Status is good' : error_log('Problem with status!');
?>

23.14 Writing to Standard Output | 683

Use php://stdout as the filename if you’re using the file functions $fh = fopen('php://
stdout','w') or die($php_errormsg);.

Writing to standard output via a filehandle instead of simply with print(  ) or echo is
useful if you need to abstract where your output goes, or if you need to print to standard
output at the same time as writing to a file. See Recipe 23.15 for details.

You can also write to standard error by opening php://stderr: $fh = fopen('php://
stderr','w');.

See Also
Recipe 23.15 for writing to many filehandles simultaneously; documentation on echo
at http://www.php.net/echo and on print(  ) at http://www.php.net/print.

23.15 Writing to Many Filehandles Simultaneously

Problem
You want to send output to more than one filehandle; for example, you want to log
messages to the screen and to a file.

Solution
Wrap your output with a loop that iterates through your filehandles, as shown in
Example 23-38.

Example 23-38. pc_multi_fwrite(  )
<?php
function pc_multi_fwrite($fhs,$s,$length=NULL) {
 if (is_array($fhs)) {
 if (is_null($length)) {
 foreach($fhs as $fh) {
 fwrite($fh,$s);
 }
 } else {
 foreach($fhs as $fh) {
 fwrite($fh,$s,$length);
 }
 }
 }
}

$fhs['file'] = fopen('log.txt','w') or die($php_errormsg);
$fhs['screen'] = fopen('php://stdout','w') or die($php_errormsg);

pc_multi_fwrite($fhs,'The space shuttle has landed.');
?>

684 | Chapter 23: Files

Discussion
If you don’t want to pass a length argument to fwrite(  ) (or you always want to), you
can eliminate that check from your pc_multi_fwrite(  ). The version in Exam-
ple 23-39 doesn’t bother with a $length argument.

Example 23-39. pc_multi_fwrite(  ) without $length
<?php
function pc_multi_fwrite($fhs,$s) {
 if (is_array($fhs)) {
 foreach($fhs as $fh) {
 fwrite($fh,$s);
 }
 }
}
?>

See Also
Documentation on fwrite(  ) at http://www.php.net/fwrite.

23.16 Escaping Shell Metacharacters

Problem
You need to incorporate external data in a command line, but you want to escape
special characters so nothing unexpected happens; for example, you want to pass user
input as an argument to a program.

Solution
Use escapeshellarg(  ) to handle arguments and escapeshellcmd(  ) to handle program
names, as in Example 23-40.

Example 23-40. Escaping shell metacharacters
<?php
system('ls -al '.escapeshellarg($directory));
system(escapeshellcmd($ls_program).' -al');
?>

Discussion
The command line is a dangerous place for unescaped characters. Never pass unmodi-
fied user input to one of PHP’s shell-execution functions. Always escape the appropriate
characters in the command and the arguments. This is crucial. It is unusual to execute
command lines that are coming from web forms and not something we recommend
lightly. However, sometimes you need to run an external program, so escaping com-
mands and arguments is useful.

23.16 Escaping Shell Metacharacters | 685

escapeshellarg(  ) surrounds arguments with single quotes (and escapes any existing
single quotes). Example 23-41 uses escapeshellarg(  ) in printing the process status for
a particular process.

Example 23-41. Using escapeshellarg(  )
<?php
system('/bin/ps '.escapeshellarg($process_id));
?>

Using escapeshellarg(  ) ensures that the right process is displayed even if its ID has an
unexpected character (e.g., a space) in it. It also prevents unintended commands from
being run. If $process_id contains 1; rm -rf /, then system("/bin/ps $process_id") not
only displays the status of process 1, but also executes the command rm -rf /.

However, system('/bin/ps '.escapeshellarg($process_id)) runs the command /bin/ps
1; rm -rf, which produces an error because “1-semicolon-space-rm-space-hyphen-rf”
isn’t a valid process ID.

Similarly, escapeshellcmd(  ) prevents unintended command lines from execution. The
command system("/usr/local/bin/formatter-$which_program"); runs a different pro-
gram depending on the value of $which_program.

For example, if $which_program is pdf 12, the script runs /usr/local/bin/formatter-pdf
with an argument of 12. But if $which_program is pdf 12; 56, the script runs /usr/local/
bin/formatter-pdf with an argument of 12, but then also runs the program 56, which is
an error.

To successfully pass the arguments to formatter-pdf, you need escapeshellcmd(  ): system
(escapeshellcmd("/usr/local/bin/formatter-$which_program"));. This runs /usr/local/
bin/formatter-pdf and passes it two arguments: 12; and 56.

See Also
Documentation on system(  ) at http://www.php.net/system, escapeshellarg(  ) at http://
www.php.net/escapeshellarg, and escapeshellcmd(  ) at http://www.php.net/escape
shellcmd.

23.17 Passing Input to a Program

Problem
You want to pass input to an external program run from inside a PHP script. You might,
for example, use a database that requires you to run an external program to index text
and want to pass text to that program.

686 | Chapter 23: Files

Solution
Open a pipe to the program with popen(  ), write to the pipe with fputs(  ) or
fwrite(  ), and then close the pipe with pclose(  ) , as in Example 23-42.

Example 23-42. Passing input to a program
<?php
$ph = popen('/usr/bin/indexer --category=dinner','w') or die($php_errormsg);
if (-1 == fputs($ph,"red-cooked chicken\n")) { die($php_errormsg); }
if (-1 == fputs($ph,"chicken and dumplings\n")) { die($php_errormsg); }
pclose($ph) or die($php_errormsg);
?>

Discussion
Example 23-43 uses popen(  ) to call the nsupdate command, which submits Dynamic
DNS Update requests to nameservers.

Example 23-43. Using popen(  ) with nsupdate
<?php
$ph = popen('/usr/bin/nsupdate -k keyfile') or die($php_errormsg);
if (-1 == fputs($ph,"update delete test.example.com A\n")) { die($php_errormsg); }
if (-1 == fputs($ph,"update add test.example.com 5 A 192.168.1.1\n"))
 { die($php_errormsg); }
pclose($ph) or die($php_errormsg);
?.

In Example 23-43, two commands are sent to nsupdate via popen(  ). The first deletes
the test.example.com A record, and the second adds a new A record for test.exam-
ple.com with the address 192.168.1.1.

See Also
Documentation on popen(  ) at http://www.php.net/popen and pclose(  ) at http://
www.php.net/pclose; Dynamic DNS is described in RFC 2136 at http://www.faqs.org/
rfcs/rfc2136.html.

23.18 Reading Standard Output from a Program

Problem
You want to read the output from a program; for example, you want the output of a
system utility such as route(8) that provides network information.

Solution
To read the entire contents of a program’s output, use the backtick (`) operator, as in
Example 23-44.

23.18 Reading Standard Output from a Program | 687

Example 23-44. Running a program with backticks
<?php
$routing_table = `/sbin/route`;
?>

To read the output incrementally, open a pipe with popen(  ), as in Example 23-45.

Example 23-45. Reading output from popen(  )
<?php
$ph = popen('/sbin/route','r') or die($php_errormsg);
while (! feof($ph)) {
 $s = fgets($ph) or die($php_errormsg);
}
pclose($ph) or die($php_errormsg);
?>

Discussion
The backtick operator, which is not available in safe mode, executes a program and
returns all its output as a single string. On a Linux system with 448 MB of RAM, the
command $s = `/usr/bin/free`; puts the following multiline string in $s:

 total used free shared buffers cached
Mem: 448620 446384 2236 0 68568 163040
-/+ buffers/cache: 214776 233844
Swap: 136512 0 136512

If a program generates a lot of output, it is more memory efficient to read from a pipe
one line at a time. If you’re printing formatted data to the browser based on the output
of the pipe, you can print it as you get it. Example 23-46 prints information about recent
Unix system logins formatted as an HTML table. It uses the /usr/bin/last command.

Example 23-46. Printing recent logins with popen(  )
<?php
// print table header
print<<<_HTML_
<table>
<tr>
 <td>user</td><td>login port</td><td>login from</td><td>login time</td>
 <td>time spent logged in</td>
</tr>
HTML;

// open the pipe to /usr/bin/last
$ph = popen('/usr/bin/last','r') or die($php_errormsg);
while (! feof($ph)) {
 $line = fgets($ph) or die($php_errormsg);

 // don't process blank lines or the info line at the end
 if (trim($line) && (! preg_match('/^wtmp begins/',$line))) {
 $user = trim(substr($line,0,8));
 $port = trim(substr($line,9,12));
 $host = trim(substr($line,22,16));

688 | Chapter 23: Files

 $date = trim(substr($line,38,25));
 $elapsed = trim(substr($line,63,10),' ()');

 if ('logged in' == $elapsed) {
 $elapsed = 'still logged in';
 $date = substr_replace($date,'',-5);
 }

 print "<tr><td>$user</td><td>$port</td><td>$host</td>";
 print "<td>$date</td><td>$elapsed</td></tr>\n";
 }
}
pclose($ph) or die($php_errormsg);

print '</table>';
?>

See Also
Documentation on popen(  ) at http://www.php.net/popen, pclose(  ) at http://
www.php.net/pclose, the backtick operator at http://www.php.net/language.opera
tors.execution, and safe mode at http://www.php.net/features.safe-mode.

23.19 Reading Standard Error from a Program

Problem
You want to read the error output from a program; for example, you want to capture
the system calls displayed by strace(1).

Solution
Redirect standard error to standard output by adding 2>&1 to the command line passed
to popen(  ). Read standard output by opening the pipe in r mode. This is shown in
Example 23-47.

Example 23-47. Reading standard error
<?php
$ph = popen('strace ls 2>&1','r') or die($php_errormsg);
while (!feof($ph)) {
 $s = fgets($ph) or die($php_errormsg);
}
pclose($ph) or die($php_errormsg);
?>

Discussion
In both the Unix sh and the Windows cmd.exe shells, standard error is file descriptor
2, and standard output is file descriptor 1. Appending 2>&1 to a command tells the shell
to redirect what’s normally sent to file descriptor 2 (standard error) over to file de-

23.19 Reading Standard Error from a Program | 689

scriptor 1 (standard output). fgets(  ) then reads both standard error and standard
output.

This technique reads in standard error but doesn’t provide a way to distinguish it from
standard output. To read just standard error, you need to prevent standard output from
being returned through the pipe. This is done by redirecting it to /dev/null on Unix and
NUL on Windows, as in Example 23-48.

Example 23-48. Redirecting standard output

<?php
// Unix: just read standard error
$ph = popen('strace ls 2>&1 1>/dev/null','r') or die($php_errormsg);

// Windows: just read standard error
$ph = popen('ipxroute.exe 2>&1 1>NUL','r') or die($php_errormsg);
?>

See Also
Documentation on popen(  ) at http://www.php.net/popen; see your popen(3) manpage
for details about the shell your system uses with popen(  ); for information about shell
redirection, see the Redirection section of the sh(1) manpage on Unix systems; on
Windows, see the entry on redirection in the Command Reference section of your
system help.

23.20 Locking a File

Problem
You want to have exclusive access to a file to prevent it from being changed while you
read or update it. If, for example, you are saving guestbook information in a file, two
users should be able to add guestbook entries at the same time without clobbering each
other’s entries.

Solution
Use flock(  ) to provide advisory locking, as shown in Example 23-49.

Example 23-49. Using advisory file locking

<?php
$fh = fopen('guestbook.txt','a') or die($php_errormsg);
flock($fh,LOCK_EX) or die($php_errormsg);
fwrite($fh,$_POST['guestbook_entry']) or die($php_errormsg);
fflush($fh) or die($php_errormsg);
flock($fh,LOCK_UN) or die($php_errormsg);
fclose($fh) or die($php_errormsg);
?>

690 | Chapter 23: Files

Discussion
The file locking flock(  ) provides is called advisory file locking because flock(  ) doesn’t
actually prevent other processes from opening a locked file, it just provides a way for
processes to voluntarily cooperate on file access. All programs that need to access files
being locked with flock(  ) need to set and release locks to make the file locking effective.

There are two kinds of locks you can set with flock(  ): exclusive locks and shared locks.
An exclusive lock, specified by LOCK_EX as the second argument to flock(  ), can be held
only by one process at one time for a particular file. A shared lock, specified by
LOCK_SH, can be held by more than one process at one time for a particular file. Before
writing to a file, you should get an exclusive lock. Before reading from a file, you should
get a shared lock.

If any of your code uses flock(  ) to lock a file, then all of your code should. For example,
if one part of your program uses LOCK_EX to get an exclusive lock when writing to a file,
then in any place where you must read the file, be sure to use LOCK_SH to get a shared
lock on the file. If you don’t do that, then a process trying to read a file can see the
contents of the file while another process is writing to it.

To unlock a file, call flock(  ) with LOCK_UN as the second argument. It’s important to
flush any buffered data to be written to the file with fflush(  ) before you unlock the
file. Other processes shouldn’t be able to get a lock until that data is written.

By default, flock(  ) blocks until it can obtain a lock. To tell it not to block, add
LOCK_NB to the second argument. Non-blocking locking is shown in Example 23-50.

Example 23-50. Non-blocking locking

<?php
$fh = fopen('guestbook.txt','a') or die($php_errormsg);
$tries = 3;
while ($tries > 0) {
 $locked = flock($fh,LOCK_EX | LOCK_NB);
 if (! $locked) {
 sleep(5);
 $tries--;
 } else {
 // don't go through the loop again
 $tries = 0;
 }
}
if ($locked) {
 fwrite($fh,$_POST['guestbook_entry']) or die($php_errormsg);
 fflush($fh) or die($php_errormsg);
 flock($fh,LOCK_UN) or die($php_errormsg);
 fclose($fh) or die($php_errormsg);
} else {
 print "Can't get lock.";
}
?>

23.20 Locking a File | 691

When the lock is non-blocking, flock(  ) returns right away even if it couldn’t get a lock.
The previous example tries three times to get a lock on guestbook.txt, sleeping five
seconds between each try.

Locking with flock(  ) doesn’t work in all circumstances, such as on some NFS imple-
mentations and older versions of Windows. To simulate file locking in these cases, use
a directory as an exclusive lock indicator. This is a separate, empty directory whose
presence indicates that the datafile is locked. Before opening a datafile, create a lock
directory and then delete the lock directory when you’re finished working with the
datafile. Otherwise, the file access code is the same, as shown in Example 23-51.

Example 23-51. Simulating locking with mkdir(  )
<?php
// loop until we can successfully make the lock directory
$locked = 0;
while (! $locked) {
 if (@mkdir('guestbook.txt.lock',0777)) {
 $locked = 1;
 } else {
 sleep(1);
 }
}
$fh = fopen('guestbook.txt','a') or die($php_errormsg);

if (-1 == fwrite($fh,$_POST['guestbook_entry'])) {
 rmdir('guestbook.txt.lock');
 die($php_errormsg);
}
if (! fclose($fh)) {
 rmdir('guestbook.txt.lock');
 die($php_errormsg);
}
rmdir('guestbook.txt.lock') or die($php_errormsg);

A directory is used instead of a file to indicate a lock because the mkdir(  ) function fails
to create a directory if it already exists. This gives you a way, in one operation, to check
if the lock indicator exists and create it if it doesn’t. Any error trapping after the directory
is created, however, needs to clean up by removing the directory before exiting. If the
directory is left in place, no future processes can get a lock by creating the directory.

If you use a file instead of directory as a lock indicator, the code to create it looks
something like Example 23-52.

Example 23-52. Error-prone file locking
$locked = 0;
while (! $locked) {
 if (! file_exists('guestbook.txt.lock')) {
 touch('guestbook.txt.lock');
 $locked = 1;
 } else {
 sleep(1);

692 | Chapter 23: Files

 }
}

Example 23-52 fails under heavy load because it checks for the lock’s existence with
file_exists(  ) and then creates the lock with touch(  ). After one process calls
file_exists(  ), another might call touch(  ) before the first calls touch(  ). Both processes
would then think they’ve got exclusive access to the file when neither really does. With
mkdir(  ) there’s no gap between the checking for existence and creation, so the process
that makes the directory is ensured exclusive access.

See Also
Documentation on flock(  ) at http://www.php.net/flock.

23.21 Reading and Writing Custom File Types

Problem
You want to use PHP’s standard file access functions to provide access to data that
might not be in a file. For example, you want to use file access functions to read from
and write to shared memory. Or you want to process file contents when they are read
before they reach PHP.

Solution
Write a stream wrapper that handles the details of moving data back and forth between
PHP and your custom location or your custom format. A stream wrapper is a class that
implements the methods that PHP needs to access your custom data stream: opening,
closing, reading, writing, and so on. A particular wrapper is registered with a particular
prefix. You use that prefix when passing a filename to fopen(  ), include(  ), or any other
PHP file-handling function to ensure that your wrapper is invoked.

The PEAR Stream_SHM module implements a stream wrapper that reads from and
writes to shared memory. Example 23-53 shows how to use it.

Example 23-53. Using a custom stream wrapper
<?php
require_once 'Stream/SHM.php';
stream_register_wrapper('shm','Stream_SHM') or die("can't register shm");
$shm = fopen('shm://0xabcd','c');
fwrite($shm, "Current time is: " . time());
fclose($shm);
?>

Discussion
Stream wrappers are handy for non-file data sources, but they can also be used to
preprocess file contents on their way into PHP. Mike Naberezny demonstrates a clever

23.21 Reading and Writing Custom File Types | 693

example of this as applied to templating. With short_open_tags turned off, printing an
object instance variable in a template requires the comparatively verbose <?php echo
$this->property; ?>. Mike’s solution uses a stream wrapper that allows the @ character
to stand in for echo $this->. Example 23-54 shows the stream wrapper code, Exam-
ple 23-55 a sample template, and Example 23-56 a short demonstration of how the two
work together.

Example 23-54. Stream wrapper for concise templates
<?php
/**
 * Stream wrapper to convert markup of mostly PHP templates into PHP prior to include().
 *
 * Based in large part on the example at
 * http://www.php.net/manual/en/function.stream-wrapper-register.php
 *
 * @author Mike Naberezny (@link http://mikenaberezny.com)
 * @author Paul M. Jones (@link http://paul-m-jones.com)
 */
class ViewStream {
 /**
 * Current stream position.
 *
 * @var int
 */
 private $pos = 0;

 /**
 * Data for streaming.
 *
 * @var string
 */
 private $data;

 /**
 * Stream stats.
 *
 * @var array
 */
 private $stat;

 /**
 * Opens the script file and converts markup.
 */
 public function stream_open($path, $mode, $options, &$opened_path) {

 // get the view script source
 $path = str_replace('view://', '', $path);
 $this->data = file_get_contents($path);

 /**
 * If reading the file failed, update our local stat store
 * to reflect the real stat of the file, then return on failure
 */

694 | Chapter 23: Files

 if ($this->data===false) {
 $this->stat = stat($path);
 return false;
 }

 /**
 * Convert <?= ?> to long-form <?php echo ?>
 *
 * We could also convert <%= like the real T_OPEN_TAG_WITH_ECHO
 * but that's not necessary.
 *
 * It might be nice to also convert PHP code blocks <? ?> but
 * let's quit while we're ahead. It's probably better to keep
 * the <?php for larger code blocks but that's your choice. If
 * you do go for it, explicitly check for <?xml as this will
 * probably be the biggest headache.
 */
 if (! ini_get('short_open_tag')) {
 $find = '/\<\?\= (.*)? \?>/';
 $replace = "<?php echo \$1 ?>";
 $this->data = preg_replace($find, $replace, $this->data);
 }

 /**
 * Convert @$ to $this->
 *
 * We could make a better effort at only finding @$ between <?php ?>
 * but that's probably not necessary as @$ doesn't occur much in the wild
 * and there's a significant performance gain by using str_replace().
 */
 $this->data = str_replace('@$', '$this->', $this->data);

 /**
 * file_get_contents() won't update PHP's stat cache, so performing
 * another stat() on it will hit the filesystem again. Since the file
 * has been successfully read, avoid this and just fake the stat
 * so include() is happy.
 */
 $this->stat = array('mode' => 0100777,
 'size' => strlen($this->data));

 return true;
 }

 /**
 * Reads from the stream.
 */
 public function stream_read($count) {
 $ret = substr($this->data, $this->pos, $count);
 $this->pos += strlen($ret);
 return $ret;
 }

23.21 Reading and Writing Custom File Types | 695

 /**
 * Tells the current position in the stream.
 */
 public function stream_tell() {
 return $this->pos;
 }

 /**
 * Tells if we are at the end of the stream.
 */
 public function stream_eof() {
 return $this->pos >= strlen($this->data);
 }

 /**
 * Stream statistics.
 */
 public function stream_stat() {
 return $this->stat;
 }

 /**
 * Seek to a specific point in the stream.
 */
 public function stream_seek($offset, $whence) {
 switch ($whence) {
 case SEEK_SET:
 if ($offset < strlen($this->data) && $offset >= 0) {
 $this->pos = $offset;
 return true;
 } else {
 return false;
 }
 break;

 case SEEK_CUR:
 if ($offset >= 0) {
 $this->pos += $offset;
 return true;
 } else {
 return false;
 }
 break;

 case SEEK_END:
 if (strlen($this->data) + $offset >= 0) {
 $this->pos = strlen($this->data) + $offset;
 return true;
 } else {
 return false;
 }
 break;

696 | Chapter 23: Files

 default:
 return false;
 }
 }
}
?>

Example 23-55. Sample template for the stream wrapper

<html> <?= @$hello ?> </html>

Example 23-56. Demonstration of the template stream wrapper

<?php
/** Stream wrapper */
require_once dirname(__FILE__) . DIRECTORY_SEPARATOR . 'ViewStream.php';

/**
 * A very dumb template class just to demonstrate the concept.
 *
 * @author Mike Naberezny
 * @link http://mikenaberezny.com/archives/40
 * @link http://phpsavant.com
 */
class IdiotSavant {
 public function __construct() {
 if (!in_array('view', stream_get_wrappers())) {
 stream_wrapper_register('view', 'ViewStream');
 }
 }

 public function render($filename) {
 include 'view://' . dirname(__FILE__) . DIRECTORY_SEPARATOR . $filename . '.phtml';
 }
}

// Create a new view
$view = new IdiotSavant();

// Assign the variable "hello" to the scope of the view
$view->hello = 'Hello, World!';

// Render the view from a template. Outputs "<html> Hello, World! </html>"
$view->render('ExampleTemplate');

See Also
Documentation on stream_register_wrapper(  ) at http://www.php.net/stream_regis
ter_wrapper; the PEAR Stream_SHM module at http://pear.php.net/package/
stream_shm; Mike Naberezny’s blog post “Symfony Templates and Ruby’s ERb” at
http://www.mikenaberezny.com/archives/40.

23.21 Reading and Writing Custom File Types | 697

23.22 Reading and Writing Compressed Files

Problem
You want to read or write compressed files.

Solution
Use the compress.zlib or compress.bzip2 stream wrapper with the standard file func-
tions. Example 23-57 reads data from a gzip-compressed file.

Example 23-57. Reading a compressed file

<?php
$fh = fopen('compress.zlib://lots-of-data.gz','r') or die("can't open: $php_errormsg");
while ($line = fgets($fh)) {
 // $line is the next line of uncompressed data
}
fclose($fh) or die("can't close: $php_errormsg");
?>

Discussion
The compress.zlib stream wrapper provides access to files that have been compressed
with the gzip algorithm. The compress.bzip2 stream wrapper provides access to files
that have been compressed with the bzip2 algorithm. Both stream wrappers allow
reading, writing, and appending with compressed files. To enable the zlib and bzip2
compression streams, build PHP with --withzlib and --with-bz2, respectively.

In addition to the stream wrappers, which allow access to compressed local files, there
are stream filters that compress (or uncompress) arbitrary streams on the fly. The
zlib.deflate and zlib.inflate filters compress and uncompress data according to the
zlib “deflate” algorithm. The bzip2.compress and bzip2.uncompress filters do the same
for the bzip2 algorithm.

Each stream filter must be applied to a stream after it is created. Example 23-58 uses
the bzip2 stream filters to read compressed data from a URL.

Example 23-58. Reading compressed data from a URL

<?php
$fp = fopen('http://www.example.com/something-compressed.bz2','r');
stream_filter_append($fp, 'bzip2.uncompress');
while (! feof($fp)) {
 $data = fread($fp);
 // do something with $data;
}
fclose($fp);
?>

698 | Chapter 23: Files

See Also
Documentation on compression stream wrappers at http://www.php.net/wrappers.com
pression, on compression filters at http://www.php.net/filters.compression, and on
stream_filter_append(  ) at http://www.php.net/stream_filter_append; the zlib algorithm
is detailed in RFCs 1950 (http://www.faqs.org/rfcs/rfc1950.html) and 1951 (http://
www.faqs.org/rfcs/rfc1951.html).

23.22 Reading and Writing Compressed Files | 699

CHAPTER 24

Directories

24.0 Introduction
A filesystem stores a lot of additional information about files aside from their actual
contents. This information includes such particulars as the file size, directory, and ac-
cess permissions. If you’re working with files, you may also need to manipulate this
metadata. PHP gives you a variety of functions to read and manipulate directories,
directory entries, and file attributes. Like other file-related parts of PHP, the functions
are similar to the C functions that accomplish the same tasks, with some simplifications.

Files are organized with inodes. Each file (and other parts of the filesystem, such as
directories, devices, and links) has its own inode. That inode contains a pointer to where
the file’s data blocks are as well as all the metadata about the file. The data blocks for
a directory hold the names of the files in that directory and the inode of each file.

PHP provides a few ways to look in a directory to see what files it holds. The
DirectoryIterator class (available in PHP 5 and later) provides a comprehensive object-
oriented interface for directory traversal. Example 24-1 uses DirectoryIterator to print
out the name of each file in a directory.

Example 24-1. Using DirectoryIterator

<?php
foreach (new DirectoryIterator('/usr/local/images') as $file) {
 print $file->getPathname() . "\n";
}
?>

The opendir(  ), readdir(  ), and closedir(  ) functions offer a procedural approach to
the same task, as demonstrated in Example 24-2. Use opendir(  ) to get to get a directory
handle, readdir(  ) to iterate through the files, and closedir(  ) to close the directory
handle. *

* PHP also has a dir(  ) class that mirrors the procedural approach (open, read, close) in its methods.
Since DirectoryIterator is so much more capable, use that if you want an OO interface.

701

Example 24-2. Procedural directory iteration
<?php
$d = opendir('/usr/local/images') or die($php_errormsg);
while (false !== ($f = readdir($d))) {
 print $f . "\n";
}
closedir($d);
?>

In this chapter, we generally use DirectoryIterator for examples.

The filesystem holds more than just files and directories. On Unix, it can also hold
symbolic links. These are special files whose contents are a pointer to another file. You
can delete the link without affecting the file it points to. To create a symbolic link, use
symlink(  ), as in Example 24-3.

Example 24-3. Making a symbolic link
<?php
symlink('/usr/local/images','/www/docroot/images') or die($php_errormsg);
?>

The code in Example 24-3 creates a symbolic link called images in /www/docroot that
points to /usr/local/images.

To find information about a file, directory, or link you must examine its inode. The
function stat(  ) retrieves the metadata in an inode for you. Recipe 24.2 discusses
stat(  ). PHP also has many functions that use stat(  ) internally to give you a specific
piece of information about a file. These are listed in Table 24-1.

Table 24-1. File information functions

Function name What file information does the function provide?

file_exists(  ) Does the file exist?

fileatime(  ) Last access time

filectime(  ) Last metadata change time

filegroup(  ) Group (numeric)

fileinode(  ) Inode number

filemtime(  ) Last change time of contents

fileowner(  ) Owner (numeric)

fileperms(  ) Permissions (decimal, numeric)

filesize(  ) Size

filetype(  ) Type (fifo, char, dir, block, link, file, unknown)

is_dir(  ) Is it a directory?

is_executable(  ) Is it executable?

is_file(  ) Is it a regular file?

