

Operations Research

Advances in Applied Mathematics
Series Epimor: Daniel Zwillinger

CRC Standard Curves and Surfaces with Mathematica®, Second Edition
David H. von Seggern

Stochastic Partial Differential Equations, Second Edition

Pao-Liu Chow

CRC Standard Mathematical Tables and Formulas, 32nd Edition
Dan Zwillinger

Advanced Engineering Mathematics with MATLAB, Third Edition
Dean G. Duffy

Markov Processes

James R. Kirkwood

Linear and Integer Optimization: Theory and Practice, Third Edition
Gerard Sierksma and Yori Zwols

Introduction to Financial Mathematics

Kevin J. Hastings

Fast Solvers for Mesh-Based Computations

Maciej Paszynski

Dynamical Systems for Biological Modeling: An Introduction

Fred Brauer and Christopher Kribs

CRC Standard Curves and Surfaces with Mathematica®, Third Edition
David H. von Seggern

Handbook of Peridynamic Modeling

Floriin Bobaru, John T. Foster, Philippe H. Geubelle, and Stewart A. Silling
Advanced Engineering Mathematics with MATLAB, Fourth Edition
Dean G. Duffy

Linear and Complex Analysis for Applications

John P. D’Angelo

Quadratic Programming with Computer Programs

Michael J. Best

Green’s Functions with Applications, Second Edition

Dean G. Duffy

Introduction to Radar Analysis, Second Edition

Bassem R. Mahafza

CRC Standard Mathematical Tables and Formulas, 33rd Edition
Dan Zwillinger

The Second-Order Adjoint Sensitivity Analysis Methodology

Dan Gabriel Cacuci

Operations Research: A Practical Introduction, Second Edition
Michael W. Carter, Camille C. Price, and Ghaith Rabadi

http://operationsresearch.us

http://operationsresearch.us

Operations Research

A Practical Introduction

Second Edition

Michael W. Carter
Camille C. Price
Ghaith Rabadi

CRC Press
Taylor &Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed on acid-free paper
International Standard Book Number-13: 978-1-4987-8010-0 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to
publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or
the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright
material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and
recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:/www.
copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.crcpress.com
http://www.copyright.com/

Contents

PIefaCe.. oo v xiii
About the AUROTSoviii e xix
1. Introduction to Operations Research................ccccccooiiiiiii 1
1.1 The Origins and Applications of Operations Research..............ccccccoooin. 1
12 System Modeling Principles........ccoooiiiiiiiiiiiiii e 3
1.3 Algorithm Efficiency and Problem Complexity.......c.ccccccouoriniriniirniiiniiiiiccn 5
1.4 Optimality and Practicalitycccoooeoiiiiiiiiiiic e 9
1.5 Software for Operations Research..........c.cccocoovoruiiiieiiiniiiniiccc 10
1.6 Ilustrative ApPlicationsoooeuiieiiiiiiii 14
1.6.1 Analytical Innovation in the Food and Agribusiness Industries............ 14

1.6.2 Humanitarian Relief in Natural Disastersc..cccccocoeeiniiiniiininncinnnnn. 15

1.6.3 Mining and Social CONfICtScooevrvriiiiiiiiccc e, 17

1.7 SUMIMATY oo 18
KeY TEIINS ..ottt 19
References and Suggested Readings..........cccooeuririeiiiiiciniiciccc 20
2. Linear Programmingcccccoiiiiiiiiiiiiiiciec e 23
2.1 The Linear Programming Model.........cc.ccooiriiiiiiiiice, 23
2.2 The Art and Skill of Problem Formulation...........ccccccouorniiniiniiniicicce, 24
221 Integer and Nonlinear Modelsccccoooiiiiiiiiiiiii, 30

2.3 Graphical Solution of Linear Programming Problems............cccccoovoiiiiiiinnnn. 30
2.3.1 General Definitions..........ccooivueiiiriniciiicic e 30

232 Graphical SOIUtiONSoueviiieiiic e 31

2.3.3 Multiple Optimal SOIUtions..........coorurieiiiiiieiiicc e, 33

234 No Optimal SOIUtIONcuoveiiiiiii e 34

2.3.5 No Feasible SOIUtIONcovoiiiiiiiiii e, 35

2.3.6 General Solution Methodcccoiiiiiiiii, 36

2.4 Preparation for the Simplex Methodccccoooiii, 36
241 Standard Form of a Linear Programming Problem.............cccccccoooveeiae. 36

2.4.2 Solutions of Linear SyStemscccouorurimieiriniicieiiececee e 38

2.5 The Simplex Method ..o, 39
2.6 Initial Solutions for General Constraints.............cccoooeeioioiieiiiiiicie, 46
2.6.1 Artificial Variables............cccooriiiiiiiiiiii 46

2.6.2 The Two Phase Method ..o, 48

2.7 Information in the Tableau ..o, 50
2.7.1 Multiple Optimal SOIUtions..........ccoorurieiiiiieiic e, 51

2.7.2 Unbounded Solution (No Optimal Solution)ccceeeeveiiiiininnnn, 51

2.7.3 Degenerate SOIUtIONSccoouriiiiiiiiiieiicc e 53

2.74 Analyzing the Optimal Tableau: Shadow Prices..........cccccovviriiiiiinnnen. 55

2.8 Duality and Sensitivity ANalysisccccooooiiiiiiiiiiiii e, 56
2.8.1 The Dual Problem..........ccccooviiiiii e, 56

2.8.2 Postoptimality and Sensitivity Analysiscccooeeiiiiiiiiiiiiiiie, 60

vi

Contents
2.9 Revised Simplex and Computational Efficiency ..., 63
210 Software for Linear Programmingcccccoeeioimiinioioiceeiiccce e, 64
2.10.1 Extensions to General Simplex Methodscc.ccooiiiiiiinnn, 65
2.10.2 Interior Methods.........ccccooiiiiiiiiiiiiiiiiiiiiiicccc 67
2.10.3 Software for Solving Linear Programming............ccccoeoeeveerieirininnnnnn. 69
211 Iustrative APPLCationscccoeueviiiiieiiiccie e 71
2.11.1 Forest Pest Control Program..........ccccoooeeioiiinciniicceecceece, 71
2.11.2 Aircraft and Munitions Procurementcccccoooveimeiiiniiccieeicnnn, 72
2.11.3 Grape Processing: Materials Planning and Production....................... 73
212 SUININQATY covivitititititetetetet ettt s b s b b s b s b b a s aeas 74
KeY TOIINS .ottt 75
EXETCISES ...oviiiticeitc s 76
References and Suggested Readings.............cccueueiiiiiiiiiiiiiiiicc e, 85
- Network ANalysisccooiiiiiiiiiiiiii s 89
3.1 Graphs and Networks: Preliminary Definitionscccccoooiiiiiiiiinnnn, 90
3.2 Maximum Flow in NetWorks.........ccoooiiiiiiiiic e, 92
321 Maximum Flow Algorithm ..., 93
3.22 Extensions to the Maximum Flow Problemccccccocoooinnnn. 96
3.3 Minimum Cost Network Flow Problems............cccccccoviiiniiiiniiiiiine 97
3.3.1 Transportation Problem..............ccccoooiiiiiiiie, 97
3.3.1.1 Northwest Corner Rulecccccoovoiiiiiiiiiiice, 99
3.3.1.2 Minimum Cost Methodcccccoiiiiiiiiiiiiiie, 101
3.3.1.3 Minimum “Row” Cost Method...........ccccccceiiiiiiiinn. 102
3.3.1.4 Transportation Simplex Methodcccoeiiiiinn, 103
3.3.1.5 Transportation SIMPIeXccccoeeuriirniiiiiiieieiicccecae, 107
3.32 Assignment Problem and Stable Matching ..., 109
3.3.2.1 Stable Matchingccoooeieiiiiiiiiicce, 113
3.3.3 Capacitated Transshipment Problemcccccocooioiiiiiinnne, 114
3.4 Network ConNectivity.......ccocovviiiiiiiiiiiiiii 116
341 Minimum Spanning Trees..........cccocoeoiviiiiiiiiiiiiii 116

3.42 Shortest Network Problem: A Variation on Minimum
Spanning Trees.........ccoovviiiiiiiiiiiiii 118
3.5 Shortest Path Problemsccoouoiiiiiiiiiiiccc e 119
3.5.1 Shortest Path through an Acyclic Network............ccooiiiiiinnne, 120
3.5.2 Shortest Paths from Source to All Other Nodes.........c.c.cccoorririinncne. 121
3.5.3 Problems Solvable with Shortest Path Methods...............cccocoeeenie. 123
3.6 Dynamic Programmingccccoeveieiiiiiiiniiiiiiiiii s 125
3.6.1 Labeling Method for Multi-Stage Decision Making.............c.c..c.c...... 126
3.6.2 Tabular Method ..o, 127
3.6.3 General Recursive Methodcccooovoiiiiie, 130
3.7 Project Management.............coovoiiiiiiiiiiiiiii 132
3.7.1 Project Networks and Critical Paths........c.c.ccooooiiiiiii, 133
3.72 Cost versus Time Trade-Offs..........ccocoooiiiiiiiiiii, 137
3.7.3 Probabilistic Project Scheduling............cccoovoioiiiiiiiiiiie, 139
3.8 Software for Network ANalysiscccoccoiiiiiiiiiiiiiiiiccecce e 141

Contents vii
3.9 MMustrative APPLCAtioNSccceveiiiiiieiiiccece e, 142
3.9.1 DNA Sequence Comparison Using a Shortest Path Algorithm 142

3.9.2 Multiprocessor Network Traffic Schedulingcccccoooiiii, 142

3.9.3 Shipping Cotton from Farms to Ginscccccoeueviiiiniiniiiccicincne, 143

310 SUIMIMATY ..ottt 144
KeY TOIINS .ottt 145
EXETCISES ...oviiiicictc s 146
References and Suggested Readings............ccoueuiimiieiiiiiiiiiiicccece, 154
4. Integer Programmuingcccoiiiiiiiiiniiiicc s 157
4.1 Fundamental CONCEPLSc.vrueiiiiiciice e 157
4.2 Typical Integer Programming Problems.............cccccooioiiiiiiiiiiiiniice, 159
421 General Integer Problems...........cccoooioiiiiiiiiiiicce, 159

422 Zero—One (0—1) Problemscccoecrerirennennenneneeneeseeeneee e 159

423 Mixed Integer Problems.............cccooooiiiiiiiiie, 160

4.3 Zero—One (0-1) Model Formulationsc.cccceeereenieinecincceneineeneeneneeeees 161
43.1 Traveling Salesman Model..........cccccoooiiiiiiiiie, 161

432 Knapsack Model........cccccooooiiiiiiic e, 162

43.3 Bin Packing Modelccccoconiiiiiiiiiiiiiic 162

434 Set Partitioning/Covering/Packing Models..........c.ccccoooorrinnnnn. 163

435 Generalized Assignment Model...........ccocooioiiiiiiiiiiiie, 164

4.4 Branch-and-Bound...........c.c.oo e, 165
441 ASimple Example ..o, 165

442 ABasic Branch-and-Bound Algorithm...........ccoooooii, 169

443 Knapsack Example........ccocooiiii e, 169

444 From Basic Method to Commercial Code........c.cccccooormriniiiiiinninnnnn, 171

4441 Branching Strategiescccccoooiiiiiiiiiicc 172

4442 Bounding Strategies ..o, 174

4443 Separation Rules........cccooooiiii 175

4444 The Impact of Model Formulation...........c.ccccooniiinii 175

4445 Representation of Real Numbersccccocoooiiiiiiiiininnnes 177

4.5 Cutting Planes and Facetsooooiiiiicc, 177
4.6 Cover Inequalities..........ccoeiiiiiiic e, 180
4.7 Lagrangian RelaXation ..., 187
471 Relaxing Integer Programming Constraints...........ccccccooeoeeeininnnnnn. 187

472 ASimple Example ..o, 188

473 The Integrality Gapcccocooimiiiiiiiiccc e, 191

474 The Generalized Assignment Problem............cccccoooiiiinnn, 192

475 ABasic Lagrangian Relaxation Algorithm ..., 194

476 ACustomer Allocation Problem ..., 194

4.8 Column Generation...........covecieieiiiiiieicce e 197
4.9 Software for Integer Programmingccccoovreiioiiiiiniiicceccee, 201
410 Tustrative APPliCatioNSceveeuiueieiicieieecie s 202
410.1 Solid Waste Management...........ccccoeuiieiiiniirnieiiicce e, 202

4.10.2 Timber Harvest Planningcccooceuoiiiiiniiiiiiicceccee, 204

410.3 Propane Bottling Plants............cccooeoiiiiiiic, 205

viii Contents

411 SUMIMATY ..ottt 206
KeY TOIINS .ottt 207
EXETCISES ...eeiviiceietc e 208
References and Suggested Readings............cccceueiiiiiiiiiiiiiiiiicccce, 213
5. Nonlinear Optimizationccocooviiiiiiiiiiii 217
5.1 Preliminary Notation and Conceptsccceeuoiiiiiiniiicieicceecce 218
52 Unconstrained Optimizationccoooioiiiiiicc e, 223
52.1 One-Dimensional Search...........c..ccoooiiiiiiiiiiniiiiicce e, 223

52.1.1 One-Dimensional Search Algorithm............cc..ocoooeiii. 223

5.2.2 Multivariable Search: Gradient Methodccccoooiiiinn, 225

5221 Multivariable Gradient Searchc.ccooooiiiiinnn, 226

52.3 Newton’s Method.........ccccooviiiiiiiiiiiii 228

524 Quasi-Newton MethOods.........cccooieiiiiieiieiiciececeeeee e 229

53 Constrained Optimization...........oouoieriiiiiiiieiecce e 229
53.1 Lagrange Multipliers (Equality Constraints)c.cccccoevviiviininnncnes 229

5.3.2 Karush-Kuhn-Tucker Conditions (Inequality Constraints)............... 230

5.3.3 Quadratic Programmingcccccooeeieioiinininiiiccecce e 231

5.3.4 More Advanced Methods.............ccooriiiiiiiiiiniiiice, 236

5.4 Software for Nonlinear Optimization..........ccocoovoiiiiioiiiiiniicce, 236
5.5 Mustrative APPLCAtioNSc.ccooueiiiiricieiicceece e 239
5.5.1 Gasoline Blending Systems............ccccoeviiiiiiiiiiinieicceecce 239

5.5.2 Portfolio CONStruCtionccceueiiiiieieiiicicieeccec e 240

5.5.3 Balancing Rotor Systems.........c.cccooriiiiiiiiiiiiiiccece 241

5.6 SUMIMATY ..o s 242
KeY TOIINS ..oviiitte 242
EXETCISES ...eeviicieietc e 243
References and Suggested Readings...........ccoceueiiiiiiiniiiiiiiiccc e 245
6. Markov ProCeSSes.............ccoiiiiiiiiiiiccc e e 249
6.1 State TranSitionscocoveveviiiiiiiiii 250
6.2 State Probabilities. ... 256
6.3 First Passage Probabilitiescoooiiiiiiiiiiiccc e 259
6.4 Properties of the States in a Markov Process............cccccceviiviiniiiicniniccnnen, 261
6.5 Steady-State ANalysis ..o 263
6.6 Expected First Passage Times...........cccooeiiiiiiiniiiicieicceecce e 265
6.7 AbsOrbing Chainscccuiiiiiiiec e 267
6.8 Software for Markov Processes...........ccceuirrueieiiiicieiicceeccece e 271
6.9 Mustrative APPLCAtionsccoueiiiiiiieiccee e 272
6.9.1 Water Reservoir Operations..........ccooeeiiiiiiiiiiiii 272

6.9.2 Markov Analysis of Dynamic Memory Allocationccccccceeeuee.. 273

6.9.3 Markov Models for Manufacturing Production Capability................ 274

6.9.4 Markov Decision Processes in Dairy Farming............ccccoeevviinnnnn. 275

6.10 SUMIMATY ..cooviieieiiieieieieieeee e 276
KeY TOIINS ..ottt 276
EXETCISES ...evivitciieetc e 277

References and Suggested Readings...........ccoceueiiiiiiiiiiiiiiicccece 281

Contents ix

7. Queueing Models ..o 285
7.1 Basic Elements of Queueing Systems ..o 285
7.2 Arrival and Service Patternscccccovvviviviniiiiniii 288

721 The Exponential Distributionccccooeioioiiiiiiiiiic 288
7.2.2 Birth-and-Death Processes...........cccocoviiiiiiviiiiiiiiiiniiiiiccccccce 290
7.3 Analysis of Simple Queueing Systems..........ccccocvviviiiiinniniiiiiie 291
7.3.1 Notation and Definitions............cccccoviiiiiiiiniiiiiiiiiicc 291
7.3.2 Steady State Performance Measures...........ccccocovviiiiiiiiciiniccicncnccnnes 292
7.3.3 Practical Limits of Queueing Models...........ccccccovviiiiinnniniincnn 298
7.4 Software for Queueing Models...........cccocovviiiiiiniiii 299
7.5 [Mustrative APPLCAtioNSccvueiiiiiiiiieiiccee e 300
7.5.1 Cost Efficiency and Service Quality in Hospitals........ccccoeoevrvreinnne. 300
7.52 Queueing Models in Manufacturing...........cccccoovocriiniiicnniiicccce. 302
7.5.3 Nurse Staffing Based on Queueing Models ..o, 304
7.6 SUMIMATY .. 305
Key TOIINS .ottt 306
EXEICISES ...ttt 306
References and Suggested Readings...........ccceueiiiiieiiiiiiiiiicccec 309

8. SIMUIALION ..o s 311
8.1 Simulation: Purposes and Applicationscccoeeinioirciniiiicieeccccee, 311
8.2 Discrete Simulation Modelscccooviiiiiiiiiiiiiii 314

8.2.1 Event-Driven Models........cccocociiiiiiiiiiininiiiiiiicicccccceceeeee 314

8.2.2 Generating Random Events.............cccoooiiiiiiic 317

8.3 Observations of SIMUlationscccovviiiiiiiii 321
8.3.1 Gathering StatistiCsccoeeueiiiiieiiiicce 321

8.3.1.1 Average Time in Systemccccocoveeiviiiiiiiineiineccne 321

8.3.1.2 Average Waiting Time..........ccccoceeiiiiiiiniiiccn 322

8.3.1.3 Average Number in Queue..........cccoooeveiriiiiiiinieeicce 322

8.3.1.4 Server Utilization.......ccccovueuiiiiiiiiiiiiiiciccccccccces 323

8.3.2 Design of Simulation Experimentsccccooeiiioiiiiiiininiic 324

8.4 Software for SIMulationcccoviiiiiiini 325
8.5 Mustrative APPLCAtioNScceveiiiiricieiicciee e 328
8.5.1 Finnish Air Force Fleet Maintenance..........c.ccccccocovviiivinininiiniinnccnnns 328

8.5.2 Simulation of a Semiconductor Manufacturing Linecccooceueunae. 329

8.5.3 Simulation of Eurotunnel Terminalsccccccooiviiiiiininne 331

8.5.4 Simulation for NASA’s Space Launch Vehicles Operations................ 332

8.6 SUMIMATY ..o s 334
Key TOIINS ..ottt 334
EXEICISES ...ttt 335

References and Suggested Readings............cooeueiiiiiiiiiiiiiiiccccce, 337

X Contents

9. Decision ANaLySsis..........cccccoiiiiiiiiiiiiiiiiii 341

9.1 The Decision-Making Processcccocoeviiiiiiiiiiiiiiiciiicicccccces 341

9.2 An Introduction to Game Theory..........ccoovioiiiiiiiiiiiiic e, 345

9.21 Maximin Strategycocoeeeeiiiiieiiiieieccc e 345

922 Maximax Strategyccoeevviiiiiiiii 346

923 Laplace Principle (Principle of Insufficient Reason) 346

924 Hurwicz Principle ... 346

9.25 Savage Minimax Regret.........ccooviiiiiiiiii 347

9.3 Decision THeeS........ccoviiiiiiiiiieicccce 350

9.4 Utility THEOTY oo 358

9.4.1 The Axioms of Utility Theoryccccovviiiiiiiiiiiiiiiiicce 359

9.4.2 Utility FUNCHONS ..o 361

943 The Shape of the Utility Curve.........cccocoeiiiiiiiiiiiiiiiciccne 366

9.5 The Psychology of Decision-Makingcccccooviviiiiiinnniniiiicccae 370

9.5.1 Misconceptions of Probabilitycccoeeiiii 370

9.52 AVAIlAbIlity .o 372

9.5.3 Anchoring and Adjustment ... 372

954 Dissonance Reduction............cccvuviviviiiiiiiiiiiiiiiniiiiiiciiccccns 373

9.5.5 The Framing Effect ... 374

9.5.6 The Sunk Cost Fallacy ..o 376

9.5.7 Irrational Human Behavior ..o 377

9.5.7.1 What Can We Do about Irrational Behavior? 378

9.6 Software for Decision ANalysis.........c.cccooeiiiiniiiiiioiiicccc e, 378

9.7 Mustrative APPLCAtioNSccceiiiiiiieiicceecc e 379
9.71 Decision Support System for Minimizing Costs in the

Maritime INdUStIYooviiii 379

9.72 Refinery Pricing under Uncertainty..........c.cocoocoeuiiiiiniiiiiincene. 381

9.7.3 Decisions for Radioactive Waste Management............cc.ccccceennee 383

9.74 Investment Decisions and Risk in Petroleum Exploration 383

9.8 SUMMATY ..o 385

KeY TOIINS .ottt 385

EXETCISES ...evvictceeetc s 387

References and Suggested Readings...........ccoceueiiiiiiiiiiiiiiicccece 392

10. Heuristic and Metaheuristic Techniques for Optimizationcccccoennnne. 395

10.1 Greedy HeUTIStICScvviiiiiiiiiiiciccc s 397

10.2 Local Improvement Heuristicscccoovoimeieiiiiiieiiiccccce 398

10.3 Simulated ANNEAlING.........ccovoiiiiii e 400

10.4 Parallel ANNEALINGcooouiviiiiiii e 407

10.5 Genetic AIOTIthMS........ccoooviiiiiiiii 409

10.6 Tabu Search..........oooiiiii s 414

10.7 Constraint Programming and Local Search..........ccccooooi 417

10.8 Other Metaheuristics........ccoviiiiiiiiiiiiiiic 418

10.9 Software for Metaheuristicsc.cccoviiiiniiiiiiiiiii 419

10.10 Illustrative Applicationsccocueueieiiiiiieiiccice 420

10.10.1 FedEx Flight Management Using Simulated Annealing............... 420

10.10.2 Ecosystem Management Using Genetic Algorithm Heuristics422

10.10.3 Efficient Routing and Delivery of Meals on Wheels 424

Contents xi

10.11 SUMMATY ..ottt e 426
KeY TOIINS .ottt 427
EXETCISES ...oviiicietc s 428
References and Suggested Readings...........ccoouevoiimiieiiiiiiiiiiiccccce, 430

Appendix: Review of Essential Mathematics—Notation, Definitions,
and Matrix AIGebra..........ccooiiiiiiiiii s 433

http://taylorandfrancis.com

Preface

This book presents a practical introduction to the field of Operations Research and serves
as a guide to the use of Operations Research techniques in scientific decision making,
design, analysis, and management. Our aim has been to create a readable and useful text
that provides not only an introduction to standard mathematical models and algorithms,
but also an up-to-date examination of practical issues pertinent to the development and use
of computational methods for solving problems. We offer a sound yet practical introduc-
tion to the mathematical models and the traditional as well as innovative solution methods
underlying the modern software tools that are used for quantitative analysis and decision-
making. Our presentations of problem formulations, solution methods, and software tools
are accompanied by illustrative applications of Operations Research techniques.

The First Edition of this book has been thoroughly updated and expanded through
the inclusion of new and timely topics, more modern perspectives on fundamental
material, revised and updated descriptions of currently available software, and the
addition of numerous new case studies that illustrate the application of Operations
Research techniques for solving important problems. This Second Edition extends the
purpose of the previous edition as a textbook for students and a professional reference
for practitioners.

We have designed this book as a text for an introductory course in Operations
Research. We target specifically the needs of students who are taking only one course
on the subject of Operations Research, and accordingly we have chosen to include just
those topics that provide the best possible one-semester exposure to the broad discipline of
Operations Research. An introductory course in Operations Research may be a required,
elective, or auxiliary course for many degree programs. In various institutions, the course
may be taught in Industrial or Mechanical Engineering, Computer Science, Engineering
Management, Management Science, Applied Mathematics, or Operations Research depart-
ments, at either the intermediate or advanced undergraduate or graduate levels.

This book may also serve as a professional reference book for corporate managers and
technical consultants. We welcome readers from a variety of subject disciplines who rec-
ognize the potential value of incorporating the tools of Operations Research into their pri-
mary body of knowledge. Because the mathematical models and processes of Operations
Research are used so pervasively in all areas of engineering, science, management, eco-
nomics and finance, and computer science, we are confident that students and profession-
als from many different fields of study will be at a substantial advantage by having these
analytical tools at hand. We hope that, in the course of studying the material in this book,
readers will be struck not only by fascination with the mathematical principles which we
will present, but also by the many and varied applications of the methods and techniques.
With the preparation provided by material in this book, readers should be in a position
to identify problems in their own special areas of expertise which can be solved with
the methods of Operations Research. In addition, this book may encourage some readers
to pursue more advanced studies in Operations Research; our presentation provides an
adequate foundation for continued study at higher levels.

Some engineering and management professionals received their formal academic train-
ing before personal computing devices and powerful workstations became so readily

xiii

xiv Preface

available and before the subsequent rapid increase in the number of sophisticated yet
accessible new software products. Such experienced practitioners, educated in traditional
mathematics, operations research or quantitative management, will find that many parts of
this book will provide them with the opportunity to sharpen and refresh their skills with
an up-to-date perspective on current methodologies in the field of Operations Research.

Important mathematical principles are included in this book where necessary, in order
to facilitate and promote a firm grasp of underlying principles. At the same time, we
have tried to minimize abstract material in favor of an applied presentation. Because our
readers may have quite diverse backgrounds and interests, we anticipate a considerable
mixture of motivations, expectations, and mathematical preparation within our audi-
ence. Since this book addresses optimization and quantitative analysis techniques, users
should have some knowledge of calculus and a familiarity with certain topics in linear
algebra, probability, and statistics. More advanced calculus is useful in the chapters on
integer programming and nonlinear optimization. Many of our students will take only
one course in the techniques of Operations Research, and we believe that the greatest ben-
efit for those individuals is obtained through a very broad survey of the many techniques
and tools available for quantitative decision making. Such breadth of coverage, together
with the mixture of mathematical backgrounds in our audience of readers, necessitates
that we temper the level of mathematical rigor and sophistication in our presentation of
the material.

Special Features

The field of Operations Research has experienced a dramatic shift in the availability of
software, from software support primarily for large mainframe computing systems to
the current proliferation of convenient software for a variety of desktop computers and
workstations. With such an abundance of software products, practitioners of Operations
Research techniques need to be aware of the capabilities and limitations of the wide variety
of software available to support today’s style of analysis and decision-making. Associated
with each chapter in this book is a section devoted to Software in which we offer a brief
description of some of the most popular software currently available specifically for solv-
ing the various types of problems presented in that chapter. (The Software guide con-
tained in Chapter 1 elaborates more fully on the purpose and use of the guides to software
in subsequent chapters.) Because software packages generally focus on a particular type
of problem rather than on a specific application area, we will organize our discussions
of software implementations according to the chapter topics which are indicative of the
problem type. Most of the cited software packages and products are applicable to a wide
array of application areas.

The information contained in these Software descriptions is not intended to represent
an endorsement of any particular software product, nor to instruct readers in the detailed
use of any specific software package. We merely mention a representative few of the broad
range of available software packages and libraries, in order to create an awareness of the
issues and questions that might arise during the development or selection of software for
solving real problems.

Computing capabilities are almost ubiquitous, and the software available for student
use is often the same industrial strength software that practitioners use for solving large

Preface XV

practical problems. Educational discounts in pricing may reflect minor limitations in the
sizes of problems that can be solved with the software, but the software used in an edu-
cational environment is likely to be very typical of software designed and distributed for
commercial application.

Instructors who wish to supplement the introductory course in Operations Research
with computing exercises and projects should have no difficulty in finding reasonably-
priced software with appropriate educational site licenses, or even free and open software.
Although computer usage has become a popular aspect of many introductory courses in
Operations Research, our intention in developing this book has been to provide support
for learning the foundations necessary for building appropriate models, and to encourage
an adequate understanding of solution methods so that students can become self-reliant
and judicious users of the many software products that have been and will be developed
for practical use.

Each of the chapters in this book is enriched by several Illustrative Applications,
drawn from the industrial, computing, engineering, and business disciplines. These
miniature case studies are intended to give the reader some insight into how the
problem solving tools of Operations Research have been used successfully to help solve
real problems in public and private scientific, economic, and industrial settings. Details
are omitted in some cases, but references are provided for all of the illustrative appli-
cations, which may serve as the inspiration for term projects or further studies that
expand on the brief sketches given in this book. Our Illustrative Applications include
examples from the petroleum industry, wildlife habitat management, forestry, space
exploration, humanitarian relief, manufacturing, agriculture production, mining, waste
management, military operations, shipping and transportation planning, computing
systems, finance, and health care.

Near the end of each chapter, is a brief summary of the important topics presented in
the chapter. To further assist students in their review and assimilation of chapter mate-
rial, each chapter in the book contains a list of Key Terms. Definitions or explanations of
these key terms are found in the chapter discussion, and typically the key term appears
highlighted in bold type. Mastery of the content of the chapter material requires a recogni-
tion and understanding of these important terms, and the key terms should be used as a
checklist during review of the subject matter contained in each chapter.

A selection of Exercises appears in each chapter. Many of these problems and questions
provide a straight-forward review of chapter material, and allow the student to practice and
apply what has been learned from the text. In addition, some of the exercises prompt the
discovery of mathematical and computational phenomena that may not be explicitly men-
tioned in the chapter material, but which offer important practical insights. Exercises are
an essential and integral part of learning, and the exercises included in this book have been
chosen to give students a thorough appreciation for and understanding of the text material.

References and Suggested Readings are included at the end of each chapter. These
reference lists contain titles of general and specialized books, scholarly papers, and other
articles, which may be used to follow up on interesting, difficult, or more advanced top-
ics related to material presented in the chapter. In case the reader would like to consult
still other authorities, or perhaps see alternative explanations from different sources, we
maintain a website for this book at www.operationsresearch.us. The website also includes
additional support material for both instructors and students.

An Appendix at the end of the book contains a review of mathematical notation and def-
initions, and a brief overview of matrix algebra. Readers having marginal mathematical
preparation for the material in this book may find that the appendix provides an adequate

http://www.operationsresearch.us

xvi Preface

review of the mathematics essential for comprehension of introductory Operations
Research. Additional references are listed in the Appendix for those who need a more
complete review or study of mathematics.

Book Overview

This book contains material that can be covered in a single semester. A course based
on this book would cover a range of topics that collectively provide the basis for a scien-
tific approach to decision making and systems analysis. Over half of the book is directed
toward the various subclasses of mathematical programming models and methods,
while the remainder is devoted to probabilistic areas such as Markov processes, queueing
systems, simulation, decision analysis, heuristics, and metaheuristics.

We recommend that, if time permits, the topics be studied in the order in which they
appear in the book. In particular, Chapter 2 on Linear Programming, Chapter 4 on Integer
Programming and Chapter 5 on Nonlinear Optimization might reasonably be treated as
a sequence. Similarly, Chapter 6 on Markov Processes, Chapter 7 on Queueing Models,
and Chapter 8 on Simulation form a natural sequence, since the discussions on simulation
build on the two preceding chapters. However, readers with more specific interests will
find that, after reading the first chapter, it is possible to read almost any of the chapters
without having thoroughly studied all the preceding ones.

Chapter 1 describes the nature of Operations Research, the history of the field, and how
the techniques of Operations Research are used. Since the analysis and optimization of
systems requires that mathematical models of real systems be built, we discuss some of
the principles of system modeling, a topic that will be re-visited frequently in the book.
Solving problems involves the use of computational processes, and we take this opportu-
nity to introduce algorithms and their efficiency, and the inherent complexity of some of
the problems that are solvable with the tools of Operations Research.

In Chapter 2, we study what is undoubtedly the most popular topic in Operations
Research, the creation and solution of linear programming problems. Many practical prob-
lems can indeed be modeled as linear systems: optimizing a linear function subject to lin-
ear constraints on the variables. Fortunately, a great deal of work has resulted in practical
and effective methods for solving these types of problems. We first look at the formulation
of problems in the linear programming form, then study the simplex, and other, solu-
tion methods and identify several computational phenomena that can take place when the
methods are applied to problems.

Network analysis is the subject of Chapter 3. A wide variety of problems can be mod-
eled as graph or network problems, and many algorithms have been developed for finding
paths, routes and flow patterns through networks of all sorts. Some network problems
have obvious tangible applications in the areas of transportation and distribution. Other
views of networks inspire solutions to more abstract problems such as the matching or
assignment of the entities in a system, or the planning, scheduling, and management of
the phases of projects.

In the next two chapters of the book, we study problems that are in some respects just
harder to solve than the problems seen earlier. Some of the problems are conceptually
more difficult, while some require more sophisticated mathematical solution techniques.
On the other hand, some types of problems are quite simple to describe but the solution

Preface xvii

methods seem to be prohibitively time-consuming to carry out. Chapter 4 introduces the
subject of Integer Programming, in which the problem formulations may look remark-
ably similar to the linear and network formulations seen in Chapters 2 and 3, but with the
exception that the decision variables are now constrained to have integer values. This addi-
tional requirement almost always implies that these problems require solution methods
that are in a different league, computationally, from the methods previously considered in
this book. Many interesting and practical problems are modeled as integer programming
problems, and in this chapter we introduce the best known ways to find exact solutions to
such problems.

In Chapter 5, we study an even larger and more unwieldy class of problems. Nonlinear
optimization actually includes all mathematical programming problems whose objective
or constraints cannot be expressed as linear functions of the decision variables. Because
there are so many forms of these problems, no one optimization method works for all
problems, but several representative and useful solution methods are presented.

Stochastic processes are studied in the next several chapters. In Chapter 6, we study
processes having probabilistic characteristics and behaviors, known as Markov processes.
Many practical dynamic systems can be described by simple probabilities of moving from
one state to another. For example, in a clinical setting, probabilities may be used to define
how patients respond to various treatments. Or in nature, certain weather phenomena
may occur with known probabilities during certain times of the year or under certain con-
ditions. Systems exhibiting Markov properties can be analyzed in order to determine what
the system’s most likely state is and how long it takes for a dynamic system to resolve into
this state. Some stochastic processes however never settle into any predictable set of states.
The analytical tools presented in this chapter are not tools that are directly used to optimize
a system, but rather to analyze a system and identify a system’s most likely properties. An
understanding of the most probable behavior of a system may then be used to modify and
improve the system’s performance.

Many systems can be described in terms of customers waiting to be served in some way:
human customers waiting to be served by a cashier, computational processes waiting to
be executed by a processor in a computer, or manufactured products waiting to be worked
on by a machine in an assembly-line process. Chapter 7 deals with the performance of sys-
tems that involve waiting lines, or queues. In this chapter we study queueing models and
the properties of queueing systems that can be computed on the basis of parameters that
describe the arrival rates of customers into the system and the service rates of the servers.

For some special cases, these computations can be made easily, but for more complicated
systems, analysts often resort to the use of simulation techniques. Chapter 8 presents sim-
ulation as a modeling process in which we use the computer to simulate the activities in a
real system, in order to discover the behavioral properties of the system.

Although practically all of the techniques of Operations Research can become involved
in decision-making processes, Chapter 9 takes a closer look at some of the theories and
psychological issues that are specifically related to decision making. Game theory, deci-
sion trees, and utility theory are among the more formal topics in this chapter. We then
discuss some of the human factors influencing decision making, the effects of human mis-
conceptions of probabilities, the irrational behaviors of human decision makers, and how
these difficulties can be dealt with to improve the decision making process in practice.

In the last chapter, Chapter 10, we give an overview of some of the recently developed
approaches to problem solving that practitioners have resorted to because of the inad-
equacy or ineffectiveness of the more formal traditional methods. Inasmuch as perfect
methodologies for some known-to-be-difficult problems have so far eluded analysts (and in

xviii Preface

fact may never be forthcoming!), the heuristic and metaheuristic methods presented here
are often used to obtain solutions that may be sub-optimal but often acceptable in practice.

This book contains a comprehensive collection of topics that we believe provide an
accurate and useful introductory perspective on the discipline and practice of Operations
Research. We, the authors, have prepared this book on the basis of our various experi-
ences in teaching, research, technical consulting, and systems analysis. Significant credit
goes to our own professors whose excellent instruction once introduced us to the field of
Operations Research, and whose knowledgeable enthusiasm initially sparked our interest
in the subject. Research and consulting opportunities have sustained and broadened our
awareness and appreciation of the importance of these topics.

The immediate motivation for developing this book arose from our many years of teach-
ing courses in various areas of operations research, mathematics, computer science, busi-
ness analysis, and systems engineering.

In the preparation of this edition of the book, we particularly appreciate and gratefully
acknowledge the contributions of Mariam Kotachi, Max Siangchokyoo, and Chris Knight
for their assistance with formatting the references and equations, and the help of Paul
Ticu, June Au Yeung and Kavin Fong for their help with the problems and solutions for the
first edition. Many of our students have been introduced to Operations Research through
courses in which early drafts of this book were used as text material. We appreciate these
students, notably Avinash Atholi and Russell Hyland among others, for their interest in
the subject and their careful reading of the chapters. Their constructive and insightful
responses and suggestions have contributed substantially to improvements in the presen-
tation of the material in this book. We continue to welcome feedback from our readers, and
invite comments that will assist us in keeping this book correct, up-to-date, educational,
and of practical value.

The artwork on the front cover of this book captures the philosophy and illustrates
the context in which we as Operations Researchers attempt to formulate and solve prob-
lems. Our models and methodologies (represented in the cover art by a poetic assembly
of graphs and figures) are often not firmly anchored to an idealized grid, but rather rest
upon a ground full of ups and downs, uncertainties, constant change, and incomplete
knowledge (suggested in the cover art by photographic excerpts of the Grand Canyon). The
elements in the illustration are drawn from Figures 2.6, 3.7, and 10.1 in this book; the 3D
graph is a model for Exercise 5.3, and was plotted using GeoGebra. In the cover image, the
diagrams appear to arise from the predictable grid foundation, but are actually perilously
close to the cliffs and canyons.

In order to take best advantage of our circumstances, we make fundamental assump-
tions that we know may not always be completely justifiable. But nevertheless on the basis
of this seemingly frail foundation, we have built sophisticated and reliable tools for solv-
ing important practical problems. The field of Operations Research consists of a broad
variety of analytical tools and methods which can provide essential assistance in making
informed and responsible decisions and reaching worthy goals.

About the Authors

Michael W. Carter is a professor in the Department of Mechanical and Industrial
Engineering at the University of Toronto, Toronto, Ontario (since 1981) and found-
ing director of the Centre for Healthcare Engineering (in 2009). He received his PhD in
Combinatorics and Optimization from the University of Waterloo, Waterloo, Ontario. He
also spent seven years at Waterloo as a full-time Systems Analyst in the Data Processing
Department. He is a member of the Canadian Operational Research Society (CORS), the
Institute for Operations Research and the Management Sciences (INFORMS), the Health
Applications Society (of INFORMS), the Institute of Industrial and Systems Engineering
(IISE) and the Society for Health Systems (SHS). He is the Canadian representative for
ORAHS (EURO: Operations Research Applied to Health Services).

Since 1989, his research focus has been in the area of health care resource modeling and
capacity planning. As of January 2018, Dr. Carter had supervised 23 PhD students and
90 Masters and directed more than 250 undergraduate engineering students in over 100
projects with industry partners. He has over 100 former students who now work in the
healthcare industry. He is cross appointed to the Institute of Health Policy, Management
and Evaluation (IHPME) and the School of Public Policy & Governance at the University
of Toronto.

Dr. Carter teaches undergraduate courses in Healthcare Systems and Engineering
Economics. Graduate courses include Healthcare Engineering, Healthcare Research and
an Introduction to Operations Research for students in a part-time Master of Health
Administration (MHSc) in IHPME.

He was the winner of the Annual Practice Prize from the Canadian Operational Research
Society (CORS) four times (1988, 1992, 1996, and 2009). In 2000, he received the CORS Award
of Merit for lifetime contributions to Canadian Operational Research. He also received
an Excellence in Teaching Award from the University of Toronto Student Administrative
Council. He is on the editorial board for the journals Health Care Management Science,
Operations Research for Health Care, Health Systems, and IISE Transactions on Healthcare
Systems. He is an adjunct scientist with the Institute for Clinical Evaluative Sciences in
Toronto (www.ices.on.ca) and a member of the Faculty Advisory Council for the University
of Toronto Chapter of the Institute for Healthcare Improvement (IHI). He is a member of
the Professional Engineers of Ontario. In 2012, he was inducted as a Fellow of the Canadian
Academy of Engineering and in 2013, he was inducted as a Fellow of INFORMS, the inter-
national society for Operations Research and Management Science.

Camille C. Price has been a professor of Computer Science at Stephen F. Austin State
University, Nacogdoches, Texas, and she now continues her academic association as emeri-
tus professor. She has also held faculty appointments at the University of Texas at Dallas,
Richardson, Texas; Southern Methodist University, Dallas, Texas; Colby College, Waterville,
Maine; and Williams College, Williamstown, Massachusetts; and was a Visiting Scholar in
the Center for Cybernetic Studies at the University of Texas at Austin, Austin, Texas.

She holds BA and MA degrees in Mathematics from the University of Texas at Austin,
and the PhD degree from Texas A&M University, College Station, Texas, with graduate
specializations in Computing Science and Operations Research. She held a research fel-
lowship at the Jet Propulsion Laboratory of California Institute of Technology, Pasadena,

Xix

http://www.ices.on.ca

XX About the Authors

California, and subsequently was engaged as a technical consultant for research projects
at the JPL. Professional memberships include the Institute for Operations Research and
the Management Sciences (INFORMS) and the INFORMS Computing Society, life mem-
bership in the Institute of Electrical and Electronics Engineers and the IEEE Computer
Society, the Association for Computing Machinery, and the Sigma Xi Scientific Research
Society.

Dr. Price has been the principal investigator on a variety of research projects funded
by the National Science Foundation and the State of Texas. She has twice received NASA
Awards in recognition of technical innovation in task scheduling and resource allocation
in specialized computer networks. She reviews research proposals for the National Science
Foundation and the Canadian Natural Sciences and Engineering Research Council. She
has served as an advisory consultant for program accreditation assessments and curricu-
lum reviews at universities in Texas, Oklahoma, Georgia, and Jordan; and as a member of
the research advisory board for the Texas Department of Transportation. As a consultant
for IBM Corporation, she has taught courses in advanced operating systems to IBM techni-
cal employees in Tokyo, Rome, Texas, and Florida. She has been an editorial consultant and
Series Editor in Operations Research for CRC Press, and is currently the Series Editor of
the Springer International Series in Operations Research and Management Science.

Her primary responsibilities as a faculty member have involved teaching undergradu-
ate and graduate courses in computer science and operations research, serving as gradu-
ate advisor for computer science and directing graduate student research projects. She is
the recipient of Teaching Excellence Awards from her college and department; and her
research interests and activities have resulted in numerous papers published in scientific
journals and presented at conferences.

Dr. Price’s research projects have addressed various topics in Operations Research. Her
work on heuristic algorithms for mathematical programming problems has been applied
to scheduling and allocation of tasks and resources in distributed computing systems,
novel computer architectures, load balancing in multiprocessor computer systems, flow
control, routing, fault-tolerance in parallel computing systems, and design and analysis of
parallel methods for combinatorial optimization.

Ghaith Rabadi is a professor of Engineering Management & Systems Engineering (EMSE)
at Old Dominion University (ODU), Norfolk, Virginia. He received his PhD and MS in
Industrial Engineering from the University of Central Florida (UCF), Orlando, Florida, in
1999 and 1996 respectively, and his BSc in Industrial Engineering from the University of
Jordan, Amman, Jordan, in 1992. Prior to joining ODU in 2002, he worked at UCF as Post
Doc where he led NASA funded projects on developing discrete-event simulations of the
Space Shuttle ground processes. He was then a visiting assistant professor at the depart-
ment of Industrial Engineering & Management Systems at UCE. He then worked as a
research director at Productivity Apex, a modeling and simulation firm based in Orlando,
Florida.

In summer 2003, he received the NASA Faculty Fellowship where he worked on opera-
tion modeling and simulation of future space launch vehicles at NASA Langley Research
Center in Hampton, Virginia. For their work with NASA, he and his colleagues were
awarded the NASA Software Invention Award and the NASA Board Action Invention
Award. In 2008, he received the Fulbright Specialist Program Award to work with the fac-
ulty at the German-Jordanian University in Amman, Jordan.

About the Authors xxi

He was a visiting professor for one year at the Department of Mechanical and Industrial
Engineering at Qatar University, Doha, Qatar, in 2013-2014 academic year. He taught grad-
uate and undergraduate courses in Operations Research, Engineering Economics, and
Simulation, and collaborated with the faculty on research pertaining to port operation
simulation and optimization.

In 2016, he received ODU’s Doctoral Mentoring Award for advising 14 PhD students to
graduation over the past 14 years, and for continuing to work closely and publish with his
students. Most recently, he with a team of professors and PhD students received NATO's
Global Innovation Challenge Award for their work on humanitarian logistics optimization.

Dr. Rabadi’s research has been funded by NASA, NATO Allied Transformation
Command, Department of Homeland Security, Army Corps of Engineers, Department of
the Army, Virginia Port Authority, Northrop Grumman Shipbuilding, MITRE Corporation,
Boeing, STIHL, CACI, Sentara Hospitals and Qatar Foundation.

His research and teaching interests include Planning & Scheduling, Operations
Research, Simulation Modeling and Analysis, Supply Chain Management & Logistics, and
Data Analytics. He has published a book, and over 100 peer reviewed journal and confer-
ence articles and book chapters. He is a co-founder and is currently the chief editor for
the International Journal of Planning and Scheduling. More information is available at www.
ghaithrabadi.com.

http://www.ghaithrabadi.com
http://www.ghaithrabadi.com

http://taylorandfrancis.com

1

Introduction to Operations Research

1.1 The Origins and Applications of Operations Research

Operations Research can be defined as the use of quantitative methods to assist analysts
and decision-makers in designing, analyzing, and improving the performance or opera-
tion of systems. The systems being studied may be any kind of financial systems, scientific
or engineering systems, or industrial systems; but regardless of the context, practically all
such systems lend themselves to scrutiny within the systematic framework of the scientific
method.

The field of Operations Research incorporates analytical tools from many different disci-
plines, which can be applied in a rational way to help decision-makers solve problems and
control the operations of systems and organizations in the most practical or advantageous
way. The tools of Operations Research can be used to optimize the performance of systems
that are already well-understood, or to investigate the performance of systems that are
ill-defined or poorly understood, perhaps to identify which aspects of the system are con-
trollable (and to what extent) and which are not. In any case, mathematical, computational,
and analytical tools and devices are employed merely to provide information and insight;
and ultimately, it is the human decision-makers who will utilize and implement what has
been learned through the analysis process to achieve the most favorable performance of
the system.

The ideas and methodologies of Operations Research have been taking shape throughout
the history of science and mathematics, but most notably since the Industrial Revolution.
In various ways, all of human knowledge seems to play a role in determining the goals
and limitations underlying the decisions people make. Physical laws (such as gravity and
the properties of material substances), human motivations (such as greed, compassion,
and philanthropy), economic concepts (supply and demand, resource scarcity, division
of labor, skill levels, and wage differentials), the apparent fragility of the environment
(erosion, species decline), and political issues (territorial aggression, democratic ideals) all
eventually are evident, at least indirectly, in the many types of systems that are studied
using the techniques of Operations Research. Some of these are the natural, physical, and
mathematical laws that are inherent and that have been discovered through observation,
while others have emerged as a result of the development of our society and civilization.
Within the context of these grand themes, decision-makers are called upon to make spe-
cific decisions—whether to launch a missile, introduce a new commercial product, build a
factory, drill a well, or plant a crop.

Operations Research (also called Management Science) became an identifiable discipline
during the days leading up to World War II. In the 1930s, the British military buildup

2 Operations Research

centered around the development of weapons, devices, and other support equipment.
The buildup was, however, of an unprecedented magnitude, and it became clear that there
was also an urgent need to devise systems to ensure the most advantageous deployment
and management of material and labor.

Some of the earliest investigations led to the development and use of radar for detecting
and tracking aircraft. This project required the cooperative efforts of the British military
and scientific communities. In 1938, the scientific experts named their component of this
project operational research. The term operations analysis was soon used in the U.S. military
to refer to the work done by teams of analysts from various traditional disciplines who
cooperated during the war.

Wartime military operations and supporting activities included contributions from
many scientific fields. Chemists were at work developing processes for producing high
octane fuels; physicists were developing systems for the detection of submarines and air-
craft; and statisticians were making contributions in the area of utility theory, game the-
ory, and models for various strategic and tactical problems. To coordinate the effectiveness
of these diverse scientific endeavors, mathematicians and planners developed quantitative
management techniques for allocating scarce resources (raw materials, parts, time, and
labor) among all the critical activities in order to achieve military and industrial goals.
Informative overviews of the history of Operations Research in military operations are to
be found in White (1985) and McArthur (1990).

The new analytical research on how best to conduct military operations had been
remarkably successful, and after the conclusion of World War 11, the skill and talent of the
scientists that had been focused on military applications were immediately available for
redirection to industrial, financial, and government applications. At nearly the same time,
the advent of high speed electronic computers made feasible the complex and time con-
suming calculations required for many operations research techniques. Thus, the meth-
odologies developed earlier for other purposes now became practical and profitable in
business and industry.

In the early 1950s, interest in the subject was so widespread, both in academia and in
industry, that professional societies sprang up to foster and promote the development and
exchange of new ideas. The first was the Operational Research Society in Britain. In the
U.S,, the Operations Research Society of America (ORSA) and The Institute of Management
Science (TIMS) were formed and operated more or less as separate societies until the 1990s.
These two organizations, however, had a large and overlapping membership and served
somewhat similar purposes, and have now merged into a single organization known as
INFORMS (Institute for Operations Research and the Management Sciences). National soci-
eties in many other countries are active and are related through IFORS (the International
Federation of Operational Research Societies). Within INFORMS, there are numerous spe-
cial interest groups, and some specialized groups of researchers and practitioners have
created separate societies to promote professional and scholarly endeavors in such areas
as simulation, transportation, computation, optimization, decision sciences, and artifi-
cial intelligence. Furthermore, many mathematicians, computer scientists and engineers
have interests that overlap those of operations researchers. Thus, the field of Operations
Research is large and diverse. Some of the many activities and areas of research sponsored
by INFORMS can be found at the website http://www.informs.org or in the journals asso-
ciated with that organization. As will be apparent from the many illustrative applications
presented throughout this book, the quantitative analysis techniques that found their first
application nearly a hundred years ago are now used in many ways to influence our quality
of life today.

http://www.informs.org

Introduction to Operations Research 3

1.2 System Modeling Principles

Central to the practice of Operations Research is the process of building mathematical
models. A model is a simplified, idealized representation of a real object, a real process, or
a real system. The models used here are called mathematical models because the building
blocks of the models are mathematical structures such as equations, inequalities, matri-
ces, functions, and operators. In developing a model, these mathematical structures are
used to capture and describe the most salient features of the entity that is being modeled.
For example, a financial balance sheet may model the financial position of a corporation;
mathematical formulas may serve as models of market activity or trends; and a probabil-
ity distribution can be used to describe the frequency with which certain asynchronous
events occur in a multiprocessor computer. Mathematical models may look very different,
depending on the structure of the system or problem being modeled and the application
area. In studying the various topics in this book, we will see that models do indeed take on
various forms. Each chapter provides the opportunity to build different kinds of models.
This chapter merely makes a few general observations pertinent to all modeling.

The first step in building a model often lies in discovering an area that is in need of
study or improvement. Having established a need and a target for investigation, the ana-
lyst must determine which aspects of the system are controllable and which are not, and
identify the goals or purpose of the system, and the constraints or limitations that govern
the operation of the system. These limitations may result from physical, financial, political,
or human factors. The next step is to create a model that implicitly or explicitly embodies
alternative courses of action, and to collect data that characterize the particular system
being modeled.

The process of solving the model or the problem depends entirely on the type of prob-
lem. Solving the problem may involve applying a mathematical process to obtain a best
answer. This approach is sometimes called mathematical optimization, or mathematical
programming. In other cases, the solution process may necessitate the use of other special-
ized quantitative tools to determine, estimate, or project the behavior of the system being
modeled. Realizing that the data may have been only approximate, and that the model
may have been an imperfect representation of the real system, a successful analyst ulti-
mately has the obligation to assess the practical applicability and flexibility of the solution
suggested by the foregoing analysis. Merely finding an optimal solution to a model may be
just the beginning of a manager’s job; a good manager must constantly reevaluate current
practices, seek better ways to operate a system or organization, and notice trends in prob-
lem data that may not explicitly appear as part of a mathematical solution, such as excess
production capacity, under-utilized labor, or a decreasing product demand over time. The
entire modeling process is likely to require the skill and knowledge of a variety of individ-
uals who are able to work effectively in teams and communicate clearly and convincingly
among themselves, and then to explain and sell their recommendations to management.

Considerable skill is required in determining just how much detail to incorporate into
a mathematical model. A very accurate representation of a system can be obtained with
a large and sophisticated mathematical model. But if too many details are included, the
model may be so complex and unwieldy that it becomes impossible to analyze or solve the
system being modeled. Therefore, we do not even try to make a model as realistic as pos-
sible. On the other hand, a very simplistic model may not carry enough detail to provide
an accurate representation of the real object or system; in that case, any analysis that is
performed on the model may not apply to the reality.

4 Operations Research

It is tempting to confuse detail (or precision) with accuracy. They are not the same,
although many people are under the impression that the more detailed or complex a model,
the more accurately it reflects reality. Not all details are correct, and not all details are rele-
vant. The availability of powerful computing hardware and user-friendly software for build-
ing computer models almost seem to encourage runaway complexity and detail, as there
seems to be no limit to what can be included almost effortlessly in a model. Nevertheless,
it is possible to build models that are both realistic and simple, and doing so may spare an
analyst from losing sight of the purpose of building the model in the first place.

The best model is one that strikes a practical compromise in representing a system as
realistically as possible, while still being understandable and computationally tractable.
It is, therefore, not surprising that developing a mathematical model is itself an itera-
tive process, and a model can assume numerous forms during its development before an
acceptable model emerges. An analyst might in fact need to see some numerical results of
a solution to a problem in order to begin to recognize that the underlying model is incom-
plete or inaccurate.

The purpose of building models of systems is to develop an understanding of the real
system, to predict its behavior, to learn the limiting capabilities of a system, and eventually
to make decisions about the design, development, fabrication, modification, or operation
of the real system being modeled. A thorough understanding of a model may make it
unnecessary to build and experiment with the real system, and thus may avoid expense or
alleviate exposure to dangerous situations.

Operations Research deals with decision-making. Decision-making is a human pro-
cess that is often aided by intuition as well as facts. Intuition may serve well in personal
decisions, but decisions made in political, governmental, commercial, and institutional
settings that will affect large numbers of people require something more than intuition.
A more systematic methodology is needed. Mathematical models that can be analyzed by
well-understood methods and algorithms inspire more confidence and are easier to justify
to the people affected by the decisions that are made.

Experience in modeling reveals that, although quantitative models are based on math-
ematical truths and logically valid processes and such models may command the respect
of management, solutions to mathematical problems are typically interpreted and imple-
mented under a variety of compromising influences. Management is guided by political,
legal, and ethical concerns, human intuition, common sense, and numerous personality
traits. Problems and systems can be represented by mathematical models, and these for-
mulations can be solved by various means. However, final decisions and actions are taken
by humans who have the obligation to consider the well-being of an organization and the
people in it. Ideally, if these factors are going to influence the decisions that are made, then
these human concerns, as well as technological and financial goals and constraints, should
be incorporated in an honest way into the models that are created and analyzed. In this
way, we can gain the greatest value from our efforts in applying quantitative methods.

As a final word of advice and caution, it is suggested that before expending any substan-
tial effort in solving or analyzing a problem or system, analysts and managers should try
to confront and answer a few preliminary questions:

Does the problem need to be solved?

Will it be possible to determine what the real problem is?

If a model were developed and a solution proposed, would anybody care?
Would anybody try to implement the solution?

Introduction to Operations Research 5

How much of the analyst’s time and expense is it worth to try to solve this problem?

Is there enough time and are there adequate resources available to make any signifi-
cant progress toward solving this problem?

Will the solution create other serious problems for which there is no apparent remedy?

These are difficult questions, often overlooked by an eager and motivated analyst, but they
are issues that an analyst should try to confront frankly and candidly before becoming
irreversibly involved in a large problem-solving project.

1.3 Algorithm Efficiency and Problem Complexity

An algorithm is a sequence of operations that can be carried out in a finite amount of time.
An algorithm prescribes a process that may be repetitive in some sense (perhaps iterative
or recursive), but that will eventually terminate. Practical examples of algorithms include
recipes for cooking, the instructions in an owner’s manual for connecting a new sound
system component, and computer programs that do not contain infinite loops. Algorithms
are the processes that software developers put into action when they create computer pro-
grams for solving all kinds of problems.

In the 1930s, a mathematician by the name of Alan Turing developed a general computa-
tional model (which now bears his name) that is powerful enough to represent all possible
numeric and symbolic computational procedures. Turing also demonstrated the existence
of problems for which no algorithms exist that successfully handle all possible instances
of the problem. Such problems are called unsolvable or undecidable problems. (It had
been previously assumed that an algorithm could be developed for any problem if the
problem-solver were merely clever enough.) Some of the earliest problems to be classified
as unsolvable were of only theoretical interest. However, more recently, other more practi-
cal unsolvable problems have been identified.

When such problems do arise in actual practice, we might just try to deal with special
or limited cases, rather than with the general problem. Special cases of unsolvable prob-
lems, perhaps involving highly restricted inputs, may not be unsolvable, and therefore it
may be entirely possible to design algorithms for these cases. Alternatively, we might find
it fairly simple to use human ingenuity (a very poorly defined talent that cannot be easily
automated) to deal with individual problem instances on a case-by-case basis.

While unsolvable (or undecidable) problems do exist, most analysts would prefer to
concentrate on the many important solvable problems that face us; that is, problems for
which algorithms can be developed. With this in mind, the next question to arise might
be: are all solvable problems of similar difficulty, or are there some that are truly more
difficult than others? What is meant by a difficult problem? And just what is known about
algorithms, and the complexity (or computational behavior) of algorithms? This is a topic
of study that has undergone enormous progress during the past several decades, and the
advances that have been made in this field have provided valuable concepts, notations,
and tools that allow for discussion and analysis of an algorithm’s performance.

Several factors influence the amount of time it takes for a computer program to execute
to solve a problem: the programming language used, the programmer’s skill, the hardware
used in executing the program, and the task load on the computer system during execution.

6 Operations Research

But none of these factors is a direct consequence of the underlying algorithm that has
been implemented in software. Given a particular algorithm, its performance is strongly
dependent on the size of the problem being solved. For example, we would expect a sort-
ing algorithm to take longer to sort a list of 10,000 names than to sort a list of 100 names.
Similarly, we recognize that solving a system of equations takes longer when there are
more equations and more variables. For this reason, the performance of an algorithm is
often described as a function of a variable denoting the problem size, which denotes the
size of the data set that is input to the algorithm.

During the early years of the discipline of Operations Research, relatively little was
understood about the formal properties of algorithms and the inherent complexity of prob-
lems. However, the 1970s and 1980s witnessed remarkable developments in this area. Two
interesting classes of problems have been defined. One class of problems (called class P)
contains those problems that can be solved by an algorithm within an amount of computa-
tion time proportional to some polynomial function of problem size; that is, the problems
are solvable by polynomial-time algorithms. The other class (called class NP for nonde-
terministic polynomial time) contains problems that may require the computation time to
be proportional to some exponential (or larger) function of problem size; these algorithms
are called exponential-time algorithms. For a more precise description of these problem
classes, based on the notions of deterministic and nondeterministic Turing machines, refer
to any elementary textbook on algorithms or theory of computation, such as Cormen et al.
(2009), Baase and Gelder (2000), Manber (1989), and Hein (1995).

