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Preface

This book presents a practical introduction to the field of Operations Research and serves 
as a guide to the use of Operations Research techniques in scientific decision making, 
design, analysis, and management. Our aim has been to create a readable and useful text 
that provides not only an introduction to standard mathematical models and algorithms, 
but also an up-to-date examination of practical issues pertinent to the development and use 
of computational methods for solving problems. We offer a sound yet practical introduc-
tion to the mathematical models and the traditional as well as innovative solution methods 
underlying the modern software tools that are used for quantitative analysis and decision-
making. Our presentations of problem formulations, solution methods, and software tools 
are accompanied by illustrative applications of Operations Research techniques.

The First Edition of this book has been thoroughly updated and expanded through 
the inclusion of new and timely topics, more modern perspectives on fundamental 
material, revised and updated descriptions of currently available software, and the 
addition of numerous new case studies that illustrate the application of Operations 
Research techniques for solving important problems. This Second Edition extends the 
purpose of the previous edition as a textbook for students and a professional reference 
for practitioners.

We have designed this book as a text for an introductory course in Operations 
Research. We target specifically the needs of students who are taking only one course 
on the subject of Operations Research, and accordingly we have chosen to include just 
those topics that provide the best possible one-semester exposure to the broad discipline of 
Operations Research. An introductory course in Operations Research may be a required, 
elective, or auxiliary course for many degree programs. In various institutions, the course 
may be taught in Industrial or Mechanical Engineering, Computer Science, Engineering 
Management, Management Science, Applied Mathematics, or Operations Research depart-
ments, at either the intermediate or advanced undergraduate or graduate levels.

This book may also serve as a professional reference book for corporate managers and 
technical consultants. We welcome readers from a variety of subject disciplines who rec-
ognize the potential value of incorporating the tools of Operations Research into their pri-
mary body of knowledge. Because the mathematical models and processes of Operations 
Research are used so pervasively in all areas of engineering, science, management, eco-
nomics and finance, and computer science, we are confident that students and profession-
als from many different fields of study will be at a substantial advantage by having these 
analytical tools at hand. We hope that, in the course of studying the material in this book, 
readers will be struck not only by fascination with the mathematical principles which we 
will present, but also by the many and varied applications of the methods and techniques. 
With the preparation provided by material in this book, readers should be in a position 
to identify problems in their own special areas of expertise which can be solved with 
the methods of Operations Research. In addition, this book may encourage some readers 
to pursue more advanced studies in Operations Research; our presentation provides an 
adequate foundation for continued study at higher levels.

Some engineering and management professionals received their formal academic train-
ing before personal computing devices and powerful workstations became so readily 
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available and before the subsequent rapid increase in the number of sophisticated yet 
accessible new software products. Such experienced practitioners, educated in traditional 
mathematics, operations research or quantitative management, will find that many parts of 
this book will provide them with the opportunity to sharpen and refresh their skills with 
an up-to-date perspective on current methodologies in the field of Operations Research.

Important mathematical principles are included in this book where necessary, in order 
to facilitate and promote a firm grasp of underlying principles. At the same time, we 
have tried to minimize abstract material in favor of an applied presentation. Because our 
readers may have quite diverse backgrounds and interests, we anticipate a considerable 
mixture of motivations, expectations, and mathematical preparation within our audi-
ence. Since this book addresses optimization and quantitative analysis techniques, users 
should have some knowledge of calculus and a familiarity with certain topics in linear 
algebra, probability, and statistics. More advanced calculus is useful in the chapters on 
integer programming and nonlinear optimization. Many of our students will take only 
one course in the techniques of Operations Research, and we believe that the greatest ben-
efit for those individuals is obtained through a very broad survey of the many techniques 
and tools available for quantitative decision making. Such breadth of coverage, together 
with the mixture of mathematical backgrounds in our audience of readers, necessitates 
that we temper the level of mathematical rigor and sophistication in our presentation of 
the material.

Special Features

The field of Operations Research has experienced a dramatic shift in the availability of 
software, from software support primarily for large mainframe computing systems to 
the current proliferation of convenient software for a variety of desktop computers and 
workstations. With such an abundance of software products, practitioners of Operations 
Research techniques need to be aware of the capabilities and limitations of the wide variety 
of software available to support today’s style of analysis and decision-making. Associated 
with each chapter in this book is a section devoted to Software in which we offer a brief 
description of some of the most popular software currently available specifically for solv-
ing the various types of problems presented in that chapter. (The Software guide con-
tained in Chapter 1 elaborates more fully on the purpose and use of the guides to software 
in subsequent chapters.) Because software packages generally focus on a particular type 
of problem rather than on a specific application area, we will organize our discussions 
of software implementations according to the chapter topics which are indicative of the 
problem type. Most of the cited software packages and products are applicable to a wide 
array of application areas.

The information contained in these Software descriptions is not intended to represent 
an endorsement of any particular software product, nor to instruct readers in the detailed 
use of any specific software package. We merely mention a representative few of the broad 
range of available software packages and libraries, in order to create an awareness of the 
issues and questions that might arise during the development or selection of software for 
solving real problems.

Computing capabilities are almost ubiquitous, and the software available for student 
use is often the same industrial strength software that practitioners use for solving large 
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practical problems. Educational discounts in pricing may reflect minor limitations in the 
sizes of problems that can be solved with the software, but the software used in an edu-
cational environment is likely to be very typical of software designed and distributed for 
commercial application.

Instructors who wish to supplement the introductory course in Operations Research 
with computing exercises and projects should have no difficulty in finding reasonably-
priced software with appropriate educational site licenses, or even free and open software. 
Although computer usage has become a popular aspect of many introductory courses in 
Operations Research, our intention in developing this book has been to provide support 
for learning the foundations necessary for building appropriate models, and to encourage 
an adequate understanding of solution methods so that students can become self-reliant 
and judicious users of the many software products that have been and will be developed 
for practical use.

Each of the chapters in this book is enriched by several Illustrative Applications, 
drawn from the industrial, computing, engineering, and business disciplines. These 
miniature case studies are intended to give the reader some insight into how the 
 problem solving tools of Operations Research have been used successfully to help solve 
real problems in public and private scientific, economic, and industrial settings. Details 
are omitted in some cases, but references are provided for all of the illustrative appli-
cations, which may serve as the inspiration for term projects or further studies that 
expand on the brief sketches given in this book. Our Illustrative Applications include 
examples from the petroleum industry, wildlife habitat management, forestry, space 
exploration, humanitarian relief, manufacturing, agriculture production, mining, waste 
management, military operations, shipping and transportation planning, computing 
systems, finance, and health care.

Near the end of each chapter, is a brief summary of the important topics presented in 
the chapter. To further assist students in their review and assimilation of chapter mate-
rial, each chapter in the book contains a list of Key Terms. Definitions or explanations of 
these key terms are found in the chapter discussion, and typically the key term appears 
highlighted in bold type. Mastery of the content of the chapter material requires a recogni-
tion and understanding of these important terms, and the key terms should be used as a 
checklist during review of the subject matter contained in each chapter.

A selection of Exercises appears in each chapter. Many of these problems and questions 
provide a straight-forward review of chapter material, and allow the student to practice and 
apply what has been learned from the text. In addition, some of the exercises prompt the 
discovery of mathematical and computational phenomena that may not be explicitly men-
tioned in the chapter material, but which offer important practical insights. Exercises are 
an essential and integral part of learning, and the exercises included in this book have been 
chosen to give students a thorough appreciation for and understanding of the text material.

References and Suggested Readings are included at the end of each chapter. These 
reference lists contain titles of general and specialized books, scholarly papers, and other 
articles, which may be used to follow up on interesting, difficult, or more advanced top-
ics related to material presented in the chapter. In case the reader would like to consult 
still other authorities, or perhaps see alternative explanations from different sources, we 
maintain a website for this book at www.operationsresearch.us. The website also includes 
additional support material for both instructors and students.

An Appendix at the end of the book contains a review of mathematical notation and def-
initions, and a brief overview of matrix algebra. Readers having marginal mathematical 
preparation for the material in this book may find that the appendix provides an adequate 

http://www.operationsresearch.us
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review of the mathematics essential for comprehension of introductory Operations 
Research. Additional references are listed in the Appendix for those who need a more 
complete review or study of mathematics.

Book Overview

This book contains material that can be covered in a single semester. A course based 
on this book would cover a range of topics that collectively provide the basis for a scien-
tific approach to decision making and systems analysis. Over half of the book is directed 
toward the various subclasses of mathematical programming models and methods, 
while the remainder is devoted to probabilistic areas such as Markov processes, queueing 
 systems, simulation, decision analysis, heuristics, and metaheuristics.

We recommend that, if time permits, the topics be studied in the order in which they 
appear in the book. In particular, Chapter 2 on Linear Programming, Chapter 4 on Integer 
Programming and Chapter 5 on Nonlinear Optimization might reasonably be treated as 
a sequence. Similarly, Chapter 6 on Markov Processes, Chapter 7 on Queueing Models, 
and Chapter 8 on Simulation form a natural sequence, since the discussions on simulation 
build on the two preceding chapters. However, readers with more specific interests will 
find that, after reading the first chapter, it is possible to read almost any of the chapters 
without having thoroughly studied all the preceding ones.

Chapter 1 describes the nature of Operations Research, the history of the field, and how 
the techniques of Operations Research are used. Since the analysis and optimization of 
systems requires that mathematical models of real systems be built, we discuss some of 
the principles of system modeling, a topic that will be re-visited frequently in the book. 
Solving problems involves the use of computational processes, and we take this opportu-
nity to introduce algorithms and their efficiency, and the inherent complexity of some of 
the problems that are solvable with the tools of Operations Research.

In Chapter 2, we study what is undoubtedly the most popular topic in Operations 
Research, the creation and solution of linear programming problems. Many practical prob-
lems can indeed be modeled as linear systems: optimizing a linear function subject to lin-
ear constraints on the variables. Fortunately, a great deal of work has resulted in practical 
and effective methods for solving these types of problems. We first look at the formulation 
of problems in the linear programming form, then study the simplex, and other, solu-
tion methods and identify several computational phenomena that can take place when the 
methods are applied to problems.

Network analysis is the subject of Chapter 3. A wide variety of problems can be mod-
eled as graph or network problems, and many algorithms have been developed for finding 
paths, routes and flow patterns through networks of all sorts. Some network problems 
have obvious tangible applications in the areas of transportation and distribution. Other 
views of networks inspire solutions to more abstract problems such as the matching or 
assignment of the entities in a system, or the planning, scheduling, and management of 
the phases of projects.

