

Operations Research

Advances in Applied Mathematics
Series editor: Daniel Zwillinger
CRC Standard Curves and Surfaces with Mathematica®, Second Edition

David H. von Seggern

Stochastic Partial Differential Equations, Second Edition

Pao-Liu Chow

CRC Standard Mathematical Tables and Formulas, 32nd Edition

Dan Zwillinger

Advanced Engineering Mathematics with MATLAB, Third Edition

Dean G. Duffy

Markov Processes

James R. Kirkwood

Linear and Integer Optimization: Theory and Practice, Third Edition

Gerard Sierksma and Yori Zwols

Introduction to Financial Mathematics

Kevin J. Hastings

Fast Solvers for Mesh-Based Computations

Maciej Paszynski

Dynamical Systems for Biological Modeling: An Introduction

Fred Brauer and Christopher Kribs

CRC Standard Curves and Surfaces with Mathematica®, Third Edition

David H. von Seggern

Handbook of Peridynamic Modeling

Floriin Bobaru, John T. Foster, Philippe H. Geubelle, and Stewart A. Silling

Advanced Engineering Mathematics with MATLAB, Fourth Edition

Dean G. Duffy

Linear and Complex Analysis for Applications

John P. D’Angelo

Quadratic Programming with Computer Programs

Michael J. Best

Green’s Functions with Applications, Second Edition

Dean G. Duffy

Introduction to Radar Analysis, Second Edition

Bassem R. Mahafza

CRC Standard Mathematical Tables and Formulas, 33rd Edition

Dan Zwillinger

The Second-Order Adjoint Sensitivity Analysis Methodology

Dan Gabriel Cacuci

Operations Research: A Practical Introduction, Second Edition

Michael W. Carter, Camille C. Price, and Ghaith Rabadi

http://operationsresearch.us

http://operationsresearch.us

Operations Research
A Practical Introduction

Second Edition

Michael W. Carter
Camille C. Price
Ghaith Rabadi

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-4987-8010-0 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to
publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or
the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright
material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.
copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com
http://www.copyright.com/

v

Contents

Preface ... xiii
About the Authors ...xix

 1. Introduction to Operations Research ..1
1.1 The Origins and Applications of Operations Research ...1
1.2 System Modeling Principles ..3
1.3 Algorithm Efficiency and Problem Complexity ...5
1.4 Optimality and Practicality ...9
1.5 Software for Operations Research ..10
1.6 Illustrative Applications ..14

1.6.1 Analytical Innovation in the Food and Agribusiness Industries14
1.6.2 Humanitarian Relief in Natural Disasters ...15
1.6.3 Mining and Social Conflicts ...17

1.7 Summary ..18
Key Terms ...19
References and Suggested Readings ...20

 2. Linear Programming ..23
2.1 The Linear Programming Model ..23
2.2 The Art and Skill of Problem Formulation ..24

2.2.1 Integer and Nonlinear Models ..30
2.3 Graphical Solution of Linear Programming Problems ..30

2.3.1 General Definitions..30
2.3.2 Graphical Solutions ...31
2.3.3 Multiple Optimal Solutions..33
2.3.4 No Optimal Solution ...34
2.3.5 No Feasible Solution ...35
2.3.6 General Solution Method ...36

2.4 Preparation for the Simplex Method ...36
2.4.1 Standard Form of a Linear Programming Problem36
2.4.2 Solutions of Linear Systems ...38

2.5 The Simplex Method ..39
2.6 Initial Solutions for General Constraints ...46

2.6.1 Artificial Variables ...46
2.6.2 The Two Phase Method ..48

2.7 Information in the Tableau ..50
2.7.1 Multiple Optimal Solutions..51
2.7.2 Unbounded Solution (No Optimal Solution) ..51
2.7.3 Degenerate Solutions ..53
2.7.4 Analyzing the Optimal Tableau: Shadow Prices.......................................55

2.8 Duality and Sensitivity Analysis ..56
2.8.1 The Dual Problem ..56
2.8.2 Postoptimality and Sensitivity Analysis ..60

vi Contents

2.9 Revised Simplex and Computational Efficiency ..63
2.10 Software for Linear Programming ...64

2.10.1 Extensions to General Simplex Methods ...65
2.10.2 Interior Methods ..67
2.10.3 Software for Solving Linear Programming ...69

2.11 Illustrative Applications ..71
2.11.1 Forest Pest Control Program ..71
2.11.2 Aircraft and Munitions Procurement ...72
2.11.3 Grape Processing: Materials Planning and Production73

2.12 Summary ..74
Key Terms ...75
Exercises ..76
References and Suggested Readings ...85

 3. Network Analysis ...89
3.1 Graphs and Networks: Preliminary Definitions ..90
3.2 Maximum Flow in Networks ..92

3.2.1 Maximum Flow Algorithm ..93
3.2.2 Extensions to the Maximum Flow Problem ..96

3.3 Minimum Cost Network Flow Problems ..97
3.3.1 Transportation Problem ..97

3.3.1.1 Northwest Corner Rule ..99
3.3.1.2 Minimum Cost Method ..101
3.3.1.3 Minimum “Row” Cost Method ...102
3.3.1.4 Transportation Simplex Method ...103
3.3.1.5 Transportation Simplex ..107

3.3.2 Assignment Problem and Stable Matching ...109
3.3.2.1 Stable Matching ... 113

3.3.3 Capacitated Transshipment Problem ... 114
3.4 Network Connectivity .. 116

3.4.1 Minimum Spanning Trees .. 116
3.4.2 Shortest Network Problem: A Variation on Minimum

Spanning Trees ... 118
3.5 Shortest Path Problems .. 119

3.5.1 Shortest Path through an Acyclic Network ...120
3.5.2 Shortest Paths from Source to All Other Nodes121
3.5.3 Problems Solvable with Shortest Path Methods123

3.6 Dynamic Programming ...125
3.6.1 Labeling Method for Multi-Stage Decision Making...........................126
3.6.2 Tabular Method ...127
3.6.3 General Recursive Method ..130

3.7 Project Management ...132
3.7.1 Project Networks and Critical Paths ...133
3.7.2 Cost versus Time Trade-Offs ..137
3.7.3 Probabilistic Project Scheduling ..139

3.8 Software for Network Analysis ..141

viiContents

3.9 Illustrative Applications ..142
3.9.1 DNA Sequence Comparison Using a Shortest Path Algorithm142
3.9.2 Multiprocessor Network Traffic Scheduling142
3.9.3 Shipping Cotton from Farms to Gins ...143

3.10 Summary ..144
Key Terms ...145
Exercises ..146
References and Suggested Readings ...154

 4. Integer Programming ...157
4.1 Fundamental Concepts ..157
4.2 Typical Integer Programming Problems..159

4.2.1 General Integer Problems ...159
4.2.2 Zero–One (0–1) Problems ...159
4.2.3 Mixed Integer Problems ...160

4.3 Zero–One (0–1) Model Formulations ...161
4.3.1 Traveling Salesman Model ...161
4.3.2 Knapsack Model ..162
4.3.3 Bin Packing Model ..162
4.3.4 Set Partitioning/Covering/Packing Models163
4.3.5 Generalized Assignment Model ..164

4.4 Branch-and-Bound ..165
4.4.1 A Simple Example ...165
4.4.2 A Basic Branch-and-Bound Algorithm ...169
4.4.3 Knapsack Example ..169
4.4.4 From Basic Method to Commercial Code ..171

4.4.4.1 Branching Strategies ...172
4.4.4.2 Bounding Strategies ..174
4.4.4.3 Separation Rules ..175
4.4.4.4 The Impact of Model Formulation ..175
4.4.4.5 Representation of Real Numbers ..177

4.5 Cutting Planes and Facets ...177
4.6 Cover Inequalities ...180
4.7 Lagrangian Relaxation ...187

4.7.1 Relaxing Integer Programming Constraints..187
4.7.2 A Simple Example ...188
4.7.3 The Integrality Gap ...191
4.7.4 The Generalized Assignment Problem...192
4.7.5 A Basic Lagrangian Relaxation Algorithm ..194
4.7.6 A Customer Allocation Problem ...194

4.8 Column Generation ..197
4.9 Software for Integer Programming ..201
4.10 Illustrative Applications ..202

4.10.1 Solid Waste Management ...202
4.10.2 Timber Harvest Planning ...204
4.10.3 Propane Bottling Plants ..205

viii Contents

4.11 Summary ..206
Key Terms ...207
Exercises ..208
References and Suggested Readings ...213

 5. Nonlinear Optimization ..217
5.1 Preliminary Notation and Concepts ..218
5.2 Unconstrained Optimization ..223

5.2.1 One-Dimensional Search ..223
5.2.1.1 One-Dimensional Search Algorithm223

5.2.2 Multivariable Search: Gradient Method ..225
5.2.2.1 Multivariable Gradient Search ..226

5.2.3 Newton’s Method ..228
5.2.4 Quasi-Newton Methods ...229

5.3 Constrained Optimization ...229
5.3.1 Lagrange Multipliers (Equality Constraints) ..229
5.3.2 Karush–Kuhn–Tucker Conditions (Inequality Constraints)230
5.3.3 Quadratic Programming ..231
5.3.4 More Advanced Methods ...236

5.4 Software for Nonlinear Optimization ..236
5.5 Illustrative Applications ..239

5.5.1 Gasoline Blending Systems ..239
5.5.2 Portfolio Construction ..240
5.5.3 Balancing Rotor Systems ..241

5.6 Summary ..242
Key Terms ...242
Exercises ..243
References and Suggested Readings ...245

 6. Markov Processes ..249
6.1 State Transitions ..250
6.2 State Probabilities..256
6.3 First Passage Probabilities ...259
6.4 Properties of the States in a Markov Process ..261
6.5 Steady-State Analysis ...263
6.6 Expected First Passage Times..265
6.7 Absorbing Chains ...267
6.8 Software for Markov Processes ...271
6.9 Illustrative Applications ..272

6.9.1 Water Reservoir Operations ...272
6.9.2 Markov Analysis of Dynamic Memory Allocation273
6.9.3 Markov Models for Manufacturing Production Capability274
6.9.4 Markov Decision Processes in Dairy Farming275

6.10 Summary ..276
Key Terms ...276
Exercises ..277
References and Suggested Readings ...281

ixContents

 7. Queueing Models ...285
7.1 Basic Elements of Queueing Systems ..285
7.2 Arrival and Service Patterns ...288

7.2.1 The Exponential Distribution ..288
7.2.2 Birth-and-Death Processes ...290

7.3 Analysis of Simple Queueing Systems ..291
7.3.1 Notation and Definitions ..291
7.3.2 Steady State Performance Measures ...292
7.3.3 Practical Limits of Queueing Models ...298

7.4 Software for Queueing Models ...299
7.5 Illustrative Applications ..300

7.5.1 Cost Efficiency and Service Quality in Hospitals300
7.5.2 Queueing Models in Manufacturing ..302
7.5.3 Nurse Staffing Based on Queueing Models ..304

7.6 Summary ..305
Key Terms ...306
Exercises ..306
References and Suggested Readings ...309

 8. Simulation .. 311
8.1 Simulation: Purposes and Applications .. 311
8.2 Discrete Simulation Models ..314

8.2.1 Event-Driven Models ..314
8.2.2 Generating Random Events ...317

8.3 Observations of Simulations ...321
8.3.1 Gathering Statistics ...321

8.3.1.1 Average Time in System ...321
8.3.1.2 Average Waiting Time ...322
8.3.1.3 Average Number in Queue ..322
8.3.1.4 Server Utilization ...323

8.3.2 Design of Simulation Experiments ...324
8.4 Software for Simulation ...325
8.5 Illustrative Applications ..328

8.5.1 Finnish Air Force Fleet Maintenance ..328
8.5.2 Simulation of a Semiconductor Manufacturing Line 329
8.5.3 Simulation of Eurotunnel Terminals ..331
8.5.4 Simulation for NASA’s Space Launch Vehicles Operations................332

8.6 Summary ..334
Key Terms ...334
Exercises ..335
References and Suggested Readings ...337

x Contents

 9. Decision Analysis ...341
9.1 The Decision-Making Process .. 341
9.2 An Introduction to Game Theory...345

9.2.1 Maximin Strategy ..345
9.2.2 Maximax Strategy ..346
9.2.3 Laplace Principle (Principle of Insufficient Reason)346
9.2.4 Hurwicz Principle ...346
9.2.5 Savage Minimax Regret ..347

9.3 Decision Trees ..350
9.4 Utility Theory ..358

9.4.1 The Axioms of Utility Theory ..359
9.4.2 Utility Functions ..361
9.4.3 The Shape of the Utility Curve ..366

9.5 The Psychology of Decision-Making ...370
9.5.1 Misconceptions of Probability ...370
9.5.2 Availability ...372
9.5.3 Anchoring and Adjustment ...372
9.5.4 Dissonance Reduction ...373
9.5.5 The Framing Effect ..374
9.5.6 The Sunk Cost Fallacy ...376
9.5.7 Irrational Human Behavior ..377

9.5.7.1 What Can We Do about Irrational Behavior?378
9.6 Software for Decision Analysis ...378
9.7 Illustrative Applications ..379

9.7.1 Decision Support System for Minimizing Costs in the
Maritime Industry ...379

9.7.2 Refinery Pricing under Uncertainty..381
9.7.3 Decisions for Radioactive Waste Management383
9.7.4 Investment Decisions and Risk in Petroleum Exploration 383

9.8 Summary ..385
Key Terms ...385
Exercises ..387
References and Suggested Readings ...392

 10. Heuristic and Metaheuristic Techniques for Optimization395
10.1 Greedy Heuristics ...397
10.2 Local Improvement Heuristics ...398
10.3 Simulated Annealing ..400
10.4 Parallel Annealing ..407
10.5 Genetic Algorithms ...409
10.6 Tabu Search ..414
10.7 Constraint Programming and Local Search ..417
10.8 Other Metaheuristics ..418
10.9 Software for Metaheuristics ..419
10.10 Illustrative Applications ..420

10.10.1 FedEx Flight Management Using Simulated Annealing420
10.10.2 Ecosystem Management Using Genetic Algorithm Heuristics422
10.10.3 Efficient Routing and Delivery of Meals on Wheels424

xiContents

10.11 Summary ..426
Key Terms ...427
Exercises ..428
References and Suggested Readings ...430

Appendix: Review of Essential Mathematics—Notation, Definitions,
and Matrix Algebra ..433

Index ... 439

http://taylorandfrancis.com

xiii

Preface

This book presents a practical introduction to the field of Operations Research and serves
as a guide to the use of Operations Research techniques in scientific decision making,
design, analysis, and management. Our aim has been to create a readable and useful text
that provides not only an introduction to standard mathematical models and algorithms,
but also an up-to-date examination of practical issues pertinent to the development and use
of computational methods for solving problems. We offer a sound yet practical introduc-
tion to the mathematical models and the traditional as well as innovative solution methods
underlying the modern software tools that are used for quantitative analysis and decision-
making. Our presentations of problem formulations, solution methods, and software tools
are accompanied by illustrative applications of Operations Research techniques.

The First Edition of this book has been thoroughly updated and expanded through
the inclusion of new and timely topics, more modern perspectives on fundamental
material, revised and updated descriptions of currently available software, and the
addition of numerous new case studies that illustrate the application of Operations
Research techniques for solving important problems. This Second Edition extends the
purpose of the previous edition as a textbook for students and a professional reference
for practitioners.

We have designed this book as a text for an introductory course in Operations
Research. We target specifically the needs of students who are taking only one course
on the subject of Operations Research, and accordingly we have chosen to include just
those topics that provide the best possible one-semester exposure to the broad discipline of
Operations Research. An introductory course in Operations Research may be a required,
elective, or auxiliary course for many degree programs. In various institutions, the course
may be taught in Industrial or Mechanical Engineering, Computer Science, Engineering
Management, Management Science, Applied Mathematics, or Operations Research depart-
ments, at either the intermediate or advanced undergraduate or graduate levels.

This book may also serve as a professional reference book for corporate managers and
technical consultants. We welcome readers from a variety of subject disciplines who rec-
ognize the potential value of incorporating the tools of Operations Research into their pri-
mary body of knowledge. Because the mathematical models and processes of Operations
Research are used so pervasively in all areas of engineering, science, management, eco-
nomics and finance, and computer science, we are confident that students and profession-
als from many different fields of study will be at a substantial advantage by having these
analytical tools at hand. We hope that, in the course of studying the material in this book,
readers will be struck not only by fascination with the mathematical principles which we
will present, but also by the many and varied applications of the methods and techniques.
With the preparation provided by material in this book, readers should be in a position
to identify problems in their own special areas of expertise which can be solved with
the methods of Operations Research. In addition, this book may encourage some readers
to pursue more advanced studies in Operations Research; our presentation provides an
adequate foundation for continued study at higher levels.

Some engineering and management professionals received their formal academic train-
ing before personal computing devices and powerful workstations became so readily

xiv Preface

available and before the subsequent rapid increase in the number of sophisticated yet
accessible new software products. Such experienced practitioners, educated in traditional
mathematics, operations research or quantitative management, will find that many parts of
this book will provide them with the opportunity to sharpen and refresh their skills with
an up-to-date perspective on current methodologies in the field of Operations Research.

Important mathematical principles are included in this book where necessary, in order
to facilitate and promote a firm grasp of underlying principles. At the same time, we
have tried to minimize abstract material in favor of an applied presentation. Because our
readers may have quite diverse backgrounds and interests, we anticipate a considerable
mixture of motivations, expectations, and mathematical preparation within our audi-
ence. Since this book addresses optimization and quantitative analysis techniques, users
should have some knowledge of calculus and a familiarity with certain topics in linear
algebra, probability, and statistics. More advanced calculus is useful in the chapters on
integer programming and nonlinear optimization. Many of our students will take only
one course in the techniques of Operations Research, and we believe that the greatest ben-
efit for those individuals is obtained through a very broad survey of the many techniques
and tools available for quantitative decision making. Such breadth of coverage, together
with the mixture of mathematical backgrounds in our audience of readers, necessitates
that we temper the level of mathematical rigor and sophistication in our presentation of
the material.

Special Features

The field of Operations Research has experienced a dramatic shift in the availability of
software, from software support primarily for large mainframe computing systems to
the current proliferation of convenient software for a variety of desktop computers and
workstations. With such an abundance of software products, practitioners of Operations
Research techniques need to be aware of the capabilities and limitations of the wide variety
of software available to support today’s style of analysis and decision-making. Associated
with each chapter in this book is a section devoted to Software in which we offer a brief
description of some of the most popular software currently available specifically for solv-
ing the various types of problems presented in that chapter. (The Software guide con-
tained in Chapter 1 elaborates more fully on the purpose and use of the guides to software
in subsequent chapters.) Because software packages generally focus on a particular type
of problem rather than on a specific application area, we will organize our discussions
of software implementations according to the chapter topics which are indicative of the
problem type. Most of the cited software packages and products are applicable to a wide
array of application areas.

The information contained in these Software descriptions is not intended to represent
an endorsement of any particular software product, nor to instruct readers in the detailed
use of any specific software package. We merely mention a representative few of the broad
range of available software packages and libraries, in order to create an awareness of the
issues and questions that might arise during the development or selection of software for
solving real problems.

Computing capabilities are almost ubiquitous, and the software available for student
use is often the same industrial strength software that practitioners use for solving large

xvPreface

practical problems. Educational discounts in pricing may reflect minor limitations in the
sizes of problems that can be solved with the software, but the software used in an edu-
cational environment is likely to be very typical of software designed and distributed for
commercial application.

Instructors who wish to supplement the introductory course in Operations Research
with computing exercises and projects should have no difficulty in finding reasonably-
priced software with appropriate educational site licenses, or even free and open software.
Although computer usage has become a popular aspect of many introductory courses in
Operations Research, our intention in developing this book has been to provide support
for learning the foundations necessary for building appropriate models, and to encourage
an adequate understanding of solution methods so that students can become self-reliant
and judicious users of the many software products that have been and will be developed
for practical use.

Each of the chapters in this book is enriched by several Illustrative Applications,
drawn from the industrial, computing, engineering, and business disciplines. These
miniature case studies are intended to give the reader some insight into how the
 problem solving tools of Operations Research have been used successfully to help solve
real problems in public and private scientific, economic, and industrial settings. Details
are omitted in some cases, but references are provided for all of the illustrative appli-
cations, which may serve as the inspiration for term projects or further studies that
expand on the brief sketches given in this book. Our Illustrative Applications include
examples from the petroleum industry, wildlife habitat management, forestry, space
exploration, humanitarian relief, manufacturing, agriculture production, mining, waste
management, military operations, shipping and transportation planning, computing
systems, finance, and health care.

Near the end of each chapter, is a brief summary of the important topics presented in
the chapter. To further assist students in their review and assimilation of chapter mate-
rial, each chapter in the book contains a list of Key Terms. Definitions or explanations of
these key terms are found in the chapter discussion, and typically the key term appears
highlighted in bold type. Mastery of the content of the chapter material requires a recogni-
tion and understanding of these important terms, and the key terms should be used as a
checklist during review of the subject matter contained in each chapter.

A selection of Exercises appears in each chapter. Many of these problems and questions
provide a straight-forward review of chapter material, and allow the student to practice and
apply what has been learned from the text. In addition, some of the exercises prompt the
discovery of mathematical and computational phenomena that may not be explicitly men-
tioned in the chapter material, but which offer important practical insights. Exercises are
an essential and integral part of learning, and the exercises included in this book have been
chosen to give students a thorough appreciation for and understanding of the text material.

References and Suggested Readings are included at the end of each chapter. These
reference lists contain titles of general and specialized books, scholarly papers, and other
articles, which may be used to follow up on interesting, difficult, or more advanced top-
ics related to material presented in the chapter. In case the reader would like to consult
still other authorities, or perhaps see alternative explanations from different sources, we
maintain a website for this book at www.operationsresearch.us. The website also includes
additional support material for both instructors and students.

An Appendix at the end of the book contains a review of mathematical notation and def-
initions, and a brief overview of matrix algebra. Readers having marginal mathematical
preparation for the material in this book may find that the appendix provides an adequate

http://www.operationsresearch.us

xvi Preface

review of the mathematics essential for comprehension of introductory Operations
Research. Additional references are listed in the Appendix for those who need a more
complete review or study of mathematics.

Book Overview

This book contains material that can be covered in a single semester. A course based
on this book would cover a range of topics that collectively provide the basis for a scien-
tific approach to decision making and systems analysis. Over half of the book is directed
toward the various subclasses of mathematical programming models and methods,
while the remainder is devoted to probabilistic areas such as Markov processes, queueing
 systems, simulation, decision analysis, heuristics, and metaheuristics.

We recommend that, if time permits, the topics be studied in the order in which they
appear in the book. In particular, Chapter 2 on Linear Programming, Chapter 4 on Integer
Programming and Chapter 5 on Nonlinear Optimization might reasonably be treated as
a sequence. Similarly, Chapter 6 on Markov Processes, Chapter 7 on Queueing Models,
and Chapter 8 on Simulation form a natural sequence, since the discussions on simulation
build on the two preceding chapters. However, readers with more specific interests will
find that, after reading the first chapter, it is possible to read almost any of the chapters
without having thoroughly studied all the preceding ones.

Chapter 1 describes the nature of Operations Research, the history of the field, and how
the techniques of Operations Research are used. Since the analysis and optimization of
systems requires that mathematical models of real systems be built, we discuss some of
the principles of system modeling, a topic that will be re-visited frequently in the book.
Solving problems involves the use of computational processes, and we take this opportu-
nity to introduce algorithms and their efficiency, and the inherent complexity of some of
the problems that are solvable with the tools of Operations Research.

In Chapter 2, we study what is undoubtedly the most popular topic in Operations
Research, the creation and solution of linear programming problems. Many practical prob-
lems can indeed be modeled as linear systems: optimizing a linear function subject to lin-
ear constraints on the variables. Fortunately, a great deal of work has resulted in practical
and effective methods for solving these types of problems. We first look at the formulation
of problems in the linear programming form, then study the simplex, and other, solu-
tion methods and identify several computational phenomena that can take place when the
methods are applied to problems.

Network analysis is the subject of Chapter 3. A wide variety of problems can be mod-
eled as graph or network problems, and many algorithms have been developed for finding
paths, routes and flow patterns through networks of all sorts. Some network problems
have obvious tangible applications in the areas of transportation and distribution. Other
views of networks inspire solutions to more abstract problems such as the matching or
assignment of the entities in a system, or the planning, scheduling, and management of
the phases of projects.

In the next two chapters of the book, we study problems that are in some respects just
harder to solve than the problems seen earlier. Some of the problems are conceptually
more difficult, while some require more sophisticated mathematical solution techniques.
On the other hand, some types of problems are quite simple to describe but the solution

xviiPreface

methods seem to be prohibitively time-consuming to carry out. Chapter 4 introduces the
subject of Integer Programming, in which the problem formulations may look remark-
ably similar to the linear and network formulations seen in Chapters 2 and 3, but with the
exception that the decision variables are now constrained to have integer values. This addi-
tional requirement almost always implies that these problems require solution methods
that are in a different league, computationally, from the methods previously considered in
this book. Many interesting and practical problems are modeled as integer programming
problems, and in this chapter we introduce the best known ways to find exact solutions to
such problems.

In Chapter 5, we study an even larger and more unwieldy class of problems. Nonlinear
optimization actually includes all mathematical programming problems whose objective
or constraints cannot be expressed as linear functions of the decision variables. Because
there are so many forms of these problems, no one optimization method works for all
problems, but several representative and useful solution methods are presented.

Stochastic processes are studied in the next several chapters. In Chapter 6, we study
processes having probabilistic characteristics and behaviors, known as Markov processes.
Many practical dynamic systems can be described by simple probabilities of moving from
one state to another. For example, in a clinical setting, probabilities may be used to define
how patients respond to various treatments. Or in nature, certain weather phenomena
may occur with known probabilities during certain times of the year or under certain con-
ditions. Systems exhibiting Markov properties can be analyzed in order to determine what
the system’s most likely state is and how long it takes for a dynamic system to resolve into
this state. Some stochastic processes however never settle into any predictable set of states.
The analytical tools presented in this chapter are not tools that are directly used to optimize
a system, but rather to analyze a system and identify a system’s most likely properties. An
understanding of the most probable behavior of a system may then be used to modify and
improve the system’s performance.

Many systems can be described in terms of customers waiting to be served in some way:
human customers waiting to be served by a cashier, computational processes waiting to
be executed by a processor in a computer, or manufactured products waiting to be worked
on by a machine in an assembly-line process. Chapter 7 deals with the performance of sys-
tems that involve waiting lines, or queues. In this chapter we study queueing models and
the properties of queueing systems that can be computed on the basis of parameters that
describe the arrival rates of customers into the system and the service rates of the servers.

For some special cases, these computations can be made easily, but for more complicated
systems, analysts often resort to the use of simulation techniques. Chapter 8 presents sim-
ulation as a modeling process in which we use the computer to simulate the activities in a
real system, in order to discover the behavioral properties of the system.

Although practically all of the techniques of Operations Research can become involved
in decision-making processes, Chapter 9 takes a closer look at some of the theories and
psychological issues that are specifically related to decision making. Game theory, deci-
sion trees, and utility theory are among the more formal topics in this chapter. We then
discuss some of the human factors influencing decision making, the effects of human mis-
conceptions of probabilities, the irrational behaviors of human decision makers, and how
these difficulties can be dealt with to improve the decision making process in practice.

In the last chapter, Chapter 10, we give an overview of some of the recently developed
approaches to problem solving that practitioners have resorted to because of the inad-
equacy or ineffectiveness of the more formal traditional methods. Inasmuch as perfect
methodologies for some known-to-be-difficult problems have so far eluded analysts (and in

xviii Preface

fact may never be forthcoming!), the heuristic and metaheuristic methods presented here
are often used to obtain solutions that may be sub-optimal but often acceptable in practice.

This book contains a comprehensive collection of topics that we believe provide an
accurate and useful introductory perspective on the discipline and practice of Operations
Research. We, the authors, have prepared this book on the basis of our various experi-
ences in teaching, research, technical consulting, and systems analysis. Significant credit
goes to our own professors whose excellent instruction once introduced us to the field of
Operations Research, and whose knowledgeable enthusiasm initially sparked our interest
in the subject. Research and consulting opportunities have sustained and broadened our
awareness and appreciation of the importance of these topics.

The immediate motivation for developing this book arose from our many years of teach-
ing courses in various areas of operations research, mathematics, computer science, busi-
ness analysis, and systems engineering.

In the preparation of this edition of the book, we particularly appreciate and gratefully
acknowledge the contributions of Mariam Kotachi, Max Siangchokyoo, and Chris Knight
for their assistance with formatting the references and equations, and the help of Paul
Ticu, June Au Yeung and Kavin Fong for their help with the problems and solutions for the
first edition. Many of our students have been introduced to Operations Research through
courses in which early drafts of this book were used as text material. We appreciate these
students, notably Avinash Atholi and Russell Hyland among others, for their interest in
the subject and their careful reading of the chapters. Their constructive and insightful
responses and suggestions have contributed substantially to improvements in the presen-
tation of the material in this book. We continue to welcome feedback from our readers, and
invite comments that will assist us in keeping this book correct, up-to-date, educational,
and of practical value.

The artwork on the front cover of this book captures the philosophy and illustrates
the context in which we as Operations Researchers attempt to formulate and solve prob-
lems. Our models and methodologies (represented in the cover art by a poetic assembly
of graphs and figures) are often not firmly anchored to an idealized grid, but rather rest
upon a ground full of ups and downs, uncertainties, constant change, and incomplete
knowledge (suggested in the cover art by photographic excerpts of the Grand Canyon). The
elements in the illustration are drawn from Figures 2.6, 3.7, and 10.1 in this book; the 3D
graph is a model for Exercise 5.3, and was plotted using GeoGebra. In the cover image, the
diagrams appear to arise from the predictable grid foundation, but are actually perilously
close to the cliffs and canyons.

In order to take best advantage of our circumstances, we make fundamental assump-
tions that we know may not always be completely justifiable. But nevertheless on the basis
of this seemingly frail foundation, we have built sophisticated and reliable tools for solv-
ing important practical problems. The field of Operations Research consists of a broad
variety of analytical tools and methods which can provide essential assistance in making
informed and responsible decisions and reaching worthy goals.

xix

About the Authors

Michael W. Carter is a professor in the Department of Mechanical and Industrial
Engineering at the University of Toronto, Toronto, Ontario (since 1981) and found-
ing director of the Centre for Healthcare Engineering (in 2009). He received his PhD in
Combinatorics and Optimization from the University of Waterloo, Waterloo, Ontario. He
also spent seven years at Waterloo as a full-time Systems Analyst in the Data Processing
Department. He is a member of the Canadian Operational Research Society (CORS), the
Institute for Operations Research and the Management Sciences (INFORMS), the Health
Applications Society (of INFORMS), the Institute of Industrial and Systems Engineering
(IISE) and the Society for Health Systems (SHS). He is the Canadian representative for
ORAHS (EURO: Operations Research Applied to Health Services).

Since 1989, his research focus has been in the area of health care resource modeling and
capacity planning. As of January 2018, Dr. Carter had supervised 23 PhD students and
90 Masters and directed more than 250 undergraduate engineering students in over 100
projects with industry partners. He has over 100 former students who now work in the
healthcare industry. He is cross appointed to the Institute of Health Policy, Management
and Evaluation (IHPME) and the School of Public Policy & Governance at the University
of Toronto.

Dr. Carter teaches undergraduate courses in Healthcare Systems and Engineering
Economics. Graduate courses include Healthcare Engineering, Healthcare Research and
an Introduction to Operations Research for students in a part-time Master of Health
Administration (MHSc) in IHPME.

He was the winner of the Annual Practice Prize from the Canadian Operational Research
Society (CORS) four times (1988, 1992, 1996, and 2009). In 2000, he received the CORS Award
of Merit for lifetime contributions to Canadian Operational Research. He also received
an Excellence in Teaching Award from the University of Toronto Student Administrative
Council. He is on the editorial board for the journals Health Care Management Science,
Operations Research for Health Care, Health Systems, and IISE Transactions on Healthcare
Systems. He is an adjunct scientist with the Institute for Clinical Evaluative Sciences in
Toronto (www.ices.on.ca) and a member of the Faculty Advisory Council for the University
of Toronto Chapter of the Institute for Healthcare Improvement (IHI). He is a member of
the Professional Engineers of Ontario. In 2012, he was inducted as a Fellow of the Canadian
Academy of Engineering and in 2013, he was inducted as a Fellow of INFORMS, the inter-
national society for Operations Research and Management Science.

Camille C. Price has been a professor of Computer Science at Stephen F. Austin State
University, Nacogdoches, Texas, and she now continues her academic association as emeri-
tus professor. She has also held faculty appointments at the University of Texas at Dallas,
Richardson, Texas; Southern Methodist University, Dallas, Texas; Colby College, Waterville,
Maine; and Williams College, Williamstown, Massachusetts; and was a Visiting Scholar in
the Center for Cybernetic Studies at the University of Texas at Austin, Austin, Texas.

She holds BA and MA degrees in Mathematics from the University of Texas at Austin,
and the PhD degree from Texas A&M University, College Station, Texas, with graduate
specializations in Computing Science and Operations Research. She held a research fel-
lowship at the Jet Propulsion Laboratory of California Institute of Technology, Pasadena,

http://www.ices.on.ca

xx About the Authors

California, and subsequently was engaged as a technical consultant for research projects
at the JPL. Professional memberships include the Institute for Operations Research and
the Management Sciences (INFORMS) and the INFORMS Computing Society, life mem-
bership in the Institute of Electrical and Electronics Engineers and the IEEE Computer
Society, the Association for Computing Machinery, and the Sigma Xi Scientific Research
Society.

Dr. Price has been the principal investigator on a variety of research projects funded
by the National Science Foundation and the State of Texas. She has twice received NASA
Awards in recognition of technical innovation in task scheduling and resource allocation
in specialized computer networks. She reviews research proposals for the National Science
Foundation and the Canadian Natural Sciences and Engineering Research Council. She
has served as an advisory consultant for program accreditation assessments and curricu-
lum reviews at universities in Texas, Oklahoma, Georgia, and Jordan; and as a member of
the research advisory board for the Texas Department of Transportation. As a consultant
for IBM Corporation, she has taught courses in advanced operating systems to IBM techni-
cal employees in Tokyo, Rome, Texas, and Florida. She has been an editorial consultant and
Series Editor in Operations Research for CRC Press, and is currently the Series Editor of
the Springer International Series in Operations Research and Management Science.

Her primary responsibilities as a faculty member have involved teaching undergradu-
ate and graduate courses in computer science and operations research, serving as gradu-
ate advisor for computer science and directing graduate student research projects. She is
the recipient of Teaching Excellence Awards from her college and department; and her
research interests and activities have resulted in numerous papers published in scientific
journals and presented at conferences.

Dr. Price’s research projects have addressed various topics in Operations Research. Her
work on heuristic algorithms for mathematical programming problems has been applied
to scheduling and allocation of tasks and resources in distributed computing systems,
novel computer architectures, load balancing in multiprocessor computer systems, flow
control, routing, fault-tolerance in parallel computing systems, and design and analysis of
parallel methods for combinatorial optimization.

Ghaith Rabadi is a professor of Engineering Management & Systems Engineering (EMSE)
at Old Dominion University (ODU), Norfolk, Virginia. He received his PhD and MS in
Industrial Engineering from the University of Central Florida (UCF), Orlando, Florida, in
1999 and 1996 respectively, and his BSc in Industrial Engineering from the University of
Jordan, Amman, Jordan, in 1992. Prior to joining ODU in 2002, he worked at UCF as Post
Doc where he led NASA funded projects on developing discrete-event simulations of the
Space Shuttle ground processes. He was then a visiting assistant professor at the depart-
ment of Industrial Engineering & Management Systems at UCF. He then worked as a
research director at Productivity Apex, a modeling and simulation firm based in Orlando,
Florida.

In summer 2003, he received the NASA Faculty Fellowship where he worked on opera-
tion modeling and simulation of future space launch vehicles at NASA Langley Research
Center in Hampton, Virginia. For their work with NASA, he and his colleagues were
awarded the NASA Software Invention Award and the NASA Board Action Invention
Award. In 2008, he received the Fulbright Specialist Program Award to work with the fac-
ulty at the German-Jordanian University in Amman, Jordan.

xxiAbout the Authors

He was a visiting professor for one year at the Department of Mechanical and Industrial
Engineering at Qatar University, Doha, Qatar, in 2013–2014 academic year. He taught grad-
uate and undergraduate courses in Operations Research, Engineering Economics, and
Simulation, and collaborated with the faculty on research pertaining to port operation
simulation and optimization.

In 2016, he received ODU’s Doctoral Mentoring Award for advising 14 PhD students to
graduation over the past 14 years, and for continuing to work closely and publish with his
students. Most recently, he with a team of professors and PhD students received NATO’s
Global Innovation Challenge Award for their work on humanitarian logistics optimization.

Dr. Rabadi’s research has been funded by NASA, NATO Allied Transformation
Command, Department of Homeland Security, Army Corps of Engineers, Department of
the Army, Virginia Port Authority, Northrop Grumman Shipbuilding, MITRE Corporation,
Boeing, STIHL, CACI, Sentara Hospitals and Qatar Foundation.

His research and teaching interests include Planning & Scheduling, Operations
Research, Simulation Modeling and Analysis, Supply Chain Management & Logistics, and
Data Analytics. He has published a book, and over 100 peer reviewed journal and confer-
ence articles and book chapters. He is a co-founder and is currently the chief editor for
the International Journal of Planning and Scheduling. More information is available at www.
ghaithrabadi.com.

http://www.ghaithrabadi.com
http://www.ghaithrabadi.com

http://taylorandfrancis.com

1

1
Introduction to Operations Research

1.1 The Origins and Applications of Operations Research

Operations Research can be defined as the use of quantitative methods to assist analysts
and decision-makers in designing, analyzing, and improving the performance or opera-
tion of systems. The systems being studied may be any kind of financial systems, scientific
or engineering systems, or industrial systems; but regardless of the context, practically all
such systems lend themselves to scrutiny within the systematic framework of the scientific
method.

The field of Operations Research incorporates analytical tools from many different disci-
plines, which can be applied in a rational way to help decision-makers solve problems and
control the operations of systems and organizations in the most practical or advantageous
way. The tools of Operations Research can be used to optimize the performance of systems
that are already well-understood, or to investigate the performance of systems that are
ill-defined or poorly understood, perhaps to identify which aspects of the system are con-
trollable (and to what extent) and which are not. In any case, mathematical, computational,
and analytical tools and devices are employed merely to provide information and insight;
and ultimately, it is the human decision-makers who will utilize and implement what has
been learned through the analysis process to achieve the most favorable performance of
the system.

The ideas and methodologies of Operations Research have been taking shape throughout
the history of science and mathematics, but most notably since the Industrial Revolution.
In various ways, all of human knowledge seems to play a role in determining the goals
and limitations underlying the decisions people make. Physical laws (such as gravity and
the properties of material substances), human motivations (such as greed, compassion,
and philanthropy), economic concepts (supply and demand, resource scarcity, division
of labor, skill levels, and wage differentials), the apparent fragility of the environment
(erosion, species decline), and political issues (territorial aggression, democratic ideals) all
eventually are evident, at least indirectly, in the many types of systems that are studied
using the techniques of Operations Research. Some of these are the natural, physical, and
mathematical laws that are inherent and that have been discovered through observation,
while others have emerged as a result of the development of our society and civilization.
Within the context of these grand themes, decision-makers are called upon to make spe-
cific decisions—whether to launch a missile, introduce a new commercial product, build a
factory, drill a well, or plant a crop.

Operations Research (also called Management Science) became an identifiable discipline
during the days leading up to World War II. In the 1930s, the British military buildup

2 Operations Research

centered around the development of weapons, devices, and other support equipment.
The buildup was, however, of an unprecedented magnitude, and it became clear that there
was also an urgent need to devise systems to ensure the most advantageous deployment
and management of material and labor.

Some of the earliest investigations led to the development and use of radar for detecting
and tracking aircraft. This project required the cooperative efforts of the British military
and scientific communities. In 1938, the scientific experts named their component of this
project operational research. The term operations analysis was soon used in the U.S. military
to refer to the work done by teams of analysts from various traditional disciplines who
cooperated during the war.

Wartime military operations and supporting activities included contributions from
many scientific fields. Chemists were at work developing processes for producing high
octane fuels; physicists were developing systems for the detection of submarines and air-
craft; and statisticians were making contributions in the area of utility theory, game the-
ory, and models for various strategic and tactical problems. To coordinate the effectiveness
of these diverse scientific endeavors, mathematicians and planners developed quantitative
management techniques for allocating scarce resources (raw materials, parts, time, and
labor) among all the critical activities in order to achieve military and industrial goals.
Informative overviews of the history of Operations Research in military operations are to
be found in White (1985) and McArthur (1990).

The new analytical research on how best to conduct military operations had been
remarkably successful, and after the conclusion of World War II, the skill and talent of the
scientists that had been focused on military applications were immediately available for
redirection to industrial, financial, and government applications. At nearly the same time,
the advent of high speed electronic computers made feasible the complex and time con-
suming calculations required for many operations research techniques. Thus, the meth-
odologies developed earlier for other purposes now became practical and profitable in
business and industry.

In the early 1950s, interest in the subject was so widespread, both in academia and in
industry, that professional societies sprang up to foster and promote the development and
exchange of new ideas. The first was the Operational Research Society in Britain. In the
U.S., the Operations Research Society of America (ORSA) and The Institute of Management
Science (TIMS) were formed and operated more or less as separate societies until the 1990s.
These two organizations, however, had a large and overlapping membership and served
somewhat similar purposes, and have now merged into a single organization known as
INFORMS (Institute for Operations Research and the Management Sciences). National soci-
eties in many other countries are active and are related through IFORS (the International
Federation of Operational Research Societies). Within INFORMS, there are numerous spe-
cial interest groups, and some specialized groups of researchers and practitioners have
created separate societies to promote professional and scholarly endeavors in such areas
as simulation, transportation, computation, optimization, decision sciences, and artifi-
cial intelligence. Furthermore, many mathematicians, computer scientists and engineers
have interests that overlap those of operations researchers. Thus, the field of Operations
Research is large and diverse. Some of the many activities and areas of research sponsored
by INFORMS can be found at the website http://www.informs.org or in the journals asso-
ciated with that organization. As will be apparent from the many illustrative applications
presented throughout this book, the quantitative analysis techniques that found their first
application nearly a hundred years ago are now used in many ways to influence our quality
of life today.

http://www.informs.org

3Introduction to Operations Research

1.2 System Modeling Principles

Central to the practice of Operations Research is the process of building mathematical
models. A model is a simplified, idealized representation of a real object, a real process, or
a real system. The models used here are called mathematical models because the building
blocks of the models are mathematical structures such as equations, inequalities, matri-
ces, functions, and operators. In developing a model, these mathematical structures are
used to capture and describe the most salient features of the entity that is being modeled.
For example, a financial balance sheet may model the financial position of a corporation;
mathematical formulas may serve as models of market activity or trends; and a probabil-
ity distribution can be used to describe the frequency with which certain asynchronous
events occur in a multiprocessor computer. Mathematical models may look very different,
depending on the structure of the system or problem being modeled and the application
area. In studying the various topics in this book, we will see that models do indeed take on
various forms. Each chapter provides the opportunity to build different kinds of models.
This chapter merely makes a few general observations pertinent to all modeling.

The first step in building a model often lies in discovering an area that is in need of
study or improvement. Having established a need and a target for investigation, the ana-
lyst must determine which aspects of the system are controllable and which are not, and
identify the goals or purpose of the system, and the constraints or limitations that govern
the operation of the system. These limitations may result from physical, financial, political,
or human factors. The next step is to create a model that implicitly or explicitly embodies
alternative courses of action, and to collect data that characterize the particular system
being modeled.

The process of solving the model or the problem depends entirely on the type of prob-
lem. Solving the problem may involve applying a mathematical process to obtain a best
answer. This approach is sometimes called mathematical optimization, or mathematical
programming. In other cases, the solution process may necessitate the use of other special-
ized quantitative tools to determine, estimate, or project the behavior of the system being
modeled. Realizing that the data may have been only approximate, and that the model
may have been an imperfect representation of the real system, a successful analyst ulti-
mately has the obligation to assess the practical applicability and flexibility of the solution
suggested by the foregoing analysis. Merely finding an optimal solution to a model may be
just the beginning of a manager’s job; a good manager must constantly reevaluate current
practices, seek better ways to operate a system or organization, and notice trends in prob-
lem data that may not explicitly appear as part of a mathematical solution, such as excess
production capacity, under-utilized labor, or a decreasing product demand over time. The
entire modeling process is likely to require the skill and knowledge of a variety of individ-
uals who are able to work effectively in teams and communicate clearly and convincingly
among themselves, and then to explain and sell their recommendations to management.

Considerable skill is required in determining just how much detail to incorporate into
a mathematical model. A very accurate representation of a system can be obtained with
a large and sophisticated mathematical model. But if too many details are included, the
model may be so complex and unwieldy that it becomes impossible to analyze or solve the
system being modeled. Therefore, we do not even try to make a model as realistic as pos-
sible. On the other hand, a very simplistic model may not carry enough detail to provide
an accurate representation of the real object or system; in that case, any analysis that is
performed on the model may not apply to the reality.

4 Operations Research

It is tempting to confuse detail (or precision) with accuracy. They are not the same,
although many people are under the impression that the more detailed or complex a model,
the more accurately it reflects reality. Not all details are correct, and not all details are rele-
vant. The availability of powerful computing hardware and user-friendly software for build-
ing computer models almost seem to encourage runaway complexity and detail, as there
seems to be no limit to what can be included almost effortlessly in a model. Nevertheless,
it is possible to build models that are both realistic and simple, and doing so may spare an
analyst from losing sight of the purpose of building the model in the first place.

The best model is one that strikes a practical compromise in representing a system as
realistically as possible, while still being understandable and computationally tractable.
It is, therefore, not surprising that developing a mathematical model is itself an itera-
tive process, and a model can assume numerous forms during its development before an
acceptable model emerges. An analyst might in fact need to see some numerical results of
a solution to a problem in order to begin to recognize that the underlying model is incom-
plete or inaccurate.

The purpose of building models of systems is to develop an understanding of the real
system, to predict its behavior, to learn the limiting capabilities of a system, and eventually
to make decisions about the design, development, fabrication, modification, or operation
of the real system being modeled. A thorough understanding of a model may make it
unnecessary to build and experiment with the real system, and thus may avoid expense or
alleviate exposure to dangerous situations.

Operations Research deals with decision-making. Decision-making is a human pro-
cess that is often aided by intuition as well as facts. Intuition may serve well in personal
decisions, but decisions made in political, governmental, commercial, and institutional
settings that will affect large numbers of people require something more than intuition.
A more systematic methodology is needed. Mathematical models that can be analyzed by
well-understood methods and algorithms inspire more confidence and are easier to justify
to the people affected by the decisions that are made.

Experience in modeling reveals that, although quantitative models are based on math-
ematical truths and logically valid processes and such models may command the respect
of management, solutions to mathematical problems are typically interpreted and imple-
mented under a variety of compromising influences. Management is guided by political,
legal, and ethical concerns, human intuition, common sense, and numerous personality
traits. Problems and systems can be represented by mathematical models, and these for-
mulations can be solved by various means. However, final decisions and actions are taken
by humans who have the obligation to consider the well-being of an organization and the
people in it. Ideally, if these factors are going to influence the decisions that are made, then
these human concerns, as well as technological and financial goals and constraints, should
be incorporated in an honest way into the models that are created and analyzed. In this
way, we can gain the greatest value from our efforts in applying quantitative methods.

As a final word of advice and caution, it is suggested that before expending any substan-
tial effort in solving or analyzing a problem or system, analysts and managers should try
to confront and answer a few preliminary questions:

Does the problem need to be solved?
Will it be possible to determine what the real problem is?
If a model were developed and a solution proposed, would anybody care?
Would anybody try to implement the solution?

5Introduction to Operations Research

How much of the analyst’s time and expense is it worth to try to solve this problem?
Is there enough time and are there adequate resources available to make any signifi-

cant progress toward solving this problem?
Will the solution create other serious problems for which there is no apparent remedy?

These are difficult questions, often overlooked by an eager and motivated analyst, but they
are issues that an analyst should try to confront frankly and candidly before becoming
irreversibly involved in a large problem-solving project.

1.3 Algorithm Efficiency and Problem Complexity

An algorithm is a sequence of operations that can be carried out in a finite amount of time.
An algorithm prescribes a process that may be repetitive in some sense (perhaps iterative
or recursive), but that will eventually terminate. Practical examples of algorithms include
recipes for cooking, the instructions in an owner’s manual for connecting a new sound
system component, and computer programs that do not contain infinite loops. Algorithms
are the processes that software developers put into action when they create computer pro-
grams for solving all kinds of problems.

In the 1930s, a mathematician by the name of Alan Turing developed a general computa-
tional model (which now bears his name) that is powerful enough to represent all possible
numeric and symbolic computational procedures. Turing also demonstrated the existence
of problems for which no algorithms exist that successfully handle all possible instances
of the problem. Such problems are called unsolvable or undecidable problems. (It had
been previously assumed that an algorithm could be developed for any problem if the
problem-solver were merely clever enough.) Some of the earliest problems to be classified
as unsolvable were of only theoretical interest. However, more recently, other more practi-
cal unsolvable problems have been identified.

When such problems do arise in actual practice, we might just try to deal with special
or limited cases, rather than with the general problem. Special cases of unsolvable prob-
lems, perhaps involving highly restricted inputs, may not be unsolvable, and therefore it
may be entirely possible to design algorithms for these cases. Alternatively, we might find
it fairly simple to use human ingenuity (a very poorly defined talent that cannot be easily
automated) to deal with individual problem instances on a case-by-case basis.

While unsolvable (or undecidable) problems do exist, most analysts would prefer to
concentrate on the many important solvable problems that face us; that is, problems for
which algorithms can be developed. With this in mind, the next question to arise might
be: are all solvable problems of similar difficulty, or are there some that are truly more
difficult than others? What is meant by a difficult problem? And just what is known about
algorithms, and the complexity (or computational behavior) of algorithms? This is a topic
of study that has undergone enormous progress during the past several decades, and the
advances that have been made in this field have provided valuable concepts, notations,
and tools that allow for discussion and analysis of an algorithm’s performance.

Several factors influence the amount of time it takes for a computer program to execute
to solve a problem: the programming language used, the programmer’s skill, the hardware
used in executing the program, and the task load on the computer system during execution.

6 Operations Research

But none of these factors is a direct consequence of the underlying algorithm that has
been implemented in software. Given a particular algorithm, its performance is strongly
dependent on the size of the problem being solved. For example, we would expect a sort-
ing algorithm to take longer to sort a list of 10,000 names than to sort a list of 100 names.
Similarly, we recognize that solving a system of equations takes longer when there are
more equations and more variables. For this reason, the performance of an algorithm is
often described as a function of a variable denoting the problem size, which denotes the
size of the data set that is input to the algorithm.

During the early years of the discipline of Operations Research, relatively little was
understood about the formal properties of algorithms and the inherent complexity of prob-
lems. However, the 1970s and 1980s witnessed remarkable developments in this area. Two
interesting classes of problems have been defined. One class of problems (called class P)
contains those problems that can be solved by an algorithm within an amount of computa-
tion time proportional to some polynomial function of problem size; that is, the problems
are solvable by polynomial-time algorithms. The other class (called class NP for nonde-
terministic polynomial time) contains problems that may require the computation time to
be proportional to some exponential (or larger) function of problem size; these algorithms
are called exponential-time algorithms. For a more precise description of these problem
classes, based on the notions of deterministic and nondeterministic Turing machines, refer
to any elementary textbook on algorithms or theory of computation, such as Cormen et al.
(2009), Baase and Gelder (2000), Manber (1989), and Hein (1995).

Within the class NP, there is another special class of important problems called
NP-complete, which are characterized as being the most difficult problems in NP. This
class includes many very practical problems and so has received considerable attention
from analysts. Another class of NP problems, known as NP-hard, are at least as hard as
the hardest NP problem. Some of these NP problems, and their practical applications, are
described in Chapters 3, 4, and 10.

The problems in class P are generally considered to be easy problems—not necessarily
in the conceptual sense but in the sense that efficient algorithms for these problems exist
that execute in reasonably small amounts of computation time. NP-complete and NP-hard
problems, in contrast, appear to require computation time that grows as an exponential
function of problem size. This implies that unacceptably large amounts of computation
time could be required for solving problems of any practical size, and therefore such prob-
lems have been termed intractable problems. Solutions for such problems are not neces-
sarily difficult to conceptualize or even to implement in computer code, but the execution
time may be completely unaffordable—both physically and financially.

It is known that P ⊆ NP, but it is an open question whether P = NP. In other words,
are the NP-complete problems truly more costly to solve than the problems in P, or have
analysts just not yet been clever enough to discover efficient algorithms for these appar-
ently difficult problems? Discovery of an efficient (polynomial-time) algorithm for any
NP-complete problem would be sufficient to establish that P = NP and, therefore, that all
the NP-complete problems can be solved efficiently. In the absence of any such discovery,
analysts are faced daily with the need to solve practical problems that are computation-
ally intractable. Chapter 10 reveals how some of these problems are dealt with in effective
and affordable ways. An informative overview of this subject is available in Garey and
Johnson (1979).

Most of the problem models presented in this book are not intractable, and the solution
methods for these problems are based on polynomial-time algorithms. These methods
find optimal solutions in an amount of time proportional to a polynomial function of the

7Introduction to Operations Research

problem size. Depending on the nature of the data (e.g., the distribution of data values or
the arrangement of the data values in the data set), the execution time for a given algorithm
may vary. Sorting a list of 10,000 names that are already in order may take less time than to
sort 10,000 names that are scrambled—if the algorithm is sensitive to the initial ordering
and can take advantage of it. Similarly, finding the best solution to a system of equations
may be rather easy if a reasonably good solution is already known.

Thus, we will see that, under different circumstances, the same algorithm may require
an execution time that is a different function of problem size. If so, which of these different
functions should analysts use to characterize the performance of the algorithm? There are
several possibilities: the most favorable (fastest) case, the average case, or the most unfavor-
able (slowest) case.

To help phrase an answer to this question, special notations have been developed that
facilitate describing the computation time required to execute an algorithm to completion.
For this particular purpose, we do not want to try to capture specific information about
how an algorithm is implemented (programmed), or on what type of computer it is to be
executed; rather, we should focus on the algorithm itself and, in particular, the step count,
or the number of steps inherent in carrying out the algorithm. For some purposes, one
might want to characterize the best case performance of an algorithm (the fewest number
of steps that it could ever need under any circumstances). Best case might be the choice of
an optimist, but using this as an indicator of algorithm performance could be misleading;
and in any case, this is rarely indicative of what analysts need to know in order to assess
the dependable performance of the algorithm. For example, multiplying two n × n matrices
generally takes time proportional to n3; but of course, if one of the matrices is the identity
matrix, this could be discovered in only n2 steps (inspecting each element of the matrix)
and the rest of the process could be omitted. Using the function n2 to describe the step
count, or run-time, of a matrix multiplication routine does give an accurate measure of this
best case, but it is not generally indicative of the time required for matrix multiplication.

An algorithm’s average case performance may seem to be the most practical character-
ization because it indicates the typical, or expected, step count. It would certainly be useful
to know the most likely amount of time required to execute an algorithm. However, because
such an analysis must be based on statistical assumptions about the nature, order, or dis-
tribution of the data on which the algorithm operates, the validity of such assumptions
may be on shaky ground for any particular set of data. Indeed, the expected performance
may never actually be observed for any given set of input data. In addition, the statistical
analysis that must be carried out in order to characterize an algorithm’s average behavior
is often quite a mathematically difficult analysis.

The characterization of an algorithm that is both straightforward and often of greatest
practical value is the worst case performance, that is, the greatest number of steps that may
be necessary for guaranteed completion of the execution of the algorithm. For this purpose,
we introduce big-Oh notation, which is written as O(f(n)) and pronounced “big Oh of f
of n,” where n denotes problem size and f(n) is some function of problem size. The mean-
ing of the notation is as follows. An algorithm is said to be O(f(n)) if there exist constants c
and n0 such that for all n > n0, the execution time of the algorithm is ≤ c · f(n). The function
f(n) is the algorithm’s worst case step count, measured as a function of the problem size.
The constant c is called a constant of proportionality and is intended to account for the
various extraneous factors that influence execution time, such as hardware speed, program-
ming style, and computer system load during execution of the algorithm. The problem size
threshold n0 accounts for the fact that for very small problem sizes, the algorithm may not
reveal its characteristic worst case performance. Paraphrased, the definition given above

8 Operations Research

may be stated as follows: To say that an algorithm is O(f(n)), or “of order f(n),” means that for
large enough problem sizes, the execution time is proportional to at most f(n).

Thus, a matrix multiplication algorithm is O(n3) because the process may take n3 steps,
although the algorithm could be programmed to look for special input forms that may in
certain cases permit completion of the task in fewer than n3 steps. Some algorithms may
operate in such a way that their worst case performance is also the best case; the per-
formance of such algorithms does not vary depending on the nature of the data, but, of
course, does vary with problem size.

There are even some algorithms whose performance is independent of problem size, and
therefore not really dependent on any function of problem size n (e.g., retrieving the first
item in a list takes the same amount of time regardless of the length of the list). If we need
to describe the worst-case performance of such an algorithm, we could use the notation
O(1), where f(n) is just the constant function 1. Where appropriate throughout this book,
the big-Oh notation is used to describe the worst case performance of the algorithms that
are presented.

Many of the methods studied in this book are based on algorithms whose complexity
functions range from n, n2, n3, up to 2n, n!, and nn. To give an idea of the relative growth
rates of these functions as n increases, Table 1.1 shows indications of function values.
Instead of raw numeric values, we can impose a more practical interpretation and assume
that the function values f(n) denote the step count of some algorithm, and that each step
can be executed in 1 second on a computer. The entries in the table can then be viewed
as estimates of actual amounts of the computation times required to apply algorithms of
different complexities to increasingly larger problems of size n. The great differences that
are evident between the polynomial functions and the exponential functions are quite
dramatic, and the execution times for the exponential algorithms are indeed staggering.

In practical applications, problem sizes may well range into the hundreds of thousands,
and we will encounter a number of important practical problems for which the only known
algorithms have worst case complexity that is exponential. It is obvious from the table
that such exponential-time algorithms are completely useless for solving problems of any
reasonably large size. Given this dilemma, what are the options? It is pretty clear that, for
these types of problems, faster hardware does not offer an immediate solution; CPU chips
whose processing speeds are doubled, or even increased by several orders of magnitude,
will not make a dent in these formidable execution times. Until some theoretical break-
throughs come to the rescue that suggest new algorithms for solving such problems, we

TABLE 1.1

Computation Times

f(n) n = 10 n = 20 n = 50 n = 100

n 10 s 20 s 50 s 100 s
n2 100 s 400 s ≈ 7 min 2,500 s ≈ 42 min 10,000 s ≈ 2.8 h
n3 1,000 s ≈ 17 min 8,000 s ≈ 2 h 125,000 s ≈ 35 h 1,000,000 s ≈ 12 d
2n 1,024 s ≈ 17 min 1,048,576 s ≈ 12 d 1.126 × 1015 s ≈

350,000 centuries
1.268 × 1030 s ≈ 1021

centuries
n! 3,628,800 s ≈ 1 month 2.433 × 1018 s ≈ 109

centuries
3.041 × 1064 s ≈ 1055

centuries
nn 1010 s ≈ 300 yr 1.049 × 1026 s ≈ 1017

centuries
8.882 × 1084 s ≈ 1075

centuries

9Introduction to Operations Research

may have to settle for using methods that do not solve the problems perfectly, but which
yield acceptable solutions in an affordable amount of computation time. This may seem
to be a disappointing direction to follow, but the discussion in Section 1.4 might provide
convincing arguments in defense of suboptimal solutions.

1.4 Optimality and Practicality

Everyone with a mathematical education has been trained to search for exact solutions to
problems. If we are solving a quadratic equation, there is a formula which, if applied cor-
rectly, yields exact results, namely values that satisfy the equation. If a list of names needs
to be sorted, we employ an algorithm that gets the list perfectly ordered. And if we need to
find the maximum point in a continuous, differentiable function, we may be able to use the
methods of calculus to find that optimal point. And certainly in the case of giving proofs
of mathematical theorems, a respect for truth and perfection has been developed, and a
nearly correct but incomplete or slightly flawed proof is of little or no value at all. Against
this backdrop, the idea of solving a problem and not getting the right answer is indeed
disappointing and disturbing. Yet there are justifiable reasons for accepting computational
results that are imperfect or suboptimal.

First, it has already been pointed out that the models created by an analyst are not per-
fect representations of a system being analyzed. So, even if we could obtain exact solutions
to the model, such solutions would not necessarily constitute exact solutions or perfect
managerial advice to be applied within the real system. Hence, costly efforts to achieve
perfect solutions to a mathematical model may not be warranted.

Contributing to the imperfection in our problem-solving endeavors is the use of auto-
matic computing devices to assist in the calculations. The exact representation of real num-
bers requires the use of an arbitrarily large number of binary digits. However, the finite
number of bits, sometimes known as word length, typically used for storing numerical
values in computer memories implies that real numeric data values cannot always be rep-
resented exactly in computers. As an example, a correct representation of the value pi
requires infinitely many digits, but we often settle for a truncated approximation using
seven or eight significant digits (such as 3.141592) and tolerate the resulting inaccuracy in
the results. This is known as round-off error, and after repeated calculations involving
many inexact values, the accumulated round-off error can so distort the final results that
they bear little resemblance to the pure theoretically correct answers that were anticipated.
Hardware standards, such as the IEEE Floating-Point Standard, and results from the well-
developed field of numerical analysis have provided analysts with tools to define, mea-
sure, and place bounds on the effects of accumulated computational errors, but being able
to predict these errors does not necessarily suggest any method for avoiding or correcting
erroneous results.

It is known that the data values associated with some types of problems, such as
matrix problems and solving systems of equations, are inherently ill-conditioned, and cer-
tain computational procedures, such as matrix operations or iterative searches designed
to converge to a solution, are inherently unstable. In some cases, although the algorithm
underlying a solution process might be proven to yield optimal results, ill-conditioned
problem data and numerical instability can practically preclude obtaining solutions of any
reasonable quality. For further discussions on the successful use of numerical techniques

10 Operations Research

with computers, refer to any reputable book on numerical analysis, such as by Cheney and
Kincaid (2013), Sauer (2011), and Wilkinson (1963).

Finally, the innate difficulty of some problems might suggest that accepting suboptimal
solutions is the only practical approach. Problems whose algorithms take an exponential
amount of computation time to guarantee a perfect, or optimal, solution leave us little
alternative but to look for faster ways of obtaining solutions, even at the price of getting
solutions of lesser quality. Suppose we are faced with the choice of expending an expo-
nential amount of time (perhaps translating into centuries of computation time) to obtain
an optimal result, or expending polynomial-time computational effort to obtain a solution
that is adequate. In some cases, there may be a guarantee that the polynomial-time solu-
tion will be within some specified percentage of the optimal solution. In other cases, there
may be no such guarantee, but perhaps experience has shown that in common practice
the results are considered to be good enough for the context in which the solution is to
be applied. Realizing also that the optimal result may be the solution to the wrong model,
that the optimal result may be infused with round-off error, and that the data used as
parameters might have been flawed and could have changed over time, a realistic analyst
would probably feel completely justified in applying the polynomial-time algorithm to
obtain a practical solution quickly, and feel no remorse whatsoever over having foregone
the chance to obtain a slightly better solution. Given our very imperfect grasp on the con-
cept and reality of perfection, the price of optimality—in this case and in many others—is
entirely impractical.

Settling for solutions of merely good enough quality may at first seem to be an inexcus-
able lowering of one’s standards and expectations. Yet in a complex and in some ways
subjective world, compromise should not necessarily be seen as evidence of mediocrity.
In the real world of imperfect models, precarious data, unavoidable numerical inaccura-
cies, and time constraints, insistence upon so-called optimal solutions may border on the
compulsive. A rational analyst with a comprehensive view of the problem-solving process
would prefer to spend a reasonable amount of time in search of good, practical solutions,
and then proceed to put the results into practice to achieve the original goal of improving
the performance or operation of the system being studied. Chapter 10 introduces some
of the inspiration and influences behind solution methods that incorporate pragmatic
approaches to solving difficult problems.

1.5 Software for Operations Research

Each chapter in this book contains a section on software tools, in which there is a brief
description of some of the most popular software currently available for solving the types
of problems studied in the chapter. The principles and methods presented in each chapter
are intended to provide the foundations necessary for building and understanding
appropriate models. The authors’ aim is to encourage an adequate understanding of the
mathematical principles and methods for solving problems so that students can become
informed users of the software that is available to them.

Because there is no single software system that is capable of solving all optimization
and system analysis problems, the user must be knowledgeable enough about the various
classes of problems to make a selection of appropriate software packages. Thus, being
able to build a mathematical model of a problem and being able to identify that model as

11Introduction to Operations Research

a linear program, integer program, or network problem, for example, not only helps to
clarify the model, but also puts the analyst well on the way to selecting the right software
for solving the problem.

The most visible users of commercial software may be the people who actually run appli-
cation systems that contain optimization modules. However, playing even more essential
roles in the process are the analysts who formulate the mathematical models and who
adapt and refine the standard algorithms, and the developers of the software packages
who incorporate optimization modules (sometimes called solvers), together with applica-
tion systems and user interfaces. In our discussions, we will address various practical
issues that are important to all software users.

The references to software products in this and subsequent chapters are by no means
exhaustive and are not intended to comprise a comprehensive catalog of available soft-
ware. Instead, we hope to give readers a feel for the types of products that are on the mar-
ket and that may deserve their consideration when selecting implementations for practical
applications.

Note also that our references to software tools are not intended to represent endorsement
of any specific software products. Rather, we merely mention examples from the broad
range of software available for the various application areas and offer short descriptions
of selected software packages and libraries, in order to create an awareness of the general
capabilities of typical software, as well as some of the questions, difficulties, or limitations
that might arise during the development or use of software for solving real problems.

New products are being introduced rapidly, and it would be impossible to maintain a
perfectly up-to-date list of software tools. Advertisements and published product reviews
are helpful and, in particular, the software reviews that appear frequently in issues of
OR/MS Today are an extremely valuable source of information.

We have avoided making any comparisons of products on the basis of performance
or cost. Performance depends on the underlying hardware as well as on the frequent
updates and modifications that occur during the evolutionary development of the soft-
ware. Software prices vary rapidly, depending on competition in the market, whether the
purchaser or user is in academia or industry, and whether copies are sold for installations
in individual workstations, client/server, or cloud-based versions intended for multiple
users. More expensive commercial versions of some software may handle larger problem
models and solutions, while the less expensive personal versions or student versions may
be limited in the size of problems that can be solved.

In light of the above considerations, a few of the pertinent characteristics and features
that will likely play a role in the reader’s consideration of software products are high-
lighted. Each chapter’s discussion covers software related to the topics covered in that
chapter. In this first chapter, no specific solution methods are introduced; however, there is
discussion of some of the general principles of building mathematical models. Thus, some
software systems that facilitate the construction of models (i.e., modeling languages and
environments) and the preparation of model parameters and characteristics are identified.
These representations of models can then be introduced as input to various other software
solution generators, or solvers.

One way to create a problem model to be solved with a specialized solver is to use a
general-purpose programming language (such as C, C++, Python, or Java) and write a
program to format input parameters appropriately and to generate output reports in the
desired form. The advantages of this approach are that such languages are typically avail-
able and usable on any hardware, and there is no need to purchase and learn a new lan-
guage or package.

12 Operations Research

An analyst who creates models in this way can then choose to solve the problem using
available software such as is found in the IMSL Mathematical Subroutine Library. A
comprehensive collection of approximately 1300 mathematical and statistical functions
and user-callable subroutines is capable of solving most of the types of problems that will
be studied later in this book. The IMSL libraries are ideal for programmers skilled in C, C#,
Java, and Fortran, and are available for use on Windows, Unix, Linux and MAC computers.
The IMSL software system has been used by developers worldwide for four decades, and
is still considered by many to offer valuable autonomy to the user and thereby accelerate
development of applications in many contexts (Demirci 1996).

The initial simplicity and low-cost investment associated with this approach, however,
may be paid for in the long term, as code written and customized for one modeling project
may not be directly transferrable and reusable on subsequent projects. Nevertheless, there
can be some value in maintaining direct in-house control over the development and con-
struction of software solutions.

For some types of problems, the row and column (tabular) orientation of problem param-
eters offered by many spreadsheet programs is easy to create and read; and although the
analyst loses some flexibility, many problems lend themselves nicely to the spreadsheet
framework. Moreover, many solvers can read and write directly to spreadsheet files.

A much more powerful means for creating models is through the use of algebraic
modeling languages. These languages permit the user to define the structure of a model
and declare the data to be incorporated into the structure. An algebraic modeling lan-
guage accepts as input the analyst’s algebraic view of the model, and creates a representa-
tion of the model in a form that the solver algorithm can use. It also allows the analyst to
design the desired output reports to be produced after the solver has completed its work.
Modeling languages can be bundled with a solver or optimization module, or can allow
the user to customize an application system by selecting the best optimization component
for the job. Among the most commonly used modeling languages are the following.

AMPL, a modeling language for mathematical programming, is an integrated
software package for describing and solving a variety of types of problems.
Developed initially by AT&T Bell Labs, it is a complex and powerful language
that enables model developers to effectively utilize the system’s sophisticated
underlying capabilities. AMPL is a command and model interpreter that is
available in Windows, Linux, MacOS, and several Unix-based workstations,
and interfaces with over 30 powerful optimization engines including MINOS,
CPLEX, OSL, GUROBI, and many of the most widely used large-scale solvers.
AMPL features an integrated scripting language, provides access to spreadsheet
and database files, and has application programming interfaces for embedding
within larger systems. A review of AMPL and its use can be found in Fourer
et al. (1993) and at www.ampl.com.

MPL is a mathematical programming language that is considered one of the earliest
integrated model development systems that supports input and output through
interfaces with databases and spreadsheets. MPL is most commonly used with
Windows and interfaces with and supports almost all commercial solvers.

LINGO is a thoroughly integrated modeling language and solver that interfaces
with the entire LINDO system family of linear and nonlinear problem-solvers.
(LINDO products are mentioned in several subsequent chapters, as this line of
software offers application tools for a wide variety of types of problems, as further

http://www.ampl.com

13Introduction to Operations Research

described at www.lindo.com.) This powerful modeling language features a conve-
nient environment for expressing problems, facilitates using information directly
from text files, spreadsheets, and databases, provides access to a comprehensive
set of built-in solvers that handles a wide range of model types, and generates
output reports as well as graphical displays during and upon completion of the
solution process. LINGO runs on Windows, Mac and Linux systems.

AIMMS has emerged from its original role as a basic modeling language into a
comprehensive, innovative technology company offering sophisticated modeling
and solution platforms that support both strategic and operational optimization,
decisions, planning and scheduling. A full description of AIMMS is available at
www.aimms.com.

SAS/OR OPTMODEL is an optimization modeling language that uses a flexible
algebraic syntax for model formulation for different types of mathematical pro-
gramming problems including linear, mixed integer and nonlinear programming.

GAMS, a general algebraic modeling system, was one of the earliest developed
modeling languages, and is now among the most well known and widely used
modeling systems for large scale optimization. GAMS links to libraries and pro-
gramming languages, databases and spreadsheet files, and runs on Windows,
Macintosh, Linux, and IBM platforms. GAMS is best known for its sophisticated
solvers for the full range of optimization problems and for its graphical interface
generator. More information on this system may be found at www.gams.com.

Software for Operations Research is also available through the Internet. As any knowl-
edgeable computer user must know, products (be they information, software, or more tan-
gible items) offered on the Internet may not always be subject to the same standards of
quality and control that are imposed on other avenues of commerce. The source, authen-
ticity, quality, and reliability of software or any other information posted on the Internet
may be difficult to confirm. Despite these concerns, the Internet has nevertheless become
one of the most exciting sources of information available today. With so many kinds of
services available online, it makes sense that computational and analytical services and
tools should be found there, too. For example, in 1994, a group of researchers at Argonne
National Laboratory and Northwestern University launched a project known as the
Network-Enabled Optimization System (NEOS), which now includes a large number of
solvers that accepts models in various formats, solves them on remote servers, and pres-
ents the results to the user for free. The NEOS server is hosted by the Wisconsin Institute
for Discovery at the University of Wisconsin in Madison, and provides access to more than
60 state-of-the-art solvers in more than a dozen optimization categories. Solvers hosted
by the University of Wisconsin run on distributed high-performance machines; remote
solvers run on machines at Argonne National Laboratory, Arizona State University, the
University of Klagenfurt in Austria, and the University of Minho in Portugal. The NEOS
project has been effective in providing information, communication, and high quality
software as a valuable service to the operations research community.

Of great interest also is the COmputational INfrastructure for Operations Research,
known as COIN-OR, which is a project dedicated to providing open-source software for
the Operations Research community (Lougee-Heimer 2008). It encourages and supports
the development of high-quality software suitable for use by a broad range of practitio-
ners, educators, and students working in industry, academia and government. This col-
lection of robust and portable software includes computational tools powerful enough for

http://www.lindo.com
http://www.aimms.com
http://www.gams.com

14 Operations Research

large collaborative project development, yet accessible to less experienced users as well.
Much of the software is structured into building blocks which may be modified to suit
the needs of an individual user and combined to create customized application packages.
Software components have been used compatibly with proprietary languages and soft-
ware products. COIN-OR software modules are available for constrained optimization,
linear and nonlinear, continuous and discrete problems. Source distributions are provided
in standard open source configuration, and precompiled binary distributions are available
for Windows and Linux on Intel and AMD platforms, and for Mac OS X on Intel and Power
PC platforms.

COIN-OR began in the year 2000 as an initiative of IBM Research, and was incorporated
four years later as an independent nonprofit foundation responsible for directing the activ-
ities of the organization. Professional technical leaders from universities and research lab-
oratories have continued to work diligently since the founding of COIN-OR to standardize
the infrastructure and maintain a stable and reliable repository of software. INFORMS
computing and optimization societies regularly sponsor workshops and conference clus-
ters to acquaint prospective users with the wide variety of freely available software that
serves the computational needs of operations researchers. Further information about this
ambitious and valuable project may be found at www.coin-or.org.

The open source movement has demonstrated over the years that high quality software
systems can actually be produced by contributors who volunteer their time and experi-
ence to make their products available for other people, hoping that in return people will
contribute back. This has been an interesting approach that showed tremendous success
and even for-profit companies started to participate in this model as it turned out that it
pays off on the long run. For example, Google offers open source codes and binaries for
Operations Research tools (solvers, interfaces, algorithms) in different computer languages
and for different operating systems. More is available on Google’s website.

1.6 Illustrative Applications

1.6.1 Analytical Innovation in the Food and Agribusiness Industries (Byrum 2015)

Food and agribusiness currently represent a $5 trillion industry that amounts to 10% of
consumer spending globally. Food production broadly demands about 40% of employ-
ment worldwide. And yet, despite the enormity and apparent success of the industry, there
is still hunger in many parts of the world.

The global population, currently at over seven billion, is expected to increase by
around two billion over the next few decades, and the demand for food crops needed
for consumption by humans and their animals is predicted to double. These staggering
requirements for nutrition must be met in a context of changing climate and environ-
mental conditions, without further uncontrolled greenhouse gas emissions and destruc-
tion of arable land and other natural resources, and with an amount of water that will
likely be only about two-thirds of what is actually needed for crop irrigation. The chal-
lenges of meeting the increasing demand for food production seem daunting, however
we can look toward a radically more ambitious application of Operations Research tech-
niques that can improve efficiency and productivity within the food and agribusiness
industries.

http://www.coin-or.org

15Introduction to Operations Research

Agriculture already is a very information intensive enterprise. Data are gathered regu-
larly on soil conditions, weather, market demands, and prices. Livestock feeds are rou-
tinely measured for weight, moisture, and nutritional content. On another level, farmers
must deal with data that describe their own specific operational processes and associ-
ated risk management as well as with technical, regulatory, and policy issues. Information
technology advances such as mobile and remote sensing devices, and satellite image data
analysis, all contribute to the mix of inputs that must be processed by powerful analyti-
cal capabilities. This vast amount of accumulated information will require increasing
amounts of database storage, networking, communication, and more powerful and spe-
cialized computational and optimization capabilities.

Food producers are technologically sophisticated. Advances in science, technology, and
Operations Research all play a role in addressing problems of economic efficiency, social
responsibility, and gainful productivity in agribusiness. Leading international innovators
in plant genetics have created customized operations research tools in developing new
specialized breeds of seeds that produce higher yields which approximately tripled their
annual increases in yield over what had been achieved before the use of these more ele-
gant and powerful analytic techniques. Improvements in their seed products led to genetic
gains valued at nearly $300 million over a recent four-year period.

New advances in Operations Research, including theoretical and abstract concepts, can
be expected to contribute new analytical tools that can be skillfully applied to real prob-
lems. Formal methods will have to be adapted by knowledgeable analysts and applied to
the actual problems faced by farmers, ranchers and related food production practitioners
to produce practical and tangible results.

Revolutionary changes in agriculture are going to be critical to our ability to provide
food for the increasing world population. Researchers and practitioners in agricultural
production will benefit from their acquired knowledge and experience with traditional
and innovative methodologies in operations research, but they nevertheless will face dif-
ficult challenges as they apply these tools to create practical solutions that will be effective
and workable in a context of new technologies, changing human needs, environmental
transitions, and evolving political factors.

1.6.2 Humanitarian Relief in Natural Disasters (Battini et al. 2014)

Humanitarian relief operations play an increasingly important role in a world stressed by
population growth, urban residential density, natural resource use and depletion, global
warming, and economic and political factors. Urgent humanitarian needs occur in places
where food, water and medical supplies are constantly in demand, requiring routine and
sustainable distribution of supplies to save lives and mitigate human suffering. In such
situations, analysts regularly study available data to assess the needs, identify sources for
supplies, evaluate transportation options, and plan for timely and predictable delivery of
appropriate supplies to the most critically vulnerable and to those most urgently in need.

Even greater logistical challenges are presented when natural disasters occur (Wex et al.
2014). Earthquakes, floods, hurricanes, tsunamis, and fires, for example, often cause sud-
den and immediate injuries and loss of life, destruction of basic shelter perhaps requiring
evacuation and relocation of victims, and interruption of normal availability of food and
supplies. And in just such circumstances, relief operations may be seriously hampered:
analysts may have only limited access to reliable information with which to identify the
locations where rescue crews are needed, the extent of injury and destruction, the status of
resources and supplies, and the usability of various modes of transport. Communications,

16 Operations Research

water, and basic elements of infrastructure may have fallen prey to the disaster, and local
decision making may have become impossible. Managing and executing the logistics of an
efficient humanitarian supply chain in response to emergency needs arising from natural
catastrophic destruction is an enormous and complex challenge.

In 2010, Haiti experienced a devastating earthquake that measured 7.2 on the Richter
scale. Casualties were high with approximately a quarter of a million people killed
and an even greater number of injured survivors. More than half of government and
school buildings in Port-au-Prince and in the south and west districts of the country
were destroyed or damaged. Financial loss related to the quake exceeded Haiti’s entire
2009 gross domestic product. Overall, nearly 3.5 million people were affected by this
catastrophic event.

Relief efforts typically begin by dispatching emergency rescue units into the areas of
destruction, with the aim of reducing casualties and identifying longer term needs. Indeed,
relief teams arrived in Haiti from various agencies such as the United Nations, International
Red Cross and Red Crescent, the World Food Programme, and UNICEF. Their immediate
focus was on delivering temporary shelter such as: blankets, tents, tarpaulins, and mos-
quito nets; food kits and water cans; and sanitation/hygiene kits.

The Haitian transport infrastructure was reported to have been very weak even
before the earthquake hit, therefore delivering supplies through uncharted damaged
areas to the earthquake victims was a difficult challenge. A plan to distribute relief
supplies had to be devised, but as is often the case in the humanitarian field, data was
incomplete or non-existent. A preliminary step in providing humanitarian aid is to
find a means of collecting data, defining the type, extent, and locations in need of help,
assessing the status of communication and transportation systems, and identifying
sources capable of providing food and supplies and knowledgeable emergency staff
personnel.

Pre-existing road network data were helpful in identifying all available routes and the
current condition of roads. And from an inventory of available fleet vehicles (trucks and
helicopters), it was possible to determine the cost of operation of each type of vehicle,
which ones were undamaged, where they were currently located, and estimates of the
time required for each type of vehicle to follow each available route.

Through cooperation among the agencies, food kits and hygiene kits were packaged in
containers of the same size and shape for ease of transport, storage and delivery. Although
food supplies were provided by different agencies than were the hygiene supplies, the
uniformly shaped kits could be efficiently stacked and mixed together arbitrarily on the
different types of delivery vehicles as needed.

Research analysts had already developed an elaborate network routing model to
describe the logistics of general distribution processes, and this previous work was
successfully amended to address the Haitian disaster requirements. The purpose ulti-
mately is to find the best and most efficient possible way to deliver supplies to meet the
needs of disaster victims; and this was accomplished by varying the type and number
of vehicles allocated to achieve the lowest cost distribution plan. Further modifications
to the model allowed for consideration of changes in the availability of supplies at their
source (based on when and how much assistance could be mustered by the interna-
tional agencies) and changes in the expected number of people assisted for each deliv-
ery to a given location.

Based on the acquired data, the demand for supplies, and the operational constraints, a
mathematical model was developed, and was optimized for the Haitian earthquake sce-
nario. The complex problem described in this way was then expressed in a special form

17Introduction to Operations Research

using the GAMS modeling system, and was solved with CPLEX software executed on an
Intel-based PC running Windows 7. The computational results were then interpreted by
analysts, and a distribution plan was created to guide the efficient and effective delivery of
food and supplies.

Analytical approaches have been applied to some extent in the past to create workable
distribution systems. However, modern research to significantly improve the effective-
ness and efficiency of relief operations is relatively recent. Although every natural disas-
ter presents its own characteristic details, it has been shown here that the modeling and
computational tools developed in basic Operations Research can be adapted to the specific
needs of distributing available supplies for humanitarian relief in the wake of a natural
disaster.

1.6.3 Mining and Social Conflicts (Charles 2016)

Peru has become one of the best performing economies in Latin America during recent
years. Peru’s model of economic growth has been driven by its mining industry and the
associated potential for remarkable productivity. This country contains approximately
22% of the world’s silver, 13% of copper reserves, and smaller but globally significant per-
centages of zinc, lead, tin, and gold reserves. Productivity is high, with Peru being the
world’s third largest producer of copper, silver, and zinc.

Although investment commitments in mining operations increased and reached over
$40 billion during the period 2011–2016 to support a portfolio of mining projects, there
have nevertheless been delays or lapses in implementing many of the projected min-
ing activities. The delays have frequently been related to uncertainties involving social
issues and conflicts. Local community concerns seem to be centered around environmen-
tal issues such as contamination of land and water, and the failure to improve everyday
services such as health and education for the local populations. Local communities had
anticipated greater benefits and services to accrue from the lucrative mining industry, but
were disappointed by the lack of actual and apparent improvements in their daily living.
Peru’s wealth of natural mineral resources did not seem to have transformed and enriched
the social and environmental structure nor brought to Peruvian communities the general
prosperity that had been hoped for.

Poor communication and a perceived mismatch between mining priorities and social
concerns led to conflicts that have resulted in the inability of some mines to continue
operations. Through the years, many attempts were made to resolve conflicts, including
forcing consultation between indigenous communities and the mining industry concern-
ing infrastructure impact prior to mine development. It became evident that the various
parties held vastly divergent perspectives on underlying problems. As an example, some
Peruvian communities view the land as sacred, so any disturbance or relocation due to
mining activities is considered a sacrilege and yet seems to be an inevitable aspect of any
possible economic development.

Interactions among conflicting parties were mired in a complex mixture of misunder-
standings, ambiguities, uncertainties, and insensitivities, so that attempts at meaningful
communication and cooperation were often unsuccessful. Expectations and perceptions
were so unclear or at cross-purposes that goals and objectives could not be well defined.
The traditional mathematical modeling tools and established practices of Operations
Research were useful only for studying specific and narrow avenues for progress in rather
small contexts, but proved ineffective in addressing and overcoming most of the larger
and more difficult issues.

18 Operations Research

With initiatives from the CENTRUM Católica Graduate Business School, some reason-
able approaches were defined and followed to try to deal with the unstructured aspects of
the dilemma. It had been generally assumed that mining companies that were perceived
as having a more socially and environmentally responsible position were less likely to
be involved in social conflicts, but analysts initially found little hard data to support or
clarify this perception. Mining firms file corporate social responsibility (CSR) reports
annually or periodically over many years, but the content of these reports had not been
analyzed to determine the companies’ actual commitment and discipline in adhering
to the stated strategies. The job of reviewing the huge volume of accumulated reports
was overwhelming, but the challenge was addressed by CENTRUM in collaboration
with Cornell University. This team of researchers cooperatively devised machine learn-
ing approaches to extract data from the CSRs for analyzing and profiling the mining
companies’ practical commitment to sustainability. Preliminary results of this analysis
proved to be an extremely important first big step toward matching actual practice with
the ideals of sustainability.

In an effort to better understand and address socio-cultural issues, these analysts identi-
fied the following constituencies whose positions needed to be heard:

• Local communities and their needs for water, land, and respect for their cultural
values

• Mining and associated industries and companies
• Government and state organizations
• Environmentalists with credible environmental constraints assisted and advised

by technical innovation centers which included experts in Operations Research

Perhaps for the first time, researchers were able to take actions to help define and state the
needs, expectations, goals, and tolerances of each of these constituencies. A platform was
created for stating and discussing each group’s ideals, and for comparing ideals versus
currently existing conditions. By formally allowing and facilitating interaction among the
various parties involved, it became possible to encourage cooperative analysis of feasible
and desirable changes that could be made in the mining industry.

Conflicts based on uncertainty and misunderstandings were now being replaced by
meaningful discussions aimed toward structuring and realistically conceptualizing the
problems and goals expressed by both the mining companies and the local communities.
With better understanding all around, and with well founded expectations for continued
further progress, it is hoped that future collaboration will lead to formulating new models
for solving the technical problems in operations, economics, social order, and sustainabil-
ity for the development of Peru’s natural resources.

1.7 Summary

Operations Research consists of the use of quantitative methods for analysis, optimiza-
tion, and decision-making. The ideas and methods of Operations Research began to take
shape during World War II, and thereafter have been put to good use in a wide variety of
industrial, financial, government, nonprofit, and scientific endeavors.

19Introduction to Operations Research

Central to the theory and practice of Operations Research is the use of mathematical
models to represent real systems or processes. A skillfully constructed model embodies
enough of the details of the real entity being modeled so that it captures the essential
characteristics of the entity, yet is simple enough so that the model can be studied using
standard analytical techniques. In addition, successful modeling depends on a human
analyst’s knowledge, experience, intuition, and good judgment.

Algorithms are computational processes that can be applied to the structures within
mathematical models. The performance of algorithms is often measured by the amount of
computer time required to apply the algorithm. Depending on the type of problem being
solved, algorithms may execute very rapidly (efficiently), or their execution may take so
long that the algorithm is essentially worthless for actual problems. This book makes a
special point of indicating, where possible, just what level of performance can be expected
of each of the computational methods presented in this and subsequent chapters.

Many algorithms are designed to solve their targeted problems perfectly; but with
imperfect or incomplete models and uncertain data, and the limited numerical accuracy
of computer hardware, it should be recognized that it may be more sensible and easily
justifiable to develop problem solutions that are less than optimal, but adequate for a given
application. It may be necessary to compromise the quality of solutions in order to obtain
solutions within a reasonable amount of computation time.

Key Terms

accumulated round-off error
algebraic modeling languages
algorithm
average case performance
best case performance
big-Oh notation
decision making
exponential-time algorithms
mathematical model
mathematical optimization
mathematical programming
model
NP-complete
NP-hard
polynomial-time algorithms
problem size
round-off error
solvable problems
solvers
step count
undecidable problems
unsolvable problems
worst case performance

20 Operations Research

References and Suggested Readings

Adam, E. E., and R. J. Ebert. 1992. Production and Operations Management: Concepts, Models, and
Behavior. Englewood Cliffs, NJ: Prentice Hall.

Assad, A. A., and S. I. Gass. 2011. Profiles in Operations Research: Pioneers and Innovators, Vol. 147. New
York: Springer Science & Business Media.

Baase, S., and A. van Gelder. 2000. Computer Algorithms: Introduction to Design and Analysis, 3rd ed.
Reading, MA: Addison-Wesley.

Balci, O. 2014. Computer Science and Operations Research: New Developments in Their Interfaces. New
York: Elsevier.

Barr, R. S., R. V. Helgason, and J. L. Kennington. 1997. Interfaces in Computer Science and Operations
Research. Boston, MA: Kluwer Academic.

Battini, D., U. Peretti, A. Persona, and F. Sgarbossa. 2014. Application of humanitarian last mile dis-
tribution model. Journal of Humanitarian Logistics and Supply Chain Management 4 (1): 131–148.

Bhargava, H. K., and R. Krishnan. 1993. Computer-aided model construction. Decision Support
Systems 9 (1): 91–111.

Buffa, E. S. 1981. Elements of Production/Operations Management. New York: John Wiley & Sons.
Byrum, J. 2015. Agriculture: Fertile ground for analytics and innovation. OR/MS Today 42 (6): 28–31.
Charles, V. 2016. Mining and mitigating social conflicts in Peru. OR/MS Today 43 (2): 34–38.
Cheney, E. W., and D. Kincaid. 2013. Numerical Mathematics and Computing, 7th ed. Boston, MA:

Thompson Brooks Cole.
Chong, E. K. P., and S. H. Zak. 2013. An Introduction to Optimization, 4th ed. New York: Wiley.
Clauss, F. J. 1997. The trouble with optimal. OR/MS Today 24 (1): 32–35.
Cochran, J. J., L. A. Jr. Cox, P. Keskinocak, J. P. Kharoufeh, and J. Cole Smith. 2011. Wiley Encyclopedia

of Operations Research and Management Science, 8 Volume Set. New York: Wiley.
Connell, J. L., and L. Shafer. 1987. The Professional User’s Guide to Acquiring Software. New York: Van

Nostrand Reinhold.
Cook, T. M., and R. A. Russell. 1989. Introduction to Management Science. Englewood Cliffs, NJ:

Prentice-Hall.
Cormen, T. H., C. E. Leiserson, R. Rivest, and C. Stein. 2009. Introduction to Algorithms, 3rd ed.

Cambridge, MA: MIT Press.
Czyzyk, J., J. H. Owen, and S. J. Wright. 1997. Optimization on the Internet. OR/MS Today 24: 48–51.
Dannenbring, D., and M. Starr. 1981. Management Science: An Introduction. New York: McGraw-Hill.
Demirci, M. 1996. IMSL C numerical libraries, version 2.0. Computer 29: 100–102.
Ecker, J. G., and M. Kupferschmid. 1988. Introduction to Operations Research. New York: John Wiley &

Sons.
Fabrycky, W. J., P. M. Ghare, and P. E. Torgersen. 1984. Applied Operations Research and Management

Science. Englewood Cliffs, NJ: Prentice-Hall.
Fourer, R. 1996. Software for optimization: A buyer’s guide. INFORMS Computer Science Technical

Section Newsletter 17 (1 and 2): 14–17.
Fourer, R. 1998. Software for optimization: A survey of recent trends in mathematical programming

systems. OR/MS Today 25: 40–43.
Fourer, R., D. M. Gay, and B. W. Kernighan. 1993. AMPL: A Modeling Language for Mathematical

Programming. South San Francisco, CA: The Scientific Press.
Garey, M. R., and D. S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP

Completeness. San Francisco, CA: W. H. Freeman Press.
Gass, S. 1987. Managing the modeling process: A personal reflection. European Journal of Operational

Research 31: 1–8.
Gass, S., and A. Assad. 2004. An Annotated Timeline of Operations Research: An Informal History. New

York: Springer.

21Introduction to Operations Research

Gass, S., H. Greenberg, K. Hoffman, and R. W. Langley (Eds.). 1986. Impacts of Microcomputers on
Operations Research. New York: North-Holland.

Geoffrion, A. M. 1987. An introduction to structured modeling. Management Science 33: 547–588.
Gould, F. J., G. D. Eppen, and C. P. Schmidt. 1991. Introductory Management Science, 3rd ed.

Englewood Cliffs, NJ: Prentice-Hall.
Greenberg, H., and F. H. Murphy. 1992. A comparison of mathematical programming modeling

systems. Annals of Operations Research 38: 177–238.
Greenberg, H., and F. H. Murphy. 1995. Views of mathematical programming models and their

instances. Decision Support Systems 13 (1): 3–34.
Gupta, S. K., and J. M. Cozzolino. 1974. Fundamentals of Operations Research for Management: An

Introduction to Quantitative Methods. San Francisco, CA: Holden-Day.
Hall, O. P., Jr. 1993. Computer Models for Operations Management, 2nd ed. Reading, MA:

Addison-Wesley.
Hein, J. L. 1995. Discrete Structures, Logic, and Computability. Boston, MA: Jones and Bartlett.
Hillier, F. S., and G. J. Lieberman. 2010. Introduction to Operations Research, 9th ed. Boston, MA:

McGraw-Hill.
Horner, P. 2002. History in the making. OR/MS Today 29 (5): 30–39.
Howard, R. A. 2001. The ethical OR/MS professional. Interfaces 31 (6): 69–82.
Lenstra, J. K., A. H. G. Rinnooy Kan, and A. Schrijver. 1991. History of Mathematical Programming:

A Collection of Personal Reminiscences. New York: Elsevier/North Holland.
Lougee-Heimer, R. 2008. COIN-OR in 2008. OR/MS Today 35: 46.
Manber, U. 1989. Introduction to Algorithms: A Creative Approach. Reading, MA: Addison-Wesley.
Matula, D. W. 1986. Arithmetic for microcomputers—Some recent trends. In S. I. Gass, H.

J. Greenberg, L. L. Hoffman, and R. W. Langley (Eds.), Impacts of Microcomputers on
Operations Research. New York: Elsevier.

McArthur, C. W. 1990. Operations Analysis in the U.S. Army Eighth Air Force in World War II.
Providence, RI: American Mathematical Society.

McCloskey, J. F. 1987. The beginnings of operations research: 1934–1941. Operations Research
35 (1): 143–151.

More, J. J., and S. J. Wright. 1993. Optimization Software Guide. Philadelphia, PA: SIAM
Publications.

Morse, P. M. 1986. The beginnings of operations research in the United States. Operations
Research 34 (1): 10–17.

Murphy, F. H. 2005. ASP, The art and science of practice: Elements of the practice of operations
research: A framework. Interfaces 35 (2): 154–163.

Murty, K. G. (Ed.). 2015. Case Studies in Operations Research: Applications of Optimal Decision
Making. New York: Springer.

Orchard-Hays, W. 1978. History of mathematical programming systems. In H. J. Greenberg
(Ed.), Design and Implementation of Optimization Software. Alphen aan den Rijn, the
Netherlands: Sijthoff and Noordhoff.

Pidd, M. 1999. Just modeling through: A rough guide to modeling. Interfaces 29 (2): 118–132.
Ragsdale, C. T. 1998. Spreadsheet Modeling and Decision Analysis: A Practical Introduction to

Management Science, 2nd ed. Cincinnati, OH: Southwestern College Publishing.
Ravindran, A. (Ed.). 2008. Operations Research Applications. Boca Raton, FL: CRC Press.
Ravindran, A., D. T. Phillips, and J. J. Solberg. 1987. Operations Research: Principles and Practice.

New York: John Wiley & Sons.
Salvendy, G. (Ed.). 1982. Handbook of Industrial Engineering. New York: John Wiley & Sons.
Sauer, T. 2011. Numerical Analysis, 2nd ed. Boston, MA: Addison Wesley Longman.
Sharda, R., and G. Rampal. 1995. Algebraic modeling languages on PCs. OR/MS Today 22 (3):

58–63.
Taha, H. A. 2011. Operations Research: An Introduction, 9th ed. Upper Saddle River, NJ: Pearson.

22 Operations Research

Wagner, H. M. 1975. Principles of Operations Research with Applications to Managerial Decisions.
Englewood Cliffs, NJ: Prentice-Hall.

Wex, F., G. Schryen, S. Feuerriegal, and D. Neumann. 2014. Emergency response in natural disas-
ter management: Allocation and scheduling of rescue units. European Journal of Operational
Research 235: 697–708.

White, D. J. 1985. Operational Research. New York: John Wiley & Sons.
Wilkinson, J. H. 1963. Rounding Errors in Algebraic Processes. Englewood Cliffs, NJ: Prentice-Hall.
Willemain, T. R. 1994. Insights on modeling from a dozen experts. Operations Research 42 (2): 213–222.
Williams, H. P. 1999. Model Building in Mathematical Programming, 4th ed. New York: Wiley.
Winston, W. L. 2004. Operations Research: Applications and Algorithms, 4th ed. Boston, MA: Brooks/

Cole.

23

2
Linear Programming

2.1 The Linear Programming Model

Linear programming is a special class of mathematical programming models in which
the objective function and the constraints can be expressed as linear functions of the deci-
sion variables. As with the more general mathematical programming models, the decision
variables represent quantities that are, in some sense, controllable inputs to the system
being modeled. An objective function represents some principal objective criterion or
goal that measures the effectiveness of the system (such as maximizing profits or pro-
ductivity, or minimizing cost or consumption). There is always some practical limitation
on the availability of resources (time, materials, machines, energy, or manpower) for the
system, and such constraints are expressed as linear inequalities or equations involving
the decision variables. Solving a linear programming problem means determining actual
values of the decision variables that optimize the objective function, subject to the limita-
tions imposed by the constraints.

The use of linear programming models for system optimization arises quite naturally
in a wide variety of applications. Some models may not be strictly linear, but can be made
linear by applying appropriate mathematical transformations. Still other applications are
admittedly not at all linear, but can be effectively approximated by linear models. The ease
with which linear programming problems can usually be solved makes this an attractive
means of dealing with otherwise intractable nonlinear problems.

In the following section, we will see examples of the wide variety of applications that
can be modeled with linear programming. In each case, the first task will be to identify
the controllable decision variables xi, where i = 1, …, n. Then the objective criterion will be
established: to either maximize or minimize some function of the form

z = c x c x c x c x1 1 2 2 n n

i

n

i i+ + + =
=

∑

1

where ci represents problem dependent constants. Finally, resource limitations and bounds
on decision variables will be written as equations or inequalities relating a linear function
of the decision variables to some problem dependent constant; for example,

 a x a x a x b1 1 2 2 n n+ + + ≤

24 Operations Research

Although the primary purpose of this chapter will be to present methods of solving linear
programming problems, the first critical step in successful problem-solving lies in the cor-
rect formulation of an application problem into the linear programming framework.

2.2 The Art and Skill of Problem Formulation

A combination of practical insight and technical skill is required in order to recognize
which problems can be appropriately modeled in a linear programming format, and then to
formulate those problems accurately. Because of the wide variety of problems that can be
made to fall into the linear programming mold, it is difficult to give guidelines that are uni-
versally applicable to the process of problem formulation. Rather, problem formulation is an
art that must be cultivated through practice and experience. Several examples are given to
point the way, and to illustrate the creativity that is sometimes helpful in framing problems
as linear programs. The exercises at the end of the chapter should then provide some of the
practice necessary to develop the skill of formulating linear programming models.

Example 2.2.1

A manufacturer of computer system components assembles two models of wireless rout-
ers, model A and model B. The amounts of materials and labor required for each assem-
bly, and the total amounts available, are shown in the following table. The profits that
can be realized from the sale of each router are $22 and $28 for models A and B, respec-
tively, and we assume there is a market for as many routers as can be manufactured.

Resources Required
per Unit

Resources
AvailableA B

Materials 8 10 3400
Labor 2 3 960

The manufacturer would like to determine how many of each model to assemble in
order to maximize profits.

Formulation 2.2.1

Because the solution to this problem involves establishing the number of routers to be
assembled, we define the decision variables as follows:

 Let x = number of model A routers to be assembledA

and

 x = number of model B routers to be assembledB

In order to maximize profits, we establish the objective criterion as

 maximize z = 22x + 28xA B

25Linear Programming

Two types of resource limitations are in effect. The materials constraint is expressed by
the inequality

 8x 10x 3400A B+ ≤

and the labor constraint by

 2x 3x 960A B+ ≤

Finally, as it would be meaningless to have a negative number of terminals manufac-
tured, we also include the constraints xA ≥ 0 and xB ≥ 0.

Example 2.2.2

A space agency planning team wishes to set up a schedule for launching satellites over a
period of three years. Experimental payloads are of two types (say, T1 and T2), and each
launch carries only one experiment. Externally negotiated agency policies dictate that at
most 88 of payload type T1 and 126 of type T2 can be supported. For each launch, type
T1 payloads will operate successfully with probability 0.85 and type T2 payloads with
probability 0.75. In order for the program to be viable, there must be a total of at least 60
successful deployments. The agency is paid $1.5 million for each successful T1 payload,
and $1.2 million for each successful T2 payload. The costs to the agency to prepare and
launch the two types of payloads are $1.05 million for each T1 and $0.7 million for each
T2. One week of time must be devoted to the preparation of each T2 launch payload and
two weeks are required for T1 launch payloads. The agency, while providing a public
service, wishes to maximize its expected net income from the satellite program.

Formulation 2.2.2

Let x1 = number of satellites launched carrying a type T1 payload, and x2 = number of
satellites launched carrying a type T2 payload. Income is realized only when launches
are successful, but costs are incurred for all launches. Therefore, the expected net
income is

 ()()1.5 0.85 x (1.2)(0.75)x (1.05)x (0.7)x million dollar1 2 1 2+ − − ss

The objective is then to maximize z = 0.225x1 + 0.2x2. Problem constraints in this case
are of various types. Agency policies impose the two simple constraints

 x 88 and x 1261 2 ≤ ≤

The successful deployment quota yields the constraint

 0 85x + 0.75x 60. 1 2 ≥

If we assume that 52 weeks per year (for three years) can be applied to the satellite
program, then the launch preparation time constraint is

 2 1 1561 2x x+ ≤

As in the previous example, we include the non-negativity constraints x1 ≥ 0 and x2 ≥ 0.

26 Operations Research

Example 2.2.3

A company wishes to minimize its combined costs of production and inventory over a
four-week time period. An item produced in a given week is available for consumption
during that week, or it may be kept in inventory for use in later weeks. Initial inventory
at the beginning of week 1 is 250 units. The minimum allowed inventory carried from
one week to the next is 50 units. Unit production cost is $15, and the cost of storing a unit
from one week to the next is $3. The following table shows production capacities and the
demands that must be met during each week.

Period Production Capacity Demand

1 800 900
2 700 600
3 600 800
4 800 600

A minimum production of 500 items per week must be maintained. Inventory costs are
not applied to items remaining at the end of the fourth production period, nor is the
minimum inventory restriction applied after this final period.

Formulation 2.2.3

Let xi be the number of units produced during the i-th week, for i = 1, …, 4. The formula-
tion is somewhat more manageable if we let Ai denote the number of items remaining
at the end of each week (accounting for those held over from previous weeks, those
produced during the current week, and those consumed during the current week). Note
that the Ai values are not decision variables, but merely serve to simplify our written
formulation. Thus,

 A = 250 + x 9001 1 -

 A A + x 6002 1 2= -

 A = A + x 8003 2 3 -

 A = A + x 6004 3 4 -

The objective is to minimize

 z = $15 x + x + x + x + $3 A + A +1 2 3 4 1 2 3 A⋅ ⋅() ()

Minimum inventory constraints are expressed as Ai ≥ 50 for i = 1, 2, and 3, and A4 ≥ 0.
Production capacities and minima during each period are enforced with the constraints

 500 700≤ ≤x1

 500 700≤ ≤x2

 500 6003≤ ≤x

27Linear Programming

 500 8004≤ ≤x

Finally, xi ≥ 0 for i = 1, …, 4.

Example 2.2.4

A mixture of freeze-dried vegetables is to be composed of beans, corn, broccoli, cabbage, and
potatoes. The mixture is to contain (by weight) at most 40% beans and at most 32% potatoes.
The mixture should contain at least 5 grams iron, 36 grams phosphorus, and 28 grams
calcium. The nutrients in each vegetable and the costs are shown in the following table.

Milligrams Nutrient per Pound
of Vegetable Cost per

Pound
(cents)Vegetable Iron Phosphorus Calcium

Beans 0.5 10 200 20
Corn 0.5 20 280 18
Broccoli 1.2 40 800 32
Cabbage 0.3 30 420 28
Potatoes 0.4 50 360 16

The amount of each vegetable to include should be determined so that the cost of the
mixture is minimized.

Formulation 2.2.4

Let x1, x2, x3, x4, and x5 be the number of pounds of beans, corn, broccoli, cabbage,
and potatoes, respectively. To minimize the cost of the mixture, we wish to mini-
mize z = 20x1 + 18x2 + 32x3 + 28x4 + 16x5. The percentage of beans in the mixture is
x1/(x1 + x2 + x3 + x4 + x5), and must be less than 40%. Therefore,

 x 0.4 x + x + x + x + x1 1 2 3 4 5≤ ()

and similarly the potato restriction can be written as

 x 0.32 x + x + x + x + x5 1 2 3 4 5 ≤ ()

To achieve the required level of nutrients, we have three constraints (for iron, phospho-
rus, and calcium, respectively):

 0.5x + 0.5x + 1.2x + 0.3x + 0.4x 50001 2 3 4 5 ≥

 10 20 40 30 50 36 0001 2 3 4 5x x x x x ,+ + + + ≥

 200 280 800 420 360 28 0001 2 3 4 5x x x x x ,+ + + + ≥

Negative amounts are not possible, so xi ≥ 0 for i = 1, …, 5.

28 Operations Research

Example 2.2.5

A saw mill makes two products for log home kits: fir logs and spruce logs which can
be sold at profits of $4 and $5, respectively. Spruce logs require two units of processing
time on the bark peeler and six units of time on a slab saw. Fir logs require three units
of time on the peeler and five units on the slab saw. Each then requires two units of
time on the planer. Because of maintenance requirements and labor restrictions, the
bark peeler is available 10 hours per day, the slab saw 12 hours per day, and the planer
14 hours per day. Bark and sawdust are by-products of these operations. All the bark
can be put through a chipper and sold in unlimited quantities to a nearby horticulture
supplier. Dried fir sawdust can be directed to a similar market, at a net profit of $0.38 per
processed log. Limited amounts of the spruce sawdust can be made into marketable
pressed wood products, but the rest must be destroyed. For each spruce log produced,
enough sawdust (five pounds) is generated to make three pressed wood products,
which after manufacturing can be sold at a unit profit of $0.22. However, the market can
absorb only 60 of the pressed wood products per day and the remaining spruce sawdust
must be destroyed at a cost of $0.15 per pound. The saw mill wishes to make the largest
possible profit, considering the cost of destroying the unusable sawdust.

Formulation 2.2.5

The formulation of this problem cannot follow exactly the pattern established in pre-
vious examples because the profits to be maximized are not a linear function of the
number of logs of each type produced. Spruce log production creates a by-product that
is useful and profitable only up to a point, and thereafter any excess must be destroyed
at a cost that diminishes total profits. Thus, profits are not a strictly increasing function
of production levels. We can still let

 x = number of fir logs produced1

 x = number of spruce logs produced2

Because sawdust contributes nonlinearly to profits, we treat it in two parts and let

 x = number of pounds of spruce sawdust used3

 x = number of pounds of spruce sawdust destroyed4

Direct profit from the sale of logs is 4x1 + 5x2. All the bark can be sold at a profit in unlim-
ited quantities, therefore, although this affects the amount of profit, it does not affect our
decision on how many logs of each type to produce. Fir sawdust brings in $0.38 for each
processed log, or 0.38x1. For each x3/5 spruce logs produced, there is enough sawdust to
make three products at a profit of $0.22 each, if there is a market. Unmarketable spruce
sawdust costs 0.15x4 to destroy. The objective is, therefore, to maximize

z x() 4= + + +4 5 0 38

3

5
0 22 0 151 2 1 3x x . x x .. −

Relating the number of logs produced to pounds of sawdust by-product, we obtain the
constraint

 5x = x x2 3 4+()

29Linear Programming

Limitations on demand for the pressed wood product are expressed by

3

5
x 603 ≤

Constraints on availability of machinery are straightforward. For the bark peeler,

 3x + 2x 101 2 ≤

On the slab saw,

 5 6 122x x1 + ≤

And on the planer,

 2 2 142x x1 + ≤

Because all production levels are non-negative, we also require x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, and
x4 ≥ 0.

Example 2.2.6

A dual processor computing facility is to be dedicated to administrative and scientific
application jobs for at least 10 hours each day. Administrative jobs require two seconds of
execution time on processor 1 and six seconds on processor 2, while scientific jobs require
five seconds on processor one and three seconds on processor 2. A scheduler must choose
how many of each type of job (administrative and scientific) to execute, in such a way as
to minimize the amount of time that the system is occupied with these jobs. The system
is considered to be occupied even if one processor is idle. (Assume that the sequencing of
the jobs on each processor is not an issue here, just the selection of how many of each type
of job.)

Formulation 2.2.6

Let x1 and x2 denote, respectively, the number of administrative and scientific jobs
selected for execution on the dual processor system. Because policies require that each
processor be available for a least 10 hours, we must write the two constraints as:

 2 5 10 3600 12 () ()x x Processor 1 + ≥ ⋅

 6 3 10 3600() ()x x Processor 21 2+ ≥ ⋅

and

 x 0 and x 01 2≥ ≥

The system is considered occupied as long as either processor is busy. Therefore, to
minimize the completion time for the set of jobs, we must

 minimize maximum 2x + 5x , 6x + 3x1 12 2(){ }
This nonlinear objective can be made linear if we introduce a new variable x3, where

 x = max 2x + 5x , 6x + 3x 03 1 12 2{ } ≥

30 Operations Research

Now if we require

 x 2x + 5x and x 6x + 3x3 1 3 1 ≥ ≥2 2

and make our objective to minimize x3, we have the desired linear formulation.

2.2.1 Integer and Nonlinear Models

There are many problems that appear to fall into the framework of linear programming
problem formulations. In some problems, the decision variable values are meaning-
ful only if they are integer values. (For example, it is not possible to launch a fractional
number of satellites or to transport a fractional number of people.) However, general
approaches to the solution of linear programming problems in no way guarantee integer
solutions. The analyst must therefore be familiar enough with the actual application to
determine whether it will be acceptable to round off a continuous (non-integer) optimal
solution to an integer solution that may be suboptimal. In many applications, such prac-
tices yield solutions that are quite adequate. When rounding does not yield acceptable
results, it may be necessary to resort to methods that are computationally more diffi-
cult than general linear programming solution methods, but which always yield integer
solutions. Specialized methods for these cases will be introduced in Chapter 4 on Integer
Programming.

More subtle nonlinearities exist inherently in almost all real applications. It is again
left to the discretion of the analyst to determine whether the linear model can provide a
sufficiently accurate approximation to the real situation. Because of the relative ease with
which linear models can be solved, in some cases it may be worth making certain simpli-
fying (albeit compromising) assumptions in order to formulate a real problem into a linear
programming model.

2.3 Graphical Solution of Linear Programming Problems

2.3.1 General Definitions

Finding an optimal solution to a linear programming problem means assigning values to
the decision variables in such a way as to achieve a specified goal and conform to certain
constraints. For a problem with n decision variables, any solution can be specified by a
point (x1, x2, …, xn). The feasible space (or feasible region) for the problem is the set of all
such points that satisfy the problem constraints. The feasible space is therefore the set of
all feasible solutions. An optimal feasible solution is a point in the feasible space that is
as effective as any other point in achieving the specified goal.

The solution of linear programming problems with only two decision variables can be
illustrated graphically. In the following examples, we will see cases involving the maximiza-
tion and minimization of functions. We will also see situations in which no feasible solution
exists, some which have multiple optimal solutions, and others with no optimal solution.

Linear programming problems with more than two decision variables require more
sophisticated methods of solution, and cannot be easily illustrated graphically. However,
our graphical study of small problems will be helpful in providing insight into the more
general solution method that will be presented later.

31Linear Programming

2.3.2 Graphical Solutions

Let us first consider a maximization problem:

maximize z = 3x x

subject to (1) x 5

 x x

 x x

(2)

1 2

2

1 2

1

+

≤

+ ≤

− +

10

3() 22

1 2x , x

≥ −

≥

2

0

Each inequality constraint defines a half-plane in two dimensions, and the intersection of
these half-planes comprises the feasible space for this case, as shown by the shaded area
in Figure 2.1.

The points labeled A, B, C, D, and E are called extreme points of the feasible region. It
is a property of linear programming problems that, if a unique optimal solution exists, it
occurs at one of the extreme points of the feasible space.

For this small problem, it is not impractical simply to evaluate the objective function at
each of these points, and select the maximum:

 z z(0,0) 3 0 0A = = + =× 0

 z z(0,5) 3 5 5B = = + =× 0

5

4

3

2

1

A 3 4 521 6

CB
x2 = 5

E

x1 + x2 = 10

x1

x2

D

−x 1 +
 x 2 =

 −2 Z = 3x
1 + x

2

FIGURE 2.1
Graphical solution.

32 Operations Research

 z z(5,5) 3 5 5 20C = = + =×

 z z(6,4) = 3 4 22D = + =× 6

 z z(2,0) 3 0 6E = = + =× 2

The optimal solution lies at extreme point D where x1 = 6 and x2 = 4, and the optimal value
of the objective function is denoted by z* = 22.

Without evaluating z at every extreme point, we may more simply observe that the line
specified by the objective function 3x1 + x2 has a slope of −3. At optimality, this line is
tangent to the feasible space at one of the extreme points. In Figure 2.1, the dashed line
represents the objective function at the optimal point D.

Next, we use the same graphical technique to solve a minimization problem:

minimize z = x + x

subject to x x

x

x

x ,

1 2

1

1

3 6 1

3

4 3

2

2

2

1

()

()

()

+ ≥

≥

≤

 x2 ≥ 0

The shaded area in Figure 2.2 denotes the feasible region, which in this case is
unbounded.

6543
x1

x2

2

B C

A

x2 = 3

z = x1 + x2

3x
1 + x

2 = 6

x1 = 4

1

1

2

3

4

5

6

FIGURE 2.2
Unbounded feasible region.

33Linear Programming

The minimal solution must occur at one of the extreme points A, B, or C. The objective
function x1 + x2, with a slope of −1, is tangent to the feasible region at extreme point B.
Therefore, the optimal solution occurs at x1 = 1 and x2 = 3, and the optimal objective func-
tion value at that point is z* = 4.

2.3.3 Multiple Optimal Solutions

Each of the problems that we have solved graphically had a unique optimal solution. The
following example shows that it is possible for a linear programming problem to have mul-
tiple solutions that are all equally effective in achieving an objective. Consider the problem

maximize z x 2x

subject to x x 2

x x

x

1

1 2

2

= +

− + ≤

+ ≤

≤

2

1

1

1

2 8

6 3

2

()

()

()

xx x1 2, ≥ 0

The feasible region is shown in Figure 2.3.
The line representing the objective function x1 + 2x2 can be made tangent to the feasible

region at the origin, but clearly z is maximized by placing the line where the values of
x1 and x2 are larger. Notice that the objective function line in this case is tangent to the
feasible region not at a single extreme point, but rather along one of the boundaries of the
feasible region.

654

B

321
x1

x 1
 =

 6

x2

1

2

3

A

4

x1 + 2x2 = 8

−x 1 +
 x 2 =

 2

FIGURE 2.3
Multiple optimal solutions.

34 Operations Research

The values

z = z , = + 2 = 8A

4
3

10
3

4
3

10
3

















and

 z = z(6,1) = 6 + 2 (1) = 8B ×

correspond to optimal solutions at points A and B; moreover, all points on the line between
extreme points A and B are also optimal. Therefore, z* = 8 and the optimal solutions can
be expressed as a set

x x x and x and x x1 2 11 2 2

4
3

6 1
10
3

2 8,() ≤ ≤ ≤ ≤ + =








Such a situation may occur whenever the slope of the objective function line is the same as
that of one of the constraints.

2.3.4 No Optimal Solution

When the feasible region is unbounded, a maximization problem may have no optimal
solution, since the values of the decision variables may be increased arbitrarily. This can
be illustrated by the problem:

maximize z = 3x + x

subject to x x 4

x x

x x

1 2

1 2

1 2

1

+ ≥

− + ≤

− +

()

()

1

4

2

2

22 4 3

0

≥ −

≥

()

,x x1 2

Figure 2.4 shows the unbounded feasible region and demonstrates that the objective func-
tion can be made arbitrarily large by allowing the values of x1 and x2 to grow within the
unbounded feasible region. In this case, there is no point (x1, x2) that is optimal because
there are always other feasible points for which z is larger.

Notice that it is not the unbounded feasible region alone that precludes an optimal solu-
tion. The minimization of the function subject to the constraints shown in Figure 2.4 would
be solved at extreme point A.

35Linear Programming

In practice, unbounded solutions typically arise because some real constraint, repre-
senting a practical resource limitation, has been omitted from the linear programming for-
mulation. Because we do not realistically expect to be able to achieve unlimited profits
or productivity, an indication of apparently unbounded solutions as seen in the previous
example should be interpreted as evidence that the problem needs to be reconsidered more
carefully, reformulated and re-solved.

2.3.5 No Feasible Solution

A linear programming problem has no feasible solution if the set of points corresponding
to the feasible region is empty. For example, the constraints

 − ≥ − ≤ −x + x 4 and x + 2x 41 2 1 1

where x1, x2 ≥ 0, represent conditions that cannot simultaneously be satisfied by any point.
Figure 2.5 shows the four half-planes whose intersection is empty.

4

3

2

1

2 3 4

−x 1 +
 2x 2 =

 −4

−x 1 +
 x 2 =

 4

1

Z = 6
Z = 12

Z = 21
A

B

x1

x2

x1 + x2 = 4

FIGURE 2.4
No optimal solution.

36 Operations Research

In small problems, infeasibilities such as this may be discovered visually during an
attempted graphical solution. In larger problems, it may not be obvious, by inspecting a
particular set of constraints, that no solution is possible. Fortunately, the general solution
method to be described in the following sections is not only capable of solving typical
maximization or minimization problems, but it also provides mechanisms for recognizing
problems that have multiple optimal solutions, no optimal solution, or no feasible solution.

2.3.6 General Solution Method

We have seen in our graphical solutions that, if an optimal solution exists, it occurs at an
extreme point of the feasible region. This fundamental property of linear programming
problems is the foundation for a general solution method called the Simplex method.
Because only the finitely many extreme points need be examined (rather than all the points
in the feasible region), an optimal solution may be found systematically by considering
the objective function values at the extreme points. In fact, in actual practice, only a small
subset of the extreme points need be examined. The following sections will demonstrate
how the Simplex method is able to locate optimal solutions with such efficiency.

2.4 Preparation for the Simplex Method

2.4.1 Standard Form of a Linear Programming Problem

In preparation for the use of the Simplex method, it is necessary to express the linear
programming problem in standard form. For a linear program with n variables and m
constraints, we will use the following standard form:

2

−x 1 +
 x 2 =

 4

−x 1 +
 2x 2 =

 −4

x1

x2

4

2

4

FIGURE 2.5
No feasible solution.

37Linear Programming

maximize z = c x + c x + + c x

subject to a x + a x +
1 1 2 2 n n

11 1 12

…
…2 + a x = b

a x + a x + + a x = b

a x + a x +

1n n 1

21 1 22 2n n 2

m1 1 m2

2

2

…
� � �

…… + a x = bmn n m

where the variables x1, …, xn are non-negative, and the constants b1, …, bm on the right
hand sides of the constraints are also non-negative. We can use matrix notation to repre-
sent the cost (or profit) vector c = (c1, c2,…, cn) and the decision variable vector

x

x
x

x

1

2

n

=
⋅
⋅
⋅



























The coefficient matrix is:

A

a a

a a

11 1n

m1 mn

=

…
⋅⋅
⋅⋅
⋅ ⋅

…























and the requirement vector is:

b

b
b

b

1

2

m

=
⋅
⋅
⋅



























Then the optimization problem can be expressed succinctly as:

maximize z = cx

subject to Ax = b

x 0

b 0

≥

≥

38 Operations Research

Although this standard form will be required by the Simplex method, it is not necessar-
ily the form that arises naturally when we first formulate linear programming models.
Several modifications may be necessary in order to transform an original linear program-
ming formulation (as in Section 2.2) into the standard form.

To convert a minimization problem to a maximization problem, we can simply multiply
the objective function by −1, and then maximize this function. (Recall that there are no
sign restrictions on the ci.) For example, the problem of minimizing z = 3x1 − 5x2 is equiva-
lent to maximizing z = −3x1 + 5x2. Negative right hand sides of the constraints can be made
positive by multiplying the constraint by −1 (reversing the sense of the inequality).

Equality constraints require no modification. Inequality constraints can be converted
to equalities through the introduction of additional variables that make up the differ-
ence in the left and right sides of the inequalities. Less than or equal to (≤) inequalities
require the introduction of variables that we will call slack variables. For example, a
constraint such as 3x1 + 4x2 ≤ 7 becomes the equality 3x1 + 4x2 + s1 = 7 when we intro-
duce the slack variable s1, where s1 ≥ 0. Greater than or equal to (≥) constraints are
modified by introducing surplus variables. For example, the constraint 14x1 + 3x2 ≥ 12
becomes the equality 14x1 + 3x2 − s2 = 12, where s2 is the non-negative surplus vari-
able. Although our notation (s1 and s2) may suggest otherwise, the slack and surplus
variables are going to be treated exactly like any other decision variable throughout the
solution process. In fact, their final values in the solution of the linear programming
problem may be just as interesting to a systems manager or analyst as are the values of
the original decision variables.

Finally, all variables are required to be non-negative in the standard form. In the event
that the actual meaning associated with a decision variable is such that the variable should
be unrestricted in sign, then that variable may be replaced by the difference of two new non-
negative variables. For example, if x1 is to be an unrestricted variable, then every occur-
rence of x1 in the objective function or in any constraint will be replaced by x1′ − x1″, where
x1′, x1″, ≥ 0. Then in any solution, the sign of the value of x1 is dependent on the relative
values of x1′ and x1″.

The reason for placing problems in standard form is that our general solution method
will be seen to operate by finding and examining solutions to the system of linear equa-
tions Ax = b (i.e., by finding values of the decision variables that are consistent with the
problem constraints), with the aim of selecting a solution that is optimal with respect to
the objective function.

2.4.2 Solutions of Linear Systems

We now have a system of linear equations, Ax = b, consisting of m equations and n
unknowns. The n unknowns include the original decision variables and any other vari-
ables that may have been introduced in order to achieve standard form.

It may be useful at this point to review the material in the Appendix on solving systems
of linear equations. If a system of independent equations has any solution, then m ≤ n.
If m = n (and if rank (A) = m and A is nonsingular), then there is the unique solution
x = A−1b. In this case, there is only one set of values for the xi that is not in violation of
problem constraints. Optimization of an objective function is not an issue here because
there is only one feasible solution.

39Linear Programming

When m < n, there are infinitely many solutions to the system of equations. In this case,
we have (n − m) degrees of freedom in solving the system. This means that we can arbi-
trarily assign any values to any (n − m) of the n variables, and then solve the m equations
in terms of the remaining m unknowns.

A basic solution to the system of m equations and n unknowns is obtained by setting
(n − m) of the variables to zero, and solving for the remaining m variables. The m variables
that are not set equal to zero are called basic variables, and the (n − m) variables set to
zero are non-basic variables. The number of basic solutions is just the number of ways we
can choose n − m variables (or m variables) from the set of n variables, and this number
is given by:

n
n m

n
m

n
m n m–

!
! – !









 =









 =

()

Not all of the basic solutions satisfy all problem constraints and non-negativity constraints.
Those that do not meet these requirements are infeasible solutions. The ones that do meet
the restrictions are called basic feasible solutions. An optimal basic feasible solution is a
basic feasible solution that optimizes the objective function. The basic feasible solutions
correspond precisely to the extreme points of the feasible region (as defined in our earlier
discussion of graphical solutions). Because any optimal feasible solution is guaranteed to
occur at an extreme point (and consequently is a basic feasible solution), the search for an
optimal basic feasible solution could be carried out by an examination of the at most n

m()
basic feasible solutions and a determination of which one yields the best objective function
value.

The Simplex method performs such a search, but in a very efficient way. We define
two extreme points of the feasible region (or two basic feasible solutions) as being adja-
cent if all but one of their basic variables are the same. Thus, a transition from one basic
feasible solution to an adjacent basic feasible solution can be thought of as exchanging
the roles of one basic variable and one non-basic variable. The Simplex method per-
forms a sequence of such transitions and thereby examines a succession of adjacent
extreme points. A transition to an adjacent extreme point will be made only if by doing
so the objective function is improved (or stays the same). It is a property of linear pro-
gramming problems that this type of search will lead us to the discovery of an optimal
solution (if one exists). The Simplex method is not only successful in this sense, but it
is remarkably efficient because it succeeds after examining only a fraction of the basic
feasible solutions.

2.5 The Simplex Method

The Simplex method is a general solution method for solving linear programming prob-
lems. It was developed in 1947 by George B. Dantzig and, with some modifications for
efficiency, has become the standard method for solving very large linear programming
problems on computers. Most real problems are so large that a manual solution via the

40 Operations Research

Simplex method is impractical, and these problems must be solved with Simplex programs
implemented on a computer. Small problems, however, are quite useful in demonstrating
how the Simplex method operates; therefore, we will use such problems to illustrate the
various features of the method.

The Simplex method is an iterative algorithm that begins with an initial feasible solu-
tion, repeatedly moves to a better solution, and stops when an optimal solution has been
found and, therefore, no improvement can be made.

To describe the mechanics of the algorithm, we must specify how an initial feasible
solution is obtained, how a transition is made to a better basic feasible solution, and how
to recognize an optimal solution. From any basic feasible solution, we have the assurance
that, if a better solution exists at all, then there is an adjacent solution that is better than the
current one. This is the principle on which the Simplex method is based; thus, an optimal
solution is accessible from any starting basic feasible solution.

We will use the following simple problem as an illustration as we describe the Simplex
method:

maximize z = 8x + 5x

subject to x 150

x

x x

x x

1

1

2

1 2

1 2

2

250

2 500

≤

≤

+ ≤

, ≥≥ 0

The standard form for this problem is:

maximize z = 8x + 5x + 0s + 0s + 0s

subject to x + s 150

x

1 1 2 3

1 1

2

=

22 2

1 2 3

 s

2x + x + s 500

+ =

=

250

(Zero coefficients are given to the slack variables in the objective function because slack
variables do not contribute to z.) The constraints constitute a system of m = 3 equations
in n = 5 unknowns. In order to obtain an initial basic feasible solution, we need to select
n − m = 5 − 3 = 2 variables as non-basic variables. We can readily see in this case that by
choosing the two variables x1 and x2 as the non-basic variables, and setting their values
to zero, then no significant computation is required in order to solve for the three basic
variables: s1 = 150, s2 = 250, and s3 = 500. The value of the objective function at this solu-
tion is 0.

In fact, a starting solution is just this easy to obtain whenever we have m variables, each
of which has a coefficient of one in one equation and zero coefficients in all other equa-
tions (a unit vector of coefficients), and each equation has such a variable with a coefficient
of one in it. Thus, whenever a slack variable has been added to each constraint, we may
choose all the slack variables as the m basic variables, set the remaining (n − m) variables
to zero, and the starting values of the basic variables are simply given by the constants b on
the right hand sides of the constraints. (For cases in which slack variables are not present

41Linear Programming

and, therefore, do not provide a starting basic feasible solution, further techniques will be
discussed in Section 2.6.)

Once we have a solution, a transition to an adjacent solution is made by a pivot operation.
A pivot operation is a sequence of elementary row operations (see the Appendix) applied
to the current system of equations, with the effect of creating an equivalent system in
which one new (previously non-basic) variable now has a coefficient of one in one equation
and zeros in all other equations.