702 | Chapter 24: Directories

Function name What file information does the function provide?

is_link(  ) Is it a symbolic link?

is_readable(  ) Is it readable?

is_writable(  ) Is it writable?

On Unix, the file permissions indicate what operations the file’s owner, users in the
file’s group, and all users can perform on the file. The operations are reading, writing,
and executing. For programs, executing means the ability to run the program; for di-
rectories, executing is the ability to search through the directory and see the files in it.

Unix permissions can also contain a setuid bit, a setgid bit, and a sticky bit. The setuid
bit means that when a program is run, it runs with the user ID of its owner. The setgid
bit means that a program runs with the group ID of its group. For a directory, the setgid
bit means that new files in the directory are created by default in the same group as the
directory. The sticky bit is useful for directories in which people share files because it
prevents nonsuperusers with write permission in a directory from deleting files in that
directory unless they own the file or the directory.

When setting permissions with chmod(  ) (see Recipe 24.3), permissions must be ex-
pressed as an octal number. This number has four digits. The first digit is any special
setting for the file (such as setuid or setgid). The second digit is the user permissions
—what the file’s owner can do. The third digit is the group permissions—what users
in the file’s group can do. The fourth digit is the world permissions—what all other
users can do. To compute the appropriate value for each digit, add together the per-
missions you want for that digit using the values in Table 24-2. For example, a
permission value of 0644 means that there are no special settings (the 0), the file’s owner
can read and write the file (the 6, which is 4 (read) + 2 (write)), users in the file’s group
can read the file (the first 4), and all other users can also read the file (the second 4). A
permission value of 4644 is the same, except that the file is also setuid.

Table 24-2. File permission values

Value Permission meaning Special setting meaning

4 Read setuid

2 Write setgid

1 Execute sticky

The permissions of newly created files and directories are affected by a setting called
the umask, which is a permission value that is removed or masked out from the initial
permissions of a file (0666) or directory (0777). For example, if the umask is 0022, the
default permissions for a new file created with touch(  ) or fopen(  ) are 0644 and the
default permissions for a new directory created with mkdir(  ) are 0755. You can get and
set the umask with the function umask(  ). It returns the current umask and, if an argu-
ment is supplied to it, changes the umask to the value of that argument. Exam-

24.0 Introduction | 703

ple 24-4 shows how to make the permissions on newly created files prevent anyone but
the file’s owner (and the superuser) from accessing the file.

Example 24-4. Changing the default file permissions
$old_umask = umask(0077);
touch('secret-file.txt');
umask($old_umask);

In Example 24-4, the first call to umask(  ) masks out all permissions for group and world.
After the file is created, the second call to umask(  ) restores the umask to the previous
setting. When PHP is run as a server module, it restores the umask to its default value
at the end of each request. Windows has a different (and more powerful) system for
organizing file permissions and ownership, so PHP’s umask(  ) function (like every other
permissions-related function) isn’t available on Windows.

24.1 Getting and Setting File Timestamps

Problem
You want to know when a file was last accessed or changed, or you want to update a
file’s access or change time; for example, you want each page on your web site to display
when it was last modified.

Solution
The fileatime(  ), filemtime(  ), and filectime(  ) functions return the time of last
access, modification, and metadata change of a file, as shown in Example 24-5.

Example 24-5. Getting file timestamps
<?php
$last_access = fileatime('larry.php');
$last_modification = filemtime('moe.php');
$last_change = filectime('curly.php');
?>

A file’s modification time can be updated with touch(  ). Without a second argument,
touch(  ) sets the modification time to the current date and time. To set a file’s modifi-
cation time to a specific value, pass that value as an epoch timestamp to touch(  ) as a
second argument. Example 24-6 changes the modification time of two files without
changing their contents.

Example 24-6. Changing file modification times
<?php
touch('shemp.php'); // set modification time to now
touch('joe.php',$timestamp); // set modification time to $timestamp
?>

704 | Chapter 24: Directories

Discussion
The fileatime(  ) function returns the last time a file was opened for reading or writing.
The filemtime(  ) function returns the last time a file’s contents were changed. The
filectime(  ) function returns the last time a file’s contents or metadata (such as owner
or permissions) were changed. Each function returns the time as an epoch timestamp.

The code in Example 24-7 prints the time a page on your web site was last updated.

Example 24-7. Printing web page modification times
<?php
print "Last Modified: ".strftime('%c',filemtime($_SERVER['SCRIPT_FILENAME']));
?>

See Also
Documentation on fileatime(  ) at http://www.php.net/fileatime, filemtime(  ) at http://
www.php.net/filemtime, and filectime(  ) at http://www.php.net/filectime.

24.2 Getting File Information

Problem
You want to read a file’s metadata—for example, permissions and ownership.

Solution
Use stat(  ), as in Example 24-8, which returns an array of information about a file.

Example 24-8. Getting file information
<?php
$info = stat('harpo.php');
?>

Discussion
stat(  ) returns an array with both numeric and string indexes with information about
a file. The elements of this array are in Table 24-3.

Table 24-3. Information returned by stat(  )

Numeric index String index Value

0 dev Device

1 ino Inode

2 mode Permissions

3 nlink Link count

4 uid Owner’s user ID

24.2 Getting File Information | 705

Numeric index String index Value

5 gid Group’s group ID

6 rdev Device type for inode devices (−1 on Windows)

7 size Size (in bytes)

8 atime Last access time (epoch timestamp)

9 mtime Last change time of contents (epoch timestamp)

10 ctime Last change time of contents or metadata (epoch timestamp)

11 blksize Block size for I/O (−1 on Windows)

12 blocks Number of blocks allocated to this file

The mode element of the returned array contains the permissions expressed as a base
10 integer. This is confusing since permissions are usually either expressed symbolically
(e.g., ls’s -rw-r--r-- output) or as an octal integer (e.g., 0644). To convert the permis-
sions to a more understandable format, use base_convert(  ) to change the permissions
to octal, as shown in Example 24-9.

Example 24-9. Converting file permission values
<?php
$file_info = stat('/tmp/session.txt');
$permissions = base_convert($file_info['mode'],10,8);
?>

In Example 24-9, $permissions is a six-digit octal number. For example, if ls displays
the following about /tmp/session.txt:

-rw-rw-r-- 1 sklar sklar 12 Oct 23 17:55 /tmp/session.txt

Then $file_info['mode'] is 33204 and $permissions is 100664. The last three digits
(664) are the user (read and write), group (read and write), and other (read) permissions
for the file. The third digit, 0, means that the file is not setuid or setgid. The leftmost
10 means that the file is a regular file (and not a socket, symbolic link, or other special
file).

Because stat(  ) returns an array with both numeric and string indexes, using foreach
to iterate through the returned array produces two copies of each value. Instead, use a
for loop from element 0 to element 12 of the returned array.

Calling stat(  ) on a symbolic link returns information about the file the symbolic link
points to. To get information about the symbolic link itself, use lstat(  ).

Similar to stat(  ) is fstat(  ), which takes a filehandle (returned from fopen(  ) or
popen(  )) as an argument.

PHP’s stat(  ) function uses the underlying stat(2) system call, which is expensive. To
minimize overhead, PHP caches the result of calling stat(2). So if you call stat(  ) on a
file, change its permissions, and call stat(  ) on the same file again, you get the same

706 | Chapter 24: Directories

results. To force PHP to reload the file’s metadata, call clearstatcache(  ), which flushes
PHP’s cached information. PHP also uses this cache for the other functions that return
file metadata: file_exists(  ), fileatime(  ), filectime(  ), filegroup(  ), fileinode(  ),
filemtime(  ), fileowner(  ), fileperms(  ), filesize(  ), filetype(  ), fstat(  ), is_dir(  ),
is_executable(  ), is_file(  ), is_link(  ), is_readable(  ), is_writable(  ), and lstat(  ).

See Also
Documentation on stat(  ) at http://www.php.net/stat, lstat(  ) at http://www.php.net/
lstat, fstat(  ) at http://www.php.net/fstat, and clearstatcache(  ) at http://www.php.net/
clearstatcache.

24.3 Changing File Permissions or Ownership

Problem
You want to change a file’s permissions or ownership; for example, you want to prevent
other users from being able to look at a file of sensitive data.

Solution
Use chmod(  ) to change the permissions of a file, as shown in Example 24-10.

Example 24-10. Changing file permissions
<?php
chmod('/home/user/secrets.txt',0400);
?>

Use chown(  ) to change a file’s owner and chgrp(  ) to change a file’s group. These are
shown in Example 24-11.

Example 24-11. Changing file owner and group
<?php
chown('/tmp/myfile.txt','sklar'); // specify user by name
chgrp('/home/sklar/schedule.txt','soccer'); // specify group by name

chown('/tmp/myfile.txt',5001); // specify user by uid
chgrp('/home/sklar/schedule.txt',102); // specify group by gid
?>

Discussion
The permissions passed to chmod(  ) must be specified as an octal number.

The superuser can change the permissions, owner, and group of any file. Other users
are restricted. They can change only the permissions and group of files that they own,
and can’t change the owner at all. A non-superuser can also change only the group of
a file to a group to which the user belongs.

24.3 Changing File Permissions or Ownership | 707

The functions chmod(  ), chgrp(  ), and chown(  ) don’t work on Windows.

See Also
Documentation on chmod(  ) at http://www.php.net/chmod, chown(  ) at http://
www.php.net/chown, and chgrp(  ) at http://www.php.net/chgrp.

24.4 Splitting a Filename into Its Component Parts

Problem
You want to find a file’s path and filename; for example, you want to create a file in
the same directory as an existing file.

Solution
Use basename(  ) to get the filename and dirname(  ) to get the path, as shown in Exam-
ple 24-12.

Example 24-12. Getting path components
<?php
$full_name = '/usr/local/php/php.ini';
$base = basename($full_name); // $base is "php.ini"
$dir = dirname($full_name); // $dir is "/usr/local/php"
?>

Use pathinfo(  ) to get the directory name, base name, and extension in an associative
array, as in Example 24-13.

Example 24-13. Getting path components and file extensions
<?php
$info = pathinfo('/usr/local/php/php.ini');
// $info['dirname'] is "/usr/local/php"
// $info['basename'] is "php.ini"
// $info['extension'] is "ini"
?>

Discussion
To create a temporary file in the same directory as an existing file, use dirname(  ) to find
the directory, and pass that directory to tempnam(  ). This is what Example 24-14 does.

Example 24-14. Creating a temporary file in a particular place
<?php
$dir = dirname($existing_file);
$temp = tempnam($dir,'temp');
$temp_fh = fopen($temp,'w');
?>

708 | Chapter 24: Directories

The dirname(  ) function is particularly useful in combination with the special constant
__FILE__, which contains the full pathname of the current file. This is not the same as
the currently executing PHP script. If /usr/local/alice.php includes /usr/local/bob.php,
then __FILE__ in bob.php is /usr/local/bob.php. This makes __FILE__ useful when you
want to include or require scripts in the same directory as a particular file, but you don’t
know what that directory is and it isn’t necessarily in the include path. Exam-
ple 24-15 demonstrates.

Example 24-15. Including files relative to the current file

<?php
$currentDir = dirname(__FILE__);
include $currentDir . '/functions.php';
include $currentDir . '/classes.php';
?>

If the code in Example 24-15 is in the /usr/local directory, then it includes /usr/local/
functions.php and /usr/local/classes.php. This technique is particularly useful when
you’re distributing code for others to use. With it, you don’t have to require any con-
figuration or include path modification for your code to work properly.

Using functions such as basename(  ), dirname(  ), and pathinfo(  ) is more portable than
just splitting up full filenames on the / character because the functions use an operating-
system-appropriate separator. On Windows, these functions treat both / and \ as file
and directory separators. On other platforms, only / is used.

There’s no built-in PHP function to combine the parts produced by basename(  ),
dirname(  ), and pathinfo(  ) back into a full filename. To do this you have to combine
the parts with . and the built-in DIRECTORY_SEPARATOR constant, which is / on Unix and
\ on Windows.

See Also
Documentation on basename(  ) at http://www.php.net/basename, dirname(  ) at http://
www.php.net/dirname, pathinfo(  ) at http://www.php.net/pathinfo, and __FILE__ at
http://www.php.net/language.constants.predefined.

24.5 Deleting a File

Problem
You want to delete a file.

Solution
Use unlink(  ), as shown in Example 24-16.

24.5 Deleting a File | 709

Example 24-16. Deleting a file

<?php
$file = '/tmp/junk.txt';
unlink($file) or die ("can't delete $file: $php_errormsg");
?>

Discussion
The function unlink(  ) is only able to delete files that the user of the PHP process is
able to delete. If you’re having trouble getting unlink(  ) to work, check the permissions
on the file and how you’re running PHP.

See Also
Documentation on unlink(  ) at http://www.php.net/unlink.

24.6 Copying or Moving a File

Problem
You want to copy or move a file.

Solution
Use copy(  ) to copy a file, as shown in Example 24-17.

Example 24-17. Copying a file

<?php
$old = '/tmp/yesterday.txt';
$new = '/tmp/today.txt';
copy($old,$new) or die("couldn't copy $old to $new: $php_errormsg");
?>

Use rename(  ) to move a file, as shown in Example 24-18.

Example 24-18. Moving a file

<?php
$old = '/tmp/today.txt';
$new = '/tmp/tomorrow.txt';
rename($old,$new) or die("couldn't move $old to $new: $php_errormsg");
?>

Discussion
On Unix, rename(  ) can’t move files across filesystems under PHP versions before 4.3.3.
To do so, copy the file to the new location and then delete the old file. This is shown
in Example 24-19.

710 | Chapter 24: Directories

Example 24-19. Moving a file across filesystems
<?php
if (copy("/tmp/code.c","/usr/local/src/code.c")) {
 unlink("/tmp/code.c");
}
?>

If you have multiple files to copy or move, call copy(  ) or rename(  ) in a loop. You can
operate only on one file each time you call these functions.

See Also
Documentation on copy(  ) at http://www.php.net/copy and rename(  ) at http://
www.php.net/rename.

24.7 Processing All Files in a Directory

Problem
You want to iterate over all files in a directory. For example, you want to create a
<select/> box in a form that lists all the files in a directory.

Solution
Use a DirectoryIterator to get each file in the directory, as in Example 24-20.

Example 24-20. Processing all files in a directory
<?php
echo "<select name='file'>\n";
foreach (new DirectoryIterator('/usr/local/images') as $file) {
 echo '<option>' . htmlentities($file) . "</option>\n";
}
echo '</select>';
?>

Discussion
The DirectoryIterator yields one value for each element in the directory. That value is
an object with some handy characteristics. The object’s string representation is the
filename (with no leading path) of the directory element. For example, if /usr/local/
images contains the files cucumber.gif and eggplant.png, Example 24-20 prints:

<select name='file'>
<option>.</option>
<option>..</option>
<option>cucumber.gif</option>
<option>eggplant.png</option>
</select>

A DirectoryIterator yields an object for all directory elements, including . (current
directory) and .. (parent directory). Fortunately, that object has some methods that

24.7 Processing All Files in a Directory | 711

help us identify what it is. The isDot(  ) method returns true if it’s either . or ... Ex-
ample 24-21 uses isDot(  ) to prevent those two entries from showing up in the output.

Example 24-21. Removing . and .. from output
<?php
echo "<select name='file'>\n";
foreach (new DirectoryIterator('/usr/local/images') as $file) {
 if (! $file->isDot()) {
 echo '<option>' . htmlentities($file) . "</option>\n";
 }
}
echo '</select>';
?>

Table 24-4 lists the other methods available on the objects that a DirectoryIterator
yields.

Table 24-4. DirectoryIterator object information methods

Method Name Return value Example

isDir(  ) Is the element a directory? false

isDot(  ) Is the element either . or ..? false

isFile(  ) Is the element a regular file? true

isLink(  ) Is the element a link? false

isReadable(  ) Is the element readable? true

isWritable(  ) Is the element writable? true

isExecutable(  ) Is the element executable? false

getATime(  ) The last access time of the element. 1144509622

getCTime(  ) The creation time of the element. 1144509600

getMTime(  ) The last modification time of the element. 1144509620

getFilename(  ) The filename (without leading path) of the element. eggplant.png

getPathname(  ) The full pathname of the element. /usr/local/images/eggplant.php

getPath(  ) The leading path of the element. /usr/local/images

getGroup(  ) The group ID of the element. 500

getOwner(  ) The owner ID of the element. 1000

getPerms(  ) The permissions of the element, as an octal value. 16895

getSize(  ) The size of the element. 328742

getType(  ) The type of the element (dir, file, link, etc.). file

getInode(  ) The inode number of the element. 28720

The data that the functions in Table 24-4 report come from the same underlying system
calls as the data that the functions in Table 24-1 report, so the same cautions on dif-
ferences between Unix and Windows apply.

712 | Chapter 24: Directories

See Also
Documentation on DirectoryIterator at http://www.php.net/~helly/php/ext/spl/class
DirectoryIterator.html.

24.8 Getting a List of Filenames Matching a Pattern

Problem
You want to find all filenames that match a pattern.

Solution
Use a FilterIterator subclass with DirectoryIterator. The FilterIterator subclass
needs its own accept(  ) method that decides whether or not a particular value is ac-
ceptable. The code in Example 24-22 only accepts filenames that end with common
extensions for images.

Example 24-22. Using a FilterIterator
<?php
class ImageFilter extends FilterIterator {
 public function accept() {
 return preg_match('@\.(gif|jpe?g|png)$@i',$this->current());
 }
}
foreach (new ImageFilter(new DirectoryIterator('/usr/local/images')) as $img) {
 print "\n";
}
?>

Discussion
The FilterIterator encloses a DirectoryIterator and only allows certain elements to
emerge. It’s up to the accept(  ) method to return true or false to indicate whether a
particular element (accessed with $this->current(  )) is OK. In Example 24-22,
accept(  ) uses a regular expression to make that determination, but your code can use
any logic you like.

If your pattern can be expressed as a simple shell “glob” (e.g. *.*), use the glob(  )
function to get the matching filenames. Example 24-23 finds all the text files in a par-
ticular directory.

Example 24-23. Using glob(  )
<?php
foreach (glob('/usr/local/docs/*.txt') as $file) {
 $contents = file_get_contents($file);
 print "$file contains $contents\n";
}
?>

24.8 Getting a List of Filenames Matching a Pattern | 713

The glob(  ) function returns an array of matching full pathnames. If no files match the
pattern, glob(  ) returns false.

See Also
Recipe 24.9 details iterating through each file in a directory recursively;
documentation on FilterIterator at http://www.php.net/~helly/php/ext/spl/classFilter
Iterator.html and on glob(  ) at http://www.php.net/glob; information about shell pattern
matching is available at http://www.gnu.org/software/bash/manual/bash
ref.html#SEC35.

24.9 Processing All Files in a Directory Recursively

Problem
You want to do something to all the files in a directory and in any subdirectories. For
example, you want to see how much disk space is consumed by all the files under a
directory.

Solution
Use a RecursiveDirectoryIterator and a RecursiveIteratorIterator. The
RecursiveDirectoryIterator extends the DirectoryIterator with a getChildren(  ) meth-
od that provides access to the elements in a subdirectory. The RecursiveIteratorIter
ator flattens the hierarchy that the RecursiveDirectoryIterator returns into one list.
Example 24-24 counts the total size of files under a directory.

Example 24-24. Processing all files in a directory recursively
<?php
$dir = new RecursiveDirectoryIterator('/usr/local');
$totalSize = 0;
foreach (new RecursiveIteratorIterator($dir) as $file) {
 $totalSize += $file->getSize();
}
print "The total size is $totalSize.\n";
?>

Discussion
The objects that the RecursiveDirectoryIterator spits out (and therefore that the Recur
siveIteratorIterator passes along) are the same as what you get from DirectoryItera
tor, so all the methods mentioned in Table 24-4 are available.

714 | Chapter 24: Directories

See Also
Documentation on RecursiveDirectoryIterator at http://www.php.net/~helly/php/ext/
spl/classRecursiveDirectoryIterator.html and RecursiveIteratorIterator at http://
www.php.net/~helly/php/ext/spl/classRecursiveIteratorIterator.html.

24.10 Making New Directories

Problem
You want to create a directory.

Solution
Use mkdir(  ), as in Example 24-25.

Example 24-25. Making a directory

<?php
mkdir('/tmp/apples',0777) or die($php_errormsg);
?>

Discussion
The second argument to mkdir(  ) is the permission mode for the new directory, which
must be an octal number. The current umask is taken away from this permission value
to create the permissions for the new directory. So, if the current umask is 0002, calling
mkdir('/tmp/apples',0777) sets the permissions on the resulting directory to 0775 (user
and group can read, write, and execute; others can only read and execute).

By default, mkdir(  ) only creates a directory if its parent exists. For example, if /usr/local/
images doesn’t exist, you can’t create /usr/local/images/puppies. To create a directory
and its parents, pass true as a third argument to mkdir(  ). This makes the function act
recursively to create any missing parent directories.

See Also
Documentation on mkdir(  ) at http://www.php.net/mkdir.

24.11 Removing a Directory and Its Contents

Problem
You want to remove a directory and all of its contents, including subdirectories and
their contents.

24.10 Making New Directories | 715

Solution
Use RecursiveDirectoryIterator and RecursiveIteratorIterator, specifying that chil-
dren (files and subdirectories) should be listed before their parents, as in Exam-
ple 24-26.

Example 24-26. Obliterating a directory

<?php
function obliterate_directory($dir) {
 $iter = new RecursiveDirectoryIterator($dir);
 foreach (new RecursiveIteratorIterator($iter, RecursiveIteratorIterator::CHILD_FIRST) as $f) {
 if ($f->isDir()) {
 rmdir($f->getPathname());
 } else {
 unlink($f->getPathname());
 }
 }
 rmdir($dir);
}

obliterate_directory('/tmp/junk');
?>

Discussion
Removing files, obviously, can be dangerous. Because PHP’s built-in directory removal
function, rmdir(  ), works only on empty directories, and unlink(  ) can’t accept shell
wildcards, the RecursiveIteratorIterator must be told to provide children before pa-
rents with its CHILD_FIRST constant.

However, that constant is not available before PHP 5.1. If you’re using an earlier version
of PHP, you can use the function in Example 24-27 for the same purpose.

Example 24-27. Obliterating a directory without RecursiveIteratorIterator

<?php
function obliterate_directory($dir) {
 foreach (new DirectoryIterator($dir) as $file) {
 if ($file->isDir()) {
 if (! $file->isDot()) {
 obliterate_directory($file->getPathname());
 }
 } else {
 unlink($file->getPathname());
 }
 }
 rmdir($dir);
}
?>

716 | Chapter 24: Directories

See Also
Documentation on rmdir(  ) at http://www.php.net/rmdir and on RecursiveIteratorIt
erator at http://www.php.net/~helly/php/ext/spl/classRecursiveIteratorIterator.html.

24.12 Program: Web Server Directory Listing
The web-ls.php program shown in Example 24-28 (later in this recipe) provides a view
of the files inside your web server’s document root, formatted like the output of the
Unix command ls. Filenames are linked so that you can download each file, and di-
rectory names are linked so that you can browse in each directory, as shown in
Figure 24-1.

Most lines in Example 24-28 are devoted to building an easy-to-read representation of
the file’s permissions, but the guts of the program are in the foreach loop at the end.
The DirectoryIterator yields an element for each entry in the directory. Then, various
methods on the element’s object provide information about that file, and printf(  )
prints out the formatted information about that file.

The mode_string(  ) functions and the constants it uses turn the octal representation of
a file’s mode (e.g., 35316) into an easier-to-read string (e.g., -rwsrw-r--).

Example 24-28. web-ls.php
<?php

/* Bit masks for determining file permissions and type. The names and values
 * listed below are POSIX-compliant; individual systems may have their own
 * extensions.
 */

define('S_IFMT',0170000); // mask for all types
define('S_IFSOCK',0140000); // type: socket

Figure 24-1. Web listing

24.12 Program: Web Server Directory Listing | 717

define('S_IFLNK',0120000); // type: symbolic link
define('S_IFREG',0100000); // type: regular file
define('S_IFBLK',0060000); // type: block device
define('S_IFDIR',0040000); // type: directory
define('S_IFCHR',0020000); // type: character device
define('S_IFIFO',0010000); // type: fifo
define('S_ISUID',0004000); // set-uid bit
define('S_ISGID',0002000); // set-gid bit
define('S_ISVTX',0001000); // sticky bit
define('S_IRWXU',00700); // mask for owner permissions
define('S_IRUSR',00400); // owner: read permission
define('S_IWUSR',00200); // owner: write permission
define('S_IXUSR',00100); // owner: execute permission
define('S_IRWXG',00070); // mask for group permissions
define('S_IRGRP',00040); // group: read permission
define('S_IWGRP',00020); // group: write permission
define('S_IXGRP',00010); // group: execute permission
define('S_IRWXO',00007); // mask for others permissions
define('S_IROTH',00004); // others: read permission
define('S_IWOTH',00002); // others: write permission
define('S_IXOTH',00001); // others: execute permission

/* mode_string() is a helper function that takes an octal mode and returns
 * a 10-character string representing the file type and permissions that
 * correspond to the octal mode. This is a PHP version of the mode_string()
 * function in the GNU fileutils package.
 */
$mode_type_map = array(S_IFBLK => 'b', S_IFCHR => 'c',
 S_IFDIR => 'd', S_IFREG => '-',
 S_IFIFO => 'p', S_IFLNK => 'l',
 S_IFSOCK => 's');
function mode_string($mode) {
 global $mode_type_map;
 $s = '';
 $mode_type = $mode & S_IFMT;
 // Add the type character
 $s .= isset($mode_type_map[$mode_type]) ?
 $mode_type_map[$mode_type] : '?';

 // set user permissions
 $s .= $mode & S_IRUSR ? 'r' : '-';
 $s .= $mode & S_IWUSR ? 'w' : '-';
 $s .= $mode & S_IXUSR ? 'x' : '-';

 // set group permissions
 $s .= $mode & S_IRGRP ? 'r' : '-';
 $s .= $mode & S_IWGRP ? 'w' : '-';
 $s .= $mode & S_IXGRP ? 'x' : '-';

 // set other permissions
 $s .= $mode & S_IROTH ? 'r' : '-';
 $s .= $mode & S_IWOTH ? 'w' : '-';
 $s .= $mode & S_IXOTH ? 'x' : '-';

 // adjust execute letters for set-uid, set-gid, and sticky

718 | Chapter 24: Directories

 if ($mode & S_ISUID) {
 // 'S' for set-uid but not executable by owner
 $s[3] = ($s[3] == 'x') ? 's' : 'S';
 }

 if ($mode & S_ISGID) {
 // 'S' for set-gid but not executable by group
 $s[6] = ($s[6] == 'x') ? 's' : 'S';
 }

 if ($mode & S_ISVTX) {
 // 'T' for sticky but not executable by others
 $s[9] = ($s[9] == 'x') ? 't' : 'T';
 }

 return $s;
}

// start at the document root if not specified
$dir = isset($_GET['dir']) ? $_GET['dir'] : '';

// locate $dir in the filesystem
$real_dir = realpath($_SERVER['DOCUMENT_ROOT'].$dir);
// Passing document root through realpath resolves any
// forward-slash vs. backslash issues
$real_docroot = realpath($_SERVER['DOCUMENT_ROOT']);

// make sure $real_dir is inside document root
if (! (($real_dir == $real_docroot) ||
 ((strlen($real_dir) > strlen($real_docroot)) &&
 (strncasecmp($real_dir,$real_docroot.DIRECTORY_SEPARATOR,
 strlen($real_docroot.DIRECTORY_SEPARATOR)) == 0)))) {
 die("$dir is not inside the document root");
}

// canonicalize $dir by removing the document root from its beginning
$dir = substr($real_dir,strlen($real_docroot)+1);

// are we opening a directory?
if (! is_dir($real_dir)) {
 die("$real_dir is not a directory");
}

print '<pre><table>';

// read each entry in the directory
foreach (new DirectoryIterator($real_dir) as $file) {
 // translate uid into user name
 if (function_exists('posix_getpwuid')) {
 $user_info = posix_getpwuid($file->getOwner());
 } else {
 $user_info = $file->getOwner();
 }

 // translate gid into group name

24.12 Program: Web Server Directory Listing | 719

 if (function_exists('posix_getgrid')) {
 $group_info = $file->getGroup();
 } else {
 $group_info = $file->getGroup();
 }

 // format the date for readability
 $date = date('M d H:i',$file->getMTime());

 // translate the octal mode into a readable string
 $mode = mode_string($file->getPerms());

 $mode_type = substr($mode,0,1);
 if (($mode_type == 'c') || ($mode_type == 'b')) {
 /* if it's a block or character device, print out the major and
 * minor device type instead of the file size */
 $statInfo = lstat($file->getPathname());
 $major = ($statInfo['rdev'] >> 8) & 0xff;
 $minor = $statInfo['rdev'] & 0xff;
 $size = sprintf('%3u, %3u',$major,$minor);
 } else {
 $size = $file->getSize();
 }

 // format the around the filename
 // no link for the current directory
 if ('.' == $file->getFilename()) {
 $href = $file->getFilename();
 } else {
 // don't include the ".." in the parent directory link
 if ('..' == $file->getFilename()) {
 $href = urlencode(dirname($dir));
 } else {
 $href = urlencode($dir) . '/' . urlencode($file);
 }

 /* everything but "/" should be urlencoded */
 $href = str_replace('%2F','/',$href);

 // browse other directories with web-ls
 if ($file->isDir()) {
 $href = sprintf('%s',
 $_SERVER['PHP_SELF'],$href,$file);
 } else {
 // link to files to download them
 $href= sprintf('%s',$href,$file);
 }

 // if it's a link, show the link target, too
 if ('l' == $mode_type) {
 $href .= ' -> ' . readlink($file->getPathname());
 }
 }

 // print out the appropriate info for this file

720 | Chapter 24: Directories

 printf('<tr><td>%s</td><td align="right">%s</td>
 <td align="right">%s</td><td align="right">%s</td>
 <td align="right">%s</td><td>%s</td></tr>',
 $mode, // formatted mode string
 $user_info['name'], // owner's user name
 $group_info['name'], // group name
 $size, // file size (or device numbers)
 $date, // last modified date and time
 $href); // link to browse or download
}

print '</table></pre>';
?>

24.13 Program: Site Search
You can use site-search.php, shown in Example 24-29, as a search engine for a small-
to-medium-size, file-based site.