In the next two chapters of the book, we study problems that are in some respects just 
harder to solve than the problems seen earlier. Some of the problems are conceptually 
more difficult, while some require more sophisticated mathematical solution techniques. 
On the other hand, some types of problems are quite simple to describe but the solution 
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methods seem to be prohibitively time-consuming to carry out. Chapter 4 introduces the 
subject of Integer Programming, in which the problem formulations may look remark-
ably similar to the linear and network formulations seen in Chapters 2 and 3, but with the 
exception that the decision variables are now constrained to have integer values. This addi-
tional requirement almost always implies that these problems require solution methods 
that are in a different league, computationally, from the methods previously considered in 
this book. Many interesting and practical problems are modeled as integer programming 
problems, and in this chapter we introduce the best known ways to find exact solutions to 
such problems.

In Chapter 5, we study an even larger and more unwieldy class of problems. Nonlinear 
optimization actually includes all mathematical programming problems whose objective 
or constraints cannot be expressed as linear functions of the decision variables. Because 
there are so many forms of these problems, no one optimization method works for all 
problems, but several representative and useful solution methods are presented.

Stochastic processes are studied in the next several chapters. In Chapter 6, we study 
processes having probabilistic characteristics and behaviors, known as Markov processes. 
Many practical dynamic systems can be described by simple probabilities of moving from 
one state to another. For example, in a clinical setting, probabilities may be used to define 
how patients respond to various treatments. Or in nature, certain weather phenomena 
may occur with known probabilities during certain times of the year or under certain con-
ditions. Systems exhibiting Markov properties can be analyzed in order to determine what 
the system’s most likely state is and how long it takes for a dynamic system to resolve into 
this state. Some stochastic processes however never settle into any predictable set of states. 
The analytical tools presented in this chapter are not tools that are directly used to optimize 
a system, but rather to analyze a system and identify a system’s most likely properties. An 
understanding of the most probable behavior of a system may then be used to modify and 
improve the system’s performance.

Many systems can be described in terms of customers waiting to be served in some way: 
human customers waiting to be served by a cashier, computational processes waiting to 
be executed by a processor in a computer, or manufactured products waiting to be worked 
on by a machine in an assembly-line process. Chapter 7 deals with the performance of sys-
tems that involve waiting lines, or queues. In this chapter we study queueing models and 
the properties of queueing systems that can be computed on the basis of parameters that 
describe the arrival rates of customers into the system and the service rates of the servers.

For some special cases, these computations can be made easily, but for more complicated 
systems, analysts often resort to the use of simulation techniques. Chapter 8 presents sim-
ulation as a modeling process in which we use the computer to simulate the activities in a 
real system, in order to discover the behavioral properties of the system.

Although practically all of the techniques of Operations Research can become involved 
in decision-making processes, Chapter 9 takes a closer look at some of the theories and 
psychological issues that are specifically related to decision making. Game theory, deci-
sion trees, and utility theory are among the more formal topics in this chapter. We then 
discuss some of the human factors influencing decision making, the effects of human mis-
conceptions of probabilities, the irrational behaviors of human decision makers, and how 
these difficulties can be dealt with to improve the decision making process in practice.

In the last chapter, Chapter 10, we give an overview of some of the recently developed 
approaches to problem solving that practitioners have resorted to because of the inad-
equacy or ineffectiveness of the more formal traditional methods. Inasmuch as perfect 
methodologies for some known-to-be-difficult problems have so far eluded analysts (and in 
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fact may never be forthcoming!), the heuristic and metaheuristic methods presented here 
are often used to obtain solutions that may be sub-optimal but often acceptable in practice.

This book contains a comprehensive collection of topics that we believe provide an 
accurate and useful introductory perspective on the discipline and practice of Operations 
Research. We, the authors, have prepared this book on the basis of our various experi-
ences in teaching, research, technical consulting, and systems analysis. Significant credit 
goes to our own professors whose excellent instruction once introduced us to the field of 
Operations Research, and whose knowledgeable enthusiasm initially sparked our interest 
in the subject. Research and consulting opportunities have sustained and broadened our 
awareness and appreciation of the importance of these topics.

The immediate motivation for developing this book arose from our many years of teach-
ing courses in various areas of operations research, mathematics, computer science, busi-
ness analysis, and systems engineering.

In the preparation of this edition of the book, we particularly appreciate and gratefully 
acknowledge the contributions of Mariam Kotachi, Max Siangchokyoo, and Chris Knight 
for their assistance with formatting the references and equations, and the help of Paul 
Ticu, June Au Yeung and Kavin Fong for their help with the problems and solutions for the 
first edition. Many of our students have been introduced to Operations Research through 
courses in which early drafts of this book were used as text material. We appreciate these 
students, notably Avinash Atholi and Russell Hyland among others, for their interest in 
the subject and their careful reading of the chapters. Their constructive and insightful 
responses and suggestions have contributed substantially to improvements in the presen-
tation of the material in this book. We continue to welcome feedback from our readers, and 
invite comments that will assist us in keeping this book correct, up-to-date, educational, 
and of practical value.

The artwork on the front cover of this book captures the philosophy and illustrates 
the context in which we as Operations Researchers attempt to formulate and solve prob-
lems. Our models and methodologies (represented in the cover art by a poetic assembly 
of graphs and figures) are often not firmly anchored to an idealized grid, but rather rest 
upon a ground full of ups and downs, uncertainties, constant change, and incomplete 
knowledge (suggested in the cover art by photographic excerpts of the Grand Canyon). The 
elements in the illustration are drawn from Figures 2.6, 3.7, and 10.1 in this book; the 3D 
graph is a model for Exercise 5.3, and was plotted using GeoGebra. In the cover image, the 
diagrams appear to arise from the predictable grid foundation, but are actually perilously 
close to the cliffs and canyons. 

In order to take best advantage of our circumstances, we make fundamental assump-
tions that we know may not always be completely justifiable. But nevertheless on the basis 
of this seemingly frail foundation, we have built sophisticated and reliable tools for solv-
ing important practical problems. The field of Operations Research consists of a broad 
variety of analytical tools and methods which can provide essential assistance in making 
informed and responsible decisions and reaching worthy goals.
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Introduction to Operations Research

1.1 The Origins and Applications of Operations Research

Operations Research can be defined as the use of quantitative methods to assist analysts 
and decision-makers in designing, analyzing, and improving the performance or opera-
tion of systems. The systems being studied may be any kind of financial systems, scientific 
or engineering systems, or industrial systems; but regardless of the context, practically all 
such systems lend themselves to scrutiny within the systematic framework of the scientific 
method.

The field of Operations Research incorporates analytical tools from many different disci-
plines, which can be applied in a rational way to help decision-makers solve problems and 
control the operations of systems and organizations in the most practical or advantageous 
way. The tools of Operations Research can be used to optimize the performance of systems 
that are already well-understood, or to investigate the performance of systems that are 
ill-defined or poorly understood, perhaps to identify which aspects of the system are con-
trollable (and to what extent) and which are not. In any case, mathematical, computational, 
and analytical tools and devices are employed merely to provide information and insight; 
and ultimately, it is the human decision-makers who will utilize and implement what has 
been learned through the analysis process to achieve the most favorable performance of 
the system.

The ideas and methodologies of Operations Research have been taking shape throughout 
the history of science and mathematics, but most notably since the Industrial Revolution. 
In various ways, all of human knowledge seems to play a role in determining the goals 
and limitations underlying the decisions people make. Physical laws (such as gravity and 
the properties of material substances), human motivations (such as greed, compassion, 
and philanthropy), economic concepts (supply and demand, resource scarcity, division 
of labor, skill levels, and wage differentials), the apparent fragility of the environment 
(erosion, species decline), and political issues (territorial aggression, democratic ideals) all 
eventually are evident, at least indirectly, in the many types of systems that are studied 
using the techniques of Operations Research. Some of these are the natural, physical, and 
mathematical laws that are inherent and that have been discovered through observation, 
while others have emerged as a result of the development of our society and civilization. 
Within the context of these grand themes, decision-makers are called upon to make spe-
cific decisions—whether to launch a missile, introduce a new commercial product, build a 
factory, drill a well, or plant a crop.

Operations Research (also called Management Science) became an identifiable discipline 
during the days leading up to World War II. In the 1930s, the British military buildup 



2 Operations Research

centered around the development of weapons, devices, and other support equipment. 
The buildup was, however, of an unprecedented magnitude, and it became clear that there 
was also an urgent need to devise systems to ensure the most advantageous deployment 
and management of material and labor.

Some of the earliest investigations led to the development and use of radar for detecting 
and tracking aircraft. This project required the cooperative efforts of the British military 
and scientific communities. In 1938, the scientific experts named their component of this 
project operational research. The term operations analysis was soon used in the U.S. military 
to refer to the work done by teams of analysts from various traditional disciplines who 
cooperated during the war.

Wartime military operations and supporting activities included contributions from 
many scientific fields. Chemists were at work developing processes for producing high 
octane fuels; physicists were developing systems for the detection of submarines and air-
craft; and statisticians were making contributions in the area of utility theory, game the-
ory, and models for various strategic and tactical problems. To coordinate the effectiveness 
of these diverse scientific endeavors, mathematicians and planners developed quantitative 
management techniques for allocating scarce resources (raw materials, parts, time, and 
labor) among all the critical activities in order to achieve military and industrial goals. 
Informative overviews of the history of Operations Research in military operations are to 
be found in White (1985) and McArthur (1990).

The new analytical research on how best to conduct military operations had been 
remarkably successful, and after the conclusion of World War II, the skill and talent of the 
scientists that had been focused on military applications were immediately available for 
redirection to industrial, financial, and government applications. At nearly the same time, 
the advent of high speed electronic computers made feasible the complex and time con-
suming calculations required for many operations research techniques. Thus, the meth-
odologies developed earlier for other purposes now became practical and profitable in 
business and industry.

In the early 1950s, interest in the subject was so widespread, both in academia and in 
industry, that professional societies sprang up to foster and promote the development and 
exchange of new ideas. The first was the Operational Research Society in Britain. In the 
U.S., the Operations Research Society of America (ORSA) and The Institute of Management 
Science (TIMS) were formed and operated more or less as separate societies until the 1990s. 
These two organizations, however, had a large and overlapping membership and served 
somewhat similar purposes, and have now merged into a single organization known as 
INFORMS (Institute for Operations Research and the Management Sciences). National soci-
eties in many other countries are active and are related through IFORS (the International 
Federation of Operational Research Societies). Within INFORMS, there are numerous spe-
cial interest groups, and some specialized groups of researchers and practitioners have 
created separate societies to promote professional and scholarly endeavors in such areas 
as simulation, transportation, computation, optimization, decision sciences, and artifi-
cial intelligence. Furthermore, many mathematicians, computer scientists and engineers 
have interests that overlap those of operations researchers. Thus, the field of Operations 
Research is large and diverse. Some of the many activities and areas of research sponsored 
by INFORMS can be found at the website http://www.informs.org or in the journals asso-
ciated with that organization. As will be apparent from the many illustrative applications 
presented throughout this book, the quantitative analysis techniques that found their first 
application nearly a hundred years ago are now used in many ways to influence our quality 
of life today.

http://www.informs.org
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1.2 System Modeling Principles

Central to the practice of Operations Research is the process of building mathematical 
models. A model is a simplified, idealized representation of a real object, a real process, or 
a real system. The models used here are called mathematical models because the building 
blocks of the models are mathematical structures such as equations, inequalities, matri-
ces, functions, and operators. In developing a model, these mathematical structures are 
used to capture and describe the most salient features of the entity that is being modeled. 
For example, a financial balance sheet may model the financial position of a corporation; 
mathematical formulas may serve as models of market activity or trends; and a probabil-
ity distribution can be used to describe the frequency with which certain asynchronous 
events occur in a multiprocessor computer. Mathematical models may look very different, 
depending on the structure of the system or problem being modeled and the application 
area. In studying the various topics in this book, we will see that models do indeed take on 
various forms. Each chapter provides the opportunity to build different kinds of models. 
This chapter merely makes a few general observations pertinent to all modeling.