During the process of applying pivot operations to a linear programming problem, it is
convenient to use a tabular representation of the system of equations. This representation
is referred to as a Simplex tableau.

In order to conveniently keep track of the value of the objective function as it is affected
by the pivot operations, we treat the objective function as one of the equations in the sys-
tem of equations, and we include it in the tableau. In our example, the objective function
equation is written as:

 1z 8x 5x 0s 0s 0s = 01 2 1 2 3- - - - -

The tableau for the initial solution is as follows:

Basis z x1 x2 s1 s2 s3 Solution

Z 1 −8 −5 0 0 0 0
s1 0 1 0 1 0 0 150
s2 0 0 1 0 1 0 250

s3 0 2 1 0 0 1 500

The first column lists the current basic variables. The second column shows that z is (and
will always be) a basic variable; and because these elements will never change, they really do
not need to be explicitly maintained in the tableau. The next five columns are the constraint
coefficients of each variable. And the last column is the solution vector; that is, the values of
the basic variables. Using this representation of a current solution, we can now describe the
purpose and function of each iteration of the Simplex method for a maximization problem.

Observe that the objective function row represents an equation that must be satisfied
for any feasible solution. Since we want to maximize z, some other (non-basic) term must
decrease in order to offset the increase in z. But all of the non-basic variables are already at
their lowest value, zero. Therefore, we want to increase some non-basic variable that has
a negative coefficient. As a simple rule, we will choose the variable with the most negative
coefficient, because making this variable basic will give the largest (per unit) increase in z.
(Refer to Steps 1 and 2 in the following.)

The chosen variable is called the entering variable, that is, the one that will enter the
basis. If this variable increases, we must adjust all of the equations. Specifically, increas-
ing the non-basic variable must be compensated for by using only the one basic variable
in each row (having a coefficient of one). If the non-basic coefficient is negative, the cor-
responding basic variable increases. There is no limit to how much we can increase this.
Clearly, if all coefficients are negative (or zero), then we can increase the non-basic variable,
and hence the value of z, indefinitely. In this case, we say that the problem is unbounded,
and there is no maximum solution.

42 Operations Research

If one or more of the coefficients are positive, then increasing the entering variable must
be offset by a corresponding decrease in the basic variable. Specifically, if aik > 0, for basic
variable xi the non-basic column of xk, then the new value of xi, after xk is increased, will be

 x = b a xi i ik k-

But xi ≥ 0; therefore, we can increase xk only to that point where

x =

b
a

k
i

ik

Define θi = bi/aik for all equations i for which aik > 0. Because we want to maximize the
increase in xk, we increase precisely to the point at which some basic variable first becomes
zero (the minimum value of θi). That variable now leaves the basis, and is called the leaving
variable. (Refer to Steps 3 and 4 in the following.)

The Simplex method can be summarized succinctly as follows:

Step 1: Examine the elements in the top row (the objective function row). If all ele-
ments are ≥0, then the current solution is optimal; stop. Otherwise go to Step 2.

Step 2: Select as the non-basic variable to enter the basis that variable corresponding
to the most negative coefficient in the top row. This identifies the pivot column.

Step 3: Examine the coefficients in the pivot column. If all elements are ≤0, then this prob-
lem has an unbounded solution (no optimal solution); stop. Otherwise go to Step 4.

Step 4: Calculate the ratios

 θi i ik ik = b /a for all i = 1, , m for which a > 0

where aik is the i-th element in the pivot column k. Then select

 θ θ= min { }i

This identifies the pivot row and defines the variable that will leave the basis. The
pivot element is the element in the pivot row and pivot column.

Step 5: To obtain the next tableau (which will represent the new basic feasible
solution), divide each element in the pivot row by the pivot element. Use this
row now to perform row operations on the other rows in order to obtain zeros
in the rest of the pivot column, including the z row. This constitutes a pivot
operation, performed on the pivot element, for the purpose of creating a unit
vector in the pivot column, with a coefficient of one for the variable chosen to
enter the basis.

When we apply these steps to the initial tableau in our example problem, we select x1 (with
the most negative coefficient on the z row) as the entering variable:

Basis z x1 x2 s1 s2 s3 Solution

z 1 −8 −5 0 0 0 0
s1 0 1 0 1 0 0 150
s2 0 0 1 0 1 0 250
s3 0 2 1 0 0 1 500

43Linear Programming

We compute

θ1 =

150
1

= 150

θ3 =

500
2

 = 250

and select the minimum θ = θ1. Therefore, the leaving variable is the one corresponding
to the first basic variable s1. A pivot operation on the pivot element then produces the next
tableau which shows the new basic feasible solution

 x = 1501

 s = 2502

 s = 2003

 x = 02

 s = 01

 z = 1200

Basis z x1 x2 s1 s2 s3 Solution

z 1 0 −5 8 0 0 1200
x1 0 1 0 1 0 0 150
s2 0 0 1 0 1 0 250

s3 0 0 1 −2 0 1 200

In the next iteration, x2 is chosen as the entering variable. Based on the ratios θ2 = 250/1 and
θ3 = 200/1, we select θ = θ3, and, therefore, the third basic variable s3 leaves the basis. The
pivot element is shown in the previous tableau. A pivot operation produces the new tableau:

Basis z x1 x2 s1 s2 s3 Solution

z 1 0 0 −2 0 5 2200
x1 0 1 0 1 0 0 150
s2 0 0 0 2 1 −1 50
x2 0 0 1 −2 0 1 200

The solution represented by this tableau is

 x = 1501

 s = 502

 x = 2002

 s = 01

 s = 03

44 Operations Research

and

 z is now 2200

From this tableau, we can now select s1 as the entering variable. We compute θ1 = 150/1 and
θ2 = 50/2, choose θ = θ2, and, therefore, designate s2 as the leaving variable. The resulting
tableau after a pivot operation is:

Basis z x1 x2 s1 s2 s3 Solution

z 1 0 0 0 1 4 2250
x1 0 1 0 0 −1/2 1/2 125
s1 0 0 0 1 1/2 −1/2 25
x2 0 0 1 0 1 0 250

Because all of the objective function row coefficients are non-negative, the current solution
is optimal. The decision variables are:

 x = 1251

 x = 2502

and the optimal objective function value, denoted as z*, is:

 z x x1* () ()= + = + =8 5 8 125 5 250 22502

The values of the slack variables at optimality also provide useful information. The slack
variable s1 for the first constraint has a value of 25, indicating that there is a difference
of 25 in the right and left sides of the constraint; thus, x1 = 125 is 25 less than 150. (This
can typically be interpreted to mean that some resource corresponding to constraint 1
is not fully consumed at optimality; such a constraint is sometimes referred to as a non-
binding constraint.) Since s2 and s3 are non-basic and, therefore, have a value of zero,
we can see that the second and third constraints are met as equalities. (These resources
are used to capacity at optimality, and these constraints are sometimes called binding
constraints.)

If we examine a graphical representation of the feasible region of this linear program-
ming problem in Figure 2.6, we can observe the progression from extreme point A (initial
solution) to extreme point B, then C, and finally the optimal solution at point D. Extreme
points F and G are infeasible, and point E is a basic feasible solution but is not examined
by the Simplex method.

In summary, let us briefly review the steps of the Simplex algorithm and the rationale
behind each step. Negative coefficients, corresponding to non-basic variables, in the objec-
tive function row indicate that the objective function can be increased by making those
associated variables basic (non-zero). If in Step 1 we find no negative element, then no
change of basis can improve the current solution. Optimality has been achieved and the
algorithm terminates.

Otherwise, in Step 2, we select the non-basic variable to enter the basis that has the
greatest potential to improve the objective function. The elements in the objective
function row indicate the per unit improvement in the objective function that can be
achieved by increasing the non-basic variables. Because these values are merely indica-
tors of potential and do not reveal the actual total improvement in z, ties are broken

45Linear Programming

arbitrarily. In actual practice, choosing the most negative coefficient has been found to
use about 20% more iterations than some more sophisticated criteria, such as are sug-
gested by (Bixby 1994).

The basic variable to be replaced in the basis is chosen, in Step 4, to be the basic vari-
able that reaches zero first as the entering variable is increased from zero. We restrict
our examination of pivot column elements to positive values only (Step 3) because a
pivot operation on a negative element would result in an unlimited increase in the
basic variable. If the pivot column elements are all negative or zero, then the solution
is unbounded and the algorithm terminates here. Otherwise, a pivot operation is per-
formed as described in Step 5.

The Simplex tableau not only provides a convenient means of maintaining the system
of equations during the iterations of the algorithm, but also contains a wealth of informa-
tion about the linear programming problem that is being solved. In the following sec-
tion, we will see various computational phenomena (indicating special problem cases) that
may arise during application of the Simplex method, as well as information that may be
obtained from an optimal tableau.

500

400

300

200

100

A
B G

F

E D

C

(125, 250)

(150, 200)

100 150 200(0,0)
x1

x2

FIGURE 2.6
Simplex steps.

46 Operations Research

2.6 Initial Solutions for General Constraints

2.6.1 Artificial Variables

In the original presentation of the Simplex algorithm in Section 2.5, our sample problem
was one in which all constraints were of the less-than-or-equal (≤) type. In that case, we
observed that by adding slack variables (in order to achieve equality constraints), we for-
tuitously also obtained an initial feasible set of basic variables. The coefficients of the slack
variables provided the required unit vectors, embedded in the matrix of coefficients of
the linear system of equations. In this section, we will see how to obtain an initial basic
feasible solution for problems with more general forms of constraints, and to then use the
Simplex method to solve such problems.

First of all, recall that all right hand sides bi of constraints must be non-negative. Any
constraint with a negative constant on the right hand side can be multiplied by −1 in order
to satisfy this requirement. For example, an equality constraint such as:

 − + = −3 4 62x x1

can be replaced by the constraint

 3 4 61 2x x− =

An inequality such as:

 5 8 102x x1 − ≤ −

can be replaced by

 − + ≥5 8 102x x1

At this point, it should be clear that typical linear programming problems in standard form
contain equality constraints involving only the original decision variables as well as constraints
that include slack variables and surplus variables. Slack variables can conveniently be used
as basic variables; however, basic variables corresponding to equality constraints and greater
than or equal (≥) constraints are not always immediately available. Although it may be pos-
sible, by trial and error, to obtain a feasible starting basis for some problems, we prefer to use
an approach that is straightforward and simple, and that can be used predictably in all cases.

We will deal with this situation by introducing additional variables, called artificial
variables, solely for the purpose of obtaining an initial basis. These variables have no real
meaning in the problem being solved, and will not be a part of the final solution. They
merely provide a mechanism that will allow us to create a starting basic solution configu-
ration, and then to apply the Simplex algorithm to the problem. (Note that it may not be
necessary to add an artificial variable to every constraint; a constraint with a slack variable
does not need an artificial variable.)

As an illustration, consider the following linear programming problem:

maximize z = x + 3x
subject to 2x x 1 (1)

x x
x ,

1 2

1 2

1 2

1

− ≤ −
+ = 3 2()
xx2 ≥ 0

47Linear Programming

We multiply the first constraint by −1, to obtain −2x1 + x2 ≥ 1, and then create an equality
constraint by adding a (non-negative) surplus variable s1 with a coefficient of −1. Now, the
set of constraints

− + − =

=

2 1

3

2x x s

x + x

1 1

1 2

is in standard form, but since there is no obvious starting solution (as there would have
been if we had added slack variables in each constraint), we will introduce two artificial
variables, R1 and R2, for this purpose. The constraint set becomes

- -2x + x s + R = 1

x + x + R = 3

1 2 1 1

1 2 2

where x1, x2, s1, R1, R2 ≥ 0. We now have initial basic variables R1 and R2 for this enlarged
problem; however, we must realize that the original equality constraint set is satisfied only
if both R1 and R2 have values of zero. Therefore, the artificial variables must play only a
temporary role in the solution.

There are two primary approaches that we can use to ensure that the artificial variables
are not in the final solution. One method, commonly called the Big-M method, achieves
this end by creating a modified objective function with huge negative coefficients −M on
the artificial variables. In our example, the modified objective function would be

 z = x + 3x + 0s MR MRM 1 1 1 22 - -

When the Simplex method is applied to maximize this function, the heavy negative weights
on the artificial variables will tend to drive R1 and R2 out of the basis, and the final solu-
tion will typically involve only the decision variables xi and the slack or surplus variables.

For two reasons, the Big-M method is not considered to be a practical approach.

 1. If the Simplex method terminates with an optimal solution (or with an indication that
the linear program is unbounded), and at least one of the artificial variables is basic
(positive) in the solution, then the original problem has no feasible solution. Moreover,
in order to discover that no solution exists, we have had to solve an entire large
(enlarged because of the additional artificial variables) linear programming problem.

 2. A more serious difficulty with this method arises from a computational stand-
point. The value of M must be chosen to be overwhelmingly large relative to
all other problem parameters, in order to be sure that artificial variables do not
remain in the basis of a feasible problem. However, as was pointed out in Chapter 1,
computer arithmetic involving quantities of vastly different magnitudes leads to
round-off error in which the smaller quantities (such as our original objective
coefficients) are dwarfed by the artificial coefficients and are completely lost.

Thus, despite its intuitive appeal, the Big-M method is very poorly suited for computer
implementation, and nowadays is rarely seen in commercial software.

The more practical alternative to solving linear programming problems having artificial
variables is found in the two-phase Simplex method.

48 Operations Research

2.6.2 The Two Phase Method

Suppose we have a linear programming problem in standard form with artificial variables
in the initial basic solution. Before expending the computational effort to solve the whole
enlarged problem, it would be useful to know whether a feasible solution to the original
problem exists. That is, we would like to know whether there is a solution, within the
enlarged feasible region, in which the artificial variables are zero.

In order to make this determination, we first use the Simplex method to solve the prob-
lem of minimizing the sum of the artificial variables. If this sum can be minimized to zero,
then there exists a solution not involving the artificial variables, and thus the original
problem is feasible. Furthermore, in this case, we can use the final solution obtained from
this computation as a starting solution for the original problem, and dispense with the
artificial variables. On the other hand, if the optimized sum of the artificial variables is
greater than zero, then at least one of the artificial variables remains basic, and we, there-
fore, know that the original problem constraint set cannot be satisfied. The two phases of
this method can be summarized as follows.

Phase 1: Create a new objective function consisting of the sum of the artificial vari-
ables. Use the Simplex method to minimize this function, subject to the problem
constraints. If this artificial objective function can be reduced to zero, then each
of the (non-negative) artificial variables must be zero. In this case, all the original
problem constraints are satisfied and we proceed to Phase 2. Otherwise, we know
without further computation that the original problem is infeasible.

Phase 2: Use the basic feasible solution resulting from Phase 1 (ignoring the artificial
variables which are no longer a part of any solution) as a starting solution for the
original problem with the original objective function. Apply the ordinary Simplex
method to obtain an optimal solution.

We will use the sample problem from Section 2.6.1 to illustrate the two phase method.
In Phase 1, we seek to

 minimize z = R + RR 1 2

which is equivalent to maximizing zR = −R1 − R2. (Note that we minimize this sum regard-
less of whether the original problem is a minimization or a maximization problem.)
Therefore, the top row of the tableau represents the equation

 z + R + R = 0R 1 2

With artificial variables in the constraints, the initial tableau for this phase is:

x1 x2 s1 R1 R2 Solution

zR 0 0 0 1 1 0
R1 −2 1 −1 1 0 1
R2 1 1 0 0 1 3

Perform row operations to obtain a starting basis (i.e., with zero coefficient for R1 and R2 in
the top row), and the tableau becomes:

49Linear Programming

x1 x2 s1 R1 R2 Solution

zR 1 −2 1 0 0 −4
R1 −2 1 −1 1 0 1
R2 1 1 0 0 1 3

We then apply two iterations of the Simplex method to obtain the following two
tableaus:

x1 x2 s1 R1 R2 Solution

zR −3 0 −1 2 0 −2
x2 −2 1 −1 1 0 1
R2 3 0 1 −1 1 2

x1 x2 s1 R1 R2 Solution

zR 0 0 0 1 1 0
x2 0 1 −1/3 1/3 2/3 7/3
x1 1 0 1/3 −1/3 1/3 2/3

This is the optimal solution for the Phase 1 problem, and since R1 and R2 are zero
and non-basic, this solution gives us a basic feasible starting solution for the original
problem.

In Phase 2, artificial variables need not be considered and can be removed from the tab-
leau. The top row of the starting tableau is replaced with the coefficients for the original
(maximization) objective function:

x1 x2 s1 Solution

z −1 −3 0 0
x2 0 1 −1/3 7/3
x1 1 0 1/3 2/3

Perform row operations to obtain an appropriate objective function row for a starting
basis, and the Phase 2 tableau becomes:

x1 x2 s1 Solution

z 0 0 −2/3 23/3
x2 0 1 −1/3 7/3
x1 1 0 1/3 2/3

Now we apply the ordinary Simplex method, and in this case one iteration produces the
optimal solution shown in the final tableau:

x1 x2 s1 Solution

z 2 0 0 9
x2 1 1 0 3
s1 3 0 1 2

50 Operations Research

It may be useful to look at a graphical solution of the problem we have just solved. Notice
in Figure 2.7 that the feasible region consists only of points on the line x1 + x2 = 3, between
the extreme points (0, 3) and (2/3, 7/3). The origin is not a feasible starting point, as was the
case in several of our previous examples. Instead, we initially use an augmented feasible
region (not visible in the graphical sketch) and a solution in which R1 and R2 are positive.
During Phase 1, R1 and R2 become zero while the real variables x1 and x2 become posi-
tive. Phase 1 yielded the initial feasible solution (2/3, 7/3) which can be shown in the two
dimensional drawing; and Phase 2 found the optimal solution at (0, 3).

2.7 Information in the Tableau

Several of the special cases introduced in Section 2.3 may reveal themselves in the Simplex
tableau during the iteration phases of the Simplex algorithm. In particular, based on infor-
mation that appears within the tableau, we can deduce certain characteristics of the linear
programming problem being solved. These include linear programming problems with
multiple optimal solutions, those with unbounded solutions, and problems having a
property known as degeneracy. We will also find information in the tableau that provides
insights concerning the roles played by the various resources in the system being modeled
as a linear program.

1 2 3

1

2

3

x1 + x2 = 3

−2
x 1 +

 x 2 =
 1

x1

x2

FIGURE 2.7
Infeasible origin.

51Linear Programming

2.7.1 Multiple Optimal Solutions

Recall from our example in Section 2.3.3 that when the line corresponding to the objec-
tive function is parallel to one of the straight lines bounding the feasible region, then the
objective function can be optimized at all points on that edge of the feasible region. Thus,
instead of a unique optimal solution, we have infinitely many optimal solutions from
which to choose, thereby permitting management to select on the basis of secondary fac-
tors that do not appear in the model.

This situation can be recognized in the Simplex tableau during Step 2 of the Simplex
algorithm. If a zero appears in the objective function row corresponding to a non-basic
variable, then that non-basic variable can enter the basis without changing the value of
the objective function. In other words, there are two distinct adjacent extreme points that
yield the same value of z.

When we apply the Simplex algorithm to the problem illustrated in Figure 2.3, the initial
solution is x1 = x2 = 0. In the first iteration, x2 enters the basis and s1 leaves, and this solution
x1 = 0, x2 = 2 yields z = 4. Next, x1 enters the basis and s2 leaves, and we obtain the solution
designated as point A in the figure where x1 = 4/3, x2 = 10/3, and z = 8. (Observe that s3
is a basic variable and, therefore, constraint 3 is not binding at this point.) Now, the third
Simplex tableau is as follows.

z x1 x2 s1 s2 s3 Solution

z 1 0 0 0 1 0 8
x2 0 0 1 1/3 1/3 0 10/3
x1 0 1 0 −2/3 1/3 0 4/3
s3 0 0 0 2/3 −1/3 1 14/3

This solution is optimal since all elements on the top row are non-negative. The zero in the
top row corresponding to the non-basic variable s1 signals that this problem has multiple
optimal solutions. And, in fact, if we apply another pivot operation (by bringing s1 into the
basis and selecting s3 to leave the basis), we obtain the fourth tableau

z x1 x2 s1 s2 s3 Solution

z 1 0 0 0 1 0 8
x2 0 0 1 0 1/2 −1/2 1
x1 0 1 0 0 0 1 6
s1 0 0 0 1 −1/2 3/2 7

This solution corresponds to point B in Figure 2.3 where x1 = 6, x2 = 1, and z = 8; and where
s1 is basic and consequently constraint 1 is not binding at this point.

2.7.2 Unbounded Solution (No Optimal Solution)

When the feasible region of a linear programming problem is unbounded, then it is also pos-
sible that the objective function value can be increased without bound. Evidence of both of
these situations can be found in the Simplex tableau during Step 3 of the Simplex algorithm.

If in any tableau the constraint coefficients corresponding to a non-basic variable are all
either negative or zero, then that non-basic variable can be increased arbitrarily without
violating any constraint. Thus, the feasible region is unbounded in the direction of that
variable.

52 Operations Research

Furthermore, if that variable is eligible to enter the basis (i.e., if it has a negative ele-
ment in the objective function row), then we know that increasing this variable’s value will
increase the objective function. And because this variable can be increased indefinitely,
so can the objective function value. Thus, the Simplex algorithm terminates and we can
recognize that the problem has an unbounded solution.

The following problem illustrates an unbounded feasible region and unbounded
solutions:

maximize z = 5x + 6x

subject to x + x 2

x 10

x , x 0

1

1 2

2

1 2

2

− ≤

≤

≥

Figure 2.8 shows the feasible region. The initial tableau is given by:

z x1 x2 s1 s2 Solution

z 1 −5 −6 0 0 0
s1 0 −1 1 1 0 2
s2 0 0 1 0 1 10

The unboundedness of the feasible region is indicated by the absence of positive elements
in the column corresponding to the non-basic variable x1. The negative coefficient in the
top row of this column indicates that x1 is eligible to increase (from zero) and that, there-
fore, z can increase indefinitely.

10

B

C

A

x2 = 10

−x 1 +
 x 2 =

 2

x1

x2

FIGURE 2.8
Unbounded solution.

53Linear Programming

Our Simplex algorithm, as it is stated, would, in fact, choose x2 (with the most negative coef-
ficient) as the entering variable, and we would move from point A to point B in Figure 2.8, and
then subsequently to point C. At that point, we would be faced again with the inevitable: x1
can be feasibly increased arbitrarily, producing an arbitrarily large value of z.

As noted earlier, a linear programming formulation with an unbounded objective func-
tion value undoubtedly represents an invalid model of a real system, since we have no real
expectation of achieving unlimited productivity or profitability. Recognizing such a situa-
tion, we must reformulate the problem with more careful attention to realistic constraints
on the decision variables.

2.7.3 Degenerate Solutions

A solution to a linear programming problem is said to be degenerate if one or more of the
basic variables has a value of zero. Evidence of the existence of a degenerate solution is
found during Step 4 of the Simplex algorithm when there is a tie for the minimum ratio θ,
that is, a tie for the leaving variable. In this case, the tie may be broken arbitrarily and one
variable is chosen to leave the basis. However, both variables participating in the tie will, in
fact, become zero, although one of them remains basic.

The presence of a degenerate solution indicates that the linear programming formula-
tion contains at least one redundant constraint. This situation arises in the following prob-
lem whose graphical solution is shown in Figure 2.9.

4

5

6

3

2

1

2 31

2x
1 + x

2 = 6

x1 + x2 = 3

x 1
 =

 3

x2 = 2

x1

x2

FIGURE 2.9
Degenerate solution.

54 Operations Research

maximize z = 3x + 2x

subject to x 3

x x

x

x x

x

1

1

2

2

1 2

1

2

12 6

2

3

≤

+ ≤

≤

+ ≤

,, x2 ≥ 0

Note that x1 ≤ 3 is redundant, since the constraint x1 + x2 ≤ 3 ensures that x1 ≤ 3. Similarly,
the constraint 2x1 + x2 ≤ 6 is redundant as shown in Figure 2.9. In the initial tableau, x1 is
chosen as the entering variable, and we discover a tie between s1 and s2 to leave the basis
since θ1 = θ2 = 3.

z x1 x2 s1 s2 s3 s4 Solution

1 −3 −2 0 0 0 0 0
s1 0 1 0 1 0 0 0 3
s2 0 2 1 0 1 0 0 6
s3 0 0 1 0 0 1 0 2
s4 0 1 1 0 0 0 1 3

Let us arbitrarily select s1 to leave the basis, and create the next tableau.

x1 x2 s1 s2 s3 s4 Solution

0 −2 3 0 0 0 9
x1 1 0 1 0 0 0 3
s2 0 1 −2 1 0 0 0
s3 0 1 0 0 1 0 2
s4 0 1 −1 0 0 1 0

Notice that the basic variables s2 and s4 now have a value of zero. The present solution
corresponds to a point where three redundant constraints are binding; that is, the slack
variables in the first, second, and fourth constraints are zero at this point.

When we now select x2 to enter the basis, we have a choice between s2 and s4 to leave. If
we pick s2, we will discover that the new tableau has a negative cost for s2, and basic vari-
ables x2 and s4 are both zero. Since we can now choose x2 to leave, we could get right back
to the tableau where we started. This cycling can continue indefinitely.

Note that, for a two variable problem, degeneracy can occur only when there are redun-
dant constraints. However, in three-variable problems, we could construct four or five con-
straints such that they all intersect at a common point, and none of them are redundant.
(For example, imagine a roof with many sides that all meet at a common peak.) If the prob-
lem contains extreme points of this form, and if the Simplex algorithm happens to land on
that corner (both rather unlikely in practice), then the algorithm could cycle indefinitely.

Problem degeneracy exposes the only theoretical weakness of the Simplex method: it
is possible that the algorithm will cycle indefinitely and fail to converge to an optimal
solution. Once a degenerate solution to a problem arises, it is possible that successive

55Linear Programming

iterations of the Simplex method will yield no improvement in the objective function.
This phenomenon may be a temporary one, occurring for only one or a few iterations, or
it may continue indefinitely, generating the same sequence of non-improving solutions.
If it is temporary, then we have merely lost valuable computation time, but we will even-
tually obtain the desired optimal solution. The more serious possibility, infinite cycling
and, therefore, failure of the algorithm, is fortunately not a serious practical problem.
Although problems have been constructed that demonstrate this hazard, such cycling in
actual problems is so rare that computational modifications to defend against Simplex
cycling are not considered to be worthwhile. Therefore, although many practical prob-
lems have degenerate solutions, the Simplex algorithm typically cycles only temporar-
ily and reaches the optimal solution without significant degradation in computational
efficiency.

2.7.4 Analyzing the Optimal Tableau: Shadow Prices

Once the Simplex method has terminated successfully, we find that the optimal tableau
contains not only the solutions for the decision variables, but also auxiliary information
that can be of considerable use to the analyst. For example, in the top row of the final
tableau, the coefficient of the i-th slack variable is the amount by which the final objective
function could be increased for each additional available unit of the resource associated
with that slack variable. These values are called shadow prices, and represent the mar-
ginal worth (or incremental value) of making additional units of the various resources
available.

By examining the optimal tableau at the end of Section 2.5, we find a coefficient of 4 for
slack variable s3. This means that the final value of z* could be increased by 4 for each addi-
tional unit of the resource associated with the third constraint. Likewise, the coefficient of
1 for slack variable s2 indicates that z* could be increased at a rate of 1 for each added unit
of the resource associated with the second constraint.

We are not too surprised to find, in this tableau, a zero marginal worth for the first
resource (denoted by a zero coefficient for s1 in the top row). Since s1 = 25 in the final solu-
tion, the first inequality constraint is satisfied with a slack of 25; that is, this resource is not
being completely consumed in this solution. Therefore, we would not expect any increase
in the objective function to result from adding any more units of a resource that is pres-
ently already under-utilized.

Decision makers and analysts are usually in a position to know whether the resource
limitations (that appear on the right hand sides of the linear system of constraints) are truly
fixed or whether resource allocations could be modified by acquiring additional resources.
Management can determine the economic advisability of increasing the allotment of the
i-th resource by examining the shadow price: the shadow price is the maximum per unit
price that should be paid to increase the allotment of that resource by one unit, in order to
achieve a net gain in the objective.

Having made the earlier observations about the unit worth of resources, it is important
to point out that the increases in resource allocations must be relatively small increases.
The economic measure of the value of increasing the availability of any given resource is
valid only as long as such an increase does not change the optimal basic solution. When the
right-hand sides of constraints are changed, we do in fact have a different linear program-
ming problem. Analyzing the extent to which resource capacities (or availabilities) can be
changed without altering the optimal set of basic variables is one of the topics covered in
the following section of this chapter.

56 Operations Research

2.8 Duality and Sensitivity Analysis

When making an economic interpretation of the objective function of a linear program-
ming problem, an alternative and useful point of view is obtained by computing the col-
lective contributions of all the resources. If we multiply the original availability of each
resource (shown in the original tableau) by its marginal worth (taken from the final tab-
leau), and form the sum, we obtain precisely the optimal objective function value. In our
example at the beginning of Section 2.5, we have marginal worth values of 0, 1, and 4, and
resource availabilities of 150, 250, and 500; therefore, the optimal objective function value
can be expressed as

 z* () () ()= = + +2250 0 150 1 250 4 500

This apparently equivalent way of viewing the original (or primal) linear programming
problem is a manifestation of what is called the dual problem. The study of duality pro-
vides the theoretical foundation for practical analysis of optimal solutions obtained with
the Simplex method. This topic is especially important because the full and effective use
of many linear programming software implementations requires a familiarity with the
concepts of duality.

Sensitivity analysis is the study of how a solution to a problem changes when there are
slight changes in the problem parameters, without solving the whole problem again from
scratch. It is, therefore, an analysis of how sensitive a solution is to small perturbations
in the problem data. Objective function coefficients, constraint coefficients, and resource
capacities are problem data that may be difficult or costly to obtain. These values may be
introduced into the linear programming model as rough estimates or imperfect observa-
tions, and they might be values that change over time, as costs fluctuate or resources avail-
abilities vary.

If all problem data were certain and constant over time, there would be no need for sen-
sitivity analysis. Each new problem would be based on exact data, and the solution would
be a perfect one. In practice, such is rarely the case. Thus, the problem formulation that is
solved initially may not be exactly the right problem, that is, the one that is valid at the time
resources are actually procured, costs are incurred, or profits are made.

If it could be determined, through the process of sensitivity analysis, which of the prob-
lem parameters are the most critical to the optimality of the original problem solution,
then analysts could take greatest care in supplying and refining specifically those param-
eters to which the solution is most sensitive. Sensitivity analysis tools are of great value
to management because they can help to provide a thorough understanding of a problem
solution, the range of problem parameters over which a solution is valid, and how the solu-
tion can be changed by making changes in costs, profits, or resource availability. Duality
theory provides the foundation underlying these tools.

2.8.1 The Dual Problem

A linear programming problem and its dual are related in the sense that both problems are
based on the same problem data, and an optimal solution to either one of the problems pre-
scribes the optimal solution to the other. These companion problems might even be thought
of as two different views of the same problem, but with different economic or engineering
interpretations, and possibly with different computational implications.

57Linear Programming

Consider any linear programming formulation that is in the form of a maximization
problem with constraints of the less than or equal type or equality constraints. (A con-
straint in which the inequality is a ≥ type can be multiplied by −1 to reverse the direction
of the inequality sign, resulting possibly in a negative right-hand-side value.) We will call
this the primal problem. If all constraints are inequalities and the decision variables are
non-negative, the primal problem can be written as:

maximize c x c x + + c x

subject to a x a x + + a

1 2 2 n n

11 12 2 1n

1

1

+

+

…

… xx b

a x a x + + a x b

a x a x + + a x b

n 1

21 1 22 2 2n n 2

m1 1 m2 2 mn n

≤

+ ≤

+ ≤

…

� �

… mm

where the variables x1, …, xn are non-negative.
In general, the corresponding dual problem is constructed as follows:

• The dual problem is a minimization problem.
• For every variable xi in the primal problem, there is a constraint in the dual problem.

If xi ≥ 0 in the primal, the constraint is a ≥ inequality in the dual.
If xi is unrestricted in sign, the i-th constraint is an equality in the dual.

• For every constraint in the primal problem, there is a variable yi in the dual.
If the constraint is ≤, then yi ≥ 0 in the dual problem.
If the constraint is an equality, then yi is unrestricted in sign in the dual.

• The right hand sides in the primal are the objective function coefficients in the dual.
• The objective function coefficients in the primal are the right hand sides in the dual.
• The coefficient matrix in the primal is transposed to form the coefficient matrix for

the dual.

The dual problem corresponding to the earlier primal problem is a problem with m vari-
ables and n constraints and can be written as:

minimize b y b y b y

subject to a y a y a y c

a

1 1 2 2 m m

11 1 21 2 m1 m 1

1

+ + +

+ + + ≥

…

…

22 1 22 2 m2 m 2

1n 1 2n 2 mn m n

y a y a y c

a y a y a y c

+ + + ≥

+ + + ≥

…

� �

…

and the variables y1, …, ym are non-negative.
Clearly, the dual of the dual problem is the original primal problem, and in many con-

texts, it is not necessary to stipulate which one of the companion problems is the primal one
and which is the dual one; each is the dual of the other.

58 Operations Research

Example 2.8.1

Consider the primal problem:

maximize 3x 2x 6x

Subject to 4x 8x x 5

x x x

1

1 3

1

+ −

+ − ≤

− + ≥

2 3

2

2 37 2 2 4

aand x , x , x 01 2 3 ≥

The second constraint can be rewritten as −7x1 + 2x2 − 2x3 ≤ −4. The dual problem is
then

minimize 5y 4y

subject to 4y 7y

y y

y y

and

1 2

1 2

1 2

1 2

−

− ≥

+ ≥

− − ≥ −

3

8 2 2

2 6

yy , y1 2 ≥ 0

Example 2.8.2

The following primal problem has constraints that include both types of inequalities
and an equality constraint:

maximize 4x 3x

subject to x x

x x

x x

x x

1

1

1

1

1

−

− ≤

− ≥

+ =

+

2

2

2

2

2

2 4 5

5 6 9

3 8 2

2 ≤≤

≥

1

0and x

and x unrestricted in sign

1

2

The dual of this problem is formed by rewriting the second constraint as −5x1 + 6x2 ≤ −9,
and then following the guidelines presented earlier to obtain:

minimize 5y 9y +2y + y

subject to 2y 5y +3y + y 4

y + 6

1 2 3 4

1 2 3 4

1

−

− ≥

−4 yy + 8y + 2y

and y , y , y

and y unrestricted in sign

2 3 4

1 2 4

3

= −

≥

3

0

59Linear Programming

(Recall that the Simplex method requires that all variables be non-negative. When an
unrestricted variable arises in a formulation, that variable can be replaced by the differ-
ence of two new non-negative variables, as suggested and illustrated in Section 2.4.1.)

There is a very apparent structural similarity between a primal and dual pair of
problems, but how are their solutions related? In the course of solving a (primal) max-
imization problem, the Simplex method generates a series of feasible solutions with
successively larger objective function values (cx). Solving the corresponding (dual) mini-
mization problem may be thought of as a process of generating a series of feasible solu-
tions with successively smaller objective function values (yb). Assuming that an optimal
solution does exist, the primal problem will converge to its maximum objective function
value from below, and the dual problem will converge to its minimum objective func-
tion value from above. The primal objective function evaluated at x never exceeds the
dual objective function evaluated at y; and at optimality, the two problems actually
have the same objective function value. This can be summarized in the following dual-
ity property:

Duality property: If x and y are feasible solutions to the primal and dual problems,
respectively, then cx ≤ yb throughout the optimization process; and finally, at optimal-
ity, cx* = y*b.

It follows from this property that, if feasible objective function values are found for a
primal and dual pair of problems, and if these values are equal to each other, then both
of the solutions are optimal solutions.

The phenomenon of primal and dual problems sharing the same objective function
values is not mere coincidence. In fact, the shadow prices, which appear in the top row
of the optimal tableau of the primal problem, are precisely the optimal values of the
dual variables. Similarly, if the dual problem were solved using the Simplex method,
the shadow prices in that optimal tableau would be the optimal values of the primal
variables.

In the illustrative problem from Section 2.5, the dual objective of minimizing
150y1 + 250y2 + 500y3 is met when the dual variables (shadow prices) have the values
y1 = 0, y2 = 1, y3 = 4. Thus, from the dual point of view,

 z = 150(0) + 250(1) + 500(4) = 2250*

which is equal to the primal objective value

 z* 8x 5x = 8 (125) 5(250) 22501 2= + + =

for optimal x values of x1 = 125 and x2 = 250.
One further characterization relating primal and dual linear programming problems

is known as complementary slackness. Because each decision variable in a primal
problem is associated with a constraint in the dual problem, each such variable is also
associated with a slack or surplus variable in the dual. In any solution, if the primal
variable is basic (with value ≥0, hence having slack), then the associated dual variable
is non-basic (with value = 0, hence having no slack). And if the primal variable is non-
basic (with value = 0, hence no slack), then the associated dual variable is basic (with
value = 0, hence having slack).

This can be observed even in a problem as simple as the one illustrating the Simplex
method in Section 2.5. In the final tableau, the primal basic variables x1, s1, and x2 have
positive values, while in the top row we see zero values for their three associated dual
variables. The non-basic primal variables s2 and s3 have zero values, while their associ-
ated dual variables are basic and have non-zero values.

60 Operations Research

This property is described as follows.

Complementary Slackness Property: If in an optimal solution to a linear program-
ming problem, an inequality constraint is not binding, then the dual variable cor-
responding to that constraint has a value of zero in any optimal solution to the dual
problem.

This is merely a formalization of the intuitive notion that the shadow price of a resource
associated with a non-binding constraint is zero. That is, there is a zero marginal worth
for a resource that is not being fully utilized.

The properties described earlier were based on an assumption that optimal solu-
tions to both primal and dual problems exist, but, of course, not all linear program-
ming problems have optimal feasible solutions; infeasible problems and problems with
unbounded solutions were discussed earlier in this chapter. For corresponding primal
and dual problems, exactly one of the following mutually exclusive cases always occurs:

1. Both primal and dual problems are feasible, and both have optimal (and equal)
solutions.

2. Both primal and dual problems are infeasible (have no feasible solution).
3. The primal problem is feasible but unbounded, and the dual problem is infeasible.
4. The dual problem is feasible but unbounded, and the primal problem is infeasible.

Because the pertinent parameters and goals of any linear programming problem can
be expressed in either a primal or dual form, and because solving either the primal or
dual problem yields enough information to easily construct a solution to the other, we
might reasonably wonder which problem, primal or dual, should we solve when using
the Simplex method.

From the standpoint of computational efficiency, we might wish to choose to solve the
problem with the fewer number of constraints. As is discussed further in Section 2.10.3,
the computation time required for the Simplex method is strongly dependent on the
number of constraints, and almost independent of the number of variables. Therefore,
in the absence of other identifiable structural characteristics of a problem that might
make it amenable to the use of specialized solution methods, we could expect to be able
to solve most quickly the problem having the smaller number of constraints. This choice
becomes more compelling when the linear programming problem has thousands of
constraints, and is of much less importance for more moderate-sized problems of a few
hundred or less constraints.

An understanding of duality properties and the relation between primal and dual
problems gives an analyst some flexibility in formulating, solving, and interpreting a
solution to a linear programming problem. Moreover, duality provides the mathemati-
cal basis for analyzing an optimal solution’s sensitivity to small changes in problem
data. We now turn our attention to the types of analysis that can be made once an opti-
mal solution to a linear programming problem has been obtained.

2.8.2 Postoptimality and Sensitivity Analysis

After an optimal solution to a linear programming problem has been found, the analyst’s
next step is to review the problem parameters and the solution, in preparation for put-
ting the solution into practice. This process of postoptimality analysis includes confirm-
ing or updating problem parameters (costs and availability of activities and resources),
and if there are any changes to the original problem parameters, assessing the effect of
these changes on the optimality of the solution. If the changes are small, it may not be
necessary to re-optimize the new problem; instead, some small calculation may suffice to
identify simple consequences in the previous optimal scenario. Sensitivity analysis is the

61Linear Programming

study of the types, ranges, and magnitude of changes in problem parameters whose effects
can be determined relatively easily, without the need for solving a new linear program-
ming problem.

In a linear programming model that is relatively insensitive to changes in problem
parameters, the original optimal solution may not change even when several parameters
vary widely. Other models may be highly sensitive, and the optimality of the original solu-
tion may be seriously undermined by the smallest change in even one parameter. When
working with less sensitive models, the expense and effort of acquiring extremely accurate
data (through extensive sampling, costly tracking, careful observations, etc.) may not be
justified. On the other hand, a successful analyst knows the necessity of making a special
effort to obtain the most accurate possible problem data when working with very sensitive
models.

Sensitivity analysis addresses several different kinds of changes to a linear program-
ming formulation, including:

• Changes in objective function coefficients
• Increases or decreases in the right hand side of a constraint
• Adding a new variable
• Adding a constraint
• Changes in constraint coefficients

Objective function coefficient range analysis identifies the maximum allowable increase
and decrease that can occur for each coefficient without changing the current solution.
Under the assumption that all other parameters remain unchanged, a change within the
allowable range ensures that the current solution will remain optimal and that the val-
ues of the decision variables remain unchanged. The objective function value would, of
course, change as the coefficient varies over its range.

Example 2.8.3

Consider a simple two variable example:

maximize z = 4x 3x

subject to x x

x x

x x

x

1 2

1 2

1 2

1

1

+

+ ≤

+ ≤

+ ≤

4

2 6

3 92

, xx2 ≥ 0

Using the illustration in Figure 2.10, we can observe that the optimal solution occurs
at the point (2, 2) with a function value of z = 14. If we change the cost coefficients
slightly, the optimal solution will stay at the current point. However, if we add
more than 1 to the coefficient of x2, then the current solution will no longer be opti-
mal. Similarly, if we subtract more than 1 from c2, the solution will change. (See
Exercise 2.45.)

Right-hand-side ranging is performed to determine how much the right-hand side
of a constraint can vary (increase or decrease) without causing the original optimal

62 Operations Research

solution to become infeasible. Changing a constraint alters the feasible region and may
affect the shape of the feasible region in the vicinity of the optimal point. (If the original
optimal point is no longer a feasible extreme point, a different optimal solution would
have to be found.) If a resource is not being completely used (i.e., there is positive slack)
in the optimal solution, then clearly the right hand side of the constraint corresponding
to that resource can be increased indefinitely. In general, however, possible increases
and decreases in right hand sides are measured by analyzing the optimal solution to
determine how much slack can be created in the constraint without changing the opti-
mal solution.

In the problem depicted in Figure 2.10, consider what happens when we add 1 to the
right hand side of the second constraint, so that the constraint becomes 2x1 + x2 ≤ 7.
Now, the active constraints at the optimal solution have changed, but the same set of
constraints will be active. (The same variables are basic.) As discussed earlier, the objec-
tive function will increase by precisely the value of the dual variable corresponding to
that constraint. In this example, the objective function will increase by 1.

It is easy to see in the illustration that the right hand side can be increased by 2 with-
out changing the variables in the basis. Beyond that point, the constraint becomes inac-
tive (outside the feasible region). Similarly, the right hand side of constraint 2 can be
decreased by 0.5 without changing the basis. At that point, the optimal solution would
occur at the intersection of the other two constraints, at (1.5, 2.5), and decreasing beyond
that would change the basic variables.

Adding a new variable to a model would require introducing the resource require-
ments of that new activity or product into a current optimal solution. By analyzing
information already in the optimal tableau, it can be determined whether the new vari-
able would be a basic variable in the optimal solution and what would be the value of its

6

5

4

3 (1, 1)

max z = 4x 1 +
 3x 2

(4, 3)

(2, 1)

2

Feasible
region

1
z = 14

(2, 2)

1 2 3 4

x1 + x2 ≤ 4
x1 + 3x2 ≤ 9

2x
1 + x

2 ≤ 6
x1

x2

FIGURE 2.10
Illustration of sensitivity analysis.

63Linear Programming

coefficient in the objective function. The shadow prices in the optimal solution provide
information about the marginal worth of resources, and knowing the resource needs
corresponding to the new variable, the value of bringing in the new variable can be
computed.

Adding a constraint or changing constraint coefficients amounts to rather compli-
cated changes to the original problem. These types of changes to the linear programming
model fall logically into the postoptimality analysis framework, but technically these are
not changes that can be analyzed or effected by merely using information in the optimal
tableau. Such changes are generally best dealt with by solving the modified problem anew.

Almost all commercial software for linear programming, such as the products men-
tioned in Section 2.10.3, include postoptimality analysis as part of the standard out-
put. Most packages present right-hand-side ranging and objective coefficient ranging
information; some also include adding a new variable; rarely are constraint changes
included as part of ordinary postoptimality analysis.

The information and insights obtained through sensitivity analysis are especially
valuable to management because they provide an indication of the degree of flexibility
that is inherent in an operating environment. Such knowledge is helpful in planning,
making decisions, and formulating policies for handling fluctuations and imprecision
in prices, activities, and resource availabilities used in linear programming models.

2.9 Revised Simplex and Computational Efficiency

The amount of computation required to solve linear programming problems with the
Simplex method is indeed arduous; in fact, all but the most trivial problems must be solved
with the aid of a computer. Several decades of experience with computer implementations of
the Simplex method have led researchers and practitioners to develop various improvements
and enhancements to the original Simplex method. The result is a refined version of the stan-
dard Simplex, called the Revised Simplex method. This method makes much more efficient
use of a computer’s most valuable resources: CPU computation time and memory space.

Recall that the standard Simplex method performs calculations, at each iteration, to
update the entire tableau. Actually, the only data needed at each iteration are the objective
function row (to determine the entering variable), the pivot column corresponding to the
non-basic entering variable, and the right-hand-side values of the current basic variables (to
determine the variable to leave the current basis). Thus, the standard Simplex computes and
stores many values that are not needed during the present iteration and that may never be
needed. The Revised Simplex method performs the same iterations as the standard Simplex,
but the details of its computations have specific advantages for computer implementations.

The standard Simplex method generates each new tableau iteratively, based on the previ-
ous tableau. However, the Revised Simplex method takes advantage of the fact that all of
the information in any tableau can in fact be obtained directly from the original problem
equations, if the inverse of the matrix of basic columns for that tableau is known. And that
inverse can be obtained directly from the original equations if the current basic variables
for that tableau are known. Note that the Revised Simplex performs the usual selection of
an entering and leaving variable at each iteration, but it carries out only those computa-
tions necessary to register that selection and to record the current solution configuration.

Readers acquainted with numerical computation will be aware that matrix inversion
is itself a nontrivial task, in terms of both computation time and numerical accuracy.

64 Operations Research

Therefore, instead of recomputing a basis inverse at each iteration, a product form of
inverse can be used that allows a new inverse to be computed simply from the previous
one. This procedure calls for premultiplying the previous inverse by a matrix that is an
identity matrix except in one column. (Only that one column and an indicator of its posi-
tion in the matrix need be stored explicitly.) Some of the more advanced references listed
at the end of this chapter provide a more complete description of product form inverse
computation, and of how re-inversion can help to maintain accuracy and save storage
space.

Although the Revised Simplex method requires some additional bookkeeping that
would not be needed if the full tableau were maintained, the method typically requires
less computation, uses less storage space, and obtains greater numerical accuracy than the
standard Simplex method.

Because only the essential data are computed, Revised Simplex has an advantage, with
respect to computation time, over the standard Simplex. This advantage is particularly
pronounced when the number of constraints is much less than the number of variables
because the size of all the essential data (basic columns and right-hand-side constants) is
determined by the number of constraints. (Refer to [Simmons 1972] for a detailed operation-
count for the Revised and standard Simplex methods.)

Revised Simplex storage requirements are minimal because it is necessary to store only
the basic variables, the basis inverse or its product form, and the constants. The origi-
nal constraint matrix and objective coefficients can be stored efficiently by the computer’s
memory manager on conveniently placed storage devices, along with the premultipliers
for the product form inverse, if desired.

Perhaps the most attractive advantage offered by the Revised Simplex method is increased
numerical accuracy. As discussed in Chapter 1, an algorithm is called numerically unstable
if small errors (through round-off in intermediate computations, for example) can lead to
very large errors in the final solution. Both the standard and Revised Simplex methods
are numerically unstable, but Revised Simplex avoids some of the potential for instability.
There is less accumulated round-off error because calculations are performed on a column
only when it is to enter the basis, not at every iteration. Furthermore, computations are
applied to original problem data, not to data that have already undergone (possibly unnec-
essary) computation.

Typical large linear programming problems have constraint matrices that are very sparse,
with a large proportion (often in the range of 95%) of zero values. Revised Simplex performs
fewer multiplications involving non-zero elements, since Revised Simplex operates on original
(sparse) data, whereas standard Simplex operates repeatedly on the entire tableau and quickly
creates a dense matrix out of a sparse one. Thus, by taking advantage of sparsity, the Revised
Simplex can reduce the amount of computation and therefore maintain numerical accuracy.

The advantages described earlier have been observed so consistently that almost all
commercial software for linear programming is based on the Revised Simplex method
(with product form inverse) for both phases of the two phase method.

2.10 Software for Linear Programming

Now that we are familiar with linear programming models and a fundamental method
for solving these problems, we will turn our attention to some practical considerations
necessary for solving large linear programming problems on a computer. Because there

65Linear Programming

is quite a selection of commercially available software for linear programming, anyone
in a position to choose a software system for personal use (and certainly anyone con-
templating developing their own software) should be aware of the various features to be
mentioned in this section. In particular, we will briefly describe some important exten-
sions often found appended to the usual Simplex techniques, and some actual commer-
cial systems that are available. We also include a discussion of interior methods that
now play an increasingly important role in the practical solution of linear programming
problems.

2.10.1 Extensions to General Simplex Methods

The majority of commercial software for linear programming is based on the Revised
Simplex method, and most implementations employ the product form inverse. For effi-
ciency and accuracy on a computer, a variety of additional features may also be incorpo-
rated. We merely mention a few of them here, and the interested reader can obtain a more
thorough understanding using the references cited at the end of the chapter.

The method used for computing and maintaining tableau information has a strong bear-
ing on the size of problem that can be successfully attempted. More complicated imple-
mentations require greater skill and effort but operate with greater speed so that larger
problems can be solved.

The explicit inverse method is straightforward and can be efficient and useful for prob-
lems involving a few hundred rows. The product form inverse allows for problems in
the range of 1000 or so rows. For problems with tens of thousands of rows, LU decom-
position techniques have been developed, for use both in the iteration phases and dur-
ing re-inversion of the basis. In simple terms, any basis matrix B can be rewritten as the
product of two triangular matrices, L and U where L is lower triangular (with zeros above
the main diagonal) and U is upper triangular (with zeros below the diagonal). This format
enables very efficient inverse computation and solution of the system.

In a linear program with many variables, it is very time consuming to examine every
non-basic variable at each iteration to determine the one to enter the basis. Many linear
programming implementations do not go to the effort to select the non-basic variable cor-
responding to the most negative top row coefficient, but rather one corresponding to any
negative coefficient (i.e., any variable that will improve the objective function). Although
this strategy may increase the total number of iterations, it is actually a time-saving and
very rational approach because the negative top row coefficients only specify a per-unit
improvement in z, and not an absolute overall improvement. Thus any good entering vari-
able can be quickly selected for the next basis.

In many linear programming models, there are upper bound constraints (xj ≤ uj) for
some or all of the variables. Constraints such as these, as well as generalized upper bounds
(∑xj ≤ uj), can be dealt with using a method, introduced by Dantzig and Van Slyke (1967),
that handles these constraints implicitly without enlarging the basis. (Recall that for each
explicit constraint, there must be a basic variable; therefore, any additional constraints
generally contribute to the amount of work and storage required by the Revised Simplex
method.) Handling upper bound constraints implicitly does take time, but practice has
shown that this is an advantageous trade-off that serves to keep the problem size from
increasing.

Very large linear programming models often result in a constraint matrix A in which the
non-zero elements appear in patterns or blocks. When a problem exhibits such a high degree

66 Operations Research

of structure, it may be possible to apply a decomposition technique (Dantzig and Wolfe
1960). The original model is partitioned, and the subproblems are then solved individually.

Not only do non-zero elements of A often appear in patterns, but more generally, we find
the matrix A to be very sparse. A sparse matrix is one with a very large proportion of zero
elements. A rule of thumb is that large linear programming models typically have only
about 10% non-zero elements; some practitioners claim that 1%–5% is a more realistic range.
This sparsity is not a surprising phenomenon when we consider that in any large orga-
nization, certain sets of products, people, or processes tend to operate in groups, and are
therefore subject to local constraints. When such a problem is formulated, a sparse matrix
results because each variable is involved in a relatively small number of the constraints.

In order to make better use of available memory, sparse matrices should be stored in
some type of a compressed format, using methods such as those described by (Murtagh
1981). For example, each non-zero element could be stored along with an encoded form
of its row and column indices. The term super sparse has been used to describe matrices
that are not only sparse but in which many of the non-zero elements are the same. (e.g., in
many applications, the vast majority of non-zero coefficients have a value of one.) In that
case, each distinct value need be stored only once, and elements are found via a table of
addresses into a table of distinct element values. Sparse matrix handling techniques have
been shown to be worthwhile even if the coefficient matrix A is stored on a peripheral
memory device. Because transfer time is slow relative to computation time, it is prudent to
maintain such large data structures in as compact a form as possible.

Round-off error is a natural consequence of using finite precision computing devices. As
was pointed out in Chapter 1, this inability to store computed results exactly is particularly
pronounced when we perform arithmetic operations on numeric values of very different
magnitudes, where we are often unable to record that portion of a result contributed by
the smaller value. In an attempt to remove the source of some of these numerical inaccu-
racies, most commercial linear programming systems apply some kind of scaling before
beginning the Simplex method. Rows and columns of the matrix A may be multiplied by
constants in order to make the largest element of each row and column the same (Murtagh
1981). To improve the condition of a matrix (and, therefore, obtain greater accuracy of its
inverse), all the elements of A should be kept within a reasonable range, say within a factor
of 106 or 108 of each other (Orchard-Hays 1968). More elaborate and specific mechanisms
for scaling have been devised. In general, a healthy awareness of the limitations of com-
puter arithmetic and numerical computation is essential in understanding and interpret-
ing computed results.

In a problem of any practical size, the elimination of artificial variables from an initial
solution can take a considerable amount of computation time. The term crashing refers
generally to any kind of technique that gives the Simplex method a head start and elimi-
nates some of the early iterations. Crashing sometimes consists of choosing a set of (non-
artificial) non-basic variables to enter the basis and replace the artificial variables, even
at the expense of temporarily degrading the objective function or making the solution
infeasible (Cooper and Steinberg 1974). An even better way to give a boost to the Simplex
method is to obtain, from the user or analyst, problem specific information about which
variables are likely to be basic variables in a final solution. Many commercial systems
(particularly those for larger powerful computers) provide a means for introducing such
information along with other problem data. It may also be possible to restart Simplex itera-
tions using solutions from previous (incomplete) attempts at optimization.

Many commercial systems contain algorithms for sensitivity analysis (also called
ranging procedures or postoptimality analysis). These techniques are applied after the

67Linear Programming

Simplex method has already produced an optimal solution. Sensitivity analysis allows the
user to determine the effect that changes in various problem parameters would have on
the optimal solution. Changes in the objective (cost/profit) coefficients and in the resource
levels (right hand sides of constraints) are commonly dealt with; some systems consider
the addition of decision variables to the original model, but most systems do not handle
changes in the constraint coefficients or the addition of new constraints.

The relationship between sensitivity analysis and the dual to a linear programming
model was described in Section 2.8. It is not uncommon for commercial software to include
subroutines embodying a method known as the dual Simplex method. During sensitivity
analysis, if problem parameters are changed, the current (optimal) solution may become
infeasible. However, the problem is then dual feasible, and can be reoptimized using the
dual Simplex algorithm.

2.10.2 Interior Methods

The complexity of linear programming problems was for many years one of the most
important open questions in theoretical computer science. Efforts were made to prove
that Dantzig’s Simplex method would always stop sooner than n

m() iterations, but instead,
problems were devised which drive the Simplex method through the combinatorial explo-
sion of basic solutions. On the other hand, the linear programming problem did not seem
to be NP-hard either.

The question was first answered in 1979 when the Russian mathematician Leonid B.
Khachiyan published an algorithm for solving linear programming problems in polyno-
mial time. Initial confusion over the importance of Khachiyan’s discovery arose for two
reasons. First, his results appeared in a very short article in a Russian journal and went
unnoticed for months because of its obscurity as well as the fact that the report was written
in the Russian language. After some time, Eugene Lawler at the University of California
at Berkeley brought the article to the attention of the computer science community. The
explanation that Khachiyan himself presented was so abbreviated that mathematicians
had little inkling of its content. Finally, through Lawler’s efforts, Khachiyan’s work was
expanded upon (and the details of the proof reconstructed) by Gacs and Lovasz (1981),
who not only filled in the gaps in the proof but improved on the efficiency of the algo-
rithm. Only then was the new idea available to the general mathematics community for
consideration and discussion. Almost nothing was known about Khachiyan himself, and
it was generally assumed, even by Gacs and Lovasz, that he had never published any pre-
vious works. However, as it turns out, (Aspvall and Stone 1980) cite four publications by
Khachiyan prior to his famous one in 1979.

The second misunderstanding arose because Khachiyan’s algorithm was designed for
linear programming problems in which c, A, and b are integers. Careless reporters publi-
cized incorrectly that Khachiyan had developed a polynomial-time algorithm for integer
programming problems (such as the traveling salesman problem). Because this part of the
story was untrue, there was skepticism concerning just what Khachiyan really had done.
Major newspapers around the world contributed to the notoriety (but sadly not to the
clarification) of this remarkable discovery.

Because linear programming problems had been suspected of having borderline
complexity—neither being NP-hard nor having a polynomial algorithm—Khachiyan’s
demonstration of a polynomial-time algorithm was somewhat surprising and of immense
importance. Even George Dantzig, who developed the (worst-case exponential-time)
Simplex algorithm, graciously offered the comment that, “A lot of people, including myself,

68 Operations Research

spent a lot of time looking for a polynomial-time algorithm for linear programming. I feel
stupid that I didn’t see it” (Kolata 1979).

Khachiyan’s method operates by defining a sequence of ellipsoids (ellipses in a multi-
dimensional space), each smaller than the previous ellipsoid, and each containing the fea-
sible region. The method generates a sequence of points x0, x1, x2, …, which form the centers
of the ellipsoids. At each iteration, if the center xk of the ellipsoid is infeasible, a hyperplane
parallel to a violated constraint and passing through xk is used to cut the ellipsoid in half.
One half is completely infeasible, but the other half contains the feasible region (if it exists),
so a smaller ellipsoid is constructed that surrounds this half. Eventually, some xk will lie
in the feasible region.

From a practical standpoint, Khachiyan’s ellipsoid method lacked the many years of
fine-tuning that had been directed toward improving the efficiency of the Simplex method.
Therefore, although it was a polynomial-time algorithm, in practice the Simplex method
was the preferred method because typically it performed quite well, and software imple-
mentations were readily available. It should be noted, however, that whereas the computa-
tion time for the Simplex method is most strongly dependent on the number of constraints
m, Khachiyan’s method is relatively insensitive to m and more strongly dependent on the
number of decision variables n. Thus, it was supposed at the time that Khachiyan’s ellip-
soid method might eventually be superior, in practice, to the Simplex method for prob-
lems with numerous constraints. In any case, just five years later in 1984, yet another new
method appeared.

Narendra Karmarkar, a young mathematician at AT&T Bell Laboratories, announced
an algorithm for solving linear programming problems that was even more efficient than
Khachiyan’s method. Karmarkar’s method is called an interior point method since it oper-
ates from within the polyhedron of feasible points of the linear programming problem. The
algorithm uses a series of projective transformations in which the polyhedron is first made
smoother (normalized), then an arbitrary point is selected which is re-mapped to the center,
and a sphere is inscribed in the polyhedron. Then a new point is selected, near the edge
of the sphere and in the direction of the optimal solution. The space is then transformed
or warped again so that this new point is in the center. The process is repeated until the
selected point is the optimal solution to the linear programming problem. Karmarkar’s
method of projective transformations demonstrates a polynomial-time complexity bound
for linear programming that was better than any previously known bound.

Karmarkar’s original announcement claimed that his method was many times faster
than the Simplex method. But since AT&T Bell Laboratories’ proprietary interests pre-
cluded disclosure of the details of its implementation, it was not at first possible to test
Karmarkar’s claims. In fact, for several years, the scientific community remained some-
what annoyed because no one outside Bell Laboratories was in a position to duplicate
Karmarkar’s computational experiments—and hence the traditional scientific peer review
process could not take place.

Whereas Karmarkar had claimed computation times 50 times faster than Simplex based
codes, outside researchers were implementing Karmarkar’s method and observing com-
putation times 50 times worse. Eventually, however, over the next 10 years, it became evi-
dent that by using special data structures, efficient methods for handling sparse matrices,
and clever Cholesky factorization techniques, the performance of Karmarkar’s method
could become quite competitive with Simplex implementations.

An important side effect of the controversy over the validity of Karmarkar’s claims is
that it sparked a great deal of interest in examining and refining Simplex implementations.
Consequently, there are now many very efficient implementations of both approaches.

69Linear Programming

An overview (Lustig et al. 1994) indicated that small problems, in which the sum of the num-
ber of decision variables plus the number of constraints is less than 2000, can generally be
solved faster with the Simplex method. For medium sized problems, in which that sum is less
than 10,000, Simplex and interior methods compete evenly. And there are several extremely
large linear programming problems that have now been solved by interior point methods
which have never been solved by any Simplex code. An increasing number of commercial
software products contain both interior point methods and Simplex methods that can be
used together or separately in solving large or difficult problems. Each of these approaches
has its advantages, and hybrid software that combines these complementary methods con-
stitutes a powerful computational tool for solving linear programming problems.

As the methods suggested originally by Karmarkar became more widely understood,
numerous researchers made their own various contributions to the practical implemen-
tation of interior point algorithms. A very thorough summary of theoretical and imple-
mentational developments, as well as computational experimentation, may be found in
a feature article by (Lustig et al. 1994). Bixby (1994) presents an enlightening description
of commercial interior point methods, options, and performance on benchmark problem
instances. Saigal (1995) is a comprehensive reference that includes a large section on inte-
rior point methods. Mitra et al. (1988) report experimental studies with hybrid interior/
Simplex methods. Thus, the theoretical merits of Karmarkar’s new approach, which had
never been doubted, have finally been balanced by considerable practical computational
experience. As an illustration of this, recall that interior point methods must remain in the
interior of the feasible region. Yet computational experience shows that choosing a step
length that gets very close to (and nearly outside of) the boundary of the region is actually
most efficient. So-called barrier parameters are used to control the interior search in the
feasible region.

The interior and barrier methods were inspired by (and incorporate) many of the more
general methods of nonlinear programming. It should be noted that interior point meth-
ods did not originate with Karmarkar; in fact, the approach had been used since the 1950s
for nonlinear programming problems. However, Karmarkar can be credited with demon-
strating that interior point methods could also be practical for solving linear program-
ming problems. Therefore, a student who wishes to fully understand these methods might
well begin by reading the introductory notions presented in Chapter 5 on Nonlinear
Optimization, and then be prepared to embark on a serious study of the mathematics and
numerical analysis underlying general optimization procedures.

2.10.3 Software for Solving Linear Programming

The Simplex method is theoretically not an efficient algorithm because its worst case
performance is exponential in the size of the problem being solved. However, empirical
evidence, observed over many years and many practical problem instances, shows the
Simplex method to be consistently very efficient in practice.

The computational effort required for solving a linear program with the Simplex method
is strongly dependent on the number of constraints m, and almost independent of the num-
ber of variables n. In typical problems, we find that the number of constraints is much less
than the number of variables, and in just such cases, the Revised Simplex has great computa-
tional advantage over the standard Simplex. In practical experience, the number of Simplex
iterations required, on average, to solve a problem with m constraints, is 2m. A practical,
although not strict, upper bound on the number of iterations is 2(m + n) (Ravindran et al.
1987). Total computation time has been observed to increase roughly in the order of m3.

70 Operations Research

Thus, a 1000-constraint problem may require a million times as much computation time
as a 10-constraint problem. In practice, we can generally expect to obtain solutions to lin-
ear programming problems very efficiently, despite the lack of any attractive performance
guarantees.

To give some perspective to the notion of problem size (and to dispel any mispercep-
tions that may have been created by the very small illustrative examples used earlier in
this chapter), we should indicate just what is considered a large linear programming prob-
lem. Problem size is usually expressed in terms of the number of constraints, the number
of decision variables (which may or may not include the slack and surplus variables), and
perhaps the number of non-zero coefficients in the matrix. In the early 1950s, when the first
linear programming software was being developed, an inversion of a matrix of order 100
was considered state of the art in numerical computation. Nowadays, a linear program-
ming problem with thousands of constraints is routine, and problems with tens to hun-
dreds of thousands of constraints are computationally manageable. Advances in hardware
technology have delivered dramatically increased processing speeds, and corresponding
hardware and software developments in storage capacities and memory management
techniques have facilitated computations on the data representing very large problems.

Software for linear programming has been under development for many decades, first
using Simplex and related techniques and now including interior point implementations,
decomposition, and barrier methods, among other advances, all having evolved together
into standard forms. One might think that there is little room, or need, for any significant
changes in LP solver technology. But with steady advances in processor speed and storage
capabilities, computational mathematics, algorithm engineering, potentials for parallel
and distributed computing, and powerful and convenient modeling systems that encour-
age analysts to attack ever larger and more challenging problems, we are seeing even more
remarkable developments in software.

Software vendors typically offer a variety of versions of their packages. The options
may be based on the choice of modeling language and the input/output interfaces, the
hardware platform and the underlying operating system. Some of these options and char-
acteristics are presented clearly and succinctly in a very useful series of survey articles
by (Sharda 1995, 1992) and (Fourer 2015, 2017) that describe many of the most popular
software products now available. We mention a few of them here to provide a glimpse of
what is currently in use by practitioners who need to solve linear programming problems.

Many advanced modeling languages and systems, such as those mentioned in Chapter 1,
provide interfaces with linear programming solvers. For example, AMPL, GAMS, and
MPL facilitate linear optimization with advanced features for large-scale problems and
parallel simplex methods by offering access to CPLEX, MINOS, and OSL.

IBM ILOG CPLEX Optimizer (commonly referred to as CPLEX) is designed to solve
large, difficult linear programming (and other) problems which some other LP solvers
cannot solve efficiently. It has been developed to be fast, robust, and reliable, even for
poorly scaled or numerically difficult problems. This software uses a modified primal
and dual Simplex algorithm, along with interior point methods. CPLEX is currently used
to solve some of the largest problems in the world, some with millions of variables, con-
straints, and non-zeros. Options include a preprocessor for problem reduction, as well as
parallel implementations that have demonstrated record-breaking performance. CPLEX is
portable across Windows PCs, Unix/Linux, and Mac OS platforms.

MINOS offers numerically stable implementations of primal Simplex, using sparse LU
factorization techniques. This system originated with (Murtagh and Saunders 1987) with
versions for PCs, Windows, Unix, and mainframe systems.

71Linear Programming

LINDO (Linear INteractive and Discrete Optimizer), originally developed by Linus
Schrage (1991), is one of the oldest and now among the most popular commercial systems
for solving linear programming problems. LINDO API and the LINGO modeling system
offer powerful solvers for linear programs, based on methods including primal and dual
simplex for speed and robust computations.

SAS provides an integrated package, with capabilities for solving a wide variety of
Operations Research problems. SAS/OR subroutines for solving linear programming
problems use two phase Revised Simplex, primal and dual simplex, and interior point
methods, and employ decomposition algorithms and efficient sparse-matrix techniques.

Gurobi Optimization solves linear programming problems through the use of advanced
algorithms taking advantage of various modern powerful hardware architectures.

IMSL has an established reputation in the field of numerical problem-solving software,
known for accuracy and dependability. IMSL contains literally thousands of mathemati-
cal and statistical library routines including linear programming routines based on the
Revised Simplex method. Routines are implemented on a wide variety of platforms.

This selection of commercial software products is by no means exhaustive; we have
merely mentioned several representative packages that are in popular use. With new
product enhancements constantly under development, our readers should have no trouble
finding many additional sources of software for solving linear programming problems.

2.11 Illustrative Applications

2.11.1 Forest Pest Control Program (Rumpf et al. 1985)

The Maine Forest Service operates a program of aerial pesticide spraying to mitigate the
destruction of spruce-fir forests by the spruce budworm. Yearly spraying of the 5 million
acre infestation takes place in early summer during a specific stage of insect develop-
ment, and must be done in dry weather under moderate wind conditions. Spraying is
done by aircraft teams consisting of a spray aircraft, a guide plane with a pilot and
navigator, and a monitor plane with a pilot and observer. The entire program includes
analysis of insect damage and danger assessment of treatment requirements, and cost
of chemicals, but one third of the total cost of the program is for aircraft and crews. The
Forest Service has therefore wisely investigated the use of quantitative methods to maxi-
mize the efficiency of aircraft assignments and to reduce aircraft needs.

The aircraft operate out of eight airfields, and preliminary models were developed to
partition the infested area into over 300 regions (spray blocks) about each airfield, and to
then assign spray blocks to airfields and aircraft to airfields.

This initially seemed like a natural problem to be formulated as a network problem or
integer programming model (see Chapters 3 and 4); but some of the realistic elements of this
problem could not be incorporated into the network models, and the integer programming
formulation turned out to be prohibitively large. Finally, a linear programming formulation
was developed that models the problem realistically and that can be solved quite efficiently.

The decision variables are the times allocated to each aircraft team flying out of each
airfield to spray each block. The objective function includes only those variables associated
with allowable combinations of blocks, aircraft, and airfields; that is, blocks within operat-
ing range of the airfield, aircraft capable of spraying the type of pesticide prescribed for

72 Operations Research

a certain block, and the specified type of aircraft team (planes and crew) stationed at the
given airfield. The aim is to minimize total spraying cost.

Constraints are imposed to guarantee sufficient time to completely spray each block
(and this depends on the geometrical shape of the block, the speed of the aircraft, the
pesticide capacity of the plane, and the availability of chemicals at the airfield). A second
category of constraints accounts for the time windows during which weather conditions
and budworm development are appropriate for effective aerial spray.

The use of this model has saved time and reduced the cost of the aerial spraying program.
It has also provided a framework from which to analyze major modifications to the program,
such as loss of an airfield or the availability of a new long-range aircraft, and, in response to
environmental concerns, to re-evaluate the actual need for spraying certain areas.

2.11.2 Aircraft and Munitions Procurement (Might 1987)

The US Air Force uses a linear programming model to decide annually how much of its
procurement budget should be spent on various different aircraft (such as the F-16, A-10,
F-111, and F-15E) and on various conventional munitions. It has been argued that quan-
titative methods are inapplicable for strategic decisions that are highly unstructured.
However, senior level decision makers are rotated frequently and often lack long experi-
ence and judgment on which to base procurement decisions. For this reason, quantitative
analytical decision support has proved to be of great benefit.

The decision involves analyzing the cost-effectiveness of each aircraft carrying each
of several possible munitions. The difficulty arises because the attrition of the aircraft is
dependent on the munitions being delivered, and an aircraft may be vulnerable to differ-
ent types of attack, depending on the weapon it is carrying. Likewise, an aircraft must fly
at different altitudes with different munitions and thus anti-aircraft weapons vary in effec-
tiveness. And when the loss rate varies only a few percent, there is considerable variation
in the number of attacks an aircraft can make during a conflict; thus, the cost-effectiveness
of an aircraft-munitions combination is difficult to measure subjectively.

The data used by the linear program include:

• The effectiveness of each aircraft munitions combination against each target type
in each of six different weather conditions

• The attrition (probability of loss) of each aircraft for each aforementioned condition
• The number of munitions delivered on each sortie for each condition
• The number of sorties per day for each aircraft munitions combination
• Current inventory of aircraft and munitions
• Number and value of each type of target
• Cost of each new aircraft and munitions type

Thus, the decision variables are the total number of sorties flown by each aircraft muni-
tions combination against each target type in each of six types of weather. The objective is
the sum of these variables, each multiplied by the probability of a successful sortie times
the value of the target type.

Five categories of constraints are defined for aircraft, munitions, targets, weather, and
budget. The current implementation has pre- and post-processors for data formatting,
and can be run with different databases. Output includes listings, tables, and graphical

73Linear Programming

displays indicating, for example, trade-offs of funds expended on aircraft versus muni-
tions, target value destroyed versus expenditure on individual munitions or a mixture of
munitions. This linear programming approach to procurement has received enthusiastic
acceptance within the military procurement community.

2.11.3 Grape Processing: Materials Planning and
Production (Schuster and Allen 1998)

Welch’s grape processing company has successfully employed linear programming
models for optimizing its management of raw materials in its production and distribu-
tion of grape juice products. Welch’s, Inc. is owned by a cooperative, the National Grape
Cooperative Association, involving 1400 growers of Concord and Niagara grapes in the
northern United States. Membership in the cooperative is attractive to grape growers
because Welch’s offers a reliable and consistent market for grapes, despite fluctuations in
agricultural productivity.

Welch’s plants comprise a vertically integrated industry, handling the acquisition and
pressing of raw grapes, the storage of pasteurized grape juice and concentrates, production
of jams, jellies, and juice products, and the warehousing and distribution of finished prod-
ucts. The company wishes to maintain consistent taste in its products, although weather
and geography account for great variations in grape characteristics (sweetness, color, etc.)
from year to year.

Welch’s had a comprehensive materials requirement planning system to estimate all the
resources needs, from juicing raw grapes to the completion of manufactured products.
This, along with a minicomputer based cost accounting system have proved useful, but
do not provide optimal cost solutions for the very important juice blending operation;
and each run of the system takes so much computational time that interactive real-time
use of the system is impractical. Furthermore, whereas most industries try to sched-
ule capacities first and then project their materials requirements, the existing system at
Welch’s did not incorporate any consideration of capacities such as juice concentrations
or transportation between plants. Without use of operational constraints such as these,
it was not possible to choose effectively from among a large set of feasible product reci-
pes and to efficiently schedule inter-plant transfers. Optimal movement of raw materials
among plants and optimal blending of raw materials into products was not supported by
any formal system, and was dealt with by trial-and-error and with input from the simple
cost-accounting system.

An initial attempt at modeling this problem resulted in a linear programming formulation
with 8000 decision variables. Preliminary testing of this juice logistics model indicated the
workability of the formulation. But management, lacking understanding of the model and
fearing major software management problems, did not fully support the use of the model.

In response to this, analysts dealt with the software maintenance difficulty by choosing
economical spreadsheet software (What’s Best!), which provided convenient interfaces for
the model, the analysts, and management. Unfortunately, the 8000 variables overwhelmed
this software package. Analysts revised the model by forming aggregate product groups
rather than dealing with individual products (e.g., all purple-juice products could be treated
as a single aggregate, from a materials standpoint). In this way, the model was streamlined
into one having only 324 decision variables. This aggregate view invoked suspicion of
yielding misleading and overly simplified inventory projections. Although such concern
is probably justified in production planning and disaggregation of end products, it turned
out that for purposes of materials planning, this is a perfectly acceptable simplification.

74 Operations Research

Once this very tractable model was put into regular use, it was realized that the model
not only offered a much better structured approach to planning and resulted in signifi-
cant cost improvements, but it also functioned effectively as a communication tool. Rather
than being treated as a piece of special offline data, the optimal solution produced by this
linear programming model became a central point of discussion in management meetings
and an essential operational tool for the planning committee. The complete acceptance of
the model as a legitimate component in decision-making placed Welch’s in a position to
make key decisions quickly. A profitable decision was made, for example, on whether to
purchase raw grapes on the open market (outside the cooperative) during lean crop years;
and the system permits rapid decisions on carrying over inventories of grape juice during
record-breaking production years (such as happened in 1991 through 1995), and success-
fully meeting demand after the harsh winter of 1996 by adjusting product recipes.

The analysts at Welch’s attribute the acceptance and successful use of the linear pro-
gramming model to their having reduced the original model to a size compatible with
spreadsheet optimization. This alleviated difficulties with software support. Furthermore,
the resulting smaller model was more understandable to people having various levels of
mathematical interest, ability, and appreciation. Thus, the simpler model proved to be the
most workable one in actual practice. Future plans call for development of a more com-
prehensive model, capable of incorporating changes in material characteristics over time.

2.12 Summary

Linear programming is a special type of mathematical programming, in which the objec-
tive function and the constraints can be expressed as linear functions of the decision vari-
ables. Once a problem is formulated as a linear program, it is possible to analyze the model
and investigate the nature of the solutions to the problem. Graphical solutions for small
problems can be illustrative of some of the characteristics of the solutions. In general, lin-
ear programming problems may have a unique optimal solution, multiple optimal solu-
tions, or no optimal feasible solution.

For linear programming problems of practical size, the most widely used technique for
obtaining solutions is the Simplex method. Applicable to essentially all linear program-
ming models, the Simplex method provides an efficient and effective means of either solv-
ing the problem, or discovering that there is no solution.

Every linear programming problem has a dual problem, which often provides a useful
alternative interpretation of the solution to the original problem. The theory of duality
also suggests ways in which analysts can determine how sensitive a solution is to minor
changes in problem parameters.

Relatively recent research has led to the development of new computational
approaches, known as barrier methods, or interior point methods. These techniques
can in some cases be used effectively to solve the isolated few problems that had never
been successfully dealt with using the Simplex method alone. But more importantly,

75Linear Programming

these newer ideas have been integrated skillfully together with older Simplex algo-
rithms to produce new hybrid software that performs better than any one method used
independently.

Key Terms

adjacent extreme points
artificial variables
basic solution
basic variables
Big-M method
binding constraints
complementary slackness
constraints
crashing
degeneracy
degenerate solution
degrees of freedom
dual feasible
dual problem
dual Simplex
duality property
extreme point
feasible solution
feasible space
formulation
ellipsoid method
entering variable
graphical solution
infeasible solution
interior point methods
leaving variable
linear programming
marginal worth
multiple optimal solutions
non-basic variable
non-binding constraints
objective function
optimal feasible solution
optimal solution
pivot column
pivot element

76 Operations Research

pivot operations
pivot row
postoptimality analysis
primal problem
product form
range analysis
re-inversion
Revised Simplex method
right-hand-side ranging
scaling
shadow prices
Simplex method
Simplex tableau
sensitivity analysis
slack variable
solution
standard form
surplus variable
two phase method
unbounded solution
upper bound constraints

Exercises

2.1 An academic computing center receives a large number of jobs from students
and faculty to be executed on the computing facilities. Each student job requires
six units of space on disk, and three units of time on a printer. Each faculty job
requires eight units of space on disk, and two units of time on a printer. A mixture
of jobs is to be selected and run as a batch, and the total disk space and printer time
available for a batch are 48 units and 60 units, respectively. The computer center
is paid three times as much for running a student job as for running a faculty job.
Formulate a linear programming problem to determine the mixture of jobs to be
run as a batch that will maximize computer center income.

2.2 A tree farm cultivates Virginia pine trees for sale as Christmas trees. Pine trees,
being what they are, require extensive pruning during the growing season to
shape the trees appropriately for the Christmas tree market. For this purpose, the
farm manager can purchase pruning hooks for $16.60 each. He also has a ready
supply of spears (at $3 each) that can be bent into pruning hooks. This conversion
process requires one hour of labor, whereas final assembly of a purchased prun-
ing hook takes only 15 minutes of labor. Only 10 hours of labor are available to the
manager. With labor rates at $8.40 per hour, the farm manager intends to spend no
more than $280 on buying or making pruning hooks this year. In all, how many
pruning hooks can he acquire (from outright purchase and through conversion),
given these limitations? Formulate this as a linear programming problem.

77Linear Programming

2.3 A plant has five machines, each of which can manufacture the same two models of
a certain product. The maximum number of hours available on the five machines
during the next production period are, respectively, 60, 85, 65, 90, and 70. The
demand for products created during this next production period is expected to be
850 units of model 1 and 960 units of model 2. The profits (in dollars per hour) and
production rates (per hour) are given in tabular form:

Profit Production Rate

Model Model

Machine 1 2 Machine 1 2

1 2 5 1 7 9
2 8 3 2 5 4
3 3 6 3 6 3
4 5 3 4 4 8
5 4 7 5 5 6

 Let xij be the number of hours machine i is scheduled to manufacture model j,
for i = 1, …, 5 and j = 1, 2. Formulate a linear programming model to maximize
profits.

2.4 Metallic alloys A, B, and C are to be made to customer specifications from four dif-
ferent metals (W, X, Y, and Z) that are extracted from two different ores. The cost,
maximum available quantity, and constituent parts of these ores are:

Ore Cost ($/ton)
Maximum Tons

Available

Percentage of Constituents

W X Y Z

I 150 2800 40 10 15 25
II 95 3100 30 20 10 20

 Customer specifications and selling price for the three alloys are:

Alloy Specifications Selling Price ($/ton)

A At least 30% of X
At least 50% of W
At most 10% of Y

600

B Between 30% and 40% of Z
At least 40% of X
At most 70% of W

500

C At least 40% of Y
At most 60% of W

450

 Formulate a linear programming model that meets the specified constraints and
maximizes the profits from the sale of the alloys. (Hint: Let xijk be the amount of the
i-th metal extracted from the j-th ore and used in the k-th alloy.)

78 Operations Research

2.5 Show graphically the feasible region corresponding to the following set of
constraints:

− + ≥ −

+ ≤

− + ≤

≥

2 4

8

6

0

1x x

x x

x x

x , x

2

1 2

1 2

1 2

 Give the coordinates of each of the extreme points of the feasible region.
2.6 What is the feasible region corresponding to the following set of constraints?

x x

x

x x

x , x

1 2

1

1

1 2

+ ≤

≤

− + ≤

≥

3 24

6

2 10

0

2

 Evaluate the objective function z = 2x1 + 5x2 at each of the extreme points of this
feasible region.

2.7 Solve the following linear programming problem graphically.

maximize z = x x

subject to x x 1

x

x x

x

x ,

1 2

1 2

2

1 2

1

1

−

+ ≥

≤

+ ≤

≤

3 9

2 4

3
2

 x2 ≥ 0

 Give the optimal value of z and the optimal solution (x1, x2).
2.8 Solve the following linear programming problem graphically:

maximize z = 2x x

subject to x x

x

x

x x

x , x

1 2

1 2

1

2

1 2

1

− +

− ≤

≤

≤

− ≥ −

5

7

6

4

22 ≥ 0

 Outline the feasible region, and give the optimal values of z, x1, and x2.

79Linear Programming

2.9 Examine the following formulation, and comment on the nature of its solution:

maximize z = 3x 2x

subject to x

x

x x

x , x

1

1

2

1

1 2

−

≤

≤

− ≥

≥

2

2

2

3

3 2 8

0

2.10 Examine the next formulation, and comment on the nature of its solution:

maximize z = 3x 4x

subject to x x

x x

x x

1

1

1 2

1 2

+

+ ≤

+ ≥

≥

2

26 8 10

1

0,

2.11 Examine the following formulation, and comment on the nature of its solution:

maximize z = 5x 4x

subject to x

x x

x x

1

2

2

1 2

+

≤

− ≥

≥

2

1

10

2 3

0,

2.12 Place the following linear programming model in standard form:

maximize z 16x 2x x

subject to (1) x x

 3x 7x(2)

1 2 3

1

3

= + −

− ≥

+ ≤ −

3

6 4

5

2

2

((3) x x x

 x , x , x

1 2

1 2 3

+ + =

≥

3 10

04()

80 Operations Research

2.13 Place the following linear programming model in standard form:

maximize z = 5x + 6x + 3x

subject to (1) x x 10

 x

1

1 3

1

2 3

2 10

− ≤

() ++ + ≤

− ≥

≥

7 4 50

2 11 15

0

3

2 3

3

x x

 x x

x , x

x unrestricted in sig

1

1 3

2

()

nn

2.14 Give all of the basic solutions and basic feasible solutions of the problem in
Exercise 2.9.

2.15 Give the coordinates of all of the basic solutions and basic feasible solutions of the
problem in Exercise 2.10.

2.16 Use the Simplex algorithm to solve the linear programming formulation from
Exercise 2.1. What is the percentage utilization of the disk and printer resources
at optimality? Comment on how the university community is likely to react to the
optimal solution to this problem.

2.17 Solve the following problem using the Simplex method:

maximize x + 2x

subject to (1) x + x

 x

 x

x

(3)

1

1 2

2

1

z =

≥

≤

≤

2

6

2 6

8

()

11 x, 2 0≥

2.18 Solve the following problem using the Simplex method:

maximize z = 4x x

subject to (1) 3x x = 3

 x x

1 2

1 2

2

+

+

+ ≥()

(

2 4 3 61

33 3

0

) x 2x

x , x

1 2

1 2

+ ≤

≥

81Linear Programming

2.19 Apply the Simplex algorithm to each of the following problems. Observe the
behavior of the Simplex method and indicate which problems display degeneracy,
multiple optima, infeasibility, or an unbounded solution.

 a. maximize 3x x

subject to x

 x x

 x , x

(1)

(2)

1 2

1

1

1 2

+

≤

− ≤

8

2 3 5

3

2

() ≥≥ 0

b.

 maximize 3x 4x

subject to x x

 x x

 x ,

(1)

(3)

1

1 2

2

1

+

+ ≥

+ ≤

2

1

5

2 2 4()

xx2 ≥ 0

c.

 maximize x 2x

subject to x x

 x , x

(1)

(2)

1

1

1 2

+

+ ≤

≥

2

22 10

0

d.

maximize 3x 9x

subject to (1) x 4x

 x x

 x ,

(2)

(3)

1 2

1

1 2

1

+

+ ≤

+ ≤

2 8

2 4

 x2 ≥ 0

2.20 Create a linear programming problem formulation that has unbounded solu-
tions but in which no evidence of unboundedness appears in the initial Simplex
tableau.

2.21 Perform as many Simplex iterations as possible on the example problem in Section
2.7.2. Observe that the algorithm terminates when there are no ratios θi from which
to choose a variable to leave the basis.

82 Operations Research

2.22 Solve the following linear programming problem using the Two Phase Simplex
method.

maximize z x x

subject to x x

x x

x x

x

1 2

1

1

1

= +

+ =

+ ≥

+ ≤

4

3 3

4 3 6

2 3

2

2

2

11 2, x ≥ 0

2.23 Examine this linear programming formulation:

maximize x 2x

subject to x 2x

x , x

1

1

1 2

+

+ ≤

≥

2

2 10

0

 Comment on the nature of its solution(s). How does this change if the first con-
straint is removed from the problem?

2.24 Solve the following linear programming problem graphically.

maximize x x

subject to x x

x

2x x

x

x , x

1 2

1 2

2

1

1 2

−

+ ≥

≥

+ ≤

≤

≥

1

3 9

4

1 5

0

2

1

.

2.25 What determines the number of basic variables in a linear programming problem
solution?

2.26 What is the value of a non-basic variable in a feasible solution of a linear program-
ming problem?

2.27 In an optimal Simplex tableau, what is the economic interpretation of the objective
function row entry corresponding to the i-th slack variable?

2.28 In a Simplex tableau, what is the interpretation of the entries in the right-hand-side
column?

2.29 What is the consequence of a tie for the entering basic variable?
2.30 What if there is a tie for the leaving basic variable?
2.31 What if, in the objective function row of a final tableau, there is a zero in a column

corresponding to a non-basic variable?

83Linear Programming

2.32 What happens in the Simplex algorithm if you choose, as the entering variable,
a variable with a negative objective row coefficient but not the most negative
coefficient?

2.33 Solve the following problem using the Simplex method:

maximize z = x 9x x

subject to x + 2x 3x

x x x

1 3

1

1

+ +

+ ≤

+ +

2

2 3

2 3

9

3 2 2 ≤≤

≥

15

0x , x , x1 2 3

2.34 Use the Two Phase Simplex method to solve the following problem:

minimize z = 16x 2x 3x

subject to x 6x

x x

x x

1 2 3

1 2

2

1 2

+ −

− ≥

+ ≤ −

+

4

3 7 53

++ =

≥

x

x , x , x ,

3

1 2 3

10

0

2.35 A business executive has the option of investing money in two plans. Plan A guar-
antees that each dollar invested will earn 70 cents a year hence, and plan B guar-
antees that each dollar invested will earn $2 two years hence. Plan A allows yearly
investments, while in plan B, only investments for periods that are multiples of two
years are allowed. How should the executive invest $100,000 to maximize the earn-
ings at the end of three years? Formulate this problem as a linear programming
problem.

2.36 An investment portfolio management firm wishes to develop a mathematical
model to help decide how to invest $1 million for one year. Municipal bonds are to
be bought in combinations that balance risk and profit. Three types of bonds are
being considered:
• AAA rated bonds yielding 6% annually and which must be purchased in units

of $5000
• A rated bonds yielding 8% annually and which must be purchased in units of

$1000, and
• J rated (junk) bonds yielding 10% annually and which must be purchased in

units of $10,000.
 The Board of Directors has specified that no more than 25% of the portfolio should

be invested in (risky) junk bonds, and at least 40% should be invested in AAA rated
bonds. Bonds are to be purchased with the objective of maximizing earnings at the
end of the year. It may be assumed that the stated yield dividend is paid at the end
of the year, and that no other distributions are made during the year. Formulate
this problem as a linear programming problem.

2.37 A philanthropist wishes to develop a mathematical model to help him decide how
to donate his spare cash to several worthy causes. He has $10 million to distribute
among the recipients, and he would like to donate in units of thousands of dollars.

84 Operations Research

Three organizations would like to receive funds: Our Great State University,
the Friends of the Grand Opera, and the Save the Humuhumunukunukuapua‘a
Society. The philanthropist wants to give at most 50% of his cash to any one orga-
nization. The desirability of the philanthropist’s giving to any particular recipient
is to be measured in terms of the number of tax credits he will receive. The value of
giving to an educational institution is rated at 10 credits for every $1000 donation,
while the value of $1000 donation to the music lovers is rated at 8 credits, and each
$1000 donation to the wildlife conservation is rated at 6 credits. Write a linear pro-
gramming model to help this philanthropist maximize the number of tax credits
that can be achieved by contributing among these three groups.

2.38 Solve the following problem graphically:

maximize z = 2x x

subject to x x

x

x

x x

x , x

1 2

1 2

1

2

1 2

1 2

−

− ≤

≤

≤

− ≥ −

+

5

7

6

4

≥≥ 0

2.39 Write the dual of the primal linear programming problem in Exercise 2.7.
2.40 Write the dual of the primal problem in Exercise 2.8. Solve the dual problem, and

identify the shadow prices.
2.41 Solve the dual problem corresponding to the primal problem in Exercise 2.12.

Determine whether optimal solutions exist. If so, describe the relation between the
primal shadow prices and dual variables at optimality.

2.42 Describe the nature of the solutions of the primal problem in Exercise 2.10 and its
dual problem.

2.43 Each of the following statements refers to the Simplex algorithm. Fill in the blanks
with an appropriate letter from the following choices:

 1. If all slack and surplus variables are zero in an optimal solution, then _______.
 2. If a basic variable has the value zero in an optimal solution, then ________.
 3. If an artificial variable is non-zero in an optimal solution, then ________.
 4. If a non-basic variable has zero coefficient in the top row of an optimal tableau,

then _______.
 Completion alternatives:
 A. There are multiple optimal solutions.
 B. The current solution is degenerate.
 C. All constraints are equalities at optimality.
 D. The shadow prices are inverses of the dual variables.
 E. No feasible solution exists.
 F. The solution is unbounded.

85Linear Programming

2.44 The following statements are intended to describe the relationship between
 primal and dual linear programming problems. For each statement, fill
in the blank to indicate the most appropriate choice from the alternatives shown
in the following list.

 1. The optimal objective function value in the primal problem corresponds to
__________.

 2. The shadow prices in the optimal primal tableau correspond to ___________.
 3. Basic variables in the optimal primal tableau correspond to ___________.
 4. The variables in the primal problem correspond to ___________.
 5. Shadow prices in the optimal dual tableau correspond to __________.
 Completion alternatives:
 A. The primal non-basic variables
 B. The dual non-basic variables
 C. The primal constraints
 D. Optimal basic variables in the dual problem
 E. The optimal objective function value in the dual
 F. The shadow prices in the dual
 G. Basic variables in the optimal primal problem
 H. The constraints in the dual problem
2.45 Recall Example 2.8.3 and verify the range within which changes in objective func-

tion coefficient c2 can vary without affecting the optimal solution.
2.46 What was the theoretical significance of the algorithm developed by Khachiyan for

solving linear programming problems?
2.47 What is the practical significance of the interior point methods, as originated by

Karmarkar, for solving linear programming problems? How do these methods
compare in practice with the traditional Simplex-based methods?

References and Suggested Readings

Albers, D. J., and C. Reid. 1986. An interview with George B. Dantzig: The father of linear program-
ming. The College Mathematics Journal 17 (4): 293–314.

Arbel, A. 1993. Exploring Interior-Point Linear Programming Algorithms and Software. Cambridge, MA:
MIT Press.

Aronofsky, J. S., and A. C. Williams. 1962. The use of linear programming and mathematical models
in underground oil production. Management Science 8: 394–402.

Aspvall, B., and R. E. Stone. 1980. Khachiyan’s linear programming algorithm. Journal of Algorithms
1: 1–13.

Bartels, R. H. 1971. A stabilization of the simplex method. Numerische Mathematik 16: 414–434.
Benichou, M., J. M. Gauthier, G. Hentges, and G. Ribiere. 1977. The efficient solution of large-scale

linear programming problems—Some algorithms techniques and computational results.
Mathematical Programming 13: 280–322.

86 Operations Research

Bixby, R. E. 1994. Progress in linear programming. ORSA Journal of Computing 6 (1): 15–22.
Bland, R. G., D. Goldfarb, and M. J. Todd. 1981. The ellipsoid method: A survey. Operations Research

26 (9): 1039–1091.
Borgwardt, K. H. 1980. The Simplex Method: A Probabilistic Analysis. New York: Springer-Verlag.
Calvert, J. E., and W. L. Voxman. 1989. Linear Programming. Orlando, FL: Harcourt Brace Jovanovich.
Charnes, A., and W. W. Cooper. 1961. Management Models and Industrial Applications of Linear

Programming, Vol. I and II. New York: John Wiley & Sons.
Charnes, A., W. W. Cooper, and A. Henderson. 1953. An Introduction to Linear Programming. New

York: John Wiley & Sons.
Cooper, L., and D. Steinberg. 1974. Methods and Applications of Linear Programming. Philadelphia, PA:

W.B. Saunders.
Dantzig, G. B. 1963. Linear Programming and Extensions. Princeton, NJ: Princeton University

Press.
Dantzig, G. B., and M. N. Thapa. 1996. Linear Programming. New York: Springer-Verlag.
Dantzig, G. B., and R. M. Van Slyke. 1967. Generalized upper bounding techniques for linear pro-

gramming. Journal of Computer and System Sciences 1 (3): 213–226.
Dantzig, G. B., and P. Wolfe. 1960. Decomposition principle for linear programs. Operations Research

8: 101–111.
Dantzig, G., A. Orden, and P. Wolfe. 1955. The generalized Simplex Method for minimizing a linear

form under linear inequality restraints. Pacific Journal of Mathematics 5 (2): 183–195.
Emmett, A. 1985. Karmarkar’s algorithm: A threat to simplex? IEEE Spectrum 22: 54–55.
Fieldhouse, M. 1986. Commercial Linear Programming Codes on Microcomputers. In J. D. Coelho, and L.V.

Tavares (Eds.), OR Models on Microcomputers. New York: North-Holland, Elsevier.
Fourer, R. 2015. Software survey: Linear programming. OR/MS Today 42 (3): 52–63.
Fourer, R. 2017. Software survey: Linear programming. OR/MS Today 44 (3): 48–59.
Gacs, P., and L. Lovasz. 1981. Khachiyan’s algorithm for linear programming. Mathematical

Programming Study 14: 61–68.
Gal, T. 1992. Putting the LP survey into perspective. OR/MS Today 19 (6): 93.
Gass, S., H. Greenberg, K. Hoffman, and R. W. Langley (Eds.). 1986. Impacts of Microcomputers on

Operations Research. New York: North-Holland.
Gass, S. I. 1985. Linear Programming, 5th ed. New York: McGraw-Hill.
Gill, P. E., and W. Murray. 1973. A numerically stable form of the simplex method. Linear Algebra and

its Applications 7: 99–138.
Gill, P. E., W. Murray, M. A. Saunders, and M. H. Wright. 1981. A Numerical Investigation of Ellipsoid

Algorithms for Large-scale Linear Programming, in Large-Scale Linear Programming, Vol. 1.
Laxenburg, Austria: IIASA.

Gill, P. E., W. Murray, and M. H. Wright. 1981. Practical Optimization. New York: Academic Press.
Hadley, G. 1962. Linear Programming. Reading, MA: Addison-Wesley.
Harvey, C. M. 1979. Operations Research: An Introduction to Linear Optimization. New York:

North-Holland.
Higle, J. L., and S. W. Wallace. 2003. Sensitivity analysis and uncertainty in linear programming.

Interfaces 33 (4): 53–60.
Hillier, F. S., and G. J. Lieberman. 2010. Introduction to Operations Research, 9th ed. Boston, MA:

McGraw-Hill.
Hooker, J. N. 1986. Karmarkar’s linear programming algorithm. Interfaces 16 (4): 75–90.
IBM Mathematical Programming System Extended/370 (MPSX/370) Logic Manual #LY19-1024-0

and Primer #GH19-1091-1.
IBM Mathematical Programming System/360 Version 2. Linear and Separable Programming, User’s

Manual #H20-0476-2.
Karmarkar, N. 1984. A new polynomial-time algorithm for linear programming. Combinatorica 4 (4):

373–395.
Katta, G. M. 1976. Linear and Combinatorial Programming. New York: John Wiley & Sons.

87Linear Programming

Khachiyan, L. G. 1979. A polynomial algorithm in linear programming. Soviet Mathematics Doklady
20 (1): 191–194.

Kolata, G. B. 1979. Mathematicians amazed by Russian’s discovery. Science 206: 545–546.
Loomba, N. P. 1976. Linear Programming: A Managerial Perspective. New York: Macmillan.
Luenberger, D., and Y. Ye. 2015. Linear and Nonlinear Programming, 4th ed. New York: Springer.
Lustig, I. J., R. E. Marsten, and D. F. Shanno. 1994. Interior point methods for linear programming:

Computational state of the art. ORSA Journal on Computing 6 (1): 1–14.
McCall, E. H. 1982. Performance results of the simplex algorithm for a set of real-world linear pro-

gramming models. Communications of the ACM 25 (3): 20–212.
Might, R. J. 1987. Decision support for aircraft munitions procurement. Interfaces 17 (5): 55–63.
Miller, C. E. 1963. The Simplex Method for Local Separable Programming, in Recent Advances in

Mathematical Programming. New York: McGraw-Hill.
Mitra, G., M. Tamiz, and J. Yadegar. 1988. Investigation of an interior search method within a sim-

plex framework. Communications of the ACM 31 (12): 1474–1482.
Müller-Merbach, H. 1970. On Round-Off Errors in Linear Programming. New York: Springer-Verlag.
Murtagh, B. A. 1981. Advanced Linear Programming: Computation and Practice. New York: McGraw-Hill.
Murtagh, B. A., and M. A. Saunders. 1987. MINOS 5.1 User’s Guide: Technical Report SOL. In Systems

Optimization Laboratory. Stanford, CA: Stanford University.
Murty, K. G. 1989. Linear Complementarity, Linear and Nonlinear Programming. Berlin, Germany:

Heldermann Verlag.
Nash, S. G., and A. Sofer. 1996. Linear and Nonlinear Programming. New York: McGraw-Hill.
Nering, E., and A. Tucker. 1992. Linear Programming and Related Problems. Boston, MA: Academic

Press.
Orchard-Hays, W. 1968. Advanced Linear Programming Computing Techniques. New York: McGraw-Hill.
Ravindran, A., D. T. Phillips, and J. J. Solberg. 1987. Operations Research: Principles and Practice. New

York: John Wiley & Sons.
Rumpf, D. L., E. Melachrinoudis, and T. Rumpf. 1985. Improving efficiency in a forest pest control

spray program. Interfaces 15 (5): 1–11.
Saigal, R. 1995. Linear Programming: A Modern Integrated Analysis. Boston, MA: Kluwer Academic.
Saunders, M. A. 1976. A Fast, Stable Implementation of the Simplex Method using Bartels-Golub Updating,

in Sparse Matrix Computations. New York: Academic Press.
Schrage, L. 1991. LINDO: An Optimization Modeling System, 4th ed., Text and Software. Danvers, MA:

Boyd and Fraser.
Schrage, L. 1986. Integer and Quadratic Programming with LINDO. Palo Alto, CA: The Scientific Press.
Schrijver, A. 1986. Theory of Linear and Integer Programming. New York: John Wiley & Sons.
Schuster, E. W., and S. J. Allen. 1998. Raw material management at Welch’s, Inc. Interfaces 28 (5):

13–24.
Shanno, D. F. 1985. Computing Karmarkar Projections Quickly. University of California, Davis

Graduate School of Administration.
Sharda, R. 1992. Linear programming software for personal computers: 1992 Survey. OR/MS Today

19 (3): 44–60.
Sharda, R. 1995. Linear programming solver software for personal computers: 1995 report. OR/MS

Today 22 (5): 49–57.
Simmons, D. M. 1972. Linear Programming for Operations Research. San Francisco, CA: Holden-Day.
Taha, H. A. 2011. Operations Research: An Introduction, 9th ed. Upper Saddle River, NJ: Pearson.
Vanderbei, R. J. 2013. Linear Programming: Foundations and Extensions, 4th ed. New York: Springer.
Wilson, D. G. 1992. A brief introduction to the IBM optimization subroutine library. IBM Systems

Journal 31 (1): 9–10.
Wolfe, P. 1980. A bibliography for the ellipsoid algorithm. Yorktown Heights, NY: IBM Research

Center.
XMP Software. 1991. User’s Manual for the OB1 Linear Programming System. Incline Village, NV.
Ye, Y. 1997. Interior-Point Algorithms: Theory and Analysis. New York: John Wiley & Sons.

http://taylorandfrancis.com

89

3
Network Analysis

Network analysis provides a framework for the study of a special class of linear program-
ming problems that can be modeled as network programs. Because such a vast array of
problems can be viewed as networks, this is one of the most significant classes of applica-
tions in the field of Operations Research. Some of these problems correspond to a physi-
cal or geographical network of elements within a system, while others correspond more
abstractly to a graphical approach to planning or grouping or arranging the elements of a
system.

The diversity of problems that fall quite naturally into the network model is striking.
Networks can be used to represent systems of highways, railroads, shipping lanes, or avia-
tion patterns, where some supply of a commodity is transported or distributed to satisfy
a demand. Pipeline systems or utility grids can be viewed as fluid flow or power flow
networks, while computer communication networks represent the flow of information,
and an economic system may represent the flow of wealth. In some cases, the problem may
call for routing a vehicle or a commodity between certain specified points in the network;
other applications may require that some entity be circulated throughout the network.

By using the network model more abstractly, we can solve problems that require assign-
ing jobs to machines, or matching workers with jobs for maximum efficiency. Network
methods can also be applied to project planning and project management, where various
activities must be scheduled in order to minimize the duration of a project or to meet
specified completion dates, subject to the availability of resources.

All of these apparently different problems have underlying similarities: all consist of a
set of centers, junctions, or nodes that are interconnected (logically or physically) by links,
channels, or conveyances. Because of this, a study of general network models and tech-
niques will provide us with tools that can be applied to a variety of applications. As we
study these models, we will see that it is the mathematical structure or form of the problem
that is important and not necessarily the application. Furthermore, the successful use of
network models is largely dependent on a skillful analyst’s ability to perceive the structure
of a problem and to assess whether the network framework is an appropriate approach
to a solution. We will see examples in which there is more than one way to represent the
problem as a network model, and one formulation may be superior to others.

This chapter begins with some basic definitions and properties of graphs and networks.
Algorithms are then presented for finding the maximum flow in a network, optimally
transporting a commodity from supply points to demand points, matching or pairing
appropriate elements in a system, and efficiently designing a network such that every pair
of points has some connecting path. Methods are described for finding the shortest route
between points in a network, and then these methods are applied to multistage decision-
making processes and project-planning problems.

90 Operations Research

3.1 Graphs and Networks: Preliminary Definitions

A graph is a structure consisting of a set of nodes (vertices, points, or junctions) and a set
of connections called arcs (edges, links, or branches). Each connection is associated with a
pair of nodes and is usually drawn as a line joining two points. If there is an orientation or
direction on the arcs, then the graph is said to be directed, otherwise it is undirected. The
degree of a node is the number of arcs attached to it. An isolated node in a graph is one
that has no arc attaching it to any other node, and therefore such a node is of degree zero.

In a directed graph, if there is an arc from node A to node B, then node A is said to be a
predecessor of node B, and node B is a successor of node A. The arc is often designated by
the ordered pair (A, B).

For certain applications, it is useful to refer to a path from some given node to another.
Let x1, x2, …, xn be a sequence of distinct nodes, such that nodes adjacent to each other in
the sequence are connected to each other by an arc in the graph. That is, if the sequence
contains xi, xi+1, then either the arc (xi, xi+1) or the arc (xi+1, xi) exists in the graph. Then we
say there is a path from x1 to xn, that consists of the nodes and their connecting links.
In Figure 3.1, there is a path from node A to node G that can be described by A, (A, B), B,
(B, C), C, (E, C), E, (E, G), G. When the arc connecting nodes xi and xi+1 in a path is (xi, xi+1),
it is called a forward arc; if the connecting arc is (xi+1, xi), it is a backward arc.

In the illustration, the path contains the three forward arcs (A, B), (B, C), and (E, G) and
one backward arc (E, C). If all the arcs in a path are forward arcs, then the path is called
a directed chain or simply a chain. If the graph is undirected, then the terms path and
chain are synonymous. If x1 = xn in the path, then the path is called a cycle or a cyclic path.
In the illustration, we see the cyclic path

 B, (B, C), C, (E, C), E, (E, G), G, (G, B), B

although this is not a cyclic chain because it includes the backward arc (E, C). A connected
graph is a graph that has at least one path connecting every pair of nodes.

A graph is a bipartite graph if the nodes can be partitioned into two subsets S and T,
such that each node is in exactly one of the subsets, and every arc in the graph connects a
node in set S with a node in set T. Such a graph is a complete bipartite graph if each node
in S is connected to every node in T. The graph in Figure 3.2 is a complete bipartite graph
in which nodes A and B are in one subset, and nodes C, D, and E are in the other.

A

D

F

B C

E

G

FIGURE 3.1
Paths in a graph.

91Network Analysis

A tree is a directed connected graph in which each node has at most one predecessor,
and one node (the root node) has no predecessor. In an undirected graph, we have a tree if
the graph is connected and contains no cycles. (If there are n nodes, there will be n − 1 arcs
in the tree.) Figure 3.3 contains illustrations.

A network is a directed connected graph that is used to represent or model a system or
a process. The arcs in a network are typically assigned weights that may represent a cost
or value or capacity corresponding to each link in the network.

A node in a network may be designated as a source (or origin), and some other node may
be designated as a sink (or destination). A network may have multiple sources and sinks.
A cut set (or simply a cut) is any set of arcs which, if removed from the network, would
disconnect the source(s) from the sink(s). Because networks are commonly used to repre-
sent the transmission of some entity from a source node to a sink node, we introduce the
concept of flow through a network. Flow can be thought of as the total amount of an entity
that originates at the source, makes its way along the various arcs and passes through
intermediate nodes, and finally arrives at (or is consumed by) the destination (sink) node.
The study of network flow is the subject of the next section.

A

D

B

C

E

FIGURE 3.2
A complete bipartite graph.

(a) (b)

FIGURE 3.3
Trees (n = 11): (a) directed tree and (b) undirected tree.

92 Operations Research

3.2 Maximum Flow in Networks

Maximum flow problems arise in networks where there is a source and a sink connected by
a system of directional links, each having a given capacity. The problem is to determine the
greatest possible flow that can be routed through the various network links, from source
to sink, without violating the capacity constraints. The commodity flowing in the network
is generated only at the source and is consumed only at the sink. The source node has only
arcs directed out of it, and the sink node has only arcs directed into it. Intermediate nodes
neither contribute to nor diminish the flow passing through them.

As an example, consider a data communication network in which processing nodes are
connected by data links. In Figure 3.4, data being collected or generated at site A must
be transmitted through the network as quickly as possible to a destination processor at
site G where the data can be archived or processed. Each data link has a capacity (prob-
ably some function of baud rate and availability or band width) that effectively limits the
flow of data through that link. Alternatively, one can envision a power generation and
distribution system as a network flow model in which power is generated at the source
and conducted through transform stations to end users. Capacities are shown as labels
on the arcs.

The maximum flow problem can be stated precisely as a linear programming formula-
tion. Let n be the number of nodes, and let nodes 1 and n be designated as source and sink,
respectively. The decision variables xij denote the amount of flow along the arc from node
i to node j (i, j = 1, …, n). The capacity of the arc from node i to node j is the upper limit on
the flow through this arc, and is denoted uij. If we let f denote the total flow through the
network, then to maximize the total flow, we would want to

DA

F

B

C

E

G

10

8

8

4

6

5

5
6

6

4

4

4

FIGURE 3.4
Data communications network.

93Network Analysis

maximize z f

subject to x f (1)

x f (2)

x

1i

i 2

n

in

i 1

n 1

ij

=

=

=

=

=

=

∑

∑
−

xx for j , , n (3)

x u for all i, j n (4)

jk

ki 1

n

ij ij

=

≤ =
==

∑∑ 2 3 1

1

1

,

,

n





−

Constraints (1) and (2) state that all the flow is generated at the source and consumed at the
sink. Constraint (1) ensures that a flow of f leaves the source, and because of conservation
of flow, that flow stops only at the sink. Constraints (3) are the flow conservation equations for
all the intermediate nodes; nothing is generated or consumed at these nodes. Constraints
(4) enforce arc capacity restrictions. All flow amounts xij must be non-negative. Actually,
constraint (2) is redundant.

As with all of the network models in this chapter, this problem could be solved using
the Simplex method. However, we can take advantage of the special network structure
to solve this problem much more efficiently. One of the most commonly used methods is
an iterative-improvement method known as the Ford-Fulkerson labeling algorithm. An
initial feasible flow can always be found by letting the flow through the network be zero
(all xij = 0). The algorithm then operates through a sequence of iterations, each iteration
consisting of two phases: (1) first we look for a way to increase the current flow, by finding
a path of arcs from source to sink whose current flow is less than capacity (this is called a
flow augmenting path); and then (2) we increase the current flow, as much as possible, along
that path. If in phase (1) it is not possible to find a flow augmenting path, then the current
flow is optimal. We will first outline the basic algorithm, and then fill in the details.

3.2.1 Maximum Flow Algorithm

Initialization: Establish an initial feasible flow.

Phase 1: Use a labeling procedure to look for a flow augmenting path. If none can be
found, stop; the current flow is optimal.

Phase 2: Increase the current flow as much as possible in the flow augmenting path
(until some arc reaches its capacity). Go to Phase 1.

The search for a flow augmenting path in Phase 1 is facilitated by a labeling procedure
that begins by labeling the source node. We will use a check mark (✓) on our figures to
indicate that a node has been labeled. From any labeled node i, we must examine outgoing

94 Operations Research

arcs (i, j) and incoming arcs (j, i), for unlabeled nodes j. We label (✓) node j if the current
flow in outgoing arc (i, j) is less than its capacity uij, or if the current flow in incoming arc
(j, i) is greater than zero. Labeling a node i means that we could increase the total flow in
the network from the source as far as node i. If the sink node eventually can be labeled,
then a flow augmenting path has been found. If more than one flow augmenting path
exists, choose any one arbitrarily.

In Phase 2, the arcs in the flow augmenting path are first identified. Then by examining
the differences in current flow and capacity flow on all forward arcs in the path, and the
current flow in all backward arcs, we determine the greatest feasible amount by which the
total flow through this path can be increased. Increase the flow in all forward arcs by this
amount, and decrease the flow in all backward arcs by this amount.

We will now illustrate the maximum flow algorithm by applying it to the network pictured
in Figure 3.4. Let us assume initially that the flow in all arcs is zero, xij = 0 and f = 0. In the
first iteration, we label nodes A, B, C, D, and G, and discover the flow augmenting path (A,
D) and (D, G), across which we can increase the flow by 4. So now, xAD = 4, xDG = 4, and f = 4.

In the second iteration, we label nodes A, B, C, then nodes E, D, and F, and finally node G.
A flow augmenting path consists of links (A, B), (B, D), (D, E), and (E, G) and flow on this
path can be increased by 4. Now xAB = 4, xBD = 4, xDE = 4, xEG = 4, and f = 8.

In the third iteration, we see that there remains some unused capacity on link (A, B), so
we can label nodes A, B, and E, but not G. It appears we cannot use the full capacity of link
(A, B). However, we can also label nodes C, D, F, and G, and augment the flow along the
links (A, D), (D, F), and (F, G) by 2, the amount of remaining capacity in (A, D). Now xAD = 6,
xDF = 2, xFG = 2, and f = 10.

In the fourth iteration, we can label nodes A, B, C, D, F, and G. Along the path from A,
C, D, F, to G, we can add a flow of 4, the remaining capacity in (F, G). So xAC = 4, xCF = 4,
xFG = 6, and f = 14.

In the fifth iteration, we can label all nodes except G. Therefore, there is no flow aug-
menting path, and the current flow of 14 is optimal.

Notice that in any network, there is always a bottleneck that in some sense impedes the
flow through the network. The total capacity of the bottleneck is an upper bound on the
total flow in the network. Cut sets are, by definition, essential in order for there to be a flow
from source to sink, since removal of the cut set links would render the sink unreachable
from the source. The capacities on the links in any cut set potentially limit the total flow.
One of the fundamental theorems of Ford and Fulkerson states that the minimum cut (i.e.,
the cut set with minimum total capacity) is in fact the bottleneck that precisely determines
the maximum possible flow in the network. This Max-Flow Min-Cut Theorem provides the
foundation for the maximum flow labeling algorithm presented earlier. During Phase 1
of the algorithm, if a flow augmenting path cannot be found, then we can be assured that
the capacity of some cut is being fully used by the current flow. This minimum cut is the
set of links that separate the nodes that are labeled (✓) from those that are not labeled.
Observe that, by definition of the labeling algorithm, every forward arc in the cut set (from
a labeled to an unlabeled node) must be at capacity. Similarly, every reverse arc in the cut
set (from an unlabeled to a labeled node) must have zero flow. Therefore, the capacity of
the cut is precisely equal to the current flow and this flow is optimal. In other words, a
saturated cut defines the maximum flow.

In the final iteration of the example earlier, the cut set that separates the labeled nodes
from the unlabeled nodes is the set of links (E, G), (D, G), and (F, G). The capacity of this
cut set is 4 + 4 + 6 = 14, which is just exactly the value of the optimal flow through this
network.

95Network Analysis

If all of the arcs in a network are forward arcs, it is easy to identify a flow augmenting
path. Each edge in the path is below capacity and we can increase the flow until some
edge reaches capacity. To appreciate the idea of reverse arc labeling, consider the situation
shown in Figure 3.5a. In the diagram, each arc from node i to node j is labeled with (xij, uij).

Suppose our initial path is from node 1 to 2 to 4 to 6, with a flow of 4. At this point, shown
in Figure 3.5b, there is no direct path from the source node 1 to the sink node 6 that allows
an increase in flow. However, the algorithm will find the path

(0,4) (0,4) (4,4) (0,4) (0,4)

1 3 4 2 5 6

Increase the flow on each forward arc by 4, and decrease the flow on the reverse arc. The
resulting flow is shown in Figure 3.5c with a total flow of 8. Notice that the net effect,

(0, 4)

SinkSource

(0, 4)

(0, 4)

(0, 4)
(0, 4)

5

6

43

1

2

(0, 4)

(0, 4)

(a)

(b)

(c)

1

5

3

2

4

6

(4, 4)

(4, 4)

(4, 4)

(4, 4)

(4, 4)

(4, 4) (4, 4)

Source Sink

1

5

3

2

4

6

(0, 4)

(0, 4)

(4, 4)
(4, 4)

(4, 4) (0, 4)

(0, 4)

Source Sink

FIGURE 3.5
Maximum flow example: (a) original network, (b) path augmenting, and (c) optimal maximum flow.

96 Operations Research

with respect to the reverse arc, is that we decided to take the flow out of node 2 and send
it somewhere else (namely to nodes 5 and 6). Similarly, we decided to use the new flow at
node 4, coming from node 3, instead of the flow from node 2. Therefore, if we can label
node 4, we can effectively divert the flow at node 2 to create additional flow through the
entire network.

3.2.2 Extensions to the Maximum Flow Problem

There are several interesting extensions to the maximum flow problem. The existence of
multiple sources and multiple sinks requires only a minor change in our original net-
work model. Suppose, for example, nodes 1A, 1B, and 1C are sources, and nodes nA, nB,
nC, and nD are sinks, as shown in Figure 3.6a. This network can be modified to include
a super-source node (which we will call 1S) and a super-sink node (nS). The super source is
connected to the multiple sources via links unrestricted in capacity, as in Figure 3.6b; and
likewise, the multiple sinks are connected to the super sink by uncapacitated links, as in
Figure 3.6c.

Because none of the new uncapacitated links could possibly contribute to any minimum
cut, the maximum flow from the super-source node 1S to the super-sink node nS will also
be the maximum flow in the multiple-source multiple-sink problem.

We can use this same construction to handle the situation in which some or all of the
sources have a limited capacity by simply placing a capacity on the arc from the super-source
to the capacitated source node. Capacities on the sinks can be handled in the same way.

The basic maximum flow algorithm is normally used to solve a part of a more complex
problem. For example, in the next section, we will encounter almost the same problem,
but where there is a per-unit cost associated with each arc in the network, and we want to
minimize total cost. There are, however, some direct applications of the maximum flow
algorithm. One of these occurs in network capacity planning. For example, an electric
utility company may use network flow to determine the capacity of its present system. By
identifying the cut sets, it can easily determine where additional lines must be installed in
order to increase the capacity of the existing grid.

The complexity of maximum flow algorithms is dependent on the method used for
selecting the flow augmenting paths. Because network flow algorithms are used so often
in practical applications, efforts have been made to develop faster versions. A shortest path
augmentation method developed by (Edmonds and Karp 1972) is used in an algorithm
having complexity O(ne2), where n is the number of nodes and e is the number of edges.

(a) (b) (c)

nA

nB

nC

nD

nS

1A
nA

1S
nB

nC

1A

1B

1C
nD

1B

1C 3

2 4
n – 1

n – 2

FIGURE 3.6
Multiple sources and sinks: (a) original network, (b) super source, and (c) super sink.

97Network Analysis

Dinic’s method (Dinic 1970) of using so-called blocking flows requires O(n2e) computation
time, while Karzanov’s method (Karzanov 1974) based on the idea of preflows is dependent
solely on the number of nodes, and requires O(n3) time.

Extensions to the maximal flow problem include multi-commodity problems, maximal
dynamic flow problems, and cost effective increases in network capacity. These topics are
discussed fully in the references by Battersby (1970), Hu (1970), and Price (1971).

3.3 Minimum Cost Network Flow Problems

When there are costs associated with shipping or transporting a flow through a network,
the goal might be to establish a minimum cost flow in the network, subject to capacity con-
straints on the links. The minimum cost flow problem is interesting not only because the
general model is so comprehensive in its applicability, but also because special cases of
the model can be interpreted and applied to quite a variety of resource distribution and
allocation problems.

3.3.1 Transportation Problem

One of the simplest minimum cost network flow problems is one in which every node is
either a source (supply) or a sink (demand). For example, we could imagine a distributor
with several warehouses and a group of customers. There is a cost associated with serving
each customer from any given warehouse.

In this model, we have m supply nodes, each with an available supply si, and n demand
nodes, each with a demand of dj. And we assume that the total supply in the network is
equal to the total demand:

s di j

j 1

n

i 1

m

=
==
∑∑

The objective is to satisfy all the demands, using the available supply, and to accomplish
this distribution using minimum cost routes. The formulation of the problem is as follows:

minimize z c xij ij

j 1

n

i 1

m

=
==
∑∑

subject to x s for i 1, , m 1

x d for j

ij i

j 1

n

ij j

= =

= =

=
∑  ()

 1, , n 2

x 0 for all i and j (3)

i 1

m

ij



=
∑

≥

()

98 Operations Research

Because the set of supply nodes is distinct from the set of demand nodes, and all nodes
in the network belong to one of these sets, this transportation model can be pictured as
a bipartite graph, with the addition of a super-source node S and a super-sink node D. In
Figure 3.7, arcs connecting supply nodes to demand nodes represent the actual distribu-
tion routes. Each arc in the drawing is labeled with a triple, indicating a lower bound on
the flow, an upper bound on the flow, and a per unit cost for the flow along the arc. Arcs
from the super source S impose the (upper bound) supply limits, and, of course, carry no
cost. Similarly, arcs to the super sink D enforce the (lower bound) demand requirements.
It should be clear that finding a minimum cost flow from node S to node D in this network
precisely solves the transportation problem that we have formulated, and the resulting
minimum cost is the cost of the optimal distribution of the commodity through the trans-
portation network.

To illustrate the solution approach, we will use a simple example of a distributor with
three warehouses and five customers. Because of the simple structure of the transportation
problem, it is probably easier to visualize the problem in matrix form, as shown in Table 3.1.

In the table, cij in row i and column j of the matrix represents the cost of sending one unit
of product from source i to sink j. Similarly, xij represents the number of units sent from
source i to sink j, the current flow solution.

Consider the example problem in Table 3.2. Observe that the total demand of 65 units is
equal to the total supply. Because most of the xij values will be zero, we will write them in
only when they are positive.

We will describe how to solve this problem using the Simplex method. After all, this
is a linear programming problem. However, the special structure of the transporta-
tion problem will allow us to take a number of shortcuts. The Simplex method says
that we should first find any basic feasible solution, and then look for a simple pivot to
improve the solution. If no such improvement can be found, the current solution must
be optimal.

Demand
nodes

Supply
nodes

m

S 3

2

1

2

1

0, ∞, Cmn

0, S3, 0

0, S
m , 0

0, S
2,

0

0,
S 1,

0

0, ∞, C11

0, ∞, C21

0, ∞, C
2n

0, ∞, C12

0, ∞, C
1n

0, ∞, C m30, ∞
, C m2

0, ∞
, C m1

d3, ∞, 0

d
2 , ∞, 0

d
1 , ∞, 0

d n,
∞, 0

n

D3

FIGURE 3.7
Transportation problem as minimum cost network flow problem.

99Network Analysis

The first simplification to the basic Simplex method is that we do not need a complex
two phase method to find a basic feasible solution. Instead, we present three fast and com-
monly used techniques for obtaining an initial solution.

3.3.1.1 Northwest Corner Rule

If we ignore the total cost, it is trivial to find an initial feasible solution. We simply assign
the first group of customers to the first warehouse until the capacity is exhausted, and then
start assigning customers to the second warehouse until it too is at its capacity, and so on.

We begin at the upper left corner of the tableau, the northwest corner. Increase the flow in
this cell as much as possible until the flow is equal to the supply in this row or the demand
in this column. Reduce the demand and the supply in this row and column by the amount
of the flow, since the requirement has now been satisfied. Draw a line through the row or
column that has zero remaining required. (If both are zero, select either one arbitrarily.)
Repeat the northwest corner rule on the reduced matrix.

Consider the example in Table 3.2. Begin with row 1 and column 1. Since the demand is
12 and the supply is 20, the flow can be at most 12. Reduce the limit on row 1 and column
1 by 12, and draw a line through column 1. The reduced problem is shown in Table 3.3.
The reduced problem (without column 1) has x12 (row 1, column 2) in the northwest corner.
We let x12 = 8 because the remaining supply in row 1 is 8. This time, we delete row 1, and
subtract 8 from supply s1 and demand d2.

TABLE 3.1

Transportation Problem

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply

c11 c12 c13 c14 c15

1 x11 x12 x13 x14 x15 s1

c21 c22 c23 c24 c25

2 x21 x22 x23 x24 x25 s2

c31 c32 c33 c34 c35

3 x31 x32 x33 x34 x35 s3

Demand d1 d2 d3 d4 d5

TABLE 3.2

Transportation Problem Example

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply

28 7 16 2 30

1 20
18 8 14 4 20

2 20
10 12 13 5 28

3 25
Demand 12 14 12 18 9 65

100 Operations Research

The final solution is presented in Table 3.4. The reader should verify this result. The
total cost of this solution is given by (12 · 28) + (8 · 7) + (6 · 8) + (12 · 14) + (2 · 4) + (16 · 5) +
(9 · 28) = 948.

There are several features of this solution that we should notice. First, it should be clear
that the procedure always produces a feasible solution. For a solution to be feasible, every
customer must be receiving all of the necessary demand from some warehouses, and no
warehouse may exceed its supply. In fact, all of the rows and columns will be satisfied
at equality. Because this method never transports more than the remaining supply or
demand, we have only to verify that no customer gets less than what it asked for.

Suppose the last customer did not get all its required demand; then that row will not
be deleted. Moreover, there must be some excess supply at one of the warehouses, so
that column has not been deleted. Therefore, there is still one cell left for the northwest
corner rule to work in. (The technique stops only when every cell in the matrix has been
deleted.)

The second thing to notice is that we must always start at x11 and we must finish at xmn
(for m warehouses and n customers). Moreover, at each step, the algorithm will delete one
row or one column. In the last cell, the remaining demand in column n and the supply in
row m must be identical. Because there are m rows and n columns, the solution will use
exactly (m + n − 1) cells and therefore (m + n − 1) of the xij will have a positive value. In our
example, we have 3 + 5 − 1 = 7 cells that are selected for a positive flow.

TABLE 3.3

Northwest Corner Rule

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply

28 7 16 2 30
1 12 20 8

18 8 14 4 20
2 20

10 12 13 5 28
3 25

Demand 12 0 14 12 18 9

TABLE 3.4

Initial Northwest Corner Solution

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply

28 7 16 2 30
1 12 8 20

18 8 14 4 20
2 6 12 2 20

10 12 13 5 28
3 16 9 25

Demand 12 14 12 18 9 65

101Network Analysis

In the Chapter 2 presentation of the Simplex method, it was stated that the number of
basic variables is precisely equal to the number of constraints. In the linear programming
formulation of the transportation problem, there are m equality constraints for the supply
at the m warehouses, and n constraints for the demands of the n customers. Therefore, one
would expect (m + n) non-zero (basic) variables. All other (non-basic) variables are zero.
The apparent discrepancy can be explained by observing that the linear programming
constraints are not independent. If the last constraint were deleted, and we solved that
problem, we would find that the solution will have all warehouse supply satisfied at equal-
ity, and the first (n − 1) customers will have their demand satisfied at equality. All remain-
ing demand must be assigned to customer n. Because total supply equals total demand,
the demand for customer n will automatically be satisfied exactly. In other words, when
the corresponding linear programming problem is solved with (m + n − 1) constraints,
there will be exactly (m + n − 1) basic variables, and introducing the additional constraint
will not change this.

3.3.1.2 Minimum Cost Method

The northwest corner rule is a quick way to find a feasible solution. However, the method
ignores any cost information; hence, it is unlikely that the initial solution will be a very
good one.

The same approach can be extended in an obvious way to search for a basic feasible solu-
tion while attempting to minimize the total cost.

Step 1: Select the cell in the matrix that has the smallest cost, breaking ties arbitrarily.
Step 2: Increase the flow in this cell as much as possible until the flow is equal to the

supply in the row or the demand in the column.
Step 3: Reduce the supply and the demand in this row and column because the

requirement has now been satisfied.
Step 4: Draw a line through the row or column that has zero remaining supply or

demand. If both are zero, select either one arbitrarily. Repeat the procedure from
Step 1 on the reduced matrix.

This method is very similar to the northwest corner rule in that it selects one cell, saturates
it, and deletes a row or column. It is also guaranteed to find a basic feasible solution with
precisely (m + n − 1) selected flow cells. However, unlike the northwest corner rule, this
method tries to match customers and warehouses, with some consideration of costs.