Example 24-29. site-search.php
<?php
class SiteSearch {
 public $bodyRegex = '';
 protected $seen = array();

 public function searchDir($dir) {
 // array to hold pages that match
 $pages = array();

 // array to hold directories to recurse into
 $dirs = array();

 // mark this directory as seen so we don't look in it again
 $this->seen[realpath($dir)] = true;

 try {
 foreach (new RecursiveIteratorIterator(
 new RecursiveDirectoryIterator($dir)) as $file) {
 if ($file->isFile() && $file->isReadable() &&
 (! isset($this->seen[$file->getPathname()]))) {
 // mark this as seen so we skip it
 // if we come to it again
 $this->seen[$file->getPathname()] = true;

 // load the contents of the file into $text
 $text = file_get_contents($file->getPathname());

 // if the search term is inside the body delimiters
 if (preg_match($this->bodyRegex,$text)) {

 // construct the relative URI of the file by removing
 // the document root from the full path
 $uri = substr_replace($file->getPathname(),'',0,strlen

24.13 Program: Site Search | 721

 ($_SERVER['DOCUMENT_ROOT']));

 // if the page has a title, find it
 if (preg_match('#<title>(.*?)</title>#Sis',$text,$match)) {
 // and add the title and URI to $pages
 array_push($pages,array($uri,$match[1]));
 } else {
 // otherwise use the URI as the title
 array_push($pages,array($uri,$uri));
 }
 }
 }
 }
 } catch (Exception $e) {
 // There was a problem opening the directory
 }
 return $pages;
 }
}

// helper function to sort matched pages alphabetically by title
function by_title($a,$b) {
 return ($a[1] == $b[1]) ?
 strcmp($a[0],$b[0]) :
 ($a[1] > $b[1]);
}

// SiteSearch object to do the searching
$search = new SiteSearch();

// array to hold the pages that match the search term
$matching_pages = array();
// directories underneath the document root to search
$search_dirs = array('sports','movies','food');
// regular expression to use in searching files. The "S" pattern
// modifier tells the PCRE engine to "study" the regex for greater
// efficiency.
$search->bodyRegex = '#<body>(.*' . preg_quote($_REQUEST['term'],'#').
 '.*)</body>#Sis';

// add the files that match in each directory to $matching pages
foreach ($search_dirs as $dir) {
 $matching_pages = array_merge($matching_pages,
 $search->searchDir($_SERVER['DOCUMENT_ROOT'].'/'.$dir));
}

if (count($matching_pages)) {
 // sort the matching pages by title
 usort($matching_pages,'by_title');
 print '';
 // print out each title with a link to the page
 foreach ($matching_pages as $k => $v) {
 print sprintf(' %s',$v[0],$v[1]);
 }
 print '';

722 | Chapter 24: Directories

} else {
 print 'No pages found.';
}
?>

The program looks for a search term (in $_REQUEST['term']) in all files within a specified
set of directories under the document root. Those directories are set in $search_dirs.
It also recurses into subdirectories and follows symbolic links but keeps track of which
files and directories it has seen so that it doesn’t get caught in an endless loop.

If any pages are found that contain the search term, it prints a list of links to those pages,
alphabetically ordered by each page’s title. If a page doesn’t have a title (between the
<title> and </title> tags), the page’s relative URI from the document root is used.

The program looks for the search term between the <body> and </body> tags in each file.
If you have a lot of text in your pages inside <body> tags that you want to exclude from
the search, surround the text that should be searched with specific HTML comments
and then modify $body_regex to look for those tags instead. Perhaps your page looks
like what is shown in Example 24-30.

Example 24-30. Sample HTML page
<body>

// Some HTML for menus, headers, etc.

<!-- search-start -->

<h1>Aliens Invade Earth</h1>

<h3>by H.G. Wells</h3>

<p>Aliens invaded earth today. Uh Oh.</p>

// More of the story

<!-- search-end -->

// Some HTML for footers, etc.

</body>

To match the search term against just the title, author, and story inside the HTML
comments, change $search->bodyRegex to what is shown in Example 24-31.

Example 24-31. Corresponding regular expression
$search->bodyRegex = '#<!-- search-start -->(.*' . preg_quote($_REQUEST['term'],'#').
 '.*)<!-- search-end -->#Sis';

If you don’t want the search term to match text that’s inside HTML or PHP tags in your
pages, add a call to strip_tags(  ) to the code that loads the contents of the file for
searching, as shown in Example 24-32.

24.13 Program: Site Search | 723

Example 24-32. Stripping HTML and PHP tags
// load the contents of the file into $text
$text= strip_tags(file_get_contents($file->getPathname()));

724 | Chapter 24: Directories

CHAPTER 25

Command-Line PHP

25.0 Introduction
PHP was created for web programming and is still used mostly for that purpose. How-
ever, PHP is also capable as a general-purpose scripting language. Using PHP for scripts
you run from the command line is especially helpful when they share code with your
web applications. If you have a discussion board on your web site, you might want to
run a program every few minutes or hours to scan new postings and alert you to any
messages that contain certain keywords. Writing this scanning program in PHP lets
you share relevant discussion-board code with the main discussion-board application.
Not only does this save you time, but also helps avoid maintenance overhead down the
road.

Beginning with version 4.3, PHP builds include a command-line interface (CLI) ver-
sion. The CLI binary is similar to web server modules and the CGI binary but has some
important differences that make it more shell friendly. Some configuration directives
have hardcoded values with CLI; for example, the html_errors directive is set to
false, and implicit_flush is set to true. The max_execution_time directive is set to 0,
allowing unlimited program runtime. Finally, register_argc_argv is set to true. This
means you can look for argument information in $argv and $argc instead of in $_SERVER
['argv'] and $_SERVER['argc']. Argument processing is discussed in Recipes 25.1 and
25.2.

To run a script, pass the script filename as an argument:

% php scan-discussions.php

On Unix, you can also use the “hash-bang” syntax at the top of your scripts to run the
PHP interpreter automatically. If the PHP binary is in /usr/local/bin, make the first line
of your script:

#!/usr/local/bin/php

You can then run the script just by typing its name on the command line, as long as
the file has execute permission.

725

If it’s likely that you’ll use some of your classes and functions both for the Web and for
the command line, abstract the code that needs to react differently in those different
circumstances, such as HTML versus plain-text output or access to environment var-
iables that a web server sets up. A useful tactic is to check if the return value of
php_sapi_name(  ) is cli. You can then branch your scripts’ behavior as follows:

if ('cli' == php_sapi_name()) {
 print "Database error: ".mysql_error()."\n";
} else {
 print "Database error.
";
 error_log(mysql_error());
}

This code not only adjusts the output formatting based on the context it’s executing
in (\n versus
), but also where the information goes. On the command line, it’s
helpful to the person running the program to see the error message from MySQL, but
on the Web, you don’t want your users to see potentially sensitive data. Instead, the
code outputs a generic error message and stores the details in the server’s error log for
private review.

One helpful option on the command line is the -d flag, which lets you specify custom
INI entries without modifying your php.ini file. For example, here’s how to turn on
output buffering:

% php -d output_buffering=1 scan-discussions.php

The CLI binary also takes a -r argument. When followed by some PHP code without
<?php and ?> script tags, the CLI binary runs the code. For example, here’s how to print
the current time:

% php -r 'print strftime("%c");'

For a list of complete CLI binary options, pass the -h command:

% php -h

Finally, the CLI binary defines handles to the standard I/O streams as the constants
STDIN, STDOUT, and STDERR. You can use these instead of creating your own filehandles
with fopen(  ):

// read from standard in
$input = fgets(STDIN,1024);

// write to standard out
fwrite(STDOUT,$jokebook);

// write to standard error
fwrite(STDERR,$error_code);

726 | Chapter 25: Command-Line PHP

25.1 Parsing Program Arguments

Problem
You want to process arguments passed on the command line.

Solution
Look in $argc for the number of arguments and $argv for their values. The first argu-
ment, $argv[0], is the name of script that is being run:

if ($argc != 2) {
 die("Wrong number of arguments: I expect only 1.");
}

$size = filesize($argv[1]);

print "I am $argv[0] and report that the size of ";
print "$argv[1] is $size bytes.";

Discussion
In order to set options based on flags passed from the command line, loop through
$argv from 1 to $argc, as shown in Example 25-1.

Example 25-1. Parsing commmand-line arguments
<?php
for ($i = 1; $i < $argc; $i++) {
 switch ($argv[$i]) {
 case '-v':
 // set a flag
 $verbose = true;
 break;
 case '-c':
 // advance to the next argument
 $i++;
 // if it's set, save the value
 if (isset($argv[$i])) {
 $config_file = $argv[$i];
 } else {
 // quit if no filename specified
 die("Must specify a filename after -c");
 }
 break;
 case '-q':
 $quiet = true;
 break;
 default:
 die('Unknown argument: '.$argv[$i]);
 break;
 }
}
?>

25.1 Parsing Program Arguments | 727

In this example, the -v and -q arguments are flags that set $verbose and $quiet, but the
-c argument is expected to be followed by a string. This string is assigned to $con
fig_file.

See Also
Recipe 25.2 for more parsing arguments with getopt; documentation on $argc and
$argv at http://www.php.net/reserved.variables.

25.2 Parsing Program Arguments with getopt

Problem
You want to parse program options that may be specified as short or long options, or
they may be grouped.

Solution
Use PEAR’s Console_Getopt class. Its getopt(  ) method can parse both short-style op-
tions such as -a or -b and long-style options such as --alice or --bob:

$o = new Console_Getopt;

// accepts -a, -b, and -c
$opts = $o->getopt($argv,'abc');

// accepts --alice and --bob
$opts = $o->getopt($argv,'',array('alice','bob'));

Discussion
To parse short-style options, pass Console_Getopt::getopt(  ) the array of command-
line arguments and a string specifying valid options. This example allows -a, -b, or
-c as arguments, alone or in groups:

$o = new Console_Getopt;
$opts = $o->getopt($argv,'abc');

For the previous option string abc, these are valid sets of options to pass:

% program.php -a -b -c
% program.php -abc
% program.php -ab -c

The getopt(  ) method returns an array. The first element in the array is a list of all of
the parsed options that were specified on the command line, along with their values.
The second element is any specified command-line option that wasn’t in the argument
specification passed to getopt(  ). For example, if the previous program is run as:

% program.php -a -b sneeze

then $opts is:

728 | Chapter 25: Command-Line PHP

Array
(
 [0] => Array
 (
 [0] => Array
 (
 [0] => a
 [1] =>
)
 [1] => Array
 (
 [0] => b
 [1] =>
)
)
 [1] => Array
 (
 [0] => program.php
 [1] => sneeze
)
)

Put a colon after an option in the specification string to indicate that it requires a value.
Two colons means the value is optional. So ab:c:: means that a can’t have a value, b
must, and c can take a value if specified. With this specification string, running the
program as:

% program.php -a -b sneeze

makes $opts:

Array
(
 [0] => Array
 (
 [0] => Array
 (
 [0] => a
 [1] =>
)
 [1] => Array
 (
 [0] => b
 [1] => sneeze
)
)
 [1] => Array
 (
 [0] => program.php
)
)

Because sneeze is now set as the value of b, it is no longer in the array of unparsed
options. Note that the array of unparsed options always contains the name of the pro-
gram.

25.2 Parsing Program Arguments with getopt | 729

To parse long-style arguments, supply getopt(  ) with an array that describes your de-
sired arguments. Put each argument in an array element (leave off the leading --) and
follow it with = to indicate a mandatory argument or == to indicate an optional argu-
ment. This array is the third argument to getopt(  ). The second argument (the string
for short-style arguments) can be left blank or not, depending on whether you also want
to parse short-style arguments. This example allows debug as an argument with no
value, name with a mandatory value, and size with an optional value:

require 'Console/Getopt.php';
$o = new Console_Getopt;
$opts = $o->getopt($argv,'',array('debug','name=','size=='));

These are valid ways to run this program:

% program.php --debug
% program.php --name=Susannah
% program.php --name Susannah
% program.php --debug --size
% program.php --size=56 --name=Susannah
% program.php --name --debug

The last example is valid (if counterproductive) because it treats --debug as the value
of the name argument and doesn’t consider the debug argument to be set. Values can be
separated from their arguments on the command line by either a = or a space.

For long-style arguments, getopt(  ) includes the leading -- in the array of parsed argu-
ments; for example, when run as:

% program.php --debug --name=Susannah

$opts is set to:

Array
(
 [0] => Array
 (
 [0] => Array
 (
 [0] => --debug
 [1] =>
)
 [1] => Array
 (
 [0] => --name
 [1] => Susannah
)
)
 [1] => Array
 (
 [0] => program.php
)
)

This code uses $argv as the array of command-line arguments, which is fine by default.
Console_Getopt provides a method, readPHPArgv(  ), to look also in $argv and

730 | Chapter 25: Command-Line PHP

$HTTP_SERVER_VARS['argv'] for command-line arguments. Use it by passing its results
to getopt(  ):

require 'Console/Getopt.php';
$o = new Console_Getopt;
$opts = $o->getopt($o->readPHPArgv(),'',array('debug','name=','size=='));

Both getopt(  ) and readPHPArgv(  ) return a Getopt_Error object when these encounter
an error; for example, having no option specified for an option that requires one.
Getopt_Error extends the PEAR_Error base class, so you can use familiar methods to
handle errors:

require 'Console/Getopt.php';
$o = new Console_Getopt;
$opts = $o->getopt($o->readPHPArgv(),'',array('debug','name=','size=='));

if (PEAR::isError($opts)) {
 print $opts->getMessage();
} else {
 // process options
}

See Also
Recipe 25.1 for parsing of program options without getopt; documentation on Con
sole_Getopt at http://pear.php.net/manual/en/core.console.getopt.php.

25.3 Reading from the Keyboard

Problem
You need to read in some typed user input.

Solution
Use fopen(  ) with the special filename php://stdin:

print "Type your message. Type '.' on a line by itself when you're done.\n";

$fh = fopen('php://stdin','r') or die($php_errormsg);
$last_line = false; $message = '';
while (! $last_line) {
 $next_line = fgets($fp,1024);
 if (".\n" == $next_line) {
 $last_line = true;
 } else {
 $message .= $next_line;
 }
}

print "\nYour message is:\n$message\n";

If the Readline extension is installed, use readline(  ):

25.3 Reading from the Keyboard | 731

$last_line = false; $message = '';
while (! $last_line) {
 $next_line = readline();
 if ('.' == $next_line) {
 $last_line = true;
 } else {
 $message .= $next_line."\n";
 }
}

print "\nYour message is:\n$message\n";

Discussion
Once you get a filehandle pointing to stdin with fopen(  ), you can use all the standard
file-reading functions to process input (fread(  ) , fgets(  ), etc.). The solution uses
fgets(  ), which returns input a line at a time. If you use fread(  ), the input still needs
to be newline terminated to make fread(  ) return. For example, if you run:

$fh = fopen('php://stdin','r') or die($php_errormsg);
$msg = fread($fh,4);
print "[$msg]";

And type in tomato and then a newline, the output is [toma]. The fread(  ) grabs only
four characters from stdin, as directed, but still needs the newline as a signal to return
from waiting for keyboard input.

The Readline extension provides an interface to the GNU Readline library. The
readline(  ) function returns a line at a time, without the ending newline. Readline
allows Emacs- and vi-style line editing by users. You can also use it to keep a history of
previously entered commands:

$command_count = 1;
while (true) {
 $line = readline("[$command_count]--> ");
 readline_add_history($line);
 if (is_readable($line)) {
 print "$line is a readable file.\n";
 }
 $command_count++;
}

This example displays a prompt with an incrementing count before each line. Since
each line is added to the Readline history with readline_add_history(  ) , pressing the
up and down arrows at a prompt scrolls through the previously entered lines.

See Also
Documentation on fopen(  ) at http://www.php.net/fopen, fgets(  ) at http://
www.php.net/fgets, fread(  ) at http://www.php.net/fread, the Readline extension at
http://www.php.net/readline, and the Readline library at http://cnswww.cns.cwru.edu/
php/chet/readline/rltop.html.

732 | Chapter 25: Command-Line PHP

25.4 Running PHP Code on Every Line of an Input File

Problem
You want to read an entire file and execute PHP code on every line. For example, you
wish to create a command-line version of grep that uses PHP’s Perl-compatible regular
expression engine.

Solution
Use the -R command-line flag to process standard input:

% php -R 'if (preg_match("/$argv[1]/", $argn)) print "$argn\n";'
 php
 < /usr/share/dict/words

ephphatha

To execute a block of code before or after processing the lines, use the -B and -E options,
respectively:

% php -B '$count = 0;'
 -R 'if (preg_match("/$argv[1]/", $argn)) $count++;'
 -E 'print "$count\n";'
 php
 < /usr/share/dict/words

l

Discussion
Sometimes you want to quickly process a file using PHP via the command line, either
as a standalone project or within a sequence of piped commands. This lets you whip
up a quick-and-dirty script to transform data.

PHP makes that easy using three command-line flags and two special variables: -R, -B,
-E, $argn, and $argi.

The -R flag specifies the PHP code you want to execute for every line in the file. Within
that block of code, you can access the line’s text in the $argn variable.

As a basic example, here’s a PHP script that takes HTML input, strips the tags, and
prints out the result:

php -R 'print strip_tags($argn) . "\n"; ' < index.html

Since PHP automatically strips the newline from the end of the input, this code not
only displays the results of strip_tags($argn), but also echos a newline.

It operates on the file index.html, which is passed in as standard input. There is no
mechanism for specifying the file that you want processed.

25.4 Running PHP Code on Every Line of an Input File | 733

This slightly more complicated example, which is a simple version of grep, shows how
to accept input arguments via the $argv array:

% php -R 'if (preg_match("/$argv[1]/", $argn)) print "$argn\n";'
 php
 < /usr/share/dict/words

ephphatha

The first value passed preg_match(  ) is /$argv[1]/, which is the first argument passed
to the script. In this example, it’s php, so this code is searching for all the words in
the /usr/share/dict/words file containing php.

For what it’s worth, ephphatha is an Aramaic word meaning “be opened.”

Beyond the individual lines, you sometimes need to execute initialization or clean-up
code. Specify this using the -B and -E flags.

Building on the grep example, this code counts the total number of matching lines:

% php -B '$count = 0;'
 -R 'if (preg_match("/$argv[1]/", $argn)) $count++;'
 -E 'print "$count\n";'
 php
 < /usr/share/dict/words

1

Inside the -B block, you initialize the $count to 0. It’s then incremented in the -R block
whenever there’s a match. Finally, the total number is printed out in the -E block.

To find out the percentage of matching lines, in addition to the total, use $argi:

% php -B '$count = 0;'
 -R 'if (preg_match("/$argv[1]/", $argn)) $count++;'
 -E 'print "$count/$argi\n";'
 php
 < /usr/share/dict/words

1/234937

The $argi variable contains the current line number of the file, so inside the -E block,
it’s set to the total number of lines.

See Also
Documentation on Using PHP from the command line at http://www.php.net/fea
tures.commandline.

734 | Chapter 25: Command-Line PHP

25.5 Reading Passwords

Problem
You need to read a string from the command line without it being echoed as it’s typed
—for example, when entering passwords.

Solution
On Unix systems, use /bin/stty to toggle echoing of typed characters:

// turn off echo
`/bin/stty -echo`;

// read password
$password = readline();

// turn echo back on
`/bin/stty echo`;

On Windows, use the FFI extension to access _getch(  ) from msvcrt.dll:

$ffi = new FFI("[lib='msvcrt.dll'] int _getch();");

while(true) {
 // get a character from the keyboard
 $c = chr($ffi->_getch());
 if ("\r" == $c || "\n" == $c) {
 // if it's a newline, break out of the loop, we've got our password
 break;
 } elseif ("\x08" == $c) {
 /* if it's a backspace, delete the previous char from $password */
 $password = substr_replace($password,'',-1,1);
 } elseif ("\x03" == $c) {
 // if it's Control-C, clear $password and break out of the loop
 $password = NULL;
 break;
 } else {
 // otherwise, add the character to the password
 $password .= $c;
 }
}

Discussion
On Unix, you use /bin/stty to control the terminal characteristics so that typed charac-
ters aren’t echoed to the screen while you read a password. Windows doesn’t have /bin/
stty, so you use the Foreign Function Interface (FFI) extension to get access _getch(  )
in the Microsoft C runtime library, msvcrt.dll. The _getch(  ) function reads a character
without echoing it to the screen. It returns the ASCII code of the character read, so you
convert it to a character using chr(  ) . You then take action based on the character
typed. If it’s a newline or carriage return, you break out of the loop because the pass-

25.5 Reading Passwords | 735

word has been entered. If it’s a backspace, you delete a character from the end of the
password. If it’s a Ctrl-C interrupt, you set the password to NULL and break out of the
loop. If none of these things are true, the character is concatenated to $password. When
you exit the loop, $password holds the entered password.

The FFI extension is available as part of PECL. Windows users can download a pre-
built DLL at http://pecl4win.php.net/ext.php/php_ffi.dll. Make sure you’re using a ver-
sion of FFI greater than 0.3, or this code won’t work correctly.

The following code displays Login: and Password: prompts, and compares the entered
password to the corresponding encrypted password stored in /etc/passwd. This requires
that the system not use shadow passwords:

print "Login: ";
$fh = fopen('php://stdin','r') or die($php_errormsg);
$username = rtrim(fgets($fh,64)) or die($php_errormsg);

preg_match('/^[a-zA-Z0-9]+$/',$username)
 or die("Invalid username: only letters and numbers allowed");

print 'Password: ';
`/bin/stty -echo`;
$password = rtrim(fgets($fh,64)) or die($php_errormsg);
`/bin/stty echo`;
print "\n";

// nothing more to read from the keyboard
fclose($fh);

// find corresponding line in /etc/passwd
$fh = fopen('/etc/passwd','r') or die($php_errormsg);
$found_user = 0;
while (! ($found_user || feof($fh))) {
 $passwd_line = fgets($fh,256);
 if (preg_match("/^$username:/",$passwd_line)) {
 $found_user = 1;
 }
}
fclose($fh);

$found_user or die ("Can't find user \"$username\"");

// parse the correct line from /etc/passwd
$passwd_parts = split(':',$passwd_line);

/* encrypt the entered password and compare it to the password in
 /etc/passwd */
$encrypted_password = crypt($password,
 substr($passwd_parts[1],0,CRYPT_SALT_LENGTH));

if ($encrypted_password == $passwd_parts[1]) {
 print "login successful";
} else {

736 | Chapter 25: Command-Line PHP

 print "login unsuccessful";
}

See Also
Documentation on readline(  ) at http://www.php.net/readline, chr(  ) at http://
www.php.net/chr, on the FFI at http://pecl.php.net/ffi, and on _getch(  ) at http://msdn.mi
crosoft.com/library/en-us/vccore98/HTML/_crt__getch.2c_._getche.asp; on Unix, see
your system’s stty(1) manpage.

25.6 Program: Command Shell
The command-shell.php program shown in Example 25-2 (later in this recipe) provides
a shell-like prompt to let you execute PHP code interactively. It reads in lines using
readline(  ) and then runs them with eval(  ). By default, it runs each line after it’s typed
in. In multiline mode (specified with -m or --multiline), however, it keeps reading lines
until you enter . on a line by itself; it then runs the accumulated code.

Additionally, command-shell.php uses the Readline word-completion features to more
easily enter PHP functions. Enter a few characters and hit Tab to see a list of functions
that match the characters you’ve typed.

This program is helpful for running snippets of code interactively or testing different
commands. The variables, functions, and classes defined in each line of code stay de-
fined until you quit the program, so you can test different database queries, for example:

% php command-shell.php
[1]> require 'DB.php';

[2]> $dbh = DB::connect('mysql://user:pwd@localhost/phpc');

[3]> print_r($dbh->getAssoc('SELECT sign,planet,start_day FROM zodiac WHERE element
LIKE "water"'));
Array
(
 [Cancer] => Array
 (
 [0] => Moon
 [1] => 22
)
 [Scorpio] => Array
 (
 [0] => Mars
 [1] => 24
)
 [Pisces] => Array
 (
 [0] => Neptune
 [1] => 19
)
)

The code for command-shell.php is in Example 25-2.