Within the class NP, there is another special class of important problems called
NP-complete, which are characterized as being the most difficult problems in NP. This
class includes many very practical problems and so has received considerable attention
from analysts. Another class of NP problems, known as NP-hard, are at least as hard as
the hardest NP problem. Some of these NP problems, and their practical applications, are
described in Chapters 3, 4, and 10.

The problems in class P are generally considered to be easy problems—not necessarily
in the conceptual sense but in the sense that efficient algorithms for these problems exist
that execute in reasonably small amounts of computation time. NP-complete and NP-hard
problems, in contrast, appear to require computation time that grows as an exponential
function of problem size. This implies that unacceptably large amounts of computation
time could be required for solving problems of any practical size, and therefore such prob-
lems have been termed intractable problems. Solutions for such problems are not neces-
sarily difficult to conceptualize or even to implement in computer code, but the execution
time may be completely unaffordable—both physically and financially.

It is known that P C NP, but it is an open question whether P = NP. In other words,
are the NP-complete problems truly more costly to solve than the problems in P, or have
analysts just not yet been clever enough to discover efficient algorithms for these appar-
ently difficult problems? Discovery of an efficient (polynomial-time) algorithm for any
NP-complete problem would be sufficient to establish that P = NP and, therefore, that all
the NP-complete problems can be solved efficiently. In the absence of any such discovery,
analysts are faced daily with the need to solve practical problems that are computation-
ally intractable. Chapter 10 reveals how some of these problems are dealt with in effective
and affordable ways. An informative overview of this subject is available in Garey and
Johnson (1979).

Most of the problem models presented in this book are not intractable, and the solution
methods for these problems are based on polynomial-time algorithms. These methods
find optimal solutions in an amount of time proportional to a polynomial function of the

Introduction to Operations Research 7

problem size. Depending on the nature of the data (e.g., the distribution of data values or
the arrangement of the data values in the data set), the execution time for a given algorithm
may vary. Sorting a list of 10,000 names that are already in order may take less time than to
sort 10,000 names that are scrambled—if the algorithm is sensitive to the initial ordering
and can take advantage of it. Similarly, finding the best solution to a system of equations
may be rather easy if a reasonably good solution is already known.

Thus, we will see that, under different circumstances, the same algorithm may require
an execution time that is a different function of problem size. If so, which of these different
functions should analysts use to characterize the performance of the algorithm? There are
several possibilities: the most favorable (fastest) case, the average case, or the most unfavor-
able (slowest) case.

To help phrase an answer to this question, special notations have been developed that
facilitate describing the computation time required to execute an algorithm to completion.
For this particular purpose, we do not want to try to capture specific information about
how an algorithm is implemented (programmed), or on what type of computer it is to be
executed; rather, we should focus on the algorithm itself and, in particular, the step count,
or the number of steps inherent in carrying out the algorithm. For some purposes, one
might want to characterize the best case performance of an algorithm (the fewest number
of steps that it could ever need under any circumstances). Best case might be the choice of
an optimist, but using this as an indicator of algorithm performance could be misleading;
and in any case, this is rarely indicative of what analysts need to know in order to assess
the dependable performance of the algorithm. For example, multiplying two n X n matrices
generally takes time proportional to n% but of course, if one of the matrices is the identity
matrix, this could be discovered in only n? steps (inspecting each element of the matrix)
and the rest of the process could be omitted. Using the function n? to describe the step
count, or run-time, of a matrix multiplication routine does give an accurate measure of this
best case, but it is not generally indicative of the time required for matrix multiplication.

An algorithm’s average case performance may seem to be the most practical character-
ization because it indicates the typical, or expected, step count. It would certainly be useful
to know the most likely amount of time required to execute an algorithm. However, because
such an analysis must be based on statistical assumptions about the nature, order, or dis-
tribution of the data on which the algorithm operates, the validity of such assumptions
may be on shaky ground for any particular set of data. Indeed, the expected performance
may never actually be observed for any given set of input data. In addition, the statistical
analysis that must be carried out in order to characterize an algorithm’s average behavior
is often quite a mathematically difficult analysis.

The characterization of an algorithm that is both straightforward and often of greatest
practical value is the worst case performance, that is, the greatest number of steps that may
be necessary for guaranteed completion of the execution of the algorithm. For this purpose,
we introduce big-Oh notation, which is written as O(f(n)) and pronounced “big Oh of f
of n,” where n denotes problem size and f(n) is some function of problem size. The mean-
ing of the notation is as follows. An algorithm is said to be O(f(n)) if there exist constants c
and n, such that for all n > n,, the execution time of the algorithm is < c - f(n). The function
f(n) is the algorithm’s worst case step count, measured as a function of the problem size.
The constant c is called a constant of proportionality and is intended to account for the
various extraneous factors that influence execution time, such as hardware speed, program-
ming style, and computer system load during execution of the algorithm. The problem size
threshold n, accounts for the fact that for very small problem sizes, the algorithm may not
reveal its characteristic worst case performance. Paraphrased, the definition given above

8 Operations Research

may be stated as follows: To say that an algorithm is O(f(n)), or “of order f(n),” means that for
large enough problem sizes, the execution time is proportional to at most f(n).

Thus, a matrix multiplication algorithm is O(n®) because the process may take n steps,
although the algorithm could be programmed to look for special input forms that may in
certain cases permit completion of the task in fewer than n?® steps. Some algorithms may
operate in such a way that their worst case performance is also the best case; the per-
formance of such algorithms does not vary depending on the nature of the data, but, of
course, does vary with problem size.

There are even some algorithms whose performance is independent of problem size, and
therefore not really dependent on any function of problem size n (e.g., retrieving the first
item in a list takes the same amount of time regardless of the length of the list). If we need
to describe the worst-case performance of such an algorithm, we could use the notation
O(1), where f(n) is just the constant function 1. Where appropriate throughout this book,
the big-Oh notation is used to describe the worst case performance of the algorithms that
are presented.

Many of the methods studied in this book are based on algorithms whose complexity
functions range from n, n% n3, up to 2%, n!, and n. To give an idea of the relative growth
rates of these functions as n increases, Table 1.1 shows indications of function values.
Instead of raw numeric values, we can impose a more practical interpretation and assume
that the function values f(n) denote the step count of some algorithm, and that each step
can be executed in 1 second on a computer. The entries in the table can then be viewed
as estimates of actual amounts of the computation times required to apply algorithms of
different complexities to increasingly larger problems of size n. The great differences that
are evident between the polynomial functions and the exponential functions are quite
dramatic, and the execution times for the exponential algorithms are indeed staggering.

In practical applications, problem sizes may well range into the hundreds of thousands,
and we will encounter a number of important practical problems for which the only known
algorithms have worst case complexity that is exponential. It is obvious from the table
that such exponential-time algorithms are completely useless for solving problems of any
reasonably large size. Given this dilemma, what are the options? It is pretty clear that, for
these types of problems, faster hardware does not offer an immediate solution; CPU chips
whose processing speeds are doubled, or even increased by several orders of magnitude,
will not make a dent in these formidable execution times. Until some theoretical break-
throughs come to the rescue that suggest new algorithms for solving such problems, we

TABLE 1.1

Computation Times

f(n) n=10 n=20 n =50 n =100
n 10s 20s 50s 100's
n? 100 s 400 s ~ 7 min 2,500 s ~ 42 min 10,000 s~2.8 h
nd 1,000 s ~ 17 min 8,000s~2h 125,000 s~ 35 h 1,000,000s~12d
2n 1,024 s = 17 min 1,048,576 s~12d 1.126 x 10"5s ~ 1.268 x 10%s ~ 107!
350,000 centuries centuries
n! 3,628,800 s ~ 1 month 2433 x 1085 ~ 10° 3.041 x 10%s ~ 10
centuries centuries
n" 10'°s ~ 300 yr 1.049 x 10%s ~ 10V 8.882 x 10%4s ~ 107

centuries

centuries

Introduction to Operations Research 9

may have to settle for using methods that do not solve the problems perfectly, but which
yield acceptable solutions in an affordable amount of computation time. This may seem
to be a disappointing direction to follow, but the discussion in Section 1.4 might provide
convincing arguments in defense of suboptimal solutions.

1.4 Optimality and Practicality

Everyone with a mathematical education has been trained to search for exact solutions to
problems. If we are solving a quadratic equation, there is a formula which, if applied cor-
rectly, yields exact results, namely values that satisfy the equation. If a list of names needs
to be sorted, we employ an algorithm that gets the list perfectly ordered. And if we need to
find the maximum point in a continuous, differentiable function, we may be able to use the
methods of calculus to find that optimal point. And certainly in the case of giving proofs
of mathematical theorems, a respect for truth and perfection has been developed, and a
nearly correct but incomplete or slightly flawed proof is of little or no value at all. Against
this backdrop, the idea of solving a problem and not getting the right answer is indeed
disappointing and disturbing. Yet there are justifiable reasons for accepting computational
results that are imperfect or suboptimal.

First, it has already been pointed out that the models created by an analyst are not per-
fect representations of a system being analyzed. So, even if we could obtain exact solutions
to the model, such solutions would not necessarily constitute exact solutions or perfect
managerial advice to be applied within the real system. Hence, costly efforts to achieve
perfect solutions to a mathematical model may not be warranted.

Contributing to the imperfection in our problem-solving endeavors is the use of auto-
matic computing devices to assist in the calculations. The exact representation of real num-
bers requires the use of an arbitrarily large number of binary digits. However, the finite
number of bits, sometimes known as word length, typically used for storing numerical
values in computer memories implies that real numeric data values cannot always be rep-
resented exactly in computers. As an example, a correct representation of the value pi
requires infinitely many digits, but we often settle for a truncated approximation using
seven or eight significant digits (such as 3.141592) and tolerate the resulting inaccuracy in
the results. This is known as round-off error, and after repeated calculations involving
many inexact values, the accumulated round-off error can so distort the final results that
they bear little resemblance to the pure theoretically correct answers that were anticipated.
Hardware standards, such as the IEEE Floating-Point Standard, and results from the well-
developed field of numerical analysis have provided analysts with tools to define, mea-
sure, and place bounds on the effects of accumulated computational errors, but being able
to predict these errors does not necessarily suggest any method for avoiding or correcting
erroneous results.

It is known that the data values associated with some types of problems, such as
matrix problems and solving systems of equations, are inherently ill-conditioned, and cer-
tain computational procedures, such as matrix operations or iterative searches designed
to converge to a solution, are inherently unstable. In some cases, although the algorithm
underlying a solution process might be proven to yield optimal results, ill-conditioned
problem data and numerical instability can practically preclude obtaining solutions of any
reasonable quality. For further discussions on the successful use of numerical techniques

10 Operations Research

with computers, refer to any reputable book on numerical analysis, such as by Cheney and
Kincaid (2013), Sauer (2011), and Wilkinson (1963).

Finally, the innate difficulty of some problems might suggest that accepting suboptimal
solutions is the only practical approach. Problems whose algorithms take an exponential
amount of computation time to guarantee a perfect, or optimal, solution leave us little
alternative but to look for faster ways of obtaining solutions, even at the price of getting
solutions of lesser quality. Suppose we are faced with the choice of expending an expo-
nential amount of time (perhaps translating into centuries of computation time) to obtain
an optimal result, or expending polynomial-time computational effort to obtain a solution
that is adequate. In some cases, there may be a guarantee that the polynomial-time solu-
tion will be within some specified percentage of the optimal solution. In other cases, there
may be no such guarantee, but perhaps experience has shown that in common practice
the results are considered to be good enough for the context in which the solution is to
be applied. Realizing also that the optimal result may be the solution to the wrong model,
that the optimal result may be infused with round-off error, and that the data used as
parameters might have been flawed and could have changed over time, a realistic analyst
would probably feel completely justified in applying the polynomial-time algorithm to
obtain a practical solution quickly, and feel no remorse whatsoever over having foregone
the chance to obtain a slightly better solution. Given our very imperfect grasp on the con-
cept and reality of perfection, the price of optimality—in this case and in many others—is
entirely impractical.

Settling for solutions of merely good enough quality may at first seem to be an inexcus-
able lowering of one’s standards and expectations. Yet in a complex and in some ways
subjective world, compromise should not necessarily be seen as evidence of mediocrity.
In the real world of imperfect models, precarious data, unavoidable numerical inaccura-
cies, and time constraints, insistence upon so-called optimal solutions may border on the
compulsive. A rational analyst with a comprehensive view of the problem-solving process
would prefer to spend a reasonable amount of time in search of good, practical solutions,
and then proceed to put the results into practice to achieve the original goal of improving
the performance or operation of the system being studied. Chapter 10 introduces some
of the inspiration and influences behind solution methods that incorporate pragmatic
approaches to solving difficult problems.

1.5 Software for Operations Research

Each chapter in this book contains a section on software tools, in which there is a brief
description of some of the most popular software currently available for solving the types
of problems studied in the chapter. The principles and methods presented in each chapter
are intended to provide the foundations necessary for building and understanding
appropriate models. The authors” aim is to encourage an adequate understanding of the
mathematical principles and methods for solving problems so that students can become
informed users of the software that is available to them.

Because there is no single software system that is capable of solving all optimization
and system analysis problems, the user must be knowledgeable enough about the various
classes of problems to make a selection of appropriate software packages. Thus, being
able to build a mathematical model of a problem and being able to identify that model as

Introduction to Operations Research 11

a linear program, integer program, or network problem, for example, not only helps to
clarify the model, but also puts the analyst well on the way to selecting the right software
for solving the problem.

The most visible users of commercial software may be the people who actually run appli-
cation systems that contain optimization modules. However, playing even more essential
roles in the process are the analysts who formulate the mathematical models and who
adapt and refine the standard algorithms, and the developers of the software packages
who incorporate optimization modules (sometimes called solvers), together with applica-
tion systems and user interfaces. In our discussions, we will address various practical
issues that are important to all software users.

The references to software products in this and subsequent chapters are by no means
exhaustive and are not intended to comprise a comprehensive catalog of available soft-
ware. Instead, we hope to give readers a feel for the types of products that are on the mar-
ket and that may deserve their consideration when selecting implementations for practical
applications.

Note also that our references to software tools are not intended to represent endorsement
of any specific software products. Rather, we merely mention examples from the broad
range of software available for the various application areas and offer short descriptions
of selected software packages and libraries, in order to create an awareness of the general
capabilities of typical software, as well as some of the questions, difficulties, or limitations
that might arise during the development or use of software for solving real problems.

New products are being introduced rapidly, and it would be impossible to maintain a
perfectly up-to-date list of software tools. Advertisements and published product reviews
are helpful and, in particular, the software reviews that appear frequently in issues of
OR/MS Today are an extremely valuable source of information.

We have avoided making any comparisons of products on the basis of performance
or cost. Performance depends on the underlying hardware as well as on the frequent
updates and modifications that occur during the evolutionary development of the soft-
ware. Software prices vary rapidly, depending on competition in the market, whether the
purchaser or user is in academia or industry, and whether copies are sold for installations
in individual workstations, client/server, or cloud-based versions intended for multiple
users. More expensive commercial versions of some software may handle larger problem
models and solutions, while the less expensive personal versions or student versions may
be limited in the size of problems that can be solved.

In light of the above considerations, a few of the pertinent characteristics and features
that will likely play a role in the reader’s consideration of software products are high-
lighted. Each chapter’s discussion covers software related to the topics covered in that
chapter. In this first chapter, no specific solution methods are introduced; however, there is
discussion of some of the general principles of building mathematical models. Thus, some
software systems that facilitate the construction of models (i.e., modeling languages and
environments) and the preparation of model parameters and characteristics are identified.
These representations of models can then be introduced as input to various other software
solution generators, or solvers.

One way to create a problem model to be solved with a specialized solver is to use a
general-purpose programming language (such as C, C++, Python, or Java) and write a
program to format input parameters appropriately and to generate output reports in the
desired form. The advantages of this approach are that such languages are typically avail-
able and usable on any hardware, and there is no need to purchase and learn a new lan-
guage or package.

12 Operations Research

An analyst who creates models in this way can then choose to solve the problem using
available software such as is found in the IMSL Mathematical Subroutine Library. A
comprehensive collection of approximately 1300 mathematical and statistical functions
and user-callable subroutines is capable of solving most of the types of problems that will
be studied later in this book. The IMSL libraries are ideal for programmers skilled in C, C#,
Java, and Fortran, and are available for use on Windows, Unix, Linux and MAC computers.
The IMSL software system has been used by developers worldwide for four decades, and
is still considered by many to offer valuable autonomy to the user and thereby accelerate
development of applications in many contexts (Demirci 1996).

The initial simplicity and low-cost investment associated with this approach, however,
may be paid for in the long term, as code written and customized for one modeling project
may not be directly transferrable and reusable on subsequent projects. Nevertheless, there
can be some value in maintaining direct in-house control over the development and con-
struction of software solutions.

For some types of problems, the row and column (tabular) orientation of problem param-
eters offered by many spreadsheet programs is easy to create and read; and although the
analyst loses some flexibility, many problems lend themselves nicely to the spreadsheet
framework. Moreover, many solvers can read and write directly to spreadsheet files.

A much more powerful means for creating models is through the use of algebraic
modeling languages. These languages permit the user to define the structure of a model
and declare the data to be incorporated into the structure. An algebraic modeling lan-
guage accepts as input the analyst’s algebraic view of the model, and creates a representa-
tion of the model in a form that the solver algorithm can use. It also allows the analyst to
design the desired output reports to be produced after the solver has completed its work.
Modeling languages can be bundled with a solver or optimization module, or can allow
the user to customize an application system by selecting the best optimization component
for the job. Among the most commonly used modeling languages are the following.

AMPL, a modeling language for mathematical programming, is an integrated
software package for describing and solving a variety of types of problems.
Developed initially by AT&T Bell Labs, it is a complex and powerful language
that enables model developers to effectively utilize the system’s sophisticated
underlying capabilities. AMPL is a command and model interpreter that is
available in Windows, Linux, MacOS, and several Unix-based workstations,
and interfaces with over 30 powerful optimization engines including MINOS,
CPLEX, OSL, GUROBI, and many of the most widely used large-scale solvers.
AMPL features an integrated scripting language, provides access to spreadsheet
and database files, and has application programming interfaces for embedding
within larger systems. A review of AMPL and its use can be found in Fourer
et al. (1993) and at www.ampl.com.

MPL is a mathematical programming language that is considered one of the earliest
integrated model development systems that supports input and output through
interfaces with databases and spreadsheets. MPL is most commonly used with
Windows and interfaces with and supports almost all commercial solvers.

LINGO is a thoroughly integrated modeling language and solver that interfaces
with the entire LINDO system family of linear and nonlinear problem-solvers.
(LINDO products are mentioned in several subsequent chapters, as this line of
software offers application tools for a wide variety of types of problems, as further

http://www.ampl.com

Introduction to Operations Research 13

described at www.lindo.com.) This powerful modeling language features a conve-
nient environment for expressing problems, facilitates using information directly
from text files, spreadsheets, and databases, provides access to a comprehensive
set of built-in solvers that handles a wide range of model types, and generates
output reports as well as graphical displays during and upon completion of the
solution process. LINGO runs on Windows, Mac and Linux systems.

AIMMS has emerged from its original role as a basic modeling language into a
comprehensive, innovative technology company offering sophisticated modeling
and solution platforms that support both strategic and operational optimization,
decisions, planning and scheduling. A full description of AIMMS is available at
www.aimms.com.

SAS/OR OPTMODEL is an optimization modeling language that uses a flexible
algebraic syntax for model formulation for different types of mathematical pro-
gramming problems including linear, mixed integer and nonlinear programming,.

GAMS, a general algebraic modeling system, was one of the earliest developed
modeling languages, and is now among the most well known and widely used
modeling systems for large scale optimization. GAMS links to libraries and pro-
gramming languages, databases and spreadsheet files, and runs on Windows,
Macintosh, Linux, and IBM platforms. GAMS is best known for its sophisticated
solvers for the full range of optimization problems and for its graphical interface
generator. More information on this system may be found at www.gams.com.

Software for Operations Research is also available through the Internet. As any knowl-
edgeable computer user must know, products (be they information, software, or more tan-
gible items) offered on the Internet may not always be subject to the same standards of
quality and control that are imposed on other avenues of commerce. The source, authen-
ticity, quality, and reliability of software or any other information posted on the Internet
may be difficult to confirm. Despite these concerns, the Internet has nevertheless become
one of the most exciting sources of information available today. With so many kinds of
services available online, it makes sense that computational and analytical services and
tools should be found there, too. For example, in 1994, a group of researchers at Argonne
National Laboratory and Northwestern University launched a project known as the
Network-Enabled Optimization System (NEOS), which now includes a large number of
solvers that accepts models in various formats, solves them on remote servers, and pres-
ents the results to the user for free. The NEOS server is hosted by the Wisconsin Institute
for Discovery at the University of Wisconsin in Madison, and provides access to more than
60 state-of-the-art solvers in more than a dozen optimization categories. Solvers hosted
by the University of Wisconsin run on distributed high-performance machines; remote
solvers run on machines at Argonne National Laboratory, Arizona State University, the
University of Klagenfurt in Austria, and the University of Minho in Portugal. The NEOS
project has been effective in providing information, communication, and high quality
software as a valuable service to the operations research community.

Of great interest also is the COmputational INfrastructure for Operations Research,
known as COIN-OR, which is a project dedicated to providing open-source software for
the Operations Research community (Lougee-Heimer 2008). It encourages and supports
the development of high-quality software suitable for use by a broad range of practitio-
ners, educators, and students working in industry, academia and government. This col-
lection of robust and portable software includes computational tools powerful enough for

http://www.lindo.com
http://www.aimms.com
http://www.gams.com

14 Operations Research

large collaborative project development, yet accessible to less experienced users as well.
Much of the software is structured into building blocks which may be modified to suit
the needs of an individual user and combined to create customized application packages.
Software components have been used compatibly with proprietary languages and soft-
ware products. COIN-OR software modules are available for constrained optimization,
linear and nonlinear, continuous and discrete problems. Source distributions are provided
in standard open source configuration, and precompiled binary distributions are available
for Windows and Linux on Intel and AMD platforms, and for Mac OS X on Intel and Power
PC platforms.

COIN-OR began in the year 2000 as an initiative of IBM Research, and was incorporated
four years later as an independent nonprofit foundation responsible for directing the activ-
ities of the organization. Professional technical leaders from universities and research lab-
oratories have continued to work diligently since the founding of COIN-OR to standardize
the infrastructure and maintain a stable and reliable repository of software. INFORMS
computing and optimization societies regularly sponsor workshops and conference clus-
ters to acquaint prospective users with the wide variety of freely available software that
serves the computational needs of operations researchers. Further information about this
ambitious and valuable project may be found at www.coin-or.org.

The open source movement has demonstrated over the years that high quality software
systems can actually be produced by contributors who volunteer their time and experi-
ence to make their products available for other people, hoping that in return people will
contribute back. This has been an interesting approach that showed tremendous success
and even for-profit companies started to participate in this model as it turned out that it
pays off on the long run. For example, Google offers open source codes and binaries for
Operations Research tools (solvers, interfaces, algorithms) in different computer languages
and for different operating systems. More is available on Google’s website.

1.6 Illustrative Applications
1.6.1 Analytical Innovation in the Food and Agribusiness Industries (Byrum 2015)

Food and agribusiness currently represent a $5 trillion industry that amounts to 10% of
consumer spending globally. Food production broadly demands about 40% of employ-
ment worldwide. And yet, despite the enormity and apparent success of the industry, there
is still hunger in many parts of the world.

The global population, currently at over seven billion, is expected to increase by
around two billion over the next few decades, and the demand for food crops needed
for consumption by humans and their animals is predicted to double. These staggering
requirements for nutrition must be met in a context of changing climate and environ-
mental conditions, without further uncontrolled greenhouse gas emissions and destruc-
tion of arable land and other natural resources, and with an amount of water that will
likely be only about two-thirds of what is actually needed for crop irrigation. The chal-
lenges of meeting the increasing demand for food production seem daunting, however
we can look toward a radically more ambitious application of Operations Research tech-
niques that can improve efficiency and productivity within the food and agribusiness
industries.

http://www.coin-or.org

Introduction to Operations Research 15

Agriculture already is a very information intensive enterprise. Data are gathered regu-
larly on soil conditions, weather, market demands, and prices. Livestock feeds are rou-
tinely measured for weight, moisture, and nutritional content. On another level, farmers
must deal with data that describe their own specific operational processes and associ-
ated risk management as well as with technical, regulatory, and policy issues. Information
technology advances such as mobile and remote sensing devices, and satellite image data
analysis, all contribute to the mix of inputs that must be processed by powerful analyti-
cal capabilities. This vast amount of accumulated information will require increasing
amounts of database storage, networking, communication, and more powerful and spe-
cialized computational and optimization capabilities.

Food producers are technologically sophisticated. Advances in science, technology, and
Operations Research all play a role in addressing problems of economic efficiency, social
responsibility, and gainful productivity in agribusiness. Leading international innovators
in plant genetics have created customized operations research tools in developing new
specialized breeds of seeds that produce higher yields which approximately tripled their
annual increases in yield over what had been achieved before the use of these more ele-
gant and powerful analytic techniques. Improvements in their seed products led to genetic
gains valued at nearly $300 million over a recent four-year period.

New advances in Operations Research, including theoretical and abstract concepts, can
be expected to contribute new analytical tools that can be skillfully applied to real prob-
lems. Formal methods will have to be adapted by knowledgeable analysts and applied to
the actual problems faced by farmers, ranchers and related food production practitioners
to produce practical and tangible results.

Revolutionary changes in agriculture are going to be critical to our ability to provide
food for the increasing world population. Researchers and practitioners in agricultural
production will benefit from their acquired knowledge and experience with traditional
and innovative methodologies in operations research, but they nevertheless will face dif-
ficult challenges as they apply these tools to create practical solutions that will be effective
and workable in a context of new technologies, changing human needs, environmental
transitions, and evolving political factors.

1.6.2 Humanitarian Relief in Natural Disasters (Battini et al. 2014)

Humanitarian relief operations play an increasingly important role in a world stressed by
population growth, urban residential density, natural resource use and depletion, global
warming, and economic and political factors. Urgent humanitarian needs occur in places
where food, water and medical supplies are constantly in demand, requiring routine and
sustainable distribution of supplies to save lives and mitigate human suffering. In such
situations, analysts regularly study available data to assess the needs, identify sources for
supplies, evaluate transportation options, and plan for timely and predictable delivery of
appropriate supplies to the most critically vulnerable and to those most urgently in need.
Even greater logistical challenges are presented when natural disasters occur (Wex et al.
2014). Earthquakes, floods, hurricanes, tsunamis, and fires, for example, often cause sud-
den and immediate injuries and loss of life, destruction of basic shelter perhaps requiring
evacuation and relocation of victims, and interruption of normal availability of food and
supplies. And in just such circumstances, relief operations may be seriously hampered:
analysts may have only limited access to reliable information with which to identify the
locations where rescue crews are needed, the extent of injury and destruction, the status of
resources and supplies, and the usability of various modes of transport. Communications,

16 Operations Research

water, and basic elements of infrastructure may have fallen prey to the disaster, and local
decision making may have become impossible. Managing and executing the logistics of an
efficient humanitarian supply chain in response to emergency needs arising from natural
catastrophic destruction is an enormous and complex challenge.

In 2010, Haiti experienced a devastating earthquake that measured 7.2 on the Richter
scale. Casualties were high with approximately a quarter of a million people killed
and an even greater number of injured survivors. More than half of government and
school buildings in Port-au-Prince and in the south and west districts of the country
were destroyed or damaged. Financial loss related to the quake exceeded Haiti’s entire
2009 gross domestic product. Overall, nearly 3.5 million people were affected by this
catastrophic event.

Relief efforts typically begin by dispatching emergency rescue units into the areas of
destruction, with the aim of reducing casualties and identifying longer term needs. Indeed,
relief teams arrived in Haiti from various agencies such as the United Nations, International
Red Cross and Red Crescent, the World Food Programme, and UNICEEF. Their immediate
focus was on delivering temporary shelter such as: blankets, tents, tarpaulins, and mos-
quito nets; food kits and water cans; and sanitation/hygiene kits.

The Haitian transport infrastructure was reported to have been very weak even
before the earthquake hit, therefore delivering supplies through uncharted damaged
areas to the earthquake victims was a difficult challenge. A plan to distribute relief
supplies had to be devised, but as is often the case in the humanitarian field, data was
incomplete or non-existent. A preliminary step in providing humanitarian aid is to
find a means of collecting data, defining the type, extent, and locations in need of help,
assessing the status of communication and transportation systems, and identifying
sources capable of providing food and supplies and knowledgeable emergency staff
personnel.

Pre-existing road network data were helpful in identifying all available routes and the
current condition of roads. And from an inventory of available fleet vehicles (trucks and
helicopters), it was possible to determine the cost of operation of each type of vehicle,
which ones were undamaged, where they were currently located, and estimates of the
time required for each type of vehicle to follow each available route.

Through cooperation among the agencies, food kits and hygiene kits were packaged in
containers of the same size and shape for ease of transport, storage and delivery. Although
food supplies were provided by different agencies than were the hygiene supplies, the
uniformly shaped kits could be efficiently stacked and mixed together arbitrarily on the
different types of delivery vehicles as needed.

Research analysts had already developed an elaborate network routing model to
describe the logistics of general distribution processes, and this previous work was
successfully amended to address the Haitian disaster requirements. The purpose ulti-
mately is to find the best and most efficient possible way to deliver supplies to meet the
needs of disaster victims; and this was accomplished by varying the type and number
of vehicles allocated to achieve the lowest cost distribution plan. Further modifications
to the model allowed for consideration of changes in the availability of supplies at their
source (based on when and how much assistance could be mustered by the interna-
tional agencies) and changes in the expected number of people assisted for each deliv-
ery to a given location.

Based on the acquired data, the demand for supplies, and the operational constraints, a
mathematical model was developed, and was optimized for the Haitian earthquake sce-
nario. The complex problem described in this way was then expressed in a special form

Introduction to Operations Research 17

using the GAMS modeling system, and was solved with CPLEX software executed on an
Intel-based PC running Windows 7. The computational results were then interpreted by
analysts, and a distribution plan was created to guide the efficient and effective delivery of
food and supplies.

Analytical approaches have been applied to some extent in the past to create workable
distribution systems. However, modern research to significantly improve the effective-
ness and efficiency of relief operations is relatively recent. Although every natural disas-
ter presents its own characteristic details, it has been shown here that the modeling and
computational tools developed in basic Operations Research can be adapted to the specific
needs of distributing available supplies for humanitarian relief in the wake of a natural
disaster.

1.6.3 Mining and Social Conflicts (Charles 2016)

Peru has become one of the best performing economies in Latin America during recent
years. Peru’s model of economic growth has been driven by its mining industry and the
associated potential for remarkable productivity. This country contains approximately
22% of the world’s silver, 13% of copper reserves, and smaller but globally significant per-
centages of zing, lead, tin, and gold reserves. Productivity is high, with Peru being the
world’s third largest producer of copper, silver, and zinc.

Although investment commitments in mining operations increased and reached over
$40 billion during the period 2011-2016 to support a portfolio of mining projects, there
have nevertheless been delays or lapses in implementing many of the projected min-
ing activities. The delays have frequently been related to uncertainties involving social
issues and conflicts. Local community concerns seem to be centered around environmen-
tal issues such as contamination of land and water, and the failure to improve everyday
services such as health and education for the local populations. Local communities had
anticipated greater benefits and services to accrue from the lucrative mining industry, but
were disappointed by the lack of actual and apparent improvements in their daily living.
Peru’s wealth of natural mineral resources did not seem to have transformed and enriched
the social and environmental structure nor brought to Peruvian communities the general
prosperity that had been hoped for.

Poor communication and a perceived mismatch between mining priorities and social
concerns led to conflicts that have resulted in the inability of some mines to continue
operations. Through the years, many attempts were made to resolve conflicts, including
forcing consultation between indigenous communities and the mining industry concern-
ing infrastructure impact prior to mine development. It became evident that the various
parties held vastly divergent perspectives on underlying problems. As an example, some
Peruvian communities view the land as sacred, so any disturbance or relocation due to
mining activities is considered a sacrilege and yet seems to be an inevitable aspect of any
possible economic development.

Interactions among conflicting parties were mired in a complex mixture of misunder-
standings, ambiguities, uncertainties, and insensitivities, so that attempts at meaningful
communication and cooperation were often unsuccessful. Expectations and perceptions
were so unclear or at cross-purposes that goals and objectives could not be well defined.
The traditional mathematical modeling tools and established practices of Operations
Research were useful only for studying specific and narrow avenues for progress in rather
small contexts, but proved ineffective in addressing and overcoming most of the larger
and more difficult issues.

18 Operations Research

With initiatives from the CENTRUM Catolica Graduate Business School, some reason-
able approaches were defined and followed to try to deal with the unstructured aspects of
the dilemma. It had been generally assumed that mining companies that were perceived
as having a more socially and environmentally responsible position were less likely to
be involved in social conflicts, but analysts initially found little hard data to support or
clarify this perception. Mining firms file corporate social responsibility (CSR) reports
annually or periodically over many years, but the content of these reports had not been
analyzed to determine the companies’” actual commitment and discipline in adhering
to the stated strategies. The job of reviewing the huge volume of accumulated reports
was overwhelming, but the challenge was addressed by CENTRUM in collaboration
with Cornell University. This team of researchers cooperatively devised machine learn-
ing approaches to extract data from the CSRs for analyzing and profiling the mining
companies’ practical commitment to sustainability. Preliminary results of this analysis
proved to be an extremely important first big step toward matching actual practice with
the ideals of sustainability.

In an effort to better understand and address socio-cultural issues, these analysts identi-
fied the following constituencies whose positions needed to be heard:

® Local communities and their needs for water, land, and respect for their cultural
values

e Mining and associated industries and companies
¢ Government and state organizations

¢ Environmentalists with credible environmental constraints assisted and advised
by technical innovation centers which included experts in Operations Research

Perhaps for the first time, researchers were able to take actions to help define and state the
needs, expectations, goals, and tolerances of each of these constituencies. A platform was
created for stating and discussing each group’s ideals, and for comparing ideals versus
currently existing conditions. By formally allowing and facilitating interaction among the
various parties involved, it became possible to encourage cooperative analysis of feasible
and desirable changes that could be made in the mining industry.

Conflicts based on uncertainty and misunderstandings were now being replaced by
meaningful discussions aimed toward structuring and realistically conceptualizing the
problems and goals expressed by both the mining companies and the local communities.
With better understanding all around, and with well founded expectations for continued
further progress, it is hoped that future collaboration will lead to formulating new models
for solving the technical problems in operations, economics, social order, and sustainabil-
ity for the development of Peru’s natural resources.

1.7 Summary

Operations Research consists of the use of quantitative methods for analysis, optimiza-
tion, and decision-making. The ideas and methods of Operations Research began to take
shape during World War I, and thereafter have been put to good use in a wide variety of
industrial, financial, government, nonprofit, and scientific endeavors.

Introduction to Operations Research 19

Central to the theory and practice of Operations Research is the use of mathematical
models to represent real systems or processes. A skillfully constructed model embodies
enough of the details of the real entity being modeled so that it captures the essential
characteristics of the entity, yet is simple enough so that the model can be studied using
standard analytical techniques. In addition, successful modeling depends on a human
analyst’s knowledge, experience, intuition, and good judgment.

Algorithms are computational processes that can be applied to the structures within
mathematical models. The performance of algorithms is often measured by the amount of
computer time required to apply the algorithm. Depending on the type of problem being
solved, algorithms may execute very rapidly (efficiently), or their execution may take so
long that the algorithm is essentially worthless for actual problems. This book makes a
special point of indicating, where possible, just what level of performance can be expected
of each of the computational methods presented in this and subsequent chapters.

Many algorithms are designed to solve their targeted problems perfectly; but with
imperfect or incomplete models and uncertain data, and the limited numerical accuracy
of computer hardware, it should be recognized that it may be more sensible and easily
justifiable to develop problem solutions that are less than optimal, but adequate for a given
application. It may be necessary to compromise the quality of solutions in order to obtain
solutions within a reasonable amount of computation time.

Key Terms

accumulated round-off error
algebraic modeling languages
algorithm

average case performance
best case performance
big-Oh notation

decision making
exponential-time algorithms
mathematical model
mathematical optimization
mathematical programming
model

NP-complete

NP-hard

polynomial-time algorithms
problem size

round-off error

solvable problems

solvers

step count

undecidable problems
unsolvable problems

worst case performance

20 Operations Research

References and Suggested Readings

Adam, E. E,, and R. J. Ebert. 1992. Production and Operations Management: Concepts, Models, and
Behavior. Englewood Cliffs, NJ: Prentice Hall.

Assad, A. A, and S. L. Gass. 2011. Profiles in Operations Research: Pioneers and Innovators, Vol. 147. New
York: Springer Science & Business Media.

Baase, S., and A. van Gelder. 2000. Computer Algorithms: Introduction to Design and Analysis, 3rd ed.
Reading, MA: Addison-Wesley.

Balci, O. 2014. Computer Science and Operations Research: New Developments in Their Interfaces. New
York: Elsevier.

Barr, R. S, R. V. Helgason, and J. L. Kennington. 1997. Interfaces in Computer Science and Operations
Research. Boston, MA: Kluwer Academic.

Battini, D., U. Peretti, A. Persona, and F. Sgarbossa. 2014. Application of humanitarian last mile dis-
tribution model. Journal of Humanitarian Logistics and Supply Chain Management 4 (1): 131-148.

Bhargava, H. K., and R. Krishnan. 1993. Computer-aided model construction. Decision Support
Systems 9 (1): 91-111.

Buffa, E. S. 1981. Elements of Production/Operations Management. New York: John Wiley & Sons.

Byrum, J. 2015. Agriculture: Fertile ground for analytics and innovation. OR/MS Today 42 (6): 28-31.

Charles, V. 2016. Mining and mitigating social conflicts in Peru. OR/MS Today 43 (2): 34-38.

Cheney, E. W, and D. Kincaid. 2013. Numerical Mathematics and Computing, 7th ed. Boston, MA:
Thompson Brooks Cole.

Chong, E. K. P, and S. H. Zak. 2013. An Introduction to Optimization, 4th ed. New York: Wiley.

Clauss, F. J. 1997. The trouble with optimal. OR/MS Today 24 (1): 32-35.

Cochran, J.], L. A. Jr. Cox, P. Keskinocak, J. P. Kharoufeh, and]J. Cole Smith. 2011. Wiley Encyclopedia
of Operations Research and Management Science, 8 Volume Set. New York: Wiley.

Connell, J. L., and L. Shafer. 1987. The Professional User’s Guide to Acquiring Software. New York: Van
Nostrand Reinhold.

Cook, T. M., and R. A. Russell. 1989. Introduction to Management Science. Englewood Cliffs, NJ:
Prentice-Hall.

Cormen, T. H,, C. E. Leiserson, R. Rivest, and C. Stein. 2009. Introduction to Algorithms, 3rd ed.
Cambridge, MA: MIT Press.

Czyzyk, J.,]. H. Owen, and S.]. Wright. 1997. Optimization on the Internet. OR/MS Today 24: 48-51.

Dannenbring, D., and M. Starr. 1981. Management Science: An Introduction. New York: McGraw-Hill.

Demirci, M. 1996. IMSL C numerical libraries, version 2.0. Computer 29: 100-102.

Ecker, J. G., and M. Kupferschmid. 1988. Introduction to Operations Research. New York: John Wiley &
Sons.

Fabrycky, W. J., P. M. Ghare, and P. E. Torgersen. 1984. Applied Operations Research and Management
Science. Englewood Cliffs, NJ: Prentice-Hall.

Fourer, R. 1996. Software for optimization: A buyer’s guide. INFORMS Computer Science Technical
Section Newsletter 17 (1 and 2): 14-17.

Fourer, R. 1998. Software for optimization: A survey of recent trends in mathematical programming
systems. OR/MS Today 25: 40-43.

Fourer, R, D. M. Gay, and B. W. Kernighan. 1993. AMPL: A Modeling Language for Mathematical
Programming. South San Francisco, CA: The Scientific Press.

Garey, M. R,, and D. S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP
Completeness. San Francisco, CA: W. H. Freeman Press.

Gass, S. 1987. Managing the modeling process: A personal reflection. European Journal of Operational
Research 31: 1-8.

Gass, S, and A. Assad. 2004. An Annotated Timeline of Operations Research: An Informal History. New
York: Springer.

Introduction to Operations Research 21

Gass, S., H. Greenberg, K. Hoffman, and R. W. Langley (Eds.). 1986. Impacts of Microcomputers on
Operations Research. New York: North-Holland.

Geoffrion, A. M. 1987. An introduction to structured modeling. Management Science 33: 547-588.

Gould, F. J.,, G. D. Eppen, and C. P. Schmidt. 1991. Introductory Management Science, 3rd ed.
Englewood Cliffs, NJ: Prentice-Hall.

Greenberg, H., and F. H. Murphy. 1992. A comparison of mathematical programming modeling
systems. Annals of Operations Research 38: 177-238.

Greenberg, H., and F. H. Murphy. 1995. Views of mathematical programming models and their
instances. Decision Support Systems 13 (1): 3-34.

Gupta, S. K., and J. M. Cozzolino. 1974. Fundamentals of Operations Research for Management: An
Introduction to Quantitative Methods. San Francisco, CA: Holden-Day.

Hall, O. P, Jr. 1993. Computer Models for Operations Management, 2nd ed. Reading, MA:
Addison-Wesley.

Hein, J. L. 1995. Discrete Structures, Logic, and Computability. Boston, MA: Jones and Bartlett.

Hillier, F. S., and G.]J. Lieberman. 2010. Introduction to Operations Research, 9th ed. Boston, MA:
McGraw-Hill.

Horner, P. 2002. History in the making. OR/MS Today 29 (5): 30-39.

Howard, R. A. 2001. The ethical OR/MS professional. Interfaces 31 (6): 69-82.

Lenstra, J. K., A. H. G. Rinnooy Kan, and A. Schrijver. 1991. History of Mathematical Programming:
A Collection of Personal Reminiscences. New York: Elsevier/North Holland.

Lougee-Heimer, R. 2008. COIN-OR in 2008. OR/MS Today 35: 46.

Manber, U. 1989. Introduction to Algorithms: A Creative Approach. Reading, MA: Addison-Wesley.

Matula, D. W. 1986. Arithmetic for microcomputers—Some recent trends. In S. I. Gass, H.
J. Greenberg, L. L. Hoffman, and R. W. Langley (Eds.), Impacts of Microcomputers on
Operations Research. New York: Elsevier.

McArthur, C. W. 1990. Operations Analysis in the U.S. Army Eighth Air Force in World War II.
Providence, RI: American Mathematical Society.

McCloskey, J. F. 1987. The beginnings of operations research: 1934-1941. Operations Research
35 (1): 143-151.

More, J.], and S. J. Wright. 1993. Optimization Software Guide. Philadelphia, PA: SIAM
Publications.

Morse, P. M. 1986. The beginnings of operations research in the United States. Operations
Research 34 (1): 10-17.

Murphy, F. H. 2005. ASP, The art and science of practice: Elements of the practice of operations
research: A framework. Interfaces 35 (2): 154-163.

Murty, K. G. (Ed.). 2015. Case Studies in Operations Research: Applications of Optimal Decision
Making. New York: Springer.

Orchard-Hays, W. 1978. History of mathematical programming systems. In H.]J. Greenberg
(Ed.), Design and Implementation of Optimization Software. Alphen aan den Rijn, the
Netherlands: Sijthoff and Noordhoff.

Pidd, M. 1999. Just modeling through: A rough guide to modeling. Interfaces 29 (2): 118-132.

Ragsdale, C. T. 1998. Spreadsheet Modeling and Decision Analysis: A Practical Introduction to
Management Science, 2nd ed. Cincinnati, OH: Southwestern College Publishing.

Ravindran, A. (Ed.). 2008. Operations Research Applications. Boca Raton, FL: CRC Press.

Ravindran, A., D. T. Phillips, and J. J. Solberg. 1987. Operations Research: Principles and Practice.
New York: John Wiley & Sons.

Salvendy, G. (Ed.). 1982. Handbook of Industrial Engineering. New York: John Wiley & Sons.

Sauer, T. 2011. Numerical Analysis, 2nd ed. Boston, MA: Addison Wesley Longman.

Sharda, R., and G. Rampal. 1995. Algebraic modeling languages on PCs. OR/MS Today 22 (3):
58-63.

Taha, H. A. 2011. Operations Research: An Introduction, 9th ed. Upper Saddle River, NJ: Pearson.

22 Operations Research

Wagner, H. M. 1975. Principles of Operations Research with Applications to Managerial Decisions.
Englewood Cliffs, NJ: Prentice-Hall.

Wex, E, G. Schryen, S. Feuerriegal, and D. Neumann. 2014. Emergency response in natural disas-
ter management: Allocation and scheduling of rescue units. European Journal of Operational
Research 235: 697-708.

White, D. J. 1985. Operational Research. New York: John Wiley & Sons.

Wilkinson, J. H. 1963. Rounding Errors in Algebraic Processes. Englewood Cliffs, NJ: Prentice-Hall.

Willemain, T. R. 1994. Insights on modeling from a dozen experts. Operations Research 42 (2): 213-222.

Williams, H. P. 1999. Model Building in Mathematical Programming, 4th ed. New York: Wiley.

Winston, W. L. 2004. Operations Research: Applications and Algorithms, 4th ed. Boston, MA: Brooks/
Cole.

2

Linear Programming

2.1 The Linear Programming Model

Linear programming is a special class of mathematical programming models in which
the objective function and the constraints can be expressed as linear functions of the deci-
sion variables. As with the more general mathematical programming models, the decision
variables represent quantities that are, in some sense, controllable inputs to the system
being modeled. An objective function represents some principal objective criterion or
goal that measures the effectiveness of the system (such as maximizing profits or pro-
ductivity, or minimizing cost or consumption). There is always some practical limitation
on the availability of resources (time, materials, machines, energy, or manpower) for the
system, and such constraints are expressed as linear inequalities or equations involving
the decision variables. Solving a linear programming problem means determining actual
values of the decision variables that optimize the objective function, subject to the limita-
tions imposed by the constraints.

The use of linear programming models for system optimization arises quite naturally
in a wide variety of applications. Some models may not be strictly linear, but can be made
linear by applying appropriate mathematical transformations. Still other applications are
admittedly not at all linear, but can be effectively approximated by linear models. The ease
with which linear programming problems can usually be solved makes this an attractive
means of dealing with otherwise intractable nonlinear problems.

In the following section, we will see examples of the wide variety of applications that
can be modeled with linear programming. In each case, the first task will be to identify
the controllable decision variables x;, wherei =1, ..., n. Then the objective criterion will be
established: to either maximize or minimize some function of the form

n

Z=CX1+CXp + -+ ChXp = E CiXj
i=1

where ¢; represents problem dependent constants. Finally, resource limitations and bounds
on decision variables will be written as equations or inequalities relating a linear function
of the decision variables to some problem dependent constant; for example,

aXqtaXy +-+aX, <b

23

24 Operations Research

Although the primary purpose of this chapter will be to present methods of solving linear
programming problems, the first critical step in successful problem-solving lies in the cor-
rect formulation of an application problem into the linear programming framework.

2.2 The Art and Skill of Problem Formulation

A combination of practical insight and technical skill is required in order to recognize
which problems can be appropriately modeled in a linear programming format, and then to
formulate those problems accurately. Because of the wide variety of problems that can be
made to fall into the linear programming mold, it is difficult to give guidelines that are uni-
versally applicable to the process of problem formulation. Rather, problem formulation is an
art that must be cultivated through practice and experience. Several examples are given to
point the way, and to illustrate the creativity that is sometimes helpful in framing problems
as linear programs. The exercises at the end of the chapter should then provide some of the
practice necessary to develop the skill of formulating linear programming models.

Example 2.2.1

A manufacturer of computer system components assembles two models of wireless rout-
ers, model A and model B. The amounts of materials and labor required for each assem-
bly, and the total amounts available, are shown in the following table. The profits that
can be realized from the sale of each router are $22 and $28 for models A and B, respec-
tively, and we assume there is a market for as many routers as can be manufactured.

Resources Required

per Unit
Resources
A B Available
Materials 8 10 3400
Labor 2 3 960

The manufacturer would like to determine how many of each model to assemble in
order to maximize profits.

Formulation 2.2.1

Because the solution to this problem involves establishing the number of routers to be
assembled, we define the decision variables as follows:

Let x,= number of model A routers to be assembled

and

xp = number of model B routers to be assembled

In order to maximize profits, we establish the objective criterion as

maximize z = 22X + 28xp

Linear Programming

Two types of resource limitations are in effect. The materials constraint is expressed by
the inequality

8x 4 +10xp < 3400

and the labor constraint by
2x AT 3XB <960

Finally, as it would be meaningless to have a negative number of terminals manufac-
tured, we also include the constraints x, > 0 and x; > 0.

Example 2.2.2

A space agency planning team wishes to set up a schedule for launching satellites over a
period of three years. Experimental payloads are of two types (say, T1 and T2), and each
launch carries only one experiment. Externally negotiated agency policies dictate that at
most 88 of payload type T1 and 126 of type T2 can be supported. For each launch, type
T1 payloads will operate successfully with probability 0.85 and type T2 payloads with
probability 0.75. In order for the program to be viable, there must be a total of at least 60
successful deployments. The agency is paid $1.5 million for each successful T1 payload,
and $1.2 million for each successful T2 payload. The costs to the agency to prepare and
launch the two types of payloads are $1.05 million for each T1 and $0.7 million for each
T2. One week of time must be devoted to the preparation of each T2 launch payload and
two weeks are required for T1 launch payloads. The agency, while providing a public
service, wishes to maximize its expected net income from the satellite program.

Formulation 2.2.2

Let x; = number of satellites launched carrying a type T1 payload, and x, = number of
satellites launched carrying a type T2 payload. Income is realized only when launches
are successful, but costs are incurred for all launches. Therefore, the expected net
income is

(1.5)(0.85)x; + (1.2)(0.75)x, — (1.05)x; — (0.7)x,million dollars

The objective is then to maximize z = 0.225x, + 0.2x,. Problem constraints in this case
are of various types. Agency policies impose the two simple constraints

x; <88 and x, <126
The successful deployment quota yields the constraint
0.85x; + 0.75x, > 60

If we assume that 52 weeks per year (for three years) can be applied to the satellite
program, then the launch preparation time constraint is

2X1 +1X2 <156

As in the previous example, we include the non-negativity constraints x; > 0 and x, > 0.

25

26

Operations Research

Example 2.2.3

A company wishes to minimize its combined costs of production and inventory over a
four-week time period. An item produced in a given week is available for consumption
during that week, or it may be kept in inventory for use in later weeks. Initial inventory
at the beginning of week 1 is 250 units. The minimum allowed inventory carried from
one week to the next is 50 units. Unit production cost is $15, and the cost of storing a unit
from one week to the next is $3. The following table shows production capacities and the
demands that must be met during each week.

Period Production Capacity Demand
1 800 900
2 700 600
3 600 800
4 800 600

A minimum production of 500 items per week must be maintained. Inventory costs are
not applied to items remaining at the end of the fourth production period, nor is the
minimum inventory restriction applied after this final period.

Formulation 2.2.3

Let x; be the number of units produced during the i-th week, fori=1, ..., 4. The formula-
tion is somewhat more manageable if we let A; denote the number of items remaining
at the end of each week (accounting for those held over from previous weeks, those
produced during the current week, and those consumed during the current week). Note
that the A, values are not decision variables, but merely serve to simplify our written
formulation. Thus,

A; =250+ x; —900

A2 =A1 + X, — 600

A3 =A2 +x3 — 800

A4 =A3 + X4 - 600
The objective is to minimize
Z:$15'(X1+ Xp+ X3+ X4)+ $3(A1 + A, +A3)

Minimum inventory constraints are expressed as A; > 50 fori =1, 2, and 3, and A, > 0.
Production capacities and minima during each period are enforced with the constraints

500 <x; <700
500 <x, <700

500 < x5 <600

Linear Programming 27

500 < x4 <800

Finally, x;>0fori=1, ..., 4.

Example 2.2.4

A mixture of freeze-dried vegetables is to be composed of beans, corn, broccoli, cabbage, and
potatoes. The mixture is to contain (by weight) at most 40% beans and at most 32% potatoes.
The mixture should contain at least 5 grams iron, 36 grams phosphorus, and 28 grams
calcium. The nutrients in each vegetable and the costs are shown in the following table.

Milligrams Nutrient per Pound

of Vegetable Cost per
Pound
Vegetable Iron Phosphorus Calcium (cents)
Beans 0.5 10 200 20
Corn 0.5 20 280 18
Broccoli 1.2 40 800 32
Cabbage 0.3 30 420 28
Potatoes 0.4 50 360 16

The amount of each vegetable to include should be determined so that the cost of the
mixture is minimized.

Formulation 2.2.4

Let x;, X,, X3, X;, and X5 be the number of pounds of beans, corn, broccoli, cabbage,
and potatoes, respectively. To minimize the cost of the mixture, we wish to mini-
mize z = 20x; + 18x, + 32x; + 28x, + 16x;. The percentage of beans in the mixture is
X1/ (X + X, + X5 + X4 + X5), and must be less than 40%. Therefore,

X S0.4(x1+ X+ X3+ Xq+ x5)

and similarly the potato restriction can be written as
x5 <0.32(x; + X5 + X3 + X4 + X5)

To achieve the required level of nutrients, we have three constraints (for iron, phospho-
rus, and calcium, respectively):

0.5x; +0.5x, +1.2x5 + 0.3x4 + 0.4x5 > 5000
10x; +20x, +40x; + 30x4 + 50x5 = 36,000

200x; +280x;, + 800 x5 +420x4 + 360x5 > 28,000

Negative amounts are not possible, so x; >0 fori=1, ..., 5.

28

Operations Research

Example 2.2.5

A saw mill makes two products for log home kits: fir logs and spruce logs which can
be sold at profits of $4 and $5, respectively. Spruce logs require two units of processing
time on the bark peeler and six units of time on a slab saw. Fir logs require three units
of time on the peeler and five units on the slab saw. Each then requires two units of
time on the planer. Because of maintenance requirements and labor restrictions, the
bark peeler is available 10 hours per day, the slab saw 12 hours per day, and the planer
14 hours per day. Bark and sawdust are by-products of these operations. All the bark
can be put through a chipper and sold in unlimited quantities to a nearby horticulture
supplier. Dried fir sawdust can be directed to a similar market, at a net profit of $0.38 per
processed log. Limited amounts of the spruce sawdust can be made into marketable
pressed wood products, but the rest must be destroyed. For each spruce log produced,
enough sawdust (five pounds) is generated to make three pressed wood products,
which after manufacturing can be sold at a unit profit of $0.22. However, the market can
absorb only 60 of the pressed wood products per day and the remaining spruce sawdust
must be destroyed at a cost of $0.15 per pound. The saw mill wishes to make the largest
possible profit, considering the cost of destroying the unusable sawdust.

Formulation 2.2.5

The formulation of this problem cannot follow exactly the pattern established in pre-
vious examples because the profits to be maximized are not a linear function of the
number of logs of each type produced. Spruce log production creates a by-product that
is useful and profitable only up to a point, and thereafter any excess must be destroyed
at a cost that diminishes total profits. Thus, profits are not a strictly increasing function
of production levels. We can still let

x; = number of fir logs produced

X, =number of spruce logs produced
Because sawdust contributes nonlinearly to profits, we treat it in two parts and let

X3 = number of pounds of spruce sawdust used

x4 = number of pounds of spruce sawdust destroyed

Direct profit from the sale of logs is 4x; + 5x,. All the bark can be sold at a profit in unlim-
ited quantities, therefore, although this affects the amount of profit, it does not affect our
decision on how many logs of each type to produce. Fir sawdust brings in $0.38 for each
processed log, or 0.38x,. For each x;/5 spruce logs produced, there is enough sawdust to
make three products at a profit of $0.22 each, if there is a market. Unmarketable spruce
sawdust costs 0.15x, to destroy. The objective is, therefore, to maximize

3
z =4x; + 5%, + 0.38x; + 5(0.22)x3 —0.15x4

Relating the number of logs produced to pounds of sawdust by-product, we obtain the
constraint

52 = (X3 +X4)

Linear Programming

Limitations on demand for the pressed wood product are expressed by
3
gX3 <60

Constraints on availability of machinery are straightforward. For the bark peeler,
3x1 + 2%, <10

On the slab saw,
5x1 + 6%, <12

And on the planer,
2x1 +2x, <14

Because all production levels are non-negative, we also require x;, > 0, x, > 0, x; > 0, and
X, > 0.

Example 2.2.6

A dual processor computing facility is to be dedicated to administrative and scientific
application jobs for at least 10 hours each day. Administrative jobs require two seconds of
execution time on processor 1 and six seconds on processor 2, while scientific jobs require
five seconds on processor one and three seconds on processor 2. A scheduler must choose
how many of each type of job (administrative and scientific) to execute, in such a way as
to minimize the amount of time that the system is occupied with these jobs. The system
is considered to be occupied even if one processor is idle. (Assume that the sequencing of
the jobs on each processor is not an issue here, just the selection of how many of each type
of job.)

Formulation 2.2.6

Let x, and x, denote, respectively, the number of administrative and scientific jobs
selected for execution on the dual processor system. Because policies require that each
processor be available for a least 10 hours, we must write the two constraints as:

2x1 + 5%, 210-(3600) (Processor 1)
67 +3x, 210-(3600) (Processor 2)
and
x;>0and x, >0

The system is considered occupied as long as either processor is busy. Therefore, to
minimize the completion time for the set of jobs, we must

minimize {maximum (2x1 +5x,, 6X;1 + 3X,)}
This nonlinear objective can be made linear if we introduce a new variable x;, where

X3 =max {2x1 +5x,, 6x1 + 3x2} >0

29

30 Operations Research

Now if we require
X3 = 2x1 + 5x, and x3 = 6x1 + 3x5

and make our objective to minimize X;, we have the desired linear formulation.

2.2.1 Integer and Nonlinear Models

There are many problems that appear to fall into the framework of linear programming
problem formulations. In some problems, the decision variable values are meaning-
ful only if they are integer values. (For example, it is not possible to launch a fractional
number of satellites or to transport a fractional number of people.) However, general
approaches to the solution of linear programming problems in no way guarantee integer
solutions. The analyst must therefore be familiar enough with the actual application to
determine whether it will be acceptable to round off a continuous (non-integer) optimal
solution to an integer solution that may be suboptimal. In many applications, such prac-
tices yield solutions that are quite adequate. When rounding does not yield acceptable
results, it may be necessary to resort to methods that are computationally more diffi-
cult than general linear programming solution methods, but which always yield integer
solutions. Specialized methods for these cases will be introduced in Chapter 4 on Integer
Programming.

More subtle nonlinearities exist inherently in almost all real applications. It is again
left to the discretion of the analyst to determine whether the linear model can provide a
sufficiently accurate approximation to the real situation. Because of the relative ease with
which linear models can be solved, in some cases it may be worth making certain simpli-
fying (albeit compromising) assumptions in order to formulate a real problem into a linear
programming model.

2.3 Graphical Solution of Linear Programming Problems
2.3.1 General Definitions

Finding an optimal solution to a linear programming problem means assigning values to
the decision variables in such a way as to achieve a specified goal and conform to certain
constraints. For a problem with n decision variables, any solution can be specified by a
point (x;, X, ..., x,). The feasible space (or feasible region) for the problem is the set of all
such points that satisfy the problem constraints. The feasible space is therefore the set of
all feasible solutions. An optimal feasible solution is a point in the feasible space that is
as effective as any other point in achieving the specified goal.

The solution of linear programming problems with only two decision variables can be
illustrated graphically. In the following examples, we will see cases involving the maximiza-
tion and minimization of functions. We will also see situations in which no feasible solution
exists, some which have multiple optimal solutions, and others with no optimal solution.