The method is illustrated in Table 3.5, where we first find the minimum cost cell to be
c14 = 2. Therefore, we satisfy as much of the customer 4 demand as possible from ware-
house 1. In this case, all 18 units can be supplied. We reduce the remaining supply at ware-
house 1 to 2 units, and delete customer 4.

In the next iteration, the minimum (undeleted) entry is c12 = 7, and we will satisfy as
much of the demand of customer 2 as possible from warehouse 1. In this case, warehouse 1
has only 2 units left, so the flow x12 is set at 2, row 1 is deleted, and the demand of customer
2 is reduced to 12.

The final solution is presented in Table 3.6. The total cost of this solution is given by

 () () () () () () ()2 7 18 2 12 8 8 20 12 10 12 13 1 28 610⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

102 Operations Research

As before, this solution is a basic feasible solution with precisely seven basic variables.
However, the total cost is considerably lower than the cost of the solution obtained with
the northwest corner rule. It is important to realize that obtaining the improved initial fea-
sible solution did require more computation time. At the first step of the northwest corner
rule, the single cell in the top left corner is selected. In the corresponding first step of the
minimum cost algorithm, it is necessary to search all of the m · n cells in the matrix to find
the one having the least cost. (When m is 100 and n is 10,000, this additional work takes a
considerable amount of time.)

There are a wide variety of other algorithms available for finding an initial feasible solu-
tion. Typically, they all exhibit the property that better initial solutions require more com-
putation time. The value of spending a lot of effort searching for better initial solutions
is somewhat questionable; the Simplex method will enable us to derive the optimal solu-
tion from any initial solution. The only advantage of using good initial solutions is that it
should reduce the number of pivot operations required later.

3.3.1.3 Minimum “Row” Cost Method

The computational requirements of the minimum cost method can be reduced signifi-
cantly without completely sacrificing the spirit. In Step 1, instead of looking for the mini-
mum cost element in the whole matrix, we simply look for the minimum cost element in

TABLE 3.5

Iteration 1: Minimum Cost

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply

28 7 16 2 30
1 18 20 2

18 8 14 4 20
2 20

10 12 13 5 28
3 25

Demand 12 14 12 0 9 65

TABLE 3.6

Minimum Cost Final Solution

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply

28 7 16 2 30
1 2 18 20

18 8 14 4 20
2 12 8 20

10 12 13 5 28
3 12 12 1 25

Demand 12 14 12 18 9 65

103Network Analysis

the first row. We continue to do this until warehouse 1 is saturated. Step 1 will now require
scanning n elements instead of m · n elements. However, by assigning the best possible
customer to warehouse 1, the method still tends to find low cost solutions.

Table 3.7 illustrates the final solution using the minimum row cost method. It has a total
cost of

 () () () () () () ()2 7 18 2 8 18 12 8 4 10 12 13 9 28 638⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =

This solution has only a slightly higher cost than the cost of 610 that was obtained with
the minimum cost method, and it required less work. In general, this is representative of
the performance one would expect of the two methods, although, of course, it would be
possible to construct simple examples in which the minimum row cost method produced
better solutions.

3.3.1.4 Transportation Simplex Method

Before we explain the procedure for finding the optimal solution, it will be useful to
describe a simple modification that transforms the original problem into an equivalent
new problem. Consider our example from Table 3.7, which shows the initial basic feasible
solution obtained using the minimum row cost method. Observe what happens if we sub-
tract $1 from every cost element in the first row. Because warehouse 1 has a supply of
20 units, every feasible solution will have a total of 20 units in row 1. Reducing the cost of
each element by $1 will reduce the cost of every feasible solution by exactly $20. In particu-
lar, the cost of the optimal solution will decrease by $20.

The optimal solution to the new reduced problem (in terms of the flow variables xij) is
exactly the same as the optimal solution of the original problem. We simply solve the new
problem and then add $20 to the optimal objective function value. Furthermore, if we
reduce all of the costs in the first row by 2 or 3 or 4, we will not change the problem; we will
simply reduce the total cost of every solution by $40 or $60 or $80, respectively.

Similarly, consider the first column of the matrix corresponding to customer 1. Clearly,
every feasible solution will have a total of 12 units distributed somewhere in column 1. If
every cost element in column 1 were reduced by 1 or 2 or 3, then the total cost of every fea-
sible solution would decrease by $12 or $24 or $36, respectively. The new reduced problem
is identical to the original one with respect to the optimal flow values xij.

TABLE 3.7

Minimum Row Cost Final Solution

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply

28 7 16 2 30
1 2 18 20

18 8 14 4 20
2 8 12 20

10 12 13 5 28
3 4 12 9 25

Demand 12 14 12 18 9 65

104 Operations Research

Now consider our example problem. We will construct an equivalent problem by sub-
tracting constants from the costs in the rows and columns. The reduced problem will have
the property that the reduced cost corresponding to every basic variable cell will be pre-
cisely zero. This is illustrated, for our example, in Table 3.8. We let ui denote the amount
subtracted from every cost element in row i and vj represent the amount subtracted from
every element in column j.

The reader should verify that all the reduced costs c íj in this table obey the relationship:

 c c u vij ij i j′ = − −

where cij is the original cost. As discussed earlier, finding the optimal solution to this prob-
lem is exactly the same as solving the original problem. Note that u3 = −7. This indicates
that we added 7 to row 3 instead of subtracting 7. Clearly, we can add a constant to a row or
column as well as subtract a constant without changing the problem.

The reduced problem has several interesting features. In particular, the total cost of the
current solution, in terms of c íj, is precisely zero. The reader should verify that we have
reduced the total cost of the solution by 638. In addition, some of the reduced costs cor-
responding to the non-basic cells are negative. Consider the cell x23, with c 2́3 = −7. If we
could increase the number of units of flow, from warehouse 2 to customer 3, by one unit,
we could reduce the total cost by 7. That is, the total cost now is zero, and it would become
−7. If we increase the flow of units from warehouse 2 to customer 3, it will also be neces-
sary to decrease the flow to some other customer from warehouse 2, and from some other
warehouse to customer 3. At all times, the total supply and demand constraints must be
maintained. In the example, if we increase x23 by 1, decrease x21 by 1, increase x31 by 1, and
decrease x33 by 1, we will maintain all supply and demand equalities, and the total cost
will be reduced by 7. Moreover, if we restrict ourselves to using only basic variable cells,
this solution is unique.

If we continue to increase the flow on x23, we will further decrease the cost of the solution
by 7 per unit. However, we cannot continue to do this indefinitely. Specifically, for every
unit that we increase x23, it is necessary to decrease x21 and x33 by 1. Because xij must be
non-negative, we can decrease x21 by 8 and x33 by 12. Therefore, the maximum increase for
x23 is 8, giving a decrease of $56 in the cost. When x23 = 8, x21 becomes zero and we remove
x21 from the basis to let x23 enter. The new solution is illustrated in Table 3.9.

TABLE 3.8

Reduced Cost Solution

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply ui

11 0 –4 0 –5 0
1 2 18 20

0 0 –7 1 –16 1
2 8 12 20

0 12 0 0 0 –7
3 4 12 9 25

Demand 12 14 12 18 9 65
vj 17 7 20 2 35

105Network Analysis

The cost of this solution is −56. If we put these same flows in the original table, we
would discover that the total cost is $582, precisely 56 less than the cost of our initial
solution.

In Table 3.9, the reduced cost is no longer zero for all basic variable cells. The new cell
x23 has c′23 = −7. In order to make this zero again, we can either add 7 to row 2 or add 7 to
column 3. (It does not matter which we select.) Suppose we add 7 to column 3 (decrease
v3 by 7). Then, we will also be forced to subtract 7 from row 3 (in order to keep c′33 at zero)
and then add 7 to columns 1 and 5 (in order to keep c′31 and c′35 at zero). The new reduced
cost solution is shown in Table 3.10.

Once again, this new problem is identical to the original. The current basic feasible solu-
tion has a value of zero, and there is an opportunity to further reduce the cost if we can
increase the flow from warehouse 2 to customer 5.

Before doing this, let’s make one observation: it will be useful for us to depict the prob-
lem in a slightly different way. In Figure 3.8, the problem has been drawn as a network
with only the basic flow edges shown. Observe that the basic edges form a tree. In other
words, if we ignore the directions of the edges, there are no circuits.

The network also has the property that there are exactly (m + n − 1) edges. If we had a
basic solution that had less than this number of edges, then we would arbitrarily add extra
basic cells with a zero flow to keep the total at (m + n − 1). Because the additional flow is
zero, the extra basic variables do not affect the total cost.

TABLE 3.9

Transportation Simplex

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply ui

11 0 –4 0 –5 0
1 2 18 20

0 0 –7 1 –16 1
2 0 12 8 20

0 12 0 0 0 –7
3 12 4 9 25

Demand 12 14 12 18 9 65
vj 17 7 20 2 35

TABLE 3.10

New Reduction Cost Solution

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply ui

18 0 3 0 2 0
1 2 18 20

7 0 0 1 –9 1
2 12 8 20

0 5 0 3 0 0
3 12 4 9 25

Demand 12 14 12 18 9 65
vj 10 7 13 2 28

106 Operations Research

However, because of these properties, introducing a new edge into the basis will always
create a single circuit. For example, when we try to introduce the variable x25 into the basis,
we get the network shown in Figure 3.9. This produces a unique circuit on the variables
x25, x35, x33, and x23.

If we want to increase the flow on x25 by an amount Δ, and still maintain equality at the
supply and demand nodes, we must decrease x35, increase x33, and decrease x23, all by
the amount Δ. In order to maintain feasibility, x35 and x23 must remain non-negative, and
hence the maximum value of Δ is 8. We set x25 = 8, x35 = 1, x33 = 12, and x23 = 0, thus adding
x25 to the basis and removing x23. (If two variables become zero simultaneously, we can

Warehouse Customer

Supply

20
18

20

25

9
5

4

3

2

1

18

12

14

12

3

2

8

9
4

12

12

1 2

Demand

FIGURE 3.8
Basic flow tree.

Warehouse Customer

Supply

20

20

25

9
5

4

3

2

1

18

12

14

12

3

2
8

12
4

18

9
0

12

1
2

Demand

FIGURE 3.9
Transportation network with circuit.

107Network Analysis

arbitrarily select one to leave the basis.) The new solution, with the new reduced costs
computed, is shown in Table 3.11. In order to remove ′c25 = −9, we increased row 2 by 9.

The resulting cost should have decreased by 8 (the new flow in x25) times −9 (the reduced
cost) = −$72. When we substitute the new flow into the original problem, we discover that
the new total cost is $510, a reduction of $72 from the previous basic feasible solution cost
of $582. The following steps summarize the Transportation Simplex method.

3.3.1.5 Transportation Simplex

 I. Compute the reduced costs c′ij such that every basic cell has a zero reduced cost.
(Initially, assume c′ij = cij, and the ui and vj are all zero.)

 a. Construct the basic variable network (tree) as in Figure 3.9. Select any ui and
assign to it any arbitrary fixed value.

 b. For each unfixed vj that is adjacent to a fixed ui, adjust vj such that c′ij is zero,
and then call vj fixed.

 c. For each unfixed ui that is adjacent to a fixed vj, adjust ui such that c′ij is zero,
and call ui fixed.

 d. Repeat steps 2 and 3 until all ui and vj are fixed.
 e. Compute all non-basic costs as c′ij = cij − ui − vj.
 II. If any non-basic c′ij is negative, let xij enter the basis. (As in the ordinary Simplex

method, we can choose any negative c′ij.)
 a. Identify the unique even cycle defined by the edge xij and other basic variable

edges.
 b. Alternately increase and decrease the flow in the edges in this circuit until at

least one basic variable has a zero flow. Remove that variable from the basis.
 c. Repeat the algorithm completely from the beginning (Part I) by recomputing

the reduced costs.

Continuing with our example, in Table 3.11, for Part II of the algorithm, we find c′34 = −6.
Therefore, x34 can enter the basis. The unique basic cycle is (x34, x35, x25, x22, x12, x24). The
increase of the flow in this alternating circuit is limited by a decrease of 1 in the flow on x35.

TABLE 3.11

Transportation Simplex Continued

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply ui

27 0 12 0 11 –9
1 2 18 20

16 0 9 1 0 –8
2 0 12 0 8 20

0 –4 0 –6 0 0
3 12 12 1 25

Demand 12 14 12 18 9 65
vj 10 16 13 11 28

108 Operations Research

Therefore, x34, x25, and x12 increase by 1, and x35, x22, and x24 decrease by 1. The variable x34
enters the basis and x35 leaves the basis.

When we now return to Part I of the algorithm, we can select any basic cell. There are
some small computational savings to be obtained if we choose the basic variable that just
entered. Consider the new basic network tree in Figure 3.10. (In the figure, we have reor-
dered the warehouse and customer numbers to eliminate crossing lines.)

Notice the edge corresponding to c′34 = −6. In order to get c′34 = 0, we must decrease either
u3 or v4. Suppose we decrease v4 by 6. Then, in order to keep all other c′ij = 0 for basic edges,
we must increase u1 and u2 by 6, and decrease v2 and v5 by 6. The new reduced cost matrix
is shown in Table 3.12.

The total cost is $6 lower for a total of $604 in the original problem. Moreover, all of the
reduced costs are now non-negative. Just as in the Simplex method, when the reduced
costs are all non-negative, the current solution must be optimal.

Warehouse Customer

1 10

13

11

16

28

3

4

2

1

3

2

5
0

0

0

0

−6

−8

−9

0 0

0

c′ij ui vj

FIGURE 3.10
Basic network tree.

TABLE 3.12

Optimal Solution

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply ui

21 0 6 0 11 –3

1 3 17 20
10 0 3 1 0 –2

2 11 9 20
0 2 0 0 6 0

3 12 12 1 0 25
Demand 12 14 12 18 9 65

vj 10 10 13 5 22

109Network Analysis

3.3.2 Assignment Problem and Stable Matching

Our discussion of transportation models has dealt with the flow of some entity or material
between nodes of a network. By imposing a few simple assumptions on the transportation
model, we find that we have an apparently new kind of optimization problem.

Suppose, for example, that we wish to assign n people to n jobs; that is, we wish to associ-
ate each person with exactly one job, and vice versa. Cost parameters cij denote the cost of
assigning person i to job j. Decision variables now have a completely new meaning, repre-
senting an association or bond between two entities rather than the flow of a commodity
between two nodes. Specifically, each variable xij is to have a value of either zero or one:

x
1, if person i is assigned to job j

0, otherwise
ij =









If in the transportation model we require m = n, and assign all the supply and demand
parameters a value of 1, then we have the following formulation for the assignment
problem.

minimize z c x

subject to x

ij ij

j 1

n

i 1

n

=
==
∑∑

iij

j 1

n

1 for i 1, , n 1= =
=
∑  ()

x 1 for j 1, , n (2)ij

i 1

n

= =
=

∑ 

and x 0 or 1 for all i and jij =

Re-examining Figure 3.7 under the current assumptions, we see that we are establishing a
flow of 1 unit out of each person node and a flow of 1 unit into each job node. The constraints
corresponding to supply and demand constraints in the transportation model enforce the
one to one association between persons and jobs. The aforementioned constraints (1) spec-
ify that each person be assigned to exactly one job, while constraints (2) specify that each
job have exactly one person assigned to it.

Because network problems with integer parameters can be solved using the Simplex
method to obtain integer solutions, we might simply replace the 0–1 constraint by the
constraints xij ≥ 0 and xij ≤ 1, and treat this problem as an ordinary linear program-
ming problem. The difficulty here lies in the inefficiency that may result from problem
degeneracy. (Notice that we have 2n constraints, and only n of the decision variables are
allowed to have a value greater than zero. Therefore, in any feasible solution, n − 1 basic
variables are zero; that is, any feasible solution to the assignment problem is degenerate.)
Fortunately, the highly specialized structure of the assignment model can be exploited
in an efficient algorithm designed specifically for this problem. The algorithm is known
as the Hungarian Method, named in honor of the Hungarian mathematicians König and
Egervary who established the fundamentals upon which the algorithm is based.

110 Operations Research

The simple structure of the assignment model leads to a solution that is intuitively easy
to follow. The key to this method lies in the fact that a constant may be added to or sub-
tracted from any row or column in the cost matrix without affecting the optimal solution.
Suppose we add a constant k to row p of the cost matrix. Then the new objective function

z c k x c x

c x k x

pj pj ij ij

j 1

n

i 1
i p

n

j 1

n

ij ij pj

j 1

n

j 1

′ = +() +

= +

==
≠

=

==

∑∑∑

∑
nn

i 1

n

original objective function plus a constant

∑∑
=

=

Similarly, if we add a constant k to column q, then

z c k x c x

c x k x

iq iq ij ij

j 1
j q

n

i 1

n

i 1

n

ij ij iq

i=1

n

j 1

′ = +() +

= +

=
≠

==

=

∑∑∑

∑
nn

i 1

n

original objective function plus a constant

∑∑
=

=

We will use this property of the assignment model to modify (repeatedly, if necessary) the
cost matrix, and thereby create a new matrix in which the location of zero elements indi-
cates an optimal feasible solution.

In order to do this, we wish to create a cost matrix with a zero in every row and every
column. If we can do this, then our modified objective function value is zero; and since the
cost cannot be negative, we know a zero value is optimal.

As an example, consider the cost matrix

4 9 8
6 7 5
4 6 9

















To obtain zero elements, we subtract the smallest element from each row. Subtracting 4, 5,
and 4 from rows 1, 2, and 3, respectively, we obtain the modified cost matrix

0 5 4
1 2 0
0 2 5

















111Network Analysis

This does not yet identify for us a feasible solution, but if we subtract 2 (the smallest
element) from the second column, we obtain

0 3 4
1 0 0
0 0 5

















From this we can make an optimal feasible assignment using the zero elements marked
with squares.

0 3 4

1 0 0

0 0 5



















Assignment variables x11 = x23 = x32 = 1, and all the others are zero. The actual objective
function cost, based on the original cost matrix, is 4 + 6 + 5 = 15.

Now look at a problem in which the solution is not revealed quite so readily. The cost
matrix

2 11 2 6
3 10 9 4
8 6 6 6

10 13 15 13



















can be immediately reduced to the matrix

0 9 0 4
0 7 6 1
2 0 0 0
0 3 5 3



















Now, every row and column contains a zero element, so we cannot subtract any more con-
stants in the obvious way. However, we can make only three feasible assignments. At this
point, the Hungarian method prescribes that we draw the minimum possible number of
horizontal and vertical lines so that all zero elements are covered by a line. (The number of
such lines that will be necessary is just exactly the number of feasible job assignments that
can be made using the current cost matrix.)

A simple procedure for obtaining the minimum number of lines can be summarized as
follows. Suppose you have made as many assignments as possible (to zero entries in the
matrix), but there are less than n assignments:

 1. Mark every row that has no assignment.
 2. Mark every column that has a zero in a marked row.

112 Operations Research

 3. Mark every row that has an assigned zero in a marked column.
 4. Repeat from Step (2) until no new columns can be marked.

In Step (2), if we ever mark a column that has not been assigned yet, we can construct a new
solution with one additional assignment. Column j was marked because row i was marked.
Shift the assignment in row i to column j. This frees up another marked column. Assign
this new marked column in a similar way until, eventually, we can assign a marked row
that previously had no assignment.

Otherwise, draw a line through every unmarked row and every marked column. It is easy
to verify that these lines cover every zero and that the number of lines equals the number
of current assignments. For example, in the modified cost matrix

0 9 0 4

0 7 6 1

2 0 0 0
0 3 5 3





















mark row 4, mark column 1, and mark row 2. After drawing the three lines, select the min-
imum uncovered element, subtract this value from all the uncovered elements, and add it
to all elements at the intersection of two lines. In this case, we select the value 1, subtract
it from uncovered elements on rows 2 and 4, and add it to the intersection elements in the
first column. (Although the Hungarian method is popularly described in terms of drawing
lines and manipulating covered and uncovered elements, observe that these operations
are just equivalent to subtracting and adding a constant to entire rows and columns. In
our example, we are subtracting the constant value 1 from rows 2 and 4 and adding 1 to
column 1.) The result is the further modified cost matrix

1 9 0 4

0 6 5 0

3 0 0 0

0 2 4 2





















from which we can make four feasible assignments: x13 = x24 = x32 = x41 = 1. The cost of
this assignment is obtained from the original cost matrix as c13 + c24 + c32 + c41 = 2 + 4 +
6 + 20 = 22.

This process ensures that at least one new zero entry will be generated at each iteration, but
the number of assignments does not necessarily increase. However, the Hungarian method is
guaranteed to solve the problem; this iterative procedure will be repeated as many times
as necessary so that a complete feasible assignment is finally obtained.

The Hungarian method is relatively efficient for solving large problems. However, there
are more efficient commercial codes available that can dramatically reduce computation
time. This can be very important when an application requires, for example, that several
thousand assignment problems be solved as subroutines in a larger problem.

In case there is a mismatch between the number of people and the number of jobs, the
problem is brought into balance by adding either dummy people or dummy jobs, as needed.
For example, if there are m people and n jobs, and m > n, then there are not enough jobs

113Network Analysis

so we add m − n dummy jobs, and a set of zero-valued cost coefficients for each. Once
the balanced problem is solved, any person assigned to a dummy job actually has no job.
Similarly, if m < n, the problem is balanced with dummy people; and in the final solution,
n − m jobs actually have no one assigned to them.

3.3.2.1 Stable Matching

While the classical assignment problem seeks to find an association of objects that is opti-
mal from a collective, or global, point of view, it does not necessarily consider individual
preferences or affinities. Suppose the entries in the cost matrix actually represent rankings,
so that finding a minimum cost assignment actually associates objects according to their
preferences. Now if the objects being associated with each other are people being assigned
to machines, the people probably have preferences, while the machines do not. But if we
have employees (people) being assigned to employers (also people), then most likely there
are preferences on both sides. Similar situations arise, for example, when medical residents
are being assigned to hospitals, or when graduate students become associated with certain
doctoral programs, because in all these cases there are mutual preferences involved, which
certainly might be different on the side of the employer than on the side of the employee.
The workers could probably rank their preferences for employers and the employers could
probably rank their preferences among the pool of potential employees. In this case, there
are two cost matrices, reflecting the preferences of both groups.

If we wish to treat this as an ordinary assignment model, a single cost matrix can be
constructed by simply adding corresponding elements of the rank matrices (Exercise 3.9
at the end of this chapter). Remember, however, that the (i, j)-th element of the employee
rankings does not get added to the (i, j)-th element of the employer rankings, but rather to
the (j, i)-th element. Information about employee i and employer j is in the (i, j)-th position
in the first matrix but in the (j, i)-th position in the second matrix.

The Hungarian method, when applied to this problem, yields a solution that is in some
sense for the collective good of both employees and employers. But what about the indi-
viduals or employers who do not get their first or even second choices? The behavioral
reaction of these people is dealt with by using a model that is known as the stable marriage
problem (so-called because this model hypothetically could be used to represent the prefer-
ences of groups of people who are to be matched for marriage) (Knuth 1976).

For this example, we will use a group of four men and a group of four women. Consider
the following preference matrices, and the corresponding cost matrix composed in the
way we described earlier.

Woman Man

W X Y Z A B C D

Man A 2 1 3 4 Woman W 1 3 4 2
B 1 2 3 4 X 3 2 4 1
C 4 1 2 3 Y 1 3 4 2
D 1 3 2 4 Z 4 2 1 3

W X Y Z

Cost = A 3 4 4 8
B 4 4 6 6
C 8 5 6 4
D 3 4 4 7

114 Operations Research

The matching A–Y, B–X, C–Z, D–W has a cost of 4 + 4 + 4 + 3 = 15, and is optimal when
viewed as an ordinary assignment problem; but from an individual perspective, that
matching leaves something to be desired. Notice that man A and woman W both prefer
each other over the one they are matched to. A matching is called unstable if two people
who are not married prefer each other to their spouses. In our example, A and W acting
according to their preferences would leave Y and D, respectively, for each other. Then there
would be little choice for Y and D but to get together with each other—a disappointment
for each, since now each is paired with a second-ranked choice, whereas previously both
had been matched with their first-ranked choices. (Observe that this rearrangement A–W,
B–X, C–Z, D–Y has the same cost, z* = 15, as the previous matching when viewed as a
simple assignment problem.)

Finding stable matchings is a difficult problem, both from a sociological and a compu-
tational standpoint. Even the problem of determining whether a matching is stable is dif-
ficult; and the process of removing instabilities one at a time is not only slow but can lead
to circularities that prevent the algorithm from terminating.

A better approach seems to be to construct stable matchings from the outset. In fact,
algorithms exist to construct a stable matching efficiently. However, the overall quality
(cost) of the assignment may be quite poor (everyone may be unhappy but stable), and
all known algorithms for this tend to be biased in favor of one group or the other (men
over women, employers over employees, etc.). A well-known propose and reject algorithm
constructs a stable assignment in O(n2) time, but unfortunately the matching is done from
a man-optimal point of view, and in fact a consequence of the method is that each woman
obtains the worst partner that she can have in any stable matching. The only remedy is
to create a stable matching from a woman-optimal point of view, with the corresponding
consequence to each man. We can clearly see here that there are important economic and
sociological effects involving employment stability and worker satisfaction for which we
currently have no good solutions (Ahuja et al. 1993).

3.3.3 Capacitated Transshipment Problem

The most general form of the minimum cost network flow problem arises when some
commodity is to be distributed from sources to destinations. Each node can create a cer-
tain supply or absorb some demand of the commodity. It is not necessary for each unit of
the commodity to be shipped directly from a source to a destination; instead, it may be
transshipped indirectly through intermediate nodes on its way to its destination. In fact,
the total supply could conceivably be routed through any node in transit. Links can have
upper and lower bounds on the flow that may be assigned to them. The object then is to
meet the demands without exceeding the available supply, and to do so at minimum cost.
This model is known as a minimum cost flow problem or as a capacitated transshipment
problem. We let xij represent the number of units shipped along the arc from node i to
node j, and cij denote the per unit cost of that shipment. Capacities are specified by lower
bounds ℓij and upper bounds uij on each arc from node i to node j. Flow balance equa-
tions enforce the constraint for a net supply si at each node i. The net supply at a node is

115Network Analysis

expressed as total flow out minus total flow in. (If si is negative, it will be interpreted as a
net demand constraint.) The formulation is as follows:

minimize z c x

subject to x x s for i 1, ,

ij ij

j 1

n

i 1

n

ij ki i

=

− = =

==
∑∑

… n 1

x u for all i and j 2

k=1

n

j=1

n

ij ij ij

∑∑
≤ ≤

()

()�

Summations are taken over all index values for which the corresponding arcs exist in the
network. To keep the notation simple, we assume that  ij = uij = 0 for all non-existent arcs.

Most introductory textbooks that describe the transshipment problem, explain how it
can be modeled as an expanded transportation problem with dummy demands and sup-
plies for each intermediate node. The two models are, in fact, equivalent. And although
that approach will work for small problems, it is not recommended for any applications of
practical size.

The minimum cost network flow problem could also be solved using the Simplex
method presented in Chapter 2. However, the special structure in the formulation makes
the problem amenable to more efficient solution techniques. The structure is apparent in
the flow balance equations (constraints [1] in our previous formulation). The variables xij
appear with coefficients of only 0, +1, and −1 in each equation. And because each arc flows
into exactly one node and out of exactly one node, each variable appears in exactly two of
the flow balance equations. This matrix of coefficients is known as a node-arc incidence
matrix and is fundamental to the methods that have been tailored for use on this problem.

One efficient technique for solving the minimum cost flow problem is a specializa-
tion of Dantzig’s Simplex algorithm, and has been called the Simplex on a graph algorithm
(Kennington 1980). One implementation of this method is reported to be over 100 times
faster than a general linear programming code applied to the minimum cost flow problem.

Another method, developed by Fulkerson specifically for the minimum cost flow prob-
lem, is called the out-of-kilter algorithm. Each arc is either in kilter or out of kilter, indicating
whether that arc could be in a minimum cost solution. Kilter numbers specify how far an arc
is from being in kilter. Beginning with any maximum feasible flow, the algorithm repeat-
edly selects an out-of-kilter arc, and adjusts the flow in the network so as to reduce the
kilter number of the chosen arc, while not increasing the kilter number of any other arc,
and maintaining feasible flow. When all arcs are in kilter, the current solution is the mini-
mum cost flow. Clear and complete descriptions of this method may be found in several
of the references cited at the end of this chapter, including Kennington (1980), Price (1971),
Battersby (1967, 1970), Hu (1970), and Tarjan (1983).

116 Operations Research

The following example, from Glover and Klingman (1992), illustrates the creative use
of the transshipment model for production planning and distribution decisions. A major
U.S. car manufacturer must determine the number of cars of each of three models M1, M2,
and M3 to produce at the Atlanta and Los Angeles plants, and how many of each model to
ship from each plant to distribution centers in Pittsburgh and Chicago. Subject to bounds
on production capacities, demands, and shipment capacities, the objective is to identify a
minimum cost production-distribution plan. A network model for this problem is given
in which arcs from plant locations to plant/model nodes are labeled with upper and lower
bounds on production levels, and with production costs for each model at each plant.
Similarly, arcs from distribution/model nodes to distribution point nodes are labeled to
indicate bounds on demands. Links from plant/model nodes to distribution/model nodes
are labeled with the appropriate transportation costs, and with capacity restriction limits,
if any.

A solution to this problem determines the production and distribution decision for the
car manufacturer; but, moreover, it solves a multi-commodity problem with a straightfor-
ward transshipment model. By having distinct nodes for each model type, the production
and distribution plan for each model is established.

3.4 Network Connectivity

3.4.1 Minimum Spanning Trees

Now consider a network problem in which we wish to select the fewest possible arcs in the
network that will keep the graph connected. Recall that a graph is connected if there is at
least one path between every pair of nodes. We furthermore want to select just those arcs
with the smallest weights or costs. This is called the minimum spanning tree problem.

A typical application for a minimum spanning tree may arise in the design of a data com-
munications network that includes processor nodes and numerous (possibly redundant)
data links connecting the nodes in various ways. We would like to determine the set of
data links, with the lowest total cost, that will maintain connectivity, so that there is some
way to route data between any pair of nodes. Similarly, in any type of utility distribution
network or transportation network, it may be desirable to identify the minimum set of con-
nections to span the nodes.

Such a minimal set of arcs always forms a tree. Clearly, the inclusion of any arc result-
ing in a cycle would be a redundant arc, and this could not be a minimum spanning tree.
To see this, suppose that the optimal solution contains a cycle. Select any arc (i, j) in the
cycle, and delete it. Notice that any two nodes that were connected using arc (i, j) are still
connected because nodes i and j are still connected by moving the other way around the
cycle. Therefore, the solution could not have been optimal because we easily constructed
a better (less costly) one.

We present two algorithms for solving this problem. The choice of which one to use for
a particular application depends on the density or sparsity of the network in question.
The two algorithms are quite simple, and are sometimes called greedy algorithms because
at each stage we make the decision that appears locally to be the best; and in so doing, we
finally arrive at an overall solution that is optimal. (As has already been suggested, it is a
rare and wonderful thing when we are able to solve combinatorial problems using simple
greedy algorithms.)

117Network Analysis

Our first solution to the minimum spanning tree problem is Prim’s algorithm, which
operates by iteratively building a set of connected nodes as follows:

 1. Arbitrarily select any node initially. Identify the node that is connected to the first
node by the lowest cost arc. These two nodes now comprise the connected set, and
the arc connecting them is a part of the minimum spanning tree.

 2. Determine an isolated node that is closest (connected by the lowest cost arc) to
some node in the connected set. (Break ties arbitrarily.) Add this node to the con-
nected set of nodes and include the arc in the spanning tree. Repeat this step until
no nodes remain isolated.

Prim’s algorithm is illustrated by the example shown in Figure 3.11a, where the sequence
of pictures (b) through (e) shows the iterative construction of the minimum spanning tree.
Node B is arbitrarily chosen as the initial node. Node C is its closest neighbor. Then node E
is attached, followed by node D and finally node A. In the figure, nodes are outlined boldly
as they become connected.

The arcs in the spanning tree have weights 1, 2, 4, and 5, yielding a cost of 12 for the
minimal spanning tree. Note that the choice of initial node B is arbitrary, and any choice
for the initial node would have yielded a tree whose cost is 12.

The complexity of Prim’s algorithm is O(n2) for an n-node network. If the network is
sparse (with much less than n2 arcs), the performance of this algorithm on large networks is
unnecessarily slow. For such cases, we have an alternative algorithm, known as Kruskal’s
algorithm, whose performance is O(e log e) where e is the number of arcs. Thus, in a sparse
network where e is much less than n2, Kruskal’s algorithm is superior; whereas in dense
networks, Prim’s algorithm is preferred.

Kruskal’s algorithm operates by iteratively building up a set of arcs. We examine all the
arcs, in increasing order of arc cost. For each arc, if the arc connects two nodes that are
currently not connected (directly or indirectly) to each other, then the arc is included in
the spanning tree. Otherwise, inclusion of the arc would cause a cycle and therefore could
not be a part of a minimum spanning tree. This algorithm is another example of a greedy
method. With Kruskal’s algorithm, we ensure a minimum cost tree by examining and
choosing the lowest cost spanning arcs first. Figure 3.12 shows the sequence of arcs chosen
for a minimum spanning tree for the network in Figure 3.12a.

Tarjan provides a historical perspective on solutions to spanning tree problems, and
describes several efficient variations to Prim’s and Kruskal’s algorithms. In such imple-
mentations, the improved complexity hinges on the use of specialized data structures
(such as heaps and priority queues). Tarjan also discusses mechanisms for sensitivity
analysis (Tarjan 1982): an algorithm is available for testing whether a given spanning tree
is minimal, and it is also possible to determine how much the cost on each arc can be
changed without affecting the minimality of the current spanning tree.

(a) (b) (c) (d) (e)

CB

8

D E
1

23

7 6

5

4A

B

D E

C
5

A

B

D E

C
5

A 4

B

D E

C
5

A

1

4

B

D E

C
5

A

1
2

4

FIGURE 3.11
Prim’s algorithm: (a) original network, (b) first iteration, (c) second iteration, (d) third iteration, and (e) last
iteration.

118 Operations Research

It is interesting to note how difficult the minimum spanning tree problem becomes
when certain constraints are added. If we place limits on the degree of all the nodes in the
spanning tree, then the minimum spanning tree problem becomes NP-hard. Such restric-
tions might reasonably apply in an actual application, for example, where we could have a
limited number of I/O ports on each microprocessor in a multiprocessor network.

3.4.2 Shortest Network Problem: A Variation on Minimum Spanning Trees

In the minimum spanning tree problem, we choose a minimum cost subset of arcs that
connect the vertices. But suppose that, instead of choosing a set of arcs from among those
already in the network, we allow ourselves to introduce new connections in addition to the
original arcs. Consider the following common problem. An electrician has decided where
to place the outlets in a home, and now wants to connect the outlets back to the circuit box
using the minimum amount of wire. Note that any circuit is a spanning tree. But, as any
electrician will tell you, to minimize the total length of cable, you should in fact introduce
new nodes (junction boxes) in the network, and then find the minimum spanning tree.

Consider the simple network in Figure 3.13 in which the nodes are the vertices of an equi-
lateral triangle and the arcs connect each pair of nodes. The length (or weight) of each of the
arcs is four units. A minimum spanning tree has a length of 8, and is obtained by choosing
any two of the three arcs as shown in Figure 3.13a–c. But if instead of choosing a subset of
the given arcs, we judiciously introduce a new node or junction point, we find that we are
able to span the three nodes with line segments whose total length is only about 6.928. This is
the shortest network that spans the three original vertices, and is illustrated in Figure 3.13d.

Clearly, this could represent a substantial saving in the cost of links if we were designing
the connections in communication networks, circuit board layouts, or highway or utility
distribution networks. This example is an instance of what is called the Steiner tree prob-
lem: where should we introduce new nodes in the network to minimize the corresponding
spanning tree?

The difficulty of the Steiner tree problem lies in selecting the location of the extra junction
points. Geometric intuition probably tells us that the solution in Figure 3.13d is better than

(a) (b) (c) (d) (e)

CB

D E1
3 2

467

5

A

B

D E

C

1

A

B

D E

C

1
2

A

B

D E

C

1
2

4A

B

D E

C

1
2

5

4A8

FIGURE 3.12
Kruskal’s algorithm: (a) original network, (b) first iteration, (c) second iteration, (d) third iteration, and (e) last
iteration.

(a) (b) (c) (d) (e)

FIGURE 3.13
Shortest network problem: (a) a minimum spanning tree, (b) another minimum spanning tree, (c) a third mini-
mum spanning tree, (d) shortest network, and (e) sub-optimal junction point.

119Network Analysis

the one in Figure 3.13e. However, consider a slightly larger problem, such as the graph with
six nodes arranged in a grid in Figure 3.14. Is this an optimal Steiner tree? In fact, there is
a slightly better set of junction points and connections than the ones shown in the figure,
but how would we know this? And what about solving much larger problems?

The best known algorithms for solving the Steiner tree problem are based on an algo-
rithm of Melzak (1961); and although numerous modifications to that algorithm have
improved its efficiency, the algorithms still require exponential computation time.

Although the Steiner tree problem is NP-hard, we still have practical algorithms that
yield approximations to the solutions that we want. In fact, we even have the guarantee
that a Steiner tree is at most 17.6% shorter than a minimum spanning tree. Thus, we can
use an efficient greedy algorithm (such as Prim’s or Kruskal’s) and obtain a spanning tree
whose length is at most only about 21% greater than that of a Steiner tree whose calculation
may require exponential effort. Here again, the analyst is faced with the choice of accept-
ing a possibly suboptimal solution that can be obtained easily, versus a provably optimal
solution that is obtainable only at enormous computational expense. Of course, the house-
hold electrician is probably inserting a few extra junctions at obvious locations and very
likely feels that his solution is convenient and satisfactory from a practical standpoint. See
Bern and Graham (1989) for an interesting historical perspective on Steiner problems, exact
and approximate algorithms.

3.5 Shortest Path Problems

We will now consider a class of network problems in which we try to determine the short-
est (or least costly) route between two nodes. The chosen route need not necessarily pass
through all other nodes. An obvious application of this type of problem is represented by
a vehicle traveling from a departure point to a final destination passing through different
points via the shortest route. Similarly, a distributed computer network that must route
data along the shortest path between designated pairs of processing nodes. We will also
see other, less obvious applications that can be solved with shortest path algorithms (see
exercises) or with methods reminiscent of shortest path algorithms (Sections 3.6 and 3.7).

The shortest path problem can be viewed as a transshipment problem having a single
source and a single destination. The supply at the source and the demand at the destination

FIGURE 3.14
Steiner tree problem.

120 Operations Research

are each considered to be one unit, and the cost of sending this unit between any two
adjacent nodes is indicated by the cost (weight or distance) on the arc connecting the two
nodes. By finding a minimum cost transshipment, we are in fact determining the shortest
route by which the unit can travel from the source to the destination. Although the short-
est path problem could be dealt with by using the more general transshipment model, the
structure of the shortest path problem makes it amenable to much more specialized and
efficient algorithms.

3.5.1 Shortest Path through an Acyclic Network

There are several well-known algorithms for finding the shortest path between certain
pairs of nodes in a network. We will concentrate first on a particularly simple algorithm
that is based on the use of recursive computations. This approach to shortest path prob-
lems will also provide us with a foundation for the study of dynamic programming and
project management in the next two sections of this chapter.

As an illustration, consider the acyclic network in Figure 3.15, where arc labels dij denote
distance from node i to node j. Notice that in an acyclic graph, it is always possible to name
the nodes in such a way that an arc is oriented from a lower-numbered node to a higher
numbered node. (A consequence of this property is that such a network can be represented
by an adjacency matrix that is upper triangular, requiring only (n2 + n)/2 storage loca-
tions in computer memory instead of n2.) We wish to determine the shortest path from the
lowest-numbered node to the highest-numbered node.

The algorithm operates by assigning a label to each node, indicating the shortest dis-
tance from that node to the destination. A node is eligible for labeling if all its successors
have been labeled.

 1. Initially, the destination node is given a label of zero, indicating that there is no
cost or distance associated with going from that node to itself.

 2. Choose any eligible node k, and assign it a label pk as follows:
 pk = min {dkj + pj}, the minimum taken over all successors j of node k
 3. Repeat Step 2 until the source node is labeled. The label on the source is the shortest

distance from the source to the destination.

1 1

2

2

4

4

4

3

3

3

3

5

6

0

6

6

6

8

8

5

5

10

FIGURE 3.15
Acyclic network with node labels.

121Network Analysis

In the illustration in Figure 3.15, initially p6 = 0. Next, node 5 is eligible and p5 = 6 + 0 = 6.
The label for node 4 is computed as p4 = min {5 + 0, 4 + 6} = 5. Node 3 is now eligible, and
p3 = min {1 + 5, 2 + 6, 8 + 0} = 6. The label on node 2 is p2 = min {3 + 5, 3 + 6} = 8, and finally
p1 = min {3 + 8, 4 + 6} = 10. Thus, the length of the shortest path is 10, and the path itself
is obtained by tracing back through the computations to find the path containing the arcs
(1,3), (3,4), (4,6).

This backward labeling procedure has an intuitive appeal when the problem is small
enough that the labels can be shown in a diagram. For larger problems, we may obtain
better insight by examining the recursive structure of the computations. For this, we will
again use the illustrative network from Figure 3.15. We wish to determine a label for node 1;
but in order to compute p1, we require the labels for nodes 2 and 3. Obtaining these labels
involves the recursive labeling procedure (twice). Each of these recursive computations in
turn requires further recursion. The pattern of recursive calls to obtain the label on the first
node is illustrated as follows, where L(i) denotes pi:

L(1) L(3)

L(4)

L(6)

= +

= + +

= + + +[]

[]

4

4 1

4 1 5 

= + + +[] 

=

4 1 5 0

10

Observe that the label on each node summarizes information on higher-numbered nodes.
In fact, the value of the label on any node is actually the length of the shortest path from
that node to the destination.

3.5.2 Shortest Paths from Source to All Other Nodes

A more general algorithm that can be applied to any network having all arc labels non-
negative is known as Dijkstra’s algorithm. This algorithm begins with the source node
and determines the shortest paths from the source to every other node. During the opera-
tion of Dijkstra’s algorithm, the nodes are partitioned into two sets: a set, which we shall
call S, to contain nodes for which the shortest distance from the source is known, and
another set T to contain nodes for which this shortest distance is not yet known. A label pi
is associated with every node i and specifies the length of the shortest path known so far
from the source (node 1) to node i. Again, we let dij denote the direct distance from node i
to node j.

 1. Initially, only the source node is placed in set S, and this node is labeled zero, indi-
cating that there is zero distance from the source to itself.

 2. Initialize all other labels as follows:

p d for i source node

and p if node i is no

i i

i

= ≠

= ∞

1 1

tt connected to the source

122 Operations Research

 3. Choose a node w, not in set S, whose label pw is minimum over all nodes not in S,
add node w to S, and adjust the labels for all nodes v, not in set S, as follows:

 ,p min p p dv v w wv= +{ }

 4. Repeat Step 3 until all nodes belong to set S.

In step 3, we assume that pv is the shortest distance from the source to node v directly
through nodes in S. When we add node w to S, we check whether or not the new dis-
tance through w is shorter, and update if necessary. We will use the network shown in
Figure 3.16 to illustrate Dijkstra’s algorithm.

Initially S = {1}, and p1 = 0, p2 = 5, p3 = 3, p4 = 8, p5 = ∞, and p6 = ∞. We then choose the
minimum label 3 on node 3, and S = {1, 3}. Labels are now

,

,

,

p min

p min

p min

p min

2

4

5

6

5 3 5

8 3 8

3 4 7

= + ∞ =

= + ∞ =

= ∞ + =

=

{ }

{ }

{ }

 ∞ + ={ }, 3 8 11

In the next iteration, we select the label 5 on node 2, so that S = {1, 3, 2} and new labels are

,

,

,

p min

p min

p min

4

5

6

8 5 2 7

7 5 7

11 5 11

= + =

= + ∞ =

= + ∞ =

{ }

{ }

{ }

From these labels, we break a tie arbitrarily and select the minimum label 7 on node 5.
Now S = {1, 3, 2, 5} and

1

2 2

2

4

4

4

4

3
3

3

3

5

5

6

8

8

FIGURE 3.16
Shortest path with Dijkstra’s algorithm.

123Network Analysis

,

,

p min

p min

4

6

7 7 4 7

11 7 3 10

= + =

= + =

{ }

{ }

Now we choose node 4 and S = {1, 3, 2, 5, 4}, and

 ,p min 6 10 7 2 9= + ={ }

Finally, node 6 is added to set S. The final labels are p1 = 0, p2 = 5, p3 = 3, p4 = 7, p5 = 7, and
p6 = 9, and the values of these labels indicate the lengths of the shortest paths from node 1
to each of the other nodes.

On a dense graph of n nodes and e arcs, represented by an adjacency matrix, Dijkstra’s
algorithm executes in time O(n2). In a sparse network where e is much less than n2, it is
worthwhile to represent the graph as an adjacency list, and to manage the node partitions
using a priority queue implemented as a partially ordered tree (Aho and Hopcroft 1974).
In that case, the running time is O(e log n).

The proof of optimality of Dijkstra’s algorithm requires that all the arcs have positive
labels. But consider a network in which arcs represent stages of a journey. Along certain
arcs a cost is incurred (positive cost), while on other arcs it is possible to turn a profit (nega-
tive costs). Our objective would be to find a minimum cost path from source to destination
and, if possible, a path with negative cost (i.e., a profitable path). An algorithm developed
by Bellman (1958) and Ford Jr. (1956) will solve this problem as long as there is no cycle
in which the sum of the arc lengths is negative. (Observe that, if there were a cycle with a
negative total length, then we could simply travel around the cycle indefinitely reducing
our cost with no lower bound.)

Suppose we have a network for which we would like to know the shortest distance
between any two nodes. This is called the all-pairs shortest path problem. For this prob-
lem, Dijkstra’s algorithm could be applied n times (using a different node each time
as the source) to obtain the desired result in time O(n3). Another algorithm known as
Floyd’s algorithm provides the solution in a more direct way, also in time O(n3) but with
a much lower constant factor than Dijkstra’s algorithm. However, for large sparse graphs,
clever use of data structures will allow Dijkstra’s algorithm to operate in O(n e log n)
time. Algorithms for the second shortest path through a network, the n-th shortest path,
and for all possible paths between two specified nodes, are described and illustrated in
Price (1971).

3.5.3 Problems Solvable with Shortest Path Methods

We have shown how shortest path methods can be used to determine the shortest (fast-
est, or least costly) route between two locations in a network. A couple of additional illus-
trations should indicate the great variety of problems that can be modeled and solved
in this way.

A frequently cited example is one in which we wish to determine the most cost-effective
schedule for the replacement of equipment over a period of time. Let us suppose circuit
boards for A/D conversion in a navigation computer are to be replaced at intervals over a
period of 6 months. Ideally, replacement should occur before an actual breakdown in order
to maintain an operational system. Frequent replacement incurs capital expenses and costs
of labor for installation. But infrequent replacement may lead to increased maintenance

124 Operations Research

costs and unacceptably high rates of system downtime. If we collect data on the costs of
purchase, installation, and maintenance, cost of expected downtime, and salvage value of
replaced boards, we can arrive at a tabularized summary of these expenses, such as shown
in Table 3.13.

Any circuit board becomes a candidate for replacement after one month. This problem
can be represented as a network (Figure 3.17) with nodes representing the months, and
arcs labeled with the costs shown in the table. By finding the shortest path between node
Jan and node Jun, we obtain the optimal (least costly) replacement policy. The route Jan →
Mar → Jun, with minimal cost 6.75 + 9.00 = 15.75, indicates that circuit boards installed in
January should be replaced in March and again in June.

This approach is often used for practical situations. However, observe that if we add a
node for July, or August, the optimal solution will change. We can overcome this problem
by using a rolling horizon. For example, in January, we might use a 24-month formulation
to decide when to perform the first replacement. That is, we use just the first shortest path.
When we get to that month chosen for replacement, we formulate a new shortest path
problem for the next 24 months. Many other practical problems have a similar structure.

An apparently unrelated set of problems is often illustrated in the form of riddles or
puzzles. The context may involve ferrying missionaries and cannibals, foxes and chick-
ens, monkeys and bananas; or separating a volume of some liquid by using an apparently

TABLE 3.13

Equipment Replacement Costs

Circuit Board Replaced

Feb Mar Apr May June

Circuit Board
Installed

Jan 5.00 6.75 8.25 12.50 16.80
Feb 5.25 6.25 9.50 11.50
Mar 5.25 7.25 9.00
Apr 5.50 8.20
May 5.80

Jan MarFeb MayApr Jun5.255.00 5.505.25 5.80

15.75

11.50 9.00 5.808.20 0

16.80

12.50
8.25

6.75

7.25

9.50

6.25

11.50

9.00

8.20

FIGURE 3.17
Equipment replacement schedule.

125Network Analysis

inappropriate set of containers or measuring devices; or rearranging the elements of a plas-
tic puzzle. In each of these problems, there is some initial configuration, and a sequence of
simple one-step moves or operations, concluding eventually in some desired goal configu-
ration. Each of these problems can be solved in the following way. Create a set of nodes in
which each node represents a possible configuration of the system. Place a directed arc to
indicate where a transition can be made from one configuration node to another through
one simple move. Assign a cost of 1 to each arc in the network. If there are multiple goal
configurations, join those nodes to a common sink node and label these new arcs zero. The
shortest path from the initial configuration node to the sink or goal configuration node
represents a solution to the problem, and moreover, this path describes the solution obtain-
able in the smallest number of steps.

3.6 Dynamic Programming

Dynamic Programming is an approach to solving mathematical programming problems
by decomposing a problem into simpler, interdependent, subproblems, and then finding
solutions to the subproblems in stages, in such a way that eventually an optimal solution to
the original problem emerges. Because this approach has been used particularly for appli-
cations that require decisions to be made dynamically over time, the descriptive name
dynamic programming has come into common use. However, this procedure is applicable to
any problem that can be dealt with as a staged decision-making process.

In most of the optimization problems that we have seen thus far, all of the decision
variables have been dealt with simultaneously. Arbitrarily complex interactions among
decision variables are precisely what make general mathematical programming problems
difficult. However, many problems have a structure that allows us to break the problem
into smaller problems that can be dealt with somewhat independently. As long as we are
able to preserve the original relationship among the subproblems, we may find that the
total computational effort required to solve the problem as a sequence of subproblems is
much less than the effort that would be required to attack all components of the problem
simultaneously.

Unlike linear programming and other specialized mathematical programming formula-
tions, dynamic programming does not represent any certain class of problems, but rather an
approach to solving optimization problems of various types. Because the procedure must
be tailored to the problem, the successful application of dynamic programming principles
depends strongly on the intuition and talent of the analyst. Insight and experience are
required in order for a problem-solver to perceive just how (or whether) a problem can be
decomposed into subproblems, and to state mathematically how each stage is to be solved
and how the stages are related to one another. Exposure to a large number of illustrative
dynamic programming applications, including discrete and continuous variables, proba-
bilistic systems, and a variety of objective function forms, would be required in order to
provide truly useful and comprehensive insights into the craft of dynamic programming.
Even then, it must be admitted that many problems simply do not lend themselves effi-
ciently to the dynamic programming framework.

We will examine some examples, and in the process we will also describe some of the uni-
fying themes and notations of the dynamic programming approach. For further exposure

126 Operations Research

to this problem-solving tool, refer to the discussions by Bellman (1957), Nemhauser (1966),
Beightler (1976), and White (1969).

3.6.1 Labeling Method for Multi-Stage Decision Making

Our first example of the use of the dynamic programming approach involves a choice of
transportation routes. Figure 3.18 shows a system of roads connecting three sources Hi
that generate hazardous by-products with two sites Dj designated for the disposal of haz-
ardous waste materials. Three political borders (shown by dashed-lines) must be crossed
in transit. Each straight-line section of road requires one day’s travel time, so it is a four-
day drive from any Hi to any Dj. However, at each border crossing, regulations require
container inspection and possible recontainerization, and this can cause delays at each
checkpoint. The number of days delay that can be anticipated is shown in the circle drawn
at each checkpoint. The problem is to determine the route from generation sites to disposal
sites that involves the minimum delays.

The stages in this multi-stage decision process correspond to the three borders that must
be crossed. In the terminology of dynamic programming, the various checkpoints at each
stage are called states. Thus, there are four states in the first stage, and three states in each
of the second and third stages.

To solve this problem, we take an approach that is similar to the backward labeling
method for shortest path through an acyclic graph. Our decisions will be made, beginning
with the final stage, Stage 3, and moving backward (to the left) through the earlier stages.
At each stage, we phrase our decision in the following way: for each possible state in the
current stage, if this state is ever reached, what would be the minimum delay from here to
the dump sites? If this question can be answered at every stage, then eventually at the first
stage, we will have established our minimum delay route, as desired.

The mechanism that we will use is a backward node-labeling scheme. When we arrive
at Stage 3, the delay to the dump site is just the delay at the third border crossing. We label
each checkpoint node accordingly, as shown in Figure 3.19a.

At stage 2, the delay at the top node is 5 plus either four or three additional days. We
choose the minimum 3 and label that node with 5 + 3 = 8. The other two nodes are labeled
in the same way, as shown in Figure 3.19b.

H3

H1

H2

D1

D2

4

5 4

2

7

4

3

3

3

6

6

12

11

8

12

9
9

FIGURE 3.18
Hazardous waste disposal routes.

127Network Analysis

Backing up to Stage 1, we similarly compute four labels, as shown in Figure 3.19c. Since
all four checkpoints at Stage 1 are uniformly accessible from each of the generation sites,
we can conclude that the minimum delay path goes through the node labeled 9 at the first
border crossing (with a delay of 3). The optimal path is highlighted in Figure 3.19d, where
the total delay of 9 is obtained by crossing the second border at the bottom node (where
delay is 4), and from there crossing the third border at its bottom node (with a delay of 2).

3.6.2 Tabular Method

Dynamic programming problems can usually be represented more succinctly in tabular
form rather than as a graph. Consider the following problem. A Director of Computing
Facilities must decide how to allocate five computer systems among three locations: the
Library, the University Computer Center, and the Computer Science Lab. The number of
users who can be accommodated through various allocations is shown in Table 3.14.

By viewing this problem as a staged decision process, we can determine the optimal
allocation that will provide computer access to the greatest number of users. Let Stage 1

(a) (b)

(c) (d)

4
3

H1

H2

H3
D2

D1

2

4

3

2

4

3

2

3

4 12

11

3
9

6
12

8

9

6

5

7
9

4
6

8 4

3

2

FIGURE 3.19
Minimum delay path: (a) stage 3, (b) stage 2, (c) stage 1, and (d) optimal path.

TABLE 3.14

Computer Allocation Problem

Number of Users Served at Each Location

Number of Computers
Allocated Library University Computer Center CS Lab

0 0 0 0
1 3 5 8
2 6 10 12
3 7 11 13
4 15 12 13
5 20 24 18

128 Operations Research

denote the decision of how many computers to place in the Library, Stage 2 denote the
decision for the Computer Center, and Stage 3 for the Computer Science Lab. As before, we
will begin with the last stage, and work backward.

At the third stage, we do not know how allocations may be made at earlier stages, but
regardless of what earlier allocations may have been decided, we wish to determine the
optimal allocation for the remaining available computers. Since this is the last stage, we
clearly should allocate all remaining computers (i.e., the ones that were not allocated in
Stage 1 and Stage 2) to the Lab, as shown in Table 3.15.

At the second stage, the alternatives are somewhat more interesting. Again, we do
not know what allocations may be made at earlier stages (Stage 1); but since this is not
the last stage, we must consider the possibility of allocating only a portion of what is
available, leaving some computers for allocation in Stage 3. The various possible alloca-
tions in Stage 2 are shown in Table 3.16. Each entry represented by a sum includes the
number of users that can be served by placing some computers here at this stage, plus
the optimal number that could be served by saving the remaining available computers
for later stages.

We can conclude the solution to this problem now by solving Stage 1. In this case, we do
not have to consider different numbers of available computers: we know that all five are
available because there are no preceding stages (during which any could be allocated). We
do, however, have the option to allocate any number of them, as shown in Table 3.17.

TABLE 3.15

Allocation to Computer Science Lab

Computer Science Lab

Number Available Number to Allocate Optimal Number of Users Served

0 0 0
1 1 8
2 2 12
3 3 13
4 4 13
5 5 18

TABLE 3.16

Allocation to University Computer Center

Number
Available

Payoff for the Number Allocated to the University
Computing Center Optimal

Number of
Users Served

By
Allocating0 1 2 3 4 5

0 0 0 0
1 0 + 8 5 + 0 8 0
2 0 + 12 5 + 8 10 + 0 13 1
3 0 + 13 5 + 12 10 + 8 11 + 0 18 2
4 0 + 13 5 + 13 10 + 12 11 + 8 12 + 0 22 2
5 0 + 18 5 + 13 10 + 13 11 + 12 12 + 8 24 + 0 24 5

129Network Analysis

The problem is now solved. The optimal number of users, 25, that can be served is
obtained by allocating one computer to the Library. That leaves 4 available for Stage 2,
and from the table for Stage 2, we know that the optimal decision is to allocate 2 to
the Computer Center, leaving 2 for Stage 3, the Computer Science Lab. At Stage 3, we
allocate both available computers. Thus, by placing 1, 2, and 2 computers, respectively,
in the Library, Computer Center, and Lab, we can serve 3 + 10 + 12 = 25 computer
users.

Notice that we could have used a graphical representation of this problem as shown
in Figure 3.20, and the backward labeling technique, to find the optimal alloca-
tion. However, even in a problem of this size, the number of arcs becomes large and

TABLE 3.17

Allocation to the Library

Number
Available

Payoff for the Number Allocated to the Library
Optimal Number of

Users Served By Allocating0 1 2 3 4 5

5 0 + 24 3 + 22 6 + 18 7 + 13 15 + 8 20 + 0 25 1

25 24

22

18

18

13

13

13

12

8 8

0 0

Allocate 5

20 + 0

Alloc
5

24 + 0

Allocate 4

15 + 8

Alloc
4

Allocate 3

7 + 13

Alloc
3

11 + 12

Allocate 2

6 + 18
10 + 13

Alloc 2
Allocate 1 3 + 22

Alloc 1

5 + 13

Allocate 0 0 + 24 Alloc 0 0 + 18

Allocate 0

Alloc 0 0 + 8

Alloc 0 0 + 12

Alloc 1

5 + 8

5 + 0

Allocate 1

10 + 0

Stage 21
Library

Stage 12
University computer center

Stage 3
Computer science lab

Allocate 2

FIGURE 3.20
Graphical representation of computer allocation problem.

130 Operations Research

awkward to display. We accomplish exactly the same thing conceptually using the
more convenient tabular representation.

3.6.3 General Recursive Method

Using dynamic programming, we have now solved two problems—waste-disposal rout-
ing and computer allocation—as staged-decision problems. Each point where a decision
is made is referred to as a stage of the decision process. In some problems, these stages
correspond to stages in time; in other cases, they refer to geographical stages; and in oth-
ers, the stages may reflect a more abstract logical decomposition of the larger problem. The
structuring of a complex problem into simpler stages of decision-making is the fundamen-
tal characteristic of the dynamic programming approach.

Within each stage, states are defined in such a way as to embody all the information
needed in order to make the current decision and to fully define the ramifications of any
current decision on future decisions. The specification of states is a critical performance
factor in any dynamic programming solution. In practical problems, the number of pos-
sible states can quickly become unmanageable. Successful applications usually require
considerable skill in the definition of the states.

In our illustrative examples, each stage has only one state variable (to specify which
check-point on a border crossing, or how many computers are available for allocation to the
current location). Some problems require more than one state variable, and each state of
the system is represented by each possible combination of state variable values. Clearly, the
number of possible states increases exponentially as the number of state variables grows,
and the computational effort involved in solving the problem may become prohibitively
expensive.

Decision variables in a dynamic programming model define the decisions made at each
stage. Each decision yields some payoff (or return) that contributes to the objective func-
tion. Because of the staged structure of this method of problem-solving, determining the
optimal value of a decision variable is a process that cannot be based on the entire problem
but rather on only those stages of the problem that have already been dealt with. After
identifying a final stage, and associating a payoff with each state in that stage, we then
repeatedly move backward to preceding stages using a backward recursive relation, until
we have finally arrived at an initial stage, and have thus sequentially arrived at a solu-
tion to the entire problem. Decisions at each stage must be made in accordance with the
dynamic programming principle of optimality, which is stated as follows: regardless of
the decisions made to arrive at a particular state, the remaining decisions must constitute
an optimal policy for all successive stages, with respect to the current decision.

Suppose that our problem has N stages, and we are currently trying to compute stage n.
Let sn denote the state and dn denote the decision made when there are n stages remaining
in the solution process. Let fn (sn, dn) denote the total payoff or return for the last N − n
stages, given current state sn and current decision dn. The optimal return for these N − n
stages is then written as fn

*(sn) = fn(sn, dn
*), meaning that dn

* is the optimal decision for this
state, regardless of how we arrive at this state. Clearly, if we can work backward to an ini-
tial stage, then f1

*(s1) is the optimal objective function value for an N-stage problem.
The return function for any state is written in terms of the return obtained from

succeeding stages:

f s max r(s ,d f (s)n

*
n

d
n n n 1

*
n 1

n
() {) }= + + +

131Network Analysis

where r(sn, dn) is the return resulting from making decision dn while in state sn at the cur-
rent stage, and sn+1 is the new state that we will be in at stage n + 1 if we are in sn now, and
make decision dn. Observe that we have previously computed the optimal cost for com-
pleting the solution process from all possible states sn+1. This recursive relation identifies
the optimal policy for each state with N − n stages remaining, based on the optimal policy
for each state with (N − n) − 1 stages remaining.

In the computer allocation example earlier, the Computer Science Lab location repre-
sents Stage 3, the University Computer Center is Stage 2, and the Library is Stage 1. States
represent the number of computers available in a stage, and the decision variable speci-
fies how many to allocate in this stage. Therefore, to find the optimal allocation, we must
compute

f Library max r(s ,d f (s)1

*

d
1 1 2

*
2

1
() {) }= +

where s2 = s1 − d1. For this we need to have computed

f s max r(s ,d f (s)2

*
2

d
2 2 3

*
3

2
() {) }= +

where s3 = s2 − d2. Finally, f3
* is trivial to compute for all states in Stage 3 because all remain-

ing available computers should be used. The recursive computations for this example are
shown for Stage 3 in Table 3.18, for Stage 2 in Table 3.19, and for Stage 1 in Table 3.20.

After the backward recursion is applied, the optimal objective function value is known,
but the sequence of decisions leading to that optimum must be retrieved by tracing forward

TABLE 3.18

Stage Three

f3(s3, d3)

s3 d3 = 0 1 2 3 4 5 d3* f3*(s3, d3)

0 0 0 0
1 8 1 8
2 12 2 12
3 13 3 13
4 13 4 13
5 18 5 18

TABLE 3.19

Stage Two

f2(s2, d2)

s2 d2 = 0 1 2 3 4 5 d2* f2*(s2, d2)

0 0 0 0
1 0 + 8 5 + 0 0 8
2 0 + 12 5 + 8 10 + 0 1 13
3 0 + 13 5 + 12 10 + 8 11 + 0 2 18
4 0 + 13 5 + 13 10 + 12 11 + 8 12 + 0 2 22
5 0 + 18 5 + 13 10 + 13 11 + 12 12 + 8 24 + 0 5 24

132 Operations Research

to identify, at each stage, the decision that was chosen during the backward recursion. In
the example, s1 = 5 and d1

* = 1. Therefore, s2 = 4. When s2 = 4, d2
* = 2, and hence s3 = 2.

When s3 = 2, d3
* = 2.

Our discussion of dynamic programming has addressed only the most essential fea-
tures of the method, and we should now mention some variations to this problem-solving
approach. In our two examples, there were a finite number of states at each stage, repre-
senting discrete roads to choose or whole items to allocate. Applications involving arbi-
trary allocations of money or weight, for example, may be modeled with a continuous
state-space. In this case, the graphical and tabular methods are useless, but the recursive
relations readily apply.

In each of our sample problems, the return at any stage was added to cumulative returns
from succeeding stages. This was appropriate because the time delays and the number
of users served were additive in nature. Different applications may involve costs that are
compounded together in arbitrary mathematical ways. For example, in the hazardous
waste disposal problem, if the checkpoints introduced probabilities of contamination or
spillage, then the probabilities (of no contamination) at successive stages should be multi-
plied, rather than added, to find the safest route. In that case,

 , ,() () ()*f s d r s d f sn n n n n n n= ⋅ + +1 1

where fn+1
* (sn+1) is the minimum probability of contamination from stage n + 1 in state sn+1,

and sn+1 is the state that we would be in if we were in state sn at stage n and made decision dn.
Our recursive relations have been expressed in the form of backward recursion, based on

the stages remaining in the decision process. For most problems, it would be equally valid to
define forward recursive relations, based on completed decision stages. The final result will be
the same. For example, in the computer allocation problem, our state variables could repre-
sent the number of machines left in backward recursion, or we could define a forward recursive
model based on the number of machines allocated so far. However, the definition of the state
variables is often more intuitively appealing in one direction for a particular application.

3.7 Project Management

The planning and coordination of large complex projects, consisting of many tasks or
activities, is often viewed as less of an optimization problem and more of a management
procedure aimed at completing a project under certain resource constraints and with
attention to various cost-time trade-offs. However, certain aspects of project manage-
ment can be dealt with conveniently by using network optimization methods that were
 discussed earlier in this chapter.

TABLE 3.20

Stage One

f1(s1, d1)

s1 d1 = 0 1 2 3 4 5 d1* f1*(s1, d1)

5 0 + 24 3 + 22 6 + 18 7 + 13 15 + 8 20 + 0 1 25

133Network Analysis

During the 1950s, two methodologies were developed—independently and
simultaneously—for project management, and both approaches were based on network
models. One method, called the Critical Path Method (CPM), was developed for the man-
agement of construction and production activities; while the other, called the Program
Evaluation and Review Technique (PERT), was developed for the U.S. Navy in schedul-
ing research and development activities for the Polaris missile program. CPM is based
on deterministic specifications of task durations, and is therefore appropriate for pro-
duction projects in which previous experience with the subtasks allows management to
make reliable time estimates. PERT, on the other hand, is based on probabilistic estimates
of task durations, and thus is most useful in a research and development environment
where task completion times cannot be known in advance. Because both PERT and CPM
approach project scheduling using similar network models and methods, the terms PERT
and CPM are sometimes used interchangeably or collectively as PERT-CPM methods.

Large scale projects generally consist of a set of tasks or activities whose completion
times are known or can be estimated (using a range of values, for example), and for which
precedence constraints are specified, indicating that certain activities must be completed
before others can begin. Simply identifying the distinct activities, and determining their
durations and interdependencies, is an important part of the planning of any large project.
PERT-CPM methods then provide for the construction of a network diagram, from which
we can determine the minimum overall project duration and identify those tasks whose
timely completion is critical or essential to the minimum project completion time. The
purpose of this phase is to construct a schedule or time chart with start and finish times for
each activity. Information may also be available that will allow us to evaluate the effect
of putting extra money, people, or machines into a particular task in order to shorten the
project duration. Thus, we can use the network to evaluate cost-time trade-offs. Finally,
once the project is underway, the network diagram can be used in monitoring or controlling
the project, to follow the progress of the various activities, and to make adjustments where
appropriate. These three phases—planning, scheduling, and controlling—are essential
to the effective management of any large project. In the following sections, we will see
how the network methods underlying PERT and CPM help to support these phases of
management.

3.7.1 Project Networks and Critical Paths

A project network provides a graphical representation of the precedence relations among
all the activities in a project. Each activity is represented by an arc in the network. The
nodes in the network denote events corresponding to points in time when one or more
activities are completed. Directions on the arcs indicate the sequence in which events must
occur. Additionally, a node is added at the beginning of the network to represent the start
event for the entire project. Similarly, a final node is introduced to denote the finish event
for the project.

As an illustration, we will build a project network for a set of six activities with the
 following precedence constraints:

 1. A precedes D
 2. A and B precede C
 3. C and D precede F
 4. E precedes F

134 Operations Research

The project network diagram is shown in Figure 3.21. Solid arcs denote activities
A through E. Activities C, D, and E must all precede activity F. Therefore, we use event 4 to
represent the time at which activities C, D, and E are all finished, and activity F can begin.
We cannot combine events 2 and 3. We want event 2 to represent that A has finished and
D can begin. Event 3 represents that A and B are finished and C can begin. To do this, we
introduce a dummy activity from event 2 to event 3 with zero duration. The sole purpose
of this is to ensure that event C does not start until event A has finished.

We let the variable ti represent the time at which event i occurs, and dij denote the dura-
tion of the activity represented by the arc between nodes i and j. In this example, suppose
d12 = 4, d13 = 3, d14 = 4, d23 = 0, d24 = 5, d34 = 3, and d45 = 2. These individual activity lengths
are shown in Figure 3.21 along the appropriate arcs. Since t1 and t5 are the start and finish
times, total project length is (t5 − t1).

Now that the activities have been identified and described in the diagram, our
next objective is to determine a minimum length project schedule; that is, to determine
when each activity should begin so that precedence constraints are met and so that
the entire project completes as quickly as possible. We can write the formulation as a lin-
ear programming problem, with constraints to assure that successive events i and j are
separated from one another by at least the required duration of the event on the arc (i, j):

minimize z t t

subject to t t

t t

t t

t t

5 1

2 1

3 1

4 1

3 2

=

≥

≥

≥

≥

∉ −

−

−

−

−

4

3

4

00

5

3

2

0 1 2 5, , ,

t t

t t

t t

and t for all i

4 2

4 3

5 4

i

−

−

−

≥

≥

≥

≥ = …

1

3

2

4 5

A.4

C.3B.3

D.5

F.2

E.4

FIGURE 3.21
Project network.

135Network Analysis

Note that this formulation could be solved with the ordinary Simplex method, but clearly
there is a special network structure to the problem.

In order to minimize the project duration, we have to realize that actually we must find
the longest sequence of linearly ordered activities; that is, we must find the longest path
through the network. This insight gives us a slightly different perspective on the problem.

Consider the following linear programming problem. Let xij = 1 if activity (i, j) is in the
longest path, and xij = 0 otherwise. This problem can be written as:

maximize x x x x x x

subject to

x x

4 3 4 5 3 212 13 14 24 34 45

12 13

+ + + + +

− − − xx

x x x

x

14

12 23 24

1

1

0

=

=

−

− −

33 23 34

14 24

0+ =

+

 x x

x x

−

+ =

=

x x

x

 all x = 0 or 1ij

34 45

45

0

1

−

The objective function adds up the total length of the longest path, while the constraints
ensure that the solution represents a path from event 1 to event 5. The first constraint states
that only one edge can leave node 1. The last constraint states that only one edge can enter
node 5. The other constraints specify that the number of incoming arcs equals the number
of outgoing arcs in each of the interior nodes. The only feasible solution to this problem is
a path, and the optimal solution is the longest path.

These two problems are in fact equivalent. The second one is called the dual problem of
the first. (Recall from the discussion in Section 2.8 that every linear programming problem
has a dual problem, and typically the two versions represent a different view or interpre-
tation of the same problem parameters.) Notice that the first problem has one constraint
for each activity and one variable for each event, while the second formulation has a con-
straint for each event and a variable for each activity.

If we inspect the previous dual formulation, we can see that the constraints require that
one unit of flow is to be routed from node 1 to node 5. We now recognize that this is the
specialized form of the transshipment model that we dealt with in Section 3.5 to find the
shortest path through a network. In our project management application, however, we
minimize project duration by maximizing the path length. We can therefore treat our project
scheduling problem as a longest path problem.

By finding the longest path through the project network, we are also finding what is
known as the critical path. A critical path is a path from the start node to the finish node,
with the property that any delay in completing activities along this path will cause a delay in
overall project completion. The activities along the critical path are called critical activities.

To describe the PERT-CPM method for identifying critical activities in a project, we need
two definitions. The earliest time for a node j, denoted Ej, is the time at which event j will
occur if all previous activities are started as early as possible. The start node 1 has E1 = 0
since there are no predecessors. Then any other node’s earliest time can be determined as
long as all its predecessors’ earliest times have been calculated. We can make a forward
pass through the network, calculating Ej for each event j as

136 Operations Research

E {E d }j

i
i ij= +max

where (i, j) are all the arcs entering node j, and dij is the duration of the activity represented
by arc (i, j). Once we have the earliest time for the finish event, we know the earliest possible
completion time for the entire project.

The latest time for a node i, denoted Li, is the latest time that event i can occur without
causing delay in the completion of the project beyond its earliest possible time. Once we
have made the forward pass to determine the earliest project completion time, we make
a backward pass through the network. For a network of n nodes, Ln = En, then Li can be
determined for any node i as long as all of that node’s successors’ latest times have been
calculated. The general formula is

L {L d }i

j
j ij= −min

where (i, j) are all the arcs leaving node i.
The slack time for an event is the difference between the latest time and the earli-

est time for that event. Events having a slack time of zero are called critical events.
The slack time of an activity (i, j) is Lj − Ei − dij. Activities with slack time zero are the
 critical activities, which must be completed without delay if the minimum feasible proj-
ect duration is to be achieved.

Now re-examine the project network in Figure 3.21 to determine a critical path and con-
struct a time chart. During the forward pass, we obtain the following earliest times:

E

E

E

E

1

2

=

= +{ } =

= + +{ } =

= + +

0

0 4 4

0 3 4 0 4

4 5 4 3 0

1

3 1 2

4 1 2 3

max

max ,

max , ,

,

, , ++{ } =

= +{ } =

4 9

9 2 115 4E max

Therefore, the minimum completion time for the project is 11 time units. In a backward
pass, we obtain latest times for each event as follows:

L E

L

L

L

5 5

4

3

2

= =

= −{ } =

= −{ } =

= − −{ } =

11

11 2 9

9 3 6

6 0 9 5 4

5

4

3 4

min

min

min ,,

LL1 = − − −{ } =min , ,, ,2 3 4 4 4 6 3 9 4 0

From these results, we can determine the critical path. Since E1 = L1, E2 = L2, E4 = L4, and
E5 = L5, the critical events are at nodes 1, 2, 4, and 5; and therefore the critical activities are

137Network Analysis

activities A, D, and F (the activities along the critical path). We also notice that the slack
times for the activities are

A: L E 4 4 0 4 0

B: L E 3 6 0 3 3

C: L E 3 9 4 3 2

2 1

3 1

4 3

− − = − − =

− − = − − =

− − = − − =

DD: L E 5 9 4 5 0

E: L E 4 9 0 4 5

F: L E 2 11 9 2 0

4 2

4 1

5 4

− − = − − =

− − = − − =

− − = − − =

and the activities with zero slack time are the critical activities. The noncritical activities B,
C, and E could be delayed as much as 3, 2, and 5 time units, respectively, without extending
the duration of the project.

All of this information can be summarized in the time chart shown in Table 3.21. This
layout provides a clear and convenient tool for management to use in scheduling noncriti-
cal activities, considering possible improvements in the project schedule, or in evaluating
the effects of delays along the critical path.

3.7.2 Cost versus Time Trade-Offs

The methods presented thus far have dealt solely with scheduling activities in order to
achieve a minimum project duration, and no consideration has been given to the cost of
the project. In addition to direct costs associated with each individual activity, there are
typically indirect costs that may be viewed as overhead costs and that are proportional to
the duration of the entire project. These costs may include such expenses as administrative
or supervisory costs, equipment and facilities rental, and interest on capital. A financially
realistic project manager may be willing to add resources, involving some direct expense,
to certain activities in order to reduce the duration of those activities, and thereby to reduce
the project duration and the attendant indirect costs. CPM provides a mechanism for mini-
mizing the total (direct plus indirect) costs of a project.

Suppose that for every activity, we know the normal duration and the budgeted cost
associated with completing the activity under normal circumstances. Suppose also that,
through additional expenditures, the duration of each activity can be reduced. This is
known as crashing. For each activity then, we know the crash completion time and the

TABLE 3.21

Project Time Chart

Activity Duration Earliest Start Latest Start Earliest Finish Latest Finish Slack Time

A 4 0 0 4 4 0

B 3 0 1 3 4 3
C 3 4 6 7 9 2
D 5 4 4 9 9 0
E 4 0 5 4 9 5
F 2 9 9 11 11 0

138 Operations Research

crash cost. By crashing critical jobs, total project length can be reduced. If the cost of crash-
ing is less than the indirect costs that can be saved, then we not only reduce total costs but
we can also enjoy various subjective benefits associated with completing a project ahead
of schedule.

Figure 3.22 shows a straight-line relationship that is typically assumed, describing crash
costs and durations and normal costs and durations. Each activity has its own cost vs. time
trade-off, represented by the slope of the straight line, and its own crash point (or crash
limit) beyond which no amount of added resources can reduce the activity’s duration.

We take advantage of cost vs. time trade-offs in the following way. Using normal costs
and durations for all activities, we first determine a critical path, as before. Then we con-
sider reducing the duration of critical activities.

If we crash all the critical activities simultaneously, then almost certainly the network’s
critical path will have changed, and we suddenly find that we are working on the wrong
problem. Instead, we should choose one of the critical activities to crash; in particular, we
should choose the one that will yield the greatest reduction in schedule length per unit of
added costs. This choice is easily made by simply selecting the activity having the smallest
cost vs. time slope.

Having now chosen which critical activity to crash, we must still proceed with caution.
As the duration of a critical activity is reduced, the activity may cease to be critical (there
is now a new critical path in the network). At this point, it is useless to further reduce
this activity, and instead we should be investing in the reduction of some currently critical
activity. It has been suggested that the least-slope critical activity be crashed by only one
time unit, then a possibly new critical path found. This process is repeated until all critical
activities are at their crash limits.

Another consideration in deciding how far to crash an activity is the reduction in indi-
rect costs that can be achieved. Since the aim is presumably to minimize the sum of activity
costs and indirect costs, every crash operation should be undertaken only if it can be justi-
fied with respect to total project costs.

As an example, consider again the project network of Figure 3.21. The normal and crash
points for each activity are given in Table 3.22, where Dn denotes the normal duration of
the activity, Cn denotes the normal cost, Dc denotes the crash limit, and Cc denotes the

Dn

Cn

Cc

Dc
Duration

Crash point

Normal point

Cost

FIGURE 3.22
Cost versus time trade-off.

139Network Analysis

crash cost. The cost versus time slopes for each activity are computed as (Cc − Cn)/(Dn − Dc),
and are shown in the far right column.

Suppose that indirect costs amount to $220/day; therefore, the total project cost under a
normal schedule is (400 + 500 + 350 + 300 + 100 + 200) plus ($220/day · 11 days) = 1850 +
2420 = $4270. If all activities were at their crash point, then the project duration would be
7 days, and the total project cost would be (820 + 500 + 500 + 700 + 125 + 300) + ($220/
day · 7 days) = 2945 + 1540 = $4485. Clearly in this case, we are paying crash costs for
activities that do not contribute to the reduction in project length. So, we would expect the
optimal schedule to fall somewhere between these two extremes.

Beginning with the normal schedule, where the critical activities are A, D, and F, we find
that we can crash activity F at a cost of only $100/day; and by crashing activity F to its limit,
we can reduce total overhead by $220, for a net savings of $120. The total project cost would
then be $4150, and the project duration is 10 days.

The critical path has not changed, so we now consider critical activities A and D. The
daily reduction at the least cost is obtained by crashing activity D. Crashing D by one day
costs $200, but saves $220; therefore, the total cost is now $4130, and project duration is
nine days. Since the critical path still includes activity D, we can crash it by one additional
day, to obtain an eight-day project at a total cost of $4110.

Activity A is now the only critical activity that is not at its crash limit, and we can save
$220 − $210 = $10 by crashing A to three days for a total project cost of $4100. At this point,
activities A and B are on parallel critical paths; therefore, any crashing must be applied
simultaneously to both projects. In our case, project B cannot be crashed, and therefore the
project duration cannot be reduced to less than seven days. (Notice that if project B could
have been reduced but if the combined cost of crashing activities A and B exceeded $220,
then crashing them would not have been economical.)

Since critical activities A, B, D, and F are all crashed as far as possible to reduce the
project duration, the current schedule is optimal. The durations of activities A, B, C, D, E,
and F, respectively, are 3, 3, 3, 3, 4, and 1. The project cost is (610 + 500 + 350 + 700 + 100 +
300) + 7(220) = 2560 + 1540 = $4100.

3.7.3 Probabilistic Project Scheduling

For certain types of projects, there may be no previous experience from which to deter-
mine the duration of the individual activities. PERT provides a means of handling such
uncertainties through the use of probabilities for the completion times of the activities.

TABLE 3.22

Crash Costs

Normal Crash
Crashing

Cost per DayActivity Dn Cn Dc Cc

A 4 400 2 820 210
B 3 500 3 500 —
C 3 350 2 500 150
D 5 300 3 700 200
E 4 100 3 125 25
F 2 200 1 300 100

140 Operations Research

The project manager is required to provide three time estimates for each activity: an
optimistic duration, denoted as a, specifying the minimum reasonable completion time
if all goes well; a pessimistic duration, denoted as b, specifying the maximum duration if
things go badly; and a most probable duration, denoted as m.

To apply critical path methods to a project layout based on probabilistic completion time
estimates, we need to know two statistics for each activity. The expected time to complete
each activity can be used as the actual time in order to find a critical path (as in the deter-
ministic case), and the variance will give an indication of the amount by which the project
might deviate from its expected project duration. These statistics are obtained, in PERT, by
assuming that activity durations follow a Beta distribution.

Based on this assumption, the expected time μ for an activity is approximated as

µ =

+ +()a b m4
6

because the midpoint (a + b)/2 is given about half the weight of the mode m. Illustrative
distributions are shown in Figure 3.23. In many probability distributions, the tails (a and b
in our case) are considered to lie about three standard deviations from the mean μ; there-
fore, the standard deviation σ = (b − a)/6, and the variance σ2 = [(b − a)/6]2.

These statistics are now used in the following straightforward way. The activity means μ
are used as activity durations, and the critical path method is used to determine the critical
activities. The expected project duration D is the sum of all the means of the activities on
the critical path. Likewise, the variance V of the project duration is the sum of the vari-
ances of the activities on the critical path.

Under PERT assumptions, the Central Limit Theorem implies that the project duration
(being the sum of independent random variables) is normally distributed with mean D
and variance V. Using tables for a normal distribution, we can, for example, determine the
probability that the actual project duration will fall in a certain range, or the probability of
meeting certain specified deadlines. For a more detailed discussion of probabilistic project
scheduling, refer to the textbook by Ravindran et al. (1987).

a b b

a b

μ m μ

μ m

a m

a m μ b

FIGURE 3.23
Expected time for activity.

141Network Analysis

3.8 Software for Network Analysis

Many network problems can be solved with software developed for ordinary linear
programming problems. But more specialized software for network problems has been
developed that takes advantage of the distinctive structure of network formulations,
and can be used to solve network problems very efficiently. Real network problems may
involve hundreds of thousands of nodes and millions of arcs, and fortunately there is
software available for solving such large problems on a variety of hardware platforms.
Some of the more noteworthy ones are mentioned here.

IBM CPLEX Optimization Studio has a network optimizer available through a call-
able library for various platforms.

SAS/OR OPTNET is a system for analyzing various characteristics of networks and
solving network optimization problems and related models having network-structured
data. This software handles general assignment problems, performs critical path anal-
ysis, determines minimum cost network flows, finds shortest paths, and solves trans-
portation problems. It performs cycle detection and analyzes connectivity in networks,
and does project scheduling and resource-constrained scheduling. OPTNET interfaces
with OPTMODEL, described earlier in Chapter 1.

TransCAD is an integrated system of Geographic Information System (GIS) and
transportation modeling capabilities, designed to help transportation professionals
plan, organize, manage, and analyze transportation data. It offers a complete toolbox
of analytical methods for mapping, assignment, site location, minimum cost distribu-
tion, transportation, vehicle routing and scheduling, planning, logistics, and market-
ing. TransCAD supplies state-of-the-art data collection tools for accessing data from the
Global Positioning System (GPS).

COIN-OR, the open source OR software website (www.coin-or.org), offers software
tools for network optimization. Sifaleras (2015) summarized these tool into Coin Graph
Classes (Cgc), the Efficient Modeling and Optimization in Networks (LEMON), and
VRPH. Cgc is a collection of network representations and algorithms aiming to facilitate
the development and implementation of network algorithms; LEMON is a C++ tem-
plate library providing efficient implementations of network optimization algorithms
and common graph structures; and VRPH constitutes an open source C++ package in
a software library containing tools to create metaheuristic algorithms for the Vehicle
Routing Problem.

Mascopt (Mascotte Optimization) is an open source project that provides a set of
Java-based tools for network optimization problems to help implementing solutions to
network problems by providing a data model of the network and the demands, libraries
to handle networks and graphs, and ready to use implementation of existing algorithms
or linear programs. It also provides some graphical tools to display graph results. For
more detail, Lalande et al. (2004).

Google-OR Tools provides open source solvers for network flow problems in its graph
libraries.

Finally, More and Wright (1993) published a guide to optimization software that
included descriptions of older computer programs including network optimization soft-
ware such as GENOS, LNOS, LSNNO, NETFLO, and NETSOLVE.

http://www.coin-or.org

142 Operations Research

3.9 Illustrative Applications

3.9.1 DNA Sequence Comparison Using a Shortest Path Algorithm
(Waterman 1988; Wagner and Fischer 1974)

A problem that arises frequently in the field of cell biology is the comparison of DNA
sequences and the analysis of how one sequence is transformed into another. A sequence
is a finite succession of symbols from a finite alphabet. In the case of deoxyribonucleic
acid (DNA), sequences are composed from the set of nucleotide bases, denoted {A (ade-
nine), C (cytosine), G (guanine), T (thymine)}. Although biologists are not in complete
agreement over the mechanisms by which one DNA sequence evolves into another, it is
generally assumed that the transformation consists of a series of the following types of
changes:

 1. Insertion of a character (nucleotide)
 2. Deletion of a character
 3. Substitution of one character for another

The similarity between two DNA sequences S and T can then be measured by assessing a
cost for each of these three types of changes, and then finding the least expensive transfor-
mation of S into T. The cost corresponding to this transformation is called the evolutionary
distance from DNA sequence S to DNA sequence T.

Transitions can be modeled by defining a node to represent a DNA sequence, and cre-
ating other neighboring nodes to represent all DNA sequences obtainable from the origi-
nal one by making one of the three types of changes. Arcs are labeled with the cost of
the change. Then a shortest path algorithm applied from the original node to any other
desired node will yield the evolutionary distance between the two DNA sequences.

DNA sequences are quite long (millions of nucleotide bases), so for practical imple-
mentations, parallel computer hardware known as systolic architectures have been devel-
oped for research purposes. This approach involves a specialized spatial arrangement
of processors and an appropriate flow or pulsing of data among the processors, in order
to obtain the desired computational results much more quickly than could be achieved
using general-purpose computing hardware. For further discussion of systolic archi-
tectures incorporating shortest path and other network based algorithms, refer to the
work of (Lopresti 1987). A completely different but effective approach to this problem is
based on dynamic programming methods; see Wagner and Fischer (1974) for a detailed
description of this concise solution to the DNA sequencing problem.

3.9.2 Multiprocessor Network Traffic Scheduling (Bianchini and Shen 1987)

In the design of real-time signal processing computer systems, one of the most important
issues is the efficient scheduling of data communication traffic among special-purpose
processing elements. For example, certain types of digital filters can be implemented on a
small set of specialized functional modules, and the determination of filter functionality
lies in the specification of intermodule communication.

The process of mapping consists of first placing functional data operators onto pro-
cessing elements. This is easily accomplished using well-known placement algorithms.

143Network Analysis

The second and more difficult phase of the problem is the design of the network data
traffic. This requires routing each unit of traffic onto a path of network links between the
source and destination processing elements, with the objective of maximizing the aggre-
gate flow of network traffic that can be maintained in a system.

Traffic management is viewed as a multi-commodity fluid flow problem. The multi-
commodity aspect arises because of the need to maintain the identity of data traffic
between different source/destination pairs, although the traffic may simultaneously
occupy the same data link. An optimal traffic pattern is obtained when a cut set of satu-
rated links is formed.

The network formulation results in an extremely large linear program because of the
exponential number of network paths that contribute explicitly to the size of the prob-
lem. An alternative is a policy iteration method that successively improves current traffic
patterns by re-routing certain data units. To improve a traffic pattern, under-utilized
paths are determined between each source/destination pair, and then it must be decided
whether re-routing along the proposed new path is cost-effective. To do this, a minimum
spanning tree for the network is found. It can be shown that the least cost path con-
necting any two nodes in a network lies on the minimum spanning tree. Therefore, if
a minimum spanning tree is known, the traffic scheduler can examine each processing
element adjacent to a saturated link, and if traffic can be re-routed away from the satu-
rated link and onto a minimum spanning tree link, then the cost of the traffic pattern can
be reduced, while at the same time smoothing congestion and perhaps creating capacity
for flow of additional data.

3.9.3 Shipping Cotton from Farms to Gins (Glover et al. 1992; Klingman et al. 1976)

At a time when cotton production had decreased by 50% in the Upper Rio Grande River
Valley of Texas and New Mexico, it was necessary to determine how best to utilize the
processing capacity available in the area’s 20 cotton gins. Analysts began by mapping the
150 farms producing cotton, and charting the distances to the gins that were scattered
throughout the Valley.

The efficiency of the industry had been brought into question because of the excess
ginning capacity that resulted from the decrease in cotton crop production. Local farm-
ers and gin operators had resorted to individual, fragmented decisions and actions that
did not contribute to overall prosperity or profitability in the region. A mathematical
model was constructed that represented the entire system, with the hope that a com-
prehensive approach would encourage joint cooperation among all farmers and gin
operators.

Because of the excess gin capacity, there were fears that some gins may have to close
down and, indeed, such reductions were found to contribute favorably to profitability.
Gin operation involves annual fixed charges to activate the gin, such as electrical connec-
tions, cleaning, and salaried personnel. Variable costs of operation then include regular
time and overtime labor costs. If the regular shift capacity of a gin is consumed, any
additional cotton must be processed at the overtime rate; but this use of the more expen-
sive overtime capacity can be justified if it avoids the fixed activation costs of starting up
an additional gin.

The problem was first viewed as a shipping cost problem, to identify the particular gin
that should service each farmer’s needs. But it was quickly discovered that the real issue

144 Operations Research

was the need to quantify the utilization of the cotton gins. This information could provide
justification for some tough decisions related to the closing of certain gins which simply
could not operate economically. The model grew into a fixed-charge transshipment formu-
lation that included:

Production levels at each farm
Shipping costs from each farm to each gin
Holding costs for storing cotton at each farm
Seasonal gin activation costs
Two levels of operating capacity at each gin

The network model initially involved around 5000 nodes and over 2 million arcs, but
refinements reduced this to around 100,000 arcs. The solution indicated that substantial
cost savings (a 20% reduction in ginning costs) could be achieved by closing some gins
and working as a cooperative. Implementation was allowed to evolve over several seasons
in order to obtain the full cooperation of all the farmers and gin operators in the region.

3.10 Summary

Network analysis is applicable to an enormous variety of problems that can be mod-
eled as networks and optimized using network algorithms. Some of the systems repre-
sent physical networks for transportation or flow of commodities, while others are more
abstract and can be used to model processes or plan and manage projects.

A maximum flow algorithm optimizes the total flow of an entity through a network in
which links have capacities that limit the flow. This algorithm not only determines the
greatest possible flow, but in so doing also locates and identifies the bottlenecks in the
network.

Transportation models find the minimum cost flow from an origin, through a net-
work, to a destination, subject to supply and demand requirements. The transportation
Simplex algorithm is often used for this optimization problem. A slight refinement in
the interpretation of the transportation model results in an assignment problem, which
is used to model the matching or assignment of two sets of entities in the most advanta-
geous way.

Maintaining network connectivity has important practical implications. Minimum cost
spanning trees provide a simple and useful means of addressing the connectivity issue.
When appropriate connections between nodes do exist in a network, it is often useful
to find the shortest route between two specified nodes. Simple labeling algorithms pro-
vide solutions to this problem, and also inspire a broader approach known as dynamic
programming. Dynamic programming has far-ranging applications, but generally can be
viewed as a way to model decisions that take place in stages over a period of time.

Project activity networks are used to plan and coordinate large complex projects consist-
ing of many tasks. Critical paths in networks determine the minimum project completion
time, and identify those tasks or activities whose timely completion is critical to achieving
this minimum project duration.

145Network Analysis

Key Terms

activity
acyclic graph
arcs
assignment problem
backward pass
bipartite graph
capacitated transshipment
chain
connected graph
critical activity
critical event
critical path
critical path method
crash completion time
crash cost
crash limit
crashing
critical event
cut
cut set
cycle
cyclic path
decision variable
degree of a node
demand
Dijkstra’s algorithm
directed chain
directed graph
dynamic programming
dynamic programming principle of optimality
earliest time
events
expected project duration
expected time
flow
Ford-Fulkerson algorithm
forward pass
graph
Hungarian method
isolated node
latest time
longest path
maximum flow
minimum cost method

146 Operations Research

minimum row cost method
minimum spanning tree
multiple sinks
multiple sources
network
node-arc incidence matrix
nodes
northwest corner rule
path
PERT
predecessor
Prim’s algorithm
project management
shortest network problem
shortest path
sink
slack time
source
spanning tree
stable matching
stages
states
Steiner tree
successor
supply
transportation problem
transportation Simplex
tree
undirected graph
unstable matching
variance

Exercises

3.1 Find the maximum flow through the networks shown in Figure 3.24. Identify the
edges in the minimum cut set. In each case, assume node 0 is the source, and the
highest-numbered node is the sink. Arc capacities are shown in boxes.

3.2 A data communications network can be described by the diagram in Figure 3.25.
Every data link from node i to node j has a capacity which is denoted as a label on
the data link in the diagram. Non-existent links have zero capacity. Data is being
generated at node 1 and is to be routed through the network (not necessarily pass-
ing through all other nodes) to node 6 where the data will be used. The amount of
data generated at node 1 is exactly the amount of data consumed at node 6. No data
is generated or used at intermediate nodes, so all data that enters an intermediate
node must leave it, and vice versa.

147Network Analysis

(b)

0

4 71

3

2

6

5

30

30

50

40

90

80

70 30 100

120

90
8080

50

0

4

1

3

2

6

5

1 6

2

3
5

3

24

7

3

(a)

FIGURE 3.24
(a,b) Maximum flow in networks.

1

2

3

5

6

4

6

18

4

6
4

6

8

12

10

4

FIGURE 3.25
Communications network.

148 Operations Research

 a. What is the maximum feasible amount of data that can flow through this
network?

 b. What is the flow on each of the data links in order to achieve this maximum?
 c. Which links comprise the bottleneck in this network?
 d. What is the complexity of the Ford-Fulkerson algorithm for maximum network

flow?
3.3 Formulate and solve the following distribution problem to minimize transporta-

tion costs, subject to supply and demand constraints. Two electronic component
fabrication plants, A and B, build radon-cloud memory shuttles that are to be dis-
tributed and used by three computer system development companies. Following
are the various costs of shipping a memory shuttle from fabrication plants to the
system development sites, the supply available from each fabrication plant, and the
demand at each system development site.

 Fabrication plant A is capable of creating a supply of 160 shuttles; and the cost to
ship to site 1, 2, and 3 is $1000, $4000, and $2500, respectively. Fabrication plant B
can produce 200 shuttles, and the shipping costs are $3500, $2000, and $4500 to the
three sites. The demand at site 1 is 150, at site 2 is 120, and at site 3 is 90 memory
shuttles.

 a. Identify the decision variables, write the objective function, and give the con-
straints associated with this problem.

 b. Solve this distribution problem.
3.4 Suppose that the countries of Agland, Bugland, and Chemland produce all

the wheat, barley, and oats in the world. The world demand for wheat requires
125 million acres of land devoted to wheat production. Similarly, 60 million acres
of land are required for barley, and 75 million acres of land are needed for oats.
The total amount of land available for these purposes in Agland, Bugland, and
Chemland is 70 million, 110 million, and 80 million acres of land, respectively.
The number of hours of labor needed in the three countries to produce an acre
of wheat is 18 hours, 13 hours, and 16 hours, respectively. The number of hours
of labor needed to produce an acre of barley is 19 hours, 15 hours, and 10 hours
in the three countries, respectively. And the labor requirements for an acre of
oats are 12 hours, 10 hours, and 16 hours in the three countries, respectively. The
hourly labor cost to produce wheat is $6.75 in each of the countries. The labor cost
per hour in producing barley is $4.10, $6.25, and $8.50 in the three countries. To
produce oats, the labor cost per hour is $8.25 in each country. The problem is to
allocate land use in each country so as to meet the world food requirements and
minimize the total labor cost. Formulate this problem as a transportation model,
letting decision variable xij denote the number of acres of land allocated in coun-
try i for crop j.

3.5 Four workers are to be assigned to machines on the basis of the worker’s rela-
tive skill levels on the various machines. Five machines are available, so one
machine will have no worker assigned to it. In order to maximize profitability,
we wish to minimize the total cost of the assignment. Use the cost matrix given
in the following, and the Hungarian assignment algorithm, to determine the
optimal assignment of workers to machines, and give the cost of the optimal
assignment.

149Network Analysis

Machines

Workers 1 2 3 4 5

1 10 9 8 12 7
2 3 4 5 14 6
3 2 1 1 10 2
4 4 3 5 12 6

3.6 Four federally funded research projects are to be assigned to four existing research
labs, with one project being allotted to each lab. The costs of each possible place-
ment are given in the following table. Use the Hungarian method to determine the
most economical allocation of projects.

Project Sandy Lab Furrmy Lab Xenonne Lab Liverly Lab

Cryogenic cache memory 12 15 10 14
Spotted owl habitat 8 10 6 9
Pentium oxide depletion 20 22 18 12
Galactic genome mapping 10 12 8 16

3.7 To solve a maximization assignment problem, first convert it to a minimization
problem by multiplying each element in the cost matrix by −1, then adding suf-
ficiently large constants to rows and column so that no element is negative. Then
apply the Hungarian method to the new problem. Suppose the following matrix
elements represent the value or productivity of associating certain workers with
machines. Solve this assignment problem to maximize the productivity.

Machines

Workers 1 2 3 4

1 6 7 6 7
2 4 3 8 8
3 5 8 9 8
4 9 5 4 3

3.8 The following matrix contains the hazard insurance premiums that a company must
pay in order for employee i to operate machine j. It is assumed that a low insurance pre-
mium implies that a worker can safely and proficiently operate a machine. Determine
an assignment of workers to machines that will be the safest (least hazardous).

36 24 36 12
14 28 40 26
12 22 28 38
28 22 38 38



















 What is the total insurance premium corresponding to the optimal assignment?
3.9 Prospective employees are to be assigned to jobs by the following mechanism:

Each employee ranks his job preferences (rank 1 means highest preferences) and

150 Operations Research

this information is contained in an array P where pij denotes employee i’s ranking
of job j. Similarly, each prospective employer ranks his preferences of employees,
and matrix R is such that rij denotes employer i’s ranking of employee j. Formulate
this problem to determine an assignment of n jobs to n employees that optimizes
the mutual satisfaction of employers and employees. (Assume that each employer
 corresponds to a different job.)

3.10 A group of m people, where m ≤ 40, is to be organized into teams of at most four
people. Each team is associated with a workstation, of which ten are available.
People may not express preferences for teammates; however, each ranks his work-
station preference, and these preferences appear in a 40 × 10 matrix P where pij
denotes the preference of person i for workstation j (low numbers in P indicate
high preference). This is a variation of the classical assignment model. Formulate
this problem to optimize the association of people to workstations.

3.11 Use Kruskal’s algorithm to find the minimum cost spanning tree for the undi-
rected graph in Figure 3.26. Identify the arcs in the tree, and state the cost of the
minimum spanning tree.

3.12 Use Prim’s algorithm to find the minimum cost spanning tree for the graph in
Figure 3.26. Identify the arcs that comprise the minimum spanning tree, and state
the cost of the minimum spanning tree for this graph.

3.13 Consider a graph in which the four nodes are located at the corners of a unit square,
and the shortest possible arcs connect all pairs of nodes.

 a. Find the minimal spanning tree of this graph.
 b. Construct the Steiner tree obtained by placing a junction point in the center of

the square. Is this an optimal Steiner tree?
 c. Determine the total length of the connections in this Steiner tree, and compare

it with the length of the connections in the minimum spanning tree.

1

5

4

2

3

6

10

8

18

12

9

5

14

16

FIGURE 3.26
Minimum spanning tree.

151Network Analysis

3.14 How many different spanning trees are there in a fully connected undirected
graph of five nodes?

3.15 How many arcs are there in a spanning tree of a fully connected undirected graph
with 1000 nodes?

3.16 Use the backward labeling algorithm to find the shortest path from node 1 to node
9 in the graph in Figure 3.27. The labels shown on the arcs denote costs or distances
between nodes.

 a. What are the arcs in the shortest path through this network?
 b. What is the length (cost) of the shortest path?
3.17 Following is the connectivity matrix of a graph. Use the shortest path labeling

algorithm to find the shortest route from node 1 to node 6. The symbol ∞ denotes
the absence of a path.

0 5 6
0 3 1

0 2
0 3 6

0 2
0

∞ ∞ ∞
∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞



























8

3.18 Formulate the general problem of finding the minimum cost (shortest) path from
node 1 to node n in a directed acyclic network of n nodes, where the distance from

1 4

7

9

6

2 5

8

3

4

3
6

4

5
4

9

56

5

3

9

6

8

2

10

2

3

FIGURE 3.27
Shortest path.

152 Operations Research

node i to node j is denoted dij. Hint: Let the decision variables be restricted to have
only the values zero or one, with the following interpretation:

x means the arc from node i to node j is in the shortij = 1 eest path

 otherwise= 0

 Give the objective function and the constraints, in terms of these decision variables.
3.19 Six thousand dollars is to be applied to a student’s educational expenses in the fol-

lowing way:
 Between $1000 and $3000 for books
 Between $2000 and $4000 for tuition
 Between $1000 and $2000 for tutors
 The allocation is to be made in whole thousands of dollars. An analyst has quanti-

fied the anticipated payoffs (perhaps in terms of increased future earnings) as:

Books Tuition Tutors

Return Return Return

Invested
$1K $5K $2K $6K $1K $2K
$2K $8K $3K $8K $2K $3K
$3K $10K $4K $9K

 Use dynamic programming to determine the optimal allocation of the $6000. Show
the tables you build as you solve this problem.

3.20 A student must select ten elective courses out of four different departments. From
each department, at least one and no more than three courses must be chosen. The
selection is to be made in such a way as to maximize the combined general knowl-
edge from the four fields. The following chart indicates the knowledge acquired as
a function of the number of courses taken from each field. Solve this as a dynamic
programming problem. Show each of your tables in this staged decision-making
process.

Number of courses taken

1 2 3

Anthropology 25 50 60
Art 20 30 40
Economics 20 40 50

Physics 50 60 60

3.21 A space telescope being launched aboard a space shuttle is to be deployed and
immediately will be transmitting data to earth-bound data processors at a prodi-
gious rate. Suppose there are four teams of technical experts that can be allocated
among two projects: one aimed at collecting and compressing data, and another
whose responsibility is to catalog and store data. Because this data is extremely
valuable and virtually irreplaceable, it is essential that you allocate the teams

153Network Analysis

optimally to the two projects. Each of the two projects must have at least one team
assigned to it. Use a dynamic programming table-oriented method to allocate the
four teams. The following information is available:

Payoff for Assigning Teams to Projects

Number of Teams
Allocated

Collecting and
Compression Project

Cataloging and
Storage Project

1 5 4
2 9 10
3 12 15

3.22 A small project consists of ten jobs whose durations in days are shown on the arcs
in the activity diagram in Figure 3.28:

 a. Calculate early and late occurrence times for each event.
 b. What is the minimal project duration?
 c. Which activities are critical?
3.23 Suppose that for the aforementioned project, we have the following crash times

and costs:

Task (i, j) Minimum (Crash) Duration Crash Cost ($/day)

(1, 2) 2 20
(2, 3) 3 15
(2, 4) 5 25
(3, 5) 2 20
(3, 6) 1 —
(4, 6) 3 20
(4, 7) 2 —
(5, 8) 5 15
(6, 8) 5 15
(7, 8) 3 20

1

3

45

8

7

6 1

6

2

4

2

4 6

7

3 5

8

FIGURE 3.28
Activity diagram.

154 Operations Research

 a. What is the minimum (crashed) project duration?
 b. Determine the minimum crashing costs of schedules ranging from normal

length down to the minimal length.
 c. If overhead costs amount to $75 per day, what is the optimal schedule length

with respect to both crashing and overhead costs? Indicate the scheduled dura-
tion of each activity in this optimal schedule.

References and Suggested Readings

Aho, A. V., and J. E. Hopcroft. 1974. The Design and Analysis of Computer Algorithms. Delhi, India:
Pearson Education India.

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin. 1993. Network Flows: Theory, Algorithms, and Applications.
Upper Saddle River, NJ: Prentice-Hall.

Battersby, A. 1967. Network Analysis for Planning and Scheduling. Basingstoke, UK: Macmillan.
Battersby, A. 1970. Network Analysis for Planning and Scheduling. New York: John Wiley & Sons.
Bazaraa, M. S, J. J. Jarvis, and H. D. Sherali. 2009. Linear Programming and Network Flows. New York:

John Wiley & Sons.
Beightler, C. S., D. T. Phillips, and D. J. Wilde. 1976. Foundations of Optimization. Englewood Cliffs,

NJ: Prentice-Hall.
Bellman, R. 1957. Dynamic Programming. Princeton, NJ: Princeton University Press.
Bellman, R. 1958. On a routing problem. Quarterly of Applied Mathematics 16 (1): 87–90.
Bern, M. W., and R. L. Graham. 1989. The shortest-network problem. Scientific American 260 (1): 84–89.
Bernot, M., V. Caselles, and J. Morel. 2009. Optimal Transportation Networks: Models and Theory. New

York: Springer.
Bertsekas, D. P. 1991. Linear Network Optimization: Algorithms and Codes. Cambridge, MA: MIT Press.
Bertsekas, D. P. 1998. Network Optimization: Continuous and Discrete Models. Belmont, MA: Athena

Scientific.
Bianchini, R. P., and J. P. Shen. 1987. Interprocessor traffic scheduling algorithm for multiple-

processor networks. IEEE Transactions on Computers 36 (4): 396–409.
Bodin, L., B. Golden, and T. Goodwin. 1986. Vehicle routing software for microcomputers: A survey.

Proceedings of a Symposium on Impacts of Microcomputers on Operations Research, University of
Colorado, Denver, CO., pp. 65–72.

Bonald, T., and M. Feuillet. 2011. Network Performance Analysis. New York: John Wiley & Sons.
Bondy, J. A., and U. S. R. Murty. 2008. Graph Theory. New York: Springer.
Bradley, S. P., A. C. Hax, and T. L. Magnanti. Applied Mathematical Programming. Reading, MA:

Addison-Wesley.
Christofides, N. 1975. Graph Theory: An Algorithmic Approach. New York: Academic Press.
Cooper, L., and M. W. Cooper. 1981. Introduction to Dynamic Programming. Elmsford, NY: Pergamon Press.
Cottle, R., and J. Krarup (Eds.). 1972. Optimization methods for resource allocation. Proceedings

NATO Conference, Elsinor, Denmark.
Dekel, E., D. Nassimi, and S. Sahni. 1981. Parallel matrix and graph algorithms. SIAM Journal on

Computing 10 (4): 657–675.
Denardo, E. V. 2003. Dynamic Programming: Models and Applications. North Chelmsford, MA: Courier

Corporation.
Deo, N. 1974. Graph Theory with Applications to Engineering and Computer Science. Englewood Cliffs,

NJ: Prentice-Hall.
Deo, N., and C. Y. Pang. 1984. Shortest‐path algorithms: Taxonomy and annotation. Networks 14 (2):

275–323.

155Network Analysis

Dial, R., F. Glover, D. Karney, and D. Klingman. 1979. A computational analysis of alternative algo-
rithms and labeling techniques for finding shortest path trees. Networks 9 (3): 215–248.

Dinic, E. A. 1970. Algorithm for solution of a problem of maximum flow in a network with power
estimation. Soviet Mathematics Doklady 11: 1277–1280.

Dreyfus, S. E. 1969. An appraisal of some shortest-path algorithms. Operations Research 17 (3): 395–412.
Dreyfus, S. E., and A. M. Law. 1977. Art and Theory of Dynamic Programming. San Diego, CA: Academic

Press.
Edmonds, J., and R. M Karp. 1972. Theoretical improvements in algorithmic efficiency for network

flow problems. Journal of the ACM (JACM) 19 (2): 248–264.
Evans, J., and E. Minieka. 1992. Optimization Algorithms for Networks and Graphs. New York: Marcel

Dekker.
Floyd, R. W. 1962. Algorithm 97: Shortest path. Communications of the ACM 5 (6): 345.
Ford Jr, L. R. 1956. Network Flow Theory. Santa Monica CA: RAND Corporation.
Francis, R. L., and J. A. White. 1976. Facility Layout and Location. Englewood Cliffs, NJ: Prentice-Hall.
Fulkerson, D. R. 1961. An out-of-kilter method for minimal-cost flow problems. Journal of the Society

for Industrial and Applied Mathematics 9 (1): 18–27.
Glover, F., D. Klingman, and N. V. Phillips. 1992. Network Models in Optimization and their Applications

in Practice, Vol. 36. New York: John Wiley & Sons.
Hall, R., and J. Partyka. 2016. Vehicle routing: Higher expectations drive transportation. OR/MS

Today 43 (1): 40–47.
Hall, R. W. 2003. Handbook of Transportation Science, 2nd ed. Boston, MA: Kluwer Academic Publishers.
Harary, F. 1969. Graph Theory. Reading, MA: Addison-Wesley.
Hu, T. C. 1970. Integer Programming and Network Flows. Reading, MA: Addison-Wesley.
Hwang, F. K. 2017. The Steiner tree problem, 2012. In Y. Jiang, and Z.-P. Jiang (Eds.), Robust Adaptive

Dynamic Programming. Hoboke, NJ: John Wiley & Sons.
Karney, D., and D. Klingman. 1976. Implementation and computational study on an in-core, out-of-

core primal network code. Operations Research 24 (6): 1056–1077.
Karzanov, A. V. 1974. Determination of maximal flow in a network by method of preflows. Soviet

Mathematics Doklady 15 (1): 434–437.
Kennington, J. L., and R. V. Helgason. 1980. Algorithms for Network Programming. New York: John

Wiley & Sons.
Klingman, D. D., and R. F. Schneider. 1985. Microcomputer-based Algorithms for Large Scale Shortest

Path Problems. Austin, TX: University of Texas.
Klingman, D., P. H. Randolph, and S. W. Fuller. 1976. A cotton ginning problem. Operations Research

24 (4): 700–717.
Klingman, D., and R. Russell. 1975. Solving constrained transportation problems. Operations Research

23 (1): 91–106.
Knuth, D. E. 1976. Marriages Stables. Montreal, Canada: Les Presses de l’Universite de Montreal.
Kuhn, H. W. 1955. The Hungarian method for the assignment problem. Naval Research Logistics

(NRL) 2 (1–2): 83–97.
Lakhani, G., and R. Dorairaj. 1987. A VLSI implementation of all-pair shortest path problem. ICPP.
Lalande, J. F., M. Syska, and Y. Verhoeven. 2004. Mascopt-a network optimization library: Graph

manipulation. Technical Report, RT-0293, INRIA, Sophia Antipolis Cedex (France), p. 25.
Lawrence, K. D., and S. H. Zanakis. 1984. Production Planning and Scheduling: Mathematical Programming

Applications. Peachtree Corners, GA: Institute of Industrial Systems Engineers.
Lew, A., and H. Mauch. 2007. Dynamic Programming: A Computational Tool, Vol. 38. New York: Springer.
Lewis, T. G. 2009. Network Science, Theory and Application. Hoboken, NJ: John Wiley & Sons.
Lopresti, D. P. 1987. P-NAC: A systolic array for comparing nucleic acid sequences. Computer 20 (7): 98–99.
Marberg, J. M., and E. Gafni. 1987. An O(n2m1/2) distributed max-flow algorithm. Proceedings of

the 1987 IEEE International Conference on Parallel Processing. Los Angeles, CA: University of
California.

Mathis, P. (Ed.). 2010. Graphs and Networks, 2nd ed. Hoboken, NJ: John Wiley & Sons.
Melnyk, S. A., and D. M. Stewart. 2002. Managing metrics. APICS: The Performance Advantage, 12 (2): 23–26.

156 Operations Research

Melzak, Z. A. 1961. On the problem of Steiner. Canadian Mathematical Bulletin 4 (2): 143–148.
Moder, J. J., and C. R. Phillips. 1970. Project Management with CPM and PERT, 2nd ed. New York: Van

Nostrand Reinhold.
Moeller, G. L., and L. A. Digman. 1981. Operations planning with VERT. Operations Research 29 (4):

676–697.
More, J. J., and S. J. Wright. 1993. Optimization Software Guide. Philadelphia, PA: SIAM Publications.
Murty, K. 1992. Network Programming. Upper Saddle River, NJ: Prentice-Hall.
Näsberg, M. 1986. Two tools for marking for bucking analysis. In OR Models on Microcomputers.

New York: Elsevier, pp. 23–33.
Nemhauser, G. L. 1966. Introduction to Dynamic Programming. New York: John Wiley & Sons.
Nilsson, N. J. 1971. Problem-Solving Methods in Artificial Intelligence. New York: McGraw-Hill.
Phillips, D. T., and A. Garcia-Diaz. 1981. Fundamentals of Network Analysis. Englewood Cliffs, NJ:

Prentice-Hall.
Price, W. L. 1971. Graphs and Networks: An Introduction. New York: Auerbach Publishers.
Ravindran, A., D. T. Phillips, and J. J. Solberg. 1987. Operations Research: Principles and Practice. New

York: John Wiley & Sons.
Reid, R. A., and W. A. Stark. 1986. Optimal replacement policy developed for items that fail. Industrial

Engineering 18 (3): 23–27.
Salvendy, G. (Ed.). 1982. Handbook of Industrial Engineering. New York: John Wiley & Sons.
Sedgewick, R. 1990. Algorithms. Reading, MA: Addison-Wesley.
Sifaleras, A. 2015. Classification of network optimization software packages. In Encyclopedia of

Information Science and Technology, 3rd ed. Hershey, PA: IGI Global, pp. 7054–7062.
Tarjan, R. E. 1982. Sensitivity analysis of minimum spanning trees and shortest path trees. Information

Processing Letters 14 (1): 30–33.
Tarjan, R. E. 1983. Data Structures and Network Algorithms. Philadelphia, PA: SIAM.
Toint, P. L., and D. Tuyttens. 1992. LSNNO, a FORTRAN subroutine for solving large-scale nonlin-

ear network optimization problems. ACM Transactions on Mathematical Software (TOMS) 18 (3):
308–328.

Wagner, R. A., and M. J. Fischer. 1974. The string-to-string correction problem. Journal of the ACM
(JACM) 21 (1): 168–173.

Waterman, M. S. 1988. Mathematical Methods for DNA Sequences. Boca Raton, FL: CRC Press.
Weintraub, A. 1970. The shortest and the K‐shortest routes as assignment problems. Networks 3 (1):

61–73.
Wheelwright, J. C. 1986. How to choose the project-management microcomputer software that’s

right for you. Industrial Engineering 18 (1): 46–50.
White, D. J. 1969. Dynamic Programming. San Francisco, CA: Holden-Day.
Wiest, J. D., and F. K. Levy. 1969. A Management Guide to PERT/CPM. Englewood Cliffs, NJ: Prentice-Hall.
Winter, P. 1987. Steiner problem in networks: A survey. Networks 17 (2): 129–167.

157

4
Integer Programming

4.1 Fundamental Concepts

Mathematical programming problems in which the variables are constrained to have inte-
ger values are called integer programming (IP) problems. Many engineering, industrial,
and financial applications involve integer constraints. For example, in a manufacturing
scenario, it would be difficult to implement a solution that specifies producing 10.4 cars
or 7.2 tables. Fractional values are infeasible. For integer programming problems, the fea-
sible region is neither continuous nor convex, as illustrated in Figure 4.1 for a simple two-
dimensional integer problem. Observe that the feasible points for this problem do not lie
at the extreme points of the region, or even on the boundaries; and in fact, the elegant
solution techniques that have been developed for solving linear programming problems
generally do not find solutions to integer problems. The Simplex method for linear pro-
gramming converges to a solution at an extreme point which is typically a point with
fractional variables.

Although the formulations of integer programming problems often look remarkably
similar to those of continuous mathematical programming problems, the resemblance is
in some ways deceptive. The algebraic expression of the objective function and the con-
straints in the two types of models may appear to have a similar form, but the additional
constraint requiring that some or all of the variables have integer values generally makes
solving the integer problem vastly more difficult, from a computational standpoint. Most
integer programming problems are classified as hard optimization problems, and many
integer programming problems belong to the class of NP-hard problems (described in
Chapter 1). So, while a general linear programming problem may be solvable in polyno-
mial time, finding an optimal integer solution to the same formulation usually requires an
exponential amount of computation time.

Most integer programming problems are notoriously difficult, yet some integer problems
are easy to solve. In particular, many linear network problem solutions, such as assign-
ment and matching problems, transportation and transshipment problems, and network
flow problems, always produce integer results, provided that the problem bounds are inte-
gers. In these problems, all of the extreme points of the feasible region represent integer
solutions; therefore, if these problems are formulated and solved as linear programming
problems, we find that the Simplex method yields integer solutions. Unfortunately, this
occurs only for problems that have a network structure, and for the majority of integer
problems, the linear programming formulation does not suggest an easy solution.

158 Operations Research

For integer programming problems with linear objective and constraints, one may won-
der why we cannot simply solve the linear program (LP) and then round the answer to the
nearest integer. The rounding approach turns out to be more difficult than it may seem.
For example, if we have equality constraints, and we round down some variables, we will
probably have to round up some others, and selecting which ones go up and which ones go
down is itself an integer decision problem. Even when there are no equality constraints, it is
easy to construct examples in which rounding up or down or to the nearest integer does not
result in a feasible solution. Thus, in general, rounding does not yield satisfactory solutions.

That being said, there are some problems for which rounding can be effective. For exam-
ple, in solving a problem for manufacturing tires, if the LP solution specifies making 1296.4
tires of a particular style, it is probably safe to round the answer down to 1,296 without
drastically affecting feasibility or the objective function. In contrast, if the product being
manufactured is a multi-million dollar aircraft, rounding is probably a poor solution.
Rounding down a half a plane here or there could put a company right out of business.
In some cases, a simple guideline for deciding whether rounding is an appropriate option
might be to assess the damage (expressed as a percentage) to the objective function that
results from rounding. In our examples, rounding down 1296.4 tires will almost certainly
have a negligible impact on total profit, whereas rounding a small number of would prob-
ably have a significant effect.

An even more dramatic difficulty arises when using rounding for integer problems in
which the variables are further constrained to have values of either zero or one. Consider
a production planning problem for a large auto manufacturer such as General Motors,
where it must be decided at which plants each car model should be built. A formulation
for this problem might involve variables xij, each having a value of one or zero, depending
on whether model i is produced at plant j, or not. Suppose there are ten plants, and each
model can be assigned to only one location. An LP solution could easily recommend a
small fraction of each model at each plant, yet rounding could produce a solution in which
no models are produced anywhere. This situation is frequently encountered in integer
programming; and in such cases, the LP solution gives virtually no insight into how to
solve the integer problem.

x* = (1.789,3.158)

5

4

3

3

2

2

1

1

Z* = 1390

150x1 + 10x2 ≤ 30

x2

x1

FIGURE 4.1
Graphical representation.

159Integer Programming

4.2 Typical Integer Programming Problems

Mathematical programming problems in which all decision variables must have positive
integer values are called general integer programming problems. If all the decision vari-
ables are restricted to have only the value zero or one, the problem is then called a zero–
one programming (or binary integer programming) problem. In that case, the constraints
on the variables are sometimes called binary or Boolean constraints, and the model is often
referred to in abbreviated form as a 0–1 problem. Variations on the aforementioned prob-
lems arise if some of the variables must be integer, others must be zero or one, while still
others may have real values. Any problem involving such combinations is described as a
mixed integer programming (MIP) problem. This section illustrates each of these types of
integer problems with typical practical examples.

4.2.1 General Integer Problems

An illustration of general integer programming can be found in a simple version of the port-
folio selection problem. An investor wishes to purchase a portfolio of financial instruments
that will provide a maximum expected return. Many investment products, such as on the
futures market for example, must be purchased in large lot sizes. We can define variables
xi to denote the number of units of security i in the portfolio. The objective function mea-
sures the expected return, and the problem will often have constraints limiting the amount
of risk that the investor is willing to accept. In the simplest form of the problem, we could
assume that the only constraint on the portfolio is a limit on the number of dollars that can
be invested. Problems that have this basic underlying structure involve selecting as many
investments as possible and figuratively packing them into a portfolio of limited size.

A three-dimensional view of this same idea is seen in a problem known as the cargo load-
ing problem. Consider trying to pack boxes into trucks or shipping containers. The variables
xij represent the number of boxes of type i to be loaded into container j. The constraints for
this type of problem are complicated because they must define a spatially feasible packing.

The employee scheduling problem can also be formulated as a general integer problem,
in which we define a number of shift patterns for workers. For example, a pattern could be
to have a person work the day shift on Monday, Tuesday, and Wednesday, have two days
off, and then work Saturday and Sunday evening. We then define variables xi to specify the
number of employees who are assigned to work using pattern i. The objective is to minimize
total salary costs while ensuring that there are sufficient employees available in each shift.

4.2.2 Zero–One (0–1) Problems

Zero–one (0–1) problems are among the most common integer problems. All of the vari-
ables in the problem are required to take on a value of zero or one. Often, the variables
have an abstract interpretation; they simply indicate whether or not some activity occurs,
or whether or not some particular matching or assignment takes place.

One of the simplest 0–1 examples is the capital budgeting problem. Suppose we have a
number of possible projects from which we must choose. Each project has a known value,
and requires some level of resources such as funding, space, time, or services. We define the
variables xi to have a value 1 if project i is selected. The objective is to maximize total value
subject to a constraint on total budget. (This problem at first appears to be another form of
packing problem; but in this case, each project is to be chosen just once or not at all.)

160 Operations Research

Many scheduling problems can be formulated using 0–1 variables. For example, in a
production scheduling environment, we could define variables xik to have a value 1 if
job i is assigned to machine k, and zero otherwise. Or we might define variables yij = 1
if job i immediately precedes job j on an assembly line. We can then use these variables to
develop constraints on the time available for resources, on due dates for individual jobs,
and on total schedule costs.

A simple example of a scheduling problem is examination timetabling. Variable xij is
given a value of 1 if examination i is assigned to period j. Conflicts are not allowed, so
constraints are included to prevent two examinations from being assigned to the same
period if any students need to be present at both exams. Additional constraints may reflect
limits on the number of exams per period, or the total number of seats in an exam location.
The objective function must in some way measure the quality of a given timetable.

Another popular variation is the vehicle routing problem. Suppose that a fleet of trucks
on a given day must deliver goods from a central warehouse to a set of customers. The
objective is to minimize the total cost of making all deliveries. The cost is normally approx-
imated based on minimizing the number of trucks used and the total mileage and/or total
hours of delivery time. One common formulation of this problem defines variables xijk
to have a value 1 if customer i is assigned to truck j and is delivered immediately before
 customer k. Constraints are included to ensure that the assignment is feasible (perhaps
based on the drivers’ expertise, or on contractual agreements or regulations).

One of the most successful practical applications of integer programming has been in the
airline crew scheduling problem. The airlines first design a flight schedule composed of a
large number of flight legs. A flight leg is a specific flight on a specific piece of equipment,
such as a 747 from New York to Chicago departing at 6:27 a.m. A flight crew is a complete
set of people, including pilots, navigator, and flight attendants who are trained for a specific
airplane. A work schedule or rotation is a collection of flight legs that are feasible for a flight
crew, and that normally terminate at the point of origin. Variables xij have value 1 if flight leg
i is assigned to crew j. The objective is to ensure that all flight legs are covered at minimum
total cost. Most of the major world airlines now use integer programming to assign crews
to flight legs, and many claim to be saving millions of dollars annually in operating costs.

A distributed computing problem arises in a multiprocessor computing environment
where the programs and data files must be allocated to various machines in different loca-
tions. Variables xij have a value 1 if module i is assigned to processor j. The objective is to
minimize the total execution costs (which may depend on the choice of processor) and com-
munication costs (that are incurred when one processor needs to communicate with another).

4.2.3 Mixed Integer Problems

Section 4.1 introduced the problem of production planning at General Motors. In that
 problem, there are two sets of variables: it is necessary to decide which products are
assigned to each plant, and then to determine production levels at each plant. We could
define 0–1 variables xij = 1 if product i is assigned to plant j. We might then define variables
yij to represent the number of units of product i to produce at plant j. If production levels
are fairly high, we might treat the yij variables as real valued, and round them to integers
in the end. Additional constraints must prevent a product from being produced if it is not
assigned to the plant. The problem can be modeled as a large mixed integer problem with
both 0–1 and real-valued variables.

A related problem involves warehouse location: given a set of potential locations for
warehouses for a distributor, select the locations that will minimize total delivery costs.

161Integer Programming

We can define 0–1 variables xj to have a value 1 if location j is selected. Once it is decided
which locations are going to be used, then we must solve some kind of a transportation
problem to get the products from the producers to the warehouses, and from the ware-
houses to the customers. Real-valued variables yij are defined to represent the amount of
product transported from supplier i to warehouse j, and real-valued variables zjk denote
the amount of product distributed from warehouse j to customer k. The total cost is a func-
tion of the distances that the products must travel.

A further variation, which can be considered as a general version of warehouse location,
is called the fixed charge problem. Suppose there is a fixed cost (with a 0–1 variable) for
opening a warehouse. Once the warehouse is open, the remaining costs are essentially
continuous. There are a number of practical problems that lend themselves to this type of
formulation. For example, when a telecommunications company installs fiber optic cable,
there is a fixed cost for actually laying the cable, but then there is a real-valued cost cor-
responding to the capacity of the cable. This leads to a related problem called capacity
planning.

4.3 Zero–One (0–1) Model Formulations

This section presents a few examples of mathematical formulations of some classical 0–1
programming problems. These basic formulations frequently occur in actual practice,
often in the form of subproblems within larger practical applications. We emphasize these
models because many of the most practical advances in integer programming in recent
years have been in the area of 0–1 models.

4.3.1 Traveling Salesman Model

Suppose you want to visit a number of cities and then come back to your point of origin.
This is one of the most challenging and most extensively studied problems in the field
of combinatorics. The formulation is deceptively simple, and yet it has proven to be
notoriously difficult to solve. Define 0–1 variables xij = 1 if city i is visited immediately
prior to city j. Let dij represent the distance between cities i and j. Suppose that there
are n cities that must be visited. Then the traveling salesman problem (TSP) can be
expressed as:

minimize d x

subject to x for all cities

ij ij

j

n

i

n

i j

i 1

n

==

=

∑∑

∑ =

11

1 jj

x for all cities i

x S for all S <n

ij

j 1

n

i j

j Si S

=

∈∈

∑

∑∑

=

≤

1

1−

162 Operations Research

The first constraint says that you must go in to city j exactly once, and the second constraint
says that you must leave every city i exactly once. These constraints ensure that there are
two edges adjacent to each city, one in and one out, as we would expect. However, this does
not prevent so-called sub-tours. A sub-tour occurs when there is a loop containing a subset
of the cities. Instead of having one tour of all of the cities, the solution can be composed of
two or more sub-tours. The third constraint eliminates sub-tours; it states that no proper
subset of cities, S, can have a total of |S| edges.