The first step in building a model often lies in discovering an area that is in need of 
study or improvement. Having established a need and a target for investigation, the ana-
lyst must determine which aspects of the system are controllable and which are not, and 
identify the goals or purpose of the system, and the constraints or limitations that govern 
the operation of the system. These limitations may result from physical, financial, political, 
or human factors. The next step is to create a model that implicitly or explicitly embodies 
alternative courses of action, and to collect data that characterize the particular system 
being modeled.

The process of solving the model or the problem depends entirely on the type of prob-
lem. Solving the problem may involve applying a mathematical process to obtain a best 
answer. This approach is sometimes called mathematical optimization, or mathematical 
programming. In other cases, the solution process may necessitate the use of other special-
ized quantitative tools to determine, estimate, or project the behavior of the system being 
modeled. Realizing that the data may have been only approximate, and that the model 
may have been an imperfect representation of the real system, a successful analyst ulti-
mately has the obligation to assess the practical applicability and flexibility of the solution 
suggested by the foregoing analysis. Merely finding an optimal solution to a model may be 
just the beginning of a manager’s job; a good manager must constantly reevaluate current 
practices, seek better ways to operate a system or organization, and notice trends in prob-
lem data that may not explicitly appear as part of a mathematical solution, such as excess 
production capacity, under-utilized labor, or a decreasing product demand over time. The 
entire modeling process is likely to require the skill and knowledge of a variety of individ-
uals who are able to work effectively in teams and communicate clearly and convincingly 
among themselves, and then to explain and sell their recommendations to management.

Considerable skill is required in determining just how much detail to incorporate into 
a mathematical model. A very accurate representation of a system can be obtained with 
a large and sophisticated mathematical model. But if too many details are included, the 
model may be so complex and unwieldy that it becomes impossible to analyze or solve the 
system being modeled. Therefore, we do not even try to make a model as realistic as pos-
sible. On the other hand, a very simplistic model may not carry enough detail to provide 
an accurate representation of the real object or system; in that case, any analysis that is 
performed on the model may not apply to the reality.
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It is tempting to confuse detail (or precision) with accuracy. They are not the same, 
although many people are under the impression that the more detailed or complex a model, 
the more accurately it reflects reality. Not all details are correct, and not all details are rele-
vant. The availability of powerful computing hardware and user-friendly software for build-
ing computer models almost seem to encourage runaway complexity and detail, as there 
seems to be no limit to what can be included almost effortlessly in a model. Nevertheless, 
it is possible to build models that are both realistic and simple, and doing so may spare an 
analyst from losing sight of the purpose of building the model in the first place.

The best model is one that strikes a practical compromise in representing a system as 
realistically as possible, while still being understandable and computationally tractable. 
It  is, therefore, not surprising that developing a mathematical model is itself an itera-
tive process, and a model can assume numerous forms during its development before an 
acceptable model emerges. An analyst might in fact need to see some numerical results of 
a solution to a problem in order to begin to recognize that the underlying model is incom-
plete or inaccurate.

The purpose of building models of systems is to develop an understanding of the real 
system, to predict its behavior, to learn the limiting capabilities of a system, and eventually 
to make decisions about the design, development, fabrication, modification, or operation 
of the real system being modeled. A thorough understanding of a model may make it 
unnecessary to build and experiment with the real system, and thus may avoid expense or 
alleviate exposure to dangerous situations.

Operations Research deals with decision-making. Decision-making is a human pro-
cess that is often aided by intuition as well as facts. Intuition may serve well in personal 
decisions, but decisions made in political, governmental, commercial, and institutional 
settings that will affect large numbers of people require something more than intuition. 
A more systematic methodology is needed. Mathematical models that can be analyzed by 
well-understood methods and algorithms inspire more confidence and are easier to justify 
to the people affected by the decisions that are made.

Experience in modeling reveals that, although quantitative models are based on math-
ematical truths and logically valid processes and such models may command the respect 
of management, solutions to mathematical problems are typically interpreted and imple-
mented under a variety of compromising influences. Management is guided by political, 
legal, and ethical concerns, human intuition, common sense, and numerous personality 
traits. Problems and systems can be represented by mathematical models, and these for-
mulations can be solved by various means. However, final decisions and actions are taken 
by humans who have the obligation to consider the well-being of an organization and the 
people in it. Ideally, if these factors are going to influence the decisions that are made, then 
these human concerns, as well as technological and financial goals and constraints, should 
be incorporated in an honest way into the models that are created and analyzed. In this 
way, we can gain the greatest value from our efforts in applying quantitative methods.

As a final word of advice and caution, it is suggested that before expending any substan-
tial effort in solving or analyzing a problem or system, analysts and managers should try 
to confront and answer a few preliminary questions: 

Does the problem need to be solved?
Will it be possible to determine what the real problem is?
If a model were developed and a solution proposed, would anybody care?
Would anybody try to implement the solution?
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How much of the analyst’s time and expense is it worth to try to solve this problem?
Is there enough time and are there adequate resources available to make any signifi-

cant progress toward solving this problem?
Will the solution create other serious problems for which there is no apparent remedy?

These are difficult questions, often overlooked by an eager and motivated analyst, but they 
are issues that an analyst should try to confront frankly and candidly before becoming 
irreversibly involved in a large problem-solving project.

1.3 Algorithm Efficiency and Problem Complexity

An algorithm is a sequence of operations that can be carried out in a finite amount of time. 
An algorithm prescribes a process that may be repetitive in some sense (perhaps iterative 
or recursive), but that will eventually terminate. Practical examples of algorithms include 
recipes for cooking, the instructions in an owner’s manual for connecting a new sound 
system component, and computer programs that do not contain infinite loops. Algorithms 
are the processes that software developers put into action when they create computer pro-
grams for solving all kinds of problems.

In the 1930s, a mathematician by the name of Alan Turing developed a general computa-
tional model (which now bears his name) that is powerful enough to represent all possible 
numeric and symbolic computational procedures. Turing also demonstrated the existence 
of problems for which no algorithms exist that successfully handle all possible instances 
of the problem. Such problems are called unsolvable or undecidable problems. (It had 
been previously assumed that an algorithm could be developed for any problem if the 
problem-solver were merely clever enough.) Some of the earliest problems to be classified 
as unsolvable were of only theoretical interest. However, more recently, other more practi-
cal unsolvable problems have been identified.

When such problems do arise in actual practice, we might just try to deal with special 
or limited cases, rather than with the general problem. Special cases of unsolvable prob-
lems, perhaps involving highly restricted inputs, may not be unsolvable, and therefore it 
may be entirely possible to design algorithms for these cases. Alternatively, we might find 
it fairly simple to use human ingenuity (a very poorly defined talent that cannot be easily 
automated) to deal with individual problem instances on a case-by-case basis.

While unsolvable (or undecidable) problems do exist, most analysts would prefer to 
concentrate on the many important solvable problems that face us; that is, problems for 
which algorithms can be developed. With this in mind, the next question to arise might 
be: are all solvable problems of similar difficulty, or are there some that are truly more 
difficult than others? What is meant by a difficult problem? And just what is known about 
algorithms, and the complexity (or computational behavior) of algorithms? This is a topic 
of study that has undergone enormous progress during the past several decades, and the 
advances that have been made in this field have provided valuable concepts, notations, 
and tools that allow for discussion and analysis of an algorithm’s performance.

Several factors influence the amount of time it takes for a computer program to execute 
to solve a problem: the programming language used, the programmer’s skill, the hardware 
used in executing the program, and the task load on the computer system during execution. 
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But none of these factors is a direct consequence of the underlying algorithm that has 
been implemented in software. Given a particular algorithm, its performance is strongly 
dependent on the size of the problem being solved. For example, we would expect a sort-
ing algorithm to take longer to sort a list of 10,000 names than to sort a list of 100 names. 
Similarly, we recognize that solving a system of equations takes longer when there are 
more equations and more variables. For this reason, the performance of an algorithm is 
often described as a function of a variable denoting the problem size, which denotes the 
size of the data set that is input to the algorithm.

During the early years of the discipline of Operations Research, relatively little was 
understood about the formal properties of algorithms and the inherent complexity of prob-
lems. However, the 1970s and 1980s witnessed remarkable developments in this area. Two 
interesting classes of problems have been defined. One class of problems (called class P) 
contains those problems that can be solved by an algorithm within an amount of computa-
tion time proportional to some polynomial function of problem size; that is, the problems 
are solvable by polynomial-time algorithms. The other class (called class NP for nonde-
terministic polynomial time) contains problems that may require the computation time to 
be proportional to some exponential (or larger) function of problem size; these algorithms 
are called exponential-time algorithms. For a more precise description of these problem 
classes, based on the notions of deterministic and nondeterministic Turing machines, refer 
to any elementary textbook on algorithms or theory of computation, such as Cormen et al. 
(2009), Baase and Gelder (2000), Manber (1989), and Hein (1995).

Within the class NP, there is another special class of important problems called 
NP-complete, which are characterized as being the most difficult problems in NP. This 
class includes many very practical problems and so has received considerable attention 
from analysts. Another class of NP problems, known as NP-hard, are at least as hard as 
the hardest NP problem. Some of these NP problems, and their practical applications, are 
described in Chapters 3, 4, and 10.

The problems in class P are generally considered to be easy problems—not necessarily 
in the conceptual sense but in the sense that efficient algorithms for these problems exist 
that execute in reasonably small amounts of computation time. NP-complete and NP-hard 
problems, in contrast, appear to require computation time that grows as an exponential 
function of problem size. This implies that unacceptably large amounts of computation 
time could be required for solving problems of any practical size, and therefore such prob-
lems have been termed intractable problems. Solutions for such problems are not neces-
sarily difficult to conceptualize or even to implement in computer code, but the execution 
time may be completely unaffordable—both physically and financially.

It is known that P ⊆ NP, but it is an open question whether P = NP. In other words, 
are the NP-complete problems truly more costly to solve than the problems in P, or have 
analysts just not yet been clever enough to discover efficient algorithms for these appar-
ently difficult problems? Discovery of an efficient (polynomial-time) algorithm for any 
NP-complete problem would be sufficient to establish that P = NP and, therefore, that all 
the NP-complete problems can be solved efficiently. In the absence of any such discovery, 
analysts are faced daily with the need to solve practical problems that are computation-
ally intractable. Chapter 10 reveals how some of these problems are dealt with in effective 
and affordable ways. An informative overview of this subject is available in Garey and 
Johnson (1979).