Linear programming problems with more than two decision variables require more
sophisticated methods of solution, and cannot be easily illustrated graphically. However,
our graphical study of small problems will be helpful in providing insight into the more
general solution method that will be presented later.

Linear Programming 31

2.3.2 Graphical Solutions

Let us first consider a maximization problem:

maximize Z=3X;+X,
subject to (1) x, <5
2) x4 +x, <10
B3) —x3+xp,>-2

X1,X220

Each inequality constraint defines a half-plane in two dimensions, and the intersection of
these half-planes comprises the feasible space for this case, as shown by the shaded area
in Figure 2.1.

The points labeled A, B, C, D, and E are called extreme points of the feasible region. It
is a property of linear programming problems that, if a unique optimal solution exists, it
occurs at one of the extreme points of the feasible space.

For this small problem, it is not impractical simply to evaluate the objective function at
each of these points, and select the maximum:

zx=2(0,00=3x0+0=0

zg =2(0,5)=3x0+5=5

FIGURE 2.1
Graphical solution.

32 Operations Research

zc=2(5,5)=3x5+5=20
zp=2(6,4) =3x6+4=22

zg =2(2,00=3x2+0=6

The optimal solution lies at extreme point D where x; = 6 and x, = 4, and the optimal value
of the objective function is denoted by z* = 22.

Without evaluating z at every extreme point, we may more simply observe that the line
specified by the objective function 3x; + X, has a slope of —-3. At optimality, this line is
tangent to the feasible space at one of the extreme points. In Figure 2.1, the dashed line
represents the objective function at the optimal point D.

Next, we use the same graphical technique to solve a minimization problem:

minimize Z = X1+ Xo

subject to 3X1+X, 26 1)
X, >3 2)
x; <4 3)
X1, X220

The shaded area in Figure 2.2 denotes the feasible region, which in this case is
unbounded.

FIGURE 2.2
Unbounded feasible region.

Linear Programming 33

The minimal solution must occur at one of the extreme points A, B, or C. The objective
function x; + x,, with a slope of -1, is tangent to the feasible region at extreme point B.
Therefore, the optimal solution occurs at x; = 1 and x, = 3, and the optimal objective func-
tion value at that point is z* = 4.

2.3.3 Multiple Optimal Solutions

Each of the problems that we have solved graphically had a unique optimal solution. The
following example shows that it is possible for a linear programming problem to have mul-
tiple solutions that are all equally effective in achieving an objective. Consider the problem

maximize Z=X1 +2X,

subject to X1 +X, <2 @)
X;+2X%, <8 2)
X1 <6 3)
X1, X220

The feasible region is shown in Figure 2.3.

The line representing the objective function x; + 2x, can be made tangent to the feasible
region at the origin, but clearly z is maximized by placing the line where the values of
x; and x, are larger. Notice that the objective function line in this case is tangent to the
feasible region not at a single extreme point, but rather along one of the boundaries of the
feasible region.

FIGURE 2.3
Multiple optimal solutions.

34 Operations Research

The values

and

zg=26,1)=6+2x(1)=8

correspond to optimal solutions at points A and B; moreover, all points on the line between
extreme points A and B are also optimal. Therefore, z* = 8 and the optimal solutions can
be expressed as a set

{0)

%les6and1£x2 Slgandxl+2x2:8}

Such a situation may occur whenever the slope of the objective function line is the same as
that of one of the constraints.

2.3.4 No Optimal Solution

When the feasible region is unbounded, a maximization problem may have no optimal
solution, since the values of the decision variables may be increased arbitrarily. This can
be illustrated by the problem:

maximize 7 = 3X1+ X,

subjectto x;+Xx, 24 M
—X;+X, <4)
X1 +2%x, >4 3)
X1, X2 20

Figure 2.4 shows the unbounded feasible region and demonstrates that the objective func-
tion can be made arbitrarily large by allowing the values of x; and x, to grow within the
unbounded feasible region. In this case, there is no point (x,, X,) that is optimal because
there are always other feasible points for which z is larger.

Notice that it is not the unbounded feasible region alone that precludes an optimal solu-
tion. The minimization of the function subject to the constraints shown in Figure 2.4 would
be solved at extreme point A.

Linear Programming 35

FIGURE 2.4
No optimal solution.

In practice, unbounded solutions typically arise because some real constraint, repre-
senting a practical resource limitation, has been omitted from the linear programming for-
mulation. Because we do not realistically expect to be able to achieve unlimited profits
or productivity, an indication of apparently unbounded solutions as seen in the previous
example should be interpreted as evidence that the problem needs to be reconsidered more
carefully, reformulated and re-solved.

2.3.5 No Feasible Solution

A linear programming problem has no feasible solution if the set of points corresponding
to the feasible region is empty. For example, the constraints

—X1 + X, = 4and —x; +2x; <4

where x;, X, > 0, represent conditions that cannot simultaneously be satisfied by any point.
Figure 2.5 shows the four half-planes whose intersection is empty.

36 Operations Research

FIGURE 2.5
No feasible solution.

In small problems, infeasibilities such as this may be discovered visually during an
attempted graphical solution. In larger problems, it may not be obvious, by inspecting a
particular set of constraints, that no solution is possible. Fortunately, the general solution
method to be described in the following sections is not only capable of solving typical
maximization or minimization problems, but it also provides mechanisms for recognizing
problems that have multiple optimal solutions, no optimal solution, or no feasible solution.

2.3.6 General Solution Method

We have seen in our graphical solutions that, if an optimal solution exists, it occurs at an
extreme point of the feasible region. This fundamental property of linear programming
problems is the foundation for a general solution method called the Simplex method.
Because only the finitely many extreme points need be examined (rather than all the points
in the feasible region), an optimal solution may be found systematically by considering
the objective function values at the extreme points. In fact, in actual practice, only a small
subset of the extreme points need be examined. The following sections will demonstrate
how the Simplex method is able to locate optimal solutions with such efficiency.

2.4 Preparation for the Simplex Method
2.4.1 Standard Form of a Linear Programming Problem

In preparation for the use of the Simplex method, it is necessary to express the linear
programming problem in standard form. For a linear program with n variables and m
constraints, we will use the following standard form:

Linear Programming 37

maximize Z=C1X1+ CoXp+ ...+ CpXp
subject to apXi+apXo+ ...+ apXa=by

a»X1+ apXo+ ... + aypXpy = bz
ApiX1+ apaXo + ... + AppXn = b

where the variables x, ..., x, are non-negative, and the constants b,, ..., b,, on the right
hand sides of the constraints are also non-negative. We can use matrix notation to repre-
sent the cost (or profit) vector c = (¢, ¢,,..., ¢,) and the decision variable vector

o]

X2

Xn

The coefficient matrix is:

ail...din

Am1-..-Amn

and the requirement vector is:

b
b,

by,

Then the optimization problem can be expressed succinctly as:

maximize Z =CX
subject to Ax=Db
x>0

38 Operations Research

Although this standard form will be required by the Simplex method, it is not necessar-
ily the form that arises naturally when we first formulate linear programming models.
Several modifications may be necessary in order to transform an original linear program-
ming formulation (as in Section 2.2) into the standard form.

To convert a minimization problem to a maximization problem, we can simply multiply
the objective function by —1, and then maximize this function. (Recall that there are no
sign restrictions on the c;.) For example, the problem of minimizing z = 3x; — 5x, is equiva-
lent to maximizing z = -3x; + 5x,. Negative right hand sides of the constraints can be made
positive by multiplying the constraint by —1 (reversing the sense of the inequality).

Equality constraints require no modification. Inequality constraints can be converted
to equalities through the introduction of additional variables that make up the differ-
ence in the left and right sides of the inequalities. Less than or equal to (<) inequalities
require the introduction of variables that we will call slack variables. For example, a
constraint such as 3x, + 4x, < 7 becomes the equality 3x; + 4x, + s; = 7 when we intro-
duce the slack variable s, where s, > 0. Greater than or equal to (>) constraints are
modified by introducing surplus variables. For example, the constraint 14x, + 3x, > 12
becomes the equality 14x, + 3x, — s, = 12, where s, is the non-negative surplus vari-
able. Although our notation (s, and s,) may suggest otherwise, the slack and surplus
variables are going to be treated exactly like any other decision variable throughout the
solution process. In fact, their final values in the solution of the linear programming
problem may be just as interesting to a systems manager or analyst as are the values of
the original decision variables.

Finally, all variables are required to be non-negative in the standard form. In the event
that the actual meaning associated with a decision variable is such that the variable should
be unrestricted in sign, then that variable may be replaced by the difference of two new non-
negative variables. For example, if X, is to be an unrestricted variable, then every occur-
rence of X, in the objective function or in any constraint will be replaced by x,” — x,”, where
x{5 X;”, = 0. Then in any solution, the sign of the value of X, is dependent on the relative
values of x;" and x,”.

The reason for placing problems in standard form is that our general solution method
will be seen to operate by finding and examining solutions to the system of linear equa-
tions Ax = b (i.e, by finding values of the decision variables that are consistent with the
problem constraints), with the aim of selecting a solution that is optimal with respect to
the objective function.

2.4.2 Solutions of Linear Systems

We now have a system of linear equations, Ax = b, consisting of m equations and n
unknowns. The n unknowns include the original decision variables and any other vari-
ables that may have been introduced in order to achieve standard form.

It may be useful at this point to review the material in the Appendix on solving systems
of linear equations. If a system of independent equations has any solution, then m < n.
If m = n (and if rank (A) = m and A is nonsingular), then there is the unique solution
x = A7b. In this case, there is only one set of values for the x; that is not in violation of
problem constraints. Optimization of an objective function is not an issue here because
there is only one feasible solution.

Linear Programming 39

When m < n, there are infinitely many solutions to the system of equations. In this case,
we have (n — m) degrees of freedom in solving the system. This means that we can arbi-
trarily assign any values to any (n — m) of the n variables, and then solve the m equations
in terms of the remaining m unknowns.

A basic solution to the system of m equations and n unknowns is obtained by setting
(n — m) of the variables to zero, and solving for the remaining m variables. The m variables
that are not set equal to zero are called basic variables, and the (n — m) variables set to
zero are non-basic variables. The number of basic solutions is just the number of ways we
can choose n — m variables (or m variables) from the set of n variables, and this number

is given by:
n o) (nj) n!
n-m) |m _m!(n—m)!

Not all of the basic solutions satisfy all problem constraints and non-negativity constraints.
Those that do not meet these requirements are infeasible solutions. The ones that do meet
the restrictions are called basic feasible solutions. An optimal basic feasible solution is a
basic feasible solution that optimizes the objective function. The basic feasible solutions
correspond precisely to the extreme points of the feasible region (as defined in our earlier
discussion of graphical solutions). Because any optimal feasible solution is guaranteed to
occur at an extreme point (and consequently is a basic feasible solution), the search for an
optimal basic feasible solution could be carried out by an examination of the at most (}31)
basic feasible solutions and a determination of which one yields the best objective function
value.

The Simplex method performs such a search, but in a very efficient way. We define
two extreme points of the feasible region (or two basic feasible solutions) as being adja-
cent if all but one of their basic variables are the same. Thus, a transition from one basic
feasible solution to an adjacent basic feasible solution can be thought of as exchanging
the roles of one basic variable and one non-basic variable. The Simplex method per-
forms a sequence of such transitions and thereby examines a succession of adjacent
extreme points. A transition to an adjacent extreme point will be made only if by doing
so the objective function is improved (or stays the same). It is a property of linear pro-
gramming problems that this type of search will lead us to the discovery of an optimal
solution (if one exists). The Simplex method is not only successful in this sense, but it
is remarkably efficient because it succeeds after examining only a fraction of the basic
feasible solutions.

2.5 The Simplex Method

The Simplex method is a general solution method for solving linear programming prob-
lems. It was developed in 1947 by George B. Dantzig and, with some modifications for
efficiency, has become the standard method for solving very large linear programming
problems on computers. Most real problems are so large that a manual solution via the

40 Operations Research

Simplex method is impractical, and these problems must be solved with Simplex programs
implemented on a computer. Small problems, however, are quite useful in demonstrating
how the Simplex method operates; therefore, we will use such problems to illustrate the
various features of the method.

The Simplex method is an iterative algorithm that begins with an initial feasible solu-
tion, repeatedly moves to a better solution, and stops when an optimal solution has been
found and, therefore, no improvement can be made.

To describe the mechanics of the algorithm, we must specify how an initial feasible
solution is obtained, how a transition is made to a better basic feasible solution, and how
to recognize an optimal solution. From any basic feasible solution, we have the assurance
that, if a better solution exists at all, then there is an adjacent solution that is better than the
current one. This is the principle on which the Simplex method is based; thus, an optimal
solution is accessible from any starting basic feasible solution.

We will use the following simple problem as an illustration as we describe the Simplex
method:

maximize z = 8x; + 5x,
subject to x; <150
Xo < 250

2X1 +X, < 500

X1, X5 20
The standard form for this problem is:
maximize 7z = 8%y + 5x,+ 0s1+ 0s, + Os
subject to X1+ s, =150
X, + S, =250

2X1+ Xo+ S3 =500

(Zero coefficients are given to the slack variables in the objective function because slack
variables do not contribute to z.) The constraints constitute a system of m = 3 equations
in n = 5 unknowns. In order to obtain an initial basic feasible solution, we need to select
n - m =5 — 3 =2 variables as non-basic variables. We can readily see in this case that by
choosing the two variables x; and x, as the non-basic variables, and setting their values
to zero, then no significant computation is required in order to solve for the three basic
variables: s, = 150, s, = 250, and s; = 500. The value of the objective function at this solu-
tion is 0.

In fact, a starting solution is just this easy to obtain whenever we have m variables, each
of which has a coefficient of one in one equation and zero coefficients in all other equa-
tions (a unit vector of coefficients), and each equation has such a variable with a coefficient
of one in it. Thus, whenever a slack variable has been added to each constraint, we may
choose all the slack variables as the m basic variables, set the remaining (n — m) variables
to zero, and the starting values of the basic variables are simply given by the constants b on
the right hand sides of the constraints. (For cases in which slack variables are not present

Linear Programming 41

and, therefore, do not provide a starting basic feasible solution, further techniques will be
discussed in Section 2.6.)

Once we have a solution, a transition to an adjacent solution is made by a pivot operation.
A pivot operation is a sequence of elementary row operations (see the Appendix) applied
to the current system of equations, with the effect of creating an equivalent system in
which one new (previously non-basic) variable now has a coefficient of one in one equation
and zeros in all other equations.

During the process of applying pivot operations to a linear programming problem, it is
convenient to use a tabular representation of the system of equations. This representation
is referred to as a Simplex tableau.

In order to conveniently keep track of the value of the objective function as it is affected
by the pivot operations, we treat the objective function as one of the equations in the sys-
tem of equations, and we include it in the tableau. In our example, the objective function
equation is written as:

1Z—8X1 —5X2—OS1—052—OS3=0

The tableau for the initial solution is as follows:

Basis z X; X, S, S, S Solution
VA 1 -8 -5 0 0 0 0
S, 0 1 0 1 0 0 150
S, 0 0 1 0 0 250
S 0o 2 0o o0 1 500

The first column lists the current basic variables. The second column shows that z is (and
will always be) a basic variable; and because these elements will never change, they really do
not need to be explicitly maintained in the tableau. The next five columns are the constraint
coefficients of each variable. And the last column is the solution vector; that is, the values of
the basic variables. Using this representation of a current solution, we can now describe the
purpose and function of each iteration of the Simplex method for a maximization problem.

Observe that the objective function row represents an equation that must be satisfied
for any feasible solution. Since we want to maximize z, some other (non-basic) term must
decrease in order to offset the increase in z. But all of the non-basic variables are already at
their lowest value, zero. Therefore, we want to increase some non-basic variable that has
a negative coefficient. As a simple rule, we will choose the variable with the most negative
coefficient, because making this variable basic will give the largest (per unit) increase in z.
(Refer to Steps 1 and 2 in the following.)

The chosen variable is called the entering variable, that is, the one that will enter the
basis. If this variable increases, we must adjust all of the equations. Specifically, increas-
ing the non-basic variable must be compensated for by using only the one basic variable
in each row (having a coefficient of one). If the non-basic coefficient is negative, the cor-
responding basic variable increases. There is no limit to how much we can increase this.
Clearly, if all coefficients are negative (or zero), then we can increase the non-basic variable,
and hence the value of z, indefinitely. In this case, we say that the problem is unbounded,
and there is no maximum solution.

42 Operations Research

If one or more of the coefficients are positive, then increasing the entering variable must
be offset by a corresponding decrease in the basic variable. Specifically, if a; > 0, for basic
variable X, the non-basic column of x,, then the new value of x;, after x, is increased, will be

X; = b; — apXy

But x; > 0; therefore, we can increase X, only to that point where

b;
Aik

Xk =

Define 6; = b;/a; for all equations i for which a; > 0. Because we want to maximize the
increase in x,, we increase precisely to the point at which some basic variable first becomes
zero (the minimum value of 6,). That variable now leaves the basis, and is called the leaving
variable. (Refer to Steps 3 and 4 in the following.)

The Simplex method can be summarized succinctly as follows:

Step 1: Examine the elements in the top row (the objective function row). If all ele-
ments are >0, then the current solution is optimal; stop. Otherwise go to Step 2.

Step 2: Select as the non-basic variable to enter the basis that variable corresponding
to the most negative coefficient in the top row. This identifies the pivot column.

Step 3: Examine the coefficients in the pivot column. If all elements are <0, then this prob-
lem has an unbounded solution (no optimal solution); stop. Otherwise go to Step 4.

Step 4: Calculate the ratios
0; =b;/ay foralli=1, ..., m for which ay >0
where a;, is the i-th element in the pivot column k. Then select

0 =min {0;}

This identifies the pivot row and defines the variable that will leave the basis. The
pivot element is the element in the pivot row and pivot column.

Step 5: To obtain the next tableau (which will represent the new basic feasible
solution), divide each element in the pivot row by the pivot element. Use this
row now to perform row operations on the other rows in order to obtain zeros
in the rest of the pivot column, including the z row. This constitutes a pivot
operation, performed on the pivot element, for the purpose of creating a unit
vector in the pivot column, with a coefficient of one for the variable chosen to
enter the basis.

When we apply these steps to the initial tableau in our example problem, we select x; (with
the most negative coefficient on the z row) as the entering variable:

Basis z X, X, S; S, S5 Solution
z 1 -8 -5 0 0 0 0
S 0 1 0 1 0 0 150
Sy 0 0 1 0 1 0 250
Sy 0 2 1 0 0 1 500

Linear Programming 43

We compute

61=@=150
1

63=@=250
2

and select the minimum 6 = 0,. Therefore, the leaving variable is the one corresponding
to the first basic variable s,. A pivot operation on the pivot element then produces the next
tableau which shows the new basic feasible solution

x1 =150

s, =250

s; =200

Xy = 0

S1= 0

z =1200
Basis z X, X, S, S, S; Solution
z 1 0 -5 8 0 0 1200
X 0 1 0 1 0 0 150
S, 0 0 1 0 1 0 250
s, 0 0 -2 0 1 200

In the next iteration, x, is chosen as the entering variable. Based on the ratios 8, = 250/1 and
0, = 200/1, we select 6 = 6,, and, therefore, the third basic variable s, leaves the basis. The
pivot element is shown in the previous tableau. A pivot operation produces the new tableau:

Basis z x; X, S; S, S; Solution
z 1 0 0 -2 0 5 2200
X 0 1 0 1 0 0 150
s, 0 0 0 2 1 - 50
X, 0 0 1 -2 0 1 200

The solution represented by this tableau is

x; =150
s, =50
X, =200
s;=0

S3=0

44 Operations Research

and

z is now 2200

From this tableau, we can now select s, as the entering variable. We compute 6, = 150/1 and
0, = 50/2, choose 6 = 0,, and, therefore, designate s, as the leaving variable. The resulting
tableau after a pivot operation is:

Basis z X; X, S S, S; Solution
z 1 0 0 0 1 4 2250
X; 0 1 0 0 -1/2 1/2 125
S 0 0 0 1 /2 -1/2 25
X, 0 0 1 0 1 0 250

Because all of the objective function row coefficients are non-negative, the current solution
is optimal. The decision variables are:

x; =125
X, =250
and the optimal objective function value, denoted as z* is:
z* =8xy + 5x, =8(125) + 5(250) = 2250

The values of the slack variables at optimality also provide useful information. The slack
variable s, for the first constraint has a value of 25, indicating that there is a difference
of 25 in the right and left sides of the constraint; thus, x; = 125 is 25 less than 150. (This
can typically be interpreted to mean that some resource corresponding to constraint 1
is not fully consumed at optimality; such a constraint is sometimes referred to as a non-
binding constraint.) Since s, and s; are non-basic and, therefore, have a value of zero,
we can see that the second and third constraints are met as equalities. (These resources
are used to capacity at optimality, and these constraints are sometimes called binding
constraints.)

If we examine a graphical representation of the feasible region of this linear program-
ming problem in Figure 2.6, we can observe the progression from extreme point A (initial
solution) to extreme point B, then C, and finally the optimal solution at point D. Extreme
points F and G are infeasible, and point E is a basic feasible solution but is not examined
by the Simplex method.

In summary, let us briefly review the steps of the Simplex algorithm and the rationale
behind each step. Negative coefficients, corresponding to non-basic variables, in the objec-
tive function row indicate that the objective function can be increased by making those
associated variables basic (non-zero). If in Step 1 we find no negative element, then no
change of basis can improve the current solution. Optimality has been achieved and the
algorithm terminates.

Otherwise, in Step 2, we select the non-basic variable to enter the basis that has the
greatest potential to improve the objective function. The elements in the objective
function row indicate the per unit improvement in the objective function that can be
achieved by increasing the non-basic variables. Because these values are merely indica-
tors of potential and do not reveal the actual total improvement in z, ties are broken

Linear Programming 45

500

X, (125, 250)

-®

200 ——
(150, 200)
100 ——
B
| | |
A I I I
(0,0) 100 150 200

X1

FIGURE 2.6
Simplex steps.

arbitrarily. In actual practice, choosing the most negative coefficient has been found to
use about 20% more iterations than some more sophisticated criteria, such as are sug-
gested by (Bixby 1994).

The basic variable to be replaced in the basis is chosen, in Step 4, to be the basic vari-
able that reaches zero first as the entering variable is increased from zero. We restrict
our examination of pivot column elements to positive values only (Step 3) because a
pivot operation on a negative element would result in an unlimited increase in the
basic variable. If the pivot column elements are all negative or zero, then the solution
is unbounded and the algorithm terminates here. Otherwise, a pivot operation is per-
formed as described in Step 5.

The Simplex tableau not only provides a convenient means of maintaining the system
of equations during the iterations of the algorithm, but also contains a wealth of informa-
tion about the linear programming problem that is being solved. In the following sec-
tion, we will see various computational phenomena (indicating special problem cases) that
may arise during application of the Simplex method, as well as information that may be
obtained from an optimal tableau.

46 Operations Research

2.6 Initial Solutions for General Constraints
2.6.1 Artificial Variables

In the original presentation of the Simplex algorithm in Section 2.5, our sample problem
was one in which all constraints were of the less-than-or-equal (<) type. In that case, we
observed that by adding slack variables (in order to achieve equality constraints), we for-
tuitously also obtained an initial feasible set of basic variables. The coefficients of the slack
variables provided the required unit vectors, embedded in the matrix of coefficients of
the linear system of equations. In this section, we will see how to obtain an initial basic
feasible solution for problems with more general forms of constraints, and to then use the
Simplex method to solve such problems.

First of all, recall that all right hand sides b; of constraints must be non-negative. Any
constraint with a negative constant on the right hand side can be multiplied by —1 in order
to satisfy this requirement. For example, an equality constraint such as:

-3Xx;+4x, =—6
can be replaced by the constraint
3x;—4x,=6
An inequality such as:
5x;—8x,<-10
can be replaced by
—5x;+8x,2>10

At this point, it should be clear that typical linear programming problems in standard form
contain equality constraints involving only the original decision variables as well as constraints
that include slack variables and surplus variables. Slack variables can conveniently be used
as basic variables; however, basic variables corresponding to equality constraints and greater
than or equal (>) constraints are not always immediately available. Although it may be pos-
sible, by trial and error, to obtain a feasible starting basis for some problems, we prefer to use
an approach that is straightforward and simple, and that can be used predictably in all cases.

We will deal with this situation by introducing additional variables, called artificial
variables, solely for the purpose of obtaining an initial basis. These variables have no real
meaning in the problem being solved, and will not be a part of the final solution. They
merely provide a mechanism that will allow us to create a starting basic solution configu-
ration, and then to apply the Simplex algorithm to the problem. (Note that it may not be
necessary to add an artificial variable to every constraint; a constraint with a slack variable
does not need an artificial variable.)

As an illustration, consider the following linear programming problem:

maximize Z=X; + 3%,
subject to 2x1—X, <-1 1
X1+ Xo = 3 (2)

xl,X220

Linear Programming 47

We multiply the first constraint by -1, to obtain -2x; + x, > 1, and then create an equality
constraint by adding a (non-negative) surplus variable s, with a coefficient of —1. Now, the
set of constraints

_2X1+X2 — 51 =1

X1+X2:3

is in standard form, but since there is no obvious starting solution (as there would have
been if we had added slack variables in each constraint), we will introduce two artificial
variables, R, and R,, for this purpose. The constraint set becomes

—2X1+X2—81+R1=1

X1+X2+R2:3

where X, X,, 5, R;, R, > 0. We now have initial basic variables R, and R, for this enlarged
problem; however, we must realize that the original equality constraint set is satisfied only
if both R, and R, have values of zero. Therefore, the artificial variables must play only a
temporary role in the solution.

There are two primary approaches that we can use to ensure that the artificial variables
are not in the final solution. One method, commonly called the Big-M method, achieves
this end by creating a modified objective function with huge negative coefficients -M on
the artificial variables. In our example, the modified objective function would be

Zyv = X1 +3X2 +OS1 —MRl _MR2

When the Simplex method is applied to maximize this function, the heavy negative weights

on the artificial variables will tend to drive R, and R, out of the basis, and the final solu-

tion will typically involve only the decision variables x; and the slack or surplus variables.
For two reasons, the Big-M method is not considered to be a practical approach.

1. If the Simplex method terminates with an optimal solution (or with an indication that
the linear program is unbounded), and at least one of the artificial variables is basic
(positive) in the solution, then the original problem has no feasible solution. Moreover,
in order to discover that no solution exists, we have had to solve an entire large
(enlarged because of the additional artificial variables) linear programming problem.

2. A more serious difficulty with this method arises from a computational stand-
point. The value of M must be chosen to be overwhelmingly large relative to
all other problem parameters, in order to be sure that artificial variables do not
remain in the basis of a feasible problem. However, as was pointed out in Chapter 1,
computer arithmetic involving quantities of vastly different magnitudes leads to
round-off error in which the smaller quantities (such as our original objective
coefficients) are dwarfed by the artificial coefficients and are completely lost.

Thus, despite its intuitive appeal, the Big-M method is very poorly suited for computer
implementation, and nowadays is rarely seen in commercial software.

The more practical alternative to solving linear programming problems having artificial
variables is found in the two-phase Simplex method.

48 Operations Research

2.6.2 The Two Phase Method

Suppose we have a linear programming problem in standard form with artificial variables
in the initial basic solution. Before expending the computational effort to solve the whole
enlarged problem, it would be useful to know whether a feasible solution to the original
problem exists. That is, we would like to know whether there is a solution, within the
enlarged feasible region, in which the artificial variables are zero.

In order to make this determination, we first use the Simplex method to solve the prob-
lem of minimizing the sum of the artificial variables. If this sum can be minimized to zero,
then there exists a solution not involving the artificial variables, and thus the original
problem is feasible. Furthermore, in this case, we can use the final solution obtained from
this computation as a starting solution for the original problem, and dispense with the
artificial variables. On the other hand, if the optimized sum of the artificial variables is
greater than zero, then at least one of the artificial variables remains basic, and we, there-
fore, know that the original problem constraint set cannot be satisfied. The two phases of
this method can be summarized as follows.

Phase 1: Create a new objective function consisting of the sum of the artificial vari-
ables. Use the Simplex method to minimize this function, subject to the problem
constraints. If this artificial objective function can be reduced to zero, then each
of the (non-negative) artificial variables must be zero. In this case, all the original
problem constraints are satisfied and we proceed to Phase 2. Otherwise, we know
without further computation that the original problem is infeasible.

Phase 2: Use the basic feasible solution resulting from Phase 1 (ignoring the artificial
variables which are no longer a part of any solution) as a starting solution for the
original problem with the original objective function. Apply the ordinary Simplex
method to obtain an optimal solution.

We will use the sample problem from Section 2.6.1 to illustrate the two phase method.
In Phase 1, we seek to

minimize zg = R; + R,

which is equivalent to maximizing zy = —R; — R,. (Note that we minimize this sum regard-
less of whether the original problem is a minimization or a maximization problem.)
Therefore, the top row of the tableau represents the equation

Zr + R1+R2:0

With artificial variables in the constraints, the initial tableau for this phase is:

Xy X, S R, R, Solution
Zg 0 0 0 1 1 0
R, -2 1 -1 0 1
R, 1 1 0o 0 1 3

Perform row operations to obtain a starting basis (i.e., with zero coefficient for R, and R, in
the top row), and the tableau becomes:

Linear Programming 49

X; X, S, R, R, Solution
7 1 -2 1 0 0 -4
R, -2 1 -1 1 0 1
R, 1 1 0 0 1 3

We then apply two iterations of the Simplex method to obtain the following two
tableaus:

X, X, S; R, R, Solution
Zg -3 0 -1 2 0 -2
X5 -2 1 -1 1 0 1
R, 3 0 1 -1 1 2

X; X, S; R, R, Solution
Zg 0 0 0 1 1 0
Xp 0 1 -1/3 1/3 2/3 7/3
X 1 0 1/3 -1/3 1/3 2/3

This is the optimal solution for the Phase 1 problem, and since R; and R, are zero
and non-basic, this solution gives us a basic feasible starting solution for the original
problem.

In Phase 2, artificial variables need not be considered and can be removed from the tab-

leau. The top row of the starting tableau is replaced with the coefficients for the original
(maximization) objective function:

X; X, S, Solution
z -1 -3 0 0
Xy 0 1 -1/3 7/3
x, 1 0 1/3 2/3

Perform row operations to obtain an appropriate objective function row for a starting
basis, and the Phase 2 tableau becomes:

X, X, S, Solution
z 0 0 -2/3 23/3
X, 0 1 -1/3 7/3
xx 1 0 1/3 2/3

Now we apply the ordinary Simplex method, and in this case one iteration produces the
optimal solution shown in the final tableau:

X, X, S, Solution
z 2 0 0 9
Xy 1 1 0 3

S, 3 0 1 2

50 Operations Research

X3

FIGURE 2.7
Infeasible origin.

It may be useful to look at a graphical solution of the problem we have just solved. Notice
in Figure 2.7 that the feasible region consists only of points on the line x; + X, = 3, between
the extreme points (0, 3) and (2/3, 7/3). The origin is not a feasible starting point, as was the
case in several of our previous examples. Instead, we initially use an augmented feasible
region (not visible in the graphical sketch) and a solution in which R; and R, are positive.
During Phase 1, R, and R, become zero while the real variables x; and x, become posi-
tive. Phase 1 yielded the initial feasible solution (2/3, 7/3) which can be shown in the two
dimensional drawing; and Phase 2 found the optimal solution at (0, 3).

2.7 Information in the Tableau

Several of the special cases introduced in Section 2.3 may reveal themselves in the Simplex
tableau during the iteration phases of the Simplex algorithm. In particular, based on infor-
mation that appears within the tableau, we can deduce certain characteristics of the linear
programming problem being solved. These include linear programming problems with
multiple optimal solutions, those with unbounded solutions, and problems having a
property known as degeneracy. We will also find information in the tableau that provides
insights concerning the roles played by the various resources in the system being modeled
as a linear program.

Linear Programming 51

2.7.1 Multiple Optimal Solutions

Recall from our example in Section 2.3.3 that when the line corresponding to the objec-
tive function is parallel to one of the straight lines bounding the feasible region, then the
objective function can be optimized at all points on that edge of the feasible region. Thus,
instead of a unique optimal solution, we have infinitely many optimal solutions from
which to choose, thereby permitting management to select on the basis of secondary fac-
tors that do not appear in the model.

This situation can be recognized in the Simplex tableau during Step 2 of the Simplex
algorithm. If a zero appears in the objective function row corresponding to a non-basic
variable, then that non-basic variable can enter the basis without changing the value of
the objective function. In other words, there are two distinct adjacent extreme points that
yield the same value of z.

When we apply the Simplex algorithm to the problem illustrated in Figure 2.3, the initial
solution is x; = x, = 0. In the first iteration, x, enters the basis and s, leaves, and this solution
x; =0, x, = 2 yields z = 4. Next, X, enters the basis and s, leaves, and we obtain the solution
designated as point A in the figure where x; = 4/3, x, = 10/3, and z = 8. (Observe that s,
is a basic variable and, therefore, constraint 3 is not binding at this point.) Now, the third
Simplex tableau is as follows.

z X, X, S; S, S; Solution
z 1 0 0 0 1 0 8
X, 0 0 1 1/3 1/3 0 10/3
Xq 0 1 0 -2/3 1/3 0 4/3
S; 0 0 0 2/3 -1/3 1 14/3

This solution is optimal since all elements on the top row are non-negative. The zero in the
top row corresponding to the non-basic variable s, signals that this problem has multiple
optimal solutions. And, in fact, if we apply another pivot operation (by bringing s, into the
basis and selecting s; to leave the basis), we obtain the fourth tableau

z X; X, S, S, S; Solution
z 1 0 0 0 1 0 8
x, 0 0 1 0 1/2 -1/2 1
Xq 0 1 0 0 0 1 6
S 0 0 0 1 -1/2 3/2 7

This solution corresponds to point B in Figure 2.3 where x, = 6, x, =1, and z = §; and where
s, is basic and consequently constraint 1 is not binding at this point.

2.7.2 Unbounded Solution (No Optimal Solution)

When the feasible region of a linear programming problem is unbounded, then it is also pos-
sible that the objective function value can be increased without bound. Evidence of both of
these situations can be found in the Simplex tableau during Step 3 of the Simplex algorithm.

If in any tableau the constraint coefficients corresponding to a non-basic variable are all
either negative or zero, then that non-basic variable can be increased arbitrarily without
violating any constraint. Thus, the feasible region is unbounded in the direction of that
variable.

52 Operations Research

Furthermore, if that variable is eligible to enter the basis (i.e, if it has a negative ele-
ment in the objective function row), then we know that increasing this variable’s value will
increase the objective function. And because this variable can be increased indefinitely,
so can the objective function value. Thus, the Simplex algorithm terminates and we can
recognize that the problem has an unbounded solution.

The following problem illustrates an unbounded feasible region and unbounded
solutions:

maximize Z = 5xq + 6X,
subject to X1+ X, <2
X, <10
X1, X2 20

Figure 2.8 shows the feasible region. The initial tableau is given by:

z X; X, S, S, Solution
z 1 -5 -6 0 0 0
S 0 -1 1 1 0 2
S, 0 0 1 0 1 10

The unboundedness of the feasible region is indicated by the absence of positive elements
in the column corresponding to the non-basic variable x,. The negative coefficient in the
top row of this column indicates that x; is eligible to increase (from zero) and that, there-
fore, z can increase indefinitely.

FIGURE 2.8
Unbounded solution.

Linear Programming 53

Our Simplex algorithm, as it is stated, would, in fact, choose x, (with the most negative coef-
ficient) as the entering variable, and we would move from point A to point B in Figure 2.8, and
then subsequently to point C. At that point, we would be faced again with the inevitable: x;
can be feasibly increased arbitrarily, producing an arbitrarily large value of z.

As noted earlier, a linear programming formulation with an unbounded objective func-
tion value undoubtedly represents an invalid model of a real system, since we have no real
expectation of achieving unlimited productivity or profitability. Recognizing such a situa-
tion, we must reformulate the problem with more careful attention to realistic constraints
on the decision variables.

2.7.3 Degenerate Solutions

A solution to a linear programming problem is said to be degenerate if one or more of the
basic variables has a value of zero. Evidence of the existence of a degenerate solution is
found during Step 4 of the Simplex algorithm when there is a tie for the minimum ratio 6,
that is, a tie for the leaving variable. In this case, the tie may be broken arbitrarily and one
variable is chosen to leave the basis. However, both variables participating in the tie will, in
fact, become zero, although one of them remains basic.

The presence of a degenerate solution indicates that the linear programming formula-
tion contains at least one redundant constraint. This situation arises in the following prob-
lem whose graphical solution is shown in Figure 2.9.

6 —
5__
-
<2
+
4 < x -
Xy -5
\\0
3 & <
<
Xy=2
2 2¢
1 —»
i¢ !
1 2 3 *zx* X
2
4

FIGURE 2.9
Degenerate solution.

54 Operations Research

maximize z =3Xq + 2%,
subject to x; <3
2X1+Xp, <6
X, <2
X1 +X, <3
X1, X2 20
Note that x; < 3 is redundant, since the constraint x; + X, < 3 ensures that x; < 3. Similarly,
the constraint 2x; + x, < 6 is redundant as shown in Figure 2.9. In the initial tableau, X, is

chosen as the entering variable, and we discover a tie between s, and s, to leave the basis
since 6, =0, =3.

z X; X, S, S, S S, Solution
1 -3 -2 0 0 0 0 0

s; 0 1 0 1 0 0 0 3

S, 0 2 1 0 1 0 0 6

S3 0 0 1 0 0 1 0 2

s, 0 1 1 0 0 0 1 3

Let us arbitrarily select s, to leave the basis, and create the next tableau.

X; X, S; S, S5 S, Solution
0 -2 3 0 0 0

X 1 0 1 0 0 0 3

S, 0 1 -2 1 0 0 0

S; 0 1 0 0 1 0 2

Sy 0 1 -1 0 0 1 0

Notice that the basic variables s, and s, now have a value of zero. The present solution
corresponds to a point where three redundant constraints are binding; that is, the slack
variables in the first, second, and fourth constraints are zero at this point.

When we now select x, to enter the basis, we have a choice between s, and s, to leave. If
we pick s,, we will discover that the new tableau has a negative cost for s,, and basic vari-
ables x, and s, are both zero. Since we can now choose x, to leave, we could get right back
to the tableau where we started. This cycling can continue indefinitely.

Note that, for a two variable problem, degeneracy can occur only when there are redun-
dant constraints. However, in three-variable problems, we could construct four or five con-
straints such that they all intersect at a common point, and none of them are redundant.
(For example, imagine a roof with many sides that all meet at a common peak.) If the prob-
lem contains extreme points of this form, and if the Simplex algorithm happens to land on
that corner (both rather unlikely in practice), then the algorithm could cycle indefinitely.

Problem degeneracy exposes the only theoretical weakness of the Simplex method: it
is possible that the algorithm will cycle indefinitely and fail to converge to an optimal
solution. Once a degenerate solution to a problem arises, it is possible that successive

Linear Programming 55

iterations of the Simplex method will yield no improvement in the objective function.
This phenomenon may be a temporary one, occurring for only one or a few iterations, or
it may continue indefinitely, generating the same sequence of non-improving solutions.
If it is temporary, then we have merely lost valuable computation time, but we will even-
tually obtain the desired optimal solution. The more serious possibility, infinite cycling
and, therefore, failure of the algorithm, is fortunately not a serious practical problem.
Although problems have been constructed that demonstrate this hazard, such cycling in
actual problems is so rare that computational modifications to defend against Simplex
cycling are not considered to be worthwhile. Therefore, although many practical prob-
lems have degenerate solutions, the Simplex algorithm typically cycles only temporar-
ily and reaches the optimal solution without significant degradation in computational
efficiency.

2.7.4 Analyzing the Optimal Tableau: Shadow Prices

Once the Simplex method has terminated successfully, we find that the optimal tableau
contains not only the solutions for the decision variables, but also auxiliary information
that can be of considerable use to the analyst. For example, in the top row of the final
tableau, the coefficient of the i-th slack variable is the amount by which the final objective
function could be increased for each additional available unit of the resource associated
with that slack variable. These values are called shadow prices, and represent the mar-
ginal worth (or incremental value) of making additional units of the various resources
available.

By examining the optimal tableau at the end of Section 2.5, we find a coefficient of 4 for
slack variable s;. This means that the final value of z* could be increased by 4 for each addi-
tional unit of the resource associated with the third constraint. Likewise, the coefficient of
1 for slack variable s, indicates that z* could be increased at a rate of 1 for each added unit
of the resource associated with the second constraint.

We are not too surprised to find, in this tableau, a zero marginal worth for the first
resource (denoted by a zero coefficient for s, in the top row). Since s, = 25 in the final solu-
tion, the first inequality constraint is satisfied with a slack of 25; that is, this resource is not
being completely consumed in this solution. Therefore, we would not expect any increase
in the objective function to result from adding any more units of a resource that is pres-
ently already under-utilized.

Decision makers and analysts are usually in a position to know whether the resource
limitations (that appear on the right hand sides of the linear system of constraints) are truly
fixed or whether resource allocations could be modified by acquiring additional resources.
Management can determine the economic advisability of increasing the allotment of the
i-th resource by examining the shadow price: the shadow price is the maximum per unit
price that should be paid to increase the allotment of that resource by one unit, in order to
achieve a net gain in the objective.

Having made the earlier observations about the unit worth of resources, it is important
to point out that the increases in resource allocations must be relatively small increases.
The economic measure of the value of increasing the availability of any given resource is
valid only as long as such an increase does not change the optimal basic solution. When the
right-hand sides of constraints are changed, we do in fact have a different linear program-
ming problem. Analyzing the extent to which resource capacities (or availabilities) can be
changed without altering the optimal set of basic variables is one of the topics covered in
the following section of this chapter.

56 Operations Research

2.8 Duality and Sensitivity Analysis

When making an economic interpretation of the objective function of a linear program-
ming problem, an alternative and useful point of view is obtained by computing the col-
lective contributions of all the resources. If we multiply the original availability of each
resource (shown in the original tableau) by its marginal worth (taken from the final tab-
leau), and form the sum, we obtain precisely the optimal objective function value. In our
example at the beginning of Section 2.5, we have marginal worth values of 0, 1, and 4, and
resource availabilities of 150, 250, and 500; therefore, the optimal objective function value
can be expressed as

z* =2250 = 0(150) + 1(250) + 4(500)

This apparently equivalent way of viewing the original (or primal) linear programming
problem is a manifestation of what is called the dual problem. The study of duality pro-
vides the theoretical foundation for practical analysis of optimal solutions obtained with
the Simplex method. This topic is especially important because the full and effective use
of many linear programming software implementations requires a familiarity with the
concepts of duality.

Sensitivity analysis is the study of how a solution to a problem changes when there are
slight changes in the problem parameters, without solving the whole problem again from
scratch. It is, therefore, an analysis of how sensitive a solution is to small perturbations
in the problem data. Objective function coefficients, constraint coefficients, and resource
capacities are problem data that may be difficult or costly to obtain. These values may be
introduced into the linear programming model as rough estimates or imperfect observa-
tions, and they might be values that change over time, as costs fluctuate or resources avail-
abilities vary.

If all problem data were certain and constant over time, there would be no need for sen-
sitivity analysis. Each new problem would be based on exact data, and the solution would
be a perfect one. In practice, such is rarely the case. Thus, the problem formulation that is
solved initially may not be exactly the right problem, that is, the one that is valid at the time
resources are actually procured, costs are incurred, or profits are made.

If it could be determined, through the process of sensitivity analysis, which of the prob-
lem parameters are the most critical to the optimality of the original problem solution,
then analysts could take greatest care in supplying and refining specifically those param-
eters to which the solution is most sensitive. Sensitivity analysis tools are of great value
to management because they can help to provide a thorough understanding of a problem
solution, the range of problem parameters over which a solution is valid, and how the solu-
tion can be changed by making changes in costs, profits, or resource availability. Duality
theory provides the foundation underlying these tools.

2.8.1 The Dual Problem

A linear programming problem and its dual are related in the sense that both problems are
based on the same problem data, and an optimal solution to either one of the problems pre-
scribes the optimal solution to the other. These companion problems might even be thought
of as two different views of the same problem, but with different economic or engineering
interpretations, and possibly with different computational implications.

Linear Programming 57

Consider any linear programming formulation that is in the form of a maximization
problem with constraints of the less than or equal type or equality constraints. (A con-
straint in which the inequality is a > type can be multiplied by -1 to reverse the direction
of the inequality sign, resulting possibly in a negative right-hand-side value.) We will call
this the primal problem. If all constraints are inequalities and the decision variables are
non-negative, the primal problem can be written as:

maximize C1X1 + CoXo+ ... + CpXp
subject to apXy +apXa+ ... +agX, < by

AyXy FapXo+ ... +ayX, < bz

ApX1 + ApeXo + oo+ X < by

where the variables x,, ..., x, are non-negative.
In general, the corresponding dual problem is constructed as follows:

The dual problem is a minimization problem.

For every variable x; in the primal problem, there is a constraint in the dual problem.
If x; > 0 in the primal, the constraint is a > inequality in the dual.

If x; is unrestricted in sign, the i-th constraint is an equality in the dual.

For every constraint in the primal problem, there is a variable y; in the dual.

If the constraint is <, then y; > 0 in the dual problem.

If the constraint is an equality, then y; is unrestricted in sign in the dual.

The right hand sides in the primal are the objective function coefficients in the dual.
The objective function coefficients in the primal are the right hand sides in the dual.

The coefficient matrix in the primal is transposed to form the coefficient matrix for
the dual.

The dual problem corresponding to the earlier primal problem is a problem with m vari-
ables and n constraints and can be written as:

minimize biy1 + bays +... + bpnym
SUbjeCt to anyi + azyz +...+ Am1Ym >

apyr +taxyz ...+ amy¥m >Cy

A;ny1 +any2 +...F@mn¥m = Cn

and the variables y;, ..., y,, are non-negative.

Clearly, the dual of the dual problem is the original primal problem, and in many con-
texts, it is not necessary to stipulate which one of the companion problems is the primal one
and which is the dual one; each is the dual of the other.

58 Operations Research

Example 2.8.1

Consider the primal problem:

maximize 3x1 +2x, —6X3
Subject to 4x; +8x, —x3 <5
7X1 —2X2 +2X3 >4

and X1, X2, X3 >0

The second constraint can be rewritten as —7x; + 2x, — 2x; < —4. The dual problem is

then
minimize 5y, -4y,
subject to 4y, -7y, 23
8y1+2y,2>2
—y1-2y,2-6
andy;,y, >0

Example 2.8.2

The following primal problem has constraints that include both types of inequalities
and an equality constraint:

maximize 4x, —3x,
subject to 2x; —4x, <5
5x1 —6x, 29
3x; +8x, =2
X1 +2x, <1
and x; >0
and x, unrestricted in sign

The dual of this problem is formed by rewriting the second constraint as —5x; + 6x, < -9,
and then following the guidelines presented earlier to obtain:

minimize 5y1—=9y2+2ys+ y4

subject to 2y1 =5y, +3ys+ys >4
—4y+ 6y, +8ys;+2y,=-3
and yi,y,,y42>0

and y; unrestricted in sign

Linear Programming

(Recall that the Simplex method requires that all variables be non-negative. When an
unrestricted variable arises in a formulation, that variable can be replaced by the differ-
ence of two new non-negative variables, as suggested and illustrated in Section 2.4.1.)
There is a very apparent structural similarity between a primal and dual pair of
problems, but how are their solutions related? In the course of solving a (primal) max-
imization problem, the Simplex method generates a series of feasible solutions with
successively larger objective function values (cx). Solving the corresponding (dual) mini-
mization problem may be thought of as a process of generating a series of feasible solu-
tions with successively smaller objective function values (yb). Assuming that an optimal
solution does exist, the primal problem will converge to its maximum objective function
value from below, and the dual problem will converge to its minimum objective func-
tion value from above. The primal objective function evaluated at x never exceeds the
dual objective function evaluated at y; and at optimality, the two problems actually
have the same objective function value. This can be summarized in the following dual-

ity property:

Duality property: If x and y are feasible solutions to the primal and dual problems,
respectively, then cx < yb throughout the optimization process; and finally, at optimal-
ity, ox* = y*b.

It follows from this property that, if feasible objective function values are found for a
primal and dual pair of problems, and if these values are equal to each other, then both
of the solutions are optimal solutions.

The phenomenon of primal and dual problems sharing the same objective function
values is not mere coincidence. In fact, the shadow prices, which appear in the top row
of the optimal tableau of the primal problem, are precisely the optimal values of the
dual variables. Similarly, if the dual problem were solved using the Simplex method,
the shadow prices in that optimal tableau would be the optimal values of the primal
variables.

In the illustrative problem from Section 2.5, the dual objective of minimizing
150y, + 250y, + 500y; is met when the dual variables (shadow prices) have the values
y1 =0, y,=1, y;=4. Thus, from the dual point of view,

z* = 150(0) + 250(1) + 500(4) = 2250
which is equal to the primal objective value
7z* = 8xy + 5x, = 8 (125) + 5(250) = 2250

for optimal x values of x; = 125 and x, = 250.

One further characterization relating primal and dual linear programming problems
is known as complementary slackness. Because each decision variable in a primal
problem is associated with a constraint in the dual problem, each such variable is also
associated with a slack or surplus variable in the dual. In any solution, if the primal
variable is basic (with value >0, hence having slack), then the associated dual variable
is non-basic (with value = 0, hence having no slack). And if the primal variable is non-
basic (with value = 0, hence no slack), then the associated dual variable is basic (with
value = 0, hence having slack).

This can be observed even in a problem as simple as the one illustrating the Simplex
method in Section 2.5. In the final tableau, the primal basic variables x,, s;, and x, have
positive values, while in the top row we see zero values for their three associated dual
variables. The non-basic primal variables s, and s; have zero values, while their associ-
ated dual variables are basic and have non-zero values.

59

60 Operations Research

This property is described as follows.

Complementary Slackness Property: If in an optimal solution to a linear program-
ming problem, an inequality constraint is not binding, then the dual variable cor-
responding to that constraint has a value of zero in any optimal solution to the dual
problem.

This is merely a formalization of the intuitive notion that the shadow price of a resource
associated with a non-binding constraint is zero. That is, there is a zero marginal worth
for a resource that is not being fully utilized.

The properties described earlier were based on an assumption that optimal solu-
tions to both primal and dual problems exist, but, of course, not all linear program-
ming problems have optimal feasible solutions; infeasible problems and problems with
unbounded solutions were discussed earlier in this chapter. For corresponding primal
and dual problems, exactly one of the following mutually exclusive cases always occurs:

1. Both primal and dual problems are feasible, and both have optimal (and equal)
solutions.

2. Both primal and dual problems are infeasible (have no feasible solution).

3. The primal problem is feasible but unbounded, and the dual problem is infeasible.

4. The dual problem is feasible but unbounded, and the primal problem is infeasible.

Because the pertinent parameters and goals of any linear programming problem can
be expressed in either a primal or dual form, and because solving either the primal or
dual problem yields enough information to easily construct a solution to the other, we
might reasonably wonder which problem, primal or dual, should we solve when using
the Simplex method.

From the standpoint of computational efficiency, we might wish to choose to solve the
problem with the fewer number of constraints. As is discussed further in Section 2.10.3,
the computation time required for the Simplex method is strongly dependent on the
number of constraints, and almost independent of the number of variables. Therefore,
in the absence of other identifiable structural characteristics of a problem that might
make it amenable to the use of specialized solution methods, we could expect to be able
to solve most quickly the problem having the smaller number of constraints. This choice
becomes more compelling when the linear programming problem has thousands of
constraints, and is of much less importance for more moderate-sized problems of a few
hundred or less constraints.

An understanding of duality properties and the relation between primal and dual
problems gives an analyst some flexibility in formulating, solving, and interpreting a
solution to a linear programming problem. Moreover, duality provides the mathemati-
cal basis for analyzing an optimal solution’s sensitivity to small changes in problem
data. We now turn our attention to the types of analysis that can be made once an opti-
mal solution to a linear programming problem has been obtained.

2.8.2 Postoptimality and Sensitivity Analysis

After an optimal solution to a linear programming problem has been found, the analyst’s
next step is to review the problem parameters and the solution, in preparation for put-
ting the solution into practice. This process of postoptimality analysis includes confirm-
ing or updating problem parameters (costs and availability of activities and resources),
and if there are any changes to the original problem parameters, assessing the effect of
these changes on the optimality of the solution. If the changes are small, it may not be
necessary to re-optimize the new problem; instead, some small calculation may suffice to
identify simple consequences in the previous optimal scenario. Sensitivity analysis is the

Linear Programming 61

study of the types, ranges, and magnitude of changes in problem parameters whose effects
can be determined relatively easily, without the need for solving a new linear program-
ming problem.

In a linear programming model that is relatively insensitive to changes in problem
parameters, the original optimal solution may not change even when several parameters
vary widely. Other models may be highly sensitive, and the optimality of the original solu-
tion may be seriously undermined by the smallest change in even one parameter. When
working with less sensitive models, the expense and effort of acquiring extremely accurate
data (through extensive sampling, costly tracking, careful observations, etc.) may not be
justified. On the other hand, a successful analyst knows the necessity of making a special
effort to obtain the most accurate possible problem data when working with very sensitive
models.

Sensitivity analysis addresses several different kinds of changes to a linear program-
ming formulation, including;:

e Changes in objective function coefficients
® Increases or decreases in the right hand side of a constraint

Adding a new variable

Adding a constraint

Changes in constraint coefficients

Objective function coefficient range analysis identifies the maximum allowable increase
and decrease that can occur for each coefficient without changing the current solution.
Under the assumption that all other parameters remain unchanged, a change within the
allowable range ensures that the current solution will remain optimal and that the val-
ues of the decision variables remain unchanged. The objective function value would, of
course, change as the coefficient varies over its range.

Example 2.8.3

Consider a simple two variable example:

maximize Z = 4x; + 3x,

subject to X1 +X, <4
2X1+ X, <6
X;+3x, <9
Xq, X5 20

Using the illustration in Figure 2.10, we can observe that the optimal solution occurs
at the point (2, 2) with a function value of z = 14. If we change the cost coefficients
slightly, the optimal solution will stay at the current point. However, if we add
more than 1 to the coefficient of x,, then the current solution will no longer be opti-
mal. Similarly, if we subtract more than 1 from c,, the solution will change. (See
Exercise 2.45.)

Right-hand-side ranging is performed to determine how much the right-hand side
of a constraint can vary (increase or decrease) without causing the original optimal

62 Operations Research

6 ——
5 —
4 —
3 —1
2 —
Feasible
region
1 g
1 2 X1
I I
| | | | >

FIGURE 2.10
[lustration of sensitivity analysis.

solution to become infeasible. Changing a constraint alters the feasible region and may
affect the shape of the feasible region in the vicinity of the optimal point. (If the original
optimal point is no longer a feasible extreme point, a different optimal solution would
have to be found.) If a resource is not being completely used (i.e., there is positive slack)
in the optimal solution, then clearly the right hand side of the constraint corresponding
to that resource can be increased indefinitely. In general, however, possible increases
and decreases in right hand sides are measured by analyzing the optimal solution to
determine how much slack can be created in the constraint without changing the opti-
mal solution.

In the problem depicted in Figure 2.10, consider what happens when we add 1 to the
right hand side of the second constraint, so that the constraint becomes 2x; + x, < 7.
Now, the active constraints at the optimal solution have changed, but the same set of
constraints will be active. (The same variables are basic.) As discussed earlier, the objec-
tive function will increase by precisely the value of the dual variable corresponding to
that constraint. In this example, the objective function will increase by 1.

It is easy to see in the illustration that the right hand side can be increased by 2 with-
out changing the variables in the basis. Beyond that point, the constraint becomes inac-
tive (outside the feasible region). Similarly, the right hand side of constraint 2 can be
decreased by 0.5 without changing the basis. At that point, the optimal solution would
occur at the intersection of the other two constraints, at (1.5, 2.5), and decreasing beyond
that would change the basic variables.

Adding a new variable to a model would require introducing the resource require-
ments of that new activity or product into a current optimal solution. By analyzing
information already in the optimal tableau, it can be determined whether the new vari-
able would be a basic variable in the optimal solution and what would be the value of its

Linear Programming 63

coefficient in the objective function. The shadow prices in the optimal solution provide
information about the marginal worth of resources, and knowing the resource needs
corresponding to the new variable, the value of bringing in the new variable can be
computed.

Adding a constraint or changing constraint coefficients amounts to rather compli-
cated changes to the original problem. These types of changes to the linear programming
model fall logically into the postoptimality analysis framework, but technically these are
not changes that can be analyzed or effected by merely using information in the optimal
tableau. Such changes are generally best dealt with by solving the modified problem anew.

Almost all commercial software for linear programming, such as the products men-
tioned in Section 2.10.3, include postoptimality analysis as part of the standard out-
put. Most packages present right-hand-side ranging and objective coefficient ranging
information; some also include adding a new variable; rarely are constraint changes
included as part of ordinary postoptimality analysis.

The information and insights obtained through sensitivity analysis are especially
valuable to management because they provide an indication of the degree of flexibility
that is inherent in an operating environment. Such knowledge is helpful in planning,
making decisions, and formulating policies for handling fluctuations and imprecision
in prices, activities, and resource availabilities used in linear programming models.

2.9 Revised Simplex and Computational Efficiency

The amount of computation required to solve linear programming problems with the
Simplex method is indeed arduous; in fact, all but the most trivial problems must be solved
with the aid of a computer. Several decades of experience with computer implementations of
the Simplex method have led researchers and practitioners to develop various improvements
and enhancements to the original Simplex method. The result is a refined version of the stan-
dard Simplex, called the Revised Simplex method. This method makes much more efficient
use of a computer’s most valuable resources: CPU computation time and memory space.
Recall that the standard Simplex method performs calculations, at each iteration, to
update the entire tableau. Actually, the only data needed at each iteration are the objective
function row (to determine the entering variable), the pivot column corresponding to the
non-basic entering variable, and the right-hand-side values of the current basic variables (to
determine the variable to leave the current basis). Thus, the standard Simplex computes and
stores many values that are not needed during the present iteration and that may never be
needed. The Revised Simplex method performs the same iterations as the standard Simplex,
but the details of its computations have specific advantages for computer implementations.
The standard Simplex method generates each new tableau iteratively, based on the previ-
ous tableau. However, the Revised Simplex method takes advantage of the fact that all of
the information in any tableau can in fact be obtained directly from the original problem
equations, if the inverse of the matrix of basic columns for that tableau is known. And that
inverse can be obtained directly from the original equations if the current basic variables
for that tableau are known. Note that the Revised Simplex performs the usual selection of
an entering and leaving variable at each iteration, but it carries out only those computa-
tions necessary to register that selection and to record the current solution configuration.
Readers acquainted with numerical computation will be aware that matrix inversion
is itself a nontrivial task, in terms of both computation time and numerical accuracy.

64 Operations Research

Therefore, instead of recomputing a basis inverse at each iteration, a product form of
inverse can be used that allows a new inverse to be computed simply from the previous
one. This procedure calls for premultiplying the previous inverse by a matrix that is an
identity matrix except in one column. (Only that one column and an indicator of its posi-
tion in the matrix need be stored explicitly.) Some of the more advanced references listed
at the end of this chapter provide a more complete description of product form inverse
computation, and of how re-inversion can help to maintain accuracy and save storage
space.

Although the Revised Simplex method requires some additional bookkeeping that
would not be needed if the full tableau were maintained, the method typically requires
less computation, uses less storage space, and obtains greater numerical accuracy than the
standard Simplex method.

Because only the essential data are computed, Revised Simplex has an advantage, with
respect to computation time, over the standard Simplex. This advantage is particularly
pronounced when the number of constraints is much less than the number of variables
because the size of all the essential data (basic columns and right-hand-side constants) is
determined by the number of constraints. (Refer to [Simmons 1972] for a detailed operation-
count for the Revised and standard Simplex methods.)

Revised Simplex storage requirements are minimal because it is necessary to store only
the basic variables, the basis inverse or its product form, and the constants. The origi-
nal constraint matrix and objective coefficients can be stored efficiently by the computer’s
memory manager on conveniently placed storage devices, along with the premultipliers
for the product form inverse, if desired.