The TSP has many practical industrial applications. Consider the problem of placing
components on a circuit board. To minimize the time required to produce a board, one of
the primary considerations is often the distance that a placement head must travel between
components. Another example occurs in routing trucks or ships delivering products to
customers. (When we allow multiple trucks, this problem becomes the vehicle routing
problem described earlier.) Another application occurs in a production environment when
it is desired to minimize sequence-dependent setup times. When multiple jobs are to be
processed on a machine, the total setup time for each job frequently depends on which job
preceded it. This situation can be modeled as a TSP, where we sequence jobs rather than
sequencing the order in which cities are visited.

4.3.2 Knapsack Model

Two versions of the knapsack problem have been discussed in Section 4.2 when portfolio
selection and the capital budgeting problem were reviewed. Assume that we have a num-
ber of items, and we must choose some subset of the items to fill our knapsack, which has
limited space. Each item, i, has a value vi and takes up wi units of space in the knapsack.
Let the 0–1 variables xi = 1 if item i is selected, and let b represent the total space in the
knapsack. Then we can formulate the knapsack problem as follows:

maximize v x

subject to w x b

i i

i

n

i i

i

n

=

=

∑

∑ ≤

1

1

The 0–1 version of the knapsack problem states that every item is unique, and that each
can either be selected or not (as in the capital budgeting problem). A slight generalization
of the knapsack problem states that you can choose more than one copy of each item, so
that the variables can take on general integer values (probably with upper bounds on each
variable), as with the portfolio selection problem.

4.3.3 Bin Packing Model

Bin packing is a generalization of the knapsack problem. Suppose that we are given a set
of m bins of equal size, b; and a set of n items that must be placed in the bins. Let wi be
the size of item i. We define the 0–1 variable xij = 1 if item i is placed in bin j. Bin packing
is usually expressed as a problem of minimizing the number of bins required to pack
all of the items. We can let yj = 1 if we need to use bin j. (Note that if yj = 0, then the cor-
responding bin has no capacity.) The objective function minimizes the number of bins
required

163Integer Programming

minimize y

subject to y for all j

x

w x

j

j

m

j

n

i j

j

n

i ij

=

=

=

∑

∑

∑

1

1

1

≤ b
i

,

== 1 for all i

Bin packing has applications in industry where, for example, there is a limited amount
of work that can be assigned to each person working at stations on an assembly line.
This model may also be applicable when deciding which products should be produced
at each of several possible manufacturing plants, or which customer should be assigned
to each delivery truck. Of course, each of these problems involves additional criteria and
constraints.

4.3.4 Set Partitioning/Covering/Packing Models

Many problems in combinatorial optimization include (as subproblems) partitioning a
group of items into optimal subsets. For example, vehicle routing requires that we allocate
customers to vehicles. Airline crew scheduling requires that we allocate flight legs to a crew.
Municipal garbage pickup requires that we allocate specific street blocks to trucks. Each of
these subproblems can be modeled in the following form as a set partitioning problem:

minimize c x

subject to: a x for all i 1, ,m

x 0 or

j j

ij j

j

j

j

∑
∑ = = …

=

1

 1 for all j

where aij = 1 if item i is included in (potential) subset j. Each column of the m × n constraint
matrix A represents a feasible combination of items. For example, each column might rep-
resent the items that could feasibly be loaded into a truck for delivery to customers; or
the items could be road segments that require garbage collection, and a column would
represent a feasible route for a truck to pick up garbage. The cost cj represents the cost of
delivering (or traveling, or producing) that subset of items. A variable xj = 1 if we decide to
include that particular subset in our solution.

In the set partitioning problem, all of the items must be included exactly once. In vehicle
routing, for example, we might typically require that exactly one truck travel to each cus-
tomer. In a slightly different problem, the set covering problem, we require that each item
be selected at least once. For example, in the garbage collection problem, and in the crew
scheduling problem, every street (every flight leg) must be covered at least once; but it is
also feasible to cover the same street (flight leg) twice, if this turned out to be the most
efficient solution. (The second truck would not pick up any garbage, and the second flight
crew would ride as passengers.) Set covering differs from set partitioning in that the con-
straints are “≥” inequalities instead of equalities.

164 Operations Research

The set packing problem describes another similar situation. In some production
scheduling problems, we are given a list of orders, and we have possible subsets of orders
that can be combined on different machines. In some cases, there may not be sufficient
resources to satisfy all of the demand. The problem is to select the optimal subset of orders
to maximize some profit function, pj. This problem can be formulated as:

maximize p x

subject to a x for all i m

x or

j j

ij j

ij

j

j

∑
∑ …≤ =

=

1 1

0 1

, ,

for all j

We select as many items as possible, but we are not allowed to process any items more than
once. We will revisit this type of problem in greater detail in Section 4.8, where we discuss
column generation.

4.3.5 Generalized Assignment Model

Section 3.3 described the assignment problem, which is considered to be one of the easiest
combinatorial problems to solve. The assignment problem can be formulated as follows:

minimize c x

subject to x for all i n

x

ij ij

ij

ij

ji

j

∑∑
∑
∑

…= =1 1, ,

i
== =

=

1 1

0 1

 for all j n

x or for all i jij

, ,

,

…

This classical representation can be illustrated by a set of jobs that must be allocated to a
group of workers. The term cij represents the cost of assigning job i to employee j. The first
constraint requires every job to be assigned to exactly one employee; and the second con-
straint states that every employee must do exactly one job.

The generalized assignment problem is a simple extension in which every job must be
assigned to one employee, but each employee has the capacity to perform more than one
job. In particular, suppose that each employee, j, has a limited amount of time, (bj hours)
available, and that job i will take employee j a total of aij hours. Then, the generalized
assignment problem can be formulated as:

minimize c x

subject to x 1 for all i 1, ,m

a x

ij i j

ij
j

ij i

ji
∑∑

∑ …= =

jj j

ij

i
 for all j n

x or for all i, j

∑ …≤ =

=

b 1

0 1

, ,

165Integer Programming

As discussed earlier, the generalized assignment problem has applications in the vehicle
routing problem, where every customer order must be assigned to one truck, but a single
truck can hold more than one customer order, subject to capacity constraints.

4.4 Branch-and-Bound

4.4.1 A Simple Example

Branch-and-bound algorithms are widely considered to be the most effective methods for
solving medium-sized general integer programming problems. These algorithms make
no assumptions about the structure of a problem except that the objective function and
the constraints must be linear. Even these restrictions can be relaxed without changing the
basic framework of the technique.

In its simplest form, branch-and-bound is just an organized way of taking a hard prob-
lem and splitting it into two or more smaller (and hence easier) subproblems. If these
subproblems are still too hard, we branch again and further subdivide the problems. The
process is repeated until each of the subproblems can be easily solved. Branching is done
in such a way that solving each of the subproblems (and selecting the best answer found)
is equivalent to solving the original problem.

Consider the following simple example in two variables. A manufacturer has 300 person-
hours available this week and 1,800 units of raw material. These resources can be used to
build two products, A and B. The requirements and the profit for each item are given as
follows:

Product Person-Hours Raw Material Profit ($)

A 150 300 600
B 10 400 100

Let x1 and x2 represent the integer number of units of products A and B, respectively. We
can formulate this problem as an integer linear programming problem:

maximize z x x
subject to x x

1 2

1 2

= +
+ ≤

600 100
150 10 300
300 400 1800

0
x x

x , x and integ
1 2

1 2

+ ≤
≥ eer

This problem is illustrated in Figure 4.1. The feasible region is given by the discrete set of
integer points within the constraint region. The optimal LP solution occurs at x1 = 1.789
and x2 = 3.158 with a profit of z = 1,389.47. Unfortunately, we cannot sell a fractional num-
ber of items. One obvious alternative is to round down both values to x1 = 1 and x2 = 3, for
a profit of $900. We will call the feasible integer solution xI = (1, 3) the current incumbent
solution, which is the best answer found thus far. When we find a better integer solution,
we will update the current incumbent. Before reading any further, try to locate the optimal
integer solution to the problem in Figure 4.1, and consider how integer solutions might be
found in general.

166 Operations Research

The basic branch-and-bound algorithm results from the following observations:

• The feasible integer solution x = (1, 3) with z = 900 was fairly easy to find. The
optimal integer solution cannot have a lower value of z than $900. Thus, we write
zI = 900 and call this a lower bound on the optimal solution. Each time we find a
higher valued integer solution, we replace the lower bound zI. This is the bound
part of branch-and-bound methods.

• Over the whole feasible region, the largest possible value of z = 1389.47, which is
the real valued solution obtained from the LP. We call this an upper bound on the
optimal integer function value.

• The graphical solution shows that x2 = 3.158. This is infeasible because it is a frac-
tional solution. Since x2 must be an integer, then clearly either x2 ≤ 3 or x2 ≥ 4. This
is equivalent to saying that x2 cannot lie part way between 3 and 4.

Consider the following two subproblems:

A maximize x x
subject to x x

1

1 2

[] z = +
+

600 100
150 10

2

≤≤
+ ≤

300
300 400 1800x x1 2

x and integer
x an

1

2

≥
≥

0
4 dd integer

B maximize z x x
subject to

1 2[] = +600 100
150xx x

x x
1 2

1

+ ≤
+ ≤
10 300

300 400 18002

x ,x and integer1 2 ≥ 0
x2 ≤ 3

Observe that if we find the best integer solution of both of these subproblems, then one of
them must be the optimal solution to the original problem. These subproblems are repre-
sented graphically in Figure 4.2, where the diagram is identical to Figure 4.1 except that
the range of values for x2 between 3 and 4 is now infeasible. We say that we have separated
on variable x2.

Consider problem [A] first. The LP solution occurs at x = (0.667, 4) with an objective func-
tion value of z = $800. Notice that x2 is now integer valued. We will see that each time we
separate, the chosen variable will always be integer, although it does not necessarily stay
integer on subsequent iterations.

By definition, the linear programming solution is the largest value possible for the prob-
lem. Therefore, the value z = 800 is an upper bound on all possible solutions in the feasible
region for problem [A]. Any integer solution to [A] must be ≤800. However, we already
have a feasible integer solution with zI = 900. Therefore, problem [A] can be ignored as it
cannot contain any answer better than 900. In branch-and-bound terminology, we say that
problem [A] has been fathomed.

In general, a subproblem is called fathomed whenever it is no longer necessary to branch
any further. A subproblem is fathomed when the LP solution is less than the current lower
bound for a maximization problem, when the LP solution is infeasible, or when the LP
produces an integer solution.

167Integer Programming

Problem [B] has its optimal LP solution at x = (1.8, 3) with a function value of z = 1,380.
This value gives us a new upper bound on the optimal integer solution. At each iteration of
the branch-and-bound process, the upper and lower bounds can be revised until they even-
tually converge to the optimal solution. We now know that the optimal value lies between
900 and 1,380. Variable x2 is integer valued, but x1 is still fractional. We can now further
divide problem [B] into two subproblems based on the fact that x1 ≤ 1 or x1 ≥ 2 as follows:

B1 maximize z x x
subject to

[] += 600 100
150

1 2

xx x
x x

1 2+ ≤
+ ≤
10 300

300 400 18001 2

x , x and integer1 2 ≥ 0
x
x

B2 maximize x

1

2

1

≤
≤

=

1
3

600[] z ++
+ ≤

100
150 10 300

x
subject to x x

2

1 2

300 400 1800

2

x x
x

1 2+ ≤
≥≥
≥

0
21

and integer
x and integer
x2 3≤

For problem [B1], it is easy to see that the optimal LP solution occurs at point x = (1, 3)
with a function value z = 900. Since x is now integer valued, it must be optimal for this
subproblem. This subproblem is considered to be fathomed because it gives us an integer
solution: there is no need for further branching as the solution cannot get any better below
this node. It is also considered fathomed because the solution of 900 is no better than the
one we already obtained earlier. In either case, problem [B1] is finished.

5

4

3

3

2

2

1

1

A
z

z

B

x2 ≤ 3

x2 ≥ 4

x1

x2

FIGURE 4.2
Separate into two subproblems.

168 Operations Research

Problem [B2] consists of the single point x = (2, 0) with a function value of z = 1,200.
This solution is both integer, and better than the previous lower bound. Since x is integer,
subproblem [B2] is fathomed and no further branching is required. Our new lower bound
increases to zI = 1,200 and xI = (2, 0) becomes the new current incumbent.

At this point, we observe that all of our subproblems have been fathomed. Therefore,
xI = (2, 0) is the optimal integer solution, and zI = $1,200 is the optimal function value.

It is often convenient to display this procedure in the form of a branch-and-bound tree.
The tree corresponding to the previous example is illustrated in Figure 4.3. Each subprob-
lem is represented by a node in the tree. Each node must either be fathomed or split into
subproblems, which are shown by lower level nodes.

In Figure 4.3a, node 0 represents the original problem. We construct nodes 1 and 2 (for
subproblems [A] and [B], respectively) by constraining x2 in Figure 4.3b. Node 1 is fath-
omed and node 2 is further subdivided into nodes 3 and 4 in Figure 4.3c, corresponding to
problems [B1] and [B2].

z* = 1390
x* = (1.789, 3.158)
zI = 900
xI = (1, 3)

(a)

z* = 800
(fathomed)

z* ≤ 900 (b)

x* = (1.8, 3)

z* = 1380

z* = 1390

z* = 800

zI = 1200
xI = (2.0)

(c) New incumbent (fathomed)

0

0

x2 ≥ 4

x2 ≥ 4

x1 ≥ 2

x2 ≤ 3

x2 ≤ 3

x1 ≤ 1

1 2

0

1 2
z* = 1380

z* = 900
(fathomed)

3 4

x* = (, 4)2
3

FIGURE 4.3
Branch-and-bound example: (a) node 0: original problem, (b) subproblems [A] and [B], and (c) subproblems [B1]
and [B2].

169Integer Programming

4.4.2 A Basic Branch-and-Bound Algorithm

We will now give a more precise description of the previous procedure. The problem is
expressed with a maximization objective, and a similar framework can be followed with
minimization problems. A node in the tree is called an active node if it has not been fath-
omed and we have not separated on it yet.

Step 0: Initialize
Let the set A denote the list of currently active nodes. A node in the tree is active if

we have not either solved it or subdivided it yet. Initially, the set A = {the original
problem}, node 0, and zI = −∞.

Step 1: Done?
If the set A is empty, then stop. The current incumbent, xI is optimal.
Step 2: Branching

Select a node, j, from the active list A (and remove it from A) according to some
Branching Rule.

Step 3: Solve

Solve the LP relaxation of node j. (That is, relax/ignore the integer restrictions.)
Let z* denote the optimal LP solution at point x*.

Step 4: Fathoming Criterion 1

If the LP has no feasible solution, then node j is fathomed; go to Step 1.
Step 5: Fathoming Criterion 2

If z* ≤ zI, then this subproblem cannot contain any integer solution better than the
current incumbent: node j is fathomed; go to Step 1.

Step 6: Fathoming Criterion 3

If x* is integer, then it becomes the new incumbent. Set xI = x* and zI = z*. Node j is
fathomed; go to Step 1.

Step 7: Separation

Otherwise, we must separate node j into two or more subproblems (according to
some Separation Rule.) Select some fractional variable in x* and construct two new
subproblems. Add these new nodes to the set A and go to Step 1.

4.4.3 Knapsack Example

The manager of an Operations Research department in a large company has a list of proj-
ects that she would like to initiate. Each project has an expected payback expressed (in
thousands of dollars) as the net present value over a 10-year period. Although all of the
projects would be beneficial, there are simply not enough resources (in person days) avail-
able this month to do all of them. The estimates of resources and return are:

Project 1 2 3 4 5 6 7 8

Estimated value 15 20 5 25 22 17 30 4

Days 51 60 40 62 63 50 70 10

There are 250 person-days available this month. Which projects should be selected?
At the end of this month, the manager must write a report summarizing the results from

170 Operations Research

completed projects; any projects that are not completed cannot be included among the
successful projects in the report.

Define xj = 1 if project j is selected, and 0 otherwise. The “node 0” problem can be
modeled as:

maximize 15x 20x 5x 25x 22x 17x 30x 4x

subject to

1 2 3 4 5 6 7 8+ + + + + + +

 51x 60x 40x 62x 63x 50x 70x 10x1 2 3 4 5 6 7+ + + + + + + ≤8 250

x 0 or 1j =

When the 0–1 constraints are relaxed to solve the LP, we replace them with the linear con-
straints: 0 ≤ xj ≤ 1

Step 0: A = {0}, and zI = −∞.
Step 1: A is not empty.
Step 2: Select node 0 from A. (A is now empty.)
Step 3: z* = 96.3 at the optimal LP solution at point x* = {0, 0, 0, 1, 1, 0.9, 1, 1}.
Step 4: The solution is feasible.
Step 5: z* > zI.
Step 6: x* is not an integer.
Step 7: Separate node 0 on a fractional variable (x6 is the only fractional value).

Construct node 1, the same problem as node 0 with the additional constraint that
x6 = 0. Similarly, construct node 2, the same problem as node 0 with the constraint
that x6 = 1. Let A = {1, 2}.

Step 1: A is not empty.
Step 2: Select a node from A. Suppose we choose node 2; A = {1}. Add constraint

x6 = 1.
Step 3: z* = 96.25 at the optimal LP solution at point x* = {0, 0, 0, 1, 0.92, 1, 1, 1}.
Step 4: The solution is feasible.
Step 5: z* > zI.
Step 6: x* is not an integer.
Step 7: Separate node 2 on a fractional variable. (x5 is the only fractional value).

Construct node 3, the same problem as node 2 with the additional constraint that
x5 = 0. Similarly, construct node 4, the same problem as node 2 with the constraint
that x5 = 1. Let A = {1, 3, 4}.

Step 1: A is not empty.
Step 2: Select a node from A. If we choose node 4, then A = {1, 3}. Add constraint

x5 = 1.
Step 3: z* = 96 at the optimal LP solution at point x* = {0, 0, 0, 1, 1, 1, 1, 0.5}.
Step 4: The solution is feasible.
Step 5: z* > zI.
Step 6: x* is not an integer.

171Integer Programming

Step 7: Separate node 4 on a fractional variable. (x8 is the only fractional value).
Construct node 5, the same problem as node 4 with the additional constraint that
x8 = 0. Similarly, construct node 6, the same problem as node 4 with the constraint
that x8 = 1. Let A = {1, 3, 5, 6}.

The algorithm continues until the set A is empty. The complete branch-and-bound tree for
this problem is illustrated in Figure 4.4.

4.4.4 From Basic Method to Commercial Code

It is possible to construct examples in which the basic algorithm explicitly enumerates all
possible integer solutions. If we assume, for simplicity, that there are n variables, and that
each variable has m possible integer values, then our branch-and-bound tree could have
as many as mn nodes at the lowest level of the tree. The amount of computation required
increases exponentially and the problem would become computationally intractable for
even moderate values of m and n. For example, when m = 3 and n = 20, the number of
potential integer solutions is over 3 billion. Of course, we hope that the vast majority of
potential nodes will be implicitly eliminated using the various fathoming criteria. A good
branch-and-bound algorithm will try to find the optimal solution as quickly as possible;
but if we hope to solve problems of any practical size, the algorithms must be designed
very carefully. In particular, the three components of the algorithm that are most critical to
the performance of various branch-and-bound implementations are:

 1. Branching strategy: Selection of the next node (in the active list) to branch on in
Step 2.

1211

9 10

7

5

8

4

2

0

1

3

18 17

20

2625 21

19

22

24

28

35 36

27

29

31

33 34

32

30

23

6

14

15 16

13

=

= =

=

=

=

= =

=

=

94

96

96.25 96

93.11

95.76

94.63

95.47

95.67

z∗ = 96.3

x6 = 1 x6 = 0

x2 = 1

x5 = 0

x4 = 0

x7 = 0x7 = 1

x7 = 0x7 = 1

x4 = 1

x5 = 1

x2 = 0

x1 = 0

x1 = 0
x1 = 1

x3 = 1
x3 = 0

x4 = 1 x4 = 0

x1 = 1

x1 = 1

x2 = 1x2 = 0

x8 = 0 x8 = 1

x4 = 1

x7 = 0x7 = 1

x4 = 0

x1 = 0

x8 = 1x8 = 0

x2 = 1x2 = 0

x5 = 0x5 = 1

Infeasible

Infeasible

Infeasible
84.9 < 94

90.45 < 94

95.86

89.5

95.2

91.895.98

91.8 92

95.3

94.35

93 89.7

93.9 86

94.24

94.98

xi = (0,0,0,1,1,1,1,0)
zi = 94

95.2

94.86

86.5

89.8

87.1

83

95.1

=

= =

=

FIGURE 4.4
Branch-and-bound tree for the knapsack example.

172 Operations Research

 2. Bounding strategy: Many techniques have been suggested for improving the LP
bounds (in Step 5) on the solution of each subproblem.

 3. Separation rule: The selection of which variable to separate on in Step 7.

4.4.4.1 Branching Strategies

To control the selection of the next node for branching, it is typical to restrict the choice of
nodes from the list of currently active nodes in one of the following ways.

The Backtracking or LIFO (Last In, First Out) Strategy

Always select a node that was most recently added to the tree. Evaluate all nodes in one
branch of the tree completely to the bottom, and then work back up to the top following all
indicated side branches. A typical order of evaluating nodes is illustrated in Figure 4.5a.
The numbers inside each node represent the order in which they are selected.

The Jumptracking (Unrestricted) Strategy

As the name implies, each time the algorithm selects a node, it can choose any active node
anywhere in the tree. For example, it might always choose the active node corresponding
to the highest LP solution, z*. A possible order of solving subproblems under jumptracking
is illustrated in Figure 4.5b.

At first glance, the backtracking procedure appears to be unnecessarily restrictive. The
major advantages are conservation of storage required and a reduction in the amount of
computation required to solve the corresponding LP at each node. Observe that the num-
ber of active subproblems in the list at any time is equal to the number of levels in the
current branch of the tree. Using jumptracking, the size of the active list can grow expo-
nentially. Each node in the active list corresponds to a linear programming problem with
its own set of constraints. Consequently, storage space for subproblems is an important
consideration.

Computation time is an even more serious issue with jumptracking. Observe that each
time we solve a subproblem, we solve an LP complete with a full Simplex tableau. When
we move down the tree, we add one new constraint to the LP. This can be done relatively
efficiently if the old tableau is still available.

To do this using the jumptracking strategy, we would have to save the Simplex tab-
leau for each node (or at least enough information to generate the tableau easily). Hence,
backtracking can save a large amount of LP computation time at each node. The effi-
ciency of solving subproblems is crucial to the success of a branch-and-bound method
because practical problems will typically generate trees with literally thousands of
nodes.

The major advantage of jumptracking is that, by judicious selection of the next active
node, we can usually solve the problem by examining far fewer nodes. Observe that when
we find the optimal integer solution, many of the nodes can be eliminated by the bounding
test. Jumptracking will normally find the optimal solution sooner than backtracking. To
illustrate this, suppose that the integer solution is represented by a node at the bottom of
the branching tree. With backtracking, each time we choose a branch, one is correct and the
other is wrong. If we choose the wrong branch, we must evaluate all nodes in that branch
before we can get back on the correct branch. Using jumptracking, we can return to the
correct branch as soon as we realize that we may have made a mistake. When we find the
optimal solution, many of the nodes in the wrong branch will be fathomed at a higher level
of the tree by the bounding test.

173Integer Programming

In short, there is a trade-off between backtracking and jumptracking, and many commer-
cial algorithms use a mixed strategy. Backtracking is used until there is a strong indication
of being in the wrong branch; then there is a jump to a more promising node in the tree
and a resumption of a backtracking strategy from that point. The amount of jumptracking
is determined by the definition of wrong.

(a)

1

2

3

4

85 6 9

7

10

11

2312 13 15 16 20 21 24 27 28 30 31

19 2214 26 29

18 25

17

1

2

3

14

24 25 26 27

23

6

16

2017 18 19 8 21 3128 11 29 13 30

15 227 10 12

5 9

4

(b)

FIGURE 4.5
Branching strategies: (a) back tracking and (b) jump tracking.

174 Operations Research

4.4.4.2 Bounding Strategies

In the branch-and-bound algorithm, suppose we have selected a node (subproblem) to
branch on. We must now choose a fractional basic variable to separate on. Whether we
round the variable up or down, the objective function value will normally decrease. The
up and down penalties for each basic variable give us an estimate (lower bound) on the
reduction in the value of z that would occur if we were to add the integer constraint. We
can then use this information to pick the most promising basic variable.

Consider the example in Section 4.4.1. The optimal LP tableau is:

Basis x1 x2 x3 x4 Solution

z 0 0 3 13
19

3
9 1389 9

19

x1 1 0 2
285

-1
5700 115

19

x2 0 1 -1
190

1
380 3 3

19

Define fi to be the fractional part of each basic variable. In the example, f1 = 15/19 and
f2 = 3/19, are the fractional parts of x1 and x2, respectively. Define aij to be the element of
the optimal LP tableau; and define cj to be the j-th reduced cost from the tableau. We define
the down penalty Di to be the decrease in the objective function that would result from
decreasing the variable to the next lower integer value. The down penalty for branching
down on the basic variable in the i-th row is:

D

c f
a

where ai j N
j j

ij
ij=












∈min , > 0

Similarly, we can derive a formula for the up penalty for variable xi, which will indicate
the amount by which the objective function would decrease if we increased the basic vari-
able in the i-th row to the next highest integer. The up penalty, Ui, is given by:

U

c f
a

where ai j N
j

ij
ij=

−
<












∈min

()
,j 1

0

In the example, the down penalty corresponding to branching down on basic variable x1
is given by:

D
c f
a

where a1
j j

1j
1j= >













=
















∈min ,j N 0

3
13
19

5
19

22
285

414
9

19



























=

175Integer Programming

Consider the row of the tableau corresponding to x1. We can show that decreasing x1 by
f1 = 15/19 implies we must increase x3 by 15

19
2

285() ()  to maintain the equation. This, in
turn, would produce the given decrease in the objective function row. (See Salkin and
Mathur [1989] for a detailed proof.) Similarly, D2 = 9 9

19, U1 = 1899
19, and U2 = 589 9

19. The
potential effect on the new branch-and-bound tree is shown in Figure 4.6.

4.4.4.3 Separation Rules

We can think of up and down penalties as a kind of look-ahead feature, in that they give us
an estimate of the LP objective function value for separating on each basic variable with-
out actually solving all of the possible LP problems. We could, of course, improve these
estimates by actually solving the corresponding LP tableaus, but this would be far more
expensive. With branch-and-bound algorithms, we will always be faced with the trade-off
between better (more accurate) bounds and computational cost.

Consider the two potential branch-and-bound trees in Figure 4.6. Which tree allows a
more efficient solution? One simple general rule is to construct, at each node, a good branch
and a bad one. Hopefully, we can follow the good branch, find the optimal integer solution,
and then fathom the bad branch without having to separate further.

Thus, an effective separation rule is to separate on the variable that has the largest up
or down penalty; then branch to the active node with the highest lower bound on the new
function value; that is, the one most likely to lead to an optimal integer solution.

In the example, we would separate on variable x2 and then branch to subproblem [B]
with x2 ≤ 3. When we solve [B], we will find the optimal integer with a function value of
1,200. Because problem [A] has an upper bound of z ≤ 800, it will be fathomed without
solving the corresponding LP.

4.4.4.4 The Impact of Model Formulation

For linear programming models, it does not make much difference how the original
 problem is formulated, provided that the objective function and the constraints are correct.
In integer programming, however, the formulation itself can have a dramatic effect on
algorithm performance. As an example, consider the original problem formulation:

Either: Separate on X1 or: Separate on X2

z = 1389 9
19

z = 1389 9
19

x1 ≤ 1 x1 ≥ 2 x2 ≤ 3 x2 ≥ 4

x = 1 5
19 , 3 3

19 x = 1 5
19 , 3 3

19

z ≤ 975 z ≤ 1200 z ≤ 1380 z ≤ 800

0

1 2

0

1 2

FIGURE 4.6
Up and down penalties for fractional basic variables and the corresponding potential branches.

176 Operations Research

:

maximize z 600x 100x

subject to 150x 10x x 300

300x

1 2

1 2 3

1

= +

+ + =

++ + =

≥

400x x 1800

x , x and integer

2 4

1 2 0

Observe that, for any feasible integer solution to this problem, x3 must be a multiple of 10,
and x4 must be a multiple of 100. Suppose we first reduced the original problem to lowest
common terms (before adding the slack variables):

maximize z 6x x

subject to: 15x x x 30

3x

1 2

1 2 3

1

= +

+ + =

+ 44x x 18

x , x and integer

2 4

1 2

+ =

≥ 0

This new problem is identical to the original as far as the LP is concerned, but it is not the
same integer problem! The new optimal Simplex tableau is:

Basis x1 x2 x3 x4 Solution

z 0 0 7
19

3
19 13 17

19

x1 1 0 4
57

-1
57 115

19

x2 0 1 -1
19

5
19 3 3

19

The most obvious immediate consequence of this new formulation is simply that z must
be an integer multiple of 100. The upper bound on z denoted z is now 1,300. The reduction
has no effect on the up and down penalties except that we get the decrease in the reduced
units of z. Because the optimal value of z must be integer, the up and down penalties
can be strengthened. For example, D1 in the old version reduced z to 975. Using the new
 tableau, z will become 9.75, which can be replaced by 9 as an upper bound on the down
problem. Since the initial rounded solution is z = 9, the corresponding branch is fath-
omed, that is, we can branch up on x1 for free. The complete revised branch-and-bound
tree with up and down penalties is illustrated in Figure 4.7.

Notice also that the slack variables, x3 and x4 are integer valued in both problems
and they will be candidates for branching. The slack and surplus variables (and the
objective function variable z) will always be integer valued (in a pure integer prob-
lem) if all of the problem coefficients are integer. Thus, for example, if one of the con-
straint coefficients is 0.5, it would be advantageous to multiply the corresponding
constraint by 2 to produce all integer coefficients. In general, any rational fractions
can be removed by multiplying by the denominator. Refer to Johnson et al. (2000) for
additional formulations.

177Integer Programming

4.4.4.5 Representation of Real Numbers

In Chapter 2 on linear programming, we mentioned some of the problems associated
with round-off error and numerical stability. The Simplex tableau will normally contain
imperfect machine-representations of real numbers that have a limited number of signifi-
cant digits. As the algorithm proceeds, this inaccuracy in the representation of problem
parameters will be compounded during each iteration so that the results can eventually
become very inaccurate. This problem becomes much more critical in the context of integer
programming because we often solve the LP several thousand times. Most commercial LP
codes include a re-inversion feature that computes a new basis inverse matrix after a speci-
fied number of iterations.

We have the additional problem that it is difficult even to recognize when we have found
an integer solution. The values of xi will not yield exact integer answers. We must assume
that they are actually integers when they get close enough to an integer value within some
prespecified tolerance.

In the example earlier, we expressed all of our calculations in the form of precise rational
fractions to avoid any rounding error. Unfortunately, this is not a very practical approach
in large-scale problems.

4.5 Cutting Planes and Facets

There is an extensive literature concerning the use of cutting planes to solve integer pro-
gramming problems. Early algorithms were theoretically intriguing, but not very effec-
tive in practice. However, some recent developments in the application of special cutting
planes for problems with specific structure have produced some rather surprising results.
One example is presented in Section 4.6 for the pure 0–1 problem. This section briefly dis-
cusses the general concepts and provides some background.

z∗ = 13
0

21

17
19 z = 13

z ≤ 8

x2 ≥ 4

z ≤ 9
z ≤ 12

x1 ≤ 1

x1 ≥ 2

zI = 12
xI = {2, 0} 43

x2 ≤ 3

x∗ = 1 15
19 , 3 3

19

z ≤ 13

4
5z∗ = 13

4
5x∗ = {1 , 3}

FIGURE 4.7
A complete branch-and-bound tree for the example problem using all penalty information.

178 Operations Research

Given any integer programming problem, consider the set of feasible integer points.
If the extreme points of the LP are all integers, then the problem is easy; the LP solution
will be an integer solution. If the extreme points are not integer, then we can always tighten up
the constraints (and possibly add new ones) in such a way that the new reduced LP does
have integer extreme points.

For an intuitive motivation of this statement, suppose that the LP has an optimal extreme
point solution that is not an integer. Then, it should be possible to add a new constraint that
makes that extreme point infeasible (by at least a small amount) without excluding any
feasible integer solutions. (We will illustrate shortly that this is always possible.) We can
repeat this process until all extreme points are integers.

The general idea is illustrated in Figure 4.8. Given a feasible region defined by the con-
straints of a linear programming formulation, we are interested in only the integer points
inside the region. In the figure, the outside polygon defines the LP feasible region: the inside
polygon defines a unique tightened region that does not exclude any integer solutions. We
call the reduced region the convex hull of the set of feasible integers. It is also referred to
as the integer polytope of the problem. (A polytope is an n-dimensional polygon.)

A constraint is called a face or facet of the integer polytope if it defines an
(n − 1)- dimensional set of points on the surface of the convex hull. In the two-dimensional
example, a facet is a line of feasible points between two integer extreme solutions. In a
three-dimensional cube, for example, the facets are simply the two-dimensional faces of
the cube. A constraint that meets the cube along only an edge (one dimension) is not a
facet. Clearly (at least in three dimensions), there must be one facet constraint for each face,
and no others are needed to define the integer polytope.

If we could find all the facets of an integer problem, then all of the extreme points would
be integers and the LP solution method would easily find the optimal integer solution.
Unfortunately, for general problems, it is extremely difficult to find the facets of the convex
hull. Much of the current research in integer programming is devoted to finding some
facet-defining constraints for very specific problems.

1

1

2

2

3

3

4

4

A

CB

D

A: 2x1 + 2x2 ≥ 1
B: −2x1 + 2x2 ≤ 3
C: 4x1 + 5x2 ≤ 20
D: 4x1 − x2 ≤ 10

x2

x1

FIGURE 4.8
The convex hull of the set of integer solutions.

179Integer Programming

The preceding observations have led many researchers to try to develop algorithms that
would try to approximate the convex hull of the integer polytope. In particular, it is not
necessary to find all of the facets—only the ones that define the integer optimum. Consider
the following general algorithm:

 1. Solve the LP.
 2. If the solution is integer, then it must be optimal.
 3. Otherwise, generate a cutting plane that excludes the current LP solution, but

does not exclude any integer points, and then return to Step 1.

By our definition, a cutting plane is not necessarily a facet. A cutting plane is only guar-
anteed to take a slice of non-integer solutions out of the feasible region. In general, facets
are hard to find, while cutting planes are easy; but, of course, the best cutting plane would
be a facet.

Consider the example problem from Section 4.4.4.4, the branch-and-bound example after
the coefficients have been reduced. The optimal Simplex tableau is:

Basis x1 x2 x3 x4 Solution

z 0 0 7
19

3
19 13 17

19

x1 1 0 4
57

-1
57 115

19

x2 0 1 -1
19

5
19 3 3

19

As a simple example of a cutting plane, observe that one row of the tableau can be written as:

x x x1 + − =4

57
1

57
13 4

15
19

Every feasible solution to this problem must satisfy this constraint, which is derived by
elementary row operations on the original constraints. To obtain an integer solution for x1,
at least one of the non-basic variables will have to increase, and these must also be integer.
This leads to the simple cutting plane:

 x x3 4+ ≥ 1

At the current LP optimum, x3 and x4 are both equal to zero. Therefore, this constraint
must make the current point infeasible. Furthermore, every feasible integer solution must
satisfy this constraint, so no integers have been excluded. That is, this constraint satisfies
the criteria for a cutting plane.

Notice that there is no branching involved here; at each iteration, we define a smaller
feasible region, solve the new LP, and repeat the process, continuing until all of the basic
variables are integers.

This procedure looks intuitively appealing because the cuts are easy to find and there
are none of the complicated storage and bound problems associated with branch-and-
bound methods. However, it is not a very efficient or effective technique. As an exercise,
the reader should try a few iterations on the example problem. Convergence is generally

180 Operations Research

very slow, which means that we have to generate a large number of new constraints. In fact,
for this particular cut, we cannot even prove that the procedure is always finite.

A wide variety of better cutting planes have been proposed, of which the best known is
called a Gomory fractional cut. This method is based on the premise that, in any integer
solution, all of the fractional parts (in the tableau) must cancel one another. Consider the
previous example for x1. From the tableau:

x

4
57

x x1 3+ − =1
57

1
15
19

4

We first separate each coefficient into two parts: an integer component and a positive frac-
tional part:

x 0x

4
57

x x
56
57

x = 1
15
19

1 3 3 4 4+ + − + +

Grouping all of the integer parts together on the right-hand side, we obtain:

4

57
x

56
57

x x x3 4 1 4+ = − + + +1
15
19

 

Observe that, for any integer solution, the part in square brackets must also be integer.
Moreover, because the variables must be non-negative, the left-hand side has to be
positive. In fact, the left-hand side must be equal to: 15

19 or 115
19 or 215

19 or 315
19 , and so

on. In other words:

4

57
x

56
57

x3 4+ ≥ 15
19

This is the Gomory fractional cut. Because the non-basic variables, x3 and x4 are equal to
zero at the current LP solution, the Gomory cut always cuts off the corner of the feasible
region containing the optimal solution. If any variable has a fractional solution, it is always
possible to construct a Gomory cut. This method has the property that it will converge in
a finite number of iterations.

The main disadvantages associated with the Gomory fractional cut method are: (1) the
method can converge slowly; and (2) unlike branch-and-bound methods, integer solutions
are not obtained until the very end. Pure cutting plane methods are therefore not consid-
ered to be very practical for large problems.

4.6 Cover Inequalities

One of the most successful approaches to 0–1 problems has been the introduction of cover
inequalities (Crowder et al. 1983). A cover inequality is a specialized type of cutting plane.
It defines a constraint that is added to the original problem in the hope that the extreme
point solutions will occur at 0–1 points. After generating as many cover inequality con-
straints as possible, the reduced problem is solved using a standard branch-and-bound
algorithm. This technique was able to dramatically decrease computation time on large,

181Integer Programming

sparse 0–1 programming problems, and practical problems with over 10,000 0–1 variables
were solved to optimality. Prior to the introduction of this method, problems with 500 0–1
variables were considered very difficult.

As before, the problem is formulated as a standard linear program with the additional
restriction that all variables must be either 0 or 1. The constraints are partitioned into two
types. Type I constraints are called Special Ordered Set (SOS) constraints. Type II con-
straints are simply all of the non-SOS inequalities. The simplest form of SOS constraint is
as follows:

x for some subset L of the variablesj

j L
≤

∈
1∑

In practical problems, we will often find that the vast majority of constraints are SOS. For
example, if the variables xij are equal to 1 if resource i is assigned to location j, then we will
have a number of SOS constraints which state that each resource can be assigned to at most
one location. We may also get SOS equality constraints if resource i must be assigned to
exactly one location.

SOS constraints have a very useful property with respect to 0–1 integer programming.
Observe that, when we consider only one constraint (plus the non-negativity constraints
on the variables), every extreme point solution occurs at a 0–1 point. For example, consider
a simple system: x1 + x2 + x3 = 1; x1, x2, x3 ≥ 0. The extreme points occur at (1,0,0), (0,1,0),
(0,0,1), and (0,0,0). Unfortunately, when several SOS constraints intersect, fractional LP
solutions are introduced, but the property of having many 0–1 extreme points is still very
attractive.

In a sense, SOS constraints produce easy problems, while the remaining inequalities
are difficult. In general, the vast majority of extreme points using non-SOS constraints
will lead to fractional solutions. Cover inequalities can be considered a simple tech-
nique for converting an individual non-SOS constraint into a set of equivalent SOS
inequalities.

Before we present a precise definition, consider the following simple constraint as an
example:

 3x 4x 5x1 2 3+ + ≤ 6

Observe that if we consider only 0–1 solutions, no two of these xj’s are allowed to have a
value equal to 1. In particular, we can express this as:

x x

x x

x x

1 2

1 3

2 3

+ ≤

+ ≤

+ ≤

1

1

1

All of these constraints are cover inequalities; if any two variables are equal to 1, then the
left-hand side will be greater than (or cover) the right-hand side. As an example, if x1 and
x2 = 1, then 3x1 + 4x2 = 7 > 6. In fact, we can represent all three of these constraints in one
by observing that only one of these xj’s can equal 1 in any feasible 0–1 solution:

 x x x1 2 3+ + ≤ 1

182 Operations Research

Here, we can replace the original non-SOS inequality with its cover. As far as any 0–1 solu-
tions are concerned, the two constraints are equivalent. With respect to the LP solution,
however, the cover inequality is much more restrictive. For example, the point (1, 0.75, 0) is
feasible for the LP but infeasible under the cover.

As a more general illustration, consider the inequality:

 3x 4x 5x 6x 7x 9x1 2 3 4 5 6+ + + + + ≤ 12

Any subset of xj’s that results in a sum greater than 12 can be eliminated by a cover inequal-
ity such as x2 + x3 + x4 ≤ 2 because we cannot have all three of these variables equal to one.
(The sum would be at least 15.)

A cover for a single inequality is a subset of variables, the sum of whose (positive)
coefficients is greater than (or covers) the right-hand side value, b. A cover assumes
that the inequality is in less than or equal (≤) form, and that all of the coefficients are
positive (or zero). We can convert a greater than or equal to constraint into less than
or equal to form by multiplying through by −1. We can also represent an equality
constraint by two inequalities (one ≥ and a ≤) and then multiply the ≥ by −1. Each of
these would be considered separately. If the constraint has a negative coefficient for
variable xj, we can perform a temporary variable substitution of xj = 1 − xj′ to make all
coefficients positive.

Suppose, for example, that a problem contains the constraint:

 4x 5x 3x 4x 7x 5x1 2 3 4 5− + − − + =6 1

We can replace this constraint with two inequalities:

4x 5x 3x 4x 7x 5x

4x 5x 3x 4x 7x 5x

1 2 3 4 5 6

1 2 3 4 5 6

− + − − +

− + − − +

≤

≥

1

1

(We do not really replace the constraint. We simply transform it for the purpose of finding
cover inequalities.) The second (≥) constraint can be written as:

 − ≤4 5 12x 5x 3x 4x 7x x1 3 4 5 6+ − + + − −

Substitute x1 = 1 − x1′, x3 = 1 − x3′, and x6 = 1 − x6′ to get

 4 5 111 3 6x x 3x 4x 7x 5x2 4 5′ ′ ′ ≤+ + + + +

Similarly, for the first inequality, we get:

 4x 5x x x 7x x1 3 6+ + + + +2 4 53 4 5 17′ ′ ′ ≤

We can then use each of these independently to construct cover inequalities. The preced-
ing constraint implies (among others) that:

 (x x x x that is, the variables cannot all have th1 3+ + +4 5 3′ ′ ≤ ee value 1)

Converting back to original variables, we get:

 x x x x1 4 5+ − −3 1≤

183Integer Programming

and we could add this new SOS constraint to the original LP, and resolve it.
In general, any non-SOS constraint can be written in the form:

 j K

j ja x b
∈

∑ ≤

where K refers to the subset of non-zero coefficients and we can assume that aj > 0. We
have deleted the subscript i for the row to simplify the notation.

Let S be any subset of K such that:

 j S

ja b
∈

∑ >

The set S defines a cover. S is called a minimal cover if:

 j S

j ka a b for all k S
∈

∑ < ∈−

that is, every element of S must cover b. In our example, for

 4 3 7 5 172 4 5x 5x x 4x x x1 3 6+ + + + +′ ′ ′ ≤

we could say that the set S = {1, 2, 3, 4, 5, 6} is a cover. The sum of the coefficients is greater
than 17. However, there are a number of smaller covers. If we remove x2′, the set is still a
cover. If we also remove x3, the result, S = {1, 4, 5, 6} is still a cover. However, if we remove
any other element, S is no longer a cover; the sum will not be greater than 17. This set is
called a minimal cover, and the cover inequality is:

 x x x x1 + + +4 5 6 3′ ′ ≤

or, equivalently,

 x x x x1 4 5 6− − + ≤ 1

If the set S is a cover, then every 0–1 solution must satisfy the cover inequality:

 j S

jx S
∈

∑ ≤ − 1

There is a simple procedure for finding a minimal cover. Begin with S = K. Pick any index
to delete from S such that the remaining indices still form a cover. Repeat until no index
can be deleted without making the coefficient sum less than or equal to b. By repeating this
process several times in a systematic way, we could generate all possible minimal cover
inequalities. However, for large practical problems, the number of cover inequalities can
be exponential. Therefore, we need a method for efficiently finding a good cover.

Unfortunately, the approach described earlier is not very practical for large prob-
lems. Suppose that one of the non-SOS constraints contains 50 variables, and each
cover inequality has approximately 25 variables; then the constraint allows only half
of the variables to be used in any 0–1 solution. The number of potential minimal cover

184 Operations Research

inequalities is 50
25() ≈ 1.26 × 1014. Generating all possible covers is not a very practical

strategy, for even if we could generate all covers, we would discover that most of
them were unnecessary in the following sense. The original purpose behind construct-
ing these constraints was to force the LP into a 0–1 extreme point. Most of the covers,
although perfectly valid, will have no effect on the current optimal solution to the LP. The
preferred approach would be to solve the LP, and then, if the solution contains fractional
values, to look for a single cover inequality that makes the current LP solution infeasible.

To illustrate this process, consider the following simple problem:

maximize z 12x 13x 11x 10x

subject to: 12x 13x 12x 11x

1 2 3 4

1 2 3

= + + +

+ + + 44

jx or

≤ 29

0 1=

Solving this problem as an LP (with constraints 0 ≤ xj ≤ 1), we find that x* = (1, 1, 0.333, 0),
with z* = 28.667. We want to find a set S such that:

 1. The set S forms a cover of the constraint:

 j S

ja b
∈

∑ >

therefore,

 j S

jx S
∈

∑ ≤ − 1

 2. The current LP solution violates the cover inequality:

 j S

j
*x S

∈
∑ > − 1

It is fairly easy to show that, if xj* = 0, then j will never occur in the set S. Because every
xj* ≤ 1, if any of them are zero, the constraint will never violate the cover inequality. It is
also easy to prove that, if xj* = 1, then we can always include it in the set S. If the corre-
sponding j is not in a set S that satisfies the aforementioned criteria, then adding j to S will
still be a cover. Therefore, in our example, we will include x1 and x2 and ignore x4. The only
question is whether to include x3. Observe that when we do not include it, we do not get a
cover; but, when we do add it to S, we get a cover and the current solution violates the cover
inequality, as required:

 x x x1 2 3+ + ≤ 2

We now add this constraint to the original problem and solve the LP again. If the new solu-
tion is fractional, we look for another cover inequality.

We now present a simple algorithm for finding effective cover inequalities. Let x* be the
optimal solution to the linear programming problem with 0 ≤ xj ≤ 1, and suppose that we

185Integer Programming

want to find a valid cover inequality for one of the non-SOS constraints that will cut off the
current LP solution. Consider any non-SOS constraint of the form:

 j K

j ja x b
∈

∑ ≥ + 1

(We will repeat this procedure for each of the non-SOS constraints separately.)
Define the elements of S using the 0–1 variables sj, where:

s
if j s

Otherwise
j

1

0

∈





We claim that this problem is equivalent to solving the following 0–1 knapsack problem:

minimize z 1 x s

subject to a x b

j K

j
*

j

j S

j j

= −
∈

∈

∑

∑

()

≤

The constraint ensures that the solution will be a cover. If the optimal value of z in this
problem is less than 1, then the corresponding cover inequality will make the current
LP solution infeasible. For a proof of this claim, refer to the work of Crowder et al.
(1983).

In this subproblem, we do not actually require the optimal value of z. It is only necessary
to find a z value less than 1, so we can use a variation of the biggest bang for your buck heu-
ristic, which will be described in the following, to find an approximate solution efficiently.
This method may miss a valid cover; but if it does find one, it will be acceptable.

We present a method for finding an approximate solution to the following 0–1 knapsack
problem:

maximize z t x

subject to a x b

j S

j j

j S

j j

=

≤

∈

∈

∑

∑

The LP version of the knapsack problem is very easy to solve optimally. The algorithm sorts
all of the variables in decreasing order of bang for buck. The cost coefficient tj represents the
value (bang) that we get from each xj, while aj represents the cost (buck) or weight associ-
ated with the limited resource b. Process the variables in decreasing order of {tj/aj}, and set
xj = 1 as long as the constraint is still satisfied. Let k be the index of the first variable that
will not fit in the knapsack. Define the amount of space left in the knapsack (the residual) as:

r b aj

j k

= −
<
∑

186 Operations Research

and set xk equal to the fraction just large enough to use all remaining capacity:

x

r
a

k
k

=

The rest of the xj’s for j > k are set to 0.
This simple one-pass assignment gives the optimal objective function for the LP and has

only one possible fractional variable. Let z* be the objective function value. The optimal
value z for the 0–1 knapsack problem will be less than or equal to z*. If z* is not integer
valued, we can round it down, and use it to approximate the 0–1 knapsack solution. Thus,
we do not actually solve the 0–1 knapsack problem.

The bang for buck heuristic also gives us a lower bound on the 0–1 knapsack problem. If we
ignore the fractional variable xk, we have a feasible 0–1 solution and, therefore, the optimal
0–1 solution is bounded below by z* − tkxk and above by z*. In particular, if the LP has no
fractional variable, the solution zI must be optimal.

Our situation presents a type of reverse knapsack problem: minimize a cost function and
have at least (b + 1) selected for inclusion in the knapsack. We can apply the same bang for
buck heuristic; only we select the variable with the smallest ratio first, and keep selecting
until the solution is feasible.

Consider the previous example: 12x1 + 13x2 + 12x3 + 11x4 ≤ 29 and x* = (1, 1, 0.333, 0).
The knapsack problem becomes:

minimize z 0s 0s 0.667s 1s

subject to 12s 13s 12s 11s

1 2 3 4

1 2 3 4

= + + +

+ + + ≥≥ 30

The heuristic solution is: s1 = s2 = s3 = 1 or S = {1, 2, 3} with the value of z = 0.667, which is
less than 1. Therefore, the corresponding cover inequality, x1 + x2 + x3 ≤ 2 cuts off the cur-
rent LP solution, as required.

Cover inequalities are included, as an option, in most of the higher quality commercial
packages. These implementations usually develop as many cover inequalities as possible
in a preprocessor, and then solve the reduced problem using branch-and-bound or other
techniques. Some implementations may use the technique repeatedly, after each iteration
of branch-and-bound.

In large practical test problems, Crowder et al. (1983) have discovered that the main
advantage of cover inequalities does not rely on getting 0–1 extreme points. However,
the objective function value for the resulting LP is much closer to the final integer
optimum. In other words, the cover inequalities appear to be defining very strong cuts
into the feasible region. This has a dramatic effect on the branch-and-bound routine
because tree nodes will now be fathomed much earlier, and the bounds will tend to
be considerably stronger. As mentioned at the outset, it is possible to solve pure 0–1
problems with up to 10,000 0–1 variables to optimality in a reasonable amount of
computer time.

Since then, many other inequalities have been developed and incorporated into com-
mercial software. We are now solving problems with millions of 0–1 variables routinely.
See Johnson et al. (2000) for several additional examples.

187Integer Programming

4.7 Lagrangian Relaxation

4.7.1 Relaxing Integer Programming Constraints

At each node of the branch-and-bound algorithm, we solved a relaxation of the corre-
sponding integer programming problem, relaxing the hard constraints to produce an easy
subproblem. Namely, we relaxed the integer constraints, and solved the resulting LP. The
solution to the easier problem is an upper bound on the original (maximization) problem
because we have ignored some of the original restrictions.

With Lagrangian relaxation, we find that it is not always necessary to relax the integer
constraints. In some special problem instances, we could relax other constraints and leave
the integer restrictions in the problem, and still produce an easy integer problem. Recall
from Chapter 3 that some integer problems, such as network problems, can be easy to
solve.

Consider the following general definition of an integer programming problem:

maximize z c x

subject to Ax b

Dx e

x intege

T=

≤

≤

rr

This formulation is the same as before except that we have divided the set of constraints
into two groups. Assume that the constraints of the form Ax ≤ b are relatively easy, while
the constraints Dx ≤ e are hard. If we could ignore the second set of constraints, then the
integer problem would be easy to solve.

Unlike the LP relaxation, we will not ignore the hard constraints completely. Instead, we
will add a penalty term to the objective function that adds a cost for violating these restric-
tions. This penalized function is called the Lagrangian and is written in the form:

maximize L x,u c x u Dx e

subject to Ax b

x integer

u

T T() ()=

≤

≥

− −

0

The vector u contains one entry for each of the constraints in the set Dx ≤ e. The variable
ui represents the penalty associated with violating constraint i in this group. Observe that,
if we choose any fixed values for these penalties, then the resulting function becomes a
linear function of x, and because the remaining constraints are easy, we can maximize this
function with respect to x.

To simplify the discussion, suppose that there is only one hard constraint:

–d x ej j

j

n

≤
=
∑ 0

1

188 Operations Research

and therefore, the penalty u is a single scalar term. Initially, set u = 0 and solve the easy
integer problem ignoring the hard constraint. Having done this, we are likely to discover
that the solution violates the hard constraint, which means that:

–d x ej j

j

n

>
=
∑ 0

1

If we now keep x fixed and increase u, we will decrease or penalize the Lagrangian function.
Suppose we now choose some fixed positive penalty value for u, and rewrite the

Lagrangian as a function of x:

maximize L x,u c ud x ue

subject to Ax b

x integer

j j j

j

n

() = +

≤

()
=
∑ −

1

This problem is, once again, an easy integer problem for any fixed value of u. The penalty
on the hard constraint will eventually force the LP to move to an integer solution that is
feasible when u is large enough.

If we make u too large, the term (dx − e) becomes negative. That is, if we put too much
emphasis on satisfying the constraint, it will be over-satisfied, and we will have gone too
far. The value of u is no longer penalizing the objective function. Larger values of u will
now increase L(x, u). At this point, we can penalize the objective function by using a smaller
value of u.

The optimal value of the Lagrangian function is expressed as a min-max problem:

(x,u)minimize maximum L

u≥0 xx integer

which means that we want to find the value of u that has the greatest penalty effect on
L(x, u). This problem in itself is rather difficult; however, we can take advantage of the fact
that, when we fix u and maximize over x, the problem is easy. Similarly, when we fix x, and
minimize over u, the problem becomes an unconstrained linear function of u, and is also
easy to solve. More accurately, it is easy to decide whether u should increase or decrease (if
possible) to minimize L(x, u).

4.7.2 A Simple Example

Consider the following example problem, which is illustrated in Figure 4.9:

maximize z x x

subject to x x

x x or

2

= +

+ ≤

=

1 2

1

1 2

2

2 2

0 1,

189Integer Programming

Observe that, if a 0–1 problem does not have any constraints, it is trivial to maximize. That
is, if the objective function coefficient cj is positive, then set xj = 1; otherwise, set xj = 0. We
can express the problem in Lagrangian form as:

minimum maximum x 2x u 2x x1 2 1 2

u

– –+ +()
≥

2

0 ,x∈()0 1

We begin with u = 0, and note the maximum of the problem is L(x, 0) = 3 with x1, x2 = 1.
However, this point violates the constraint, so we substitute these values of x into the
Lagrangian, and consider the result as a function only of u.

–minimum u

u

3

0≥

This function can be minimized by choosing u as large as possible. We could try u = 5, for
example; and when we substitute this value into the original Lagrangian, we get:

maximum x 2x 2x x

maximum x x

1 2 1 2

x

1 2

x

+ +

= +

()
=

=

– –

– –
()

(

,

,

5 2

9 3 10
0 1

0 1))

The optimal solution to this problem is to set both decision variables to zero. The corre-
sponding function value is L(x, 5) = 10. This time, when we substitute x into the Lagrangian
in terms of u, we find:

– –minimum u() u

u

0 0 2 2

0

=

≥

x1

x2

2x1 + x2 ≤ 2

x2 ≤ 1

2

1

1

max z = x1 + 2x2

FIGURE 4.9
Simple Lagrangian problem.

190 Operations Research

This subproblem tells us to decrease u as far as possible. We already know however that
when u = 0, it will tell us to increase u. So, the correct value of u must lie somewhere
between these two extremes.

Observe that, for any value of u, we can solve for x and find the value of L(x, u). Figure 4.10
illustrates what we have learned so far about L(x, u) as a function of u.

Recall that we want to minimize L(x, u) as a function of u. When u = 0, we found x = (1, 1)
and the function was defined by the decreasing line as u increases. This expression is valid
as long as x = (1, 1); but then at some point, the optimal solution for x changes, and we get
a new linear function describing L(x, u). We now know what that linear function is when
u = 0 and u = 5, yet we do not know how it behaves in between these two points. The two
line segments in Figure 4.10 represent our best guess at the moment. In particular, it looks
as if the minimum value of the Lagrangian will be found when u = 1, so we try that next.

Substituting u = 1 into the Lagrangian gives:

– –

–
,

,

maximum x x 2x x

maximum x x

1 2

x

1

x

1 2

0 1

2

0 1

2 1 2

2

+ +

= + +

()
=

=

()

())

The maximum of this function is L(x, 1) = 3 when x = (0, 1). If we substitute x = (0, 1) into
the original function, we get:

 (,) – –L x u u() u= = +2 1 2

This new section of the Lagrangian is added to the previous approximation to get the func-
tion illustrated in Figure 4.11.

From this function, we obtain a new estimate of the minimum value of u = 0.5. Once
again, we substitute this value into the Lagrangian and solve for x.

3 5421 6

1
2
3
4
5
6
7
8
9

10

L (x∗, u)

u

x = (0, 0)

x = (1, 1)

FIGURE 4.10
L(x*, u) as a function of u.

191Integer Programming

maximum x 2x x x

maximum x

1 1 2

x

x

+ +

= +

()
=

=

()

2

0 1

2

0 1

0 5 2 2

1 5 1

– . –

.
,

,()

The maximum of L(x, 0.5) = 2.5 occurs at x = (0, 1) or x = (1, 1). It is easy to verify that this
is the true minimum of the Lagrangian. That is, we will not find any new solutions that we
have not already described in Figure 4.11.

Let us summarize a number of very useful properties of the Lagrangian, and indicate
how we can make use of these properties.

• The Lagrangian method always finds an integer solution, although the solution
found is not necessarily feasible.

• If the solution, xI is feasible, and if the original function, zI at xI is equal to the value
of the Lagrangian, then xI is optimal for the original integer problem.

• Most important, if z* is the solution of the relaxed LP, L(x, u) is the optimal solution
to the Lagrangian, and zI is the (unknown) optimal integer function value, then

 () *z L x, u zI ≤ ≤

A proof of these relationships can be found in Fisher (1985).
In other words, the value of the Lagrangian always gives a bound on the optimal integer

solution that is at least as good as the LP. Therefore, if we use the Lagrangian instead of the
LP in any branch-and-bound algorithm, we may get better results. The LP bound is never
better than the bound from the Lagrangian. In our simple example problem, the optimal
integer function value zI = 2 when zI = (0, 1). The LP solution occurs at x = (0.5, 1) with
z* = 2.5. The LP and the Lagrangian both give the same upper bound.

4.7.3 The Integrality Gap

Let LI be the optimal solution to the Lagrangian when the integer variables are forced to take
integer values, and let L* be the optimal solution to the Lagrangian when the integer variables

1 32

1

2

3

u

L(x∗, u)

4

4

FIGURE 4.11
L(x*, u) as a function of u.

192 Operations Research

are allowed to take on real values (i.e., when we drop the integer constraint on the Lagrangian).
It can be proved that the optimal solution for L* is precisely equal to the optimal solution z*
to the LP. (In fact, the penalty terms u in the Lagrangian will be identical to the corresponding
dual variables in the constraints.) Therefore, we can expand the preceding inequality to be:

 z L L zI I≤ ≤ =* *

We use the term integrality gap to describe the difference between LI and L* which is
the amount by which the Lagrangian decreases when we add the integer constraints. In
the example problem, when we solved the Lagrangian without integer restrictions, we
obtained integer solutions anyway. Adding the integer constraints does not change the
function value. There is no integrality gap. Because the optimal solution to the Lagrangian
is equal to the LP solution in this example, the Lagrangian will never give a better bound.
Indeed, we saw that z* = 2.5, and LI = 2.5. When we construct the Lagrangian to get an
easy integer problem, we actually do not want it to be too easy; we want an integrality gap
so that the Lagrangian bound is better than the LP bound. We provide an example of this
type of Lagrangian function in the next section.

4.7.4 The Generalized Assignment Problem

Consider the generalized assignment problem which was introduced and formulated in
Section 4.3.5. This problem is similar to the standard assignment problem, where we want
to assign jobs to machines for example, except that, in this case, we can assign more than
one job to the same machine subject to some capacity limitations.

The generalized assignment problem has a wide variety of practical applications. We
could, for example, be assigning computer programs to a set of processors, or customer
orders to a set of delivery vehicles, or university students to sections of a course. The
capacity might represent a space restriction (in the truck) or a limit on total available time.
The problem formulation can be written as follows:

maximize z c x

subject to x 1 for i 1, 2, ,

ij ij

j=1

m

i=1

n

ij

=

= = …

∑∑

nn

a x b for j m

x or for all i j

j=1

m

i ij j

i

n

ij

∑

∑ ≤ = …

=

=

1 2

0 1

1

, , ,

,

where there are n jobs and m machines. The variables xij = 1 if job i is assigned to machine j.
The payoff for assigning job i to machine j is cij. Each machine has a capacity bj, and each
job requires ai units of machine capacity. The first set of constraints forces each job to
be assigned to exactly one machine, while the second set of constraints ensures that no
machine has its capacity exceeded.

In the standard assignment problem, the size of each job and the capacity of each machine
are equal to one. We have already seen in Chapter 3 that the basic assignment problem is

193Integer Programming

relatively easy to solve. Surprisingly, when we generalize the machine capacity constraint,
we create an integer programming problem that is difficult to solve. The LP solution is not
necessarily an integer solution.

A straightforward formulation of the Lagrangian is to move the capacity constraints into
the objective function:

L x, u c x u a x bij ij j

j=1

m

j=1

m

i=1

n

i ij j

i

1 0 0 1() min maxu x ,= > =() ∑∑∑ − −
==1

n

ij

j=1

m

subject to x 1 for i 1, 2, , n

∑

∑











= = …

When uj = 0, this problem is trivial to solve. We can consider each job independently, and
simply put it on the best machine (with the highest cij). This solution will generally violate
some of the capacity constraints, so we can increase the corresponding penalty terms, uj,
and construct a new simple problem with:

 c c u aij ij j i= −

This penalizes placing all jobs on the machines whose capacities are exceeded. Now,
we solve this new problem where we again place each job on the best possible machine
using the values cij. Unfortunately, this formulation is a little too easy. The solution of the
Lagrangian (in terms of x) would give 0–1 answers even if we solved it as an LP. Therefore,
there is no integrality gap and the optimal Lagrangian function value will be the same as
the LP function value for the original problem. The corresponding Lagrangian will not
produce better bounds than the LP.

The same problem could also be formulated in the following way as a Lagrangian:

min max() u (,)L x, u c x u x 1x ij ij i

j=1

m

j=1

m

i=1

n

ij

i=1

n

1 0 1= = ∑∑∑ − −∑∑

∑











≤ = …
=

Subject to a x b for j mi ij j

i

n

, , ,1 2
1

This formulation can be interpreted as considering each machine separately. Initially, we
start with u = 0 and assign the best possible jobs to each machine without violating the
capacity restrictions. Each machine can be thought of as defining an independent knapsack
problem. Although the knapsack problem is not as easy as the simple assignment solu-
tion that we used in the previous formulation, it is still a relatively easy problem in many
practical situations.

The solution obtained will generally assign some jobs to more than one machine and
other jobs will be unassigned, which are both infeasible because every job must be assigned
to exactly one machine in any feasible solution. When a job i is assigned to more than one
machine, the corresponding penalty term will be positive and we can use a positive value
of ui to penalize the Lagrangian. However, when a job i is unassigned, the term will be
equal to −1, and we use a negative value of ui to penalize the infeasibility. Thus, we do not
restrict ui to have a non-negative value.

194 Operations Research

In this formulation, if we solve the Lagrangian as an LP, we will get a fractional solution.
In particular, each knapsack (machine) may have one fractional part of a job assigned to it.
By solving the Lagrangian as a sequence of knapsack problems, we get an integer solution,
and therefore, the problem will, in general, have an integrality gap. The integer restriction
on the Lagrangian will decrease the objective function value. Hence, the Lagrangian will
give a better upper bound than the standard LP bound.

This approach has been used successfully by Fisher et al. (1986) to obtain practical solu-
tions to the vehicle routing problem, in which a given set of customer orders must be
assigned to delivery trucks. Each order takes a fixed amount of space in the truck, and
there is a capacity restriction on the size of each vehicle.

4.7.5 A Basic Lagrangian Relaxation Algorithm

A succinct general description of a Lagrangian relaxation algorithm is given in the follow-
ing. We omit implementation details because specific implementations vary considerably,
depending on the application.

 1. Select an initial value for u0 (say u0 = 0), and find the maximum of the Lagrangian
with respect to x with u fixed. Suppose the solution is L0 at x0. Define k = 0 to be
the current iteration.

 2. Substitute the current solution xk into the Lagrangian objective function to get a lin-
ear function of u. If the i-th coefficient of u is negative, then the Lagrangian can be
reduced by increasing the i-th component of uk. If it is positive, then we can decrease
the Lagrangian by decreasing the i-th component of uk provided it is feasible to do so.

 3. Determine a value of uk+1 such that the Lagrangian Lk+1 < Lk. (There are many
methods for doing this, some of which rely on trial and error.)

 4. If no decrease can be found, stop. Otherwise, set k = k + 1, and go back to step 2.

4.7.6 A Customer Allocation Problem

We will illustrate the basic method of Lagrangian relaxation by solving a distribution
problem. Many companies operate multiple distribution warehouses to supply products
to their customers. One of the common problems facing such companies is to determine
which set of customers should be assigned to each warehouse. Because of the additional
delivery costs, it usually does not make economic sense to have a customer’s demand
satisfied by more than one warehouse. This is referred to as a single sourcing constraint.

Consider a delivery problem in which four customers must be served from three ware-
houses. The cost of satisfying each customer from each warehouse is illustrated in the fol-
lowing table. Each customer has a demand that must be met, and each warehouse has a
maximum capacity.

Warehouses

Customers 1 2 3 Demand di

1 475 95 665 19
2 375 150 375 15
3 360 180 180 12
4 360 180 360 18

Capacity bj 18 27 20

195Integer Programming

The problem can be formulated as a generalized assignment problem where xij = 1
if customer i is served by warehouse j. Every customer must be served by exactly one
warehouse, and every warehouse has a capacity constraint on the set of customers it can
service.

minimize c x

subject to x 1 for all

ij ij

ji

ij

j

:

∑∑

∑ = ccustomers i

d x b for all warehouses j

x or

i ij j

i

ij

≤

=

∑
0 11

If we solve the problem as an LP with (0 ≤ xi ≤ 1), we get a total cost of 890, but two of
the customers are served from two warehouses. This violates the 0–1 constraint on the
variables.

We construct a Lagrangian function by penalizing the customer constraints:

L x, u maximum minimum c x u x 1u x ij ij

ji

i

i

ij

j

() ,= +



={ } ∑∑ ∑ ∑0 1 −








≤∑:subject to d x b fi ij j

i

oor all warehouses j

or, equivalently:

L(x,u) maximum minimum c u x u

sub

u x ij i ij i

iji

= + ={ } ∑∑∑0 1, −

jject to d x b for all warehoi ij j

i

: ≤∑ uuses j

Observe that because this problem is a minimization in x, we construct the Lagrangian as
a maximization in u. When we substitute any fixed value of u into the Lagrangian, this
problem becomes a simple multiple knapsack problem. We can treat each warehouse as
an independent knapsack problem, and find the least expensive customers for that ware-
house. However, because we have dropped the customer constraint, there is no reason
why a customer cannot be assigned to more than one warehouse, or in fact, to no ware-
house. In particular, if we set u = 0 initially, we discover that the optimal solution is x = 0.
(No customers are assigned to any warehouse!) To make customers attractive to the ware-
houses, at least some of the costs must be negative; that is, we must choose initial values for
the u vector to be negative enough to make some of the Lagrangian costs negative. We will
choose u = (−475, −375, −360, −360), a somewhat arbitrary choice, but one in which the
new Lagrangian costs have at least one negative cost for every customer. We can subtract

196 Operations Research

the second smallest cost in each row to ensure that the smallest cost will be negative. (In the
first row, we can subtract 475 from each element.) Now, every customer is desired by at least
one warehouse. The new Lagrangian costs are:

Warehouses

Customers 1 2 3 Demand di

1 0 −380 190 19

2 0 −225 0 15

3 0 −180 −180 12

4 0 −180 0 18

Capacity bj 18 27 20

When we solve the knapsack problem for each warehouse we find:

Warehouse 1: Does not take any customers (all costs are zero).
Warehouse 2: Would like to take all of them, but can take only customers 2 and 3 due

to capacity constraints for a cost of −405.
Warehouse 3: Takes customer 3 for a cost of −180.

The value of the Lagrangian function is the sum of these costs minus the sum of the penal-
ties, ui: 0 − 405 − 180 − (−1570) = 985. This first approximation is already a better bound on
the solution than the LP solution, which has a value of 890.

When we now examine the customer constraints, we see that no warehouse took customer
1 or 4, and two warehouses took customer 3. To encourage at least one warehouse to take cus-
tomers 1 and 4, we want to decrease the cost for those customers (that is, decrease u1 and u4).

In order to decrease the number of warehouses that want customer 3, we increase the
cost slightly. There are many popular methods for doing this, but they all essentially
involve trial and error. We can change all three ui values at once, or we can change them
one at a time. We can take small steps, and keep increasing them until the Lagrangian
stops increasing, or we can take large steps (too far) and then back up. Without elaborating
on details, we will briefly illustrate the first couple of steps.

Suppose we decide to change the three ui values by 200. (A small change by 1 or 2 does
in fact increase the Lagrangian.) Then, the new u values are (−675, −375, −160, −560) and
the costs will be:

Warehouses

Customers 1 2 3 Demand di

1 −200 −580 −10 19

2 0 −225 0 15

3 200 20 20 12
4 −200 −380 −200 18

Capacity bj 18 27 20

197Integer Programming

The three knapsack problem solutions are:

Warehouse 1: Takes customer 4 (customer 1 will not fit) for a cost of −200.
Warehouse 2: Takes customer 1 for a cost of −580.
Warehouse 3: Takes customer 4 for a cost of −200.

The value of the Lagrangian is: −200 − 580 − 200 − (−1770) = 790. We thought that we were
moving in a direction that increased the Lagrangian; and, in fact, the Lagrangian will
increase for the fixed previous value of x. Unfortunately, as we continue to increase the
change in u, we eventually get a new minimum solution x, and the Lagrangian starts to
decrease. Apparently, we have gone too far; so let us try again, using a smaller change for
the values of u by 10. The new u vector is: (−485, −375, −350, −370), and the resulting cost
matrix is:

Warehouses

Customers 1 2 3 Demand di

1 −10 −390 180 19

2 0 −225 0 15

3 10 −170 −170 12

4 −10 −190 −10 18

Capacity bj 18 27 20

The knapsack solutions are:

Warehouse 1: Takes customer 4 for a cost of −10.
Warehouse 2: Takes customers 2 and 3 for a cost of −395.
Warehouse 3: Takes customer 3 for a cost of −170.

The Lagrangian function is: −10 − 395 − 170 − (−1580) = 1005. At this stage, customer 1 is
still unserved, and customer 3 is still served by two warehouses. Decreasing u1 further
and increasing u3 should lead to a further increase in the Lagrangian.

In fact, the value of the optimal solution to the Lagrangian for this problem is 1,355,
which also happens to be the optimal integer function value (with customer 4 assigned to
warehouse 1; customers 2 and 3 to warehouse 2, and customer 1 to warehouse 3). Thus, for
this particular example problem, the Lagrangian bound is tight.

4.8 Column Generation

Many integer programming problems can be stated as a problem of determining what
patterns or combinations of items should be assigned to each of a set of orders. Problems
of this type arise frequently in some of the most important industrial and organizational
applications, and are typified by the following examples.

198 Operations Research

In problems involving vehicle routing, customer orders are to be assigned to trucks and
routes. A pattern might be a set of customers that could feasibly fit on one truck load (and
be delivered by a driver without violating any workday or time delivery constraints).

In airline crew scheduling, work pieces (flight legs) must be assigned to airline crews
(teams including pilots, navigators, flight attendants, etc.). A pattern might be one (or sev-
eral) day(s) of work for one crew consisting of several feasible flight legs (with constraints for
required rest time between flights, layovers, constraints on legal flying hours per day, etc.).

Various cutting stock problems involve choosing which orders should be cut from each
piece of stock material. In this context, a pattern would include a set of orders that could be
cut from one piece of material. The orders might be pieces of fabric cut out for dresses, or
large rectangular sheets of paper cut from a large roll.

An example of a shift scheduling problem is determining how to assign hospital work
shifts to nurses or doctors. In shift scheduling, a pattern might consist of a feasible set of
shifts that a nurse could work over a two week rotation.

Each of these problems could be solved in the following way:

 1. Construct all possible feasible assignment patterns.
 2. Define xi = 1 if we decide to use pattern i.
 3. Define ci to be the total cost of using pattern i.
 4. Define aij = 1 if customer/order/leg/shift j is included in pattern/route/work-

stretch i.

To simplify the discussion, we will use the example of vehicle routing. Given a set of cus-
tomer orders that will be assigned to one truck, we can calculate the (minimum) cost of
paying a driver to visit all of the locations and return to the warehouse. We could then
solve the following 0–1 integer programming problem:

minimize c x

subject to a x (for

i i

i

n

ij i

=
∑

=

1

1 each customer j)
i

n

=
∑

1

Customer j may be included in many different possible routes. We want to find a mini-
mum cost set of routes such that every customer is covered exactly once. This type of
problem, called a set partitioning problem, has very special structure; and there are a
number of specialized software codes for this problem that can solve extremely large prob-
lem instances (with millions of variables) optimally (Barnhart et al. 1998).

For small enough problem instances, the exhaustive enumeration or construction proce-
dure suggested earlier might be a reasonable way to find optimal solutions. Unfortunately,
the number of possible routes is an exponential function of the number of customers.
Count the number of ways you can feasibly select a subset of customers, and you will dis-
cover that this approach is not at all practical.

Instead, we are going to begin by constructing a small subset of potential routes. It is
important here that the number of routes be greater than the number of customers, but not
exponential. These routes should include each customer at least a couple of times; but the
routes do not have to be particularly good ones. The usual procedure is to use a simple
heuristic to construct reasonable routes.

199Integer Programming

We now solve this problem as a linear programming problem (with 0 ≤ xi ≤ 1), and
then use the dual values to help us find a new route (column). We add this new column to
the problem and solve the linear program again. We continue this process until no new
column can be added, and we then solve the 0–1 integer problem optimally. This final
problem does not give the optimal solution to the original problem because it typically
accounts for only a small fraction of the possible feasible routes. However, the solution to
the linear program is optimal in the sense that there is no new column that can be added
that could reduce the cost of the linear programming problem. Because the LP is a lower
bound on the IP, the true integer solution is bounded by the optimal LP and the IP solution
that we obtain.

Consider the following simple vehicle routing example. Suppose that a fleet of trucks
must travel on a square grid road network, and each edge in the road network takes one
hour of travel time. Each driver can travel at most 10 hours. Each truck must begin at
the depot (marked with the letter “D”), visit one or more customers (marked with num-
bers from “1” through “6”), and then return to the depot. The network is illustrated in
Figure 4.12. In this network, for example, the route from “D” to “1” to “D” will take six
hours; the route from “D” to “4” to “5” to “D” will take eight hours; and the route from “D”
to “1” to “2” to “D” will take 10 hours.

To initiate the procedure, select at least six feasible routes, and compute the cost of each
route. These routes form the initial set of columns. We have chosen the following set of
columns, where each customer is in two routes. (We intentionally chose poor routes to
illustrate that the quality of these routes does not matter at this point, although normally,
reasonable routes should be selected.)

Cost

10 8 10 10 10 10

Customer x1 x2 x3 x4 x5 x6 RHS

1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1
5 1 1 1
6 1 1 1

4

6

5

3 2

1D

FIGURE 4.12
Vehicle routing example.

200 Operations Research

Solving this as a linear program gives: z = 28; x2, x4, x6 = 1. The solution is integral by
coincidence (with 0 ≤ xi ≤ 1). The dual variables are (−2, −10, 0, −8, −10, 0). First, we will
illustrate how we solve this problem. Later, we will illustrate why it works.

The duals (one for each row implies one for each customer) represent the sensitivity of
the objective function to changes in the RHS. (Increasing the RHS by 1 would result in an
increase in the objective function of the corresponding dual variable). In our case, it would
decrease the objective function because the duals are negative.

Consider the following special problem of finding a single route that starts at the depot,
visits some customers, and returns to the depot in at most 10 hours. The cost of the route
is the total time; however, for every customer that is visited, increase the cost by the cor-
responding dual variable. For example, a route that goes from “D” to “4” to “5” to “D” will
cost 8 − 8 − 10 = −10. We claim that if we had initially added a column with customers 4 and
5, and then computed the Simplex tableau for the current basic feasible solution, the new
reduced cost would be precisely −10. Since it is negative, it can immediately enter the basis.

Cost

10 8 10 10 10 10 8

Customer x1 x2 x3 x4 x5 x6 x7 RHS

1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1 1
5 1 1 1 1
6 1 1 1

Solving this as a linear program again gives: z = 28; x2, x4, x6 = 1. However, the dual variables
are now (−10, 0, −10, 0, 0, −8). Again, by inspection, we find a route with a negative reduced
cost. The new column corresponds to “D” to “1” to “3” to “D” for a cost of 8 − 10 − 10 = −12.

Solving this as a linear program again gives: z = 27; x2, x3, x5, x6, x7, x8 = 0.5. The new dual
variables are now (−4, −6, −4, −3, −5, −5). By inspection again, we find a route with a nega-
tive reduced cost. The best new column corresponds to “D” to “5” to “4” to “6” to “D” for
a cost of 10 − 5 − 3 − 5 = −3.

After a few more iterations, we find a solution with z = 20 and x9, x10 = 1 corresponding
to two routes: customers {1, 2, 3} and {4, 5, 6}. The final dual variables are: (0, −2, −8, 0, −2,
−8). The reader should verify that there are no feasible routes with a negative reduced cost,
and therefore, this is the optimal solution to the LP. In fact, because this is by chance an
integer solution, it is also the optimal integer solution.

Cost

10 8 10 10 10 10 8 8 10 10

Customer x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

1 1 1 1 1 1
2 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1
5 1 1 1 1 1
6 1 1 1 1

201Integer Programming

Normally, column generation produces a fractional LP solution, and no new column can
be created with a negative reduced cost. This means that no such column exists. Column
generation is an optimal procedure for the linear programming problem. Moreover, the
optimal solution to the LP is a lower bound on the optimal solution to the corresponding
integer programming problem.

Current software packages with column generation use specialized software to solve
the resulting partitioning problem optimally. Methods have been designed that use the
special structure of the problem to solve very large problems to optimality. The solution
is optimal for the given set of columns. There is no guarantee that there is no new column
that could be added to produce a lower integer answer. However, the integer function
value is often quite close to the linear function value. In general practice, column genera-
tion tends to produce very good solutions.

4.9 Software for Integer Programming

An essential component in any solver for integer programs or mixed integer programs is
the underlying linear programming solver used for generating lower bounds, separating
and selecting subproblems. Dramatic improvements in LP solvers, coupled with faster,
more powerful hardware, have led to a wide range of software for integer programs,
incorporating a variety of the techniques discussed earlier in this chapter. Performance
enhancements have been remarkable, but software solvers for integer programming prob-
lems still are often characterized by their requirements for significant amounts of memory
and computation time.

No one strategy works for all integer programming models. The cutting plane methods
that successfully exploit the special structure of the traveling salesman problem are not
the same techniques that would be effective on an integer problem having a different
structure. Commercial codes have the advantage of ease of use, but for many practical
(large-scale) integer problems, successful solution may require a skillful analyst to develop
a customized solver, based on just the right branching strategy, bounding strategy, or tai-
lored cutting plane mechanism.

AIMMS software offers an integrated modeling system for solving pure integer, mixed
integer, and 0–1 programming problems. Input and output are supported by the alge-
braic modeling language and graphical user interface for which AIMMS is well-known.
AIMMS modeling and optimization platform supports building and solving problems for
applications such as workforce and financial portfolio optimization, production planning
and scheduling, logistics, and transportation. AIMMS allows analysts to evaluate mul-
tiple action plans and assess the impact of different and continuously changing scenarios.
LINDO Integrated Modeling Language is a comprehensive tool for expressing integer
optimization models. LINDO API includes an integer solver that works together with
linear, nonlinear, and quadratic solvers.

IBM ILOG CPLEX Optimizer (commonly referred to as CPLEX) is a powerful suite of
solvers including solvers for integer and mixed programming that can run on different
platforms. The CPLEX solvers have been used to solve large real-life optimization prob-
lems with millions of variables and constraints. They are often integrated with convenient
and powerful modeling languages, such as GAMS and AMPL modeling systems for large-
scale optimization of linear and nonlinear mixed integer programs, a combination that

202 Operations Research

offers advanced features for solving difficult integer programming problems for which
other software systems may be inadequate.

SAS/OR systems, described in previous chapters, also have capabilities for solving pure,
mixed, and 0–1 integer programming problems. SAS OPTMODEL provides an integrated
modeling environment, with special features for solving mixed integer problems by using
parallel branch-and-bound techniques with cutting planes and heuristics, and decomposi-
tion algorithms for mixed integer programming problems.

MIPIII Mixed-Integer Optimizer from Ketron Management Science allows the user to
match the problem structure to an appropriate solver, and exploits the user’s knowledge of
the model through the use of pre-solvers, special approaches for knapsack problems, the
use of branching priority lists, and a choice of stopping criteria.

Gurobi Optimizer provides solvers for mixed integer solutions of linear, and quadratic
programs. It uses advanced implementations of new MIP algorithms using parallel non-
traditional search techniques and cutting planes.

Google OR Tools offers an interface to several MIP solvers. By default, it uses COIN-OR
branch and cut implementation, an open source solver from the Computational
Infrastructure for Operations Research project (COIN-OR). However, one can also use
other MIP solvers (such as Gurobi) with Google OR Tools wrapper. Google’s OR Tools are
offered for various platforms (Windows, Mac OS and Linux) and languages (C++, Java,
and Python).

Software for specialized applications often provides unique and convenient user inter-
faces as well as efficient solution techniques directed specifically to the type of application.
For example, software for scheduling systems may yield a competitive edge in manufac-
turing and production environments. The underlying scheduling methodology forming
the backbone of such software systems may be based on a classical 0–1 programming
model (matching activities to time slots subject to constraints) or may perform priority or
rule based scheduling with release dates, deadlines, or due dates. Other considerations
include ease of modeling the processes and operations in a production scheduling system,
and the ability to incorporate materials handling, quality assurance, shop floor data, and
production activity control subsystems (Seyed 1995).

Many integer programming problems can be viewed as routing problems, and numer-
ous software packages are available to solve problems cast into this framework (Hall and
Partyaka 2016, Horner 2018). For an overview of approaches, see Bosch and Trick (2014).

4.10 Illustrative Applications

4.10.1 Solid Waste Management (Antunes 1999)

Along with extensive political, social, and economic changes in Portugal during the past
several decades, urban population growth has increased dramatically. Authorities are
faced with the resulting problem of disposing of significant amounts of municipal solid
waste generated in population centers such as Lisbon, Coimbra, and Oporto. By the 1990s,
the Centro Region Coordination Agency was looking at growth rate projections that indi-
cated that the waste management problem would rapidly extend beyond the major urban
centers to affect smaller municipalities and rural areas as well.

203Integer Programming

The collection of waste was already being handled effectively; in fact, by 1991, approxi-
mately 90% of households were served by modern fleets of vehicles collecting garbage. But
disposal of the collected waste was being dealt with using the worst possible techniques:
huge open air dumps that periodically burned the waste. And whereas hazardous, dan-
gerous, and toxic waste was being managed and monitored by the national government
under a separate initiative, the massive amounts of ordinary solid waste were the respon-
sibility of regional authorities. The Centro Region needed to develop a clear view of how
solid waste would be managed, from the time it is generated, through the phases of col-
lection and reduction, until it is finally disposed of in a sanitary landfill that is built and
operated according to strict and appropriate regulations.

Storage space for solid waste is a major consideration. Volume reduction based on com-
posting is effective only on the organic portion of the waste, which is a small and decreas-
ing proportion of total waste in the Centro Region. Subsequent separation from glass,
metal, and plastics represents an added expense in the composting regimen. Incineration
is the most effective way of reducing waste volume, but set-up costs are extremely high,
and the environmental concerns over fly-ash and hazardous bottom-ash combine to argue
against the use of incineration on a large scale.

Compaction is less effective than incineration, but it is cheaper and has the additional
advantage that it can be applied early in the process, during either the generation or the col-
lection phases. Thus, compaction can substantially decrease transportation costs between
collection points, transfer stations, and landfills.

With these issues in mind, an analyst developed a mixed integer programming model
having nearly 10,000 variables, about 100 of which were 0–1 variables, and about 10,000
constraints. The model combines elements of a p-median problem with a capacitated
facility location problem. The model included 18 possible sites for sanitary landfill
locations, and 86 possible sites for transfer station locations. Problem parameters were
based on projections for the year 2014 in order to accommodate anticipated population
growth rates.

Multiple objectives were considered during the development of this solid waste manage-
ment model. On the one hand, it is aesthetically desirable to locate sanitary landfills as far
as possible from urban centers (subject to the very legitimate not-in-my-backyard reaction of
rural residents). But it is also expeditious to keep the landfills as close as possible to waste
producers, to minimize costs of transportation.

The minimum cost objective was ultimately given greater weight. In achieving this
objective, a number of constraints were imposed. Landfills and transfer stations have a
minimum capacity (in tons per day) to take advantage of economies of scale. There is a
maximum distance to be traveled by the trucks during their daily collection and transfer
trips. Landfills are placed in the municipalities with the largest populations. Finally, col-
lection and transfer trucks are routed to avoid mountainous regions with narrow winding
roads, both for economic reasons and out of respect for the fragility of natural resources
in the national parks.

Because of the complexity of the model, the analyst initially assumed that it would not
be possible to solve the mixed integer problem using a general exact method on the PC
equipment available for this study. A greedy heuristic based on capacitated transshipment
methods was developed, and the results obtained in this way were included in the initial
reports presented to the Centro Region Coordination Agency for consideration. However,
a new version of XPRESS-MP software running on slightly faster processors allowed the
model to be solved exactly with reasonable computational effort.

204 Operations Research

The final solution developed in conjunction with the Agency called for eight land-
fills, each with a specified capacity, and eight transfer stations, also each having a
specified capacity. It was possible to delay the capital investment needed for three of
the transfer stations (without violating the maximum truck trip distance constraints)
so that initial expenditures could be concentrated on the more urgently needed sani-
tary landfills.

The results of this study brought some credible and rational order to a previously
chaotic situation. The solution developed during this study led the representatives from
throughout the Centro Region to adopt a Strategic Municipal Solid Waste Plan that
serves as a guide during the present process of implementing the proposed waste man-
agement system.

4.10.2 Timber Harvest Planning (Epstein et al. 1999)

The Chilean forestry industry consists primarily of large private firms that own pine and
eucalyptus plantations and are vertically integrated, comprising pulp plants, sawmills,
and paper market operations. Short-term harvest scheduling (over a three-month period)
amounts to matching stands of timber, of a given age and quality, to market demands
that are typically defined by the length and diameter of each piece of timber. The process
of cutting harvested trees into products having required lengths and diameters is called
bucking. Bucking sequences are expressed in terms of lengths to be cut from timbers of
decreasing diameters.

Different types of harvesting equipment are used in different terrains. Steep slopes
require towers or cables, while flat areas can be harvested using tractors or skidders.
In either case, bucking can be done on the ground and the resulting pieces transported
to their respective destinations, or entire logs can be delivered to a central location
for bucking. Transportation costs (which can include road building costs) play a sig-
nificant role in the decisions that select timber from a certain origin and assign it to a
destination.

Determining an optimal harvest plan is a difficult combinatorial problem that involves
selecting mature timber stands available at specified locations, and assigning them accord-
ing to product demand; obtaining optimal bucking patterns to utilize the timber itself in
the most valuable way; and minimizing transportation costs, subject to the firm’s harvest-
ing equipment limitations and trucking capacities.

A principal component of the harvest plan is the specification of optimal bucking pat-
terns, from among exponentially-many possible patterns. The solution is based on an LP
model, and incorporates a branch-and-bound approach using column generation to create
the bucking sequences. In the branch-and-bound tree for generating bucking patterns, a
path from the root node to the bottom of the tree represents a bucking sequence; the termi-
nal node in the tree represents the product (a piece of timber having a certain diameter cut
to required length); and the terminal node’s level in the tree denotes the product’s position
in the bucking process.

The column-generation technique improved the harvest value by 3% to 6% over the
fixed bucking patterns that had been in use previously when harvest planning was done
manually by experienced human planners. Furthermore, transportation costs were cut
substantially when the model solution revealed the savings that could be obtained by
bucking and shipping directly to market destinations rather than transshipping through
intermediate central bucking locations.

205Integer Programming

Other applications of operations research in the Chilean forestry industry include sys-
tems for:

• Scheduling trucks among timber stands, mills, and destination ports.
• Selecting stands for harvest, and partitioning the timber for logs, sawtimber, and

pulpwood, using mixed integer LP models.
• Determining the optimal placement of harvesting equipment and the optimal

locations of access roads within the forest.
• Long-term planning over a 50-year horizon to maintain steady and consistent

supplies of timber, which involves the purchase, sale, and rental of timber lands;
choosing appropriate silviculture regimes for different plantations; and planning
for mills and other industrial processing plants.

4.10.3 Propane Bottling Plants (Sankaran and Raghavan 1997)

During recent years, the importation, bottling, and distribution of liquefied petroleum gas
(LPG) in India has transitioned from a government-controlled operation into a private-
sector enterprise. Two major import and storage facilities (ports), already in place, provide
supplies of LPG. Industrial customers acquire LPG in bulk directly from these locations,
but the needs of other domestic residential and commercial establishments are supplied
through a network of dealer agencies. Customers use LPG contained in cylinders, and
when empty, these cylinders are picked up by dealers and replaced by filled cylinders.
Each dealer town must have a bottling plant where empty cylinders can be replenished for
future distribution to customers.

Because the sources of LPG and the customer market are already established, the prob-
lem was to determine the pattern and mechanisms for distributing LPG from the two stor-
age facilities to the customers. Tanker trucks can transport LPG from the source to dealer
locations for bottling, but it is also feasible to operate mobile bottling plants. Considerations
for mobile operations include not only capital investment and operating and distribution
costs, but also public safety and firefighting capabilities at all intermediate storage points.

Strategic decisions for dealer and bottling facility location are complicated by the fact
that any necessary future increases in capacity at a given location can be undertaken only
if such increases are provided for in the original layout. Thus, a significant portion of
expansion costs are incurred during original construction, although the payoff from such
expansion will not be realized until the projected market growth actually takes place.

The problem facing the Shri Shakti company is optimally locating the bottling plants,
determining the long-run size of each facility, and projecting the target date at which each
facility will commence operating at full (expanded) capacity. The integer programming
model used for this problem involves about 400 dealer towns and 2,500 constraints, and
seeks to minimize total cost of operations in the target year. Costs include:

• Fixed annual costs that are independent of volume throughput at the plants
• Costs of transporting LPG from the two ports to the plants
• Cost of bottling
• Costs of transporting bulk and cylinder LPG and empty cylinders among bottlers,

dealers, and customers

206 Operations Research

Determining the amounts of LPG to be distributed through the network dictates the
location and size (capacity) of each proposed facility. Complicating the problem were
uncertainties about competition, corporate takeovers, market growth, and initially some
inaccuracies in data defining the distances between sites.

A solution to this problem was developed using a linear programming-based branch-
and-bound method. Subsets of the problem were originally solved in which the subprob-
lems were defined by geographical or political boundaries. Combining these separate
solutions, however, often resulted in certain customers being served by distant in-area
suppliers instead of by closer plants just across a boundary. In order to remedy this inef-
ficiency, a novel and indirect method was designed for solving the full-scale problem.
Specially tailored software routines in Fortran were linked to extended versions of LINDO
software for mathematical programming.

Analysts working on this application created a well formulated model, developed a
comprehensive and accurate database, and engaged in illuminating discussions with Shri
Shakti’s board of directors, government advisors, and financial experts during develop-
ment of these solutions. The credibility of the resulting model and the proposed solutions
provided a much-needed foundation for successful planning, negotiating, and funding for
this newly privatized industry in India.

4.11 Summary

Many important engineering, industrial, organizational, and financial systems can be
modeled as mathematical programming problems in which the variables are restricted to
integer values, 0–1 values, or a mixture of integer and real values. Solving integer prob-
lems usually requires significantly more computational effort than is needed for solving
continuous (real) linear programming problems.

Certain 0–1 models have become rather famous because their structures seem to arise in so
many different kinds of practical applications. Specialized methods for solving such problems
have been devised that take advantage of the mathematical structure inherent in the problems.
These classical models include the traveling salesman problem, knapsack and bin packing
problems, set partitioning, and generalized assignment problem. Many complex problems can
be solved by identifying subproblems that have the characteristics of these well-known models,
and creating a solution to the large and difficult problem by solving some simple subproblems.

Among the most effective methods for solving general integer programming prob-
lems are branch-and-bound algorithms. These methods repeatedly break large problems,
which are not yet solved, into easier subproblems, imposing integer constraints along the
way, until a solution to the original problem is finally found. Solutions to real-valued LP
problems are used to guide the process, so that the computation does not escalate into an
enumeration of exponentially many possible solutions.

A number of other approaches have been developed and refined over the years. Cutting
plane and cover inequality methods repeatedly introduce new constraints into integer
problems in order to exclude non-integer extreme points from the feasible region, and
then use simple LP solutions to locate the optimum, which then occurs at an integer point.
Lagrangian relaxation incorporates constraints into the objective function by placing a
penalty on any violated constraint. Any solution that violates a constraint has a lower value
than a solution with no constraint violation. The penalties must be chosen appropriately

207Integer Programming

for the given problem. The technique of column-generation is applicable to problems such
as vehicle routing and workforce scheduling, in which customers or workers must be
assigned to trucks or work patterns. Incomplete initial solutions are iteratively built up
into complete optimal solutions.

Most methods for solving integer programming problems rely on solving linear sub-
problems using a standard technique such as the Simplex method. Thus, the performance
of many integer solution methods depends greatly on the efficiency of the underlying LP
methods. Recent improvements in LP solvers have contributed substantially to our present
capabilities for solving large practical integer problems efficiently.

Key Terms

active node
airline crew scheduling
assignment problem
backtracking
bin packing problem
binary integer programming
branch-and-bound
branch-and-bound tree
branching strategy
bounding strategy
capacity planning
capital budgeting problem
cargo loading problem
column-generation
convex hull
cover
cover inequality
current incumbent
cutting plane
cutting stock problem
employee scheduling problem
examination timetabling
facet
fathomed
fixed charge problem
flight crew
flight legs
general integer programming
generalized assignment problem
Gomory fractional cut
integer polytope
integer programming
integrality gap
jumptracking

208 Operations Research

knapsack problem
Lagrangian
Lagrangian relaxation
minimal cover
mixed integer programming
portfolio selection problem
production planning
production scheduling
relaxation
rotation
separate
separation rule
set covering
set packing
set partitioning
shift scheduling
single sourcing
sub-tour
traveling salesman problem
vehicle routing
warehouse location
work schedule
zero–one (or 0–1) programming

Exercises

4.1 A certain single-processor computer is to be used to execute five user programs.
These programs may be run in any order; however, each requires a specific set of
files to be resident in main memory during its execution. Furthermore, a certain
amount of time is required for each file to be brought into main memory prior to
use by a user program. The facts are summarized as follows:

User Program Files Needed for Its Execution

1 B, C, E
2 A, B, C
3 A, B, D
4 A, D, E
5 B, C

File Name
Amount of Time Required to

Bring It into Memory

A 30
B 20
C 25
D 35
E 50

209Integer Programming

 Initially, no files are in memory. The five user programs are to run in sequence, but
any order is feasible. At most, three files will fit in memory at one time. Clearly,
because some of the files are used by multiple programs, it would be wise to try
to schedule the programs to take advantage of files already in memory, so as to
minimize the change-over (setup) times between programs. Define decision vari-
ables and formulate this problem to sequence the five user programs to minimize
total change-over times. Note the similarity of this problem to one of the classical
integer programming models discussed in this chapter.

4.2 Suppose you have a directed acyclic graph having n nodes, in which node 1 is
designated as an origin and node n is designated as a destination. In Chapter 3, we
described the problem of finding the shortest path from the origin to the destina-
tion. Formulate this problem as a 0–1 integer programming problem. (Hint: Let
decision variable xij = 1 if the arc from node i to node j is in the shortest path.)

4.3 A small university computer laboratory has a budget of $10,000 that can be used to
purchase any or all of the four items described in the following. Each item’s value
has been assessed by the lab director, and is based on the projected utilization of the
item. Use a branch-and-bound technique to determine the optimal selection of items
to purchase to enhance the computing laboratory facilities. Show your branch-and-
bound tree, and give the total cost and total value of the items chosen for purchase.

Item Cost Value

NanoRobot $4,000 8
WinDoze simulator $2,500 5
Network pods $3,000 12
BioPrinter $4,500 9

4.4 Bruno the Beach Bum wishes to maximize his enjoyment of the seashore by taking
along an assortment of items chosen from the following list. Help Bruno pack his
beach bag with the most valuable set of items by using a branch-and-bound tech-
nique. Bruno’s beach bag is rated for a 20-pound load.

Item Weight Value

Coconut oil 4 16
Sun shades 2 10
Snorkel and fins 8 16
Folding chair 10 30
Bummer magazine 5 30

 Enumerate the number of packings (sets of items) for this problem, and draw a
complete tree of possibilities. How many of these sets are feasible packings? How
many subproblems are actually solved by your branch-and-bound procedure?
What is the optimal feasible set of items?

4.5 If a problem formulation has n variables and each variable has m possible integer
values, then a branch-and-bound tree could have as many as mn terminal nodes.
Verify this for the case m = 4 and n = 3.

210 Operations Research

4.6 Consider the following 0–1 integer programming problem:

maximize 5x 7x 10x 3x 4x

subject to x 3x 5x x x 3

2

1 2 3 4 5

1 2 3 4 5

− − −

−

+

+ + + ≤

xx 3x 3x 2x 2x 3

2x 2x 2x x 3

x 0 or 1 for all i

1 2 3 4 5

2 3 4 5

i

− − −

−

+ ≤

+ + ≤

=

–

 Solve this problem completely, using a branch-and-bound algorithm.
4.7 Suppose you wish to solve the following general integer programming problem

using branch-and-bound techniques.

maximize 3x 5x 2x

subject to x 5x 3x 8

2x x 5x 7

4x

1 2 3

1 2 3

1 2 3

1

+ +

+ + ≤

+ + ≤

+ 22x 3x 8

x 3x 3x 6

x x x 0 and integer

2 3

1 2 3

1 2 3

+ ≤

+ + ≥

≥, ,

 Use up and down penalties to determine which variable would be branched on
first. (Note: There is no correct answer, but you should be able to justify your
choice.)

4.8 Consider the following integer programming problem:

maximize 4x 5x

subject to x 4x 5

3x 2x 7

x ,x 0 and i

1 2

1 2

1 2

1 2

− −

+ ≥

+ ≥

≥ nnteger

 Calculate the penalties for branching up and down on variables x1 and x2.
4.9 Solve the problem given in Exercise 4.8 using Gomory fractional cuts.
4.10 Consider the following integer programming problem:

maximize 3x 4x

subject to 2x x 1

x 3x 4

x x 0 and inte

1 2

1 2

1 2

1 2

− −

+ ≥

+ ≥

≥, gger

211Integer Programming

 a. Compute the up and down penalties for branching on variable x2. Which way
would you branch first? Explain why.

 b. What can you say about variable x3, the surplus variable on constraint 1, with
respect to up and down penalties? Explain.

4.11 Suppose that you are solving a large 0–1 linear programming problem, and the LP
solution has

 * . , . , . , . , . , . , . , . , . ,x = ()0 3 0 9 0 1 0 9 0 9 0 8 0 9 0 9 0 7 0

 One of the constraints in the problem is:

 –1 10x 2x 4x 7x 6x 11x 9x 3x x 12x1 2 3 4 5 6 7 8 9 10− − − − −+ + + + + ≤

 In Section 4.6, we used a knapsack model to find a cover inequality that cuts off the
current LP solution. Describe the knapsack for this particular problem.

4.12 Suppose we are given a 0–1 linear programming problem in which one of the con-
straints is

 3x 4x 7x 3x 5x 6x 3x1 2 3 4 5 6 7+ + + ≥− − − 0

 Find a cover inequality that cuts off the current LP solution x* = (0, 1
2 , 0, 1,

1, 2
3 , 0)

4.13 A certain 0–1 linear programming problem involves the constraint

 x 3x 4x 5x1 2 3 4+ + + ≤ 6

 and the current LP optimum occurs at x* = (0.3, 0.3, 0.2, 0.8).
 Find a minimal cover inequality that cuts off the point x*.
4.14 Solve the problem in Exercise 4.6 again by first constructing cover inequalities, and

then using branch-and-bound if necessary.
4.15 We wish to assign three customers to two warehouses having limited capacity.

Each customer must be assigned to precisely one warehouse. The assignment
costs and the capacities are given in the following table. Solve this problem using
Lagrangian relaxation.

Warehouse 1 Warehouse 2 Demand

Customer 1 2 8 18
2 5 3 15
3 7 3 14

Capacity 30 18

212 Operations Research

4.16 Suppose that you are the manager of a small store that is open seven days per
week. You require the following minimum number of staff to work each day:

Sunday 5
Monday 3
Tuesday 4
Wednesday 4
Thursday 5
Friday 7
Saturday 7

 Each employee can work only five days per week, and must have the weekend off
(Saturday and Sunday) once every two weeks. The objective is to meet the demand
using the minimum number of employees. Describe a formulation of this problem
using column-generation. (Hint: Try to construct a work pattern for a two week
period.) Describe the meaning of the rows and columns in the master problem.
Provide an initial formulation of the LP; that is, pick a starting set of columns, and
write out the LP. Perform a few iterations of column generation. Describe how you
would formulate the subproblem.

4.17 In Section 4.8, it was suggested that column generation can be used to solve the
cutting stock problem. The simplest (one-dimensional) cutting stock problem can
be illustrated by the following example. Suppose we have a large supply of steel
reinforcing bars to be used in the construction of concrete pillars. The bars are all
50 feet long. We have a set of orders for re-bars of the following lengths:

Length Quantity

15 feet 3
10 feet 2
13 feet 5
18 feet 4
19 feet 5
23 feet 1

 These orders are to be cut from some of the 50 feet long pieces. It is not eco-
nomical to keep an inventory of the leftover pieces, so we sell them as scrap. We
want to minimize the total cost of scrap for cutting this set of orders. Suppose
that it costs (net) 0.50 per inch to throw away a scrap piece of re-bar. Formulate
this as a column-generation problem. Generate the initial solution, and per-
form one iteration of column generation. Explain your algorithm for solving the
subproblem.

4.18 Big City Wheel Trans (for disabled public transit users) has a large list of clients
who must be picked up and delivered to locations around the city. Each client has
a specific required pick-up time, and we assume that each customer travels alone.
Describe how to formulate this problem using column-generation. Suppose that
the primary objective is to minimize the number of vehicles required to satisfy
all demand. Describe what the subproblem would look like and what algorithm

213Integer Programming

you could use to solve it. Recall that the subproblem we solved in Section 4.8 was
solved by inspection, but in this exercise, you should define an algorithm to solve
the subproblem.

4.19 Formulate the examination timetabling problem as a 0–1 programming problem.
Let cik be the number of students who must take both exams i and k. Define a
penalty of (100 × cik) for having examinations i and k in the same time period,
and a penalty of (5 × cik) for having examinations i and k in adjacent time periods.
The objective is to minimize the total penalty costs. Let n denote the number of
examinations to be scheduled, and m denote the number of time periods avail-
able for exams.

References and Suggested Readings

Adams, W. P., and H. D. Sherali. 1990. Linearization strategies for a class of zero-one mixed integer
programing problems. Operations Research 38 (2): 217–226.

Antunes, A. P. 1999. Location analysis helps manage solid waste in Central Portugal. Interfaces 29 (4):
32–43.

Barnhart, C., E. L. Johnson, G. L. Nemhauser, M. W.P. Savelsbergh, and P. H. Vance. 1998. Branch-
and-price: Column generation for solving huge integer programs. Operations Research 46 (3):
316–329.

Beale, E. M. L. 1979. Branch-and-bound methods for mathematical programming systems. Annals of
Discrete Mathematics 5: 201–219.

Beasley, J. E. 1993. Lagrangian Relaxation, in Modern Heuristic Techniques for Combinatorial Problems.
Oxford, UK: Blackwell Scientific.

Benders, J. F. 1962. Partitioning procedures for solving mixed variables programming problems.
Numerische Mathematik 4: 238–252.

Bosch, R., and M. Trick. 2014. Integer programming. In G. Kendall, and E. Burke (Eds.), Search
Methodologies. Boston, MA: Springer.

Chen, D., R. G. Batson, and Y. Dang. 2010. Applied Integer Programming: Modeling and Solution.
Hoboken, NJ: John Wiley & Sons.

Cooper, M. W. 1981. A survey of methods for pure nonlinear integer programming. Management
Science 27 (3): 353–361.

Crainic, T., and J. Rousseau. 1987. The column generation principle and the airline crew scheduling
problem. INFOR: Information Systems and Operational Research 25: 136–151.

Crowder, H., E. L. Johnson, and M. Padberg. 1983. Solving large-scale zero-one linear programming
problems. Operations Research 31: 803–834.

Desrosiers, J., and F. Soumis. 1989. A column generation approach for the urban transit crew sched-
uling problem. Transportation Science 23: 1–13.

Desrosiers, J., F. Soumis, and M. Desrochers. 1984. Routing with time windows by column genera-
tion. Networks 14: 545–565.

Epstein, R., R. Morales, J. Serón, and A. Weintraub. 1999. Use of OR systems in the Chilean forest
industries. Interfaces 29 (1): 7–29.

Erlenkotter, D. 1978. A dual-based procedure for uncapacitated facility location. Operations Research
26: 992–1009.

Fisher, M. 1981. The Lagrangian relaxation method for solving integer programming problems.
Management Science 34: 1–18.

Fisher, M. 1985. An applications-oriented guide to Lagrangian relaxation. Interfaces 15 (2): 10–21.

214 Operations Research

Fisher, M.L., R. Jaikumar, and L. N. Van Wassenhove. 1986. A multiplier adjustment method for the
generalized assignment problem. Management Science 32: 1095–1103.

Francis, R. L., L. F. McGinnis, Jr., and J. A. White. 1992. Facility Layout and Location: An Analytical
Approach. Englewood Cliffs, NJ: Prentice-Hall.

Garfinkel, R. S., and G. L. Nemhauser. 1972. Integer Programming. New York: John Wiley & Sons.
Geoffrion, A. M., and R. E. Marsten. 1972. Integer programming algorithms: A framework and state-

of-the-art survey. Management Science 18: 465–491.
Glover, F. 1975. Improved linear integer programming formulations of nonlinear integer problems.

Management Science 22: 455–460.
Gomory, R. E. 1963. An Algorithm for Integer Solutions to Linear Programming, in Recent Advances in

Mathematical Programming. New York: McGraw-Hill.
Hall, R. W., and J. G. Partyka. Vehicle Routing Software Survey: Higher expectations drive transfor-

mation. OR/MS Today 43 (1): 40–49.
Hoffman, K. L., and M. Padberg. 1991. Improving LP-representations of zero-one linear programs

for branch-and-cut. ORSA Journal on Computing 3: 121–134.
Horner, P. 2018. Innovation powers dynamic VR sector. OR/MS Today 45 (1): 43–45.
Hu, Te C. 1970. Integer Programming and Network Flows. Reading, MA: Addison-Wesley.
Johnson, E. L., G. L. Nemhauser, and M. W. P. Savelsbergh. 2000. Progress in linear programming-

based algorithms for integer programming: An exposition. INFORMS Journal on Computing
12 (1): 2–23.

Jünger, M., T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi,
and L. A. Wolsey. 2009. 50 years of Integer Programming 1958–2008: From the Early Years to the
State-of-the-art. Heidelberg, Germany: Springer Science & Business Media.

Kolesar, P. J. 1967. A branch-and-bound algorithm for the knapsack problem. Management Science 13:
723–735.

Lawler, E. L. (Ed.). 1985. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization.
Chichester, UK: John Wiley & Sons.

Martello, S., and P. Toth. 1990. Knapsack Problems: Algorithms and Computer Implementations. Chichester,
UK: John Wiley & Sons.

Martin, R. K. 1999. Large Scale Linear and Integer Programming. Boston, MA: Kluwer Academic.
Nemhauser, G. L., and L. A. Wolsey. 1988. Integer and Combinatorial Optimization. New York: John

Wiley & Sons.
Papadimitriou, C. H., and K. Steiglitz. 1982. Combinatorial Optimization. Englewood Cliffs, NJ:

Prentice-Hall.
Parker, R. G., and R. L. Rardin. 1988. Discrete Optimization. Orlando, FL: Academic Press.
Piñedo, M. 1995. Scheduling: Theory, Algorithms and Systems. Englewood Cliffs, NJ: Prentice-Hall.
Plane, D., and C. McMillan. 1971. Discrete Optimization: Integer Programming and Network Analysis for

Management Decisions. Englewood Cliffs, NJ: Prentice-Hall.
Reiter, S., and D. B. Rice. 1966. Discrete optimizing solution procedures for linear and nonlinear

integer programming problems. Management Science 12 (11): 829–850.
Salkin, H., and K. Mathur. 1989. Foundations of Integer Programming. New York: North-Holland.
Sankaran, J. K., and N. R. Raghavan. 1997. Locating and sizing plants for bottling propane in south

India. Interfaces 27 (6): 1–15.
Schrijver, A. 1986. Theory of Linear and Integer Programming. New York: John Wiley & Sons.
Seyed, J. 1995. Right on schedule. OR/MS Today 22: 42–44.
Sharda, R. 1993. Linear and Discrete Optimization and Modeling Software: A Resource Handbook. Atlanta,

GA: Lionheart Publishing.
Syslo, M. M., N. Deo, and J. S. Kowalik. 1983. Discrete Optimization Algorithms. Englewood Cliffs, NJ:

Prentice-Hall.
Taha, H. A. 1975. Integer Programming: Theory, Applications, and Computations. Orlando, FL: Academic

Press.

215Integer Programming

Vielma, J. P. 2015. Mixed integer linear programming formulation techniques. SIAM Review 57 (1):
3–57.

Williams, H. P. 1990. Model Building in Mathematical Programming, 3rd ed. New York: John Wiley &
Sons.

Winston, W. L. 1987. Operations Research: Applications and Algorithms. Boston, MA: Duxbury
Press.

Wolsey, L. A. 1998. Integer Programming. New York: John Wiley & Sons.

http://taylorandfrancis.com

217

5
Nonlinear Optimization

Nonlinear optimization involves finding the best solution to a mathematical program-
ming problem in which the objective function and constraints are not necessarily linear.
Because nonlinear models include literally all kinds of models except linear ones, it is not
surprising that this category is a very broad one, and nonlinear optimization must incor-
porate a wide variety of approaches to solving problems.

The world is full of systems that do not behave linearly. For example, allowing a tree
to grow twice as long does not necessarily double the resulting timber harvest; and tri-
pling the amount of fertilizer applied to a wheat field does not necessarily triple the yield
(and might even kill the crop!). In a distributed computing system networked for inter-
processor communication, doubling the speed of the processors does not mean that all
distributed computations will be completed in half the time, because interactions among
processors now could foil the anticipated speedup in throughput.

This chapter examines optimization from a very general point of view. We will consider
both unconstrained and constrained models. Unconstrained optimization is often dealt
with through the use of differential calculus to determine maximum or minimum points
of an objective function. Constrained models may present us with systems of equations to
be solved. In either case, the classical underlying theories that describe the characteristics
of an optimum do not necessarily provide the practical methods that are suitable for effi-
cient numerical computation of the desired solutions. Nevertheless, a thorough grasp of
the subject of nonlinear optimization requires an understanding of both the mathematical
foundations of optimization as well as the algorithms that have been developed for obtaining
solutions. This chapter is intended to provide insights from both of these perspectives.
We will first look at an example of a nonlinear programming problem formulation.

Example 5.1

Suppose we want to determine a production schedule over several time periods, where
the demand in each period can be met with either products in inventory at the end of
the previous period or production during the current period. Let the T time periods be
indexed by i = 1, 2, …, T, and let Di be the known demand at time period i. Equipment
capacities and material limitations restrict production to at most Ei units during period i.
The labor force Li during period i can be adjusted according to demand, but hiring
and firing is costly, so a cost CL is applied to the square of the net change in labor force
size from one period to the next. The productivity (number of units produced) of each
worker during any period i is given as Pi. The number of units of inventory at the end of
period i is Ii, and the cost of carrying a unit of inventory into the next period is CI. The
production scheduling problem is then to determine feasible labor force and inventory
levels in order to meet demand at minimum total cost. The decision variables are the Li
and Ii for i = 1, …, T. The initial labor force and inventory levels are given as L0 and I0,
respectively. Therefore, we wish to

218 Operations Research

minimize C L L + C I

subject to L P E

– L i i 1
2

I i

i i

–

•

()
=

∑
≤

i

T

1

ii

i–1 i i

equipment capacities for i = 1, …, T

I + L P

 • ≥≥ D demand for i =1, …, T

I =I + L P D in

i

i i–1 i i i – • vventory for i =1, …, T

L I 0 for i =1, …, Ti i, ≥

This nonlinear model has a quadratic objective function, but linear constraints, and it
happens to involve discrete decision variables. Other nonlinear models may involve
continuous processes that are represented by time-integrated functions or flow prob-
lems described by differential equations.

5.1 Preliminary Notation and Concepts

A nonlinear function is one whose terms involve transcendental functions of the decision
variables or in which there are multiplicative interactions among the variables, or in which
there are other operations such as differentiation, integration, vector operations, or more
general transformations applied to the decision variables. Examples include sin (x), tan (y),
ex, ln(x + z), x2, xy, xey, and xy. When an objective function or problem constraint involves
such nonlinearities, we lose the guarantee that permitted us so conveniently to solve linear
programming problems: namely that we could operate on a system of linear equations
and if a solution existed, it could be found at one of the (finite number of) extreme points
or vertices of the feasible region. In dealing with nonlinear programming models, we will
see that points of optimality can occur anywhere interior to the feasible region or on the
boundary.

We will also see that there are no general methods suitable for application to all the dif-
ferent types of nonlinear programming problems. Indeed, many of the diverse types of
problems already presented in this book can be cast as nonlinear optimization problems:
integer programming problems can be expressed as nonlinear models; systems of dif-
ferential equations (as might be needed in continuous simulation models) can be viewed
as nonlinear programming problems; and interior point methods for solving linear pro-
gramming problems have a nonlinear aspect. So, it comes as no surprise that no single
algorithm can be expected to cover the entire class of nonlinear optimization. Instead,
special forms of nonlinear models have been identified, and algorithms have been devel-
oped that can be used on certain ones of these special cases. We will begin by describing
and discussing the most significant properties of nonlinear models that will lead us to an
understanding of some of these methods.

A nonlinear function may have a single maximum point, as seen at the point x = a in
Figure 5.1, or multiple maximum or minimum points, as seen in Figure 5.2. If we suppose
the region of interest to be the interval [a, f], then there is a global maximum at the point
x = f, but also local maxima at the points x = a and x = c. A local minimum occurs at x = b
and a global minimum occurs at x = d. Notice in the figure that local optima may occur
where the slope of the function is zero or at a boundary of the region.

219Nonlinear Optimization

More formally, a local maximum of the function f(x) occurs at a point x* in a feasible
region R if there is a small positive number ε such that

 f x* > f x for all x R for which x x* < () () ∈ − ε

A global maximum of the function f(x) occurs at a point x* if

 f x* > f x for all x R() () ∈

Corresponding definitions for local and global minima can be given.
Clearly, the shape or curve of the function will play an important role in optimization.

Two useful characteristics of the shape are convexity and concavity. For a convex function,
given any two points x1 and x2 in a region of interest, it will always be true that

 f x + 1 x f x 1 f x for 0 11 2 1 2(()) () () ()α − α α − α α≤ + ≤ ≤

In Figure 5.3, let x = b be a linear combination of points x1 and x2, corresponding to
αx1 + (1 – α)x2 in the definition earlier. Notice that any function value f(b) is always less
than (or below) any point on the straight line connecting f(x1) with f(x2). This is precisely
the characteristic of a convex function that will be useful in mathematical optimization.
An alternate description of convexity is that the first derivative is non-decreasing at all
points. As x increases, the slope of the function is increasing or curving upward.

For a concave function, the inequality is reversed, and any point on the function is
always greater than (or above) the point on the straight line connecting f(x1) and f(x2). In
Figure 5.4, the derivative of the function is always non-increasing or curving downward.

a x

f (x)

FIGURE 5.1
Single maximum point.

a b c d e f

f(x)

x

FIGURE 5.2
Multiple optima.

220 Operations Research

Notice that a straight-line function is both convex and concave. Definitions of convexity
and concavity can be extended mathematically to include functions of multiple variables,
but the concepts of curving upward and curving downward, respectively, are still preserved.

If a convex nonlinear function is to be optimized and there are no constraints, then
a global minimum (if one exists) is guaranteed to occur at the point x* where the first
derivative f’(x) of f(x) is zero. Figure 5.3 illustrates an unconstrained convex function with
a minimum at x*. Figure 5.5 presents an example of a convex function (e–x) with no mini-
mum. Similarly, for a concave function, a global maximum is guaranteed to occur where
f’(x*) = 0.

If there are constraints, then the shape of the feasible region is also important. Recall
that a convex region or convex set is one in which the line segment joining any two points

f(x)

xx1 x2b

FIGURE 5.4
Concave function.

x

f(x)

FIGURE 5.5
Convex function with no minimum.

f(x)

xx1 x∗ x2b

FIGURE 5.3
Convex function.

221Nonlinear Optimization

in the set is contained completely within the set. If the feasible region forms a convex set,
then the guarantees for global maxima and minima remain in effect, as described earlier.

More generally, the feasible region for a nonlinear programming problem is convex
whenever each of the constraint functions is convex, and the constraints are of the form
gi(x) ≤ bi. For example, the reader should verify that the function f(x) = x2 is convex; but
the regions defined by x2 = 4, or by x2 ≥ 9, are not convex. A local minimum is guaranteed
to be a global minimum for a convex objective function in a convex feasible region, and a
local maximum is guaranteed to be a global maximum for a concave objective function in
a convex feasible region.

Many functions that arise in nonlinear programming models are neither convex nor
concave. The function pictured in Figure 5.2 is a good example of a function that is con-
vex in one region and concave in another region, but neither convex nor concave over the
entire region of interest. Local optima are not necessarily global optima. Furthermore,
a point x for which f’(x) = 0 may be neither a maximum nor a minimum. In Figure 5.2, the
function f(x) at the point x = e has a zero slope. When viewed from the direction of x = d, it
appears that x = e may be a maximum; whereas when viewed from the direction of x = f,
the function appears to be decreasing to a minimum. In fact, x = e is an inflection point.
For example, the function f(x) = x3 has an inflection point at x = 0.

For unconstrained problems with just one variable x, necessary and sufficient condi-
tions for local optima of a twice differentiable function f(x) at x = x* can be summarized
as follows:

Necessary conditions:

df
dx

0 at x x*= =

d f
dx

0 for a local minimum at x x*
2

2 ≥ =

d f
dx

0 for a local maximum at x x*
2

2 ≤ =

Sufficient conditions:

df
dx

0 at x x*= =

d f
dx

> 0 for a local minimum at x x*
2

2 =

d f
dx

< 0 for a local maximum at x x*
2

2 =

When the second derivative is equal to zero, the existence of a local optimum is not certain.
For unconstrained problems involving multiple variables x = (x1, x2, …, xn), the necessary

condition for a point x = x* to be optimal is for the partial derivative of the objective func-
tion f(x), with respect to each variable xi, to be zero at x = x*; that is,

222 Operations Research

δ
δ

…f
x

0 for i 1, 2, , n
i

= =

We define the gradient of a function f(x1, x2, …, xn) to be the vector of first partial deriva-
tives, and denote it as

∇ = 





f(x , x , , x)

f
x

,
f

x
, ,

f
x

1 2 n
1 2 n

… δ
δ

δ
δ

… δ
δ

Then the necessary conditions can be stated more succinctly as

 ∇ = =f(x) 0 at x x*

This condition is also sufficient for a minimization problem if f(x) is convex (and for a
maximization problem if f(x) is concave). In fact, for a convex (concave) function, x* is also
a global optimum.

To determine whether a function f(x1, x2, …, xn) is convex or concave, it is useful to examine
the Hessian matrix Hf corresponding to f. The Hessian matrix Hf is an n × n symmetric matrix
in which the (i, j)-th element is the second partial derivative of f with respect to xi and xj. That is,

H x , x , , x

f
 x x

f 1 2 n

2

i j
() =











δ
δ δ

The function f is a convex function if Hf is positive definite or positive semidefinite for all
x; and f is concave if Hf is negative definite or negative semidefinite for all x.

If the convexity (or concavity) criterion is met, then optimization may be as simple as
setting the n partial derivatives equal to zero and solving the resulting system of n equa-
tions in n unknowns. However, since these are generally nonlinear equations, this system
may not be at all simple to solve. And if the objective function is not convex (or concave),
we lose the sufficiency condition, and x = x* could be a local minimum, a local maximum,
or a stationary point instead of an optimum.

The search for an optimal solution to a general nonlinear programming problem
must find and examine many candidate solutions to rule out local optima and inflec-
tion points. And it is not sufficient to examine just those points at which first derivatives
are zero, for an optimum could occur at a point where there is a discontinuity and the
derivatives do not exist. For example, in Figure 5.6, the function |x| has a minimum at 0,

x∗ x

f(x)

FIGURE 5.6
f(x) = |x|.

223Nonlinear Optimization

a non-differentiable point. Or the optimum could occur anywhere on the boundary of
the feasible region. For constrained problems, the shape of the feasible region (which
certainly may be non-convex) merely contributes further to the difficulty of the search.

Clearly, a single algorithm capable of making all of these considerations could not
operate efficiently. Therefore, the remaining sections of this chapter present a number of
different algorithms that have been developed for solving special classes of nonlinear pro-
gramming problems.

5.2 Unconstrained Optimization

The simplest unconstrained optimization problem occurs when the objective function f
involves just a single variable, is differentiable, and is concave for a maximization problem
or convex for a minimization problem. In that case, the equation df/dx = 0 can be solved
analytically to obtain the optimum value x* because the necessary and sufficient condi-
tions for optimality are met. If, however, this equation cannot be solved easily, it may be
reasonable to resort to an iterative search procedure. Because there is only one variable, a
one-dimensional search suffices.

5.2.1 One-Dimensional Search

The process begins by establishing an upper limit xu and a lower limit xl, within which an
optimum is known to exist, and choosing an initial trial solution x to be halfway between
the bounds:

x =

x + xu l()
2

Suppose a function f(x) is to be maximized and that f(x) is concave between xu and xl. Then the
general idea is to examine the slope of f(x) at the current trial solution x. If the slope is positive,
then f(x) is increasing and the optimum x* is greater than x, so x is a new lower bound on the
set of trial solutions to be examined. If the slope is negative, then f(x) is decreasing and the
optimum x* is less than x, so x is a new upper bound. Each time a new bound is established,
a new trial solution is computed (and choosing the midpoint is but one of several sensible
rules). The sequence of trial solutions thus generated converges to the maximum at x*. In prac-
tice, the process terminates when the bounds xu and xl enclose an interval of some predeter-
mined size ε, denoting an error tolerance. The algorithm can be stated succinctly as follows.

5.2.1.1 One-Dimensional Search Algorithm

 1. Establish an error tolerance ε. Determine an xu such that df(xu)/dx ≤ 0 and an xl
such that df(xl)/dx ≥ 0.

 2. Compute a new trial solution x = (xu + xl)/2.
 3. If xu – xl ≤ ε, then terminate. The current approximation is within the established

error tolerance of x*.

224 Operations Research

 4. If df(x)/dx ≥ 0, set xl = x.
 5. If df(x)/dx ≤ 0, set xu = x.
 6. Go to Step 2.

Example 5.2

The algorithm can be illustrated by the problem of maximizing

 f(x) x 16x 91x 216x 1804 3 2= + +− −

over the range 3.2 ≤ x ≤ 5.0, which is shown in Figure 5.7. The function is certainly con-
cave in the range 3.2 ≤ x ≤ 5.0, so we will apply the search to that range.

The derivative df(x)/dx = 4x3 – 48x2 + 182x – 216 will be used during the procedure.

1. xu = 5.0, xl = 3.2, and let ε = 0.15
2. x = (5.0 + 3.2)/2 = 4.1
3. 5.0 – 3.2 = 1.8 > ε
4. df(x)/dx at x = 4.1 is equal to –0.996 < 0, so set xu = 4.1 and leave xl = 3.2
2. x = 3.65
3. 4.1 – 3.2 = 0.9 > ε
4. df(x)/dx at x = 3.65 is equal to 3.328 > 0, so set xl = 3.65 and leave xu = 4.1
2. x = 3.875
3. 4.1 – 3.65 = 0.45 > ε
4. df(x)/dx at x = 3.875 is equal to 1.242 > 0, so set xl = 3.875 and leave xu = 4.1
2. x = 3.988
3. 4.1 – 3.875 = 0.225 > ε

x

1

2

3

4

3.4 3.6 3.8 4.0 4.2 4.43.2 4.84.6 5.0

f(x)

FIGURE 5.7
f(x) = x4 – 16x3 + 91x2 – 216x + 180.

225Nonlinear Optimization

4. df(x)/dx at x = 3.988 is equal to 0.12 > 0, so set xl = 3.988 and leave xu = 4.1
2. x = 4.044
3. 4.1 – 3.988 = 0.112 < ε, so the process terminates with the current trial solution

x = 4.044 and a function value of 3.99
Notice that at the point x = 4.044, the derivative of f(x) is –0.44 (close to zero); and at the
true optimum of x = 4, where f(x) = 4, the derivative is exactly zero, a necessary condi-
tion for optimality.

Other methods for a one-dimensional search include the Fibonacci method and a
related technique called the golden section method. These methods are discussed and
compared in Wilde (1964). The golden section search is based strictly on the use of func-
tion evaluations, and is particularly useful when first derivatives are not available. (See
Exercise 5.6.)

While a single-variable search method may seem too simplistic for practical nonlinear
optimization problems, such methods are often incorporated into more elaborate mul-
tivariate search procedures, and therefore warrant our awareness and understanding.

5.2.2 Multivariable Search: Gradient Method

If our objective is to maximize a function f(x) where x = (x1, x2, …, xn), then the previous
single-variable search is not applicable. Recalling the necessary and sufficient conditions
for the optimality of a solution x*, the necessary condition is that

δ
δ

…
f
x

0 at x x* for all i 1, , n
i

= = =

and this is sufficient if f(x) is also concave. So, it is tempting simply to approach the problem
as being that of solving a system of n equations, setting all the partial derivatives equal to
zero. This would allow us to find the stationary points by solving the equations ∇f(x) = 0.
However, f(x) and its partial derivatives are general nonlinear functions, and unless this
system of equations has some special structure, this system cannot be solved analytically.
So again, we turn to the use of iterative methods. And while the one dimensional search
technique does not apply directly, it does provide a framework for how to proceed.

In a one dimensional search, at each iteration we examined the derivative of the function
in order to decide whether to increase or decrease the current approximation to x*. There
were only the two choices along one dimension. Now, in an n-dimensional search space,
at each iteration there are infinitely many directions to change the current (x1, x2, …, xn),
and we can examine the partial derivatives to choose to move in that direction that yields
the fastest possible improvement in f(x). Whereas in a one dimensional search, we tried
to reach a point x at which df(x)/dx = 0, now our aim is ultimately to reach a point
x = (x1, x2, …, xn) at which all the partial derivatives of f(x) are equal to zero.