Most of the problem models presented in this book are not intractable, and the solution 
methods for these problems are based on polynomial-time algorithms. These methods 
find optimal solutions in an amount of time proportional to a polynomial function of the 
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problem size. Depending on the nature of the data (e.g., the distribution of data values or 
the arrangement of the data values in the data set), the execution time for a given algorithm 
may vary. Sorting a list of 10,000 names that are already in order may take less time than to 
sort 10,000 names that are scrambled—if the algorithm is sensitive to the initial ordering 
and can take advantage of it. Similarly, finding the best solution to a system of equations 
may be rather easy if a reasonably good solution is already known.

Thus, we will see that, under different circumstances, the same algorithm may require 
an execution time that is a different function of problem size. If so, which of these different 
functions should analysts use to characterize the performance of the algorithm? There are 
several possibilities: the most favorable (fastest) case, the average case, or the most unfavor-
able (slowest) case.

To help phrase an answer to this question, special notations have been developed that 
facilitate describing the computation time required to execute an algorithm to completion. 
For this particular purpose, we do not want to try to capture specific information about 
how an algorithm is implemented (programmed), or on what type of computer it is to be 
executed; rather, we should focus on the algorithm itself and, in particular, the step count, 
or the number of steps inherent in carrying out the algorithm. For some purposes, one 
might want to characterize the best case performance of an algorithm (the fewest number 
of steps that it could ever need under any circumstances). Best case might be the choice of 
an optimist, but using this as an indicator of algorithm performance could be misleading; 
and in any case, this is rarely indicative of what analysts need to know in order to assess 
the dependable performance of the algorithm. For example, multiplying two n × n matrices 
generally takes time proportional to n3; but of course, if one of the matrices is the identity 
matrix, this could be discovered in only n2 steps (inspecting each element of the matrix) 
and the rest of the process could be omitted. Using the function n2 to describe the step 
count, or run-time, of a matrix multiplication routine does give an accurate measure of this 
best case, but it is not generally indicative of the time required for matrix multiplication.

An algorithm’s average case performance may seem to be the most practical character-
ization because it indicates the typical, or expected, step count. It would certainly be useful 
to know the most likely amount of time required to execute an algorithm. However, because 
such an analysis must be based on statistical assumptions about the nature, order, or dis-
tribution of the data on which the algorithm operates, the validity of such assumptions 
may be on shaky ground for any particular set of data. Indeed, the expected performance 
may never actually be observed for any given set of input data. In addition, the statistical 
analysis that must be carried out in order to characterize an algorithm’s average behavior 
is often quite a mathematically difficult analysis.

The characterization of an algorithm that is both straightforward and often of greatest 
practical value is the worst case performance, that is, the greatest number of steps that may 
be necessary for guaranteed completion of the execution of the algorithm. For this purpose, 
we introduce big-Oh notation, which is written as O(f(n)) and pronounced “big Oh of f 
of n,” where n denotes problem size and f(n) is some function of problem size. The mean-
ing of the notation is as follows. An algorithm is said to be O(f(n)) if there exist constants c 
and n0 such that for all n > n0, the execution time of the algorithm is ≤ c · f(n). The function 
f(n) is the algorithm’s worst case step count, measured as a function of the problem size. 
The  constant c is called a constant of proportionality and is intended to account for the 
various extraneous factors that influence execution time, such as hardware speed, program-
ming style, and computer system load during execution of the algorithm. The problem size 
threshold n0 accounts for the fact that for very small problem sizes, the algorithm may not 
reveal its characteristic worst case performance. Paraphrased, the definition given above 
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may be stated as follows: To say that an algorithm is O(f(n)), or “of order f(n),” means that for 
large enough problem sizes, the execution time is proportional to at most f(n).

Thus, a matrix multiplication algorithm is O(n3) because the process may take n3 steps, 
although the algorithm could be programmed to look for special input forms that may in 
certain cases permit completion of the task in fewer than n3 steps. Some algorithms may 
operate in such a way that their worst case performance is also the best case; the per-
formance of such algorithms does not vary depending on the nature of the data, but, of 
course, does vary with problem size.

There are even some algorithms whose performance is independent of problem size, and 
therefore not really dependent on any function of problem size n (e.g., retrieving the first 
item in a list takes the same amount of time regardless of the length of the list). If we need 
to describe the worst-case performance of such an algorithm, we could use the notation 
O(1), where f(n) is just the constant function 1. Where appropriate throughout this book, 
the big-Oh notation is used to describe the worst case performance of the algorithms that 
are presented.

Many of the methods studied in this book are based on algorithms whose complexity 
functions range from n, n2, n3, up to 2n, n!, and nn. To give an idea of the relative growth 
rates of these functions as n increases, Table 1.1 shows indications of function values. 
Instead of raw numeric values, we can impose a more practical interpretation and assume 
that the function values f(n) denote the step count of some algorithm, and that each step 
can be executed in 1 second on a computer. The entries in the table can then be viewed 
as estimates of actual amounts of the computation times required to apply algorithms of 
different complexities to increasingly larger problems of size n. The great differences that 
are evident between the polynomial functions and the exponential functions are quite 
dramatic, and the execution times for the exponential algorithms are indeed staggering. 

In practical applications, problem sizes may well range into the hundreds of thousands, 
and we will encounter a number of important practical problems for which the only known 
algorithms have worst case complexity that is exponential. It is obvious from the table 
that such exponential-time algorithms are completely useless for solving problems of any 
reasonably large size. Given this dilemma, what are the options? It is pretty clear that, for 
these types of problems, faster hardware does not offer an immediate solution; CPU chips 
whose processing speeds are doubled, or even increased by several orders of magnitude, 
will not make a dent in these formidable execution times. Until some theoretical break-
throughs come to the rescue that suggest new algorithms for solving such problems, we 

TABLE 1.1

Computation Times

f(n) n = 10 n = 20 n = 50 n = 100

n 10 s 20 s 50 s 100 s
n2 100 s 400 s ≈  7 min 2,500 s ≈  42 min 10,000 s ≈  2.8 h
n3 1,000 s ≈  17 min 8,000 s ≈  2 h 125,000 s ≈  35 h 1,000,000 s ≈  12 d
2n 1,024 s ≈  17 min 1,048,576 s ≈  12 d 1.126 × 1015 s ≈   

350,000 centuries
1.268 × 1030 s ≈  1021 

centuries
n! 3,628,800 s ≈  1 month 2.433 × 1018 s ≈  109 

centuries
3.041 × 1064 s ≈  1055 

centuries
nn 1010 s ≈  300 yr 1.049 × 1026 s ≈  1017 

centuries
8.882 × 1084 s ≈  1075 

centuries
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may have to settle for using methods that do not solve the problems perfectly, but which 
yield acceptable solutions in an affordable amount of computation time. This may seem 
to be a disappointing direction to follow, but the discussion in Section 1.4 might provide 
convincing arguments in defense of suboptimal solutions.

1.4 Optimality and Practicality

Everyone with a mathematical education has been trained to search for exact solutions to 
problems. If we are solving a quadratic equation, there is a formula which, if applied cor-
rectly, yields exact results, namely values that satisfy the equation. If a list of names needs 
to be sorted, we employ an algorithm that gets the list perfectly ordered. And if we need to 
find the maximum point in a continuous, differentiable function, we may be able to use the 
methods of calculus to find that optimal point. And certainly in the case of giving proofs 
of mathematical theorems, a respect for truth and perfection has been developed, and a 
nearly correct but incomplete or slightly flawed proof is of little or no value at all. Against 
this backdrop, the idea of solving a problem and not getting the right answer is indeed 
disappointing and disturbing. Yet there are justifiable reasons for accepting computational 
results that are imperfect or suboptimal.

First, it has already been pointed out that the models created by an analyst are not per-
fect representations of a system being analyzed. So, even if we could obtain exact solutions 
to the model, such solutions would not necessarily constitute exact solutions or perfect 
managerial advice to be applied within the real system. Hence, costly efforts to achieve 
perfect solutions to a mathematical model may not be warranted.

Contributing to the imperfection in our problem-solving endeavors is the use of auto-
matic computing devices to assist in the calculations. The exact representation of real num-
bers requires the use of an arbitrarily large number of binary digits. However, the finite 
number of bits, sometimes known as word length, typically used for storing numerical 
values in computer memories implies that real numeric data values cannot always be rep-
resented exactly in computers. As an example, a correct representation of the value pi 
requires infinitely many digits, but we often settle for a truncated approximation using 
seven or eight significant digits (such as 3.141592) and tolerate the resulting inaccuracy in 
the results. This is known as round-off error, and after repeated calculations involving 
many inexact values, the accumulated round-off error can so distort the final results that 
they bear little resemblance to the pure theoretically correct answers that were anticipated. 
Hardware standards, such as the IEEE Floating-Point Standard, and results from the well-
developed field of numerical analysis have provided analysts with tools to define, mea-
sure, and place bounds on the effects of accumulated computational errors, but being able 
to predict these errors does not necessarily suggest any method for avoiding or correcting 
erroneous results.

It is known that the data values associated with some types of problems, such as 
matrix problems and solving systems of equations, are inherently ill-conditioned, and cer-
tain computational procedures, such as matrix operations or iterative searches designed 
to converge to a solution, are inherently unstable. In some cases, although the algorithm 
underlying a solution process might be proven to yield optimal results, ill-conditioned 
problem data and numerical instability can practically preclude obtaining solutions of any 
reasonable quality. For further discussions on the successful use of numerical techniques 
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with computers, refer to any reputable book on numerical analysis, such as by Cheney and 
Kincaid (2013), Sauer (2011), and Wilkinson (1963).

Finally, the innate difficulty of some problems might suggest that accepting suboptimal 
solutions is the only practical approach. Problems whose algorithms take an exponential 
amount of computation time to guarantee a perfect, or optimal, solution leave us little 
alternative but to look for faster ways of obtaining solutions, even at the price of getting 
solutions of lesser quality. Suppose we are faced with the choice of expending an expo-
nential amount of time (perhaps translating into centuries of computation time) to obtain 
an optimal result, or expending polynomial-time computational effort to obtain a solution 
that is adequate. In some cases, there may be a guarantee that the polynomial-time solu-
tion will be within some specified percentage of the optimal solution. In other cases, there 
may be no such guarantee, but perhaps experience has shown that in common practice 
the results are considered to be good enough for the context in which the solution is to 
be applied. Realizing also that the optimal result may be the solution to the wrong model, 
that the optimal result may be infused with round-off error, and that the data used as 
parameters might have been flawed and could have changed over time, a realistic analyst 
would probably feel completely justified in applying the polynomial-time algorithm to 
obtain a practical solution quickly, and feel no remorse whatsoever over having foregone 
the chance to obtain a slightly better solution. Given our very imperfect grasp on the con-
cept and reality of perfection, the price of optimality—in this case and in many others—is 
entirely impractical.