Perhaps the most attractive advantage offered by the Revised Simplex method is increased
numerical accuracy. As discussed in Chapter 1, an algorithm is called numerically unstable
if small errors (through round-off in intermediate computations, for example) can lead to
very large errors in the final solution. Both the standard and Revised Simplex methods
are numerically unstable, but Revised Simplex avoids some of the potential for instability.
There is less accumulated round-off error because calculations are performed on a column
only when it is to enter the basis, not at every iteration. Furthermore, computations are
applied to original problem data, not to data that have already undergone (possibly unnec-
essary) computation.

Typical large linear programming problems have constraint matrices that are very sparse,
with a large proportion (often in the range of 95%) of zero values. Revised Simplex performs
fewer multiplications involving non-zero elements, since Revised Simplex operates on original
(sparse) data, whereas standard Simplex operates repeatedly on the entire tableau and quickly
creates a dense matrix out of a sparse one. Thus, by taking advantage of sparsity, the Revised
Simplex can reduce the amount of computation and therefore maintain numerical accuracy.

The advantages described earlier have been observed so consistently that almost all
commercial software for linear programming is based on the Revised Simplex method
(with product form inverse) for both phases of the two phase method.

2.10 Software for Linear Programming

Now that we are familiar with linear programming models and a fundamental method
for solving these problems, we will turn our attention to some practical considerations
necessary for solving large linear programming problems on a computer. Because there

Linear Programming 65

is quite a selection of commercially available software for linear programming, anyone
in a position to choose a software system for personal use (and certainly anyone con-
templating developing their own software) should be aware of the various features to be
mentioned in this section. In particular, we will briefly describe some important exten-
sions often found appended to the usual Simplex techniques, and some actual commer-
cial systems that are available. We also include a discussion of interior methods that
now play an increasingly important role in the practical solution of linear programming
problems.

2.10.1 Extensions to General Simplex Methods

The majority of commercial software for linear programming is based on the Revised
Simplex method, and most implementations employ the product form inverse. For effi-
ciency and accuracy on a computer, a variety of additional features may also be incorpo-
rated. We merely mention a few of them here, and the interested reader can obtain a more
thorough understanding using the references cited at the end of the chapter.

The method used for computing and maintaining tableau information has a strong bear-
ing on the size of problem that can be successfully attempted. More complicated imple-
mentations require greater skill and effort but operate with greater speed so that larger
problems can be solved.

The explicit inverse method is straightforward and can be efficient and useful for prob-
lems involving a few hundred rows. The product form inverse allows for problems in
the range of 1000 or so rows. For problems with tens of thousands of rows, LU decom-
position techniques have been developed, for use both in the iteration phases and dur-
ing re-inversion of the basis. In simple terms, any basis matrix B can be rewritten as the
product of two triangular matrices, L and U where L is lower triangular (with zeros above
the main diagonal) and U is upper triangular (with zeros below the diagonal). This format
enables very efficient inverse computation and solution of the system.

In a linear program with many variables, it is very time consuming to examine every
non-basic variable at each iteration to determine the one to enter the basis. Many linear
programming implementations do not go to the effort to select the non-basic variable cor-
responding to the most negative top row coefficient, but rather one corresponding to any
negative coefficient (i.e,, any variable that will improve the objective function). Although
this strategy may increase the total number of iterations, it is actually a time-saving and
very rational approach because the negative top row coefficients only specify a per-unit
improvement in z, and not an absolute overall improvement. Thus any good entering vari-
able can be quickly selected for the next basis.

In many linear programming models, there are upper bound constraints (x; < u)) for
some or all of the variables. Constraints such as these, as well as generalized upper bounds
(2x; < w), can be dealt with using a method, introduced by Dantzig and Van Slyke (1967),
that handles these constraints implicitly without enlarging the basis. (Recall that for each
explicit constraint, there must be a basic variable; therefore, any additional constraints
generally contribute to the amount of work and storage required by the Revised Simplex
method.) Handling upper bound constraints implicitly does take time, but practice has
shown that this is an advantageous trade-off that serves to keep the problem size from
increasing.

Very large linear programming models often result in a constraint matrix A in which the
non-zero elements appear in patterns or blocks. When a problem exhibits such a high degree

66 Operations Research

of structure, it may be possible to apply a decomposition technique (Dantzig and Wolfe
1960). The original model is partitioned, and the subproblems are then solved individually.

Not only do non-zero elements of A often appear in patterns, but more generally, we find
the matrix A to be very sparse. A sparse matrix is one with a very large proportion of zero
elements. A rule of thumb is that large linear programming models typically have only
about 10% non-zero elements; some practitioners claim that 1%-5% is a more realistic range.
This sparsity is not a surprising phenomenon when we consider that in any large orga-
nization, certain sets of products, people, or processes tend to operate in groups, and are
therefore subject to local constraints. When such a problem is formulated, a sparse matrix
results because each variable is involved in a relatively small number of the constraints.

In order to make better use of available memory, sparse matrices should be stored in
some type of a compressed format, using methods such as those described by (Murtagh
1981). For example, each non-zero element could be stored along with an encoded form
of its row and column indices. The term super sparse has been used to describe matrices
that are not only sparse but in which many of the non-zero elements are the same. (e.g., in
many applications, the vast majority of non-zero coefficients have a value of one.) In that
case, each distinct value need be stored only once, and elements are found via a table of
addresses into a table of distinct element values. Sparse matrix handling techniques have
been shown to be worthwhile even if the coefficient matrix A is stored on a peripheral
memory device. Because transfer time is slow relative to computation time, it is prudent to
maintain such large data structures in as compact a form as possible.

Round-off error is a natural consequence of using finite precision computing devices. As
was pointed out in Chapter 1, this inability to store computed results exactly is particularly
pronounced when we perform arithmetic operations on numeric values of very different
magnitudes, where we are often unable to record that portion of a result contributed by
the smaller value. In an attempt to remove the source of some of these numerical inaccu-
racies, most commercial linear programming systems apply some kind of scaling before
beginning the Simplex method. Rows and columns of the matrix A may be multiplied by
constants in order to make the largest element of each row and column the same (Murtagh
1981). To improve the condition of a matrix (and, therefore, obtain greater accuracy of its
inverse), all the elements of A should be kept within a reasonable range, say within a factor
of 10° or 108 of each other (Orchard-Hays 1968). More elaborate and specific mechanisms
for scaling have been devised. In general, a healthy awareness of the limitations of com-
puter arithmetic and numerical computation is essential in understanding and interpret-
ing computed results.

In a problem of any practical size, the elimination of artificial variables from an initial
solution can take a considerable amount of computation time. The term crashing refers
generally to any kind of technique that gives the Simplex method a head start and elimi-
nates some of the early iterations. Crashing sometimes consists of choosing a set of (non-
artificial) non-basic variables to enter the basis and replace the artificial variables, even
at the expense of temporarily degrading the objective function or making the solution
infeasible (Cooper and Steinberg 1974). An even better way to give a boost to the Simplex
method is to obtain, from the user or analyst, problem specific information about which
variables are likely to be basic variables in a final solution. Many commercial systems
(particularly those for larger powerful computers) provide a means for introducing such
information along with other problem data. It may also be possible to restart Simplex itera-
tions using solutions from previous (incomplete) attempts at optimization.

Many commercial systems contain algorithms for sensitivity analysis (also called
ranging procedures or postoptimality analysis). These techniques are applied after the

Linear Programming 67

Simplex method has already produced an optimal solution. Sensitivity analysis allows the
user to determine the effect that changes in various problem parameters would have on
the optimal solution. Changes in the objective (cost/profit) coefficients and in the resource
levels (right hand sides of constraints) are commonly dealt with; some systems consider
the addition of decision variables to the original model, but most systems do not handle
changes in the constraint coefficients or the addition of new constraints.

The relationship between sensitivity analysis and the dual to a linear programming
model was described in Section 2.8. It is not uncommon for commercial software to include
subroutines embodying a method known as the dual Simplex method. During sensitivity
analysis, if problem parameters are changed, the current (optimal) solution may become
infeasible. However, the problem is then dual feasible, and can be reoptimized using the
dual Simplex algorithm.

2.10.2 Interior Methods

The complexity of linear programming problems was for many years one of the most
important open questions in theoretical computer science. Efforts were made to prove
that Dantzig’s Simplex method would always stop sooner than (;‘1) iterations, but instead,
problems were devised which drive the Simplex method through the combinatorial explo-
sion of basic solutions. On the other hand, the linear programming problem did not seem
to be NP-hard either.

The question was first answered in 1979 when the Russian mathematician Leonid B.
Khachiyan published an algorithm for solving linear programming problems in polyno-
mial time. Initial confusion over the importance of Khachiyan’s discovery arose for two
reasons. First, his results appeared in a very short article in a Russian journal and went
unnoticed for months because of its obscurity as well as the fact that the report was written
in the Russian language. After some time, Eugene Lawler at the University of California
at Berkeley brought the article to the attention of the computer science community. The
explanation that Khachiyan himself presented was so abbreviated that mathematicians
had little inkling of its content. Finally, through Lawler’s efforts, Khachiyan’s work was
expanded upon (and the details of the proof reconstructed) by Gacs and Lovasz (1981),
who not only filled in the gaps in the proof but improved on the efficiency of the algo-
rithm. Only then was the new idea available to the general mathematics community for
consideration and discussion. Almost nothing was known about Khachiyan himself, and
it was generally assumed, even by Gacs and Lovasz, that he had never published any pre-
vious works. However, as it turns out, (Aspvall and Stone 1980) cite four publications by
Khachiyan prior to his famous one in 1979.

The second misunderstanding arose because Khachiyan’s algorithm was designed for
linear programming problems in which ¢, A, and b are integers. Careless reporters publi-
cized incorrectly that Khachiyan had developed a polynomial-time algorithm for integer
programming problems (such as the traveling salesman problem). Because this part of the
story was untrue, there was skepticism concerning just what Khachiyan really had done.
Major newspapers around the world contributed to the notoriety (but sadly not to the
clarification) of this remarkable discovery.

Because linear programming problems had been suspected of having borderline
complexity—neither being NP-hard nor having a polynomial algorithm—Khachiyan’s
demonstration of a polynomial-time algorithm was somewhat surprising and of immense
importance. Even George Dantzig, who developed the (worst-case exponential-time)
Simplex algorithm, graciously offered the comment that, “A lot of people, including myself,

68 Operations Research

spent a lot of time looking for a polynomial-time algorithm for linear programming. I feel
stupid that I didn’t see it” (Kolata 1979).

Khachiyan’s method operates by defining a sequence of ellipsoids (ellipses in a multi-
dimensional space), each smaller than the previous ellipsoid, and each containing the fea-
sible region. The method generates a sequence of points x,, X;, X,, ..., which form the centers
of the ellipsoids. At each iteration, if the center x, of the ellipsoid is infeasible, a hyperplane
parallel to a violated constraint and passing through x, is used to cut the ellipsoid in half.
One half is completely infeasible, but the other half contains the feasible region (if it exists),
so a smaller ellipsoid is constructed that surrounds this half. Eventually, some x, will lie
in the feasible region.

From a practical standpoint, Khachiyan’s ellipsoid method lacked the many years of
fine-tuning that had been directed toward improving the efficiency of the Simplex method.
Therefore, although it was a polynomial-time algorithm, in practice the Simplex method
was the preferred method because typically it performed quite well, and software imple-
mentations were readily available. It should be noted, however, that whereas the computa-
tion time for the Simplex method is most strongly dependent on the number of constraints
m, Khachiyan’s method is relatively insensitive to m and more strongly dependent on the
number of decision variables n. Thus, it was supposed at the time that Khachiyan’s ellip-
soid method might eventually be superior, in practice, to the Simplex method for prob-
lems with numerous constraints. In any case, just five years later in 1984, yet another new
method appeared.

Narendra Karmarkar, a young mathematician at AT&T Bell Laboratories, announced
an algorithm for solving linear programming problems that was even more efficient than
Khachiyan’s method. Karmarkar’s method is called an interior point method since it oper-
ates from within the polyhedron of feasible points of the linear programming problem. The
algorithm uses a series of projective transformations in which the polyhedron is first made
smoother (normalized), then an arbitrary point is selected which is re-mapped to the center,
and a sphere is inscribed in the polyhedron. Then a new point is selected, near the edge
of the sphere and in the direction of the optimal solution. The space is then transformed
or warped again so that this new point is in the center. The process is repeated until the
selected point is the optimal solution to the linear programming problem. Karmarkar’s
method of projective transformations demonstrates a polynomial-time complexity bound
for linear programming that was better than any previously known bound.

Karmarkar’s original announcement claimed that his method was many times faster
than the Simplex method. But since AT&T Bell Laboratories” proprietary interests pre-
cluded disclosure of the details of its implementation, it was not at first possible to test
Karmarkar’s claims. In fact, for several years, the scientific community remained some-
what annoyed because no one outside Bell Laboratories was in a position to duplicate
Karmarkar’s computational experiments—and hence the traditional scientific peer review
process could not take place.

Whereas Karmarkar had claimed computation times 50 times faster than Simplex based
codes, outside researchers were implementing Karmarkar’s method and observing com-
putation times 50 times worse. Eventually, however, over the next 10 years, it became evi-
dent that by using special data structures, efficient methods for handling sparse matrices,
and clever Cholesky factorization techniques, the performance of Karmarkar’s method
could become quite competitive with Simplex implementations.

An important side effect of the controversy over the validity of Karmarkar’s claims is
that it sparked a great deal of interest in examining and refining Simplex implementations.
Consequently, there are now many very efficient implementations of both approaches.

Linear Programming 69

An overview (Lustig et al. 1994) indicated that small problems, in which the sum of the num-
ber of decision variables plus the number of constraints is less than 2000, can generally be
solved faster with the Simplex method. For medium sized problems, in which that sum is less
than 10,000, Simplex and interior methods compete evenly. And there are several extremely
large linear programming problems that have now been solved by interior point methods
which have never been solved by any Simplex code. An increasing number of commercial
software products contain both interior point methods and Simplex methods that can be
used together or separately in solving large or difficult problems. Each of these approaches
has its advantages, and hybrid software that combines these complementary methods con-
stitutes a powerful computational tool for solving linear programming problems.

As the methods suggested originally by Karmarkar became more widely understood,
numerous researchers made their own various contributions to the practical implemen-
tation of interior point algorithms. A very thorough summary of theoretical and imple-
mentational developments, as well as computational experimentation, may be found in
a feature article by (Lustig et al. 1994). Bixby (1994) presents an enlightening description
of commercial interior point methods, options, and performance on benchmark problem
instances. Saigal (1995) is a comprehensive reference that includes a large section on inte-
rior point methods. Mitra et al. (1988) report experimental studies with hybrid interior/
Simplex methods. Thus, the theoretical merits of Karmarkar’s new approach, which had
never been doubted, have finally been balanced by considerable practical computational
experience. As an illustration of this, recall that interior point methods must remain in the
interior of the feasible region. Yet computational experience shows that choosing a step
length that gets very close to (and nearly outside of) the boundary of the region is actually
most efficient. So-called barrier parameters are used to control the interior search in the
feasible region.

The interior and barrier methods were inspired by (and incorporate) many of the more
general methods of nonlinear programming. It should be noted that interior point meth-
ods did not originate with Karmarkar; in fact, the approach had been used since the 1950s
for nonlinear programming problems. However, Karmarkar can be credited with demon-
strating that interior point methods could also be practical for solving linear program-
ming problems. Therefore, a student who wishes to fully understand these methods might
well begin by reading the introductory notions presented in Chapter 5 on Nonlinear
Optimization, and then be prepared to embark on a serious study of the mathematics and
numerical analysis underlying general optimization procedures.

2.10.3 Software for Solving Linear Programming

The Simplex method is theoretically not an efficient algorithm because its worst case
performance is exponential in the size of the problem being solved. However, empirical
evidence, observed over many years and many practical problem instances, shows the
Simplex method to be consistently very efficient in practice.

The computational effort required for solving a linear program with the Simplex method
is strongly dependent on the number of constraints m, and almost independent of the num-
ber of variables n. In typical problems, we find that the number of constraints is much less
than the number of variables, and in just such cases, the Revised Simplex has great computa-
tional advantage over the standard Simplex. In practical experience, the number of Simplex
iterations required, on average, to solve a problem with m constraints, is 2m. A practical,
although not strict, upper bound on the number of iterations is 2(m + n) (Ravindran et al.
1987). Total computation time has been observed to increase roughly in the order of m®.

70 Operations Research

Thus, a 1000-constraint problem may require a million times as much computation time
as a 10-constraint problem. In practice, we can generally expect to obtain solutions to lin-
ear programming problems very efficiently, despite the lack of any attractive performance
guarantees.

To give some perspective to the notion of problem size (and to dispel any mispercep-
tions that may have been created by the very small illustrative examples used earlier in
this chapter), we should indicate just what is considered a large linear programming prob-
lem. Problem size is usually expressed in terms of the number of constraints, the number
of decision variables (which may or may not include the slack and surplus variables), and
perhaps the number of non-zero coefficients in the matrix. In the early 1950s, when the first
linear programming software was being developed, an inversion of a matrix of order 100
was considered state of the art in numerical computation. Nowadays, a linear program-
ming problem with thousands of constraints is routine, and problems with tens to hun-
dreds of thousands of constraints are computationally manageable. Advances in hardware
technology have delivered dramatically increased processing speeds, and corresponding
hardware and software developments in storage capacities and memory management
techniques have facilitated computations on the data representing very large problems.

Software for linear programming has been under development for many decades, first
using Simplex and related techniques and now including interior point implementations,
decomposition, and barrier methods, among other advances, all having evolved together
into standard forms. One might think that there is little room, or need, for any significant
changes in LP solver technology. But with steady advances in processor speed and storage
capabilities, computational mathematics, algorithm engineering, potentials for parallel
and distributed computing, and powerful and convenient modeling systems that encour-
age analysts to attack ever larger and more challenging problems, we are seeing even more
remarkable developments in software.

Software vendors typically offer a variety of versions of their packages. The options
may be based on the choice of modeling language and the input/output interfaces, the
hardware platform and the underlying operating system. Some of these options and char-
acteristics are presented clearly and succinctly in a very useful series of survey articles
by (Sharda 1995, 1992) and (Fourer 2015, 2017) that describe many of the most popular
software products now available. We mention a few of them here to provide a glimpse of
what is currently in use by practitioners who need to solve linear programming problems.

Many advanced modeling languages and systems, such as those mentioned in Chapter 1,
provide interfaces with linear programming solvers. For example, AMPL, GAMS, and
MPL facilitate linear optimization with advanced features for large-scale problems and
parallel simplex methods by offering access to CPLEX, MINOS, and OSL.

IBM ILOG CPLEX Optimizer (commonly referred to as CPLEX) is designed to solve
large, difficult linear programming (and other) problems which some other LP solvers
cannot solve efficiently. It has been developed to be fast, robust, and reliable, even for
poorly scaled or numerically difficult problems. This software uses a modified primal
and dual Simplex algorithm, along with interior point methods. CPLEX is currently used
to solve some of the largest problems in the world, some with millions of variables, con-
straints, and non-zeros. Options include a preprocessor for problem reduction, as well as
parallel implementations that have demonstrated record-breaking performance. CPLEX is
portable across Windows PCs, Unix/Linux, and Mac OS platforms.

MINOS offers numerically stable implementations of primal Simplex, using sparse LU
factorization techniques. This system originated with (Murtagh and Saunders 1987) with
versions for PCs, Windows, Unix, and mainframe systems.

Linear Programming 71

LINDO (Linear INteractive and Discrete Optimizer), originally developed by Linus
Schrage (1991), is one of the oldest and now among the most popular commercial systems
for solving linear programming problems. LINDO API and the LINGO modeling system
offer powerful solvers for linear programs, based on methods including primal and dual
simplex for speed and robust computations.

SAS provides an integrated package, with capabilities for solving a wide variety of
Operations Research problems. SAS/OR subroutines for solving linear programming
problems use two phase Revised Simplex, primal and dual simplex, and interior point
methods, and employ decomposition algorithms and efficient sparse-matrix techniques.

Gurobi Optimization solves linear programming problems through the use of advanced
algorithms taking advantage of various modern powerful hardware architectures.

IMSL has an established reputation in the field of numerical problem-solving software,
known for accuracy and dependability. IMSL contains literally thousands of mathemati-
cal and statistical library routines including linear programming routines based on the
Revised Simplex method. Routines are implemented on a wide variety of platforms.

This selection of commercial software products is by no means exhaustive; we have
merely mentioned several representative packages that are in popular use. With new
product enhancements constantly under development, our readers should have no trouble
finding many additional sources of software for solving linear programming problems.

2.11 Illustrative Applications
2.11.1 Forest Pest Control Program (Rumpf et al. 1985)

The Maine Forest Service operates a program of aerial pesticide spraying to mitigate the
destruction of spruce-fir forests by the spruce budworm. Yearly spraying of the 5 million
acre infestation takes place in early summer during a specific stage of insect develop-
ment, and must be done in dry weather under moderate wind conditions. Spraying is
done by aircraft teams consisting of a spray aircraft, a guide plane with a pilot and
navigator, and a monitor plane with a pilot and observer. The entire program includes
analysis of insect damage and danger assessment of treatment requirements, and cost
of chemicals, but one third of the total cost of the program is for aircraft and crews. The
Forest Service has therefore wisely investigated the use of quantitative methods to maxi-
mize the efficiency of aircraft assignments and to reduce aircraft needs.

The aircraft operate out of eight airfields, and preliminary models were developed to
partition the infested area into over 300 regions (spray blocks) about each airfield, and to
then assign spray blocks to airfields and aircraft to airfields.

This initially seemed like a natural problem to be formulated as a network problem or
integer programming model (see Chapters 3 and 4); but some of the realistic elements of this
problem could not be incorporated into the network models, and the integer programming
formulation turned out to be prohibitively large. Finally, a linear programming formulation
was developed that models the problem realistically and that can be solved quite efficiently.

The decision variables are the times allocated to each aircraft team flying out of each
airfield to spray each block. The objective function includes only those variables associated
with allowable combinations of blocks, aircraft, and airfields; that is, blocks within operat-
ing range of the airfield, aircraft capable of spraying the type of pesticide prescribed for

72 Operations Research

a certain block, and the specified type of aircraft team (planes and crew) stationed at the
given airfield. The aim is to minimize total spraying cost.

Constraints are imposed to guarantee sufficient time to completely spray each block
(and this depends on the geometrical shape of the block, the speed of the aircraft, the
pesticide capacity of the plane, and the availability of chemicals at the airfield). A second
category of constraints accounts for the time windows during which weather conditions
and budworm development are appropriate for effective aerial spray.

The use of this model has saved time and reduced the cost of the aerial spraying program.
It has also provided a framework from which to analyze major modifications to the program,
such as loss of an airfield or the availability of a new long-range aircraft, and, in response to
environmental concerns, to re-evaluate the actual need for spraying certain areas.

2.11.2 Aircraft and Munitions Procurement (Might 1987)

The US Air Force uses a linear programming model to decide annually how much of its
procurement budget should be spent on various different aircraft (such as the F-16, A-10,
F-111, and F-15E) and on various conventional munitions. It has been argued that quan-
titative methods are inapplicable for strategic decisions that are highly unstructured.
However, senior level decision makers are rotated frequently and often lack long experi-
ence and judgment on which to base procurement decisions. For this reason, quantitative
analytical decision support has proved to be of great benefit.

The decision involves analyzing the cost-effectiveness of each aircraft carrying each
of several possible munitions. The difficulty arises because the attrition of the aircraft is
dependent on the munitions being delivered, and an aircraft may be vulnerable to differ-
ent types of attack, depending on the weapon it is carrying. Likewise, an aircraft must fly
at different altitudes with different munitions and thus anti-aircraft weapons vary in effec-
tiveness. And when the loss rate varies only a few percent, there is considerable variation
in the number of attacks an aircraft can make during a conflict; thus, the cost-effectiveness
of an aircraft-munitions combination is difficult to measure subjectively.

The data used by the linear program include:

* The effectiveness of each aircraft munitions combination against each target type
in each of six different weather conditions

e The attrition (probability of loss) of each aircraft for each aforementioned condition
¢ The number of munitions delivered on each sortie for each condition

e The number of sorties per day for each aircraft munitions combination

e Current inventory of aircraft and munitions

e Number and value of each type of target

® Cost of each new aircraft and munitions type

Thus, the decision variables are the total number of sorties flown by each aircraft muni-
tions combination against each target type in each of six types of weather. The objective is
the sum of these variables, each multiplied by the probability of a successful sortie times
the value of the target type.

Five categories of constraints are defined for aircraft, munitions, targets, weather, and
budget. The current implementation has pre- and post-processors for data formatting,
and can be run with different databases. Output includes listings, tables, and graphical

Linear Programming 73

displays indicating, for example, trade-offs of funds expended on aircraft versus muni-
tions, target value destroyed versus expenditure on individual munitions or a mixture of
munitions. This linear programming approach to procurement has received enthusiastic
acceptance within the military procurement community.

2.11.3 Grape Processing: Materials Planning and
Production (Schuster and Allen 1998)

Welch’s grape processing company has successfully employed linear programming
models for optimizing its management of raw materials in its production and distribu-
tion of grape juice products. Welch’s, Inc. is owned by a cooperative, the National Grape
Cooperative Association, involving 1400 growers of Concord and Niagara grapes in the
northern United States. Membership in the cooperative is attractive to grape growers
because Welch'’s offers a reliable and consistent market for grapes, despite fluctuations in
agricultural productivity.

Welch’s plants comprise a vertically integrated industry, handling the acquisition and
pressing of raw grapes, the storage of pasteurized grape juice and concentrates, production
of jams, jellies, and juice products, and the warehousing and distribution of finished prod-
ucts. The company wishes to maintain consistent taste in its products, although weather
and geography account for great variations in grape characteristics (sweetness, color, etc.)
from year to year.

Welch’s had a comprehensive materials requirement planning system to estimate all the
resources needs, from juicing raw grapes to the completion of manufactured products.
This, along with a minicomputer based cost accounting system have proved useful, but
do not provide optimal cost solutions for the very important juice blending operation;
and each run of the system takes so much computational time that interactive real-time
use of the system is impractical. Furthermore, whereas most industries try to sched-
ule capacities first and then project their materials requirements, the existing system at
Welch’s did not incorporate any consideration of capacities such as juice concentrations
or transportation between plants. Without use of operational constraints such as these,
it was not possible to choose effectively from among a large set of feasible product reci-
pes and to efficiently schedule inter-plant transfers. Optimal movement of raw materials
among plants and optimal blending of raw materials into products was not supported by
any formal system, and was dealt with by trial-and-error and with input from the simple
cost-accounting system.

An initial attempt at modeling this problem resulted in a linear programming formulation
with 8000 decision variables. Preliminary testing of this juice logistics model indicated the
workability of the formulation. But management, lacking understanding of the model and
fearing major software management problems, did not fully support the use of the model.

In response to this, analysts dealt with the software maintenance difficulty by choosing
economical spreadsheet software (What’s Best!), which provided convenient interfaces for
the model, the analysts, and management. Unfortunately, the 8000 variables overwhelmed
this software package. Analysts revised the model by forming aggregate product groups
rather than dealing with individual products (e.g., all purple-juice products could be treated
as a single aggregate, from a materials standpoint). In this way, the model was streamlined
into one having only 324 decision variables. This aggregate view invoked suspicion of
yielding misleading and overly simplified inventory projections. Although such concern
is probably justified in production planning and disaggregation of end products, it turned
out that for purposes of materials planning, this is a perfectly acceptable simplification.

74 Operations Research

Once this very tractable model was put into regular use, it was realized that the model
not only offered a much better structured approach to planning and resulted in signifi-
cant cost improvements, but it also functioned effectively as a communication tool. Rather
than being treated as a piece of special offline data, the optimal solution produced by this
linear programming model became a central point of discussion in management meetings
and an essential operational tool for the planning committee. The complete acceptance of
the model as a legitimate component in decision-making placed Welch’s in a position to
make key decisions quickly. A profitable decision was made, for example, on whether to
purchase raw grapes on the open market (outside the cooperative) during lean crop years;
and the system permits rapid decisions on carrying over inventories of grape juice during
record-breaking production years (such as happened in 1991 through 1995), and success-
fully meeting demand after the harsh winter of 1996 by adjusting product recipes.

The analysts at Welch’s attribute the acceptance and successful use of the linear pro-
gramming model to their having reduced the original model to a size compatible with
spreadsheet optimization. This alleviated difficulties with software support. Furthermore,
the resulting smaller model was more understandable to people having various levels of
mathematical interest, ability, and appreciation. Thus, the simpler model proved to be the
most workable one in actual practice. Future plans call for development of a more com-
prehensive model, capable of incorporating changes in material characteristics over time.

2.12 Summary

Linear programming is a special type of mathematical programming, in which the objec-
tive function and the constraints can be expressed as linear functions of the decision vari-
ables. Once a problem is formulated as a linear program, it is possible to analyze the model
and investigate the nature of the solutions to the problem. Graphical solutions for small
problems can be illustrative of some of the characteristics of the solutions. In general, lin-
ear programming problems may have a unique optimal solution, multiple optimal solu-
tions, or no optimal feasible solution.

For linear programming problems of practical size, the most widely used technique for
obtaining solutions is the Simplex method. Applicable to essentially all linear program-
ming models, the Simplex method provides an efficient and effective means of either solv-
ing the problem, or discovering that there is no solution.

Every linear programming problem has a dual problem, which often provides a useful
alternative interpretation of the solution to the original problem. The theory of duality
also suggests ways in which analysts can determine how sensitive a solution is to minor
changes in problem parameters.

Relatively recent research has led to the development of new computational
approaches, known as barrier methods, or interior point methods. These techniques
can in some cases be used effectively to solve the isolated few problems that had never
been successfully dealt with using the Simplex method alone. But more importantly,

Linear Programming 75

these newer ideas have been integrated skillfully together with older Simplex algo-
rithms to produce new hybrid software that performs better than any one method used
independently.

Key Terms

adjacent extreme points
artificial variables

basic solution

basic variables

Big-M method

binding constraints
complementary slackness
constraints

crashing

degeneracy

degenerate solution
degrees of freedom
dual feasible

dual problem

dual Simplex

duality property
extreme point

feasible solution
feasible space
formulation

ellipsoid method
entering variable
graphical solution
infeasible solution
interior point methods
leaving variable

linear programming
marginal worth
multiple optimal solutions
non-basic variable
non-binding constraints
objective function
optimal feasible solution
optimal solution

pivot column

pivot element

76

Operations Research

pivot operations

pivot row
postoptimality analysis
primal problem
product form

range analysis
re-inversion

Revised Simplex method
right-hand-side ranging
scaling

shadow prices

Simplex method
Simplex tableau
sensitivity analysis
slack variable

solution

standard form

surplus variable

two phase method
unbounded solution
upper bound constraints

Exercises

21

2.2

An academic computing center receives a large number of jobs from students
and faculty to be executed on the computing facilities. Each student job requires
six units of space on disk, and three units of time on a printer. Each faculty job
requires eight units of space on disk, and two units of time on a printer. A mixture
of jobs is to be selected and run as a batch, and the total disk space and printer time
available for a batch are 48 units and 60 units, respectively. The computer center
is paid three times as much for running a student job as for running a faculty job.
Formulate a linear programming problem to determine the mixture of jobs to be
run as a batch that will maximize computer center income.

A tree farm cultivates Virginia pine trees for sale as Christmas trees. Pine trees,
being what they are, require extensive pruning during the growing season to
shape the trees appropriately for the Christmas tree market. For this purpose, the
farm manager can purchase pruning hooks for $16.60 each. He also has a ready
supply of spears (at $3 each) that can be bent into pruning hooks. This conversion
process requires one hour of labor, whereas final assembly of a purchased prun-
ing hook takes only 15 minutes of labor. Only 10 hours of labor are available to the
manager. With labor rates at $8.40 per hour, the farm manager intends to spend no
more than $280 on buying or making pruning hooks this year. In all, how many
pruning hooks can he acquire (from outright purchase and through conversion),
given these limitations? Formulate this as a linear programming problem.

Linear Programming

2.3 A plant has five machines, each of which can manufacture the same two models of

24

a certain product. The maximum number of hours available on the five machines
during the next production period are, respectively, 60, 85, 65, 90, and 70. The
demand for products created during this next production period is expected to be
850 units of model 1 and 960 units of model 2. The profits (in dollars per hour) and
production rates (per hour) are given in tabular form:

Profit Production Rate
Model Model
Machine 1 2 Machine 1 2
1 2 5 1 7 9
2 8 3 2 5 4
3 3 6 3 6 3
4 5 3 4 4 8
5 4 7 5 5 6

Let x; be the number of hours machine i is scheduled to manufacture model j,
fori=1,..,5andj=1, 2. Formulate a linear programming model to maximize
profits.

Metallic alloys A, B, and C are to be made to customer specifications from four dif-
ferent metals (W, X, Y, and Z) that are extracted from two different ores. The cost,
maximum available quantity, and constituent parts of these ores are:

; Percentage of Constituents
Maximum Tons

Ore Cost ($/ton) Available w X Y Z
I 150 2800 40 10 15 25
1I 95 3100 30 20 10 20

Customer specifications and selling price for the three alloys are:

Alloy Specifications Selling Price ($/ton)

A At least 30% of X 600
At least 50% of W
Atmost 10% of Y

B Between 30% and 40% of Z 500
At least 40% of X
At most 70% of W

C At least 40% of Y 450
At most 60% of W

Formulate a linear programming model that meets the specified constraints and
maximizes the profits from the sale of the alloys. (Hint: Let x;;, be the amount of the
i-th metal extracted from the j-th ore and used in the k-th alloy.)

77

78 Operations Research

2.5 Show graphically the feasible region corresponding to the following set of
constraints:

—2X1+X, >4
X1 +X, <8
—X1+X, L6
X1, X2 20
Give the coordinates of each of the extreme points of the feasible region.
2.6 What is the feasible region corresponding to the following set of constraints?
X1 +3x, <24
X, <6
X1 +2x%, <10

X1, X2 >0

Evaluate the objective function z = 2x; + 5x, at each of the extreme points of this
feasible region.

2.7 Solve the following linear programming problem graphically.
maximize Z=X1—X»
subject to X1 +Xp =1
3 X; < 9

2X1+X2 <4
Xlgf

2
X1,X220

Give the optimal value of z and the optimal solution (X;, X,).
2.8 Solve the following linear programming problem graphically:
maximize zZ= —2X1+X;
subiject to X;1—Xp, £5
x; <7
X, <6
X1 — X, 24

X1,X220

Outline the feasible region, and give the optimal values of z, x,, and x,.

Linear Programming 79

29 Examine the following formulation, and comment on the nature of its solution:

maximize Z = 3% —2X,
subject to x; <2
X, <3
3x;—2%X, 28
X1, X2 20

2.10 Examine the next formulation, and comment on the nature of its solution:

maximize 7 = 3X; +4xX,
subject to 6Xx; +8x%x, <10
X1 +X, 21
X1, X 20

2.11 Examine the following formulation, and comment on the nature of its solution:

maximize Z = 5x1 +4x,
subject to x; <10
X1 —2X, 23
X1, X, =20

2.12 Place the following linear programming model in standard form:

maximize 7z =16x; +2X, —3X3
subject to (1) x;—6x, >4
(2) 3x, + 7x3 £ -5
B) x1+x,+x3=10

(4) X1, X2, X320

80 Operations Research

2.13 Place the following linear programming model in standard form:
maximize Z =5X; + 6X, + 3X3
subject to (1) [x1 —x5/<10
(2) 101 + 7%, +4x5 <50
(3) 2x;-11x3 215
X1, X3 >0

X, unrestricted in sign

2.14 Give all of the basic solutions and basic feasible solutions of the problem in
Exercise 2.9.

2.15 Give the coordinates of all of the basic solutions and basic feasible solutions of the
problem in Exercise 2.10.

2.16 Use the Simplex algorithm to solve the linear programming formulation from
Exercise 2.1. What is the percentage utilization of the disk and printer resources
at optimality? Comment on how the university community is likely to react to the
optimal solution to this problem.

2.17 Solve the following problem using the Simplex method:

maximize Z =X+ 2X,
subject to M) x3+x,>6
2)x,<6
B)x; <8
X1, X2 20

2.18 Solve the following problem using the Simplex method:
maximize Z =4x;+ X,
subject to (1) 3x; +x,=3
(2) 4x;+3x, 26
B) x;+2x, <3

X1,X220

Linear Programming 81

2.19 Apply the Simplex algorithm to each of the following problems. Observe the
behavior of the Simplex method and indicate which problems display degeneracy,
multiple optima, infeasibility, or an unbounded solution.

a. maximize 3x1+X»
subject to 1) x;<8
(2) 2X1 _3X2 <5

(3) x1,x2, 20
b. maximize 3x1 +4x,
subject to (1) x1+x, =5

(2) 2X1+X2 <4

(3) X1, Xo >0

C. maximize X1+ 2X,
subject to (1) x1 +2x, <10

(2) X1, X2 >0

d. maximize 3x1 +9x,
subject to (1) x; +4x, <8
2)x1+2x,<4
B) x4, %, 20

2.20 Create a linear programming problem formulation that has unbounded solu-
tions but in which no evidence of unboundedness appears in the initial Simplex
tableau.

2.21 Perform as many Simplex iterations as possible on the example problem in Section
2.72. Observe that the algorithm terminates when there are no ratios 6; from which
to choose a variable to leave the basis.

82 Operations Research

2.22 Solve the following linear programming problem using the Two Phase Simplex

method.

maximize Z=4X;+X,

subject to 3x1+X%,=3
4x,+3%x, 26
X;+2X, <3
X1, X 20

2.23 Examine this linear programming formulation:

maximize X1 +2X,
subject to X1+ 2%, <10
X1, X2 >0

Comment on the nature of its solution(s). How does this change if the first con-
straint is removed from the problem?

2.24 Solve the following linear programming problem graphically.

maximize X1 —X»

subject to X1+X%, 21
3x, 29
2X1+Xy <4
x;<1.5

X1, X220

2.25 What determines the number of basic variables in a linear programming problem
solution?

2.26 What is the value of a non-basic variable in a feasible solution of a linear program-
ming problem?

2.27 In an optimal Simplex tableau, what is the economic interpretation of the objective
function row entry corresponding to the i-th slack variable?

2.28 In a Simplex tableau, what is the interpretation of the entries in the right-hand-side
column?

2.29 What is the consequence of a tie for the entering basic variable?
2.30 What if there is a tie for the leaving basic variable?

2.31 What if, in the objective function row of a final tableau, there is a zero in a column
corresponding to a non-basic variable?

Linear Programming

2.32

2.33

2.34

2.35

2.36

2.37

What happens in the Simplex algorithm if you choose, as the entering variable,
a variable with a negative objective row coefficient but not the most negative
coefficient?

Solve the following problem using the Simplex method:
maximize Z =X +9X, +X3
subject to X1+ 2Xy +3x3 <9

3X1 +2X2 +2X3 <15

X1, X2, X3 >0

Use the Two Phase Simplex method to solve the following problem:
minimize z = 16X; +2X, —3x3
subject to X, —6X, >4

3X2+7X3 <-5
X1+ X2+ X3 =10

X1, X2, X3, 20

A business executive has the option of investing money in two plans. Plan A guar-
antees that each dollar invested will earn 70 cents a year hence, and plan B guar-
antees that each dollar invested will earn $2 two years hence. Plan A allows yearly
investments, while in plan B, only investments for periods that are multiples of two
years are allowed. How should the executive invest $100,000 to maximize the earn-
ings at the end of three years? Formulate this problem as a linear programming
problem.

An investment portfolio management firm wishes to develop a mathematical
model to help decide how to invest $1 million for one year. Municipal bonds are to
be bought in combinations that balance risk and profit. Three types of bonds are
being considered:

* AAA rated bonds yielding 6% annually and which must be purchased in units
of $5000

e A rated bonds yielding 8% annually and which must be purchased in units of
$1000, and

¢] rated (junk) bonds yielding 10% annually and which must be purchased in
units of $10,000.

The Board of Directors has specified that no more than 25% of the portfolio should
be invested in (risky) junk bonds, and at least 40% should be invested in AAA rated
bonds. Bonds are to be purchased with the objective of maximizing earnings at the
end of the year. It may be assumed that the stated yield dividend is paid at the end
of the year, and that no other distributions are made during the year. Formulate
this problem as a linear programming problem.

A philanthropist wishes to develop a mathematical model to help him decide how

to donate his spare cash to several worthy causes. He has $10 million to distribute
among the recipients, and he would like to donate in units of thousands of dollars.

83

84 Operations Research

Three organizations would like to receive funds: Our Great State University,
the Friends of the Grand Opera, and the Save the Humuhumunukunukuapua‘a
Society. The philanthropist wants to give at most 50% of his cash to any one orga-
nization. The desirability of the philanthropist’s giving to any particular recipient
is to be measured in terms of the number of tax credits he will receive. The value of
giving to an educational institution is rated at 10 credits for every $1000 donation,
while the value of $1000 donation to the music lovers is rated at 8 credits, and each
$1000 donation to the wildlife conservation is rated at 6 credits. Write a linear pro-
gramming model to help this philanthropist maximize the number of tax credits
that can be achieved by contributing among these three groups.

2.38 Solve the following problem graphically:

maximize Z= —2X;+X,
subject to X;—Xy <5

x; <7

X, <6

X1 —Xp =>4

X1, X2 >0

2.39 Write the dual of the primal linear programming problem in Exercise 2.7.

2.40 Write the dual of the primal problem in Exercise 2.8. Solve the dual problem, and
identify the shadow prices.

241 Solve the dual problem corresponding to the primal problem in Exercise 2.12.
Determine whether optimal solutions exist. If so, describe the relation between the
primal shadow prices and dual variables at optimality.

2.42 Describe the nature of the solutions of the primal problem in Exercise 2.10 and its
dual problem.

243 Each of the following statements refers to the Simplex algorithm. Fill in the blanks

with an appropriate letter from the following choices:
1. If all slack and surplus variables are zero in an optimal solution, then _______
If a basic variable has the value zero in an optimal solution, then

2
3. If an artificial variable is non-zero in an optimal solution, then
4

If a non-basic variable has zero coefficient in the top row of an optimal tableau,
then

Completion alternatives:

There are multiple optimal solutions.

The current solution is degenerate.

All constraints are equalities at optimality.

The shadow prices are inverses of the dual variables.

No feasible solution exists.

mm I 0w

The solution is unbounded.

Linear Programming 85

2.44 The following statements are intended to describe the relationship between
primal and dual linear programming problems. For each statement, fill
in the blank to indicate the most appropriate choice from the alternatives shown
in the following list.

1. The optimal objective function value in the primal problem corresponds to

The shadow prices in the optimal primal tableau correspond to

Basic variables in the optimal primal tableau correspond to

The variables in the primal problem correspond to

ISEN S N

Shadow prices in the optimal dual tableau correspondto
Completion alternatives:

The primal non-basic variables

The dual non-basic variables

The primal constraints

Optimal basic variables in the dual problem

The optimal objective function value in the dual

The shadow prices in the dual

Basic variables in the optimal primal problem

T OmmY0w»

The constraints in the dual problem

2.45 Recall Example 2.8.3 and verify the range within which changes in objective func-
tion coefficient ¢, can vary without affecting the optimal solution.

2.46 What was the theoretical significance of the algorithm developed by Khachiyan for
solving linear programming problems?

247 What is the practical significance of the inferior point methods, as originated by
Karmarkar, for solving linear programming problems? How do these methods
compare in practice with the traditional Simplex-based methods?

References and Suggested Readings

Albers, D. ., and C. Reid. 1986. An interview with George B. Dantzig: The father of linear program-
ming. The College Mathematics Journal 17 (4): 293-314.

Arbel, A. 1993. Exploring Interior-Point Linear Programming Algorithms and Software. Cambridge, MA:
MIT Press.

Aronofsky, J. S., and A. C. Williams. 1962. The use of linear programming and mathematical models
in underground oil production. Management Science 8: 394—402.

Aspvall, B, and R. E. Stone. 1980. Khachiyan’s linear programming algorithm. Journal of Algorithms
1: 1-13.

Bartels, R. H. 1971. A stabilization of the simplex method. Numerische Mathematik 16: 414-434.

Benichou, M., J. M. Gauthier, G. Hentges, and G. Ribiere. 1977. The efficient solution of large-scale
linear programming problems—Some algorithms techniques and computational results.
Mathematical Programming 13: 280-322.

86 Operations Research

Bixby, R. E. 1994. Progress in linear programming. ORSA Journal of Computing 6 (1): 15-22.

Bland, R. G., D. Goldfarb, and M.]J. Todd. 1981. The ellipsoid method: A survey. Operations Research
26 (9): 1039-1091.

Borgwardt, K. H. 1980. The Simplex Method: A Probabilistic Analysis. New York: Springer-Verlag.

Calvert, J. E., and W. L. Voxman. 1989. Linear Programming. Orlando, FL: Harcourt Brace Jovanovich.

Charnes, A., and W. W. Cooper. 1961. Management Models and Industrial Applications of Linear
Programming, Vol. I and II. New York: John Wiley & Sons.

Charnes, A, W. W. Cooper, and A. Henderson. 1953. An Introduction to Linear Programming. New
York: John Wiley & Sons.

Cooper, L., and D. Steinberg. 1974. Methods and Applications of Linear Programming. Philadelphia, PA:
W.B. Saunders.

Dantzig, G. B. 1963. Linear Programming and Extensions. Princeton, NJ: Princeton University
Press.

Dantzig, G. B.,, and M. N. Thapa. 1996. Linear Programming. New York: Springer-Verlag.

Dantzig, G. B, and R. M. Van Slyke. 1967. Generalized upper bounding techniques for linear pro-
gramming. Journal of Computer and System Sciences 1 (3): 213-226.

Dantzig, G. B., and P. Wolfe. 1960. Decomposition principle for linear programs. Operations Research
8: 101-111.

Dantzig, G., A. Orden, and P. Wolfe. 1955. The generalized Simplex Method for minimizing a linear
form under linear inequality restraints. Pacific Journal of Mathematics 5 (2): 183-195.

Emmett, A. 1985. Karmarkar’s algorithm: A threat to simplex? IEEE Spectrum 22: 54-55.

Fieldhouse, M. 1986. Commercial Linear Programming Codes on Microcomputers. In]J. D. Coelho, and LV.
Tavares (Eds.), OR Models on Microcomputers. New York: North-Holland, Elsevier.

Fourer, R. 2015. Software survey: Linear programming. OR/MS Today 42 (3): 52-63.

Fourer, R. 2017. Software survey: Linear programming. OR/MS Today 44 (3): 48-59.

Gacs, P, and L. Lovasz. 1981. Khachiyan’s algorithm for linear programming. Mathematical
Programming Study 14: 61-68.

Gal, T. 1992. Putting the LP survey into perspective. OR/MS Today 19 (6): 93.

Gass, S., H. Greenberg, K. Hoffman, and R. W. Langley (Eds.). 1986. Impacts of Microcomputers on
Operations Research. New York: North-Holland.

Gass, S. I. 1985. Linear Programming, 5th ed. New York: McGraw-Hill.

Gill, P. E.,, and W. Murray. 1973. A numerically stable form of the simplex method. Linear Algebra and
its Applications 7: 99-138.

Gill, P. E,, W. Murray, M. A. Saunders, and M. H. Wright. 1981. A Numerical Investigation of Ellipsoid
Algorithms for Large-scale Linear Programming, in Large-Scale Linear Programming, Vol. 1.
Laxenburg, Austria: IIASA.

Gill, P. E., W. Murray, and M. H. Wright. 1981. Practical Optimization. New York: Academic Press.

Hadley, G. 1962. Linear Programming. Reading, MA: Addison-Wesley.

Harvey, C. M. 1979. Operations Research: An Introduction to Linear Optimization. New York:
North-Holland.

Higle, J. L., and S. W. Wallace. 2003. Sensitivity analysis and uncertainty in linear programming.
Interfaces 33 (4): 53-60.

Hillier, E. S, and G. J. Lieberman. 2010. Introduction to Operations Research, 9th ed. Boston, MA:
McGraw-Hill.

Hooker, J. N. 1986. Karmarkar’s linear programming algorithm. Interfaces 16 (4): 75-90.

IBM Mathematical Programming System Extended/370 (MPSX/370) Logic Manual #LY19-1024-0
and Primer #GH19-1091-1.

IBM Mathematical Programming System /360 Version 2. Linear and Separable Programming, User’s
Manual #H20-0476-2.

Karmarkar, N. 1984. A new polynomial-time algorithm for linear programming. Combinatorica 4 (4):
373-395.

Katta, G. M. 1976. Linear and Combinatorial Programming. New York: John Wiley & Sons.

Linear Programming 87

Khachiyan, L. G. 1979. A polynomial algorithm in linear programming. Soviet Mathematics Doklady
20 (1): 191-194.

Kolata, G. B. 1979. Mathematicians amazed by Russian’s discovery. Science 206: 545-546.

Loomba, N. P. 1976. Linear Programming: A Managerial Perspective. New York: Macmillan.

Luenberger, D., and Y. Ye. 2015. Linear and Nonlinear Programming, 4th ed. New York: Springer.

Lustig, L.], R. E. Marsten, and D. E. Shanno. 1994. Interior point methods for linear programming;:
Computational state of the art. ORSA Journal on Computing 6 (1): 1-14.

McCall, E. H. 1982. Performance results of the simplex algorithm for a set of real-world linear pro-
gramming models. Communications of the ACM 25 (3): 20-212.

Might, R. J. 1987. Decision support for aircraft munitions procurement. Interfaces 17 (5): 55-63.

Miller, C. E. 1963. The Simplex Method for Local Separable Programming, in Recent Advances in
Mathematical Programming. New York: McGraw-Hill.

Mitra, G., M. Tamiz, and J. Yadegar. 1988. Investigation of an interior search method within a sim-
plex framework. Communications of the ACM 31 (12): 1474-1482.

Miiller-Merbach, H. 1970. On Round-Off Errors in Linear Programming. New York: Springer-Verlag.

Murtagh, B. A. 1981. Advanced Linear Programming: Computation and Practice. New York: McGraw-Hill.

Murtagh, B. A., and M. A. Saunders. 1987. MINOS 5.1 User’s Guide: Technical Report SOL. In Systems
Optimization Laboratory. Stanford, CA: Stanford University.

Murty, K. G. 1989. Linear Complementarity, Linear and Nonlinear Programming. Berlin, Germany:
Heldermann Verlag.

Nash, S. G., and A. Sofer. 1996. Linear and Nonlinear Programming. New York: McGraw-Hill.

Nering, E., and A. Tucker. 1992. Linear Programming and Related Problems. Boston, MA: Academic
Press.

Orchard-Hays, W. 1968. Advanced Linear Programming Computing Techniques. New York: McGraw-Hill.

Ravindran, A., D. T. Phillips, and J. J. Solberg. 1987. Operations Research: Principles and Practice. New
York: John Wiley & Sons.

Rumpf, D. L., E. Melachrinoudis, and T. Rumpf. 1985. Improving efficiency in a forest pest control
spray program. Interfaces 15 (5): 1-11.

Saigal, R. 1995. Linear Programming: A Modern Integrated Analysis. Boston, MA: Kluwer Academic.

Saunders, M. A. 1976. A Fast, Stable Implementation of the Simplex Method using Bartels-Golub Updating,
in Sparse Matrix Computations. New York: Academic Press.

Schrage, L. 1991. LINDO: An Optimization Modeling System, 4th ed., Text and Software. Danvers, MA:
Boyd and Fraser.

Schrage, L. 1986. Integer and Quadratic Programming with LINDO. Palo Alto, CA: The Scientific Press.

Schrijver, A. 1986. Theory of Linear and Integer Programming. New York: John Wiley & Sons.

Schuster, E. W,, and S. J. Allen. 1998. Raw material management at Welch’s, Inc. Interfaces 28 (5):
13-24.

Shanno, D. F. 1985. Computing Karmarkar Projections Quickly. University of California, Davis
Graduate School of Administration.

Sharda, R. 1992. Linear programming software for personal computers: 1992 Survey. OR/MS Today
19 (3): 44-60.

Sharda, R. 1995. Linear programming solver software for personal computers: 1995 report. OR/MS
Today 22 (5): 49-57.

Simmons, D. M. 1972. Linear Programming for Operations Research. San Francisco, CA: Holden-Day.

Taha, H. A. 2011. Operations Research: An Introduction, 9th ed. Upper Saddle River, NJ: Pearson.

Vanderbei, R. J. 2013. Linear Programming: Foundations and Extensions, 4th ed. New York: Springer.

Wilson, D. G. 1992. A brief introduction to the IBM optimization subroutine library. IBM Systems
Journal 31 (1): 9-10.

Wolfe, P. 1980. A bibliography for the ellipsoid algorithm. Yorktown Heights, NY: IBM Research
Center.

XMP Software. 1991. User’s Manual for the OB1 Linear Programming System. Incline Village, N'V.

Ye, Y. 1997. Interior-Point Algorithms: Theory and Analysis. New York: John Wiley & Sons.

http://taylorandfrancis.com

3

Network Analysis

Network analysis provides a framework for the study of a special class of linear program-
ming problems that can be modeled as network programs. Because such a vast array of
problems can be viewed as networks, this is one of the most significant classes of applica-
tions in the field of Operations Research. Some of these problems correspond to a physi-
cal or geographical network of elements within a system, while others correspond more
abstractly to a graphical approach to planning or grouping or arranging the elements of a
system.

The diversity of problems that fall quite naturally into the network model is striking.
Networks can be used to represent systems of highways, railroads, shipping lanes, or avia-
tion patterns, where some supply of a commodity is transported or distributed to satisfy
a demand. Pipeline systems or utility grids can be viewed as fluid flow or power flow
networks, while computer communication networks represent the flow of information,
and an economic system may represent the flow of wealth. In some cases, the problem may
call for routing a vehicle or a commodity between certain specified points in the network;
other applications may require that some entity be circulated throughout the network.

By using the network model more abstractly, we can solve problems that require assign-
ing jobs to machines, or matching workers with jobs for maximum efficiency. Network
methods can also be applied to project planning and project management, where various
activities must be scheduled in order to minimize the duration of a project or to meet
specified completion dates, subject to the availability of resources.

All of these apparently different problems have underlying similarities: all consist of a
set of centers, junctions, or nodes that are interconnected (logically or physically) by links,
channels, or conveyances. Because of this, a study of general network models and tech-
niques will provide us with tools that can be applied to a variety of applications. As we
study these models, we will see that it is the mathematical structure or form of the problem
that is important and not necessarily the application. Furthermore, the successful use of
network models is largely dependent on a skillful analyst’s ability to perceive the structure
of a problem and to assess whether the network framework is an appropriate approach
to a solution. We will see examples in which there is more than one way to represent the
problem as a network model, and one formulation may be superior to others.

This chapter begins with some basic definitions and properties of graphs and networks.
Algorithms are then presented for finding the maximum flow in a network, optimally
transporting a commodity from supply points to demand points, matching or pairing
appropriate elements in a system, and efficiently designing a network such that every pair
of points has some connecting path. Methods are described for finding the shortest route
between points in a network, and then these methods are applied to multistage decision-
making processes and project-planning problems.

89

90 Operations Research

3.1 Graphs and Networks: Preliminary Definitions

A graph is a structure consisting of a set of nodes (vertices, points, or junctions) and a set
of connections called arcs (edges, links, or branches). Each connection is associated with a
pair of nodes and is usually drawn as a line joining two points. If there is an orientation or
direction on the arcs, then the graph is said to be directed, otherwise it is undirected. The
degree of a node is the number of arcs attached to it. An isolated node in a graph is one
that has no arc attaching it to any other node, and therefore such a node is of degree zero.

In a directed graph, if there is an arc from node A to node B, then node A is said to be a
predecessor of node B, and node B is a successor of node A. The arc is often designated by
the ordered pair (A, B).

For certain applications, it is useful to refer to a path from some given node to another.
Let x;, x,, ..., X, be a sequence of distinct nodes, such that nodes adjacent to each other in
the sequence are connected to each other by an arc in the graph. That is, if the sequence
contains x;, X;,;, then either the arc (x;, x,;) or the arc (x;,;, X;) exists in the graph. Then we
say there is a path from x,; to x,, that consists of the nodes and their connecting links.
In Figure 3.1, there is a path from node A to node G that can be described by A, (A, B), B,
(B,C), C, (E, C),E, (E, G), G. When the arc connecting nodes x; and x;,; in a path is (x;, X,1),
it is called a forward arg; if the connecting arc is (x,,, X;), it is a backward arc.

In the illustration, the path contains the three forward arcs (A, B), (B, C), and (E, G) and
one backward arc (E, C). If all the arcs in a path are forward arcs, then the path is called
a directed chain or simply a chain. If the graph is undirected, then the terms path and
chain are synonymous. If x; = x,, in the path, then the path is called a cycle or a cyclic path.
In the illustration, we see the cyclic path

B, (B,O),C, (EC),E EQG),G,(G,B),B

although this is not a cyclic chain because it includes the backward arc (E, C). A connected
graph is a graph that has at least one path connecting every pair of nodes.

A graph is a bipartite graph if the nodes can be partitioned into two subsets S and T,
such that each node is in exactly one of the subsets, and every arc in the graph connects a
node in set S with a node in set T. Such a graph is a complete bipartite graph if each node
in S is connected to every node in T. The graph in Figure 3.2 is a complete bipartite graph
in which nodes A and B are in one subset, and nodes C, D, and E are in the other.

e

®
O,

FIGURE 3.1
Paths in a graph.

Network Analysis 91

FIGURE 3.2
A complete bipartite graph.

A tree is a directed connected graph in which each node has at most one predecessor,
and one node (the root node) has no predecessor. In an undirected graph, we have a tree if
the graph is connected and contains no cycles. (If there are n nodes, there will be n — 1 arcs
in the tree.) Figure 3.3 contains illustrations.

A network is a directed connected graph that is used to represent or model a system or
a process. The arcs in a network are typically assigned weights that may represent a cost
or value or capacity corresponding to each link in the network.

A node in a network may be designated as a source (or origin), and some other node may
be designated as a sink (or destination). A network may have multiple sources and sinks.
A cut set (or simply a cut) is any set of arcs which, if removed from the network, would
disconnect the source(s) from the sink(s). Because networks are commonly used to repre-
sent the transmission of some entity from a source node to a sink node, we introduce the
concept of flow through a network. Flow can be thought of as the total amount of an entity
that originates at the source, makes its way along the various arcs and passes through
intermediate nodes, and finally arrives at (or is consumed by) the destination (sink) node.
The study of network flow is the subject of the next section.

(@) (b)

FIGURE 3.3
Trees (n = 11): (a) directed tree and (b) undirected tree.

92 Operations Research

3.2 Maximum Flow in Networks

Maximum flow problems arise in networks where there is a source and a sink connected by
a system of directional links, each having a given capacity. The problem is to determine the
greatest possible flow that can be routed through the various network links, from source
to sink, without violating the capacity constraints. The commodity flowing in the network
is generated only at the source and is consumed only at the sink. The source node has only
arcs directed out of it, and the sink node has only arcs directed into it. Intermediate nodes
neither contribute to nor diminish the flow passing through them.

As an example, consider a data communication network in which processing nodes are
connected by data links. In Figure 3.4, data being collected or generated at site A must
be transmitted through the network as quickly as possible to a destination processor at
site G where the data can be archived or processed. Each data link has a capacity (prob-
ably some function of baud rate and availability or band width) that effectively limits the
flow of data through that link. Alternatively, one can envision a power generation and
distribution system as a network flow model in which power is generated at the source
and conducted through transform stations to end users. Capacities are shown as labels
on the arcs.

The maximum flow problem can be stated precisely as a linear programming formula-
tion. Let n be the number of nodes, and let nodes 1 and n be designated as source and sink,
respectively. The decision variables x; denote the amount of flow along the arc from node
itonodej(i,j=1, ..., n). The capacity of the arc from node i to node j is the upper limit on
the flow through this arc, and is denoted u;;. If we let f denote the total flow through the
network, then to maximize the total flow, we would want to

FIGURE 3.4
Data communications network.