The method described here is known as the gradient search procedure. Recall that the
gradient of a function f(x) at a point x = x’ is:

∇ =() 





f x =

f
x

,
 f
x

, ,
f

x
 at x x

1 2 n
′ δ

δ
δ

δ
… δ

δ
′

226 Operations Research

and the gradient will be used here as an indication of the direction of the fastest rate of
increase of the function f(x), viewed from the point x = x’. The gradient method will gener-
ate successive points by repeatedly moving in the direction of the gradient at each point.

The next question is how far to move in the direction of the gradient. A move from an
initial point x0 all the way to a solution x* for which ∇f(x*) = 0 would involve a circuitous
route that would require constant re-evaluation of the gradient along the way. Because this
would be computationally unreasonable, our method will instead move in a straight line in
the direction of the gradient, and the distance to the next point will be: as long as f(x) keeps
increasing. At that new point where f(x) is no longer increasing, the gradient is re-evaluated
to determine the next direction to move, a distance for the next move is determined, and
the next point is computed. This process repeats until two successive points are essentially
the same, or ∇f(x) is within numerical tolerance of zero at one of the points.

This approach bears a resemblance to the method one might follow when climbing a
mountain. At a given point, look around and select the direction of steepest ascent in
the terrain, and follow that direction until the path is no longer ascending. At this point,
look around again and select the direction of steepest ascent, and continue to repeat this
process until arriving at a point at which none of the surrounding terrain is ascending.
Assuming the mountain is concave, the climber has now reached the peak.

This analogy is only a two variable case in which the two variables represent the hori-
zontal plane and the function value represents the vertical height of the surface of the
mountain. Let us now describe this steepest ascent process for maximizing an n-variable
function.

An initial approximation x0 is chosen, then successively a point xj+1 is found from the
current point xj as follows:

 x x d f xj+1 j j j= + ∇• ()

where dj specifies the distance to be moved in this iteration.
The value of dj must be found so as to maximize the function f at the new point; therefore,

we wish to

 maximize f x d f(x)()j j j+ ∇•

with respect to dj. Because all the other variables are now playing the role of constants in
this context, we actually are merely faced with the problem of maximizing a function of a
single variable. For this, we can take the derivative with respect to dj, set it equal to zero,
and solve for dj; or use a one dimensional search method such as described in Section 5.2.1.
The multivariable steepest ascent algorithm can now be stated succinctly as follows.

5.2.2.1 Multivariable Gradient Search

 1. Establish an error tolerance ε. Determine an initial approximation or trial solution
x0 = (x1

0, x2
0, …, xn

0). Set j = 0.
 2. Determine the value of dj that maximizes

 f(x d f(x))j j j+ ∇•

 and use that value of dj to evaluate xj+1.

227Nonlinear Optimization

 3. Compute the next trial solution:

 x = x + d f xj+1 j j j
• ()∇

 4. If |xj+1 – xj| ≤ ε, then terminate.

 ∇f x must be very close to zeroj+1()

 5. Set j = j + 1 and go to Step 2.

The gradient search always eventually converges to a stationary point as long as
f(xj+1) > f(xj) at every iteration. Note that a line search algorithm finds a local optimum.
Therefore, it is possible for a naïve line search algorithm to find a solution f(xj+1) < f(xj), in
which case convergence is not guaranteed. Consider the example in Figure 5.8. If the ini-
tial distance is long enough, then a search such as a bisection search could easily converge
to a worse solution than the initial solution, and the process could conceivably even cycle
back to xj.

It has been observed that the gradient method often overshoots. By going as far as pos-
sible while f(x) is increasing, excessive zig-zagging toward the optimum typically occurs.
Several modifications improve performance (Simmons 1975), but the simplest is to use
0.9dj instead of dj as the distance. This practice has been observed to double the conver-
gence rate.

It might be pertinent to mention here that not all methods for multi-variable optimiza-
tion rely on the use of derivatives. There are a number of methods that do not require
explicit first derivative information. For example, the gradient vector is composed of
n elements each of which measures the slope or the rate of change of the function if we
take a small step in each of the coordinate directions. Therefore, one simple method of
 approximating the gradient at xj is to perform n additional function evaluations at each

f(x)

xxj xj+1

Search direction

FIGURE 5.8
Potential problem for line searches.

228 Operations Research

of the points f(xj + δi) for each i, simply perturbing the i-th component of xj by some small
constant. The terms of the gradient measure the per-unit difference in the function value.
This same concept can be extended to approximating the second derivatives of a function.
Normally, it is preferable to provide an explicit function for the derivatives. However, if
that is not practical, and if function evaluations are not too expensive, the approximation
methods may be valuable.

5.2.3 Newton’s Method

A criticism that could be made of the gradient search method is that, although the gradient
direction is the best direction to move, viewed from the current trial solution, as soon as
we begin moving away from the current point, that direction is immediately not the best
direction any longer. And the farther we move, the worse the chosen direction becomes.
The gradient direction is an especially poor choice in the neighborhood of the optimum.
Therefore, convergence is not easily predictable.

This behavior is explained by the fact that the gradient search method follows the gradi-
ent direction dictated by a linear approximation to f(x) near the current trial solution xj.
Whereas a straight line is generally a poor approximation to a nonlinear function, most
general nonlinear functions can be reasonably well approximated by a quadratic function,
in the vicinity of the maximum.

Newton’s method is an iterative technique that makes use of this fact by choosing
as its next trial solution that point that maximizes the quadratic approximation to f(x).
Specifically, given a current trial solution xj, the next point xj+1 is computed as

 x x d H x f(x)()j+1 j j 1 j j= + ∇− −
•()

where:
H(x) is the Hessian matrix of f(x) evaluated at the point x
H–1(x) is its inverse

The optimizing distance dj can be chosen just as it was in the gradient search. Convergence
occurs when the direction vector becomes close to zero.

Newton’s method generally requires fewer iterations for convergence than the gradient
search method because it uses a better direction of movement from one point to the next.
However, there is little else to recommend this method from a practical standpoint. First,
of course, the function f must be twice continuously differentiable, and the Hessian matrix
must be nonsingular. The computational effort associated with inverting the Hessian
matrix is excessive. (For economy of computation, it is reasonable to use the same inverse
for several consecutive iterations. This slows convergence, but simplifies each iteration so
much that overall performance is actually improved.)

Even so, the calculations are more extensive than for the gradient search method, and
the efficiency diminishes rapidly as the number of variables increases because the matrix
H becomes quite large. Moreover, Newton’s method may fail to converge in general. The
formula for computing a new point xj+1 from xj does not necessarily imply an increase in
the function value, for it could be that f(xj+1) < f(xj). In particular, if the Hessian is posi-
tive definite, Newton’s method will approximate a quadratic minimum. If it is negative
definite, it approximates a quadratic maximum. When the Hessian is indefinite, Newton’s

229Nonlinear Optimization

method takes us to a saddle point solution of the approximation. Certainly, if f(x) were
quadratic and H(x) were negative definite, then the method would converge in one itera-
tion. In general, convergence to a local maximum is guaranteed, and occurs quite rapidly
for any smooth, continuous nonlinear function once we get close enough to the maximum.
However, close enough can be a very small region.

5.2.4 Quasi-Newton Methods

The computational demands of repeatedly inverting the n × n Hessian matrix H motivated
the development of a large number of modifications to the original Newton’s method.
These modifications differ from one another primarily in the way that the second deriva-
tives are approximated from one iteration to the next.

These Quasi-Newton methods begin with an arbitrary negative definite approximation
to H, or its inverse, and through a succession of improvements, eventually converge to the
true matrix H. For example, the methods could begin with H = –I, a negative identity matrix
at some initial point, x0. The Newton direction corresponds to a simple gradient direction.
We first perform a line search to get a new point, x1. Then, based on the new point and the
function value, we perform a rank 1 update to the matrix H (and H–1) which fits the current
points with a quadratic. In so doing, we correct the estimate of H in one dimension, but we
also maintain a negative definite approximation. This process is repeated using the new
estimate of H to perform a line search and get a new maximum at x2. After n iterations on
a negative definite quadratic function, the approximation is exact.

The first such method was introduced by Davidon (1959), and shortly thereafter was
improved upon by Fletcher and Powell (1963). The combined technique was known as
the DFP method. A few years later, minor variations were proposed independently by
Broyden (1970), Fletcher (1970), Goldfarb (1969), and Shanno (1970) and these became
known collectively as the BFGS update formula. This is the method upon which almost all
commercial software for nonlinear unconstrained optimization is based. The mathemati-
cal foundations and the precise formula typically used for updating the Hessian matrix is
given in Beale (1959) and Avriel (1976).

5.3 Constrained Optimization

General nonlinear objective functions with general nonlinear constraints are the subject of
this section. The methods to be applied will differ, depending on the nature of the con-
straints. Equality constraints can be dealt with using the method of Lagrange multipliers.
Inequality constraints require the more comprehensive Karush–Kuhn–Tucker theory, which
is central to the entire subject of mathematical programming. We will conclude with a short
discussion of some popularly used techniques.

5.3.1 Lagrange Multipliers (Equality Constraints)

The method of Lagrange multipliers is named after the 18th century French mathematician
Joseph-Louis Lagrange, and applies to nonlinear optimization problems with equality
constraints, which can be expressed in the form:

230 Operations Research

maximize f x
subject to g x b for ii i

()
() = = 11, …, m

where x = (x1, x2, …, xn).
We wish to find a solution such that each gi(x) = bi, so we are going to rewrite the original

problem as:

maximize F x, f x g (x) bi i() () ()λ − −=

=
∑λi

i

m

1

The quantities λi are called Lagrange multipliers, and it is clear that if all the equality con-
straints are met precisely, then F(x, λ) = f(x) for any values of λ1, λ2, …, λm. We wish to find
values of λ1, λ2, …, λm and x1, x2, …, xn that maximize F(x, λ) and also satisfy gi(x) = bi for
i = 1, …, m. Such a solution would solve our original equality constrained problem.

We already know that a necessary condition for an optimum of F(x, λ) is that δF/δxj = 0
for j = 1, …, n and δF/δλi = 0 for i = 1, …, m. Taking (m + n) partial derivatives of F, with
respect to the components of xj and the λi, and setting each equal to zero, we can write the
necessary conditions as

δ
δ

−
δ

δ
…f(x)

x
g

x
0 for j 1, , n

j

i i

j
λ

λ







 = =

=
∑
i

m

1

 g x b 0 for i 1, , mi i() − … = =

We now have a set of (m + n) equations in (m + n) variables, which may be solvable by
some iterative technique such as Newton–Raphson. There may be more than one critical
point, but if so, the global optimum will be among them.

As a final observation, it is interesting to apply the method of Lagrange multipliers to the
standard linear programming problem with constraints expressed as Ax = b, and to see
that the Lagrange multipliers are precisely equivalent to the dual variables. This is merely
a special case of a further generalization which will be examined next.

5.3.2 Karush–Kuhn–Tucker Conditions (Inequality Constraints)

The most general nonlinear programming problem can be defined as

maximize f(x)
subject to g x 0 for i 1, , mi() ≤ = 

where x = (x1, x2, …, xn). Clearly, any mathematical programming problem can be expressed
in this form. It is tempting to introduce slack variables and convert all the inequality con-
straints into equalities, then apply the method of Lagrange multipliers. However, the m
extra variables introduce an unwelcome computational expense, and we have more attrac-
tive alternatives that we will now consider.

Actually, we do try to extend the idea of Lagrange multipliers by recognizing that if
the unconstrained optimum of f(x) does not satisfy all the inequality constraints indicated

231Nonlinear Optimization

earlier, then when the constraints are imposed, at least one of the constraints will be sat-
isfied as an equality. That is, the constrained optimum will occur on a boundary of the
feasible region.

This observation suggests an algorithm for solving the problem. We begin by solving the
unconstrained problem of maximizing f(x). If this solution satisfies the constraints, stop.
Otherwise, we repeatedly impose increasingly larger subsets of constraints (converted to
equalities) until either a feasible solution is found via the method of Lagrange multipliers,
or until it is determined that no feasible solution exists.

Unfortunately, this method is very computationally demanding (and consequently
essentially useless on most problems of practical size), as well as not guaranteeing that
a solution found is globally optimal. Still, the Lagrange multiplier idea leads to what are
known as the Karush–Kuhn–Tucker conditions that are necessary at a stationary point,
corresponding to x and λ, of a maximization problem. The Karush–Kuhn–Tucker condi-
tions can be stated as:

δ
δ δ

…

λ

f
x

g
x

0 for j 1, , n

0 f

g

j

i i

j

i

i

− = =

=

≥

≤

=
∑
i

m

1

0 1

λ


(x) for i , ,m

oor i 1, , m

g x 0 for i 1, , mi i

=

= =

…

λ …()

The Karush–Kuhn–Tucker conditions correspond to the optimality conditions for linear
programming where the λ’s represent the dual variables. The gradient of the objective
function at the optimal solution, x, can be written as a non-negative linear combination
of the gradients (normal vectors) of the active constraints. The second condition states
that x must be feasible. The third condition is non-negativity, and the fourth condition
corresponds to complementary slackness: λ can be positive only if the corresponding con-
straint is active (gi(x) = 0). If the i-th constraint is satisfied as a strict inequality, then the i-th
resource is not scarce and there is no marginal value associated with having more of that
resource. This is indicated by λi = 0.

The Karush–Kuhn–Tucker necessary conditions are also sufficient for a maximiza-
tion problem if the objective function f(x) is concave and the feasible region is convex.
Establishing the convexity and concavity and applying the Karush–Kuhn–Tucker neces-
sary conditions do not yield procedures that are reasonable for direct practical numerical
application. However, the Karush–Kuhn–Tucker conditions do form the very foundation
of the theory of general mathematical programming, and will be seen again in the next
section where—at last—we will see some efficient computational methods.

5.3.3 Quadratic Programming

Quadratic programming comprises an area of mathematical programming that is sec-
ond only to linear programming in its broad applicability within the field of Operations
Research. While quadratic objective functions are not as simple to work with as lin-
ear objectives, we can see that the gradient of a quadratic function is a linear function.

232 Operations Research

Consequently, the Karush–Kuhn–Tucker conditions for a quadratic programming prob-
lem have a simple form that can make solutions to these problems considerably easier to
obtain than for general nonlinear programming problems.

The quadratic programming problem can be expressed in the following form:

maximize z c x d x x

subject to

j j jk j k= +
= ==
∑ ∑∑

j

n

k

n

j

n

1 11

a x b for i 1, …, m

x 0 for j 1, …, n

ij j i

j

= =

≥ =

=
∑

j

n

1

The problem can be expressed more succinctly, using matrix notation, as:

maximize z c x x Dx
subject to Ax b

T T= +
=

 x 0≥

where:
x and c are n-component vectors
A is an m × n matrix
b is m × 1
D is an n × n symmetric matrix.

Several algorithms have been developed to solve certain forms of quadratic functions, and
we will describe some of the best known and most widely used ones. Because of the com-
plexity of these procedures, we will give only brief overviews. The curious reader is urged
to consult a more advanced reference such as Simmons (1975) or Nash and Sofer (1996) for
a deeper appreciation of these methods.

One of the earliest and simplest methods for solving quadratic programs is Wolfe’s algo-
rithm (Wolfe 1959), which is still widely used today. In this method, a sequence of feasible
points is generated via a modified Simplex pivoting procedure that terminates at a point
x* where the Karush–Kuhn–Tucker conditions are satisfied. Because the Karush–Kuhn–
Tucker conditions represent a system of linear equations when the objective function is
quadratic, the problem reduces to finding a feasible solution to a system of equations.
Wolfe’s algorithm uses phase 1 of the Simplex algorithm to find a feasible solution. The
complementary slackness conditions are not linear, but the algorithm simply maintains a
set of active constraints, and allows only the corresponding λi dual variables to be greater
than zero. Wolfe’s method, like most of the later procedures, moves along an active con-
straint set.

When D is negative definite, Wolfe’s algorithm converges to an optimal solution, or dem-
onstrates infeasibility within a finite number of iterations, assuming that the possibility of
infinite cycling due to degeneracy is excluded.

233Nonlinear Optimization

Beale’s method (Beale 1959), introduced by E.M.L. Beale as early as 1955, is based on clas-
sical calculus rather than on the Karush–Kuhn–Tucker conditions. This method is appli-
cable to any quadratic program of the form described earlier except that Beale does not
require D to be negative definite or negative semidefinite (i.e., the objective function need
not be concave). Thus, this algorithm will generally yield local optima and the first solu-
tion generated will be the global optimum when the objective is concave.

Beale’s method partitions matrices and uses partial derivatives to choose pivots until it
is no longer possible to improve the objective value by any permitted change in a non-basic
variable. Initially, all redundant constraints are eliminated and an initial basic feasible
solution is determined via a Phase 1 Simplex process. The matrices are partitioned in such
a way that a new system of equations is developed in which the basic variables, along with
the associated constraints, are separated from the non-basic variables and their associated
constraints. Partial derivatives determine which non-basic variable to increase or decrease.

When an apparent solution is achieved, an examination of the second partial derivative
will determine whether the solution is a false optimum or not. If the second partial deriva-
tive is positive for some x, then the current solution is a minimum (rather than a maxi-
mum). In this case, the objective function can be improved by bringing x into the basis.

A slightly less popular, but more recent and more sophisticated method was origi-
nally presented by Lemke (1962). It is applicable to any quadratic problem, but is typically
described in terms of solving problems expressed in the form

maximize z=c x x Dx

subject to Ax b

T T−

≤

1
2

where D is not only symmetric but also positive definite. This new restriction on D is
critical and is used throughout the procedure. Lemke’s formulation of the constraints in
terms of inequalities rather than equations causes the Karush–Kuhn–Tucker conditions to
assume a particularly simple form which is exploited by the algorithm. These constraints
also include any non-negativity restrictions.

Lemke’s algorithm first formulates the Karush–Kuhn–Tucker conditions for the original
problem, then defines a new set of variables, from which a second quadratic program is
constructed. This new problem is solved and from its solution is obtained a solution to
the original problem. The basic strategy is to generate a sequence of feasible points until a
point is reached at which a certain gradient satisfies two specific restrictions. Three situa-
tions may arise, each of which is handled differently but results in a matrix being updated
via the usual Simplex transformation technique. When the algorithm terminates with an
optimal solution to the second quadratic program, the optimal solution to the original
quadratic program is constructed based on the definitions of the new set of variables.

Historically, we find that Beale’s method is used less extensively in practice than the
other two algorithms mentioned here. Computational experiments (Ravindran and Lee
1981) have shown that Lemke’s algorithm outperforms Wolfe’s and four other lesser-
known algorithms. Although Lemke’s algorithm can fail to converge, when convergence
does occur, it occurs more quickly than in the other methods.

Quadratic programming models are important for a number of reasons. General nonlinear
problems with linear constraints are sometimes solved as a sequence of quadratic program
approximations. Many nonlinear relations occurring in nature are not quadratic, but can
be approximated by quadratic functions and then solved with the methods just described.

234 Operations Research

However, a wide variety of problems fall naturally into the form of quadratic programs. The
kinetic energy of a projectile is a quadratic function of its velocity. The least-squares problem
in regression analysis has been modeled as a quadratic program. Certain problems in pro-
duction planning, econometrics, activation analysis in chemical mixture problems, and in
financial portfolio management are often treated as quadratic problems. We will elaborate
on this last problem in the following example.

Example 5.3

A classical problem that is often used to illustrate the use of the quadratic programming
model is called portfolio selection. A portfolio is a collection of assets, all of which
have positive present values (called prices) and which also have positive future values
that are currently unknown. Analysts often use the term rate of return on investment to
describe future value as follows:

 Future value Price 1 Rate of return on investment= × +()

Future values are positive but certainly may be less than present values (prices).
Rates of return are not known nor are they guaranteed. A very high expected return

on an asset is usually accompanied by great variability. The future values can be esti-
mated, but because such estimates are subject to error, there is a risk associated with any
portfolio. The risk of a portfolio can be reduced by diversification, the extent of which
is determined by the number of assets in the portfolio and the proportion of the total
investment that is in each asset. It is generally easier to predict the future value of the
portfolio than to predict the future values of the individual assets.

The portfolio manager is responsible for assigning a weight to each asset held in the
portfolio. The weight of the i-th asset is the ratio of the dollar amount invested in that
asset, divided by the total dollar value of the portfolio. The sum of the weights must be
one, and all weights are non-negative. A portfolio p is defined by this set of weights. We
will see that these weights determine the portfolio’s expected future value as well as
the portfolio’s risk.

The portfolio manager generally begins his decision making process with

• A fixed amount of money to be invested.
• A list of n assets to invest in.
• The expected return of each asset.
• The variance of each asset return.
• All covariances.

If risk were of no concern, the manager would undoubtedly just invest all the money in
the one asset offering the greatest expected return, that is, assigning a weight of 1 to that
asset and 0 to all the others, regardless of risk. But risk almost always is a consideration,
and most investors are risk-averse.

It is desirable to maximize return and minimize risk, but in a competitive market,
prices fluctuate so that the safer investments are more expensive than the riskier ones. So,
in general, it is not possible to simultaneously achieve both goals of maximizing return
and minimizing risk. Instead, we define a class of efficient portfolios. A portfolio is
said to be efficient if either

235Nonlinear Optimization

• There is no other less risky portfolio having as high a return.

or
• There is no other more profitable portfolio having as little risk.

Thus, the problem of efficient portfolio selection can be viewed as having primal and
dual expressions: to minimize variance subject to a specified expected return, or to
maximize expected return subject to a specified variance.

Let n be the number of assets being considered, and let ri be the expected return on
the i-th asset. We will let W denote a column vector of n asset weights, indicating what
fraction of the portfolio should be allocated to each asset. We use a variance-covariance
matrix V in which diagonal element vii is the variance of the i-th asset, and the off-
diagonal elements vij = vji denote the covariance between the i-th and j-th assets. Then,
risk is defined as the variance σ2 of the portfolio p as:

 risk (p) (p) W VW 2 T= =σ

The expected return of the portfolio p is given by:

 E(p) = W RT

where R is a column vector of expected asset returns. So the portfolio selection problem
can be expressed as

minimize z W VW

subject to w r P

T

i i

=

≥
=

∑
i

n

1

w = 1

w 0 for i = 1, …, n

i

i

i

n

=
∑

≥

1

where P is a desired minimum return on investment.
Equivalently, we could

maximize z W R

subject to W VW Q

w = 1

T

T

i

=

≤

=
∑
i

n

1

 w 0 for i = 1, …, ni ≥

where Q is a desired maximum risk. The first of these formulations is clearly in the form
of a quadratic programming problem with linear constraints. The noted economist

236 Operations Research

Harry Markowitz (1959) is credited with formulating the portfolio selection problem as
a quadratic programming model.

5.3.4 More Advanced Methods

Quadratic programming models represent one special case of nonlinear programming
problems, but there are many additional methods that have been developed for solving
various other special types of nonlinear problems. Gradient methods are based on the
ideas presented previously in Section 5.2.2, but must include special provisions to restrict
the search within the feasible region. One of the best-known of these is the reduced
gradient method (Wolfe 1967, Lasdon and Warren 1978, Murtagh and Saunders 1978). In
particular, the Lasdon and Waren algorithm, GRG2 (Generalized Reduced Gradient) is
available in standard spreadsheet packages using the Solver tool. It is based on a Simplex
scheme, but instead of improving a current solution by a change of one non-basic variable
at a time, the reduced gradient method simultaneously changes as many non-basic vari-
ables as can change and yield an improvement, but at different rates, proportional to their
respective partial derivatives.

Unconstrained optimization techniques have also been adapted for constrained optimi-
zation by the imposition of penalty functions or barrier functions (Bazaraa et al. 2013).

5.4 Software for Nonlinear Optimization

Linear programming models require only the coefficients for objective and constraint
functions, and it is easy to enter this input to software by using well-established input
formats that have been in use for many years. By contrast, nonlinear models come in many
different forms. In some cases, the model itself may actually be very complicated. In oth-
ers, the model may be fairly simple, but just does not conform to any particular standard
model, and therefore finding and using the right software is difficult. This lack of any stan-
dard form (resulting from the fact that nonlinear programming includes every imaginable
form of mathematical programming except linear!) has always made the selection and use
of appropriate software cumbersome.

As modeling languages such as AIMMS, AMPL, and GAMS have become more sophis-
ticated, software use has become accessible to a larger community of analysts. Software
for nonlinear programming often requires that the derivatives of functions be explicitly
entered along with other components of the problem. But even this obstacle has been alle-
viated by software, which analyzes nonlinear formulae and generates software that can
evaluate derivatives (a process much more sophisticated than the symbolic differentiation
that is available in some mathematical packages). In light of these advances, why are non-
linear programming problems still considered difficult to solve?

 1. In many problems, it is computationally difficult to determine whether or not the
objective function is concave (convex) in the feasible region; hence, it is difficult to
guarantee convergence to a global optimum.

 2. If a method finds a solution, it is often difficult to know whether it is local or
global.

237Nonlinear Optimization

 3. Existence of feasible solutions for a problem having nonlinear constraints is dif-
ficult to determine, which means there is no guarantee of finding an initial feasible
point (starting solution) even when one exists.

 4. Special-purpose software may need to be used in conjunction with more general
nonlinear programming optimization packages.

 5. Software often employs some variation on Newton or Quasi-Newton methods.
This works well if the current point is close to the optimal, but the results are
unpredictable when the initial point is far away from the optimal solution.

 6. Some algorithms require more global knowledge about their nonlinear functions
to give satisfactory performance.

For these reasons, although modeling languages and convenient software interfaces seem
to invite a wide audience of users, it must be recognized that for nonlinear programming,
friendly software is no substitute for a savvy and mathematically astute analyst. Yet non-
linear programming is a valuable tool for many applications in science, engineering, and
finance, and there is a wide selection of powerful and ingenious software available.

Choosing software for nonlinear optimization problems is difficult because no one algo-
rithm is efficient and effective for finding a global optimum for general nonlinear prob-
lems. Because no method is invariably superior to others, many software products include
a number of methods, with the hope that one of the methods will suffice for a given prob-
lem. All methods will typically require repeated computation of the objective function,
the gradient vector, and an approximation to the Hessian matrix. For many problems,
evaluating the gradient requires more time than evaluating the objective function, and
approximating the Hessian matrix can take an enormous amount of processing time as
well as memory. It is tempting to seek a technique that does not rely on the Hessian, but
such techniques (because they are poorly guided) may require many more iterations and
in the end are therefore slower.

Software for nonlinear optimization in general has always been characterized by its
variety. Some algorithms seem to perform exceptionally well on problems having con-
straints that are nearly or mostly linear, while a very different approach may be effective
on problems that are highly nonlinear but that have relatively few variables or constraints.
And some recent progress has been made by extending interior point methods for linear
programming problems to quadratic and even general nonlinear problems.

MINOS is one of several linear and nonlinear optimizers offered within the AIMMS,
APMonitor, GAMS, TOMLAB, and AMPL modeling systems and the NEOS Server, but it
also can be used as a stand-alone package. The MINOS system is a general-purpose opti-
mizer, designed to find locally optimal solutions involving smooth nonlinear objective
and constraint functions. It takes advantage of sparsity in the constraint set, is economical
in its use of storage for the reduced Hessian approximation, and is capable of solving large-
scale linear and nonlinear programs.

NPSOL is sometimes offered as a companion to MINOS, and the two systems share a
number of features such as computer platforms and languages. However, NPSOL is espe-
cially designed for dense linear and nonlinear programs, and for small models involving
nonlinear constraints or whose functions are highly nonlinear and expensive to evaluate.
It does not exploit sparsity (its Hessian is always stored in full form); it requires fewer
evaluations of the nonlinear functions than does MINOS; it is more robust than MINOS if
constraints are highly nonlinear; and convergence is assured for a large class of problems
(particularly some for which MINOS fails to converge).

238 Operations Research

MATLAB Optimization Toolbox includes a wide variety of methods for linear and non-
linear optimization on various platforms (Beck 2015). The MATLAB language facilitates
problem input. Constraints and objective functions must be differentiable. TOMLAB is a
modeling environment in MATLAB that has a unified input-output format and integrates
automatic differentiation. It works with MATLAB solver algorithms as well as other solvers.

SAS Institute, Inc. provides a general nonlinear optimization package that runs on vari-
ous platforms. SAS offers several techniques including Newton–Raphson, Quasi-Newton,
conjugate gradient, Nelder-Mead simplex, hybrid Quasi-Newton, and Gauss–Newton
methods, which comprise special routines for quadratic optimization problems. The Quasi-
Newton methods use the gradient to update an approximation to the inverse of the Hessian
and is applicable where the objective function has continuous first and second derivatives
in the feasible region. SAS OPTMODEL provides a general nonlinear optimization problem
solver. SAS/OR handles nonconvex nonlinear optimization problems that may have many
locally optimal solutions that are not globally optimal. SAS/OR applies multiple global and
local search algorithms in parallel to solve difficult optimization problems such as those
having discontinuous or non-differentiable functions, to identify global optima.

IMSL libraries comprise an extensive set of subroutines and procedures for a variety of
mathematical and statistical purposes that are supported across a wide range of languages
as well as hardware and operating system environments including Windows, Linux, and
many UNIX platforms. It includes routines to solve nonlinear problems whose size is
limited only by the available memory, and is generally successful on problems involving
smooth functions.

LINGO modeling language and solver and LINDO API combine large-scale linear, non-
linear, and integer optimizers through an interactive modeling environment. The primary
underlying technique is a generalized reduced gradient algorithm, and the system incor-
porates a global solver, multi-start capability, and a quadratic solver.

Gurobi Optimization has a reputation for their robust and high performance software
for solving difficult and complex problems. Gurobi products can be embedded in existing
development environments or can run in stand-alone mode. They offer advanced imple-
mentations of the newest algorithms including parallel algorithms running in innovative
shared memory hardware contexts.

IBM CPLEX Optimizer can solve both convex and non-convex quadratic to global opti-
mality. It can find the unique solution to a concave maximization problem and a first-order
solution to a non-concave problem. CPLEX has both barrier and simplex algorithms for
solving convex quadratic programs and a barrier algorithm for solving non-convex prob-
lems. It can also solve problems with convex quadratic constraints.

Frontline Solvers is the developer of MS-Excel Solver that comes with Excel but it is
limited in its capability for solving large problems. The company offers a more powerful
(premium) solver that works as an add-in to Excel but is capable of solving larger linear
and nonlinear problems. The Solver’s SDK (software developer kit) can be used with mul-
tiple modern programming languages such as C++, Java and Python. Solver uses the GRG
nonlinear method for nonlinear optimization.

NEOS Server is a free internet-based service for solving numerical optimization prob-
lems including nonlinear problems. It offers several nonlinear constrained programming
solvers such as CONOPT, Knitro, MINOS, LOQO among others. These solvers can be
accessed by using modeling languages such as AMPL and GAMS.

COIN-OR (COmputational INfrastructure for Operations Research), is an open-source
community for the development and deployment of operations research software includ-
ing nonlinear optimization solvers such as DFO and FilterSD.

239Nonlinear Optimization

Valuable reference material for serious practitioners and analysts can be found in Gill
et al. (1981, 1984). These volumes do not necessarily stress the intuitive appeal of the meth-
ods discussed, but rather they realistically present the details pertinent to the practical
performance of some of the most powerful and advanced methods and implementations.
Additional recommended sources of information include Fourer (1998, 2017), Moré and
Wright (1993), and Nash (1998).

Finally the Nonlinear Programming Frequently Asked Questions (FAQ) web page offers
many resources on nonlinear programming, software and solvers.

5.5 Illustrative Applications

5.5.1 Gasoline Blending Systems (Rigby et al. 1995)

Texaco’s most important refinery product is gasoline. Crude oil entering a refinery is
distilled and split into various components, which can then be reformed or cracked into
lighter compounds that may be of greater commercial value. The resulting stocks (hav-
ing varied and unanticipated properties) must then be blended to achieve certain quality
specifications. The greatest profitability will result if the refinery can maximize its produc-
tion of higher octane gasoline blends from the available stocks.

Gasoline blend qualities include familiar properties such as octane (measured as
research, motor, and road octanes) and lead content, but also other characteristics such
as Reid vapor pressure (RVP), sulfur and aromatic contents, and volatilities (the tempera-
tures at which certain percentages of the blend boil away). Other qualities are important
because of federal and state agency emission standards. While some properties of gasoline
blending can be (and have been for decades) modeled as linear optimization problems, it
is known that octane, RVP, and volatilities are highly nonlinear functions of volume and
weight.

Prior to the late 1970s, gasoline blending was a simple mixture of various stocks, and
octane requirements were met by injecting tetraethyl lead into the blend. Blending recipes
were based on hand calculations that did not significantly affect the overall economies of
the plant. Tetraethyl lead was inexpensive and available in ample supplies, so the octane
requirement was not a binding constraint in the model.

However, during the 1970s, governments mandated that lead be phased out of the blend-
ing recipe; and by the early 1980s, the federal government also clamped down on volatility
specifications for gasoline. These two changes had a drastic effect on the economics of
refining, and Texaco responded by developing a nonlinear gasoline blending optimization
system. The first version of the system resulted in an estimated annual savings of $30 million,
improved quality control, and increased the ability to plan refining operations and market
the products, and perform sensitivity analysis on current operations schedules.

The blending model was coded in the GAMS modeling language, and uses MINOS solv-
ers. Subsequent versions of the system allowed additional flexibility in handling blending
stocks, increased the number of constraints that could be modeled, and permitted compu-
tations to be placed on more sophisticated client server network hardware.

The system is used for both immediate, short-range, and long-range planning. Refinery
planners make use of the system to generate the recipe for the next blending operation.
For short-term planning purposes, it is important to be able to examine the multi-period

240 Operations Research

model covering the next few days, to ensure that components consumed in today’s blends
do not render tomorrow’s schedule infeasible. And finally, refinery operations planners
must anticipate all the activities associated with gearing up plants for gasoline reformula-
tion. Estimates produced by older linear programming planning models must be checked
for consistency with larger nonlinear models, and the system allows planners to identify
errors and restructure problem formulations where necessary.

5.5.2 Portfolio Construction (Bertsimas et al. 1999)

A large investment firm in Boston manages assets in excess of $26 billion, for clients that
include pension funds, foundations, educational endowments, and several leading invest-
ment institutions. This firm employed the widely used classical theory of portfolio opti-
mization (Markowitz 1959), in which managers determine the proportion of total assets to
invest in each available investment to minimize risk (variability of return) subject to con-
straints that require the expected total return to meet a certain target. This famous model
includes an objective that is a quadratic function of the decision variables and constraints
that are linear.

For a variety of reasons, large clients typically subdivide their asset classes and allow
each portion to be managed by different analysts who have distinctly unique investment
styles. This strategy ensures that the composite return will be a linear combination of the
returns resulting from the different investment styles. Because this linear diversification
approach is generally accepted by clients, the investment firm applies the technique within
its individual funds. Portfolios are partitioned into subportfolios, each characterized by a
different investment style. Quadratic optimization can still be used for the multiple sub-
portfolio problem, but the number of decision variables increases dramatically because
each subportfolio can conceivably invest in any of the securities available to the composite
portfolio. (One of the firm’s funds is partitioned into 50 subportfolios.)

A notable advantage of this partitioned portfolio framework is the ability to reduce
trading costs by swapping shares internally among subportfolios, thereby often avoiding
the costs of trading on the open market. Globally optimizing multiple subportfolios thus
makes it possible to sharply increase the turnover within each subportfolio without neces-
sarily increasing turnover for the composite portfolio. This portfolio construction method-
ology produces funds with good performance, high liquidity, relatively low turnover, use
of multiple investment styles, and diversification over time.

The desired diversification that is achieved through multiple subportfolios unfortunately
gives rise to certain complications that are not handled within the standard quadratic pro-
gramming model. With risk management through diversification, the number of different
stocks (or other investments) in the portfolio becomes very large, and as the portfolio is
rebalanced over time, the number of transactions also grows, resulting in increased custo-
dial fees and transaction costs. These phenomena can sometimes be dealt with by adding a
post-processing step to the quadratic optimization phase, simply to prohibit positions and
trades smaller than a given threshold. But this firm’s strategy specifically included invest-
ing in small market capitalization stocks, so merely eliminating small positions would be
inconsistent with established investment criteria. Additionally, post-processing that elimi-
nates many small but key positions can interfere with optimization objectives and can
violate constraints.

On the basis of these considerations, the investment firm decided to modify its quadratic
optimization approach so that it could simultaneously optimize its multiple subportfo-
lios and maintain control over the number of positions and transactions in the composite

241Nonlinear Optimization

portfolio. These stock position levels and transaction counts are inherently integer-valued
quantities, and the quadratic model therefore had to be expanded to include integer com-
ponents, resulting in a mixed-integer programming model. The solution was implemented
using ILOG CPLEX 4.0 as the underlying mixed-integer solver. The mixed integer solution
allowed the firm to reduce its average number of different holdings by approximately 50%,
and its average number of transactions by about 80%, significantly decreasing its opera-
tional costs and trading costs while maintaining essentially the same originally targeted
expected returns on investment.

5.5.3 Balancing Rotor Systems (Chen et al. 1991)

Large steam turbine generators, high speed gas turbine engines, and other machinery
with flexible rotating shafts must be balanced to reduce vibration. Minimizing vibra-
tion is important in extending the life of the machine, improving operating efficiency,
and maintaining a safe operating environment. The design and fabrication of rotating
machinery has undergone evolutionary changes over time, in particular being influenced
by increased energy costs and safety and maintenance concerns. The use of lighter weight
materials in rotors and faster rotating speeds necessitates more accurate manufacturing
processes, which result in improved balancing characteristics in the rotors.

One of the most popular techniques for flexible rotor balancing treats the rotordynamic
system as a linear system in calculating balance correction weights. The primary disad-
vantage of this approach is that it typically requires a large number of actual trial runs to
collect enough data to estimate accurately the required balance corrections. The linear pro-
gramming approach seems attractive from a computational standpoint, but in many appli-
cations, such as for utility companies, the costs of shutdown, installation of trial weights,
startup, and data collection are prohibitive.

Using a recently developed nonlinear programming model, it is now possible to deter-
mine an optimal system balance without the necessity of trial runs. In place of actual trial
runs, this new technique requires developing a mathematical model of the system dynam-
ics that can be used to simulate rotor response to balance corrections.

The unbalance of a rotor is continuously distributed along the axis of the rotor. However,
in the nonlinear model, this continuous distribution is discretized into a finite number of
balance planes to which corrections can be applied. Similarly, measurements are taken
at only a limited number of points (in some cases, as few as two points is sufficient). The
nonlinear optimization process then seeks to find the unbalance vector that minimizes a
least-squares difference between the adjusted analytical model and the measured experi-
mental model. In the nonlinear solver for this constrained least-squares problem, a search
direction is found using a steepest descent method, and a constrained line search is used
to determine the step size. Gradients of the objective function, with respect to all the
design variables, determine the search direction; and at each gradient evaluation, the rotor
model must be solved to obtain the system response. The computations are frequently
complicated by ill-conditioned gradients, but normalization procedures are employed
effectively against this difficulty. Because the rotor systems being balanced often have
multiple possible operating speeds, the optimization objective function includes weights
(coefficients) associated with each different operating speed of the rotor, with the largest
weights applied to the most critical operating speeds.

In test rigs, significant improvements in vibration levels were observed through the use
of this model. And in the numerical computations, convergence to an optimum solution
took place in less than a minute of mainframe processing time.

242 Operations Research

5.6 Summary

Nonlinear optimization models are used for mathematical programming problems in
which the objective function and constraints are not necessarily linear. This class of prob-
lems is very broad, encompassing a wide variety of applications and approaches to solv-
ing the problems. No single algorithm applies equally to all nonlinear problems; instead,
special algorithms have been developed that are effective on certain types of problems.

Unconstrained optimization can often be dealt with through the use of calculus to
find maximum and minimum points of a function. Constrained optimization typically
requires solving systems of equations. As helpful as the mathematical theories are that can
be used to describe the characteristics of optimal solutions to nonlinear problems, such
insights nevertheless often fail to suggest computationally practical methods for actually
finding the desired solutions.

Iterative search techniques are frequently used for nonlinear optimization. A one-
dimensional search suffices for finding the optimum value of a function of one variable; at
each step, the slope, or derivative, of the function is used to guide and restrict the search.
Although such a technique seems much too elementary for a realistic nonlinear optimiza-
tion problem, single-variable search methods are often incorporated into more sophisti-
cated multi-variable search procedures.

For finding the optima of functions of many variables, gradient search methods are
guided by the slope of the function with respect to each of the variables. At each step, the
method follows the direction indicated by the sharpest improvement from the current
point. For this reason, techniques that operate in this way are often referred to as steepest
ascent methods. Straight-line searches can be improved upon by using Newton’s method,
which is based on quadratic approximations to nonlinear functions.

Constrained optimization methods differ depending on the nature of the constraints.
The method of Lagrange multipliers is applicable to problems with equality constraints.
For problems with inequality constraints, Karush−Kuhn−Tucker theory describes neces-
sary and sufficient conditions for optimality and forms the foundation of general math-
ematical programming.

Key Terms

BFGS updates
concave function
constrained optimization
convex function
convex region
convex set
DFP method
efficient portfolio
Fibonacci method
global maximum

243Nonlinear Optimization

global minimum
golden section method
gradient search
Hessian matrix
inflection point
Karush–Kuhn–Tucker conditions
Lagrange multipliers
local maximum
local minimum
multivariable search
necessary conditions
Newton’s method
one dimensional search
portfolio selection
quadratic programming
Quasi-Newton methods
reduced gradient method
risk
steepest ascent
sufficient conditions
unconstrained optimization

Exercises

5.1 Consider the function f(x, y) = 3x2 − 2xy + y2 + 3e–x. Is this function convex, concave,
or neither? Explain your answer.

5.2 Consider the function f(x) = x4 – 8x3 + 24x2 – 32x + 16. Is this function convex, con-
cave, or neither? Explain your answer.

5.3 Consider the following nonlinear problem. Is the feasible region convex?

minimize f x, y = x – 2xy + 2y
subject to x + 3y 102 2

()
≤

3x + 2y 1
x, y 0

≥
≥

5.4 Consider the following nonlinear problem. Is the feasible region convex?

minimize f x, y 3x 2xy y
subject to x 12x y 0

2 2

3

() = +
≥
−

− −
x 1≥

244 Operations Research

5.5 Use the one dimensional search described in Section 5.2.1 (also known as a bisec-
tion search) to find a minimum of the function

f(x) x 3x 2x 2x 7

over the range 1 x 10. Use = 0.1.

4 3 2= + +

≤ ≤

− −

ε

5.6 The golden section search is similar to the bisection search for one dimensional prob-
lems, except that it uses only function values and it does not require calculating
derivatives. This is particularly useful when the function does not have first deriva-
tives defined, or when computing the first derivatives is very expensive computa-
tionally. Suppose you are given two initial end-points, a ≤ x ≤ d, and the minimum
of f(x) is known to lie in this range. Evaluate the function at two points c = a + 0.618 •
[d – a], and b = d – 0.618 • [d – a]. Note that a < b < c < d, but they are not evenly
spaced. If f(b) < f(c), then let [a, c] be the new interval, and repeat the calculation.
Otherwise, let [b, d] be the new interval. The magic aspect of the golden section is
that when you have to compute the new interior points between [a, c], you discover
that b is precisely 0.618 of the distance between a and c. In other words, you only
need to make one additional function evaluation. Similarly, if the new interval is
[b, d], then point c is already lined up with one of the new required points.

 Use the method of golden section to find the minimum of the function in the previ-
ous problem with ε = 0.1.

5.7 Consider the unconstrained problem:

 minimize f(x, y) 3x 2xy y 3e2 2 x= + +− −

 Starting from the solution (x, y) = (0, 0), and an initial step length of 2, perform two
iterations of the gradient search algorithm to find a minimum. That is, compute
the gradient at the point (0, 0), and perform a one dimensional line search to find a
minimum along the line. From this new point, perform a second line search.

5.8 Repeat Exercise 5.7, but use Newton’s method to find the solution.
5.9 Rosenbrock’s function is a particularly difficult problem that looks deceptively sim-

ple. Consider the unconstrained function:

 minimize f x, y 100 y x 1 x2 2 2() () ()= +− −

 The function has a unique minimum at the point (1, 1) (where f(1, 1) = 0). This path-
ological example has also been called the banana function. If you plot the function,
it follows a narrow banana-shaped valley from the point (–1, 1) to the minimum
(1, 1). Because the valley has quite steep sides, anytime an algorithm tries to follow
the downward slope in a straight line, the line almost immediately starts going up,
resulting in very short steps. It is very difficult for any algorithm to find the way
around the banana.

 Try using both a gradient search and Newton’s method beginning at the point
(–1, 1). Perform several iterations. You will likely observe rather poor progress
along a narrow zig-zag path.

245Nonlinear Optimization

5.10 Consider the problem:

minimize f x, y = x y
subject t

2()
oo x + y 12 2 ″

 Use the method of Lagrange multipliers to express this problem as an uncon-
strained minimization problem, and solve the problem using both the gradient
method and Newton’s method.

5.11 Consider the following nonlinear problem with linear constraints:

maximize f x, y x y + 2y
subject to x + 3y 9

2 2() =
≤

 x + 2y 8
3x + 2y 18

≤
≤

0 x 5
 0 y 2

≤ ≤
≤ ≤

 Solve this problem graphically. Begin at the point (0, 0), and check the gradient. If
the Karush–Kuhn–Tucker conditions are not satisfied, you should be able to find
an improving direction in the feasible region.

References and Suggested Readings

Avriel, M. 1976. Nonlinear Programming: Analysis and Methods. Englewood Cliffs, NJ:
Prentice-Hall.

Bazaraa, M. S., H. D. Sherali, and C. Shetty. 2013. Nonlinear Programming: Theory and Algorithms. New
York: John Wiley & Sons.

Beale, E. M. L. 1959. On quadratic programming. Naval Research Logistics Quarterly 6 (3): 227–243.
Beale, E. M. L. 1985. The evolution of mathematical programming systems. Operational Research

Society 36 (5): 357–366.
Beale, E. M. L. 1988. Introduction to Optimization. Chichester, UK: John Wiley & Sons.
Beale, E. M. L., G. C. Beare, and P. Bryan-Tatham. 1974. The DOAE Reinforcement and Redeployment

Study: A Case Study in Mathematical Programming in Mathematical Programming in Theory and
Practice. Amsterdam, the Netherlands: North-Holland

Beck, A. 2015. Introduction to Nonlinear Optimization: Theory, Algorithms and Applications with MATLAB
SIAM. New York: Society for Industrial & Applied Mathematics.

Beightler, C. S., D. T. Phillips, and D. J. Wilde. 1979. Foundations of Optimization, 2nd ed. Englewood
Cliffs, NJ: Prentice-Hall.

Beightler, C., and D. T. Phillips. 1976. Applied Geometric Programming. New York: Wiley.
Bertsekas, D. P. 2015. Convex Optimization Algorithms. Belmont, MA: Athena Scientific.
Bertsekas, D. P. 2016. Nonlinear Programming, 3rd ed. Belmont, MA: Athena Scientific.
Bertsimas, D., C. Darnell, and R. Soucy. 1999. Portfolio construction through mixed-integer pro-

gramming at Grantham. Interfaces 29 (1): 49–66.
Broyden, C. G. 1970. The convergence of a class of double-rank minimization algorithms. 1. General

considerations (pp. 76–90); 2. The new algorithm (pp. 222–231). Journal of the Institute of
Mathematics and its Applications 6.

246 Operations Research

Burley, D. M. 1974. Studies in Optimization. New York: John Wiley & Sons.
Chen, W. J., S. D. Rajan, H. D. Nelson, and M. Rajan. 1991. Application of nonlinear programming for

balancing rotor systems. Engineering Optimisation 17: 79–90.
Cheney, E. W., and D. Kincaid. 1980. Numerical Mathematics and Computing. Monterey, CA: Brooks/

Cole.
Davidon, W. C. 1959. Variable metric method for minimization. AEC Research & Development Report

ANL-5990 (Rev.) Lemont, IL: Argonne National Laboratory.
Diwekar, U. 2010. Introduction to Applied Optimization. New York: Springer.
Fletcher, R. 1970. A new approach to variable metric algorithms. The Computer Journal 13: 317–322.
Fletcher, R. 1987. Practical Methods of Optimization, 2nd ed. Chichester, UK: John Wiley & Sons.
Fletcher, R., and M. J. D. Powell. 1963. A rapidly convergent descent method for minimization. The

Computer Journal 6: 163–168.
Floudas, C. A., and P. M. Pardalos (Eds.). 1992. Recent Advances in Global Optimization. Princeton, NJ:

Princeton University Press.
Fourer, R. 2017. Software survey: Linear programming. OR/MS Today 44 (3): 48–59.
Fourer, R. 1998. Software for optimization: A survey of recent trends in mathematical programming

systems. OR/MS Today 25 (6): 40–43.
Gay, D. M. 1983. Subroutines for unconstrained minimization. ACM Transaction on Mathematical

Software 9: 503–524.
Gill, P. E., W. Murray, and M. H. Wright. 1981. Practical Optimization. New York: Academic Press.
Gill, P. E., W. Murray, and M. H. Wright. 1984. Trends in nonlinear programming software. European

Journal of Operational Research 17: 141–149.
Goldfarb, D. 1969. Sufficient Conditions for the Convergence of a Variable-Metric Algorithm, in Optimization.

London, UK: Academic Press.
Hadley, G. 1974. Nonlinear and Dynamic Programming. Reading, MA: Addison-Wesley.
Hooke, R., and T. A. Jeeves. 1961. Direct search solution of numerical and statistical problems. JACM

8: 212–229.
Kuhn, H. W., and A. W. Tucker. 1951. Non-linear programming. Proceedings of the 2nd Berkeley

Symposium on Mathematical Statistics and Probability. Berkeley, CA: University of California
Press, Vol. 481–492.

Lasdon, L. S., and A. D. Warren. 1978. Generalized reduced gradient software for linear and non-
linear constrained problems. In Greenberg (Ed.), Design and Implementation for Optimization
Software. Alphen aan den Rijn, the Netherlands: Sijthoff/Noordhoff, pp. 363–397.

Lemke, C. E. 1962. A method of solution for quadratic programs. Management Science 8 (4): 442–453.
Liebman, J., L. Lasdon, L. Schrage, and A. Waren. 1986. Modeling and Optimization with GINO. Palo

Alto, CA: The Scientific Press.
Luenberger, D. G., and Y. Ye. 2008. Linear and Nonlinear Programming, 3rd ed., Vol. 116, International

Series in Operations Research & Management Science. New York: Springer.
Markowitz, H. M. 1959. Portfolio Selection, Efficient Diversification of Investments. New York: John

Wiley & Sons.
Markowitz, H. M. 1987. Mean-Variance Analysis in Portfolio Choice and Capital Markets. New York: Blackwell.
McCormick, G. P. 1983. Nonlinear Programming: Theory, Algorithms and Applications. New York: John

Wiley & Sons.
Moré, J. J., and S. J. Wright. 1993. Optimization Software Guide. Philadelphia, PA: Society for Industrial

and Applied Mathematics.
Murtagh, B. A., and M. A. Saunders. 1978. Large-scale linearly constrained optimization. Mathematical

Programming 14: 41–72.
Nash, S. G. 1998. Software survey: Nonlinear programming. OR/MS Today 25 (3): 36–45.
Nash, S. G., and A. Sofer. 1996. Linear and Nonlinear Programming. New York: McGraw-Hill.
Nelder, J. A., and R. Mead. 1965. A simplex method for function minimization. Computer Journal

7 (4): 308–313.
Powell, M. J. D. 1964. An efficient method for finding the minimum of a function of several variables

without calculating derivatives. Computer Journal 7: 155–162.

247Nonlinear Optimization

Ravindran, A., and H. K. Lee. 1981. Computer experiments on quadratic programming algorithms.
European Journal of Operational Research 8 (2): 166–174.

Rigby, B., L. S. Lasdon, and A. D. Waren. 1995. The evolution of Texaco’s blending systems: From
OMEGA to StarBlend. Interfaces 25 (5): 64–83.

Rosenbrock, H. H. 1960. An automatic method for finding the greatest or least value of a function.
Computer Journal 3: 175–184.

Schrage, L. 1986. Linear, Integer and Quadratic Programming with LINDO. Palo Alto, CA: The Scientific
Press.

Shanno, D. F. 1970. Conditioning of Quasi-Newton methods for function minimization. Mathematics
of Computation 24: 647–656.

Sharpe, W. F. 1963. A simplified model for portfolio analysis. Management Science 9: 277–293.
Simmons, D. M. 1975. Nonlinear Programming for Operations Research. Englewood Cliffs, NJ:

Prentice-Hall.
Wilde, D. J. 1964. Optimum Seeking Methods. Englewood Cliffs, NJ: Prentice-Hall.
Wolfe, P. 1959. The simplex method for quadratic programming. Econometrica 27 (3): 382–398.
Wolfe, P. 1967. Methods of Nonlinear Programming in Nonlinear Programming. Amsterdam, the

Netherlands: North-Holland.

http://taylorandfrancis.com

249

6
Markov Processes

Certain complex systems exhibit characteristics that evolve randomly over time. A Markov
process is a mathematical model, based on principles developed by the Russian probabil-
ity theorist A.A. Markov, that allows systems engineers and analysts to describe and pre-
dict the behavior of such systems. Probabilities and uncertainties arise in the most diverse
applications, and in many cases, Markov analysis provides a framework in which to study
the behavior of these systems.

For example, a Markov model was developed for aircraft landing decisions and was
used to study data collected from the Pittsburgh Airport. Aircraft arriving at an airport
are supplied with information describing the congestion, and based on that information,
must decide whether to join the queue of planes waiting to land or to instead fly on to a
different airport (Rue and Rosenshine 1985). In a very different context, a Markov decision
process framework has been applied in the fishing industry to determine what proportion
of a salmon population to catch in a given season, and what proportion to leave and allow
to spawn and thus build up the population for the next season (White 1985, 1988).

In the passenger airline industry, decisions must be made continuously by airline book-
ings managers about how many reservations to accept for a specific flight up until the day
of departure. The objective is to maximize passenger revenues while minimizing pas-
senger rejections. A Markov model to assist with this decision process was applied to data
from Scandinavian Airlines (Alstrup et al. 1986). And when a fire alarm is received at a
fire station, a dispatcher must make decisions about how many fire engines to send out in
response to the alarm, to minimize long run average fire losses. A Markov model helps
with such decisions, based on the type of alarm and the number of fire engines currently
out on calls (Swersey 1982).

Markov analysis has been found to be useful in areas as disparate as population dynam-
ics, inventory management, equipment maintenance and replacement problems, market
share analysis, and economic trend analysis. Our study of Markov processes will begin
with some preliminary definitions, and we will then investigate the types of analysis that
can be performed.

Suppose we let xt denote some observable system characteristic at time t. The charac-
teristic is seen to change probabilistically as time progresses; therefore, xt is not known
with certainty until time t, and can be thought of as a random variable. The sequence of
random variables x0, x1, x2, …, xt, … represents a stochastic process in which the value
of xt typically depends on the values of the previous random variables in the sequence.
If primarily interested in studying the changes in the system, then we may merely index
the points in time when significant events occur. (We may even wish to assume that the
time between changes is a constant, and label the points in time as 0, 1, 2, …) Such a pro-
cess is called a discrete-time stochastic process. If, on the other hand, we wish to mea-
sure the actual progress of absolute clock time and study the time between transitions,

250 Operations Research

then we have a continuous-time stochastic process in which the system is viewed at
 arbitrary times rather than at discrete instants in time. We will restrict our discussion to
discrete-time stochastic processes, and in particular to a special type of process known
as a Markov process.

6.1 State Transitions

In the systems we will study, the observed characteristic or condition of the system at any
given time is referred to as the state of the system. We will assume that there is a finite
number of states, numbered 1,…, N, and that at any time the system occupies (or is com-
pletely described by) exactly one of these states. When a change occurs in the system, we
say that the system makes a transition.

A discrete-time stochastic process is called a Markov process if a transition from one
state to another depends only on the current state of the system and not on previous states
that the system may have occupied. More formally, this property can be expressed in
terms of conditional probabilities:

P x s x s , x s , , x s , x s
P x s

(|)
(

t+1 t+1 t t t 1 t 1 1 1 0 0

t+1 t+1

= = = = =
= =

− − 

||) x st t=

The state at time t + 1 depends only on the state the system was in at time t and not on the
values of any of the random variables xt–1, …, x0. This is called the Markov property. And
because each xt depends only on xt–1 and has an effect only on xt+1, the process is some-
times called a Markov chain. Since we assume there are finitely many states, the process
is called a finite state Markov chain.

An additional assumption fundamental to the analysis of Markov processes is that the
probability of a transition from any state i to any state j is the same for any time t. That is,

 P x j x i p(|)t+1 t ij= = =

is independent of the time index t. The property that a Markov process’s transitional
behavior does not change over time is called the stationarity property.

The probability pij described earlier is called the transition probability of a system
changing from state i at some time t to state j at time t + 1. Transition probabilities are
defined for all states i, j = 1, 2,…, N that the system may occupy, and are usually written as
a transition probability matrix

P

p p p
p p p

p p p

N

N

N N NN

=

…
…

…



























11 12 1

21 22 2

1 2

. .

. .

. .

251Markov Processes

The elements pij are sometimes called one-step transition probabilities because they refer
to system changes that can occur directly in one time period. And because the system must
be in some state after each transition, each row of probabilities must sum to one; that is,

 j

N

ijp
=
∑ =

1

1

The values of these transition probabilities define the probability distributions of the
Markov chain {xt} and therefore describe the evolutionary behavior of the system.

A Markov process begins at some initial time t = 0. If the state x0 is not known with cer-
tainty, then we must specify the probabilities with which the system is initially in each of
the N states. We denote this as P(x0 = i) = pi(0) for each state i, and we use the vector

 p(0) p (0) p p()1 2 N= () ()0 0

to describe the initial probability distribution for the system.
In summary, a system can be modeled as a Markov process if it has the following four

properties:

Property 1: A finite number of states can be used to describe the dynamic behavior of
the system.

Property 2: Initial probabilities are specified for the system.
Property 3: Markov property—We assume that a transition to a new state depends

only on the current state and not on past conditions.
Property 4: Stationarity property—The probability of a transition between any two

states does not vary in time.

It should be noted that the validity of any study using the tools of Markov analysis
hinges on the extent to which the Markov and stationarity assumptions are met by the
actual system under investigation. We certainly realize that processes involving human
choice are often affected, if only subtly, by past experiences and are not based just on a
current scenario. Strictly speaking, this violates the Markov property. Furthermore, sea-
sonal variations and political cycles may interfere with the stability or constancy with
which probabilistic transitions occur, and therefore the stationarity of the transition
probabilities may be questionable. In light of this, we must emphasize the importance of
the analyst’s understanding of the system being modeled and of the assumptions upon
which Markov analysis is predicated. Almost as important as the mathematical model
itself is the role that keen judgment plays in applying these procedures and in interpret-
ing the results.

If an analyst determines that a Markov analysis is appropriate for the system being stud-
ied, then the techniques for analyzing Markov processes may provide answers to such
questions as the following:

• How many transitions (steps) will it likely take for the system to move from some
specified state to another specified state?

• What is the probability that it will take some given number of steps to go from one
specified state to another?

252 Operations Research

• In the long run, which state is occupied by the system most frequently?
• Over a long period of time, what fraction of the time does the system occupy each

of the possible states?
• Will the system continue indefinitely to move among all N states, or will it eventu-

ally settle into a certain few states?

We will look briefly at an example of a very simple Markov chain. Then in the following
sections, we will show how questions such as the above can be answered for systems that
can be modeled as Markov processes.

Example 6.1

Consider using Markov chains to model changes in weather at a ski resort, and try
to use the model to help describe the operation and maintenance of the ski mountain
equipment and the ways in which the skiers respond to the weather. Suppose that win-
ter days can be described as either sunny, cloudy, or snowing. We can arbitrarily denote
that state 1 corresponds to a sunny day, state 2 corresponds to a cloudy day, and state 3
corresponds to a day with snowfall. Suppose that after studying historical weather pat-
terns in this particular ski location, we believe that if we know the weather condition on
any given day, the weather on the next day can be described according to the following
transition probabilities:

P =

















0 7 0 1 0 2
0 2 0 7 0 1
0 5 0 2 0 3

. . .

. . .

. . .

So, for example, the probability that a clear day is followed by a snowy day is p13 = 0.2, and
the probability that if today is cloudy then tomorrow will also be cloudy is p22 = 0.7. (Note
that pii is the probability of no change from one day to the next.) We realize that the ski
season probably lasts only a few months and that these weather patterns certainly do
not endure into the summer. Nevertheless, within the winter season, these probabilities
are stationary.

These one step transition probabilities can be illustrated in a state transition diagram
in which the nodes of a graph represent system states, and arcs represent possible
transitions and are labeled with transition probabilities. Figure 6.1 shows the transition
diagram for our example, indicating the one step transitions that can be made. If we are
interested in the probability that a certain weather condition will prevail after two days,
we can use a two-step transition tree, as shown in Figure 6.2.

Suppose that on a given day, the ski area is experiencing sunny weather, and we wish
to know the probability that in two days there will again be sunny weather. There are
three ways in which a sunny ski resort can, two days later, be sunny again (that is, be
in state 1 again): the weather may never change, and this happens with probability (0.7)
(0.7) = 0.49; it may change to cloudy then change back to sunny, with probability (0.1)
(0.2) = 0.02; or it could snow the next day then return to sunny conditions on the second
day with probability (0.2)(0.5) = 0.10. The probability of the second day being sunny is
then the sum of these probabilities 0.49 + 0.02 + 0.10 = 0.61. Similarly, the probability
of a cloudy day two days after a sunny day is (0.7)(0.1) + (0.1)(0.7) + (0.2)(0.2) = 0.18, and
the probability of a snowy day two days after a sunny day is (0.7)(0.2) + (0.1)(0.1) + (0.2)
(0.3) = 0.21. Notice that we are assuming that the weather at the ski resort must be in some

253Markov Processes

state after two days, and indeed the three probabilities sum to one: 0.61 + 0.18 + 0.21 = 1.
Similar trees could be drawn for projecting weather two days beyond a cloudy day or
a snowy day.

The transition tree is a handy way of illustrating the pattern of paths through the
states, as long as the number of transition periods is small. But this technique becomes
quite cumbersome if we want to examine weather behavior over many days. Fortunately,
there is a much simpler and more direct way to obtain this information.

Sunny Cloudy

Snowing

0.1

0.1

0.2

0.2
0.2

0.7
0.7

0.3

0.5

FIGURE 6.1
Transition diagram.

1

1

1

2

2

3

3

1

2

3

1

2

3

0.7

0.7

0.70.1

0.1

0.1

0.2

0.2

0.2

0.2

0.5

0.3

FIGURE 6.2
Transition tree.

254 Operations Research

Let us denote by p(n)
ij the probability of a transition from state i to state j in n steps.

Above, we calculated p(2)
11 = 0.61, p(2)

12 = 0.18, and p(2)
13 = 0.21. Our calculation of p(2)

11 is

0.7 0.7 0.1 0.2 0.2 0.5
p p p p p()() ()() (

()() ()() ()()+ +
= + +11 11 12 21 113 31)()p

which simply accounts for the three possible ways of making the transition from state
1 and back again. This is precisely the inner product of the first row of P with the first
column of P; the first row defining probabilities for leaving state 1 together with the
first column giving probabilities for re-entering state 1. From this observation, we can
generalize that for any i and j, p(2)

ij is the inner product of the i-th row of P with the j-th
column of P.

p p pij

(2)

k

N

ik kj=
=

∑
1

Because this is exactly matrix multiplication, we find that we can compute P(2) =
P2 = P ∙ P, and that each element of P(2) is just the two-step transition probability p(2)

ij. In
our example,

P2

0 61 0 18 0 21
0 33 0 53 0 14
0 54 0 25 0 21

=
















. . .

. . .

. . .

We can further generalize that n-step transition probabilities can be obtained from

 P P P Pn n n 1() = = ⋅ −

and

P P Pij

(n)

k

N

ik kj
(n 1)=

=
∑

1

−

Then,

P3

0 568 0 229 0 203
0 407 0 432 0 161
0 533 0 271 0 196

=












. . .

. . .

. . .





and from this, for example, we can see that the probability that, if any given day is
cloudy, then snowy weather will occur three days later, is 0.161, because p(3)

23 = 0.161.
Table 6.1 shows the matrices Pn for n values of from 1 to 50. We will have occasion to

refer again to these computational results when we discuss related topics in Section 6.5.

255Markov Processes

TABLE 6.1

n-Step Transition Probability Matrices for 1 ≤ n ≤ 50

P1 = 0.7000000
0.2000000
0.5000000

0.1000000
0.7000000
0.2000000

0.2000000
0.1000000
0.3000000

P18 = 0.5135283
0.5134839
0.5135191

0.2972783
0.2973344
0.2972900

0.1891930
0.1891813
0.1891906

P2 = 0.6100000
0.3300000
0.5400000

0.1800000
0.5300000
0.2500000

0.2100000
0.1400000
0.2100000

P19 = 0.5135220
0.5134963
0.5135167

0.2972862
0.2973187
0.2972930

0.1891913
0.1891846
0.1891899

P3 = 0.5680000
0.4070000
0.5330000

0.2290000
0.4320000
0.2710000

0.2030000
0.1610000
0.1960000

P20 = 0.5135184
0.5135035
0.5135153

0.2972908
0.2973097
0.2972948

0.1891904
0.1891864
0.1891895

P4 = 0.5449000
0.4518000
0.523000

0.2577000
0.3753000
0.2822000

0.1974000
0.1729000
0.1925000

P21 = 0.5135163
0.5135076
0.5135145

0.2972935
0.2973044
0.2972958

0.1891898
0.1891875
0.1891893

P5 = 0.5316700
0.4777700
0.5204000

0.2743600
0.3424700
0.2885700

0.1939700
0.1797600
0.1910300

P22 = 0.5135150
0.5135100
0.5135143

0.2972950
0.2973013
0.2972960

0.1891895
0.1891882
0.1891892

P6 = 0.5240260
0.4928130
0.5175090

0.2840130
0.3234580
0.2922450

0.1919610
0.1837290
0.1902460

P23 = 0.5135143
0.5135114
0.5135137

0.2972959
0.2972996
0.2972967

0.1891893
0.1891885
0.1891891

P7 = 0.5196013
0.5015252
0.5158283

0.2896039
0.3124477
0.2943716

0.1907948
0.1860271
0.1898000

P24 = 0.5135139
0.5135122
0.5135135

0.2972964
0.2972985
0.2972969

0.1891892
0.1891887
0.1891891

P8 = 0.5170390
0.5065707
0.5148541

0.2928418
0.3060713
0.2956029

0.1901190
0.1873579
0.1895428

P25 = 0.5135136
0.5135127
0.5135135

0.2972967
0.2972979
0.2972970

0.1891891
0.1891888
0.1891890

P9 = 0.5155552
0.5094927
0.5142899

0.2947169
0.3023785
0.2963160

0.1897277
0.1881286
0.1893939

P26 = 0.5135135
0.5135130
0.5135134

0.2972969
0.2972976
0.2972970

0.1891890
0.1891889
0.1891890

P10 = 0.5146959
0.5111849
0.5139631

0.2958029
0.3002400
0.2967290

0.1895010
0.1885749
0.1893077

P27 = 0.5135134
0.5135131
0.5135133

0.2972970
0.2972974
0.2972970

0.1891890
0.1891889
0.1891890

P11 = 0.5141982
0.5121649
0.5137738

0.2964318
0.2990014
0.2969681

0.1893697
0.1888334
0.1892578

P28 = 0.5135134
0.5135132
0.5135133

0.2972970
0.2972973
0.2972971

0.1891890
0.1891890
0.1891890

P12 = 0.5139100
0.5127325
0.5136642

0.2967960
0.2982842
0.2971066

0.1892937
0.1889831
0.1892289

P29 = 0.5135133
0.5135132
0.5135133

0.2972970
0.2972972
0.2972971

0.1891890
0.1891890
0.1891890

P13 = 0.5137431
0.5130611
0.5136008

0.2970070
0.2978688
0.2971868

0.1892497
0.1890698
0.1892121

P30 = 0.5135133
0.5135133
0.5135133

0.2972971
0.2972971
0.2972971

0.1891890
0.1891890
0.1891890

P14 = 0.5136464
0.5132515
0.5135640

0.2971291
0.2976282
0.2972333

0.1892242
0.1891200
0.1892024

P31 = 0.5135133
0.5135133
0.5135133

0.2972971
0.2972971
0.2972971

0.1891890
0.1891890
0.1891890

P15 = 0.5135904
0.5133617
0.5135427

0.2971998
0.2974889
0.2972602

0.1892094
0.1891491
0.1891968

P32 = 0.5135133
0.5135133
0.5135133

0.2972971
0.2972971
0.2972971

0.1891890
0.1891890
0.1891890

P16 = 0.5135580
0.5134256
0.5135304

0.2972408
0.2974082
0.2972757

0.1892008
0.1891659
0.1891935

P33 = 0.5135133
0.5135133
0.5135133

0.2972971
0.2972971
0.2972971

0.1891889
0.1891890
0.1891889

P17 = 0.5135392
0.5134625
0.5135235

0.2972645
0.2973615
0.2972848

0.1891959
0.1891757
0.1891917

P34 = 0.5135133
0.5135133
0.5135133

0.2972970
0.2972971
0.2972970

0.1891889
0.1891889
0.1891889

(Continued)

256 Operations Research

6.2 State Probabilities

We have already seen notation to describe the initial probability of the system being in each
of the possible states. We used the vector

 p(0) p (0) p (0) p (0)()1 2 N= 

where each pi(0) = P(x0 = i) is the probability that the system is initially in state i. We can
extend this notation and define a state probability vector

 p(t) p (t) p (t) p (t)()1 2 N= 

where pi(t) is the probability that the system will occupy state i at any time t if the state
probabilities at time 0 are known.

State probabilities can be defined recursively as follows:

p(1) p(0) P

p(2) p(1) P p(0) P

p(3) p(2) P p(1) P p(0) P

2

2 3

= ⋅

= ⋅ = ⋅

= ⋅ = ⋅ = ⋅

P35 = 0.5135133
0.5135133
0.5135133

0.2972970
0.2972971
0.2972970

0.1891889
0.1891889
0.1891889

P43 = 0.5135132
0.5135132
0.5135132

0.2972970
0.2972970
0.2972970

0.1891889
0.1891889
0.1891889

P36 = 0.5135133
0.5135133
0.5135132

0.2972970
0.2972970
0.2972970

0.1891889
0.1891889
0.1891889

P44 = 0.5135132
0.5135132
0.5135132

0.2972970
0.2972970
0.2972970

0.1891889
0.1891889
0.1891889

P37 = 0.5135132
0.5135132
0.5135132

0.2972970
0.2972970
0.2972970

0.1891889
0.1891889
0.1891889

P45 = 0.5135132
0.5135132
0.5135132

0.2972969
0.2972970
0.2972970

0.1891888
0.1891888
0.1891888

P38 = 0.5135132
0.5135132
0.5135132

0.2972970
0.2972970
0.2972970

0.1891889
0.1891889
0.1891889

P46 = 0.5135132
0.5135132
0.5135132

0.2972969
0.2972970
0.2972969

0.1891888
0.1891888
0.1891888

P39 = 0.5135132
0.5135132
0.5135132

0.2972970
0.2972970
0.2972970

0.1891889
0.1891889
0.1891889

P47 = 0.5135132
0.5135132
0.5135132

0.2972969
0.2972969
0.2972969

0.1891888
0.1891888
0.1891888

P40 = 0.5135132
0.5135132
0.5135132

0.2972970
0.2972970
0.2972970

0.1891889
0.1891889
0.1891889

P48 = 0.5135132
0.5135132
0.5135132

0.2972969
0.2972969
0.2972969

0.1891888
0.1891888
0.1891888

P41 = 0.5135132
0.5135132
0.5135132

0.2972970
0.2972970
0.2972970

0.1891889
0.1891889
0.1891889

P49 = 0.5135132
0.5135132
0.5135132

0.2972969
0.2972969
0.2972969

0.1891888
0.1891888
0.1891888

P42 = 0.5135132
0.5135132
0.5135132

0.2972970
0.2972970
0.2972970

0.1891889
0.1891889
0.1891889

P50 = 0.5135132
0.5135132
0.5135132

0.2972969
0.2972969
0.2972969

0.1891888
0.1891888
0.1891888

TABLE 6.1 (Continued)

n-Step Transition Probability Matrices for 1 ≤ n ≤ 50

257Markov Processes

and, in general,

 p(n) p(0) P for n 0, 1, 2,n= ⋅ = 

Returning to our example of weather patterns, suppose that on a certain day at the
beginning of a series of weather observations, the weather is sunny. The initial state prob-
ability vector is

 p(0) (1.0 0 0)=

Then, the state probabilities after one day are:

p 1 p 0 P 1.0 0 0() () ()
. . .
. . .
. . .

= ⋅ = ⋅















0 7 0 1 0 2
0 2 0 7 0 1
0 5 0 2 0 3

= (). . .0 7 0 1 0 2

After two days, the probabilities are:

 p(2) p(1) P 0.7 0.1 0.2 P= ⋅ = ⋅()

but because we have already computed P2 we can more directly obtain p(2) as:

p(2) p(0) P = 1.0 0 02= ⋅ ⋅()
. . .
. . .
. .

0 61 0 18 0 21
0 33 0 53 0 14
0 54 0 25 00 21

61 18 210
.

. . .()
















= 0 0

Likewise,

p 3 = p 0 P = 1.0 0 0 3() () ()
. . .
. . .⋅ ⋅

0 568 0 229 0 203
0 407 0 432 0 161
00 533 0 271 0 196

568 0 229 0 2030
. . .

. . .()
















=

p(4) p(0) P 1.0 0 04= ⋅ = ⋅()
. . .
. . .

0 5449 0 2577 0 1974
0 4518 0 3753 0 17299
0 5253 0 2822 0 1925

5449 0 2577 0 19740
. . .

. . .()
















=

p(5) p(0) P 1.0 0 05= ⋅ = ⋅()
. . .
. . .

0 5317 0 2744 0 1940
0 4778 0 3425 0 17988
0 5204 0 2886 0 1910

5317 0 2744 0 19400
. . .

. . .()
















=

 p(6) p(0) P 1.0 0 06= ⋅ = ⋅()
. . .
. . .

0 5240 0 2840 0 1920
0 4929 0 3235 0 18377
0 5175 0 2922 0 1902

5240 0 2840 0 19200
. . .

. . .()
















=

258 Operations Research

If we performed the same calculations under the assumption that on day 1 the weather
is cloudy and therefore p(0) = (0 1.0 0), we would find:

p(1) 0 1.0 0 P 0.2 0.7 0.1

p(2) 0.33 0.53 0.14

p(3) 0

= =

=

=

() ()

()

(..407 0.432 0.161

p(4) 0.4518 0.3753 0.1729

p(5) 0.4778

)

()

(

=

= 00.3435 0.1798

p(6) 0.4928 0.3235 0.1837

)

()=

Now suppose that, instead of actually observing the weather on the first day, we assume
that on that day it is equally likely to be sunny, cloudy, or snowing; that is, p(0) = (1/3 1/3
1/3). Then,

p(1) / / / P
p(2) / / /

= ⋅ =
=

()
(
1 3 1 3 1 3 0 467 0 333 0 200
1 3 1 3 1 3

(. . .)

))
()

⋅ =
= ⋅ =

P
p(3) / / / P

2

3

0 493 0 320 0 187
1 3 1 3 1 3 0 503 0 31

(. . .)
(. . 00 0 187

1 3 1 3 1 3 0 507 0 305 0 188
1 3

4

p(4) / / / P
p(5) /

.)
(. . .)= ⋅ =

=
()

 / / P
p(6) / / / P

1 3 1 3 0 510 0 302 0 188
1 3 1 3 1 3 0

5

6

()
()

⋅ =
= ⋅ =

(. . .)
(.. . .)511 0 300 0 189

What we can observe in this particular example is that after several transitions, the
probabilities of the system being in given states tend to converge, or become constant,
independent of the initial state. (We will see in later sections that not all Markov sys-
tems behave in this way.) In our example, however, it appears that after six days, the
probability of a sunny day occurring at the ski area is roughly 0.51, the probability
of a cloudy day is roughly 0.30, and the probability of a snowy day is roughly 0.19.
And these state probabilities hold, regardless of the actual or expected initial weather
conditions.

We have no precise way of knowing how long it will take a Markov chain to stabilize, as
we have seen above; but, if there are not many P entries very near to zero or one, this stabi-
lization will be achieved fairly quickly. For our example, the rows of the matrix Pn become
almost indistinguishable from one another for n > 10. (Refer back to Table 6.1.) Thus, after
about 10 days, the effects of the initial distribution of weather probabilities will have disap-
peared. We can assume that since this stabilization appears to occur within 10 days (transi-
tion steps), then surely this technique will be of some use in modeling weather patterns
during a ski season of, say, 120 days. (Exercise 6.4 provides some further insight into the
contrast in rates of convergence.)

When we say that the state probabilities become constant, this does not mean that
after a long period of time, the system does not change states any longer. Rather, as
transitions continue to occur, the system’s occupancy of each state is in some sense
predictable.

259Markov Processes

Based on information such as this, we could, in our example, answer such questions as:

• Should we plan more (or less) mid-slope barbecues to entertain skiers on sunny days?
• Do we need better canopies on the chairlifts to shield the skiers from falling snow?
• Should we sell special ski goggles to improve skiers’ visibility during cloudy

conditions?

In Section 6.5, we discuss just what characteristics a Markov chain must have that will
permit us to make this kind of analysis of long-range behavior of the system. We will see
that long-term trends can be studied directly without our having to compute state prob-
abilities for huge values of n.

6.3 First Passage Probabilities

In a typical Markov chain, we frequently observe that states are left and re-entered again
and again. We have developed a means of computing the probability p(n)

ij that a system
will leave state i and be in state j after n transitions. But this does not give us any informa-
tion about whether the system entered state j at any time before the n-th transition. Suppose
we are specifically interested in the probability that a system leaves state i and enters state
j for the first time after n steps. This is called the first passage probability, and it is clearly
related to the n-step probability. However, we must exclude all the ways in which the sys-
tem may have entered state j before the n-th transition. For example, if we know the prob-
ability of a cloudy day on the slopes being followed three days later by a sunny day, we
realize that this three-step transition can occur in several ways:

cloudy cloudy cloudy sunny
cloudy cloudy sunny sunny
cloudy

→ → →
→ → →
→ ssunny sunny sunny

cloudy cloudy snowy sunny
cloudy snowy sn

→ →
→ → →
→ → oowy sunny

cloudy snowy sunny sunny
cloudy sunny snowy sunny

→
→ → →
→ → →

ccloudy sunny cloudy sunny
cloudy snowy cloudy sunny

→ → →
→ → →

The probability p(3)
21 accounts for all of these possible paths. By contrast, the first passage prob-

ability will account for only those paths in which a sunny day does not occur until the third
step. Thus, we want to measure the probability that one of the following paths will occur:

cloudy cloudy cloudy sunny
cloudy cloudy snowy sunny
cloudy

→ → →
→ → →
→ ssnowy snowy sunny

cloudy snowy cloudy sunny
→ →

→ → →

260 Operations Research

The first passage probability f(n)
ij is computed as p(n)

ij minus the probabilities of the n-step
paths in which state j occurs before the n-th step. In one transition, p(1)

ij = f(1)
ij. Then for larger n,

f p f p

f p f p f

(2) (2) (1) (1)

(3) (3) (1) (2) (2)

ij ij ij jj

ij ij ij jj i

=

=

−

− − jj jj

(n)
ij ij ij jj ij jj

(1)p

.

.

.

f p f p f p = (n) () (n) (n)()− − − −− −1 1 22
 ff p(n 1)

ij jj
− ()1

or, more succinctly,

f p f p(n)

ij
(n)

ij ij
(n k)

jj

k

n

=
=

∑− −
−

(k)

1

1

Returning to our example, we will illustrate f(n)
ij for n = 1, 2, and 3.

F P()

. . .

. . .

. . .

1

0 7 0 1 0 2
0 2 0 7 0 1
0 5 0 2 0 3

= =
















F()

. (.)(.) . (.)(.) . (.)(.)

. (2

0 61 0 7 0 7 0 18 0 1 0 7 0 21 0 2 0 3
0 33 0=

− − −
− ..)(.) . (.)(.) . (.)(.)

. (.)(.) .
2 0 7 0 53 0 7 0 7 0 14 0 1 0 3

0 54 0 5 0 7 0 25
− −

− −− −(.)(.) . (.)(.)

. . .

.
0 2 0 7 0 21 0 3 0 3

0 12 0 11 0 15
0 19 0

















= .. .
. . .

04 0 11
0 19 0 11 0 12

















F()

. (.)(.) (.)(.)

. (.)(.) (.)3

0 568 0 7 0 61 0 12 0 7

0 407 0 2 0 61 0 19=

− −

− − ((.)

. (.)(.) (.)(.)

. (.)

0 7

0 533 0 5 0 61 0 19 0 7

0 229 0 1

− −



















− ((.) (.)(.)

. (.)(.) (.)(.)

. (.

0 53 0 11 0 7

0 432 0 7 0 53 0 04 0 7

0 271 0 2

−

− −

−))(.) (.)(.)

. (.)(.) (.)(

0 53 0 11 0 7

0 203 0 2 0 21 0 15 0

−



















− − ..)

. (.)(.) (.)(.)

. (.)(.) (.)(

3

0 161 0 1 0 21 0 11 0 3

0 196 0 3 0 21 0 12

− −

− − 00 3

0 057 0 099 0 116
0 152 0 033 0 107
0 095 0 088

.)

. . .

. . .

. .



















=
00 097.

















261Markov Processes

And, just to check our intuition, let us re-examine f(3)
21. This should be f(3)

21 = p(3)
21

– Probability cloudy cloudy sunny sunny

– Probability

()

(

→ → →

ccloudy sunny sunny sunny

– Probability cloudy snowy sun

)

(

→ → →

→ → nny sunny

– Probability cloudy sunny snowy sunny

– Prob

)

()

→

→ → →

aability cloudy sunny cloudy sunny

= 0.407 – 0.098 – 0.098

()→ → →

 – 0.035 – 0.020 – 0.004

= 0.152

which is exactly the value we computed earlier as the element f(3)
21 in the matrix F(3).

6.4 Properties of the States in a Markov Process

Before continuing with our analysis of the long-term behavior of Markov processes, we
must define some of the properties of the states that can be occupied by a Markov process.
As we will see, the particular patterns with which transitions occur into and out of a state
have a great deal to do with the role which that state plays in the eventual behavioral
trends of a system.

A state j is reachable from state i if there is a sequence of transitions that begins in
state i and ends in state j. This is, p(n)

ij > 0 for some n.
An irreducible Markov chain is one in which every state is reachable from every other

state. That is, in an irreducible chain, it is not possible for the process to become trapped and
thereafter to make transitions only within some subset of the states.

A set of states is said to be closed if no state outside of the set is reachable from any state
inside the set. This means that once the system enters any state in the set, it will never leave
the set. In an irreducible chain, all the states constitute a closed set and no subset of the
states is closed.

A particularly interesting case arises if a closed set contains only one state. This state i is
called an absorbing state, and pii = 1. The system never leaves an absorbing state.

A state i is a transient state if there is a transition out of state i to some other state j from
which state i can never be reached again. Thus, whenever a transient state is left, there is
a positive probability it will never be occupied again. And therefore, the long-term prob-
ability of a system being in a transient state is essentially zero because eventually, the state
will be left and never entered again.

262 Operations Research

A recurrent state is any state that is not transient. In an irreducible finite-state Markov
chain, all states are recurrent. A special case of a recurrent state is an absorbing state, from
which no other state can be reached.

The various state characteristics just defined can be illustrated by the Markov process
whose one-step transition probability matrix is given by:

P =

/ / /
/ /
/ /
/ / /

1 3 1 3 0 0 0 1 3
0 0 9 10 0 0 1 10
0 0 1 3 2 3 0 0
0 0 1 2 1 4 1 4 0
0 0 1 0 0 0
0 0 0 00 0 1



























and which is illustrated by the transition diagram in Figure 6.3. In this example, state 6 is
an absorbing (and therefore recurrent) state because there is only one arc out of state 6, and
p66 = 1. States 1 and 2 are transient because after each state is left, it is never re-entered.
In the case of state 2, there is no possible way to return. On the other hand, it is possible
for state 1 to recur as the system changes from state 1 directly again to state 1; but once
a transition is made out of state 1, that state is never entered again. States 3, 4, and 5 are
recurrent states.

A state is said to be periodic if it is occupied only at times which differ from one another
by multiples of some constant greater than 1. In Figure 6.4a, all three states are periodic
with period 2; and in Figure 6.4b, all states are periodic with period 4. In general, the
period t of a periodic state i is the smallest integer such that all transition sequences from
state i back to itself take some multiple of t steps, and t > 1.

1

2 6

3 4

5
1

1
3–

1
3–

1
3–

1
3–

1
4–

1
4–

1
2–

2
3–

1
10—

9
10—

1

FIGURE 6.3
Transition diagram with transient and recurrent states.

263Markov Processes

If a state can be occupied at any time, then it is said to have period 1, or to be aperiodic.
In an irreducible chain, all states are either aperiodic, or are periodic and all have the same
period. An irreducible finite-state Markov chain in which all states are aperiodic is called
an ergodic Markov chain.

In the limit, as time goes to infinity, the occupancy of periodic states never stabilizes
because these states are likely to be occupied at certain times and yet cannot be occupied at
other times. Similarly, in the long run, transient states are not of interest because they are
eventually left and not re-entered. If we eliminate periodic and transient states from our
consideration, and focus on ergodic processes, we find that we can further characterize
the limiting behavior of a Markov process. In the following sections, we will describe the
calculations for two such behavioral characteristics observed in Markov processes.

6.5 Steady-State Analysis

In Section 6.2, we noticed, while computing successively higher powers of the transition
probability matrix, that state probabilities tended to stabilize regardless of the initial state
of the system. This behavior is typical of ergodic Markov chains and is found in most
practical applications. When we say that state probabilities become stable, what we really
mean is that as the time parameter n becomes large, P(n+1) is essentially the same as P(n).
Furthermore, the rows of P(n) begin to look identical as n grows large, which means that,
independent of the initial state of the system, the probabilities of having evolved into each
state after any large number of steps do not change. Mathematically, if P is the one-step
transition probability matrix, then the powers of P approach a matrix [𝒫] where

 𝒫 =
→∞

lim
n

nP

in which

 1. Each row of 𝒫 is an identical probability vector called Π, and

 Πj
n

(n)
ijp independent of i=

→∞
lim .

 2. All elements of Π are positive.

1 2 3

(b)

1 2

34

(a)

FIGURE 6.4
(a,b) Periodic states.

264 Operations Research

 3. Π has the property that Π P = Π; that is,

Π Πj

i

N

i ijp for all j N= = …
=

∑
1

1 2, , ,

 4. The elements of Π represent a probability distribution and therefore

 j

N

j

=
∑ =

1

1Π

The vector Π is called the steady-state probability vector, and each Πj denotes the steady-
state probability that the process is in state j after a large number of steps (long after the
effects of the initial state have eroded away).

As we cautioned at the end of Section 6.2, when we establish the steady-state (or long-
term or equilibrium) behavior of a system, we are not determining that the dynamic system
has finally come to rest in some particular state. On the contrary, transitions continue to
occur with exactly the probabilities that governed the transitions early in the chain (this
is the stationarity assumption). What the steady state probabilities do tell us can be inter-
preted in several ways:

• Πj is the probability that, if we inspect the system at any instant (long after the
process has begun), we will find the system in state j.

• Πj is the percentage of time the system spends in state j in the long run.
• If the Markov chain models the behavior of a large number of entities that all obey

the same transition probabilities, then Πj is the fraction (or proportion) of entities
that occupy state j at any given time.

Solving the system of equations Π ∙ P = Π is much more satisfactory computationally than
raising P to higher and higher powers (see Exercise 6.2). However, to obtain the solutions
needed, we must note that the rank of the matrix P is N – 1, where N is the number of
states in the process. (That is, if we add together any N – 1 rows, we get the remaining row.)
Therefore, we have a system of N dependent equations in N unknowns, and consequently
infinitely many solutions. We want to obtain that unique solution for which the unknowns
are a probability distribution; therefore, we discard any one of the first N equations in
Π ∙ P = Π and introduce the equation

 j

N

j

=
∑ =

1

1Π

We now have a system of N independent equations in which we can uniquely solve the N
unknowns Πj for j = 1, 2, …, N.

To illustrate this, we can re-examine the daily changes in the weather system at the ski
resort. This process is ergodic, so we can apply a steady state analysis:

Π Π Π Π Π Π1 2 3 1 2 3

0.7 0.1 0.2
0.2 0.7 0.1
0.5 0.2 0.3

 

















=  

265Markov Processes

The three dependent equations are:

Π Π Π Π
Π Π Π Π
Π Π Π

1 1 2 3

2 1 2 3

3 1 2

= 0.7 + 0.2 + 0.5
= 0.1 + 0.7 + 0.2
= 0.2 + 0.1 + 0.3ΠΠ3

We can arbitrarily choose to discard any one of the three (how about the first one?), and
use instead the normalizing equation ∑ Πj = 1 to obtain the system:

0.1 0.3 0.2 0
0.2 + 0.1 0.7 0

1

1 2 3

1 2 3

1 2 3

Π Π Π
Π Π − Π

Π Π Π

− + =

+ + =
=

The solution to this system of simultaneous linear equations is

Π
Π
Π

1

2

3

0.5135135
0.2972973
0.1891892

=
=
=

If we compare these results with the elements in the higher powers of P that
we computed in Section 6.2 (as shown in Table 6.1), we find that indeed the value
Π1 = 0.5135135 appears in all rows of column 1, the value Π2 = 0.2972973 appears in
all rows of column 2, and the value Π3 = 0.1891892 appears in all rows of column 3.
However, this pattern does not stabilize until we compute Pn for n values around 26
or 27. (The pattern becomes apparent at about P10, but small changes continue to be
evident as we compute successively higher powers, up to about P27, after which no
significant changes in Pn occur.)

The computational effort required to raise P to the 27-th power is considerably
greater than the effort required to solve the system of three equations. Furthermore,
we have no way of knowing in advance just exactly what power of P needs to be com-
puted. Exercise 6.2 will allow you to observe this contrast for yourself. Solving the
steady-state equations is clearly the preferred method for determining the steady-state
probabilities.

6.6 Expected First Passage Times

We have defined the first passage time of changing from state i to state j to be the number
of transitions made by a Markov process as it goes from state i to state j for the first time. If
i = j, then first passage time is the number of steps before the process returns to the same
state, and this is called the first recurrence time. We will denote the first passage time
from state i to state j as Tij.

If the Markov process is certain to go from state i to state j eventually (given that the
process ever enters state i), then Tij is a random variable. In Section 6.3, we discussed the
first passage probability f(n)

ij, which is the probability that Tij = n.

266 Operations Research

If a process in state i is not certain to ever reach state j, then

f ij

n

(n) <
=

∞

∑ 1
1

Otherwise, the f(n)
ij are a probability distribution for the first passage times Tij, and

f ij

n

(n) =
=

∞

∑ 1
1

We can then write the expected first passage times mij from state i to state j as

E T m n f()ij ij ij

n

= =
=

∞

∑ (n)

1

(If i = j, this is called expected recurrence time.) Using these results, we could answer such
questions as:

• How many days might we expect to wait for snowy weather to become sunny?
• After how many days on the average will snowy weather conditions again be

snowy, after possibly changing to sunny or cloudy in the meantime?

From a computational standpoint, obtaining expected first passage times using the previ-
ous formula is difficult because we have to compute f(n)

ij for all n. However, in the case of
expected recurrence time from state i back to itself, we can simply take the reciprocal of the
steady-state probability to obtain

m

ii

i
= 1

Π

(For example, if a process is in state i 1/4 of the time during steady-state, then Πi = 1/4 and
mii = 4. That is, we would expect that an average of four steps are required to return to
state i.)

For general i and j, we need a practical way of computing mij. Suppose a Markov process
is currently in state i. Then with probability pij, the process will make a transition to state j
for the first time in one step. Otherwise, the first move will be to some state k other than j;
and for each k = 1, …, N, k ≠ j, this will happen with probability pik. In each of these cases,
the first passage time will be 1 (the transition from state i to state k) plus the expected first
passage time from the state k to state j. Therefore,

m (p)(1) p 1 m()()ij ij ik kj

k
k j

N

= + +
=

∑
1

≠

which can be expressed as

m p p p mij ij ik

k
k j

N

ik kj

k
k j

N

= +

















+
= =

∑ ∑
1 1

≠ ≠

267Markov Processes

to obtain

m p mij ik kj

k
k j

N

= +
=

∑1
1

≠

Thus, mij is defined in terms of other expected first passage times mkj. Since the pik are
known constants, we simply have a linear equation involving N – 1 expected first passage
times. However, this formula can be used to obtain an equation describing each of the mkj
involved in the first equation. The resulting system of N – 1 simultaneous linear equations
in N – 1 unknowns can be solved to obtain unique values for all N – 1 expected first pas-
sage times into state j.

To answer the question: how many days might we expect to wait before snowy ski con-
ditions change to sunny conditions, we need to compute the expected first passage time

 m 1 p m p m31 32 21 33 31= + +

Since m31 is defined in terms of m21, we also need the equation:

 m 1 p m p m21 22 21 23 31= + +

These two equations can be solved simultaneously to obtain m31 = 2.6316 and m21 = 4.2105.
Therefore, on the average, it is 2.6316 days before snowy weather first becomes sunny. In
the process of finding this result, we also observe that it is an average of 4.2105 days before
cloudy conditions become sunny.

If we wish to know the first recurrence time m22 to answer the question: after how many
days on the average will cloudy weather again become cloudy?, then we solve

 m 1 p m p m22 21 12 23 32= + +

To do this, we also need

 m 1 p m p m12 11 12 13 32= + +

and

 m 1 p m p m32 31 12 33 32= + +

We solve this system to find that m12 = 8.1818, m32 = 7.2727, and m22 = 3.3636. Recall that we
can also find m22 more quickly as 1/Π2 = 1/.2972973 = 3.3636, if we have already computed
the steady-state probabilities. Thus, cloudy conditions that change to sunny or snowy can
be expected to return to cloudy after 3.3636 days.

6.7 Absorbing Chains

The ergodic Markov chains that we have been studying represent processes which con-
tinue indefinitely and whose behavior at arbitrary future times is characterized through the
steady state analysis presented in Section 6.5. Yet another interesting class of Markov chain

268 Operations Research

applications arises when the process arrives, after a finite number of transitions, at some
state from which it never leaves. Such a process evolves initially through (or within) a set
of transient states (according to one-step transition probabilities), but eventually is certain
to leave these states and enter one of the absorbing states. A Markov chain with at least one
absorbing state is called an absorbing chain. By analyzing the behavior of absorbing chains,
we can model processes whose stochastic behavior eventually terminates rather than con-
tinuing indefinitely.

Consider the non-ergodic Markov chain depicted in Figure 6.5. In this simple example,
it is clear that if the process begins in state 1 or state 2, it may alternate between those two
transient states for some time, but eventually a transition will occur—either from state 1
or 2—into state 3 (an absorbing state). Then, since p33 = 1, this system will never again enter
state 1 or state 2. It might be imagined that this Markov model represents the conditions of
patients in a hospital ward for trauma victims, in which states 1 and 2 denote critical and
serious conditions and state 3 denotes terminal conditions. Whereas critical patients may
be upgraded to serious, and serious patients may turn critical, no improvements are made
by those classified as terminal.

Steady state conditions for such systems are not determined in the same way as for ergo-
dic chains. If we wish to define steady-state probabilities to describe the situation shown in
Figure 6.5, we should recognize that in the long run, the transient states will not be occu-
pied at all, and Πi = 0 for all transient states i. In this example, Π1 = Π2 = 0. The absorbing
state, on the other hand, will always be occupied in the long run, and thus its steady-state
probability is 1. In this example, Π3 = 1. In a process that has more than one absorbing state
(only one of which will ever eventually be occupied), steady-state probabilities do not exist.

There is an interesting distinction between ergodic chains and absorbing chains. While
initial conditions do not affect steady-state probabilities in an ergodic chain, the initial state
of an absorbing chain has a strong effect on which absorbing state is eventually entered.
For example, in the transition diagram in Figure 6.6, we can examine the transition prob-
abilities and see that, if the process begins in state 2, it is most likely to be absorbed into
state 4; whereas if the process is initially in state 1, then the most likely absorbing state to
be entered is state 3. The probability that an absorbing state will be entered is called its
absorption probability. Absorption probabilities are conditional probabilities, dependent
on the initial state of the process. In this section, we will learn how to analyze the ways in
which transient states are occupied before an absorbing chain enters an absorbing state,
and we will see how to compute the probabilities with which each absorbing state will be
entered.

1 2

3

1

1
3–

1
4–

2
3–

3
4–

FIGURE 6.5
Absorbing chain.

269Markov Processes

We first rearrange the one-step transition probability matrix, if necessary, so that both
rows and columns are indexed by transient states first, and then absorbing states. Then,
if we have r transient states and N – r absorbing states, the matrix P has the following
structure.

r rows
N – r rows

r columns
Q
0

R
I

N – r columns

P =

In this form, the submatrix Q contains the one-step transition probabilities from transient
states to transient states, and R contains transition probabilities from transient states to
absorbing states. The lower-left submatrix of zeros indicates the impossible transitions
from absorbing states to transient states, and the identity matrix I indicates the certain
transitions from each absorbing state to itself.

The Markov chain in Figure 6.6 has the one-step transition probability matrix

P =



















0 1 4 1 2 1 4
1 8 1 4 1 8 1 2
0 0 1 0
0 0 0 1

with

Q =











0 1 4
1 8 1 4

and

R =











1 2 1 4
1 8 1 2

Now, the matrix (I – Q) is always non-singular, so we can obtain its inverse F = (I – Q)–1. The
matrix F is called the fundamental matrix of the Markov chain, and its elements specify the
expected number of times the system will be in its various transient states before absorp-
tion occurs. More precisely, the element fij tells us, for a system initially (or currently) in
state i, the expected number of times the system will occupy state j before absorption into

1 2

34

11

1
4–

1
4–

1
4–

1
8–

1
8–

1
2–

1
2–

FIGURE 6.6
Absorbing chain with two absorbing states.

270 Operations Research

some state. (The fundamental matrix F does not directly provide any information about
which absorbing state will eventually be the one that is entered.)

In our example,

I Q− =

−
−









()

1 1 4
1 8 3 4

and

F (I Q)= − =











−1 24 23 8 23
4 23 32 23

From this we can determine that if the process begins in state 1, we can expect it to enter
state 1 24/23 times and state 2 8/23 times. Therefore, the total expected number of transi-
tions before absorption is 24/23 + 8/23 ≈ 1.39. Similarly from initial state 2, we would expect
to occupy state 1 4/23 times and state 2 32/23 times, and to undergo 4/23 + 32/23 ≈ 1.565
transitions before absorption into state 3 or 4. In general, from initial state i, the total num-
ber of transitions through transient states before absorption is

T fi

j

r

ij=
=
∑

1

that is, the sum of the elements in the i-th row of the fundamental matrix F. This essentially
characterizes the duration of the finite stochastic process.

While the matrix F alone does not indicate which absorbing state will be entered, we can
easily obtain absorption probabilities by multiplying the fundamental matrix F by the
matrix R to obtain the matrix A:

 A F Rrxr rx(N r)= ⋅ −

The element aij tells us, for a system initially (or currently) in state i, the probability of the
system being absorbed into state j. In our example,

A
absorbing st

=


















 =

1 043
0 1739

0 3478
1 391

1 2 1 4
1 8 1 2

.
.

.
.

aates

transient states

3 4

1
2

0 5653
0 2608

0 4347
0 7390

.

.
.
.











which tells us that from initial state 1, the absorption probability into state 3 is 0.5653
and into state 4 is 0.4347. And from initial state 2, the absorption probability into state 3
is 0.2608 and into state 4 is 0.7392. (Notice that each row in A sums to 1 because, from any
initial state, one of those absorbing states will eventually be entered.)

Recall our intuitive observation of Figure 6.6 concerning the effect of initial states on
absorption: that from state 2, absorption into state 4 seemed more likely; while from state 1
absorption into state 3 seemed more likely. And indeed, in our calculations earlier, a24 > a23
while a13 > a14.

271Markov Processes

The matrix method for obtaining absorption probabilities can be explained by exam-
ining the equations for the individual elements aij. Given a system in state i, absorption
into state j can happen in two ways. There could be a one-step transition into state j that
could happen with probability pij. Otherwise, there could be a one-step transition to some
transient state k (where k = 1, …, r) for which the probability is pik, followed by eventual
absorption into state j, for which we have the absorption probability akj. Because one of
these will certainly occur, we can compute the absorption probability aij as

a p p aij ij ik kj= +

=
∑
k

r

1

This gives us one equation in many unknowns; and if we apply the same formula for all k,
we will obtain a uniquely solvable system of equations that will give us all of the absorp-
tion probabilities for a system initially in state i.

If we are interested in only one or a few initial states i, solving these systems of equa-
tions would probably be simpler computationally than performing the matrix inversion
required to obtain the fundamental matrix F and then the matrix multiplication by R.
However, if all the absorption probabilities are desired, it is more succinct to note that the
formula for all the aij is just the matrix equation

 A R Q A= + ⋅

This can be rewritten as

 A (I Q) R F R1= − = ⋅−

as given earlier.

6.8 Software for Markov Processes

The calculations required for finding steady-state probabilities and expected first passage
times are just the standard procedures for solving systems of linear equations. Software
for solving linear systems has already been mentioned in previous chapters, and these
routines are included in many software products such as the IMSL and SAS libraries.
The SAS/IML (Interactive Matrix programming Language) system provides an exten-
sive library of numerical methods for solving linear algebra problems. LINGO Integrated
Modeling Language and Solvers systems now incorporate matrix functions that support
solving linear systems.

Calculating the n-step transition probabilities requires matrix multiplication, which is
trivial to implement in any general-purpose programming language, but standard subrou-
tine libraries typically supply this function. There are also several mathematical software
packages in which a matrix is the fundamental data object, which may be of particular use
in manipulating transition probability matrices.

MATLAB is an integrated software package in which the procedural language is built
around the concept of a matrix. The language includes a rich set of matrix functions that

272 Operations Research

allow a user to express algorithms involving matrix operations much more succinctly than
would be possible using a general-purpose language. MATLAB versions run on PCs and
Macintosh systems, with larger versions for higher performance platforms. Data file for-
mats are compatible across all these platforms and problem sizes are limited only by the
amount of memory available on the system. Further details are described in Gilat (2004),
and Quarteroni and Saleri (2006).

R is now among the most powerful and commonly used statistical computing, graph-
ics and analytics software. It includes routines for generating Markov chains, computing
stationary distributions, calculating empirical transition matrices among others. R is a free
open source package with a large community of developers and users, and it is compat-
ible with all common operating systems. There are many R packages for specific statistical
methods and applications, including packages for advanced Markov models. We mention
here DTMCPack (Nicholson 2013) and the markovchain (Spedicato et al. 2017) R Packages
for basic Markov chains computations.

O-MATRIX is a matrix-based scripting language which originated as an object-
oriented analysis and visualization tool for Windows computing environments. Data and
procedures are built with a text editor, and computations are expressed via a powerful,
but small and easy-to-learn, language in which all operations are performed on matrix
objects. This integrated technical computing environment is now aimed at providing
high performance capabilities for solving computationally intensive mathematical
and engineering problems. O-MATRIX is compatible with a version of MATLAB from
MathWorks. See the software’s website and user manual for a more detailed description
of O-MATRIX.

6.9 Illustrative Applications

6.9.1 Water Reservoir Operations (Wang and Adams 1986)

The operation of a water reservoir is determined by a sequence of decisions concerning the
volume of water to be released during a time period. Optimizing the operations involves
finding a set of optimal release decisions over successive time periods to maximize the
expected total reward associated with long-term operation of the reservoir. This process
can be viewed as a Markov system by discretizing reservoir storage volumes into a finite
number of states, and treating the release events as transitions among the storage states
from one time period to the next.

An optimization method developed for general water reservoir management was applied
to the Dan River Issue Reservoir on a tributary of the Yangtze River. A two stage analysis
framework involved a real-time model followed by a steady-state model. Each time period
was analyzed by using information about the current reservoir storage state and histori-
cal information (gathered over a period of 30 years) of inflow into the reservoir. Thus, the
Markov process is derived from transition probabilities based on stochastic inflow data,
coupled with operational decisions for releasing water from the reservoir.

The objectives in this Yangtze River case were flood control, production of hydroelectric
power, and the ability to augment the flow of water during low seasons. Analysts devel-
oped operational standards for each activity. The rewards obtained through operation of
the reservoir were measured as revenues resulting from electric power production minus

273Markov Processes

penalties to account for failures to meet targeted standards of operation. Average annual
rewards computed in this way are the primary performance criterion for this system,
but additional indicators of performance include average annual energy production and
probabilities of the occurrence of various undesirable scenarios associated with floods
and low flow.

The optimal operating strategies derived from the Markov analysis represented signifi-
cant performance improvements of 14% for average annual reward, and 3.6% for average
annual power production, when compared with conventional strategies or the results of
deterministic optimization. Steady state optimization yielded increases in both power
production and the effectiveness of flood control.

Because of the magnitude of the annual revenues from the operation of such a major
reservoir, the modest percentage improvements represent substantial actual increases
in economic returns. Furthermore, the analysis undertaken for the Yangtze River
project was intended to be used for real-time operational decisions, so it was especially
valuable that this optimization method turned out to execute in a reasonable amount
of time. This computational efficiency, together with the profitability obtained through
the optimization process, indicate that the steady-state Markov analysis is an effective
component in this decision system for real-time operation of a multi-purpose, large-scale
water reservoir.

6.9.2 Markov Analysis of Dynamic Memory Allocation (Pflug 1984)

Computer operating systems are responsible for the management of computer storage
facilities (memories) during execution of programs. Dynamic memory allocation tech-
niques are widely used to promote economical and adaptive use of memory in computing
environments where exact storage requirements are not specified in advance. Memory
managers respond to requests for memory from executing programs by selecting a free
block of memory, allocating it to the requesting program, and eventually taking a released
block back and returning it to the pool of available space.

Allocation methods, such as first-fit, best-fit, worst-fit, and the buddy method, have been
used and are well-known to computer scientists; however, little mathematical analysis of
the performance of these methods has been done. Instead, simulation results have pro-
vided most of the reliable insights into the behavior of systems using these various alloca-
tion strategies.

A unique application of a Markov model has been used to describe the essential char-
acteristics of a dynamic memory allocation system, and to provide a means of comparing
different allocation methods. The states in this model correspond to storage configura-
tions, and the Markov analysis describes how these configurations vary over time.

More specifically, the state of the process is completely described by two vectors that
indicate the ordered sequences of the lengths of allocated and free blocks:

 x x , , x and y y , , y() ()1 B 1 B= = 

where:
xi is the length of the i-th allocated block
yi is the length of the free block following the i-th
B is the number of allocated blocks

274 Operations Research

Thus, the configuration shown in Figure 6.7 can be described by the vectors

 x (3, 4, 2, 4) and y (2, 0, 6, 2)= =

Various assumptions are made in order to permit an analysis using Markov models. In
particular, every request for memory is assumed to be followed by a release, so that the
number of allocated blocks B remains a constant, and therefore the Markov states are sim-
ple to describe.

Furthermore, the probability that a given request is for a block of size i is independent
of the current configuration. A one-step transition probability matrix is developed for a
random fit allocation strategy, which results in a Markov chain that is ergodic. (The set of
states for this model is enormous and, for practical reasons, the size of the state space is
reduced, at the expense of some loss of resolution.)

Steady state probabilities are computed and, for a large memory size, the expected num-
ber of free memory locations is close to constant. To study the efficiency and performance
of general dynamic memory allocation systems, the methods outlined in this study can be
extended to apply to other strategies and to allow for memory requests of arbitrary size.

6.9.3 Markov Models for Manufacturing Production Capability
(Foster and Garcia-Diaz 1983)

A Markov analysis has been used to identify the steady-state production capability of
manufacturing systems. For specified reliability and maintainability characteristics, the
model tracks failures in a multi-unit manufacturing system. Certain assumptions are nec-
essary. First, although the manufacturing system is a continuous-time process, in this case,
it is assumed that it can be accurately modeled as a discrete-time Markov chain if the
time increments are small enough. Second, the issue of stationarity must be addressed.
It is assumed that the probability that a functioning element in the system becomes non-
operational in a given interval is independent of the length of time it has been functioning.

In this analysis, the term failure refers to any activity, event, or condition causing a decrease
in production rate (breakdown, policy change, supply shortage, etc.), while the term repair
refers to any condition causing an increase in production rate. Each element in the multi-unit
system can be classified as either catastrophic (one whose failure causes the entire system to
shut down immediately), dependent (one that cannot be repaired while other elements are
in operation), or independent (one that can be repaired while other elements are operating).

Three models are developed. For the model consisting of only catastrophic elements,
each element has a constant probability of failure and a constant probability of repair. In
the model consisting of only dependent elements, all elements have the same probability
of failure. The system fails when a specified number of elements have failed, and the prob-
ability of system repair is constant over time. Once the system is repaired, all units are
functioning again. In the third model, all elements are independent, with the same prob-
ability of failure. A specified number of elements can be considered for repair at any given
time, and the probability that an element is repaired is constant.

FIGURE 6.7
Memory configuration (B = 4).

275Markov Processes

For each of these cases, a transition probability matrix specifies how an initially, fully
operational system evolves through stages of element failure, system failure, and repair
phases. A steady-state analysis is used to determine such characteristics as the expected
steady-state production rate for each specified number of element failures, and the prob-
ability of the entire system being down for repairs. As applied to a bottling machine, this
analysis led to an optimal repair policy; in particular, it was determined that 2 of the 24
elements should be allowed to fail before the system is shut down for repairs. Under this
policy, a system with a peak production capability of 1,200 bottles per minute can achieve
an expected production rate of 879 bottles per minute.

6.9.4 Markov Decision Processes in Dairy Farming (Rukav et al. 2014,
Suvak et al. 2016)

Dairy and cattle farmers throughout the world face similar problems: namely aiming to
produce more and richer milk, handling increases in the price of corn or other feed, vary-
ing the diet and conception rate in milk cows, and managing herd growth. Collaborations
between researchers in a university mathematics department in Croatia and an enterpris-
ing IT solutions provider for agricultural businesses have resulted in a new business envi-
ronment that can help farmers address the questions earlier. Through the use of Operations
Research techniques and analytical software tools, analysts were inspired to apply Markov
chains to minimize the expected long term cost of milk production at dairy cow farms.

In this Markov model, each dairy cow is considered to be in a state that indicates the quality
of her milk (milk fat, lactose, and proteins) and the quantity (with respect to a targeted level
considered to be optimal, based on previous studies of lactation). Farmers and veterinarians
consider the discrete-time homogeneous Markov chain to be an accurate and appropriate
probabilistic model for correctly classifying a dairy cow’s transitions from one state to another.

The one step transition probability matrix was constructed by estimating observed and
simulated data for particular representative cows over a period of time. The initial distri-
bution puts every cow initially in her best state, producing the most favorable quantities
and qualities of milk. This and the transition probability matrix describe the transitions of
a dairy cow from one lactation state to another over time. However, in the dairy business,
the dairy farmer is on site and is therefore in a position to intervene, making a decision to
take some action when the cow is seen to be in certain states.

By incorporating into the Markov chains the finite set of possible decisions or actions that
may be taken in each state, the basic Markov chain is expanded into a broader stochastic model
known as a Markov decision process. For example, for a cow in a given state, the farmer may
choose to take no action (milk produced is of acceptable quality and quantity), take action to
increase lactation (if quantity is too low), take action to improve quality, or replace the dairy
cow with a new one who is initialized as being in the best state. With any action, there is an
associated cost, and our dairy farmer’s aim is to minimize cost over the long term.

In the Markov decision process, not every decision is allowable in every state nor with
every possible state transition. Because the action decisions are limited, the cow being in
only certain states can transition into only particular other states, and the effects of the
action decision apply to only particular states. Also the effects of the action decision alter
future transitions in only limited ways; steps to improve lactation result in slow results, so
that a transition occurs into only a slightly better lactation state in a single transition, rather
than entering a greatly improved state in only one transition.

With the addition of decision actions that affect transition probabilities, it might seem
that the Markov properties have not been preserved. However because the impact of the

276 Operations Research

actions is controlled, analysts are able to build the stochastic model so that each possible
decision policy results in a new homogeneous Markov chain which can be analyzed in the
conventional way.

6.10 Summary

Markov processes are used to represent systems in which events take place according to
specified probabilities. The characteristics of such systems evolve over time, but in many
cases, the probabilities themselves can be used to predict some of these system charac-
teristics. Markov analysis provides a framework in which to study the behavior and the
emergent properties of these systems.

As events take place in a Markov process, the system makes transitions from one state
to another, and these transitions occur according to transition probabilities. If it is known
that a system initially is in a given state, then by using these transition probabilities, it is
possible to predict the patterns with which the system passes among states and perhaps
re-enters states previously occupied by the system.

Some processes involving uncertain or probabilistic transitions exhibit restricted pat-
terns of behavior that tend to dictate the ultimate disposition of the system. However,
other systems range more freely among their states indefinitely, and under certain cir-
cumstances it is possible to characterize the long-term behavior or status of these systems.
Knowing this steady-state behavior of systems is very valuable to analysts in planning or
budgeting resources or projecting costs or profits in systems whose events take place in an
environment of uncertainty.

Key Terms

absorbing chain
absorbing state
absorption probability
aperiodic state
closed set of states
continuous-time stochastic process
discrete-time stochastic process
ergodic Markov chain
expected first passage time
expected recurrence time
finite state Markov chain
first passage probability
first passage time
first recurrence time
fundamental matrix
initial probability distribution
irreducible Markov chain

277Markov Processes

Markov chain
Markov process
Markov property
one-step transition probability
periodic state
reachable state
recurrence time
recurrent state
state
state probabilities
state probability vector
state transition diagram
stationarity property
steady state
steady state probability
steady state probability vector
stochastic process
transient state
transition
transition probability
transition probability matrix
transition tree

Exercises

6.1 Suppose

P =

0 080 0 184 0 368 0 368
0 632 0 368 0 0
0 264 0 368 0 368 0
0 080 0 1

. . . .

. .

. . .

. . 884 0 368 0 368. .



















 Obtain the steady state probabilities for the Markov chain whose one-step prob-
abilities are given by P.

6.2 Write a computer program to compute the state probabilities p(50) for a five state
system whose initial probabilities are (0.2 0.2 0.2 0.2 0.2) and whose one step
transition probabilities are:

P =

0 1 0 1 0 1 0 1 0 6
0 2 0 2 0 3 0 1 0 2
0 2 0 2 0 2 0 2 0 2
0 5 0 1 0 1 0

.

.

.

. . . .11 0 2
0 3 0 3 0 1 0 2 0 1

.
.























278 Operations Research

 by raising P to the 50-th power.
 a. Do the elements in your result vector Π sum to 1?
 b. After how many steps do the state probabilities cease to change observably?
 c. If your state probabilities stabilize, but then exhibit small changes as you

continue to compute higher powers of P, how would you explain this?
 d. Compare your result with the steady state probabilities you obtain by

solving the system ΠP = Π and ∑ Π = 1. Do these steady state probabilities
sum to 1?

 e. Which method of establishing state probabilities takes greater computation
time? (Use a timing function on your computer to determine this.)

 f. Which method appears to yield more accurate results? (How can you make this
determination?)

6.3 Why is the Markov process described by the following transition probability
matrix not an ergodic process?

P =



















0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 What do you discover if you try to establish steady state probabilities by solving
the steady-state equations for this process?

6.4 Raise the following transition probability matrices to successively higher powers,
and note the difference in the number of steps required to reach steady state in
each case:

P PA B=
















=
. . .
. . .
. . .

. .0 3 0 3 0 4
0 4 0 3 0 3
0 5 0 2 0 3

0 90 0 055 0 05
0 05 0 95 0

0 0 10 0 90

.
. .

. .

















6.5 Try to establish steady state probabilities by solving the steady-state equations cor-
responding to the Markov system shown in Figure 6.3. Is there any computational
difficulty caused by the transient and recurrent states?

6.6 A doubly stochastic matrix is one whose row elements sum to 1 and whose
column elements also sum to 1. Find the steady-state probabilities for the chain
whose one-step transition probabilities are given by the doubly stochastic
matrix

P =
















1 3 2 3 0
1 6 1 3 1 2
1 2 0 1 2

279Markov Processes

 In general, for any doubly stochastic matrix, it is true that:

 Πj = 1/n for j = 1, …, n

 where n is the number of states.
6.7 In a hospital for seriously ill patients, each patient is classified as being either in

critical, serious, or stable condition. These classifications are updated each morn-
ing as a physician makes rounds and assesses the patients’ current conditions. The
probabilities with which patients have been observed to move from one classifica-
tion to another are shown in the following table, where the (i, j)-th entry represents
the probability of a transition from condition i to condition j.

Critical Serious Stable

Critical 0.6 0.3 0.1
Serious 0.4 0.4 0.2
Stable 0.1 0.4 0.5

 a. What is the probability that a patient who is in critical condition on Tuesday
will be in stable condition on the following Friday?

 b. How many days on average will pass before a patient in serious condition will
be classified as being in stable condition?

 c. What is the probability that a patient in stable condition on Monday will expe-
rience some sort of reversal and will not become stable again for three days?

 d. What proportion of the patient rooms should be designed and equipped for
patients in critical condition? In serious condition? In stable condition?

 Discuss the validity of the Markov assumption and the stationarity assumption, in
the context of this problem.

6.8 Construct a transition probability matrix to model the promotion of high school
students through grades 10–12. Ninety-two percent of tenth graders are passed on
to the next grade, 4% fail and repeat the tenth grade, and 4% fail and drop out of
school. At the end of the eleventh grade, 88% pass to the next grade, 7% fail and
repeat, and 5% fail and drop out. Of the twelfth graders, 96% graduate from high
school successfully, 3% fail and repeat the twelfth grade, and 1% fail and do not
ever complete high school. Students may repeat a grade any number of times, but
no student ever returns to a lower grade. Comment on the structure of the tran-
sition probability matrix. Of 1,000 students entering the tenth grade, how many
are expected to graduate after three years in high school? What other information
about the high school students can be obtained from the data given earlier?

6.9 What is the name given to a Markov state that is reachable from the initial state and
whose steady-state probability is zero? What is the name given to a Markov state
whose steady-state probability is 1?

6.10 What is the interpretation of the element aij in the matrix A, where A is the product
of the matrices F and R? What is the interpretation of the element fij in the funda-
mental matrix F of a Markov process?

280 Operations Research

6.11 Suppose the following one-step transition probability matrix describes a Markov
process:

States 1 2 3

1 0.2 0.7 0.1
2 0 0.3 0.7
3 0 0.1 0.9

 a. Determine the steady-state probabilities for this process.
 b. What is the probability that a first passage from state 2 to state 3 will occur after

exactly two transition steps?
 c. What is the expected number of transitions that will occur for the system in

state 2 to return again to state 2?
6.12 A machine maintenance problem can be modeled as a Markov process. Each day,

the machine can be described as either excellent, satisfactory, marginal, or inopera-
tive. For each day the machine is in excellent condition, a net gain of $18,000 can
be expected. A machine in satisfactory condition yields an expected $12,000 per
day. A marginal machine can be expected to bring a daily net gain of $4,000, and
an inoperative machine causes a net loss of $16,000 a day. An excellent machine
will be excellent the next day with probability 90%, satisfactory the next day with
probability 4%, and marginal with probability 2%, and inoperative with probability
4%. A satisfactory machine will the next day be satisfactory with probability 80%,
marginal with probability 12%, and inoperative with probability 8%. A marginal
machine will be marginal again the next day with probability 70%, and inopera-
tive with probability 30%. Repairs are made without delay, but only on inoperative
machines, and the repairs take exactly one day. (The day long repair process costs
$16,000, which accounts for the daily net loss stated earlier.) A machine having
undergone repair is 90% likely to be in excellent condition the next day, but in 10%
of cases the repairs are ineffective and the inoperative machine will remain out of
commission, necessitating a repeat of the repair process on the following day (at an
additional cost of $16,000). Find the steady state probabilities for the four states of
this machine. Then, assuming that this machine is active (in one of its four states)
365 days per year, find the long-term annual profitability of this machine?

6.13 Given the one step transition probability matrix in the following, compute the
expected first passage times from state i to state j, for all i and j.

0 0 0 5 0 5
1 0 0 0
0 1 0 0
0 0 5 0 5 0

. .

. .



















6.14 A computer network is observed hourly to determine whether the network is
operational (up) or not (down). If the network is up, there is a 98% probability that
it will be up at the next observation. If it is down, there is a 30% probability that

281Markov Processes

effective repairs will have been completed by the next hourly observation, but a
70% chance that repairs are still in progress and the network is still down the
next hour. Analyze the expected first passage times for this computer network.
Comment on the performance of the network in general, and in particular inter-
pret and comment on the first passage probabilities. In what type of network envi-
ronment would the performance of this network be acceptable?

6.15 Customers are often faced with the option of purchasing an extended warranty
for a new appliance. Suppose that GalleyKleen dishwashers offer a warranty plan
that covers the first three years of ownership of a dishwasher. During the first year
of operation, 5% of dishwashers fail. During the second year of operation, 8% fail.
And 11% of dishwashers in their third year of service fail. The basic warranty from
GalleyKleen covers replacement only when failures occur during the first year.
If a failure occurs, a repair during the second year is expected to cost the owner
(customer) $150, and during the third year is expected to cost $200. For $80, the
customer can purchase an extended warranty that provides free repairs or replace-
ment in case of failures any time within the first three years. Use a Markov model
to track the progression of dishwashers through their first three years of service.

 a. Is the extended warranty a good buy for the customer?
 b. By what amount should GalleyKleen increase the sales price of the dishwasher

so that the basic (no charge) warranty could be extended to cover three years?
 c. If the basic warranty did cover two years, what is a fair price for the customer

to purchase a one-year extension, providing a total of three years of warranty
coverage?

6.16 Two companies, one selling Ol’ Boy Biscuits and the other selling Yuppy Puppy
Pleasers, have cornered the market for dog treats. Each product is packaged to
contain a four-week supply of treats, and customers always purchase treats as soon
as necessary so as to never run out. For a customer whose last purchase was Ol’
Boy, there is a 75% chance of a brand change on the next purchase; and for a cus-
tomer who most recently bought Yuppy Puppy, there is an 85% chance of a brand
change on the next purchase. Ol’ Boys are sold at a per unit profit of 60¢, and
Yuppy Puppys yield a per unit profit of 70¢.

 a. What proportion of the market is held by each of these two products?
 b. If 30 million customers regularly purchase these products, what are the annual

expected profits for each company?
6.17 Consider the assumptions that were made in analyzing the memory allocation pro-

cesses described in Section 6.9.2. Can you provide arguments that these assump-
tions are justified in practice?

References and Suggested Readings

Alstrup, J., S. Boas, O. B. G. Madsen, and R. Victor Valqui Vidal. 1986. Booking policy for flights with
two types of passengers. European Journal of Operational Research 27 (3): 274–288.

Bhat, U. N. 1972. Elements of Applied Stochastic Processes. New York: Wiley.

282 Operations Research

Bhattacharva, R. N., and E. C. Waymire. 1990. Stochastic Processes with Applications. New York:
Wiley.

Boucherie, R. J., and N. M. van Dijk (Eds.). 2017. Markov Decision Processes in Practice. Cham,
Switzerland: Springer.

Ching, W.-K., and M. K. Ng. 2006. Markov Chains: Models, Algorithms, and Applications. New York:
Springer.

Clarke, A. B., and R. Disney. 1985. Probability and Random Processes for Engineers and Scientists. New
York: Wiley.

Clymer, J. 1988. System Analysis Using Simulation and Markov Models. Englewood Cliffs, NJ:
Prentice-Hall.

Derman, C. 1970. Finite State Markovian Decision Processes. New York: Academic Press.
Feinberg, E. A., and A. Schwartz. 2002. Handbook of Markov Decision Processes: Methods and Applications.

Boston, MA: Kluwer Academic Publishers.
Flamholtz, E. G., G. T. Geis, and R. J. Perle. 1984. A Markovian model for the valuation of human

assets acquired by an organizational purchase. Interfaces 14 (6): 11–15.
Foster, J. W., III, and A. Garcia-Diaz. 1983. Markovian models for investigating failure and repair

characteristics of production systems. IIE Transactions 15 (3): 202–209.
Gilat, A. 2004. MATLAB: An Introduction with Applications, 2nd ed. Hoboken, NJ: John Wiley & Sons.
Howard, R. A. 1960. Dynamic Programming and Markov Processes. Cambridge, MA: MIT Press.
Isaacson, D., and R. Madsen. 1976. Markov Chains: Theory and Applications. New York: Wiley.
Kemeny, J. G., and J. L. Snell. 1976. Finite Markov Chains. New York: Springer-Verlag.
Kirkwood, J. R. 2015. Markov Processes. Boca Raton, FL: CRC Press.
Leung, C. H. C. 1983. Analysis of disc fragmentation using Markov chains. The Computer Journal

26 (2): 113–116.
Nicholson, W. 2013. DTMC: Suite of functions related to discrete-time discrete-state Markov Chains.,

R-Package manual. Available at: ttps://CRAN.R-project.org/package=DTMCPack. (Accessed on
May 19, 2018).

Norri, J. R. 1998. Markov Chains. Cambridge, UK: Cambridge University Press.
Pflug, G. Ch. 1984. Dynamic memory allocation—A Markovian analysis. The Computer Journal 27 (4):

328–333.
Quarteroni, A., F. Saleri, and P. Gervasio. 2014. Scientific Computing with MATLAB and Octave, 4th ed.

Heidelberg, Germany: Springer.
Ross, S. 1993. Introduction to Probability Models, 5th ed. New York: Academic Press.
Ross, S. 1995. Stochastic Processes, 2nd ed. New York: Wiley.
Rue, R. C., and M. Rosenshine. 1985. The application of semi-Markov decision processes to queuing

of aircraft for landing at an airport. Transportation Science 19 (2): 154–172.
Rukav, M., K. Strazanac, N. Suvak, and Z. Tomljanovic. 2014. Markov decision processes in minimi-

zation of expected costs. Croatian Operational Research Review 5 (2): 247–257.
Sericola, B. 2013. Markov Chains: Theory and Applications. New York: Wiley.
Sheskin, T. J. 2010. Markov Chains and Decision Processes for Engineers and Managers. Boca Raton, FL:

CRC Press.
Spedicato, G. A., T. S. Kang, S. B. Yalamanchi, M. Thoralf, D. Yadav, N. C. Castillo, and V. Jain.

2017. The markovchain Package: A package for easily handling discrete Markov chains in R.
Available at: https://cran.r-project.org/web/packages/markovchain/vignettes/an_introduc-
tion_to_markovchain_package.pdf. (Accessed on May 19, 2018).

Stewart, W. J. 1995. Introduction to the Numerical Solution of Markov Chains. Princeton, NJ: Princeton
University Press.

Stewart, W. J. (Ed.). 1991. Numerical Solution of Markov Chains. New York: Marcel Dekker.
Suvak, N., Z. Tomljanovic , K. Strazanac, and M. Zekic-Susac. 2016. Markov chains and dairy farm-

ing in Croatia. OR/MS Today 43 (2): 30–32.
Swersey, A. J. 1982. A Markovian decision model for deciding how many fire companies to dispatch.

Management Science 28 (4): 352–365.
Taylor, H., and S. Karlin. 1984. An Introduction to Stochastic Modeling. New York: Academic Press.

https://CRAN.R-project.org/package=DTMCPack
https://cran.r-project.org/web/packages/markovchain/vignettes/an_introduction_to_markovchain_package.pdf
https://cran.r-project.org/web/packages/markovchain/vignettes/an_introduction_to_markovchain_package.pdf

283Markov Processes

Walters, C. J. 1975. Optimal harvest strategies for salmon in relation to environment variability and
production parameters. Journal of the Fisheries Research Board of Canada 32 (10): 1777–1784.