25.6 Program: Command Shell | 737

Example 25-2. command-shell.php
// Load the readline library
if (! function_exists('readline')) {
 dl('readline.'. (((strtoupper(substr(PHP_OS,0,3))) == 'WIN')?'dll':'so'))
 or die("Readline library required\n");
}

// Load the Console_Getopt class
require 'Console/Getopt.php';

$o = new Console_Getopt;
$opts = $o->getopt($o->readPHPArgv(),'hm',array('help','multiline'));

// Quit with a usage message if the arguments are bad
if (PEAR::isError($opts)) {
 print $opts->getMessage();
 print "\n";
 usage();
}

// Default is to evaluate each command as it's entered
$multiline = false;

foreach ($opts[0] as $opt) {
 // Remove any leading -s
 $opt[0] = preg_replace('/^-+/','',$opt[0]);

 // Check the first character of the argument
 switch($opt[0][0]) {
 case 'h':
 // display help
 usage();
 break;
 case 'm':
 $multiline = true;
 break;
 }
}

// Set up error display
ini_set('display_errors',false);
ini_set('log_errors',true);

// Build readline completion table
$functions = get_defined_functions();
foreach ($functions['internal'] as $k => $v) {
 $functions['internal'][$k] = "$v(";
}
function function_list($line) {
 return $GLOBALS['functions']['internal'];
}
readline_completion_function('function_list');

$cmd = '';
$cmd_count = 1;

738 | Chapter 25: Command-Line PHP

while (true) {
 // Get a line of input from the user
 $s = readline("[$cmd_count]> ");
 // Add it to the command history
 readline_add_history($s);
 // If we're in multiline mode:
 if ($multiline) {
 // if just a "." has been entered
 if ('.' == rtrim($s)) {
 // eval() the code
 eval($cmd);
 // Clear out the accumulated code
 $cmd = '';
 // Increment the command count
 $cmd_count++;
 // Start the next prompt on a new line
 print "\n";
 } else {
 /* Otherwise, add the new line to the accumulated code
 tacking on a newline prevents //-style comments from
 commenting out the rest of the lines entered
 */
 $cmd .= $s."\n";;
 }
 } else {
 // If we're not in multiline mode, eval() the line
 eval($s);
 // Increment the command count
 $cmd_count++;
 // Start the next prompt in a new line
 print "\n";
 }
}

// Display helpful usage information
function usage() {
 $my_name = $argv[0];

 print<<<_USAGE_
Usage: $my_name [-h|--help] [-m|--multiline]

 -h, --help: display this help
 -m, --multiline: execute accumulated code when "." is entered
 by itself on a line. The default is to execute
 each line after it is entered.

USAGE;
 exit(-1);
}

25.6 Program: Command Shell | 739

CHAPTER 26

PEAR and PECL

26.0 Introduction
PEAR is the PHP Extension and Application Repository, a collection of open source
classes that work together. Developers can use PEAR classes to parse XML, implement
authentication systems, make SOAP requests, send MIME mail with attachments, and
a wide variety of other common (and not so common) tasks. A pear is also a tasty fruit.

PECL is the PHP Extension Community Library. PECL, pronounced “pickle,” is a series
of extensions to PHP written in C. These extensions are just like the ones distributed
with the main PHP release, but they’re of more specialized interest—such as an inter-
face to the libssh2 library or the ImageMagick graphics library.

To find general information on PEAR, read the PEAR manual; to discover the latest
PEAR packages, go to http://pear.php.net. The PEAR web site also provides links to
mailing list archives, as well as RSS feeds that allow easy monitoring of new package
releases.

Only a few core PEAR packages are bundled with the main PHP release. However, part
of PEAR is a program called, appropriately enough, pear, that makes it easy for you to
download and install additional PEAR packages. This program is also known simply
as the PEAR installer. Recipe 26.1 shows how to use the PEAR installer.

Additionally, the PEAR installer allows you to use the PEAR class management
infrastructure with your personal projects. By creating your own packages that follow
the PEAR format, your users can use pear to download and install the files from your
project’s web site. If you distribute more than a handful of packages this way, you’ll
want to consider operating a formal PEAR channel server. The PEAR installer supports
a wide variety of channel-specific features that are covered in recipes throughout this
chapter.

PEAR requires PHP 4.2.0 or later, preferably with PHP built using the --with-zlib
configuration flag. PEAR packages are available as gzipped tar archives, and are also
available as uncompressed tar archives. The package installation process is more con-
venient in PHP environments with zlib capability.

741

This chapter explains how to find a PEAR package that you may want to use and how
to install it on your machine. Because PEAR and PEAR channels offer many packages,
you need an easy way to browse them. Recipe 26.2 covers different ways to find PEAR
packages. Once you’ve found a package’s name and determined which channel server
it is on, Recipe 26.3 shows how to view package details and information.

Once you locate a package you want to use, you need to run pear to transfer the package
to your machine and install it in the correct location on your server. Installing PEAR
packages and PECL extensions are the subjects of Recipes 26.4 and 26.7, respectively.
Recipe 26.5 shows how to discover if any upgrades are available to packages on your
machine and how to install the latest versions. If you want to remove a package, see
Recipe 26.6.

PHP has installed PEAR by default since PHP 4.3.0, so if you’re running a version of
PHP more recent than that, odds are that you can use PEAR without any additional
setup.* PEAR has changed significantly since its initial inclusion with PHP 4.3.0, so it
is strongly recommended that you upgrade to PEAR 1.4.9 or later. See Recipe 26.5 for
details on upgrading PEAR. If you would prefer a clean PEAR install, refer to Rec-
ipe 26.1.

When installed during a PHP installation, PEAR installs pear in the same directory as
php and places PEAR packages in prefix/lib/php.† To install PEAR in another directory,
add --with-pear=DIR when configuring PHP. You may also install multiple instances of
PEAR, which can come in handy in a shared server environment. Refer to Rec-
ipe 26.1 for details on installing multiple instances of PEAR.

Once a PEAR package is installed, use it in your PHP scripts by calling require_once.
For example, here’s how to include the Net_Dig package:

require_once 'Net/Dig.php';

Generally, if a package name contains an underscore, replace it with a slash, and
add .php to the end.

Some packages may provide multiple class files, some of which should be used in certain
scenarios, and not in others. The SOAP package is a good example of this; instead of
requiring SOAP.php, you include SOAP/Client.php or SOAP/Server.php, depending on
the needs of your script. Read the package documentation to determine if a particular
package requires a specific inclusion approach depending on the usage scenario.

Because PEAR packages are included as regular PHP files, make sure the directory
containing the PEAR packages is in your include_path. If it isn’t, include_once and
require_once can’t find PEAR class files.

* If you disable building the command-line version of PHP with --disable-cli, PHP doesn’t install
PEAR.
† This is probably in one of /usr/local/lib/php, /usr/lib/php, or, in some Linux distributions, /usr/share/
php.

742 | Chapter 26: PEAR and PECL

To view instructions and examples of how to use a particular PEAR package, check the
PEAR web site at http://pear.php.net/packages.php. Many packages have end-user doc-
umentation complete with examples. The rest typically include at least a set of
generated API documentation that provides examples of usage. If all else fails, read the
top section of the package’s PHP files; most contain an example of usage there as well.

Documentation for PECL extensions is not always as easy to find. Some PECL exten-
sions are very well documented within the main PHP manual; the ClibPDF extension
(available at http://www.php.net/cpdf) is an excellent example. Other PECL extensions
are not documented at all, and usage must be gleaned by reading PHP test scripts
included with the source bundles from the PECL web site. In extreme cases, you can
only get the full idea of what an extension does by reading the extension source code.

The combination of PEAR and PHP provides a vast collection of high-quality reusable
code that make both projects tremendous assets to the PHP community at large.

26.1 Using the PEAR Installer

Problem
You want to use the PEAR installer, pear. This allows you to install new packages,
upgrade, and get information about your existing PEAR packages.

Solution
To execute a command with the PEAR installer, type the command name as the first
argument on the command line:

% pear
 command

Discussion
Here’s how to list all installed PEAR packages with the list command:‡

% pear list
 Installed packages, channel pear.php.net:
===
Package Version State
Archive_Tar 1.3.1 stable
Console_Getopt 1.2 stable
DB 1.7.6 stable
DB_DataObject 1.8.4 stable
Date 1.4.6 stable
File_Passwd 1.1.6 stable
HTML_Common 1.2.2 stable
HTML_QuickForm 3.2.5 stable
HTML_QuickForm_Controller 1.0.5 stable

‡ In early versions of pear, this command was list-installed.

26.1 Using the PEAR Installer | 743

HTML_Template_IT 1.1 stable
HTTP_Request 1.3.0 stable
HTTP_Session 0.5.1 beta
MDB2 2.0.0 stable
Mail_Mime 1.3.1 stable
Net_Socket 1.0.6 stable
Net_URL 1.0.14 stable
Net_UserAgent_Detect 2.0.1 stable
PEAR 1.4.9 stable
PHP_Compat 1.5.0 stable
Pager 2.4.0 stable
XML_Parser 1.2.7 stable
XML_RPC 1.4.0 stable
XML_RSS 0.9.9 beta
XML_Serializer 0.18.0 beta
XML_Util 1.1.1 stable

For a list of all valid PEAR commands, use help. Many commands also have abbreviated
names; for example, list is also just l. These names are often just the first few letters
of the command name. However, the PEAR installer now offers so many commands
that it’s safer to double-check the list of shortcuts until you get them memorized. You
can review the list of pear shortcuts with:

% pear help shortcuts

pear has commands for both using and developing PEAR packages; as a result, there
are many commands that you may not need. The package command, for example, cre-
ates a new PEAR package. If you only run other peoples’ packages, you can safely ignore
this command. See Table 26-1 for a list of frequently used commands.

Table 26-1. Common PEAR installer commands

Command name Shortcut Description

install i Download and install packages.

upgrade up Upgrade installed packages.

uninstall un Remove installed packages.

list l List installed packages.

list-upgrades lu List all available upgrades for installed packages.

channel-discover di Initialize an alternate PEAR Channel from its server.

list-channels lc List all locally configured PEAR Channels.

search sp Search for packages.

Like all shell programs, if you want to run pear, you must have permission to execute
it. If you can run pear while running as root, but not as a regular user, make sure the
group- or world-execute bit is set. Similarly, for some actions, pear creates a lock file
in the directory containing the PEAR files. You must have write permission to the file
named .lock located in that directory.

744 | Chapter 26: PEAR and PECL

To find where your PEAR packages are located, run the config-get php_dir pear com-
mand. You can check the value of the include_path by calling ini_get('in
clude_path') from within PHP or by looking at your php.ini file. If you can’t alter
php.ini because you’re in a shared hosting environment, add the directory to the
include_path at the top of your script before including any PEAR files. See Rec-
ipe 20.5 for more on setting configuration variables from within PHP.

If you’re behind an HTTP proxy server, configure PEAR to use it with this command:

% pear config-set http_proxy proxy.example.com:8080

You can configure PEAR installer settings using:

% pear set-config
 setting value

Here setting is the name of the parameter to modify and value is the new value. To see
all your current settings, use the config-show command:

% pear config-show
Configuration (channel pear.php.net):
=====================================
Auto-discover new Channels auto_discover <not set>
Default Channel default_channel pear.php.net
HTTP Proxy Server Address http_proxy <not set>
PEAR server [DEPRECATED] master_server pear.php.net
Default Channel Mirror preferred_mirror pear.php.net
Remote Configuration File remote_config <not set>
PEAR executables directory bin_dir /usr/local/bin
PEAR documentation directory doc_dir /usr/local/lib/php/doc
PHP extension directory ext_dir /usr/lib/php/extensions/↳
 no-debug-non-zts-20020429
PEAR directory php_dir /usr/local/lib/php
PEAR Installer cache directory cache_dir /tmp/pear/cache
PEAR data directory data_dir /usr/local/lib/php/data
PHP CLI/CGI binary php_bin /usr/local/bin/php
PEAR test directory test_dir /usr/local/lib/php/test
Cache TimeToLive cache_ttl 3600
Preferred Package State preferred_state beta
Unix file mask umask 22
Debug Log Level verbose 1
PEAR password (for password <not set>
maintainers)
Signature Handling Program sig_bin /usr/local/bin/gpg
Signature Key Directory sig_keydir /etc/pearkeys
Signature Key Id sig_keyid <not set>
Package Signature Type sig_type gpg
PEAR username (for username <not set>
maintainers)
User Configuration File Filename /home/foo/.pearrc
System Configuration File Filename /etc/pear.conf

For a brief description of each configuration option, use the config-help command.

26.1 Using the PEAR Installer | 745

If you don’t have PEAR installed, or if you’re in a shared-hosting environment and
you’re not able to upgrade or otherwise alter the system-wide PEAR installation, you
need to bootstrap a fresh copy of PEAR. There’s generally nothing wrong with doing
a fresh PEAR installation on a shared host so long as you configure your copy to work
within your shared environment. You may wind up with a PEAR package directory
of /home/exampleuser/pear/php instead of a more traditional installation location, but
as long as your include_path values are set correctly to reflect that, there should be no
problem with that approach.

To bootstrap a fresh copy of PEAR from the command line, run the following:

% lynx -source http://go-pear.org | php -q
Welcome to go-pear!

Go-pear will install the 'pear' command and all the files needed by
it. This command is your tool for PEAR installation and maintenance.

Go-pear also lets you download and install the PEAR packages bundled
with PHP: DB, Net_Socket, Net_SMTP, Mail, XML_Parser.

If you wish to abort, press Control-C now, or press Enter to
continue:

This downloads a PHP script from the PEAR web site and hands it to PHP for execution.
The program downloads all files needed to run pear and gets you up and running.

On some Unix systems, you may need to run links instead of lynx. If you have the
command-line version of PHP installed, you may remove the -q flag to PHP; the CLI
version automatically suppresses HTTP headers. If go-pear seems to hang, add -d out
put buffering=off to the piped php command.

Installation on Windows is a two-step process:

C:\> php-cli -r 'readfile("http://go-pear.org");' > go-pear
C:\> php-cli go-pear

The go-pear script requires PHP 4.2 or greater. For the Windows installation, php-cli
is the command-line version of PHP.

See Also
PEAR online documentation relating to installation procedures at http://pear.php.net/
manual/en/installation.php

26.2 Finding PEAR Packages

Problem
You want a listing of PEAR packages. From this list you want to learn more about each
package and decide if you want to install it.

746 | Chapter 26: PEAR and PECL

Solution
Browse packages at http://pear.php.net/packages.php or search for packages at http://
pear.php.net/search.php. Use pear’s remote-list command to get a listing of PEAR
packages or the search command to search for packages. Explore listings of PEAR
channel servers at PEAR Channel directory web sites http://www.upear.com/ or http://
pear.php.net/channels/.

Discussion
There are a few ways to review available PEAR and PEAR-compatible packages. First,
to browse the listings of official PEAR packages in a directory-style fashion, go to http://
pear.php.net/packages.php. From there you can burrow into each individual PEAR cat-
egory.

Alternatively, you can search through the listings at the following address: http://
pear.php.net/search.php. The search page allows you to search by package name, au-
thor, category and release date.

You can also ask the PEAR installer to provide you with a listing using the remote-
list command:

% pear remote-list
Channel pear.php.net Available packages:
==
Package Version
Auth_HTTP 2.1.6
Auth 1.3.0
Auth_SASL 1.0.1
LiveUser 0.16.11
Auth_PrefManager 1.1.4
Auth_RADIUS 1.0.4

...

XML_Indexing 0.3.6
XML_Feed_Parser 0.3.0beta
XML_RPC2 0.0.7
XML_Query2XML 0.6.0

The short form of remote-list is rl.

You may also query compatible PEAR Channel servers for available packages using the
remote-list command with the -c flag specifying the channel to query. In order to do
so, you must first make the PEAR installer aware of the alternate channel server. For
example:

% pear channel-discover pearified.com
Adding Channel "pearified.com" succeeded
Discovery of channel "pearified.com" succeeded
% pear remote-list -c pearified
Retrieving data...0%....50%....
Channel pearified Available packages:

26.2 Finding PEAR Packages | 747

=====================================
Package Version
Editors_FCKeditor 2.2.0
Editors_TinyMCE 2.0.1
Icons_Silk 1.3.0

...

Role_Web 1.1.1
SimpleTest 1.0.0
Smarty 2.6.8

To search for package names from the command line, use the search command:

% pear search auth
Retrieving data...0%....50%....
Matched packages, channel pear.php.net:
=======================================
Package Stable/(Latest) Local
Auth 1.3.0/(1.3.0 stable) 1.3.0 Creating an authentication
 system.
Auth_HTTP 2.1.6/(2.1.6 stable) HTTP authentication
Auth_PrefManager 1.1.4/(1.1.4 stable) 1.1.4 Preferences management class
Auth_PrefManager2 -n/a-/(2.0.0dev1 alpha) Preferences management class
Auth_RADIUS 1.0.4/(1.0.4 stable) Wrapper Classes for the RADIUS PECL.
Auth_SASL 1.0.1/(1.0.1 stable) Abstraction of various SASL mechanism
 responses

This does a case-insensitive search of package names and returns the package name;
the latest stable version; the latest version at any of dev, alpha, or beta states; the version
you have installed locally (if any); and a short description about the package.

See Also
Recipe 26.3 to find more information about a package.

26.3 Finding Information About a Package

Problem
You want to gather information about a package, such as a description of what it does,
who maintains it, what version you have installed, and which license it’s released under.

Solution
If the package is installed on your machine, use the PEAR installer’s info command:

% pear info Net_URL

Otherwise, use the remote-info command:

% pear remote-info SOAP

748 | Chapter 26: PEAR and PECL

You can also view the package’s home page on http://pear.php.net.

Discussion
The info command provides summary information about a package:

% pear info Net_URL
About Net_URL-1.0.14
====================
Provides Classes:
Package Net_URL
Summary Easy parsing of Urls
Description Provides easy parsing of URLs and their
 constituent parts.
Maintainers Richard heyes <richard@php.net> (lead)
Version 1.0.14
Release Date 2004-06-19
Release License BSD
Release State stable
Release Notes Whitespace
Package.xml Version 1.0
Last Installed Version - None -
Last Modified 2006-05-08

If you don’t have the package installed, ask the remote server for a description:

% pear remote-info Net_URL
Package details:
================
Latest 1.0.14
Installed - no -
Package Net_URL
License BSD
Category Networking
Summary Easy parsing of Urls
Description Provides easy parsing of URLs and their
 constituent parts.

This request displays a slightly different set of information. It doesn’t include the release
data but does include the general PEAR category and the latest release number for the
package.

The package home page provides a more complete view and also provides links to
earlier releases, a change log, and browsable access to the package’s CVS repository.
You can also view package download statistics. Figure 26-1 shows a sample package
information page.

See Also
Recipe 26.2 to search for packages.

26.3 Finding Information About a Package | 749

26.4 Installing PEAR Packages

Problem
You want to install a PEAR package.

Solution
Download and install the package from the appropriate PEAR Channel server using
the PEAR installer:

% pear install Package_Name

You can also install from another PEAR Channel:

Figure 26-1. Net_URL Package Information page on the PEAR web site

750 | Chapter 26: PEAR and PECL

% pear install channel/Package_Name

You can also install from any location on the Internet:

% pear install http://pear.example.com/Package_Name-1.0.0.tgz

Here’s how to install if you have a local copy of a package:

% pear install Package_Name-1.0.0.tgz

Discussion
To install PEAR packages, you need write permission where the packages are stored;
this defaults to /usr/local/lib/php/.

You can also request multiple packages at the same time:

% pear install XML_Parser XML_Tree
downloading XML_Parser-1.2.7.tgz ...
Starting to download XML_Parser-1.2.7.tgz (12,939 bytes)
.....done: 12,939 bytes
downloading XML_Tree-1.1.tgz ...
Starting to download XML_Tree-1.1.tgz (4,826 bytes)
...done: 4,826 bytes
install ok: channel://pear.php.net/XML_Tree-1.1
install ok: channel://pear.php.net/XML_Parser-1.2.7

When installing a package, PEAR checks that you have all the necessary PHP functions
and PEAR packages that the new package depends on. If this check fails, PEAR reports
on the dependencies:

% pear install MDB2_Driver_Mysql
 install MDB2_Driver_Mysql
Did not download dependencies: pear/MDB2, use --alldeps or --onlyreqdeps to
download automatically
pear/MDB2_Driver_mysql requires package "pear/MDB2" (version >= 2.0.1)
No valid packages found
install failed

As you can see from the error message, the PEAR installer made no attempt to download
dependencies. This default behavior puts you in control by not assuming that you want
to install or upgrade the related dependencies. The most convenient install command
switch is -o, which is the shortcut for --onlyreqdeps, which installs all required de-
pendencies.

Using the -o switch, the installation is now successful:

% pear install -o MDB2_Driver_Mysql
downloading MDB2_Driver_mysql-1.0.1.tgz ...
Starting to download MDB2_Driver_mysql-1.0.1.tgz (22,240 bytes)

26.4 Installing PEAR Packages | 751

........done: 22,240 bytes
downloading MDB2-2.0.1.tgz ...
Starting to download MDB2-2.0.1.tgz (91,219 bytes)
...done: 91,219 bytes
install ok: channel://pear.php.net/MDB2-2.0.1
install ok: channel://pear.php.net/MDB2_Driver_mysql-1.0.1

If you want to ignore the required dependencies, you can use the -n or --nodeps switches
to tell the installer to ignore dependencies and install anyway.

See Also
Recipe 26.7 for information on installing PECL packages; Recipe 26.5 for more on
upgrading an existing package; Recipe 26.6 to uninstall a package.

26.5 Upgrading PEAR Packages

Problem
You want to upgrade a package on your system to the latest version for additional
functionality and bug fixes.

Solution
Find out if any upgrades are available and then tell pear to upgrade the packages you
want:

% pear list-upgrades
% pear upgrade -o Package_Name

Discussion
Upgrading to a new version of a package is a simple task with the PEAR installer. If you
know a specific package is out of date, you can upgrade it directly. However, you may
also just want to check periodically to see if any new releases are available.

To do this, use the list-upgrades command, which prints out a table showing the
channel server of the package, package name, local version number and state, version
number and state of the remote upgrade, and size of the download of the upgrade:

% pear list-upgrades
pear.php.net Available Upgrades (stable):
===
Channel Package Local Remote Size
pear.php.net HTML_Table 1.6.1 (stable) 1.7.0 (stable) 13.7kB
pear.php.net HTML_Template_IT 1.1.3 (stable) 1.1.4 (stable) 19.7kB
pear.php.net Log 1.9.3 (stable) 1.9.5 (stable) 37kB
pear.php.net Mail 1.1.9 (stable) 1.1.10 (stable) 16.5kB
pear.php.net MDB2 2.0.0 (stable) 2.0.1 (stable) 90kB
pear.php.net Pager 2.3.6 (stable) 2.4.1 (stable) 31kB

752 | Chapter 26: PEAR and PECL

pear.php.net PEAR 1.4.8 (stable) 1.4.9 (stable) 277kB
pear.php.net Services_Weather 1.3.2 (stable) 1.4.0 (stable) 53kB

If you’re up to date, pear prints:

Channel pear.php.net: No upgrades available

To upgrade a particular package, use the upgrade command. For example:

% pear upgrade MDB2
Did not download dependencies: pear/PEAR, use --alldeps or --onlyreqdeps to
download automatically
downloading MDB2-2.0.1.tgz ...
Starting to download MDB2-2.0.1.tgz (91,219 bytes)
.....................done: 91,219 bytes
upgrade ok: channel://pear.php.net/MDB2-2.0.1

The short command for list-upgrades is lu; for upgrade it’s up.

PEAR also has an RSS feed listing new and upgraded packages is available at http://
pear.php.net/rss.php. An aggregated RSS feed listing new and upgraded packages avail-
able on the PEAR site and a variety of other PEAR Channels is available at http://
pearified.com/planet.xml.

See Also
Recipes 26.4 and 26.7 for information on installing PEAR and PECL packages; Rec-
ipe 26.6 to uninstall a package; Recipe 12.12 for more on parsing RSS feeds.

26.6 Uninstalling PEAR Packages

Problem
You wish to remove a PEAR package from your system.

Solution
The uninstall command tells the PEAR installer to delete packages:

% pear uninstall Pager
uninstall ok: channel://pear.php.net/MDB2-2.4.1

Discussion
Uninstalling a package removes it completely from your system. If you want to reinstall
it, you must begin as if the package was never installed.

If you try to remove a package another package depends on, PEAR will warn you and
halt the uninstall process. For example, take a look at a sample PEAR installation:

% pear list
Installed packages, channel pear.php.net:
===

26.6 Uninstalling PEAR Packages | 753

Package Version State
Archive_Tar 1.3.1 stable
DB 1.7.6 stable
HTML_Common 1.2.2 stable
HTML_Table 1.7.0 stable
MDB2 2.0.1 stable
MDB2_Driver_mysql 1.0.1 stable
PEAR 1.4.9 stable
XML_Parser 1.2.7 stable
XML_Tree 1.1 stable

Now, try to uninstall the MDB2 package:

% pear uninstall MDB2
pear/MDB2 cannot be uninstalled, other installed packages depend on this
package

You can still force a package that has dependencies to uninstall by using the -n flag or
--nodeps flag to instruct the PEAR installer to ignore dependencies and uninstall any-
way. Use this capability with caution.

There is no way to automatically roll back an upgrade to an earlier version of a package
by using uninstall. Also, PEAR complains if you try install an earlier version of a pack-
age over a later one. To force the PEAR installer to overwrite a newer version of a
package with an older one, use install -f or install --force:

% pear install DB-1.7.5
Skipping package "pear/DB", already installed as version 1.7.6
No valid packages found
install failed

% pear install -f DB-1.7.5
downloading DB-1.7.5.tgz ...
Starting to download DB-1.7.5.tgz (124,767 bytes)
............................done: 124,767 bytes
install ok: channel://pear.php.net/DB-1.7.5

The short command for uninstall is un.

See Also
Recipes 26.4 and 26.7 for information on installing PEAR and PECL packages.

26.7 Installing PECL Packages

Problem
You want to install a PECL package; this builds a PHP extension written in C to use
inside PHP.

754 | Chapter 26: PEAR and PECL

Solution
Make sure you have all the necessary extension libraries and then use the PEAR installer
bundled command pecl:

% pecl install mailparse

To use the extension from PHP, add the appropriate line to your php.ini file:

extension=mailparse.so

Discussion
The frontend process for installing PECL packages is just like installing PEAR packages
for code written in PHP. However, the behind-the-scenes tasks are very different. Be-
cause PECL extensions are written in C, the installer needs to compile the extension
and configure it to work with the installed version of PHP. As a result, at present, you
can build PECL packages on Unix machines if you have the necessary development
tools installed and on Windows machines if you use MSDev.

Unlike PHP-based PEAR packages, PECL extensions don’t automatically inform you
when you lack a library necessary to compile the extension. Instead, you are responsible
for correctly preinstalling these files. If you are having trouble getting a PECL extension
to build, check the README file and the other documentation that comes with the
package. The installer puts these files inside the docs directory under your PEAR hier-
archy.

When you install a PECL extension, the pecl command downloads the distribution file,
extracts it, runs phpize to configure the extension for the version of PHP installed on
the machine, and then makes and installs the extension. It may also prompt you for
the location of libraries:

% pecl install mailparse
downloading mailparse-2.1.1.tgz ...
Starting to download mailparse-2.1.1.tgz (35,883 bytes)
..........done: 35,883 bytes
9 source files, building
running: phpize
Configuring for:
PHP Api Version: 20031224
Zend Module Api No: 20041030
Zend Extension Api No: 220040412

...