Network Analysis 93

maximize z=f

subject to lei =f M
i=2
n-1

Xin = f (2)

i=1
injzzxjk forj=2,3,...,n-1 (©)]
i=1 k=1
xj <uy foralli, j=1,...n 4)

Constraints (1) and (2) state that all the flow is generated at the source and consumed at the
sink. Constraint (1) ensures that a flow of f leaves the source, and because of conservation
of flow, that flow stops only at the sink. Constraints (3) are the flow conservation equations for
all the intermediate nodes; nothing is generated or consumed at these nodes. Constraints
(4) enforce arc capacity restrictions. All flow amounts x; must be non-negative. Actually,
constraint (2) is redundant.

As with all of the network models in this chapter, this problem could be solved using
the Simplex method. However, we can take advantage of the special network structure
to solve this problem much more efficiently. One of the most commonly used methods is
an iterative-improvement method known as the Ford-Fulkerson labeling algorithm. An
initial feasible flow can always be found by letting the flow through the network be zero
(all x; = 0). The algorithm then operates through a sequence of iterations, each iteration
consisting of two phases: (1) first we look for a way to increase the current flow, by finding
a path of arcs from source to sink whose current flow is less than capacity (this is called a
flow augmenting path); and then (2) we increase the current flow, as much as possible, along
that path. If in phase (1) it is not possible to find a flow augmenting path, then the current
flow is optimal. We will first outline the basic algorithm, and then fill in the details.

3.2.1 Maximum Flow Algorithm

Initialization: Establish an initial feasible flow.

Phase 1: Use a labeling procedure to look for a flow augmenting path. If none can be
found, stop; the current flow is optimal.

Phase 2: Increase the current flow as much as possible in the flow augmenting path
(until some arc reaches its capacity). Go to Phase 1.

The search for a flow augmenting path in Phase 1 is facilitated by a labeling procedure
that begins by labeling the source node. We will use a check mark (/) on our figures to
indicate that a node has been labeled. From any labeled node i, we must examine outgoing

94 Operations Research

arcs (i, j) and incoming arcs (j, i), for unlabeled nodes j. We label (v') node j if the current
flow in outgoing arc (i, j) is less than its capacity uy;, or if the current flow in incoming arc
(j, 1) is greater than zero. Labeling a node i means that we could increase the total flow in
the network from the source as far as node i. If the sink node eventually can be labeled,
then a flow augmenting path has been found. If more than one flow augmenting path
exists, choose any one arbitrarily.

In Phase 2, the arcs in the flow augmenting path are first identified. Then by examining
the differences in current flow and capacity flow on all forward arcs in the path, and the
current flow in all backward arcs, we determine the greatest feasible amount by which the
total flow through this path can be increased. Increase the flow in all forward arcs by this
amount, and decrease the flow in all backward arcs by this amount.

We will now illustrate the maximum flow algorithm by applying it to the network pictured
in Figure 34. Let us assume initially that the flow in all arcs is zero, x; = 0 and f = 0. In the
first iteration, we label nodes A, B, C, D, and G, and discover the flow augmenting path (A,
D) and (D, G), across which we can increase the flow by 4. So now, x,p =4, Xpg=4, and f = 4.

In the second iteration, we label nodes A, B, C, then nodes E, D, and F, and finally node G.
A flow augmenting path consists of links (A, B), (B, D), (D, E), and (E, G) and flow on this
path can be increased by 4. Now X,z =4, xgp=4, xpg =4, Xgc=4, and f = 8.

In the third iteration, we see that there remains some unused capacity on link (A, B), so
we can label nodes A, B, and E, but not G. It appears we cannot use the full capacity of link
(A, B). However, we can also label nodes C, D, F, and G, and augment the flow along the
links (A, D), (D, F), and (F, G) by 2, the amount of remaining capacity in (A, D). Now x,p= 6,
Xpr= 2, Xgg = 2, and f = 10.

In the fourth iteration, we can label nodes A, B, C, D, F, and G. Along the path from A,
C, D, E to G, we can add a flow of 4, the remaining capacity in (F, G). So x,c = 4, Xcp= 4,
Xpg =6, and f = 14.

In the fifth iteration, we can label all nodes except G. Therefore, there is no flow aug-
menting path, and the current flow of 14 is optimal.

Notice that in any network, there is always a bottleneck that in some sense impedes the
flow through the network. The total capacity of the bottleneck is an upper bound on the
total flow in the network. Cut sets are, by definition, essential in order for there to be a flow
from source to sink, since removal of the cut set links would render the sink unreachable
from the source. The capacities on the links in any cut set potentially limit the total flow.
One of the fundamental theorems of Ford and Fulkerson states that the minimum cut (i.e.,
the cut set with minimum total capacity) is in fact the bottleneck that precisely determines
the maximum possible flow in the network. This Max-Flow Min-Cut Theorem provides the
foundation for the maximum flow labeling algorithm presented earlier. During Phase 1
of the algorithm, if a flow augmenting path cannot be found, then we can be assured that
the capacity of some cut is being fully used by the current flow. This minimum cut is the
set of links that separate the nodes that are labeled (/') from those that are not labeled.
Observe that, by definition of the labeling algorithm, every forward arc in the cut set (from
a labeled to an unlabeled node) must be at capacity. Similarly, every reverse arc in the cut
set (from an unlabeled to a labeled node) must have zero flow. Therefore, the capacity of
the cut is precisely equal to the current flow and this flow is optimal. In other words, a
saturated cut defines the maximum flow.

In the final iteration of the example earlier, the cut set that separates the labeled nodes
from the unlabeled nodes is the set of links (E, G), (D, G), and (F, G). The capacity of this
cut set is 4 + 4 4+ 6 = 14, which is just exactly the value of the optimal flow through this
network.

Network Analysis 95

If all of the arcs in a network are forward arcs, it is easy to identify a flow augmenting
path. Each edge in the path is below capacity and we can increase the flow until some
edge reaches capacity. To appreciate the idea of reverse arc labeling, consider the situation
shown in Figure 3.5a. In the diagram, each arc from node i to node j is labeled with (x;, uy).

Suppose our initial path is from node 1 to 2 to 4 to 6, with a flow of 4. At this point, shown
in Figure 3.5b, there is no direct path from the source node 1 to the sink node 6 that allows
an increase in flow. However, the algorithm will find the path

04 04 @4 04 (04
1—»3— > le—2—»5—»6

Increase the flow on each forward arc by 4, and decrease the flow on the reverse arc. The
resulting flow is shown in Figure 3.5¢ with a total flow of 8. Notice that the net effect,

©,4)

Source

Source

FIGURE 3.5
Maximum flow example: (a) original network, (b) path augmenting, and (c) optimal maximum flow.

96 Operations Research

with respect to the reverse arc, is that we decided to take the flow out of node 2 and send
it somewhere else (namely to nodes 5 and 6). Similarly, we decided to use the new flow at
node 4, coming from node 3, instead of the flow from node 2. Therefore, if we can label
node 4, we can effectively divert the flow at node 2 to create additional flow through the
entire network.

3.2.2 Extensions to the Maximum Flow Problem

There are several interesting extensions to the maximum flow problem. The existence of
multiple sources and multiple sinks requires only a minor change in our original net-
work model. Suppose, for example, nodes 1A, 1B, and 1C are sources, and nodes nA, nB,
nC, and nD are sinks, as shown in Figure 3.6a. This network can be modified to include
a super-source node (which we will call 1S) and a super-sink node (nS). The super source is
connected to the multiple sources via links unrestricted in capacity, as in Figure 3.6b; and
likewise, the multiple sinks are connected to the super sink by uncapacitated links, as in
Figure 3.6c.

Because none of the new uncapacitated links could possibly contribute to any minimum
cut, the maximum flow from the super-source node 1S to the super-sink node nS will also
be the maximum flow in the multiple-source multiple-sink problem.

We can use this same construction to handle the situation in which some or all of the
sources have a limited capacity by simply placing a capacity on the arc from the super-source
to the capacitated source node. Capacities on the sinks can be handled in the same way:.

The basic maximum flow algorithm is normally used to solve a part of a more complex
problem. For example, in the next section, we will encounter almost the same problem,
but where there is a per-unit cost associated with each arc in the network, and we want to
minimize total cost. There are, however, some direct applications of the maximum flow
algorithm. One of these occurs in network capacity planning. For example, an electric
utility company may use network flow to determine the capacity of its present system. By
identifying the cut sets, it can easily determine where additional lines must be installed in
order to increase the capacity of the existing grid.

The complexity of maximum flow algorithms is dependent on the method used for
selecting the flow augmenting paths. Because network flow algorithms are used so often
in practical applications, efforts have been made to develop faster versions. A shortest path
augmentation method developed by (Edmonds and Karp 1972) is used in an algorithm
having complexity O(ne?), where n is the number of nodes and e is the number of edges.

V%

1C

—
o
=
—
o
~

FIGURE 3.6
Multiple sources and sinks: (a) original network, (b) super source, and (c) super sink.

Network Analysis 97

Dinic’s method (Dinic 1970) of using so-called blocking flows requires O(n%e) computation
time, while Karzanov’s method (Karzanov 1974) based on the idea of preflows is dependent
solely on the number of nodes, and requires O(n®) time.

Extensions to the maximal flow problem include multi-commodity problems, maximal
dynamic flow problems, and cost effective increases in network capacity. These topics are
discussed fully in the references by Battersby (1970), Hu (1970), and Price (1971).

3.3 Minimum Cost Network Flow Problems

When there are costs associated with shipping or transporting a flow through a network,
the goal might be to establish a minimum cost flow in the network, subject to capacity con-
straints on the links. The minimum cost flow problem is interesting not only because the
general model is so comprehensive in its applicability, but also because special cases of
the model can be interpreted and applied to quite a variety of resource distribution and
allocation problems.

3.3.1 Transportation Problem

One of the simplest minimum cost network flow problems is one in which every node is
either a source (supply) or a sink (demand). For example, we could imagine a distributor
with several warehouses and a group of customers. There is a cost associated with serving
each customer from any given warehouse.

In this model, we have m supply nodes, each with an available supply s;, and n demand
nodes, each with a demand of d;. And we assume that the total supply in the network is
equal to the total demand:

isi =Zn:dj

i=1 j=1

The objective is to satisfy all the demands, using the available supply, and to accomplish
this distribution using minimum cost routes. The formulation of the problem is as follows:

minimize 7= Z Zci]—xij
subject to in]- =s; fori=1,...,m (@)

in]:dj forj=1,...,n (2)

Xij = 0 foralliand j (©)]

98 Operations Research

0,00, Cyy
1 c 1
7% G 0, %
[%
M
Ry
o % ',
%’\r
> 2 % 2 @
Q < N
o N o
"G
0,530 ” dg, 00, 0
S ’ 3 3 3 D
2 .
S N
%, S N
v P N
S o ¢
" Eal
0, o, Cmn
m n
Supply Demand
nodes nodes

FIGURE 3.7
Transportation problem as minimum cost network flow problem.

Because the set of supply nodes is distinct from the set of demand nodes, and all nodes
in the network belong to one of these sets, this transportation model can be pictured as
a bipartite graph, with the addition of a super-source node S and a super-sink node D. In
Figure 3.7, arcs connecting supply nodes to demand nodes represent the actual distribu-
tion routes. Each arc in the drawing is labeled with a triple, indicating a lower bound on
the flow, an upper bound on the flow, and a per unit cost for the flow along the arc. Arcs
from the super source S impose the (upper bound) supply limits, and, of course, carry no
cost. Similarly, arcs to the super sink D enforce the (lower bound) demand requirements.
It should be clear that finding a minimum cost flow from node S to node D in this network
precisely solves the transportation problem that we have formulated, and the resulting
minimum cost is the cost of the optimal distribution of the commodity through the trans-
portation network.

To illustrate the solution approach, we will use a simple example of a distributor with
three warehouses and five customers. Because of the simple structure of the transportation
problem, it is probably easier to visualize the problem in matrix form, as shown in Table 3.1.

In the table, ¢; in row i and column j of the matrix represents the cost of sending one unit
of product from source i to sink j. Similarly, x;; represents the number of units sent from
source i to sink j, the current flow solution.

Consider the example problem in Table 3.2. Observe that the total demand of 65 units is
equal to the total supply. Because most of the x; values will be zero, we will write them in
only when they are positive.

We will describe how to solve this problem using the Simplex method. After all, this
is a linear programming problem. However, the special structure of the transporta-
tion problem will allow us to take a number of shortcuts. The Simplex method says
that we should first find any basic feasible solution, and then look for a simple pivot to
improve the solution. If no such improvement can be found, the current solution must
be optimal.

Network Analysis 99

TABLE 3.1
Transportation Problem
Sources Sinks (Customers)
(Warehouses) 1 2 3 4 5 Supply
| Cy | Cip | Ci3 | Cig Ci5
1 ST Xy2 X3 X4 X35 S
| S | Cxn | Cx3 | Co Cos
2 X1 X22 X3 X4 Xo5 Sy
| C31 | Cs | C33 | C3q C3s5
3 X31 X32 X33 X34 X35 S3
Demand d, d, d, d, ds
TABLE 3.2
Transportation Problem Example
Sources Sinks (Customers)
(Warehouses) 1 2 3 4 5 Supply
| 28 | 7 | 16 | 2 | 30
1 20
| 18 [8 | 14 [4 [20
2 20
[10 [12 [13 [5 [28
3 25
Demand 12 14 12 18 9 65

The first simplification to the basic Simplex method is that we do not need a complex
two phase method to find a basic feasible solution. Instead, we present three fast and com-
monly used techniques for obtaining an initial solution.

3.3.1.1 Northwest Corner Rule

If we ignore the total cost, it is trivial to find an initial feasible solution. We simply assign
the first group of customers to the first warehouse until the capacity is exhausted, and then
start assigning customers to the second warehouse until it too is at its capacity, and so on.

We begin at the upper left corner of the tableau, the northwest corner. Increase the flow in
this cell as much as possible until the flow is equal to the supply in this row or the demand
in this column. Reduce the demand and the supply in this row and column by the amount
of the flow, since the requirement has now been satisfied. Draw a line through the row or
column that has zero remaining required. (If both are zero, select either one arbitrarily.)
Repeat the northwest corner rule on the reduced matrix.

Consider the example in Table 3.2. Begin with row 1 and column 1. Since the demand is
12 and the supply is 20, the flow can be at most 12. Reduce the limit on row 1 and column
1 by 12, and draw a line through column 1. The reduced problem is shown in Table 3.3.
The reduced problem (without column 1) has x;, (row 1, column 2) in the northwest corner.
We let x;, = 8 because the remaining supply in row 1 is 8. This time, we delete row 1, and
subtract 8 from supply s, and demand d,.

100

TABLE 3.3

Northwest Corner Rule

Operations Research

Sources Sinks (Customers)
(Warehouses) 1 2 3 4 5 Supply
| 28 | 7 | 16 | 2 30
1 12 208
| 18 [8 | 14 | 4 20
2 20
[10 [12 [13 [5 28
3 25
Demand 20 14 12 18 9
TABLE 3.4
Initial Northwest Corner Solution
Sources Sinks (Customers)
(Warehouses) 1 2 3 4 5 Supply
| 25 | 7 | 16 |2 30
1 12 8 20
| 18 [8 | 14 [4 20
2 6 12 2 20
[10 [12 [13 [5 28
3 16 9 25
Demand 12 14 12 18 9 65

The final solution is presented in Table 3.4. The reader should verify this result. The
total cost of this solution is given by (12-28)+ (8-7)+ (6-8) + (12-14) + 2-4) + (16 - 5) +
(9 - 28) =948.

There are several features of this solution that we should notice. First, it should be clear
that the procedure always produces a feasible solution. For a solution to be feasible, every
customer must be receiving all of the necessary demand from some warehouses, and no
warehouse may exceed its supply. In fact, all of the rows and columns will be satisfied
at equality. Because this method never transports more than the remaining supply or
demand, we have only to verify that no customer gets less than what it asked for.

Suppose the last customer did not get all its required demand; then that row will not
be deleted. Moreover, there must be some excess supply at one of the warehouses, so
that column has not been deleted. Therefore, there is still one cell left for the northwest
corner rule to work in. (The technique stops only when every cell in the matrix has been
deleted.)

The second thing to notice is that we must always start at x;; and we must finish at x,,,
(for m warehouses and n customers). Moreover, at each step, the algorithm will delete one
row or one column. In the last cell, the remaining demand in column n and the supply in
row m must be identical. Because there are m rows and n columns, the solution will use
exactly (m 4+ n — 1) cells and therefore (m + n — 1) of the x;; will have a positive value. In our
example, we have 3 + 5 — 1 =7 cells that are selected for a positive flow.

Network Analysis 101

In the Chapter 2 presentation of the Simplex method, it was stated that the number of
basic variables is precisely equal to the number of constraints. In the linear programming
formulation of the transportation problem, there are m equality constraints for the supply
at the m warehouses, and n constraints for the demands of the n customers. Therefore, one
would expect (m + n) non-zero (basic) variables. All other (non-basic) variables are zero.
The apparent discrepancy can be explained by observing that the linear programming
constraints are not independent. If the last constraint were deleted, and we solved that
problem, we would find that the solution will have all warehouse supply satisfied at equal-
ity, and the first (n — 1) customers will have their demand satisfied at equality. All remain-
ing demand must be assigned to customer n. Because total supply equals total demand,
the demand for customer n will automatically be satisfied exactly. In other words, when
the corresponding linear programming problem is solved with (m + n — 1) constraints,
there will be exactly (m + n — 1) basic variables, and introducing the additional constraint
will not change this.

3.3.1.2 Minimum Cost Method

The northwest corner rule is a quick way to find a feasible solution. However, the method
ignores any cost information; hence, it is unlikely that the initial solution will be a very
good one.

The same approach can be extended in an obvious way to search for a basic feasible solu-
tion while attempting to minimize the total cost.

Step 1: Select the cell in the matrix that has the smallest cost, breaking ties arbitrarily.

Step 2: Increase the flow in this cell as much as possible until the flow is equal to the
supply in the row or the demand in the column.

Step 3: Reduce the supply and the demand in this row and column because the
requirement has now been satisfied.

Step 4: Draw a line through the row or column that has zero remaining supply or
demand. If both are zero, select either one arbitrarily. Repeat the procedure from
Step 1 on the reduced matrix.

This method is very similar to the northwest corner rule in that it selects one cell, saturates
it, and deletes a row or column. It is also guaranteed to find a basic feasible solution with
precisely (m + n — 1) selected flow cells. However, unlike the northwest corner rule, this
method tries to match customers and warehouses, with some consideration of costs.

The method is illustrated in Table 3.5, where we first find the minimum cost cell to be
¢, = 2. Therefore, we satisfy as much of the customer 4 demand as possible from ware-
house 1. In this case, all 18 units can be supplied. We reduce the remaining supply at ware-
house 1 to 2 units, and delete customer 4.

In the next iteration, the minimum (undeleted) entry is ¢, = 7, and we will satisfy as
much of the demand of customer 2 as possible from warehouse 1. In this case, warehouse 1
has only 2 units left, so the flow x, is set at 2, row 1 is deleted, and the demand of customer
2 is reduced to 12.

The final solution is presented in Table 3.6. The total cost of this solution is given by

(2-7)+(18-2)+(12-8)+(8-20)+(12-10)+(12-13) +(1-28) = 610

102 Operations Research

TABLE 3.5

Iteration 1: Minimum Cost

Sources Sinks (Customers)
(Warehouses) 1 2 3 4 5 Supply
| 28 | 7 | 16 | 2 | 30
1 18 262
| 18 [8 | 14 [4 [20
2 20
[10 [12 [13 [5 [28
3 25
Demand 12 14 12 0 9 65
TABLE 3.6

Minimum Cost Final Solution

Sources Sinks (Customers)
(Warehouses) 1 2 3 4 5 Supply
| 28 | 7 16 | 2 30
1 2 18 20
| 18 [8 14 | 4 20
2 12 8 20
[10 [12 13 [5 28
3 12 12 1 25
Demand 12 14 12 18 9 65

As before, this solution is a basic feasible solution with precisely seven basic variables.
However, the total cost is considerably lower than the cost of the solution obtained with
the northwest corner rule. It is important to realize that obtaining the improved initial fea-
sible solution did require more computation time. At the first step of the northwest corner
rule, the single cell in the top left corner is selected. In the corresponding first step of the
minimum cost algorithm, it is necessary to search all of the m - n cells in the matrix to find
the one having the least cost. (When m is 100 and n is 10,000, this additional work takes a
considerable amount of time.)

There are a wide variety of other algorithms available for finding an initial feasible solu-
tion. Typically, they all exhibit the property that better initial solutions require more com-
putation time. The value of spending a lot of effort searching for better initial solutions
is somewhat questionable; the Simplex method will enable us to derive the optimal solu-
tion from any initial solution. The only advantage of using good initial solutions is that it
should reduce the number of pivot operations required later.

3.3.1.3 Minimum “Row” Cost Method

The computational requirements of the minimum cost method can be reduced signifi-
cantly without completely sacrificing the spirit. In Step 1, instead of looking for the mini-
mum cost element in the whole matrix, we simply look for the minimum cost element in

Network Analysis 103

TABLE 3.7

Minimum Row Cost Final Solution

Sources Sinks (Customers)
(Warehouses) 2 3 4 5 Supply
| 28 | 7 | 16 | 2 | 30
1 2 18 20
| 18 [8 | 14 [4 [20
2 8 12 20
[10 [12 [13 [5 [28
3 4 12 25
Demand 12 14 12 18 65

the first row. We continue to do this until warehouse 1 is saturated. Step 1 will now require
scanning n elements instead of m - n elements. However, by assigning the best possible
customer to warehouse 1, the method still tends to find low cost solutions.

Table 3.7 illustrates the final solution using the minimum row cost method. It has a total
cost of

(2-7)+(18-2)+(8-18)+(12-8)+(4-10)+(12-13)+(9-28) = 638

This solution has only a slightly higher cost than the cost of 610 that was obtained with
the minimum cost method, and it required less work. In general, this is representative of
the performance one would expect of the two methods, although, of course, it would be
possible to construct simple examples in which the minimum row cost method produced
better solutions.

3.3.1.4 Transportation Simplex Method

Before we explain the procedure for finding the optimal solution, it will be useful to
describe a simple modification that transforms the original problem into an equivalent
new problem. Consider our example from Table 3.7, which shows the initial basic feasible
solution obtained using the minimum row cost method. Observe what happens if we sub-
tract $1 from every cost element in the first row. Because warehouse 1 has a supply of
20 units, every feasible solution will have a total of 20 units in row 1. Reducing the cost of
each element by $1 will reduce the cost of every feasible solution by exactly $20. In particu-
lar, the cost of the optimal solution will decrease by $20.

The optimal solution to the new reduced problem (in terms of the flow variables x;) is
exactly the same as the optimal solution of the original problem. We simply solve the new
problem and then add $20 to the optimal objective function value. Furthermore, if we
reduce all of the costs in the first row by 2 or 3 or 4, we will not change the problem; we will
simply reduce the total cost of every solution by $40 or $60 or $80, respectively.

Similarly, consider the first column of the matrix corresponding to customer 1. Clearly,
every feasible solution will have a total of 12 units distributed somewhere in column 1. If
every cost element in column 1 were reduced by 1 or 2 or 3, then the total cost of every fea-
sible solution would decrease by $12 or $24 or $36, respectively. The new reduced problem
is identical to the original one with respect to the optimal flow values x;;

104 Operations Research

TABLE 3.8
Reduced Cost Solution
Sources Sinks (Customers)
(Warehouses) 1 2 3 4 5 Supply u;
|1 | 0 | 4 | 0 | 5 0
1 2 18 20
[0 [0 [7 [1 [16 1
2 8 12 20
[o [12 [0 [0 [0 7
3 4 12 9 25
Demand 12 14 12 18 9 65
\ 17 7 20 2 35

Now consider our example problem. We will construct an equivalent problem by sub-
tracting constants from the costs in the rows and columns. The reduced problem will have
the property that the reduced cost corresponding to every basic variable cell will be pre-
cisely zero. This is illustrated, for our example, in Table 3.8. We let u; denote the amount
subtracted from every cost element in row i and v; represent the amount subtracted from
every element in column j.

The reader should verify that all the reduced costs cj in this table obey the relationship:

’
Ci]' :Ci]’ - u;— V]‘

where c;; is the original cost. As discussed earlier, finding the optimal solution to this prob-
lem is exactly the same as solving the original problem. Note that u; = —7. This indicates
that we added 7 to row 3 instead of subtracting 7. Clearly, we can add a constant to a row or
column as well as subtract a constant without changing the problem.

The reduced problem has several interesting features. In particular, the total cost of the
current solution, in terms of cj, is precisely zero. The reader should verify that we have
reduced the total cost of the solution by 638. In addition, some of the reduced costs cor-
responding to the non-basic cells are negative. Consider the cell x,;, with c5; = 7. If we
could increase the number of units of flow, from warehouse 2 to customer 3, by one unit,
we could reduce the total cost by 7. That is, the total cost now is zero, and it would become
—7. If we increase the flow of units from warehouse 2 to customer 3, it will also be neces-
sary to decrease the flow to some other customer from warehouse 2, and from some other
warehouse to customer 3. At all times, the total supply and demand constraints must be
maintained. In the example, if we increase x,; by 1, decrease x,, by 1, increase X3, by 1, and
decrease x;; by 1, we will maintain all supply and demand equalities, and the total cost
will be reduced by 7. Moreover, if we restrict ourselves to using only basic variable cells,
this solution is unique.

If we continue to increase the flow on x,,;, we will further decrease the cost of the solution
by 7 per unit. However, we cannot continue to do this indefinitely. Specifically, for every
unit that we increase X, it is necessary to decrease x,; and x3; by 1. Because x; must be
non-negative, we can decrease x,, by 8 and x3; by 12. Therefore, the maximum increase for
X318 8, giving a decrease of $56 in the cost. When x,; = 8, x,; becomes zero and we remove
Xy from the basis to let x,; enter. The new solution is illustrated in Table 3.9.

Network Analysis 105

TABLE 3.9

Transportation Simplex

Sources Sinks (Customers)
(Warehouses) 1 2 3 4 5 Supply u;
| 1 | 0 | 4 | 0 | 5 0
1 2 18 20
[o [o [7 [1 | -16 1
2 0 12 8 20
[0 [12 [0 [0 [0 -7
3 12 4 9 25
Demand 12 14 12 18 9 65
v; 17 7 20 2 35

The cost of this solution is —56. If we put these same flows in the original table, we
would discover that the total cost is $582, precisely 56 less than the cost of our initial
solution.

In Table 3.9, the reduced cost is no longer zero for all basic variable cells. The new cell
Xy3 has ¢j; = —7. In order to make this zero again, we can either add 7 to row 2 or add 7 to
column 3. (It does not matter which we select.) Suppose we add 7 to column 3 (decrease
v; by 7). Then, we will also be forced to subtract 7 from row 3 (in order to keep cj; at zero)
and then add 7 to columns 1 and 5 (in order to keep cj3, and c}s at zero). The new reduced
cost solution is shown in Table 3.10.

Once again, this new problem is identical to the original. The current basic feasible solu-
tion has a value of zero, and there is an opportunity to further reduce the cost if we can
increase the flow from warehouse 2 to customer 5.

Before doing this, let’s make one observation: it will be useful for us to depict the prob-
lem in a slightly different way. In Figure 3.8, the problem has been drawn as a network
with only the basic flow edges shown. Observe that the basic edges form a tree. In other
words, if we ignore the directions of the edges, there are no circuits.

The network also has the property that there are exactly (m + n — 1) edges. If we had a
basic solution that had less than this number of edges, then we would arbitrarily add extra
basic cells with a zero flow to keep the total at (m + n — 1). Because the additional flow is
zero, the extra basic variables do not affect the total cost.

TABLE 3.10

New Reduction Cost Solution

Sources Sinks (Customers)
(Warehouses) 1 2 3 4 5 Supply u;
| 18 | 0 | 3 | 0 | 2 0
1 2 18 20
[7 [0 [0 [1 [-9 1
2 12 8 20
[0 [5 [0 [3 [0 0
3 12 4 9 25
Demand 12 14 12 18 9 65
\ 10 7 13 2 28

106 Operations Research

Warehouse Customer
Supply Demand
.1 12
1 2
20 9
14
29 .
2 12 3
20 3 > . 12
% 4
N
s o 18
25 4
9 5
‘ 9

FIGURE 3.8
Basic flow tree.

However, because of these properties, introducing a new edge into the basis will always
create a single circuit. For example, when we try to introduce the variable x,;into the basis,
we get the network shown in Figure 3.9. This produces a unique circuit on the variables
Xps, X35, Xa3, and Xys.

If we want to increase the flow on x,;by an amount A, and still maintain equality at the
supply and demand nodes, we must decrease xz;, increase X;;, and decrease x,, all by
the amount A. In order to maintain feasibility, x5 and x,; must remain non-negative, and
hence the maximum value of A is 8. We set x,5=8, x35=1, x33= 12, and x,; = 0, thus adding
X,5 to the basis and removing X,;. (If two variables become zero simultaneously, we can

Warehouse Customer
Supply . Demand
12
1
20 2 2
14

20

12

18
25

FIGURE 3.9
Transportation network with circuit.

Network Analysis 107
TABLE 3.11
Transportation Simplex Continued
Sources Sinks (Customers)
(Warehouses) 1 2 3 4 5 Supply u;
| 27 | 0 | 12 | 0 | 11 -9
1 2 18 20
[16 [0 [9 [1 [0 -8
2 0 12 0 20
Lo | 4 Lo | -6 Lo 0
3 12 12 25
Demand 12 14 12 18 65
V; 10 16 13 11 28

arbitrarily select one to leave the basis.) The new solution, with the new reduced costs
computed, is shown in Table 3.11. In order to remove ¢ = —9, we increased row 2 by 9.
The resulting cost should have decreased by 8 (the new flow in x,;) times —9 (the reduced
cost) = —$72. When we substitute the new flow into the original problem, we discover that
the new total cost is $510, a reduction of $72 from the previous basic feasible solution cost
of $582. The following steps summarize the Transportation Simplex method.

3.3.1.5 Transportation Simplex

L. Compute the reduced costs cj; such that every basic cell has a zero reduced cost.

(Initially, assume cj; = ¢;;, and the u; and v; are all zero.)

a. Construct the basic variable network (tree) as in Figure 3.9. Select any u; and

assign to it any arbitrary fix

ed value.

b. For each unfixed v; that is adjacent to a fixed u;, adjust v; such that c; is zero,

and then call v; fixeld.

c. For each unfixed u, that is adjacent to a fixed v;, adjust u; such that cj is zero,

and call u; fixed.

d. Repeat steps 2 and 3 until all u; and v; are fixed.

e. Compute all non-basic costs as ¢j; = ¢;—u; - v

j*

IL. If any non-basic cj is negative, let x;; enter the basis. (As in the ordinary Simplex
method, we can choose any negative cj.)

a. Identify the unique even cycle defined by the edge x; and other basic variable

b.

edges.

Alternately increase and decrease the flow in the edges in this circuit until at
least one basic variable has a zero flow. Remove that variable from the basis.

Repeat the algorithm completely from the beginning (Part I) by recomputing
the reduced costs.

Continuing with our example, in Table 3.11, for Part II of the algorithm, we find ¢}, = —6.
Therefore, x5, can enter the basis. The unique basic cycle is (X34, X35, Xo5 X0, X12, Xp4)- The
increase of the flow in this alternating circuit is limited by a decrease of 1 in the flow on x;s.

108

FIGURE 3.10

Basic network tree.

Warehouse

Customer

13

11

16

28

Operations Research

Therefore, X34, X,5, and X, increase by 1, and X35, X,,, and X,, decrease by 1. The variable x,
enters the basis and x;; leaves the basis.

When we now return to Part I of the algorithm, we can select any basic cell. There are
some small computational savings to be obtained if we choose the basic variable that just
entered. Consider the new basic network tree in Figure 3.10. (In the figure, we have reor-
dered the warehouse and customer numbers to eliminate crossing lines.)

Notice the edge corresponding to c3,= —6. In order to get c3, = 0, we must decrease either
u, or v,. Suppose we decrease v, by 6. Then, in order to keep all other c;= 0 for basic edges,
we must increase u; and u, by 6, and decrease v, and v; by 6. The new reduced cost matrix
is shown in Table 3.12.

The total cost is $6 lower for a total of $604 in the original problem. Moreover, all of the
reduced costs are now non-negative. Just as in the Simplex method, when the reduced

costs are all non-negative, the current solution must be optimal.

TABLE 3.12
Optimal Solution
Sources Sinks (Customers)
(Warehouses) 1 2 3 4 5 Supply w;
| 21 | 0 | 6 | 0 | 11 -3
1 3 17 20
[10 [0 [3 [1 [0 -2
2 11 9 20
[0 [2 [0 [0 [6 0
3 12 12 1 0 25
Demand 12 14 12 18 9 65
v, 10 10 13 5 2

Network Analysis 109

3.3.2 Assignment Problem and Stable Matching

Our discussion of transportation models has dealt with the flow of some entity or material
between nodes of a network. By imposing a few simple assumptions on the transportation
model, we find that we have an apparently new kind of optimization problem.

Suppose, for example, that we wish to assign n people to n jobs; that is, we wish to associ-
ate each person with exactly one job, and vice versa. Cost parameters c; denote the cost of
assigning person i to job j. Decision variables now have a completely new meaning, repre-
senting an association or bond between two entities rather than the flow of a commodity
between two nodes. Specifically, each variable x; is to have a value of either zero or one:

1, if personiis assigned to job j
Xij =
0, otherwise
If in the transportation model we require m = n, and assign all the supply and demand

parameters a value of 1, then we have the following formulation for the assignment
problem.

n n
minimize zZ= E E CijXj

i=1 =1

n

subject to inj =1 fori=1, ...,n (1)
=1
inj=1 forj=1,...,n 2)
i=1
and x;; =0or1 for alliand j

Re-examining Figure 3.7 under the current assumptions, we see that we are establishing a
flow of 1 unit out of each person node and a flow of 1 unit into each job node. The constraints
corresponding to supply and demand constraints in the transportation model enforce the
one to one association between persons and jobs. The aforementioned constraints (1) spec-
ify that each person be assigned to exactly one job, while constraints (2) specify that each
job have exactly one person assigned to it.

Because network problems with integer parameters can be solved using the Simplex
method to obtain integer solutions, we might simply replace the 0-1 constraint by the
constraints x; > 0 and x; < 1, and treat this problem as an ordinary linear program-
ming problem. The difficulty here lies in the inefficiency that may result from problem
degeneracy. (Notice that we have 2n constraints, and only n of the decision variables are
allowed to have a value greater than zero. Therefore, in any feasible solution, n — 1 basic
variables are zero; that is, any feasible solution to the assignment problem is degenerate.)
Fortunately, the highly specialized structure of the assignment model can be exploited
in an efficient algorithm designed specifically for this problem. The algorithm is known
as the Hungarian Method, named in honor of the Hungarian mathematicians Kénig and
Egervary who established the fundamentals upon which the algorithm is based.

110 Operations Research

The simple structure of the assignment model leads to a solution that is intuitively easy
to follow. The key to this method lies in the fact that a constant may be added to or sub-
tracted from any row or column in the cost matrix without affecting the optimal solution.
Suppose we add a constant k to row p of the cost matrix. Then the new objective function

Z cp]+k Xpj + Z E GiiXi

i=1 j=1
1¢p

E E cux1]+k2 Xpj
i=1 j=1

= original objective function plus a constant

Similarly, if we add a constant k to column g, then

E c1q+k Xiq + E E X

i=1 j=1
#q

Z Z X + kz Xiq

i=1 j=1

= original objective function plus a constant

We will use this property of the assignment model to modify (repeatedly, if necessary) the
cost matrix, and thereby create a new matrix in which the location of zero elements indi-
cates an optimal feasible solution.

In order to do this, we wish to create a cost matrix with a zero in every row and every
column. If we can do this, then our modified objective function value is zero; and since the
cost cannot be negative, we know a zero value is optimal.

As an example, consider the cost matrix

4 9 8
6 7 5
4 6 9

To obtain zero elements, we subtract the smallest element from each row. Subtracting 4, 5,
and 4 from rows 1, 2, and 3, respectively, we obtain the modified cost matrix

Network Analysis 111

This does not yet identify for us a feasible solution, but if we subtract 2 (the smallest
element) from the second column, we obtain

0 3 4
0 O
0 0 5

From this we can make an optimal feasible assignment using the zero elements marked
with squares.

0] 3 4
1 0 [0
0 [o] 5

Assignment variables X;; = X,; = X3 = 1, and all the others are zero. The actual objective
function cost, based on the original cost matrix, is 4 + 6 + 5 =15.

Now look at a problem in which the solution is not revealed quite so readily. The cost
matrix

2 11 2 6
3 10 9 4
8 6 6 6
10 13 15 13

can be immediately reduced to the matrix

o N O O
W O N o
g O o O
W O =

Now, every row and column contains a zero element, so we cannot subtract any more con-
stants in the obvious way. However, we can make only three feasible assignments. At this
point, the Hungarian method prescribes that we draw the minimum possible number of
horizontal and vertical lines so that all zero elements are covered by a line. (The number of
such lines that will be necessary is just exactly the number of feasible job assignments that
can be made using the current cost matrix.)

A simple procedure for obtaining the minimum number of lines can be summarized as
follows. Suppose you have made as many assignments as possible (to zero entries in the
matrix), but there are less than n assignments:

1. Mark every row that has no assignment.
2. Mark every column that has a zero in a marked row.

112 Operations Research

3. Mark every row that has an assigned zero in a marked column.

4. Repeat from Step (2) until no new columns can be marked.

In Step (2), if we ever mark a column that has not been assigned yet, we can construct a new
solution with one additional assignment. Column j was marked because row i was marked.
Shift the assignment in row i to column j. This frees up another marked column. Assign
this new marked column in a similar way until, eventually, we can assign a marked row
that previously had no assignment.

Otherwise, draw a line through every unmarked row and every marked column. It is easy
to verify that these lines cover every zero and that the number of lines equals the number
of current assignments. For example, in the modified cost matrix

0 9 [o]
[0]
2
0

g o O
W O =

w[3] 9N o

mark row 4, mark column 1, and mark row 2. After drawing the three lines, select the min-
imum uncovered element, subtract this value from all the uncovered elements, and add it
to all elements at the intersection of two lines. In this case, we select the value 1, subtract
it from uncovered elements on rows 2 and 4, and add it to the intersection elements in the
first column. (Although the Hungarian method is popularly described in terms of drawing
lines and manipulating covered and uncovered elements, observe that these operations
are just equivalent to subtracting and adding a constant to entire rows and columns. In
our example, we are subtracting the constant value 1 from rows 2 and 4 and adding 1 to
column 1.) The result is the further modified cost matrix

[o] 4
5 [0
0 0
4 2

from which we can make four feasible assignments: x;; = X,, = X3, = X;; = 1. The cost of
this assignment is obtained from the original cost matrix as ¢;; + ¢y + ¢, + ¢,y =2+ 4 +
6 +20=22.

This process ensures that at least one new zero entry will be generated at each iteration, but
the number of assignments does not necessarily increase. However, the Hungarian method is
guaranteed to solve the problem; this iterative procedure will be repeated as many times
as necessary so that a complete feasible assignment is finally obtained.

The Hungarian method is relatively efficient for solving large problems. However, there
are more efficient commercial codes available that can dramatically reduce computation
time. This can be very important when an application requires, for example, that several
thousand assignment problems be solved as subroutines in a larger problem.

In case there is a mismatch between the number of people and the number of jobs, the
problem is brought into balance by adding either dummy people or dummy jobs, as needed.
For example, if there are m people and n jobs, and m > n, then there are not enough jobs

Network Analysis 113

so we add m — n dummy jobs, and a set of zero-valued cost coefficients for each. Once
the balanced problem is solved, any person assigned to a dummy job actually has no job.
Similarly, if m < n, the problem is balanced with dummy people; and in the final solution,
n — m jobs actually have no one assigned to them.

3.3.2.1 Stable Matching

While the classical assignment problem seeks to find an association of objects that is opti-
mal from a collective, or global, point of view, it does not necessarily consider individual
preferences or affinities. Suppose the entries in the cost matrix actually represent rankings,
so that finding a minimum cost assignment actually associates objects according to their
preferences. Now if the objects being associated with each other are people being assigned
to machines, the people probably have preferences, while the machines do not. But if we
have employees (people) being assigned to employers (also people), then most likely there
are preferences on both sides. Similar situations arise, for example, when medical residents
are being assigned to hospitals, or when graduate students become associated with certain
doctoral programs, because in all these cases there are mutual preferences involved, which
certainly might be different on the side of the employer than on the side of the employee.
The workers could probably rank their preferences for employers and the employers could
probably rank their preferences among the pool of potential employees. In this case, there
are two cost matrices, reflecting the preferences of both groups.

If we wish to treat this as an ordinary assignment model, a single cost matrix can be
constructed by simply adding corresponding elements of the rank matrices (Exercise 3.9
at the end of this chapter). Remember, however, that the (i, j)-th element of the employee
rankings does not get added to the (i, j)-th element of the employer rankings, but rather to
the (j, i)-th element. Information about employee i and employer j is in the (i, j)-th position
in the first matrix but in the (j, i)-th position in the second matrix.

The Hungarian method, when applied to this problem, yields a solution that is in some
sense for the collective good of both employees and employers. But what about the indi-
viduals or employers who do not get their first or even second choices? The behavioral
reaction of these people is dealt with by using a model that is known as the stable marriage
problem (so-called because this model hypothetically could be used to represent the prefer-
ences of groups of people who are to be matched for marriage) (Knuth 1976).

For this example, we will use a group of four men and a group of four women. Consider
the following preference matrices, and the corresponding cost matrix composed in the
way we described earlier.

Woman Man
w X Y Z A B C D
Man A 2 1 3 4 Woman W 1 3 4 2
B 1 2 3 4 X 3 2 4 1
C 4 1 2 3 Y 1 3 4 2
D 1 3 2 4 Z 4 2 1 3

Cost =

W o o w [
a1 o s [X
[ENe NI NS IS
N oA o o [N

114 Operations Research

The matching A-Y, B-X, C-Z, D-W has a cost of 4 + 4 + 4 + 3 = 15, and is optimal when
viewed as an ordinary assignment problem; but from an individual perspective, that
matching leaves something to be desired. Notice that man A and woman W both prefer
each other over the one they are matched to. A matching is called unstable if two people
who are not married prefer each other to their spouses. In our example, A and W acting
according to their preferences would leave Y and D, respectively, for each other. Then there
would be little choice for Y and D but to get together with each other—a disappointment
for each, since now each is paired with a second-ranked choice, whereas previously both
had been matched with their first-ranked choices. (Observe that this rearrangement A-W,
B-X, C-Z, D-Y has the same cost, z* = 15, as the previous matching when viewed as a
simple assignment problem.)

Finding stable matchings is a difficult problem, both from a sociological and a compu-
tational standpoint. Even the problem of determining whether a matching is stable is dif-
ficult; and the process of removing instabilities one at a time is not only slow but can lead
to circularities that prevent the algorithm from terminating.

A better approach seems to be to construct stable matchings from the outset. In fact,
algorithms exist to construct a stable matching efficiently. However, the overall quality
(cost) of the assignment may be quite poor (everyone may be unhappy but stable), and
all known algorithms for this tend to be biased in favor of one group or the other (men
over women, employers over employees, etc.). A well-known propose and reject algorithm
constructs a stable assignment in O(n?) time, but unfortunately the matching is done from
a man-optimal point of view, and in fact a consequence of the method is that each woman
obtains the worst partner that she can have in any stable matching. The only remedy is
to create a stable matching from a woman-optimal point of view, with the corresponding
consequence to each man. We can clearly see here that there are important economic and
sociological effects involving employment stability and worker satisfaction for which we
currently have no good solutions (Ahuja et al. 1993).

3.3.3 Capacitated Transshipment Problem

The most general form of the minimum cost network flow problem arises when some
commodity is to be distributed from sources to destinations. Each node can create a cer-
tain supply or absorb some demand of the commodity. It is not necessary for each unit of
the commodity to be shipped directly from a source to a destination; instead, it may be
transshipped indirectly through intermediate nodes on its way to its destination. In fact,
the total supply could conceivably be routed through any node in transit. Links can have
upper and lower bounds on the flow that may be assigned to them. The object then is to
meet the demands without exceeding the available supply, and to do so at minimum cost.
This model is known as a minimum cost flow problem or as a capacitated transshipment
problem. We let x; represent the number of units shipped along the arc from node i to
node j, and ¢; denote the per unit cost of that shipment. Capacities are specified by lower
bounds ¢; and upper bounds u; on each arc from node i to node j. Flow balance equa-
tions enforce the constraint for a net supply s; at each node i. The net supply at a node is

Network Analysis 115

expressed as total flow out minus total flow in. (If s; is negative, it will be interpreted as a
net demand constraint.) The formulation is as follows:

n n
minimize zZ= E E CijXij

i=1 j=1

n n

subject to inj —Zxki =s; fori=1,...,n (@)

=1 k=1

li < x5 < Uy for alliand j 2)
j j j]

Summations are taken over all index values for which the corresponding arcs exist in the
network. To keep the notation simple, we assume that /;; = u; =0 for all non-existent arcs.

Most introductory textbooks that describe the transshipment problem, explain how it
can be modeled as an expanded transportation problem with dummy demands and sup-
plies for each intermediate node. The two models are, in fact, equivalent. And although
that approach will work for small problem:s, it is not recommended for any applications of
practical size.

The minimum cost network flow problem could also be solved using the Simplex
method presented in Chapter 2. However, the special structure in the formulation makes
the problem amenable to more efficient solution techniques. The structure is apparent in
the flow balance equations (constraints [1] in our previous formulation). The variables x;
appear with coefficients of only 0, +1, and —1 in each equation. And because each arc flows
into exactly one node and out of exactly one node, each variable appears in exactly two of
the flow balance equations. This matrix of coefficients is known as a node-arc incidence
matrix and is fundamental to the methods that have been tailored for use on this problem.

One efficient technique for solving the minimum cost flow problem is a specializa-
tion of Dantzig’s Simplex algorithm, and has been called the Simplex on a graph algorithm
(Kennington 1980). One implementation of this method is reported to be over 100 times
faster than a general linear programming code applied to the minimum cost flow problem.

Another method, developed by Fulkerson specifically for the minimum cost flow prob-
lem, is called the out-of-kilter algorithm. Each arc is either in kilter or out of kilter, indicating
whether that arc could be in a minimum cost solution. Kilter numbers specify how far an arc
is from being in kilter. Beginning with any maximum feasible flow, the algorithm repeat-
edly selects an out-of-kilter arc, and adjusts the flow in the network so as to reduce the
kilter number of the chosen arc, while not increasing the kilter number of any other arc,
and maintaining feasible flow. When all arcs are in kilter, the current solution is the mini-
mum cost flow. Clear and complete descriptions of this method may be found in several
of the references cited at the end of this chapter, including Kennington (1980), Price (1971),
Battersby (1967, 1970), Hu (1970), and Tarjan (1983).

116 Operations Research

The following example, from Glover and Klingman (1992), illustrates the creative use
of the transshipment model for production planning and distribution decisions. A major
U.S. car manufacturer must determine the number of cars of each of three models M1, M2,
and M3 to produce at the Atlanta and Los Angeles plants, and how many of each model to
ship from each plant to distribution centers in Pittsburgh and Chicago. Subject to bounds
on production capacities, demands, and shipment capacities, the objective is to identify a
minimum cost production-distribution plan. A network model for this problem is given
in which arcs from plant locations to plant/model nodes are labeled with upper and lower
bounds on production levels, and with production costs for each model at each plant.
Similarly, arcs from distribution/model nodes to distribution point nodes are labeled to
indicate bounds on demands. Links from plant/model nodes to distribution/model nodes
are labeled with the appropriate transportation costs, and with capacity restriction limits,
if any.

A solution to this problem determines the production and distribution decision for the
car manufacturer; but, moreover, it solves a multi-commodity problem with a straightfor-
ward transshipment model. By having distinct nodes for each model type, the production
and distribution plan for each model is established.

3.4 Network Connectivity
3.4.1 Minimum Spanning Trees

Now consider a network problem in which we wish to select the fewest possible arcs in the
network that will keep the graph connected. Recall that a graph is connected if there is at
least one path between every pair of nodes. We furthermore want to select just those arcs
with the smallest weights or costs. This is called the minimum spanning tree problem.

A typical application for a minimum spanning tree may arise in the design of a data com-
munications network that includes processor nodes and numerous (possibly redundant)
data links connecting the nodes in various ways. We would like to determine the set of
data links, with the lowest total cost, that will maintain connectivity, so that there is some
way to route data between any pair of nodes. Similarly, in any type of utility distribution
network or transportation network, it may be desirable to identify the minimum set of con-
nections to span the nodes.

Such a minimal set of arcs always forms a tree. Clearly, the inclusion of any arc result-
ing in a cycle would be a redundant arc, and this could not be a minimum spanning tree.
To see this, suppose that the optimal solution contains a cycle. Select any arc (i, j) in the
cycle, and delete it. Notice that any two nodes that were connected using arc (i, j) are still
connected because nodes i and j are still connected by moving the other way around the
cycle. Therefore, the solution could not have been optimal because we easily constructed
a better (less costly) one.

We present two algorithms for solving this problem. The choice of which one to use for
a particular application depends on the density or sparsity of the network in question.
The two algorithms are quite simple, and are sometimes called greedy algorithms because
at each stage we make the decision that appears locally to be the best; and in so doing, we
finally arrive at an overall solution that is optimal. (As has already been suggested, it is a
rare and wonderful thing when we are able to solve combinatorial problems using simple
greedy algorithms.)

Network Analysis 117

Our first solution to the minimum spanning tree problem is Prim’s algorithm, which
operates by iteratively building a set of connected nodes as follows:

1. Arbitrarily select any node initially. Identify the node that is connected to the first
node by the lowest cost arc. These two nodes now comprise the connected set, and
the arc connecting them is a part of the minimum spanning tree.

2. Determine an isolated node that is closest (connected by the lowest cost arc) to
some node in the connected set. (Break ties arbitrarily.) Add this node to the con-
nected set of nodes and include the arc in the spanning tree. Repeat this step until
no nodes remain isolated.

Prim’s algorithm is illustrated by the example shown in Figure 3.11a, where the sequence
of pictures (b) through (e) shows the iterative construction of the minimum spanning tree.
Node B is arbitrarily chosen as the initial node. Node C is its closest neighbor. Then node E
is attached, followed by node D and finally node A. In the figure, nodes are outlined boldly
as they become connected.

The arcs in the spanning tree have weights 1, 2, 4, and 5, yielding a cost of 12 for the
minimal spanning tree. Note that the choice of initial node B is arbitrary, and any choice
for the initial node would have yielded a tree whose cost is 12.

The complexity of Prim’s algorithm is O(n?) for an n-node network. If the network is
sparse (with much less than n? arcs), the performance of this algorithm on large networks is
unnecessarily slow. For such cases, we have an alternative algorithm, known as Kruskal’s
algorithm, whose performance is O(e log e) where e is the number of arcs. Thus, in a sparse
network where e is much less than n?, Kruskal’s algorithm is superior; whereas in dense
networks, Prim’s algorithm is preferred.

Kruskal’s algorithm operates by iteratively building up a set of arcs. We examine all the
arcs, in increasing order of arc cost. For each arc, if the arc connects two nodes that are
currently not connected (directly or indirectly) to each other, then the arc is included in
the spanning tree. Otherwise, inclusion of the arc would cause a cycle and therefore could
not be a part of a minimum spanning tree. This algorithm is another example of a greedy
method. With Kruskal’s algorithm, we ensure a minimum cost tree by examining and
choosing the lowest cost spanning arcs first. Figure 3.12 shows the sequence of arcs chosen
for a minimum spanning tree for the network in Figure 3.12a.

Tarjan provides a historical perspective on solutions to spanning tree problems, and
describes several efficient variations to Prim’s and Kruskal’s algorithms. In such imple-
mentations, the improved complexity hinges on the use of specialized data structures
(such as heaps and priority queues). Tarjan also discusses mechanisms for sensitivity
analysis (Tarjan 1982): an algorithm is available for testing whether a given spanning tree
is minimal, and it is also possible to determine how much the cost on each arc can be
changed without affecting the minimality of the current spanning tree.

Co 0% o o%

(@) (b)

FIGURE 3.11
Prim’s algorithm: (a) original network, (b) first iteration, (c) second iteration, (d) third iteration, and (e) last
iteration.

118 Operations Research

FIGURE 3.12
Kruskal’s algorithm: (a) original network, (b) first iteration, (c) second iteration, (d) third iteration, and (e) last
iteration.

It is interesting to note how difficult the minimum spanning tree problem becomes
when certain constraints are added. If we place limits on the degree of all the nodes in the
spanning tree, then the minimum spanning tree problem becomes NP-hard. Such restric-
tions might reasonably apply in an actual application, for example, where we could have a
limited number of I/O ports on each microprocessor in a multiprocessor network.

3.4.2 Shortest Network Problem: A Variation on Minimum Spanning Trees

In the minimum spanning tree problem, we choose a minimum cost subset of arcs that
connect the vertices. But suppose that, instead of choosing a set of arcs from among those
already in the network, we allow ourselves to introduce new connections in addition to the
original arcs. Consider the following common problem. An electrician has decided where
to place the outlets in a home, and now wants to connect the outlets back to the circuit box
using the minimum amount of wire. Note that any circuit is a spanning tree. But, as any
electrician will tell you, to minimize the total length of cable, you should in fact introduce
new nodes (junction boxes) in the network, and then find the minimum spanning tree.

Consider the simple network in Figure 3.13 in which the nodes are the vertices of an equi-
lateral triangle and the arcs connect each pair of nodes. The length (or weight) of each of the
arcs is four units. A minimum spanning tree has a length of 8, and is obtained by choosing
any two of the three arcs as shown in Figure 3.13a—c. But if instead of choosing a subset of
the given arcs, we judiciously introduce a new node or junction point, we find that we are
able to span the three nodes with line segments whose total length is only about 6.928. This is
the shortest network that spans the three original vertices, and is illustrated in Figure 3.13d.

Clearly, this could represent a substantial saving in the cost of links if we were designing
the connections in communication networks, circuit board layouts, or highway or utility
distribution networks. This example is an instance of what is called the Steiner tree prob-
lem: where should we introduce new nodes in the network to minimize the corresponding
spanning tree?

The difficulty of the Steiner tree problem lies in selecting the location of the extra junction
points. Geometric intuition probably tells us that the solution in Figure 3.13d is better than

(@) (b) () (d) (e)

FIGURE 3.13
Shortest network problem: (a) a minimum spanning tree, (b) another minimum spanning tree, (c) a third mini-
mum spanning tree, (d) shortest network, and (e) sub-optimal junction point.

Network Analysis 119

FIGURE 3.14
Steiner tree problem.

the one in Figure 3.13e. However, consider a slightly larger problem, such as the graph with
six nodes arranged in a grid in Figure 3.14. Is this an optimal Steiner tree? In fact, there is
a slightly better set of junction points and connections than the ones shown in the figure,
but how would we know this? And what about solving much larger problems?

The best known algorithms for solving the Steiner tree problem are based on an algo-
rithm of Melzak (1961); and although numerous modifications to that algorithm have
improved its efficiency, the algorithms still require exponential computation time.

Although the Steiner tree problem is NP-hard, we still have practical algorithms that
yield approximations to the solutions that we want. In fact, we even have the guarantee
that a Steiner tree is at most 17.6% shorter than a minimum spanning tree. Thus, we can
use an efficient greedy algorithm (such as Prim’s or Kruskal’s) and obtain a spanning tree
whose length is at most only about 21% greater than that of a Steiner tree whose calculation
may require exponential effort. Here again, the analyst is faced with the choice of accept-
ing a possibly suboptimal solution that can be obtained easily, versus a provably optimal
solution that is obtainable only at enormous computational expense. Of course, the house-
hold electrician is probably inserting a few extra junctions at obvious locations and very
likely feels that his solution is convenient and satisfactory from a practical standpoint. See
Bern and Graham (1989) for an interesting historical perspective on Steiner problems, exact
and approximate algorithms.

3.5 Shortest Path Problems

We will now consider a class of network problems in which we try to determine the short-
est (or least costly) route between two nodes. The chosen route need not necessarily pass
through all other nodes. An obvious application of this type of problem is represented by
a vehicle traveling from a departure point to a final destination passing through different
points via the shortest route. Similarly, a distributed computer network that must route
data along the shortest path between designated pairs of processing nodes. We will also
see other, less obvious applications that can be solved with shortest path algorithms (see
exercises) or with methods reminiscent of shortest path algorithms (Sections 3.6 and 3.7).
The shortest path problem can be viewed as a transshipment problem having a single
source and a single destination. The supply at the source and the demand at the destination

120 Operations Research

are each considered to be one unit, and the cost of sending this unit between any two
adjacent nodes is indicated by the cost (weight or distance) on the arc connecting the two
nodes. By finding a minimum cost transshipment, we are in fact determining the shortest
route by which the unit can travel from the source to the destination. Although the short-
est path problem could be dealt with by using the more general transshipment model, the
structure of the shortest path problem makes it amenable to much more specialized and
efficient algorithms.

3.5.1 Shortest Path through an Acyclic Network

There are several well-known algorithms for finding the shortest path between certain
pairs of nodes in a network. We will concentrate first on a particularly simple algorithm
that is based on the use of recursive computations. This approach to shortest path prob-
lems will also provide us with a foundation for the study of dynamic programming and
project management in the next two sections of this chapter.

As an illustration, consider the acyclic network in Figure 3.15, where arc labels di]- denote
distance from node i to node j. Notice that in an acyclic graph, it is always possible to name
the nodes in such a way that an arc is oriented from a lower-numbered node fo a higher
numbered node. (A consequence of this property is that such a network can be represented
by an adjacency matrix that is upper triangular, requiring only (n? 4+ n)/2 storage loca-
tions in computer memory instead of n2) We wish to determine the shortest path from the
lowest-numbered node to the highest-numbered node.

The algorithm operates by assigning a label to each node, indicating the shortest dis-
tance from that node to the destination. A node is eligible for labeling if all its successors
have been labeled.

1. Initially, the destination node is given a label of zero, indicating that there is no
cost or distance associated with going from that node to itself.

2. Choose any eligible node k, and assign it a label p; as follows:
P« = min {d,; + pj}, the minimum taken over all successors j of node k

3. Repeat Step 2 until the source node is labeled. The label on the source is the shortest
distance from the source to the destination.

FIGURE 3.15
Acyclic network with node labels.

Network Analysis 121

In the illustration in Figure 3.15, initially p, = 0. Next, node 5 is eligible and p; =6 4+ 0 = 6.
The label for node 4 is computed as p, = min {5 + 0, 4 + 6} = 5. Node 3 is now eligible, and
ps;=min {1 +5,246,8+ 0} =6. The label on node 2 is p, = min {3 + 5, 3 + 6} = §, and finally
p1 = min {3 + 8, 4 + 6} = 10. Thus, the length of the shortest path is 10, and the path itself
is obtained by tracing back through the computations to find the path containing the arcs
(1,3), 34), 4,6).

This backward labeling procedure has an intuitive appeal when the problem is small
enough that the labels can be shown in a diagram. For larger problems, we may obtain
better insight by examining the recursive structure of the computations. For this, we will
again use the illustrative network from Figure 3.15. We wish to determine a label for node 1;
but in order to compute p,, we require the labels for nodes 2 and 3. Obtaining these labels
involves the recursive labeling procedure (twice). Each of these recursive computations in
turn requires further recursion. The pattern of recursive calls to obtain the label on the first
node is illustrated as follows, where L(i) denotes p;:

L(1)=4+L(@)
=4+[1+L@)]
=4+[1+[5+L©)]]
=4+[1+[5+0]]

=10

Observe that the label on each node summarizes information on higher-numbered nodes.
In fact, the value of the label on any node is actually the length of the shortest path from
that node to the destination.

3.5.2 Shortest Paths from Source to All Other Nodes

A more general algorithm that can be applied to any network having all arc labels non-
negative is known as Dijkstra’s algorithm. This algorithm begins with the source node
and determines the shortest paths from the source to every other node. During the opera-
tion of Dijkstra’s algorithm, the nodes are partitioned into two sets: a set, which we shall
call S, to contain nodes for which the shortest distance from the source is known, and
another set T to contain nodes for which this shortest distance is not yet known. A label p;
is associated with every node i and specifies the length of the shortest path known so far
from the source (node 1) to node i. Again, we let d;; denote the direct distance from node i
to nodej.