Wang, D., and B. J. Adams. 1986. Optimization of real time reservoir operations with Markov deci-
sion processes. Water Resources Research 22 (3): 345–352.

White, D. J. 1985. Real applications of Markov decision processes. Interfaces 15 (6): 73–83.
White, D. J. 1988. Further real applications of Markov decision processes. Interfaces 18 (5): 55–61.
Winston, W. L. 2004a. Introduction to Probability Models: Operations Research Volume II. Belmont, CA:

Brooks/Cole-Thomson Learning.
Winston, W. L. 2004b. Operations Research: Applications and Algorithms, 4th ed. Boston, MA: Brooks/Cole.

http://taylorandfrancis.com

285

7
Queueing Models

We have already been introduced to several modeling tools, such as linear programming,
network models, and integer programming techniques, which allow us to optimize sys-
tems. Other techniques, such as Markov analysis, allow us to observe and analyze the prob-
able behavior of systems over time; and the information gained from these observations
may be used indirectly to modify or improve system performance. In this chapter, we will
study further mechanisms by which we may observe and characterize the performance of
systems. In particular, we will concentrate on the wide variety of systems whose elements
include waiting lines (queues), and we will study how such waiting lines interact with other
activities or entities in the system toward achieving certain goals for system throughput.

The study of systems involving waiting lines traces its origin to work done many decades
ago by A.K. Erlang. Working for the Danish telephone company, this mathematician devel-
oped techniques to analyze the waiting times of callers in automatic telephone exchanges.
In such systems, waiting is caused by a lack of resources (not enough servers), and system
designers must develop ways to balance the value of customer convenience against the
cost of providing servers.

Waiting lines inherently create inconvenience, inefficiency, delay, or other problems. Waiting
lines represent people waiting for service, machines waiting for a repairman, parts wait-
ing to be assembled, and so on; and these situations cost time and money. Of course, wait-
ing lines can be virtually eliminated by simply adding lots of servers, repairmen, and
assembly stations, but this can be very expensive. To make intelligent decisions about how
many servers to hire, or how many workstations to build, we must first understand the
relationship between the number of servers and the amount of time spent in the queue, so
that we can evaluate the trade-off between the various costs of servers and queues.

In this chapter, we will study systems that are simple enough to be modeled analytically
and precisely using queueing models. These methods have been found to be surprisingly
successful in estimating the performance of many kinds of systems. Unfortunately, despite
the popularity of analytical techniques, they may be too cumbersome to use (or technically
inapplicable) for modeling some very complex systems. These more difficult systems can
often be analyzed using simulation; therefore, in Chapter 8 we will study the techniques
of using computers to simulate the operation of complex systems.

7.1 Basic Elements of Queueing Systems

A queueing system consists of a flow of customers into and through a system, who are to
be processed or dealt with by one or more servers. If there are fewer customers than serv-
ers, customers are handled immediately and some servers may be idle. If there is an excess
of customers, then they must wait in a line or queue until a server becomes available. After
being served, the customer leaves the system.

286 Operations Research

Waiting lines and systems involving waiting lines are so pervasive in real life that it
is not at all surprising that the analysis of the operation of such systems forms a major
subfield of Operations Research. We expect to see waiting lines at, for example, the book-
store, grocery store, restaurant, bank, gas station, and hospital emergency room. You may
even have to queue up to visit your professor or to pick up a parcel from the postal service.
Queues also form for telephone calls, which must wait for an available circuit in order to
complete a connection. Messages or data packets may have to be queued at a processing
node of a computer network before they can be forwarded on toward their destinations.
Airplanes must wait to take off or land on a particular runway. Manufactured items on an
assembly line may have to wait to be worked on by a line worker, a programmed robot,
or other machine. And computer programs often wait in a queue to be executed in a large
central computing facility. All of these represent systems whose inefficient or improper
operation could cause inconvenience, economic loss, or even safety risks. Therefore, engi-
neers and decision analysts are keenly interested in understanding and improving the
operation of queueing systems.

The principal elements in a queueing system are the customer and the server. Queues
arise only as a result of the servers’ inability to keep pace with the needs of the customers.
From the customers’ point of view, there should be as many servers as there are customers
at any given time, but this of course is not economically feasible. It would not make sense
to hire enough bank tellers or build enough drive-through teller stations to handle the
peak load of customers because, obviously, most of those tellers would be idle during most
of the business day. Customers therefore expect to wait some reasonable amount of time
for service. The meaning of a reasonable wait varies with the context.

If a customer arrives and sees that all the queues look very long, the customer may
decide not to wait at all (known as balking), and the system loses a customer. A customer in
one queue may perceive that a different queue is moving more quickly, so he may abandon
his position in the first queue and join the apparently more advantageous one (known as
jockeying). Or a customer may wait in a line, become discouraged at the slow progress, and
leave the queue and the system (known as reneging).

This type of behavior certainly complicates the analytical study of queueing systems.
Furthermore, customers differ in their perception of queueing patterns. What seems to be
a hopelessly long wait to one customer may not seem so to another. A family with several
small children in tow might find a 20-minute wait for a seat in their favorite restaurant
intolerable, whereas a group of adults might be willing to enjoy conversation during a
lengthy wait. An airplane with a nearly empty fuel tank may gladly endure a short wait for
a local runway rather than fly to an alternate airport some distance away, whereas an anx-
ious bank customer may change lines several times in the possibly vain hope of receiving
more prompt service. Circumstances and personalities strongly influence systems involv-
ing human customers.

For our purposes, customers are characterized primarily by the time intervals that sepa-
rate successive arrivals. (Arrival rates will be discussed in the next sections.) In more com-
plex systems, customers may arrive in groups, such as a group of people wishing to be
served together in a restaurant, or a busload of tourists arriving at a museum. Often, the
group is treated as a single customer, and these are called bulk queues.

Another key characteristic of a queueing system is the type and length of service required
by each customer. We will confine our studies to cases in which each customer requires
the same type of service, but the server may take a different amount of time for each cus-
tomer. Human behavior again becomes a factor here. If the server is a machine, it may take
exactly the same amount of time for each customer service. More generally, however, the

287Queueing Models

time required for service may be random and will vary from one customer to the next.
Moreover, it is easy to envision a human server (a bank teller or an air traffic controller,
for example) who sees the queue becoming long, becomes nervous, and makes mistakes,
causing the service to take longer. On the other hand, a more adroit server may observe
the crowded condition and work more quickly and efficiently. Or an immigration officer
at a border crossing may ask fewer questions when the lines get long. Our discussion of
service rates, in the next section, will attempt to account for these various considerations.

The following characteristics summarize the main elements of queueing systems.

 1. The pattern of customer arrivals is typically described by a statistical distribution
involving uncertainty.

 2. The lengths of service times (and therefore the departure times for each customer)
likewise are described by a statistical distribution.

 3. The number of identical servers (sometimes called channels because in some
of the earliest systems studied, the servers were information paths) operating
in parallel is an important characteristic. If there is more than one server, each
may have its own queue or all servers may select customers from a single queue.
In more general systems, such as assembly lines, the customer (the item being
manufactured) may pass through a series of queues and service facilities. The
most general systems include both series and parallel queues and are termed
network queues.

 4. The method by which the next customer is selected from the queue to receive
service is called queue discipline. The most common queue discipline is first-in,
first-out (FIFO), in which the customer selected for service is the one that has been
in the queue for the longest time. Customers could also be selected at random, or
according to certain priority schemes such as highest-paying customer, the most
urgent customer, or the customer requiring the shortest service time.

 5. In some systems, there is a maximum number of customers allowed in the queue
at one time; this is called the system capacity. If a system is at capacity, new arriv-
als are not permitted to join the system. This could occur in a drive-in bank where
the queue of cars is not allowed to extend into the street, or in a computer network
where the buffer space can contain only a certain number of queued data packets.
In a bottling plant, there is a certain amount of space between the filling station
and the packing lines. When the space fills up, the filling station must be shut
down.

 6. A final factor in characterizing a queueing system is the population or source from
which potential customers are generated. This calling source may be finite or infi-
nite in size. In a bank, for example, the calling source would be assumed infinite
for all practical purposes because it is unlikely that all possible customers would
ever be in the bank and that no others could conceivably arrive. On the other hand,
in a computer system with a relatively few number of authorized users, it is cer-
tainly possible that all users might be logged on at some time and that there could
be no new arrivals. A finite calling source thus can have an effect on the rate of
new arrivals.

Once a queueing system has been modeled by specifying all of these characteristics, it may
be possible for an analyst to learn a great deal about the behavior of the system by answer-
ing questions such as the following.

288 Operations Research

• How much of the time are the servers idle? Servers usually cost money, and under-
utilized servers might need to be removed.

• How much time does a customer expect to spend waiting in line? And is this a
reasonable amount of time, considering the context? Is it likely that customers are
being lost due to long queues?

• What is the average number of customers in the queue? Should servers be added
in order to try to reduce the average queue length?

• What is the probability that the queue is longer than some given length at any
point in time?

These are questions facing system designers who must try to get optimal utilization from
their service facilities while providing an acceptable level of convenience or safety for
customers. Keep in mind that queue analysis normally occurs before a system is built. A
primary purpose of queueing theory may be to determine how many service facilities
(such as operating rooms or checkout counters) to build before it is too late or too costly
for modifications to be undertaken. The remainder of this chapter presents some tools for
answering just such questions as these.

7.2 Arrival and Service Patterns

7.2.1 The Exponential Distribution

In queueing systems, we generally assume that customers arrive in the system at random and
that service times likewise vary randomly. Our intuitive notion of random is closely associ-
ated with the exponential distribution of lengths of time intervals between events; that is,
intervals between arrivals or durations of services. Suppose we generate a random number
n of arrival times over some fixed time period T by selecting n numbers from a uniform dis-
tribution from 0 to T. This process coincides with our intuitive idea of independent random
events. It can be shown that the distances between these points are exponentially distributed.

The assumption underlying the exponential distribution is that the probability of an
arrival occurring in any small interval of time depends only on the length of the interval
and not on the starting point (time of day, week, etc.) of the interval or on the history of
arrivals prior to that starting point. The probability of an arrival in a given time interval
is unaffected by arrivals that have or have not occurred in any of the preceding intervals.

Restating these properties of the exponential distribution in terms of service times: the
duration of a given service does not depend on the time of day (e.g., it does not depend
on how long the service facility has been in operation), nor on the duration of preceding
services, nor on the queue length or any other external factors.

Note that the stationary and memoryless properties that we observe here are precisely
the assumptions that we made in order to model processes using Markov analysis, as
discussed in the preceding chapter. In fact, we will return to exactly these same ideas in
developing our analytical queueing models in the next section.

The exponential density function (sometimes called the negative exponential density
function) is of the form

 f t e t() = λ −λ

289Queueing Models

where 1/λ is the mean length of intervals between events. Therefore, λ is the rate at which
events occur (the expected number of occurrences per unit time).

That is, f(t) represents the probability of an event occurring within the next t time units.
The curves shown in Figure 7.1 illustrate the shape of the exponential distribution for dif-
ferent values of the parameter λ, shown as λ1, λ2, and λ3 on the vertical axis. Because the
area under each of these curves must be one (as for any probability density function), a
larger value of λ implies a more rapid decrease and asymptotic convergence to zero. As
indicated by the exponential distribution curves in the figure, the most likely times are
the small values close to zero, and longer times are increasingly unlikely. The exponential
distribution times are more likely to be small than above the mean. However, there will
occasionally be very large times.

We should mention here that there are clearly some cases that are not represented by
the exponential distribution function. A machine (or even a human) service facility that
performs each service with the identical constant service time yields a service distribution
in which all service times are essentially equal to the mean service time, which is inconsis-
tent with the exponential distribution. The exponential distribution also precludes cases
where a customer arrives but does not join the queue because he sees another customer
arrive just ahead of him, or when the server tries to speed up as the queue length increases.
It is easy to imagine other scenarios that cannot be correctly or realistically described
by the exponential distribution; however, experience in system modeling has shown that
many systems exhibit a typical pattern of random, independent arrivals of customers,
most of whom can be served in a short length of time while relatively few require longer
service. For example, most bank customers arrive to conduct simple transactions that can
be handled quickly, while the few irregular cases require more time. In a hospital emer-
gency room, a large number of the arriving cases require relatively simple first-aid, while
serious trauma cases requiring longer attention are less frequent. Thus, the assumption
of exponentially distributed interarrival times and service times has been found in many
practical situations to be a reasonable one.

An exponential interarrival distribution implies that the arrival process is Poisson dis-
tributed. If the interarrival times are exponential, then the number of arrivals per unit time
is a Poisson process. A Poisson distribution describes the probability of having precisely
n arrivals in the next t time units as:

Probability X t n

t e
 n!

{ }
()n t

() = = λ λ−

t

λ1

λ2

λ3

f(t)

FIGURE 7.1
Exponential distribution.

290 Operations Research

Notice that when n = 0, the probability

 Probability X t e{ t() }= =0 −λ

is precisely the exponential distribution that the next arrival will not occur until after t
time units. However, in describing queueing systems, people often refer to Poisson arriv-
als and exponential service times because it seems more natural to describe customer
arrivals by stating how many arrivals per unit time, whereas service times are more conve-
niently described by stating the duration of the service.

7.2.2 Birth-and-Death Processes

Because of our assumption that interarrival and service times are exponentially dis-
tributed, this class of queueing models can be viewed as special cases of continuous
time Markov processes. When such a system initially begins operation, performance
measures are strongly affected by the system’s initial conditions (its initial state) and
by how long the system has been in operation. Eventually, however, the state of the
system becomes independent of initial conditions, and we say the system has reached
steady-state. Our queueing models will deal primarily with a steady-state analysis of
the queueing system.

To facilitate our development of formulae for performance analysis of queueing systems in
steady-state, we will illustrate the system by using a particular type of transition diagram
known as a birth-and-death process model. The states in this system are characterized
by the number of customers in the system, and thus correspond to the set of non-negative
integers. This number includes the number in queue plus the number in service. The term
birth refers to a customer arrival, and the term death refers to a departure.

Only one birth or death may occur at a time; therefore, transitions always occur to the
next higher or next lower state. The rates at which births and deaths occur are prescribed
precisely by the parameters of the exponential distributions that describe the arrival and
service patterns. In queueing theory, the mean customer arrival rate is almost universally
denoted by λ and the mean service rate (departure rate) is denoted by μ, where λ and μ are
the exponential distribution parameters.

We can illustrate all the possible transitions using the rate diagram shown in Figure 7.2.
An arrival causes a transition from a state i into state i + 1, and the completion of a service
changes the system’s state from i to i – 1, for a given i. No other transitions are considered
possible. Using this diagram, we can now begin to derive the formulae that describe the
performance of simple queueing systems.

μ

0 1 2 3 N – 1 N + 1N

μ

λλ λ λ λ λ

μ μ μ μ

FIGURE 7.2
Rate diagram for a birth-and-death process.

291Queueing Models

7.3 Analysis of Simple Queueing Systems

7.3.1 Notation and Definitions

Although we will concentrate on only the simplest of queueing models, we will make use
of a notational scheme that was developed by Kendall and Lee and that is commonly used
to describe a variety of types of queueing systems (Lee 1966). The system characteristics
are specified by the symbols

 A / B / C / D / E / F

where:
A and B are letters that denote the interarrival time distribution and the service time

distribution, respectively.
C is a number that denotes the number of parallel servers or channels.
D and E denote the system capacity and size of the calling source, respectively.
F is an abbreviation identifying the queue discipline.

The codes used to denote arrival and service patterns are as follows:

M for exponential (Markovian) interarrivals and service times
D for constant (deterministic) times
Ek for Erlang distributions with parameter k
GI for general independent distribution of interarrival times
G for general service times

The code for queue discipline may be FCFS (first-come, first-served), SIRO (service in
random order), or any other designated priority scheme.

So, for example, a queueing system described as

 M / M / 1 / / / FCFS∞ ∞

is a single server system with exponential arrivals and departure patterns, infinite queue
capacity and calling source, and a first-come, first-served queue discipline. This is the type
of system we will study most thoroughly in this chapter. Of course, a variety of combina-
tions of characteristics can be defined, but only a relatively small number of systems have
been solved analytically.

Beyond this seemingly cryptic notation describing the essential characteristics of a
queueing system, we need some additional definitions and notation to describe vari-
ous performance measures. Determining these performance measures is, after all, our
 primary reason for creating analytical models of queueing systems. The following
abbreviations are used almost universally and can be found in any textbook on queue-
ing analysis.

λ = Arrival rate (expected number of arrivals per unit time).
μ = Departure rate for customers of each server in the system (expected number of

customers completing service and departing the system per unit time).
s = Number of parallel servers.

292 Operations Research

ρ = λ/sμ = Utilization factor of the service facility (the expected fraction of time the
servers are busy); sometimes called traffic intensity. Note that ρ < 1 in order for the
system to reach steady-state; otherwise, the customer load on the system grows
increasingly large without bound.

pn = Steady state probability of the system being in state n, that is, of there being exactly n
customers in the system. (Recall from our study of steady state Markov processes that
this may be interpreted as the fraction of the time the system has exactly n customers.)

L = Expected number of customers in system.
Lq = Expected number of customers in queue; mean length of queue.
W = Expected waiting time for each customer in the system (includes time spent in

queue as well as service time).
Wq = Expected waiting time spent in queue.

Certain relationships have been established between L, Lq, W, and Wq. Little’s formula (Little
1961) states that L = λW and also that Lq = λWq. Also, because expected waiting time in the
system equals expected time in queue plus expected service time, we have the formula
W = Wq + 1/μ. Therefore, if we can compute any one of these four performance measures, we
can use these relationships to compute the other three. But in order to do this, we need a way
to compute the probabilities pn. For this, we return to our birth-and-death process diagrams.

7.3.2 Steady State Performance Measures

If we consider any state in the rate diagram shown in Figure 7.2, and assume the system to
have reached steady state, then it must be true that the mean rate at which transitions are
made into the state must equal the mean rate at which transitions are made out of the state.
In fact, we can write an equation for each state that expresses this fact and that accounts for
all possible ways in which transitions into and out of the state can occur. The set of equa-
tions that results from doing this are called flow balancing equations, and we can write
them in the following way.

First consider state 0, the simplest case, because there is only one path leading in and one
path leading out. The mean rate out of state 0 is the probability of being in state 0 times the
rate of departures from state 0, p0λ. The mean rate in is the probability of being in state 1
times the rate of transitions from state 1 to state 0, p1μ. Therefore, the equation for state 0 is

 p p0 1λ µ=

For all other states, there are two arcs leading in and two arcs leading out. Still, the rate-in =
rate-out principle holds and we can write for state 1:

Rate in: p p

Rate out: p p

 p p p ptherefore

0 2

1 1

0 2 1 1

λ µ

λ µ

λ µ λ µ

+

+

+ = +

And similarly for state 2,

 p + p p + p1 3 2 2λ µ λ µ=

293Queueing Models

and for state n

 p p p pn 1 n 1 n n− λ µ λ µ+ = ++

By first solving the state 0 equation for p1 in terms of p0, we can proceed to the state 1 equa-
tion and solve for p2 in terms of p0, and successively solve for all pn as follows:

p p

p p p

p p

1 0

2 1

2

0

3 2

=










=








 =











=








 =





λ
µ

λ
µ

λ
µ

λ
µ

λ
µ




 =











=








 =











2

1

3

0

n n 1

n

0

p p

.

.

.

p p p

λ
µ

λ
µ

λ
µ

−

So, for the birth-and-death process model in which all arrivals are characterized by the
parameter λ and all departures by the parameter μ, any of the pi can be computed in terms
of the parameters λ and μ and the probability p0. To obtain the value of p0, we just observe
that the sum of all the pi must equal to one:

 p p p … p … 10 1 2 n+ + + + + =

Then,

1 p p p p

p 1

0 0

2

0

n

0

0

= +








 +









 + +









 +

= +




λ
µ

λ
µ

λ
µ

λ
µ

 





 +









 + +









 +













λ
µ

λ
µ

2 n

 

The series in square brackets converges, if (λ/μ) < 1, to the quantity

1
1 /− λ µ()

Therefore,

1 0=

()
p

1
1 /− λ µ

294 Operations Research

and

p 10 = −











λ
µ

More intuitively, you may also recall that ρ = λ/sμ is the probability of the service facility
being in use at any given time. For a single service facility in which the same parameter μ
characterizes service times (as in Figure 7.2), regardless of the number of customers requiring
service, we let s = 1. Therefore, ρ = λ/μ is the probability of a busy service facility, and thus
1 – (λ/μ) = 1 – ρ is the probability of an idle service facility. This is exactly what is meant by the
probability of there being zero customers in the system, so it is reasonable that p0 = 1 – (λ/μ).

We can now express all of the system state probabilities in terms of λ and μ as follows:

p p

p 1 or

p 1(

n

n

0

n

n

n
n

=










=








 −











= −











λ
µ

λ
µ

λ
µ

ρ ρρ)

Our original purpose in developing these formulae was so that we could compute system
performance measures such as the expected number of customers in the system L, and the
expected amount of time each customer spends in the system. By defining the expected
number of customers, we know

L n

n 1

= 1 1 2 n

 ()

[]

() []

n

n

n

1 2 n

= ⋅

= × −

− + + + +

()

=

∞

=

∞

Σ

Σ

0

0

pn

ρ ρ

ρ ρ ρ ρ 

== + + + + + + + + +

= 





()

=

∞

() []1 1

1

2 3 4 2 3 4

n

n

−

−

ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ

 ][

Σ Σ
0 nn

n

1
1

1

1()
() ()

=

∞







= −




















0
1

1 1

ρ

ρ
ρ ρ

−

−
− −

since

Σ

n

nx =
1 x

 for x 1
=

∞

−
<

0

1
()

Therefore,

L

1
= ρ

ρ−

295Queueing Models

From this we can use Little’s formula L = λW to obtain the expected time in the
system W. Because W = Wq + 1/μ, we can then compute the expected time a customer
spends in queue, Wq. And from this we can obtain the expected queue length Lq using
Lq = λWq.

Example 7.3

Suppose computer programs are submitted for execution on a university’s central
computing facility, and that these programs arrive at a rate of 10 per minute. Assume
average run-time for a program is five seconds, and that both interarrival times and
run-times are exponentially distributed. During what fraction of the time is the CPU
idle? What is the expected turnaround time of a job in this system? What is the average
number of jobs in the job queue?

This system is assumed to be an M/M/1 queueing system with λ = 10 jobs per minute
and μ = 12 jobs per minute. We will also assume that job queues may become arbitrarily
long and that there is an infinitely large user population. Since ρ = 10/12 < 1, the system
will reach steady-state and we can use the formulae developed earlier to answer these
questions. Since the utilization factor ρ = 5/6, the CPU will be idle 1/6 of the time, or for
10 seconds out of every minute. (Since 10 jobs each take an average of five seconds, the
CPU is busy for 50 seconds each minute.)

Turnaround time is defined to be waiting time plus execution time, which we
call W. We know L = ρ/(1 – ρ) = (5/6)/(1/6) = 5, and from this we can calculate,
using Little’s formula, W = L/λ= 5/10 = 1/2 minute. The average queue length is
Lq = λWq. Since we have just computed W to be 1/2 minute, we can use the formula
Wq =W – 1/μ = 1/2 – 1/12 = 5/12 minutes (or 25 seconds) for expected waiting time
spent in the queue. Then the average number of jobs in the queue is Lq = 10 · 5/12 =41/6
jobs. (Because the job queue itself occupies some computer memory, this tells how
much space is typically devoted to this system function, and it also indicates how many
jobs are experiencing delay.)

Now suppose we want to know the probability that the number of jobs in the system
becomes 4 or more. This can be calculated as 1 minus the probability that there are
fewer than 4 (i.e., 0, 1, 2, or 3) customers in the system:

 Probability 4 jobs = 1 p p p p .[] 0 1 2 3≥  − + + +

We know

p 1 1 .1667

p p .1389

p

0

1 0

2
2

= − = − =

= = =

=














 =

λ
µ

ρ

ρ

5
6

0

5
6

1
6

0
5

36

pp .1158

p p .09

0

2

3
3

0

3

=

= =















 =















 =

5
6

1
6

5
6

1
6

0

0ρ 665

Therefore,

 Probability 4 jobs 1 0.1667 .1389 .1158 0.0965 .48[]≥ = [] =− + + +0 0 0 2225

296 Operations Research

In general, the probability that there are at least k jobs in the system is given by:

1 1 1

1
1 1

1

0

1

0

1

– – –

–
(–)(–)

(–)

– –

Σ Σ
n

k

k
n

k
n

k

k

p

p
= =

= ()

=

=

ρ ρ

ρ
ρ

ρ

In our example, ρ = 5/6, and k = 4, so the probability of at least four jobs in the system
is (5/6)4 = 0.48225.

The formulas developed earlier are valid only in queueing systems that eventually
reach steady-state. Our underlying assumption that the arrival rate λ be less than the
service rate μ is sufficient to guarantee that the system will stabilize. Notice that as ρ
approaches 1, both W and Wq become large. Clearly, for ρ > 1, arrivals are occurring
faster than a constantly busy service facility can keep up with the demand. When ρ = 1,
the sequence is undefined. However, if we look back at the original state equations, we
discover that (λ/μ) = 1 implies that p0 = p1 = p2 = p3 = … There are infinitely many states,
all equally likely, which means that the actual probability of being in any given state is
zero in the limit.

We have also assumed that the system has an infinite capacity. If this were not the
case, then arriving customers would occasionally encounter a full system, and although
they would arrive at the system according to the arrival parameter λ, they would not be
permitted to join the system at rate λ. Thus, the effective arrival rate would not be con-
stant and would vary in time, according to whether the system is at capacity. For this
case, the pn formulae remain valid as before. However, if we let N denote the system
capacity, the steady-state equation for state N is simply

 p pN–1λ µ= Ν

and

p p pN N 1

N

0=








 =











λ
µ

λ
µ

−

just as before. However, there is no state N + 1. We now have a finite set of states whose
probabilities must sum to 1:

 p p p ... p 10 1 2 N+ + + + =

Then,

p 1 ... 10 +









 +









 +









 + +























=λ
µ

λ
µ

λ
µ

λ
µ

2 3 N

The series in the brackets is a geometric progression that sums to

1 /
1 /

N+1−
−
λ µ

λ µ
()

()

297Queueing Models

when λ ≠ μ; therefore,

p 1

1

0
N+1−

−

λ µ

λ µ

/

/

()()
()() = 1

or

p

1
1

0 N+1= −
−

ρ
ρ

When λ = μ, we get λ/μ = 1 and p0 = 1/(1 + N).
Other system measures can be computed as before. It can be shown that, when ρ ≠ 1:

L =
1 N + 1 + N

1 1

N N+1

N+1

ρ ρ ρ

ρ ρ

−

− −

() 
()()

When ρ = 1, L = N/2. Moreover, if a customer arrives when the system is full (with
probability pN), the customer will not enter the system. Therefore, the effective arrival
rate λe is

λ λ

λ

λ

µ

e 1 p

W
L

W
L

W W

N

e

q
q

e

q

= −

=

=

= +

()

1

These formulas are still valid when λ > μ. As the arrival rate increases relative to the service
rate, the system just loses more customers. It is interesting to note that, even in a saturated
system in which the arrival rate is greater than the service rate, there is always still some
probability p0 that the system will be empty and the server will experience some idle time.

We have derived performance measures for single-server (M/M/1) systems. For mul-
tiple server systems (where s > 1), the actual service rate depends on the number of
customers in the system. Obviously, if there is only one customer present, then service
is being rendered at rate μ. But if there are two customers present, and s ≥ 2, then the
system service rate is 2μ. Likewise, if s = 3, then the system service rate is 3μ. However, if
there are s service facilities, the maximum system service rate is sμ, even if there are more
than s customers. This is illustrated by the rate diagram in Figure 7.3.

298 Operations Research

The results obtained from a birth-and-death process model for an M/M/s system, for
s > 1, differ from our previous results because service rates are sensitive to the current
customer load. Under the assumption that ρ < 1, that is λ < sμ, it can be shown that:

p

s sn

s n s0

0

1

1

1
1

=
()

+
()

()=
Σ
– /

!
/

! – /
λ µ λ µ

λ µn

and

p

/
!

/
!

n
=

()
≤ ≤

()
>−

λ µ

λ µ

n

n

n s

p
n

for n s

p
s s

for n s

0

0

0















The expected number in queue can be shown to be:

L

p /

s! 1
q

0
s

2=
()
()
λ µ ρ

ρ−

where ρ = λ/sμ and, as before,

L W

W W
1

L W L

q q

q

q

=

= +

= = +

λ

µ

λ λ
µ

7.3.3 Practical Limits of Queueing Models

In the previous sections, we attempted to give a very brief introduction to the simplest
Queueing models and to the mathematical foundations underlying these models. When
the systems being studied are more complex, we find that the analytical approach to

μ

0 1 2 3 n – 1 n + 1n

2μ

λλ λ λ λ λ λ

3μ nμ nμ nμ

FIGURE 7.3
Rate diagram for multiple servers (s = n).

299Queueing Models

modeling their behavior grows dramatically in complexity. And for some systems, no ana-
lytical models have been developed that are applicable at all.

In selected applications, decomposing or partitioning the system may be a reasonable
approach. For example, in a very complex multiple server system, we might simplify the
analysis by just considering the servers that create the bottlenecks in the system, and in
that way decompose the system into more manageable parts.

The problem of scheduling operating rooms in a hospital provides another good exam-
ple. We may be able to learn much about the system by treating the operating rooms as a
set of parallel identical servers. However, in reality the operating rooms are not identical;
each one could be characterized by the unique equipment installed in the room. Therefore,
it might be useful to partition the patients into several parallel streams of customers, each
requiring a different group of identical operating theaters.

There are many examples of systems that involve certain characteristics of queueing mod-
els, but whose components do not fit into the standard roles of customers and servers as we
have defined them, or whose customers and servers do not behave according to the simple
paradigms to which the equations of analytical queueing models are applicable. In such sys-
tems, although we cannot directly and easily compute system characteristics such as average
queue length, average time spent in a queue, server utilization, and so on, we might instead
be able to write a computer program to play out and mimic the behavior of the entities in the
system. By enacting this behavior under the control of a computer program, we can then also
observe the performance of the simulated system, and, within the computer program, accumu-
late enough information about the system to then quantify the observed system characteris-
tics. When this is done properly and skillfully, the results may be just as valuable and reliable
as the analytical results that can be directly derived for simpler systems.

Although queueing analysis and simulation are often used to accomplish similar goals,
the two approaches are quite different. Chapter 8 describes how to develop a simulation
of a system, how to cause events to happen in the simulated system, how to make observa-
tions and gather data about the effects of these events in the simulated system, and thereby
infer how the real system being modeled would behave and what some of its essential
characteristics are.

7.4 Software for Queueing Models

Application tools for queueing and simulation studies are abundant. While there are a
number of software products specifically designed for analytical modeling of queueing-
systems, many queueing systems are studied through simulation, and in that case analysts
can choose from a variety of software packages and languages for general simulation, as
will be described in Chapter 8.

Matlab from MathWorks includes queueing blocks such as queues, servers, and switches
as part of its discrete-event simulation engine SimEvents.

GNU Octave, a Scientific Programming Language that is similar to, and largely compati-
ble with, Matlab also has a queueing package that provides functions for queueing networks
and Markov chains analysis. It can be used to compute steady state performance measures
for open, closed and mixed networks with single or multiple job classes. Furthermore, sev-
eral transient and steady state performance measures for Markov chains can be computed,
such as state occupancy probabilities, and mean time to absorption. Both discrete and
continuous time Markov chains are supported.

300 Operations Research

R has a freely available queueing package called Queuecomputer that implements com-
putationally efficient methods for simulating queues with arbitrary arrival and service
times (Ebert 2017).

We have noticed in recent years that there are a number of web based systems that
accept input from users to certain queueing models via a web browser, solve the prob-
lem and display the solution back on the browser without the need for the user to install
any software. A quick web search can easily find systems such as Solutions to Queueing
Systems, and Queueing Theory Calculator. Hlynka (2017) maintains a comprehensive list
of queueing theory software.

7.5 Illustrative Applications

7.5.1 Cost Efficiency and Service Quality in Hospitals (Green 2002)

An important factor in evaluating cost efficiency in hospitals is the average percentage of
beds that are occupied in a hospital, known as the average bed occupancy level. This measure
has been for many years the criterion that most often determines bed capacity decisions in
U.S. hospitals. The original aim of occupancy level targets has been to manage the supply
of hospital beds, limiting the number of unoccupied beds and thereby controlling costs.
A widely adopted occupancy target is 85%. Even with such high occupancy levels, health
policy planners, government officials, and hospital administrative decision makers have
reacted to this figure with the perception that there were too many hospital beds (an aver-
age of say 15% unoccupied beds), a situation which they interpreted as a costly and there-
fore unpopular over-supply of medical resources.

The issue of facility utilization is a complex one. Major changes in health care networks,
insurance plans, shorter hospital stays, more outpatient procedures, and fewer inpa-
tient admissions all require a careful reconsideration of efficiency in hospital resource
utilization. But based on the measure of average bed occupancy levels, decision mak-
ers continue to infer that there is an excess of hospital beds which contributes to high
and ever-increasing health care costs. Decisions to reduce the total number of beds in
a hospital, or in a specialized unit within a hospital, were almost always based on the
long-established measure of average occupancy level targets, which seemed simple to
understand and easy to compute, but which inevitably influenced human nature and
led to reductions in bed count. Pressure to be more cost-efficient led some managers and
administrators to set occupancy targets higher than 90%.

However, a closer look into the broader decision process reveals that the well-meaning
but narrow focus on cost efficiency often detracts from much-needed attention to patient
service performance quality. Analysts began to look more seriously at the delays experi-
enced when patients cannot be provided with an appropriate bed as needed, either upon
initial arrival at a hospital unit or for example when a patient is transitioning from a sur-
gery unit into a recovery unit. Queueing analysts have studied bed unavailability in par-
ticular at intensive care units (ICUs) at hospitals in New York state (Green 2002). These
hospital units serve the most critically ill patients, and the cost per day is several times
as much as for regular inpatient units because of the technology and highly skilled staff
required for treatment and monitoring patients. The analysts began with the assumption
that standards and practices should be in place that provide the ability to place patients

301Queueing Models

in beds appropriate to their needs without unsafe or unreasonable delays; that is, the pur-
pose of a hospital or unit is to provide appropriate and timely care to patients. Little data
had been accumulated to support this study, and furthermore, it was quickly recognized
that there were several ill-defined and poorly understood issues and concepts raised by
the analysts that directly affected the quality of patient care, and that deserved some pre-
liminary discussion before decision factors could be analyzed.

First of all, the beds themselves are characterized as being of a special type officially
approved for a specific need, such as for inpatient use, outpatient use, fitted with telem-
etry or other technological capabilities. Certain specialized beds may be certified but not
necessarily staffed with appropriately trained personnel; thus, availability of such a bed
depends on the specific needs of an arriving patient.

Next is the question of what is meant by the term occupied bed. Hospital census is typi-
cally taken at midnight for billing purposes. But a census at that hour of the day usually
measures the lowest occupancy of the day. Patients may arrive or depart for day treatment
procedures. This day use may not be shown as contributing to the average bed occupancy
level, even though each patient did in fact occupy a bed for the duration of the stay. In
addition, few procedures are scheduled for weekends and holidays, which may have the
effect of shifting the patient load to other days. Thus, daily average occupancy level is not
a simple and perfect indicator of bed utilization.

For their study of cost efficiency and service quality, analysts proceeded to construct
an M/M/s queueing model to describe systems having a single queue, patients arriving
according to a Poisson distribution, exponential service times (bed occupancy times),
unlimited queue length, and s identical servers (beds appropriate to the hospital or unit).
This model was chosen because of its simplicity and tractability, as system performance
problems need to be solved quickly; and this model required only data that was already
publicly available.

Measures of performance efficiency and effectiveness in such systems include the prob-
ability that an arrival has any wait; that is, the probability of delay. These systems have the
property that greater occupancy levels cause longer delays for service; and also relatively
small increases in occupancy level can cause very large increases in delays. In general,
larger service systems can operate at higher utilization levels than smaller ones in achiev-
ing the same level of delays, and indeed it was noted that smaller hospitals or units such
as might be located in rural areas may need to operate using lower occupancy levels in
order to provide good service. When system utilization is high, queueing delays are highly
sensitive to even temporary increases in arrival rates. Rural units are often small units, so
are particularly stressed by surges in the arrivals.

When the ICUs in the state of New York were analyzed, the average occupancy levels
were 75% in the units studied. This could be seen as indicating under-utilization of the
beds in these units, but the results of applying the M/M/s queueing study shed some
light on the delays associated with this average occupancy level. The probability of delay
depends on size s (number of beds) and server utilization. The queueing study revealed
that over 90% of the ICUs currently had too few beds and were unable to achieve a pro-
posed goal of a 1% probability of delay. And at half of the ICUs being studied, beds were
over-utilized and even the less ambitious goal of a 10% probability of delay could not be
reached. So, even at the relatively low average occupancy level, these facilities were far
from being able to achieve low probability of delays for their patients.

We have seen that patient service quality should include avoiding delays in providing
the patient with a bed. To emphasize the importance of the delay probabilities, let’s con-
sider the consequences of there not being a bed available. It has been observed that there

302 Operations Research

are increasing numbers of hospitals turning away arriving patients in ambulances, divert-
ing them to other hospitals, due to lack of available beds. There are increases in the time
patients spend in emergency rooms and hallways while waiting for a bed. Bed unavail-
ability is a reality, and long delays and over-crowding are reported routinely. Patients
experiencing delays may become agitated or uncomfortable, or they may be in urgent
need of critical treatment. Therefore, not surprisingly, there is no standard definition of an
acceptable delay.

In the study of the New York ICUs, average length of stay was nearly 18 days, so if a
delay is encountered, it is likely to be a long delay (awaiting the departure of an existing
patient). This could lead to high incidence of ambulance diversions or even to adopting the
practice of bumping a current occupant to a different unit (likely one with fewer critical
care resources, less telemetry, or lower level of staffing). Clearly, delays can result in poorer
service and care of patients. But adding more beds to enlarge the facility is costly, and the
acquisition of excess beds is often criticized even though patient service may be improved.

The quantitative results of an M/M/s queueing study provided health experts and man-
agers valuable data to support decisions about increasing or decreasing the size of the
facility. But in addition, fruitful discussions produced several common sense ideas that
also proved effective and relatively inexpensive. Whereas certain ICUs may need more
beds in order to deliver good service performance, there may be other units in the same
hospital that have too many beds. It may be possible to reallocate beds among units as
needed. Another practical solution may be to keep overflow beds on hand and hope that
they can be staffed when the need materializes. As a further example, the Province of
Ontario in Canada has a province-wide system known as CritiCall that keeps track of ICU
bed utilization in 150 hospitals. When ambulances are looking for available beds, they
call CritiCall and take their patients to the recommended location that has available beds.
This improves bed capacity by increasing the relative size of the individual hospitals and
spreading the risk of a shortage of beds.

Cross-training nurses or re-purposing selected telemetry equipment could also be
possible, especially in large hospitals; done considerately, temporarily increasing the
staff might increase patient satisfaction and peace of mind. Management should creatively
investigate various options for improving operational efficiency. Goals should respect ser-
vice performance standards and clinical care quality rather than cost alone.

Queueing analysis has been shown to be one very important aspect of evaluating and
improving the efficiency and effectiveness of health care systems. Analysis of delays and
the needs for equipment and staff can also be applied in many other areas such as telecom-
munications, airlines, and agencies providing police, fire, ambulance and other emergency
services. In each case, analytical results of queueing studies can help to identify problems
and establish a balance in cost of service vs. customer delays and consequences.

7.5.2 Queueing Models in Manufacturing (Suri et al. 1995)

The application of queueing models to the analysis of manufacturing processes began as
early as the 1950s, but the extent of use of analytical queueing tools was at times limited,
and it varied with trends in the manufacturing industry itself. Queueing models are used
to study discrete manufacturing systems, in which products flow through a sequence of
machines or workstations, where they are worked on either individually or in batches
of individual pieces (as contrasted with a continuous flow process such as oil refining).
Products must wait to be worked on at each station, so the entire process can be viewed
as a network of queues. In the 1960s, it was shown that, under appropriate assumptions,

303Queueing Models

the performance of general networks of queues can be predicted just by using the simple
formulae that apply to individual queues.

Automated manufacturing systems were traditionally designed and tooled to produce
a single product, an approach appropriate only for high-volume production. During the
1970s, the advent of programmable machines made it possible to tailor any machine to
make any product within its range of capabilities, instead of being physically limited to a
single product. These so-called flexible manufacturing systems allowed profitability with
lower volume productions. Flexible manufacturing systems usually consisted of numeri-
cally controlled automated machines that operated with the support of a materials han-
dling system to move the products between machines.

Interactions among the entities in complex flexible manufacturing systems made it very
difficult to predict the performance of these systems. One approach was the very expen-
sive and time consuming process of building a simulation model to predict performance,
identify bottlenecks, and analyze the complicated dynamics of such systems. A much
more efficient approach was the use of queueing models for analyzing flexible manufac-
turing systems, and it was during this time that the first queueing software packages were
developed for manufacturing systems. These packages were comparatively easy to learn
and to use, and the models could be developed and analyzed in a fraction of the time that
would have been needed to do a simulation-based study.

As manufacturing strategies matured during the era of flexible manufacturing sys-
tems, researchers discovered new and more effective ways to use queueing analysis to
predict, manage, and improve performance, giving attention to such issues as resource
utilization, queueing bottlenecks, lead times, and productivity. Numerous software
packages were available to support such analyses. Companies, such as Alcoa, IBM,
Pratt and Whitney, DEC, and Siemens, all reported using queueing packages to achieve
improvements in their manufacturing processes. Pratt and Whitney was prepared to
spend up to six weeks developing a simulation model to study a preliminary design
of a proposed new manufacturing division, but instead turned to the use of queueing
software to get the answers it needed much more quickly. Similarly, IBM initiated a
progressive project for manufacturing printed circuit boards. An experienced analyst
realized that a simulation model of the 200 machines and 50 products would be pro-
hibitively time consuming. A convenient and sufficiently powerful queueing package
provided the means of developing the factory model easily within the time available
for the analysis.

Throughout the 1980s, manufacturing companies used performance measures based
on efficiency of equipment utilization and on cost reduction. Factories had always been
sensitive to set-up costs, and attempted to manage such costs by running large lot sizes.
However, queueing studies revealed that large lot sizes contribute to long lead-times. By
the mid-1980s, there was a shift away from traditional cost reduction and quality improve-
ment objectives toward a strategy of lead-time reduction. Simple techniques collectively
known as just-in-time scheduling strategies became the vogue, and offered vastly improved
productivity over more complex automated systems.

The 1990s saw a new emphasis on speed and bringing new products into a time-
competitive market (which coincidentally also contributed to increased quality and
improvements in costs), but this new emphasis presented new challenges to managers and
analysts. Queueing models turned out to be just the right analytical tool: as manufacturers
worked on ways to reduce lead-time, they discovered how much time their products spent
waiting in queues. In some cases, it was not unusual for parts to spend up to 99% of their
time, not being processed, but rather waiting to be processed. Thus, reducing the time spent

304 Operations Research

waiting in queues was the most effective approach to managing lead-times. Once again,
queueing theory provided the ideal analytical tools.

More recently, Ingersoll Cutting Tool Company began to analyze its manufacturing sys-
tems with the goal of reducing set-ups, and quickly discovered that their complex manufac-
turing processes offered thousands of opportunities for such reductions. Unable to study
each possibility, management decided to try to identify just those critical set-ups that could
contribute to reducing lead-times by 50% or more. For this analysis, they selected a soft-
ware package to develop a manufacturing model based on queueing network theory. In
just two months, they created a model of a large factory process and were able to make spe-
cific recommendations not only to reduce specific set-ups but also to manufacture smaller
lot sizes and thereby reduce lead-times. This experience demonstrates the applicability
and effectiveness of queueing-based decision software in manufacturing.

7.5.3 Nurse Staffing Based on Queueing Models (De Véricourt and Jennings 2011)

The analytical tools of Operations Research have long been used to study and improve
health care delivery systems, principally through better management of available resources
such as facilities, staff, and supplies in order to provide healthcare services to patients.
A great deal of study has addressed specifically how best to manage and utilize the
critical skills of nurses. One very important aspect of managing nursing care focuses on
establishing appropriate nurse staffing levels; that is, determining just how many nurses
should be on staff at any given time in medical units such as hospitals and clinics. A com-
monly used guideline for nurse staffing is to use the ratio of nurses to patients, which is to
set a minimum number of nurses that should be on staff in a hospital that currently has a
given number of patients. Advocates of the ratio policy concept seem to believe that good
patient outcomes can be achieved simply by increasing nursing ratios, although this posi-
tion deserves further formal investigation.

California, for example, made a move toward enacting laws to enforce nurse-to-patient
ratios in hospitals. But in practice, state policies for nurse staffing levels were influenced by
the state health department, hospital administrators, and representatives of nurses unions,
all of whose conflicting perspectives on the issue required negotiated compromises not
consistent with any documented unbiased analysis. Managing patients’ diverse and often
unpredictable needs and controlling delays in nurses’ response to patients is actually
quite a complex problem, and simple ratio guidelines are now known to be inadequate in
practice.

Recent research has involved the development of a queueing model to help establish
policies for nurse staffing that are efficient and that also meet performance expectations
for medical units. In this approach a medical unit is modeled as a closed M/M/s//n/FCFS
queueing system in which s nurses serve a fixed-size population of n patients. The expo-
nential arrival and service distributions are commonly used in hospital capacity planning
and policy making, and these are considered to be valid assumptions for purposes of this
particular study. Arrivals into the system represent patients who will be either in a stable
state or in a needy state. A stable patient becomes needy after an exponentially distributed
time interval with mean 1/λ. A needy patient is served in first-come first-served order by
a nurse who attends to the patient for a service duration that is exponentially distributed
with mean 1/μ, whereupon the patient reverts to a stable condition.

The purpose for developing this model is to determine how many nurses should be
present in the medical unit at any time. In this context, the performance of the medical
unit is defined in terms of the probability of excessive delay, that is, the probability that

305Queueing Models

the delay between a patient becoming needy and the arrival of a nurse to administer care
exceeds a given time threshold T. (It is generally agreed that excessive delays are related to
the possibility of adverse events.)

The M/M/s//n/FCFS queueing model permits a sophisticated calculation of the likeli-
hood that a needy patient waits for a time longer than T before being attended to by a
nurse. The mathematics underlying this result represents an advanced and elegant exten-
sion of the single server probabilities of waiting, which were presented in Section 7.3 of
this book, and the calculations are based just on the values of s, n, λ, and μ. Nurse staffing,
in this context, consists of finding the minimum staffing level that guarantees a certain
bound on the probability of excessive delays.

The queueing model and related analyses in this research are aimed at providing safe
service for patients. It is recognized that in any given medical unit, it would be desirable
to introduce various additional considerations. For example, nurses may be qualified and
certified to offer different levels of care, nurses may have different types and amounts
of experience, nurse’s service to a needy patient may have to be interrupted in favor of a
more urgent need and replaced by a different nurse who completes the service, and so on.
All of these complications contribute to the difficulty of analyzing nurse staffing policies,
and certainly illustrate the need for guidelines that improve broadly upon the simple ratio
rules that have been used in many nurse staffing applications.

The robust queueing system derived in this research provides a framework within which
the previous variations can be considered and in which some of the underlying statistical
assumptions concerning patient transitions and service times can be relaxed. Experience
with this and related queueing models will inevitably raise new issues in healthcare coor-
dination that will require healthcare system decision makers to address new questions,
such as:

• How does a given time threshold value T ultimately influence the actual quality of
care offered in specific types of medical units? And at what cost?

• What kind of response time constitutes an acceptable level of safety for various
types of patients?

• What are appropriate scheduling policies for assigning individual nurses to spe-
cific shifts and duties, given a particular level of nurse staffing in a medical unit?

Queueing analysis provides valuable analytical tools that can be used to design effective
and efficient healthcare facilities and services. However, more comprehensive studies
to assess performance characteristics in actual or proposed health care systems often
make use of Simulations, a topic that will be introduced and discussed in Chapter 8 of
this book.

7.6 Summary

Queueing models provide a set of tools by which we can analyze the behavior of systems
involving waiting lines, or queues. Queueing systems are characterized by the distribu-
tion of customers entering the system and the distribution of times required to service the
customers.

306 Operations Research

In the simplest models, these arrival and service patterns are most often assumed to be
Poisson arrivals and exponential service times. By viewing queueing systems as Markov
birth-and-death processes, and solving flow balancing equations that describe the flow
of customers into and out of the system, it is then straightforward to measure the perfor-
mance characteristics of the system at steady state. These performance criteria include
the expected amount of time the customer must wait to be served, the average number of
customers waiting in a queue, and the proportion of time that the service facility is being
utilized.

For more complicated queueing systems involving different statistical distributions of
arrivals and departures, or complex interactions among multiple queues, or multiple serv-
ers, the applicability of analytical queueing models may be limited. In such cases, analysts
often find that simulation is a more practical approach to studying system behavior.

Key Terms

arrivals
birth-and-death process
calling source
channels
customers
departures
exponential distribution
flow-balancing equations
network queues
Poisson distribution
queue
queueing model
servers
service times
simulation
system capacity

Exercises

7.1 Cars arrive at a toll gate on a highway according to a Poisson distribution with a
mean rate of 90 miles per hour. The times for passing through the gate are exponen-
tially distributed with mean 38 seconds, and drivers complain of the long waiting
time. Transportation authorities are willing to decrease the passing time through
the gate to 30 seconds by introducing new automatic devices, but this can be justi-
fied only if under the old system the average number of waiting cars exceeds five.
In addition, the percentage of gate’s idle time under the new system should not
exceed 10%. Can the new device be justified?

307Queueing Models

7.2 A computer center has one multi-user computer. The number of users in the cen-
ter at any time is ten. For each user, the time for writing and entering a program
is exponential with mean rate 0.5 per hour. Once a program is entered, it is sent
directly to the ready queue for execution. The execution time per program is expo-
nential with mean rate of six per hour. Assuming the mainframe computer is oper-
ational on a full-time basis, and neglecting the possibility of down-time, find

 a. The probability that a program is not executed immediately upon arrival in the
ready queue

 b. Average time until a submitted program completes execution
 c. Average number of programs in the ready queue
7.3 The mean time between failures of a computer disk drive is 3,000 hours, and fail-

ures are exponentially distributed. Repair times for the disk drive are exponen-
tially distributed with mean 5.5 hours, and a technician is paid $15.50 per hour.
Assuming that a computing lab attempts to keep all drives operational and in
service constantly, how much money is spent on wages for technicians in one year?

7.4 Printer jobs are created in a computing system according to a Poisson distribution
with mean 40 jobs per hour. Average print times are 65 seconds. Users complain
of long delays in receiving their printouts, but the computing lab director will be
willing to purchase a faster printer (twice as fast as the present one) only if it can be
demonstrated that the current average queue length is four (or more) jobs, and only
if the new printer would be idle for at most 20% of the time. Will the lab director be
able to justify the acquisition of the new printer?

7.5 Computer programs are submitted for execution according to a Poisson distribu-
tion with a mean arrival rate of 90 miles per hour. Execution times are exponen-
tially distributed, with jobs requiring an average of 38 seconds. Users complain of
long waiting times. Management is considering the purchase of a faster CPU that
would decrease the average execution time to 30 seconds per job. This expense can
be justified only if, under the current system, the average number of jobs waiting
exceeds five. Also, if a new CPU is to be purchased, its percentage of idle time
should not exceed 30%. Can the new CPU be justified? Explain all considerations
fully. Make the necessary calculations, and then make an appropriate recommen-
dation to management.

7.6 Customers arrive at a one-window drive-in bank according to a Poisson distribu-
tion with mean 10 per hour. Service time per customer is exponential with mean
five minutes. The space in front of the window, including that for the car in service,
can accommodate a maximum of three cars. Other cars can wait outside this space.

 a. What is the probability that an arriving customer can drive directly to the
space in front of the window?

 b. What is the probability that an arriving customer will have to wait outside the
designated waiting space?

 c. How long is an arriving customer expected to wait before starting service?
 d. How many spaces should be provided in front of the window so that at least

20% of arriving customers can go directly to the area in front of the window?
7.7 Suppose two (independent) queueing systems have arrivals that are Poisson dis-

tributed with λ = 100, but one system has an exponential service rate with μ = 120

308 Operations Research

while the other system has μ = 130. By what percentage amount does the average
waiting time in the first system exceed that in the second system?

7.8 Jobs are to be performed by a machine that is taken out of service for routine main-
tenance for 30 minutes each evening. Normal job arrivals, averaging one per hour,
are unaffected by this lapse in the service facility. What is the probability that no
jobs will arrive during the maintenance interval?

 Suppose the average service time is 45 minutes. How long do you think the system
will take to recover from this interruption and return to a steady-state? Will it recover
before the next evening? Does the recovery take a substantial part of the 24-hour day,
so that the system essentially never really operates in a steady-state mode?

7.9 Fleet vehicles arrive at a refueling station according to a Poisson process at 20-minute
intervals. Average refueling time per vehicle is 15 minutes. If the refueling sta-
tion is occupied and there are two additional vehicles waiting, the arriving vehicle
leaves and does not enter the queue at this facility. What percentage of arriving
vehicles do enter this facility? What is the probability that an arriving vehicle finds
exactly one vehicle being refueled and none waiting in the queue?

7.10 Customers arrive according to a Poisson distribution with mean six per hour to
consult with a guru who maintains a facility that operates around the clock and
never closes. The guru normally dispenses wisdom at a rate that serves ten cus-
tomers per hour.

 a. What is the expected number of customers in the queue?
 b. If there are three chairs, what is the probability that arriving customers must

stand and wait?
 c. What is the probability that the guru will actually spend more than ten minutes

with a customer?
 d. An idle guru naps. How long in a typical day does this guru nap?
 Infrequently, but at unpredictable times, the guru himself takes off and climbs

a nearby mountain to recharge his own mental and spiritual resources. The
excursion always takes exactly five hours.

 e. How many chairs should be placed in the waiting room to accommodate the
crowd that accumulates during such an excursion?

 f. Customers seeking wisdom from a guru do not want their waiting time to be
wasted time, so they always want to bring an appropriate amount of reading mate-
rial, in case of a wait. What is the normally anticipated amount of waiting time?

7.11 A bank, open for six hours a day, five days a week, gives away a free toaster to
any customer who has to wait more than ten minutes before being served by one
of four tellers. Customer arrivals are characterized by a Poisson distribution with
mean 40 per hour; service times are exponential with mean four minutes. How
many toasters does the bank expect to have to give away in one year of 52 weeks?

7.12 Select a system in your university, business, or community that involves queues of
some sort, and develop a queueing model that describes the system. Identify the
customers and servers. Observe the system and collect data to describe the arrival
and service patterns. Apply the appropriate queueing formulae presented in this
chapter to quantify the performance characteristics of this system. Are your com-
puted results consistent with your observations?

309Queueing Models

References and Suggested Readings

Allen, A. O. 1980. Queueing models of computer systems. IEEE Computer 13 (4): 13–24.
Bolling, W. B. 1972. Queueing model of a hospital emergency room. Industrial Engineering 4: 26–31.
Bose, S. 2001. An Introduction to Queueing Systems. Boston, MA: Kluwer Academic Publishers.
Boucherie, N., van Dijk, and N. M. van Dijk. 2010. Queueing Networks: An Analytical Handbook. New

York: Springer.
Bunday, B. D. 1986. Basic Queueing Theory. Baltimore, MD: Edward Arnold.
Chaudhry, M. L., A. D. Banik, A. Pacheco, and S. Ghosh. 2016. A simple analysis of system charac-

teristics in the batch service queue infinite-buffer and Markovian service process. RAIRO-
Operations Research 50 (3): 519–551.

Ebert, A. 2017. Computationally efficient queue simulation R package. User Manual. Available at:
https://cran.r-project.org/package=queuecomputer. (Accessed on May 19, 2018)

Gautam, N. 2012. Analysis of Queues: Methods and Applications. Boca Raton, FL: CRC Press.
Gilliam, R. 1979. An application of queuing theory to airport passenger security screening. Interfaces

9: 117–123.
Green, L. V. 2002. How many hospital beds? Inquiry 39 (4): 400–412.
Gross, D., and C. M. Harris. 1998. Fundamentals of Queueing Theory, 3rd ed. New York: John Wiley &

Sons.
Hassin, R. and M. Haviv. 2003. To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems.

New York: Springer.
Haviv, M. 2013. Queues: A Course in Queueing Theory. New York: Springer.
Hlynka, M. 2017. A comprehensive list of queueing theory software maintained by Myron Hlynka,

Professor of the University of Windsor, Last Modified November 2017. https://web2.uwindsor.
ca/math/hlynka/qsoft.html.

Jain, R. 1991. The Art of Computer System Performance Analysis. New York: Wiley.
Kleinrock, L. 1975. Queueing Systems. Vol. I: Theory. New York: John Wiley & Sons.
Kleinrock, L. 1976. Queueing Systems. Vol. II: Computer Applications. New York: Wiley

Interscience.
Knuth, D. E. 1981. The Art of Computer Programming, 2nd ed. Vol. 2. Seminumerical Algorithms. Reading,

MA: Addison-Wesley.
Kobayashi, H. 1978. Modeling and Analysis: An Introduction to System Performance Evaluation

Methodology. Reading, MA: Addison-Wesley.
Lee, A. M. 1966. Applied Queueing Theory. Toronto, ON: Macmillan.
Little, J. D. C. 1961. A proof for the queuing formula: L= λ W. Operations Research 9 (3): 383–387.
Medhi, J. 1991. Stochastic Models in Queueing Theory. San Diego, CA: Academic Press.
Pawlikowski, K. 1990. Steady-state simulation of queueing processes: A survey of problems and

solutions. ACM Computing Surveys 22 (2): 123–170.
Prabhu, N. U. 1997. Foundations of Queueing Theory. New York: Springer.
Ravindran, A., D. T. Phillips, and J. J. Solberg. 1987. Operations Research: Principles and Practice, 2nd ed.

New York: John Wiley & Sons.
Reiser, M. 1976. Interactive modeling of computer systems. IBM Systems Journal 15 (4): 309–327.
Saaty, T. L. 1983. Elements of Queueing Theory: With Applications. New York: Dover Publications.
Suri, R., G. W. W. Diehl, S. de Treville, and M. J. Tomsicek. 1995. From CAN-Q to MPX: Evolution of

queuing software for manufacturing. Interfaces 25 (5): 128–150.
Tanner, M. 1995. Practical Queueing Analysis. New York: McGraw-Hill Companies.
Tijms, H. C. 2003. A First Course in Stochastic Models. New York: John Wiley & Sons.
Véricourt, F. D., and O. B. Jennings. 2011. Nurse staffing in medical units: A queueing perspective.

Operations Research 59 (6): 320–1331.
Walrand, J. 1988. An Introduction to Queueing Networks. Englewood Cliffs, NJ: Prentice-Hall.

https://cran.r-project.org/package=queuecomputer
https://web2.uwindsor.ca/math/hlynka/qsoft.html
https://web2.uwindsor.ca/math/hlynka/qsoft.html

http://taylorandfrancis.com

311

8
Simulation

Simulation is the process of studying the behavior of an existing or proposed system by
observing the behavior of a model representing the system. Simulation is the imitation
of a real system or process operating over a period of time. By simulating a system, we
may be able to make observations of the performance of an existing system, hypothesize
modifications to an existing system, or even determine the operating characteristics of a
nonexistent system. Through simulation, it is possible to experiment with the operation of
a system in ways that would be too costly or dangerous or otherwise infeasible to perform
on the actual system itself. This chapter introduces simulation models and describes how
they can be used in analyzing and predicting the performance of systems under varying
circumstances.

8.1 Simulation: Purposes and Applications

Simulation has traditionally been viewed as a method to be employed when all other
analytical approaches fail. Computer simulations have been used profitably for several
decades now, and simulation seems to have outlived its early reputation as a method of last
resort. Some systems are simple enough to be represented by mathematical models and
solved with well defined mathematical techniques such as the calculus, analytical formu-
las, or mathematical programming methods. The simple queueing systems discussed in
Chapter 7 fall into this category. Analytical methods are clearly the most straightforward
way to deal with such problems. However, many systems are so complex that mathemati-
cal methods are inadequate to model the intricate (and possibly stochastic) interaction
among system elements. In these cases, simulation techniques may provide a framework
for observing, predicting, modifying, and even optimizing a system.

The use of a computer makes simulation techniques feasible. Information obtained
through observing system behavior via simulation can suggest ways to modify a system.
And while simulation models remain very costly and time consuming to develop and
to run on a computer, these drawbacks have been mitigated significantly in recent times
by faster computers and special purpose simulation languages and software products.
Indeed, simulation packages have become so widely available and easy to use, and simula-
tion itself has such an intuitive appeal and seems so simple to understand, that a word of
caution is in order.

Simulation languages and packages are as easy to misuse as to use correctly. Computer
outputs produced by simulation packages can be very impressive. Particularly when other
analytical approaches to a problem have been unsatisfactory, it is tempting to embrace
whatever output is obtained through a sophisticated simulation process. Nevertheless,
there is a great deal to be gained through successful simulation. Proper use of simula-
tion methodology requires good judgment and insight and a clear understanding of the

312 Operations Research

limitations of the simulation model in use, so that valid conclusions can be drawn by the
analyst. This chapter presents some guidelines that should be helpful in developing the
ability to understand and build simulation models. The advantages that may be derived
from the use of simulation include:

 1. Through simulation it is possible to experiment with new designs, policies, and
processes in industrial, economic, military, and biological settings, to name a few.
In the controlled environment of a simulation, observations can be made and
preparations can be made to deal appropriately with the outcomes predicted in
the experiment.

 2. Simulation permits the analyst to compress or expand time. For example, collisions
in a particle accelerator may occur too rapidly for instruments to record, while ero-
sion in a riverbed may take place too slowly to permit any effective intervention in
the process. By simulating such processes, a time control mechanism can be used
to slow down or speed up events and place them on a time scale that is useful to
human analysts.

 3. While a simulation may be expensive to develop, the model can be applied repeat-
edly for various kinds of experimentation.

 4. Simulation can be used to analyze a proposed system or experiment on a real
system without disturbing the actual system. Experimentation on real systems,
particularly systems involving human subjects, often causes the behavior of the
system to be modified in response to the experimentation. Thus, the system being
observed is then not the original system under investigation; that is, we are mea-
suring the wrong system.

 5. It is often less costly to obtain data from a simulation than from a real system.
 6. Simulations can be used to verify or illustrate analytical solutions to a problem.
 7. Simulation models do not necessarily require the simplifying assumptions that

may be required to make analytical models tractable. Consequently, a simulation
model may well be the most realistic model possible.

Application areas that have been studied successfully using simulation models are numer-
ous and varied. Problems that are appropriate for simulation studies include:

• Activities of large production, inventory, warehousing, and distribution centers: To deter-
mine the flow of manufactured goods

• Operations at a large airport: To examine the effects of changes in policies, proce-
dures, or facilities on maintenance schedules, hangar utilization, or even runway
throughput

• Automobile traffic patterns: To determine how to build an interchange or how to
sequence traffic lights at an existing intersection

• Computer interconnection networks: To determine the optimum capacity of data
links under time varying data traffic conditions

• Meteorological studies: To determine future weather patterns

The process of building a simulation of a system is not entirely unlike the process of
creating other types of models that have been discussed in this book. The problem

313Simulation

formulation phase of a simulation study involves defining a set of objectives and
designing the overall layout of the project. Building a model of the actual system
being studied involves abstracting the essential features of the system and making
basic assumptions in order to obtain first a simple model, then enriching the model
with enough detail to obtain a satisfactory approximation of the real system. Albert
Einstein’s advice that things should be made as simple as possible, but not simpler might
be augmented by the complementary advice that a model need be only complex
enough to support the objectives of the simulation study. Real objects and systems
have a variety of attributes (physical, technical, economic, biological, social, etc.). In the
process of modeling, it is not necessary to identify all system attributes, but rather to
select just those that efficiently and specifically contribute to the objectives of the model
and serve the needs of the modeler or analyst. (For example, if we were studying the
structural properties of certain materials to be used in an aircraft, we would include
such attributes as tensile strength and weight. And although we might also know the
cost or reflectivity of the materials, these latter attributes do not contribute directly to
the structural model at hand.) If unnecessary detail and realism are incorporated into
the model, the model becomes expensive and unwieldy (although perhaps correct)
and the advantages of simulation may be lost. Various types of simulation models are
discussed in Section 8.2.

The analyst must then collect data that can be used to describe the environment in
which a system operates. These data may describe observable production rates, aircraft
landings, automobile traffic patterns, computer usage, or air flow patterns, and may be
used later in experimentation. Extensive statistical analysis may be required in order to
determine the distribution that describes the input data and whether the data are homo-
geneous over a period of time.

Coding the simulation often involves developing a program through the use of simula-
tion languages or packages, as described in Section 8.4.

Verification of the simulation is done to ensure that the program behaves as expected
and that it is consistent with the model that has been developed.

Validation tests whether the model that has been successfully developed is in fact a
sufficiently accurate representation of the real system. This can be done by compar-
ing simulation results with historical data taken from the real system, or by using the
simulation to make predictions that can be compared to future behavior of the real
system.

Experimental design is closely related to the original objectives of the study and is
based on the nature of the available data. Once the nature and extent of the experimenta-
tion is fully defined, the production phase begins. Simulation runs are made, and system
analysis is performed. In some cases, an optimization algorithm is coupled with the
simulation model to find the optimal values for certain variables in the simulation that
would produce optimal values for certain performance measures. For example, finding
the optimal resource levels that would maximize throughput subject to some constraints
such as allocated budget. This is known as simulation–optimization. Upon completion
of these phases, final reports are made of observations and recommendations can be
formulated.
Although we will not fully discuss all of these phases, we will look more carefully
now at some specific techniques for creating discrete simulation models. We will
also discuss the design of simulation experiments, the use of the results, and some of
the software systems and languages that are commonly used as tools in developing
simulations.

314 Operations Research

8.2 Discrete Simulation Models

A computer simulation carries out actions within a computer program that represent activ-
ities in some real system being modeled. The purpose of the simulation is to make obser-
vations and collect statistics to better understand the activity in the simulated system and
possibly to make recommendations for its improvement.

Simulations can be categorized as either discrete or continuous. This distinction refers to
the variables that describe the state of the system. In particular, the variable that describes
the passage of time can be viewed as changing continuously or only at discrete points in
time. In models of physical or chemical processes, for example, we might be interested in
monitoring continuous changes in temperature or pressure over time, and in that case a
continuous simulation model would be appropriate. These models generally consist of sets
of differential equations; the rate of change in each variable is dependent on the current
values of several other variables. Examples include process control systems, the flight of
an airplane, or a spacecraft in orbit continuously balancing the forces of gravity, velocity,
and booster rockets.

On the other hand, in queueing systems, events such as customer arrivals and service
completions occur at distinct points in time, and a discrete event simulation model should
be chosen. Continuous simulation will be mentioned again in Section 8.4, and the topic is
thoroughly discussed in many of the references cited at the end of this chapter, particu-
larly Roberts et al. (1994). We will concentrate on discrete simulation models throughout
the remainder of this chapter.

8.2.1 Event-Driven Models

A simulation model consists of various components and entities. The dynamic objects in
the system are called entities. Other main components include processes, resources and
queues. In a customer queueing system, for example, the entities may be the customers.
Each entity possesses characteristics called attributes. The attributes of a customer include
the customer’s arrival time and the type of service required by the customer. The servers
would be characterized by the type of service they render, the rate at which they work, and
the amount of time during which they are busy. Queue attributes would include the queue
length and the type of service for which the queue is designated. Some attributes such as
type of service required or work rate are set at the beginning of the simulation, while other
attributes are assigned and updated as the simulation proceeds.

The system state is defined by the set of entities and attributes, and the state of the sys-
tem typically changes as time progresses. Processes that affect the system state are called
activities. An activity in a queueing system may be a customer waiting in line, or a server
serving a customer.

Any activity in a simulation will eventually culminate in an event, and it is the
occurrence of an event that actually triggers a change in the system state in a discrete
simulation model. For this reason, certain discrete simulation models are referred to
as event-driven models. Although other views such as process oriented simulation and
object oriented simulation are found in some of the languages that will be described in
Section 8.4, the event-driven view is probably the most widely used discrete simulation
approach.

315Simulation

To track the passage of time in a simulation model, a simulation clock variable is initially
set to zero and is then increased to reflect the advance of simulated time. The increment
may be fixed or variable. One such time advance mechanism calls for repeatedly increas-
ing the clock by a fixed unit of time, and at each increment, checking the system to deter-
mine whether any event has occurred since the last increment. The disadvantage of this
mechanism is the difficulty in selecting an appropriate interval for the clock increment. If
the interval is too small, a great deal of uninteresting and inefficient computation occurs as
the clock is advanced repeatedly and no events have taken place. If the interval is too large,
several events may have occurred during the interval and the precise ordering of events
within the interval is not registered, since all these events are assumed to have taken place
at the end of the interval. In this way, key information may be lost. Because systems are not
necessarily uniformly eventful throughout the duration of the simulation (i.e., there will be
busy times and quiet times), it is virtually impossible to choose the correct or best interval
for incrementing the simulation clock throughout the entire simulation.

An alternative, and more popular, time advance mechanism is to allow the simulation
clock to be advanced only when an event actually occurs. The bookkeeping required to
maintain a list of events that will be occurring, and when they will occur, is straightfor-
ward. The mechanism checks the list to determine the next event, and advances the clock
to the time of that event. The event is then registered in the simulation. This variable incre-
ment mechanism is efficient and easy to implement.

An effective way to learn just exactly what a computer simulation does is to work through
a simulation manually. In the following example, we will perform an event driven simula-
tion of a queueing system.

Example 8.2.1

The system we will simulate is one in which the customers are computer programs that
are entered into a system to be executed by a single central processing unit (CPU), which
is the service facility. As a computer program enters the system, it is either acted upon
immediately by the CPU or, if the CPU is busy, the program is placed in a job queue
or ready queue maintained in FIFO (first in first out) order by the computer’s operating
system.

The service facility (the CPU in this case) is always either busy or idle. Once in the
system, the customer (computer program in this case) is either in a queue or is being
served. The queue is characterized by the number of customers it contains. The status of
the server, the customers, and the queue collectively comprise the state of the queueing
system, and the state changes only in the event of an arrival or departure of a customer.
The input data for this simulation example are given in Table 8.1.

The first program arrives for execution at time 0. This event starts the simulation clock
at 0. The second program arrives four time units later. The third customer arrives one
time unit later at clock time 5, and so forth. Program execution times are two, three,
five, and so on, time units. A quick glance at the arrival and service times shows that in
some cases a program is executed completely before its successor arrives, leaving the
CPU temporarily idle, whereas at other times a program arrives while its predecessors
are still in execution, and this program will wait in a queue.

Table 8.2 shows the clock times at which each program enters the system, begins
execution, and departs from the system upon completion of execution. Notice that the
CPU is idle for two time units between Programs 1 and 2, for three time units between
Programs 5 and 6, and for five time units between Programs 6 and 7. Program 9 arrives

316 Operations Research

just exactly as its predecessor is completing, so there is no CPU idle time nor does
Program 9 have to join the queue and wait. Programs 3, 4, 5, 8, and 10 must wait in the
queue before beginning execution. Table 8.3 shows the chronological sequence of events
in this simulation.

The primary aim of a simulation is to make observations and gather statistics.
In this particular example, we will be interested in determining the average time
programs spend in the system (job turnaround time), the average time spent waiting,
the average number of programs in the queue, and the amount or percent of time
the CPU is idle. We return to this example in Section 8.3.1 to illustrate making these
observations.

Before continuing, however, we should note that the single server queueing system
we have just observed fails in several respects to match the M/M/1 model developed in
Section 7.3. First of all, arrivals and service times were given deterministically in table
form rather than being drawn from the more typical Poisson and exponential distribu-
tions. Second, the system was tracked through only ten customers and over a period of
only 38 time units (probably a short time relative to the life of the system). Thus, because
of the deterministic customer and service behavior and the short duration of the simu-
lation, it would be unjustifiable to claim that these results are in any way typical of the

TABLE 8.1

Arrival and Service Times

Customer Number Arrival Time Length of Service

1 0 2
2 4 3
3 5 5
4 9 1
5 10 2
6 18 2
7 25 3
8 26 4
9 32 5

10 33 1

TABLE 8.2

Simulation Event Clock Times

Customer
Number Arrival Time

Time Execution
Begins

Time Execution
Completes

1 0 0 2
2 4 4 7
3 5 7 12
4 9 12 13
5 10 13 15
6 18 18 20
7 25 25 28
8 26 28 32
9 32 32 37

10 33 37 38

317Simulation

normal operation of the system. The most common way to overcome these deficiencies
is to generate numerical values representing a large number of customers with random
arrival patterns and service times. We require that these random values be representa-
tive of events and activities that occur in the real system. One mechanism for doing this
is described in the following.

8.2.2 Generating Random Events

In a discrete event simulation, once an event of any type has been simulated, the most
important piece of information we need to know, in order to advance the simulation is:
how long until the next event? Once a customer has arrived, we need to know when the
next arrival will occur so that we can schedule that event within the simulation. Similarly,
upon completion of a service or upon arrival of a customer to an idle server, we need to
know the length of time this next service will take so that we can schedule this customer’s
departure from the system.

If we are assuming that interarrival times and service times come from some par-
ticular probability distributions, then we must have a mechanism within the simulation
program to generate the lengths of these intervals of time and therefore to generate the
next events in the simulated system. The general procedure will be first to generate a
random number from the uniform distribution, to apply a mathematical transformation

TABLE 8.3

Chronological Sequence of Events

Clock Time Customer Number Events

0 1 Arrival and begin service
2 1 Departure
4 2 Arrival and begin service
5 3 Arrival and wait
7 2

3
Departure
Begin service

9 4 Arrival and wait
10 5 Arrival and wait
12 3

4
Departure
Begin service

13 4
5

Departure
Begin service

15 5 Departure
18 6 Arrival and begin service
20 6 Departure
25 7 Arrival and begin service
26 8 Arrival and wait
28 7

8
Departure
Begin service

32 8
9

Departure
Arrival and begin service

33 10 Arrival and wait
37 9

10
Departure
Begin service

38 10 Departure

318 Operations Research

to the uniform deviate to obtain a random number from the desired distribution, and
then to use this random number in the simulation (perhaps as the interval of time until
the next event).

A great deal of effort has been put into the study and development of computer programs
to generate random numbers. Truly random numbers are typically obtained from some
physical process, but sequences of numbers generated in this way are unfortunately not
reproducible. Pseudorandom numbers are numbers that satisfy certain statistical tests for
randomness but are generated by a systematic algorithmic procedure that can be repeated if
desired. The purpose of generating pseudorandom numbers is to simulate sampling from
a continuous uniform distribution over the interval [0,1].

The most frequently implemented algorithms belong to the class of congruential
generator methods. These generators are fully described in books by Knuth (1981),
Graybeal and Pooch (1980), Banks et al. (1984), Marsaglia (2003) and most introductory
texts on simulation; and they are almost always available in any computer installation
through simple subroutine calls. Because of the easy accessibility of these pseudorandom
number generators, it is doubtful that a simulation analyst would need to develop
software from scratch for this purpose. Yet, from a practical standpoint, analysts are
encouraged to heed the following warning. Because almost every computer system offers
at least one means of generating uniform random variates, most computer users employ
these capabilities with faith, assume their correctness, and feel happy with the results.
Nevertheless, blatantly bad random number generators are prevalent and may fail some
of the standard theoretical or empirical statistical tests for randomness, or may generate
strings of numbers exhibiting detectable regular patterns (Marsaglia 1985, Park and
Miller 1988, Ripley 1988, L’Ecuyer 1990).

Although many simulation models appear to work well despite these defects in
the stream of random numbers, there have been simulation studies that yield totally
misleading results because they are more sensitive to the quality of the generators. And
although such failures are rare, they can be disastrous; therefore, researchers are still
actively investigating better ways to generate random numbers.

In any case, it is quite unlikely that a simulation analyst would need to develop his own
software for this purpose. Instead we will discuss how to use a uniform deviate from the
interval [0,1] to produce a random number from an exponential distribution, thus simulat-
ing a sampling from an exponential distribution.

A commonly used method for doing this, called the inverse transform method, can be
applied whenever the inverse of the cumulative distribution function of the desired distri-
bution can be computed analytically.

Recall that the probability density function for the exponential distribution is given by:

f(x)=

e for x 0

0 for x < 0

xλ λ− ≥





The corresponding cumulative distribution function is given by:

F(x) f(t)dt

1 e for x 0

0 for x <

x x

= =
− ≥

−

−

∫
∞

λ

00







319Simulation

Figure 8.1 illustrates that the range of F(x) is the interval (0,1), and suggests that uniform
random numbers from (0,1) can be transformed into exponentially distributed numbers
as follows. Let R denote the uniform random number from (0,1), and set F(x) = R. Then,
x = F–1(R) and x can be solved in terms of R by evaluating:

F x 1 e R

e 1 R

x ln 1 R

x ln (1 R)

x

x

() =

()

− =

= −

− = −

= − −

−

−

λ

λ

λ

λ
1

This formula is called a random variate generator for the exponential distribution. It is
often simplified by replacing (1 – R) by R, since both R and (1 – R) are uniformly distrib-
uted on (0,1), to obtain the generating formula

x ln R= − 1

λ

Therefore, whenever a simulation program requires a sample from an exponential dis-
tribution, R is obtained from a standard pseudorandom number generator, and x is com-
puted by this formula and used in the simulation.

The inverse transform method is not necessarily the most efficient method, but it is
straightforward and can be used to generate deviates from a variety of statistical distri-
butions other than the exponential. Unfortunately, for most distributions (including the
normal), the cumulative probability function does not have a closed form inverse. In par-
ticular, the distribution may be derived from an empirical study of the actual system.
In practice, the distributions may not fit any of the theoretical functions. For example,
consider a server who can perform several different types of service depending on the
customer’s need (doctor, bank teller, mechanic). Each type of service has a non-zero mini-
mum required time plus a random variable time. However, when all types of service are
aggregated, the resulting distribution is likely to be multi-modal, and very non-standard.

In these situations, it is common to approximate the cumulative distribution by a
piecewise linear function, and then to apply the inverse transform method using linear

0
0

1 − e−λx = R

F(x) = 1 − e−λx

1

x1
λ

x = − ln (1 – R)

FIGURE 8.1
Inverse transform method.

320 Operations Research

interpolation on each segment. Consider the example in Figure 8.2. We can construct a
piecewise linear approximation for this cumulative distribution, as shown in Figure 8.3.

Internally, this distribution can be stored in table form, as in Table 8.4. Then, when we
want to generate a random variate from this distribution, we select a uniform random
number r, then search for the entry ri in the table such that ri ≤ r < ri+1. The corresponding
service time is obtained using standard linear interpolation:

x

1

R

FIGURE 8.2
Example of non-standard cumulative service time distribution.

x

1

R
(x7, r7)(x6, r6)

(x5, r5)
(x4, r4)

(x3, r3)

(x2, r2)
(x1, r1)

FIGURE 8.3
Piecewise linear approximation of non-standard cumulative service time distribution.

TABLE 8.4

Piecewise Linear Approximation of Cumulative
Service Time Distribution

Inflection Point
x

Service Time
F(x)

Cumulative Probability

1 x1 r1 = 0
2 x2 r2

3 x3 r3

4 x4 r4

5 x5 r5

6 x6 r6

7 x7 r7 = 1.0

321Simulation

 x r r slope xi i i= − +()

where

slope

r r
x x

i
i 1 i

i 1 i
= −

−
()
()

+

+

Clearly, by using a large number of piecewise linear segments, it is possible to achieve
any desired level of accuracy. However, there is a trade-off between accuracy and the time
required to search repeatedly through large tables.

For further and more general discussions of this method, see the books by Ravindran
et al. (1987), Schmeiser (1980), and Law (2007). These references also contain descriptions
of other methods, such as the rejection method, the composition method, a derivation
technique, and approximation techniques.

8.3 Observations of Simulations

Now that we have discussed some of the techniques for generating the events that
push a simulated system through time, let’s consider what observations can be made
during the simulation that would help to characterize or understand the system being
studied.

8.3.1 Gathering Statistics

Because we are currently concerned primarily with the simulation of queueing systems,
it is reasonable that the information we would like to obtain from the simulation is just
exactly the same type of information that we would calculate with analytical queueing for-
mulae, if we could (i.e., if we had a queueing system in steady-state with known distribu-
tions describing arrival and departure patterns). In particular, we might like to determine
the average time a customer spends in the system and waiting, the average number of
customers in the queue, and the utilization factor of the service facility.

We can return to Example 8.2.1 and show how such information can be gathered. It is
important to realize, however, that as we determine these measures of system behavior,
we are doing so only for the specific system with the particular arrivals and departures
given in the table, and only for the particular time interval covered by these events. No
generalization can be drawn about typical behavior of the system over the long term. (If it
is desirable to make inferences about the steady state characteristics of a simulated system,
then a number of issues need to be considered. We will return to this subject after we work
through our Example.)

8.3.1.1 Average Time in System

For every customer i, compute

T Time spent in the system

Time of service complet

i =

= iion Time of arrival−

322 Operations Research

Then accumulate the sum of these Ti and divide by the number of customers N:

Average time in system

T

N

i

i=1

N

=









∑

In the simulation, initialize the sum to zero; then at every service completion event, com-
pute the Ti for this customer and add it to the sum. At the end of the simulation, perform
the division. In the Example 8.2.1, we can obtain the Ti from Table 8.2 and compute the sum

 2 3 7 4 5 2 3 6 5 5 42+ + + + + + + + + =

Then the average time in the system for these ten programs is 42/10 = 4.2 time units.

8.3.1.2 Average Waiting Time

For every customer i in the system, compute

W Waiting time Time service begins Arrival time

Time in

i = = −

= ssystem Service time −

Then accumulate the sum of these Wi and divide by the number of customers N:

Average waiting time

W

N

i

i 1

N

=











=
∑

In the simulation, initialize the sum to zero; then at every event corresponding to service
beginning (or a departure event), compute the Wi for this customer and add it to the sum.
At the end of the simulation, perform the division. In our example, from Table 8.2 again,
we obtain the waiting time sum:

 0 0 2 3 3 0 0 2 0 4 14+ + + + + + + + + =

Then the average waiting time for these ten programs is 14/10 = 1.4 time units.

8.3.1.3 Average Number in Queue

If we let Li denote the number in the queue during the i-th time interval, then over U time
units,

Average queue length

L

U

i

i 1

U

=











=
∑

Rather than making an observation of Li at every time unit, it is more practical to observe
the queue length at every event, and to multiply that queue length by the number of
time units that have elapsed since the most recent event that affected the queue length.

323Simulation

This bookkeeping requires that we maintain a time duration only for every queue length
that occurs during the simulation. In our example, Figure 8.4 charts the queue length
during each of the 38 intervals of time. Note that the queue length in this case is always
either 0, 1, or 2:

Queue length 0 for 26 time units

1 for 10 time units

2 fo

 =

=

= rr 2 times units

Then, over U = 38 time units,

Average queue length
0 26 + 1 10 + 2 2

38

14
38

.368

[]= ⋅ ⋅ ⋅

=

= 0

8.3.1.4 Server Utilization

Upon every event, determine the service facility status (busy or idle) and record it. Then,

Server utilization factor =

Number time units busy
Total number tiime units

As illustrated in Figure 8.5, our CPU is busy executing programs during 28 time intervals
and is idle during 10 time intervals. Therefore, the

Server utilization factor

28
38

.74= = 0

and the

Percentage idle time

10
38

.26= = 0

Time units
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 25 30 35 38

Q
ue

ue
 le

ng
th

2

1

0

FIGURE 8.4
Queue length.

324 Operations Research

Note that the same information on server utilization can be obtained from Figure 8.5 by
computing the shaded area under this step function.

Observations such as these allow us to make judgments concerning, for example, the
advisability of acquiring an additional CPU to reduce waiting time. In this example, with
an average waiting time of 1.4 time units (a fairly small fraction of average execution time),
a queue that is empty more often than not, and a CPU that is idle 26% of the time, it seems
unlikely that an additional CPU would be warranted in a general purpose computing
environment.

8.3.2 Design of Simulation Experiments

In designing a system simulation in which events are to be generated randomly (rather
than introduced into the system deterministically), several questions arise:

• How to start the simulation?
• What to measure?
• What data to gather?
• How long to run the simulation?
• How to recognize whether the system has reached equilibrium?
• How many simulation runs to make?
• What recommendations to make concerning modification of the system being

simulated?

We do not necessarily intend to offer answers to these questions, but rather merely to raise
the issues that must be considered by the analyst or system designer.

Once a simulation program is developed, and is ready to run, the initial system status
must be determined. It may be reasonable to initialize a system as having idle servers and
no customers, and let customers begin to arrive randomly. Eventually, there will emerge
a certain pattern of queue utilization and service utilization, but when exactly does the
real pattern emerge? For example, when a bank opens its doors at 9 a.m., it makes sense to
assume that the system is empty when it starts. However, if we are simulating a hospital,
we probably should run the simulation in start-up mode for several days before enough
patients have been accumulated so that the apparent simulated demand on the system
becomes realistic.

When is it then appropriate to begin observing the system and collecting data about
queue length, waiting time, and server utilization? It is not valid to start collecting sta-
tistics until the system has reached its steady state, but this point is difficult to identify

0 5

Idle

Busy

10 15 20 25 30 35 38
Time

FIGURE 8.5
CPU (server) utilization.

325Simulation

precisely. How long should the simulation run after initialization? It would be useful to
somehow acquire information in advance (perhaps from previous similar simulations)
that describes the system after the initial irregular system behavior patterns have disap-
peared. It is, however, often difficult to know this in advance.

The questions of what to measure and what data to gather depend of course on the
original purpose of performing the simulation. In simulating waiting line systems, there
are several obvious performance criteria of common interest. In simulating more general
systems, a great deal of data is potentially available; yet gathering all this data is costly
and may complicate the simulation program. The efficiency of a simulation may depend
on the clear-headed analyst’s decision to measure only the behaviors that are relevant to
the study.

Perhaps the most important, and most expensive, question is how long to run a simula-
tion, and how to know when additional computation is not going to yield additional infor-
mation. Recall from our study of Markov and queueing systems that not all systems ever
reach a steady state. Some display periodic behavior or other unstable patterns. It may be
difficult to know in advance whether the system being simulated is guaranteed to reach a
steady state. If it does eventually stabilize, we know that the length of time it takes for this
to occur depends on the initial conditions. The only way to make the decision of how long
to run a simulation is to gather data, accumulate performance measures (such as average
queue length), and compare these measures with those measured earlier in the simulation.
When they cease to change significantly, it might be reasonable to surmise that a steady
state has been reached. (It could of course be a temporary phenomenon. How can we know
for sure?)

Once a simulation program is developed and all the design parameters for a single
run have been established, the next question is how many runs to make. Presumably
there will be some statistical variations in the system performance measures obtained
during each run. So how many samples do we need in order to be confident that we
have captured the reality of the system being modeled? Do we make a fixed number of
runs? Or enough runs that the variance in outcomes is acceptably low? And if we make
numerous runs, should they all cover the identical span of simulated time, or should the
simulated time intervals be varied or shifted? Should the various runs involve differ-
ent system parameters? (For example, we might wish to compare the performance of a
computer system with one CPU with that of a system having two CPUs, each with 60%
of the speed of the single CPU.) To make such comparisons, it is likely that a battery of
experiments would have to be performed for each case. Based on such observations,
recommendations could be made for alternative systems having different strengths,
advantages, or costs.

8.4 Software for Simulation

Simulation studies can be facilitated by a wide variety of software packages and languages.
Specialized computer programming languages have been introduced over the past several
decades to assist simulation analysts in the development and use of simulations of real
systems. Simulation models have also been implemented in various traditional general
purpose programming languages such as Fortran, C, C++, Java, and Python, among oth-
ers. Simulations developed directly in general purpose, high level languages often execute

326 Operations Research

more efficiently than those implemented in specialized simulation languages. However,
most analysts find that it is much more efficient and beneficial to use a special simulation
language rather than to try to develop a simulation program from scratch. A competent
analyst may lack extensive programming skill, and may prefer to concentrate instead on
the system being modeled, using the most convenient tools possible.

Various criteria will determine an analyst’s choice of a simulation language or software
package. A first consideration is likely to be the analyst’s own programming capabilities
and whether a given language is easy to learn and complements the analyst’s skills and
experience. A non-programmer may choose a language that is easier to learn, has greater
built-in support, and provides less flexibility, whereas a highly skilled programmer may
be more adept at learning a language that gives him more power and flexibility; and this
additional control permits the ability to model unusual systems in specialized applica-
tions. The nature of the system being modeled can also influence the choice of software;
some systems allow the user to add customized subroutines to model non-standard types
of activities.

Most simulation software products provide automatic mechanisms for collecting statis-
tics, generating reports, and even debugging the simulation. Additional considerations
may include the standardization or portability of the language among machines and other
software environments. In this section we examine some of the features of several widely
used simulation languages and software packages. Further information may be found in
published surveys of simulation software (Swain 2017), which review and chart the capa-
bilities of many software packages for simulation.

One of the earliest languages for simulating the dynamic performance of systems is
GASP (General Activity Simulation Program), a collection of Fortran subroutines devel-
oped by Pritsker (1974). GASP subroutines support the development of event-driven and
continuous simulations and require subroutines for system initialization, time advance
mechanisms, scheduling future events, random variate generators, routines to collect sta-
tistics, and report generators. Most of these are supplied as a part of the GASP package;
however, the programmer must create a main (driver) routine and fill in the details of
initialization and event management.

SIMSCRIPT (SIMple-SCRIPT) was developed at the RAND Corporation during the
1960s and was originally an easy to use, Fortran based, system for discrete event simula-
tion and modeling. Over time, the system underwent numerous revisions, evolving into a
high level language available for most platforms, and capable of supporting event driven
and process oriented simulations, with extensions for continuous simulations and can run
on different platforms (Russell 1993, Rice et al. 2005).

GPSS (General Purpose Simulation System) was originally developed at IBM around
1960, and because of its early origin and ease of learning, was among the most widely
used simulation languages, especially in the 1970s and 1980s (Schriber 1974, Gordon 1978,
Solomon 1983). GPSS was then succeeded by GPSS/H with additional features and is typi-
cally applied to general queueing analysis, manufacturing, and scheduling and can be
used under Windows platforms. The most modern version of GPSS is aGPSS which comes
with a graphical user interface and can run on both Windows and Macintosh (See Schriber
[1993] and Hendriksen [1993]).

ARENA is currently among the most widely used software packages for discrete-
event simulation. It started as a command language SIMAN and then SIMAN became
the engine around which ARENA was built as its Graphical User Interface which
allows the user to drag and drop simulation objects and libraries. It includes input anal-
ysis and output analysis tools as well as simulation optimization add-in (OptQuest).

327Simulation

It is a general modeling language that is mostly used for process modeling and it works
under Windows only at this point.

AnyLogic is a modeling environment that is written in Java and has become very popu-
lar in the recent years especially as it allows building not only discrete-event models but
also agent based models and system dynamics models. Hybrid models of these three para-
digms can also be developed using this object oriented modeling environment which runs
on Windows, Mac and Linux.

FlexSim is another object oriented process modeling environment with an outstanding
3D animation capability. It is written in C++ and allows users to augment their models
with C++ functional code if necessary. It includes ExpertFit for statistical distribution fit-
ting and has analysis tools.

SAS is a widely used software system that provides support for large models and com-
plex simulation experiments. The graphical user interface offers convenient tools for creat-
ing, executing and analyzing simulations. It integrates with SAS Simulation Studio for
source data and for presenting results of simulation studies. It runs on Windows, Mac and
Linux workstations.

Many simulation tools and development environments have emerged over the past
50 years and we recognize that we cannot explore all of them in this book. Additional
examples of such packages include AutoMod, ExtendSim, ProModel, Simio, SimProcess,
Simula8, and Witness. The reader is referred to the regularly published surveys of simula-
tion software (Swain 1997, 1999, 2001, 2003, 2005, 2007, 2009, 2011, 2013, 2015, 2017), which
review and chart the capabilities of many software packages for modeling and simulation.
Many simulation languages and software packages had emerged and vanished over the
years as more efficient, convenient, and powerful packages were developed. The reader
can compare the surveys published by Swain over the years to see which ones have been
removed from the list, and which are still on.

Furthermore, a list of open source and commercial simulation packages can be found
on the Internet by running a quick web search. For example, a comprehensive list
of simulation software is available on Wikipedia at https://en.wikipedia.org/wiki/
List_of_discrete_event_simulation_software.

In recent years, cloud computing has started to change the long standing tradition of
having software installed locally on computers. Instead, software is installed in the cloud
on servers hosted by computing farms, and users access the software application via
web browser most of the time. It seems that this phenomenon is on its way to becoming
the standard for most software systems, including simulation software. An example of
this trend is ClouDES, a web based, cloud deployed, discrete event simulation platform
developed at the Virginia Modeling, Analysis and Simulation Center (VMASC) at Old
Dominion University. This cloud based system can be accessed via a web browser without
the need to install simulation software on the client side. Instead, users can develop mod-
els and execute them through a web browser.

Because simulation studies have traditionally had the reputation of consuming a great deal
of computer time for execution of large simulations, substantial amounts of research have
been devoted to the development of technologies to use parallel computers to increase the
execution speed of simulation programs. This effort has been accelerated and made easier
by advances in computer technology where more processing power can now be packed
in smaller computers, making it possible to run multiple parallel processors on the same
machine. Despite the significant progress made in computer hardware and software, develop-
ing simulation models is still a time consuming process for developers and analysts starting
with the conceptual development, to implementation and finally validation of simulations.

https://en.wikipedia.org/wiki/List_of_discrete_event_simulation_software
https://en.wikipedia.org/wiki/List_of_discrete_event_simulation_software

328 Operations Research

8.5 Illustrative Applications

8.5.1 Finnish Air Force Fleet Maintenance (Mattila et al. 2008)

The aircraft in Finland’s Air Force fleet typically require several hours of maintenance for
every hour of flight activity. Depending on the type of aircraft, maintenance involves a
variety of policies and procedures, task times, workforce personnel, and equipment, parts
and materials handling. Maintenance system performance has an effect on aircraft avail-
ability, which is defined to be the number of aircraft that can be used in flight missions.
Therefore, an understanding of all aspects of aircraft maintenance decision making is
essential to measuring and maintaining the operational capability of the fleet. Analysts
determined that discrete event simulation was the most appropriate analytical tool for
studying the fleet maintenance system and its effect on aircraft availability.

An adequate model of a maintenance system for flight operations must address the
types and number of aircraft, planned and unplanned maintenance, air bases and repair
and maintenance sites, levels of maintenance staff, and scenarios for normal flight mis-
sion assignments as well as missions involving conflict and hence increased exposure to
damage. The fleet in this case consisted of F-18 Hornet fighters, Hawk Mk 51 jet trainers,
and certain other aircraft used in transportation, surveillance, and flight training. Various
Air Force operational units have facilities for basic inspections, routine maintenance, or
specialized shops for more complex tasks or repairs.

The goal of aircraft maintenance during normal peacetime is to preserve the long term
operational readiness of the fleet. Enough aircraft must be available for routine training
and reconnaissance missions. Everyday maintenance varies greatly based on the type of
aircraft, but consists generally of preflight inspections, inspections following completed
missions, periodic scheduled maintenance based on accumulated hours in flight, and com-
ponent replacements or repairs.

Maintenance during conflict conditions must respond to incidences of specific battle
damage in which repairs often require unique skills, materials, or replacement parts not
needed under normal conditions. The goal of this type of maintenance is restoring failed or
damaged aircraft and returning them to mission-capable status as quickly as possible. In
order to achieve this goal, it may be judicious to reduce or suspend normal periodic main-
tenance in favor of keeping aircraft available for high intensity operations. Conflict condi-
tions may include relocation or decentralization of maintenance facilities, and increased
durations of various maintenance or repair tasks.

The simulation model for the Finnish Air Force fleet was designed to be capable of rep-
resenting all the possible events related to different types of aircraft, and including the
expected durations and frequencies of each type of maintenance, and materials or part
requirements. The task requirements for time, personnel, and materials are estimated or
represented by probability distributions. Maintenance operations are simulated under
both normal and conflict scenarios. The time advance mechanism in the simulation must
account for time spent by an aircraft awaiting maintenance or in transit to an appropriate
maintenance site; time waiting for materials, spare parts, or tools, and time waiting for
available maintenance mechanics or other crew.

In this simulation, the Finnish Air Force provided much of the actual flight operation
and maintenance data and statistical parameters needed for the study. In cases where data
were not directly available, analysts interviewed Air Force expert personnel who cooper-
ated ably by offering estimates, insights, and suggestions that contributed significantly to

329Simulation

an accurate and successful simulation project. The simulation was developed with ARENA
software based on the SIMAN language. The implementation of the model was validated
by running it using actual input data and parameters, and observing that the simulation
yielded results that were consistent with outcomes that had been observed in actual opera-
tional performance in the past. Following validation, numerous simulation experiments
allowed analysts to vary the inputs and parameters, and predict system performance under
conditions not yet experienced but that may face the Air Force in future operations.

In this simulation project, analysts created a tool that helped study how maintenance
resources, policies and operating conditions influenced aircraft availability. This tool
facilitated forecasting aircraft availability, analyzing and planning maintenance resource
requirements, and studying the feasibility of making modifications to periodic mainte-
nance programs and changes to other operational parameters. For example, planners and
representatives from various levels within the Air Force wanted to maximize the opera-
tional capability of the fleet under conflict conditions. To this end, the simulation provided
information on the expected number of aircraft available and the maximum number of
flight missions that can be conducted during conflict conditions. In particular, simulation
results revealed that a maintenance system sized for normal operating conditions is likely
to encounter difficulties in conducting the maintenance needed during conflict, even if
battle damage is small. Simulation studies can guide the Air Force in planning how main-
tenance resource needs can be met in conflict scenarios, including possibilities of suspend-
ing certain normal maintenance activities temporarily.

In addition to meeting the goals discussed earlier, unanticipated benefits accrued from
the simulation project. Creating the maintenance model required extensive cooperation
and discussions involving the simulation researchers, flight experts, mission specialists,
and maintenance professionals. This interaction contributed significantly to a more thor-
ough understanding of the entire fleet command, and it opened up potential for improved
communication among personnel throughout the Air Force. The simulation model has
been shared with other units in the Finnish Air Force for related maintenance studies. And
the simulation also was found to be useful for training purposes, in which graduates of
the Finnish Air Force Academy learned to use the simulation and applied it to their own
projects in various other areas of study.

8.5.2 Simulation of a Semiconductor Manufacturing Line (Miller 1990)

Turnaround time is often defined to be the elapsed time from start to completion of a
manufacturing process. Turnaround time may be more important in semiconductor fabri-
cation than in any other industry because the longer a device is in the fabrication process,
the greater the opportunity for contamination. And even in strict clean room environ-
ments, particulate contamination onto wafer surfaces over time has a negative effect on
product yields.

Variation in the time between steps in the fabrication process is also a source of lower
product yields, because certain sequential processes performed minutes apart produce
very different results from the same processes performed hours apart, just simply because
the physical properties of the materials change over time.

Slow turnaround also means delays in recognizing problems on the assembly line
because the functional characteristics of the manufactured devices cannot be tested until
the fabrication of the circuits is complete. The correctness of large numbers of items in
progress therefore may be unknown, pending completion of initial manufacturing lots.

330 Operations Research

Just as important as turnaround time is throughput, defined to be the number of
manufactured items completed per unit time. Semiconductor manufacturing facilities
cost hundreds of millions of dollars to build, equip, and operate, and it is essential to
obtain maximum utilization of these resources to attain a competitive cost per wafer.

Assembly line loading, the amount of work in progress, affects both turnaround time
and throughput. Standard throughput analysis techniques suggest that heavy line loading
(to maximize throughput) ensures that the expensive tools and other manufacturing
resources never starve for work. On the other hand, queueing theory analysis demonstrates
that turnaround time is minimized by having minimal line loading, as this will eliminate
the time spent in queues waiting for manufacturing resources.

These conflicting indications make it difficult to determine the most advantageous level
of work in progress. Wafer fabrication involves hundreds of different tools and the manu-
facturing process associated with each tool depends on many variables. Because of the
complexity of the semiconductor manufacturing process, one of IBM’s facilities found
that analytical methods of analysis were inadequate. Analysts there turned instead to
the development and use of a simulation model to analyze their stochastic, discrete event
system.

Wafer products manufactured in this assembly line required more than 300 processing
steps on 100 different tools. The average turnaround time in the original system was not
adequate to support the requirements of new product development. It was therefore desir-
able to cut this time in half, but using only the fabricator’s existing tools, human resources,
and control capabilities. Thus, the only allowable modifications were to center around
assembly line scheduling policies to achieve the desired turnaround time and throughput.

Early in the study, it was discovered that critical data about the system were either not
available or outdated. This then necessitated a systematic analysis and review of current
processes and tools, flow times, equipment capabilities, and reliabilities, that resulted in an
extensive database which would prove to be of immense value both during and after the
simulation study. (The importance of having accurate and up to date information about
any system being studied cannot be over-emphasized.)

The simulation model had to accurately represent such key characteristics as process
flows, tool capabilities and options, tool failures, rework levels, process yields, opera-
tors, priority rules, lot sizes, and storage areas for work in progress. An initial attempt
to use a generic, pre-developed simulation package proved unsatisfactory in represent-
ing all of these details, and did not allow customized logic needed for this study. The
requirements of this project were met when the analysts chose the Systems Modeling
Corporation’s SIMAN simulation language which is currently known as ARENA (refer
to Pegden et al. [1991] for a readable introduction to SIMAN and Kelton et al. [2014] for
ARENA).

In this study, the experimental frame defined key parameters describing processes,
resources (tools), routings and layouts, scheduling policies, and stochastic events. Most
of the information required for the experimental frame structures was obtained from the
database developed for this simulation. Not only are input parameters specified in the
experimental frame, but also output statistics such as queue time, queue length, tool and
operator utilization, throughput, and yield. Depending on the process being described
and the desired output, experimental frames in this simulation study contained from sev-
eral hundred to tens of thousands of entries.

The model frame contained all the control logic necessary to describe the manufactur-
ing process, including the movement of wafers through the hundreds of operations and

331Simulation

their associated tools, as well as subsidiary activities such as the transporting of wafer lots
between operations and the storage and queueing of lots waiting for resources. The model
was run on both personal computers and mainframes, but extremely large experimental
frames were not well-supported on PCs due to memory limitations.

Simulation experiments were performed to analyze line-scheduling policies, line-
loading levels, and lot priorities. The most significant finding was that a 30% reduction in
line loading (from current levels) would produce a 17% reduction in turnaround time, with
no deterioration to line-throughput performance. This improvement was achievable with
no additional tooling, staffing or change in product mix—a surprise to many analysts
who did not believe that line scheduling policies alone could lead to major performance
enhancements without additional investments in resources.

Further scrutiny of simulation results revealed a number of other (minor) inefficiencies
such as bottleneck points and lot-sizing levels, which could be remedied to obtain certain
secondary improvements to the system.

Almost all of the recommendations made by the analysts on the basis of the simulation
results were implemented, and over a six month period, line turnaround times improved
25%, while throughput rates increased slightly and the number of operators assigned to
the line decreased. The study also fostered several advantageous side effects, including
improved manufacturing process descriptions, better information for planning, and more
thorough measurements and reporting capabilities, as well as identifying improvements
that could be made in the future in case it became desirable to acquire additional resources
or make further line-scheduling policy changes.

This successful simulation project provided insights into general semiconductor manu-
facturing performance in addition to the specific information about the actual semicon-
ductor line modeled. It serves as an illustration of the ability of simulation techniques to
profitably analyze complex real-world applications.

8.5.3 Simulation of Eurotunnel Terminals (Salt 1991)

In December 1990, Britain and France were linked by a tunnel that was built by a consor-
tium of companies working cooperatively to construct this underground/undersea link.
Eurotunnel is the company responsible for operating the tunnel.

Two separate tunnels actually carry two distinct types of rail traffic. High speed pas-
senger service provides connections between London, Paris, and other major European
cities. Shuttle trains carry cars and other vehicles whose drivers and passengers accom-
pany their vehicles between Folkestone in the United Kingdom and Coquelles (near
Calais) in France. These vehicles pass through immigration, customs, and security
checks upon entering a terminal, and drive away immediately upon arrival at their
destination.

To optimize procedures at the terminals, it was first necessary to fully understand the
pattern of day to day activities in each terminal. It was decided that a simulation model
of a terminal would provide the most valuable basis for studying how a terminal han-
dles the predicted demand. This study began with an interesting process of selecting the
appropriate simulation tools. The final product was to be placed directly in the hands of
management, and needed to be developed quickly and within existing guidelines and
standards.

Several languages were considered on the basis of their various strengths. SIMULA
was favored because of its object oriented approach, but the SIMGRAPHICS package in

332 Operations Research

SIMSCRIPT II.5 was attractive because of the graphics presentation capabilities that would
appeal to the managers who would ultimately be using the system.

The winning contender was MODSIM II, an object oriented language that also fully
supports process based simulations. The analysts noted that MODSIM II supports mul-
tiple active methods and multiple inheritance, both of these being popular language
features among proponents of object oriented programming. The language was easy to
modularize, and also had a completely integrated graphics package. In short, MODSIM
II was deemed to offer a practical combination of object oriented power and a good user
interface.

A simulation of the Folkestone terminal was developed to model the flow of vehicle traf-
fic through queues and service facilities to pay tolls, pass British and French customs and
immigration, undergo security checks, and eventually to be placed on a shuttle train. The
goal of this phase of simulation was to establish expected queue lengths and throughput
times, and estimate the adequacy of overflow parking lots and waiting areas. Vehicles
are classified as tourist vehicles or heavy goods vehicles and these two categories are tracked
through the system via separate service facilities.

Vehicles are the objects that are acted upon by various methods for paying tolls and
passing through checkpoints. Some methods deliver constant time service, while others
(such as security) have service times modeled with exponential distributions (because most
security checks are brief, but a few are much more extensive and require a longer time).
Each service facility has the capability to reject a vehicle, so that the vehicle is removed
from the system and not passed on to the next service facility. The simulation provides
information on average queue lengths and average waiting times for vehicles.

Animated output and presentation graphics were used successfully in giving compre-
hensible output to managers, but were also helpful during the program debugging stages.
The original simulation was developed on a DEC station, but networked so that managers
can easily access the simulation from their own desktops with output delivered to their
local printers.

8.5.4 Simulation for NASA’s Space Launch Vehicles Operations (Kaylani et al. 2008)

For over three decades, NASA’s Space Shuttle had been the only Reusable Launch Vehicle
(RLV) used to deliver cargo to space. Almost a decade prior to the end of the Space Shuttle
program in 2011, NASA started evaluating options and approaches for replacement pro-
grams that were more effective in terms of cost, reliability, safety and availability. It was
well understood that it was necessary to study and compare future competing designs
consistently to improve upon the Space Shuttle’s cost, performance and turnaround time
before pursuing the large undertaking of a new RLV. Previous estimates of the Shuttle’s
operational performance proved overly optimistic, when NASA predicted originally
50–100 flights per year at $6 million per flight. These estimates were off by an order of
magnitude for the flight rate and by two orders of magnitude for cost (the Shuttle flew
five to ten times a year at a cost of about $600 million per flight). One of the problems of
most estimates was that they tended to assume best-case scenarios and failed to take into
account factors that can cause operations to take longer, flights to be delayed and costs to
increase.

As simulation emerged as a viable tool to model complex systems, many industries,
including NASA, started using it to make more accurate predictions. Discrete Event

333Simulation

Simulation (DES) has been widely used for studying processes and has been frequently
used in many NASA studies, including those for the Space Shuttle (Mollaghasemi et al.
2000, Cates et al. 2001, 2002). In order to compare RLV design alternatives fairly and
consistently, NASA funded the development of the Generic Simulation Environment
for Modeling Future Launch Operations (GEM-FLO) to predict processing turnaround
times and other effectiveness criteria and to support making key business and pro-
gram decisions. The primary motivation behind the development of GEM-FLO is
to reduce the time and effort required to study the different system designs using
simulation.

The underlying simulation model was developed using ARENA discrete event mod-
eling software and was generically designed to be easily configured for the specific
characteristics of each proposed RLV and the underlying processes needed for their
operations. It accepts design characteristics and operational inputs from the user, and
uses them to configure a simulation model that properly reflects the ground processing
flow and requirements of that RLV. For example, every RLV is expected to start with
mission planning and go through ground processing, vehicle integration, launch, mis-
sion execution, and landing. Each vehicle is expected to have multiple Flight Hardware
Elements (FHEs), such as orbiters, boosters and fuel tanks. For a certain vehicle design,
the number of FHEs, the necessary processing facilities and flow are entered by the
user via a graphical interface and the simulation model is configured accordingly. The
elements are then expected to merge into an integrated vehicle at an integration facility
according to a specific flow and requirements before it moves to the next stage. Process
information for all stages that a certain vehicle must go through is defined by a user
who is expected to be involved in the vehicle design but not necessarily a simulation
expert.

There is a trade-off between how generic and how detailed a model can be; the more
detailed the requirements are, the less generic the model will be. In this application of
DES, however, RLVs have common core processes that do not deviate drastically from
each other, and a generic model can account for variant designs. For example, in case
of the Space Shuttle, the solid rocket boosters, which are one of the FHEs, fall into the
ocean after they burn out and then they go through a retrieval process. On the other
hand, if a new RLV concept uses boosters that fly back on their own as a hypothetical
example, we can still consider that there is a retrieval process but it uses different times
and resources (instead of falling into the ocean and taking certain amount of time for
divers to retrieve them, they land on a runway and take a different amount of time and
resources for example).

When the simulation model is executed, it provides a number of performance measures
including operations turnaround time, expected flight rate, and resource utilizations, thus
enabling users to fairly assess multiple future vehicle designs using the same generic tool.
Of course there is a limit to how refined the granularity of a generic model can be; if a
model must be very detailed, then it might be more effective to develop separate models
for each RLV instead of one generic model for all of them.

Since simulation validation of future systems is in general challenging due to nonexis-
tence of historical data, the output produced by GEM-FLO from the ARENA software was
validated using the Space Shuttle historical data. GEM-FLO was used by several NASA
programs including the Next Generation Launch Technology (NGLT) Program, the Orbital
Space Plane (OSP) Program, and the Crew Exploration Vehicle (CEV) Program.

334 Operations Research

8.6 Summary

Simulation techniques permit analysts to study the behavior or performance of sys-
tems by creating a computer based model or imitation of a real system or process
operating over a period of time. Simulation further allows for experimental studies
and analyses in a hypothetical context that would be too expensive or too dangerous
to carry out in an actual system.

Building a simulation is itself a complex process. After a problem is formulated and a
mathematical or conceptual model built, data must be collected that typifies the actual
environment in which the simulated system operates. Modeling the activities of the real
system and generating random events that could occur in the real system are among the
most critical aspects of simulation development.

Simulation would be an arduous and impractical analysis to perform manually; there-
fore, the process is automated by developing computer programs to perform the simulation.
Steps must be taken to ensure that these programs are correct and appropriate for the study
at hand. After simulation experiments are designed, the simulation study enters its produc-
tion phase, during which the scenarios of interest are carried out via execution of the com-
puter program. Analysts observe the computer simulation and gather statistics to compose
a comprehensive picture of various aspects of the simulated system’s performance.

By simulating a system, it is possible to make observations of the performance of an
existing system, to determine the operating characteristics of a nonexistent system, or to
project modifications to an existing system.

Key Terms

activities
attributes
collecting data
coding
discrete simulation
entities
event
experimental design
inverse transform method
problem formulation
production
pseudorandom numbers
simulation
simulation models
simulation–optimization
system state
validation
verification

335Simulation

Exercises

8.1 Select three appropriate applications of simulation analysis—one each from a busi-
ness, engineering, or environmental setting. In each case, explain why analytical
models might be inappropriate or infeasible; justify how simulation could success-
fully allow a useful and valid analysis of your chosen systems; and speculate on
what might be learned from such a simulation study.

8.2 Consider simulating the operation of an emergency health clinic. Identify what
issues should be studied, the questions to be investigated, uncontrollable charac-
teristics and constraints within the clinic, controllable aspects of the operation of
the clinic, and measures of performance of the clinic.

8.3 Suggest an appropriate method of gathering data for use in simulating the opera-
tion of the clinic described in the previous question.

8.4 Write a computer program that generates a sequence of random numbers that are
Poisson distributed, with λ = 10.

8.5 Select a favorite bookstore or grocery store, and observe the pattern of customer
arrivals at the checkout facility. Develop a simulation of the customer arriv-
als by writing a computer program that starts a software clock at time zero,
then prints the times at which customers arrive over a four-hour period of time.
Analyze the times, and determine the longest, shortest, and average interarrival
times.

8.6 Select a traffic intersection that is convenient for you to observe. Identify the physi-
cal entities that characterize this intersection (such as lanes, directions of traffic
flow, stoplights, pedestrian walks, and any obstructions). Observe the operation
of the intersection and notice its operating characteristics (such as number of vehi-
cles, patterns of arrival of vehicles at the intersection, speed of traffic, pedestrian or
other types of arrivals). Design a model that could be used to simulate the activities
of this intersection.

8.7 Simulation can be used to study and predict weather patterns. Using the transition
probabilities given in Example 6.1, simulate the most likely daily weather condi-
tions at a ski resort during a winter holiday season beginning December 20 and
continuing through January 10, assuming that it was snowy on December 19.

8.8 Develop a computer simulation of a system in which cars arrive at a toll gate on a
highway according to a Poisson distribution with mean rate of 90 miles per hour.
The times for passing through the gate are exponentially distributed with average
38 seconds.

 a. Make a chart that displays enough information so that you can analyze the
waiting times experienced by the cars going through this facility.

 b. How long must you run this simulation program to get reliable information
about the queueing characteristics of your system?

 c. Modify your simulation program so that it automatically gathers statistics, and
reports the average number of cars waiting and the average waiting time of
each car.

336 Operations Research

8.9 A computer center has one multi-user computer. The number of users in the cen-
ter at any time is ten. For each user, the time for writing and entering a program
is exponential with mean rate 0.5 per hour. Once a program is entered, it is sent
directly to the ready queue for execution. The execution time per program is expo-
nential with mean rate of six per hour. Assuming the mainframe computer is oper-
ational on a full-time basis, and neglecting the possibility of down-time, develop a
computer simulation that allows you to find:

 a. The probability that a program is not executed immediately upon arrival in the
ready queue

 b. The average time until a submitted program completes execution
 c. The average number of programs in the ready queue

State any assumptions that you made about the computer center or the multi-user
computer in the system you have analyzed.

8.10 The mean time between failures of a computer disk drive is 3,000 hours, and fail-
ures are exponentially distributed. Write a computer program that generates these
failure events until 25 disk drive failures have occurred. Print out the number of
hours separating successive failures that occur in your experiment.

8.11 Printer jobs are created in a computing system according to a Poisson distribution
with a mean of 40 jobs per hour. Average print times are 65 seconds. Users com-
plain of long delays in receiving their printouts, but the computing lab director
will be willing to purchase a faster printer (twice as fast as the present one) only
if it can be demonstrated that the current average queue length is four (or more)
jobs, and only if the new printer would be idle for at most 20% of the time. Will the
lab director be able to justify the acquisition of the new printer? You have already
answered this question (in Exercise 7.4) using queueing formulas; now develop
and run a simulation model to test your answer.

8.12 Computer programs are submitted for execution according to a Poisson distribution
with mean arrival rate of 90 per hour. Execution times are exponentially distributed,
with jobs requiring an average of 38 seconds. Users complain of long waiting times.
Management is considering the purchase of a faster CPU that would decrease the
average execution time to 30 seconds per job. This expense can be justified only if,
under the current system, the average number of jobs waiting exceeds five. Also, if a
new CPU is to be purchased, its percentage of idle time should not exceed 30%. Can
the new CPU be justified? You made the necessary calculations to make a recommen-
dation (in Exercise 7.5). Now develop a simulation of the aforementioned scenario
that might provide an even more convincing explanation to users or to management.

8.13 Develop a simulation of the vehicle refueling system described in Exercise 7.9.
Determine how long you must run your simulation to obtain performance mea-
sures that are reasonably consistent with the ones you computed when you worked
the problem using queueing analysis.

8.14 In Exercise 7.12, you were asked to select a system in your university, business, or
community that involves queues, to develop a queueing model that describes that
system, and to describe the performance characteristics of this system. Write a
computer program to simulate the system you studied, and compare the statistics
gathered by your simulation program to the analytical performance results that
you computed with the formulas.

337Simulation

References and Suggested Readings

Abrams, M. 1993. Parallel discrete event simulation: Fact or fiction? ORSA Journal of Computing 5 (3):
231–233.

Adkins, G., and U. W. Pooch. 1977. Computer simulation: A tutorial. Computer 10 (4): 12–17.
Asmussen, S., and P. W. Glynn. 2007. Stochastic Simulation. New York: Springer.
Bagrodia, R. 1993. A survival guide for parallel simulation. ORSA Journal of Computing 5 (3): 234–235.
Banks, J., B. Burnette, J. D. Rose, and H. Kozloski. 1994. SIMAN V and CINEMA V. New York: John

Wiley & Sons.
Banks, J., J. S. Carson, B. Nelson, and D. Nicol. 1984. Discrete-Event System Simulation. Englewood

Cliffs, NJ: Prentice-Hall.
Banks, J., J. S. Carson, B. L. Nelson, and D. M. Nicol. 2005. Discrete Event System Simulation, 4th ed.

Upper Saddle River, NJ: Prentice-Hall.
Belanger, R. 1993. MODSIM II: The High-Level Object-Oriented Language. La Jolla, CA: CACI Products

Company.
Bell, P. C., D. C. Parker, and P. Kirkpatrick. 1984. Visual interactive problem solving—A new look at

management problems. Business Quarterly 49 (1): 14–18.
Bratley, P., B. L. Fox, and L. E. Schrage. 1987. A Guide to Simulation. New York: Springer-Verlag.
Brown, J. J., and J. J. Kelly. 1968. Simulation of elevator systems for world’s tallest buildings.

Transportation Science 2 (1): 35–56.
Bulgren, W. 1982. Discrete System Simulation. Englewood Cliffs, NJ: Prentice-Hall.
Buxton, J. N. (Ed.) 1968. Simulation Programming Languages. Amsterdam, the Netherlands:

North-Holland.
Carrie, A. 1988. Simulation of Manufacturing Systems. New York: John Wiley & Sons.
Cassandras, C. G. 1993. Discrete Event Systems: Modeling and Performance Analysis. Homewood, IL: R.

D. Irwin and Aksen Associates.
Cates, G., M. Mollaghasemi, G. Rabadi, and M. Steele. 2001. Macro-level simulation model of

space shuttle processing. Military, Government and Aerospace Simulation Proceeding, Advanced
Simulation Technologies Conference 33 (4): 143–148.

Cates, G., M. Steele, M. Mollaghasemi, and G. Rabadi. 2002. Modeling the space shuttle. Winter
Simulation Conference, San Diego, CA, pp. 754–762.

Chan, N. H., and H. Y. Wong. 2015. Simulation Techniques in Financial Risk Management, 2nd ed.
Hoboken, NJ: John Wiley & Sons.

Chisman, J. A. 1996. Industrial Cases in Simulation Modeling. Belmont, CA: Duxbury Press.
Choi, B. K., and D. Kang. 2013. Modeling and Simulation of Discrete Event Systems. Hoboken, NJ: John

Wiley & Sons.
Chorafas, D. N. 1965. Systems and Simulation. New York: Academic Press.
Christy, D. P., and H. J. Watson. 1983. The application of simulation: A survey of industry practice.

Interfaces 13 (5): 47–52.
Clymer, J. 1988. System Analysis Using Simulation and Markov Models. Englewood Cliffs, NJ:

Prentice-Hall.
Elizandro, D., and H. Taha. 2008. Systems Simulation of Industrial: Discrete Event Simulation Using

Excel/VBA. New York: Taylor & Francis Group.
Evans, J. B. 1988. Structures of Discrete Event Simulation: An Introduction to the Engagement Strategy.

Chichester, UK: Ellis Horwood.
Fishman, G. S. 2001. Discrete-Event Simulation: Modeling, Programming, and Analysis. New York:

Springer.
Franta, W. R. 1977. The Process View of Simulation. New York: North-Holland.
Fujimoto, R. M. 1990. Parallel discrete event simulation. Communications ACM 33 (10): 30–53.
Fujimoto, R. M. 1993. Parallel discrete event simulation: Will the field survive? ORSA Journal of

Computing 5 (3): 213–230.

338 Operations Research

Gantt, L. T., and H. M. Young. 2015. Healthcare Simulation: A Guide for Operations Specialists. Hoboken,
NJ: John Wiley & Sons.

Godin, V. B. 1976. The dollars and sense of simulation. Decision Sciences 7 (2): 331–342.
Gordon, G. 1978. System Simulation, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall.
Graybeal, W., and U. W. Pooch. 1980. Simulation: Principles and Methods. Cambridge, MA: Winthrop

Publishers.
Hendriksen, J. 1993. SLX the successor to GPSS/H. Proceedings of the 25th Conference on Winter

Simulation. Los Angeles, CA: ACM.
Hoover, S. V., and R. F. Perry. 1990. Simulation: A Problem-Solving Approach. Reading, MA:

Addison-Wesley.
Isermann, R. 1980. Practical aspects of process identification. Automatica 16: 575–587.
Jain, S., K. Barber, and D. Osterfeld. 1990. Expert simulation for on-line scheduling. Communications

ACM 33 (10): 55–60.
Kaylani, A., M. Mollaghasemi, D. Cope, S. Fayez, G. Rabadi, and M. Steele. 2008. A generic environ-

ment for modelling future launch operations—GEM-FLO: A success story in generic model-
ling. Journal of the Operational Research Society 59 (10): 1312–1320.

Kelton, W. D., R. P. Sadowski, and N. B. Zupick. 2014. Simulation with Arena, 6th ed. New York:
McGraw-Hill Professional.

Kheir, N. A. (Ed.) 1996. Systems Modeling and Computer Simulation, 2nd ed. New York: Marcel Dekker.
Kirkerud, B. 1989. Object-Oriented Programming with SIMULA. Reading, MA: Addison-Wesley.
Knuth, D. E. 1981. The art of computer programming, 2nd ed., Vol. 2. Seminumerical Algorithms.

Reading, MA: Addison-Wesley.
Kobayashi, H. 1978. Modeling and Analysis: An Introduction to System Performance Evaluation

Methodology. Reading, MA: Addison-Wesley.
Kreutzer, W. 1986. System Simulation: Programming Styles and Languages. Reading, MA: Addison-

Wesley.
L’Ecuyer, P. 1990. Random numbers for simulation. Communications ACM 33 (10): 85–97.
Law, A. M. 2007. Simulation Modeling and Analysis, 4th ed. New York: McGraw-Hill.
Lembersky, M. R., and U. H. Chi. 1984. Decision simulators speed implementation and improve

operations. Interfaces 14: 1–15.
Maisel, H., and G. Gnugnoli. 1972. Simulation of Discrete Stochastic Systems. Chicago, IL: Science

Research Associates.
Marsaglia, G. 2003. Seeds for random number generators. Communications of the ACM 46 (5): 90–93.
Marsaglia, G. 1985. A current view of random number generators. Computer Science and Statistics,

Sixteenth Symposium on the Interface. Amsterdam, the Netherlands: Elsevier Science Publishers,
North-Holland.

Mattila, V., K. Virtanen, and T. Raivio. 2008. Improving maintenance decision making in the Finnish
air force through simulation. Interfaces 38 (3): 187–201.

Miller, D. J. 1990. Simulation of a semiconductor manufacturing line. Communications ACM 33 (10):
98–108.

Mollaghasemi, M., G. Rabadi, G. Cates, D. Correa, M. Steele, and D. Shelton. 2000. Simulation model-
ing and analysis of space shuttle flight hardware processing. Proceeding of Harbour, Maritime &
Multimodal Logistics Modeling and Simulation Workshop, a publication of the Society for Computer
Simulation International (SCS), Portofino, Italy, pp. 59–62.

Neelamkavil, F. 1987. Computer Simulation and Modeling. New York: John Wiley & Sons.
Nelson, B. 2013. Foundations and Methods of Stochastic Simulation: A First Course. New York: Springer.
Park, S. K., and Miller K. W. 1988. Random number generators: Good ones are hard to find.

Communications ACM 31 (10): 1192–1201.
Pawlikowski, K. 1990. Steady-state simulation of queueing processes: A survey of problems and

solutions. ACM Computing Surveys 22 (2): 123–170.
Payne, J. A. 1982. An Introduction to Simulation. New York: McGraw-Hill.
Pegden, C. D. 1985. Introduction to SIMAN. Proceedings of the 1985 Winter Simulation Conference. San

Francisco, CA: IEEE.

339Simulation

Pegden, C. D., R. P. Sadowski, and R. E. Shannon. 1991. Introduction to Simulation Using SIMAN. New
York: McGraw-Hill.

Pidd, M. 1984. Computer Simulation in Management Science. New York: John Wiley & Sons.
Pooch, U. W., and J. A. Wall. 1992. Discrete Event Simulation: A Practical Approach. Boca Raton, FL:

CRC Press.
Pritsker, A. A. B. 1974. The GASP IV Simulation Language. New York: John Wiley & Sons.
Pritsker, A. A. B., and C. D. Pegden. 1979. Introduction to Simulation and SLAM. New York: John Wiley

& Sons.
Ravindran, A., D. T. Phillips, and J. J. Solberg. 1987. Operations Research: Principles and Practice. New

York: John Wiley & Sons.
Reiser, M. 1976. Interactive modeling of computer systems. IBM Systems Journal 15 (4): 309–327.
Reitman, J. 1971. Computer Simulation Applications. New York: Wiley-Interscience.
Rice, S. V., A. Marjanski, H. M. Markowitz, and S. M. Bailey. 2005. The SIMSCRIPT III programming

language for modular object-oriented simulation. Proceedings of the 2005 Winter Simulation
Conference. San Diego, CA: CACI Products Company.

Ripley, B. D. 1988. Uses and abuses of statistical simulation. Mathematical Programming 42: 53–68.
Roberts, N., D. F. Andersen, R. M. Deal, M. S. Garet, and W. A. Shaffer. 1994. Introduction to Computer

Simulation: A System Dynamics Modeling Approach. Portland, OR: Productivity Press.
Robinson, S., R. Brooks, K. Kotiadis, and D. J. Van Der Zee. 2010. Conceptual Modeling of Discrete-Event

Simulation. Boca Raton, FL: CRC Press.
Ross, S. 1990. A Course in Simulation. New York: Macmillan.
Ross, S. 1996. Simulation. San Francisco, CA: Academic Press.
Rubenstein, R., B. Melamed, and A. Shapiro. 1998. Modern Simulation and Modeling. New York: Wiley.
Russell, E. C. 1983. Building Simulation Models with SIMSCRIPT II.5. Los Angeles, CA: CACI.
Russell, E. C. 1993. SIMSCRIPT II.5 and SIMGRAPHICS tutorial. Proceedings of the 1993 Winter

Simulation Conference, San Diego, CA.
Salt, J. 1991. Tunnel vision. OR/MS Today 18 (1): 42–48.
Schmeiser, B. W. 1980. Random Variate Generation: A Survey, Simulation with Discrete Models: A State of

the Art View. New York: IEEE.
Schriber, T. J. 1974. Simulation Using GPSS. New York: John Wiley & Sons.
Schriber, T. J. 1991. An Introduction to Simulation. New York: John Wiley & Sons.
Schriber, T. J. 1993. Perspectives on simulation using GPSS. Proceedings of the 1993 Winter Simulation

Conference. Los Angeles, CA: IEEE.
Shannon, R. E. 1975. Systems Simulation: The Art and Science. Englewood Cliffs, NJ: Prentice-Hall.
Solomon, S. L. 1983. Simulation of Waiting-Line Systems. Englewood Cliffs, NJ: Prentice-Hall.
Swain, J. J. 1997. Simulation goes mainstream: 1997 simulation software survey. OR/MS Today 24 (5):

35–46.
Swain, J. J. 1999. Simulation survey. OR/MS Today 26 (1): 38–51.
Swain, J. J. 2001. Power tools for visualization and decision-making. OR/MS Today 28 (1): 52–63.
Swain, J. J. 2003. Simulation reloaded. OR/MS Today 30 (4): 46–49.
Swain, J. J. 2005. Gaming reality. OR/MS Today 32 (6): 44–55.
Swain, J. J. 2007. Software survey: New frontiers in simulation. OR/MS Today 34 (5): 32–43.
Swain, J. J. 2009. Simulation software boldly goes. OR/MS Today 36 (5): 50–61.
Swain, J. J. 2011. A brief history of discrete-event simulation and the state of simulation tools today.