Build complete.
(It is safe to ignore warnings about tempnam and tmpnam).

running: make INSTALL_ROOT="/var/tmp/pear-build-root/install-mailparse-2.1.1"
install
Installing shared extensions:
/var/tmp/pear-build-root/install-mailparse-2.1.1/usr/lib/php/20041030/

26.7 Installing PECL Packages | 755

running: find "/var/tmp/pear-build-root/install-mailparse-2.1.1" -ls
8306920 4 drwxr-xr-x 3 root root 4096 May 1 16:40 /var/tmp/pear-build-root/↵
 install-mailparse-2.1.1
4522201 4 drwxr-xr-x 3 root root 4096 May 1 16:40 /var/tmp/pear-build-root/↵
 install-mailparse-2.1.1/usr
4522202 4 drwxr-xr-x 3 root root 4096 May 1 16:40 /var/tmp/pear-build-root/↵
 install-mailparse-2.1.1/usr/lib
4522203 4 drwxr-xr-x 3 root root 4096 May 1 16:40 /var/tmp/pear-build-root/↵
 install-mailparse-2.1.1/usr/lib/php
8306938 4 drwxr-xr-x 2 root root 4096 May 1 16:40 /var/tmp/pear-build-root/↵
 install-mailparse-2.1.1/usr/lib/php/20041030
8306939 140 -rwxr-xr-x 1 root root 136671 May 1 16:40 /var/tmp/pear-build-root/↵
 install-mailparse-2.1.1/usr/lib/php/20041030/mailparse.so

Build process completed successfully
Installing
'/var/tmp/pear-build-root/install-mailparse-2.1.1//usr/lib/php/20041030/mailparse.so'
install ok: channel://pecl.php.net/mailparse-2.1.1
You should add "extension=mailparse.so" to php.ini

PECL extensions are stored in different places than PEAR packages written in PHP. If
you want to run pecl, you must be able to write inside the PHP extensions directory.
Because of this, you may want to install these packages while running as the same user
you used to install PHP. Also, check the execute permissions of these files; because
most PEAR files aren’t executable, your umask may not provide those executable files
with the correct set of permissions.

If you’re running PHP and PECL in a Windows environment, you may prefer to down-
load precompiled DLLs for the PECL extensions you need from http://
pecl4win.php.net/.

PHP’s dl(  ) can be used to load extensions at runtime, but it is deprecated. If possible,
activate new extensions in the php.ini file.

See Also
Recipe 26.4 for information on installing PEAR packages; Recipe 26.5 for more on
upgrading an existing package; Recipe 26.6 to uninstall a package; the PECL Windows
Repository at http://pecl4win.php.net .

756 | Chapter 26: PEAR and PECL

Index

Symbols
!== (nonidentity) operator, 118
" (double quotes), 1

escaping, 2
escaping in database queries, 307

$ (dollar sign), 143
escaping, 2

$GLOBALS array, 477, 484
$HTTP_COOKIE_VARS arrays, 258
$HTTP_ENV_VARS arrays, 258
$HTTP_GET_VARS arrays, 258
$HTTP_POST_FILES arrays, 258, 280
$HTTP_POST_VARS arrays, 258
$HTTP_RAW_POST_DATA, 236
$HTTP_SERVER_VARS arrays, 258
$_COOKIE array, 230, 257

global variable injection, 282
$_ENV array, 247
$_FILES array, 257, 279
$_GET array, 257

global variable injection, preventing, 282
required fields and, 260
REST methods, serving, 463
REST requests and, 460

$_POST array, 257
global variable injection, preventing, 282
required fields and, 260
verifying data with hashes, 552

$_REQUEST array, 257
$_SERVER array, 237, 257, 464, 547

detecting SSL, 564
REST methods, serving, 465
SOAP authentication, 480

$_SESSION array, 275

% (percent sign)
format operators and, 67
remainder operator, as a, 237

% (SQL wildcard), 307
%i specifier, 47
%n specifier, 47
& (ampersand), 604

interpreting GET query stings, 235
' (single quotes), 1

escaping in database queries, 307
(  ) (parentheses), 651
* (asterisk), 640
+ (plus sign), 640

GET query strings, 235
merging arrays, 112

-> (arrow)
accessing methods or variables, 178
static properties and methods, defining,

211
. (dot)

concatenation operator, 3, 15
regular expression metacharacter, 640

/ (forward slash), 663
Perl m/ / pattern matching, 643

/i flag, 25, 643
:: (double colon), 209

accessing methods or variables, 178
; (semicolon), using heredoc formats, 4
<<< (heredoc format), 2

(see also heredoc format)
 source tag (see img source tag)
<option/> element, 276
<select/> element, 711
<textarea> form field, 24
= (equals), 140, 163

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

757

cloning objects, 194
object references, assigning, 193

=& operator, 163, 165
object references, assigning, 193

== (equality) operator, 116, 140
=== (identity) operator, 116, 141
? (question mark), 640, 647

U pattern-modifier and, 648
?: operator, 651
@ (at sign) in email addresses, 500
[] (square brackets), 4

character classes, matching with, 641
configuration files, parsing, 679
form elements with multiple options and,

285
HTML checkbox values and, 270

\ (backslash), 640
directories in pathnames, 663
escaping, 2

\b word-boundary metacharacter, 675
\n (newline)

trimming, 16
wrapping lines and, 27

\n (newline) escape sequence, 2
\r (carriage return), 2

trimming, 16
\s whitespace metacharacter, 675
\t (tab), 2
\w (word character), 644
^ (caret), 642
_ (SQL wildcard), 307
_ (underscore), 221
_getch(  ), 735
__autoload(  ), 220
__call(  ), 201, 442, 451

binding functions and, 468
__CLASS__ constant, 608
__clone method, 195
__construct(  ), 177, 180, 203, 480, 598
__destruct(  ), 181
__FILE__ constant, 608, 709

using shmop_open(  ), 147
__FUNCTION__ constant, 608
__get(  ), 196–200
__isset(  ), 197–200
__LINE__ constant, 608
__METHOD__ constant, 608
__set(  ), 196–200
__setSoapHeaders(  ), 447

__sleep(  ), 212
__soapCall(  ), 442, 447, 477, 482

redefinging endpoints, 450
__toString(  ), 186, 454
__unset(  ), 197–200
__wakeUp(  ), 151, 212
` (backtick), 687
{ } (curly braces)

dynamic variable names and, 143
interpolating strings and, 15

| (vertical bar), 642

A
“A Tutorial on Character Code

Issues” (Korpela, Jukka), 592
ab (Apache HTTP server benchmarking tool),

633
abstract base classes, 191–193
abstract keyword, 191
accelerators, 636
accept(  ), 713
Accept-Encoding header, 247
Accept-Language header, 584
access control, implementing, 182–185
access values, reading configuration variables,

601
access_log, 250
acos(  ), 49
add(  ), 218
addcslashes(  ), 643
addEntry(  ), 390
addFunction(  ), 467
addHeader(  ), 401, 403
addItem(  ), 386, 390
addPostData(  ), 400
addSoapHeader(  ), 476
ADODb, 289
Advanced PHP Debugger (APD), 631
aggregated classes, 195
aggregating objects, 201–205
Ajax, 423–425
Albitz, Paul, 509
algorithm constants (mcrypt), 554
Allman, Eric, 490
allow_url_fopen, 395
Alternative PHP Cache (APC), 636
always_populate_raw_post_data

configuration directive, 236

758 | Index

American Standard Code for Information
(ASCII), 1

ampersand (&), 604
interpreting GET query strings, 235

“An Overview on Globalizing Oracle PHP
Applications” (Linsley, Peter), 592

anchoring patterns, 641
AND (logical), 604
anonymous FTP, 502
Apache, 249, 437
Apache HTTP server benchmarking tool (ab),

633
apache_note(  ), 249
APC (Alternative PHP Cache), 636
APD (Advanced PHP Debugger), 631
apd_set_pprof_trace(  ), 631
appendChild(  ), 354
application MIME type, 495
Applied Cryptography (Schneier, Bruce), 558
arbitrary headers, 403
arbitrary methods, 404–406
arcs, drawing, 520–521
$argc, 727
arguments

parsing, 727
SOAP methods, accepting in, 468–470

$argv, 727
array(  ), 101, 111

temporary variables and, 142
ArrayAccess interface, 133
arrays, 99–137

addFunction(  ) method, bindind functions,
467

appending, 111–112
associative (see associative arrays)
calculating differences of date parts, 71
comma-separated data and, 17
command-line arguments, parsing, 728
commas, printing with, 114
configuration files, parsing, 679
controlling object serialization, 213
deleting elements from, 107–109
dumping variable contents, 151
duplicate elements, removing, 127
elements, checking if inside, 116
environment variables and, 247
error_reporting(  ) and, 604
exchanging values without temporary

variables, 142

fixed-width field data records and, 20
functions, applying to each element in, 128–

130
getdate(  ), finding current data/time with,

59
iterating through, 105–107
Julian days and Gregorian calendars,

converting between, 89
keys, 115
largest/smallest elements, finding, 119
localtime(  ) return values and, 60
magic accessor methods and, 197
matching words with preg_match_all(  ),

645
objects, 132–135

checking if is an instance of a class, 218
paragraphs, counting, 672
printing correct plurals, 49
randomizing order, 127

lines in files, 677
ranges of integers, initializing, 104
reading a file into, 291
reversing, 120
size, changing, 109–111
SOAP methods

calling, 441
passing to, 469

sorting, 121
computable fields, 122–124
multiple, 124–126
using methods, 126

storing multiple elements in, 103
testing elements, 118
turning into a string, 113
unions/intersections/differences, finding,

130–132
values, finding the position of, 117
zero, not beginning with, 101
__call(), using, 204

array_diff(  ), 131
array_filter(  ), 118
array_flip(  ), 117
array_intersect(  ), 269
array_intersection(  ), 131
array_keys(  ), 128
array_key_exists(  ), 115, 141, 266, 268
array_map(  ), 106, 132
array_merge(  ), 111, 131
array_multisort(  ), 124

Index | 759

array_pad(  ), 109
array_pop(  ), 100, 108
array_push(  ), 100, 111
array_reverse(  ), 10, 120
array_search(  ), 117
array_shift(  ), 108
array_splice(  ), 107, 109
array_unique(  ), 127, 131
array_values(  ), 128
array_walk(  ), 128–130, 173
array_walk_recursive(  ), 128
arrow (->)

accessing methods or variables, 178
static properties and methods, defining,

211
ASCII (American Standard Code for

Information), 1
ASCII 10 (newline), 662
ASCII 13 (carriage return), 662
asin(  ), 49
asort(  ), 121, 124
associative arrays, 99, 127, 159

configuration variables, reading with
ini_get_all(), 601

getdate(  ), finding current data/time with,
59

SOAP, using, 444
asterisk (*), 640
at sign (@) in email addresses, 500
atan(  ), 49
atan2(  ), 50
Atom feeds, 381–383

writing, 387–391
atom1 class, 389
attributes (XML), 357
audio MIME type, 495
Auth class (PEAR), 506
Auth::auth(  ), 507
Auth::getAuth(  ), 507
Auth::start(  ), 507
authentication

SOAP, 448, 477–482
auto-globals, 258
automation (web), 393–432
auto_prepend_file configuration setting, 610

B
backreferences, 656
backslash (\)

directories in pathnames, 663
escaping, 2

backtick (`), 687
bar charts, generating, 537–540
base classes, 176, 191–193
base e (natural log), 43
base64 encodings, 615
basename(  ), 708
bases

converting between, 53
using numbers in, 54

base_convert(  ), 53
basic authentication, 237–241
BCMath library, 35, 51
Benchmark (PEAR), 627

timing program execution, 627
Benchmark_Iterate class, 628
Benchmark_Iterate::get(  ), 629
/bin/stty, 735
binary data, 28–31
binary-safe strings, 1
bindColumn(  ), 299
bindec(  ), 53
binding, 505
bindParam(  ), 304
blackslash (\), 640
bound parameters, 303

support, 291

 tags, 501
Bray, Tim, 592
browsers

buffering output to, 245
deleting cookies, 231
detecting different, 233
flushing output to, 244
setting cookies, 228

BSD locales, 569
buildRequest(  ), 410
bytes

processing strings with, 8
referencing, 4
reversing a string by, 10

C
Cache_Lite package, 320
Cache_Lite::clean(  ), 322
Cache_Lite::remove(  ), 322
cal program (Unix), 95
call_user_func(  ), 169

760 | Index

call_user_func_array(  ), 169, 202
CAL_FRENCH constant, 91
CAL_JEWISH constant, 92
CAL_JULIAN constant, 90
cal_to_jd(  ), 89
capitalization (see case)
caret (^), 642
carriage return (\r), 2, 662

trimming, 16
Cascading Style Sheets (CSS), 236
case

controlling, 13
case-insensitivity

regular expression pattern matching and,
643

case-sensitivity, 643
preg_split(  ), 25
XML, 349

CBC (Cipher Block Chaining), 556
CDB DBM backends, 292
ceil(  ), 38
centered text, drawing, 525–530
CFB (Cipher Feedback), 556
<channel> element, 385
channel-discover PEAR command, 744
character classes, 641
character encoding, 586–588
characters

escape sequences, 2
escaping special with regular expressions,

652
“Characters vs. Bytes” (Bray, Tim), 592
check boxes, 269–270
checkdate(  ), 74, 271
chgrp(  ), 707
chmod(  ), 703, 707
chomp(  ) (Perl), 17
chop(  ), 17
chown(  ), 707
chr(  ), 735
Cipher Block Chaining (CBC), 556
Cipher Feedback (CFB), 556
circles, drawing, 520–521
class keyword, 176, 222

abstract base classes and, 191
interfaces, defining and, 190

classes, 175–225
abstract base, 191–193
access control, implementing, 182–185

accessing overridden methods, 205
aggregating objects, 201–205
autoloading class files, 220–222
cloning objects, 194–196
constants, defining, 208–210
constructors, 177, 180
destructors, 181
exceptions, creating, 596–599
instances, 218–220
instantiating an object dynamically, 222
interfaces, specifying, 189–191
introspecting object, 214–218
method polymorphism, using, 206–208
methods, returning, 201
preventing changes to, 185
property accesses, overriding, 196–200
references, 193
serialization, controlling, 212–214
static properties and methods, defining,

210–212
XML schema datatypes, mapping to, 454

class_exists(  ), 223
class_implements(  ), 190
clean(  ) (Cache_Lite), 322
CLI (command-line interface), 725
clone keyword, 194–196
cloning objects, 194–196
Coe, Katy, 470
comma-separated values (CSV), 17

downloading, 31
parsing, 19

command line, 725–737
arguments, parsing, 727
escaping shell metacharacters, 685
getopt, passing arguments with, 728–731
keyboards, reading from, 731
passwords, reading from, 735–737
running code on every line of an input file,

733–734
command-line interface (CLI), 725
compact(  ), 456
complex SOAP types, 444
compress.bzip2, 698
compress.zlib, 698
compressed files, 698
concatenation operator (see ., under Symbols)
config-show command, 745
configuration files, 678–681
configuration variables, 600–602

Index | 761

setting, 602
connect(  ), 186
Console_Getopt class, 728
const keyword, 208
constants, 208
constructors, 177, 180

accessing overridden methods and, 206
content encoding, 380
Content-Type header, 32, 353, 535

character encoding, setting with, 586
ImagePNG(  ), sending images, 517

context_get Xdebug command, 614
“cookie jar” feature (cURL), 401
cookies, 337

authenticating, 242–244
debugging web pages, 613
deleting, 231
detecting SSL, 564
reading values, 230
setting, 228–230
URL, fetching with, 401

Coordinated Universal Time (UTC), 57, 81
offsets, 83

copy(  ), 710
cos(  ), 49
Costales, Bryan, 490
COUNT database function, 307
count(  ), 106, 109

functions that take a variable number of
arguments, 161

CREATE SQL command, 464
createElement(  ), 386
create_function(  ), 172, 656
credit cards, validating from input and, 271
cross-site request forgeries (CSRF), 544
cross-site scripting (XSS), 273, 541

avoiding cross-site scripting, 545
Cryptography: Theory and Practice (Stinson,

Douglas R.), 558
CSRF (cross-site request forgeries), 544
CSS (Cascading Style Sheets), 236
CSV (comma-separated values)

creating, 17
downloading, 31
parsing, 19

ctype_alnum(  ), 634
ctype_digit(  ), 262–264
cURL, 393, 398, 399, 439, 541

CURLOPT_COOKIE option, 401

debugging SOAP requests, 444
finding stale links, 429
FTP, getting and putting files, 503
put, using with, 405
response headers, getting, 411
REST methods, executing, 439
sending headers, 403
timeouts, fetching URLs, 406

curly braces ({ })
dynamic variable names and, 143
interpolating strings and, 15

curl_close(  ), 412, 504
curl_exec(  ), 397, 411, 429
curl_init(  ), 503
curl_setopt(  ), 503
custom error handling, using, 606
custom file type, reading and writing, 693–

697
CustomException class, 597

D
data persistence (see sessions)
data source name (DSN), 339
data sources (LDAP), 504
data stuctures, using complex SOAP types,

444
databases, 289–332

accessing connections, 322–324
CSV (comma-separated values), 17–20
DBM, 291
encrypted data, 558–561
identifiers, creating unique, 311–312
logging information/errors, 309–310
modifying data in SQL, 302
paginated links, making, 317–320
quotes, escaping, 307
random rows, selecting, 41
repeating queries efficiently, 303–306
retrieving rows without a loop, 301
rows, finding number of by a query, 306
sessions, storing, 338
SQL databases, 297–301
SQLite, 295–297
vs. LDAP, 506

date(  ), 57–61, 63–68, 286, 472, 483
finding day, week, month or year with, 72–

73
time zones and, 80
Usenet, reading messages and, 501

762 | Index

dates, 57–98
adding or subtracting from, 78
epoch timestamps and, 61–68, 61, 94
finding current, 58–61
finding day, week, month, or year, 72–73
finding the difference of two, 68–71

Julian days, 70
localizing, 575
parsing from strings, 75–78
validating, 74–75

Date_Calc class (PEAR), 94
date_default_timezone_get(  ), 80
date_default_timezone_set(  ), 62, 80, 85
daylight savings time (DST), 57, 85

time zones and, 82
DAYOFWEEK(  ) (MySQL), 73
DB2 DBM backends, 292
DB3 DBM backends, 292
dba_close(  ), 293
dba_exists(  ), 293
dba_fetch(  ), 293
dba_firstkey(  ), 293
dba_nextkey(  ), 293
dba_open(  ), 293
dba_replace(  ), 293
DBCxn::get(  ) method, 323
DBGp protocol, 615
DBM Databases, 291–295
db_connect(  ), 212
debugclient application, 612
debugging, 593–624

configuration variables
reading, 600–602

extensions, 612–618, 631–633
logging errors, 607
logging information, 610–612
SOAP requests, 443

debug_backtrace(  ), 600
debug_print_backtrace(  ), 599, 600
decbin(  ), 53
dechec(  ), 54
decimal numbers, 54
declare block, 630
decoct(  ), 53
define(  ), 610
deg2rad(  ), 50
DELETE command (REST), 464
delete HTTP verb, 464
DELETE query, 302, 464

finding number of, 306
delimiters, 642, 654

Perl m/ / pattern matching and, 643
variable-length text fields, processing, 677

destructors, 181
dgettext(  ), 586
Digest Authentication, 237–241, 535
dir(  ), 701
directories, 701–723

copying/moving files, 710
deleting files, 709
file information, getting, 705–707
file permission/ownership, changing, 707
getting a list of matching a pattern, 713
making new, 715
processing all files in, 711–713
processing all files in recursively, 714
removing, 715
splitting filenames into component parts,

708
timestamps, getting and setting, 704

DirectoryIterator, 701, 711, 713
DIRECTORY_SEPARATOR, 221
dirname(  ), 708
display(  ), 628
display_form(  ), 277
distinguished names (LDAP), 504
<div/> tag, 428
dl(  ), 612, 756
DNS and BIND (Albitz, Liu), 509
DNS lookups, 508–509
do/while loop, 367
Document Type Definitions (DTDs), 379
Dojo toolkit, 426
dojo.io.bind(  ), 428
dollar sign ($), 143

escaping, 2
DOM, 351, 368, 378

complex XML documents, 359
generating XML with, 353–356
XSLT and, 371

domain names, 511–513
DOMDocument class, 385
DOMDocument object, 353
DOMDocument::createElement(  ), 389
DOMDocument::createElementNS(  ), 389
DOMDocument::relaxNGValidate(  ), 378
DOMDocument::save(  ), 353
DOMDocument::saveXML(  ), 353

Index | 763

DOMDocument::schemaValidate(  ), 378
DOMDocument::schemaValidateSource(  ),

378
DOMDocument::__construct(  ), 386
DOMXPath, 368
DOMXPath::query(  ), 368
dot (.) (see ., under Symbols)

regular expression metacharacter, 640
double colon (::), 209

accessing methods or variables, 178
double quotes ("), 1

escaping, 2
escaping in database queries, 307

drop-down menus, 266, 286
DSN (data source name), 339
DST (daylight savings time), 57, 85

time zones and, 82
DTDs (Document Type Definitions), 379
Dumbill, Edd, 457, 486
dynamic buttons, 523
dynamic functions, 172
dynamic images, building, 530–532
dynamic variable names, 143

E
e regular expression pattern modifier, 656
eAccelerator, 624, 636
each(  ), 106, 167
ECB (Electronic Code Book), 556
echo keyword, writing to standard output,

683
Electronic Code Block (ECB), 556
elements (arrays), 103, 116

(see also arrays)
checking array if zero, 101
deleting from arrays, 107–109
finding largest/smallest, 119
testing, 118

ellipses, drawing, 520–521
email, 488–490

GPC, encrypting with, 564
MIME mail, sending, 490–492
reading with IMAP or POP3, 492–495
validating form input, 264

empty(  ), 140
encapsulation, 150
encryption, 541–566

decrypting data, 553–558
GPG, sending email and, 564–566

sharing data with other sites, 561–563
SSL, encrypting mail, 493
storing data, 558–561
storing passwords, 548–550

end-of-string identifiers, 3
entities (HTML), 235
environment variables

reading, 247
setting, 248

epoch timestamps, 58, 501
calculating dates with, 79
credit card expiration, checking, 271
finding the difference of two date and, 68
ranges, using dates outside of, 94
time and date parts, converting to, 61–63
validating HTML form input and, 271

equality (==) operator, 116, 140
equals (=), 140, 163

cloning objects, 194
object references, assigning, 193

ereg functions vs. preg functions, 640, 642–
644

ereg(  ), 590
greedy/nongreedy matching, 648

ereg_replace(  ), 590
greedy/nongreedy matching, 648

eregi(  ), 590, 643
eregi_replace(  ), 590
error element ($_FILES), 280
error handling, 593–624

configuration variables
reading, 600

custom, using, 606
debugger extensions, using, 612–618
exception classes, creating, 596–599
“headers already sent”, eliminating, 608–

610
hiding, 603
logging, 607
tuning, 604
unit tests, writing, 618

error messages, hiding, 603
errorCode(  ), 309
errorInfo(  ), 309
error_log, 598, 603, 607
error_reporting(  ), 604
escape sequences, 2
escapeshellarg(  ), 685
escapeshellcmd(  ), 685

764 | Index

Event Log, 603
event-based programming, 428
Excel, parsing CSV data, 19
exceptions, 452

creating, 596–599
Exchangeable Image File Format (see EXIF)
exec(  ), 302
execute(  ), 303

escaping quotes and, 307
EXIF (Exchangeable Image File Format), 515,

533–535
exif_read_data(  ), 533
exif_thumbnail(  ), 534
exit(  ), 232
exp(  ), 44
explode(  ), 10, 24, 166, 539, 553

date(  ), using with, 68
exponents, 44
ext/soap extension, 440, 465

arguments, passing to SOAP methods, 469
authentication with SOAP, using, 449
complex SOAP types, using, 445
debugging SOAP requests, 443
headers and, 474
SOAPServer, instantiating, 466
throwing faults, 471
WSDL, generating, 470

extends keyword, 178
Extensible Markup Language (XML) (see XML)
eXtensible Stylesheet Language

Transformations (see XSLT)
E_ALL constant, 604
E_COMPILE_ERROR constant, 605
E_COMPILE_WARNING constant, 605
E_CORE_ERROR constant, 605
E_CORE_WARNING constant, 605
E_NOTICE constant, 604

custom error handling and, 606
E_PARSE constant, 604
E_STRICT, 604
E_USER_ERROR constant, 605
E_USER_NOTICE constant, 606
E_USER_WARNING constant, 605
E_WARNING constant, 605

F
false values, 139, 168
fclose(  ), 662
fetch(  ), 299

logging debugging information/errors, 309
fetchAll(  ), 301, 306
fetch_rss(  ), 382
FFI (Foreign Function Interface) extension,

735
fflush(  ), 682
fgetcsv(  ), 19, 167
fgets(  ), 664, 732

counting lines/paragraphs/records, 671
processing every word in a file with, 674

field data records, generating, 20
file transfer protocol (see FTP)
file(  ), 158, 677
fileatime(  ), 702, 704
filectime(  ), 702, 704
filegroup(  ), 702
filehandles, 684

flushing output to files with, 682
fileinode(  ), 702
filemtime(  ), 702, 704
fileowner(  ), 702
fileperms(  ), 702
files, 661–699

compressed files, reading and writing, 698
configuration, reading, 678–681
copying/moving, 710
counting lines/paragraphs/records, 671–

674
creating/opening files, 665–666
custom types, reading and writing, 693–

697
deleting, 709
encrypted data, storing in, 558–561
filehandles, writing to, 684
flushing output to, 682
information, getting, 705–707
locking, 690–693
modifying in place, 681
passing input into programs, 686
permission values, 703, 707

converting, 706
picking random lines from, 676
processing every word in, 674
randomizing all lines in, 677
reading standard output from a program,

687
remote files, opening, 668
shell metacharacters, escaping, 685

Index | 765

standard errors, reading from a program,
689

standard input, reading from, 669
standard output, writing to, 683
strings, reading into, 669–671
temporary files, creating, 666
timestamps, 704
variable length text fields, processing, 677

filesize(  ), 702
filetype(  ), 702
file_exists(  ), 702
file_get_contents(  ), 236, 393, 438, 664, 669,

681
filtering, 541
FilterIterator subclass, 713
final keyword, 185

abstract methods and, 193
fixed-width field data records, generating, 20–

24
Flickr, 534
floating-point numbers, 37–39
floatval(  ), 263
flock(  ), 691
floor(  ), 38
flush(  ), 244
flushing output, 683
font character sizes, 528
fopen(  ), 398, 411, 661

file modes, 665–666
filehandles, creating, 726
reading CSV data, 19
reading from the keyboard, 731
remote files and, 668
standard input and, 669
temporary file, creating, 667

for loop, 105
operating on a series of integers, 39

foreach loop, 105, 118
Foreign Function Interface (FFI) extension,

735
<form/> element, 587
formatted time string, 58
forms, 257–287

cross-site scripting, preventing, 273
drop-down menus, 286
global variable injection, preventing, 282–

284
input, processing, 259
multipage, 274–275

multiple options, selecting, 285
multiple submissions, 278–279
redisplaying with preserved information and

error messages, 275–277
regular expressions, avoiding, 634
remote variables with periods in their

names, 284
spoofing, protecting against, 543
uploaded files, processing, 279–282
validating, 260–273

Fortin, Michel, 253
forward slash (/), 663
fputcsv(  ), 17, 31
fputs(  ), 687
fread(  ), 236, 664, 732
FreeType library, 523
French Republican calendar, 89
Friedl, Jeffrey E. F., 639
fsockopen(  ), 497
fstat(  ), 706
ftok(  ), 147
FTP (file transfer protocol), 487

getting and putting files, 502–504
remote files, opening, 668

FTP_ASCII parameter, 503
ftp_close(  ), 503
ftp_get(  ), 503
ftp_put(  ), 503
function keyword, 155
function(  ) inside XSL stylesheet, 374, 377
functions, 155–173

addFunction(  ) method, binding, 467
arrays, applying to each element, 128–130
default values, setting, 157
dynamic, creating, 172
encapsulation and, 184
global variables, accessing, 171
interpolating within strings, 15
parameters, accessing, 156
references

passing values by, 158
returning values by, 163–165

regular expressions, using inside of, 655–
659

returning failure, 168
skipping selected return values, 166
timing execution, 626
values, returning more than one, 165
variable functions, calling, 169–171