1. Initially, only the source node is placed in set S, and this node is labeled zero, indi-
cating that there is zero distance from the source to itself.

2. Initialize all other labels as follows:

pi =du fori # source node 1

and p; = « if node i is not connected to the source

122 Operations Research

3. Choose a node w, not in set S, whose label p,, is minimum over all nodes not in S,
add node w to S, and adjust the labels for all nodes v, not in set S, as follows:

pv = min {pv, Pw +dwv}

4. Repeat Step 3 until all nodes belong to set S.

In step 3, we assume that p, is the shortest distance from the source to node v directly
through nodes in S. When we add node w to S, we check whether or not the new dis-
tance through w is shorter, and update if necessary. We will use the network shown in
Figure 3.16 to illustrate Dijkstra’s algorithm.

Initially S= {1}, and p, =0, p, =5, ps =3, ps = 8, ps = o, and p, = o0. We then choose the
minimum label 3 on node 3, and S = {1, 3}. Labels are now

In the next iteration, we select the label 5 on node 2, so that S = {1, 3, 2} and new labels are
ps=min {8,5+2}=7
ps =min {7,5+0}=7

Pe =min {11, 5+00f =11

From these labels, we break a tie arbitrarily and select the minimum label 7 on node 5.
Now S ={1, 3,2, 5} and

FIGURE 3.16
Shortest path with Dijkstra’s algorithm.

Network Analysis 123

ps=min { 7,7+4}=7

ps =min {11,7+3} =10
Now we choose node 4 and S ={1, 3, 2, 5, 4}, and
ps =min {10,7+2}=9

Finally, node 6 is added to set S. The final labels are py =0, p, =5, p; =3, p, =7 ps =7, and
Ps = 9, and the values of these labels indicate the lengths of the shortest paths from node 1
to each of the other nodes.

On a dense graph of n nodes and e arcs, represented by an adjacency matrix, Dijkstra’s
algorithm executes in time O(n?). In a sparse network where e is much less than n?, it is
worthwhile to represent the graph as an adjacency list, and to manage the node partitions
using a priority queue implemented as a partially ordered tree (Aho and Hopcroft 1974).
In that case, the running time is O(e log n).

The proof of optimality of Dijkstra’s algorithm requires that all the arcs have positive
labels. But consider a network in which arcs represent stages of a journey. Along certain
arcs a cost is incurred (positive cost), while on other arcs it is possible to turn a profit (nega-
tive costs). Our objective would be to find a minimum cost path from source to destination
and, if possible, a path with negative cost (i.e., a profitable path). An algorithm developed
by Bellman (1958) and Ford Jr. (1956) will solve this problem as long as there is no cycle
in which the sum of the arc lengths is negative. (Observe that, if there were a cycle with a
negative total length, then we could simply travel around the cycle indefinitely reducing
our cost with no lower bound.)

Suppose we have a network for which we would like to know the shortest distance
between any two nodes. This is called the all-pairs shortest path problem. For this prob-
lem, Dijkstra’s algorithm could be applied n times (using a different node each time
as the source) to obtain the desired result in time O(n%). Another algorithm known as
Floyd’s algorithm provides the solution in a more direct way, also in time O(n®) but with
a much lower constant factor than Dijkstra’s algorithm. However, for large sparse graphs,
clever use of data structures will allow Dijkstra’s algorithm to operate in O(n e log n)
time. Algorithms for the second shortest path through a network, the n-th shortest path,
and for all possible paths between two specified nodes, are described and illustrated in
Price (1971).

3.5.3 Problems Solvable with Shortest Path Methods

We have shown how shortest path methods can be used to determine the shortest (fast-
est, or least costly) route between two locations in a network. A couple of additional illus-
trations should indicate the great variety of problems that can be modeled and solved
in this way.

A frequently cited example is one in which we wish to determine the most cost-effective
schedule for the replacement of equipment over a period of time. Let us suppose circuit
boards for A/D conversion in a navigation computer are to be replaced at intervals over a
period of 6 months. Ideally, replacement should occur before an actual breakdown in order
to maintain an operational system. Frequent replacement incurs capital expenses and costs
of labor for installation. But infrequent replacement may lead to increased maintenance

124 Operations Research

TABLE 3.13

Equipment Replacement Costs

Circuit Board Replaced
Feb Mar Apr May June
Circuit Board Jan 5.00 6.75 8.25 12.50 16.80
Installed Feb 5.25 6.25 9.50 11.50
Mar 5.25 7.25 9.00
Apr 5.50 8.20
May 5.80

FIGURE 3.17
Equipment replacement schedule.

costs and unacceptably high rates of system downtime. If we collect data on the costs of
purchase, installation, and maintenance, cost of expected downtime, and salvage value of
replaced boards, we can arrive at a tabularized summary of these expenses, such as shown
in Table 3.13.

Any circuit board becomes a candidate for replacement after one month. This problem
can be represented as a network (Figure 3.17) with nodes representing the months, and
arcs labeled with the costs shown in the table. By finding the shortest path between node
Jan and node Jun, we obtain the optimal (least costly) replacement policy. The route Jan —
Mar — Jun, with minimal cost 6.75 + 9.00 = 15.75, indicates that circuit boards installed in
January should be replaced in March and again in June.

This approach is often used for practical situations. However, observe that if we add a
node for July, or August, the optimal solution will change. We can overcome this problem
by using a rolling horizon. For example, in January, we might use a 24-month formulation
to decide when to perform the first replacement. That is, we use just the first shortest path.
When we get to that month chosen for replacement, we formulate a new shortest path
problem for the next 24 months. Many other practical problems have a similar structure.

An apparently unrelated set of problems is often illustrated in the form of riddles or
puzzles. The context may involve ferrying missionaries and cannibals, foxes and chick-
ens, monkeys and bananas; or separating a volume of some liquid by using an apparently

Network Analysis 125

inappropriate set of containers or measuring devices; or rearranging the elements of a plas-
tic puzzle. In each of these problems, there is some initial configuration, and a sequence of
simple one-step moves or operations, concluding eventually in some desired goal configu-
ration. Each of these problems can be solved in the following way. Create a set of nodes in
which each node represents a possible configuration of the system. Place a directed arc to
indicate where a transition can be made from one configuration node to another through
one simple move. Assign a cost of 1 to each arc in the network. If there are multiple goal
configurations, join those nodes to a common sink node and label these new arcs zero. The
shortest path from the initial configuration node to the sink or goal configuration node
represents a solution to the problem, and moreover, this path describes the solution obtain-
able in the smallest number of steps.

3.6 Dynamic Programming

Dynamic Programming is an approach to solving mathematical programming problems
by decomposing a problem into simpler, interdependent, subproblems, and then finding
solutions to the subproblems in stages, in such a way that eventually an optimal solution to
the original problem emerges. Because this approach has been used particularly for appli-
cations that require decisions to be made dynamically over time, the descriptive name
dynamic programming has come into common use. However, this procedure is applicable to
any problem that can be dealt with as a staged decision-making process.

In most of the optimization problems that we have seen thus far, all of the decision
variables have been dealt with simultaneously. Arbitrarily complex interactions among
decision variables are precisely what make general mathematical programming problems
difficult. However, many problems have a structure that allows us to break the problem
into smaller problems that can be dealt with somewhat independently. As long as we are
able to preserve the original relationship among the subproblems, we may find that the
total computational effort required to solve the problem as a sequence of subproblems is
much less than the effort that would be required to attack all components of the problem
simultaneously.

Unlike linear programming and other specialized mathematical programming formula-
tions, dynamic programming does not represent any certain class of problems, but rather an
approach to solving optimization problems of various types. Because the procedure must
be tailored to the problem, the successful application of dynamic programming principles
depends strongly on the intuition and talent of the analyst. Insight and experience are
required in order for a problem-solver to perceive just how (or whether) a problem can be
decomposed into subproblems, and to state mathematically how each stage is to be solved
and how the stages are related to one another. Exposure to a large number of illustrative
dynamic programming applications, including discrete and continuous variables, proba-
bilistic systems, and a variety of objective function forms, would be required in order to
provide truly useful and comprehensive insights into the craft of dynamic programming.
Even then, it must be admitted that many problems simply do not lend themselves effi-
ciently to the dynamic programming framework.

We will examine some examples, and in the process we will also describe some of the uni-
fying themes and notations of the dynamic programming approach. For further exposure

126 Operations Research

to this problem-solving tool, refer to the discussions by Bellman (1957), Nemhauser (1966),
Beightler (1976), and White (1969).

3.6.1 Labeling Method for Multi-Stage Decision Making

Our first example of the use of the dynamic programming approach involves a choice of
transportation routes. Figure 3.18 shows a system of roads connecting three sources H;
that generate hazardous by-products with two sites D, designated for the disposal of haz-
ardous waste materials. Three political borders (shown by dashed-lines) must be crossed
in transit. Each straight-line section of road requires one day’s travel time, so it is a four-
day drive from any H; to any D;. However, at each border crossing, regulations require
container inspection and possible recontainerization, and this can cause delays at each
checkpoint. The number of days delay that can be anticipated is shown in the circle drawn
at each checkpoint. The problem is to determine the route from generation sites to disposal
sites that involves the minimum delays.

The stages in this multi-stage decision process correspond to the three borders that must
be crossed. In the terminology of dynamic programming, the various checkpoints at each
stage are called states. Thus, there are four states in the first stage, and three states in each
of the second and third stages.

To solve this problem, we take an approach that is similar to the backward labeling
method for shortest path through an acyclic graph. Our decisions will be made, beginning
with the final stage, Stage 3, and moving backward (to the left) through the earlier stages.
At each stage, we phrase our decision in the following way: for each possible state in the
current stage, if this state is ever reached, what would be the minimum delay from here to
the dump sites? If this question can be answered at every stage, then eventually at the first
stage, we will have established our minimum delay route, as desired.

The mechanism that we will use is a backward node-labeling scheme. When we arrive
at Stage 3, the delay to the dump site is just the delay at the third border crossing. We label
each checkpoint node accordingly, as shown in Figure 3.19a.

At stage 2, the delay at the top node is 5 plus either four or three additional days. We
choose the minimum 3 and label that node with 5 4+ 3 = 8. The other two nodes are labeled
in the same way, as shown in Figure 3.19b.

FIGURE 3.18
Hazardous waste disposal routes.

Network Analysis 127

(b)
O
H, O
NERVA
H, O O
® b,
Hj o) ©—O
(d)

FIGURE 3.19
Minimum delay path: (a) stage 3, (b) stage 2, (c) stage 1, and (d) optimal path.

Backing up to Stage 1, we similarly compute four labels, as shown in Figure 3.19¢. Since
all four checkpoints at Stage 1 are uniformly accessible from each of the generation sites,
we can conclude that the minimum delay path goes through the node labeled 9 at the first
border crossing (with a delay of 3). The optimal path is highlighted in Figure 3.19d, where
the total delay of 9 is obtained by crossing the second border at the bottom node (where
delay is 4), and from there crossing the third border at its bottom node (with a delay of 2).

3.6.2 Tabular Method

Dynamic programming problems can usually be represented more succinctly in tabular
form rather than as a graph. Consider the following problem. A Director of Computing
Facilities must decide how to allocate five computer systems among three locations: the
Library, the University Computer Center, and the Computer Science Lab. The number of
users who can be accommodated through various allocations is shown in Table 3.14.

By viewing this problem as a staged decision process, we can determine the optimal
allocation that will provide computer access to the greatest number of users. Let Stage 1

TABLE 3.14

Computer Allocation Problem

Number of Users Served at Each Location

Number of Computers

Allocated Library University Computer Center CS Lab
0 0 0 0
1 3 5 8
2 6 10 12
3 7 11 13
4 15 12 13
5 20 24 18

128 Operations Research

denote the decision of how many computers to place in the Library, Stage 2 denote the
decision for the Computer Center, and Stage 3 for the Computer Science Lab. As before, we
will begin with the last stage, and work backward.

At the third stage, we do not know how allocations may be made at earlier stages, but
regardless of what earlier allocations may have been decided, we wish to determine the
optimal allocation for the remaining available computers. Since this is the last stage, we
clearly should allocate all remaining computers (i.e.,, the ones that were not allocated in
Stage 1 and Stage 2) to the Lab, as shown in Table 3.15.

At the second stage, the alternatives are somewhat more interesting. Again, we do
not know what allocations may be made at earlier stages (Stage 1); but since this is not
the last stage, we must consider the possibility of allocating only a portion of what is
available, leaving some computers for allocation in Stage 3. The various possible alloca-
tions in Stage 2 are shown in Table 3.16. Each entry represented by a sum includes the
number of users that can be served by placing some computers here at this stage, plus
the optimal number that could be served by saving the remaining available computers
for later stages.

We can conclude the solution to this problem now by solving Stage 1. In this case, we do
not have to consider different numbers of available computers: we know that all five are
available because there are no preceding stages (during which any could be allocated). We
do, however, have the option to allocate any number of them, as shown in Table 3.17.

TABLE 3.15

Allocation to Computer Science Lab

Computer Science Lab

Number Available Number to Allocate Optimal Number of Users Served
0 0 0
1 1 8
2 2 12
3 3 13
4 4 13
5 5 18
TABLE 3.16

Allocation to University Computer Center

Payoff for the Number Allocated to the University

Computing Center Optimal

Number Number of By
Available 0 1 2 3 4 5 Users Served Allocating

0 0 0 0

1 0+8 5+0 8 0

2 0+12 5+8 10+0 13 1

3 0+13 5412 10+8 11+0 18 2

4 0+13 5+13 10+12 11+38 12+0 22 2

5 0+18 5+13 10+13 11+12 1248 2440 24 5

Network Analysis 129

TABLE 3.17
Allocation to the Library

Payoff for the Number Allocated to the Library

Number Optimal Number of
Available 0 1 2 3 4 5 Users Served By Allocating
5 0+24 3422 6+18 7413 1548 20+0 25 1

The problem is now solved. The optimal number of users, 25, that can be served is
obtained by allocating one computer to the Library. That leaves 4 available for Stage 2,
and from the table for Stage 2, we know that the optimal decision is to allocate 2 to
the Computer Center, leaving 2 for Stage 3, the Computer Science Lab. At Stage 3, we
allocate both available computers. Thus, by placing 1, 2, and 2 computers, respectively,
in the Library, Computer Center, and Lab, we can serve 3 + 10 + 12 = 25 computer
users.

Notice that we could have used a graphical representation of this problem as shown
in Figure 3.20, and the backward labeling technique, to find the optimal alloca-
tion. However, even in a problem of this size, the number of arcs becomes large and

Allocate 0

Allocate 1

Allocate 2
Allocate 5 Alloc 0

Allocate 4 8
20+0

Allocate 3

7+13

Allocate 2

Allocate 1 3+22

Allocate 0 0+24 Alloc 0

@
Stage 21 Stage 12 Stage 3

Library University computer center Computer science lab

FIGURE 3.20
Graphical representation of computer allocation problem.

130 Operations Research

awkward to display. We accomplish exactly the same thing conceptually using the
more convenient tabular representation.

3.6.3 General Recursive Method

Using dynamic programming, we have now solved two problems—waste-disposal rout-
ing and computer allocation—as staged-decision problems. Each point where a decision
is made is referred to as a stage of the decision process. In some problems, these stages
correspond to stages in time; in other cases, they refer to geographical stages; and in oth-
ers, the stages may reflect a more abstract logical decomposition of the larger problem. The
structuring of a complex problem into simpler stages of decision-making is the fundamen-
tal characteristic of the dynamic programming approach.

Within each stage, states are defined in such a way as to embody all the information
needed in order to make the current decision and to fully define the ramifications of any
current decision on future decisions. The specification of states is a critical performance
factor in any dynamic programming solution. In practical problems, the number of pos-
sible states can quickly become unmanageable. Successful applications usually require
considerable skill in the definition of the states.

In our illustrative examples, each stage has only one state variable (to specify which
check-point on a border crossing, or how many computers are available for allocation to the
current location). Some problems require more than one state variable, and each state of
the system is represented by each possible combination of state variable values. Clearly, the
number of possible states increases exponentially as the number of state variables grows,
and the computational effort involved in solving the problem may become prohibitively
expensive.

Decision variables in a dynamic programming model define the decisions made at each
stage. Each decision yields some payoff (or return) that contributes to the objective func-
tion. Because of the staged structure of this method of problem-solving, determining the
optimal value of a decision variable is a process that cannot be based on the entire problem
but rather on only those stages of the problem that have already been dealt with. After
identifying a final stage, and associating a payoff with each state in that stage, we then
repeatedly move backward to preceding stages using a backward recursive relation, until
we have finally arrived at an initial stage, and have thus sequentially arrived at a solu-
tion to the entire problem. Decisions at each stage must be made in accordance with the
dynamic programming principle of optimality, which is stated as follows: regardless of
the decisions made to arrive at a particular state, the remaining decisions must constitute
an optimal policy for all successive stages, with respect to the current decision.

Suppose that our problem has N stages, and we are currently trying to compute stage n.
Let s, denote the state and d,, denote the decision made when there are n stages remaining
in the solution process. Let £ (s,, d,,) denote the total payoff or return for the last N — n
stages, given current state s, and current decision d,. The optimal return for these N — n
stages is then written as f;(s,) = f,(s,, d,), meaning that d; is the optimal decision for this
state, regardless of how we arrive at this state. Clearly, if we can work backward to an ini-
tial stage, then f/(s) is the optimal objective function value for an N-stage problem.

The return function for any state is written in terms of the return obtained from
succeeding stages:

f,(sn) = max{r(s,,d,) + fo,1(Sn:1)}

n

Network Analysis 131

where 1(s,, d,,) is the return resulting from making decision d,, while in state s, at the cur-
rent stage, and s,,,; is the new state that we will be in at stage n + 1 if we are in s, now, and
make decision d,,. Observe that we have previously computed the optimal cost for com-
pleting the solution process from all possible states s, ;. This recursive relation identifies
the optimal policy for each state with N — n stages remaining, based on the optimal policy
for each state with (N - n) — 1 stages remaining.

In the computer allocation example earlier, the Computer Science Lab location repre-
sents Stage 3, the University Computer Center is Stage 2, and the Library is Stage 1. States
represent the number of computers available in a stage, and the decision variable speci-
fies how many to allocate in this stage. Therefore, to find the optimal allocation, we must
compute

f;(Library) = n}iax{r(s] ,dy) + 5 (s,))

where s, = s; — d,. For this we need to have computed

f;(Sz) = n’(liaX{r(Sz/dz) + f;(53)}

where s; =s,— d,. Finally, f;" is trivial to compute for all states in Stage 3 because all remain-
ing available computers should be used. The recursive computations for this example are
shown for Stage 3 in Table 3.18, for Stage 2 in Table 3.19, and for Stage 1 in Table 3.20.
After the backward recursion is applied, the optimal objective function value is known,
but the sequence of decisions leading to that optimum must be retrieved by tracing forward

TABLE 3.18
Stage Three

f5(s5, dy)
S, d;=0 1 2 3 4 5 d3 (s, dj)
0 0 0 0
1 8 1 8
2 12 2 12
3 13 3 13
4 13 4 13
5 18 5 18
TABLE 3.19
Stage Two

f,(s,, dy)

S, d,=0 1 2 3 4 5 d3 f3(s,, dy)
0 0 0 0
1 0+8 5+0 0 8
2 0+12 5+8 10+0 1 13
3 0+13 5+12 10+ 8 1140 2 18
4 0+13 5+ 13 10+ 12 11+8 12+0 2 22
5 0+18 5+ 13 10+ 13 11+12 12+8 2440 5 24

132 Operations Research

TABLE 3.20
Stage One
f,(s,, d,)
s, d, = 1 2 3 4 5 d: £ (s, dy)
5 0+24 3+22 6+18 7413 15+8 2040 1 25

to identify, at each stage, the decision that was chosen during the backward recursion. In
the example, s; = 5 and d," = 1. Therefore, s, = 4. When s, =4, d," = 2, and hence s; = 2.
Whens; =2,d; =2.

Our discussion of dynamic programming has addressed only the most essential fea-
tures of the method, and we should now mention some variations to this problem-solving
approach. In our two examples, there were a finite number of states at each stage, repre-
senting discrete roads to choose or whole items to allocate. Applications involving arbi-
trary allocations of money or weight, for example, may be modeled with a continuous
state-space. In this case, the graphical and tabular methods are useless, but the recursive
relations readily apply.

In each of our sample problems, the return at any stage was added to cumulative returns
from succeeding stages. This was appropriate because the time delays and the number
of users served were additive in nature. Different applications may involve costs that are
compounded together in arbitrary mathematical ways. For example, in the hazardous
waste disposal problem, if the checkpoints introduced probabilities of contamination or
spillage, then the probabilities (of 7o contamination) at successive stages should be multi-
plied, rather than added, to find the safest route. In that case,

fn(sn/ dn) = r(snl dn) . fr:+1(sn+l)

where f_(s,.;) is the minimum probability of contamination from stage n + 1 in state s,
and s, is the state that we would be in if we were in state s, at stage n and made decision d,..
Our recursive relations have been expressed in the form of backward recursion, based on
the stages remaining in the decision process. For most problems, it would be equally valid to
define forward recursive relations, based on completed decision stages. The final result will be
the same. For example, in the computer allocation problem, our state variables could repre-
sent the number of machines left in backward recursion, or we could define a forward recursive
model based on the number of machines allocated so far. However, the definition of the state
variables is often more intuitively appealing in one direction for a particular application.

3.7 Project Management

The planning and coordination of large complex projects, consisting of many tasks or
activities, is often viewed as less of an optimization problem and more of a management
procedure aimed at completing a project under certain resource constraints and with
attention to various cost-time trade-offs. However, certain aspects of project manage-
ment can be dealt with conveniently by using network optimization methods that were
discussed earlier in this chapter.

Network Analysis 133

During the 1950s, two methodologies were developed—independently and
simultaneously—for project management, and both approaches were based on network
models. One method, called the Critical Path Method (CPM), was developed for the man-
agement of construction and production activities; while the other, called the Program
Evaluation and Review Technique (PERT), was developed for the U.S. Navy in schedul-
ing research and development activities for the Polaris missile program. CPM is based
on deterministic specifications of task durations, and is therefore appropriate for pro-
duction projects in which previous experience with the subtasks allows management to
make reliable time estimates. PERT, on the other hand, is based on probabilistic estimates
of task durations, and thus is most useful in a research and development environment
where task completion times cannot be known in advance. Because both PERT and CPM
approach project scheduling using similar network models and methods, the terms PERT
and CPM are sometimes used interchangeably or collectively as PERT-CPM methods.

Large scale projects generally consist of a set of tasks or activities whose completion
times are known or can be estimated (using a range of values, for example), and for which
precedence constraints are specified, indicating that certain activities must be completed
before others can begin. Simply identifying the distinct activities, and determining their
durations and interdependencies, is an important part of the planning of any large project.
PERT-CPM methods then provide for the construction of a network diagram, from which
we can determine the minimum overall project duration and identify those tasks whose
timely completion is critical or essential to the minimum project completion time. The
purpose of this phase is to construct a schedule or time chart with start and finish times for
each activity. Information may also be available that will allow us to evaluate the effect
of putting extra money, people, or machines into a particular task in order to shorten the
project duration. Thus, we can use the network to evaluate cost-time trade-offs. Finally,
once the project is underway, the network diagram can be used in monitoring or controlling
the project, to follow the progress of the various activities, and to make adjustments where
appropriate. These three phases—planning, scheduling, and controlling—are essential
to the effective management of any large project. In the following sections, we will see
how the network methods underlying PERT and CPM help to support these phases of
management.

3.7.1 Project Networks and Critical Paths

A project network provides a graphical representation of the precedence relations among
all the activities in a project. Each activity is represented by an arc in the network. The
nodes in the network denote events corresponding to points in time when one or more
activities are completed. Directions on the arcs indicate the sequence in which events must
occur. Additionally, a node is added at the beginning of the network to represent the start
event for the entire project. Similarly, a final node is introduced to denote the finish event
for the project.

As an illustration, we will build a project network for a set of six activities with the
following precedence constraints:

1. A precedes D

2. A and B precede C
3. Cand D precede F
4. E precedes F

134 Operations Research

FIGURE 3.21
Project network.

The project network diagram is shown in Figure 3.21. Solid arcs denote activities
A through E. Activities C, D, and E must all precede activity F. Therefore, we use event 4 to
represent the time at which activities C, D, and E are all finished, and activity F can begin.
We cannot combine events 2 and 3. We want event 2 to represent that A has finished and
D can begin. Event 3 represents that A and B are finished and C can begin. To do this, we
introduce a dummy activity from event 2 to event 3 with zero duration. The sole purpose
of this is to ensure that event C does not start until event A has finished.

We let the variable t; represent the time at which event i occurs, and d; denote the dura-
tion of the activity represented by the arc between nodes i and j. In this example, suppose
dy,=4,d;=3d,=4dy;=0,d, =5, d;;, =3, and d5 = 2. These individual activity lengths
are shown in Figure 3.21 along the appropriate arcs. Since t; and t; are the start and finish
times, total project length is (t; — t,).

Now that the activities have been identified and described in the diagram, our
next objective is to determine a minimum length project schedule; that is, to determine
when each activity should begin so that precedence constraints are met and so that
the entire project completes as quickly as possible. We can write the formulation as a lin-
ear programming problem, with constraints to assure that successive events i and j are
separated from one another by at least the required duration of the event on the arc (i, j):

minimize z=ts¢—t;

subject to -t >4
t3—t; 23
ty—t, >4
t3—t,2>0
ty—t 25
ty—t;>3
ts—t, >2

and t; >0 foralli=1,2,...,5

Network Analysis 135

Note that this formulation could be solved with the ordinary Simplex method, but clearly
there is a special network structure to the problem.

In order to minimize the project duration, we have to realize that actually we must find
the longest sequence of linearly ordered activities; that is, we must find the longest path
through the network. This insight gives us a slightly different perspective on the problem.

Consider the following linear programming problem. Let x; = 1 if activity (i, j) is in the
longest path, and x;; = 0 otherwise. This problem can be written as:

maximize 4AXqp + 3Xq3 +4Xq4 + DXog + 3X34 + 2Xys5
subject to
—X12 —X13 — X4 =-1
X12 — X3 = X4 =
X13 + Xo3 — X34 =
X14 + X4 + X34 —Xa5 =0
X45 =1
allx; =0or1

The objective function adds up the total length of the longest path, while the constraints
ensure that the solution represents a path from event 1 to event 5. The first constraint states
that only one edge can leave node 1. The last constraint states that only one edge can enter
node 5. The other constraints specify that the number of incoming arcs equals the number
of outgoing arcs in each of the interior nodes. The only feasible solution to this problem is
a path, and the optimal solution is the longest path.

These two problems are in fact equivalent. The second one is called the dual problem of
the first. (Recall from the discussion in Section 2.8 that every linear programming problem
has a dual problem, and typically the two versions represent a different view or interpre-
tation of the same problem parameters.) Notice that the first problem has one constraint
for each activity and one variable for each event, while the second formulation has a con-
straint for each event and a variable for each activity.

If we inspect the previous dual formulation, we can see that the constraints require that
one unit of flow is to be routed from node 1 to node 5. We now recognize that this is the
specialized form of the transshipment model that we dealt with in Section 3.5 to find the
shortest path through a network. In our project management application, however, we
minimize project duration by maximizing the path length. We can therefore treat our project
scheduling problem as a longest path problem.

By finding the longest path through the project network, we are also finding what is
known as the critical path. A critical path is a path from the start node to the finish node,
with the property that any delay in completing activities along this path will cause a delay in
overall project completion. The activities along the critical path are called critical activities.

To describe the PERT-CPM method for identifying critical activities in a project, we need
two definitions. The earliest time for a node j, denoted Ei' is the time at which event j will
occur if all previous activities are started as early as possible. The start node 1 has E, =0
since there are no predecessors. Then any other node’s earliest time can be determined as
long as all its predecessors’ earliest times have been calculated. We can make a forward
pass through the network, calculating E; for each event j as

136 Operations Research

E] = maX {El + dl]}

where (i, j) are all the arcs entering node j, and d;; is the duration of the activity represented
by arc (i, j). Once we have the earliest time for the finish event, we know the earliest possible
completion time for the entire project.

The latest time for a node i, denoted L,, is the latest time that event i can occur without
causing delay in the completion of the project beyond its earliest possible time. Once we
have made the forward pass to determine the earliest project completion time, we make
a backward pass through the network. For a network of n nodes, L, = E,, then L, can be
determined for any node i as long as all of that node’s successors’ latest times have been
calculated. The general formula is

Li = min {L] _dij}
)

where (i, j) are all the arcs leaving node i.

The slack time for an event is the difference between the latest time and the earli-
est time for that event. Events having a slack time of zero are called critical events.
The slack time of an activity (i, j) is L — E; — d;;. Activities with slack time zero are the
critical activities, which must be completed without delay if the minimum feasible proj-
ect duration is to be achieved.

Now re-examine the project network in Figure 3.21 to determine a critical path and con-
struct a time chart. During the forward pass, we obtain the following earliest times:

E; =0

E, =max; {0+4} =4

E; =max;,{0+3,4+0} =4

E, =max;,;{4+54+3,0+4}=9

Es =max,;{9+2}=11

Therefore, the minimum completion time for the project is 11 time units. In a backward
pass, we obtain latest times for each event as follows:

Ls=Es=11
Ly =mins {11-2} =9

L; =min, {9-3} =6

L, =min; 4{6-0, 9-5} =4

L =min,;,{4-4,6-3,9-4}=0

From these results, we can determine the critical path. Since E, =L, E, =L, E, =L, and
E; = L;, the critical events are at nodes 1, 2, 4, and 5; and therefore the critical activities are

Network Analysis 137

TABLE 3.21
Project Time Chart

Activity Duration Earliest Start Latest Start Earliest Finish Latest Finish Slack Time

A 4 0 0 4 4 0
B 3 0 1 4 3
C 3 4 6 7 9 2
D 5 4 4 9 9 0
E 4 0 5 4 9 5
F 2 9 9 11 11 0

activities A, D, and F (the activities along the critical path). We also notice that the slack
times for the activities are

A:L,-E -4=4-0-4=0
B:L;-E,-3=6-0-3=3
C:Ly-E;-3=9-4-3=2
D:L;-E;-5=9-4-5=0
E:Ly-E -4=9-0-4=5
F:Ls-E;,-2=11-9-2=0

and the activities with zero slack time are the critical activities. The noncritical activities B,
C, and E could be delayed as much as 3, 2, and 5 time units, respectively, without extending
the duration of the project.

All of this information can be summarized in the time chart shown in Table 3.21. This
layout provides a clear and convenient tool for management to use in scheduling noncriti-
cal activities, considering possible improvements in the project schedule, or in evaluating
the effects of delays along the critical path.

3.7.2 Cost versus Time Trade-Offs

The methods presented thus far have dealt solely with scheduling activities in order to
achieve a minimum project duration, and no consideration has been given to the cost of
the project. In addition to direct costs associated with each individual activity, there are
typically indirect costs that may be viewed as overhead costs and that are proportional to
the duration of the entire project. These costs may include such expenses as administrative
or supervisory costs, equipment and facilities rental, and interest on capital. A financially
realistic project manager may be willing to add resources, involving some direct expense,
to certain activities in order to reduce the duration of those activities, and thereby to reduce
the project duration and the attendant indirect costs. CPM provides a mechanism for mini-
mizing the total (direct plus indirect) costs of a project.

Suppose that for every activity, we know the normal duration and the budgeted cost
associated with completing the activity under normal circumstances. Suppose also that,
through additional expenditures, the duration of each activity can be reduced. This is
known as crashing. For each activity then, we know the crash completion time and the

138 Operations Research

c. Crash point

Cost

Normal point

Duration

FIGURE 3.22
Cost versus time trade-off.

crash cost. By crashing critical jobs, total project length can be reduced. If the cost of crash-
ing is less than the indirect costs that can be saved, then we not only reduce total costs but
we can also enjoy various subjective benefits associated with completing a project ahead
of schedule.

Figure 3.22 shows a straight-line relationship that is typically assumed, describing crash
costs and durations and normal costs and durations. Each activity has its own cost vs. time
trade-off, represented by the slope of the straight line, and its own crash point (or crash
limit) beyond which no amount of added resources can reduce the activity’s duration.

We take advantage of cost vs. time trade-offs in the following way. Using normal costs
and durations for all activities, we first determine a critical path, as before. Then we con-
sider reducing the duration of critical activities.

If we crash all the critical activities simultaneously, then almost certainly the network’s
critical path will have changed, and we suddenly find that we are working on the wrong
problem. Instead, we should choose one of the critical activities to crash; in particular, we
should choose the one that will yield the greatest reduction in schedule length per unit of
added costs. This choice is easily made by simply selecting the activity having the smallest
cost vs. time slope.

Having now chosen which critical activity to crash, we must still proceed with caution.
As the duration of a critical activity is reduced, the activity may cease to be critical (there
is now a new critical path in the network). At this point, it is useless to further reduce
this activity, and instead we should be investing in the reduction of some currently critical
activity. It has been suggested that the least-slope critical activity be crashed by only one
time unit, then a possibly new critical path found. This process is repeated until all critical
activities are at their crash limits.

Another consideration in deciding how far to crash an activity is the reduction in indi-
rect costs that can be achieved. Since the aim is presumably to minimize the sum of activity
costs and indirect costs, every crash operation should be undertaken only if it can be justi-
fied with respect to total project costs.

As an example, consider again the project network of Figure 3.21. The normal and crash
points for each activity are given in Table 3.22, where D, denotes the normal duration of
the activity, C, denotes the normal cost, D. denotes the crash limit, and C. denotes the

Network Analysis 139

TABLE 3.22
Crash Costs
Normal Crash .
Crashing

Activity D, C, D, C, Cost per Day

A 4 400 2 820 210

B 3 500 3 500 —

C 3 350 2 500 150

D 5 300 3 700 200

E 4 100 3 125 25

F 2 200 1 300 100

crash cost. The cost versus time slopes for each activity are computed as (C. — C,)/(D, — D),
and are shown in the far right column.

Suppose that indirect costs amount to $220/day; therefore, the total project cost under a
normal schedule is (400 + 500 + 350 + 300 + 100 + 200) plus ($220/day - 11 days) = 1850 +
2420 = $4270. If all activities were at their crash point, then the project duration would be
7 days, and the total project cost would be (820 + 500 + 500 + 700 + 125 + 300) + ($220/
day - 7 days) = 2945 + 1540 = $4485. Clearly in this case, we are paying crash costs for
activities that do not contribute to the reduction in project length. So, we would expect the
optimal schedule to fall somewhere between these two extremes.

Beginning with the normal schedule, where the critical activities are A, D, and F, we find
that we can crash activity F at a cost of only $100/day; and by crashing activity F to its limit,
we can reduce total overhead by $220, for a net savings of $120. The total project cost would
then be $4150, and the project duration is 10 days.

The critical path has not changed, so we now consider critical activities A and D. The
daily reduction at the least cost is obtained by crashing activity D. Crashing D by one day
costs $200, but saves $220; therefore, the total cost is now $4130, and project duration is
nine days. Since the critical path still includes activity D, we can crash it by one additional
day, to obtain an eight-day project at a total cost of $4110.

Activity A is now the only critical activity that is not at its crash limit, and we can save
$220 — $210 = $10 by crashing A to three days for a total project cost of $4100. At this point,
activities A and B are on parallel critical paths; therefore, any crashing must be applied
simultaneously to both projects. In our case, project B cannot be crashed, and therefore the
project duration cannot be reduced to less than seven days. (Notice that if project B could
have been reduced but if the combined cost of crashing activities A and B exceeded $220,
then crashing them would not have been economical.)

Since critical activities A, B, D, and F are all crashed as far as possible to reduce the
project duration, the current schedule is optimal. The durations of activities A, B, C, D, E,
and F, respectively, are 3, 3, 3, 3, 4, and 1. The project cost is (610 + 500 + 350 + 700 + 100 +
300) + 7(220) = 2560 + 1540 = $4100.

3.7.3 Probabilistic Project Scheduling

For certain types of projects, there may be no previous experience from which to deter-
mine the duration of the individual activities. PERT provides a means of handling such
uncertainties through the use of probabilities for the completion times of the activities.

140 Operations Research

The project manager is required to provide three time estimates for each activity: an
optimistic duration, denoted as a, specifying the minimum reasonable completion time
if all goes well; a pessimistic duration, denoted as b, specifying the maximum duration if
things go badly; and a most probable duration, denoted as m.

To apply critical path methods to a project layout based on probabilistic completion time
estimates, we need to know two statistics for each activity. The expected time to complete
each activity can be used as the actual time in order to find a critical path (as in the deter-
ministic case), and the variance will give an indication of the amount by which the project
might deviate from its expected project duration. These statistics are obtained, in PERT, by
assuming that activity durations follow a Beta distribution.

Based on this assumption, the expected time L for an activity is approximated as

_(a+b+4m)
B 6

because the midpoint (a + b)/2 is given about half the weight of the mode m. Illustrative
distributions are shown in Figure 3.23. In many probability distributions, the tails (a and b
in our case) are considered to lie about three standard deviations from the mean L, there-
fore, the standard deviation ¢ = (b — a)/6, and the variance 62= [(b — a)/6]%

These statistics are now used in the following straightforward way. The activity means pt
are used as activity durations, and the critical path method is used to determine the critical
activities. The expected project duration D is the sum of all the means of the activities on
the critical path. Likewise, the variance V of the project duration is the sum of the vari-
ances of the activities on the critical path.

Under PERT assumptions, the Central Limit Theorem implies that the project duration
(being the sum of independent random variables) is normally distributed with mean D
and variance V. Using tables for a normal distribution, we can, for example, determine the
probability that the actual project duration will fall in a certain range, or the probability of
meeting certain specified deadlines. For a more detailed discussion of probabilistic project
scheduling, refer to the textbook by Ravindran et al. (1987).

/\J‘\
/”\f\

Expected time for activity.

=
8
5
= |

= 4+
5 4
3 +
= +

Network Analysis 141

3.8 Software for Network Analysis

Many network problems can be solved with software developed for ordinary linear
programming problems. But more specialized software for network problems has been
developed that takes advantage of the distinctive structure of network formulations,
and can be used to solve network problems very efficiently. Real network problems may
involve hundreds of thousands of nodes and millions of arcs, and fortunately there is
software available for solving such large problems on a variety of hardware platforms.
Some of the more noteworthy ones are mentioned here.

IBM CPLEX Optimization Studio has a network optimizer available through a call-
able library for various platforms.

SAS/OR OPTNET is a system for analyzing various characteristics of networks and
solving network optimization problems and related models having network-structured
data. This software handles general assignment problems, performs critical path anal-
ysis, determines minimum cost network flows, finds shortest paths, and solves trans-
portation problems. It performs cycle detection and analyzes connectivity in networks,
and does project scheduling and resource-constrained scheduling. OPTNET interfaces
with OPTMODEL, described earlier in Chapter 1.

TransCAD is an integrated system of Geographic Information System (GIS) and
transportation modeling capabilities, designed to help transportation professionals
plan, organize, manage, and analyze transportation data. It offers a complete toolbox
of analytical methods for mapping, assignment, site location, minimum cost distribu-
tion, transportation, vehicle routing and scheduling, planning, logistics, and market-
ing. TransCAD supplies state-of-the-art data collection tools for accessing data from the
Global Positioning System (GPS).

COIN-OR, the open source OR software website (www.coin-or.org), offers software
tools for network optimization. Sifaleras (2015) summarized these tool into Coin Graph
Classes (Cgc), the Efficient Modeling and Optimization in Networks (LEMON), and
VRPH. Cgc is a collection of network representations and algorithms aiming to facilitate
the development and implementation of network algorithms; LEMON is a C++ tem-
plate library providing efficient implementations of network optimization algorithms
and common graph structures; and VRPH constitutes an open source C++ package in
a software library containing tools to create metaheuristic algorithms for the Vehicle
Routing Problem.

Mascopt (Mascotte Optimization) is an open source project that provides a set of
Java-based tools for network optimization problems to help implementing solutions to
network problems by providing a data model of the network and the demands, libraries
to handle networks and graphs, and ready to use implementation of existing algorithms
or linear programs. It also provides some graphical tools to display graph results. For
more detail, Lalande et al. (2004).

Google-OR Tools provides open source solvers for network flow problems in its graph
libraries.

Finally, More and Wright (1993) published a guide to optimization software that
included descriptions of older computer programs including network optimization soft-
ware such as GENOS, LNOS, LSNNO, NETFLO, and NETSOLVE.

http://www.coin-or.org

142 Operations Research

3.9 Illustrative Applications

3.9.1 DNA Sequence Comparison Using a Shortest Path Algorithm
(Waterman 1988; Wagner and Fischer 1974)

A problem that arises frequently in the field of cell biology is the comparison of DNA
sequences and the analysis of how one sequence is transformed into another. A sequence
is a finite succession of symbols from a finite alphabet. In the case of deoxyribonucleic
acid (DNA), sequences are composed from the set of nucleotide bases, denoted {A (ade-
nine), C (cytosine), G (guanine), T (thymine)}. Although biologists are not in complete
agreement over the mechanisms by which one DNA sequence evolves into another, it is
generally assumed that the transformation consists of a series of the following types of
changes:

1. Insertion of a character (nucleotide)
2. Deletion of a character
3. Substitution of one character for another

The similarity between two DNA sequences S and T can then be measured by assessing a
cost for each of these three types of changes, and then finding the least expensive transfor-
mation of S into T. The cost corresponding to this transformation is called the evolutionary
distance from DNA sequence S to DNA sequence T.

Transitions can be modeled by defining a node to represent a DNA sequence, and cre-
ating other neighboring nodes to represent all DNA sequences obtainable from the origi-
nal one by making one of the three types of changes. Arcs are labeled with the cost of
the change. Then a shortest path algorithm applied from the original node to any other
desired node will yield the evolutionary distance between the two DNA sequences.

DNA sequences are quite long (millions of nucleotide bases), so for practical imple-
mentations, parallel computer hardware known as systolic architectures have been devel-
oped for research purposes. This approach involves a specialized spatial arrangement
of processors and an appropriate flow or pulsing of data among the processors, in order
to obtain the desired computational results much more quickly than could be achieved
using general-purpose computing hardware. For further discussion of systolic archi-
tectures incorporating shortest path and other network based algorithms, refer to the
work of (Lopresti 1987). A completely different but effective approach to this problem is
based on dynamic programming methods; see Wagner and Fischer (1974) for a detailed
description of this concise solution to the DNA sequencing problem.

3.9.2 Multiprocessor Network Traffic Scheduling (Bianchini and Shen 1987)

In the design of real-time signal processing computer systems, one of the most important
issues is the efficient scheduling of data communication traffic among special-purpose
processing elements. For example, certain types of digital filters can be implemented on a
small set of specialized functional modules, and the determination of filter functionality
lies in the specification of intermodule communication.

The process of mapping consists of first placing functional data operators onto pro-
cessing elements. This is easily accomplished using well-known placement algorithms.

Network Analysis 143

The second and more difficult phase of the problem is the design of the network data
traffic. This requires routing each unit of traffic onto a path of network links between the
source and destination processing elements, with the objective of maximizing the aggre-
gate flow of network traffic that can be maintained in a system.

Traffic management is viewed as a multi-commodity fluid flow problem. The multi-
commodity aspect arises because of the need to maintain the identity of data traffic
between different source/destination pairs, although the traffic may simultaneously
occupy the same data link. An optimal traffic pattern is obtained when a cut set of satu-
rated links is formed.

The network formulation results in an extremely large linear program because of the
exponential number of network paths that contribute explicitly to the size of the prob-
lem. An alternative is a policy iteration method that successively improves current traffic
patterns by re-routing certain data units. To improve a traffic pattern, under-utilized
paths are determined between each source/destination pair, and then it must be decided
whether re-routing along the proposed new path is cost-effective. To do this, a minimum
spanning tree for the network is found. It can be shown that the least cost path con-
necting any two nodes in a network lies on the minimum spanning tree. Therefore, if
a minimum spanning tree is known, the traffic scheduler can examine each processing
element adjacent to a saturated link, and if traffic can be re-routed away from the satu-
rated link and onto a minimum spanning tree link, then the cost of the traffic pattern can
be reduced, while at the same time smoothing congestion and perhaps creating capacity
for flow of additional data.

3.9.3 Shipping Cotton from Farms to Gins (Glover et al. 1992; Klingman et al. 1976)

At a time when cotton production had decreased by 50% in the Upper Rio Grande River
Valley of Texas and New Mexico, it was necessary to determine how best to utilize the
processing capacity available in the area’s 20 cotton gins. Analysts began by mapping the
150 farms producing cotton, and charting the distances to the gins that were scattered
throughout the Valley.

The efficiency of the industry had been brought into question because of the excess
ginning capacity that resulted from the decrease in cotton crop production. Local farm-
ers and gin operators had resorted to individual, fragmented decisions and actions that
did not contribute to overall prosperity or profitability in the region. A mathematical
model was constructed that represented the entire system, with the hope that a com-
prehensive approach would encourage joint cooperation among all farmers and gin
operators.

Because of the excess gin capacity, there were fears that some gins may have to close
down and, indeed, such reductions were found to contribute favorably to profitability.
Gin operation involves annual fixed charges to activate the gin, such as electrical connec-
tions, cleaning, and salaried personnel. Variable costs of operation then include regular
time and overtime labor costs. If the regular shift capacity of a gin is consumed, any
additional cotton must be processed at the overtime rate; but this use of the more expen-
sive overtime capacity can be justified if it avoids the fixed activation costs of starting up
an additional gin.

The problem was first viewed as a shipping cost problem, to identify the particular gin
that should service each farmer’s needs. But it was quickly discovered that the real issue

144 Operations Research

was the need to quantify the utilization of the cotton gins. This information could provide
justification for some tough decisions related to the closing of certain gins which simply
could not operate economically. The model grew into a fixed-charge transshipment formu-
lation that included:

Production levels at each farm

Shipping costs from each farm to each gin
Holding costs for storing cotton at each farm
Seasonal gin activation costs

Two levels of operating capacity at each gin

The network model initially involved around 5000 nodes and over 2 million arcs, but
refinements reduced this to around 100,000 arcs. The solution indicated that substantial
cost savings (a 20% reduction in ginning costs) could be achieved by closing some gins
and working as a cooperative. Implementation was allowed to evolve over several seasons
in order to obtain the full cooperation of all the farmers and gin operators in the region.

3.10 Summary

Network analysis is applicable to an enormous variety of problems that can be mod-
eled as networks and optimized using network algorithms. Some of the systems repre-
sent physical networks for transportation or flow of commodities, while others are more
abstract and can be used to model processes or plan and manage projects.

A maximum flow algorithm optimizes the total flow of an entity through a network in
which links have capacities that limit the flow. This algorithm not only determines the
greatest possible flow, but in so doing also locates and identifies the bottlenecks in the
network.

Transportation models find the minimum cost flow from an origin, through a net-
work, to a destination, subject to supply and demand requirements. The transportation
Simplex algorithm is often used for this optimization problem. A slight refinement in
the interpretation of the transportation model results in an assignment problem, which
is used to model the matching or assignment of two sets of entities in the most advanta-
geous way.

Maintaining network connectivity has important practical implications. Minimum cost
spanning trees provide a simple and useful means of addressing the connectivity issue.
When appropriate connections between nodes do exist in a network, it is often useful
to find the shortest route between two specified nodes. Simple labeling algorithms pro-
vide solutions to this problem, and also inspire a broader approach known as dynamic
programming. Dynamic programming has far-ranging applications, but generally can be
viewed as a way to model decisions that take place in stages over a period of time.

Project activity networks are used to plan and coordinate large complex projects consist-
ing of many tasks. Critical paths in networks determine the minimum project completion
time, and identify those tasks or activities whose timely completion is critical to achieving
this minimum project duration.

Network Analysis

145

Key Terms

activity

acyclic graph

arcs

assignment problem
backward pass
bipartite graph
capacitated transshipment
chain

connected graph
critical activity
critical event

critical path

critical path method
crash completion time
crash cost

crash limit

crashing

critical event

cut

cut set

cycle

cyclic path

decision variable
degree of a node
demand

Dijkstra’s algorithm
directed chain
directed graph
dynamic programming

dynamic programming principle of optimality

earliest time

events

expected project duration
expected time

flow

Ford-Fulkerson algorithm
forward pass

graph

Hungarian method
isolated node

latest time

longest path

maximum flow
minimum cost method

146

minimum row cost method
minimum spanning tree
multiple sinks

multiple sources
network

node-arc incidence matrix
nodes

northwest corner rule
path

PERT

predecessor

Prim’s algorithm

project management
shortest network problem
shortest path

sink

slack time

source

spanning tree

stable matching

stages

states

Steiner tree

successor

supply

transportation problem
transportation Simplex
tree

undirected graph
unstable matching
variance

Operations Research

Exercises

3.1 Find the maximum flow through the networks shown in Figure 3.24. Identify the
edges in the minimum cut set. In each case, assume node 0 is the source, and the
highest-numbered node is the sink. Arc capacities are shown in boxes.

3.2 A data communications network can be described by the diagram in Figure 3.25.
Every data link from node i to node j has a capacity which is denoted as a label on
the data link in the diagram. Non-existent links have zero capacity. Data is being
generated at node 1 and is to be routed through the network (not necessarily pass-
ing through all other nodes) to node 6 where the data will be used. The amount of
data generated at node 1 is exactly the amount of data consumed at node 6. No data
is generated or used at intermediate nodes, so all data that enters an intermediate

node must leave it, and vice versa.

Network Analysis 147

FIGURE 3.24
(a,b) Maximum flow in networks.

FIGURE 3.25
Communications network.

148 Operations Research

a. What is the maximum feasible amount of data that can flow through this
network?

b. What is the flow on each of the data links in order to achieve this maximum?
c. Which links comprise the bottleneck in this network?

d. What is the complexity of the Ford-Fulkerson algorithm for maximum network
flow?

3.3 Formulate and solve the following distribution problem to minimize transporta-
tion costs, subject to supply and demand constraints. Two electronic component
fabrication plants, A and B, build radon-cloud memory shuttles that are to be dis-
tributed and used by three computer system development companies. Following
are the various costs of shipping a memory shuttle from fabrication plants to the
system development sites, the supply available from each fabrication plant, and the
demand at each system development site.

Fabrication plant A is capable of creating a supply of 160 shuttles; and the cost to
ship to site 1, 2, and 3 is $1000, $4000, and $2500, respectively. Fabrication plant B
can produce 200 shuttles, and the shipping costs are $3500, $2000, and $4500 to the
three sites. The demand at site 1 is 150, at site 2 is 120, and at site 3 is 90 memory
shuttles.

a. Identify the decision variables, write the objective function, and give the con-
straints associated with this problem.

b. Solve this distribution problem.

34 Suppose that the countries of Agland, Bugland, and Chemland produce all
the wheat, barley, and oats in the world. The world demand for wheat requires
125 million acres of land devoted to wheat production. Similarly, 60 million acres
of land are required for barley, and 75 million acres of land are needed for oats.
The total amount of land available for these purposes in Agland, Bugland, and
Chemland is 70 million, 110 million, and 80 million acres of land, respectively.
The number of hours of labor needed in the three countries to produce an acre
of wheat is 18 hours, 13 hours, and 16 hours, respectively. The number of hours
of labor needed to produce an acre of barley is 19 hours, 15 hours, and 10 hours
in the three countries, respectively. And the labor requirements for an acre of
oats are 12 hours, 10 hours, and 16 hours in the three countries, respectively. The
hourly labor cost to produce wheat is $6.75 in each of the countries. The labor cost
per hour in producing barley is $4.10, $6.25, and $8.50 in the three countries. To
produce oats, the labor cost per hour is $8.25 in each country. The problem is to
allocate land use in each country so as to meet the world food requirements and
minimize the total labor cost. Formulate this problem as a transportation model,
letting decision variable x;; denote the number of acres of land allocated in coun-
try i for crop j.

3.5 Four workers are to be assigned to machines on the basis of the worker’s rela-
tive skill levels on the various machines. Five machines are available, so one
machine will have no worker assigned to it. In order to maximize profitability,
we wish to minimize the total cost of the assignment. Use the cost matrix given
in the following, and the Hungarian assignment algorithm, to determine the
optimal assignment of workers to machines, and give the cost of the optimal
assignment.

Network Analysis 149

3.6

3.7

3.8

39

Machines
Workers 1 2 3 4 5
1 0 9 8§ 12 7
2 3 4 5 14 6
3 2 1 1 10 2
4 3 5 12 6

Four federally funded research projects are to be assigned to four existing research
labs, with one project being allotted to each lab. The costs of each possible place-
ment are given in the following table. Use the Hungarian method to determine the
most economical allocation of projects.

Project Sandy Lab Furrmy Lab Xenonne Lab Liverly Lab
Cryogenic cache memory 12 15 10 14
Spotted owl habitat 8 10 6 9
Pentium oxide depletion 20 22 18 12
Galactic genome mapping 10 12 8 16

To solve a maximization assignment problem, first convert it to a minimization
problem by multiplying each element in the cost matrix by —1, then adding suf-
ficiently large constants to rows and column so that no element is negative. Then
apply the Hungarian method to the new problem. Suppose the following matrix
elements represent the value or productivity of associating certain workers with
machines. Solve this assignment problem to maximize the productivity.

Machines
Workers 1 2 3 4
1 6 7 6 7
2 4 3 8 8
3 5 8 9 8
4 9 5 4 3

The following matrix contains the hazard insurance premiums that a company must
pay in order for employee i to operate machinej. It is assumed that a low insurance pre-
mium implies that a worker can safely and proficiently operate a machine. Determine
an assignment of workers to machines that will be the safest (least hazardous).

36 24 36 12
14 28 40 26
12 22 28 38
28 22 38 38

What is the total insurance premium corresponding to the optimal assignment?

Prospective employees are to be assigned to jobs by the following mechanism:
Each employee ranks his job preferences (rank 1 means highest preferences) and

150 Operations Research

this information is contained in an array P where p; denotes employee i’s ranking
of job j. Similarly, each prospective employer ranks his preferences of employees,
and matrix R is such that r; denotes employer i's ranking of employee j. Formulate
this problem to determine an assignment of n jobs to n employees that optimizes
the mutual satisfaction of employers and employees. (Assume that each employer
corresponds to a different job.)

3.10 A group of m people, where m < 40, is to be organized into teams of at most four
people. Each team is associated with a workstation, of which ten are available.
People may not express preferences for teammates; however, each ranks his work-
station preference, and these preferences appear in a 40 x 10 matrix P where p;
denotes the preference of person i for workstation j (low numbers in P indicate
high preference). This is a variation of the classical assignment model. Formulate
this problem to optimize the association of people to workstations.

3.11 Use Kruskal’s algorithm to find the minimum cost spanning tree for the undi-
rected graph in Figure 3.26. Identify the arcs in the tree, and state the cost of the
minimum spanning tree.

3.12 Use Prim’s algorithm to find the minimum cost spanning tree for the graph in
Figure 3.26. Identify the arcs that comprise the minimum spanning tree, and state
the cost of the minimum spanning tree for this graph.

3.13 Consider a graph in which the four nodes are located at the corners of a unit square,
and the shortest possible arcs connect all pairs of nodes.

a. Find the minimal spanning tree of this graph.

b. Construct the Steiner tree obtained by placing a junction point in the center of
the square. Is this an optimal Steiner tree?

c. Determine the total length of the connections in this Steiner tree, and compare
it with the length of the connections in the minimum spanning tree.

FIGURE 3.26
Minimum spanning tree.

Network Analysis 151

314 How many different spanning trees are there in a fully connected undirected
graph of five nodes?

3.15 How many arcs are there in a spanning tree of a fully connected undirected graph
with 1000 nodes?

3.16 Use the backward labeling algorithm to find the shortest path from node 1 to node
9 in the graph in Figure 3.27. The labels shown on the arcs denote costs or distances
between nodes.

a. What are the arcs in the shortest path through this network?
b. What is the length (cost) of the shortest path?
3.17 Following is the connectivity matrix of a graph. Use the shortest path labeling

algorithm to find the shortest route from node 1 to node 6. The symbol co denotes
the absence of a path.

8§ 8 8 8 8 ©
8 8 8 8 © w

8 8 © 8 =, o
8 © w N 8 8
SO N O 8 @ 8

8 8 8 © w 8

3.18 Formulate the general problem of finding the minimum cost (shortest) path from
node 1 to node n in a directed acyclic network of n nodes, where the distance from

FIGURE 3.27
Shortest path.

152 Operations Research

node i to node j is denoted d;;. Hint: Let the decision variables be restricted to have
only the values zero or one, with the following interpretation:

x; = 1 means the arc from node i to node j is in the shortest path

=0 otherwise

Give the objective function and the constraints, in terms of these decision variables.
3.19 Six thousand dollars is to be applied to a student’s educational expenses in the fol-

lowing way:

Between $1000 and $3000 for books

Between $2000 and $4000 for tuition

Between $1000 and $2000 for tutors

The allocation is to be made in whole thousands of dollars. An analyst has quanti-
fied the anticipated payoffs (perhaps in terms of increased future earnings) as:

Books Tuition Tutors
Return Return Return
Invested
$1K $5K $2K $6K $1K $2K
$2K $8K $3K $8K $2K $3K
$3K $10K $4K $9K

Use dynamic programming to determine the optimal allocation of the $6000. Show
the tables you build as you solve this problem.

3.20 A student must select ten elective courses out of four different departments. From
each department, at least one and no more than three courses must be chosen. The
selection is to be made in such a way as to maximize the combined general knowl-
edge from the four fields. The following chart indicates the knowledge acquired as
a function of the number of courses taken from each field. Solve this as a dynamic
programming problem. Show each of your tables in this staged decision-making
process.

Number of courses taken

1 2 3
Anthropology 25 50 60
Art 20 30 40
Economics 20 40 50
Physics 50 60 60

3.21 A space telescope being launched aboard a space shuttle is to be deployed and
immediately will be transmitting data to earth-bound data processors at a prodi-
gious rate. Suppose there are four teams of technical experts that can be allocated
among two projects: one aimed at collecting and compressing data, and another
whose responsibility is to catalog and store data. Because this data is extremely
valuable and virtually irreplaceable, it is essential that you allocate the teams

Network Analysis 153

optimally to the two projects. Each of the two projects must have at least one team
assigned to it. Use a dynamic programming table-oriented method to allocate the
four teams. The following information is available:

Payoff for Assigning Teams to Projects

Number of Teams Collecting and Cataloging and
Allocated Compression Project Storage Project
1 5 4
2 9 10
3 12 15

3.22 A small project consists of ten jobs whose durations in days are shown on the arcs
in the activity diagram in Figure 3.28:

a. Calculate early and late occurrence times for each event.
b. What is the minimal project duration?
c. Which activities are critical?

3.23 Suppose that for the aforementioned project, we have the following crash times
and costs:

Task (i, j) Minimum (Crash) Duration Crash Cost ($/day)

1,2 2 20
@,3) 3 15
@, 4) 5 25
(3,5) 2 20
(3, 6) 1 —
(4, 6) 3 20
4,7) 2 _
(5,8) 5 15
(6,8) 5 15
7,8) 3 20

FIGURE 3.28
Activity diagram.

154 Operations Research

a. What is the minimum (crashed) project duration?

b. Determine the minimum crashing costs of schedules ranging from normal
length down to the minimal length.

c. If overhead costs amount to $75 per day, what is the optimal schedule length
with respect to both crashing and overhead costs? Indicate the scheduled dura-
tion of each activity in this optimal schedule.

References and Suggested Readings

Aho, A. V, and]. E. Hopcroft. 1974. The Design and Analysis of Computer Algorithms. Delhi, India:
Pearson Education India.

Ahuja, R. K, T. L. Magnanti, and J. B. Orlin. 1993. Network Flows: Theory, Algorithms, and Applications.
Upper Saddle River, NJ: Prentice-Hall.

Battersby, A. 1967. Network Analysis for Planning and Scheduling. Basingstoke, UK: Macmillan.