OR/MS Today 38 (5): 56–69.
Swain, J. J. 2013. Discrete event simulation software tools: A better reality. OR/MS Today 34 (5): 32–43.
Swain, J. J. 2015. Simulation software survey: Simulated worlds. OR/MS Today 42: 36–49.
Swain, J. J. 2017. Simulation software survey: Simulation takes over. OR/MS Today 44 (5): 38–49.
Taha, H. A. 1987. Simulation Modeling and SIMNET. Englewood Cliffs, NJ: Prentice-Hall.

http://taylorandfrancis.com

341

9
Decision Analysis

9.1 The Decision-Making Process

Decision analysis is as much of an art as a science. Mathematical decision analysis must
be considered in the context of an individual decision-maker. The techniques that have
been developed in this area can be described as tools that encourage and assist people in
making rational decisions. They are not intended as substitutes for the individual. Most
of the techniques incorporate some interactive dialogue with the decision-maker to try to
determine personal preferences and attitudes.

To truly appreciate this interaction, it is useful to try to imagine actually being faced
with a particular problem. To illustrate this idea, consider the decision to buy a new car.
We can easily develop a set of criteria that define a good car (price, mileage, maintenance,
horsepower, etc.), and then we can devise a system of weights that measures the relative
importance of each criterion. The car with the highest score is clearly the one to buy. Most
people would agree that this sounds like a reasonable model. They might even be willing
to recommend this selection to someone else. But imagine for a moment that you are mak-
ing a decision concerning your own car. Would you be willing to accept the advice of this
model without question? In fact, the majority of intelligent decision-makers tend to have
reservations about accepting a strict mathematical interpretation and recommendation for
their problem.

Decision analysis differs from the mathematical structure of many other areas of
Operations Research in that it contains a high degree of uncertainty. The uncertainty is, in
part, a by-product of any long range planning function. Traditional Operations Research
problems in production planning and inventory analysis, for example, are concerned with
a monthly sales forecast that may vary according to some probability distribution. In deci-
sion analysis, we may be deciding whether to develop and market a new product, build
a new plant, or create a new government agency, or diversify our business interests. For
example, the demand for an existing product next month is relatively predictable in most
industries, but the demand for a new and unfamiliar product in five years’ time is virtu-
ally impossible to estimate. Such issues as these can have a major impact, and an analysis
of the effect of any current decision will not be fully appreciated for five or ten years into
the future. The factors that must be considered in the decision process often involve a dra-
matic degree of uncertainty simply by virtue of the extended time frame.

Decision analysis can usually be expressed as a problem of selecting among a set of
possible alternatives or courses of action. After making a choice, and at some future time,
there will be a number of external, uncontrollable variables that will influence the final
outcome. These external variables are often referred to as states of nature or state vari-
ables. An underlying assumption in decision analysis is that, if it were possible to predict

342 Operations Research

accurately the result of these external variables, then the final outcome would also be pre-
dictable and the correct alternative would become obvious.

This section discusses a simple decision-making problem. Despite its simplicity, it illus-
trates many of the difficulties inherent in the decision-making process. Imagine yourself
in the following situation. It is midnight on a Sunday night and you have just remembered
that you were supposed to prepare a report for your boss for next week. Unfortunately,
you cannot remember whether you were supposed to meet with him first thing on Monday
morning, or if it was required for next Thursday. You are faced with a decision: should you
stay up and work on the report for two or three hours, or should you take your chances
and go to bed? This statement defines the alternative courses of action for the problem,
which we will refer to as the decision variables.

The unknown external factor or state of nature is whether or not the report is due on
Monday. If you knew that the report was not due until Thursday, you could go to bed and
sleep peacefully. We will assume that, if it were known that the report was due tomor-
row, the decision maker would feel obliged to stay up and work on it. Otherwise, there
is no decision problem because the preferred action would be to go to bed independent of
whether it is due on Monday or Thursday.

Having defined the alternatives (decision variables) and the external factors (state vari-
ables), the next aspect of decision analysis is to consider the possible outcomes or payoffs
that would result from each possible combination of decision and state variables. In this
example, as with many large practical problems, the outcome is not clearly defined. There
may be a monetary component in the outcome (because the decision may affect future
promotion potential and merit pay increases), but there are also a number of other less
tangible consequences.

One method of concisely describing this type of problem is called a payoff matrix.
The rows correspond to the possible states, the columns represent alternatives, and the
entries in the matrix describe the outcomes associated with each possible combination
of the problem variables. In traditional decision problems, an outcome is described by a
single numerical value representing an associated profit, loss, or value of the result. For the
moment, we address such problems using informal, verbal descriptions of the outcomes.

Alternatives

States a1: Stay up, do it a1: Go to bed

ϴ1: Report due Tired, but happy
• Lost some sleep
• Guessed correctly

Miserable
• Guessed wrong
• The boss will be annoyed

ϴ2: Report not due Depressed
• Lost sleep for

nothing

Relieved
• Guessed right
• Did you worry?
• Sleep well?

This simple example illustrates some of the most difficult and frustrating aspects of deci-
sion making. Several observations can be made concerning the difficulties in quantifying
the elements of decision-making:

Outcomes are often verbal descriptions. The problem of comparing outcomes is often
complicated by the fact that the entries can be descriptive rather than numeric.
In our example, is Depressed worse than Miserable? How much worse? Twice as

343Decision Analysis

bad? Is Tired but happy better than Relieved? Is the negative feeling of Depressed
greater than the positive result of Relieved? The answers to these questions depend
on the individual. For some people, the prospect of having to face the boss in the
morning and admitting failure is unthinkable. Other people may do it regularly,
presumably armed with a battery of excuses.

The outcomes often involve several conflicting criteria. The previous example illustrates
the effect of multiple objectives that are commonly associated with practical deci-
sions. The objectives of getting a good night’s sleep and of maximizing one’s cred-
ibility at the office are, in this case, conflicting goals. The same is true of corporate
decision-making. Companies must distinguish between immediate profits and
long-term advantages. For example, an investment today for upgrading present
facilities will decrease this year’s net profit, but may lead to increased future rev-
enue. In addition, intangible costs and benefits such as worker attitudes, safety,
environmental issues, legal liability, and customer satisfaction are difficult to
quantify.

Even numeric outcomes are difficult to compare. Consider a decision problem in which
all of the payoff matrix entries are described in simple terms of dollars of profit or
loss. Most people do not consider a profit of $20,000 to be twice as good as a profit
of $10,000. In economic theory, this principle is known as the Law of Diminishing
Marginal Returns. The classic illustration of this concept says that three loaves of
bread are not three times as valuable as one loaf of bread. If you had one loaf, you
would eat it and satisfy your hunger. If you had three loaves, the third one would
likely be unused.

 The same logic applies to profits. People (perhaps unconsciously) normally
employ some implicit ordering of the alternative ways of spending their money.
The first dollar will be used for the most important item, while the last dollar may
just go in the bank. The true value of the first dollar in terms of benefit or enjoy-
ment is considerably greater than that of the last one.

 This line of reasoning seems even more valid when comparing profits against
potential losses. For most people, the negative feeling associated with losing
$10,000 is much greater than the corresponding positive benefit of winning an
equal amount. The profit would be very pleasant, but the loss would be terrible.
Losses are generally viewed as being more dramatic consequences than gains.
An important aspect of decision analysis concerns the determination of an indi-
vidual’s attitude toward risk. We introduce some approaches for dealing with these
questions in Section 9.4 on Utility Theory.

The relative likelihood of the uncertain state variables must be considered. In the earlier
example, suppose that you believed that the report is most likely due on Monday.
In that case, you would be inclined to stay up and write it. However, the situation
changes dramatically if you felt that the report was probably not expected until
Thursday. If you trusted your judgment, you would go to bed. To make a choice,
the decision-maker must try to associate a subjective probability value with each
of the possible states. What is your best approximation of the likelihood of each
uncertain event? We distinguish between three different approaches to defining
probability.

 Risk describes a situation for which an objective probability can be calcu-
lated. This includes most events that are repeated frequently as historical data is

344 Operations Research

available. Based on past information, it is possible to compute a reasonably accu-
rate probability assessment of the state variable. For example, there is a certain
amount of risk associated with drilling oil wells, but using land form data and
other inputs, the probability of success can be predicted and this information can
then be used in drilling decisions.

 Uncertainty normally applies to events for which there is limited historical or
repetitive information. When attempting to estimate the probability of success of
a new product, it is difficult to predict how the public will react. This is espe-
cially true when there have been no similar products introduced in the market.
Although there is no data that allows precise computation of objective probabilities
of success, an analyst may have some feeling or intuition or experience or limited
history that allows at least a subjective assessment of the probability. In the decision
example earlier, you might say that you are 60%–80% sure that the report is due on
Monday. Note that the real distinction between risk and uncertainty is that risk is
generally more precise. Under uncertainty, it may be possible to specify a range for
the probability.

 Complete ignorance describes a decision-maker who has no prior information
of any kind with regard to the likelihood of a state variable. Such a person refuses
to specify a subjective, intuitive probability range. Anything could happen and he
would not be surprised. Many people feel uncomfortable about specifying sub-
jective probabilities for state variables. Section 9.2 introduces the topic of Game
Theory, and describes several methods that can be applied in the face of complete
ignorance. It will become clear that the use of subjective probability assessments
is often preferable.

Decision-makers are irrational. There is a rapidly growing literature describing the
rather curious phenomenon of the irrational decision-maker in all of us. For the
present, consider one simple example of this behavior: decision-makers will often
lie about their true objectives. When middle managers are asked about their objec-
tives in decisions, they will stress the importance of corporate profit and the over-
all benefit of the company. Their true objectives are often more selfish and reflect
the desire that their own work centers look good. University students might claim
that they are primarily interested in the quality of their education when, in fact,
their main objective may be to get a diploma with the least amount of effort pos-
sible. A new car buyer will often rank safety as a high priority and then select the
fastest and raciest sports model. We all have a tendency toward specifying objec-
tives that we believe we should be using or that we think our boss would like to
hear rather than being honest about them. We consider these and related issues
when we discuss the psychology of decision-making in Section 9.5.

In summary, the foregoing example contains many of the underlying features that com-
plicate decision analysis. In the remainder of this chapter, these features are presented in
further detail. It should be mentioned from the outset that the amount of time and money
invested in a decision should be a small fraction of the value of the potential outcome. As a
general rule, one should spend about 1% of the potential value of a decision on the decision
process itself. In the given example, the decision process should not take more than a few
minutes. A detailed study of the options is unwarranted. However, in making the decision
to buy a $200,000 house, it might be worth spending $2,000 in time and money on analyz-
ing the alternatives and making a good selection.

345Decision Analysis

9.2 An Introduction to Game Theory

Game theory addresses possible approaches to decision-making under the assumption
of complete ignorance. It is described in terms of players, payoffs, and strategies. Consider a
two-person game: the decision-maker (player one) selects an alternative and then nature
(player two) selects a state. The payoff is given by the corresponding entry in a payoff
matrix. Player two is assumed to be indifferent to the choices of player one (except when
the decision-maker is slightly paranoid). Player one will make a selection based on some
strategy intended to make the most of the opportunity. Throughout this discussion, we
refer to the following payoff matrix:

Alternatives

States a1 a2 a3 a4 a5 a6

ϴ1 5 3 0 3 2 3

ϴ2 5 3 8 6 7 3

ϴ3 0 3 0 1 2 2

ϴ4 4 3 0 2 2 1

Most decision-makers employ a process of elimination to reduce the number of alterna-
tives. The simplest form of elimination is called dominance. An alternative ak is said to
dominate an alternative aj if, for every possible state, ϴi, alternative ak is at least as good as
alternative aj. Alternative aj can be eliminated from consideration.

In the example matrix, consider alternatives a2 and a6. Observe that, no matter which
state eventually occurs, alternative a2 is always at least as good as a6. Therefore, alternative
a6 is dominated and can be eliminated from further consideration. By inspection, we can
verify that no other alternatives are dominated.

A variety of strategies can be employed in making the selection of alternatives. We
describe a few of the more common ones and, as they are introduced, we identify each
one with a corresponding personality trait. The selection depends on the decision-maker’s
attitude toward risk. Because each choice has a different degree of risk associated with it,
different people will make different selections. It is important to realize that there is no
absolutely correct answer to this problem.

9.2.1 Maximin Strategy

For each alternative, aj, pick the worst possible outcome (the minimum). Choose the alter-
native that has the maximum value of this minimum.

The Maximin strategy is associated with the eternal pessimist; the person who believes
that, whatever they do will always turn out badly, and that nature is working directly
against them. In the example, the worst outcomes for each of the first five alternatives are
0, 3, 0, 1, and 2, respectively. By choosing alternative a2, the worst possible outcome is 3.
The maximin player chooses this alternative to guarantee a payoff of at least 3 no matter
what state occurs.

This strategy is characteristic of the conservative decision-maker. The given decision has
the lowest risk. However, it also usually has the lowest variance. Not only will the decision-
maker never make less than 3, they will never make more than 3 either. This strategy is

346 Operations Research

commonly observed in people who invest all of their money into savings bonds with a
guaranteed interest rate rather than participating in riskier forms of investment. They don’t
really believe that nature is out to get them; they just don’t want to take any chances.

9.2.2 Maximax Strategy

For each alternative, aj, pick the best possible outcome (the maximum). Choose the alterna-
tive which has the maximum value of this maximum.

The Maximax player represents the eternal optimist. Such people believe that anything
they do will turn out right. They are gamblers by nature and are willing to take risks for a
chance at the greatest possible prize. In the example, the maximum payoff of the first five
strategies is given by 5, 3, 8, 6, and 7, respectively. The maximum possible outcome is 8, and
the Maximax player will therefore select option a3 and hope for state ϴ2.

This strategy is commonly identified with incurable gamblers who have an unrealistic
or even unhealthy level of optimism. However, there is also a group of successful busi-
ness people who regularly employ this strategy, but they do not rely on blind luck. These
decision-makers will look for the best possible outcome, and determine the state(s) that
must occur in order for the maximum profit to be realized. These people have great con-
fidence in their ability to make things happen; they believe that they can influence and even
control the state variables. There is often some truth in this when the decision involves
the success of a new product, the potential market, and the ability of competition to react.
Presumably, these people are using a modified form of Maximax in which they first elimi-
nate any states that are unlikely or uncontrollable. They choose the maximum outcome
corresponding to any state over which they believe they can exercise some influence.

9.2.3 Laplace Principle (Principle of Insufficient Reason)

Assume that every state is equally likely and calculate the expected payoff for each alterna-
tive. The alternative with the highest expected payoff is selected.

Because we have assumed Complete Ignorance with respect to the likelihood of each pos-
sible state, it is reasonable to assume that each state is equally likely. We have no reason to
assume that any one state is more likely than any other. In our example, each state would
be assigned a probability of 0.25 because there are four possible states.

The expected payoff for a given alternative is computed by taking each element in the cor-
responding column of the payoff matrix, and multiplying each payoff by the correspond-
ing state probability. The expected payoff is the sum of these values. The expected payoff
for each of the five alternatives in the example is given by 3.5, 3, 2, 3, and 3.25, respectively.
Therefore, alternative a1 has the highest expected payoff.

Observe that if each state really has equal probability, and we repeat the game a large
number of times, the average payoff from selecting alternative a1 will be 3.5. Unfortunately,
in a real decision-making environment, we will be allowed to play the game only once. We
will discuss expected value decision-making at greater length in subsequent sections.

9.2.4 Hurwicz Principle

Define 0 ≤ α ≤ 1 to be the Decision-maker’s Degree of Optimism between the two extremes of
Maximin (α = 0) and Maximax (α = 1). For each alternative, aj, define the Hurwicz measure:

h max p + min pj i ij i ij= { } (){ }α 1− α

347Decision Analysis

where pij represents the payoff associated with alternative aj and state ϴi. Select the alterna-
tive with the highest value of hj.

The Hurwicz principle is based on the assumption that the decision-maker is nei-
ther totally pessimistic (as with the Maximin strategy), nor totally optimistic (as with
Maximax). Each individual decision-maker can select his own degree of optimism some-
where between these two extremes. Observe that when α = 1, then hj will simply be the
maximum payoff for alternative, aj, and Hurwicz will be equivalent to the optimistic
Maximax rule. Similarly, when α = 0, hj will be the minimum payoff for alternative aj. In
this case, by selecting the largest hj, the decision-maker is choosing the pessimistic, con-
servative Maximin alternative. However, when some intermediate value of a is chosen, we
get an alternative that balances the risk against the potential gains. In the example, sup-
pose we choose α = 0.6. For alternative a5, the maximum payoff is 7, the minimum payoff
is 2, and the corresponding Hurwicz value is h5 = 0.6 ∗ {7} + 0.4 ∗ {2} = 5. The values of the
Hurwicz measure for the first five alternatives are 3, 3, 4.8, 4, and 5, respectively. By pick-
ing the maximum of these, we determine that the best strategy is to choose alternative a5.

9.2.5 Savage Minimax Regret

Define the regret matrix by rij = pi* – pij where pi* denotes the best outcome which could
occur under state ϴi. For each alternative, find the maximum regret. Select the alternative
that minimizes this maximum regret.

This strategy is associated with insecure decision-makers. Such people are not primarily
interested in making the highest profit; they are more concerned with how disappointed
they are going to feel after the fact. To illustrate this, suppose that alternative a3 is selected,
and then state ϴ1 occurs. In hindsight, the decision-maker will wish he had chosen alter-
native a1 for a payoff of 5 instead of the actual profit of 0. He will regret making the wrong
choice, and the amount of this regret can measured by the difference between what he actu-
ally received and what he could have earned if he had known that state ϴ1 would result.
He will experience a regret of 5 − 0 = 5. The complete regret matrix for the example is:

Alternatives

States a1 a2 a3 a4 a5

ϴ1 0 2 5 2 3

ϴ2 3 5 0 2 1

ϴ3 3 3 3 2 1

ϴ4 0 1 4 2 2

The maximum possible regret for each of the five alternatives is given by 3, 5, 5, 2, and 3,
respectively. The best strategy to minimize the possible regret is to select alternative a4
with a maximum regret of 2. No matter which state occurs, the decision-maker will not
regret his choice by more than 2. The decision-maker is protecting himself against the
future prospect of someone coming along after the fact and telling him that he should have
anticipated that the final state would result. Observe that, although this behavior does
minimize regret, it also guarantees, at least for this example, that there will be some regret.

The strategies that have been described earlier are all based on logical and rational
assumptions. Each of them proposes a different alternative as the optimal solution to the
problem. Each of the alternatives is the correct choice for some decision-makers.

348 Operations Research

In practical problems, people have used all of these approaches in an attempt to reduce
the number of original alternatives down to a small set of distinct options. For example,
the USSR Siberian Power Institute was asked to make recommendations on the location of
a new hydroelectric generation facility during the early 1970s (Bunn 1984). Three possible
locations were being considered. The project would take many years to complete, and the
potential impact on the economy and environment in the chosen area would be consider-
able, with a high degree of uncertainty. The committee developed 23 different possible
scenarios concerning future energy supply and demand, potential investment, and oper-
ating costs. Under each scenario, and for each of the three possible sites, they calculated
a net economic impact. The Institute identified the optimal actions using several criteria,
including the Maximax, Maximin, and Regret techniques. Their report recommended,
under each assumption of attitude toward risk, a different location. These results were
then passed on to a higher political committee for final selection.

Although the methods have a natural and simple appeal, there are some definite prob-
lems having to do with their underlying assumptions. The Laplace principle provides
an intuitively appealing method of dealing with complete ignorance. It seems logical to
assume that each state is equally likely. Consider the example that we introduced in the
previous section. Recall that the two states of nature were: ϴ1: Report due and ϴ2: Report
not due. The Laplace principle asks us to assume that each has a 50% chance of occurring.

Suppose that we were to reformulate the problem, subdividing state ϴ1 into three dif-
ferent states:

Report due—You are fired.
Report due—But boss forgets to ask.
Report due—But you get an extension.

This new decision problem now has four states instead of two. If we again apply the
Laplace principle, we discover that the state Report not due has a probability of 25% and the
aggregate states Report due have a probability of 75%. By changing the descriptions of the
states, we can cause a change in the recommendations reported by the impartial method
of Laplace.

The Maximin strategy also presents a problem in that it does not possess the property
of row linearity. This property asserts that if we add a constant to each outcome in a row
of the payoff matrix, this should not affect the chosen alternative. If that state occurs, all
alternatives will be better by exactly the same amount, so this should not influence the
choice. Consider the problem of deciding whether or not to take your umbrella with you
in the morning. We assume that carrying an umbrella around all day is a nuisance; but if
it rains, getting wet is a bigger nuisance. The following payoff matrix might represent the
total amount of discomfort that you would experience under each condition.

Bring Umbrella Do Not Bring Umbrella

Rain −4 −8
Sun −6 0

The Maximin player will bring an umbrella to avoid the potential discomfort of get-
ting wet (−8). Just before he is about to leave the house, the boss calls and says that if
it rains today, she will be closing the office in the afternoon. Our decision-maker now
has a more favorable attitude toward the prospect of rain and therefore increases all

349Decision Analysis

outcomes corresponding to the state rain by 4. The revised payoff matrix reflects this
new attitude to inclement weather.

Bring Umbrella Do Not Bring Umbrella

Rain 0 −4
Sun −6 0

The same player will now decide not to bring an umbrella because he will not mind get-
ting wet quite as much. This is not really rational. The Laplace rule is the only strategy
introduced here that maintains row linearity.

All of the rules, except Laplace, are concerned exclusively with the extreme outcomes (the
best or the worst values), and ignore intermediate results. Consider the following payoff
matrix:

a1 a2

ϴ1 0 1
ϴ2 1 0
ϴ3 1 0
ϴ4 1 0
ϴ5 1 0
. . .
. . .
. . .
ϴn 1 0

Under the rules, the two alternatives are equivalent: the maximum outcome is 1, the mini-
mum outcome is 0, and the maximum regret is 1. It would be reasonable to assume that
unless it were fairly certain that ϴ1 would occur, alternative a1 is a much better option than
alternative a2.

The Savage Minimax regret strategy displays an additional, rather surprising, logi-
cal anomaly. It is possible to construct an example such that, if the decision-maker must
choose between two alternatives, a1 and a2, he will choose a2. But, upon adding a third,
useless alternative a3, he will now prefer alternative a1. Suppose that this person, when
choosing between a Ford or a Chevrolet, picks the Chevrolet. However, by offering him the
additional option of a Volvo, he will now take the Ford.

This behavior is clearly irrational. The decision-maker who persistently applies the
Savage regret method can be turned into a Perpetual Money-Making Machine. Consider the
following example:

a1 a2 a3

ϴ1 1 9 5
ϴ2 9 5 1
ϴ3 5 1 9

Clearly, the three alternatives are identical. However, if this decision-maker were offered
only alternatives a1 and a2, he would choose a2. Moreover, if he currently has a1, he might

350 Operations Research

be willing to pay us $1 to exchange a1 for a2. Similarly, when considering options a2 and
a3, if he has a2, he would be willing to pay $1 to exchange it for a3. Finally, now that he has
a3, he will pay $1 to exchange it for a1, and the cycle can continue indefinitely, or at least
until our victim adopts a new strategy. (It is left as an exercise to construct and verify these
pairwise regret matrices.)

In summary, game theory provides an interesting framework for classifying and analyz-
ing general types of human behavior in the presence of uncertainty. It does not provide a
very practical set of rules for solving decision-making problems. In particular, recall that
our discussion of game theory has been based on the assumption of complete ignorance.
The decision-maker was unwilling or unable to make any subjective probability assump-
tions. However, in reality, each of the approaches described in this section is equivalent to
making very specific probability statements:

Maximin: The worst outcome for each alternative has probability 1.
Maximax: The best outcome for each alternative has probability 1.
Laplace: All states have equal probability.
Hurwicz: The best outcome has probability α and the worst outcome has

 probability (1 − α).
Savage: The highest regret outcome for each alternative has probability 1.

In every case, by claiming complete ignorance and then selecting a particular strategy, the
decision-maker has implicitly assigned probabilities to the outcomes. Realizing this, the
decision-maker would likely prefer to trust his or her own judgment about probabilities.

9.3 Decision Trees

Practical decision-making usually involves a sequence of simple decisions. For example,
when corporate decision-makers consider developing a new product, they will normally
first do a market survey and a feasibility study. If both of these are encouraging, they may
decide to invest more time and money in the design and development of a prototype. If the
model is successful, they will try limited production and possibly introduce the product
in a test market. If the response in the test market is favorable, they might decide to pro-
ceed to full scale production and a national sales campaign. They will generally allow for
a review of their progress after six months or a year to decide whether or not to continue.
The simple payoff matrix methods introduced in the previous sections are inadequate for
sequential decision-making.

Observe that even a simple personal decision such as buying a new car is really a sequen-
tial type of problem. The true cost of a new car depends on how long the owner decides to
keep it, which in turn depends on the car’s performance. The present decision is a function
of future state variables and a sequence of future possible decisions.

Decision trees provide a method for representing sequential decisions and evaluating
the alternatives. A decision tree is composed of the following basic building blocks:

 1. Decision fork. A point in the tree where a decision-maker must choose one of
several paths, or alternatives: represented by a square box in our diagrams.

351Decision Analysis

 2. Chance fork. A point in the tree where nature will choose a path according to
some probability: represented by a circle.

 3. Gate or toll. A branch of the tree where a cost will have to be paid if that path is
selected: represented by a bar across a path.

Throughout our discussion on decision trees, we assume that the reader is familiar with
basic probability theory.

Consider an example of the vice-president of sales for a medium sized manufacturer who
must decide whether to market a potential new product. After consultation with people
from the accounting and the marketing departments, she decides to consider three pos-
sible scenarios: high demand (1,000 sales per year), medium demand (500 sales per year),
and low demand (100 sales per year). For each of these states, she estimates the expected
annual net profit of $1 million, $200,000 and −$500,000 respectively.

The corresponding decision tree for this problem, shown in Figure 9.1, is organized
chronologically from left to right. We begin at the extreme left and move along the path
until a fork is encountered. At a decision fork, we must pick the best possible alternative
according to some decision strategy; at a chance fork, a path is randomly selected for us,
according to some probability function. Eventually, we arrive at some unique outcome at
the extreme right-hand side of the decision tree.

Suppose that the decision-maker has determined subjective probabilities for each of
the three possible states: high demand (0.2), medium demand (0.4), and low demand (0.4).
Based on this assumption, we can calculate the expected monetary value (EMV) of the
chance fork in the tree:

 EMV 0.2 $1,000,000 0.4 $200,000 0.4 $500,000 $80,00= × + × + × =() () ()− 00

High (0.2)
$1,000,000

demand

Market
product

Don’t
market

Medium
demand

Low
demand

(0.4)

(0.4)
$200,000

−$500,000

$0

FIGURE 9.1
Decision tree.

352 Operations Research

The decision fork now becomes a choice between a chance fork with an expected value
of $80,000 or a certain outcome of $0. We assume that the decision-maker will choose to
market the product with an expected profit of $80,000.

This process is known as folding back the decision tree. Beginning at the extreme right-
hand side, for each chance fork, we calculate the expected monetary value. For each deci-
sion fork, we select the branch with the highest EMV. The value of the decision fork is this
maximum expected profit. Eventually, we arrive at the left-hand side of the tree. Each
decision fork in the tree has a preferred branch. The set of preferred branches is called a
decision strategy. In the example, the preferred strategy is to market the product with an
expected profit of $80,000.

This approach, although intuitively appealing, is based on some implicit underlying
assumptions that must be considered. A particular concern for most decision-makers is
the issue of relying on expected monetary values. In the example, the suggested strat-
egy involves a 40% chance of losing half a million dollars. This could have serious conse-
quences on the future of the company, and many people would consider the risk too high
when weighed against the potential gain. In the next section on utility theory, we illustrate
how decision trees can be modified to incorporate attitudes toward risk.

Another issue involves the use of a discrete set of state variables. At the chance fork, we
have assumed that the demand will either be high, medium, or low. In fact, the demand
for the product is a continuous variable in our problem. The eventual outcome is drawn
from a distribution anywhere between $1,000,000 and –$500,000. By limiting this range to
three possible values, we have simplified the real problem. We have developed a model
of the decision process that has lost some of the detailed structure of the original. At the
same time, however, we can now ask the decision-maker to determine subjective prob-
abilities and potential outcomes for a limited number of distinct possibilities. By adding
more options, we could make the model more realistic, but the decision-maker would find
it increasingly difficult to distinguish between the various scenarios. The model builder
must be conscious of the delicate balance between model realism and the practical impli-
cations of too many subjective evaluations.

Now suppose that the decision-maker has the option of performing a market survey
before making his final decision. The survey will cost $20,000 and will provide an esti-
mate of the potential success of the product. We assume, for simplicity, that the survey
results will be either favorable or unfavorable. This new problem can be represented by the
decision tree shown in Figure 9.2. This example contains several additional interesting
features. Observe that the decision to survey immediately costs $20,000 represented by a
gate. When we fold back the tree, we must subtract $20,000 from the expected value of the
survey chance fork to evaluate the decision fork.

The intended purpose of doing a survey is to improve our estimates of the probabilities
of product demand. We would expect that a favorable survey result should increase the
probability of high demand. To determine how these probabilities change, we must first
know how much confidence we should have in the survey results. The company that does
the surveys claims the following levels of accuracy based on its past experience:

Favorable (F) Unfavorable (UNF)

If high demand (HI) 70% 30%
If medium demand (MED) 60% 40%
If low demand (LOW) 30% 70%

353Decision Analysis

Unfortunately, the marketing company has given us the probabilities in the reverse
direction for our decision tree, saying that “The probability of ‘favorable’ response
given ‘high demand’ is 0.70.” This can be abbreviated as Pr{F|HI} = 0.70. In our deci-
sion tree, we need to know the probability of high demand given a favorable survey
response. Recall that we have already assumed that Pr{HI} = 0.20. We can calculate

High (Hi)
demand

Market

Don’t
market

Don’t
market

Medium (Med)
demand

Low (Low)
demand

$1,000,000

$200,000

−$500,000

$1,000,000

$200,000

−$500,000

$0

$0

$0

Hi

Med

Low

$1,000,000

$200,000

−$500,000

Hi (0.2)

Med (0.4)

Low (0.4)

Market

Don’t market

Market

Favorable
()F

Unfavorable
(UNF)

Survey

Don’t survey

$20,000

$80,000

$80,000

FIGURE 9.2
Decision tree with market survey.

354 Operations Research

the probability of getting a favorable survey response by adding up all of the favorable
conditional probabilities:

Pr F Pr F HI Pr HI Pr F MED Pr MED Pr F LOW Pr LOW| | |{ } { } { } { } { } { } { }= × + × + ×

= ((.) (.) (.) (.) (.) (.)

. . .

0 70 0 20 0 60 0 40 0 30 0 40

0 14 0 24 0 12

× + × + ×

= + +

= 00 50.

Similarly, the probability of an unfavorable result is given by: Pr{UNF} = 0.50.
We can use this information to derive the required conditional probability using

Bayes Rule:

Pr A B = Pr B A Pr A Pr B| | { }{ } { }  { }× ÷

This version of the formula is derived from a standard result in probability theory which
states that

 Pr A&B Pr A B Pr B|{ } { } { }= ×

and similarly,

 Pr A&B Pr B A Pr A|{ } { } { }= ×

Equating the right-hand side of both expressions and dividing by Pr{B} produces the
desired result.

By applying Bayes rule, we can now derive the required conditional probabilities. For
example:

Pr HI F Pr F HI Pr HI Pr F

0.70 0.20 0.50
0.28

| | { }{ } { }  { }
[]

= × ÷

= × ÷
=

The complete table of conditional probabilities can be calculated in an analogous way:

High Demand
(HI)

Medium Demand
(MED)

Low Demand
(LOW)

If favorable (F) 28% 48% 24%
If unfavorable (UNF) 12% 32% 56%

The corresponding decision tree is shown in Figure 9.3.
With a favorable survey result, the expected value of the Market decision increases from

$80,000 to $256,000. An unfavorable result decreases the value of the Market decision to a loss

355Decision Analysis

of $96,000. In the latter case, the decision-maker would not market the product, and the $20,000
spent on the survey is written off as an inexpensive way to avoid the potential loss of $96,000.

The optimal strategy for this decision can be summarized as follows:

Do the survey;
If favorable,

Market the product (expected value: $256,000)
If unfavorable,

Do not Market (expected value $0)

Hi (0.28)

$256,000

Don’t
market

Market

Don’t
market

Med (0.48)

Low (0.24)

$1,000,000

$200,000

−$500,000

$1,000,000

$200,000

−$500,000

$0

$0

$0

Hi (0.12)

Med (0.32)

Low (0.56)

$1,000,000

$200,000

−$500,000

Hi (0.2)

Med (0.4)

Low (0.4)

Market

Don’t market

Market

(F) (0.5)

UNF (0.5)

$128,000
Survey

Don’t survey

$20,000

$108,000

$80,000

$80,000

−$96,000

FIGURE 9.3
Completed decision tree with survey information.

356 Operations Research

This strategy is highlighted on the decision tree at each decision fork.
In a sense, the survey information is not very reliable. Even when the demand is low, we

still have a fair chance of getting a favorable survey response. However, the adjusted prob-
abilities are still sufficient to dramatically affect the expected profit. This leads us to con-
sider the question of the value of survey or sample information. In the example, the survey
increases the expected value of the market decision from $80,000 to $128,000. Therefore,
we could say that the Expected Value of the Sample Information is $48,000. The decision-maker
might be willing to pay up to $48,000 for the survey.

At any stage of a decision-making process, the decision-maker usually has the option of
requesting more information. He could ask for a more detailed survey, or could try distrib-
uting the product in a small test market before making the final decision. One of the most
important and difficult decisions is deciding when to stop collecting data.

A useful measure of the potential value of additional information assumes the existence
of a source of perfect information. The expected value of perfect information (EVPI) is
obtained from the decision tree by adding a chance fork at the beginning of the tree that
tells us whether demand will be high, medium, or low. We then decide to market the prod-
uct or not. This process is illustrated in Figure 9.4.

If there were a perfect survey that could accurately predict the true product demand,
the expected value of our decision would change from $80,000 (with no information) to
$280,000. The expected value of perfect information (EVPI) is $200,000. Sources of perfect
information are rare, and they certainly are not free. However, the EVPI gives an indica-
tion of the potential value of looking for better surveys and tests.

Consider the position of the decision-maker in our example. Recall that the conditional
probabilities for the survey results are presented as objective information. They are based
on historical data from previous surveys and we have a reasonable degree of confidence
in their accuracy. However, the estimates for the probabilities of the three levels of market
demand are highly subjective. These are based on intuition, some past experience, and an

Market

Don’t market

Market

Don’t market

Market

Don’t market

Hi (0.2)

Med (0.4)

Low (0.4)

$280,000

$1,000,000

$200,000

$1,000,000

$200,000

−$500,000

$0

$0

$0

$0

FIGURE 9.4
The expected value of perfect information.

357Decision Analysis

educated guess. The decision-maker can have only as much confidence in the final strategy
as he does in these estimates.

For this reason, it is important to perform some sensitivity analyses on the final decision.
For example, the decision-maker in our example might be interested in knowing what the
best strategy would be if the probability of high demand was only 10% and the chance of
low demand increased to 50%. The revised decision tree is given in Figure 9.5. We discover
that the expected value of the decision without the survey is now –$70,000. However, the
value of the survey is $43,000. After subtracting the $20,000 cost of the survey, the expected
profit is $23,000, and the optimal strategy still suggests marketing the product if the survey
results are favorable. Because these new demand estimates are presumably pessimistic,
our decision-maker’s confidence in going ahead with the survey increases significantly.

Hi (7/46)

Market

Don’t
market

Don’t
market

Med (24/46)

Low (15/46)

$1,000,000

$200,000

−$500,000

$1,000,000

$200,000

−$500,000

$0

$0

$0

$0

$0

Hi (3/54)

Med (16/54)

Low (35/54)

$1,000,000

$200,000

−$500,000

Hi (0.1)

Med (0.4)

Low (0.5)

Market
−$209,259

Don’t
market

Market

(F)

(UNF) (0.54)

$43,000

Don’t survey

$20,000

$23,000

−$70,000

(0.46)

$93,478

$93,478

FIGURE 9.5
Decision tree with pessimistic estimation of demand.

358 Operations Research

The example given was of course deliberately simplified. Practical problems would have
several decision forks and a large number of state variables with which to contend. The
calculations required to evaluate even a moderate-sized decision tree can be very tedious.
Fortunately, there are many software packages available that can handle large practical
problems and relieve the decision-maker of considerable computational burden.

One of the most valuable uses of decision trees is simply for organizing and modeling
decision problems. As a first stage, the decision tree can be drawn with only the decision
forks and a few of the main chance forks. This preliminary tree is useful in determining
the possible decision options in the decision process.

The decision-maker can then consider which of the possible environmental state vari-
ables could have a significant impact on the final outcome. In a practical setting, there will
be a large number of state variables that can influence the final outcome. The art of decision
analysis is deciding which of these variables are likely to change the optimal strategy. For
example, in a production problem, the likelihood of a union strike would have a significant
impact on expected profit. However, it may have no impact on the best decision selection
if the strike reduces all outcomes proportionally.

An excellent example of the art of using decision trees is presented by Byrnes (1973).
He describes an actual case study of a decision by a major soap manufacturer in England
of whether to market a new deodorant bath soap in the 1960s, at a time when many com-
panies were experimenting with the idea. The case is interesting because decision trees
were used as a vehicle for understanding the problem. Although the final tree was used to
predict expected profit, there was a sequence of decision trees that reflected the changes
in the attitudes of management as they learned more about the decision at each stage. The
case study describes each step, and, in particular, the mistakes and guesses that actually
took place along the way.

9.4 Utility Theory

In Section 9.3, we made the assumption that people will choose the alternative that exhib-
its the highest expected value. Such people will be called EMVers for their use of expected
monetary value. If a particular decision is to be repeated many times, then the EMV
approach is perfectly sound. In the long run, the actual profit will be very close to the EMV
sum of the individual decisions. Unfortunately, most practical decision processes apply to
a single decision-making event.

For this reason, the vast majority of decision-makers do not rely solely on EMV, and will
also make a subjective evaluation of the amount of risk involved in a decision. They will
attempt to incorporate their attitude toward risk in a trade-off against the potential ben-
efits of taking a chance.

As an experiment illustrating attitudes toward risk, we have tried the following game in
our classes. We place $100 on the table at the front of the room. We tell the class that we are
going to flip a coin with one student. If a head comes up, the student wins the $100; but if
a tail occurs, we keep the money. We then ask the students what is the maximum amount
that they would be willing to pay to play this game. (We will keep the money that they pay
regardless of the flip.)

The EMV of this game is $50, and from a strictly mathematical point of view, people
should be willing to play for any amount up to $50. However, students are generally not

359Decision Analysis

wealthy people. They begin to think of the consequences of the gamble. If they lose, they
might not eat tonight, or they might not have enough money to pay the rent. If they win,
they could take their friends out to dinner, but the value of winning does not compensate
them for the risk of losing $50. Over the years, we have observed that the average amount
that students are willing to risk for this gamble is around $20. (One student was willing to
play for $75, but he was probably independently wealthy.)

People’s willingness to use an EMV decision rule depends on their ability to absorb the
potential loss. For relatively small values, they can afford to rely on EMV; but as the stakes
increase, most people exhibit an aversion to risk. For example, few corporate decision-mak-
ers (in medium sized companies) would be willing to risk $400,000 for a 50–50 chance of
earning $1,000,000. The prospect of such a substantial loss would be considered too risky.

It is important to distinguish between gambling and decision-making. The previous exam-
ple with the students was clearly a gambling situation. It was a game, and the students
had a choice of whether or not they wanted to play the game. However, in the real world of
decision-making, the decision-maker is forced to pick one of several uncertain alternatives.
Another distinction between gambling and decision-making is illustrated by the student
who was willing to pay $75 to play the game. This student was a gambler, whereas the oth-
ers were making a rational decision about their ability to pay versus the potential gains.
In the quest for success, we cannot avoid taking some chances, but we can certainly avoid
being foolish. In casino gambling, for example, the odds, in the long run, always favor the
house.

Utility theory gives us a tool for characterizing an individual’s attitude toward risk. It
is based on the idea that people will associate an implicit value or utility with any given
outcome that is not necessarily proportional to the associated dollar (monetary) value. For
example, a particular individual may feel that the negative value associated with a loss of
$100 is compensated by the positive value of a gain of $500. He would consider the utility
or value of the two outcomes to be equal and opposite. A 50–50 chance of losing $100 or
gaining $500 would be fair within his personal value system. Utility theory allows us to
assign values to these outcomes which reflect this attitude.

9.4.1 The Axioms of Utility Theory

Utility theory depends on four basic assumptions or axioms. If we accept the validity of
these axioms, then the subsequent material follows as a logical consequence. In the axi-
oms, we use the term lottery to mean a single chance fork in a decision tree where one out-
come is randomly chosen from several possible outcomes, each having a given probability.
We first state the axioms, and then we discuss some of their more controversial aspects.

Axiom 1: Every pair of outcomes can be compared.
 There is a preference ordering (possibly indifferent) associated with all out-

comes. Moreover, this ordering is transitive: if outcome A is preferred to B, and B
is preferred to C, then A is preferred to C. Similarly, if A is indifferent to B, and B
is indifferent to C, then A is indifferent to C.

Axiom 2: We can assign preferences to lotteries involving prizes in the same way that we
assign preferences to outcomes.

 Consider a lottery L with probability p of an outcome A and probability (1 – p)
of outcome B. This lottery itself has a value in our preference ordering, and we can
decide whether or not we prefer lottery L to a third outcome C.

360 Operations Research

Axiom 3: There is no intrinsic reward in lotteries.

 There is no fun in (or fear of) gambling.
Axiom 4: Continuity Assumption.
 Given any three outcomes where A is preferred to B is preferred to C, then there

exists some probability p such that we would be indifferent to getting outcome B
for certain, or getting a lottery L with probability p of outcome A and probability
(1 – p) of outcome C.

These assumptions are the subject of considerable controversy among decision theory
authors. The first assumption implies that all outcomes can be measured by a single scalar
value in order of preference. In decisions involving only dollar values, this appears reason-
able. However, for decisions with multiple objectives, these axioms become less obvious.
Consider the simple problem of choosing a new car. There are several conflicting attributes
that define the best car. Utility theory assumes that we have some underlying value system
that allows us to rank all possible car models in order of preference. The decision problem
is reduced to one of explicitly determining this value structure.

Figure 9.6 illustrates the concept of assigning values to lotteries. In Figure 9.6a, a particu-
lar decision-maker might be indifferent to the decision fork alternatives when X = $230. In
this case, the Certain Monetary Equivalent (CME) of the lottery (the chance fork) is $230.
If X is greater than $230, he will take the certain cash. If X is less than $230, he will prefer
the lottery. The lottery itself has a value equivalent to the utility of $230.

In Figure 9.6b, suppose that the same decision-maker is indifferent to the decision fork
when Y = $220. Now, the lottery at the chance fork has a CME of $220. If this person were
asked to choose between the two lotteries, he would select the first one, because it has a
higher perceived value for him. Note that the EMVs of the two lotteries are $300 and $275,
respectively. But, in both cases, the decision-maker puts a lower monetary value on the
lotteries, because the cash values are certain, while the lotteries have an element of risk.

It is not always true that the CME values are in the same order as the corresponding
EMVs. For example, our decision-maker could attach a very high value to having at least
$150 when he is finished. The lottery in Figure 9.6a has some risk because he could finish
with only $100. Figure 9.6b has very little risk because he can always be certain of earn-
ing $150. He might therefore be more inclined to use the EMV for the second lottery, and
choose Y = $260. For this decision-maker, the CME of the second lottery is higher than that
of the first, although the EMV is lower.

The third assumption—that there is no fun in gambling—refers to the attraction that some
people have to the thrill of taking a chance. When people buy a lottery ticket, they get the
chance of winning; but they also get the fun of just playing the game. They can watch the

$500

$100
(0.5)

$X

(0.5)

(0.5)

$400

$150

$Y

(0.5)

(a) (b)

FIGURE 9.6
(a,b) Examples of the value of lotteries.

361Decision Analysis

numbers being selected and cheer for their sequence. These people get an added positive
value simply by being at a chance fork in a decision tree.

Consider the two simple lotteries depicted in Figure 9.7. Both of these lotteries are math-
ematically equivalent. However, the problem in Figure 9.7b has two chance forks, while
the tree in Figure 9.7a has only one. A person who enjoys gambling might actually prefer
the former because he would have the opportunity to gamble twice. The reverse is true for
people who fear gambling. Utility theory assumes that people have neither an attraction
nor an aversion to the opportunity of taking a chance.

Consider the following extreme example of the continuity assumption:

A $1
B $0
C Death

The continuity axiom, when applied to these outcomes, states that we can find a value
of p such that outcome B ($0) is equivalent to a lottery with a probability p of A ($1) and
probability (1 – p) of C (Death). In other words, there exists some probability p such that
you would be willing to risk death for a dollar. For example, suppose that you are walk-
ing along the street and you notice a 1-dollar bill on the opposite sidewalk. Many people
would cross the street to pick up the bill although there is a remote chance of being killed
on the way. The difficulty with the continuity axiom is not in the existence of a probability
p, but rather in determining a value for it.

9.4.2 Utility Functions

If we accept the validity of these axioms, then it is possible to define a preference function
or a utility function, u(A), with the properties that:

 1. For any two outcomes, A and B, u(A) > u(B) if and only if outcome A is preferred
to outcome B.

 2. If an outcome C is indifferent to a lottery L with probability p of outcome A and
probability (1 – p) of outcome B, then

 u(C) p u(A) p u(B)= × + ×()1−

That is, we can define a utility function such that the utility of the lottery is equal to the
mathematical expectation of the utilities of the prizes.

(a) (b)

(0.5)

(0.5)

(0.5)

(0.5)

A

B

C

(0.25)

(0.25)

(0.25)

A

B

C

FIGURE 9.7
(a,b) Example of the effect of fun in gambling.

362 Operations Research

A utility function that satisfies these properties is invariant under linear scaling. If we
add a constant to all utility values, or if we multiply all utilities by a constant, the new
function will still satisfy both of the aforementioned properties. Therefore, we can assume
any convenient scale for our function. In particular, we will assume that the best possible
outcome has a utility, u(Best) = 1, and the worst possible outcome has a utility, u(Worst) = 0.
Note that we could use any convenient scale (e.g., from 1 to 100, or from 0 to 10).

Consider the decision problem from the previous section which is displayed in
Figure 9.8. We wish to repeat the analysis, but this time, we will incorporate the decision-
maker’s attitude toward risk using utility theory. Note that the gate associated with pay-
ing for the survey has been removed. Instead, the $20,000 cost of the survey has been
subtracted from the final outcomes for all corresponding tree branches. This does not
affect the EMV of the decision, but, in order to evaluate utilities, all outcomes must be
expressed as a net effect of that complete branch.

Hi (0.28)

Market

Don’t
market

Don’t
market

Med (0.48)

Low (0.24)

$980,000

$180,000

−$520,000

$980,000

$180,000

−$520,000

−$20,000

−$20,000

$0

$0

Hi (0.12)

Med (0.32)

Low (0.56)

$1,000,000

$200,000

−$500,000

Hi (0.2)

Med (0.4)

Low (0.4)

Market

Don’t
market

Market

F (0.5)

UNF (0.5)

Don’t survey

Survey

FIGURE 9.8
Marketing decision problem with survey information.

363Decision Analysis

In this decision problem, the best possible outcome is $1,000,000 and the worst possible
outcome is –$520,000. Therefore, we can arbitrarily assign utilities:

 u $, ,1 000 000 1() =

and

 u $520,000−() = 0

There are two commonly used methods for determining the utilities of the inter-
mediate values. As seen in Figure 9.9, each will give us one new point for the utility
function. In Figure 9.9a, the decision-maker is asked, “For what value of X are you
indifferent to the alternatives at the decision fork?” Observe that the expected utility
of the lottery is:

 (). $, , (.) $, .0 5 1 000 000 0 5 520 000 0 5× + × = u() u()−

By the definition of a utility function, the utility of X must be u(X) = 0.5. Thus, the decision-
maker is essentially saying that the utility of the lottery is equal to the utility of X.

In the approach illustrated in Figure 9.9b, the decision-maker is asked, “For what value
of p are you indifferent to the options at the decision fork?” The expected utility of the lot-
tery, in this case, is given by

 () $, , () $,p u() p u() p× + × =1 000 000 1 520 000− −

We conclude that u($200,000) = p, again relying on the definition. There are a variety of
other assessment techniques, but the two approaches described here are the simplest, and
the most common.

Suppose that we decide to use the first method, and our decision-maker selects a value of
X = –$100,000. For this person, u(–$100,000) = 0.5. This decision-maker is very risk averse.
Given a 50–50 chance of earning $1,000,000 or losing $520,000, he would prefer not to play.
The chance of a loss of $520,000 is simply too great. In fact, he would prefer a certain loss
of up to $100,000 to the lottery. Presumably, this decision maker feels that the smaller loss
could be absorbed, while the potential large loss would be nearly intolerable. This rather
dramatic behavior is not uncommon among actual decision-makers, and we will consider
other examples later.

(0.5)

$1,000,000

−$520,000
$X

(0.5)

(1 − P)

$1,000,000

−$520,000
$200,000

(P)

(a) (b)

FIGURE 9.9
(a,b) Utility value assessment techniques.

364 Operations Research

Let us now repeat the utility assessment procedure using the two lotteries shown in
Figure 9.10. Observe in Figure 9.10a that, when the decision-maker specifies a value for X at
which he is indifferent, the utility of X is equal to the expected utility of the lottery:

u(X) u() u()= × + ×

= × +

(.) $, (.) $,

(.) (.) (.

0 5 100 000 0 5 520 000

0 5 0 5 0

− −

55 0 0 25) () .× =

Similarly, in Figure 9.10b, when a value of Y is selected, we find that the u(Y) = 0.75.
Suppose that values of X = –$350,000 and Y = $250,000 are selected. We therefore have

five sample points for the utility function. By plotting these points, the remaining values
can be estimated by drawing a smooth curve through them, as shown in Figure 9.11.

Using this admittedly approximate utility function, we can now answer several lot-
tery questions. For example, suppose he were faced with a lottery having a 50–50 chance
of $500,000 or –$200,000. From the curve, u($500,000) ≈ 0.86 and u(–$200,000) ≈ 0.41. The
expected utility of this lottery is (0.5) × (0.86) + (0.5) × (0.41) = 0.635. Again using the utility
curve, we find that the u($80,000) ≈ 0.635. Therefore, the lottery is approximately equiva-
lent to a certain outcome of $80,000. Hence, our decision-maker should be indifferent to a
certain outcome of $80,000 or a 50–50 lottery of either $500,000 or –$200,000.

Beginning with this simple function, we would then ask a variety of somewhat redun-
dant lottery questions to validate the utility curve and adjust the shape at each iteration to

(a) (b)

(0.5)

(0.5)

−$100,000

−$520,000
$X

$1,000,000

−$100,000
$Y

(0.5)

(0.5)

FIGURE 9.10
(a,b) Utility assessment.

1.0

0.8

0.6

0.5

0.4

U
til

ity

0.2

−$500,000 $500,000 $1,000,000$0

FIGURE 9.11
Utility function for marketing example.

365Decision Analysis

best reflect the answers. We would then present the decision-maker with several examples
of how the utility function would interpret his preferences for simple lotteries. In prac-
tice, this process is frequently implemented using an interactive dialogue between the
decision-maker and a computer.

Finally, when the decision-maker is satisfied that the current estimate represents a rea-
sonable approximation of the utility function, the function can be applied to the origi-
nal decision problem. Each outcome is translated into its corresponding utility value. The
expected utility of each chance fork in the decision tree represents the relative value of
the lottery for the decision-maker. Averaging out and folding-back the decision tree in the
usual manner produces a decision strategy that maximizes the expected utility. The mar-
keting example is illustrated in Figure 9.12.

Hi (0.28)

Market

Don’t
market

Don’t
market

Med (0.48)

Low (0.24)

0.997

0.705

0.0

0.997

0.705

0.0

0.575

0.575

0.585

Hi (0.12)

Med (0.32)

Low (0.56)

1.0

0.72

0.045

Hi (0.2)

Med (0.4)

Low (0.4)

Market

Don’t
market

Market

F (0.5)

UNF (0.5)

Don’t survey

Survey

0.506

0.575

0.585

0.597

0.597

0.618

0.618

0.345

FIGURE 9.12
Marketing decision tree with utilities.

366 Operations Research

Observe that the use of a utility function did not change the optimal strategy. The
decision-maker should still do the survey, and then market the product if the results are
favorable. However, the expected utility of this decision is 0.597, while the expected utility
of doing nothing is 0.585. This difference is very small, especially when we consider that
the numbers are approximate. The decision-maker should probably consider these two
options as being of equal value. Perhaps other criteria could be used to resolve the tie.

When we based our decision on expected monetary value in the previous section, the
survey strategy produced an expected profit of $128,000. If we decided to market the prod-
uct without a survey, the expected profit was $80,000. Both alternatives were clearly pre-
ferred to Do Not Market. When we consider the decision-maker’s attitude toward risk, the
survey strategy is only marginally preferred, while the alternative of marketing without a
survey is definitely dominated by all other options.

9.4.3 The Shape of the Utility Curve

The primary types of utility curves are illustrated in Figure 9.13. For the EMVer, each
additional dollar has the same utility value. The utility curve is a straight line indicating
that the marginal value of each dollar is constant. The risk averse (RA) decision-maker
has a curve with a decreasing slope, indicating a decreasing value of each additional dol-
lar. Observe that this person derives 60% of the total utility from simply breaking even.
Conversely, the risk seeking (RS) gambler has a curve with an increasing rate of change.
The marginal value of each additional dollar is increasing. This individual is happy only
when he is very close to the top of the scale. Breaking even has a very low utility. It is
important to recognize that a person’s attitude toward risk is reflected by the rate of change
of the slope of the curve—not by the absolute value of the slope.

The gambler in a business environment is not the same personality that one would expect
to find gambling in a casino. Such people are typically found at the head of a new venture.
There is considerable risk associated with starting a new company, but these people have

1.0

0.8

0.6

0.4

0.2

10 30 4020$0−10−20
�ousand dollars

(G
am

ble
r)

EM
Ver

Risk
 se

ek
ing

 (R
S)

Risk
 av

ers
e (

RA)

U
til

ity

FIGURE 9.13
Basic utility curves.

367Decision Analysis

enough confidence in their own abilities that they believe that they can succeed. They are
willing to take chances for the large potential profits that they visualize in the near future.
They are not depending on pure luck because they honestly believe that they can control
and influence the final outcome.

The risk averse decision-maker is commonly associated with more established, conser-
vative companies. These individuals have already developed a successful enterprise and
they have no desire to jeopardize this position in a risky adventure.

There have been a number of psychological studies that suggest that people’s degree of
risk aversion is directly related to their personal feelings concerning luck and fate. People
who approach life, friendship, business, and so on with their fingers crossed, hoping that
they will be lucky, are often risk averse. They believe that external forces are controlling
events and that the consequences are unpredictable. Risk seekers tend to believe that they
have considerable control over their lives, and that their destinies are not completely con-
trolled by external forces. Most people lie somewhere between these two extremes.

In reality, people are risk averse at certain levels and risk seeking at others. Consider the
utility curve illustrated in Figure 9.14, which describes an attitude which is risk averse for
values below $4,000, and above $25,000, but risk seeking for values between $4,000 and
$25,000. This type of behavior is seen in people who have established a financial goal for
themselves. For example, this person may have decided that, if he had $25,000, then he
could open his own business, or buy some new equipment. The $25,000 figure has a very
high utility, relative to say $10,000. As such individuals get close to their target, they are
willing to take an extra risk to attain it. Outside of this perceived range, they are generally
risk averse. A person with several financial goals could have a number of risk seeking seg-
ments in his utility curve.

Earlier in this chapter, it was stated that decision-makers are generally irrational. A prime
example of this behavior can be found in the way that people assess their utility curve.

1.0

0.8

0.6

0.4

0.2

10 20 30 40−10 $0−20
�ousand dollars

U
til

ity

RA

RS

RA

FIGURE 9.14
Utility curve with a $25,000 target level.

368 Operations Research

A set of experiments was performed by Kahneman and Tversky (1979) in which subjects
were asked to develop a utility function in the standard way. It was discovered that the
typical curve of the majority of cases resembled the form shown in Figure 9.15. Most
respondents exhibited RA behavior above zero, but they became gamblers when the val-
ues were negative. Apparently, people have a financial target of breaking even and are
willing to take considerable risks to avoid a loss.

In decision analysis, this behavior is called The Zero Illusion. The problem is that the zero
point is relative to the scale that has been defined in the choice of units. For example, if
we use net profit as the outcome measure, zero represents the point at which the company
makes or loses money on the product. If we use net assets to measure the effect of a mar-
keting decision, we have not changed the problem, but zero now represents the point at
which the company is in the black or in the red. Profit could be described in terms of this
year’s profit-and-loss statement. In each case, the method used to calculate outcome values
has no effect on the real decision problem, but the scale has simply been shifted.

When a decision-maker produces a curve with this structure, he can usually be con-
vinced to abandon the zero target by reformulating the questions in terms of a few differ-
ent scales. He will soon adjust his answers to a more consistent behavior. Zero is indeed
an imaginary target. We will come back to this notion when we discuss the framing effect
in Section 9.5.5.

A classic example of apparently irrational behavior with respect to utility theory is
known as the Allais Paradox. Consider the two decision problems shown in Figure 9.16.
For the problem in Figure 9.16a, most people prefer to choose the certain outcome of
$500,000 because the lottery branch looks too risky. Although there is a 10% chance of get-
ting $1,000,000, there is also a 1% chance of getting nothing, so why take the risk?

In Figure 9.16b, the two lotteries look very similar, except that the second one has a pay-
off of $1,000,000 while the first gives only $500,000. In this case, the majority of people will

1.0

0.8

0.6

0.4

0.2

$400$0−100
Pro�t in thousand dollars

Ri
sk

 se
ek

in
g

Risk averse

U
til

ity

FIGURE 9.15
The zero-illusion utility curve.

369Decision Analysis

choose the second lottery with a chance at $1,000,000. In both lotteries, the probability of a
zero payoff is about the same.

Consider an individual who plays the aforementioned two lotteries as described for the
majority. Not everyone will agree with this person, but the selections certainly appear to
be logical. The paradox arises when we attempt to develop a utility function for this per-
son: it cannot be done.

Without loss of generality, we can assume a utility value of u($0) = 0, u($1,000,000) = 1,
and u($500,000) = p for some value of p. We wish to find a value of p such that the utilities
of the two decision problems correspond with the choices of our decision-maker.

In the first problem, the utility of $500,000 certain is simply p. The utility of the lottery is

 0 89 0 10. .× +p

Because our subject chose the certain branch, we conclude that

 p 0.89 p 0.10> × +

or

 0.11 p 0.10× >

Similarly, for the second problem, the utility of the first branch is given by 0.11 × p, while
the utility of the second branch is 0.10. Because the second branch is preferred, we con-
clude that

 0.11 p 0.10× <

In other words, no matter how the utility function is defined, the decision-maker must
either select the first branch in both problems, or the second branch in both problems.

There is no rational way to explain this dilemma. In the first problem, the decision-maker
is frightened away from the lottery because there is a 0.01 chance of obtaining a zero.
However, in the second problem, there is an extra 0.01 chance of getting zero in the second
lottery. This additional risk apparently is not recognized. The decision-maker is effectively
saying that a probability of 0.01 is significant enough to avoid the risk, but, at the same
time, probabilities of 0.89 or 0.90 are essentially equivalent. A difference in probability of
0.01 should either deter a person in both cases or not at all. Even when we point this out,
many people will stick with their original, irrational selections. We will discuss this and
other aspects of irrational behavior in the following section.

(a) (b)

0.01

0.10

0.89

$500,000

$0

$1,000,000

$500,000

0.11

0.10

0.90

0.89

$500,000

$1,000,000

$0

$0

FIGURE 9.16
(a,b) The Allais Paradox.

370 Operations Research

Many practitioners believe that utility theory is the only solution to decision-making
problems. Others argue that, although it is reasonable to assume that people have an
implicit personal utility function, it is not a practical tool for decision analysis. The main
objection, in addition to the problems already mentioned, is that the assessment proce-
dures for determining a person’s utility function are basically artificial. When people are
asked to play lottery games, the prizes are not representative of real decision problems.
Therefore, it is difficult for people to treat the answers seriously, especially as the number
of questions increases. Despite these criticisms, utility theory has been used in a wide vari-
ety of practical decision situations, some of which are described and discussed in Raiffa
(1968) and Keeney and Raiffa (1976).

9.5 The Psychology of Decision-Making

By now, it should be clear that decision analysis is an artful combination of mathematical
logic and human intuition. Unfortunately, human decision-makers are prone to a number
of misconceptions and idiosyncrasies that can severely limit their ability to make rational
choices. We have already alluded to a few of the problems, and we will now expand on
that theme in this section. Many of the examples are based on the research of Tversky and
Kahneman (1982) and Kahneman (2013).

9.5.1 Misconceptions of Probability

Suppose that you are in Reno and that you have been casually watching people play rou-
lette. You notice that red has come up 40 times in a row. Would you now bet everything
you own on black? We know that getting red 41 times in a row is highly unlikely (a prob-
ability of approximately 4.5 × 10–14), and therefore, for many people, black seems highly
probable. But in fact, assuming that the wheel is fair, the probability of red on the forty-first
spin, given that we already have 40 reds, is 0.50.

This assumption is known as the Gambler’s Fallacy. The same behavior can be observed
in more practical decision-making situations. When people observe a sequence of events
with a high proportion of failures, they assume that the probability of success must be
increasing, and they adjust their decisions and their attitude toward risk accordingly. As in
the game of roulette, this is not rational when the individual observations are independent.

There is a popular lottery in which people pick six numbers between 1 and 49. Every
week, six numbers are drawn at random, and anyone who matches all six wins the grand
prize (usually in the millions of dollars). There is considerable speculation about “Which
numbers are more likely?” Many people apparently believe that some combinations must
surely be more likely than others. “You will never see the sequence 1,2,3,4,5,6” for example.
If we try to explain that 1,2,3,4,5,6 is just as likely as any other, many people respond by
telling us that we do not understand the basic laws of probability and true randomness.
One can even purchase software to help us select six numbers that are truly random (and
hopefully lucky).

Consider the following experiment: suppose that we ask people to select colored marbles
from a large opaque jar, one at a time with replacement. The subjects are told that the jar
contains two colors, red and white, and that two-thirds of the marbles are one color, while
one third are the other color. The first individual draws six marbles and finds four red and

371Decision Analysis

two white. He concludes that the jar is two-thirds red. The second individual (drawing
from a different jar) selects 20 marbles, of which 11 are red and 9 are white. She concludes
that her jar is also two-thirds red. After making their draws, we ask the subjects how much
confidence they have in their assessment.

Most people agree that the first person has a higher probability of guessing correctly.
His draw corresponds precisely to the expected distribution if two-thirds of the marbles
are red. The second subject found the colors to be almost equally divided and feels that
the probability of guessing correctly is only slightly better than 50%. In fact, in both cases,
the probability of two-thirds red is exactly 0.80. The larger number of draws in the second
experiment greatly increases the accuracy of the conclusions. Generally, people do not
appreciate the significance of sample size information. The same principle is true for mar-
ket surveys and opinion polls. Assuming that the selection procedure is unbiased, even
small samples can be very accurate predictors.

As already discussed with reference to the Allais Paradox in the previous section, people
are inconsistent in their application of small probabilities. Probabilities with an obvious
physical interpretation, such as a 50% chance of getting a head when tossing a coin, are
easy to understand. However, probabilities of 0.48 and 0.52 are both considered close to
0.50, and we perform this substitution in our minds when we analyze a problem. The 4%
difference is often essentially ignored.

At the same time, a probability of 0.01 is too small to visualize. Consequently, people
have a tendency to either exaggerate the probability, or to decide that it is essentially zero.
Down to a certain level, people will treat probabilities of 0.01 or 0.02 as if they were closer
to 0.05 or 0.10. At some point, the associated probability is taken as being effectively zero.
The same behavior is true for probabilities close to 1.0. The perceived probability is less
than the actual probability up to some point at which people assume that the event is cer-
tain. This behavior, although understandable, is mathematically irrational.

Another common error in the appreciation of probability concerns the net effect of a
series of conjunctive (or disjunctive) events. Consider a decision-maker who is respon-
sible for a large project composed of a series of small components. The project could be
the design and installation of a computer system, an office tower, or a nuclear reactor.
We assume that each part must be successful in order for the project to succeed. This is a
conjunctive event in that the probability of success of the project is the product of the prob-
abilities of success of the components.

Let us suppose that the decision-maker and his staff investigate each component, and
they determine that each has a 99% chance of success. They conclude that the success of
the project is highly likely. In actual fact, if there are 1,000 components, the probability of
a successful project is less than 0.00005. This problem is compounded by the fact that the
people responsible for the individual components are not likely to estimate a 99% chance
of success. At that level of certainty, they will usually say that they are sure that their part
will work properly.

As a final example, consider the following problem based on the format of a popular
television game show. Contestants are shown three doors and told that behind one door is
a two week, all expense paid vacation to Hawaii, or something equally valuable. The other
two doors conceal a consolation prize. Suppose the contestant selects door number 2, and
then the host opens door 3 and shows the contestant that it contains one of the consolation
prizes. (Doors 1 and 2 are not opened.) The host then asks the contestant if he/she wants to
change his/her initial choice (from door 2 to door 1 in this case). Based on the probabilities,
and on this new information, should he/she change doors? We will leave this question for
the reader to ponder, and come back to it later in this chapter.

372 Operations Research

9.5.2 Availability

When decision-makers are asked to make subjective probability assessments of uncertain
future events, their judgment depends on their personal available store of information.
Unfortunately, the availability of information is often influenced by subjective external
events. People make decisions based on the experiences related to them by a trusted friend,
events they read about in the morning newspaper, or what they saw on the way to work.

To illustrate, suppose that we ask people to estimate the probability of an airline acci-
dent. Some people may actually go to the trouble of collecting statistics on flight accident
rates over the past few years, but most would simply use their intuition. Their probability
estimates would be strongly influenced by recently reading about an accident or by know-
ing someone who was involved in a crash. People who actually witness this kind of disas-
ter often conclude that the risk is so high that they will decide never to fly again. Observe
that none of these events reflects the true probability of an accident. People often make
probability assessments based on very limited personal experiences.

The same logic applies in business decision-making. An executive who has previously
been involved in a risky venture that failed will be very reluctant to try anything like it in
the future. His own estimation of the probability of success has been greatly reduced. The
availability and use of such highly subjective input can produce very irrational behavior.

9.5.3 Anchoring and Adjustment

When people make subjective assessments, they often begin with an initial estimate
based on their previous experiences, or perhaps even based on ideas suggested by the
wording of the question at hand. When they try to make a prediction, they can become
anchored to their original estimate, even when they know it should not affect their deci-
sion. This produces insufficient or conservative adjustment in the direction of the new
assessment.

Consider a rather dramatic example, described by Tversky and Kahneman (1982), of an
experiment in which people were asked to estimate the percentage of African countries
that are members of the United Nations. The experimenter would first spin a wheel of
fortune in the presence of the subject. The wheel would randomly pick a number between
1 and 100. If the number was 10, the experimenter would ask, “Is it 10%?” The average
response of subjects was, “No, it is closer to 25%.” When the random number was 65, the
experimenter would ask, “Is it 65%?” The average response was, “No, it is more like 45%.”
When people were given a number that they knew was irrelevant, they used it anyway.
They were anchored to the initial wording of the question and then performed insufficient
adjustment. Moreover, their performance did not improve when they were offered money
for guessing correctly. Apparently, if people are given no information, they will use com-
mon sense, intuition, and/or statistical estimates. When people are given useless informa-
tion, they will use it and ignore logic.

In one experiment, 32 judges were shown the case background for a patient. Eight of the
judges were clinicians. The patient’s file was divided into four sections and the judges
were asked to give their opinion on the diagnosis after reading each section. The study
showed that the accuracy of the diagnoses did not increase significantly with the amount
of information. However, the judges’ confidence in their diagnoses increased dramatically.
Presumably, people became anchored to their initial impressions.

The same is true in management decision-making. When a manager has access to a
great deal of data and reports, he will have a correspondingly high confidence in his

373Decision Analysis

ability to make decisions. This attitude does not necessarily depend on the quality of his
information. People have a tendency to be influenced by the sheer volume of data available
to them.

Expertise itself can be a source of the anchoring bias. Professionals, such as doctors,
lawyers, managers, or stockbrokers, may develop a system of standard operating procedures
based on years of training and experience. Expertise produces efficient responses to envi-
ronmental signals and symptoms. When you describe your ailments to your family prac-
titioner, he does not usually need to spend hours consulting his medical reference books.
He will quickly identify a few possible diseases that match your symptoms and prescribe
further tests or medication. The value of expertise is that we can get quality advice quickly.

Unfortunately, experts can become anchored to their own standard procedures. If some
of the symptoms and signals are incompatible with their standard procedures, they tend
to be ignored or re-interpreted by the expert to fit their existing models. Experts will put
greater emphasis on information that is consistent with their own previous experience,
and thus become anchored to their own expertise.

People can also be anchored to the mean of a distribution. Suppose that we asked a
decision-maker to estimate the expected value of sales for a product next year, or to fore-
cast the inflation rate. We then ask him to specify an upper and lower limit for the distribu-
tion, with a probability of 99%. In experiments with experts, people tend to specify a range
that is accurate 70% of the time. They are conservative in their estimates of high and low
values and are anchored to their initial estimate of the expected value.

9.5.4 Dissonance Reduction

Consider the decision to buy a new car. Most people will begin this exercise with total
objectivity. They will develop a list of desirable features and decide on a budget limitation.
After visiting several dealers, test driving the cars, talking to people and collecting bro-
chures, they will compile a mental catalog of the possibilities, and start objectively remov-
ing certain alternatives that are too expensive, too slow, or too small.

As this process continues, the decision-maker reduces the set of options to some small
group of items that are all, in some sense, equally acceptable. It becomes difficult to choose
between them, and the decision-maker enters a phase called dissonance. A choice must be
made; and at this point, the decision-maker will become very subjective, and simply pick
one alternative. This is perfectly rational because all of the options have been judged to be
of equal utility to him.

Having now made a choice, the majority of psychologically stable decision-makers then
enter a completely irrational phase called dissonance reduction, in which they try to con-
vince themselves that the alternative they selected was, in fact, the very best one by far.
They will exaggerate favorable qualities and down-play the less attractive ones.

This type of justification after the fact is irrational, but it is also necessary in order to
dispel the feeling of dissonance. People who do not enter this phase may spend the rest of
their lives doubting themselves and worrying about whether they made the right decision,
and they might never really be satisfied with their decision.

This behavior is important in decision analysis in a practical environment because busi-
ness decision-makers will also subconsciously employ dissonance reduction. Once they
have made their decision, they become increasingly stubborn about it. They will tend to
discredit any new information that does not confirm the wisdom of their original choice.
It may be very difficult to return to the initial objective context of decision-making after
having mentally justified the choice that was made.

374 Operations Research

9.5.5 The Framing Effect

It has been observed that people sometimes change their answers when we simply alter
the wording of the question. This framing effect is closely related to the idea of the zero
illusion discussed earlier.

In one study, two groups of physicians were given the following decision problem.
Suppose that a rare Asian flu is expected to hit the country next winter. If nothing is done,
we expect that 600 people will die. The first group of physicians was told that there are two
possible inoculation programs that could be used. Program A has been used in other coun-
tries and the results are highly predictable. Program B is a new, experimental treatment.

Program Expected Result Probability

A 200 people saved 1.00
B 600 people saved 0.333

0 people saved 0.667

Observe that the two programs are equivalent in terms of the expected number of people
who will be saved. The majority of the physicians preferred program A. They were being
risk averse and preferred to save 200 lives for certain, rather than take a chance of saving
all or none.

The second group of doctors was given the same problem, except that they were told that
there are two possible inoculation programs, C and D.

Program Expected Result Probability

C 400 people die 1.00
D 600 people die 0.667

0 people die 0.333

The majority of the subjects in this group preferred program D. Presumably, the thought of
having 400 deaths on their conscience was too much, and they preferred to gamble.

In this experiment, both groups answered the same question, but changing the wording
of the question changed the way they responded. The first group looked at the problem
in terms of positive results (lives saved) and were risk averse, while the second group
became more risk seeking for negative results (death). This is precisely the effect of the
zero illusion.

In another experiment, subjects were asked to imagine that one of their friends had
contracted a fatal, contagious disease. The disease has no symptoms that can be detected;
people who have it will simply die in two weeks. There is a remote probability of 0.0001
that you have contracted the disease from your friend. Fortunately, there is an antidote
that you can take now as a precautionary measure. What is the maximum amount that you
would be willing to pay for this antidote? The average response was $200. If the drug cost
more than $200, they would prefer to take their chances.

A second group of subjects was asked if they would be willing to volunteer for a medical
research experiment. They were told that there was a remote chance (probability 0.0001)
that they might contract a fatal disease. There is no antidote and, if they got the disease,

375Decision Analysis

they would suddenly and painlessly die in two weeks. What is the minimum amount
that we would have to pay you to volunteer for this program? The average response was
$10,000.

This is a dramatic example of the zero illusion. People are unwilling to pay more than
$200 to avoid the risk of death. But these same people will not take less than $10,000 to face
the same risk. Notice that the $200 is a loss, while the $10,000 is a gain. We can interpret
this to mean that the positive utility of $10,000 is the same as the negative value of –$200.
We can also assert that people are gamblers for losses and highly risk averse for profits.
This attitude appears perfectly rational until people realize how easily we can move their
zero.

Consider yourself in this simple situation. Someone sends you a card on your birthday
with a $100 bill inside. A few days later, they come up to you, terribly embarrassed, and
tell you that it was a mistake. They put the money in the wrong envelope, and could you
please give it back—which you do reluctantly. Observe that, not counting the insult, the net
effect of this pair of transactions is very negative. Receiving the $100 had a certain positive
utility. However, once you had it in your pocket, and had already decided how to spend it,
giving it back is a loss with a much higher negative utility. After you receive the $100, you
move your zero.

Companies will often use the framing effect to their advantage in marketing strategies.
Some years ago, credit card companies banned their affiliated stores from charging higher
prices to credit card users. A bill was once presented to the U.S. Congress to outlaw this
practice. Lobbyists for the credit card bloc realized that some bill would be passed, and
they preferred that the new legislation call for a discount for cash rather than a credit card
surcharge. The two options are identical because merchants simply add the surcharge to
the cost of the merchandise. However, customers see the discount for cash as a positive
gain (low utility), whereas the added cost of a surcharge would have much higher value,
and many more people would pay cash.

A common marketing ploy is the “two week trial with a money back guarantee.” People
must make two decisions: one at the beginning and a second decision at the end of the two
weeks. In the first decision, people will compare the value of a two-week trial against the
transaction costs (pick-up, delivery, etc.). The cost of the item is not included because they
can get it back. In the second decision, they compare the value of keeping the item to the
utility of the positive refund. But, as we have seen, the utility of a refund is much smaller
than the utility of a payment if we had bought the item outright in the first place. People
are more likely to keep things that they would never have purchased otherwise. The mail
order purchasing industry thrives on this principle.

There are examples of the framing effect that do not rely on the zero illusion. Consider
the following two scenarios. Sam is waiting in line at a theater. When he gets to the win-
dow, the manager comes out and says, “Congratulations. You are our 100,000th customer,
and you win two free tickets to the show!”

Sally is at a different theater. When the man in front of her gets to the window, the man-
ager comes out and tells him, “Congratulations sir! You are our 1,000,000th customer, and
you win $1,000.” The manager then turns to Sally and gives her $100 as a consolation prize
for being number 1,000,001.

Which of these two people had a better experience? Although Sam’s net gain has a much
smaller value (around $20), many people feel that Sally experienced a great loss at almost
(but not) getting $1,000. By framing the question in terms of what could have happened,
we can change the perceived value of Sally’s $100 profit.

376 Operations Research

9.5.6 The Sunk Cost Fallacy

The sunk cost fallacy is really a specific variation of the framing effect. The relevant aspects
are illustrated in Figure 9.17. Let us assume that, at some past time t0, a decision was made
to initiate a project. We are now at time t1, and we must decide whether to continue the
partially completed project or to quit now and cut our losses. We further assume that we
have already invested some amount $S in the development. The question is: should the
value of S, the sunk cost, be considered when the decision is made at time t1?

An example of this issue occurs in a so-called Continue/Discontinue decision, where x
represents the potential profit of successful completion with probability p, y represents the
potential cost of failure with probability (1 – p), and z denotes the expected cost of discon-
tinuing the project. We will assume that x > z > y. The same decision tree structure occurs
in an Asset Disposal problem. At time t0, we purchased an asset for $S, and at time t1, we
must decide to either keep it with a risky future cost or dispose of it and take the current
salvage value.

The question is: how does the value of S, the consequence of previous decisions, affect
the current decision at time t1? Authors in mathematical and economic theory refer to this
question as the sunk cost fallacy. They argue that nothing can be done about S, and the
decision at time t1 should depend on the real options currently available.

Consider a man who joins a tennis club and pays a $300 annual membership fee. After
two weeks, he develops tennis elbow, but continues to play (in pain) because he does not
want to waste the $300. If the same man had been given a free annual membership, valued
at $300, he would likely quit. The sunk cost directly affects future decisions.

Empirical studies have shown that the rate of betting on longshots increases during the
course of a racing day. Presumably, people have not adapted to earlier losses and they are
trying somewhat desperately to compensate for them.

This type of behavior is common in the business world. A manager initiates a project at
time t0 with an expected cost of $100,000, to be completed in one year, and a 50% probabil-
ity of revenues of $500,000. At the end of the year, time t1, he has already spent $150,000,
and he estimates another six months and $50,000 to finish with a 10% chance of $200,000
revenue. There were unexpected delays and the market conditions have experienced an
unfortunate decline. The project is no longer profitable. The decision tree is illustrated in
Figure 9.18.

Figure 9.18b is the same as 9.18a except that the costs of both gates have been moved to
the end nodes of the tree. In the first diagram, paying $50,000 for a 10% chance of mak-
ing $200,000 is clearly a very risky proposition. However, when we consider Figure 9.18b,
the prospects of losing either $200,000 or $150,000 are both considered almost equally
bad outcomes by the risk seeking decision-maker. By defining zero in terms of time t0 in

z

x

y

(P)

(1 – P)

Time t1

Time t0

S

(Success)

(Failure)

(Discontinue)

FIGURE 9.17
Decisions involving a sunk cost S.

377Decision Analysis

Figure 9.18b instead of time t1 as in Figure 9.18a, we can change the decision-maker’s utility
function from risk averse to risk seeking.

This behavior is a form of entrapment in which a manager stays committed to his origi-
nal course of action long after it ceases to be justified by any rational analysis. There is a
strong psychological motivation to appear consistent in decisions made over time. People
often feel that they cannot abandon a course of action without admitting that their previ-
ous decisions were wrong. In 1968, Lockheed started development of the L-1011 Tristar
jumbo jet. At that time, they were predicting 10% annual increases in airline traffic. By
1971, actual increases were closer to 5%, and their expected sales were now well below
the projected break-even point. Lockheed needed federal guarantees for $250 million of
additional bank credit. (The banks did not consider Lockheed to be a good risk.) At the
subsequent congressional hearings, Lockheed and the Treasury Secretary proposed that
federal guarantees were in the national interest because it would be the height of folly to
abandon a project on which close to $1 billion had already been spent. The continuation of
the project was being justified on the basis of the sunk cost alone. In fact, the real question
was whether the expected future income would be worth the additional expenditure of
$250 million. The sunk cost argument is often used to explain many political decisions to
support an apparent lost cause.

9.5.7 Irrational Human Behavior

Reconsider the game show problem described earlier. The contestant was asked to pick
one of three doors and he chose door number 2. The host now opens door 3 to reveal a
consolation prize and asks the contestant if he would like to switch his selection from door
2 to door 1. What is the probability that the grand prize is behind door number 1? Many
people (and many actual contestants) believe that the probability has been reduced to a
50–50 proposition between the two remaining doors, and they will agonize over this new
decision, often sticking to their original choice.

In actual fact, they should always switch. The probability that the door initially selected,
door number 2, was the one that concealed the grand prize, was one third and it still is
one third. Whether or not the initial choice was correct, it is certain that at least one of the
other two doors contains a consolation prize. The host, who knows where the grand prize
is, simply verified the fact that one of the two doors was wrong, and he has not really
given any new probability information. The probability that the door initially selected
was the right door is still only one third, and therefore, the probability that door num-
ber 1 is correct must be two-thirds. Consequently, the contestant should always switch.
The reader who is still skeptical should try the experiment outlined in Exercise 9.1. As
has been stated already, people often feel that additional information must improve the

t0 t1

$0

$200,000(0.10)

(0.90)

$0

$50,000

$150,000

t0 t1

(0.90)

$0

–$200,000

–$150,000

(0.10)

(b)(a)

FIGURE 9.18
(a,b) Two views of the same sunk cost decision.

378 Operations Research

validity of their probability estimates. But, in fact, more information is not always helpful
to an irrational human decision-maker.

9.5.7.1 What Can We Do about Irrational Behavior?

 1. One of the most important tools for combating irrational behavior and biases is
through proper training. Simply making people aware of the biases described
earlier can improve their understanding of the decision process, and they can
avoid making some of the common mistakes.

 2. A decision simulator works on the same principle as the jet aircraft simulator for
training pilots. The decision-maker is presented with a large number of differ-
ent situations (one at a time) and asked to choose a course of action. The simula-
tor immediately gives him the consequences of his decisions and, if possible, the
results of the optimal decision. The cases used in the simulator can be actual his-
torical problems with known outcomes. (e.g., Lembersky and Chi [1986] describe
a computer simulator that helps decision-makers at Weyerhauser to decide more
effectively how trees should be cut in order to maximize profit.)

 3. A less-expensive form of training is feedback. Decision-makers will estimate
probabilities of various market parameters in predicting the success of a product,
but they seldom get any direct feedback on the quality of their intuition. If the
product is successful, they must be doing something right. By comparing their
original estimates with the actual results, it is possible to improve their future
prediction skills.

 4. Another method of reducing bias is by automatic correction procedures. For
example, when we must forecast future sales, we could use an expert and a sim-
ple linear regression model, and then split the difference between the two. The
assumption here is that the expert will have more information than the regression
model, but that the human has a tendency to overreact.

 5. A common approach to eliminating bias is to ask a number of redundant ques-
tions. In particular, we can reduce the effect of the zero illusion by rephrasing
the same question in several different ways with the zero shifted to make people
aware of the effect.

 6. We must recognize the limitations of the human decision-maker as well as the
strengths. Dawes (1982) compares human judgment with linear regression in a
variety of selection processes and concludes that the linear models are generally
superior to expert decision-makers. Human experts were often found to be much
better at gathering and encoding information than they were at integrating it and
using it effectively in decision-making.

9.6 Software for Decision Analysis

A large variety of software is available to support various aspects of decision-making. For
a comprehensive survey of decision support software, refer to Oleson (2016). A few repre-
sentative packages are mentioned here.

379Decision Analysis

SAS/OR offers decision making support that allows users to create, analyze, and inter-
actively modify decision tree models, incorporates utility functions and attitudes toward
risk, and identifies optimal decision strategies.

Oracle’s Crystal Ball and Crystal Ball Decision Optimizer provide advanced optimiza-
tion capabilities to support predictive modeling, forecasting, optimization and simulation,
with insights into critical factors affecting risk.

Palisade Corporation has acquired a reputation as a leading provider of fully integrated
and comprehensive risk analysis and decision analysis software known as the DecisionTool
Suite Risk and Decision Analysis software. The Suite includes a component called @RISK
for risk analysis and another component called Precision Tree that supports visual deci-
sion analysis by building decision trees. Precision Tree incorporates the decision maker’s
attitude toward risk by creating a risk profile that illustrates the payoff and risks associated
with different decision options, and also performs sensitivity analysis to track changes in
the expected value of the decision tree when values of variables are modified.

Analytica is a spreadsheet-based visual software environment for building, exploring,
and sharing quantitative decision models. It runs under Windows and has a web-based
implementation for collaborative decision making. It has a Monte Carlo simulation capa-
bility to handle uncertainty and risk. It has also an automatic optimizer to find the best
decisions. Decision trees can be developed and sensitivity analysis can be conducted.
Graphical representations such as tornado diagrams, influence diagrams, and decision
trees can be generated.

DPL has a family of decision analysis software packages that run under Windows, Mac
and online with various capabilities to quantify uncertainties and enumerate options
Influence diagrams, decision trees, tornado diagrams and rainbow diagrams can be
produced. It has Monte Carlo simulation, risk tolerance, utility functions, and graphical
sensitivity analysis capabilities. It has a component to compute the value of imperfect
information.

TreePlan is among the early packages for decision analysis, and specifically for develop-
ing decisions trees. It is now an Excel Add-in that can generate decision trees for analyzing
sequential decision problems under uncertainty and it runs under Windows and MacOS.
TreePlan creates formulas for summing cash flows to obtain outcome values and for calcu-
lating rollback values to determine the optimal strategy. Although it lacks many of the deci-
sion analysis features that other packages include, TreePlan is included in many textbooks
specifically for decision trees, which makes it quite well known among other packages.

Analytic solver platform is a suite of tools that are used for risk analysis, Monte Carlo
simulation, optimization, forecasting and data mining. It works with Excel and it can han-
dle uncertainty, risk tolerance, decision trees, and sensitivity analysis. It can also produce
tornado diagrams and decision trees.

9.7 Illustrative Applications

9.7.1 Decision Support System for Minimizing Costs in
the Maritime Industry (Diz et al. 2014)

International maritime transportation is responsible for shipping the majority of com-
mercial goods in world trade transport. Because crude oil and its derivatives account for
approximately one third of this total cargo, scheduling the global fleet of petroleum tanker

380 Operations Research

ships is a critically important component in managing the cost of this huge transportation
enterprise. The ship scheduling process involves allocating tankers from a given fleet to
a set of cargoes, with the aim of minimizing costs. Significant academic research efforts
over many years have resulted in the creation of new mathematical models, with details
adequate to represent realistic situations, and new algorithms to optimize the ship sched-
uling models. However, the system described in this section is somewhat unique in that it
is one of the few research studies which demonstrates a substantial and successful applica-
tion of such analytical tools to control costs in actual industry ship scheduling problems.

In this application, we will see both the details and the broad scope of a successful
decision support system. The development and implementation of this decision support
system encompasses the difficulty of collecting reliable and critical data, the use and
adaptation of powerful optimization techniques, the initial resistance of human experts
to accept new methodologies, and the eventual inclusion and integration of the new deci-
sion support system into traditional corporate processes. The use of this decision support
system provided a comprehensive approach for minimizing costs without compromising
the service level standards set by the company. Moreover, the implementation of the new
system also represents a turning point for this large corporation in the use of analytical
support tools which ultimately fostered stronger cooperation among engineers, research-
ers, and managers.

The large multinational energy company Petrobras is a prominent player in global
petroleum transport. Over a long period of time, Petrobras worked with a long-haul ship
scheduling system to handle both importing and exporting crude oil for Brazil through
numerous ports in five continents. In their system, the logistics department received
information about cargoes when they were acquired or traded, and this data were con-
stantly updated as cargoes were exchanged in open trade. The cargoes are defined by a
narrow range of standard volumes of approximately a million barrels. Export cargoes
must be loaded at ports on the Brazilian coast and transported to discharging ports
in various parts of the world. The complicated pattern of importation and exportation
involves transport both into and out of Brazil as dictated by Petrobras and customer sup-
ply demands.

The scheduling operation at this company assigns vessels to cargoes which are to be
loaded, transported, and discharged. The size of the cargoes is consistent with the capac-
ity of the Suez Max class of ships in their fleet. The assignment is subject to commercially
negotiated time frames and operational constraints at ports and underway, and aims to
minimize overall transportation costs. Petrobras maintains a fleet consisting of long-term
chartered ships. For economic reasons, the capacity of this semi-permanent fleet is less
than what is usually required for transporting all the cargoes. It is therefore routinely
necessary to engage extra vessels on a per voyage charter basis in order to meet immediate
demands for moving cargoes.

The scheduling process in use was practical, being based on the expertise gained
through experience. For example, one heuristic rule used by the schedulers was to attempt
to avoid idle time of long-term chartered ships; another strategy tried where possible to
assure that a ship underway is loaded with cargo so that ships are used efficiently and not
traveling empty unless necessary. The schedulers manually chose what they considered to
be efficient routes. However, the methods employed merely generated several alternative
feasible schedules, from which a few could be manually compared and selected based on
low cost. The process did not produce an optimal minimum cost schedule.

Because of the very high and increasing costs anticipated in the maritime transport
industry, the company undertook a thorough study of its long haul shipping operations

381Decision Analysis

for the transportation of crude oil. Until 2012, skilled and experienced schedulers manu-
ally carried out the ship scheduling processes, but the company hoped that a careful study
would reveal cost savings that could be achieved by an automated decision support system
(DSS) that would largely take over the scheduling process, and that would also evaluate
and report the actual economic advantage of implementing the improved scheduler.

The study resulted in the creation of a DSS that provides a minimum cost schedule for
transporting a set of cargoes on a given fleet of ships. The new system systematically veri-
fies and confirms or updates all the original input data pertinent to a schedule, such as
operational costs, unexpected restrictions, changes in vessel speed or capabilities, port cir-
cumstances, distances, freight rates, vessel availability and location, and cargo character-
istics. Once the DSS determines a minimum cost schedule, any of the earlier unexpected
changes can occur, and must be incorporated to produce a new feasible schedule.

The DSS operates as follows. First, an algorithm is applied to generate a complete set
of feasible schedules based on the most recently updated cargo, fleet, and port data. The
method used for this is to generate all possible routes for the cargoes that adhere to the
specified loading and unloading times in port; then to match each route to a time char-
tered vessel, adding voyage chartered ships if needed. A cost is then computed for each
route to vessel assignment; that is, the total cost for each voyage (which includes ship oper-
ating cost, port taxes and fees, and current market freight rates). Next, the DSS uses the
previous set of voyages and costs as input parameters for an integer programming model,
formulated to minimize the overall cost for the entire fleet. An efficient commercial solver
based on the AIMMS optimization platform with CPLEX is then used to solve the integer
programming problem, thus yielding the minimum cost fleet schedule.

The integer programming model in this case was a straightforward formulation, using
binary decision variables to denote whether vessel v is assigned to route r; and other
binary decision variables to flag an idle vessel or a cargo that will have to be assigned to a
voyage charter vessel and thus not assigned to any time-chartered ship.

The DSS was thoroughly tested, then fully implemented, with positive outcomes
including an average 7.5% savings representing hundreds of millions of dollars in costs.
Furthermore, the new system solved more complex and complete problem models, and
did so within measured computation times of approximately five seconds. With this new
DSS, the importance of acquiring accurate data and the ability to deal with unforesee-
able restrictions, mechanical degradations and weather conditions were recognized as
being critical. In this respect, a key factor was the interaction between the user and the
system that included the skillful and experienced manual schedulers to handle changes
that could not always be dealt with during execution of the DSS. This interaction cre-
ated a healthy environment of cooperation and promoted acceptance of the new system
by Petrobras employees. The schedulers had, through experience, acquired a rich under-
standing of many subjective aspects of ship scheduling. Their ability and willingness to
integrate their knowledge in dealing with last minute changes in the scheduling environ-
ment contributed significantly to the successful implementation of the DSS and to contin-
ued improvements in the economics of marine transportation.

9.7.2 Refinery Pricing under Uncertainty (Keefer 1995)

During the 1980s, when crude oil prices were fluctuating dramatically and refining over-
capacity made the profitability of operating refineries unpredictable, an oil company
shut down a large overseas refinery. Management’s opinion of how best to dispose of
this non-performing investment varied considerably: some thought it would not even be

382 Operations Research

possible to give away a shut down refinery, while others hoped to sell the defunct facility
for a substantial sum.

For purposes of price negotiations, management needed to develop some idea of what
the refinery would be worth to a variety of types of potential buyers. Because the current
owner had been unable to operate this refinery profitably (nor did it foresee being able
to do so in the near future), presumably a likely buyer would not be a company just like
the current owner. Instead of the buyer being a major international oil company, it was
expected that the buyer would be a small, well-capitalized company, perhaps a newcomer
to the industry, in the business of trading, refining, or marketing oil, and which would
take a short term, entrepreneurial approach to using this refinery.

In the process of determining how to price the refinery for sale, the decision analyst
drafted four operating scenarios describing how each of four categories of potential buyers
could use the refinery profitably:

 1. In the first scenario, the new owner would not actually operate as a refinery, but
would instead use the facilities as a terminal, berthing ships, storing and trans-
shipping crude oil, storing and blending certain products, and selling to local
customers.

 2. The second scenario consists of all the aforementioned activities plus operating
the refinery itself opportunistically during periods of advantageous refining mar-
gins. (This posed some problems because positive refining margins in the near
term were possible but very unpredictable.)

 3. In a third scenario, the operation of the facilities as in the first scenario would be
supplemented by refining under a so-called netback agreement with a crude oil
producer. Under such an arrangement, the refinery agrees to buy and refine crude
oil, at an agreed-upon steady supply rate for a prespecified refining margin. The
predictability of throughput arising from this scenario is of considerable value,
but this advantage is offset by the uncertainty of what netback margin could be
negotiated with a crude oil producing country.

 4. The fourth scenario is a combination of the first three: use of facilities for storing,
transshipping, blending, a netback agreement to support a steady refining opera-
tion, and stepped-up refining activity during periods of positive refining margins.

The current owner of the refinery had traditionally analyzed and evaluated uncertain-
ties using deterministic methods to calculate net present value, then applying sensitivity
analysis. This simple approach turned out to be inadequate for pricing the refinery. Net
present value (NPV) calculations were based on large and uncertain ranges for parameters
such as margins and throughputs. These estimates led to discrepancies in NPVs that fluc-
tuated too widely (over hundreds of millions of dollars) to give management much insight
into how to price the refinery for purposes of negotiating a sale.

Rather than a deterministic model that allowed small changes in parameters, the analyst
chose to utilize decision analysis techniques, treating the heretofore unwieldy parameters
as random variables and basing much of the uncertain data on judgmental probability
assessments.

The expected NPV was calculated using a decision structure known as a probability tree.
This differs from a conventional decision tree in that the branches in the tree do not repre-
sent a timeline of sequentially made decisions in response to specific uncertainties. There
are no decision nodes per se; rather, the branches associated with uncertainties denote the

383Decision Analysis

possible outcomes of the uncertainties. Working from the extremities of the tree back to
the root of the tree, the probability-weighted average NPV was simple to calculate, and the
entire model and computational process were easily understood by management.

Calculations for the fourth scenario showed the highest expected value of $53 million,
while lower expectations were associated with all the other scenarios (as low as $23 mil-
lion for the first scenario). The analyst’s recommendation to management that it would be
reasonable for certain prospective buyers to pay in the range of $23 million to $53 million
for the shut down refinery constituted a hopeful alternative to the sad prospect of having
trouble giving it away. As a result, a decision was made to wait for a reasonable offer, and
indeed, a sale was eventually made for a price in excess of $50 million.

9.7.3 Decisions for Radioactive Waste Management (Perdue and Kumar 1999)

High-level radioactive waste resulting from spent nuclear fuel is sometimes dealt with by
encapsulating the waste in glass, using a process known as vitrification. But just how much
nuclear waste cleanup is necessary, desirable, and cost-effective. Determining the appro-
priate extent of this technologically difficult undertaking has proven to be quite a complex
decision process. In a joint effort of the U.S. Department of Energy, the New York State
Energy Research and Development Authority, and Westinghouse Electric Company, deci-
sion analysis techniques have been used to help analyze how this cleanup process should
be properly accomplished.

The contaminated waste is contained in underground tanks. Waste is removed from the
tanks, sealed in glass containers, and the tanks cleaned and rinsed. This process is repeated
until the tanks are no longer classified as high-level radioactive waste, but the declassification
criterion is not perfectly defined and includes safety issues, and technical capabilities, as
well as social and economic considerations. Decision analysis tools were used to study
alternative clean up processes based on expected monetary benefits and societal costs.

The different cleanup regimens studied range from one extreme in which only currently
used technologies are employed, to the other extreme which assumes availability of all
technologies under development. For each scenario, numerous levels of waste removal
are considered, ranging up to 99.9% cleanup of the known initial radioactivity measured.

For each combination of technology and radiation removal level, the analysts develop
projections of benefits and costs. Societal benefits are quantified by estimating the mon-
etary value of an avoided radiation dose plus the value of not having to undertake con-
struction of additional containers. Costs include operating expenses for the vitrification
process, tank cleanup, and technology deployment. The decision model includes a time
factor that addresses the time it takes to clean a tank, which would be important in case
key equipment failures caused interruptions or delays at critical times during the cleaning
process.

Sensitivity analysis was applied to determine the robustness of the projections and to
reveal just which of several uncertainties are the ones that most critically affect the esti-
mated outcomes. Results of this study are being examined by the U.S. Nuclear Regulatory
Commission as it works toward establishing standards and requirements for nuclear
waste management.

9.7.4 Investment Decisions and Risk in Petroleum Exploration (Walls et al. 1995)

The exploration division of Phillips Petroleum Company must routinely evaluate a broad
range of exploration investments, determine an appropriate level of participation in each

384 Operations Research

project available to the firm, and select the most advantageous mix of investments con-
sistent with the division’s budget. Petroleum exploration is an industry characterized by
financial risk and uncertainty. There are often investment opportunities with high prob-
abilities of small losses, and others with small probabilities of ruinous losses, not reflected
in expected values. The expected value concept that had guided Phillips investment deci-
sions in the past did not adequately address how sensitive managers are to exposure to
the chance of substantial capital losses. There is a general perception in the petroleum
industry that this exposure can be dealt with by entering into smaller capital allocations
in more different projects, thereby spreading the risk. Yet Phillips Exploration had no formal
way to quantify the value of such diversification. Their methods for controlling risk were
often informal, and based strongly on the intuition of individual managers.

Attitudes toward risk interfered with traditional decision-making processes because
managers at Phillips needed to look beyond expected values and consider downside risks
as an integral up-front part of the investment picture. Management had evidently never
realized how strongly risk averse they were (and in fact needed to be), and how poorly
their decision-making framework had supported this position on risk.

A software package was developed to assist management in the process of deciding how
to allocate investment capital across a set of possible exploration projects. Using some of the
standard tools of decision analysis, this software not only provided a means of organizing
the data associated with each investment opportunity, but it also offered a way of incorpo-
rating the company’s attitudes toward risk and allowing decisions to reflect these attitudes.

The new decision software package met several of the company’s needs. One require-
ment was to have a relatively consistent measure of risk to be used over the entire range
of investment alternatives. Management needed to be able to compare the risk and upside
potential of two projects; for example, one with an unlikely but large payoff versus one
with a highly probable lower payoff, both of which may have equal expected values. The
methodology incorporated into the software package facilitated this comparison between
alternatives.

The package also allowed Phillips Exploration division to determine the optimal level
of participation in each of many diverse projects having a desirable mix of risk character-
istics. There are typically more investment opportunities than can be afforded with the
scarce investment capital available; so rather than merely choosing projects to invest in, the
company must also allocate and balance its investment capital.

In the exploration business, a prospect is a geological structure thought (or known) to
contain petroleum potential, and a play is a collection of geologically similar prospects
located in the same geographic locale. The decision software package assumes probabilis-
tic independence among individual projects. But because prospects within the same play
have, by definition, similar physical characteristics, they may not be independent at all. To
deal with this interdependence, the package allows users to specify whether they wish to
evaluate investment projects on a prospect basis or on a play basis.

Each new investment opportunity presents new alternatives to consider. And over time,
there emerge decision patterns of which no one is really consciously aware. The decision
support package measures the firm’s risk tolerance by reviewing past decisions and encod-
ing this information as a utility function. In so doing, the package thus captures the user’s
subjective (and perhaps unrecognized) perceptions about probabilities and risks associ-
ated with specific exploration outcomes. By creating a historical risk personality for the
decision-maker, the system provides an integrated capability for ensuring a consistent risk
attitude in evaluating and ranking projects for capital investment and determining partici-
pation levels in different prospects or plays that are consistent with attitudes toward risk.

385Decision Analysis

This software package does not require the user to have any specialized technical
knowledge of decision analysis, risk profiles, or utility theory. Instead, the user selects
from several input formats and enters available data; then the software interprets the input
and constructs a decision tree.

User reaction to this decision support system has been mixed. Management has dis-
played some initial reluctance to accept the utility functions generated by the software.
And although the users acknowledge that they are not risk-neutral, there remains some
hesitation on their part to quantify their risk aversion. Nevertheless, the use of this tool
has raised awareness of the issues of risk tolerance and the importance of its role in capital
investment allocation. Phillips has used this package to support companywide analysis
of all exploration projects. This same software is also used by several other petroleum
exploration firms, both to assist with small-scale individual decision-making and for com-
prehensive organizational decisions.

9.8 Summary

Decision analysis involves aspects of both mathematics and psychology. Because of the
uncertainty that often surrounds decision-making, it is important to analyze the deci-
sion process as objectively as possible, and yet to realize the important role played by the
human psyche.

Human attitudes toward risk and uncertainty often interfere with rational decision-
making. Strategies in game theory help to identify and explain these attitudes, and several
principles have been proposed that attempt to characterize human perspectives on risk.
Utility theory gives us a mechanism for quantifying human attitudes toward risk.

Decision trees provide a framework for representing sequential decisions in which there
is a response or some type of feedback at every stage in the decision process. Through the
use of probabilistic information, optimal strategies can be identified and evaluated, using
such measures as expected monetary value.

Decision-makers are prone to a variety of misconceptions and idiosyncratic behavior
that can severely limit their ability to make rational choices. The availability of informa-
tion can influence people in surprising ways. People are often unwilling to modify their
decisions even when additional relevant information or evidence becomes available to
them; or they may feel trapped by earlier decisions. Proper training and education can
often help analysts develop an awareness of the psychological difficulties associated with
decisions. Such an awareness, along with an understanding of the quantitative methods
that are available to facilitate decision-making, can encourage and foster more rational
approaches toward dealing with decisions.

Key Terms

Allais Paradox
adjustment
anchoring

386 Operations Research

automatic correction
availability
Bayes rule
certain monetary equivalent
chance fork
decision fork
decision simulator
decision strategy
decision tree
decision variables
dissonance
dissonance reduction
dominance
dominate
entrapment
expected monetary value
expected value of perfect information
feedback
folding back
framing effect
gambler’s fallacy
gate
Hurwicz measure
Hurwicz principle
Laplace principle
lottery
maximax strategy
maximin strategy
outcomes
payoff matrix
payoffs
preference function
principle of insufficient reason
redundant questions
risk averse
risk seeking
row linearity
Savage Minimax regret
state variables
states of nature
sunk cost fallacy
toll
utility curve
utility function
utility theory

387Decision Analysis

Exercises

9.1 Imagine that you are the contestant in the game show described in Section 9.5.1,
choosing a door in hopes of getting the grand prize. If you were allowed to repeat
the game 30 times, you would expect to pick the right door 10 times. And if you
always switch when given the option, you should be right 20 times. Write a com-
puter program to simulate this process.

9.2 An enterprising computer science student plans to provide computing services
for clients, and is considering several alternatives. He can work all the problems
given him by hand, which will cost him nothing; but he estimates his income in
this case will only be $20,000 annually. He can buy an unknown brand desktop
computer for $2,500. There is a 90% probability that this machine will be soft-
ware compatible as advertised, but there is a 10% chance that our entrepreneur
will have to spend $6,000 on software modifications to achieve a working sys-
tem. In any case, he figures his income with this machine will be $100,000. His
third alternative is to purchase a famous brand workstation computer that is
certain to run the necessary software, and this system will cost $3,600 to pur-
chase. With this system, he gets a maintenance contract but there is a 70% prob-
ability that hardware modifications and repairs will still cost him $1,000. His
projected income from this system is $120,000. Draw a decision tree, and deter-
mine the course of action that yields the greatest expected net income for the
entrepreneur.

9.3 A marketing strategist at the Complete Feet Shoe Company must decide whether
to introduce a new product. At most, one type of new product will be introduced,
either:
Product A (shearling lined vinyl thongs).
Product B (velcro closure ankle mufflers).
Product C (truck tread knee-highs).

 If no new product is introduced, the company’s public relations officer figures that
the damage to the company’s image as a dependable supplier of trendy footwear
can be estimated at a value of $100,000. The cost of advertising any new product
will be $150,000. Analysts predict the following probabilities of sales:

Product Probability Sales

A 0.80
0.10
0.10

$180,000
$40,000
$20,000

B 0.50
0.50

$100,000
$200,000

C 0.60
0.40

$120.000
$100,000

388 Operations Research

 If product A is introduced, there is a 50–50 chance that the Save-the-Sheep Society
will launch a smear campaign that will cause damages of $60,000 to the shoe com-
pany. If product B is introduced, there is a 50–50 chance that the inventor of velcro
will sue the shoe company for misapplication of technology and such a lawsuit would
cost the company $50,000. If product C is introduced, nobody will likely object.
Draw the decision tree to display all of these options and the expected effects.
Indicate what course of action should be recommended by the marketing strategist
on the basis of the information given here, and state the expected loss or gain for
your recommendation.

9.4 A long range planning committee is considering proposing that a new building be
built on the campus of a university. The construction cost for the new building will
be $30,000,000. If the new building is built, there is a 25% probability that publicity
associated with the new facility will cause increased enrollment, which will result
in $2,500,000 in revenues for the university. If the new building is not built, there
is a 75% probability that some students will choose to attend another university,
resulting in $10,000,000 in lost revenues. Even if there is no loss in enrollment, the
overcrowded conditions will be such that there is a 50% chance of faculty rebellion,
which can be quieted only by increased employee benefits, costing the university
$2,000,000. Draw the decision tree to display all these options and the expected
effects. Indicate what course of action should be taken, and state the expected loss
or gain from this decision.

9.5 Recall from Section 9.5.1 the experiment involving selecting colored marbles
from a large opaque jar. Both subjects conclude, based on different experiences
drawing marbles from their jar, that two-thirds of the marbles in their jar are red.
Prove, in both cases, just what is the probability that two-thirds of the marbles
are red.

9.6 Suppose that your Operations Research mid-term exam will consist of one ques-
tion worth 10 points, and you have only three hours to study for it. You are told
that the instructor will pick the question from one of three possible topics: deci-
sion trees (D), utility theory (U), or game theory (G). If you spend your three
hours studying one topic, and that question occurs on the exam, you will prob-
ably get 10 out of 10 points. For two hours studying, you expect to get 8; for one
hour, you would get 5; and if you do not study the correct topic at all, you will
get 2 points. By taking a quick look at past exams, you discover the following
frequency of each topic:

Topic Number of Times

Decision trees (D) 8
Utility theory (U) 7
Game theory (G) 5

 a. Use decision tree analysis to determine your best study strategy. How many
hours should you spend on each topic, and what is your expected grade on the
exam?

389Decision Analysis

 b. Your friend Steve says he has inside information that he will sell to you for $5.
Steve’s hot tips have not been very accurate in the past and you estimate the
conditional probability of his information being correct as follows:

Given: Actual Question

D U G

Steve D 0.8 0.2 0.3
says U 0.1 0.7 0.2
 G 0.1 0.1 0.5

 You decide that you need the points, so you pay him and he tells you that the
exam question will be a game theory question. How does this influence your
study strategy and what is your new expected grade on the exam?

 c. Suppose that you find the idea of failing your exam particularly unattractive,
so you decide to do an analysis of your utility for points:

 i. You would consider a grade of 5 to be the same as a 50–50 chance between
getting 2 or 10.

 ii. You are indifferent between a grade of 4 for certain and a 50–50 chance of
either 2 or 5.

 iii. You are indifferent between a grade of 7 for sure and a 50–50 chance of
either 5 or 10.

 Based on this information, how would you reevaluate your decision in part (a)?
Forgetting about Steve for now; what is your optimal strategy and what is your
expected utility?

9.7 Suppose that you are in the position of having to buy a used car, and you have
narrowed down your choices to two possible models: one car is a private sale
and the other is from a dealer. You must now choose between them. The cars
are similar, and the only criterion is to minimize expected cost. The dealer car is
more expensive but it comes with a one year warranty. You decide that if the car
will last for one year, you can sell it again and recover a large part of your invest-
ment. If it falls apart, it will not be worth fixing. After test driving both cars and
checking for obvious flaws, you make the following evaluation of probable resale
value:

Car
Purchase

Price
Probability of

Lasting One Year
Estimated

Resale Price

A: Private $800 0.3 $600
B: Dealer $1,500 0.9 $1,000

 Which car would you buy? What is the value of perfect information?
 Suppose you have the opportunity to take car A to an independent mechanic, who

will charge you $50 to do a complete inspection and offer you an opinion as to

390 Operations Research

whether the car will last one year. For various subjective reasons, you assign the
following probabilities to the accuracy of the mechanic’s opinion:

The Mechanic Will Say:

Given: Yes No

A car that will last one year 70% 30%
A car that will not last one year 10% 90%

 Assuming that you must buy one of these two cars, formulate this problem as a
decision tree problem. What is the true value of the mechanic’s advice? Is it worth
asking for the mechanic’s opinion? What is your optimal decision strategy? (Note:
It is not necessary to ask for advice on car B because its problems could be repaired
under the warranty.)

9.8 Give two examples of the framing effect.
9.9 Consider the following payoff matrix:

Actions

States a1 a2 a3 a4 a5 a6

ϴ1 2 6 4 4 5 7

ϴ2 8 2 5 2 4 2

ϴ3 0 5 2 4 3 3

ϴ4 3 5 2 5 3 2

 a. Suppose that the decision-maker claims complete ignorance of the probabilities
of occurrence of the four states. Can any alternatives be eliminated? What is
the optimal action under each of the strategies: Laplace, Maximin, Maximax,
Savage Minimax regret? What types of decision-makers should use each of
these strategies?

 b. Under the Hurwicz principle, the decision-maker is assumed to have some level
of optimism α between 0 and 1. Characterize the optimal decision for the range
of all possible values of α. At what values of α does the optimal solution change?

9.10 The product manager of a large firm is faced with the decision of whether to pro-
ceed with a national marketing campaign for a new product. The monetary return
from sales generated by the campaign will depend on prevailing market condi-
tions. The manager believes there is a 40% chance of good market conditions and a
60% chance of bad conditions. The monetary returns (in thousands of dollars) for
each condition are summarized in the following:

Good Conditions Bad Conditions

Market $800 –$400
Do nothing $0 $0

391Decision Analysis

 The manager may decide to purchase the services of a marketing firm that will
do a survey for $75,000. The firm claims that their results are 75% reliable. (That is,
when conditions are good, they correctly identify it 75% of the time, and similarly
for bad conditions.)

 a. The manager must decide whether to accept the survey and whether to pro-
ceed with national marketing. Construct the corresponding decision tree and
compute the optimal strategy and expected payoff.

 b. What is the expected value of perfect information for this problem? How do you
interpret this value?

9.11 Consider the following apparent paradox.
 a. The average person is risk averse at all levels of money.
 b. The average person will insure his house for $5 per week, which is risk averse

because the insurance company is making a profit.
 c. The average person may buy a lottery ticket for $5 per week, which is a gamble.
 If we let X be the insured value of the house and Y be the prize in the lottery, then

the two situations can be described as shown in Figure 9.19. Let p and q denote
the small probabilities of losing the house and winning the lottery, respectively.
The outcomes depicted are expressed in terms of net change to assets in a given
week. Is this normal or average person irrational? Can this behavior be described by
a reasonable utility function? Discuss the possible motivations or perspectives of
this person.

−$5.00

−$X

$0.00

Buy

Don’t
buy

p

(1 – p)

Insurance

$0.00

$(Y–5.00)

−$5.00

Play

Don’t
play

q

(1 − q)

Lottery

FIGURE 9.19
Apparent paradox.

392 Operations Research

References and Suggested Readings

Allais, M. 1953. Le comportement de l’homme rationnel devant le risque; critique des postulats et
axiomes de l’école americaine. Econometrica 21: 503–546.

Arkes, H. R., and C. Blumer. 1985. The psychology of sunk cost. Organizational Behavior and Human
Decision Processes 35 (1): 124–140.

Bunn, D. W. 1984. Applied Decision Analysis. New York: McGraw-Hill.
Byrnes, W. G. 1973. Decision Strategies and New Ventures: Modern Tools for Top Management. London,

UK: George, Allen and Unwin Ltd.
Clemen, R., and T. Reilly. 1996. Making Hard Decisions: An Introduction to Decision Analysis, 2nd ed.

Pacific Grove, CA: Duxbury Press.
Corner, J. L., and C. W. Kirkwood. 1991. Decision analysis applications in the operations research

literature. Operations Research 39 (2): 206–218.
Davis, M. 1983. Game Theory: An Introduction. New York: Basic Books.
Davis, M. 1986. The Art of Decision-Making. New York: Springer-Verlag.
Dawes, R. M. 1982. The robust beauty of improper linear models in decision-making. In D. Kahneman,

P. Slovic, and A. Tversky (Eds.), Judgement Under Uncertainty: Heuristics and Biases. Cambridge,
UK: Cambridge University Press.

Diz, G., L. F. Scavarda, R. Rocha, and S. Hamacher. 2014. Decision support system for Petrobras ship
scheduling. Interfaces 44 (6): 555–566.

Eapen, G. 2009. Decision Options: The Art and Science of Making Decisions. Boca Raton, FL: CRC Press.
Eden, C., and J. Harris. 1975. Management Decisions and Decision Analysis. New York: John Wiley &

Sons.
Ehrgott, M. (Ed.). 1999. Decision-Making Using Optimization Software. Aachen, Germany: Shaker

Verlag.
House, W. C. 1983. Decision Support Systems: A Data-based, Model-Oriented, User-Developed Discipline.

New York: Petrocelli Books.
Howard, R. A. 1988. Decision analysis: Practice and promise. Management Science 34 (6): 679–695.
Ignizio, J. P., and J. N. D. Gupta. 1975. Operations Research in Decision-Making. New York: Crane,

Russak and Company.
Kahneman, D. 2013. Thinking, Fast and Slow. Toronto, Canada: Anchor.
Kahneman, D., and A. Tversky. 1979. Prospect theory: An analysis of decision under risk. Econometrica

47 (2): 263–291.
Keefer, D. L. 1995. Facilities evaluation under uncertainty: Pricing a refinery. Interfaces 25 (6): 57–66.
Keen, P. G. W., and M. S. S. Morton. 1978. Decision Support Systems: An Organizational Perspective.

Reading, MA: Addison-Wesley.
Keeney, R. L., and H. Raiffa. 1976. Decisions with Multiple Objectives: Preferences and Value Tradeoffs.

New York: John Wiley & Sons.
Lembersky, M. L., and U. H. Chi. 1986. Weyerhauser decision simulator improves timber profits.

Interfaces 16 (1): 6–15.
Marakas, G. M. 1999. Decision Support Systems in the Twenty First Century. Upper Saddle River, NJ:

Prentice-Hall.
Maxwell, D. T. 2006. Software survey: Decision analysis. OR/MS Today 33 (6): 51–61.
Mendelson, E. 2005. Introducing Game Theory and Its Applications. Boca Raton, FL: Chapman and

Hall/CRC Press.
Merkhofer, M. W. 1987. Quantifying judgmental uncertainty: Methodology, experiences, and

insights. IEEE Transactions on Systems, Man, and Cybernetics SMC-17 (5): 741–752.
Meyerson, R. 1991. Game Theory: Analysis of Conflict. Cambridge, MA: Harvard University Press.
O’Keefe, R. M., and T. McEachern. 1998. Web-based customer decision support systems.

Communications ACM 41 (3): 71–78.
Oleson, S. 2016. Decision analysis software survey. OR/MS Today 43 (5): 36–45.

393Decision Analysis

Ozcan, Y. A. 2017. Analytics and Decision Support in Health Care Operations Management. 3rd ed. San
Fransico, CA: Wiley.

Perdue, R. K., and S. Kumar. 1999. Decision analysis of high-level radioactive waste clean-up end
points at the West Valley Demonstration Project waste tank farm. Interfaces 29 (4): 96–98.

Pratt, J., H. Raiffa, and R. Schlaiffer. 1965. Introduction to Statistical Decision Theory. New York:
McGraw-Hill.

Raiffa, H. 1968. Decision Analysis: Introductory Lectures on Choices under Uncertainty. Reading, MA:
Addison-Wesley.

Saaty, T. L. 1980. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. New
York: McGraw-Hill.

Saaty, T. L. 1994. Fundamentals of Decision Making. Pittsburgh, PA: RWS Publications.
Sauter, V. L. 1997. Decision Support Systems. New York: John Wiley & Sons.
Sauter, V. L. 1999. Intuitive decision-making. Communications ACM 42 (6): 109–115.
Sharda, R., and D. M. Steiger. 1996. Inductive model analysis systems: Enhancing model analysis in

decision support systems. Information Systems Research 7 (3): 328–341.
Smith, J. E., and R. L. Winkler. 2006. The optimizer’s curse: Skepticism and post-decision surprise in

decision analysis. Management Science 52 (3): 311–322.
Tversky, A., and D. Kahneman. 1982. Judgment under Uncertainty: Heuristics and Biases. Cambridge,

UK: Cambridge University Press.
Von Furstenberg, G. M. (Ed.). 1990. Acting under Uncertainty: Multidisciplinary Conceptions. Hingham,

MA: Kluwer Academic.
Wagner, H. M. 1969. Principles of Operations Research with Applications to Managerial Decisions.

Englewood Cliffs, NJ: Prentice-Hall.
Walls, M. R., G. T. Morahan, and J. S. Dyer. 1995. Decision analysis of exploration opportunities in

the onshore U.S. at Phillips Petroleum Company. Interfaces 25 (6): 39–56.
Webb, J. N. 2007. Game Theory: Decision, Interaction, and Evolution. New York: Springer.
Winkler, R. L. 1990. Decision modeling and rational choice: AHP and utility theory. Management

Science 36 (3): 247–248.
Winterfeldt, D., and W. Edwards. 1986. Decision Analysis and Behavioral Research. Cambridge, UK:

Cambridge Press.

http://taylorandfrancis.com

395

10
Heuristic and Metaheuristic Techniques
for Optimization

Combinatorial optimization involves determining how best to arrange (or group, sequence,
or assign) the controllable elements in large complex systems to achieve a specified objec-
tive or goal. Combinatorial optimization models have been used to describe problems as
diverse as vehicle routing, workforce scheduling, manufacturing plant layout, portfolio
selection, production scheduling, supply chain problems, aircraft scheduling, computer
CPU job scheduling among many others. Combinatorial problems are ubiquitous, aris-
ing commonly in engineering, financial, industrial, computing, and social and human
services applications.

Many combinatorial optimization problems are remarkably simple to state and intui-
tively easy to understand, requiring little mathematical sophistication. As an example,
there is a famous problem popularly known as the knapsack problem in which a hiker
considers which of n objects to pack into a knapsack. Each object has a weight and a value.
The goal is to select a subset of the objects that have the greatest combined value and
whose total weight does not exceed the capacity of the knapsack.

The knapsack model could be applied to as obvious a problem as packing suitcases for
a trip without exceeding the baggage weight limitations imposed by airline regulations.
Or the model could be used to select experiments and instrumentation packages to
include in a deep space probe. Each candidate package has a potential value (technical
payoff or social merit), but each package also requires certain resources such as electric-
ity, cooling, oxygen for the mice, carbon dioxide for the soybean sprouts, space (volume)
needs, weight, or waste disposal. For these requirements, one might imagine a multidimen-
sional knapsack capacity which can supply only a limited amount of each of the resources
(electricity, air, heat dissipation, space, and weight).

The simple knapsack problem can be formulated using n decision variables, xi, where
xi = 1 if object i is to be included in the knapsack and xi = 0 if not. Knapsack capacity is
denoted as c. For each object, there is an associated weight wi and a value vi. Then, to
select the most valuable feasible subset of objects, it is necessary to find the values of the
variables to

maximize v x

subject to w x c

i i

i 1

n

i i

i 1

n

=

=

∑

∑ <

x 1 or 0i =

396 Operations Research

Another famous combinatorial optimization problem, known as the traveling salesman
problem, seeks to find the least costly route for a salesman who must visit n cities each
exactly once, returning finally to his city of origin. Assume that the distances between
cities are recorded in an n × n matrix D, where dij is the distance (or cost) to travel from
city i to city j. Let decision variables xij = 1 if the route contains the road from i to j, and
xij = 0 if not. If the salesman enters and leaves every city exactly once, it appears that his
tour would be a feasible one, and the optimal tour can be determined by finding values of
the variables to:

minimize d x

subject to x 1 for every j,

ij ij

j 1

n

i 1

n

ij

==
∑∑

= salesman enters city j exactly once

x

i 1

n

=
∑

iij

j 1

n

for every i, salesman leaves city i exactly once=
=
∑ 1

xx 1 or 0ij =

At first glance, this familiar formulation (which is precisely that of the assignment problem
discussed in Section 3.3.2) might tempt us to try to solve the traveling salesman problem
using the Hungarian method for the assignment problem. Indeed, if the solution found by
the Hungarian method really were a feasible tour, then it would be an optimal tour for the
salesman. However, the solution obtained in this way may fail to represent the kind of tour
needed by the salesman, although he enters and leaves each city exactly once. For example,
suppose the salesman begins at city 1, and must visit cities 2, 3, and 4 in any order, and
finally return to city 1. Then, all of the following tours are feasible:

1 2 3 4 1

1 2 4 3 1

1 3 2 4 1

1

- - - -

- - - -

- - - -

-

3 4 2 1

1 4 2 3 1

1 4 3 2 1

- - -

- - - -

- - - -

However, notice that the constraints written in the previous formulation would permit
decision variable values that describe not only those six feasible tours but also sub-tours
(round trips that do not visit every city) such as:

1 2 1 and 3 4 3

1 3 1 and 4 2 4

1 4 1 and 2 3 2

- - - -

- - - -

- - - -

397Heuristic and Metaheuristic Techniques for Optimization

These latter solutions do not meet the salesman’s requirements. Thus, the Hungarian
Method cannot be relied upon to yield feasible traveling salesman problem solutions;
additional constraints must be imposed in our formulation so that subtours are excluded.

As simple and easy to understand as these two famous combinatorial problems are, it
is surprising that no efficient algorithms have been developed that are guaranteed to find
optimal feasible solutions. In fact, both the hard problem and the traveling salesman prob-
lem belong to the set of NP-hard problems, and in that set, they are in good company with
hundreds of other important practical problems.

For many practical problems in science, engineering, and management, the only way
to be sure of finding an optimal solution is to search completely through the whole set of
possible solutions. If there are infinitely many possible solutions, we know right away that
this approach is unsatisfactory. But if there is a very large but finite number of possible
solutions, the idea of a complete search is tempting, and often is quite easy to express as
an algorithm and to implement in software. The difficulty is of course that the time required
to carry out such an exhaustive search is, although finite, far greater than most mortals
can afford. (Look again at Table 1.1 in Chapter 1 to be reminded just how many centuries
such a computation might take. Clearly, technological advances, such as increasing CPU
chip speed by several orders of magnitude, do not provide adequate computational tools
against these formidable computational demands.)

The question then is to try to find short cuts that will allow us to organize the search
process so that it is no longer a complete search over all possible solutions, but rather it
becomes an affordable search that is likely to discover a good, or near-optimal, solution.
Such methods are called heuristic methods. They are most often applied to the computa-
tionally intractable NP problems, simply because otherwise the best (most efficient) meth-
ods we know of for solving these problems exactly (or optimally) can take an exponential
amount of computation time. Heuristic methods are usually rather problem specific, and
often are based on simple common-sense ideas inspired by, or tailored to, the type of prob-
lem being solved. They are, however, vulnerable to falling into local optima (i.e., subopti-
mal solutions). As a result, metaheuristics emerged as more intelligent search techniques
that can help heuristics escape such solutions. This chapter examines some heuristic and
metaheuristic methods that are currently popular, effective, and practical.

10.1 Greedy Heuristics

Greedy heuristics are probably the simplest type of heuristics in which a partial solution
is constructed step by step towards a complete solution based on basic known informa-
tion of a problem instance. This can be accomplished by adding elements based on certain
attribute(s) and in some cases based on the best contribution an element makes to the
objective function at the point at which the element is selected. They also must make sure
that the constraints on the problems are not violated. In their most basic form, greedy
heuristics do not account for long term consequences of the decision made, but they rather
consider the immediate impact in the short term; hence the term used is greedy.

As an example, consider again the traveling salesman problem discussed earlier. A greedy
way of constructing a complete tour is to select the closest unvisited city next until all cities
are visited. Suppose the distance matrix for a four city example is as given in Table 10.1.
A greedy solution using this heuristic would be 1–3–2–4–1 with a total distance of 52.

398 Operations Research

Note that even for a small example like this, the greedy heuristic obtained a reasonable
solution; yet it is suboptimal as the optimal tour for this instance is 1–2–4–3–1 with a total
distance of 50.

It is very common to use greedy heuristics as a starting solution followed by a local
search heuristic in which a better solution is sought by iteratively attempting to improve
the greedy solution. This concept is discussed next.

10.2 Local Improvement Heuristics

Local iterative improvement techniques begin by placing the system being optimized in
a known configuration; usually, any simple to obtain greedy or arbitrary configuration
will do. Then some simple rearrangement or reorganization of the problem elements is
performed repeatedly to various local parts of the system until a configuration is dis-
covered whose objective function value is better than that of the previous configuration.
When this occurs, the better configuration becomes the current configuration, and the
process is repeated until no better configuration can be found by means of simple local
rearrangements.

Because at each iteration, only simple changes involving neighboring elements are con-
sidered, the method is often referred to as a local search procedure. From any given con-
figuration, only nearby configurations are considered, that is, configurations that differ
from the current one by minor modification to the problem elements (variables). As might
be guessed from this, local search heuristics can easily, and typically do, get stuck in (or
converge to) a local but not global optimum. Therefore it is customary, and not terribly
time-consuming, to carry out the entire procedure several times, beginning each time
with a different arbitrarily chosen initial configuration. Having repeated the process many
times and therefore likely having found many different solutions, the problem-solver would
use the best result that was ever discovered during any of the searches.

To illustrate the kinds of rearrangements of problem elements that have been found to
be effective, we look at a few classical combinatorial optimization problems. In the travel-
ing salesman problem, a solution is any sequence of cities that includes each city exactly
once, in the order visited. A very effective local improvement mechanism for generating a
new configuration, known as 2-opt, is to select a pair of (directed) edges (i,j) and (m,n) and
replace them with the crossing edges, (i,m) and (j,n) in such a way that the result is a new
tour. For example, the tour shown on the left in Figure 10.1 is represented by the sequence
1–2–3–4–5–6–1. If we select the edges (1,2) and (4,5), the resulting sequence 1–4–3–2–5–6–1
represents the tour shown on the right in the figure. The quality of these two tours could

TABLE 10.1

Traveling Salesman Problem Example

City 1 2 3 4

1 20 4 25
2 20 8 15
3 4 8 11
4 25 15 11

399Heuristic and Metaheuristic Techniques for Optimization

be compared, and the better one selected by the heuristic. Clearly, if the length of the
two edges added is less than the two removed, then the new tour is an improvement.
This simple method was introduced by Lin and Kernighan (1973), and extended as a k-opt
method. Remove any k edges and replace them with (the best possible) crossing edges. It
is easy to implement, and usually executes in a very reasonable and affordable amount of
computation time. The 2-opt requires O(n2) operations each iteration, and 3-opt requires
O(n3). Solutions for k = 3 are typically very good for practical applications.