766 | Index

variable number or arguments, creating,
161–163

XSLT stylesheet, calling from, 374–378
functionString(  ) inside XSL stylesheet, 374,

377
func_get_arg(  ), 162
func_get_args(  ), 169
func_num_args(  ), 162, 208
“fuzz factor” calculations, 38
fwrite(  ), 661, 687

G
GCD (greatest common divisor), 51
GD library, 515

dynamic images, building, 530
font character sizes, 528

GDBM DBM backends, 292
GET command (REST), 464
get HTTP verb, 464
GET method, 232

query strings, building, 234
URLs, fetching, 394–399

getATime(  ), 712
getCTime(  ), 712
getdate(  ), 59

epoch timestamps, converting to time/date
parts, 63

getElementsByTagname(  ), 360
getenv(  ), 248
getFilename(  ), 712
getGroup(  ), 712
gethostbyaddr(  ), 508
gethostbyname(  ), 508
gethostbynamel(  ), 509
getInode(  ), 712
getMTime(  ), 712
getmxrr(  ), 509
getopt, 728–731
getOwner(  ), 712
getPath(  ), 712
getPathname(  ), 712
getPerms(  ), 712
getResponseBody(  ), 410
getResponseHeader(  ), 410
getSize(  ), 712
gettext, 585
getType(  ), 712
get_browser(  ), 233
get_cfg_var(  ), 601

get_declared_classes(  ), 224
get_declared_functions(  ), 224
get_first_name(  ), 140
get_gmtime(  ), 484
get_time(  ), 483
glob(  ), 713
global constants, 208
global keyword, 171
global variable injections, 282–284
global variables, 171
global_value, 601
gmdate(  ), 81
gmmktime(  ), 61
GMP library, 35, 51
gmp_intval(  ), 51
gmp_strval(  ), 51
gmstrftime(  ), 81
GMT (Greenwich Mean Time), 57
GNU Privacy Guard (GPG), 564
GPG (GNU Privacy Guard), 564
graphical bar charts, generating, 537–540
graphics, 515–540
greatest common divisor (GCD), 51
greedy matching, 648
Greenwich Mean Time (GMT), 57
Gregorian calendar, 89–94
gregoriantojd(  ), 70
Griffin, David, 470

H
Harold, Elliotte Rusty, 350
“hash-bang” syntax, 725
hashes, 99, 541, 625

verifying data with, 551–553
header functions (cURL), 413
header(  ), 31, 232, 352, 413, 608
headers, 237, 409

anti-caching, 425
arbitrary, 403
capturing HTML, 649
sending email, 490
SOAP, 447, 473–475

authentication, 478
generating, 475–477

“headers already sent” error, 608
Henderson, Cal, 265
heredoc format, 2

interpolating strings and, 16
hex values, 2

Index | 767

hexadecimal numbers, 54, 235
high-precision time, 87
highlighting text, 414–417
hijacking sessions, 335–337
hit counters, 523
hosts (email), 500, 509
.htaccess file, 601
HTML (HyperText Markup Language)

capturing text inside, 649
cleaning up broken/nonstandard, 417–418
Dojo toolkit, 426
escaping entities, 273
extracting links from, 418–420
generating tables with alternating row styles,

236
heredoc format and, 3
marking up web pages and, 414
MIME mail, sending and, 490
plain text, converting, 420
removing tags, 422

HTML Tidy library, 417
html2text class, 422
htmlentities(  ), 129, 235, 273, 420, 545, 591
htmlspecialchars(  ), 273, 353, 501, 591
HTML_Ajax, 428
HTTP, 257, 487

authentication, 237–241, 449
REST methods and, 439, 459
romote files, opening, 668
SOAP

authentication, 477–482
headers and, 473

SSL, detecting, 564
verbs, 464

HTTP Basic Authentication, 477–482, 506,
535

HTTP exchanges, debugging, 409
http stream, 399, 404

timeouts, fetching URLs, 406
httpd.conf file, 248, 250, 547
HTTPDigest class, 240
HTTPS URLs, fetching, 408
http_build_query(  ), 234, 395
HTTP_Client, 402
HTTP_Request, 400, 409

put, using with, 405
request headers, getting, 410
sending headers, 403
timeouts, fetching URLs, 407

HTTP_Request class, 393
HTTP_Session package, 338

I
iconv library, 380, 590
iconv_strlen(  ), 590
iconv_strpos(  ), 590
iconv_strrpos(  ), 590
iconv_substr(  ), 590
IDE (integrated development environment),

600
identity (===) operator, 116, 141
image MIME type, 495
ImageArc(  ), 520
ImageColorAllocate(  ), 517
ImageColorsForIndex(  ), 532
ImageColorTransparent(  ), 532
ImageCreate(  ), 516
ImageCreateFrom(  ), 208
ImageCreateFromPNG(  ), 517
ImageCrop(  ), 539
ImageDestroy(  ), 518, 540
ImageEllipse(  ), 521
ImageFilledArc(  ), 521
ImageFilledEllipse(  ), 521
ImageFilledPolygon(  ), 518
ImageFilledRectangle(  ), 517, 518, 539
ImageFillToBorder(  ), 520
ImageFtBBox(  ), 529
ImageLine(  ), 518
ImagePNG(  ), 518
ImagePolygon(  ), 518
ImagePSBBox(  ), 527
ImagePSLoadFont(  ), 523
ImagePSText(  ), 523, 527
ImageRectangle(  ), 518
images

localizing, 580
serving securely, 535

ImageSetStyle(  ), 521
ImageString(  ), 523
ImageStringUp(  ), 523
ImageSX(  ), 527
ImageSY(  ), 527
ImageTTFText(  ), 523
imagetypes(  ), 516
image_type_to_mime_type(  ), 534
IMAP, 492–495, 497
imap_body(  ), 494

768 | Index

imap_close(  ), 501
imap_fetchbody(  ), 494, 501
imap_fetchstructure(  ), 494
imap_header(  ), 499, 501
imap_headers(  ), 493
imap_mail_compose(  ), 495
imap_num_msg(  ), 499
imap_open(  ), 493, 498
 source tag, 534, 535
img(  ), 581, 582
implode(  ), 10, 313

verifying data with hashes, 552
importStylesheet(  ), 371
include keyword, 217

class files upon object instantiation,
autoloading, 220–222

included files, 582
include_path, 666
indexes, 99

zero, not beginning with, 101
indexing, 4
inheritance, 176
initialization vector (IV), 561
ini_get(  ), 745

configuration variables, reading, 600
ini_get_all(  ), 601
ini_restore(  ), 602
ini_set(  ), 334

error messages, hiding from users, 603
setting configuration varables, 602

inject_session_token(  ), 337
inodes, 701
input boxes (forms), 262
<input/> element, 276
INSERT query, 291, 302

building queries programmatically, 313
rows, finding number of, 306

install PEAR command, 744
instanceof operator, 218
instances of objects, 179
instantiation, 176
integrated development environment (IDE),

600
interface keyword, 190
interfaces, 189–191
internationalization, 567–592
Internet services, 487
interpolation, 2

functions and expressions within strings,
15

interpreter (PHP), debugging programs, 594
interpreters, 594
intersections (arrays), 130–132
introspecting object, 214–218
intval(  ), 263
in_array(  ), 116, 117, 128, 266
ionCube PHP Accelerator (PHPA), 636
IP addresses, 508
isDir(  ), 712
isDot(  ), 712
isExecutable(  ), 712
isFile(  ), 712
isLink(  ), 712
isReadable(  ), 712
isset(  ), 115, 139

default values, establishing, 141
named function parameters, using, 160
property accesses, overriding, 197
required fields and, 261

isWritable(  ), 712
is_a(  ), 219
is_array(  ), 106, 206, 261
is_bool(  ), 206
is_dir(  ), 702
is_double(  ), 37
is_executable(  ), 702
is_file(  ), 702
is_float(  ), 37
is_int(  ), 37
is_integer(  ), 37
is_link(  ), 703
is_long(  ), 37
is_numeric(  ), 36, 206, 262
is_readable(  ), 703
is_real(  ), 37
is_soap_fault(  ), 452
is_string(  ), 206
is_uploaded_file(  ), 281
is_valid_credit_card(  ), 272
is_valid_email_address(  ), 265
is_writable(  ), 703
iteration (arrays), 105–107
IV (initialization vector), 561

J
James, Paul, 240
JavaScript, 232, 278, 423, 426–429, 623

Index | 769

Jewish calendar, 89
Johnston, Joe, 457, 486
join(  ), 113, 158
JSON responses, 424
json_decode(  ), 425
json_encode(  ), 425
Julian calendar, 89
Julian days, finding the difference for two dates,

70

K
Kcachegrind, 632

Xdebug, using with, 612
keyboards, reading from, 731
keys, 103

checking if in array, 115
validating drop-down menus with

array_key_exists(), 266
Kingma, David, 470
Korpela, Jukka, 592
Kulchenko, Pavel, 438

L
lastInsertId(  ), 312
.lck files, 294
LC_ALL settings, 568
LC_COLLATE settings, 567
LC_CTYPE setting, 567
LC_MESSAGES settings, 568
LC_MONETARY settings, 567
LC_NUMERIC settings, 567
LC_TIME settings, 568
LDAP (Lightweight Directory Access Protocol),

504–505
user authentication and, 506–508

ldap_bind(  ), 505
ldap_get_entries(  ), 505
ldap_list(  ), 505
ldap_search(  ), 505
Learning PHP 5 (Sklar, David), 639
Learning XML (Ray, Eric), 350
libxml2, 358, 379, 438
Lightweight Directory Access Protocol (see

LDAP)
LIKE operator, 308
line delimiters, 662
line feeds, 662
linefeed endings, converting, 644

lines, drawing, 518
links, extracting, 418
Linsley, Peter, 592
Linux, 437
list command (PEAR), 743, 744
list(  ), 105, 142, 166

function return values, skipping selected,
166

list-channels PEAR command, 744
list-upgrades PEAR command, 744
Liu, Cricket, 509
load testing, 625–637
locale program, 569
localeconv(  ), 45, 579
locales, 567

default, setting, 570
listing available locals, 569
using a particular, 569

localization, 567–592
character encoding, 586–588
currency values and, 576–580
dates and times, 575
images, 580–582
included files, 582
managing resources, 583
text messages and, 571–575
UTF-8 text, manipulating, 588–592

localtime(  ), 59–61
time zones and, 80

Location header, 335
locking files, 690
log tables, caching results in, 346
log(  ), 43
log10(  ), 44
logarithms, 43
logf(  ), 170
logging error, 607
logical AND, 604
log_errors, 603
loops, 40
ls command, 717
ltrim(  ), 16
Luhn algorithm, 272

M
“magic” constants, 608
magic quotes, 290

checking for, 308
magic_quotes_gpc configuration settings, 150

770 | Index

MagpieRSS parser, 381
mail (see email)
Mail class (PEAR), 488
mail(  ), 488, 489, 590
mail.server.com, 493
Mail::factory(  ), 488
Mail_mime class (PEAR), 490, 491
Mail_mime::addAttachment(  ), 492
Mail_mime::send(  ), 492
Mail_mime::setHTMLBody(  ), 491
Mail_mime::setTXTBody(  ), 491
mangle_email(  ), 246, 377
Mastering Regular Expressions (Friedl, Jeffrey

E. F.), 639
max(  ), 119
maximal matching, 648
mbstring extension, 588
mb_ereg(  ), 590
mb_ereg_replace(  ), 590
mb_eregi(  ), 590
mb_eregi_replace(  ), 590
mb_send_mail(  ), 590
mb_split(  ), 590
mb_strlen(  ), 588, 590
mb_strpos(  ), 590
mb_strrpos(  ), 590
mb_strtolower(  ), 590
mb_strtoupper(  ), 590
mb_substr(  ), 590
mb_substr_count(  ), 590
mcrypt, 542, 553–558
mcrypt_create_iv(  ), 557
mcrypt_decrypt(  ), 554
mcrypt_encrypt(  ), 554
mcrypt_get_block_size(  ), 557
mcrypt_get_iv_size(  ), 557, 561
mcrypt_list_modes(  ), 554
mcypt_list_algorithms(  ), 554
md5(  ), 278, 311, 541

hashing, 625
lost passwords and, 550
storing passwords, 548
verifying data with hashes, 552

mean(  ), 163
Means, W. Scott, 350
menus (drop-down), 266, 286
Mersenne Twister (MT), 41
Mersenne, Marin, 41
message catalogs, localizing text, 572

message MIME type, 495
metacharacters, 640, 685
methods, 175, 201

abstract, 192
accessing overridden, 205
arbitrary, 404
polymorphism, using, 206–208
preventing changes to, 185
REST

calling, 438
serving, 459–465

SOAP
with WSDL, calling, 439
without WSDL, calling, 441

SOAP, accepting arguments in, 468–470
SOAP, serving, 465–468
sorting arrays with, 126
static, defining, 210–212
WSDL, generating automatically, 470
XML-RPC, 482

method_exists(  ), 204
mhash, 541
Microsoft (Windows), 437

binary files, reading, 666
directories in pathnames, 663
FFI extension, reading passowords, 735
handling line delimiters, 662
SMTP variables and, 489
strftime(  ) and date(  ) format characters for,

64
XAMPP using, 624

microtime(  ), 87, 627
MIME mail, 490–492

IMAP types, 494
min(  ), 119
minimal matching, 648
mkdir(  ), 715

locking files, 692
mktime(  ), 57, 61, 286

dates, calculating with, 69
time zones and, 82

monetary values, formatting, 46–48
money_format(  ), 46, 576–580
moveToAttribute method, 365
msg(  ), 572–575
msvcrt.dll, 735
MT (Mersenne Twister), 41
mt_getrandmax(  ), 41
mt_rand(  ), 41

Index | 771

mt_srand(  ), 41
multidimensional arrays, sorting, 125
multipage forms, 274–275
multipart MIME type, 495
MySQL

parsing dates and, 77
test environments, setting up, 624

“The Mythical Man-Month” (Brooks, Fred),
610

M_PI constant, 210

N
Naberezny, Mike, 693
name attribute (HTML checkboxes), 270
name element ($_FILES), 280
named placeholders, 304
namespaces, 445

XML, debugging SOAP requests, 444
natcasersort(  ), 122
natrsort(  ), 122
natural log (base e), 43
NDBM DBM backends, 292
Network News Transport Protocol (see NNTP)
Net_Ping package (PEAR), 509
Net_Ping::checkhost(  ), 510
Net_Ping::ping(  ), 510
Net_Whois class, 511
Net_Whois::query(  ), 511
new keyword, 176, 179
newlines, 662

paragraphs, counting and, 672
stripping, 654
trimming, 16
wrapping lines and, 27
\n escape sequence, 2

newsgroups (Usenet), posting messages, 495
next(  ) (XMLReader), 363
Niederst, Jennifer (Web Design in a Nutshell),

55
nl2br(  ), 501
NNTP (Network News Transport Protocol),

493, 497
nodeType attribute, 363
non-Gregorian calendar, 89–94
nongreedy matching, 648
nonidentity (!==) operator, 118
note tables, 250
nsl namespace, 445
nsupdate command, 687

null, 16
null (variables), 139
null values

SOAP methods, calling, 441
numbers, 35–56

bases, 53–55
checking variables for, 36
exponents, calculating, 44
floating-point, 37–39
formatting, 45
large or small, handling, 51
logarithms, 43
monetary values, formatting, 46
operating on a series of, 39
plurals, printing correct, 48
random, generating, 40–43
SOAP methods, passing to, 469
trigonometry, calculating, 49–50
validating form input, 262–264

number_format(  ), 45, 578
numerical arrays, 99
NuSOAP, 440

O
object-oriented programming (OOP), 175
objects, 175–225

abstract base classes, 191–193
access control, implementing, 182–185
accessing overridden methods, 205
aggregating, 201–205
arrays, 132–135
autoloading class files, 220
class constants, defining, 208
cloning, 194–196
constructors, 177, 180
destructors, 181
instances, 218–220
instantiating, 179, 222
interfaces, specifying, 189–191
introspecting, 214
method polymorphism, using, 206–208
methods, returning, 201
preventing changes to, 185
property accesses, overriding, 196–200
references, 193
serialization, 212–214
SOAP methods, passing to, 469
sorting arrays and, 126

772 | Index

static properties and methods, defining,
210–212

storing multiple elements in an array and,
103

stringification, 186–188
ob_end_flush(  ), 245
ob_get_contents(  ), 18
ob_start(  ), 245
octal values, 2
octdec(  ), 53
ODBC standard, 289
OFB (Output Feedback), 556
offsetExists(  ), 133
offsetGet(  ), 134
offsetSet(  ), 134
offsetUnset(  ), 134
-oi flag (sendmail), 489
one-way encryption, 541
onsubmit handler, 278
OOP (object-oriented programming), 175
opendir(  ), 701
OpenSSL, 408
optimization, 625–637
<option/> element, 266
Output Feedback (OFB), 556
output_add_rewrite_var(  ), 336

P
pack(  ), 20

binary data and, 28–31
paragraphs, counting, 671
parent method, 205
parent::__construct(  ), 386
parentheses ((  )), 651
parse errors, 594–596
parse_ini_file(  ), 679
“Parsing Email Addresses in PHP” (Henderson,

Cal), 266
parsing XML documents, 356–367
passwords, 238, 547–551

command line, reading from, 735–737
lost, dealing with, 550
storing, 548

pathinfo(  ), 208, 708
pattern delimiters, 643
pattern separators, 654
patterned lines, drawing, 521
pclose(  ), 687
pc_array_range(  ), 104

pc_array_to_comma_string(  ), 114
pc_assign_defaults(  ), 160
pc_authenticate_user(  ), 480, 481
pc_build_query(  ), 314
pc_calendar(  ), 95
pc_checkbirthdate(  ), 74
pc_check_the_count(  ), 144
pc_date_sort(  ), 123
pc_debug(  ), 610
pc_error_handler(  ), 607
pc_fixed_width_substr(  ), 22
pc_fixed_width_unpack(  ), 23
pc_format_currency(  ), 577
pc_grid_horizontal(  ), 135
pc_Image class, 207
pc_ImagePSCenter(  ), 526, 531
pc_ImageStringCenter(  ), 525
pc_ImageTTFCenter(  ), 526
pc_indexed_links(  ), 318
pc_link_extractor(  ), 419
pc_may_pluralize(  ), 48
pc_MC_Base class, 575
pc_mktme(  ), 82
pc_multi_fwrite(  ), 685
pc_print_link(  ), 318
pc_randomint(  ), 676
pc_rand_weighted(  ), 42
pc_Shm class, 345
pc_Shm_Session class, 340
pc_SOAP_return_time, 466, 477, 480
pc_sphere_distance(  ), 55
pc_split_paragraphs(  ), 672
pc_split_paragraphs_largefile(  ), 673
pc_strftime(  ), 82
pc_tab_expand(  ), 11
pc_tab_unexpand(  ), 12
pc_text2html(  ), 420
pc_validate(  ), 238, 242
pc_validate2(  ), 241
PDO database access layer, 289, 297
PDO::errorCode(  ), 309
PDO::exec(  ), 302
PDO::FETCH_ASSOC constants, 299
PDO::FETCH_BOTH constants, 299
PDO::FETCH_LAZY constants, 299
PDO::FETCH_NUM constants, 299
PDO::FETCH_OBJ constants, 299
PDO::PARAM_BOOL constant, 305
PDO::PARAM_INT constant, 305

Index | 773

PDO::PARAM_LOB, 305
PDO::PARAM_NULL constant, 305
PDO::PARAM_STR constant, 305
PDO::prepare(  ), 302, 303, 306, 346
PDO::query(  ), 298
PDO::quote(  ), 307
PDOStatement::errorCode(  ), 309
PDOStatement::execute(  ), 302, 306, 346
PDOStatement::rowCount(  ), 306
pdo_sqlite extension, 296
PEAR, 289, 394, 428, 741–756

Auth class, 506
Benchmark, 627
Cache_Lite package, caching queries and,

320
Console_Getopt class, 728
HTTP_Session package, 338
information about packages, 748–749
installer, 743–746
installing packages, 750–752
Log package, 611
Mail class, 488
Mail_mime class, 490, 491
Net_Whois class, 511
packages, finding, 746–748
PEAR::DB, 546
PEAR::SOAP, 440
.phpt execution tools, 619
PHP_Compat package, 600
REST methods, executing, 439
Services_JSON, 424
uninstalling packages, 753
upgrading packages, 752
XAMPP project and, 624

PEAR Log, 611
PEAR::DB, 546
PEAR::SOAP, 440
PECL, 362, 741–756

big_int library, 52
FFI extension, 736
installing, 754–756
json extension, 424

pecl install procedure, 612
percent sign (%)

format operators and, 67
remainder operator, as a, 237

performance tuning, 625–637
accelerator, using, 636
debugger extensions, 631–633

function execution, timing, 626
program execution, timing, 627–630
web sites, stress testing, 633

Perl, 1, 639
chop(  ) vs. PHP chop(  ), 17
ereg vs. preg, 643
preg_split(  ), 24

PGP (Pretty Good Privacy), 565
PHP

web sites for reference materials, xx
PHP Accelerator (PHPA), 636
PHP CLI, 622
PHP Extension Community Library (see PECL)
PHP interpreter, 594
PHP Markdown, 253
PHP Security (Shiflett, Chris), 542
PHP-QA, 618
php.announce, 381
php.ini file, 233, 246, 282

configuration variables, reading, 601
error messages, hiding from users, 603
fopen(  ), binary files, reading, 666
logging debugging information, 610
mail(  ), using, 489
parse_ini_file(  ) and, 679
PEAR, configuring, 745
PECL, installing, 755
session tracking and, 334
Xdebug extension and, 612

php.ini-dist, 248
php.ini-recommended configuration file, 248,

257
error handling, tuning, 604

php://input, 236
php://output, 18
php://stderr, writing to standard output, 684
php://stdin, 731
php://stdout, writing to standard output, 684
php:function(  ), 375
PHPA (PHP Accelerator), 636
PHPEdit IDE, 600
phpinfo(  ), 170, 408, 516

exposing passwords and, 547
phpMyAdmin, 624
.phpt testing system (PHP-QA), 618
PHPUnit, 618
PHP_AUTH_PW, 237
PHP_AUTH_USER, 237
PHP_Compat package (PEAR), 600

774 | Index

PHP_INI_ALL, 601
PHP_INI_PERDIR, 601
PHP_INI_SYSTEM, 601
PHP_INI_USER, 601
ping program, 510
pipe (see |, under Symbols)
placeholders (database queries), 303, 307

generating programmatically, 314
quoting, 308

plurals, printing correct, 48
plus sign (+), 640

GET query strings, 235
merging arrays, 112

poll results, generating, 537–540
polygons, drawing, 518
polymorphism, 206–208
POP3, 492–495
popen(  ), 687, 688

standard error, reading from a program,
689

Portable Operating System Interface (POSIX),
24

POSIX (Portable Operating System Interface),
24

POSIX functions, 639
POST command (REST), 464
post HTTP verb, 462
post method, 232

cookie authentication and, 242
reading requests, 235
URLs, fetching with, 399

PostScript Type 1 fonts, 515, 524, 527
pprof2calltree conversion tool, 632
pprofp shell application, 632
<pre> tag, 27
preg functions vs. ereg functions, 640, 642–

644
preg_grep(  )

lines in files, finding, 648
preg_match(  ), 77, 640

avoiding, 634
preg_match_all(  ), 640, 645
preg_quote(  ), 653
preg_replace(  ), 416, 421, 640
preg_replace_callback(  ), 11, 655
preg_split(  ), 24–27

dates, parsing with, 77
PREG_SPLIT_DELIM_CAPTURE flag, 26
prepare(  ), 303, 304

escaping quotes and, 307
Pretty Good Privacy (PGP), 565
print(  ), writing to standard output, 683
printf(  ), 53, 55

money_format(  ), using instead of, 47
print_r(  ), 25, 151–154, 547
private property, 177, 182

abstract methods and, 193
program execution, timing, 627–630
Programming Web Services with SOAP (Snell,

Tidwell, Kulchenko), 438
Programming Web Services with XML-RPC (St.