Battersby, A. 1970. Network Analysis for Planning and Scheduling. New York: John Wiley & Sons.

Bazaraa, M. S, J. J. Jarvis, and H. D. Sherali. 2009. Linear Programming and Network Flows. New York:
John Wiley & Sons.

Beightler, C. S, D. T. Phillips, and D. J. Wilde. 1976. Foundations of Optimization. Englewood Cliffs,
NJ: Prentice-Hall.

Bellman, R. 1957. Dynamic Programming. Princeton, NJ: Princeton University Press.

Bellman, R. 1958. On a routing problem. Quarterly of Applied Mathematics 16 (1): 87-90.

Bern, M. W,,and R. L. Graham. 1989. The shortest-network problem. Scientific American 260 (1): 84—89.

Bernot, M., V. Caselles, and J. Morel. 2009. Optimal Transportation Networks: Models and Theory. New
York: Springer.

Bertsekas, D. P. 1991. Linear Network Optimization: Algorithms and Codes. Cambridge, MA: MIT Press.

Bertsekas, D. P. 1998. Network Optimization: Continuous and Discrete Models. Belmont, MA: Athena
Scientific.

Bianchini, R. P, and]. P. Shen. 1987. Interprocessor traffic scheduling algorithm for multiple-
processor networks. IEEE Transactions on Computers 36 (4): 396—409.

Bodin, L., B. Golden, and T. Goodwin. 1986. Vehicle routing software for microcomputers: A survey.
Proceedings of a Symposium on Impacts of Microcomputers on Operations Research, University of
Colorado, Denver, CO., pp. 65-72.

Bonald, T., and M. Feuillet. 2011. Network Performance Analysis. New York: John Wiley & Sons.

Bondy, J. A., and U. S. R. Murty. 2008. Graph Theory. New York: Springer.

Bradley, S. P, A. C. Hax, and T. L. Magnanti. Applied Mathematical Programming. Reading, MA:
Addison-Wesley.

Christofides, N. 1975. Graph Theory: An Algorithmic Approach. New York: Academic Press.

Cooper, L., and M. W. Cooper. 1981. Introduction to Dynamic Programming. Elmsford, NY: Pergamon Press.

Cottle, R, and J. Krarup (Eds.). 1972. Optimization methods for resource allocation. Proceedings
NATO Conference, Elsinor, Denmark.

Dekel, E., D. Nassimi, and S. Sahni. 1981. Parallel matrix and graph algorithms. SIAM Journal on
Computing 10 (4): 657-675.

Denardo, E. V. 2003. Dynamic Programming: Models and Applications. North Chelmsford, MA: Courier
Corporation.

Deo, N. 1974. Graph Theory with Applications to Engineering and Computer Science. Englewood Cliffs,
NJ: Prentice-Hall.

Deo, N, and C. Y. Pang. 1984. Shortest-path algorithms: Taxonomy and annotation. Networks 14 (2):
275-323.

Network Analysis 155

Dial, R., F. Glover, D. Karney, and D. Klingman. 1979. A computational analysis of alternative algo-
rithms and labeling techniques for finding shortest path trees. Networks 9 (3): 215-248.

Dinic, E. A. 1970. Algorithm for solution of a problem of maximum flow in a network with power
estimation. Soviet Mathematics Doklady 11: 1277-1280.

Dreyfus, S. E. 1969. An appraisal of some shortest-path algorithms. Operations Research 17 (3): 395-412.

Dreyfus, S. E., and A. M. Law. 1977. Art and Theory of Dynamic Programming. San Diego, CA: Academic
Press.

Edmonds, J., and R. M Karp. 1972. Theoretical improvements in algorithmic efficiency for network
flow problems. Journal of the ACM (JACM) 19 (2): 248-264.

Evans, J., and E. Minieka. 1992. Optimization Algorithms for Networks and Graphs. New York: Marcel
Dekker.

Floyd, R. W. 1962. Algorithm 97: Shortest path. Communications of the ACM 5 (6): 345.

Ford Jr, L. R. 1956. Network Flow Theory. Santa Monica CA: RAND Corporation.

Francis, R. L., and J. A. White. 1976. Facility Layout and Location. Englewood Cliffs, NJ: Prentice-Hall.

Fulkerson, D. R. 1961. An out-of-kilter method for minimal-cost flow problems. Journal of the Society
for Industrial and Applied Mathematics 9 (1): 18-27.

Glover, F, D. Klingman, and N. V. Phillips. 1992. Network Models in Optimization and their Applications
in Practice, Vol. 36. New York: John Wiley & Sons.

Hall, R, and J. Partyka. 2016. Vehicle routing: Higher expectations drive transportation. OR/MS
Today 43 (1): 40—47.

Hall, R. W.2003. Handbook of Transportation Science, 2nd ed. Boston, MA: Kluwer Academic Publishers.

Harary, F. 1969. Graph Theory. Reading, MA: Addison-Wesley.

Hu, T. C. 1970. Integer Programming and Network Flows. Reading, MA: Addison-Wesley.

Hwang, F. K. 2017. The Steiner tree problem, 2012. In Y. Jiang, and Z.-P. Jiang (Eds.), Robust Adaptive
Dynamic Programming. Hoboke, NJ: John Wiley & Sons.

Karney, D., and D. Klingman. 1976. Implementation and computational study on an in-core, out-of-
core primal network code. Operations Research 24 (6): 1056-1077.

Karzanov, A. V. 1974. Determination of maximal flow in a network by method of preflows. Soviet
Mathematics Doklady 15 (1): 434-437.

Kennington, J. L., and R. V. Helgason. 1980. Algorithms for Network Programming. New York: John
Wiley & Sons.

Klingman, D. D,, and R. F. Schneider. 1985. Microcomputer-based Algorithms for Large Scale Shortest
Path Problems. Austin, TX: University of Texas.

Klingman, D., P. H. Randolph, and S. W. Fuller. 1976. A cotton ginning problem. Operations Research
24 (4): 700-717.

Klingman, D., and R. Russell. 1975. Solving constrained transportation problems. Operations Research
23 (1): 91-106.

Knuth, D. E. 1976. Marriages Stables. Montreal, Canada: Les Presses de 1'Universite de Montreal.

Kuhn, H. W. 1955. The Hungarian method for the assignment problem. Naval Research Logistics
(NRL) 2 (1-2): 83-97.
Lakhani, G., and R. Dorairaj. 1987. A VLSI implementation of all-pair shortest path problem. ICPP.
Lalande, J. F, M. Syska, and Y. Verhoeven. 2004. Mascopt-a network optimization library: Graph
manipulation. Technical Report, RT-0293, INRIA, Sophia Antipolis Cedex (France), p. 25.
Lawrence, K. D, and S. H. Zanakis. 1984. Production Planning and Scheduling: Mathematical Programming
Applications. Peachtree Corners, GA: Institute of Industrial Systems Engineers.

Lew, A., and H. Mauch. 2007. Dynamic Programming: A Computational Tool, Vol. 38. New York: Springer.

Lewis, T. G. 2009. Network Science, Theory and Application. Hoboken, NJ: John Wiley & Sons.

Lopresti, D. P. 1987. P-NAC: A systolic array for comparing nucleic acid sequences. Computer 20 (7): 98-99.

Marberg, J. M., and E. Gafni. 1987. An O(n,m,,,) distributed max-flow algorithm. Proceedings of
the 1987 IEEE International Conference on Parallel Processing. Los Angeles, CA: University of
California.

Mathis, P. (Ed.). 2010. Graphs and Networks, 2nd ed. Hoboken, NJ: John Wiley & Sons.

Melnyk, S. A, and D. M. Stewart. 2002. Managing metrics. APICS: The Performance Advantage, 12 (2): 23-26.

156 Operations Research

Melzak, Z. A. 1961. On the problem of Steiner. Canadian Mathematical Bulletin 4 (2): 143-148.

Moder, J. J., and C. R. Phillips. 1970. Project Management with CPM and PERT, 2nd ed. New York: Van
Nostrand Reinhold.

Moeller, G. L., and L. A. Digman. 1981. Operations planning with VERT. Operations Research 29 (4):
676—697.

More, J.], and S. J. Wright. 1993. Optimization Software Guide. Philadelphia, PA: SIAM Publications.

Murty, K. 1992. Network Programming. Upper Saddle River, NJ: Prentice-Hall.

Nésberg, M. 1986. Two tools for marking for bucking analysis. In OR Models on Microcomputers.
New York: Elsevier, pp. 23-33.

Nembhauser, G. L. 1966. Introduction to Dynamic Programming. New York: John Wiley & Sons.

Nilsson, N. J. 1971. Problem-Solving Methods in Artificial Intelligence. New York: McGraw-Hill.

Phillips, D. T,, and A. Garcia-Diaz. 1981. Fundamentals of Network Analysis. Englewood Cliffs, NJ:
Prentice-Hall.

Price, W. L. 1971. Graphs and Networks: An Introduction. New York: Auerbach Publishers.

Ravindran, A, D. T. Phillips, and J. J. Solberg. 1987. Operations Research: Principles and Practice. New
York: John Wiley & Sons.

Reid, R. A.,and W. A. Stark. 1986. Optimal replacement policy developed for items that fail. Industrial
Engineering 18 (3): 23-27.

Salvendy, G. (Ed.). 1982. Handbook of Industrial Engineering. New York: John Wiley & Sons.

Sedgewick, R. 1990. Algorithms. Reading, MA: Addison-Wesley.

Sifaleras, A. 2015. Classification of network optimization software packages. In Encyclopedia of
Information Science and Technology, 3rd ed. Hershey, PA: IGI Global, pp. 7054-7062.

Tarjan, R. E. 1982. Sensitivity analysis of minimum spanning trees and shortest path trees. Information
Processing Letters 14 (1): 30-33.

Tarjan, R. E. 1983. Data Structures and Network Algorithms. Philadelphia, PA: SIAM.

Toint, P. L., and D. Tuyttens. 1992. LSNNO, a FORTRAN subroutine for solving large-scale nonlin-
ear network optimization problems. ACM Transactions on Mathematical Software (TOMS) 18 (3):
308-328.

Wagner, R. A., and M. J. Fischer. 1974. The string-to-string correction problem. Journal of the ACM
(JACM) 21 (1): 168-173.

Waterman, M. S. 1988. Mathematical Methods for DNA Sequences. Boca Raton, FL: CRC Press.

Weintraub, A. 1970. The shortest and the K-shortest routes as assignment problems. Networks 3 (1):
61-73.

Wheelwright, J. C. 1986. How to choose the project-management microcomputer software that’s
right for you. Industrial Engineering 18 (1): 46-50.

White, D. J. 1969. Dynamic Programming. San Francisco, CA: Holden-Day.

Wiest,]. D, and F. K. Levy. 1969. A Management Guide to PERT/CPM. Englewood Cliffs, NJ: Prentice-Hall.

Winter, P. 1987. Steiner problem in networks: A survey. Networks 17 (2): 129-167.

4

Integer Programming

4.1 Fundamental Concepts

Mathematical programming problems in which the variables are constrained to have inte-
ger values are called integer programming (IP) problems. Many engineering, industrial,
and financial applications involve integer constraints. For example, in a manufacturing
scenario, it would be difficult to implement a solution that specifies producing 10.4 cars
or 7.2 tables. Fractional values are infeasible. For integer programming problems, the fea-
sible region is neither continuous nor convex, as illustrated in Figure 4.1 for a simple two-
dimensional integer problem. Observe that the feasible points for this problem do not lie
at the extreme points of the region, or even on the boundaries; and in fact, the elegant
solution techniques that have been developed for solving linear programming problems
generally do not find solutions to integer problems. The Simplex method for linear pro-
gramming converges to a solution at an extreme point which is typically a point with
fractional variables.

Although the formulations of integer programming problems often look remarkably
similar to those of continuous mathematical programming problems, the resemblance is
in some ways deceptive. The algebraic expression of the objective function and the con-
straints in the two types of models may appear to have a similar form, but the additional
constraint requiring that some or all of the variables have integer values generally makes
solving the integer problem vastly more difficult, from a computational standpoint. Most
integer programming problems are classified as hard optimization problems, and many
integer programming problems belong to the class of NP-hard problems (described in
Chapter 1). So, while a general linear programming problem may be solvable in polyno-
mial time, finding an optimal infeger solution to the same formulation usually requires an
exponential amount of computation time.

Most integer programming problems are notoriously difficult, yet some integer problems
are easy to solve. In particular, many linear network problem solutions, such as assign-
ment and matching problems, transportation and transshipment problems, and network
flow problems, always produce integer results, provided that the problem bounds are inte-
gers. In these problems, all of the extreme points of the feasible region represent integer
solutions; therefore, if these problems are formulated and solved as linear programming
problems, we find that the Simplex method yields integer solutions. Unfortunately, this
occurs only for problems that have a network structure, and for the majority of integer
problems, the linear programming formulation does not suggest an easy solution.

157

158 Operations Research

x*=(

1.789,3.158)
° °

X3

2+ ° . °
150x; + 10x, < 30
14+ ° °
f T } >
1 2 3

FIGURE 4.1
Graphical representation.

For integer programming problems with linear objective and constraints, one may won-
der why we cannot simply solve the linear program (LP) and then round the answer to the
nearest integer. The rounding approach turns out to be more difficult than it may seem.
For example, if we have equality constraints, and we round down some variables, we will
probably have to round up some others, and selecting which ones go up and which ones go
down is itself an integer decision problem. Even when there are no equality constraints, it is
easy to construct examples in which rounding up or down or to the nearest integer does not
result in a feasible solution. Thus, in general, rounding does not yield satisfactory solutions.

That being said, there are some problems for which rounding can be effective. For exam-
ple, in solving a problem for manufacturing tires, if the LP solution specifies making 1296.4
tires of a particular style, it is probably safe to round the answer down to 1,296 without
drastically affecting feasibility or the objective function. In contrast, if the product being
manufactured is a multi-million dollar aircraft, rounding is probably a poor solution.
Rounding down a half a plane here or there could put a company right out of business.
In some cases, a simple guideline for deciding whether rounding is an appropriate option
might be to assess the damage (expressed as a percentage) to the objective function that
results from rounding. In our examples, rounding down 1296.4 tires will almost certainly
have a negligible impact on total profit, whereas rounding a small number of would prob-
ably have a significant effect.

An even more dramatic difficulty arises when using rounding for integer problems in
which the variables are further constrained to have values of either zero or one. Consider
a production planning problem for a large auto manufacturer such as General Motors,
where it must be decided at which plants each car model should be built. A formulation
for this problem might involve variables x;;, each having a value of one or zero, depending
on whether model i is produced at plant j, or not. Suppose there are ten plants, and each
model can be assigned to only one location. An LP solution could easily recommend a
small fraction of each model at each plant, yet rounding could produce a solution in which
no models are produced anywhere. This situation is frequently encountered in integer
programming; and in such cases, the LP solution gives virtually no insight into how to
solve the integer problem.

Integer Programming 159

4.2 Typical Integer Programming Problems

Mathematical programming problems in which all decision variables must have positive
integer values are called general integer programming problems. If all the decision vari-
ables are restricted to have only the value zero or one, the problem is then called a zero-
one programming (or binary integer programming) problem. In that case, the constraints
on the variables are sometimes called binary or Boolean constraints, and the model is often
referred to in abbreviated form as a 0-1 problem. Variations on the aforementioned prob-
lems arise if some of the variables must be integer, others must be zero or one, while still
others may have real values. Any problem involving such combinations is described as a
mixed integer programming (MIP) problem. This section illustrates each of these types of
integer problems with typical practical examples.

4.2.1 General Integer Problems

An illustration of general integer programming can be found in a simple version of the port-
folio selection problem. An investor wishes to purchase a portfolio of financial instruments
that will provide a maximum expected return. Many investment products, such as on the
futures market for example, must be purchased in large lot sizes. We can define variables
x; to denote the number of units of security i in the portfolio. The objective function mea-
sures the expected return, and the problem will often have constraints limiting the amount
of risk that the investor is willing to accept. In the simplest form of the problem, we could
assume that the only constraint on the portfolio is a limit on the number of dollars that can
be invested. Problems that have this basic underlying structure involve selecting as many
investments as possible and figuratively packing them into a portfolio of limited size.

A three-dimensional view of this same idea is seen in a problem known as the cargo load-
ing problem. Consider trying to pack boxes into trucks or shipping containers. The variables
x; represent the number of boxes of type i to be loaded into container j. The constraints for
this type of problem are complicated because they must define a spatially feasible packing.

The employee scheduling problem can also be formulated as a general integer problem,
in which we define a number of shift patterns for workers. For example, a pattern could be
to have a person work the day shift on Monday, Tuesday, and Wednesday, have two days
off, and then work Saturday and Sunday evening. We then define variables x; to specify the
number of employees who are assigned to work using pattern i. The objective is to minimize
total salary costs while ensuring that there are sufficient employees available in each shift.

4.2.2 Zero-One (0-1) Problems

Zero—one (0-1) problems are among the most common integer problems. All of the vari-
ables in the problem are required to take on a value of zero or one. Often, the variables
have an abstract interpretation; they simply indicate whether or not some activity occurs,
or whether or not some particular matching or assignment takes place.

One of the simplest 0-1 examples is the capital budgeting problem. Suppose we have a
number of possible projects from which we must choose. Each project has a known value,
and requires some level of resources such as funding, space, time, or services. We define the
variables x; to have a value 1 if project i is selected. The objective is to maximize total value
subject to a constraint on total budget. (This problem at first appears to be another form of
packing problem; but in this case, each project is to be chosen just once or not at all.)

160 Operations Research

Many scheduling problems can be formulated using 0-1 variables. For example, in a
production scheduling environment, we could define variables x;, to have a value 1 if
job i is assigned to machine k, and zero otherwise. Or we might define variables y; = 1
if job i immediately precedes job j on an assembly line. We can then use these variables to
develop constraints on the time available for resources, on due dates for individual jobs,
and on total schedule costs.

A simple example of a scheduling problem is examination timetabling. Variable x; is
given a value of 1 if examination i is assigned to period j. Conflicts are not allowed, so
constraints are included to prevent two examinations from being assigned to the same
period if any students need to be present at both exams. Additional constraints may reflect
limits on the number of exams per period, or the total number of seats in an exam location.
The objective function must in some way measure the quality of a given timetable.

Another popular variation is the vehicle routing problem. Suppose that a fleet of trucks
on a given day must deliver goods from a central warehouse to a set of customers. The
objective is to minimize the total cost of making all deliveries. The cost is normally approx-
imated based on minimizing the number of trucks used and the total mileage and/or total
hours of delivery time. One common formulation of this problem defines variables x;,
to have a value 1 if customer i is assigned to truck j and is delivered immediately before
customer k. Constraints are included to ensure that the assignment is feasible (perhaps
based on the drivers’ expertise, or on contractual agreements or regulations).

One of the most successful practical applications of integer programming has been in the
airline crew scheduling problem. The airlines first design a flight schedule composed of a
large number of flight legs. A flight leg is a specific flight on a specific piece of equipment,
such as a 747 from New York to Chicago departing at 6:27 a.m. A flight crew is a complete
set of people, including pilots, navigator, and flight attendants who are trained for a specific
airplane. A work schedule or rotation is a collection of flight legs that are feasible for a flight
crew, and that normally terminate at the point of origin. Variables x;; have value 1 if flight leg
iis assigned to crew j. The objective is to ensure that all flight legs are covered at minimum
total cost. Most of the major world airlines now use integer programming to assign crews
to flight legs, and many claim to be saving millions of dollars annually in operating costs.

A distributed computing problem arises in a multiprocessor computing environment
where the programs and data files must be allocated to various machines in different loca-
tions. Variables x; have a value 1 if module i is assigned to processor j. The objective is to
minimize the total execution costs (which may depend on the choice of processor) and com-
munication costs (that are incurred when one processor needs to communicate with another).

4.2.3 Mixed Integer Problems

Section 4.1 introduced the problem of production planning at General Motors. In that
problem, there are two sets of variables: it is necessary to decide which products are
assigned to each plant, and then to determine production levels at each plant. We could
define 0-1 variables x; = 1 if product i is assigned to plant j. We might then define variables
y; to represent the number of units of product i to produce at plant j. If production levels
are fairly high, we might treat the y; variables as real valued, and round them to integers
in the end. Additional constraints must prevent a product from being produced if it is not
assigned to the plant. The problem can be modeled as a large mixed integer problem with
both 0-1 and real-valued variables.

A related problem involves warehouse location: given a set of potential locations for
warehouses for a distributor, select the locations that will minimize total delivery costs.

Integer Programming 161

We can define 0-1 variables x; to have a value 1 if location j is selected. Once it is decided
which locations are going to be used, then we must solve some kind of a transportation
problem to get the products from the producers to the warehouses, and from the ware-
houses to the customers. Real-valued variables y;; are defined to represent the amount of
product transported from supplier i to warehouse j, and real-valued variables z; denote
the amount of product distributed from warehouse j to customer k. The total cost is a func-
tion of the distances that the products must travel.

A further variation, which can be considered as a general version of warehouse location,
is called the fixed charge problem. Suppose there is a fixed cost (with a 0-1 variable) for
opening a warehouse. Once the warehouse is open, the remaining costs are essentially
continuous. There are a number of practical problems that lend themselves to this type of
formulation. For example, when a telecommunications company installs fiber optic cable,
there is a fixed cost for actually laying the cable, but then there is a real-valued cost cor-
responding to the capacity of the cable. This leads to a related problem called capacity
planning.

4.3 Zero—One (0-1) Model Formulations

This section presents a few examples of mathematical formulations of some classical 0-1
programming problems. These basic formulations frequently occur in actual practice,
often in the form of subproblems within larger practical applications. We emphasize these
models because many of the most practical advances in integer programming in recent
years have been in the area of 0-1 models.

4.3.1 Traveling Salesman Model

Suppose you want to visit a number of cities and then come back to your point of origin.
This is one of the most challenging and most extensively studied problems in the field
of combinatorics. The formulation is deceptively simple, and yet it has proven to be
notoriously difficult to solve. Define 0-1 variables x; = 1 if city i is visited immediately
prior to city j. Let d;; represent the distance between cities i and j. Suppose that there
are n cities that must be visited. Then the traveling salesman problem (TSP) can be
expressed as:

n n
minimize E E djx;

i=1 =1

subject to ini =1 for all cities j
i=1

n

D xi=1 for all cities i

=1
ZZXUS‘S‘—l for all ‘S‘<n

ieS jeS

162 Operations Research

The first constraint says that you must go i to city j exactly once, and the second constraint
says that you must leave every city i exactly once. These constraints ensure that there are
two edges adjacent to each city, one in and one out, as we would expect. However, this does
not prevent so-called sub-tours. A sub-tour occurs when there is a loop containing a subset
of the cities. Instead of having one tour of all of the cities, the solution can be composed of
two or more sub-tours. The third constraint eliminates sub-tours; it states that no proper
subset of cities, S, can have a total of |S| edges.

The TSP has many practical industrial applications. Consider the problem of placing
components on a circuit board. To minimize the time required to produce a board, one of
the primary considerations is often the distance that a placement head must travel between
components. Another example occurs in routing trucks or ships delivering products to
customers. (When we allow multiple trucks, this problem becomes the vehicle routing
problem described earlier.) Another application occurs in a production environment when
it is desired to minimize sequence-dependent setup times. When multiple jobs are to be
processed on a machine, the total setup time for each job frequently depends on which job
preceded it. This situation can be modeled as a TSP, where we sequence jobs rather than
sequencing the order in which cities are visited.

4.3.2 Knapsack Model

Two versions of the knapsack problem have been discussed in Section 4.2 when portfolio
selection and the capital budgeting problem were reviewed. Assume that we have a num-
ber of items, and we must choose some subset of the items to fill our knapsack, which has
limited space. Each item, i, has a value v; and takes up w; units of space in the knapsack.
Let the 0-1 variables x; = 1 if item i is selected, and let b represent the total space in the
knapsack. Then we can formulate the knapsack problem as follows:

n

maximize Z ViX;
i=1
n

subject to Zwixi <b
i=1

The 0-1 version of the knapsack problem states that every item is unique, and that each
can either be selected or not (as in the capital budgeting problem). A slight generalization
of the knapsack problem states that you can choose more than one copy of each item, so
that the variables can take on general integer values (probably with upper bounds on each
variable), as with the portfolio selection problem.

4.3.3 Bin Packing Model

Bin packing is a generalization of the knapsack problem. Suppose that we are given a set
of m bins of equal size, b; and a set of n items that must be placed in the bins. Let w; be
the size of item i. We define the 0-1 variable x; = 1 if item i is placed in bin j. Bin packing
is usually expressed as a problem of minimizing the number of bins required to pack
all of the items. We can let y; = 1 if we need to use bin j. (Note that if y; = 0, then the cor-
responding bin has no capacity.) The objective function minimizes the number of bins
required

Integer Programming 163

minimize Z N4
=1

subject to Zwixij <y;b, forallj
i=1

n

ini =1foralli

=1

Bin packing has applications in industry where, for example, there is a limited amount
of work that can be assigned to each person working at stations on an assembly line.
This model may also be applicable when deciding which products should be produced
at each of several possible manufacturing plants, or which customer should be assigned
to each delivery truck. Of course, each of these problems involves additional criteria and
constraints.

4.3.4 Set Partitioning/Covering/Packing Models

Many problems in combinatorial optimization include (as subproblems) partitioning a
group of items into optimal subsets. For example, vehicle routing requires that we allocate
customers to vehicles. Airline crew scheduling requires that we allocate flight legs to a crew.
Municipal garbage pickup requires that we allocate specific street blocks to trucks. Each of
these subproblems can be modeled in the following form as a set partitioning problem:

minimize E CiXj
j

subject to: Z ajx;=1foralli=1, ..., m
j
xj =0 or 1for all j

where a; =1 if item i is included in (potential) subset j. Each column of the m X n constraint
matrix A represents a feasible combination of items. For example, each column might rep-
resent the items that could feasibly be loaded into a truck for delivery to customers; or
the items could be road segments that require garbage collection, and a column would
represent a feasible route for a truck to pick up garbage. The cost ¢; represents the cost of
delivering (or traveling, or producing) that subset of items. A variable x; =1 if we decide to
include that particular subset in our solution.

In the set partitioning problem, all of the items must be included exactly once. In vehicle
routing, for example, we might typically require that exactly one truck travel to each cus-
tomer. In a slightly different problem, the set covering problem, we require that each item
be selected at least once. For example, in the garbage collection problem, and in the crew
scheduling problem, every street (every flight leg) must be covered at least once; but it is
also feasible to cover the same street (flight leg) twice, if this turned out to be the most
efficient solution. (The second truck would not pick up any garbage, and the second flight
crew would ride as passengers.) Set covering differs from set partitioning in that the con-
straints are “>” inequalities instead of equalities.

164 Operations Research

The set packing problem describes another similar situation. In some production
scheduling problems, we are given a list of orders, and we have possible subsets of orders
that can be combined on different machines. In some cases, there may not be sufficient
resources to satisfy all of the demand. The problem is to select the optimal subset of orders
to maximize some profit function, p;. This problem can be formulated as:

maximize E P
j

subject to Z a;x;<lforalli=1, ...,m
j
x;; =0 or 1 for all j
We select as many items as possible, but we are not allowed to process any items more than

once. We will revisit this type of problem in greater detail in Section 4.8, where we discuss
column generation.

4.3.5 Generalized Assignment Model

Section 3.3 described the assignment problem, which is considered to be one of the easiest
combinatorial problems to solve. The assignment problem can be formulated as follows:

minimize E E Cinij
i j

subject to Z xj=1foralli=1, ...,n
j

Z’Xij =1forallj=1, ...,n
x;j =0 or 1 foralli,j

This classical representation can be illustrated by a set of jobs that must be allocated to a
group of workers. The term c; represents the cost of assigning job i to employee j. The first
constraint requires every job to be assigned to exactly one employee; and the second con-
straint states that every employee must do exactly one job.

The generalized assignment problem is a simple extension in which every job must be
assigned to one employee, but each employee has the capacity to perform more than one
job. In particular, suppose that each employee, j, has a limited amount of time, (b; hours)
available, and that job i will take employee j a total of a; hours. Then, the generalized
assignment problem can be formulated as:

minimize E E CiiXij
il

subject to E xj=1foralli=1, ..., m
j

Ziaijxij Sb] for all]:L oon

x; =0 or 1foralli,j

Integer Programming 165

As discussed earlier, the generalized assignment problem has applications in the vehicle
routing problem, where every customer order must be assigned to one truck, but a single
truck can hold more than one customer order, subject to capacity constraints.

4.4 Branch-and-Bound
4.4.1 A Simple Example

Branch-and-bound algorithms are widely considered to be the most effective methods for
solving medium-sized general integer programming problems. These algorithms make
no assumptions about the structure of a problem except that the objective function and
the constraints must be linear. Even these restrictions can be relaxed without changing the
basic framework of the technique.

In its simplest form, branch-and-bound is just an organized way of taking a hard prob-
lem and splitting it into two or more smaller (and hence easier) subproblems. If these
subproblems are still too hard, we branch again and further subdivide the problems. The
process is repeated until each of the subproblems can be easily solved. Branching is done
in such a way that solving each of the subproblems (and selecting the best answer found)
is equivalent to solving the original problem.

Consider the following simple example in two variables. A manufacturer has 300 person-
hours available this week and 1,800 units of raw material. These resources can be used to
build two products, A and B. The requirements and the profit for each item are given as
follows:

Product Person-Hours Raw Material Profit ($)

A 150 300 600
B 10 400 100

Let x; and x, represent the integer number of units of products A and B, respectively. We
can formulate this problem as an integer linear programming problem:

maximize z=600x; +100x,
subject to 150x; +10x, <300
300x; +400x, <1800

X1, X, 2 0 and integer

This problem is illustrated in Figure 4.1. The feasible region is given by the discrete set of
integer points within the constraint region. The optimal LP solution occurs at x; = 1.789
and x, = 3.158 with a profit of z = 1,389.47. Unfortunately, we cannot sell a fractional num-
ber of items. One obvious alternative is to round down both values to x; = 1 and x, = 3, for
a profit of $900. We will call the feasible integer solution x' = (1, 3) the current incumbent
solution, which is the best answer found thus far. When we find a better integer solution,
we will update the current incumbent. Before reading any further, try to locate the optimal
integer solution to the problem in Figure 4.1, and consider how integer solutions might be
found in general.

166 Operations Research

The basic branch-and-bound algorithm results from the following observations:

® The feasible integer solution x = (1, 3) with z = 900 was fairly easy to find. The
optimal integer solution cannot have a lower value of z than $900. Thus, we write
z' =900 and call this a lower bound on the optimal solution. Each time we find a
higher valued integer solution, we replace the lower bound z!. This is the bound
part of branch-and-bound methods.

e Over the whole feasible region, the largest possible value of z = 1389.47, which is
the real valued solution obtained from the LP. We call this an upper bound on the
optimal integer function value.

¢ The graphical solution shows that x, = 3.158. This is infeasible because it is a frac-
tional solution. Since x, must be an integer, then clearly either x, < 3 or x, > 4. This
is equivalent to saying that x, cannot lie part way between 3 and 4.

Consider the following two subproblems:

[A] maximize z =600x; +100x,
subject to 150x; +10x, <300
300x; +400x, <1800
x; 20 and integer
Xp > 4 and integer
[B] maximize z = 600x; +100x,
subject to 150x; +10x, <300
300x; +400x, <1800
x1,Xz 2 0 and integer
X, <3

Observe that if we find the best integer solution of both of these subproblems, then one of
them must be the optimal solution to the original problem. These subproblems are repre-
sented graphically in Figure 4.2, where the diagram is identical to Figure 4.1 except that
the range of values for x, between 3 and 4 is now infeasible. We say that we have separated
on variable x,.

Consider problem [A] first. The LP solution occurs at x = (0.667, 4) with an objective func-
tion value of z = $800. Notice that x, is now integer valued. We will see that each time we
separate, the chosen variable will always be integer, although it does not necessarily stay
integer on subsequent iterations.

By definition, the linear programming solution is the largest value possible for the prob-
lem. Therefore, the value z = 800 is an upper bound on all possible solutions in the feasible
region for problem [A]. Any integer solution to [A] must be <800. However, we already
have a feasible integer solution with z! = 900. Therefore, problem [A] can be ignored as it
cannot contain any answer better than 900. In branch-and-bound terminology, we say that
problem [A] has been fathomed.

In general, a subproblem is called fathomed whenever it is no longer necessary to branch
any further. A subproblem is fathomed when the LP solution is less than the current lower
bound for a maximization problem, when the LP solution is infeasible, or when the LP
produces an integer solution.

Integer Programming 167

Xy A
5 1
z
ﬂ_/
4 — ° ° °
Xy 24
/ZV
3 L ° °
*x233
B
2 ° ° °
1= ° ° °
1 1

FIGURE 4.2
Separate into two subproblems.

Problem [B] has its optimal LP solution at x = (1.8, 3) with a function value of z = 1,380.
This value gives us a new upper bound on the optimal integer solution. At each iteration of
the branch-and-bound process, the upper and lower bounds can be revised until they even-
tually converge to the optimal solution. We now know that the optimal value lies between
900 and 1,380. Variable X, is integer valued, but X, is still fractional. We can now further
divide problem [B] into two subproblems based on the fact that x; <1 or X, > 2 as follows:

[B1] maximize 7 = 600x;+100x,
subject to 150x; +10x, <300
300x; +400x, <1800

X1, X2 >0 and integer

x; <1
X, <3
[B2] maximize z = 600x; +100x,
subject to 150x; +10x, <300

300x; +400x, <1800
X, 2 0 and integer
X; 2 2 and integer
X, <3

For problem [B1], it is easy to see that the optimal LP solution occurs at point x = (1, 3)
with a function value z = 900. Since x is now integer valued, it must be optimal for this
subproblem. This subproblem is considered to be fathomed because it gives us an integer
solution: there is no need for further branching as the solution cannot get any better below
this node. It is also considered fathomed because the solution of 900 is no better than the
one we already obtained earlier. In either case, problem [B1] is finished.

168 Operations Research

Problem [B2] consists of the single point x = (2, 0) with a function value of z = 1,200.
This solution is both integer, and better than the previous lower bound. Since x is integer,
subproblem [B2] is fathomed and no further branching is required. Our new lower bound
increases to z! = 1,200 and x' = (2, 0) becomes the new current incumbent.

At this point, we observe that all of our subproblems have been fathomed. Therefore,
x!'= (2, 0) is the optimal integer solution, and z' = $1,200 is the optimal function value.

It is often convenient to display this procedure in the form of a branch-and-bound tree.
The tree corresponding to the previous example is illustrated in Figure 4.3. Each subprob-
lem is represented by a node in the tree. Each node must either be fathomed or split into
subproblems, which are shown by lower level nodes.

In Figure 4.3a, node 0 represents the original problem. We construct nodes 1 and 2 (for
subproblems [A] and [B], respectively) by constraining x, in Figure 4.3b. Node 1 is fath-
omed and node 2 is further subdivided into nodes 3 and 4 in Figure 4.3c, corresponding to
problems [B1] and [B2].

7*=1390
x*=(1.789, 3.158)
2 =900
x'=(1,3)
(a)
) x*=(1.8,3)
x=(2,
3 z*=1380
z* =800
(fathomed)
z* <900 (b) ,
z*=1390
z* =800
7' =1200
(fathomed) _/ x'=(2.0)
(c) New incumbent (fathomed)

FIGURE 4.3
Branch-and-bound example: (a) node 0: original problem, (b) subproblems [A] and [B], and (c) subproblems [B1]
and [B2].

Integer Programming 169

4.4.2 A Basic Branch-and-Bound Algorithm

We will now give a more precise description of the previous procedure. The problem is
expressed with a maximization objective, and a similar framework can be followed with
minimization problems. A node in the tree is called an active node if it has not been fath-
omed and we have not separated on it yet.
Step 0: Initialize
Let the set A denote the list of currently active nodes. A node in the tree is active if
we have not either solved it or subdivided it yet. Initially, the set A = {the original
problem}, node 0, and z' = —co.

Step 1: Done?
If the set A is empty, then stop. The current incumbent, x! is optimal.
Step 2: Branching

Select a node, j, from the active list A (and remove it from A) according to some
Branching Rule.

Step 3: Solve

Solve the LP relaxation of node j. (That is, relax/ignore the integer restrictions.)
Let z* denote the optimal LP solution at point x*.

Step 4: Fathoming Criterion 1

If the LP has no feasible solution, then node j is fathomed; go to Step 1.

Step 5: Fathoming Criterion 2

If z* < 7!, then this subproblem cannot contain any integer solution better than the
current incumbent: node j is fathomed; go to Step 1.

Step 6: Fathoming Criterion 3

If x* is integer, then it becomes the new incumbent. Set x! = x* and z! = z* Node j is
fathomed; go to Step 1.

Step 7: Separation

Otherwise, we must separate node j into two or more subproblems (according to

some Separation Rule.) Select some fractional variable in x* and construct two new
subproblems. Add these new nodes to the set A and go to Step 1.

4.4.3 Knapsack Example

The manager of an Operations Research department in a large company has a list of proj-
ects that she would like to initiate. Each project has an expected payback expressed (in
thousands of dollars) as the net present value over a 10-year period. Although all of the
projects would be beneficial, there are simply not enough resources (in person days) avail-
able this month to do all of them. The estimates of resources and return are:

Project 1 2 3 4 5 6 7 8

Estimated value 15 20 5 25 22 17 30 4
Days 51 60 40 62 63 50 70 10

There are 250 person-days available this month. Which projects should be selected?
At the end of this month, the manager must write a report summarizing the results from

170 Operations Research

completed projects; any projects that are not completed cannot be included among the
successful projects in the report.

Define x; = 1 if project j is selected, and 0 otherwise. The “node 0” problem can be
modeled as:

maximize 15x7 +20x5 + 5x3 + 25x4 + 22X5 + 17X + 30X + 4Xg
subject to 51x; +60x, +40x35 + 62x4 +63%5 +50x4 +70x7 + 10x5 < 250
xj=0orl

When the 0-1 constraints are relaxed to solve the LP, we replace them with the linear con-
straints: 0 <x; <1

Step 0: A = {0}, and z' = —o.

Step 1: A is not empty.

Step 2: Select node 0 from A. (A is now empty.)

Step 3: z* = 96.3 at the optimal LP solution at point x* = {0, 0,0, 1, 1,09, 1, 1}.
Step 4: The solution is feasible.

Step 5: z* > ZL.

Step 6: x* is not an integer.

Step 7: Separate node 0 on a fractional variable (x, is the only fractional value).
Construct node 1, the same problem as node 0 with the additional constraint that
x¢ = 0. Similarly, construct node 2, the same problem as node 0 with the constraint
thatx,=1. Let A ={1, 2}.

Step 1: A is not empty.

Step 2: Select a node from A. Suppose we choose node 2; A = {1}. Add constraint
Xe = 1.

Step 3: z* = 96.25 at the optimal LP solution at point x* = {0,0,0, 1,092, 1, 1, 1}.

Step 4: The solution is feasible.

Step 5: z* > ZL.

Step 6: x* is not an integer.

Step 7: Separate node 2 on a fractional variable. (x; is the only fractional value).
Construct node 3, the same problem as node 2 with the additional constraint that
x5 = 0. Similarly, construct node 4, the same problem as node 2 with the constraint
that x; =1. Let A ={1, 3, 4}.

Step 1: A is not empty.

Step 2: Select a node from A. If we choose node 4, then A = {1, 3}. Add constraint
x5 = 1.

Step 3: z* = 96 at the optimal LP solution at point x* =1{0,0,0,1,1,1, 1, 0.5}.

Step 4: The solution is feasible.

Step 5: z* > ZL.

Step 6: x* is not an integer.

Integer Programming 171

7°=96.3

Infeasible

Infeasible =

94 84.9 < 94
® < 83

) Infeasible
x'=(0,0,0,1,1,1,1,0)

94

Zi

FIGURE 4.4
Branch-and-bound tree for the knapsack example.

Step 7: Separate node 4 on a fractional variable. (xg is the only fractional value).
Construct node 5, the same problem as node 4 with the additional constraint that
xg = 0. Similarly, construct node 6, the same problem as node 4 with the constraint
thatxg=1.Let A={1, 3,5, 6}.

The algorithm continues until the set A is empty. The complete branch-and-bound tree for
this problem is illustrated in Figure 4.4.

4.4.4 From Basic Method to Commercial Code

It is possible to construct examples in which the basic algorithm explicitly enumerates all
possible integer solutions. If we assume, for simplicity, that there are n variables, and that
each variable has m possible integer values, then our branch-and-bound tree could have
as many as m® nodes at the lowest level of the tree. The amount of computation required
increases exponentially and the problem would become computationally intractable for
even moderate values of m and n. For example, when m = 3 and n = 20, the number of
potential integer solutions is over 3 billion. Of course, we hope that the vast majority of
potential nodes will be implicitly eliminated using the various fathoming criteria. A good
branch-and-bound algorithm will try to find the optimal solution as quickly as possible;
but if we hope to solve problems of any practical size, the algorithms must be designed
very carefully. In particular, the three components of the algorithm that are most critical to
the performance of various branch-and-bound implementations are:

1. Branching strategy: Selection of the next node (in the active list) to branch on in
Step 2.

172 Operations Research

2. Bounding strategy: Many techniques have been suggested for improving the LP
bounds (in Step 5) on the solution of each subproblem.

3. Separation rule: The selection of which variable to separate on in Step 7.

4.4.4.1 Branching Strategies

To control the selection of the next node for branching, it is typical to restrict the choice of
nodes from the list of currently active nodes in one of the following ways.

The Backtracking or LIFO (Last In, First Out) Strategy

Always select a node that was most recently added to the tree. Evaluate all nodes in one
branch of the tree completely to the bottom, and then work back up to the top following all
indicated side branches. A typical order of evaluating nodes is illustrated in Figure 4.5a.
The numbers inside each node represent the order in which they are selected.

The Jumptracking (Unrestricted) Strategy

As the name implies, each time the algorithm selects a node, it can choose any active node
anywhere in the tree. For example, it might always choose the active node corresponding
to the highest LP solution, z*. A possible order of solving subproblems under jumptracking
is illustrated in Figure 4.5b.

At first glance, the backtracking procedure appears to be unnecessarily restrictive. The
major advantages are conservation of storage required and a reduction in the amount of
computation required to solve the corresponding LP at each node. Observe that the num-
ber of active subproblems in the list at any time is equal to the number of levels in the
current branch of the tree. Using jumptracking, the size of the active list can grow expo-
nentially. Each node in the active list corresponds to a linear programming problem with
its own set of constraints. Consequently, storage space for subproblems is an important
consideration.

Computation time is an even more serious issue with jumptracking. Observe that each
time we solve a subproblem, we solve an LP complete with a full Simplex tableau. When
we move down the tree, we add one new constraint to the LP. This can be done relatively
efficiently if the old tableau is still available.

To do this using the jumptracking strategy, we would have to save the Simplex tab-
leau for each node (or at least enough information to generate the tableau easily). Hence,
backtracking can save a large amount of LP computation time at each node. The effi-
ciency of solving subproblems is crucial to the success of a branch-and-bound method
because practical problems will typically generate trees with literally thousands of
nodes.

The major advantage of jumptracking is that, by judicious selection of the next active
node, we can usually solve the problem by examining far fewer nodes. Observe that when
we find the optimal integer solution, many of the nodes can be eliminated by the bounding
test. Jumptracking will normally find the optimal solution sooner than backtracking. To
illustrate this, suppose that the integer solution is represented by a node at the bottom of
the branching tree. With backtracking, each time we choose a branch, one is correct and the
other is wrong. If we choose the wrong branch, we must evaluate all nodes in that branch
before we can get back on the correct branch. Using jumptracking, we can return to the
correct branch as soon as we realize that we may have made a mistake. When we find the
optimal solution, many of the nodes in the wrong branch will be fathomed at a higher level
of the tree by the bounding test.

Integer Programming 173

(&) () @ (1) () (s) ()
OROIORORORORONOIONORORORONORONC)
()

FIGURE 4.5
Branching strategies: (a) back tracking and (b) jump tracking.

In short, there is a trade-off between backtracking and jumptracking, and many commer-
cial algorithms use a mixed strategy. Backtracking is used until there is a strong indication
of being in the wrong branch; then there is a jump to a more promising node in the tree
and a resumption of a backtracking strategy from that point. The amount of jumptracking
is determined by the definition of wrong.

174 Operations Research

4.4.4.2 Bounding Strategies

In the branch-and-bound algorithm, suppose we have selected a node (subproblem) to
branch on. We must now choose a fractional basic variable to separate on. Whether we
round the variable up or down, the objective function value will normally decrease. The
up and down penalties for each basic variable give us an estimate (lower bound) on the
reduction in the value of z that would occur if we were to add the integer constraint. We
can then use this information to pick the most promising basic variable.

Consider the example in Section 4.4.1. The optimal LP tableau is:

Basis x; X, X; X, Solution

z 0 0 38, % 1389Y%
X1 1 0 % W 1%
Xz 0 1 Moo ¥so 3%,

Define f; to be the fractional part of each basic variable. In the example, f;, = 15/19 and
f, = 3/19, are the fractional parts of x; and x,, respectively. Define a;; to be the element of
the optimal LP tableau; and define ¢ to be the j-th reduced cost from the tableau. We define
the down penalty D, to be the decrease in the objective function that would result from
decreasing the variable to the next lower integer value. The down penalty for branching
down on the basic variable in the i-th row is:

. cf; _
D; = minj.y {”, where a; > O}

i

Similarly, we can derive a formula for the up penalty for variable x;, which will indicate
the amount by which the objective function would decrease if we increased the basic vari-
able in the i-th row to the next highest integer. The up penalty, U, is given by:

Ui = minjEN { Cj(fi_ 1), where 511‘ < 0}

ai]'

In the example, the down penalty corresponding to branching down on basic variable x;
is given by:

all

(25)

=414—
19

. cf; _
D; = minjy {”, where a;; > O}

Integer Programming 175

Either: Separate on X; or: Separate on X,

-{1%,3>]

z<975 z<1200 z<1380

FIGURE 4.6
Up and down penalties for fractional basic variables and the corresponding potential branches.

Consider the row of the tableau corresponding to x;. We can show that decreasing x, by
f, = 15/19 implies we must increase x; by [(%) / (%)J to maintain the equation. This, in
turn, would produce the given decrease in the objective function row. (See Salkin and
Mathur [1989] for a detailed proof.) Similarly, D, = 9%,, U, = 189%,, and U, = 589%,. The

potential effect on the new branch-and-bound tree is shown in Figure 4.6.

4.4.4.3 Separation Rules

We can think of up and down penalties as a kind of look-ahead feature, in that they give us
an estimate of the LP objective function value for separating on each basic variable with-
out actually solving all of the possible LP problems. We could, of course, improve these
estimates by actually solving the corresponding LP tableaus, but this would be far more
expensive. With branch-and-bound algorithms, we will always be faced with the trade-off
between better (more accurate) bounds and computational cost.

Consider the two potential branch-and-bound trees in Figure 4.6. Which tree allows a
more efficient solution? One simple general rule is to construct, at each node, a good branch
and a bad one. Hopefully, we can follow the good branch, find the optimal integer solution,
and then fathom the bad branch without having to separate further.

Thus, an effective separation rule is to separate on the variable that has the largest up
or down penalty; then branch to the active node with the highest lower bound on the new
function value; that is, the one most likely to lead to an optimal integer solution.

In the example, we would separate on variable x, and then branch to subproblem [B]
with x, < 3. When we solve [B], we will find the optimal integer with a function value of
1,200. Because problem [A] has an upper bound of z < 800, it will be fathomed without
solving the corresponding LP.

4.4.4.4 The Impact of Model Formulation

For linear programming models, it does not make much difference how the original
problem is formulated, provided that the objective function and the constraints are correct.
In integer programming, however, the formulation itself can have a dramatic effect on
algorithm performance. As an example, consider the original problem formulation:

176 Operations Research

maximize z = 600x; +100x,
subject to: 150x; +10x, + x5 =300
300x; +400x, +x4 =1800

X1, Xz 2 0 and integer

Observe that, for any feasible integer solution to this problem, x; must be a multiple of 10,
and x, must be a multiple of 100. Suppose we first reduced the original problem to lowest
common terms (before adding the slack variables):

maximize Z=6X; +X;

subject to: 15x; +X, +x3 =30
3x;+4x,+x4 =18
X1, X, 20 and integer

This new problem is identical to the original as far as the LP is concerned, but it is not the
same integer problem! The new optimal Simplex tableau is:

Basis x, X, X3 x, Solution

z 0 0 o Ho 1317,

xx 10w o 1%,

Xz 0 1 Mo o 3%

The most obvious immediate consequence of this new formulation is simply that z must
be an integer multiple of 100. The upper bound on z denoted z is now 1,300. The reduction
has no effect on the up and down penalties except that we get the decrease in the reduced
units of z. Because the optimal value of z must be integer, the up and down penalties
can be strengthened. For example, D, in the old version reduced z to 975. Using the new
tableau, z will become 9.75, which can be replaced by 9 as an upper bound on the down
problem. Since the initial rounded solution is z = 9, the corresponding branch is fath-
omed, that is, we can branch up on x, for free. The complete revised branch-and-bound
tree with up and down penalties is illustrated in Figure 4.7.

Notice also that the slack variables, x; and x, are integer valued in both problems
and they will be candidates for branching. The slack and surplus variables (and the
objective function variable z) will always be integer valued (in a pure integer prob-
lem) if all of the problem coefficients are integer. Thus, for example, if one of the con-
straint coefficients is 0.5, it would be advantageous to multiply the corresponding
constraint by 2 to produce all integer coefficients. In general, any rational fractions
can be removed by multiplying by the denominator. Refer to Johnson et al. (2000) for
additional formulations.

Integer Programming 177

X ={15;, 355}

=131 z=13

FIGURE 4.7
A complete branch-and-bound tree for the example problem using all penalty information.

4.4.4.5 Representation of Real Numbers

In Chapter 2 on linear programming, we mentioned some of the problems associated
with round-off error and numerical stability. The Simplex tableau will normally contain
imperfect machine-representations of real numbers that have a limited number of signifi-
cant digits. As the algorithm proceeds, this inaccuracy in the representation of problem
parameters will be compounded during each iteration so that the results can eventually
become very inaccurate. This problem becomes much more critical in the context of integer
programming because we often solve the LP several thousand times. Most commercial LP
codes include a re-inversion feature that computes a new basis inverse matrix after a speci-
fied number of iterations.

We have the additional problem that it is difficult even to recognize when we have found
an integer solution. The values of x; will not yield exact integer answers. We must assume
that they are actually integers when they get close enough to an integer value within some
prespecified tolerance.

In the example earlier, we expressed all of our calculations in the form of precise rational
fractions to avoid any rounding error. Unfortunately, this is not a very practical approach
in large-scale problems.

4.5 Cutting Planes and Facets

There is an extensive literature concerning the use of cutting planes to solve integer pro-
gramming problems. Early algorithms were theoretically intriguing, but not very effec-
tive in practice. However, some recent developments in the application of special cutting
planes for problems with specific structure have produced some rather surprising results.
One example is presented in Section 4.6 for the pure 0-1 problem. This section briefly dis-
cusses the general concepts and provides some background.

178 Operations Research

Given any integer programming problem, consider the set of feasible integer points.
If the extreme points of the LP are all integers, then the problem is easy; the LP solution
will be an integer solution. If the extreme points are not integer, then we can always tighten up
the constraints (and possibly add new ones) in such a way that the new reduced LP does
have integer extreme points.

For an intuitive motivation of this statement, suppose that the LP has an optimal extreme
point solution that is not an integer. Then, it should be possible to add a new constraint that
makes that extreme point infeasible (by at least a small amount) without excluding any
feasible integer solutions. (We will illustrate shortly that this is always possible.) We can
repeat this process until all extreme points are integers.

The general idea is illustrated in Figure 4.8. Given a feasible region defined by the con-
straints of a linear programming formulation, we are interested in only the integer points
inside the region. In the figure, the outside polygon defines the LP feasible region: the inside
polygon defines a unique tightened region that does not exclude any integer solutions. We
call the reduced region the convex hull of the set of feasible integers. It is also referred to
as the integer polytope of the problem. (A polytope is an n-dimensional polygon.)

A constraint is called a face or facet of the integer polytope if it defines an
(n — 1)-dimensional set of points on the surface of the convex hull. In the two-dimensional
example, a facet is a line of feasible points between two integer extreme solutions. In a
three-dimensional cube, for example, the facets are simply the two-dimensional faces of
the cube. A constraint that meets the cube along only an edge (one dimension) is not a
facet. Clearly (at least in three dimensions), there must be one facet constraint for each face,
and no others are needed to define the integer polytope.

If we could find all the facets of an integer problem, then all of the extreme points would
be integers and the LP solution method would easily find the optimal integer solution.
Unfortunately, for general problem:s, it is extremely difficult to find the facets of the convex
hull. Much of the current research in integer programming is devoted to finding some
facet-defining constraints for very specific problems.

4 A 2x; +2x521
B: —2x; +2x5 <3
C:4x; + 5x9 <20
D:4x; —x, <10
L]
L]
X
L]
1 2 4
X1

FIGURE 4.8
The convex hull of the set of integer solutions.

Integer Programming 179

The preceding observations have led many researchers to try to develop algorithms that
would try to approximate the convex hull of the integer polytope. In particular, it is not
necessary to find all of the facets—only the ones that define the integer optimum. Consider
the following general algorithm:

1. Solve the LP.
2. If the solution is integer, then it must be optimal.

3. Otherwise, generate a cutting plane that excludes the current LP solution, but
does not exclude any integer points, and then return to Step 1.

By our definition, a cutting plane is not necessarily a facet. A cutting plane is only guar-
anteed to take a slice of non-integer solutions out of the feasible region. In general, facets
are hard to find, while cutting planes are easy; but, of course, the best cutting plane would
be a facet.

Consider the example problem from Section 4.4.4.4, the branch-and-bound example after
the coefficients have been reduced. The optimal Simplex tableau is:

Basis X X, X3 X4 Solution
z 0 0 T4 Ao 1374
X1 1 0 Y7 %, 1%,

x 0 1 Ho S 3%

As a simple example of a cutting plane, observe that one row of the tableau can be written as:

4 1
X1+ —Xz——X4 =115
2R 1o

Every feasible solution to this problem must satisfy this constraint, which is derived by
elementary row operations on the original constraints. To obtain an integer solution for x;,
at least one of the non-basic variables will have to increase, and these must also be integer.
This leads to the simple cutting plane:

X3+X421

At the current LP optimum, x; and x, are both equal to zero. Therefore, this constraint
must make the current point infeasible. Furthermore, every feasible integer solution must
satisfy this constraint, so no integers have been excluded. That is, this constraint satisfies
the criteria for a cutting plane.

Notice that there is no branching involved here; at each iteration, we define a smaller
feasible region, solve the new LP, and repeat the process, continuing until all of the basic
variables are integers.

This procedure looks intuitively appealing because the cuts are easy to find and there
are none of the complicated storage and bound problems associated with branch-and-
bound methods. However, it is not a very efficient or effective technique. As an exercise,
the reader should try a few iterations on the example problem. Convergence is generally

180 Operations Research

very slow, which means that we have to generate a large number of new constraints. In fact,
for this particular cut, we cannot even prove that the procedure is always finite.

A wide variety of better cutting planes have been proposed, of which the best known is
called a Gomory fractional cut. This method is based on the premise that, in any integer
solution, all of the fractional parts (in the tableau) must cancel one another. Consider the
previous example for x;. From the tableau:

4 1 15
X1+—X3——=Xg= 1—
57 57 19
We first separate each coefficient into two parts: an integer component and a positive frac-
tional part:
56 15

X1+ 0x +ix —Xg+—Xg=1+—
A7 A T

Grouping all of the integer parts together on the right-hand side, we obtain:

ix +$x —[—x +X +1:|+E
57 ° 577t o 19

Observe that, for any integer solution, the part in square brackets must also be integer.
Moreover, because the variables must be non-negative, the left-hand side has to be
positive. In fact, the left-hand side must be equal to: 13, or 1'%, or 2%, or 3'%,, and so
on. In other words:

4 56 15
— X3+ —Xu >—
57 57 19

This is the Gomory fractional cut. Because the non-basic variables, x; and x, are equal to
zero at the current LP solution, the Gomory cut always cuts off the corner of the feasible
region containing the optimal solution. If any variable has a fractional solution, it is always
possible to construct a Gomory cut. This method has the property that it will converge in
a finite number of iterations.

The main disadvantages associated with the Gomory fractional cut method are: (1) the
method can converge slowly; and (2) unlike branch-and-bound methods, integer solutions
are not obtained until the very end. Pure cutting plane methods are therefore not consid-
ered to be very practical for large problems.

4.6 Cover Inequalities

One of the most successful approaches to 0-1 problems has been the introduction of cover
inequalities (Crowder et al. 1983). A cover inequality is a specialized type of cutting plane.
It defines a constraint that is added to the original problem in the hope that the extreme
point solutions will occur at 0-1 points. After generating as many cover inequality con-
straints as possible, the reduced problem is solved using a standard branch-and-bound
algorithm. This technique was able to dramatically decrease computation time on large,

Integer Programming 181

sparse 0-1 programming problems, and practical problems with over 10,000 0-1 variables
were solved to optimality. Prior to the introduction of this method, problems with 500 0-1
variables were considered very difficult.

As before, the problem is formulated as a standard linear program with the additional
restriction that all variables must be either 0 or 1. The constraints are partitioned into two
types. Type I constraints are called Special Ordered Set (SOS) constraints. Type II con-
straints are simply all of the non-SOS inequalities. The simplest form of SOS constraint is
as follows:

Z xj<1 for some subset L of the variables

jeL

In practical problems, we will often find that the vast majority of constraints are SOS. For
example, if the variables x; are equal to 1 if resource i is assigned to location j, then we will
have a number of SOS constraints which state that each resource can be assigned to at most
one location. We may also get SOS equality constraints if resource i must be assigned to
exactly one location.

SOS constraints have a very useful property with respect to 0-1 integer programming.
Observe that, when we consider only one constraint (plus the non-negativity constraints
on the variables), every extreme point solution occurs at a 0-1 point. For example, consider
a simple system: X; + X, + X3 = 1; X;, X,, X3 > 0. The extreme points occur at (1,0,0), (0,1,0),
(0,0,1), and (0,0,0). Unfortunately, when several SOS constraints intersect, fractional LP
solutions are introduced, but the property of having many 0-1 extreme points is still very
attractive.

In a sense, SOS constraints produce easy problems, while the remaining inequalities
are difficult. In general, the vast majority of extreme points using non-SOS constraints
will lead to fractional solutions. Cover inequalities can be considered a simple tech-
nique for converting an individual non-SOS constraint into a set of equivalent SOS
inequalities.

Before we present a precise definition, consider the following simple constraint as an
example:

3x; +4x, +5X3 <6

Observe that if we consider only 0-1 solutions, no two of these x;’s are allowed to have a
value equal to 1. In particular, we can express this as:

X1 +X, £ 1

X1 +X3 < 1

Xo + X3 < 1
All of these constraints are cover inequalities; if any two variables are equal to 1, then the
left-hand side will be greater than (or cover) the right-hand side. As an example, if x; and

X, = 1, then 3x, + 4x, = 7 > 6. In fact, we can represent all three of these constraints in one
by observing that only one of these x;’s can equal 1 in any feasible 0-1 solution:

X1+ X2 +X3 <1

182 Operations Research

Here, we can replace the original non-SOS inequality with its cover. As far as any 0-1 solu-
tions are concerned, the two constraints are equivalent. With respect to the LP solution,
however, the cover inequality is much more restrictive. For example, the point (1, 0.75, 0) is
feasible for the LP but infeasible under the cover.

As a more general illustration, consider the inequality:

3X1 +4X2 + 5X3 +6X4 +7X5 +9X6 <12

Any subset of x;’s that results in a sum greater than 12 can be eliminated by a cover inequal-
ity such as x, + x; + x, < 2 because we cannot have all three of these variables equal to one.
(The sum would be at least 15.)