Many combinatorial problems can be described as placement problems. For example, the
placement of electrical components on a circuit board can be designed with the goal of
minimizing the length of wiring required. The placement of equipment in a manufactur-
ing plant would likely be done to facilitate the flow of manufactured products through the
various pieces of equipment. Or the placement of data files in a computer network might
be based on the amount of memory space available at the various workstations as well
as the cost of transmitting files from one workstation to another. Also, another applica-
tion is the placement of facilities in different locations in supply chains to optimize some
objective(s) such as minimizing the transportation cost. In any of these applications, a
local improvement heuristic would begin with any arbitrary feasible placement of the
elements, then repeatedly consider the effects of exchanging any two elements: any two
electrical components, any two manufacturing machines, any two files or two facilities.
These are often called local exchange heuristics.

A minor modification to the exchange or swap idea is to arbitrarily select three objects
and consider various ways to move, shift, or rotate the three objects around to different
places in the system, continuing until no advantageous local rearrangement can be found.
This approach belongs to a class of methods that have been termed k-opt heuristics (in this
case, k = 3). These methods have been shown to give somewhat better results than just
moving two objects at a time (Carter and Price 1988), and they do not take appreciably
more computation time than simple swaps or exchanges.

Local iterative improvement heuristics are generally conceptually simple, easy to pro-
gram, efficient to execute, and give reasonably good results. However, like greedy heu-
ristics, they are susceptible to reaching suboptimal solutions as they search within their
local search region. Therefore, another class of search methods known as metaheuristics
is used to guide heuristics out of local optima. Among the most common methods are
simulated annealing, genetic algorithms, and tabu search, which are discussed later in
this chapter. Figure 10.2 demonstrates the concepts of local versus global minima where
a greedy and local search algorithms may reach a local minimum and stop there as they

1
3

4

56

2

1 3

4

56

2

FIGURE 10.1
Sub-sequence reversal.

400 Operations Research

cannot see any further improvement beyond their local neighborhood; while a meta-
heuristic can guide them out by occasionally accepting worse solutions in the hope of
escaping the local optimum.

10.3 Simulated Annealing

Simple local improvement heuristic techniques for optimization typically suffer from a
tendency to converge to a local optimum that may not be a global optimum. This phe-
nomenon is a natural consequence of a computational process that moves monotonically
in an improving direction, from an arbitrary starting point, as was discussed in Chapter 5
on nonlinear optimization. Simulated annealing is a local improvement mechanism with
a probabilistic twist, in which non-improving moves are occasionally made, and therefore
offers chances to escape from local optima, in the hope of arriving at a global optimum.
This metaheuristic is based loosely on concepts from thermodynamics, which deal with
how a liquid substance is slowly cooled into a solid to produce a stronger, more stable
(less brittle) final product. The use of simulated annealing as an optimization tool is due
to the work of several researchers who were actually working in different disciplines at
different times.

In the field of statistical mechanics, methods were developed in the 1950s to model the
evolution of a physical system through a series of slowly decreasing temperatures (an
annealing process) into a state of high order and low energy. During the annealing process,
the temperature is reduced slowly to maintain system equilibrium with respect to tem-
perature. Both positive and negative energy fluctuations are allowed, in contrast to a rapid
quenching that would result in a disordered or unstable system.

About 30 years later, researchers interested in mathematical optimization had the
breadth of scope and keen insight to perceive an analogy between the behavior of a
physical substance in low energy states and the nature of the iterative improvement that
can be made in a large and complex mathematical system that is in a nearly optimal con-
figuration. States of low energy in the physical system are viewed as being analogous to

Global minimum Greedy algorithms get stuck in
local minimum

x

f(x)

FIGURE 10.2
Escaping local optima.

401Heuristic and Metaheuristic Techniques for Optimization

the nearly optimum configuration (as measured by a very low objective function value)
in a minimization process.

The analogy with combinatorial optimization is really just a variation on conventional
iterative improvement methods that begin with an initial feasible solution, repeatedly
generate and consider changes in the current configuration, and accept only those that
improve the objective function. To avoid the characteristic convergence to a local opti-
mum that typifies deterministic local heuristic methods, simulated annealing methods
probabilistically accept configurations that temporarily deteriorate the quality of the sys-
tem being optimized. An acceptance probability is computed, based on the change in
the objective function and a temperature parameter. As the temperature is appropriately
reduced (this is called an annealing schedule or a cooling schedule), fewer non-improving
moves are accepted; thus, a coarse global search evolves into a fine local search for opti-
mality, and the probabilistic jumps provide avenues to avoid sinking into non-global
optima.

Let us now look more carefully at simulated annealing as it applies to statistical mechan-
ics, and then we will investigate more precisely how to make use of the analogy to combi-
natorial optimization. All physical systems are composed of large numbers of atoms, and
only the most probable behavior of the system is observed when the system is in thermal
equilibrium at a constant temperature. This behavior is characterized by the average small
fluctuations of the atoms or molecules about their mean positions within the substance. To
observe different behaviors of a substance (or system), atoms are allowed to change their
atomic positions by altering the temperature and then letting the system attain thermal
equilibrium again. The most stable state of a system is the state associated with the lowest
energy level. Under the assumption that atoms with configurations close to ground states
dominate the properties of the system at low temperature, the temperature of the system
is lowered in search of the ground state.

The process of lowering temperature slowly so that thermal equilibrium is always
maintained is called an annealing process. A mathematical model has been developed to
describe a system in a stable state, that is, the most probable state with respect to tempera-
ture. Each possible configuration of the system is defined by the Boltzmann probability
factor

 P(r) = ei

E r
kT

i−










()

where each configuration ri belongs to the set of all possible atomic configurations, and
P(ri) is the probability of a configuration ri

E(ri) is the energy (in joules) of the system in configuration ri

k is the Boltzmann constant (in joules per degree Kelvin)
T is the temperature in degrees Kelvin

As is shown by the nature of the curve in Figure 10.3, when the temperature approaches
a very low value, the probability of the occurrence of a new configuration approaches
zero because the system is already in a nearly stable state. At low temperatures (i.e., when
the system is in either liquid or solid state), the exponent becomes very large and nega-
tive, and hence P(ri) approaches zero. On the other hand, at higher temperatures, there is
more atomic movement within the substance, hence more different configurations occur,
and therefore the probability of occurrence of any given ri becomes greater as temperature
increases.

402 Operations Research

In the 1950s Metropolis et al. (1953) developed an algorithm known as simulated anneal-
ing, which is used as a computational tool for efficiently simulating a collection of atoms
in equilibrium at a given temperature. In each step of the algorithm, an atom is hypotheti-
cally given a small displacement. Before a displacement is admitted, initial energy Ei of
the system is noted, and final energy Ef is measured after the displacement. The difference
between these two energy states is calculated as

 ∆E E Ef i= −

If Ef is less than Ei, then the system has moved from a high energy level (state) to one at a
lower energy level that is more stable than the previous one, and hence this displacement
is accepted. (The system now assumes this new configuration.) In short, the new configura-
tion is unconditionally accepted when ∆E ≤ 0.

But if ∆E is positive, the new configuration may be rejected and the current (more stable)
configuration maintained. The acceptance criterion is based on the Boltzmann distribu-
tion, thus, the probability that the new configuration is accepted is

 P E e
E

kT()∆
∆

=
−








At any given temperature, the simulation must continue long enough for the system to
reach a steady state. In other words, at a given temperature, the system at equilibrium
is characterized by a certain distribution of configurations, and the precise distribution
emerges as the simulation takes place.

In case it seems that we have wandered afar from the business of combinatorial optimi-
zation, let us now restate the simulated annealing procedure, using terminology that is
applicable to optimization, as Kirkpatrick et al. (1983) so ingeniously did in the early 1980s.
In this context, a configuration means some assignment of values to the decision variables.
The temperature is indicated by a simpler parameter which we will call θ (theta), because
physical temperature has no absolute meaning in the optimization scenario. We will gener-
ate a sequence of classes of configurations. Within each class, a parameter θ determines the
magnitude of objective function value fluctuations that occur within that class. Each class
is asymptotically distributed as a Boltzmann distribution, and the process of determining
this distribution for any given value of θ is called equilibration. The optimization process

0

Probability
P(ri)

10−10−20−30
Temperature (°C)

20 30

FIGURE 10.3
Boltzmann probability.

403Heuristic and Metaheuristic Techniques for Optimization

is actually comprised of a series of equilibrations; each equilibration is associated with a
temperature parameter θ, and equilibrations are done at successively lower temperatures.

Each equilibration begins with the system in some initial configuration, and carries out
the following process until a stable distribution of configurations has been generated:

Generate a new configuration arbitrarily.
Calculate ∆F = new objective function value—current objective function value.
If ∆F ≤ 0, then accept new configuration unconditionally.

If ∆F > 0, then accept new configuration only with probability e−()∆F/θ .

When it is reasonably obvious that further iterations of this process will have no significant
effect on the distribution of configurations, the equilibration at the current temperature is
complete. The most frequently occurring configuration is chosen as the initial configu-
ration for the next equilibration process that will take place using a lower temperature
parameter θ.

Equilibrations are carried out until it is observed that practically no configurations are
being generated (and accepted) that have a better (lower) objective function value than the
current configuration (i.e., until the acceptance ratio or probability of acceptance is essentially
zero). At this point, the heuristic optimization process is complete, and the best configura-
tion seen so far is taken as the result. The entire process is illustrated in Figure 10.4.

Thus, in the same way that physical substances are cooled in a controlled manner (per-
haps to attain a crystalline structure instead of an amorphous glass structure), so can com-
binatorial systems be first stirred up and then slowly sloshed around until they congeal into
an orderly (perhaps nearly optimal) configuration having a low objective function value.
Conceptually, the simulated annealing process can be presented as shown in Figure 10.5.

Simulated annealing is a technique that can be quite easy to implement. Specific details
of an implementation often depend on the type of problem being solved.

• The annealing schedule (or cooling schedule) is usually determined by trial and
error, or dynamically through real-time observation during the process itself. The
practitioner must choose the initial value of the temperature parameter θ and the
amount by which θ is to be decreased at each equilibration.

• It must be decided how to generate new random configurations, what decision
variables to change, and whether to check feasibility of each new configuration.
And if infeasible configurations are allowed, a means must be invented to mea-
sure the objective function (quality) of an infeasible configuration.

• How many new configurations should be generated and considered during each
equilibration? It may be some fixed number of new configurations, or until the
configurations that occur have appeared some specified number of times. Perhaps
every entity (decision variable) should be changed, or at least have had a chance to
be changed at least once. This issue has a strong impact on the computation time
required for the simulated annealing process to execute.

• Implementation of the probabilistic decision of whether to accept a bad move is
simple, and usually done in the following way. Generate a random number r in the
interval (0, 1); if r is less than e−()∆F/θ , then make the change; otherwise maintain the
current configuration.

404 Operations Research

Establish
initial

con�guration

Initialize
temperature
parameter θ

Generate new
con�guration

and evaluate ΔF

Accept change
with probability

exp (−ΔF/θ)

Enough
trials at this
temperature

θ?
No

NoConvergence
criterion

met?

Reduce
θ

Yes

Yes

Stop

FIGURE 10.4
Simulated annealing algorithm.

Co
ol

in
g

sc
he

du
le

To

T1

T2

Tf

Neighborhood
search

(inner loop)High

Low

FIGURE 10.5
The simulated annealing process.

405Heuristic and Metaheuristic Techniques for Optimization

• At the end of each equilibration, some implementations choose the best configura-
tion seen, rather than the most frequently occurring one, to use as the initial configu-
ration in the next equilibration. Although this practice may seem to accelerate the
convergence process, it can also be argued that it tends to drive the process more
rapidly toward a non-global optimum.

Although there are some theoretical results that describe the performance and con-
vergence properties of optimization by simulated annealing (Kirkpatrick 1984, Anily
and Federgruen 1985, Lundy and Mees 1986), the most valuable guidelines for the ana-
lyst are gained through experience and observations of empirical results on specific
application problems. Simulated annealing generally takes somewhat longer (more
computation time) than simple local-improvement heuristics, but there is typically
some performance advantage that results from the structured randomness of simulated
annealing.

Example 10.3

Let’s consider the Capital Budgeting problem in which we have a limited budget to
execute projects from a set of possible projects as given in Table 10.2. Each project con-
tributes a certain value vi and the objective is to select the set of projects that will maxi-
mize the total value.

This problem is in essence a knapsack problem similar to what was discussed earlier
in this chapter. Although this small instance can be modeled and solved as an integer
program as in Section 4.3.2, we will use it to demonstrate how simulated annealing
works. We first define xi to be 1 if a project is selected and 0 otherwise. The energy func-
tion becomes the objective function and the only constraint is not to exceed the total
budget of $450 million.

Suppose that a neighbor (or a move) can be generated by switching one project selec-
tion from 0 to 1 or from 1 to 0. If we start with an initial solution So based on a greedy
rule that selects the project with the highest value first (without violating the budget
constraint), So would be represented by 01100100 with an objective function value of
950 and total expense of 437, which is feasible because it is below the maximum budget
(see Table 10.3). If we randomly select a binary digit to switch from 0 to 1 or from 1 to 0
and it happened to be the second digit, then the new neighbor to evaluate would be
00100100 for which the total value would be 750.

The next step is to decide whether to move to this neighbor or not by computing
the difference in the objective function ∆F, which is in this case a reduction of 200 in
the total value. In local search, such a solution would be immediately rejected, but not
in simulated annealing as we must first evaluate the probability of acceptance Pa =
e F−()∆ /θ . Here, the temperature θ is assumed to be 180, and therefore Pa = 0.329. To decide
whether to accept or reject this move, we generate a random number r ~ U(0, 1), which

TABLE 10.2

Capital Budgeting Problem Example

Project 1 2 3 4 5 6 7 8 Budget

Expense ($M) 50 92 144 22 67 201 88 112 450
Value vi 120 200 300 84 150 450 180 220

406 Operations Research

happened to be 0.251. Since r < Pa, we accept this move and S1 becomes the current
solution. In another iteration, the neighbor S2 is generated by randomly selecting a digit
to switch, which happened to be the first digit resulting in the neighbor 10100100 with
F(s) = 870. Since this is an improvement of 120 over S1, it is accepted without computing
Pa, and S2 becomes the current solution. Similarly, S3 becomes the next neighbor to move
to without checking Pa.

However, when S4 is generated by unselecting project 6, the objective function value
drops by 450 to 504, making the probability of accepting such a solution quite small
(Pa = 0.082) and that move is rejected, which means the search algorithm stays at S3 and
another neighbor (S5 in this example) is generated from S3. Note that although S5 also
has a lower objective function, r happened to be less than Pa; hence this worse solution
is accepted. Continuing this way, solutions S6 and S7 are generated with better objective
function values. This process is summarized in Table 10.3.

It turns out that S7 is actually optimal and using this neighborhood generation
scheme (switching 0 to 1 or a 1 to 0), the simulated annealing could not have reached
this solution from where it had started at So without accepting worse solutions such
as S1 and S5. It is important to recognize that the simulated annealing cannot tell that
it has reached the optimal, but after running many more iterations, it should stop
trying when no further improvement is achieved. Also, after attempting new neigh-
bors at the same temperature θ with no improvement (or if the maximum number of
iterations is reached), the temperature at iteration i is reduced (usually via a decay
function such as θi = α∗θi−1) where 0 < α < 1. We did not do this in this basic example,
but one can easily see that Pa depends on the amount of deterioration in the objective
function and the current temperature where the larger the value of ∆F, and/or the
lower the temperature, the smaller the probability to accept a new worse neighbor
solution. Therefore, at higher temperatures, the simulated annealing accepts neigh-
bors more frequently and as the temperature drops, it becomes more selective like a
greedy algorithm.

It is noteworthy that the greedy rule used in this example is very simple and was
used to demonstrate the simulated annealing process rather than solving the knapsack
problem efficiently. A better rule would be to select the project with the maximum ratio
of value to expense first until no more projects can be selected due to exceeding the
allocated budget. If this rule were used instead, the optimal solution would have been
found in one iteration. In fact, this rule is optimal if we allow the last unit selected to
be fractional.

TABLE 10.3

Simulated Annealing Iterations with θ = 180

Solution Neighbor Evaluation F(s) Expense Δ r Pa Outcome

S0 01100100 950 437
S1 00100100 750 395 −200 0.251 0.329 Accept
S2 10100100 870 345 120 Accept
S3 10110100 954 417 84 Accept
S4 10110000 504 216 −450 0.813 0.082 Reject
S5 10010100 654 273 −300 0.157 0.189 Accept
S6 11010100 854 365 350 Accept
S7 11011100 1004 432 350 Accept

407Heuristic and Metaheuristic Techniques for Optimization

10.4 Parallel Annealing

The good quality solutions obtained by simulated annealing heuristic methods are often
paid for with substantial computational effort. Although the staged cooling regimen seems
to be an inherently sequential process, recent research has been aimed at the development
of models to reduce computation time through parallel processing.

In conventional simulated annealing, each new random configuration is typically gener-
ated by changing the value of one (or a very few) decision variables at a time. But imagine
instead a multiple-processor computer in which there is a processing unit associated with
every decision variable in the problem being solved. Then the processing units could inde-
pendently and asynchronously consider changing the values of their individual associ-
ated decision variables, each applying a simulated annealing process to evaluate the merit
of such a change.

As long as processing elements consider their changes only one at a time, asymptotic
convergence to a global optimum is guaranteed (Aarts and Korst 1989). Unfortunately,
processing units operating in parallel are basing their simulated annealing decisions on
information that is unstable, because other variables may be simultaneously undergoing
changes that are not currently recorded in any centrally accessible location.

If some element of centralized control were introduced into this asynchronous system,
then statistical convergence guarantees could be preserved. Examine Figure 10.6, in which
it is assumed that there are N processing units, one for every decision variable, each indi-
vidually carrying out a simulated annealing process, but unaware of decisions being made
by any other processing unit. In the figure, the portion of the computation that could be
performed by parallel processors is outlined in dashed lines. After all processing units
have either accepted or rejected their proposed changes (based on a first level temperature
parameter θ1), a centralized control component then assimilates the individual changes
and constructs a new global configuration. This new configuration now must pass through
a global filter, which is another simulated annealing acceptance test based on a global
temperature parameter θ2. In this way, the computational power of many free-wheeling
asynchronous processors is checked at intervals by the centralized control, which ensures
eventual convergence (Lucas and Price 1992).

Parallel annealing systems such as just described have been given the name Boltzmann
machines. Boltzmann machines have taken many forms, depending on the problem at
hand and the analyst’s viewpoint, goals, and experience. In most cases, although there
is parallelism, an element of sequentiality has been maintained because of the inher-
ent requirement for monotonic cooling, and hence monotonic reduction of temperature
parameters. More recent research has revealed that collapsing the timeline to a point, and
randomly activating processing units at different temperatures (acceptance parameters)
also works remarkably well, while alleviating any need for centralized control over the
synchrony of the processing units. Cascading Boltzmann machines together in this way,
with data-sharing among corresponding processing units at different temperatures, has
proven to be an effective means of overcoming the time dimension through the use of
multiple processors (Coughlin and Baran 1995, Price and Wahsheh 1999). Through this
mechanism, spatial complexity is employed to compensate for temporal complexity—a
common trade-off in the world of parallel computing that may serve us well in the realm
of combinatorial optimization. Examples of parallel simulated annealing applications can
be found in Wang et al. (2015), Ferreiro et al. (2013), and Santé et al. (2016).

408 Operations Research

Establish
initial

con�guration

Initialize
θ1 and θ2

Generate new
con�guration
changing x1

Accept/reject
using θ1

Accept/reject
using θ1

Accept/reject
using θ2

No

No

Enough
trials?

Yes

Yes

Stop

Reduce
θ1 and θ2

Convergence
criterion met?

Generate new global con�guration
incorporating results of parallel decisions

Accept/reject
using θ1

Generate new
con�guration
changing x2

Generate new
con�guration
changing xN

FIGURE 10.6
Parallel annealing.

409Heuristic and Metaheuristic Techniques for Optimization

10.5 Genetic Algorithms

Analogies between computational processes and natural phenomena seem to be quite
appealing to problem-solvers, and simulated annealing is but one such analogy that has
been effective and therefore popular. Biological analogies are particularly fascinating, and
over the past 50 years have sparked many debates over whether machines can think or rea-
son, and what techniques could and should be used to make machines compute in clever
ways. Genetic algorithms (GA) are a type of search algorithm for finding optimal solu-
tions to computationally difficult problems, and are based on analogies to biological repro-
ductive processes. Computers and biological genes are similar to each other in the sense
that both are able to record, copy, and disperse information. Genetic algorithms operate
iteratively, over many generations, in such a way that only the fittest solutions survive, and
thus these algorithms function as mechanisms for optimization.

The basic ideas for these methods were developed by Holland (1975), Goldberg and
Holland (1988) during their investigations on how to build computing machines that are
capable of learning. Inspired by the flexibility and adaptability that he observed in biologi-
cal systems, he contended that rather than using and refining a single learning strategy, it
was more advantageous for a machine to use a breeding of multiple strategies. The term
genetic algorithm was popularized in a 1975 publication of Holland’s work. Immediately
thereafter, genetic algorithms began to be used successfully in scores of applications, which
now include job-shop scheduling, pipeline systems, vehicle routing, keyboard design, and
variations of the traveling salesman problem, to mention just a few. More important, these
successes have prompted active research into the study of how various biological analogies
can influence computing, as well as how computational models can give insight into the
workings of biological systems.

Genetic algorithms operate by maintaining a population of feasible solutions to a problem.
Each solution is evaluated (for example by using its associated objective function value).
The best solutions are selected for reproduction and are grouped into pairs. Solutions that
are less fit tend to not be selected and therefore die off and get replaced by other solutions.
Then, within each pair of solutions, genetic modifications take place, which are described in
terms of mutations and crossovers, resulting in a new breeding population that can repeat
the process. The goal of optimization is served by selecting the best solutions for breeding,
and introducing possible improvements through genetic crossovers, while mutations are
introduced occasionally to prevent rapid convergence to a local non-global optimum.

Biological terminology abounds, although the adaptation of terminology is not always
completely consistent with the corresponding biological meaning. Within the breeding
population, individual solutions (encoded as strings) are referred to as chromosomes; the
individual features in each chromosome are called genes; and the value of a feature in a
given chromosome is called an allele. Using this terminology, we can now describe the
entire process in greater detail.

First, a method is devised for mapping each feasible problem solution into a string (usu-
ally a binary string). The encoding mechanism depends entirely on the type of problem
being solved, but usually it involves the values of the decision variables. Then it must
be decided how many of these chromosomes to include in the breeding pool; a large pool
increases diversity, but will have the effect of slowing the operation of the algorithm. An
initial population is typically chosen arbitrarily, although other ways exist.

410 Operations Research

Next, the fitness of each string (chromosome) is evaluated, based on the objective func-
tion value corresponding to the encoded solution, and possibly also on problem con-
straints. For uniformity, the fitness values are typically normalized into the range of 0–1.

The selection of chromosomes (solutions) that will participate in reproduction is inspired
by Darwin’s (1859) survival-of-the-fittest theme. A proportional selection scheme favors a
larger number of fit solutions, and allows fitter solutions to be chosen more than once, and
weaker solutions to be possibly excluded entirely. A roulette wheel model provides a simple
mechanism for this. Each string is associated with a sector on the wheel whose angle is
proportional to the string’s fitness. A random number is generated and assigned a point on
the wheel. If the point falls within a particular string’s sector, then that string is selected.

After selection, pairs of chromosomes are formed at random and are subjected to certain
genetic manipulations; that is, modifications to the genes in the parent chromosomes.
A process called crossover swaps a part of the genetic information contained in two
chromosomes. Typically, a substring position in the chromosome is randomly chosen and
the genes (string elements) within that substring are exchanged, forming two new offspring
to replace the parents. The exact nature of crossovers is application specific, and must be
done in such a way that resulting strings correspond to meaningful and feasible problem
solutions. The recombination process can introduce improved genetic building blocks but
will, on occasion, inadvertently disrupt favorable genetic structures. This (together with
the selection of the fittest) may have the effect of driving the evolutionary process toward
a local optimum. To overcome this, mutations are allowed to occur.

A mutation is simply a random reversal of one or more bits in a chromosome. Mutations
are infrequent, but have the effect of reintroducing bits into the string that may be essen-
tial for an optimal solution and that may be currently absent in the breeding population.
A higher probability of mutation tends to make the genetic search more broadly random,
which can slow the convergence of the algorithmic process.

The offspring strings produced through these genetic manipulations may either replace the
entire previous population (generation replacement method) or just the less fit members of
the population (steady-state replacement method). In either case, the cycle of creation, evalu-
ation, selection, and manipulation is repeated until a stopping criterion is met such as a speci-
fied number of generations have passed or until acceptable problem results are achieved.

Example 10.4

Consider the knapsack problem presented earlier in Table 10.2 and suppose that an ini-
tial population with six chromosomes (i.e., population size = 6) is randomly generated
as shown in Table 10.4. The fitness of each solution is considered the same as the objec-
tive function in this case. To compute the probability of selection for each string, its fit-
ness is divided by the population’s total fitness. Strings with higher fitness would have
higher chance of being selected. For example, String 2 with selection probability Pselect of
0.27 is about twice as likely to be selected as String 1 which has a Pselect of 0.151. The prob-
abilities are shown in the table and are reflected in Figure 10.7. To select parent strings
for the mating pool, imagine spinning a biased Roulette wheel like the one shown in the
figure. It is more likely to land on strings with higher fitness proportionate to the area
they occupy on the wheel. To select strings using this roulette wheel process in a sys-
tematic way, the cumulative probability is computed as shown in Table 10.4. A random
number r ~ U(0,1) is then generated, and depending on where it falls on the cumulative
probability spectrum, the corresponding string will be selected. Suppose for example
that six random values for r are generated as follows: 0.39, 0.68, 0.21, 0.64, 0.04, and 0.97.
This will result in selecting strings 2 and 4 twice each, strings 1 and 6 once each and
strings 3 and 5 not selected at all as shown in Table 10.5. Of course, if six other random

411Heuristic and Metaheuristic Techniques for Optimization

numbers were generated, the outcome will likely be different, but we can easily see that
strings with higher fitness will have a higher chance of being selected.

The next step is to randomly select parents from the mating pool for reproduction to
create a new generation of solutions. Suppose that we randomly select the pairs of par-
ents (2, 4), (4, 6), and again (2, 4). Note that a parent can be selected multiple times as the
process is random. We then need to decide whether to perform a crossover operation
or simply pass the parents as they are. This is done in a probabilistic way via the prob-
ability of crossover (Pc) which usually ranges between 0.5 and 1.0. A random number
U~ (0,1) is generated and if u ≤ Pc, crossover is performed; otherwise, exact copies of the
parents are passed to the new generation. In this example, assuming that the pair (2, 4)

TABLE 10.4

GA Initial Population

String Fitness Pselect Cumulative Probability

1 1 0 1 1 0 0 0 0 504 0.151 0.15
2 1 0 1 1 0 0 1 1 904 0.270 0.42
3 0 1 0 0 0 0 0 1 420 0.126 0.55
4 0 0 1 0 1 0 1 0 630 0.188 0.73
5 1 0 1 1 0 0 1 0 684 0.204 0.94
6 1 0 0 1 0 0 0 0 204 0.061 1.00

Total 3,346 1.0
Avg fitness 557.6657

15%
1

2

3

4 5
6 6%

20%19%

13%

27%

FIGURE 10.7
Roulette wheel selection.

TABLE 10.5

GA Mating Pool

String Mating pool Fitness

2 1 0 1 1 0 0 1 1 904
4 0 0 1 0 1 0 1 0 630
2 1 0 1 1 0 0 1 1 904
4 0 0 1 0 1 0 1 0 630
1 1 0 1 1 0 0 0 0 504
6 1 0 0 1 0 0 0 0 204

412 Operations Research

undergoes a single-point crossover at a randomly selected location like gene 5 (along
the line in Table 10.5), the second part of parent 2 (the last 3 genes) is swapped with
second part of parent 4 resulting in two new strings as shown in Table 10.6 for strings
7 and 8. Similarly, if the pair (4, 6) is selected for single-point crossover at gene 3, along
the line, the strings 9 and 10 will result as given in Table 10.6. Assuming that the last two
parents 2 and 4 were again selected for crossover but failed the crossover test, they will
then be passed to the new generation as they are. The new 4 strings (7, 8, 9, and 10) and
copies of strings 2 and 4 in Table 10.6 represent Generation 1 with their fitness values
and probabilities of selection for the next iteration.

It is important to note that any string included in any generation along the process
must be feasible. In this example, a solution that violates the knapsack constraint should
be precluded from competing. Another approach is to heavily penalize the fitness of
infeasible solutions to make them very unlikely to be selected for future iterations.

Following the same Roulette wheel selection process, suppose that the values of the
randomly generated number r were 0.01, 0.41, 0.60, 0.70, 0.79, and 0.63. This means that
out of Generation 1, strings 7, 9, 10 and three copies of string 2 will be selected for
mating, respectively (Table 10.7). If the pair (9, 2) is randomly selected for crossover at
the location indicated in Table 10.7, the offspring strings 13 and 14 in Table 10.8 will be
produced. Similarly crossing over the pair (7, 2) will produce the offspring strings 15 and
16 as shown in Generation 2 of Table 10.8. It is assumed that the parent strings 10 and 2
failed the crossover test and they were passed unchanged to Generation 2.

Randomly generating six new values for r (0.37, 0.89, 0.25, 0.96, 0.84, 0.50) will result
in a mating pool from Generation 2 as given in Table 10.9. Assuming that only strings
15 and 14 were selected for crossover and the rest were passed as copies of string 2,
Generation 3 would result as given in Table 10.10.

TABLE 10.7

GA Mating Pool from Generation 1

String Mating pool Fitness

7 1 0 1 1 0 0 1 0 684
9 0 0 1 1 0 0 0 0 384
10 1 0 0 0 1 0 1 0 450
2 1 0 1 1 0 0 1 1 904
2 1 0 1 1 0 0 1 1 904
2 1 0 1 1 0 0 1 1 904

TABLE 10.6

GA Generation 1

Parents String Fitness Pselect

Cumulative
Probability

2 and 4 7 1 0 1 1 0 0 1 0 684 0.175 0.18
2 and 4 8 0 0 1 0 1 0 1 1 850 0.218 0.39
4 and 6 9 0 0 1 1 0 0 0 0 384 0.098 0.49
4 and 6 10 1 0 0 0 1 0 1 0 450 0.115 0.61
2 (No crossover) 2 1 0 1 1 0 0 1 1 904 0.232 0.84
4 (No crossover) 4 0 0 1 0 1 0 1 0 630 0.16 l.00

Total 3,902
Generation 1 Avg fitness 650.33

413Heuristic and Metaheuristic Techniques for Optimization

This process continues for hundreds or thousands of generations until the genetic
algorithm converges. Even with three iterations only (with a small population of six
individuals), note how almost all individuals converged to identical copies of string
2—an indication that the genetic algorithm is about to converge on this solution. The
optimal solution for this problem can be obtained by solving via integer programming,
which turns out to be 1 1 0 1 1 1 0 0 with an objective function value of 1004. Although
the genetic algorithm did not obtain this optimal solution, note how the average fitness
value for the population has steadily increased from one generation to the next and can
potentially reach to the optimum. However, in this simple example, it is not very likely

TABLE 10.8

GA Generation 2

Parents String Fitness Pselect

Cumulative
Probability

9 and 2 13 0 0 1 1 0 0 1 1 784 0.185 0.19
9 and 2 14 1 0 1 1 0 0 0 0 504 0.119 0.30
7 and 2 15 1 0 1 1 0 0 1 1 904 0.214 0.52
7 and 2 16 1 0 1 1 0 0 1 0 684 0.162 0.68
10 (No crossover) 10 1 0 0 0 1 0 1 0 450 0.106 0.79
2 (No crossover) 2 1 0 1 1 0 0 1 1 904 0.21 1.00

Total 4,230
Generation 2 Avg fitness 705

TABLE 10.10

GA Generation 3

Parents String Fitness Pselect

Cumulative
Probability

15 and 14 19 1 0 1 1 0 0 1 0 684 0.136 0.14
16 and 14 20 1 0 1 1 0 0 0 1 724 0.144 0.28
2 (No crossover) 2 1 0 1 1 0 0 1 1 904 0.180 0.46
2 (No crossover) 2 1 0 1 1 0 0 1 1 904 0.180 0.64
2 (No crossover) 2 1 0 1 1 0 0 1 1 904 0.180 0.82
2 (No crossover) 2 1 0 1 1 0 0 1 1 904 0.180 1.00

Total 5,024
Generation 3 Avg fitness 837.33

TABLE 10.9

GA Mating Pool from Generation 2

String Mating pool Fitness

15 1 0 1 1 0 0 1 1 904
2 1 0 1 1 0 0 1 1 904
14 1 0 1 1 0 0 0 0 504
2 1 0 1 1 0 0 1 1 904
2 1 0 1 1 0 0 1 1 904
15 1 0 1 1 0 0 1 1 904

414 Operations Research

that the optimal solution will be obtained even if it continues for more iterations due to
the population size and possibly the initial population used. In fact, the only hope one
would have in this case is for a mutation to make a change to one of the genes to kick the
genetic algorithm out of its premature convergence. Since the probability of mutation Pm
is typically small, after many iterations one of the genes can randomly be selected and
switched from 0 to 1 or vice versa. In this example, mutation is the only way for item 2
to be selected since all strings in Generations 1, 2, and 3 had unselected this item, and a
crossover operation would not have reversed this choice.

Note that although this example implied a trivial encoding of the eight binary deci-
sion variable values into a chromosome string, other more elaborate problem solu-
tion encodings may be necessary for different problems. For example, a mathematical
programming problem with continuous decision variables may require many bits to
encode a binary representation of each of many decision variables, resulting in long
strings of thousands of bits for each solution (chromosome).

Genetic algorithms often seem to work quite well, no matter how they are designed.
Yet, during the 1980s, genetic algorithms were recognized as having certain short-
comings that rendered them suspect as optimization tools. Practitioners introduced a
number of modifications that improved the performance of genetic algorithms while
preserving the attractive image of the concept of evolution by combination. Variations
such as combining more than two parents simultaneously, using multiple point cross-
overs, and generating local improvements (rather than merely random mutations) in the
breeding population, all seem to challenge the integrity of the biological model but do
contribute to the quality of optimization results. One easily gets the impression that
our experience with genetic algorithms is entirely empirical and unfounded in theory.
However, error bounds have been developed, indicating some recent theoretical prog-
ress (Goldberg 1989, Goldberg et al. 1992, Goldberg 1994). A good overview of recent
work on genetic algorithms is found in Reeves (1997) and Sivanandam and Deepa (2007).

Genetic algorithms lend themselves readily to computational parallelism at several
levels. Because optimization is typically being performed within a large search space,
different processors could be used to search different neighborhoods simultaneously.
Alternatively, different processors could operate on different breeding populations over
the entire search space at the same time. At a lower level, once pairs are selected, genetic
manipulations are independent of each other, so multiple processors could perform
crossovers and mutations simultaneously. Then, offspring would migrate across the
network into either centralized or distributed selection processes in the next generation.

10.6 Tabu Search

Tabu search (TS) is a metaheuristic that utilizes a memory capability in escaping local
optimal search regions by forbidding previously made moves from being revisited for
a certain number of iterations. Tabu search was introduced by Glover (1989) and since
then many extensions and variants of the method have been published in various areas of
applications. The core concept of tabu search is similar to local search where it starts with
a single solution and, using some neighborhood generation scheme, identifies a candi-
date list of moves (neighbors) whose contributions to the objective function are evaluated.
The move with the greater contributions is selected and the reverse of the move (put it
back) is placed on the tabu list to prohibit returning to the previous solution for a certain
number of iterations as imposed by the size of the tabu list. Once a move is off the list, it
becomes permissible to be revisited in future iterations. An exception to the rule is when

415Heuristic and Metaheuristic Techniques for Optimization

a move passes the aspiration criterion which is commonly when a tabu move can identify
a solution that is better than the best-found-so-far. The rationale in temporarily forbidding
moves that had been tried is to allow other moves to be visited even if they are worse than
the best local solution. This lets the search algorithm escape local optimal search regions
to potential global search regions.

Example 10.5

Consider again the knapsack problem presented earlier in Table 10.2 and suppose that a
new move or neighbor is created by switching a 0 to 1 or 1 to 0 representing the selection
or unselection of an item respectively. The neighborhood size is therefore |n| and each
move must comply with the maximum allowable budget of 450 for all items; otherwise
it will be considered infeasible. Assuming a tabu list size of 3, Table 10.11 includes an
initial solution (S1) followed by ten tabu search iterations. The initial solution can in
general be selected randomly or via some other method or heuristic. In this example,
S1 was created based on the simple heuristic of item with the largest value is selected first.
Z is the objective function value and ∆Z is the change in the objective function if a
move or neighbor is selected. X means that a move produces an infeasible solution due
to exceeding the maximum allowable budget, and the tabu list (TL) represents the
number of future iterations for which a move is prohibited (unless it passes the aspira-
tion criterion).

Starting with S1, the only possible moves are to unselect items 2, 3, or 6, which will
reduce the objective function value by 200, 300, or 450 respectively.

Although all three moves will worsen the current value of Z, the algorithm must pick
one as it may be the path to a better solution in future iterations; otherwise, the algo-
rithm will be stuck in its current solution. The least damaging move is to unselect item
2 which will deteriorate Z by 200 as identified by the box around it. This move leads to
S2 with Z = 750 and puts item 2 on the tabu list for the coming three iterations. In S2,
the best move is to put item 2 back into the solution as it adds the maximum value of 200
to Z; however, this move is tabu and therefore the next best move is to select item 7 that
adds 180 to the objective, resulting in a Z value of 930 as shown for S3. Note that item 7
is now tabu for the coming three iterations, while item 2 will remain prohibited for the
coming two. The process continues in this fashion until a stopping criterion is met. For
this small example, our stopping criterion was to run it for 10 iterations after the initial
solution, which happened to produce the optimal solution in S11. An important point
to note is that as long as a move is on the tabu list, it cannot be taken unless it passes
the aspiration criterion, which did not occur in this example. After a certain number of
moves defined by the tabu list length (3 in this case) a move is off the list and it can be
selected again. In this example, item 2 could not be selected in S1, S2, and S3 as it was on
the tabu list. But after that it was off the list and was indeed selected again in S7 at which
time it became tabu once again for three more iterations. Of course, the best found solu-
tion will be updated as better solutions are obtained and will be reported at the end.

The tabu list is used to explore new search areas where larger list size would force the
search algorithm to move to new neighborhoods that might not otherwise be explored.
The tabu list is a form of short-memory that is used to explore the space based on search
recency and its length or tenure can be either static (e.g., 3) or dynamic where it can
be randomly selected between two values (e.g., between 3 and 7). Tabu search can be
extended to include intensification. The algorithm can use intermediate term memory to
keep track of the frequency that certain solution components have occurred. During
intensification, the method will fix some of those components that have occurred fre-
quently during past iterations, and then do a more intense search, for example, by
expanding the size of the search neighborhood. This tends to accelerate the movement
toward a local optimum. The method may also incorporate diversification. Tabu search

416 Operations Research

TABLE 10.11

Tabu Search Iterations for the Knapsack Problem

Solution Z

S1 0 1 1 0 0 1 0 0 950
Neighbor 1 0 0 1 1 0 1 1
ΔZ X −200 −300 X X −450 X X
TL 3

S2 0 0 1 0 0 1 0 0 750
Neighbor 1 1 0 1 1 0 1 1
ΔZ 120 200 −300 84 150 −450 180 X
TL 2 3

S3 0 0 1 0 0 1 1 0 930
Neighbor 1 1 0 1 1 0 0 1
ΔZ X X −300 X X −450 −180 X
TL 1 3 2

S4 0 0 0 0 0 1 1 0 630
Neighbor 1 1 1 1 1 0 0 1
ΔZ 120 200 300 84 150 −450 −180 220
TL 2 1 3

S5 0 0 0 0 0 1 1 1 850
Neighbor 1 1 1 1 1 0 0 0
ΔZ X X X 84 X −450 −180 −220
TL 1 3 2

S6 0 0 0 1 0 1 1 1 934
Neighbor 1 1 1 0 1 0 0 0
ΔZ X X X −84 X −450 −180 −220
TL 2 3 1

S7 0 0 0 1 0 1 0 1 754
Neighbor 1 1 1 0 1 0 1 0
ΔZ 120 200 X 84 150 −450 180 −220
TL 3 1 2

S8 0 1 0 1 0 1 0 1 954
Neighbor 1 0 1 0 1 0 1 0
ΔZ X −200 X −84 X −450 X −220
TL 2 1 3

S9 0 1 0 1 0 1 0 0 734
Neighbor 1 0 1 0 1 0 1 1
ΔZ 120 −200 X −84 150 −450 180 220
TL 1 3 2

S10 0 1 0 1 1 1 0 0 884
Neighbor 1 0 1 0 0 0 1 1
ΔZ 120 −200 X −84 −150 −450 X X
TL 3 2 1

S11 1 1 0 1 1 1 0 0 1004
Neighbor 0 0 1 0 0 0 1 1
ΔZ −120 −200 X −84 −150 −450 X X
TL 2 3 1

417Heuristic and Metaheuristic Techniques for Optimization

is intended to enable the search to escape local solutions. Under diversification, we use
long term memory to track solution components that have not been explored. We begin a
new search by incorporating some of these components, thereby forcing the algorithm
to cover the space more broadly. Further detail and nuance of tabu search is available
in Glover and Laguna (1997), Aarts and Lenstra (1997), Du (2010), and Taillard (2016).

10.7 Constraint Programming and Local Search

Constraint programming assumes that the problem can be described as a set of variables
and a set of constraints that restrict the feasible solutions for a problem. Each variable has a
domain: a set of feasible values. The constraints can be logical relations (for example, only
one of a set of variables can be true), mathematical constraints (e.g., x ≤ 5), integer, Boolean,
real valued, and so on. Constraint programming defines the problem independent of the
solution method.

Disjunctive constraints: When the domain consists of discrete values, a disjunctive
constraint states that only one of a set of conditions can be true. When the vari-
ables are real valued ranges, the constraint states that the ranges must not overlap.

Conjunctive constraints: These are similar to disjunctive constraints, but in this case,
there is a limit on the number of conditions that can be true.

Temporal constraints: In scheduling applications, these constraints specify that one
activity must precede another activity by at least some amount of time. For exam-
ple, job B cannot start until job A has ended.

To illustrate the concept, consider the popular Sudoku puzzle. The game consists of a 9 × 9
square. Each row and column must have the numbers from 1 to 9 exactly once. The board
is also divided into nine 3 × 3 squares, each of which must also contain the digits from 1 to
9 exactly once. The initial puzzle has some of the squares filled in, and the challenge is to
complete the design with a unique solution.

Consider the following example in Figure 10.8:

a 1 3
3 8
9 7 b 4 c 1

9 7 6
y 9 6 2 8 5 x
6 8 7

7 3 1 4
2 6

6 7

FIGURE 10.8
Sudoku puzzle example.

418 Operations Research

For each square in the puzzle, we can create a variable and the initial domain is the set
[1, 2, …, 9]. For example, the square marked “a” begins with 9 elements. It is involved in
three sets of disjunctive constraints for the row, the column and the 3 × 3 square. The first
row already has a 1 and a 3; the first column already has a 6; and the 3 × 3 square already
has 1, 3, 7, and 9. Therefore, we can reduce the feasible domain of “a” to the set [2, 4, 5, 8].
This process is referred to as constraint propagation. If any square only has one possible
entry, we can fill in the square. For example, the square marked ”x” can only be 3.

Constraint propagation can also be used to identify variables that must be set. When you
look at the middle row, the square marked “y” is the only one that can be 7. By repeated
application of these two rules, you can solve the puzzle. Square “b” is the only one in row
3 that can be 3. Then, square “c” is the only cell in row 3 that can be 6.

One of the original applications of constraint based programming was for scheduling
problems. Given a set of n jobs, where job i has processing time pi, ready time, ri, a set of
precedence constraints (where job i must finish before job j begins), and perhaps resource
constraints (where job i requires resource Rk that has limited capacity).

Typically, the methods for solving these problems, after the problem has been reduced
as much as possible using constraint propagation, involve some form of local search heu-
ristic. As the heuristic proceeds, further applications of propagation can be used to speed
up convergence.

Note that constraint based methods are searching for a feasible solution as contrasted
with an optimal one. Many implementations of constraint based methods have been
proposed to create a minimization procedure. For example, once we have identified
a feasible solution, we can add a new constraint that we are only interested in better
solutions. For a detailed description of the topic, readers may refer to Hentenryck and
Michel (2009).

10.8 Other Metaheuristics

In the last few decades, the area of heuristics exploded with algorithms especially with
the advances in computer technology and programming languages. Du and Swamy (2010)
classified the most common metaheuristics into four approaches:

 1. Evolution-based methods such as:
• Genetic algorithms
• Genetic programming
• Evolutionary strategies
• Differential evolution

 2. Swarm-based methods:
• Particle swarm optimization
• Artificial immune systems
• Ant colony optimization
• Bee metaheuristics
• Swarm intelligence

419Heuristic and Metaheuristic Techniques for Optimization

 3. Sciences-based methods:
• Simulated annealing
• Biomolecular computing
• Quantum computing

 4. Human-based methods
• Memetic Algorithms
• Tabu search
• Scatter search

Many metaheuristics are based on the idea of introducing randomness into the search pro-
cess as a mechanism to escape local optima where random solutions are sometimes selected
over greedy solutions. Examples of such methods include GRASP (Greedy Randomized
Adaptive Search Procedure) (Resende and Ribeiro 2003) and Meta-RaPS (Metaheuristic
for Randomized Priority Search) (Rabadi et al. 2006, Garcia and Rabadi 2011, Kaplan and
Rabadi 2013, Moraga 2016).

Finally, there could be many different variants of metaheuristics that fall under
a class of metaheuristics. For example, Swarm Intelligence algorithms include fire-
fly, frog, bat, monkey, fish, cuckoo search algorithms among some other ones. More
elaborate material on metaheuristics and their types is available in Glover and
Kochenberger (2006), Du (2010), Burke and Kendall (2014), Gendreau and Potvin
(2010), and Siarry (2016).

10.9 Software for Metaheuristics

Software implementation of greedy, local, and metaheuristic algorithms is commonly
developed in general-purpose programming languages such as C, C++, Java, Python,
and so on. Appropriate data structures can easily be chosen that represent not only a cur-
rent problem configuration, but also proposed modifications to the current configuration.
Standard library functions for generating random numbers are convenient for effecting
the probabilistic acceptance of such modifications, as required in simulated annealing and
genetic algorithms. Because of the ease of developing such programs, and because the
details of the implementation are often very application specific, commercial software is
not typically needed for these heuristic techniques. Furthermore, even when (meta)heuris-
tic algorithms are implemented in software systems for specific applications or industry,
the design details tend to be hidden from the user for proprietary and competitive reasons.

Among the limited offerings of metaheuristic software tools is Evolver, spreadsheet-
based product from Palisade Corporation which works as an Add-in to Microsoft Excel
in which models are implemented in a spreadsheet, and solved as constrained optimiza-
tion problems using genetic algorithms. Microsoft Excel itself comes with an Evolutionary
Solver (a simpler form of genetic algorithms) to solve models that are implemented as
spreadsheets.

MATLAB from MathWorks offers a Global Optimization Toolbox that includes genetic
algorithms, simulated annealing, and particle swarm solvers. While using program-
ming languages to implement metaheuristics might be computationally more efficient,

420 Operations Research

MATLAB’s toolbox can reduce the implementation effort significantly with the tool boxes
and functions it offers. It also gives the user some control over algorithm design. For
example, the user can select the type of crossover and mutation to use with the genetic
algorithms, and in simulated annealing, the user can decide on the temperature schedule
and acceptance criteria among other things. Furthermore, developers can use MATLAB
as a platform to develop software environments and tools including optimization envi-
ronments. For example, TOMLAB, a general purpose development and modeling envi-
ronment, implements a real-coded genetic algorithm called TOMLAB/GENO that can be
used with various optimization problems.

Metaheuristic algorithms are typically used for problems that are computationally
complex and messy to model and solve using structured modeling approaches such as
mathematical programming. Hence, they often need to be tailored to the problem at hand.
Therefore, it is no surprise that there are not many canned metaheuristic software sys-
tems as they need to be customized to specific problems. Nevertheless, the internet is
full of codes and binaries in different computer languages that can be utilized in soft-
ware development, the vast majority of which are freely available for download. COIN-OR
(Computational Infrastructure for Operations Research), for example, includes some open
source libraries and frameworks for metaheuristic development. Similarly, Google offers
a suite of portable software called Google Optimization Tools for solving combinatorial
problems. It is almost impossible to list all software sources that pertain to various meta-
heuristics and the readers are encouraged to refer to the book’s website and conduct their
own online search. The website GitHub.com contains open source code for several algo-
rithms of interest.

10.10 Illustrative Applications

10.10.1 FedEx Flight Management Using Simulated Annealing (Campbell et al. 1997)

Federal Express (FedEx) is one of the world’s largest express transportation company.
Handling 3.4 million packages in over 220 countries every working day, with 650 aircraft
and over 4,700 pilots, it is not surprising that the company must rely on a variety of analyti-
cal tools for scheduling and coordinating its activities.

In 1993, during negotiations involving pay rates and work rules with the Air Line Pilots
Association, the 20-year-old company recognized the need to be able to evaluate alterna-
tives to its traditional methods for scheduling work for its pilots. In particular, they needed
a way to automatically build individual trips (flight legs) into lines of work (called bid lines).
The method needed to be sufficiently fast and efficient that many alternatives could be
generated, compared, and considered during, as well as after, negotiations with the pilots’
association.

The scheduling questions demanded the use of a so-called bid-line generator, software
that could compose units of work for pilots to bid on. The goal is to maximize the amount
of flying assigned to bid lines and minimize the number of bid lines. Pilots submit bids by
listing their preferred sequences of flights, and work assignments are made according to
the pilot’s seniority.

The number of inputs and constraints for generating the bid lines make the problem
almost overwhelming. Considerations include

421Heuristic and Metaheuristic Techniques for Optimization

• Aircraft type.
• Crew size and requirements.
• Origin and destination cities.
• Layover cities.
• Number of trips in a line.
• Scheduled times and days.
• FAA regulations governing flight periods and rest periods.
• FAA day off and maximum duty length regulations.
• Crew turnarounds.
• International/domestic mixtures (generally undesirable).
• Week on/week off mixtures (generally desirable).

The bid line generator should generate bid lines that not only meet the hard constraints
but that maximize line value (desirability to the pilots and productivity for FedEx) and
minimize cost over all bid lines.

Details were kept to a minimum, but so many factors contribute to the composition of
bid lines that the 0-1 integer programming model, with all its constraints, quickly became
unwieldy—even to formulate, and much more so to actually solve. Simulated annealing
proved to be the solution method of choice for this problem. Implementation was in C++
on a Unix workstation. The random changes to a current configuration involved arbitrarily
selecting two bid lines, then in each, selecting a trip (flight leg) and exchanging them. The
exchanges were accepted according to the usual probabilistic threshold until, as tempera-
ture parameters were lowered, there were no new changes accepted.

It is not especially surprising that FedEx analysts chose simulated annealing as their
optimization heuristic, nor that simulated annealing eventually served their needs suc-
cessfully. The real lessons to be learned here are first to notice how very awkward the
analysts found this real-world problem to be. The sheer number of constraints from
federal agencies, labor organizations, company resources, and normal crew preferences,
were a serious challenge that had not been adequately faced throughout the previous
20-year history of FedEx. Second, although simulated annealing appears on the surface
to be a relatively straightforward heuristic, the practical implementation presented sev-
eral hitches.

Some of the drawbacks of simulated annealing were anticipated. Performance is very
sensitive to the control parameters and the annealing (cooling) schedule. Extensive
experimentation was done to fine-tune the system, and the maximum number of
equilibrations was finally set to 300. Also, the heuristic can be fairly time-consuming
to execute and there is no guarantee of optimal solutions. And because it generates
potential changes randomly, it does not easily incorporate strategies for directed search.
Nevertheless, despite these obstacles, some of the analysts had prior experience in using
simulated annealing to solve problems in aircraft container loading and personnel and
task scheduling, and they had great confidence in this heuristic method. Yet unantici-
pated difficulties followed.

The heuristic tended to produce too few valid lines and too much unassigned open time.
This was remedied by tacking on a greedy algorithm (as a second pass after simulated
annealing) to distribute open time into new lines (without modifying the high quality
lines built during the annealing phase).

422 Operations Research

It was discovered that the initial heuristic did not give proper consideration to coordina-
tion of morning and afternoon trips, an important element in the minds of the pilots. The
introduction of weighting factors addressed this problem satisfactorily.

One surprising observation was the critical importance of the initial solution in the
behavior of the simulated annealing algorithm, which had previously been thought to be
irrelevant and arbitrary. It became necessary to jumpstart the process by concocting initial
lines by putting trips to the same first layover city on the same line, and making fewer
lines.

There were other problems as well. The bid line generator was first built for the FedEx
Boeing 727 fleet of aircraft. When initial implementations seemed stable, additional fleets
were introduced, but the process then immediately yielded poor results. The problem was
studied, and analysts found that the difficulty lay in the fact that different types of aircraft
flew different length trips. When the process was tuned in favor of shorter trip aircraft
such as Boeing 727 and DC10, the longer Boeing 747 flight legs became problematic. The
solution to this issue involved some fundamental changes to the simulated annealing pro-
cess based on categorizing the fleet according to average trip lengths.

It was also recognized along the way that the system needed additional data about its
trips and lines that simply were not readily available. And some data files were found to
be erroneous. A time consuming effort to upgrade the underlying databases proved neces-
sary and beneficial, and taught the analysts to be extremely cautious about blindly assum-
ing that input data files are complete and free of errors.

Finally, in this implementation, the simulated annealing process did not always con-
verge at all. The churning behavior resulted when proposed changes having a net cost of
zero were accepted, and the phenomenon was worst when a large proportion of the pro-
posed changes had no impact on the objective function value but nevertheless involved
complicated changes to the bid lines being constructed. No direct solution to this difficulty
ever materialized, and the analysts viewed this as evidence of the limitations of any heu-
ristic method in solving very complex real-world combinatorial problems.

Run times for the simulated annealing heuristic vary with fleet size, requiring 30 min-
utes for the smaller fleets and up to 10 hours of SPARCstation time for the largest (Memphis
based) fleet. Churning can affect all of these run-times.

FedEx generally considers this system to be a valuable and practical analytical tool,
which can automatically produce bid lines of a quality comparable to those produced
laboriously by other methods. As is typical of many heuristic methods, simulated anneal-
ing clearly cannot build a tidy solution out of a messy problem, but it does appear to be
a practical tool for effectively handling problems that heretofore could not be dealt with
at all.

10.10.2 Ecosystem Management Using Genetic Algorithm
Heuristics (Hughell and Roise 1995)

Managing a forest with the aim of profitable timber production and wildlife preserva-
tion is a good example of a multi-objective problem, in an environment of uncertainty,
for which no single conventional optimization technique is adequate. A decision support
system developed for ecosystem management in a North Carolina pine forest couples a
wildlife behavior simulation model with an integer programming model that is solved
using a genetic algorithm.

Foresters in the Croatan National Forest needed to address the question of how best to
manage a 3,000-hectare region to sustain a dependable flow of timber while not destroying

423Heuristic and Metaheuristic Techniques for Optimization

the foraging territories and nesting sites of the endangered red-cockaded woodpecker spe-
cies. Conventional management schemes are typically based on optimal activity schedules;
but in this case, the planning horizon covered 20-year harvesting cycles over a period of
up to 200 years, during which there would be considerable environmental uncertainty
as well as normal periodic re-evaluation. A strictly optimal harvesting schedule could
easily become infeasible over time. What was needed was a decision support system that
permits flexibility and presents a selection of good harvest schedules that could still be
implemented in the face of environmental changes.

Stochastic wildlife group behavior simulation models have become valuable tools in the
study of wildlife species viability. The red-cockaded woodpecker (RCW) model involves
groups of individual birds having given attributes and foraging and breeding character-
istics in five year cycles. The complex behavioral activities of RCW groups are abstracted
down to fit into a lattice of 4-hectare forest landscape stands. Nesting and foraging suit-
abilities are calculated at the beginning of the cycle, and then simulations are carried out
to determine the probabilities of various eventualities, including:

• Migration or mortality of RCW groups with inadequate or unsuitable foraging
and nesting resources.

• Sharing of landscape by multiple groups of RCW.
• RCW group splits.
• Successful breeding and nesting.
• RCW extinction.

Simulation results are stored for subsequent incorporation into the larger decision process.
The timber stand model covers successive 20-year cycles of harvesting and regenera-

tion. Details of the model include appropriate intermediate cuts, understory management
through controlled burns, and primary stand harvests (which leave around 15 trees per
hectare, 6 trees per acre). The overall management decision is the selection of a harvest
schedule that maximizes the minimum timber volume harvested in any one management
period and that supports the RCW proximity constraints. It is known that the optimal
stand age for timber production is around 60 years, while the optimal stand age for wood-
pecker foraging is over 100 years. To represent this apparent mismatch, buffers are defined
around each RCW nesting group, and parameters are introduced into the model to specify
the minimum harvest age inside the buffer and outside the buffer. Through these con-
straints, the harvest schedule can respond to changes in the location of RCW groups; and
herein lies the multi-objectivity of the optimization problem and the need for a feedback
management policy.

The most obvious way to solve a two objective problem is to perform a series of single-
objective optimizations with one objective fixed and the other optimized. Because neither
timber nor endangered wildlife are to be treated as fixed constraints in this ecosystem,
this traditional approach is not appropriate. Instead, varying the parameters in the RCW
proximity constraints permits the development of management policies that balance the
benefits for both timber production and woodpecker viability.

The resulting optimization model takes the form of an integer linear programming
problem. The problem was solved with a conventional branch-and-bound algorithm but
it was recognized that in the natural world of uncertainty and changing assumptions, the
concept of optimality may itself be problematic. The harvesting schedule deemed to be
optimal at one time may turn out to be infeasible in the long run.

424 Operations Research

To achieve the flexibility needed to make the decision support system workable, the
forest managers turned to the use of a genetic algorithm. The genetic algorithm heuris-
tic starts with a random set of feasible harvest schedules (a population of solutions) that,
based on their quality, are copied into the next generation. Genetic operations of crossover
and mutation take place, and then the process repeats. (Here, the quality of a solution is the
minimum one-period wood volume harvested, which is to be maximized.)

In this evolutionary algorithm, each feasible harvest schedule (i.e., each configuration of
decision variable values) is a chromosome, which is comprised of genes (decision variables asso-
ciated with individual stands), each of which is assigned an allele (a set of decision variable val-
ues prescribing a harvest schedule for the stand). After initially random schedules are created,
chromosomes are copied into the next generation in such a way that those of superior quality
contribute multiple copies at the expense of under-representation by those chromosomes with
inferior quality. Randomly chosen chromosomes are paired for crossover; and for each pair,
a certain percentage of the genes are selected and their alleles switched. Mutations occur as a
certain percentage of chromosomes are chosen and in each a randomly selected gene (stand) is
assigned an arbitrary feasible set of decision variable values (stand harvest schedule).

By allowing this genetic process to repeat over many generations, a population of good
harvest schedules is generated in a small fraction of the time that it takes a branch-and-
bound algorithm to generate a single optimal solution. Croatan National Forest managers
are convinced that a set of good choices, for a system fraught with uncertainty, is much
more valuable than one optimal solution whose feasibility may become suspect in a chang-
ing ecological environment. In this context, the set of stands chosen for harvesting in the
current management period is that set of stands represented in the largest number of good
harvest schedules in the evolved solution population.

The decision support system that incorporates the wildlife behavior model, the stand
characteristics, and the RCW proximity constraints together with the genetic heuristic
search process, identifies the best solutions and displays the critical solutions for which
an improvement in one objective (timber or woodpeckers) is gained only at the expense
of the other. As had been expected, those schedules specifying longer rotations support
larger populations of woodpeckers, while shorter rotations increase timber production.
Feedback at 20-year cycles allows for the selection of a harvest plan, followed by adjust-
ments to the RCW simulation model, followed by another timber harvesting decision,
repeated throughout the 200-year horizon.

The set of options produced by this system allows forest managers to dynamically
achieve a sustainable flow of timber production throughout the long planning horizon,
which can be modified in response to the requirements for successful co-existence with
wildlife. The system was developed in C++ with object oriented programming techniques,
and run on a PC prior to being ported to a workstation platform. The ORSYS Operations
Research System was used to obtain the branch-and-bound solutions.

10.10.3 Efficient Routing and Delivery of Meals on Wheels (Manikas et al. 2016)

Meals on Wheels America is an organization dedicated to combatting hunger and pov-
erty by delivering around a million prepared meals every day to individuals in need.
Apart from food preparation activities, the major challenge each day is to efficiently route
delivery vehicles to approximately 30 destinations per vehicle, deliver the appropriate
meals to each recipient, and return to the point of origin to return coolers and heaters
for use on the following day. Finding near optimal delivery routes is a complex problem

425Heuristic and Metaheuristic Techniques for Optimization

that is often addressed by using mathematical optimization tools such as CPLEX. But in a
low-budget humanitarian organization staffed in large part by volunteers, it is unrealistic
to incur the high cost of such tools, and to engage skilled and experienced analysts to
develop routing solutions.

Other humanitarian operations had previously created tools and efficient solutions such
as for scheduling and routing in home healthcare delivery programs. Transportation is
an expensive and critical aspect of humanitarian logistics and operations in general, and
indeed Meals on Wheels discovered its own similarities to other relief operations. These
organizations typically rely on volunteers who have various levels of abilities and quali-
fications, must operate with limited time and financial resources, are expected to provide
time-critical delivery of goods and services, and in practice often have only limited access
to technological support.

Meals on Wheels deliveries generally originate at an institutional kitchen. Specific loca-
tions for delivery are pre-determined and are roughly clustered according to neighborhood
proximity with at most 30 delivery points in a cluster for a given driver (the limitation being
due to space in the volunteer’s car and the need to get the fresh meals delivered in a timely
manner). Manually routing vehicles and preparing delivery instructions for individual driv-
ers is an extremely time-consuming process that must be completed for each day’s unique
pattern of deliveries. The vehicle routing problem encountered in delivering meals has been
recognized by operations researchers as a computationally difficult problem for which no
simple solution is known; dealing with such a challenge manually is far too time-consuming.

A local branch of Meals on Wheels in Boise, Idaho, wisely undertook to develop a much
more practical approach. An affordable solution was found through the use of a Microsoft
Excel spreadsheet and an Application Programming Interface (API) that connected older
personal computers at no cost to an existing Internet connection providing access to map-
ping services from MapQuest and Google. Researchers familiar with the old manual system
of delivering meals analyzed this system and made some recommendations for improving
efficiency of meal delivery. Excel spreadsheets were already available; Excel’s Visual Basic for
Applications was used to write programs to access mapping data and build a travel matrix to
store information about travel times and distances in the meal delivery area.

However, for the routing process itself, Excel’s Solver would have required customized
optimization models for each route. Instead the system was built so that a VBA proce-
dure could use publically accessible time and distance information from MapQuest and
Google. Researchers and analysts then developed customized code for a solver to provide
all the vehicle routing processes needed for meal delivery.

In the system developed, users are able to input the addresses for each day’s deliveries.
Then in preparation for vehicle routing, the system constructs an accurate and up-to-date
travel matrix that contains the travel time (or distance) between each possible pair of loca-
tions in the system. With the information from this matrix, the system then creates driving
information for all routes, that is, for all possible pairings of delivery stops. Finally, the
system applies a genetic algorithm to select for each vehicle the optimal or near optimal
route for that vehicle’s deliveries for the day.

The researchers created this genetic algorithm, customized to meet the requirements of
the meal delivery application. The algorithm was initialized with a population of chromo-
somes, encodings of possible routes consisting of a series of stops in the order to be visited.
Then through crossovers and mutations, alternative routes are chosen and evaluated with
the aim of identifying the route with the least driving time. A crossover is accomplished
by considering the next stop in the route represented by one parent and the corresponding

426 Operations Research

next stop in another parent, and then randomly (50% chance) choosing the next stop from
either parent. In this way a new offspring chromosome (route) is constructed with repre-
sentative components from each parent. Mutation occurs by selecting a chromosome and
exchanging two stops in the route sequence, thereby creating a slightly different chromo-
some representing a slightly different route driving time.

The best performance within the Meals on Wheels routing application was achieved by con-
ducting multiple runs of the GA process, each run starting with unique random initial popu-
lation of routes. Multiple runs of course require more computation time, but users agreed that
the increased wait time was reasonable in order to obtain a faster route for delivery of meals.

At this Meals on Wheels site, a centralized planning location coordinates kitchen
operations, special dietary needs of recipients and delivery logistics. Route coordinators
found this system simple and convenient to use, and route drivers found the driving
instructions to be accurate and easy to follow. With the application of this vehicle routing
system, route driving time reductions range from 2% to 27% for each route. Therefore
vehicle operating costs were substantially reduced, and volunteer driving commitments
were met more easily.

This application is organized into a comprehensive package for ease and convenience of
use. The delivery scheduling and routing system reviews the list of customers requesting
meals each day, and accordingly updates the list of stops to be made and the specific meals
to be delivered at each stop. It makes updates to mapping data related to delivery stop loca-
tions, optimizes the route using the GA algorithm, and finally automatically prints driving
directions to be given to each driver.

For a long route with 30 stops, the route sequencing and instruction generation takes
about 15 minutes which is a welcome improvement over the manual system in which route
coordinators spent over an hour every day planning a single route. The system continues
in use, and plans are underway for several enhancements, as well as sharing the system
with Meals on Wheels organizations in other localities.

10.11 Summary

Heuristic and metaheuristic techniques are efficient and practical methods that can be
used to find good (but not necessarily optimal) solutions to a wide variety of difficult com-
binatorial problems. Such techniques are employed to find acceptable solutions to prob-
lems, when otherwise the best-known algorithms for finding optimal solutions take far
too much computation time to be usable in practice or when problems are too complex to
model using the traditional methods.

The simplest of these heuristic methods operates by making local improvements to a fea-
sible solution, merely by rearranging randomly a few elements in the solution, to achieve
a slightly better feasible solution. While there are seldom any guarantees of reaching an
optimal solution in this way, remarkably good results can be obtained quickly with mini-
mal computational effort.

427Heuristic and Metaheuristic Techniques for Optimization

Heuristic techniques guided entirely by opportunities for improvement often con-
verge rapidly to a local optimal solution. To broaden the search in hopes of finding a
global optimum, metaheuristic techniques such as simulated annealing, genetic algo-
rithms, and tabu search rearrange the entities in the solution so that not only better
solutions but occasionally also worse ones are admitted. The algorithms for doing this
bear a resemblance to science based processes such as the process of annealing in
physical substances, or are inspired by nature such as the biological processes as we
have seen in genetic algorithms. Many more promising metaheuristics have emerged
in the last a few decades and have demonstrated effectiveness at solving challenging
problems.

Key Terms

annealing process
Boltzmann machine
capital budgeting
chromosome
constraint programming
constraint propagation
crossover
equilibration
genetic algorithm
greedy heuristic
heuristic methods
knapsack problem
local exchange heuristic
local improvement heuristic
local search
metaheuristics
mutation
parallel annealing
simulated annealing
sub-sequence reversal
tabu search
traveling salesman problem

428 Operations Research

Exercises

10.1 One of the recurring themes in Operations Research is how best to explore a
range of possible actions in pursuit of well-defined goals. The use of heuristic
search methods has been suggested. Define the term heuristic search. and indicate
why such methods are attractive.

10.2 Develop a local improvement technique for the knapsack problem described at
the beginning of this chapter.

 a. Design several possible methods for creating initial feasible solutions.
 b. Develop a method for computing the objective function value for a current

solution.
 c. Design an exchange or swap technique, using a random number generator

to select the items to be swapped. For each proposed exchange, compute the
new objective function to determine whether to accept the change. Decide how
many iterations of this exchange step you think would be necessary for a knap-
sack problem with n objects.

10.3 Implement your design in Exercise 10.2 by developing a computer program.
 a. Demonstrate the results by running your program on a problem instance with

n = 17 objects to be considered for a knapsack having a capacity of 3,876. The
weights and values of the objects are shown in Table 10.12.

 b. Try different numbers of iterations of the exchange process, such as 100,
1,000, and 10,000. Chart the improvements in the objective functions that take
place throughout the execution of your algorithm, and determine how many

TABLE 10.12

Knapsack Data

Object Number Object Description Weight Value

1 Life raft 800 900
2 Shark knife 050 550
3 Sun shades 010 475
4 Reef runners 240 850
5 Canteen 080 600
6 Iodine pills 350 350
7 OR book 738 900
8 Gnat spray 548 290
9 Nylon cord 310 500
10 Carrot cake 200 010
11 Firewood 300 800
12 Solar blanket 850 215
13 Dried apricots 490 285
14 Parachute 500 630
15 Space suit 300 320
16 Alien bane 480 850
17 Dry matches 150 400

429Heuristic and Metaheuristic Techniques for Optimization

iterations is a reasonable number. Would 1,000,000 iterations improve the qual-
ity of solution obtained by your algorithm?

10.4 Reconsider Exercise 10.2b. Is it necessary to recompute the objective function at
each local improvement step? Refine your program so that objective function re-
evaluations are as simple as possible.

10.5 Design and implement an algorithm that exhaustively enumerates all feasible
packings of n objects in a knapsack having a given capacity. Use the results
obtained from this algorithm as a benchmark to gauge the quality of the solutions
generated by your exchange heuristic.

10.6 Design a simulated annealing heuristic algorithm for the knapsack problem. Use
your local improvement exchange heuristic, and modify it so that it probabilisti-
cally accepts bad exchanges.

 a. Design a cooling schedule for your algorithm. What should be the initial tem-
perature parameter? By what amount should this parameter be reduced after
each equilibration? At what temperature should the annealing process cease?

 b. Apply your algorithm to the knapsack problem data shown in Table 10.12.
 c. How many exchanges actually take place at each temperature? How many

exchanges take place at the coolest temperature?
10.7 Compare the local improvement heuristic and the simulated annealing heuristic

on the basis of the computation time required for each method to execute and the
quality of the solutions obtained by each method.

10.8 Design a local improvement heuristic technique for solving the traveling sales-
man problem described at the beginning of this chapter. For purposes of this
exercise, assume that we wish to find the least costly tour from city 1 through all
the other cities and back to city 1.

 a. Design a method for establishing an initial tour.
 b. Develop a method for computing the objective function for a given tour.
 c. Design a swap or exchange mechanism for local improvements, involving just

two cities. After each proposed exchange, compute the change in the objective
function value.

10.9 Implement your traveling salesman problem heuristic, and apply it to the prob-
lem instance with n = 10 cities, in which the cost of traveling from city i to city
j is shown as the entry in the i-th row and j-th column of the following cost (or
distance) matrix.

0 99 45 55 10 15 86 90 33 41
97 0 10 15 18 93 56 23 84 75
88 22 0 35 46 57 68 79 99 90
75 64 53 0 14 63 74 77 54 20
32 53 64 86 0 97 94 91 90 10
24 35 46 57 68 0 98 96 95 99
55 79 26 10 96 65 0 35 49 22
30 50 80 50 86 53 81 0 28 65
35 57 26 11 14 76 25 89 0 30
40 50 60 23 41 11 18 90 47 0

430 Operations Research

10.10 Modify your traveling salesman heuristic, replacing the exchange mechanism by
a subtour reversal mechanism. Use a random number generator to select the end-
points of a subtour of cities, and then create a new tour with that subtour reversed.
Compute the objective function value associated with this new tour, and accept
the new tour if it is an improvement over the previous one.

10.11 Extend your algorithms from Exercises 10.9 and 10.10 to include possible accep-
tance of a new tour having a worse objective function value than that of the previ-
ous tour.

 a. Design a cooling schedule for this simulated annealing method.
 b. Determine the other operational parameters necessary to complete an imple-

mentation of simulated annealing for the traveling salesman problem.
10.12 Write a computer program that exhaustively enumerates all feasible traveling

salesman tours.
 a. Apply this algorithm to the ten-city problem data given in Exercise 10.9.

Compare the quality of solutions and the computation time performance
characteristics of your exchange heuristic, your implementation of simulated
annealing, and the complete enumeration algorithm.

 b. Estimate the amount of time your exhaustive enumeration method would
require to find the optimal tour among 100 cities.

10.13 Collect or create data for a large routing problem that involves approximately
100 locations. For example, consider routing delivery trucks, ordering the pick-
ups and deliveries in a campus mail or courier service, or sequencing the safety
inspection sites in a large complex of buildings. Construct the 100 × 100 matrix of
distances. This problem is significantly larger than the 10-city problem addressed
in previous exercises. Experiment with your local improvement and simulated
annealing programs to determine how effectively and efficiently they solve this
larger problem.

References and Suggested Readings

Aarts, E., and J. Korst. 1989. Simulated Annealing and Boltzmann Machines: A Stochastic Approach to
Combinatorial Optimization and Neural Computing. New York: John Wiley & Sons.

Aarts, E., and J. K. Lenstra. 1997. Local Search in Combinatorial Optimization. Chichester, UK: John
Wiley & Sons.

Anily, S., and A. Federgruen. 1985. Probabilistic analysis of simulated annealing methods.
Preprint. Technical Report, Graduate School of Business. New York: Columbia University,
pp. 289–304.

Burke, E. K, and G. Kendall. 2014. Search methodologies: Introductory Tutorials in Optimization and
Decision Support Techniques, 2nd ed. New York: Springer.

Campbell, K. W., R. Bret Durfee, and G. S. Hines. 1997. FedEx generates bid lines using simulated
annealing. Interfaces 27 (2): 1–16.

Carter, M. W., and C. C. Price. 1988. Local Improvement Heuristics. Toronto, Canada: Department of
Industrial Engineering, University of Toronto.

Coughlin, J. P., and R. H. Baran. 1995. Neural Computation in Hopfield Networks and Boltzmann Machines.
Newark, NJ: University of Delaware Press.

431Heuristic and Metaheuristic Techniques for Optimization

Darwin, C. 1859. On the Origin of Species by Means of Natural Selection, or Preservation of Favoured Races
in the Struggle for Life. London, UK: Murray.

Du, K.-L., and M. N. S. Swamy. 2010. Search and Optimization by Metaheuristics: Techniques and
Algorithms Inspired by Nature. Cham, Switzerland: Springer International Publishing AG.

Ferreiro, A. M., J. A. García, J. G. López-Salas, and C. Vázquez. 2013. An efficient implementation of
parallel simulated annealing algorithm in GPUs. Journal of Global Optimization 57 (3): 863–890.

Garcia, C., and G. Rabadi. 2011. A meta RaPS algorithm for spatial scheduling with release times.
International Journal of Planning and Scheduling 1 (1–2): 19–31.

Gendreau, M., and J.-Y. Potvin. 2010. Handbook of Metaheuristics, Vol. 2. New York: Springer.
Glover, F., and M. Laguna. 1997. Tabu Search. Boston, MA: Kluwer Academic.
Glover, F. 1989. Tabu search part I. ORSA Journal on Computing 1 (3): 190–206.
Glover, F. W., and G. A. Kochenberger. 2006. Handbook of Metaheuristics, Vol. 57. New York: Springer

Science & Business Media.
Goldberg, D. E. 1994. Genetic and evolutionary algorithms come of age. Communications of the ACM

37 (3): 113–120.
Goldberg, D. E, K. Deb, and J. H. Clark. 1992. Genetic algorithms, noise, and the sizing of popula-

tions. Complex Systems 6: 333–362.
Goldberg, D. E., and J. H. Holland. 1988. Genetic algorithms and machine learning. Machine Learning

3 (2): 95–99.
Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA:

Addison-Wesley.
Hentenryck, P. V., and L. Michel. 2009. Constraint-based Local Search. Cambridge, UK: The MIT press.
Holland, J. H. 1975. Adaption in Natural and Artificial Systems. Ann Arbor, MI: The University of

Michigan Press.
Hughell, D. A., and J. P. Roise. 1995. Spatially explicit multi-objective analysis for timber and wild-

life. Quantitative Tools for Wildlife Analysis and Management Working Group at the SAF National
Convention, Portland, ME.

Kaplan, S., and G. Rabadi. 2013. A simulated annealing and meta-raps algorithms for the aerial refu-
eling scheduling problem with due date-to-deadline windows and release time. Engineering
Optimization 45 (1): 67–87.

Kirkpatrick, S. 1984. Optimization by simulated annealing: Quantitative studies. Journal of Statistical
Physics 34 (5): 975–986.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by simulated annealing. Science
220 (4598): 671–680.

Lin, S., and B. W. Kernighan. 1973. An effective heuristic algorithm for the traveling-salesman prob-
lem. Operations Research 21 (2): 498–516.

Lucas, R. A., and C. C. Price. 1992. Neural Computing Models and Parallel Simulated Annealing for
Quadratic Assignment Problems. Nacogdoches, TX: Stephen F. Austin State University.

Lundy, M., and A. Mees. 1986. Convergence of an annealing algorithm. Mathematical Programming
34 (1): 111–124.

Manikas, A. S., J. R. Kroes, and T. F. Gattiker. 2016. Metro meals on wheels Treasure Valley employs
a low-cost routing tool to improve deliveries. Interfaces 46 (2): 154–167.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953. Equation of
state calculations by fast computing machines. The Journal of Chemical Physics 21 (6): 1087–1092.

Moraga, R. J. 2016. Metaheuristic for randomized priority search (Meta-RaPS): A tutorial. In Heuristics,
Metaheuristics and Approximate Methods in Planning and Scheduling. Cham, Switzerland: Springer,
pp. 95–108.

Price, C. C., and L. A. Wahsheh. 1999. Cascaded Boltzmann machines for combinatorial optimiza-
tion. Proceedings of the 4th Multiconference on Systemics, Orlando, FL.

Rabadi, G., R. J. Moraga, and A. Al-Salem. 2006. Heuristics for the unrelated parallel machine sched-
uling problem with setup times. Journal of Intelligent Manufacturing 17 (1): 85–97.

Reeves, C. R. 1997. Genetic algorithms for the operations researcher. INFORMS Journal on Computing
9 (3): 231–250.

432 Operations Research

Resende, M. G. C., and C. C. Ribeiro. 2003. Greedy randomized adaptive search procedures. In
F. Glover and G. Kochenberger (Eds.), Handbook of Metaheuristics. Dordrecht, the Netherlands:
Kluwer Academic Publishers, pp. 219–249.

Santé, I., F. F. Rivera, R. Crecente, M. Boullón, M. Suárez, J. Porta, J. Parapar, and R. Doallo. 2016.
A simulated annealing algorithm for zoning in planning using parallel computing. Computers,
Environment and Urban Systems 59: 95–106.

Siarry, P. (Ed.). 2016. Metaheuristics, 1st ed. Cham, Switzerland: Springer.
Sivanandam, S. N., and S. N. Deepa. 2007. Introduction to Genetic Algorithms. Berlin, Germany:

Springer Science & Business Media.
Taillard, E. 2016. Tabu search. In Metaheuristics. Cham, Switzerland: Springer, pp. 51–76.
Wang, C., D. Mu, F. Zhao, and J. W. Sutherland. 2015. A parallel simulated annealing method for the

vehicle routing problem with simultaneous pickup–delivery and time windows. Computers &
Industrial Engineering 83: 111–122.

433

Appendix: Review of Essential
Mathematics—Notation, Definitions,
and Matrix Algebra

A.1 Vectors

A vector is generally considered to be a quantity having both magnitude and direction.
In some cases, it is convenient to think of a vector as a line segment beginning at the origin
of an n-dimensional rectangular coordinate system and terminating at a point in the n-space.
The components, or elements, of the vector are the projections of the vector onto each of the
coordinate axes. These projections form an n-tuple and completely describe the vector.

More typically, a vector is described simply as a point X in n-space and is denoted as

 X (x , x , x)1 2 n= …

The set of all possible points, or n-tuples of real numbers, forms the real n-space, which is
denoted by Rn.

If X = (x1, x2, …, xn) and Y = (y1, y2, …, yn) are vectors in Rn, then the sum X + Y is an
n-dimensional vector defined as

 X Y (x y , x y , , x y)1 1 2 2 n n+ = + + … +

A vector X can be multiplied by a real number scalar a to obtain

 α α α αX = x , x , , x1 2 n…()
A vector space over the set of real numbers is a set of vectors for which addition and scalar
multiplication are defined. Additionally, the operations in the vector space must satisfy a
certain set of axioms, including commutative, associative, and distributive laws. The set of
vectors must include an identity element, that is, the zero vector (0, 0, …, 0); and for every
vector X, there must be an inverse –X, for which X + (–X) is the zero vector.

A vector Y is a linear combination of vectors X1, X2, …, Xn if it can be expressed as

 Y X X X1 1 2 2 n n= + +…+α α α

where the αi are real numbers.
An n-dimensional vector space is said to be spanned by the set of vectors {X1, X2, …, Xn}

if every vector in the space is some linear combination of X1, X2, …, Xn. The set {X1, X2, …,
Xn} is then called a spanning set for the vector space.

A set of vectors {X1, X2, …, Xn} is linearly independent if no one vector can be expressed
as a linear combination of the other vectors in the set; that is, if the equation

 α α α1 1 2 2 n nX X X = 0+ +…+

434 Appendix

can be satisfied only by setting all the αi equal to zero. A set of vectors that is not linearly
independent is linearly dependent. For example, two non-zero vectors X1 and X2 are lin-
early dependent if one of them is a non-zero scalar multiple of the other one; that is, if
α1X1 + α2X2 = 0 for some scalars α1 and α2 not both zero.

A set of vectors {X1, X2, …, Xn} is a basis for an n-dimensional vector space if the set
spans the space and is linearly independent. The standard basis of an n-dimensional
space consists of a set of unit vectors that comprise a basis; that is, a set of vectors in which
the i-th vector ui has a 1 as the i-th element and zeros in all other positions. This standard
basis is useful because of its simplicity and because of its obvious role as a basis for an
n-dimensional vector space.

A.2 Matrices and Matrix Operations

A real matrix is a rectangular array of real numbers. Subscripts, such as i and j, can be used
to index the rows and columns, respectively. A matrix A of m rows and n columns is called
an m × n (“m by n”) matrix and is written as:

A (a)

a a a
a a a

a a a

ij

11 12 1n

21 22 2n

m1 m2 mn

= =



















…
…

…
� � �

where aij denotes the element in the i-th row and the j-th column. Any matrix A can be
multiplied by a scalar α with the result that every element aij in A becomes the value αaij
in the scalar product matrix.

Two matrices Am×n and Bp×q can be added if m = p and n = q. The sum C = A + B is a
matrix Cm×n in which the element cij is computed as (aij + bij). Two matrices Am×n and Bp×q
may be multiplied if n = p. The product C = AB is defined to be a matrix Cm×q in which the
element cij is computed as:

c a bij ik kj

k

n

=1

= ∑

For the special case in which m = q = 1, we actually have just the product of two vectors.
This product is called the inner product or dot product, and the dot product of two
 vectors X = (x1, x2, …, xn) and Y = (y1, y2, …, yn) is denoted and defined by:

 X Y x y x y x y()1 1 2 2 n n• = + + … +

which is consistent with the definition of general matrix multiplication.

435Appendix

Matrix addition and multiplication exhibit some of the properties of real arithmetic
operations. For example, for matrices A, B, and C, the following properties hold:

A + B = B + A
A + B + C = A + (B + C)

A (B + C) = AB + AC
()

(AAB C = A(BC))

However, note that, in general, matrix multiplication is not commutative, so AB ≠ BA in
general, and in fact these products may not even exist.

The transpose of an m × n matrix A is the n × m matrix AT obtained by interchanging
the roles of the rows and columns in A. Thus, if A is the matrix shown earlier, then AT is
the matrix whose elements have the same values as those in A, but arranged in the form

a a a
a a a

a a a

m

m

n n mn

11 21 1

12 22 2

1 2

�

� � �
�

…


















Reversing the roles twice simply yields the original matrix, so for any matrix A, (AT)T = A.
For example, the following two matrices are the transpose of each other:

3 2 4
7 1 5

3 7
2 1
4 5



























A property of matrix multiplication and transposition is that (AB)T = BT AT.
A square matrix is one for which m = n. The main diagonal of a square matrix A is the

set of elements aij for which i = j, that is, a11, a22, …, ann. An n × n matrix A is symmetric
about the main diagonal if every element aij is equal to the element aji. A square matrix A
is triangular (or upper triangular) if all the elements below the main diagonal have value
zero; that is, aij = 0 for all i > j. For example, the following matrix is upper triangular:

4 6 2 5
0 7 1 2
0 0 4 3
0 0 0 8



















A matrix is lower triangular if all the elements above the main diagonal have value zero.
The identity matrix I is an n × n matrix whose columns are the standard basis, and

in which the i-th column contains the i-th unit vector. The identity matrix contains ones
along the main diagonal (aii = 1 for all i) and zeros elsewhere (aij = 0 for all i ≠ j). This
matrix has the property that AI = IA = A for any n × n real matrix A.

436 Appendix

The rank of a matrix A is the number of linearly independent rows (or columns) in A,
and is denoted as rank (A). A square matrix An×n having rank n (full rank) is called a non-
singular matrix.

A square matrix A may have an inverse matrix A–1 such that AA–1 = A–1A = I. Such an
inverse exists if and only if rank (A) = n (or equivalently, if and only if A is non-singular),
and in that case, the inverse A–1 is unique. The inverse of the inverse of a matrix A is the
original matrix A; thus, (A–1)–1 = A. And if two matrices A and B have inverses A–1 and B–1,
respectively, then

 ()AB B A1− − −= 1 1

A.3 Linear Equations

A set of m linear equations in n variables is expressed as

a x a x a x b

a x a x a x b

a x a

11 1 12 2 1n n 1

21 1 22 2 2n n 2

m1 1 m2

+ +…+ =

+ +…+ =

+

  

xx a x b2 mn n m+…+ =

The coefficients of the variables can be written as a matrix A, where

A
a a a

a a a

n

m1 m mn

=
















…

…

11 12 1

2

   

The variables and right-hand sides of the equations can be written as column vectors, thus,
X = (x1, x2, …, xn) and b = (b1, b2, …, bm). In this context, the matrix A can be viewed as an
operation or transformation on the vector X, yielding the resulting vector b. This can be writ-
ten as AX = b, and has the same meaning as the set of linear equations depicted earlier.

A solution to this set of linear equations is any vector X that satisfies the equations
AX = b. A unique solution to a set of m independent linear equations in n variables exists
if m = n and if the inverse of A exists. If m > n, there may be no solution. And if m < n,
there are infinitely many solutions.

Techniques for solving a system of linear equations may involve the use of so-called
elementary row operations on the equations. The application of any of the following row
operations yields an equivalent system of equations and may simplify the solution process:

• Any two rows (equations) may be interchanged.
• Any row (equation) may be multiplied by a non-zero constant.
• Any row (equation) may be added to any other row (equation).

437Appendix

When m = n, if it is possible to transform the matrix of coefficients A into a triangular
matrix by performing elementary row operations, then the system can be solved easily. For
example if the system of equations appears as

a a a
a a

a a

a

xn

n

n

mn

11 12 1

22 2

33 3

0
0 0

0 0 0

…

…

…























� �

11

2

3

1

2

3

x
x

x

b
b
b

bn m

� �























=























then we know that amn · xn = bm, so we can easily find a value for xn. Using this, we can then
solve for xn-1 in the next to the last equation, and so on until finally we have a value for x1.

An alternative approach to the solution process is to create an augmented matrix B con-
sisting of the coefficient matrix A with one additional column containing the elements bi.
Then this new matrix B is an m row by (n + 1) column matrix, and each row of B represents
one equation of the system of equations. Next apply the necessary elementary row opera-
tions to B that transform the original A portion of B into the identity matrix I. This will
have the effect of causing the b portion of B to be transformed into a vector representing
the solution to the system of equations.

A.4 Quadratic Forms

Let An×n be a symmetric matrix, and X be an n-element vector. The function f(X) defined as

 f(X) = X AXT

is called a quadratic form. Since XT is of order 1 × n and A is n × n and X is n × 1, the
product

x , x , , x
a a a

a a a

x

x
1 2 n

11 12 1n

n1 n2 n

1

nn

…
…

…
[]






















 











exists and can be computed. Clearly, f(X) is a scalar value, and can be written as

f(X) = a x xij i j

j

n

i 1

n

==
∑∑

1

Thus, f(X) is a sum of quadratic terms, and hence the name quadratic form.
In this context, the matrix A has one of the following characteristics:

Positive definite: If f(X) > 0 for all X ≠ 0
Positive semidefinite: If f(X) ≥ 0 for all X and there exists an X ≠ 0 for which f(X) = 0

438 Appendix

Negative definite: If f(X) < 0 for all X ≠ 0
Negative semidefinite: If f(X) ≤ 0 for all X and there exists an X ≠ 0 for which f(X) = 0
Indefinite: If none of the above

References and Suggested Readings

Cheney, W., and D. Kincaid. 2012. Linear Algebra; Theory and Applications, 2nd ed. Burlington, MA:
Jones and Bartlett Learning.

Forbes, C., M. Evans, N. Hastings, and B. Peacock. 2010. Statistical Distributions, 4th ed. Hoboken, NJ:
John Wiley & Sons.

Hadi, A. S. 1996. Matrix Algebra as a Tool. Belmont, CA: Duxbury Press.
Jennings, A. 1977. Matrix Computation for Engineers and Scientists. New York: John Wiley & Sons.
Kincaid, D., and W. Cheney. 2002. Numerical Analysis: Mathematics of Scientific Computing, 3rd ed.

Providence, RI: American Mathematical Society.
Shiskowski, K. M., and Frinkle, K. 2011. Principles of Linear Algebra with Mathematica. New York: John

Wiley & Sons.

439

Index

Note: Page numbers followed by f and t refer to figures and tables respectively.

A

Absorbing chain, 267–271, 268f, 269f
Absorbing state, 261
Absorption probability, 268
Accumulated round-off error, 9
Active node, 169
Activity, 133
Activity, slack time, 136
Acyclic graph, 120
Adjacent extreme points, 39
Adjustment, 372
AIMMS programming language, 13
AIMMS software, 201
Aircraft and munitions procurement, 72–73
Airline crew scheduling, 198, 160
Algebraic modeling languages, 12
Algorithm, 5
Allais Paradox, 368, 369f
All-pairs shortest path problem, 123
AMPL programming language, 12
Analytica software, 379
Analytic solver platform, 379
Anchoring, 372–373
Annealing process, 400–401
Annealing schedule, 401, 403
AnyLogic software, 327
Aperiodic state, 263
Applications, network analysis, 142

cotton production, 143–144
DNA sequence, 142
multiprocessor network traffic scheduling,

142–143
Arcs, 90
ARENA software package, 326–327, 330
Arrival and service patterns, queueing models

birth-and-death processes, 290, 290f
exponential distribution, 288–290, 289f

Artificial variables, 46
Assembly line loading, 330
Assignment problem, 109, 136, 164
Attributes, simulation model, 314
Automated manufacturing systems, 303
Automatic correction, 378

Average bed occupancy level, 300
Average case performance, algorithm, 7

B

Backtracking, 172
Backward arc, 90
Balancing rotor systems, 241
Balking behavior, queues, 286
Banana function, 244
Bang for buck, 186
Basic feasible solutions, 39
Basic solution, 39
Basic variables, 39
Bayes rule, 354
Beale’s method, 233
Best case performance, algorithm, 7
BFGS update formula, 229
Bid-line generator, 420–422
Big-M method, 47
Big-Oh notation, 7
Binary/Boolean constraints, 159
Binary integer programming problem, 159
Binding constraints, 44
Bin packing, 162–163
Bipartite graph, 90
Birth-and-death process model, 290, 290f
Boltzmann machine, 407
Boltzmann probability factor, 401, 402f
Bounding strategies, 174–175, 175f
Branch-and-bound, 165

active node, 169
basic, 169
bounding strategies, 174–175, 175f
branching strategies, 172–173, 173f
current incumbent solution, 165
fathomed, 166
impact of model formulation, 175–177, 177f
Knapsack, 169–171, 171f
method to commercial code, 171–177
real numbers representation, 177
separation rules, 175
subproblems separation, 167f

440 Index

Branch-and-bound tree, 168
Branching strategies, 172–173, 173f
Bucking, 204
Bulk queues, 286

C

Capacitated transshipment problem, 114–116
Capacity planning, 161
Capital budgeting problem, 159, 405, 405t
Cargo loading problem, 159
Catastrophic elements, 274
Certain Monetary Equivalent (CME), 360
Chain, 90
Chance fork, 351–352
Channels, 287
Chilean forestry industry, 204–205
Chosen variable, 41
Chromosome, 409–410
Churning behavior, 422
Class NP problems, 6
Class P problems, 6
Closed set of states, 261
CME (Certain Monetary Equivalent), 360
Coding simulation, 313
COIN-OR (Computational Infrastructure for

Operations Research), 141, 238, 420
Collecting data, 324
Column-generation, 204
Combinatorial optimization problem,

395–396, 401
Complementary slackness, 59, 60
Complete bipartite graph, 90, 91f
Complete ignorance, 344
Computational Infrastructure for Operations

Research (COIN-OR), 10–14
Computer allocation problem, 127–130, 127t,

128t, 129f
Concave function, 219, 220f
Concavity, 219–220, 222, 231
Conjunctive constraints, 417
Connected graph, 90
Constraint programming, 417
Constraint propagation, 418
Constraints, 23
Continuous-time stochastic process, 249–250
Conventional simulated annealing, 407
Convex function, 219, 220f
Convex hull, 179f
Convexity, 219–220, 222, 231
Convex region/set, 220–221
Cooling schedule, 401, 403

Cost efficiency/service quality in hospitals,
300–302

Cover, 182
Cover inequality, 180–186
CPLEX, 201
CPM (Critical Path Method), 133
Crash completion time, 137–138
Crash cost, 137–138
Crashing, 66, 137
Crash limit, 138
Critical activities, 135, 136
Critical events, 136
CritiCall, province-wide system, 302
Critical path, 135
Critical Path Method (CPM), 133
Crossover process, 409–410, 425
Current incumbent, 165
Cut set/cut, 91
Cutting plane, 179
Cutting stock problems, 198
Cycle, 90
Cyclic path, 90

D

Dairy farming, Markov processes in, 275–276
Decision analysis, 341

decision-making process, 341–344, 370–378
decision trees, 350–358
game theory, 345–350
investment decisions and petroleum

exploration risk, 383–385
minimizing costs in maritime industry,

379–381
radioactive waste management, 383
refinery pricing under uncertainty,

381–383
software for, 378–379
utility theory, 358–370

Decision fork, 350–352
Decision-making process, 4, 341–344

anchoring and adjustment, 372–373
availability, 372
dissonance reduction, 373
elements, 342
framing effect, 374–375
versus gambling, 359, 361f
irrational, 344
irrational human behavior, 377–378
probability, misconceptions, 370–371
psychology, 370–378
sunk cost fallacy, 376–377, 376f, 377f

441Index

Decision problem, 362, 362f
Decision simulator, 378
Decision strategy, 352
Decision support system (DSS), 381

development and implementation, 380
in maritime industry, 379–381
operations, 381
uses, 380

DecisionTool Suite software, 379
Decision tree, 350–358, 351f

market survey, 353f
pessimistic estimation, 357f
survey information, 355f
uses, 358
utilities, 365f

Decision variables, 130, 342
Degeneracy, 50
Degenerate solution, 53–55
Degree of node, 90
Degrees of freedom, 39
Dependent elements, 274
DES (Discrete Event Simulation), 333
DFP method, 229
Dijkstra’s algorithm, 121
Dinic’s method, 97
Directed chain, 90
Directed graph, 90
Directed tree, 91f
Discrete Event Simulation (DES), 333
Discrete manufacturing systems, 302
Discrete simulation models, 313–314

event-driven models, 314–317, 316t
generating random events, 317–321,

320f, 320t
Discrete-time stochastic process, 249–250
Disjunctive constraints, 417
Dissonance, 373
Dissonance reduction, 373
Dominance, 345
Down penalty, 174
DPL software, 379
DSS (decision support system), 381
Duality analysis, 56
Duality property, 57–60
Dual problem, 56
Dual Simplex method, 67
Dynamic memory allocation techniques,

273–274, 274f
Dynamic programming, 125–126

decision variables, 130
hazardous waste disposal routes, 126f
minimum delay path, 127f

multi-stage decision making, 126–127
objective function, 130
principle of optimality, 130

E

Earliest time, 135
Edges/links/branches, 90
Efficient portfolio, 234–235
Einstein, A., 313
Ellipsoid method, 68
Employee scheduling problem, 159
EMV (expected monetary value), 351–352, 358
Encoding mechanism, 409
Entering variable, 41
Entities, simulation model, 314
Entrapment behavior, 377
Equality constraints, 229–230
Equilibration process, 402
Ergodic Markov chain, 263
Erlang, A. K., 285
Eurotunnel Folkestone terminal, simulation,

331–332
Event-driven models, 314–317, 316t
Event in simulation, 314

chronological sequence, 317t
clock times, 316t
generating random, 317–321, 320f, 320t

Evolutionary distance, 142
EVPI (expected value of perfect information),

356, 356f
Examination timetabling problem, 160
Excessive delay probability, 304–305
Expected monetary value (EMV), 351–352, 358
Expected project duration, 140
Expected recurrence time, 266
Expected time, 140
Expected value of perfect information (EVPI),

356, 356f
Experimental design, 313
Exponential density function, 288
Exponential distribution, 288–290, 289f
Exponential service times, 290
Exponential-time algorithms, 6
Extreme points, 31, 39

F

Face/facet, 178
Feasible space/feasible region, 30
Federal Express (FedEx), 420–422
Feedback, 378

442 Index

FHEs (Flight Hardware Elements), 333
Fibonacci method, 225
FIFO (first-in, first-out), 287
Finite state Markov chain, 250
Finnish Air Force fleet maintenance, 328–329
First-in, first-out (FIFO), 287
First passage probability, 259–261
First passage time, 265–267
First recurrence time, 265
Fixed charge problem, 161
Flexible manufacturing systems, 303
FlexSim software, 327
Flight crew, 160
Flight Hardware Elements (FHEs), 333
Flight legs, 160
Flow, 91
Flow balancing equations, 292
Folding back, 352
Ford-Fulkerson labeling algorithm, 93
Forward arc, 90
Forward pass, 135–136
Framing effect, 368, 374–375
Frontline Solvers software, 238
Fundamental matrix, 269

G

GA (genetic algorithm), 399, 409–414
Gambler’s fallacy, 370
Game theory, 345

Hurwicz principle, 346–347
Laplace principle, 346
maximax strategy, 346
maximin strategy, 345–346
Savage minimax regret, 347–350

GAMS programming language, 13
Gasoline blending systems, 239–240
Gate, 351
GEM-FLO (Generic Simulation Environment

for Modeling Future Launch
Operations), 333

General Activity Simulation Program
(GASP), 326

General constraints, initial solution, 46
artificial variables, 46–47
Big-M method, 47
infeasible origin, 50f

General integer programming problems, 159
Generalized assignment problem, 164–165,

192–194
Generalized Reduced Gradient (GRG2), 236
General recursive method, 130–132, 131t
General solution method, 36

Generic Simulation Environment for
Modeling Future Launch Operations
(GEM-FLO), 333

Genetic algorithm (GA), 399, 409–414
ecosystem management using, 422–424
generation, 412t, 413t
initial population, 411t
mating pool, 411t, 412t, 413t

Geographic Information System (GIS), 141
Global maximum, 218–219
Global minimum, 218, 220
Global Positioning System (GPS), 141
GNU Octave programming language, 299
Golden section method, 225
Gomory fractional cut, 180
Google-OR Tools, 141, 202
GPS (Global Positioning System), 141
GPSS (General Purpose Simulation System), 326
Gradient method, 225–228
Gradient search procedure, 225
Grape processing, 73–74
Graph, 90, 90f
Graphical solution, linear programming model,

30, 31f
definition, 30
extreme points, 31
multiple optimal solutions, 33–34, 33f
no feasible solution, 35–36, 36f
no optimal solution, 34–35, 35f
unbounded feasible region, 32f

Greedy algorithms, 116
Greedy heuristics, 397–398
GRG2 (Generalized Reduced Gradient), 236
Gurobi Optimization problem, 71, 238
Gurobi Optimizer, 202

H

Hard optimization problems, IP, 157
Hessian matrix, 222, 228, 237
Heuristic methods, 397

greedy heuristics, 397–398
local improvement, 398–400
simulated annealing, 399–406

Hungarian method, 109, 396–397
Hurwicz measure, 346–347
Hurwicz principle, 347

I

IBM CPLEX Optimization Studio, 141
IBM ILOG CPLEX Optimizer, 70, 201, 238

443Index

IML (Interactive Matrix programming
Language), 271

IMSL libraries, 238
IMSL software system, 12
Independent elements, 274
Inequality constraints, 229–231
Inflection point function, 221
INFORMS (Institute for Operations Research

and the Management Sciences), 2
Ingersoll Cutting Tool Company, 304
Institute for Operations Research and the

Management Sciences (INFORMS), 2
Insufficient reason, principle, 346
Integer and nonlinear models, 30
Integer polytope, 178
Integer programming (IP), 157–158, 158f

applications, 202–206
cutting planes and facets, 177–180
problems, 67
software, 201–202

Integrality gap, 192
Interior point method, 68
Intermediate term memory, 415
Inverse transform method, 318–319, 319f
IP (integer programming), 157–158, 158f
Irrational human behavior, 377–378
Irreducible Markov chain, 261
Isolated node, 90
Iterative algorithm, 40

J

Jockeying behavior, queues, 286
Jumptracking strategy, 172–173
Just-in-time scheduling, 303

K

Karmarkar, N., 68
Karush–Kuhn–Tucker conditions, 230–232
Karzanov’s method, 97
Khachiyan’s ellipsoid method, 67, 68
Knapsack problem, 162, 395, 410, 415
Kruskal’s algorithm, 117, 118f

L

Lagrange, J. -L., 229
Lagrange multipliers, 229–230
Lagrangian, 187
Lagrangian relaxation, 187

basic algorithm, 194
column generation, 197–201

customer allocation problem, 194–197
example, 188–191
generalized assignment problem,

192–194
integrality gap, 191–192
relaxing integer programming constraints,

187–188
single sourcing constraint, 194

Laplace principle, 346, 348
Lasdon and Waren algorithm, 236
Last In, First Out (LIFO) strategy, 172
Latest time, 136
Leaving variable, 42
Lemke’s algorithm, 233
LIFO (Last In, First Out) strategy, 172
LINDO (Linear Interactive and Discrete

Optimizer), 71
LINDO Integrated Modeling Language, 201
LINDO programming language, 12–13
Linear equations, 436–437
Linear Interactive and Discrete Optimizer

(LINDO), 71
Linear programming (LP), 158

application, 71–74
duality and sensitivity analysis, 56–63
general constraints, initial solution,

46–50
general solution method, 36
graphical solution, 30–36
model, 23–24, 39
problem formulation, 24–30
problems, 218
revised simplex, 63–64
rule of thumb, 66
simplex method, 36–46
software, 64–71
standard form, 36–38
tableau information, 50–55

LINGO software, 238
Liquefied petroleum gas (LPG), 205
Little’s formula, 292, 295
Local exchange heuristic, 399
Local improvement heuristic, 398–400
Local maximum, 219
Local minimum, 221
Local optimum, necessary/sufficient

conditions, 221–222
Local search procedure, 398, 418
Local versus global minima, 399, 400f
Longest path, 135
Lottery, axioms, 359–360, 360f
LP (linear programming), 158
LPG (liquefied petroleum gas), 205

444 Index

M

Maine forest service, 71–72
Management science, 1
Marginal worth, 55
Markov, A. A., 249
Markov chain, 250
Markov decision process, 275
Markov processes, 249–250

absorbing chains, 267–271, 268f, 269f
dairy farming, 275–276
dynamic memory allocation, 273–274, 274f
expected first passage times, 265–267
first passage probabilities, 259–261
for manufacturing production capability,

274–275
properties, 251
software, 271–272
state probabilities, 256–259
states, properties, 261–263
steady-state analysis, 263–265
transitions state, 250–256
water reservoir operations, 272–273

Markov property, 250
Mascopt (Mascotte Optimization), 141
Mathematical models, 3
Mathematical optimization, 3
Mathematical programming language (MPL), 3
MATLAB optimization toolbox, 238
MATLAB software, 271–272, 299, 419–420
Matrices and matrix operations, 434–436
Max-flow min-cut theorem, 94
Maximax strategy, 346
Maximin strategy, 345–346
Maximization problem, 31

extreme points, 31
graphical solution, 31f
optimal solution, 33
unbounded feasible region, 32f

Maximum flow problem, 92–93
algorithm, 93–96
capacity, 92
data communications network, 92f
example, 95f
extension, 96–97
flow augmenting path, 93
max-flow min-cut theorem, 94
multiple sinks and sources, 96, 96f

Metaheuristics, 399, 418–419
approaches, 418–419
software for, 419–420
TS, 414–417, 416t

Minimal cover, 183

Minimum cost method, 101–103
Minimum cost network flow problems, 97, 114

assignment problem, 109–113
capacitated transshipment problem, 114–116
Kilter algorithm, 115
method, 101–103, 102t

Minimum row cost method, 103
Minimum spanning tree problem, 116–118
MINOS software, 70, 237
MIPIII Mixed-Integer Optimizer, 202
Mixed integer programming (MIP) problem, 159

capacity planning, 161
fixed charge problem, 161
production planning, 160
warehouse location, 160–161

M/M/s queueing model, 301–302
Model, 3
MODSIM II object oriented language, 332
Monte Carlo simulation, 379
MPL (mathematical programming language), 3
MPL programming language, 12
Multiple optimal solutions, 30, 219f
Multiple sinks/sources, 96
Multivariable search, 225–228, 227f
Mutations, 410, 424

N

Negative exponential density function, 288
NEOS (Network-Enabled Optimization

System), 13
NEOS Server, 238
Net present value (NPV), 382
Network, 91

maximum flow problem, 92–97
minimum spanning tree, 116–118

Network analysis, 89
applications, 142–144
software, 141

Network connectivity, 116
Network-Enabled Optimization System

(NEOS), 13
Network queues, 287
Newton’s method, 228–229
Node-arc incidence matrix, 115
Nodes, 90
Non-basic variables, 39
Nonbinding constraint, 44
Nonlinear optimization, 217–218

balancing rotor systems, 241
constrained optimization, 229–236
gasoline blending systems, 239–240

445Index

notation and concepts, 218–223, 222f
portfolio construction, 240–241
single maximum point, 218, 219f
software for, 236–239
unconstrained optimization, 223–229

Nonlinear programming problems, 69, 218, 221
Northwest corner rule, 99–101, 100t
NP-complete, 6
NP-hard, 6
NPSOL software, 237

O

Objective function, 23
O-MATRIX scripting language, 272
One-dimensional search, 223–225, 224f
One-step transition probabilities, 251, 262
Operations research, 1

algorithm efficiency and problem
complexity, 6–9

applications, 14–18
food and agribusiness, 14–15
humanitarian relief operations, 15–17
mathematical models, 3–5
mining industry, 17–18
optimality and practicality, 9–10
origins and applications, 1–2
software, 10–14

Operations Research Society of America
(ORSA), 2

Optimal feasible solution, 30
Optimal solution, 30
ORSA (Operations Research Society of

America), 2
Outcomes, 342

conflicting criteria, 343
numeric, 343
verbal descriptions, 342–343

P

Palisade Corporation, 419
Parallel annealing, 407, 408f
Path, 90
Payoff matrix, 342
Periodic state, 262–263, 263f
PERT (Program Evaluation and Review

Technique), 133
Petrobras company, 380
Petroleum exploration industry, 384
Phillips Exploration, 384–385
Piecewise linear approximation, 320f, 320t

Pivot column, 42
Pivot element, 42
Pivot operation, 41–44
Pivot row, 42
Poisson arrivals, 290
Poisson distribution, 289–290
Policy iteration method, 143
Polynomial-time algorithms, 6
Polytope, 178
Portfolio construction, 240–241
Portfolio selection, 234–236
Portfolio selection problem, 159
Postoptimality analysis, 60

constraint/changing constraint
coefficients, 63

new variable, 62–63
objective function coefficient range

analysis, 61
right-hand-side ranging, 61–62

Pratt and Whitney company, 303
Precision tree, 379
Predecessor node, 90
Preference function, 361
Primal linear programming problem, 56
Primal problem, 57
Prim’s algorithm, 117, 117f
Probability

approaches, 343–344
misconceptions, 370–371
tree, 382

Problem formulation phase, 312–313
Problem size, 6
Product form, 64
Production

phase, 313
planning, MIP, 160
scheduling environment, 160
scheduling problem, 217

Program Evaluation and Review Technique
(PERT), 133

Project management, 132–140
Propane bottling plants, 205–206
Proportionality constant, 7
Pseudorandom numbers, 318

Q

Quadratic forms, 437–438
Quadratic programming model, 231–236
Quasi-Newton methods, 229, 238
Queue, 285
Queuecomputer, 300

446 Index

Queue discipline, 287
Queueing analysts, 300
Queueing models, 285

analysis, 291–299
arrival and service patterns, 288–290
characteristics, 287
cost efficiency and service quality, 300–302
elements, 285–288
in manufacturing, 302–304
notation and definitions, 291–292
nurse staffing on, 304–305
practical limits, 298–299
software for, 299–300
steady state performance measures, 292–298

Queueing system, 314
Queue length, 323, 323f

R

Radioactive waste management, 383
RAND Corporation, 326
Random fit allocation strategy, 274
Range analysis, 61
Ranging procedures, 66
Rate diagram

birth-and-death process, 290f
multiple servers, 298f

RCW (red-cockaded woodpecker) model, 423
Reachable state, 261
Recurrence time, 265
Recurrent state, 262, 262f
Red-cockaded woodpecker (RCW) model, 423
Reduced gradient method, 236
Redundant questions, 378
Refinery planners, 239–240
Re-inversion, 65
Relaxation integer problem, 187
Reneging behavior, queues, 286
Reusable Launch Vehicle (RLV), 332–333
Revised simplex method, 63–64
Right-hand-side ranging, 61–62
Risk, 343–344
Risk averse (RA), 366–367
@RISK component, 379
Risk, portfolio, 234–235
Risk seeking (RS), 366–367
RLV (Reusable Launch Vehicle), 332–333
Robust queueing system, 305
Rosenbrock’s function, 244
Rotation, 160
Roulette wheel model, 410, 411f
Round-off error, 9
Row linearity property, 348

R package, 300
RS (risk seeking), 366–367
R software package, 272

S

SAS, 71
SAS/IML system, 271
SAS Institute, Inc., 238
SAS OPTMODEL, 202
SAS/OR OPTMODEL programming language, 13
SAS/OR OPTNET, 141
SAS/OR software, 238, 379
SAS/OR systems, 202
SAS Simulation Studio, 327
SAS software, 327
Savage minimax regret, 347–350
SDK (software developer kit), 238
Semiconductor manufacturing process,

simulation, 329–331
Sensitivity analysis, 56

duality, 56–60
postoptimality analysis, 60–63

Separation rules, 175
Server utilization factor, 323–324, 324f
Service times, 287
Set covering problem, 163
Set packing problem, 164
Set partitioning problem, 198
Shadow prices, 55
Shift scheduling problem, 198
Shortest network problem, 118–119, 118f
Shortest path problem, 119–120

acyclic network, 120–121, 120f
Dijkstra’s algorithm, 121–123, 122f

SIMAN command language, 326, 330
SIMple-SCRIPT (SIMSCRIPT), 326
Simplex method, 30, 103–108

Big-M method, 47
general solution method, 39–45
iterative algorithm, 40
linear systems solutions, 38–39
shadow prices, 55
standard form, 36–38
two phase method, 48–50

Simplex on graph algorithm, 115
Simplex tableau, 41, 45f

adjacent extreme points, 51
degenerate solution, 53–55, 53f
information, 50
multiple optimal solutions, 51
no optimal solution, 51–53
unbounded solution, 51–53

447Index

SIMSCRIPT (SIMple-SCRIPT), 326
Simulated annealing, 399–406

algorithm, 404f
conventional, 407
drawbacks, 421
FedEx flight management using, 420–422
iterations, 406t

Simulation, 285, 311
advantages, 312
clock variable, 315
design, 324–325
efficiency, 325
Eurotunnel terminals, 331–332
event clock times, 316t
Finnish Air Force fleet maintenance, 328–329
models, 313
for NASA’s Space Launch Vehicles

Operations, 332–333
observations, 321–325
purposes and applications, 311–313
semiconductor manufacturing line, 329–331
software for, 325–327
statistics, 321–324

Simulation–optimization, 313
Single/multiple server systems, 297
Single sourcing, 194
Sink, 91
Slack variables, 38
Software

for decision analysis, 378–379
IP, 201–202
linear programming model, 64–71
for Markov processes, 271–272
for nonlinear optimization problems, 236–237
operations research, 10–14
for queueing models, 299–300
for simulation, 325–327

Software developer kit (SDK), 238
Solid waste management, IP, 202–204
Solvable problems, 5
Solvers, 11
Spanning tree problem, 116–118
Sparse matrix, 66
Special Ordered Set (SOS) constraints, 181
Stable marriage problem, 113
Standard form, 36
State, 250
State probability, 256–259
States, 126, 130
States of nature, 341
State transitions, 250–256
State transitions diagram, 252
State variables, 341

Stationarity property, 250–251
Steady-state analysis, 263–265, 275
Steady state performance measures, 292–298
Steady-state probability vector, 264
Steepest ascent process, 226
Steiner tree problem, 118–119, 119f
Stochastic process, 249–250
Sub-sequence reversal, 399f
Sub-tour, 162
Successor node, 90
Sudoku puzzle game, 417–418, 417f
Sufficient conditions, 221
Sunk cost fallacy, 376–377, 376f, 377f
Surplus variables, 38
Swarm intelligence algorithms, 419
System capacity, 287
System state, 314
Systolic architectures, 142

T

Tabu list (TL), 415
Tabu search (TS), 399, 414–417, 416t
Temporal constraints, 417
The Institute of Management Science (TIMS), 2
Throughput analysis, 330
Timber harvest planning, 204–205
Time advance mechanism, 315, 328
TIMS (The Institute of Management

Science), 2
TL (tabu list), 415
Toll, 351
TransCAD, 141
Transient state, 261, 262f
Transition, 250
Transition diagram, 252, 253f, 262f
Transition probability, 250

matrix, 250, 255t–256t, 275
one-step, 251, 262

Transition tree, 252–253, 253f
Transportation problem, 97–99, 98f, 99t

assignment problem, 109–113
minimum cost network flow problems, 97–99
simplex method, 103–108, 104t, 105t, 106f,

107t, 108f
stable matching, 113–114

Traveling salesman problem (TSP), 161–162,
396–398, 398t

Tree, 91
TreePlan software package, 379
TS (tabu search), 399, 414–417, 416t
TSP (traveling salesman problem), 161–162,

396–398, 398t

448 Index

Turing, A., 5
Turnaround time, 295, 329
Two phase method, 48–50

U

Unbounded solution, 35, 50
Uncertainty, 344

refinery pricing, 381–383
Unconstrained optimization, 217, 223

multivariable search, 225–228
Newton’s method, 228–229
one-dimensional search, 223–225
quasi-Newton methods, 229

Undirected graph, 90
Undirected tree, 91f
Unrestricted strategy, 172–173
Unsolvable/undecidable problems, 5
Unstable matching, 114
Up penalty, 174
Upper bound constraints, 65
Utility curve, 364

shape, 366–370
with target level, 367f
zero-illusion, 368f

Utility function, 361–366
Utility theory, 358–359

assessment, 364f
axioms, 359–361
curve. See Utility curve
functions, 361–366, 364f
value assessment techniques, 363f

V

Validation test, 313
Vector probability, 256, 264

Vectors, 433–434
Vehicle routing problem, 160, 198, 199f, 425
Verification, simulation, 313
Vertices/points/junctions, 90
Vitrificastion process, 383

W

Wafer fabrication process, 330
Waiting lines (queues), 285–286
Warehouse location, 160–161
Water reservoir operations, 272–273
Wheels America, routing and meals on,

424–426
Wolfe’s algorithm, 232
Word length, 9
Work schedule, 160
Worst case performance, algorithm, 7

Y

Yangtze River case, 272–273

Z

Zero illusion problem, 368
Zero–one (0–1) problems, 159–160

assignment problem, 164–165
bin packing, 162–163
generalized assignment problem, 164–165
knapsack problem, 162–163
mathematical formulations, 161–165
set covering problem, 163
set packing problem, 164
set partitioning problem, 163
TSP, 161–162

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	Preface
	About the Authors
	1: Introduction to Operations Research
	1.1 The Origins and Applications of Operations Research
	1.2 System Modeling Principles
	1.3 Algorithm Efficiency and Problem Complexity
	1.4 Optimality and Practicality
	1.5 Software for Operations Research
	1.6 Illustrative Applications
	1.6.1 Analytical Innovation in the Food and Agribusiness Industries
	1.6.2 Humanitarian Relief in Natural Disasters
	1.6.3 Mining and Social Conflicts

	1.7 Summary
	Key Terms
	References and Suggested Readings

	2: Linear Programming
	2.1 The Linear Programming Model
	2.2 The Art and Skill of Problem Formulation
	2.2.1 Integer and Nonlinear Models

	2.3 Graphical Solution of Linear Programming Problems
	2.3.1 General Definitions
	2.3.2 Graphical Solutions
	2.3.3 Multiple Optimal Solutions
	2.3.4 No Optimal Solution
	2.3.5 No Feasible Solution
	2.3.6 General Solution Method

	2.4 Preparation for the Simplex Method
	2.4.1 Standard Form of a Linear Programming Problem
	2.4.2 Solutions of Linear Systems

	2.5 The Simplex Method
	2.6 Initial Solutions for General Constraints
	2.6.1 Artificial Variables
	2.6.2 The Two Phase Method

	2.7 Information in the Tableau
	2.7.1 Multiple Optimal Solutions
	2.7.2 Unbounded Solution (No Optimal Solution)
	2.7.3 Degenerate Solutions
	2.7.4 Analyzing the Optimal Tableau: Shadow Prices

	2.8 Duality and Sensitivity Analysis
	2.8.1 The Dual Problem
	2.8.2 Postoptimality and Sensitivity Analysis

	2.9 Revised Simplex and Computational Efficiency
	2.10 Software for Linear Programming
	2.10.1 Extensions to General Simplex Methods
	2.10.2 Interior Methods
	2.10.3 Software for Solving Linear Programming

	2.11 Illustrative Applications
	2.11.1 Forest Pest Control Program
	2.11.2 Aircraft and Munitions Procurement
	2.11.3 Grape Processing: Materials Planning and Production

	2.12 Summary
	Key Terms
	Exercises
	References and Suggested Readings

	3: Network Analysis
	3.1 Graphs and Networks: Preliminary Definitions
	3.2 Maximum Flow in Networks
	3.2.1 Maximum Flow Algorithm
	3.2.2 Extensions to the Maximum Flow Problem

	3.3 Minimum Cost Network Flow Problems
	3.3.1 Transportation Problem
	3.3.1.1 Northwest Corner Rule
	3.3.1.2 Minimum Cost Method
	3.3.1.3 Minimum “Row” Cost Method
	3.3.1.4 Transportation Simplex Method
	3.3.1.5 Transportation Simplex

	3.3.2 Assignment Problem and Stable Matching
	3.3.2.1 Stable Matching

	3.3.3 Capacitated Transshipment Problem

	3.4 Network Connectivity
	3.4.1 Minimum Spanning Trees
	3.4.2 Shortest Network Problem: A Variation on Minimum Spanning Trees

	3.5 Shortest Path Problems
	3.5.1 Shortest Path through an Acyclic Network
	3.5.2 Shortest Paths from Source to All Other Nodes
	3.5.3 Problems Solvable with Shortest Path Methods

	3.6 Dynamic Programming
	3.6.1 Labeling Method for Multi-Stage Decision Making
	3.6.2 Tabular Method
	3.6.3 General Recursive Method

	3.7 Project Management
	3.7.1 Project Networks and Critical Paths
	3.7.2 Cost versus Time Trade-Offs
	3.7.3 Probabilistic Project Scheduling

	3.8 Software for Network Analysis
	3.9 Illustrative Applications
	3.9.1 DNA Sequence Comparison Using a Shortest Path Algorithm
	3.9.2 Multiprocessor Network Traffic Scheduling
	3.9.3 Shipping Cotton from Farms to Gins

	3.10 Summary
	Key Terms
	Exercises
	References and Suggested Readings

	4: Integer Programming
	4.1 Fundamental Concepts
	4.2 Typical Integer Programming Problems
	4.2.1 General Integer Problems
	4.2.2 Zero–One (0–1) Problems
	4.2.3 Mixed Integer Problems

	4.3 Zero–One (0–1) Model Formulations
	4.3.1 Traveling Salesman Model
	4.3.2 Knapsack Model
	4.3.3 Bin Packing Model
	4.3.4 Set Partitioning/Covering/Packing Models
	4.3.5 Generalized Assignment Model

	4.4 Branch-and-Bound
	4.4.1 A Simple Example
	4.4.2 A Basic Branch-and-Bound Algorithm
	4.4.3 Knapsack Example
	4.4.4 From Basic Method to Commercial Code
	4.4.4.1 Branching Strategies
	4.4.4.2 Bounding Strategies
	4.4.4.3 Separation Rules
	4.4.4.4 The Impact of Model Formulation
	4.4.4.5 Representation of Real Numbers

	4.5 Cutting Planes and Facets
	4.6 Cover Inequalities
	4.7 Lagrangian Relaxation
	4.7.1 Relaxing Integer Programming Constraints
	4.7.2 A Simple Example
	4.7.3 The Integrality Gap
	4.7.4 The Generalized Assignment Problem
	4.7.5 A Basic Lagrangian Relaxation Algorithm
	4.7.6 A Customer Allocation Problem

	4.8 Column Generation
	4.9 Software for Integer Programming
	4.10 Illustrative Applications
	4.10.1 Solid Waste Management
	4.10.2 Timber Harvest Planning
	4.10.3 Propane Bottling Plants

	4.11 Summary
	Key Terms
	Exercises
	References and Suggested Readings

	5: Nonlinear Optimization
	5.1 Preliminary Notation and Concepts
	5.2 Unconstrained Optimization
	5.2.1 One-Dimensional Search
	5.2.1.1 One-Dimensional Search Algorithm

	5.2.2 Multivariable Search: Gradient Method
	5.2.2.1 Multivariable Gradient Search

	5.2.3 Newton’s Method
	5.2.4 Quasi-Newton Methods

	5.3 Constrained Optimization
	5.3.1 Lagrange Multipliers (Equality Constraints)
	5.3.2 Karush–Kuhn–Tucker Conditions (Inequality Constraints)
	5.3.3 Quadratic Programming
	5.3.4 More Advanced Methods

	5.4 Software for Nonlinear Optimization
	5.5 Illustrative Applications
	5.5.1 Gasoline Blending Systems
	5.5.2 Portfolio Construction
	5.5.3 Balancing Rotor Systems

	5.6 Summary
	Key Terms
	Exercises
	References and Suggested Readings

	6: Markov Processes
	6.1 State Transitions
	6.2 State Probabilities
	6.3 First Passage Probabilities
	6.4 Properties of the States in a Markov Process
	6.5 Steady-State Analysis
	6.6 Expected First Passage Times
	6.7 Absorbing Chains
	6.8 Software for Markov Processes
	6.9 Illustrative Applications
	6.9.1 Water Reservoir Operations
	6.9.2 Markov Analysis of Dynamic Memory Allocation
	6.9.3 Markov Models for Manufacturing Production Capability
	6.9.4 Markov Decision Processes in Dairy Farming

	6.10 Summary
	Key Terms
	Exercises
	References and Suggested Readings

	7: Queueing Models
	7.1 Basic Elements of Queueing Systems
	7.2 Arrival and Service Patterns
	7.2.1 The Exponential Distribution
	7.2.2 Birth-and-Death Processes

	7.3 Analysis of Simple Queueing Systems
	7.3.1 Notation and Definitions
	7.3.2 Steady State Performance Measures
	7.3.3 Practical Limits of Queueing Models

	7.4 Software for Queueing Models
	7.5 Illustrative Applications
	7.5.1 Cost Efficiency and Service Quality in Hospitals
	7.5.2 Queueing Models in Manufacturing
	7.5.3 Nurse Staffing Based on Queueing Models

	7.6 Summary
	Key Terms
	Exercises
	References and Suggested Readings

	8: Simulation
	8.1 Simulation: Purposes and Applications
	8.2 Discrete Simulation Models
	8.2.1 Event-Driven Models
	8.2.2 Generating Random Events

	8.3 Observations of Simulations
	8.3.1 Gathering Statistics
	8.3.1.1 Average Time in System
	8.3.1.2 Average Waiting Time
	8.3.1.3 Average Number in Queue
	8.3.1.4 Server Utilization

	8.3.2 Design of Simulation Experiments

	8.4 Software for Simulation
	8.5 Illustrative Applications
	8.5.1 Finnish Air Force Fleet Maintenance
	8.5.2 Simulation of a Semiconductor Manufacturing Line
	8.5.3 Simulation of Eurotunnel Terminals
	8.5.4 Simulation for NASA’s Space Launch Vehicles Operations

	8.6 Summary
	Key Terms
	Exercises
	References and Suggested Readings

	9: Decision Analysis
	9.1 The Decision-Making Process
	9.2 An Introduction to Game Theory
	9.2.1 Maximin Strategy
	9.2.2 Maximax Strategy
	9.2.3 Laplace Principle (Principle of Insufficient Reason)
	9.2.4 Hurwicz Principle
	9.2.5 Savage Minimax Regret

	9.3 Decision Trees
	9.4 Utility Theory
	9.4.1 The Axioms of Utility Theory
	9.4.2 Utility Functions
	9.4.3 The Shape of the Utility Curve

	9.5 The Psychology of Decision-Making
	9.5.1 Misconceptions of Probability
	9.5.2 Availability
	9.5.3 Anchoring and Adjustment
	9.5.4 Dissonance Reduction
	9.5.5 The Framing Effect
	9.5.6 The Sunk Cost Fallacy
	9.5.7 Irrational Human Behavior
	9.5.7.1 What Can We Do about Irrational Behavior?

	9.6 Software for Decision Analysis
	9.7 Illustrative Applications
	9.7.1 Decision Support System for Minimizing Costs in the Maritime Industry
	9.7.2 Refinery Pricing under Uncertainty
	9.7.3 Decisions for Radioactive Waste Management
	9.7.4 Investment Decisions and Risk in Petroleum Exploration

	9.8 Summary
	Key Terms
	Exercises
	References and Suggested Readings

	10: Heuristic and Metaheuristic Techniques for Optimization
	10.1 Greedy Heuristics
	10.2 Local Improvement Heuristics
	10.3 Simulated Annealing
	10.4 Parallel Annealing
	10.5 Genetic Algorithms
	10.6 Tabu Search
	10.7 Constraint Programming and Local Search
	10.8 Other Metaheuristics
	10.9 Software for Metaheuristics
	10.10 Illustrative Applications
	10.10.1 FedEx Flight Management Using Simulated Annealing
	10.10.2 Ecosystem Management Using Genetic Algorithm Heuristics
	10.10.3 Efficient Routing and Delivery of Meals on Wheels

	10.11 Summary
	Key Terms
	Exercises
	References and Suggested Readings

	Appendix: Review of Essential Mathematics—Notation, Definitions, and Matrix Algebra
	Index