Laurent, Johnson, Dumbill), 486
Programming Web Services with XML-RPC

(St.Laurent, Johnston, Dumbill),
457

properties (classes), 175, 210–212
property accesses, 196–200
property_value Xdebug command, 614
protected property, 177, 182
pseudonamespaces, 222
pspell_suggest(  ), 591
public property, 176, 182
PUT command (REST), 464
put HTTP verb, 462
putenv(  ), 248

using different time zones and, 82

Q
qmail, 488
queries (database), 298–301

building programmatically, 313–317
caching, 320
repeating, 303–306
rows, finding the number of, 306

query strings, 234
query(  ) (XPath), 368
question mark (?), 640, 647

U pattern-modifier and, 648
quotemeta(  ), 653

R
-R command-line flag, 733
rad2deg(  ), 50
radio buttons, 268
rand(  ), 41
random numbers, 40–43
randomization

Index | 775

all lines in a file, 677
biased numbers, generating, 42
encrypting data and, 557
numbers within a range, generating, 40
picking lines from a file, 676

range(  ), 40, 104
ranges (time), 88–89
Ray, Erik, 350
read(  ) (XMLReader), 363
readdir(  ), 701
readfile(  ), 670
readline(  ), 731
readline_add_history(  ), 732
record-counting functions, 673
rectangles, drawing, 518
RecursiveDirectoryIterator, 714
RecursiveIteratorIterator, 714
redirection, sending users to new URLs, 231–

233
references, 158

dynamic variable names, creating, 143
object, 193
returning values by, 163–165

reflection classes, 190
Reflection::export(  ), 214–218
ReflectionClass class, 216
registerNamespace(  ), 419
registerPHPFunctions(  ), 375
register_globals configuration directive, 258,

282, 284
regular expressions, 415, 639–659

avoiding, 634–636
dates, parsing with, 77
email addresses, validating forms with, 265
finding the Nth occurrence of, 645
functions, using inside, 655
greedy/nongreedy matches, 646–648
HTML tags, capturing text inside, 649
lines in files, finding, 648
matching words, 644
numbers, validating with, 264
paragraphs, counting with, 673
parentheses, preventing from capturing text,

651
pattern separators and, 654
preg_split(  ), 24
special characters, escaping, 652
UTF-8 text, 590

RelaxNG

REST requests and, 462
schema, 379

relaxNGValidate(  ) method, 379
relaxNGValidateSource(  ) method, 379
remote files, opening, 668
remote variables, 284
remote-list command (PEAR), 747
rename(  ), 710
request headers, 409
reset(  ), 106
REST, 437

methods
calling, 438
executing, 439
serving, 459–465

return_time(  ), 466, 474, 483
Richards, Rob, 449
root elements, 350
round(  ), 38
rowCount(  ), 307
rows (databases), 301, 306
rsort(  ), 122
RSS (RDF Site Summary), 381–383

writing, 384–387
<rss> element, 385
rtrim(  ), 16, 23, 663, 678
run Xdebug command, 613

S
SAX (Simple API for XML), 362
schema (XML), 379
schema data types (XML), 454
schemaValidate(  ) method, 379
schemaValidateSource(  ) method, 379
Schlossnagle, George, 470
Schneier, Bruce, 558
search PEAR command, 744
search(  ), 428
security, 541–566

lost passwords and, 550
passwords, keeping out of site files, 547
SQL injection, eliminating, 546
storing passwords, 548–550
verifying data with hashes, 551–553

seeds, generating random numbers, 41
<select/> element, 266
SELECT query, 307, 464
Selenium, 623
semaphores, 148, 185

776 | Index

semicolon (;), using heredoc formats, 4
sem_acquire(  ), 149
sem_get(  ), 148
sendmail, 488
sendmail (Costales, Allman), 490
sendmail Desktop Reference (Costales,

Allman), 490
serialize(  ), 150, 212, 215
servers

posting messages to Usenet newgroups,
496

reading mail with IMAP/POP3, 493
SMTP, 488
SOAP, 480

Services_JSON, 424
session fixation, 541
sessions, 333–347

arbitrary data, storing in, 344
databases, storing in, 338
fixation, preventing, 337, 542
hijacking, 335–337
shared memory, storing, 340
summary tables, caching calculated results

in, 346
tracking, 334

sessions module, 334
session_regenerate_id(  ), 542
session_save_path(  ), 334
session_set_save_handler(  ), 338, 342
session_start(  ), 334
setAttribute(  ), 355
setClass(  ), 466
setcookie(  ), 228, 230, 564, 608

deleting cookies, 231
setlocale(  ), 569

default locales, setting with, 571
setMarker(  ), 628
setParameter(  ) method, 373
settype(  ), 106
set_breakpoint Xdebug command, 614
set_error_handler(  ), 310, 598

custom error handlers, using, 606
set_exception_handler(  ), 310
set_timezone(  ), 473
shared memory, 146

arbitrary data, storing in, 344
session, storing in, 340–344

shell metacharacters, escaping, 685
Shiflett, Chris, 542

shmop shared memory, 146
shmop_create(  ), 147
shmop_open(  ), 147
shmop_read(  ), 148
shmop_write(  ), 148
shm_attach(  ), 149
shm_get_var(  ), 149
showResults(  ), 428
shuffle(  ), 127

randomizing lines, 677
Simple API for XML (SAX), 362
simple differences, 131
SimpleTest, 618, 620

WebTestCase class, 622
SimpleXML, 356–358, 367

REST methods, executing, 439
sin(  ), 49
single quotes ('), 1

escaping in database queries, 307
size element ($_FILES), 280
Sklar, David, 639
SMTP server, 489
Snell, James, 438
SOAP, 437, 742

arguments, accepting, 468–470
authentication, using, 448, 477–482
catching faults, 451–454
complex types, 444
debugging, 443
headers, 447, 473–475

generating, 475–477
methods, serving, 465–468
setting, 445–447
throwing faults, 470–473
with WSDL, calling methods, 439–443
without WSDL, calling methods, 441
WSDL, generating automatically, 470

SOAPClient class, 440, 442, 454
redefining endpoints, 450
SOAP authentication and, 480

SOAPFault class, 452
throwing, 471

SOAPHeader class, 447, 474
SOAPServer class

instantiating, 466
serving methods, 465

SOAPServer::addFunction(  ), 467
SOAPServer::fault(  ), 471
SOAPServer::setClass(  ), 466

Index | 777

SOAPVar class, 475
SOAP_ENC_OBJECT, 446
SOAP_FUNCTIONS_ALL, 467
Solaris, 437
sort(  ), 121

multiple arrays, sorting with, 125
space-padding strings, 20
spaces, converting to tabs, 11

(see also whitespace)
 element, 415
special characters, escaping, 652
split(  ), 24–27, 590
spliti(  ), 25
spoofing (forms), 543
spreadsheets, generating/parsing CSV data, 17–

20
sprintf(  ), 170, 539, 572–575

money_format(  ) and, 577
SQL databases, 289, 302

commands, 464
connecting to, 297–301
querying, 298–301

SQL injection, 546
vulnerablities, 541

SQLite, 290, 295–297
sqlite_master table, 296
square brackets ([]), 4

character classes, matching with, 641
configuration files, parsing, 679
form elements with multiple options and,

285
HTML checkbox values and, 270

srand(  ), 557
SSL, 563, 564

detecting, 564
encrypting mail with IMAP/POP3, 493

St. Laurent, Simon, 457, 486
stack traces, printing, 599
standard errors, reading, 689
standard output, 683, 687
stat(  ), 705
statefulness, 333
stateless protocols, 257
static class method, creating a database

connection, 322
static keyword, 211
static properties, 210–212
static variables, 144
stdin, 732

step_into Xdebug command, 613
step_out Xdebug command, 614
step_over Xdebug command, 614
Stinson, Douglas R., 558
stop Xdebug command, 614
strace(1), 689
stream context, 396
streams, 395
stream_filter_append(  ), 423
stream_get_line(  ), 673
stream_get_meta_data(  ), 411
stream_set_timeout(  ), 407
strfmon(  ), 48, 578
strftime(  ), 58, 63–68

finding day, week, month or year with, 72–
73

localizing dates and times, 575
money_format(  ) and, 577
time ranges, generating, 88
time zones and, 80

strings, 1–33
binary data, storing, 28–31
breaking into pieces, 24–27
bytes, processing, 8
case, controlling, 13
CSV data, 17–20, 31
dates and times, parsing, 75–78, 76
dumping variable contents as, 151–154
encapsulating complex data types as, 150
fixed-width field data, 20–24
interpolating functions and expressions, 15
reading a file into, 669–671
reversing, 10
SOAP methods, passing to, 469
substrings

accessing, 4
extracting, 5
replacing, 7

tabs, expanding/compressing, 11
time, formatting into, 58
turning an array into, 113
whitespace, removing, 16
wrapping text and, 27
XML, generating, 352

stripslashes(  ), 151
strip_tags(  ), 422, 648
strlen(  ), 260, 590
strnatcmp(  ), 123
strpos(  ), 4, 168, 590

778 | Index

strrev(  ), 10
strrpos(  ), 590
strstr(  ), 8

escaping quotes in database queries, 308
strtolower(  ), 13, 143, 590
strtotime(  ), 76, 78
strtoupper(  ), 13, 590
str_ireplace(  ), 415
str_replace(  ), 11, 415
str_split(  ), 24
stylesheets (XSLT), 373

PHP functions, calling, 374–378
substr(  ), 5, 590

dates, parsing with, 77
fixed-width field data records and, 20

substrings
accessing, 4
extracting, 5
replacing, 7

substr_count(  ), 590
substr_replace(  ), 7
summary tables, caching results in, 346
switch statement, 207
switch(  ), 367
symlink(  ), 702
syntactic validation of credit cards, 272
syslog(3), 603
System V shared memory, 146

T
-t flag (sendmail), 489
tab (\t), 2
tables (HTML), generating with alternating row

styles, 236
tables (SQL), 290
tabs, expanding and compressing, 11–13
tags (XML), 352
tan(  ), 49
Telnet, 409
tempnam(  ), 667, 708
temporary files, 666

modifying a file without, 681
temporary variables, exchanging values of,

142
testing, 593–624
text

centered, 525–530
drawing, 523–525
localizing messages, 571–575

sending MIME mail and, 490
variable-length fields, processing, 677

text MIME type, 494
text/xml, 353
textdomain(  ), 586
Tidwell, Doug, 374, 438
Tidy (HTML) library, 417
tidy_repair_file(  ), 417
tidy_repair_string(  ), 418
time zones, 76

calculating with, 79–85
time(  ), 79, 704

time ranges, generating, 88
timeouts, fetching URLs with, 406–408
times, 57–98

epoch timestamps and, 61–68
finding current, 58–61
finding day, week, month or year, 72–73
high-precision, 87
localizing, 575
parsing from strings, 75–78
ranges, generating, 88–89
time zones, calculating, 79–85

timestamps (see epoch timestamps)
time_parts(  ), 166
/tmp directory, 279, 333
tmpfile(  ), 666
tmp_name element ($_FILES), 280
tokens, debugging with the PHP interpreter,

594
touch(  ), locking files, 693
trace options, creating SOAPClients, 443
tracking sessions, 334
track_vars configuration directive, 258
transformToDoc(  ), 372
transformToURI(  ), 372
transformToXML(  ), 372
transparent colors, 532
tree-based parsing, 359
trigonometric functions, 49–50
trim(  ), 16, 609
true values, 139
TrueType fonts, 515, 523, 528
try/catch blocks, 452, 598
type element ($_FILES), 280
type hints, 218
TZ (timezone) environment variable, 80
T_ISSET token, 594

Index | 779

U
U.S. Naval Observatory, 80
uasort(  ), 124
ucfirst(  ), 13
ucwords(  ), 13
umask, 703
umask(  ), 703
underscore (_), 221
unescaped metacharacters, 685
uninstall PEAR command, 744
unions (arrays), 130–132
uniqid(  ), 278, 311
unit tests, 618–620

suite, writing, 620–622
web pages, applying, 622–623

Unix
binary files, reading, 666
directories in pathnames, 663
handling line delimiters, 662
shell, 1
syslog(3), 603
timestamps (see epoch timestamps)

Unix epoch timestamps (see epoch timestamps)
unlink(  ), deleting files, 710
unpack(  ), 21–24

binary data and, 28–31
unserialize(  ), 150, 212
unset(  ), 107, 134, 139, 172, 181

property accesses, overriding, 197
UPDATE query, 291, 302, 464

building queries programmatically, 313
finding number of, 306

upgrade PEAR command, 744
uploaded files, 279
UPLOAD_ERR_CANT_WRITE element

($HTTP_POST_FILES), 281
UPLOAD_ERR_FORM_SIZE element

($HTTP_POST_FILES), 281
UPLOAD_ERR_INI_SIZE element

($HTTP_POST_FILES), 281
UPLOAD_ERR_NO_FILE element

($HTTP_POST_FILES), 281
UPLOAD_ERR_NO_TMP_DIR element

($HTTP_POST_FILES), 281
UPLOAD_ERR_OK element

($HTTP_POST_FILES), 280
UPLOAD_ERR_PARTIAL element

($HTTP_POST_FILES), 281
upload_max_filesize, 282

upload_tmp_dir configuration directive, 281
urlencode(  ), 150
URLs, fetching, 394–408
Usenet

posting messages, 495–502
reading messages, 497

Userland Software, 455, 482
usernames, 238
usort(  ), 122, 173
UTC (Coordinated Universal Time), 57, 81

offsets, 83
UTF-8, 588–592
utf8_decode(  ), 591
utf8_encode(  ), 591
utils.php, 455, 458

V
validate(  ) method, 379
validate_form(  ), 277
validating forms

checkboxes, 269–270
credit cards, 271
dates and times, 270
drop-down menus, 266
email addresses and, 264
numbers, 262–264
radio buttons, 268
required fields, 260

var property, 177
variable-length text fields, processing, 677
variables, 139–154

== vs. =, 140
checking for numbers, 36
default values, establishing, 141
dumping contents as strings, 151–154
dynamic variable names, 143
empty, checking, 139
encapsulating complex data types as strings,

150
remote, 284
sharing between processes, 145–150
static, using, 144
temporary variables, exchanging values of,

142
var_dump(  ), 151–154
verbs (HTTP), 464
vertical bar (|), 642
video MIME type, 495

780 | Index

W
web application security, 541–566

cross-site scripting, avoiding, 545
filtering input, 544
form spoofing, protecting against, 543
session fixation, preventing, 542

web automation, 393–432
Web Design in a Nutshell (Niederst, Jennifer),

55
web pages, marking up, 414–417
web programming, 227–253

automation, 393–432
browsers, detecting different, 233
buffering output to browsers, 245
communicating within Apache, 249
compressing web output, 246
cookie authentication, using, 242–244
cookies (see cookies)
environment variables

reading, 247
setting, 248

flushing output to browsers, 244
GET query stings, 234
HTML tables, generating with alternating

row styles, 236
HTTP authentication, using, 237–241
POST requests, 235
redirecting to a different location, 231–233

Web service helper, 470
web services, 437–458

building, 459–486
Web Services Description Language (see

WSDL)
WebTestCase class (SimpleTest), 622
WEEK(  ) (MySQL), 73
WEEKDAY(  ) (MySQL), 73
while loop, 105, 367
whitespace, 663

removing, 16
whitespace (\s) metacharacter, 675
Windows (Microsoft), 437

binary files, reading, 666
directories in pathnames, 663
Event Log, 603
FFI extension, reading passowords, 735
handling line delimiters, 662
SMTP variables and, 489
strftime(  ) and date(  ) format characters for,

64

XAMPP, using, 624
Windows XP, listing locales, 569
word boundries, 10
word-boundary (\b) metacharacter, 675
wordwrap(  ), 27–28, 539
wrapping text, 27–28
wrap_html_tag(  ), 157
WS-Security, 449
WSDL (Web Services Description Language)

complex SOAP types, using, 445
debugging SOAP requests, 444
generating automatically, 470
redefining endpoints, 449
SOAP, calling methods, 439–443

wsdl-writer, 470
WSDL_Gen, 470
WWW-Authenticate header, 237

X
xajax, 428
XAMPP, 624
Xdebug, 600
Xdebug extension, 612–618
xdebug.remote_host value, 613
xdebug.so module, 612
XDEBUG_SESSION cookie, 613
XHTML, 351, 417, 418
XML (Extensible Markup Language), 349–391,

424
Atom feeds, writing, 387–391
complex SOAP types, using, 445
content encoding, handling, 380
generating as a string, 352
generating with DOM, 353
large documents, parsing, 361–367
namespaces (see XML namespaces)
parsing documents

basic, 356–358
complex, 359–361

reading RSS and Atom feeds, 381–383
REST and, 439, 459
schema datatypes, mapping, 454
SOAPServer, instantiating, 466
validating, 378–380
writing RSS feeds, 384–387
WSDL and, 440
XML-RPC methods, calling, 455–457
XPath, extracting information, 367–370
XSLT, 370–378

Index | 781

XML extensions, 380
XML in a Nutshell (Harold/Means), 350, 359
XML namespaces, 444

SOAPServer, instantiating, 466
XML Schema, 379

debugging SOAP requests, 444
mapping data types to classes, 454
REST requests and, 462
setting SOAP types, 445–447
XSD_STRING constant and, 475

XML-RPC, 482–486
authentication, using, 457
calling, 455–457

XMLHTTPRequest, 423
XMLReader

REST methods, executing, 439
XMLReader extension, 361
xmlrpc-epi extension, 455, 483
xmlrpc_server_call_method(  ), 484
xmlrpc_server_destroy(  ), 484
xmlrpc_server_register_method(  ), 483
XPath, 351, 367–370, 418

REST requests, serving, 461
xsi:type attribute, 446
XSLT (eXtensible Stylesheet Language

Transformations), 351, 370–372
parameters from PHP, 372–374
PHP functions, calling from stylesheets,

374–378
REST methods, executing, 439

XSLT (Tidwell, Doug), 374
XSLT extension, 370

passing PHP parameters to stylesheets, 373
XSLTProcessor object, 371
XSLTProcessor::registerPHPFunctions(  ), 374
XSLTProcessor::setParameter(  ), 372
XSS (cross-site scripting), 541

avoiding cross-site scripting, 545
xu_rpc_http_concise(  ), 456, 457

Z
ZE2 (Zend Engine 2), 175
Zend Engine 2 (ZE2), 175
Zend Studio IDE, 600, 612, 637
zlib extension, 247
zlib.out_compression configuration directive,

247
zoneinfo library (Unix), 82–85

782 | Index

About the Authors
Adam Trachtenberg is the Senior Manager of Platform Evangelism at eBay, where he
preaches the gospel of the eBay platform to developers and businessmen around the
globe. Before eBay, Trachtenberg cofounded and served as vice president for develop-
ment at two companies, Student.Com and TVGrid.Com. At both firms, he led the front-
and middle-end web site design and development. Trachtenberg began using PHP in
1997 and is the author of Upgrading to PHP 5 and coauthor of PHP Cookbook, both
published by O’Reilly Media. He lives in San Francisco, California, blogs at http://
www.trachtenberg.com, and has a BA and MBA from Columbia University.

David Sklar works as a software architect for Ning, which produces a platform for
creating and sharing social apps. In addition to PHP Cookbook, he is the author of
Learning PHP 5 (O’Reilly) and Essential PHP Tools (Apress). David speaks regularly at
many conferences, including the O’Reilly Open Source Convention, the O’Reilly
Emerging Technology Conference, USENIX, and various PHP conferences. He keeps
a blog at http://www.sklar.com/blog and maintains the PX (http://px.sklar.com/), a PHP
code exchange he created in 1996. David has a degree in computer science from Yale
University and lives in New York City, where he enjoys riding the subway, eating salt-
baked scallops, and admiring the 18th- and 19th-century American furniture at the
Metropolitan Museum of Art.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of PHP Cookbook, Second Edition, is a Galapagos land iguana
(Conolophus subcristatus). Once abundant in the Galapagos Islands, this iguana proved
tasty to the settlers of the early 1800s, and domestic animals later introduced on the
islands played further havoc with the reptile’s home and food supply. Today there are
no iguanas left on Santiago Island and very few left on the other islands.

Distantly related to the green iguana of the South American continent, Galapagos land
iguanas can be over three feet long, with males weighing up to 30 pounds. Their tough,
scaly skin is yellow with scattered patches of white, black, brown, and rust. These
lizards resemble mythical creatures of the past—dragons with long tails, clawed feet,
and spiny crests. In reality, however, they are harmless.

Land iguanas live in the drier areas of the islands and in the morning are found basking
in the sun. During midday, however, they seek the shade of cactus, rocks, and trees.
To conserve body heat at night, they sleep in burrows dug in the ground.

These reptiles are omnivores, but they generally depend on low-growing plants and
shrubs, as well as the fallen fruits and pads of cactus trees. These plants provide most
of the moisture they need; however, they will drink fresh water whenever it’s available.

Depending on their size, land iguanas reach maturity between 8 and 15 years of age.
They congregate and mate during specific periods, which vary from island to island.
The females then migrate to suitable areas to nest. After digging a burrow, the female
lays 2 to 20 eggs in the nest. She then defends the covered nest site to prevent other
females from nesting in the same spot.

Young iguanas hatch 85 to 110 days later and take about a week to dig their way out
of the nest. Normally, if hatchlings survive the first year when food is often scarce and
native predators such as hawks, egrets, herons, and snakes are a danger, they can live
for more than 60 years. In reality, predation by feral cats is far worse because the young
must survive and grow for at least three to four years before becoming large enough
that cats can’t kill them.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading font
is Adobe MyriadPro-Cond; and the code font is LucasFont’s TheSans Mono Con-
densed.

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of PHP Cookbook, Second Edition, is a Galapagos land iguana
(Conolophus subcristatus). Once abundant in the Galapagos Islands, this iguana proved
tasty to the settlers of the early 1800s, and domestic animals later introduced on the
islands played further havoc with the reptile’s home and food supply. Today there are
no iguanas left on Santiago Island and very few left on the other islands.

Distantly related to the green iguana of the South American continent, Galapagos land
iguanas can be over three feet long, with males weighing up to 30 pounds. Their tough,
scaly skin is yellow with scattered patches of white, black, brown, and rust. These
lizards resemble mythical creatures of the past—dragons with long tails, clawed feet,
and spiny crests. In reality, however, they are harmless.

Land iguanas live in the drier areas of the islands and in the morning are found basking
in the sun. During midday, however, they seek the shade of cactus, rocks, and trees.
To conserve body heat at night, they sleep in burrows dug in the ground.

These reptiles are omnivores, but they generally depend on low-growing plants and
shrubs, as well as the fallen fruits and pads of cactus trees. These plants provide most
of the moisture they need; however, they will drink fresh water whenever it’s available.

Depending on their size, land iguanas reach maturity between 8 and 15 years of age.
They congregate and mate during specific periods, which vary from island to island.
The females then migrate to suitable areas to nest. After digging a burrow, the female
lays 2 to 20 eggs in the nest. She then defends the covered nest site to prevent other
females from nesting in the same spot.

Young iguanas hatch 85 to 110 days later and take about a week to dig their way out
of the nest. Normally, if hatchlings survive the first year when food is often scarce and
native predators such as hawks, egrets, herons, and snakes are a danger, they can live
for more than 60 years. In reality, predation by feral cats is far worse because the young
must survive and grow for at least three to four years before becoming large enough
that cats can’t kill them.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The
cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading font
is Adobe MyriadPro-Cond; and the code font is LucasFont’s TheSans Mono Con-
densed.

	PHP Cookbook
	Table of Contents
	Preface
	Who This Book Is For
	What Is in This Book
	Other Resources
	Web Sites
	Books

	Conventions Used in This Book
	Programming Conventions
	Typesetting Conventions

	Comments and Questions
	Acknowledgments
	David Sklar
	Adam Trachtenberg
	Clay Loveless
	Chris Shiflett

	Chapter 1. Strings
	1.0 Introduction
	1.1 Accessing Substrings
	Problem
	Solution
	Discussion
	See Also

	1.2 Extracting Substrings
	Problem
	Solution
	Discussion
	See Also

	1.3 Replacing Substrings
	Problem
	Solution
	Discussion
	See Also

	1.4 Processing a String One Byte at a Time
	Problem
	Solution
	Discussion
	See Also

	1.5 Reversing a String by Word or Byte
	Problem
	Solution
	Discussion
	See Also

	1.6 Expanding and Compressing Tabs
	Problem
	Solution
	Discussion
	See Also

	1.7 Controlling Case
	Problem
	Solution
	Discussion
	See Also

	1.8 Interpolating Functions and Expressions Within Strings
	Problem
	Solution
	Discussion
	See Also

	1.9 Trimming Blanks from a String
	Problem
	Solution
	Discussion
	See Also

	1.10 Generating Comma-Separated Data
	Problem
	Solution
	Discussion
	See Also

	1.11 Parsing Comma-Separated Data
	Problem
	Solution
	Discussion
	See Also

	1.12 Generating Fixed-Width Field Data Records
	Problem
	Solution
	Discussion
	See Also

	1.13 Parsing Fixed-Width Field Data Records
	Problem
	Solution
	Discussion
	See Also

	1.14 Taking Strings Apart
	Problem
	Solution
	Discussion
	See Also

	1.15 Wrapping Text at a Certain Line Length
	Problem
	Solution
	Discussion
	See Also

	1.16 Storing Binary Data in Strings
	Problem
	Solution
	Discussion
	See Also

	1.17 Program: Downloadable CSV File

	Chapter 2. Numbers
	2.0 Introduction
	2.1 Checking Whether a Variable Contains a Valid Number
	Problem
	Solution
	Discussion
	See Also

	2.2 Comparing Floating-Point Numbers
	Problem
	Solution
	Discussion
	See Also

	2.3 Rounding Floating-Point Numbers
	Problem
	Solution
	Discussion
	See Also

	2.4 Operating on a Series of Integers
	Problem
	Solution
	Discussion
	See Also

	2.5 Generating Random Numbers Within a Range
	Problem
	Solution
	Discussion
	See Also

	2.6 Generating Biased Random Numbers
	Problem
	Solution
	Discussion
	See Also

	2.7 Taking Logarithms
	Problem
	Solution
	Discussion
	See Also

	2.8 Calculating Exponents
	Problem
	Solution
	Discussion
	See Also

	2.9 Formatting Numbers
	Problem
	Solution
	Discussion
	See Also

	2.10 Formatting Monetary Values
	Problem
	Solution
	Discussion
	See Also

	2.11 Printing Correct Plurals
	Problem
	Solution
	Discussion

	2.12 Calculating Trigonometric Functions
	Problem
	Solution
	Discussion
	See Also

	2.13 Doing Trigonometry in Degrees, Not Radians
	Problem
	Solution
	Discussion
	See Also

	2.14 Handling Very Large or Very Small Numbers
	Problem
	Solution
	Discussion
	See Also

	2.15 Converting Between Bases
	Problem
	Solution
	Discussion
	See Also

	2.16 Calculating Using Numbers in Bases Other Than Decimal
	Problem
	Solution
	Discussion
	See Also

	2.17 Finding the Distance Between Two Places
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Dates and Times
	3.0 Introduction
	3.1 Finding the Current Date and Time
	Problem
	Solution
	Discussion
	See Also

	3.2 Converting Time and Date Parts to an Epoch Timestamp
	Problem
	Solution
	Discussion
	See Also

	3.3 Converting an Epoch Timestamp to Time and Date Parts
	Problem
	Solution
	Discussion
	See Also

	3.4 Printing a Date or Time in a Specified Format
	Problem
	Solution
	Discussion
	See Also

	3.5 Finding the Difference of Two Dates
	Problem
	Solution
	Discussion
	See Also

	3.6 Finding the Difference of Two Dates with Julian Days
	Problem
	Solution
	Discussion
	See Also

	3.7 Finding the Day in a Week, Month, or Year
	Problem
	Solution
	Discussion
	See Also

	3.8 Validating a Date
	Problem
	Solution
	Discussion
	See Also

	3.9 Parsing Dates and Times from Strings
	Problem
	Solution
	Discussion
	See Also

	3.10 Adding to or Subtracting from a Date
	Problem
	Solution
	Discussion
	See Also

	3.11 Calculating Time with Time Zones
	Problem
	Solution
	Discussion
	See Also

	3.12 Accounting for Daylight Savings Time
	Problem
	Solution
	Discussion
	See Also

	3.13 Generating a High-Precision Time
	Problem
	Solution
	Discussion
	See Also

	3.14 Generating Time Ranges
	Problem
	Solution
	Discussion
	See Also

	3.15 Using Non-Gregorian Calendars
	Problem
	Solution
	Discussion
	See Also

	3.16 Using Dates Outside the Range of an Epoch Timestamp
	Problem
	Solution
	Discussion
	See Also

	3.17 Program: Calendar

	Chapter 4. Arrays
	4.0 Introduction
	4.1 Specifying an Array Not Beginning at Element 0
	Problem
	Solution
	Discussion
	See Also

	4.2 Storing Multiple Elements Per Key in an Array
	Problem
	Solution
	Discussion
	See Also

	4.3 Initializing an Array to a Range of Integers
	Problem
	Solution
	Discussion
	See Also

	4.4 Iterating Through an Array
	Problem
	Solution
	Discussion
	See Also

	4.5 Deleting Elements from an Array
	Problem
	Solution
	Discussion
	See Also

	4.6 Changing Array Size
	Problem
	Solution
	Discussion
	See Also

	4.7 Appending One Array to Another
	Problem
	Solution
	Discussion
	See Also

	4.8 Turning an Array into a String
	Problem
	Solution
	Discussion
	See Also

	4.9 Printing an Array with Commas
	Problem
	Solution
	Discussion
	See Also

	4.10 Checking if a Key Is in an Array
	Problem
	Solution
	Discussion
	See Also

	4.11 Checking if an Element Is in an Array
	Problem
	Solution
	Discussion
	See Also

	4.12 Finding the Position of a Value in an Array
	Problem
	Solution
	Discussion
	See Also

	4.13 Finding Elements That Pass a Certain Test
	Problem
	Solution
	Discussion
	See Also

	4.14 Finding the Largest or Smallest Valued Element in an Array
	Problem
	Solution
	Discussion
	See Also

	4.15 Reversing an Array
	Problem
	Solution
	Discussion
	See Also

	4.16 Sorting an Array
	Problem
	Solution
	Discussion
	See Also

	4.17 Sorting an Array by a Computable Field
	Problem
	Solution
	Discussion
	See Also

	4.18 Sorting Multiple Arrays
	Problem
	Solution
	Discussion
	See Also

	4.19 Sorting an Array Using a Method Instead of a Function
	Problem
	Solution
	Discussion
	See Also

	4.20 Randomizing an Array
	Problem
	Solution
	Discussion
	See Also

	4.21 Removing Duplicate Elements from an Array
	Problem
	Solution
	Discussion
	See Also

	4.22 Applying a Function to Each Element in an Array
	Problem
	Solution
	Discussion
	See Also

	4.23 Finding the Union, Intersection, or Difference of Two Arrays
	Problem
	Solution
	Discussion
	See Also

	4.24 Making an Object Act like an Array
	Problem
	Solution
	Discussion
	See Also

	4.25 Program: Printing a Horizontally Columned HTML Table

	Chapter 5. Variables
	5.0 Introduction
	5.1 Avoiding == Versus = Confusion
	Problem
	Solution
	Discussion
	See Also