Settling for solutions of merely good enough quality may at first seem to be an inexcus-
able lowering of one’s standards and expectations. Yet in a complex and in some ways 
subjective world, compromise should not necessarily be seen as evidence of mediocrity. 
In the real world of imperfect models, precarious data, unavoidable numerical inaccura-
cies, and time constraints, insistence upon so-called optimal solutions may border on the 
compulsive. A rational analyst with a comprehensive view of the problem-solving process 
would prefer to spend a reasonable amount of time in search of good, practical solutions, 
and then proceed to put the results into practice to achieve the original goal of improving 
the performance or operation of the system being studied. Chapter 10 introduces some 
of the inspiration and influences behind solution methods that incorporate pragmatic 
approaches to solving difficult problems.

1.5 Software for Operations Research

Each chapter in this book contains a section on software tools, in which there is a brief 
description of some of the most popular software currently available for solving the types 
of problems studied in the chapter. The principles and methods presented in each  chapter 
are intended to provide the foundations necessary for building and understanding 
appropriate models. The authors’ aim is to encourage an adequate understanding of the 
mathematical principles and methods for solving problems so that students can become 
informed users of the software that is available to them.

Because there is no single software system that is capable of solving all optimization 
and system analysis problems, the user must be knowledgeable enough about the various 
classes of problems to make a selection of appropriate software packages. Thus, being 
able to build a mathematical model of a problem and being able to identify that model as 
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a linear program, integer program, or network problem, for example, not only helps to 
clarify the model, but also puts the analyst well on the way to selecting the right software 
for solving the problem.

The most visible users of commercial software may be the people who actually run appli-
cation systems that contain optimization modules. However, playing even more essential 
roles in the process are the analysts who formulate the mathematical models and who 
adapt and refine the standard algorithms, and the developers of the software packages 
who incorporate optimization modules (sometimes called solvers), together with applica-
tion systems and user interfaces. In our discussions, we will address various practical 
issues that are important to all software users.

The references to software products in this and subsequent chapters are by no means 
exhaustive and are not intended to comprise a comprehensive catalog of available soft-
ware. Instead, we hope to give readers a feel for the types of products that are on the mar-
ket and that may deserve their consideration when selecting implementations for practical 
applications.

Note also that our references to software tools are not intended to represent endorsement 
of any specific software products. Rather, we merely mention examples from the broad 
range of software available for the various application areas and offer short descriptions 
of selected software packages and libraries, in order to create an awareness of the general 
capabilities of typical software, as well as some of the questions, difficulties, or limitations 
that might arise during the development or use of software for solving real problems.

New products are being introduced rapidly, and it would be impossible to maintain a 
perfectly up-to-date list of software tools. Advertisements and published product reviews 
are helpful and, in particular, the software reviews that appear frequently in issues of 
OR/MS Today are an extremely valuable source of information.

We have avoided making any comparisons of products on the basis of performance 
or cost. Performance depends on the underlying hardware as well as on the frequent 
updates and modifications that occur during the evolutionary development of the soft-
ware. Software prices vary rapidly, depending on competition in the market, whether the 
purchaser or user is in academia or industry, and whether copies are sold for installations 
in individual workstations, client/server, or cloud-based versions intended for multiple 
users. More expensive commercial versions of some software may handle larger problem 
models and solutions, while the less expensive personal versions or student versions may 
be limited in the size of problems that can be solved.

In light of the above considerations, a few of the pertinent characteristics and features 
that will likely play a role in the reader’s consideration of software products are high-
lighted. Each chapter’s discussion covers software related to the topics covered in that 
chapter. In this first chapter, no specific solution methods are introduced; however, there is 
discussion of some of the general principles of building mathematical models. Thus, some 
software systems that facilitate the construction of models (i.e., modeling languages and 
environments) and the preparation of model parameters and characteristics are identified. 
These representations of models can then be introduced as input to various other software 
solution generators, or solvers.

One way to create a problem model to be solved with a specialized solver is to use a 
general-purpose programming language (such as C, C++, Python, or Java) and write a 
program to format input parameters appropriately and to generate output reports in the 
desired form. The advantages of this approach are that such languages are typically avail-
able and usable on any hardware, and there is no need to purchase and learn a new lan-
guage or package.
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An analyst who creates models in this way can then choose to solve the problem using 
available software such as is found in the IMSL Mathematical Subroutine Library. A 
comprehensive collection of approximately 1300 mathematical and statistical functions 
and user-callable subroutines is capable of solving most of the types of problems that will 
be studied later in this book. The IMSL libraries are ideal for programmers skilled in C, C#, 
Java, and Fortran, and are available for use on Windows, Unix, Linux and MAC computers. 
The IMSL software system has been used by developers worldwide for four decades, and 
is still considered by many to offer valuable autonomy to the user and thereby accelerate 
development of applications in many contexts (Demirci 1996).

The initial simplicity and low-cost investment associated with this approach, however, 
may be paid for in the long term, as code written and customized for one modeling project 
may not be directly transferrable and reusable on subsequent projects. Nevertheless, there 
can be some value in maintaining direct in-house control over the development and con-
struction of software solutions.

For some types of problems, the row and column (tabular) orientation of problem param-
eters offered by many spreadsheet programs is easy to create and read; and although the 
analyst loses some flexibility, many problems lend themselves nicely to the spreadsheet 
framework. Moreover, many solvers can read and write directly to spreadsheet files.

A much more powerful means for creating models is through the use of algebraic 
modeling languages. These languages permit the user to define the structure of a model 
and declare the data to be incorporated into the structure. An algebraic modeling lan-
guage accepts as input the analyst’s algebraic view of the model, and creates a representa-
tion of the model in a form that the solver algorithm can use. It also allows the analyst to 
design the desired output reports to be produced after the solver has completed its work. 
Modeling languages can be bundled with a solver or optimization module, or can allow 
the user to customize an application system by selecting the best optimization component 
for the job. Among the most commonly used modeling languages are the following.

AMPL, a modeling language for mathematical programming, is an integrated 
software package for describing and solving a variety of types of problems. 
Developed initially by AT&T Bell Labs, it is a complex and powerful language 
that enables model developers to effectively utilize the system’s sophisticated 
underlying capabilities. AMPL is a command and model interpreter that is 
available in Windows, Linux, MacOS, and several Unix-based workstations, 
and interfaces with over 30 powerful optimization engines including MINOS, 
CPLEX, OSL, GUROBI, and many of the most widely used large-scale solvers. 
AMPL features an integrated scripting language, provides access to spreadsheet 
and database files, and has application programming interfaces for embedding 
within larger systems. A review of AMPL and its use can be found in Fourer 
et al. (1993) and at www.ampl.com.

MPL is a mathematical programming language that is considered one of the earliest 
integrated model development systems that supports input and output through 
interfaces with databases and spreadsheets. MPL is most commonly used with 
Windows and interfaces with and supports almost all commercial solvers.

LINGO is a thoroughly integrated modeling language and solver that interfaces 
with the entire LINDO system family of linear and nonlinear problem-solvers. 
(LINDO products are mentioned in several subsequent chapters, as this line of 
software offers application tools for a wide variety of types of problems, as further 

http://www.ampl.com
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described at www.lindo.com.) This powerful modeling language features a conve-
nient environment for expressing problems, facilitates using information directly 
from text files, spreadsheets, and databases, provides access to a comprehensive 
set of built-in solvers that handles a wide range of model types, and generates 
output reports as well as graphical displays during and upon completion of the 
solution process. LINGO runs on Windows, Mac and Linux systems.

AIMMS has emerged from its original role as a basic modeling language into a 
comprehensive, innovative technology company offering sophisticated modeling 
and solution platforms that support both strategic and operational optimization, 
decisions, planning and scheduling. A full description of AIMMS is available at 
www.aimms.com.

SAS/OR OPTMODEL is an optimization modeling language that uses a flexible 
algebraic syntax for model formulation for different types of mathematical pro-
gramming problems including linear, mixed integer and nonlinear programming.

GAMS, a general algebraic modeling system, was one of the earliest developed 
modeling languages, and is now among the most well known and widely used 
modeling systems for large scale optimization. GAMS links to libraries and pro-
gramming languages, databases and spreadsheet files, and runs on Windows, 
Macintosh, Linux, and IBM platforms. GAMS is best known for its sophisticated 
solvers for the full range of optimization problems and for its graphical interface 
generator. More information on this system may be found at www.gams.com.

Software for Operations Research is also available through the Internet. As any knowl-
edgeable computer user must know, products (be they information, software, or more tan-
gible items) offered on the Internet may not always be subject to the same standards of 
quality and control that are imposed on other avenues of commerce. The source, authen-
ticity, quality, and reliability of software or any other information posted on the Internet 
may be difficult to confirm. Despite these concerns, the Internet has nevertheless become 
one of the most exciting sources of information available today. With so many kinds of 
services available online, it makes sense that computational and analytical services and 
tools should be found there, too. For example, in 1994, a group of researchers at Argonne 
National Laboratory and Northwestern University launched a project known as the 
Network-Enabled Optimization System (NEOS), which now includes a large number of 
solvers that accepts models in various formats, solves them on remote servers, and pres-
ents the results to the user for free. The NEOS server is hosted by the Wisconsin Institute 
for Discovery at the University of Wisconsin in Madison, and provides access to more than 
60 state-of-the-art solvers in more than a dozen optimization categories. Solvers hosted 
by the University of Wisconsin run on distributed high-performance machines; remote 
solvers run on machines at Argonne National Laboratory, Arizona State University, the 
University of Klagenfurt in Austria, and the University of Minho in Portugal. The NEOS 
project has been effective in providing information, communication, and high quality 
software as a valuable service to the operations research community.

Of great interest also is the COmputational INfrastructure for Operations Research, 
known as COIN-OR, which is a project dedicated to providing open-source software for 
the Operations Research community (Lougee-Heimer 2008). It encourages and supports 
the development of high-quality software suitable for use by a broad range of practitio-
ners, educators, and students working in industry, academia and government. This col-
lection of robust and portable software includes computational tools powerful enough for 

http://www.lindo.com
http://www.aimms.com
http://www.gams.com
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large collaborative project development, yet accessible to less experienced users as well. 
Much of the software is structured into building blocks which may be modified to suit 
the needs of an individual user and combined to create customized application packages. 
Software components have been used compatibly with proprietary languages and soft-
ware products. COIN-OR software modules are available for constrained optimization, 
linear and nonlinear, continuous and discrete problems. Source distributions are provided 
in standard open source configuration, and precompiled binary distributions are available 
for Windows and Linux on Intel and AMD platforms, and for Mac OS X on Intel and Power 
PC platforms.