A cover for a single inequality is a subset of variables, the sum of whose (positive)
coefficients is greater than (or covers) the right-hand side value, b. A cover assumes
that the inequality is in less than or equal (<) form, and that all of the coefficients are
positive (or zero). We can convert a greater than or equal to constraint into less than
or equal to form by multiplying through by —1. We can also represent an equality
constraint by two inequalities (one > and a <) and then multiply the > by —1. Each of
these would be considered separately. If the constraint has a negative coefficient for
variable x;, we can perform a temporary variable substitution of x; = 1 — x;" to make all
coefficients positive.

Suppose, for example, that a problem contains the constraint:

4x,—5Xy +3X3 —4X4 —7X5+5Xxe=1
We can replace this constraint with two inequalities:

4x1—5X5 + 3X3 —4x4 —7X5+ 5% <1

4x,—5Xy +3X3 —4Xx4 —7X5+ 55X =1

(We do not really replace the constraint. We simply transform it for the purpose of finding
cover inequalities.) The second (>) constraint can be written as:

—Ax;+5x5 —3x3+4x4 +7X5 —5xg < —1
Substitute x; =1 — X/, x3 =1 — x5, and x, = 1 — x{ to get

4 + 5%, +3x3 +4x4 +7x5+ 5% <11
Similarly, for the first inequality, we get:

4x1 + 5%, +3X;3 +4x4 +7x5 +5xg <17

We can then use each of these independently to construct cover inequalities. The preced-
ing constraint implies (among others) that:

X1+X3+X4 +Xs5 <3 (that is, the variables cannot all have the value 1)

Converting back to original variables, we get:

X1+X3—X4 —X5 <1

Integer Programming 183

and we could add this new SOS constraint to the original LP, and resolve it.
In general, any non-SOS constraint can be written in the form:

Zajxj <b

jeK

where K refers to the subset of non-zero coefficients and we can assume that a, > 0. We
have deleted the subscript i for the row to simplify the notation.
Let S be any subset of K such that:
Zaj >b

jeS

The set S defines a cover. S is called a minimal cover if:

Zaj—ak<b forall keS

jes
that is, every element of S must cover b. In our example, for

4X1 + 5X2' + 3X3 + 4X4’ + 7X5' + 5X6 <17

we could say that the set S= {1, 2, 3, 4, 5, 6} is a cover. The sum of the coefficients is greater
than 17. However, there are a number of smaller covers. If we remove X, the set is still a
cover. If we also remove x,, the result, S = {1, 4, 5, 6} is still a cover. However, if we remove
any other element, S is no longer a cover; the sum will not be greater than 17. This set is
called a minimal cover, and the cover inequality is:

X1 +X4, +X5’ + X <3
or, equivalently,
X1 —Xg4—X5+Xe <1

If the set S is a cover, then every 0-1 solution must satisfy the cover inequality:

ij <[s]-1

jeS

There is a simple procedure for finding a minimal cover. Begin with S = K. Pick any index
to delete from S such that the remaining indices still form a cover. Repeat until no index
can be deleted without making the coefficient sum less than or equal to b. By repeating this
process several times in a systematic way, we could generate all possible minimal cover
inequalities. However, for large practical problems, the number of cover inequalities can
be exponential. Therefore, we need a method for efficiently finding a good cover.
Unfortunately, the approach described earlier is not very practical for large prob-
lems. Suppose that one of the non-SOS constraints contains 50 variables, and each
cover inequality has approximately 25 variables; then the constraint allows only half
of the variables to be used in any 0-1 solution. The number of potential minimal cover

184 Operations Research

inequalities is (30) ~ 1.26 x 10"*. Generating all possible covers is not a very practical
strategy, for even if we could generate all covers, we would discover that most of
them were unnecessary in the following sense. The original purpose behind construct-
ing these constraints was to force the LP into a 0-1 extreme point. Most of the covers,
although perfectly valid, willhave no effect on the currentoptimal solution to the LP. The
preferred approach would be to solve the LP, and then, if the solution contains fractional
values, to look for a single cover inequality that makes the current LP solution infeasible.
To illustrate this process, consider the following simple problem:

maximize 7 =12x; +13x, + 11x5+ 10x4
subject to: 12x+13x, +12x3+11x4, < 29
xj=0or1

Solving this problem as an LP (with constraints 0 < x; < 1), we find that x* = (1, 1, 0.333, 0),
with z* = 28.667. We want to find a set S such that:

1. The set S forms a cover of the constraint:

Zaj>b

jes

therefore,

ij < ‘S‘—l

jeS

2. The current LP solution violates the cover inequality:

3 >5-1

jeS

It is fairly easy to show that, if x;* = 0, then j will never occur in the set S. Because every
x* < 1, if any of them are zero, the constraint will never violate the cover inequality. It is
also easy to prove that, if x;* = 1, then we can always include it in the set S. If the corre-
sponding j is not in a set S that satisfies the aforementioned criteria, then adding j to S will
still be a cover. Therefore, in our example, we will include x, and x, and ignore x,. The only
question is whether to include x;. Observe that when we do not include it, we do not get a
cover; but, when we do add it to S, we get a cover and the current solution violates the cover
inequality, as required:

X1+ X2 +X3 <2

We now add this constraint to the original problem and solve the LP again. If the new solu-
tion is fractional, we look for another cover inequality.

We now present a simple algorithm for finding effective cover inequalities. Let x* be the
optimal solution to the linear programming problem with 0 < x; <1, and suppose that we

Integer Programming 185

want to find a valid cover inequality for one of the non-5OS constraints that will cut off the
current LP solution. Consider any non-SOS constraint of the form:

Zajxj >b+1

jeK

(We will repeat this procedure for each of the non-SOS constraints separately.)
Define the elements of S using the 0-1 variables s, where:

1 ifjes
5
0 Otherwise

We claim that this problem is equivalent to solving the following 0-1 knapsack problem:

minimize z= E (l—x;)sj

jeK

subject to Zajxj <b

jeS

The constraint ensures that the solution will be a cover. If the optimal value of z in this
problem is less than 1, then the corresponding cover inequality will make the current
LP solution infeasible. For a proof of this claim, refer to the work of Crowder et al.
(1983).

In this subproblem, we do not actually require the optimal value of z. It is only necessary
to find a z value less than 1, so we can use a variation of the biggest bang for your buck heu-
ristic, which will be described in the following, to find an approximate solution efficiently.
This method may miss a valid cover; but if it does find one, it will be acceptable.

We present a method for finding an approximate solution to the following 0-1 knapsack
problem:

maximize zZ= E tix;
jes

subject to Zajx]» <b

jes

The LP version of the knapsack problem is very easy to solve optimally. The algorithm sorts
all of the variables in decreasing order of bang for buck. The cost coefficient t; represents the
value (bang) that we get from each x;, while a, represents the cost (buck) or weight associ-
ated with the limited resource b. Process the variables in decreasing order of {t]» /aj}, and set
x; = 1 as long as the constraint is still satisfied. Let k be the index of the first variable that
will not fit in the knapsack. Define the amount of space left in the knapsack (the residual) as:

rzb—Zaj

j<k

186 Operations Research

and set x, equal to the fraction just large enough to use all remaining capacity:

Xk =—
ax

The rest of the xs for j > k are set to 0.

This simple one-pass assignment gives the optimal objective function for the LP and has
only one possible fractional variable. Let z* be the objective function value. The optimal
value z for the 0-1 knapsack problem will be less than or equal to z*. If z* is not integer
valued, we can round it down, and use it to approximate the 0-1 knapsack solution. Thus,
we do not actually solve the 0-1 knapsack problem.

The bang for buck heuristic also gives us a lower bound on the 0-1 knapsack problem. If we
ignore the fractional variable x,, we have a feasible 0-1 solution and, therefore, the optimal
0-1 solution is bounded below by z* — t,x, and above by z*. In particular, if the LP has no
fractional variable, the solution z' must be optimal.

Our situation presents a type of reverse knapsack problem: minimize a cost function and
have at least (b + 1) selected for inclusion in the knapsack. We can apply the same bang for
buck heuristic; only we select the variable with the smallest ratio first, and keep selecting
until the solution is feasible.

Consider the previous example: 12x; + 13x, + 12x; + 11x, < 29 and x* = (1, 1, 0.333, 0).
The knapsack problem becomes:

minimize 7z =08;+0s,+0.667s3+1s,4

subject to 12s;+13s, +12s3+11s4, > 30

The heuristic solution is: s, =s, =s; =1 or S = {1, 2, 3} with the value of z = 0.667, which is
less than 1. Therefore, the corresponding cover inequality, x; + x, + X3 < 2 cuts off the cur-
rent LP solution, as required.

Cover inequalities are included, as an option, in most of the higher quality commercial
packages. These implementations usually develop as many cover inequalities as possible
in a preprocessor, and then solve the reduced problem using branch-and-bound or other
techniques. Some implementations may use the technique repeatedly, after each iteration
of branch-and-bound.

In large practical test problems, Crowder et al. (1983) have discovered that the main
advantage of cover inequalities does not rely on getting 0-1 extreme points. However,
the objective function value for the resulting LP is much closer to the final integer
optimum. In other words, the cover inequalities appear to be defining very strong cuts
into the feasible region. This has a dramatic effect on the branch-and-bound routine
because tree nodes will now be fathomed much earlier, and the bounds will tend to
be considerably stronger. As mentioned at the outset, it is possible to solve pure 0-1
problems with up to 10,000 0-1 variables to optimality in a reasonable amount of
computer time.

Since then, many other inequalities have been developed and incorporated into com-
mercial software. We are now solving problems with millions of 0-1 variables routinely.
See Johnson et al. (2000) for several additional examples.

Integer Programming 187

4.7 Lagrangian Relaxation
4.7.1 Relaxing Integer Programming Constraints

At each node of the branch-and-bound algorithm, we solved a relaxation of the corre-
sponding integer programming problem, relaxing the hard constraints to produce an easy
subproblem. Namely, we relaxed the integer constraints, and solved the resulting LP. The
solution to the easier problem is an upper bound on the original (maximization) problem
because we have ignored some of the original restrictions.

With Lagrangian relaxation, we find that it is not always necessary to relax the integer
constraints. In some special problem instances, we could relax other constraints and leave
the integer restrictions in the problem, and still produce an easy integer problem. Recall
from Chapter 3 that some integer problems, such as network problems, can be easy to
solve.

Consider the following general definition of an integer programming problem:

maximize Z=CX
subject to Ax<b
Dx<e
X integer

This formulation is the same as before except that we have divided the set of constraints
into two groups. Assume that the constraints of the form Ax <b are relatively easy, while
the constraints Dx < e are hard. If we could ignore the second set of constraints, then the
integer problem would be easy to solve.

Unlike the LP relaxation, we will not ignore the hard constraints completely. Instead, we
will add a penalty term to the objective function that adds a cost for violating these restric-
tions. This penalized function is called the Lagrangian and is written in the form:

maximize Lix,u) =c'™x—uT(Dx—e)
subject to Ax<b

x integer

ux0

The vector u contains one entry for each of the constraints in the set Dx < e. The variable
u; represents the penalty associated with violating constraint i in this group. Observe that,
if we choose any fixed values for these penalties, then the resulting function becomes a
linear function of X, and because the remaining constraints are easy, we can maximize this
function with respect to x.

To simplify the discussion, suppose that there is only one hard constraint:

Zd]X] -e<0
=1

188 Operations Research

and therefore, the penalty u is a single scalar term. Initially, set u = 0 and solve the easy
integer problem ignoring the hard constraint. Having done this, we are likely to discover
that the solution violates the hard constraint, which means that:

Zdlx] -e>0
=1

If we now keep x fixed and increase u, we will decrease or penalize the Lagrangian function.
Suppose we now choose some fixed positive penalty value for u, and rewrite the
Lagrangian as a function of x:

maximize L(x,u) :Z(cj —udj)xj +ue
=1
subject to Ax<b
X integer

This problem is, once again, an easy integer problem for any fixed value of u. The penalty
on the hard constraint will eventually force the LP to move to an integer solution that is
feasible when u is large enough.

If we make u too large, the term (dx — e) becomes negative. That is, if we put too much
emphasis on satisfying the constraint, it will be over-satisfied, and we will have gone too
far. The value of u is no longer penalizing the objective function. Larger values of u will
now increase L(x, u). At this point, we can penalize the objective function by using a smaller
value of u.

The optimal value of the Lagrangian function is expressed as a min-max problem:

minimize maximum L(x,u)

u=0 x integer

which means that we want to find the value of u that has the greatest penalty effect on
L(x, u). This problem in itself is rather difficult; however, we can take advantage of the fact
that, when we fix u and maximize over x, the problem is easy. Similarly, when we fix x, and
minimize over u, the problem becomes an unconstrained linear function of u, and is also
easy to solve. More accurately, it is easy to decide whether u should increase or decrease (if
possible) to minimize L(x, u).

4.7.2 A Simple Example

Consider the following example problem, which is illustrated in Figure 4.9:

maximize Z=X; +2X,
subject to 2X1+X, £2

X1,Xo=0or1

Integer Programming 189

max z =X + 2X,

2X; +Xy <2

2 |

FIGURE 4.9
Simple Lagrangian problem.

Observe that, if a 0-1 problem does not have any constraints, it is trivial to maximize. That
is, if the objective function coefficient ¢; is positive, then set x; = 1; otherwise, set x; = 0. We
can express the problem in Lagrangian form as:

minimum maximum X;+2x,—u (2x1 +X, — 2)

u>0 xe(0,1)

We begin with u = 0, and note the maximum of the problem is L(x, 0) = 3 with x;, x, = 1.
However, this point violates the constraint, so we substitute these values of x into the
Lagrangian, and consider the result as a function only of u.

minimum 3-u

u=0

This function can be minimized by choosing u as large as possible. We could try u =5, for
example; and when we substitute this value into the original Lagrangian, we get:
maximum x; +2x; - 5(2x; +X, - 2)

x=(0,1)
= maximum -9x; —3x, +10

x=(0,1)

The optimal solution to this problem is to set both decision variables to zero. The corre-
sponding function value is L(x, 5) = 10. This time, when we substitute x into the Lagrangian
in terms of u, we find:

minimum 0-u(0-2)=2u

ux0

190 Operations Research

x=(1,1)

o
33 I
o ——

FIGURE 4.10
L(x* u) as a function of u.

This subproblem tells us to decrease u as far as possible. We already know however that
when u = 0, it will tell us to increase u. So, the correct value of u must lie somewhere
between these two extremes.

Observe that, for any value of u, we can solve for x and find the value of L(x, u). Figure 4.10
illustrates what we have learned so far about L(x, u) as a function of u.

Recall that we want to minimize L(x, u) as a function of u. When u =0, we found x =(1, 1)
and the function was defined by the decreasing line as u increases. This expression is valid
as long as x = (1, 1); but then at some point, the optimal solution for x changes, and we get
a new linear function describing L(x, u). We now know what that linear function is when
u=0and u =5, yet we do not know how it behaves in between these two points. The two
line segments in Figure 4.10 represent our best guess at the moment. In particular, it looks
as if the minimum value of the Lagrangian will be found when u = 1, so we try that next.

Substituting u = 1 into the Lagrangian gives:

maximum x; +2x; = 1(2x; +x2 - 2)

x=(0,1)
= maximum —X; + X, + 2

x=(0,1)

The maximum of this function is L(x, 1) = 3 when x = (0, 1). If we substitute x = (0, 1) into
the original function, we get:

Lix,u)=2-u(-1)=2+u

This new section of the Lagrangian is added to the previous approximation to get the func-
tion illustrated in Figure 4.11.

From this function, we obtain a new estimate of the minimum value of u = 0.5. Once
again, we substitute this value into the Lagrangian and solve for x.

Integer Programming 191

FIGURE 4.11
L(x* u) as a function of u.

maximum X; +2X; —0.5(2x; +x, - 2)

x=(0,1)
=maximum 1.5x, +1

x=(0,1)

The maximum of L(x, 0.5) = 2.5 occurs at x = (0, 1) or x = (1, 1). It is easy to verify that this
is the true minimum of the Lagrangian. That is, we will not find any new solutions that we
have not already described in Figure 4.11.

Let us summarize a number of very useful properties of the Lagrangian, and indicate
how we can make use of these properties.

¢ The Lagrangian method always finds an integer solution, although the solution
found is not necessarily feasible.

e If the solution, x!is feasible, and if the original function, z!at x'is equal to the value
of the Lagrangian, then x! is optimal for the original integer problem.

* Most important, if z* is the solution of the relaxed LP, L(x, u) is the optimal solution
to the Lagrangian, and z'is the (unknown) optimal integer function value, then

Z'<L(x,u)<z*

A proof of these relationships can be found in Fisher (1985).

In other words, the value of the Lagrangian always gives a bound on the optimal integer
solution that is at least as good as the LP. Therefore, if we use the Lagrangian instead of the
LP in any branch-and-bound algorithm, we may get better results. The LP bound is never
better than the bound from the Lagrangian. In our simple example problem, the optimal
integer function value z' = 2 when z! = (0, 1). The LP solution occurs at x = (0.5, 1) with
z* =2.5. The LP and the Lagrangian both give the same upper bound.

4.7.3 The Integrality Gap

Let L' be the optimal solution to the Lagrangian when the integer variables are forced to take
integer values, and let L* be the optimal solution to the Lagrangian when the integer variables

192 Operations Research

are allowed to take on real values (i.e., when we drop the integer constraint on the Lagrangian).
It can be proved that the optimal solution for L* is precisely equal to the optimal solution z*
to the LP. (In fact, the penalty terms u in the Lagrangian will be identical to the corresponding
dual variables in the constraints.) Therefore, we can expand the preceding inequality to be:

Zi<l<*=2*

We use the term integrality gap to describe the difference between L! and L* which is
the amount by which the Lagrangian decreases when we add the integer constraints. In
the example problem, when we solved the Lagrangian without integer restrictions, we
obtained integer solutions anyway. Adding the integer constraints does not change the
function value. There is no integrality gap. Because the optimal solution to the Lagrangian
is equal to the LP solution in this example, the Lagrangian will never give a better bound.
Indeed, we saw that z* = 2.5, and L' = 2.5. When we construct the Lagrangian to get an
easy integer problem, we actually do not want it to be foo easy; we want an integrality gap
so that the Lagrangian bound is better than the LP bound. We provide an example of this
type of Lagrangian function in the next section.

4.7.4 The Generalized Assignment Problem

Consider the generalized assignment problem which was introduced and formulated in
Section 4.3.5. This problem is similar to the standard assignment problem, where we want
to assign jobs to machines for example, except that, in this case, we can assign more than
one job to the same machine subject to some capacity limitations.

The generalized assignment problem has a wide variety of practical applications. We
could, for example, be assigning computer programs to a set of processors, or customer
orders to a set of delivery vehicles, or university students to sections of a course. The
capacity might represent a space restriction (in the truck) or a limit on total available time.
The problem formulation can be written as follows:

n m
maximize zZ= E CiiXj
i=1 j=1
m
subject to E xj=1fori=1,2,...,n

=1

n
ax;<bjforj=1,2, .., m
i=1

x;y =0 or 1 for alli,j

where there are n jobs and m machines. The variables x; = 1 if job i is assigned to machinej.
The payoff for assigning job i to machine j is ¢;. Each machine has a capacity b;, and each
job requires a; units of machine capacity. The first set of constraints forces each job to
be assigned to exactly one machine, while the second set of constraints ensures that no
machine has its capacity exceeded.

In the standard assignment problem, the size of each job and the capacity of each machine

are equal to one. We have already seen in Chapter 3 that the basic assignment problem is

Integer Programming 193

relatively easy to solve. Surprisingly, when we generalize the machine capacity constraint,
we create an integer programming problem that is difficult to solve. The LP solution is not
necessarily an integer solution.

A straightforward formulation of the Lagrangian is to move the capacity constraints into
the objective function:

n m

Li(x, u) = min,.o max,_(, Zcijxij - Zui (Zaixﬁ — bj]

i=1 j=1 = i=1

subject toz xj=1fori=1,2,...,n

=1

When u; = 0, this problem is trivial to solve. We can consider each job independently, and
simply put it on the best machine (with the highest c;). This solution will generally violate
some of the capacity constraints, so we can increase the corresponding penalty terms, u,
and construct a new simple problem with:

Gj = Cjj — Uja;

This penalizes placing all jobs on the machines whose capacities are exceeded. Now,
we solve this new problem where we again place each job on the best possible machine
using the values c¢;. Unfortunately, this formulation is a little too easy. The solution of the
Lagrangian (in terms of x) would give 0-1 answers even if we solved it as an LP. Therefore,
there is no integrality gap and the optimal Lagrangian function value will be the same as
the LP function value for the original problem. The corresponding Lagrangian will not
produce better bounds than the LP.
The same problem could also be formulated in the following way as a Lagrangian:

n_ m m n
L](X, u) = minu maXX:(O,I) E E Cinij - E u; E Xij — 1
=1 1

i=1 =1 = =
Subject to Zaixij <bjforj=1,2,...,m

i=1

This formulation can be interpreted as considering each machine separately. Initially, we
start with u = 0 and assign the best possible jobs to each machine without violating the
capacity restrictions. Each machine can be thought of as defining an independent knapsack
problem. Although the knapsack problem is not as easy as the simple assignment solu-
tion that we used in the previous formulation, it is still a relatively easy problem in many
practical situations.

The solution obtained will generally assign some jobs to more than one machine and
other jobs will be unassigned, which are both infeasible because every job must be assigned
to exactly one machine in any feasible solution. When a job i is assigned to more than one
machine, the corresponding penalty term will be positive and we can use a positive value
of u; to penalize the Lagrangian. However, when a job i is unassigned, the term will be
equal to —1, and we use a negative value of u; to penalize the infeasibility. Thus, we do not
restrict u; to have a non-negative value.

194 Operations Research

In this formulation, if we solve the Lagrangian as an LP, we will get a fractional solution.
In particular, each knapsack (machine) may have one fractional part of a job assigned to it.
By solving the Lagrangian as a sequence of knapsack problems, we get an integer solution,
and therefore, the problem will, in general, have an integrality gap. The integer restriction
on the Lagrangian will decrease the objective function value. Hence, the Lagrangian will
give a better upper bound than the standard LP bound.

This approach has been used successfully by Fisher et al. (1986) to obtain practical solu-
tions to the vehicle routing problem, in which a given set of customer orders must be
assigned to delivery trucks. Each order takes a fixed amount of space in the truck, and
there is a capacity restriction on the size of each vehicle.

4.7.5 A Basic Lagrangian Relaxation Algorithm

A succinct general description of a Lagrangian relaxation algorithm is given in the follow-
ing. We omit implementation details because specific implementations vary considerably,
depending on the application.

1. Select an initial value for u® (say u® = 0), and find the maximum of the Lagrangian
with respect to x with u fixed. Suppose the solution is L at x°. Define k = 0 to be
the current iteration.

2. Substitute the current solution x* into the Lagrangian objective function to get a lin-
ear function of u. If the i-th coefficient of u is negative, then the Lagrangian can be
reduced by increasing the i-th component of u*. If it is positive, then we can decrease
the Lagrangian by decreasing the i-th component of u* provided it is feasible to do so.

3. Determine a value of u*! such that the Lagrangian L*! < Lk (There are many
methods for doing this, some of which rely on trial and error.)

4. If no decrease can be found, stop. Otherwise, set k = k + 1, and go back to step 2.

4.7.6 A Customer Allocation Problem

We will illustrate the basic method of Lagrangian relaxation by solving a distribution
problem. Many companies operate multiple distribution warehouses to supply products
to their customers. One of the common problems facing such companies is to determine
which set of customers should be assigned to each warehouse. Because of the additional
delivery costs, it usually does not make economic sense to have a customer’s demand
satisfied by more than one warehouse. This is referred to as a single sourcing constraint.

Consider a delivery problem in which four customers must be served from three ware-
houses. The cost of satisfying each customer from each warehouse is illustrated in the fol-
lowing table. Each customer has a demand that must be met, and each warehouse has a
maximum capacity.

Warehouses

Customers 1 2 3 Demand d;

1 475 95 665 19
2 375 150 375 15
3 360 180 180 12
4 360 180 360 18

Capacityb; 18 27 20

Integer Programming 195

The problem can be formulated as a generalized assignment problem where x; = 1
if customer i is served by warehouse j. Every customer must be served by exactly one
warehouse, and every warehouse has a capacity constraint on the set of customers it can
service.

minimize E E CijXij
i

subject to: inj =1 for all customers i
j
Zdixij <b; for all warehouses j
xi=0or1

If we solve the problem as an LP with (0 < x; < 1), we get a total cost of 890, but two of
the customers are served from two warehouses. This violates the 0-1 constraint on the
variables.

We construct a Lagrangian function by penalizing the customer constraints:

L(x, u) = maximum,, minimumX:{O,l} E E CijXij + E u; E X —1
i j i

j

subject to: Zdixij <b; for all warehouses j

or, equivalently:

L(x,u) = maximum, minimum,_ i+ | X — u;
u (0,1} j j
i

i

subject to: Zdixi]- <b; for all warehouses j

Observe that because this problem is a minimization in x, we construct the Lagrangian as
a maximization in u. When we substitute any fixed value of u into the Lagrangian, this
problem becomes a simple multiple knapsack problem. We can treat each warehouse as
an independent knapsack problem, and find the least expensive customers for that ware-
house. However, because we have dropped the customer constraint, there is no reason
why a customer cannot be assigned to more than one warehouse, or in fact, to no ware-
house. In particular, if we set u = 0 initially, we discover that the optimal solution is x = 0.
(No customers are assigned to any warehouse!) To make customers attractive to the ware-
houses, at least some of the costs must be negative; that is, we must choose initial values for
the u vector to be negative enough to make some of the Lagrangian costs negative. We will
choose u = (475, =375, —=360, —360), a somewhat arbitrary choice, but one in which the
new Lagrangian costs have at least one negative cost for every customer. We can subtract

196 Operations Research

the second smallest cost in each row to ensure that the smallest cost will be negative. (In the
first row, we can subtract 475 from each element.) Now, every customer is desired by at least
one warehouse. The new Lagrangian costs are:

Warehouses
Customers 1 2 3 Demand d;
1 0 =380 190 19
2 0 —225 0 15
3 0 —180 —180 12
4 0 —180 0 18

Capacity b; 18 27 20

When we solve the knapsack problem for each warehouse we find:

Warehouse 1: Does not take any customers (all costs are zero).

Warehouse 2: Would like to take all of them, but can take only customers 2 and 3 due
to capacity constraints for a cost of —405.

Warehouse 3: Takes customer 3 for a cost of —180.

The value of the Lagrangian function is the sum of these costs minus the sum of the penal-
ties, u;: 0 — 405 — 180 — (—1570) = 985. This first approximation is already a better bound on
the solution than the LP solution, which has a value of 890.

When we now examine the customer constraints, we see that no warehouse took customer
1 or 4, and two warehouses took customer 3. To encourage at least one warehouse to take cus-
tomers 1 and 4, we want to decrease the cost for those customers (that is, decrease u, and u,).

In order to decrease the number of warehouses that want customer 3, we increase the
cost slightly. There are many popular methods for doing this, but they all essentially
involve trial and error. We can change all three u; values at once, or we can change them
one at a time. We can take small steps, and keep increasing them until the Lagrangian
stops increasing, or we can take large steps (too far) and then back up. Without elaborating
on details, we will briefly illustrate the first couple of steps.

Suppose we decide to change the three u; values by 200. (A small change by 1 or 2 does
in fact increase the Lagrangian.) Then, the new u values are (—675, —375, —160, —560) and
the costs will be:

Warehouses
Customers 1 2 3 Demand d;
1 —200 —580 —10 19
2 0 —225 0 15
3 200 20 20 12
4 —200 —380 —200 18

Capacity b; 18 27 20

Integer Programming 197

The three knapsack problem solutions are:

Warehouse 1: Takes customer 4 (customer 1 will not fit) for a cost of —200.
Warehouse 2: Takes customer 1 for a cost of —580.
Warehouse 3: Takes customer 4 for a cost of —200.

The value of the Lagrangian is: —200 — 580 — 200 — (—1770) = 790. We thought that we were
moving in a direction that increased the Lagrangian; and, in fact, the Lagrangian will
increase for the fixed previous value of x. Unfortunately, as we continue to increase the
change in u, we eventually get a new minimum solution x, and the Lagrangian starts to
decrease. Apparently, we have gone too far; so let us try again, using a smaller change for
the values of u by 10. The new u vector is: (—485, —375, —350, —370), and the resulting cost
matrix is:

Warehouses
Customers 1 2 3 Demand d;
1 —10 —390 180 19
2 0 —225 0 15
3 10 —170 —170 12
4 —10 =190 —10 18
Capacity b; 18 27 20

The knapsack solutions are:

Warehouse 1: Takes customer 4 for a cost of —10.
Warehouse 2: Takes customers 2 and 3 for a cost of —395.
Warehouse 3: Takes customer 3 for a cost of —170.

The Lagrangian function is: =10 — 395 — 170 — (-1580) = 1005. At this stage, customer 1 is
still unserved, and customer 3 is still served by two warehouses. Decreasing u, further
and increasing u; should lead to a further increase in the Lagrangian.

In fact, the value of the optimal solution to the Lagrangian for this problem is 1,355,
which also happens to be the optimal integer function value (with customer 4 assigned to
warehouse 1; customers 2 and 3 to warehouse 2, and customer 1 to warehouse 3). Thus, for
this particular example problem, the Lagrangian bound is tight.

4.8 Column Generation

Many integer programming problems can be stated as a problem of determining what
patterns or combinations of items should be assigned to each of a set of orders. Problems
of this type arise frequently in some of the most important industrial and organizational
applications, and are typified by the following examples.

198 Operations Research

In problems involving vehicle routing, customer orders are to be assigned to trucks and
routes. A pattern might be a set of customers that could feasibly fit on one truck load (and
be delivered by a driver without violating any workday or time delivery constraints).

In airline crew scheduling, work pieces (flight legs) must be assigned to airline crews
(teams including pilots, navigators, flight attendants, etc.). A pattern might be one (or sev-
eral) day(s) of work for one crew consisting of several feasible flight legs (with constraints for
required rest time between flights, layovers, constraints on legal flying hours per day, etc.).

Various cutting stock problems involve choosing which orders should be cut from each
piece of stock material. In this context, a pattern would include a set of orders that could be
cut from one piece of material. The orders might be pieces of fabric cut out for dresses, or
large rectangular sheets of paper cut from a large roll.

An example of a shift scheduling problem is determining how to assign hospital work
shifts to nurses or doctors. In shift scheduling, a pattern might consist of a feasible set of
shifts that a nurse could work over a two week rotation.

Each of these problems could be solved in the following way:

1. Construct all possible feasible assignment patterns.
2. Define x; = 1 if we decide to use pattern i.
3. Define c; to be the total cost of using pattern i.

4. Define a; = 1 if customer/order/leg/shift j is included in pattern/route/work-
stretch i.

To simplify the discussion, we will use the example of vehicle routing. Given a set of cus-
tomer orders that will be assigned to one truck, we can calculate the (minimum) cost of
paying a driver to visit all of the locations and return to the warehouse. We could then
solve the following 0-1 integer programming problem:

n
minimize Z CiX;
i=1
n
subject to Zaijxi =1 (for each customer j)
i=1

Customer j may be included in many different possible routes. We want to find a mini-
mum cost set of routes such that every customer is covered exactly once. This type of
problem, called a set partitioning problem, has very special structure; and there are a
number of specialized software codes for this problem that can solve extremely large prob-
lem instances (with millions of variables) optimally (Barnhart et al. 1998).

For small enough problem instances, the exhaustive enumeration or construction proce-
dure suggested earlier might be a reasonable way to find optimal solutions. Unfortunately,
the number of possible routes is an exponential function of the number of customers.
Count the number of ways you can feasibly select a subset of customers, and you will dis-
cover that this approach is not at all practical.

Instead, we are going to begin by constructing a small subset of potential routes. It is
important here that the number of routes be greater than the number of customers, but not
exponential. These routes should include each customer at least a couple of times; but the
routes do not have to be particularly good ones. The usual procedure is to use a simple
heuristic to construct reasonable routes.

Integer Programming 199

We now solve this problem as a linear programming problem (with 0 < x; < 1), and
then use the dual values to help us find a new route (column). We add this new column to
the problem and solve the linear program again. We continue this process until no new
column can be added, and we then solve the 0-1 integer problem optimally. This final
problem does not give the optimal solution to the original problem because it typically
accounts for only a small fraction of the possible feasible routes. However, the solution to
the linear program is optimal in the sense that there is no new column that can be added
that could reduce the cost of the linear programming problem. Because the LP is a lower
bound on the IP, the true integer solution is bounded by the optimal LP and the IP solution
that we obtain.

Consider the following simple vehicle routing example. Suppose that a fleet of trucks
must travel on a square grid road network, and each edge in the road network takes one
hour of travel time. Each driver can travel at most 10 hours. Each truck must begin at
the depot (marked with the letter “D”), visit one or more customers (marked with num-
bers from “1” through “6”), and then return to the depot. The network is illustrated in
Figure 4.12. In this network, for example, the route from “D” to “1” to “D” will take six
hours; the route from “D” to “4” to “5” to “D” will take eight hours; and the route from “D”
to “1” to “2” to “D” will take 10 hours.

To initiate the procedure, select at least six feasible routes, and compute the cost of each
route. These routes form the initial set of columns. We have chosen the following set of
columns, where each customer is in two routes. (We intentionally chose poor routes to
illustrate that the quality of these routes does not matter at this point, although normally,
reasonable routes should be selected.)

Cost

10 8 10 10 10 10

Customer x;, x, X3 X, X; X, RHS

SN Ul B WN e
—_
—

e

FIGURE 4.12
Vehicle routing example.

200 Operations Research

Solving this as a linear program gives: z = 28; x,, x,, X, = 1. The solution is integral by
coincidence (with 0 < x; < 1). The dual variables are (-2, —10, 0, —8, —10, 0). First, we will
illustrate how we solve this problem. Later, we will illustrate why it works.

The duals (one for each row implies one for each customer) represent the sensitivity of
the objective function to changes in the RHS. (Increasing the RHS by 1 would result in an
increase in the objective function of the corresponding dual variable). In our case, it would
decrease the objective function because the duals are negative.

Consider the following special problem of finding a single route that starts at the depot,
visits some customers, and returns to the depot in at most 10 hours. The cost of the route
is the total time; however, for every customer that is visited, increase the cost by the cor-
responding dual variable. For example, a route that goes from “D” to “4” to “5” to “D” will
cost 8 — 8 — 10 = —10. We claim that if we had initially added a column with customers 4 and
5, and then computed the Simplex tableau for the current basic feasible solution, the new
reduced cost would be precisely —10. Since it is negative, it can immediately enter the basis.

Cost

10 8 10 10 10 10 8

Customer x; X, X5 X4 X5 Xg x, RHS

DN Ul B W N =
—
—_
—
—
—
e T e e T

Solving this as a linear program again gives: z = 28; x,, X,, X, = 1. However, the dual variables
are now (—10, 0, —10, 0, 0, —8). Again, by inspection, we find a route with a negative reduced
cost. The new column corresponds to “D” to “1” to “3” to “D” for a cost of 8 — 10 — 10 = —12.

Solving this as a linear program again gives: z = 27; X,, X3, X5, X,, X5, Xg = 0.5. The new dual
variables are now (-4, —6, —4, =3, =5, —5). By inspection again, we find a route with a nega-
tive reduced cost. The best new column corresponds to “D” to “5” to “4” to “6” to “D” for
acostof10-5-3-5=-3.

After a few more iterations, we find a solution with z = 20 and x,, X,y = 1 corresponding
to two routes: customers {1, 2, 3} and {4, 5, 6}. The final dual variables are: (0, =2, =8, 0, -2,
—8). The reader should verify that there are no feasible routes with a negative reduced cost,
and therefore, this is the optimal solution to the LP. In fact, because this is by chance an
integer solution, it is also the optimal integer solution.

Cost

10 8 10 10 10 10 8 8§ 10 10

Customer x; X, X; X4 X5 X X, Xg Xo X, RHS

SN Ul B W N =
—
—
[
—
—_
—
[
—_
I T S S

Integer Programming 201

Normally, column generation produces a fractional LP solution, and no new column can
be created with a negative reduced cost. This means that no such column exists. Column
generation is an optimal procedure for the linear programming problem. Moreover, the
optimal solution to the LP is a lower bound on the optimal solution to the corresponding
integer programming problem.

Current software packages with column generation use specialized software to solve
the resulting partitioning problem optimally. Methods have been designed that use the
special structure of the problem to solve very large problems to optimality. The solution
is optimal for the given set of columns. There is no guarantee that there is no new column
that could be added to produce a lower integer answer. However, the integer function
value is often quite close to the linear function value. In general practice, column genera-
tion tends to produce very good solutions.

4.9 Software for Integer Programming

An essential component in any solver for integer programs or mixed integer programs is
the underlying linear programming solver used for generating lower bounds, separating
and selecting subproblems. Dramatic improvements in LP solvers, coupled with faster,
more powerful hardware, have led to a wide range of software for integer programs,
incorporating a variety of the techniques discussed earlier in this chapter. Performance
enhancements have been remarkable, but software solvers for integer programming prob-
lems still are often characterized by their requirements for significant amounts of memory
and computation time.

No one strategy works for all integer programming models. The cutting plane methods
that successfully exploit the special structure of the traveling salesman problem are not
the same techniques that would be effective on an integer problem having a different
structure. Commercial codes have the advantage of ease of use, but for many practical
(large-scale) integer problems, successful solution may require a skillful analyst to develop
a customized solver, based on just the right branching strategy, bounding strategy, or tai-
lored cutting plane mechanism.

AIMMS software offers an integrated modeling system for solving pure integer, mixed
integer, and 0-1 programming problems. Input and output are supported by the alge-
braic modeling language and graphical user interface for which AIMMS is well-known.
AIMMS modeling and optimization platform supports building and solving problems for
applications such as workforce and financial portfolio optimization, production planning
and scheduling, logistics, and transportation. AIMMS allows analysts to evaluate mul-
tiple action plans and assess the impact of different and continuously changing scenarios.
LINDO Integrated Modeling Language is a comprehensive tool for expressing integer
optimization models. LINDO API includes an integer solver that works together with
linear, nonlinear, and quadratic solvers.

IBM ILOG CPLEX Optimizer (commonly referred to as CPLEX) is a powerful suite of
solvers including solvers for integer and mixed programming that can run on different
platforms. The CPLEX solvers have been used to solve large real-life optimization prob-
lems with millions of variables and constraints. They are often integrated with convenient
and powerful modeling languages, such as GAMS and AMPL modeling systems for large-
scale optimization of linear and nonlinear mixed integer programs, a combination that

202 Operations Research

offers advanced features for solving difficult integer programming problems for which
other software systems may be inadequate.

SAS/OR systems, described in previous chapters, also have capabilities for solving pure,
mixed, and 0-1 integer programming problems. SAS OPTMODEL provides an integrated
modeling environment, with special features for solving mixed integer problems by using
parallel branch-and-bound techniques with cutting planes and heuristics, and decomposi-
tion algorithms for mixed integer programming problems.

MIPIII Mixed-Integer Optimizer from Ketron Management Science allows the user to
match the problem structure to an appropriate solver, and exploits the user’s knowledge of
the model through the use of pre-solvers, special approaches for knapsack problems, the
use of branching priority lists, and a choice of stopping criteria.

Gurobi Optimizer provides solvers for mixed integer solutions of linear, and quadratic
programs. It uses advanced implementations of new MIP algorithms using parallel non-
traditional search techniques and cutting planes.

Google OR Tools offers an interface to several MIP solvers. By default, it uses COIN-OR
branch and cut implementation, an open source solver from the Computational
Infrastructure for Operations Research project (COIN-OR). However, one can also use
other MIP solvers (such as Gurobi) with Google OR Tools wrapper. Google’s OR Tools are
offered for various platforms (Windows, Mac OS and Linux) and languages (C++, Java,
and Python).

Software for specialized applications often provides unique and convenient user inter-
faces as well as efficient solution techniques directed specifically to the type of application.
For example, software for scheduling systems may yield a competitive edge in manufac-
turing and production environments. The underlying scheduling methodology forming
the backbone of such software systems may be based on a classical 0-1 programming
model (matching activities to time slots subject to constraints) or may perform priority or
rule based scheduling with release dates, deadlines, or due dates. Other considerations
include ease of modeling the processes and operations in a production scheduling system,
and the ability to incorporate materials handling, quality assurance, shop floor data, and
production activity control subsystems (Seyed 1995).

Many integer programming problems can be viewed as routing problems, and numer-
ous software packages are available to solve problems cast into this framework (Hall and
Partyaka 2016, Horner 2018). For an overview of approaches, see Bosch and Trick (2014).

4.10 Illustrative Applications
4.10.1 Solid Waste Management (Antunes 1999)

Along with extensive political, social, and economic changes in Portugal during the past
several decades, urban population growth has increased dramatically. Authorities are
faced with the resulting problem of disposing of significant amounts of municipal solid
waste generated in population centers such as Lisbon, Coimbra, and Oporto. By the 1990s,
the Centro Region Coordination Agency was looking at growth rate projections that indi-
cated that the waste management problem would rapidly extend beyond the major urban
centers to affect smaller municipalities and rural areas as well.

Integer Programming 203

The collection of waste was already being handled effectively; in fact, by 1991, approxi-
mately 90% of households were served by modern fleets of vehicles collecting garbage. But
disposal of the collected waste was being dealt with using the worst possible techniques:
huge open air dumps that periodically burned the waste. And whereas hazardous, dan-
gerous, and toxic waste was being managed and monitored by the national government
under a separate initiative, the massive amounts of ordinary solid waste were the respon-
sibility of regional authorities. The Centro Region needed to develop a clear view of how
solid waste would be managed, from the time it is generated, through the phases of col-
lection and reduction, until it is finally disposed of in a sanitary landfill that is built and
operated according to strict and appropriate regulations.

Storage space for solid waste is a major consideration. Volume reduction based on com-
posting is effective only on the organic portion of the waste, which is a small and decreas-
ing proportion of total waste in the Centro Region. Subsequent separation from glass,
metal, and plastics represents an added expense in the composting regimen. Incineration
is the most effective way of reducing waste volume, but set-up costs are extremely high,
and the environmental concerns over fly-ash and hazardous bottom-ash combine to argue
against the use of incineration on a large scale.

Compaction is less effective than incineration, but it is cheaper and has the additional
advantage that it can be applied early in the process, during either the generation or the col-
lection phases. Thus, compaction can substantially decrease transportation costs between
collection points, transfer stations, and landfills.

With these issues in mind, an analyst developed a mixed integer programming model
having nearly 10,000 variables, about 100 of which were 0-1 variables, and about 10,000
constraints. The model combines elements of a p-median problem with a capacitated
facility location problem. The model included 18 possible sites for sanitary landfill
locations, and 86 possible sites for transfer station locations. Problem parameters were
based on projections for the year 2014 in order to accommodate anticipated population
growth rates.

Multiple objectives were considered during the development of this solid waste manage-
ment model. On the one hand, it is aesthetically desirable to locate sanitary landfills as far
as possible from urban centers (subject to the very legitimate not-in-my-backyard reaction of
rural residents). But it is also expeditious to keep the landfills as close as possible to waste
producers, to minimize costs of transportation.

The minimum cost objective was ultimately given greater weight. In achieving this
objective, a number of constraints were imposed. Landfills and transfer stations have a
minimum capacity (in tons per day) to take advantage of economies of scale. There is a
maximum distance to be traveled by the trucks during their daily collection and transfer
trips. Landfills are placed in the municipalities with the largest populations. Finally, col-
lection and transfer trucks are routed to avoid mountainous regions with narrow winding
roads, both for economic reasons and out of respect for the fragility of natural resources
in the national parks.

Because of the complexity of the model, the analyst initially assumed that it would not
be possible to solve the mixed integer problem using a general exact method on the PC
equipment available for this study. A greedy heuristic based on capacitated transshipment
methods was developed, and the results obtained in this way were included in the initial
reports presented to the Centro Region Coordination Agency for consideration. However,
a new version of XPRESS-MP software running on slightly faster processors allowed the
model to be solved exactly with reasonable computational effort.

204 Operations Research

The final solution developed in conjunction with the Agency called for eight land-
fills, each with a specified capacity, and eight transfer stations, also each having a
specified capacity. It was possible to delay the capital investment needed for three of
the transfer stations (without violating the maximum truck trip distance constraints)
so that initial expenditures could be concentrated on the more urgently needed sani-
tary landfills.

The results of this study brought some credible and rational order to a previously
chaotic situation. The solution developed during this study led the representatives from
throughout the Centro Region to adopt a Strategic Municipal Solid Waste Plan that
serves as a guide during the present process of implementing the proposed waste man-
agement system.

4.10.2 Timber Harvest Planning (Epstein et al. 1999)

The Chilean forestry industry consists primarily of large private firms that own pine and
eucalyptus plantations and are vertically integrated, comprising pulp plants, sawmills,
and paper market operations. Short-term harvest scheduling (over a three-month period)
amounts to matching stands of timber, of a given age and quality, to market demands
that are typically defined by the length and diameter of each piece of timber. The process
of cutting harvested trees into products having required lengths and diameters is called
bucking. Bucking sequences are expressed in terms of lengths to be cut from timbers of
decreasing diameters.

Different types of harvesting equipment are used in different terrains. Steep slopes
require towers or cables, while flat areas can be harvested using tractors or skidders.
In either case, bucking can be done on the ground and the resulting pieces transported
to their respective destinations, or entire logs can be delivered to a central location
for bucking. Transportation costs (which can include road building costs) play a sig-
nificant role in the decisions that select timber from a certain origin and assign it to a
destination.

Determining an optimal harvest plan is a difficult combinatorial problem that involves
selecting mature timber stands available at specified locations, and assigning them accord-
ing to product demand; obtaining optimal bucking patterns to utilize the timber itself in
the most valuable way; and minimizing transportation costs, subject to the firm’s harvest-
ing equipment limitations and trucking capacities.

A principal component of the harvest plan is the specification of optimal bucking pat-
terns, from among exponentially-many possible patterns. The solution is based on an LP
model, and incorporates a branch-and-bound approach using column generation to create
the bucking sequences. In the branch-and-bound tree for generating bucking patterns, a
path from the root node to the bottom of the tree represents a bucking sequence; the termi-
nal node in the tree represents the product (a piece of timber having a certain diameter cut
to required length); and the terminal node’s level in the tree denotes the product’s position
in the bucking process.

The column-generation technique improved the harvest value by 3% to 6% over the
fixed bucking patterns that had been in use previously when harvest planning was done
manually by experienced human planners. Furthermore, transportation costs were cut
substantially when the model solution revealed the savings that could be obtained by
bucking and shipping directly to market destinations rather than transshipping through
intermediate central bucking locations.

Integer Programming 205

Other applications of operations research in the Chilean forestry industry include sys-
tems for:

¢ Scheduling trucks among timber stands, mills, and destination ports.

® Selecting stands for harvest, and partitioning the timber for logs, sawtimber, and
pulpwood, using mixed integer LP models.

e Determining the optimal placement of harvesting equipment and the optimal
locations of access roads within the forest.

¢ Long-term planning over a 50-year horizon to maintain steady and consistent
supplies of timber, which involves the purchase, sale, and rental of timber lands;
choosing appropriate silviculture regimes for different plantations; and planning
for mills and other industrial processing plants.

4.10.3 Propane Bottling Plants (Sankaran and Raghavan 1997)

During recent years, the importation, bottling, and distribution of liquefied petroleum gas
(LPG) in India has transitioned from a government-controlled operation into a private-
sector enterprise. Two major import and storage facilities (ports), already in place, provide
supplies of LPG. Industrial customers acquire LPG in bulk directly from these locations,
but the needs of other domestic residential and commercial establishments are supplied
through a network of dealer agencies. Customers use LPG contained in cylinders, and
when empty, these cylinders are picked up by dealers and replaced by filled cylinders.
Each dealer town must have a bottling plant where empty cylinders can be replenished for
future distribution to customers.

Because the sources of LPG and the customer market are already established, the prob-
lem was to determine the pattern and mechanisms for distributing LPG from the two stor-
age facilities to the customers. Tanker trucks can transport LPG from the source to dealer
locations for bottling, but it is also feasible to operate mobile bottling plants. Considerations
for mobile operations include not only capital investment and operating and distribution
costs, but also public safety and firefighting capabilities at all intermediate storage points.

Strategic decisions for dealer and bottling facility location are complicated by the fact
that any necessary future increases in capacity at a given location can be undertaken only
if such increases are provided for in the original layout. Thus, a significant portion of
expansion costs are incurred during original construction, although the payoff from such
expansion will not be realized until the projected market growth actually takes place.

The problem facing the Shri Shakti company is optimally locating the bottling plants,
determining the long-run size of each facility, and projecting the target date at which each
facility will commence operating at full (expanded) capacity. The integer programming
model used for this problem involves about 400 dealer towns and 2,500 constraints, and
seeks to minimize total cost of operations in the target year. Costs include:

e Fixed annual costs that are independent of volume throughput at the plants
¢ Costs of transporting LPG from the two ports to the plants
Cost of bottling

Costs of transporting bulk and cylinder LPG and empty cylinders among bottlers,
dealers, and customers

206 Operations Research

Determining the amounts of LPG to be distributed through the network dictates the
location and size (capacity) of each proposed facility. Complicating the problem were
uncertainties about competition, corporate takeovers, market growth, and initially some
inaccuracies in data defining the distances between sites.

A solution to this problem was developed using a linear programming-based branch-
and-bound method. Subsets of the problem were originally solved in which the subprob-
lems were defined by geographical or political boundaries. Combining these separate
solutions, however, often resulted in certain customers being served by distant in-area
suppliers instead of by closer plants just across a boundary. In order to remedy this inef-
ficiency, a novel and indirect method was designed for solving the full-scale problem.
Specially tailored software routines in Fortran were linked to extended versions of LINDO
software for mathematical programming.

Analysts working on this application created a well formulated model, developed a
comprehensive and accurate database, and engaged in illuminating discussions with Shri
Shakti’s board of directors, government advisors, and financial experts during develop-
ment of these solutions. The credibility of the resulting model and the proposed solutions
provided a much-needed foundation for successful planning, negotiating, and funding for
this newly privatized industry in India.

4.11 Summary

Many important engineering, industrial, organizational, and financial systems can be
modeled as mathematical programming problems in which the variables are restricted to
integer values, 0-1 values, or a mixture of integer and real values. Solving integer prob-
lems usually requires significantly more computational effort than is needed for solving
continuous (real) linear programming problems.

Certain 0-1 models have become rather famous because their structures seem to arise in so
many different kinds of practical applications. Specialized methods for solving such problems
have been devised that take advantage of the mathematical structure inherent in the problems.
These classical models include the traveling salesman problem, knapsack and bin packing
problems, set partitioning, and generalized assignment problem. Many complex problems can
be solved by identifying subproblems that have the characteristics of these well-known models,
and creating a solution to the large and difficult problem by solving some simple subproblems.

Among the most effective methods for solving general integer programming prob-
lems are branch-and-bound algorithms. These methods repeatedly break large problems,
which are not yet solved, into easier subproblems, imposing integer constraints along the
way, until a solution to the original problem is finally found. Solutions to real-valued LP
problems are used to guide the process, so that the computation does not escalate into an
enumeration of exponentially many possible solutions.

A number of other approaches have been developed and refined over the years. Cutting
plane and cover inequality methods repeatedly introduce new constraints into integer
problems in order to exclude non-integer extreme points from the feasible region, and
then use simple LP solutions to locate the optimum, which then occurs at an integer point.
Lagrangian relaxation incorporates constraints into the objective function by placing a
penalty on any violated constraint. Any solution that violates a constraint has a lower value
than a solution with no constraint violation. The penalties must be chosen appropriately

Integer Programming 207

for the given problem. The technique of column-generation is applicable to problems such
as vehicle routing and workforce scheduling, in which customers or workers must be
assigned to trucks or work patterns. Incomplete initial solutions are iteratively built up
into complete optimal solutions.

Most methods for solving integer programming problems rely on solving linear sub-
problems using a standard technique such as the Simplex method. Thus, the performance
of many integer solution methods depends greatly on the efficiency of the underlying LP
methods. Recent improvements in LP solvers have contributed substantially to our present
capabilities for solving large practical integer problems efficiently.

Key Terms

active node

airline crew scheduling
assignment problem
backtracking

bin packing problem

binary integer programming
branch-and-bound
branch-and-bound tree
branching strategy
bounding strategy

capacity planning

capital budgeting problem
cargo loading problem
column-generation

convex hull

cover

cover inequality

current incumbent

cutting plane

cutting stock problem
employee scheduling problem
examination timetabling
facet

fathomed

fixed charge problem

flight crew

flight legs

general integer programming
generalized assignment problem
Gomory fractional cut
integer polytope

integer programming
integrality gap

jumptracking

208

knapsack problem
Lagrangian

Lagrangian relaxation
minimal cover

mixed integer programming
portfolio selection problem
production planning
production scheduling
relaxation

rotation

separate

separation rule

set covering

set packing

set partitioning

shift scheduling

single sourcing

sub-tour

traveling salesman problem
vehicle routing

warehouse location

work schedule

zero—one (or 0-1) programming

Operations Research

Exercises

41 A certain single-processor computer is to be used to execute five user programs.
These programs may be run in any order; however, each requires a specific set of
files to be resident in main memory during its execution. Furthermore, a certain
amount of time is required for each file to be brought into main memory prior to
use by a user program. The facts are summarized as follows:

User Program

Files Needed for Its Execution

1

Ul = W N

B,C E
A,B,C
A,B,D
A,D,E
B,C

File Name

Amount of Time Required to
Bring It into Memory

A

B
C
D
E

30
20
25
35
50

Integer Programming 209

Initially, no files are in memory. The five user programs are to run in sequence, but
any order is feasible. At most, three files will fit in memory at one time. Clearly,
because some of the files are used by multiple programs, it would be wise to try
to schedule the programs to take advantage of files already in memory, so as to
minimize the change-over (setup) times between programs. Define decision vari-
ables and formulate this problem to sequence the five user programs to minimize
total change-over times. Note the similarity of this problem to one of the classical
integer programming models discussed in this chapter.

4.2 Suppose you have a directed acyclic graph having n nodes, in which node 1 is
designated as an origin and node n is designated as a destination. In Chapter 3, we
described the problem of finding the shortest path from the origin to the destina-
tion. Formulate this problem as a 0-1 integer programming problem. (Hint: Let
decision variable x; = 1 if the arc from node i to node j is in the shortest path.)

4.3 A small university computer laboratory has a budget of $10,000 that can be used to
purchase any or all of the four items described in the following. Each item’s value
has been assessed by the lab director, and is based on the projected utilization of the
item. Use a branch-and-bound technique to determine the optimal selection of items
to purchase to enhance the computing laboratory facilities. Show your branch-and-
bound tree, and give the total cost and total value of the items chosen for purchase.

Item Cost Value
NanoRobot $4,000 8
WinDoze simulator $2,500 5
Network pods $3,000 12
BioPrinter $4,500 9

44 Bruno the Beach Bum wishes to maximize his enjoyment of the seashore by taking
along an assortment of items chosen from the following list. Help Bruno pack his
beach bag with the most valuable set of items by using a branch-and-bound tech-
nique. Bruno’s beach bag is rated for a 20-pound load.

Item Weight Value
Coconut oil 4 16
Sun shades 2 10
Snorkel and fins 8 16
Folding chair 10 30
Bummer magazine 5 30

Enumerate the number of packings (sets of items) for this problem, and draw a
complete tree of possibilities. How many of these sets are feasible packings? How
many subproblems are actually solved by your branch-and-bound procedure?
What is the optimal feasible set of items?

4.5 If a problem formulation has n variables and each variable has m possible integer
values, then a branch-and-bound tree could have as many as m" terminal nodes.
Verify this for the casem =4 and n = 3.

210 Operations Research

4.6 Consider the following 0-1 integer programming problem:
maximize B5xq —7X, —10x3 + 3x4 —4X5
subject to X1+ 3Xp, —5X3+X4 +X5 <3

2X1 —3X5 +3X3 —2x4 —2X5 < -3
2Xy —2X3+2X4 +X5 <3

xij=0or1 foralli

Solve this problem completely, using a branch-and-bound algorithm.

4.7 Suppose you wish to solve the following general integer programming problem
using branch-and-bound techniques.

maximize 3x; +5x5 +2x3

subject to X1 +5x, +3x5 <8
2X1+Xo +5x3 <7
4x;+ 2%, +3x3 <8
X1 43X, +3%x3 26

X1,X2,X3 2 0 and integer

Use up and down penalties to determine which variable would be branched on
first. (Note: There is no correct answer, but you should be able to justify your
choice.)

4.8 Consider the following integer programming problem:

maximize —4x; —5x,
subject to X;+4x, =5
3X1 + 2X2 >7

X1,Xz 20 and integer

Calculate the penalties for branching up and down on variables x, and x,.
49 Solve the problem given in Exercise 4.8 using Gomory fractional cuts.

410 Consider the following integer programming problem:

maximize —3x1 —4x,
subject to 2X1+X, >1
X1 +3x, >4

X1,Xz 2 0 and integer

Integer Programming 211

a. Compute the up and down penalties for branching on variable x,. Which way
would you branch first? Explain why.

b. What can you say about variable x;, the surplus variable on constraint 1, with
respect to up and down penalties? Explain.

4.11 Suppose that you are solving a large 0-1 linear programming problem, and the LP
solution has

x*=(0.3, 0.9, 0.1, 0.9, 0.9, 0.8, 0.9, 0.9, 0.7, 0)

One of the constraints in the problem is:

10X] _2X2 _4X3 + 7X4 + - 6X5 - 11X6 + 9X7 - 3X8 + X9 + 12X]0 <-1

In Section 4.6, we used a knapsack model to find a cover inequality that cuts off the
current LP solution. Describe the knapsack for this particular problem.

4.12 Suppose we are given a 01 linear programming problem in which one of the con-
straints is

3X] +4X2 —7X3 —3X4 + 5X5 —6X6 + 3X7 >0

Find a cover inequality that cuts off the current LP solution x* = (0, 3, 0, 1,
1, 3,0
413 A certain 0-1 linear programming problem involves the constraint

X1+3X2+4X3+5X4S6

and the current LP optimum occurs at x* = (0.3, 0.3, 0.2, 0.8).
Find a minimal cover inequality that cuts off the point x*.

4.14 Solve the problem in Exercise 4.6 again by first constructing cover inequalities, and
then using branch-and-bound if necessary.

415 We wish to assign three customers to two warehouses having limited capacity.
Each customer must be assigned to precisely one warehouse. The assignment
costs and the capacities are given in the following table. Solve this problem using
Lagrangian relaxation.

Warehouse1l Warehouse2 Demand

Customer 1 2 8 18
2 5 3 15
3 7 3 14

Capacity 30 18

212 Operations Research

4.16 Suppose that you are the manager of a small store that is open seven days per
week. You require the following minimum number of staff to work each day:

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday

NN U s WG

Saturday

Each employee can work only five days per week, and must have the weekend off
(Saturday and Sunday) once every two weeks. The objective is to meet the demand
using the minimum number of employees. Describe a formulation of this problem
using column-generation. (Hint: Try to construct a work pattern for a two week
period.) Describe the meaning of the rows and columns in the master problem.
Provide an initial formulation of the LP; that is, pick a starting set of columns, and
write out the LP. Perform a few iterations of column generation. Describe how you
would formulate the subproblem.

4.17 In Section 4.8, it was suggested that column generation can be used to solve the
cutting stock problem. The simplest (one-dimensional) cutting stock problem can
be illustrated by the following example. Suppose we have a large supply of steel
reinforcing bars to be used in the construction of concrete pillars. The bars are all
50 feet long. We have a set of orders for re-bars of the following lengths:

Length Quantity

15 feet 3
10 feet
13 feet
18 feet
19 feet
23 feet

= O ke O N

These orders are to be cut from some of the 50 feet long pieces. It is not eco-
nomical to keep an inventory of the leftover pieces, so we sell them as scrap. We
want to minimize the total cost of scrap for cutting this set of orders. Suppose
that it costs (net) 0.50 per inch to throw away a scrap piece of re-bar. Formulate
this as a column-generation problem. Generate the initial solution, and per-
form one iteration of column generation. Explain your algorithm for solving the
subproblem.

4.18 Big City Wheel Trans (for disabled public transit users) has a large list of clients
who must be picked up and delivered to lo