	5.2 Establishing a Default Value
	Problem
	Solution
	Discussion
	See Also

	5.3 Exchanging Values Without Using Temporary Variables
	Problem
	Solution
	Discussion
	See Also

	5.4 Creating a Dynamic Variable Name
	Problem
	Solution
	Discussion
	See Also

	5.5 Using Static Variables
	Problem
	Solution
	Discussion
	See Also

	5.6 Sharing Variables Between Processes
	Problem
	Solution
	Discussion
	See Also

	5.7 Encapsulating Complex Data Types in a String
	Problem
	Solution
	Discussion
	See Also

	5.8 Dumping Variable Contents as Strings
	Problem
	Solution
	Discussion
	See Also

	Chapter 6. Functions
	6.0 Introduction
	6.1 Accessing Function Parameters
	Problem
	Solution
	Discussion
	See Also

	6.2 Setting Default Values for Function Parameters
	Problem
	Solution
	Discussion
	See Also

	6.3 Passing Values by Reference
	Problem
	Solution
	Discussion
	See Also

	6.4 Using Named Parameters
	Problem
	Solution
	Discussion
	See Also

	6.5 Creating Functions That Take a Variable Number of Arguments
	Problem
	Solution
	Discussion
	See Also

	6.6 Returning Values by Reference
	Problem
	Solution
	Discussion
	See Also

	6.7 Returning More Than One Value
	Problem
	Solution
	Discussion
	See Also

	6.8 Skipping Selected Return Values
	Problem
	Solution
	Discussion
	See Also

	6.9 Returning Failure
	Problem
	Solution
	Discussion
	See Also

	6.10 Calling Variable Functions
	Problem
	Solution
	Discussion
	See Also

	6.11 Accessing a Global Variable Inside a Function
	Problem
	Solution
	Discussion
	See Also

	6.12 Creating Dynamic Functions
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. Classes and Objects
	7.0 Introduction
	7.1 Instantiating Objects
	Problem
	Solution
	Discussion
	See Also

	7.2 Defining Object Constructors
	Problem
	Solution
	Discussion
	See Also

	7.3 Defining Object Destructors
	Problem
	Solution
	Discussion
	See Also

	7.4 Implementing Access Control
	Problem
	Solution
	Discussion

	7.5 Preventing Changes to Classes and Methods
	Problem
	Solution
	Discussion

	7.6 Defining Object Stringification
	Problem
	Solution
	Discussion

	7.7 Specifying Interfaces
	Problem
	Solution
	Discussion
	See Also

	7.8 Creating Abstract Base Classes
	Problem
	Solution
	Discussion

	7.9 Assigning Object References
	Problem
	Solution
	Discussion
	See Also

	7.10 Cloning Objects
	Problem
	Solution
	Discussion
	See Also

	7.11 Overriding Property Accesses
	Problem
	Solution
	Discussion
	See Also

	7.12 Calling Methods on an Object Returned by Another Method
	Problem
	Solution
	Discussion

	7.13 Aggregating Objects
	Problem
	Solution
	Discussion
	See Also

	7.14 Accessing Overridden Methods
	Problem
	Solution
	Discussion
	See Also

	7.15 Using Method Polymorphism
	Problem
	Solution
	Discussion
	See Also

	7.16 Defining Class Constants
	Problem
	Solution
	Discussion
	See Also

	7.17 Defining Static Properties and Methods
	Problem
	Solution
	Discussion
	See Also

	7.18 Controlling Object Serialization
	Problem
	Solution
	Discussion
	See Also

	7.19 Introspecting Objects
	Problem
	Solution
	Discussion
	See Also

	7.20 Checking if an Object Is an Instance of a Specific Class
	Problem
	Solution
	Discussion
	See Also

	7.21 Autoloading Class Files upon Object Instantiation
	Problem
	Solution
	Discussion
	See Also

	7.22 Instantiating an Object Dynamically
	Problem
	Solution
	Discussion
	See Also

	7.23 Program: whereis

	Chapter 8. Web Basics
	8.0 Introduction
	8.1 Setting Cookies
	Problem
	Solution
	Discussion
	See Also

	8.2 Reading Cookie Values
	Problem
	Solution
	Discussion
	See Also

	8.3 Deleting Cookies
	Problem
	Solution
	Discussion
	See Also

	8.4 Redirecting to a Different Location
	Problem
	Solution
	Discussion
	See Also

	8.5 Detecting Different Browsers
	Problem
	Solution
	Discussion
	See Also

	8.6 Building a Query String
	Problem
	Solution
	Discussion
	See Also

	8.7 Reading the Post Request Body
	Problem
	Solution
	Discussion
	See Also

	8.8 Generating HTML Tables with Alternating Row Styles
	Problem
	Solution
	Discussion
	See Also

	8.9 Using HTTP Basic or Digest Authentication
	Problem
	Solution
	Discussion
	See Also

	8.10 Using Cookie Authentication
	Problem
	Solution
	Discussion
	See Also

	8.11 Flushing Output to the Browser
	Problem
	Solution
	Discussion
	See Also

	8.12 Buffering Output to the Browser
	Problem
	Solution
	Discussion
	See Also

	8.13 Compressing Web Output
	Problem
	Solution
	Discussion
	See Also

	8.14 Reading Environment Variables
	Problem
	Solution
	Discussion
	See Also

	8.15 Setting Environment Variables
	Problem
	Solution
	Discussion
	See Also

	8.16 Communicating Within Apache
	Problem
	Solution
	Discussion
	See Also

	8.17 Program: Web Site Account (De)activator
	8.18 Program: Tiny Wiki

	Chapter 9. Form
	9.0 Introduction
	9.1 Processing Form Input
	Problem
	Solution
	Discussion
	See Also

	9.2 Validating Form Input: Required Fields
	Problem
	Solution
	Discussion
	See Also

	9.3 Validating Form Input: Numbers
	Problem
	Solution
	Discussion
	See Also

	9.4 Validating Form Input: Email Addresses
	Problem
	Solution
	Discussion
	See Also

	9.5 Validating Form Input: Drop-Down Menus
	Problem
	Solution
	Discussion
	See Also

	9.6 Validating Form Input: Radio Buttons
	Problem
	Solution
	Discussion
	See Also

	9.7 Validating Form Input: Checkboxes
	Problem
	Solution
	Discussion
	See Also

	9.8 Validating Form Input: Dates and Times
	Problem
	Solution
	Discussion
	See Also

	9.9 Validating Form Input: Credit Cards
	Problem
	Solution
	Discussion
	See Also

	9.10 Preventing Cross-Site Scripting
	Problem
	Solution
	Discussion
	See Also

	9.11 Working with Multipage Forms
	Problem
	Solution
	Discussion
	See Also

	9.12 Redisplaying Forms with Inline Error Messages
	Problem
	Solution
	Discussion
	See Also

	9.13 Guarding Against Multiple Submission of the Same Form
	Problem
	Solution
	Discussion
	See Also

	9.14 Processing Uploaded Files
	Problem
	Solution
	Discussion
	See Also

	9.15 Preventing Global Variable Injection
	Problem
	Solution
	Discussion
	See Also

	9.16 Handling Remote Variables with Periods in Their Names
	Problem
	Solution
	Discussion
	See Also

	9.17 Using Form Elements with Multiple Options
	Problem
	Solution
	Discussion
	See Also

	9.18 Creating Drop-Down Menus Based on the Current Date
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Database Access
	10.0 Introduction
	10.1 Using DBM Databases
	Problem
	Solution
	Discussion
	See Also

	10.2 Using an SQLite Database
	Problem
	Solution
	Discussion
	See Also

	10.3 Connecting to an SQL Database
	Problem
	Solution
	Discussion
	See Also

	10.4 Querying an SQL Database
	Problem
	Solution
	Discussion
	See Also

	10.5 Retrieving Rows Without a Loop
	Problem
	Solution
	Discussion
	See Also

	10.6 Modifying Data in an SQL Database
	Problem
	Solution
	Discussion
	See Also

	10.7 Repeating Queries Efficiently
	Problem
	Solution
	Discussion
	See Also

	10.8 Finding the Number of Rows Returned by a Query
	Problem
	Solution
	Discussion
	See Also

	10.9 Escaping Quotes
	Problem
	Solution
	Discussion
	See Also

	10.10 Logging Debugging Information and Errors
	Problem
	Solution
	Discussion
	See Also

	10.11 Creating Unique Identifiers
	Problem
	Solution
	Discussion
	See Also

	10.12 Building Queries Programmatically
	Problem
	Solution
	Discussion
	See Also

	10.13 Making Paginated Links for a Series of Records
	Problem
	Solution
	Discussion
	See Also

	10.14 Caching Queries and Results
	Problem
	Solution
	Discussion
	See Also

	10.15 Accessing a Database Connection Anywhere in Your Program
	Problem
	Solution
	Discussion
	See Also

	10.16 Program: Storing a Threaded Message Board

	Chapter 11. Sessions and Data Persistence
	11.0 Introduction
	11.1 Using Session Tracking
	Problem
	Solution
	Discussion
	See Also

	11.2 Preventing Session Hijacking
	Problem
	Solution
	Discussion
	See Also

	11.3 Preventing Session Fixation
	Problem
	Solution
	Discussion
	See Also

	11.4 Storing Sessions in a Database
	Problem
	Solution
	Discussion
	See Also

	11.5 Storing Sessions in Shared Memory
	Problem
	Solution
	Discussion
	See Also

	11.6 Storing Arbitrary Data in Shared Memory
	Problem
	Solution
	Discussion
	See Also

	11.7 Caching Calculated Results in Summary Tables
	Problem
	Solution
	Discussion
	See Also

	Chapter 12. XML
	12.0 Introduction
	12.1 Generating XML as a String
	Problem
	Solution
	Discussion
	See Also

	12.2 Generating XML with the DOM
	Problem
	Solution
	Discussion
	See Also

	12.3 Parsing Basic XML Documents
	Problem
	Solution
	Discussion
	See Also

	12.4 Parsing Complex XML Documents
	Problem
	Solution
	Discussion
	See Also

	12.5 Parsing Large XML Documents
	Problem
	Solution
	Discussion
	See Also

	12.6 Extracting Information Using XPath
	Problem
	Solution
	Discussion
	See Also

	12.7 Transforming XML with XSLT
	Problem
	Solution
	Discussion
	See Also

	12.8 Setting XSLT Parameters from PHP
	Problem
	Solution
	Discussion
	See Also

	12.9 Calling PHP Functions from XSLT Stylesheets
	Problem
	Solution
	Discussion
	See Also

	12.10 Validating XML Documents
	Problem
	Solution
	Discussion
	See Also

	12.11 Handling Content Encoding
	Problem
	Solution
	Discussion
	See Also

	12.12 Reading RSS and Atom Feeds
	Problem
	Solution
	Discussion
	See Also

	12.13 Writing RSS Feeds
	Problem
	Solution
	Discussion

	12.14 Writing Atom Feeds
	Problem
	Solution
	Discussion
	See Also

	Chapter 13. Web Automation
	13.0 Introduction
	13.1 Fetching a URL with the Get Method
	Problem
	Solution
	Discussion
	See Also

	13.2 Fetching a URL with the Post Method
	Problem
	Solution
	Discussion
	See Also

	13.3 Fetching a URL with Cookies
	Problem
	Solution
	Discussion
	See Also

	13.4 Fetching a URL with Arbitrary Headers
	Problem
	Solution
	Discussion
	See Also

	13.5 Fetching a URL with an Arbitrary Method
	Problem
	Solution
	Discussion
	See Also

	13.6 Fetching a URL with a Timeout
	Problem
	Solution
	Discussion
	See Also

	13.7 Fetching an HTTPS URL
	Problem
	Solution
	Discussion
	See Also

	13.8 Debugging the Raw HTTP Exchange
	Problem
	Solution
	Discussion
	See Also

	13.9 Marking Up a Web Page
	Problem
	Solution
	Discussion
	See Also

	13.10 Cleaning Up Broken or Nonstandard HTML
	Problem
	Solution
	Discussion
	See Also

	13.11 Extracting Links from an HTML File
	Problem
	Solution
	Discussion
	See Also

	13.12 Converting Plain Text to HTML
	Problem
	Solution
	Discussion
	See Also

	13.13 Converting HTML to Plain Text
	Problem
	Solution
	Discussion
	See Also

	13.14 Removing HTML and PHP Tags
	Problem
	Solution
	Discussion
	See Also

	13.15 Responding to an Ajax Request
	Problem
	Solution
	Discussion
	See Also

	13.16 Integrating with JavaScript
	Problem
	Solution
	Discussion
	See Also

	13.17 Program: Finding Stale Links
	13.18 Program: Finding Fresh Links

	Chapter 14. Consuming Web Services
	14.0 Introduction
	14.1 Calling a REST Method
	Problem
	Solution
	Discussion
	See Also

	14.2 Calling a SOAP Method with WSDL
	Problem
	Solution
	Discussion
	See Also

	14.3 Calling a SOAP Method Without WSDL
	Problem
	Solution
	Discussion
	See Also

	14.4 Debugging SOAP Requests
	Problem
	Solution
	Discussion

	14.5 Using Complex SOAP Types
	Problem
	Solution
	Discussion
	See Also

	14.6 Setting SOAP Types
	Problem
	Solution
	Discussion
	See Also

	14.7 Using SOAP Headers
	Problem
	Solution
	Discussion
	See Also

	14.8 Using Authentication with SOAP
	Problem
	Solution
	Discussion
	See Also

	14.9 Redefining an Endpoint
	Problem
	Solution
	Discussion

	14.10 Catching SOAP Faults
	Problem
	Solution
	Discussion
	See Also

	14.11 Mapping XML Schema Data Types to PHP Classes
	Problem
	Solution
	Discussion

	14.12 Calling an XML-RPC Method
	Problem
	Solution
	Discussion
	See Also

	14.13 Using Authentication with XML-RPC
	Problem
	Solution
	Discussion

	Chapter 15. Building Web Services
	15.0 Introduction
	15.1 Serving a REST Method
	Problem
	Solution
	Discussion
	See Also

	15.2 Serving a SOAP Method
	Problem
	Solution
	Discussion
	See Also

	15.3 Accepting Arguments in a SOAP Method
	Problem
	Solution
	Discussion
	See Also

	15.4 Generating WSDL Automatically
	Problem
	Solution
	Discussion
	See Also

	15.5 Throwing SOAP Faults
	Problem
	Solution
	Discussion
	See Also

	15.6 Processing a SOAP Header
	Problem
	Solution
	Discussion
	See Also

	15.7 Generating a SOAP Header
	Problem
	Solution
	Discussion
	See Also

	15.8 Using Authentication with SOAP
	Problem
	Solution
	Discussion
	See Also

	15.9 Serving an XML-RPC Method
	Problem
	Solution
	Discussion
	See Also

	Chapter 16. Internet Services
	16.0 Introduction
	16.1 Sending Mail
	Problem
	Solution
	Discussion
	See Also

	16.2 Sending MIME Mail
	Problem
	Solution
	Discussion
	See Also

	16.3 Reading Mail with IMAP or POP3
	Problem
	Solution
	Discussion
	See Also

	16.4 Posting Messages to Usenet Newsgroups
	Problem
	Solution
	Discussion
	See Also

	16.5 Reading Usenet News Messages
	Problem
	Solution
	Discussion
	See Also

	16.6 Getting and Putting Files with FTP
	Problem
	Solution
	Discussion
	See Also

	16.7 Looking Up Addresses with LDAP
	Problem
	Solution
	Discussion
	See Also

	16.8 Using LDAP for User Authentication
	Problem
	Solution
	Discussion
	See Also

	16.9 Performing DNS Lookups
	Problem
	Solution
	Discussion
	See Also

	16.10 Checking if a Host Is Alive
	Problem
	Solution
	Discussion
	See Also

	16.11 Getting Information About a Domain Name
	Problem
	Solution
	Discussion
	See Also

	Chapter 17. Graphics
	17.0 Introduction
	17.1 Drawing Lines, Rectangles, and Polygons
	Problem
	Solution
	Discussion
	See Also

	17.2 Drawing Arcs, Ellipses, and Circles
	Problem
	Solution
	Discussion
	See Also

	17.3 Drawing with Patterned Lines
	Problem
	Solution
	Discussion
	See Also

	17.4 Drawing Text
	Problem
	Solution
	Discussion
	See Also

	17.5 Drawing Centered Text
	Problem
	Solution
	Discussion
	See Also

	17.6 Building Dynamic Images
	Problem
	Solution
	Discussion
	See Also

	17.7 Getting and Setting a Transparent Color
	Problem
	Solution
	Discussion
	See Also

	17.8 Reading EXIF Data
	Problem
	Solution
	Discussion
	See Also

	17.9 Serving Images Securely
	Problem
	Solution
	Discussion
	See Also

	17.10 Program: Generating Bar Charts from Poll Results

	Chapter 18. Security and Encryption
	18.0 Introduction
	18.1 Preventing Session Fixation
	Problem
	Solution
	Discussion
	See Also

	18.2 Protecting Against Form Spoofing
	Problem
	Solution
	Discussion

	18.3 Ensuring Input Is Filtered
	Problem
	Solution
	Discussion
	See Also

	18.4 Avoiding Cross-Site Scripting
	Problem
	Solution
	Discussion
	See Also

	18.5 Eliminating SQL Injection
	Problem
	Solution
	Discussion
	See Also

	18.6 Keeping Passwords Out of Your Site Files
	Problem
	Solution
	Discussion
	See Also

	18.7 Storing Passwords
	Problem
	Solution
	Discussion
	See Also

	18.8 Dealing with Lost Passwords
	Problem
	Solution
	Discussion
	See Also

	18.9 Verifying Data with Hashes
	Problem
	Solution
	Discussion
	See Also

	18.10 Encrypting and Decrypting Data
	Problem
	Solution
	Discussion
	See Also

	18.11 Storing Encrypted Data in a File or Database
	Problem
	Solution
	Discussion
	See Also

	18.12 Sharing Encrypted Data with Another Web Site
	Problem
	Solution
	Discussion
	See Also

	18.13 Detecting SSL
	Problem
	Solution
	Discussion
	See Also

	18.14 Encrypting Email with GPG
	Problem
	Solution
	Discussion
	See Also

	Chapter 19. Internationalization and Localization
	19.0 Introduction
	19.1 Listing Available Locales
	Problem
	Solution
	Discussion
	See Also

	19.2 Using a Particular Locale
	Problem
	Solution
	Discussion
	See Also

	19.3 Setting the Default Locale
	Problem
	Solution
	Discussion
	See Also

	19.4 Localizing Text Messages
	Problem
	Solution
	Discussion
	See Also

	19.5 Localizing Dates and Times
	Problem
	Solution
	Discussion
	See Also

	19.6 Localizing Currency Values
	Problem
	Solution
	Discussion
	See Also

	19.7 Localizing Images
	Problem
	Solution
	Discussion
	See Also

	19.8 Localizing Included Files
	Problem
	Solution
	Discussion
	See Also

	19.9 Managing Localization Resources
	Problem
	Solution
	Discussion
	See Also

	19.10 Using gettext
	Problem
	Solution
	Discussion
	See Also

	19.11 Setting the Character Encoding of Outgoing Data
	Problem
	Solution
	Discussion
	See Also

	19.12 Setting the Character Encoding of Incoming Data
	Problem
	Solution
	Discussion
	See Also

	19.13 Manipulating UTF-8 Text
	Problem
	Solution
	Discussion
	See Also

	Chapter 20. Error Handling, Debugging, and Testing
	20.0 Introduction
	20.1 Finding and Fixing Parse Errors
	Problem
	Solution
	Discussion
	See Also

	20.2 Creating Your Own Exception Classes
	Problem
	Solution
	Discussion
	See Also

	20.3 Printing a Stack Trace
	Problem
	Solution
	Discussion
	See Also

	20.4 Reading Configuration Variables
	Problem
	Solution
	Discussion
	See Also

	20.5 Setting Configuration Variables
	Problem
	Solution
	Discussion
	See Also

	20.6 Hiding Error Messages from Users
	Problem
	Solution
	Discussion
	See Also

	20.7 Tuning Error Handling
	Problem
	Solution
	Discussion
	See Also

	20.8 Using a Custom Error Handler
	Problem
	Solution
	Discussion
	See Also

	20.9 Logging Errors
	Problem
	Solution
	Discussion
	See Also

	20.10 Eliminating “headers already sent” Errors
	Problem
	Solution
	Discussion
	See Also

	20.11 Logging Debugging Information
	Problem
	Solution
	Discussion
	See Also

	20.12 Using a Debugger Extension
	Problem
	Solution
	Discussion
	See Also

	20.13 Writing a Unit Test
	Problem
	Solution
	Discussion
	See Also

	20.14 Writing a Unit Test Suite
	Problem
	Solution
	Discussion
	See Also

	20.15 Applying a Unit Test to a Web Page
	Problem
	Solution
	Discussion
	See Also

	20.16 Setting Up a Test Environment
	Problem
	Solution
	Discussion
	See Also

	Chapter 21. Performance Tuning and Load Testing
	21.0 Introduction
	21.1 Timing Function Execution
	Problem
	Solution
	Discussion
	See Also

	21.2 Timing Program Execution
	Problem
	Solution
	Discussion
	See Also

	21.3 Profiling with a Debugger Extension
	Problem
	Solution
	Discussion
	See Also

	21.4 Stress Testing Your Web Site
	Problem
	Solution
	Discussion
	See Also

	21.5 Avoiding Regular Expressions
	Problem
	Solution
	Discussion
	See Also

	21.6 Using an Accelerator
	Problem
	Solution
	Discussion
	See Also

	Chapter 22. Regular Expressions
	22.0 Introduction
	22.1 Switching from ereg to preg
	Problem
	Solution
	Discussion
	See Also

	22.2 Matching Words
	Problem
	Solution
	Discussion
	See Also

	22.3 Finding the nth Occurrence of a Match
	Problem
	Solution
	Discussion
	See Also

	22.4 Choosing Greedy or Nongreedy Matches
	Problem
	Solution
	Discussion
	See Also

	22.5 Finding All Lines in a File That Match a Pattern
	Problem
	Solution
	Discussion
	See Also

	22.6 Capturing Text Inside HTML Tags
	Problem
	Solution
	Discussion
	See Also

	22.7 Preventing Parentheses from Capturing Text
	Problem
	Solution
	Discussion
	See Also

	22.8 Escaping Special Characters in a Regular Expression
	Problem
	Solution
	Discussion
	See Also

	22.9 Reading Records with a Pattern Separator
	Problem
	Solution
	Discussion
	See Also

	22.10 Using a PHP Function in a Regular Expression
	Problem
	Solution
	Discussion
	See Also

	Chapter 23. Files
	23.0 Introduction
	23.1 Creating or Opening a Local File
	Problem
	Solution
	Discussion
	See Also

	23.2 Creating a Temporary File
	Problem
	Solution
	Discussion
	See Also

	23.3 Opening a Remote File
	Problem
	Solution
	Discussion
	See Also

	23.4 Reading from Standard Input
	Problem
	Solution
	Discussion
	See Also

	23.5 Reading a File into a String
	Problem
	Solution
	Discussion
	See Also

	23.6 Counting Lines, Paragraphs, or Records in a File
	Problem
	Solution
	Discussion
	See Also

	23.7 Processing Every Word in a File
	Problem
	Solution
	Discussion
	See Also

	23.8 Picking a Random Line from a File
	Problem
	Solution
	Discussion
	See Also

	23.9 Randomizing All Lines in a File
	Problem
	Solution
	Discussion
	See Also

	23.10 Processing Variable-Length Text Fields
	Problem
	Solution
	Discussion
	See Also

	23.11 Reading Configuration Files
	Problem
	Solution
	Discussion
	See Also

	23.12 Modifying a File in Place Without a Temporary File
	Problem
	Solution
	Discussion
	See Also

	23.13 Flushing Output to a File
	Problem
	Solution
	Discussion
	See Also

	23.14 Writing to Standard Output
	Problem
	Solution
	Discussion
	See Also

	23.15 Writing to Many Filehandles Simultaneously
	Problem
	Solution
	Discussion
	See Also

	23.16 Escaping Shell Metacharacters
	Problem
	Solution
	Discussion
	See Also

	23.17 Passing Input to a Program
	Problem
	Solution
	Discussion
	See Also

	23.18 Reading Standard Output from a Program
	Problem
	Solution
	Discussion
	See Also

	23.19 Reading Standard Error from a Program
	Problem
	Solution
	Discussion
	See Also

	23.20 Locking a File
	Problem
	Solution
	Discussion
	See Also

	23.21 Reading and Writing Custom File Types
	Problem
	Solution
	Discussion
	See Also

	23.22 Reading and Writing Compressed Files
	Problem
	Solution
	Discussion
	See Also

	Chapter 24. Directories
	24.0 Introduction
	24.1 Getting and Setting File Timestamps
	Problem
	Solution
	Discussion
	See Also

	24.2 Getting File Information
	Problem
	Solution
	Discussion
	See Also

	24.3 Changing File Permissions or Ownership
	Problem
	Solution
	Discussion
	See Also

	24.4 Splitting a Filename into Its Component Parts
	Problem
	Solution
	Discussion
	See Also

	24.5 Deleting a File
	Problem
	Solution
	Discussion
	See Also

	24.6 Copying or Moving a File
	Problem
	Solution
	Discussion
	See Also

	24.7 Processing All Files in a Directory
	Problem
	Solution
	Discussion
	See Also

	24.8 Getting a List of Filenames Matching a Pattern
	Problem
	Solution
	Discussion
	See Also

	24.9 Processing All Files in a Directory Recursively
	Problem
	Solution
	Discussion
	See Also

	24.10 Making New Directories
	Problem
	Solution
	Discussion
	See Also

	24.11 Removing a Directory and Its Contents
	Problem
	Solution
	Discussion
	See Also

	24.12 Program: Web Server Directory Listing
	24.13 Program: Site Search

	Chapter 25. Command-Line PHP
	25.0 Introduction
	25.1 Parsing Program Arguments
	Problem
	Solution
	Discussion
	See Also

	25.2 Parsing Program Arguments with getopt
	Problem
	Solution
	Discussion
	See Also

	25.3 Reading from the Keyboard
	Problem
	Solution
	Discussion
	See Also

	25.4 Running PHP Code on Every Line of an Input File
	Problem
	Solution
	Discussion
	See Also

	25.5 Reading Passwords
	Problem
	Solution
	Discussion
	See Also

	25.6 Program: Command Shell

	Chapter 26. PEAR and PECL
	26.0 Introduction
	26.1 Using the PEAR Installer
	Problem
	Solution
	Discussion
	See Also

	26.2 Finding PEAR Packages
	Problem
	Solution
	Discussion
	See Also

	26.3 Finding Information About a Package
	Problem
	Solution
	Discussion
	See Also

	26.4 Installing PEAR Packages
	Problem
	Solution
	Discussion
	See Also

	26.5 Upgrading PEAR Packages
	Problem
	Solution
	Discussion
	See Also

	26.6 Uninstalling PEAR Packages
	Problem
	Solution
	Discussion
	See Also

	26.7 Installing PECL Packages
	Problem
	Solution
	Discussion
	See Also

	Index