COIN-OR began in the year 2000 as an initiative of IBM Research, and was incorporated 
four years later as an independent nonprofit foundation responsible for directing the activ-
ities of the organization. Professional technical leaders from universities and research lab-
oratories have continued to work diligently since the founding of COIN-OR to standardize 
the infrastructure and maintain a stable and reliable repository of software. INFORMS 
computing and optimization societies regularly sponsor workshops and conference clus-
ters to acquaint prospective users with the wide variety of freely available software that 
serves the computational needs of operations researchers. Further information about this 
ambitious and valuable project may be found at www.coin-or.org.

The open source movement has demonstrated over the years that high quality software 
systems can actually be produced by contributors who volunteer their time and experi-
ence to make their products available for other people, hoping that in return people will 
contribute back. This has been an interesting approach that showed tremendous success 
and even for-profit companies started to participate in this model as it turned out that it 
pays off on the long run. For example, Google offers open source codes and binaries for 
Operations Research tools (solvers, interfaces, algorithms) in different computer languages 
and for different operating systems. More is available on Google’s website.

1.6 Illustrative Applications

1.6.1 Analytical Innovation in the Food and Agribusiness Industries (Byrum 2015)

Food and agribusiness currently represent a $5 trillion industry that amounts to 10% of 
consumer spending globally. Food production broadly demands about 40% of employ-
ment worldwide. And yet, despite the enormity and apparent success of the industry, there 
is still hunger in many parts of the world.

The global population, currently at over seven billion, is expected to increase by 
around two billion over the next few decades, and the demand for food crops needed 
for consumption by humans and their animals is predicted to double. These staggering 
requirements for nutrition must be met in a context of changing climate and environ-
mental conditions, without further uncontrolled greenhouse gas emissions and destruc-
tion of arable land and other natural resources, and with an amount of water that will 
likely be only about two-thirds of what is actually needed for crop irrigation. The chal-
lenges of meeting the increasing demand for food production seem daunting, however 
we can look toward a radically more ambitious application of Operations Research tech-
niques that can improve efficiency and productivity within the food and agribusiness 
industries.

http://www.coin-or.org
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Agriculture already is a very information intensive enterprise. Data are gathered regu-
larly on soil conditions, weather, market demands, and prices. Livestock feeds are rou-
tinely measured for weight, moisture, and nutritional content. On another level, farmers 
must deal with data that describe their own specific operational processes and associ-
ated risk management as well as with technical, regulatory, and policy issues. Information 
technology advances such as mobile and remote sensing devices, and satellite image data 
analysis, all contribute to the mix of inputs that must be processed by powerful analyti-
cal capabilities. This vast amount of accumulated information will require increasing 
amounts of database storage, networking, communication, and more powerful and spe-
cialized computational and optimization capabilities.

Food producers are technologically sophisticated. Advances in science, technology, and 
Operations Research all play a role in addressing problems of economic efficiency, social 
responsibility, and gainful productivity in agribusiness. Leading international innovators 
in plant genetics have created customized operations research tools in developing new 
specialized breeds of seeds that produce higher yields which approximately tripled their 
annual increases in yield over what had been achieved before the use of these more ele-
gant and powerful analytic techniques. Improvements in their seed products led to genetic 
gains valued at nearly $300 million over a recent four-year period.

New advances in Operations Research, including theoretical and abstract concepts, can 
be expected to contribute new analytical tools that can be skillfully applied to real prob-
lems. Formal methods will have to be adapted by knowledgeable analysts and applied to 
the actual problems faced by farmers, ranchers and related food production practitioners 
to produce practical and tangible results.

Revolutionary changes in agriculture are going to be critical to our ability to provide 
food for the increasing world population. Researchers and practitioners in agricultural 
production will benefit from their acquired knowledge and experience with traditional 
and innovative methodologies in operations research, but they nevertheless will face dif-
ficult challenges as they apply these tools to create practical solutions that will be effective 
and workable in a context of new technologies, changing human needs, environmental 
transitions, and evolving political factors.

1.6.2 Humanitarian Relief in Natural Disasters (Battini et al. 2014)

Humanitarian relief operations play an increasingly important role in a world stressed by 
population growth, urban residential density, natural resource use and depletion, global 
warming, and economic and political factors. Urgent humanitarian needs occur in places 
where food, water and medical supplies are constantly in demand, requiring routine and 
sustainable distribution of supplies to save lives and mitigate human suffering. In such 
situations, analysts regularly study available data to assess the needs, identify sources for 
supplies, evaluate transportation options, and plan for timely and predictable delivery of 
appropriate supplies to the most critically vulnerable and to those most urgently in need.

Even greater logistical challenges are presented when natural disasters occur (Wex et al. 
2014). Earthquakes, floods, hurricanes, tsunamis, and fires, for example, often cause sud-
den and immediate injuries and loss of life, destruction of basic shelter perhaps requiring 
evacuation and relocation of victims, and interruption of normal availability of food and 
supplies. And in just such circumstances, relief operations may be seriously hampered: 
analysts may have only limited access to reliable information with which to identify the 
locations where rescue crews are needed, the extent of injury and destruction, the status of 
resources and supplies, and the usability of various modes of transport. Communications, 
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water, and basic elements of infrastructure may have fallen prey to the disaster, and local 
decision making may have become impossible. Managing and executing the logistics of an 
efficient humanitarian supply chain in response to emergency needs arising from natural 
catastrophic destruction is an enormous and complex challenge.

In 2010, Haiti experienced a devastating earthquake that measured 7.2 on the Richter 
scale. Casualties were high with approximately a quarter of a million people killed 
and an even greater number of injured survivors. More than half of government and 
school buildings in Port-au-Prince and in the south and west districts of the country 
were destroyed or damaged. Financial loss related to the quake exceeded Haiti’s entire 
2009 gross domestic product. Overall, nearly 3.5 million people were affected by this 
catastrophic event.

Relief efforts typically begin by dispatching emergency rescue units into the areas of 
destruction, with the aim of reducing casualties and identifying longer term needs. Indeed, 
relief teams arrived in Haiti from various agencies such as the United Nations, International 
Red Cross and Red Crescent, the World Food Programme, and UNICEF. Their immediate 
focus was on delivering temporary shelter such as: blankets, tents, tarpaulins, and mos-
quito nets; food kits and water cans; and sanitation/hygiene kits.

The Haitian transport infrastructure was reported to have been very weak even 
before the earthquake hit, therefore delivering supplies through uncharted damaged 
areas to the earthquake victims was a difficult challenge. A plan to distribute relief 
supplies had to be devised, but as is often the case in the humanitarian field, data was 
incomplete or non-existent. A preliminary step in providing humanitarian aid is to 
find a means of collecting data, defining the type, extent, and locations in need of help, 
assessing the status of communication and transportation systems, and identifying 
sources capable of providing food and supplies and knowledgeable emergency staff 
personnel.

Pre-existing road network data were helpful in identifying all available routes and the 
current condition of roads. And from an inventory of available fleet vehicles (trucks and 
helicopters), it was possible to determine the cost of operation of each type of vehicle, 
which ones were undamaged, where they were currently located, and estimates of the 
time required for each type of vehicle to follow each available route.

Through cooperation among the agencies, food kits and hygiene kits were packaged in 
containers of the same size and shape for ease of transport, storage and delivery. Although 
food supplies were provided by different agencies than were the hygiene supplies, the 
uniformly shaped kits could be efficiently stacked and mixed together arbitrarily on the 
different types of delivery vehicles as needed.

Research analysts had already developed an elaborate network routing model to 
describe the logistics of general distribution processes, and this previous work was 
successfully amended to address the Haitian disaster requirements. The purpose ulti-
mately is to find the best and most efficient possible way to deliver supplies to meet the 
needs of disaster victims; and this was accomplished by varying the type and number 
of vehicles allocated to achieve the lowest cost distribution plan. Further modifications 
to the model allowed for consideration of changes in the availability of supplies at their 
source (based on when and how much assistance could be mustered by the interna-
tional agencies) and changes in the expected number of people assisted for each deliv-
ery to a given location.

Based on the acquired data, the demand for supplies, and the operational constraints, a 
mathematical model was developed, and was optimized for the Haitian earthquake sce-
nario. The complex problem described in this way was then expressed in a special form 
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using the GAMS modeling system, and was solved with CPLEX software executed on an 
Intel-based PC running Windows 7. The computational results were then interpreted by 
analysts, and a distribution plan was created to guide the efficient and effective delivery of 
food and supplies.

Analytical approaches have been applied to some extent in the past to create workable 
distribution systems. However, modern research to significantly improve the effective-
ness and efficiency of relief operations is relatively recent. Although every natural disas-
ter presents its own characteristic details, it has been shown here that the modeling and 
computational tools developed in basic Operations Research can be adapted to the specific 
needs of distributing available supplies for humanitarian relief in the wake of a natural 
disaster.

1.6.3 Mining and Social Conflicts (Charles 2016)

Peru has become one of the best performing economies in Latin America during recent 
years. Peru’s model of economic growth has been driven by its mining industry and the 
associated potential for remarkable productivity. This country contains approximately 
22% of the world’s silver, 13% of copper reserves, and smaller but globally significant per-
centages of zinc, lead, tin, and gold reserves. Productivity is high, with Peru being the 
world’s third largest producer of copper, silver, and zinc.

Although investment commitments in mining operations increased and reached over 
$40 billion during the period 2011–2016 to support a portfolio of mining projects, there 
have nevertheless been delays or lapses in implementing many of the projected min-
ing activities. The delays have frequently been related to uncertainties involving social 
issues and conflicts. Local community concerns seem to be centered around environmen-
tal issues such as contamination of land and water, and the failure to improve everyday 
services such as health and education for the local populations. Local communities had 
anticipated greater benefits and services to accrue from the lucrative mining industry, but 
were disappointed by the lack of actual and apparent improvements in their daily living. 
Peru’s wealth of natural mineral resources did not seem to have transformed and enriched 
the social and environmental structure nor brought to Peruvian communities the general 
prosperity that had been hoped for.

Poor communication and a perceived mismatch between mining priorities and social 
concerns led to conflicts that have resulted in the inability of some mines to continue 
operations. Through the years, many attempts were made to resolve conflicts, including 
forcing consultation between indigenous communities and the mining industry concern-
ing infrastructure impact prior to mine development. It became evident that the various 
parties held vastly divergent perspectives on underlying problems. As an example, some 
Peruvian communities view the land as sacred, so any disturbance or relocation due to 
mining activities is considered a sacrilege and yet seems to be an inevitable aspect of any 
possible economic development.

Interactions among conflicting parties were mired in a complex mixture of misunder-
standings, ambiguities, uncertainties, and insensitivities, so that attempts at meaningful 
communication and cooperation were often unsuccessful. Expectations and perceptions 
were so unclear or at cross-purposes that goals and objectives could not be well defined. 
The traditional mathematical modeling tools and established practices of Operations 
Research were useful only for studying specific and narrow avenues for progress in rather 
small contexts, but proved ineffective in addressing and overcoming most of the larger 
and more difficult issues.
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With initiatives from the CENTRUM Católica Graduate Business School, some reason-
able approaches were defined and followed to try to deal with the unstructured aspects of 
the dilemma. It had been generally assumed that mining companies that were perceived 
as having a more socially and environmentally responsible position were less likely to 
be involved in social conflicts, but analysts initially found little hard data to support or 
clarify this perception. Mining firms file corporate social responsibility (CSR) reports 
annually or periodically over many years, but the content of these reports had not been 
analyzed to determine the companies’ actual commitment and discipline in adhering 
to the stated strategies. The job of reviewing the huge volume of accumulated reports 
was overwhelming, but the challenge was addressed by CENTRUM in collaboration 
with Cornell University. This team of researchers cooperatively devised machine learn-
ing approaches to extract data from the CSRs for analyzing and profiling the mining 
companies’ practical commitment to sustainability. Preliminary results of this analysis 
proved to be an extremely important first big step toward matching actual practice with 
the ideals of sustainability.

In an effort to better understand and address socio-cultural issues, these analysts identi-
fied the following constituencies whose positions needed to be heard: 

• Local communities and their needs for water, land, and respect for their cultural 
values

• Mining and associated industries and companies
• Government and state organizations
• Environmentalists with credible environmental constraints assisted and advised 

by technical innovation centers which included experts in Operations Research

Perhaps for the first time, researchers were able to take actions to help define and state the 
needs, expectations, goals, and tolerances of each of these constituencies. A platform was 
created for stating and discussing each group’s ideals, and for comparing ideals versus 
currently existing conditions. By formally allowing and facilitating interaction among the 
various parties involved, it became possible to encourage cooperative analysis of feasible 
and desirable changes that could be made in the mining industry.

Conflicts based on uncertainty and misunderstandings were now being replaced by 
meaningful discussions aimed toward structuring and realistically conceptualizing the 
problems and goals expressed by both the mining companies and the local communities. 
With better understanding all around, and with well founded expectations for continued 
further progress, it is hoped that future collaboration will lead to formulating new models 
for solving the technical problems in operations, economics, social order, and sustainabil-
ity for the development of Peru’s natural resources.

1.7 Summary

Operations Research consists of the use of quantitative methods for analysis, optimiza-
tion, and decision-making. The ideas and methods of Operations Research began to take 
shape during World War II, and thereafter have been put to good use in a wide variety of 
industrial, financial, government, nonprofit, and scientific endeavors.
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Central to the theory and practice of Operations Research is the use of mathematical 
models to represent real systems or processes. A skillfully constructed model embodies 
enough of the details of the real entity being modeled so that it captures the essential 
characteristics of the entity, yet is simple enough so that the model can be studied using 
standard analytical techniques. In addition, successful modeling depends on a human 
analyst’s knowledge, experience, intuition, and good judgment.

Algorithms are computational processes that can be applied to the structures within 
mathematical models. The performance of algorithms is often measured by the amount of 
computer time required to apply the algorithm. Depending on the type of problem being 
solved, algorithms may execute very rapidly (efficiently), or their execution may take so 
long that the algorithm is essentially worthless for actual problems. This book makes a 
special point of indicating, where possible, just what level of performance can be expected 
of each of the computational methods presented in this and subsequent chapters.

Many algorithms are designed to solve their targeted problems perfectly; but with 
imperfect or incomplete models and uncertain data, and the limited numerical accuracy 
of computer hardware, it should be recognized that it may be more sensible and easily 
justifiable to develop problem solutions that are less than optimal, but adequate for a given 
application. It may be necessary to compromise the quality of solutions in order to obtain 
solutions within a reasonable amount of computation time.

Key Terms
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best case performance
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2
Linear Programming

2.1 The Linear Programming Model

Linear programming is a special class of mathematical programming models in which 
the objective function and the constraints can be expressed as linear functions of the deci-
sion variables. As with the more general mathematical programming models, the decision 
variables represent quantities that are, in some sense, controllable inputs to the system 
being modeled. An objective function represents some principal objective criterion or 
goal that measures the effectiveness of the system (such as maximizing profits or pro-
ductivity, or minimizing cost or consumption). There is always some practical limitation 
on the availability of resources (time, materials, machines, energy, or manpower) for the 
system, and such constraints are expressed as linear inequalities or equations involving 
the decision variables. Solving a linear programming problem means determining actual 
values of the decision variables that optimize the objective function, subject to the limita-
tions imposed by the constraints.

The use of linear programming models for system optimization arises quite naturally 
in a wide variety of applications. Some models may not be strictly linear, but can be made 
linear by applying appropriate mathematical transformations. Still other applications are 
admittedly not at all linear, but can be effectively approximated by linear models. The ease 
with which linear programming problems can usually be solved makes this an attractive 
means of dealing with otherwise intractable nonlinear problems.

In the following section, we will see examples of the wide variety of applications that 
can be modeled with linear programming. In each case, the first task will be to identify 
the controllable decision variables xi, where i = 1, …, n. Then the objective criterion will be 
established: to either maximize or minimize some function of the form 

 
z = c x c x c x c x1 1 2 2 n n

i

n

i i+ + + =
=

∑

1  

where ci represents problem dependent constants. Finally, resource limitations and bounds 
on decision variables will be written as equations or inequalities relating a linear function 
of the decision variables to some problem dependent constant; for example, 

 a x a x a x b1 1 2 2 n n+ + + ≤   
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Although the primary purpose of this chapter will be to present methods of solving linear 
programming problems, the first critical step in successful problem-solving lies in the cor-
rect formulation of an application problem into the linear programming framework.

2.2 The Art and Skill of Problem Formulation

A combination of practical insight and technical skill is required in order to recognize 
which problems can be appropriately modeled in a linear programming format, and then to 
formulate those problems accurately. Because of the wide variety of problems that can be 
made to fall into the linear programming mold, it is difficult to give guidelines that are uni-
versally applicable to the process of problem formulation. Rather, problem formulation is an 
art that must be cultivated through practice and experience. Several examples are given to 
point the way, and to illustrate the creativity that is sometimes helpful in framing problems 
as linear programs. The exercises at the end of the chapter should then provide some of the 
practice necessary to develop the skill of formulating linear programming models.

Example 2.2.1

A manufacturer of computer system components assembles two models of wireless rout-
ers, model A and model B. The amounts of materials and labor required for each assem-
bly, and the total amounts available, are shown in the following table. The profits that 
can be realized from the sale of each router are $22 and $28 for models A and B, respec-
tively, and we assume there is a market for as many routers as can be manufactured.

Resources Required 
per Unit

Resources 
AvailableA B

Materials 8 10 3400
Labor 2 3 960

The manufacturer would like to determine how many of each model to assemble in 
order to maximize profits.

Formulation 2.2.1

Because the solution to this problem involves establishing the number of routers to be 
assembled, we define the decision variables as follows: 

 Let x = number of model A routers to be assembledA  

and 

 x = number of model B routers to be assembledB  

In order to maximize profits, we establish the objective criterion as 

 maximize z = 22x + 28xA B  
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Two types of resource limitations are in effect. The materials constraint is expressed by 
the inequality 

 8x 10x 3400A B+ ≤   

and the labor constraint by 

 2x 3x 960A B+ ≤   

Finally, as it would be meaningless to have a negative number of terminals manufac-
tured, we also include the constraints xA ≥ 0 and xB ≥ 0.

Example 2.2.2

A space agency planning team wishes to set up a schedule for launching satellites over a 
period of three years. Experimental payloads are of two types (say, T1 and T2), and each 
launch carries only one experiment. Externally negotiated agency policies dictate that at 
most 88 of payload type T1 and 126 of type T2 can be supported. For each launch, type 
T1 payloads will operate successfully with probability 0.85 and type T2 payloads with 
probability 0.75. In order for the program to be viable, there must be a total of at least 60 
successful deployments. The agency is paid $1.5 million for each successful T1 payload, 
and $1.2 million for each successful T2 payload. The costs to the agency to prepare and 
launch the two types of payloads are $1.05 million for each T1 and $0.7 million for each 
T2. One week of time must be devoted to the preparation of each T2 launch payload and 
two weeks are required for T1 launch payloads. The agency, while providing a public 
service, wishes to maximize its expected net income from the satellite program.

Formulation 2.2.2

Let x1 = number of satellites launched carrying a type T1 payload, and x2 = number of 
satellites launched carrying a type T2 payload. Income is realized only when launches 
are successful, but costs are incurred for all launches. Therefore, the expected net 
income is 

 ( )( )1.5 0.85 x (1.2)(0.75)x (1.05)x (0.7)x million dollar1 2 1 2+ − − ss 

The objective is then to maximize z = 0.225x1 + 0.2x2. Problem constraints in this case 
are of various types. Agency policies impose the two simple constraints 

 x 88 and x 1261 2 ≤ ≤   

The successful deployment quota yields the constraint 

 0 85x + 0.75x 60.  1 2 ≥  

If we assume that 52 weeks per year (for three years) can be applied to the satellite 
program, then the launch preparation time constraint is 

 2 1 1561 2x x+ ≤  

As in the previous example, we include the non-negativity constraints x1 ≥ 0 and x2 ≥ 0.
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Example 2.2.3

A company wishes to minimize its combined costs of production and inventory over a 
four-week time period. An item produced in a given week is available for consumption 
during that week, or it may be kept in inventory for use in later weeks. Initial inventory 
at the beginning of week 1 is 250 units. The minimum allowed inventory carried from 
one week to the next is 50 units. Unit production cost is $15, and the cost of storing a unit 
from one week to the next is $3. The following table shows production capacities and the 
demands that must be met during each week.

Period Production Capacity Demand

1 800 900
2 700 600
3 600 800
4 800 600

A minimum production of 500 items per week must be maintained. Inventory costs are 
not applied to items remaining at the end of the fourth production period, nor is the 
minimum inventory restriction applied after this final period.

Formulation 2.2.3

Let xi be the number of units produced during the i-th week, for i = 1, …, 4. The formula-
tion is somewhat more manageable if we let Ai denote the number of items remaining 
at the end of each week (accounting for those held over from previous weeks, those 
produced during the current week, and those consumed during the current week). Note 
that the Ai values are not decision variables, but merely serve to simplify our written 
formulation. Thus, 

 A  = 250 + x   9001 1 -  

 A A + x 6002 1 2= -  

 A = A + x 8003 2 3 -  

 A = A + x 6004 3 4 -  

The objective is to minimize 

 z = $15 x + x + x + x + $3 A + A +1 2 3 4 1 2 3    A⋅ ⋅( ) ( ) 

Minimum inventory constraints are expressed as Ai ≥ 50 for i = 1, 2, and 3, and A4 ≥ 0. 
Production capacities and minima during each period are enforced with the constraints 

 500 700≤ ≤x1   

 500 700≤ ≤x2   

 500 6003≤ ≤x   
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 500 8004≤ ≤x   

Finally, xi ≥ 0 for i = 1, …, 4.

Example 2.2.4

A mixture of freeze-dried vegetables is to be composed of beans, corn, broccoli, cabbage, and 
potatoes. The mixture is to contain (by weight) at most 40% beans and at most 32% potatoes. 
The mixture should contain at least 5 grams iron, 36 grams phosphorus, and 28 grams 
calcium. The nutrients in each vegetable and the costs are shown in the following table.

Milligrams Nutrient per Pound 
of Vegetable Cost per 

Pound
(cents)Vegetable Iron Phosphorus Calcium

Beans 0.5 10 200 20
Corn 0.5 20 280 18
Broccoli 1.2 40 800 32
Cabbage 0.3 30 420 28
Potatoes 0.4 50 360 16

The amount of each vegetable to include should be determined so that the cost of the 
mixture is minimized.

Formulation 2.2.4

Let x1, x2, x3, x4, and x5 be the number of pounds of beans, corn, broccoli, cabbage, 
and potatoes, respectively. To minimize the cost of the mixture, we wish to mini-
mize z = 20x1 + 18x2 + 32x3 + 28x4 + 16x5. The percentage of beans in the mixture is 
x1/(x1 + x2 + x3 + x4 + x5), and must be less than 40%. Therefore, 

 x 0.4 x + x + x + x + x1 1 2 3 4 5≤ ( ) 

and similarly the potato restriction can be written as 

 x 0.32 x + x + x + x + x5 1 2 3 4 5 ≤  ( ) 

To achieve the required level of nutrients, we have three constraints (for iron, phospho-
rus, and calcium, respectively): 

 0.5x + 0.5x + 1.2x + 0.3x + 0.4x 50001 2 3 4 5 ≥  

 10 20 40 30 50 36 0001 2 3 4 5x x x x x ,+ + + + ≥  

 200 280 800 420 360 28 0001 2 3 4 5x x x x x ,+ + + + ≥  

Negative amounts are not possible, so xi ≥ 0 for i = 1, …, 5.
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Example 2.2.5

A saw mill makes two products for log home kits: fir logs and spruce logs which can 
be sold at profits of $4 and $5, respectively. Spruce logs require two units of processing 
time on the bark peeler and six units of time on a slab saw. Fir logs require three units 
of time on the peeler and five units on the slab saw. Each then requires two units of 
time on the planer. Because of maintenance requirements and labor restrictions, the 
bark peeler is available 10 hours per day, the slab saw 12 hours per day, and the planer 
14 hours per day. Bark and sawdust are by-products of these operations. All the bark 
can be put through a chipper and sold in unlimited quantities to a nearby horticulture 
supplier. Dried fir sawdust can be directed to a similar market, at a net profit of $0.38 per 
processed log. Limited amounts of the spruce sawdust can be made into marketable 
pressed wood products, but the rest must be destroyed. For each spruce log produced, 
enough sawdust (five  pounds) is generated to make three pressed wood products, 
which after manufacturing can be sold at a unit profit of $0.22. However, the market can 
absorb only 60 of the pressed wood products per day and the remaining spruce sawdust 
must be destroyed at a cost of $0.15 per pound. The saw mill wishes to make the largest 
possible profit, considering the cost of destroying the unusable sawdust.

Formulation 2.2.5

The formulation of this problem cannot follow exactly the pattern established in pre-
vious examples because the profits to be maximized are not a linear function of the 
number of logs of each type produced. Spruce log production creates a by-product that 
is useful and profitable only up to a point, and thereafter any excess must be destroyed 
at a cost that diminishes total profits. Thus, profits are not a strictly increasing function 
of production levels. We can still let 

 x = number of fir logs produced1  

 x = number of spruce logs produced2  

Because sawdust contributes nonlinearly to profits, we treat it in two parts and let 

 x = number of pounds of spruce sawdust used3  

 x = number of pounds of spruce sawdust destroyed4  

Direct profit from the sale of logs is 4x1 + 5x2. All the bark can be sold at a profit in unlim-
ited quantities, therefore, although this affects the amount of profit, it does not affect our 
decision on how many logs of each type to produce. Fir sawdust brings in $0.38 for each 
processed log, or 0.38x1. For each x3/5 spruce logs produced, there is enough sawdust to 
make three products at a profit of $0.22 each, if there is a market. Unmarketable spruce 
sawdust costs 0.15x4 to destroy. The objective is, therefore, to maximize 

 
z x( ) 4= + + +4 5 0 38

3

5
0 22 0 151 2 1 3x x . x x .. −

 

Relating the number of logs produced to pounds of sawdust by-product, we obtain the 
constraint 

 5x = x x2 3 4+( ) 
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Limitations on demand for the pressed wood product are expressed by 

 
3

5
x 603 ≤  

 

Constraints on availability of machinery are straightforward. For the bark peeler, 

 3x + 2x 101 2 ≤   

On the slab saw, 

 5 6 122x x1 + ≤  

And on the planer, 

 2 2 142x x1 + ≤  

Because all production levels are non-negative, we also require x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, and 
x4 ≥ 0.

Example 2.2.6

A dual processor computing facility is to be dedicated to administrative and scientific 
application jobs for at least 10 hours each day. Administrative jobs require two seconds of 
execution time on processor 1 and six seconds on processor 2, while scientific jobs require 
five seconds on processor one and three seconds on processor 2. A scheduler must choose 
how many of each type of job (administrative and scientific) to execute, in such a way as 
to minimize the amount of time that the system is occupied with these jobs. The system 
is considered to be occupied even if one processor is idle. (Assume that the sequencing of 
the jobs on each processor is not an issue here, just the selection of how many of each type 
of job.)

Formulation 2.2.6

Let x1 and x2 denote, respectively, the number of administrative and scientific jobs 
selected for execution on the dual processor system. Because policies require that each 
processor be available for a least 10 hours, we must write the two constraints as: 

 2 5 10 3600 12 ( ) ( )x x Processor 1 + ≥ ⋅  

 6 3 10 3600( ) ( )x x Processor 21 2+ ≥ ⋅  

and 

 x 0 and x 01 2≥ ≥  

The system is considered occupied as long as either processor is busy. Therefore, to 
minimize the completion time for the set of jobs, we must 

 minimize maximum 2x + 5x , 6x + 3x1 12 2( ){ } 
This nonlinear objective can be made linear if we introduce a new variable x3, where 

 x = max 2x + 5x , 6x + 3x 03 1 12 2{ } ≥  
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Now if we require 

 x 2x + 5x and x 6x + 3x3 1 3 1    ≥ ≥2 2 

and make our objective to minimize x3, we have the desired linear formulation.

2.2.1 Integer and Nonlinear Models

There are many problems that appear to fall into the framework of linear programming 
problem formulations. In some problems, the decision variable values are meaning-
ful only if they are integer values. (For example, it is not possible to launch a fractional 
number of satellites or to transport a fractional number of people.) However, general 
approaches to the solution of linear programming problems in no way guarantee integer 
solutions. The analyst must therefore be familiar enough with the actual application to 
determine whether it will be acceptable to round off a continuous (non-integer) optimal 
solution to an integer solution that may be suboptimal. In many applications, such prac-
tices yield solutions that are quite adequate. When rounding does not yield acceptable 
results, it may be necessary to resort to methods that are computationally more diffi-
cult than general linear programming solution methods, but which always yield integer 
solutions. Specialized methods for these cases will be introduced in Chapter 4 on Integer 
Programming.

More subtle nonlinearities exist inherently in almost all real applications. It is again 
left to the discretion of the analyst to determine whether the linear model can provide a 
sufficiently accurate approximation to the real situation. Because of the relative ease with 
which linear models can be solved, in some cases it may be worth making certain simpli-
fying (albeit compromising) assumptions in order to formulate a real problem into a linear 
programming model.

2.3 Graphical Solution of Linear Programming Problems

2.3.1 General Definitions

Finding an optimal solution to a linear programming problem means assigning values to 
the decision variables in such a way as to achieve a specified goal and conform to certain 
constraints. For a problem with n decision variables, any solution can be specified by a 
point (x1, x2, …, xn). The feasible space (or feasible region) for the problem is the set of all 
such points that satisfy the problem constraints. The feasible space is therefore the set of 
all feasible solutions. An optimal feasible solution is a point in the feasible space that is 
as effective as any other point in achieving the specified goal.

The solution of linear programming problems with only two decision variables can be 
illustrated graphically. In the following examples, we will see cases involving the maximiza-
tion and minimization of functions. We will also see situations in which no feasible solution 
exists, some which have multiple optimal solutions, and others with no optimal solution.

Linear programming problems with more than two decision variables require more 
sophisticated methods of solution, and cannot be easily illustrated graphically. However, 
our graphical study of small problems will be helpful in providing insight into the more 
general solution method that will be presented later.
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2.3.2 Graphical Solutions

Let us first consider a maximization problem: 

 

maximize z = 3x x

subject to (1) x 5

 x x

 x x

(2)

1 2

2

1 2

1

+

≤

+ ≤

− +

10

3( ) 22

1 2x , x

≥ −

≥

2

0  

Each inequality constraint defines a half-plane in two dimensions, and the intersection of 
these half-planes comprises the feasible space for this case, as shown by the shaded area 
in Figure 2.1. 

The points labeled A, B, C, D, and E are called extreme points of the feasible region. It 
is a property of linear programming problems that, if a unique optimal solution exists, it 
occurs at one of the extreme points of the feasible space.

For this small problem, it is not impractical simply to evaluate the objective function at 
each of these points, and select the maximum: 

 z z(0,0) 3 0 0A = = + =× 0  

 z z(0,5) 3 5 5B = = + =× 0  
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−x 1 +
 x 2 =

 −2 Z = 3x
1 + x

2

FIGURE 2.1
Graphical solution.
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 z z(5,5) 3 5 5 20C = = + =×  

 z z(6,4) = 3 4 22D = + =× 6  

 z z(2,0) 3 0 6E = = + =× 2  

The optimal solution lies at extreme point D where x1 = 6 and x2 = 4, and the optimal value 
of the objective function is denoted by z* = 22.

Without evaluating z at every extreme point, we may more simply observe that the line 
specified by the objective function 3x1 + x2 has a slope of −3. At optimality, this line is 
tangent to the feasible space at one of the extreme points. In Figure 2.1, the dashed line 
represents the objective function at the optimal point D.

Next, we use the same graphical technique to solve a minimization problem: 

 

minimize z = x + x

subject to x x

x

x

x ,

1 2

1

1

3 6 1

3

4 3

2

2

2

1

( )

( )

( )

+ ≥

≥

≤

  x2 ≥ 0  

The shaded area in Figure 2.2 denotes the feasible region, which in this case is 
unbounded. 
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FIGURE 2.2
Unbounded feasible region.
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The minimal solution must occur at one of the extreme points A, B, or C. The objective 
function x1 + x2, with a slope of −1, is tangent to the feasible region at extreme point B. 
Therefore, the optimal solution occurs at x1 = 1 and x2 = 3, and the optimal objective func-
tion value at that point is z* = 4.

2.3.3 Multiple Optimal Solutions

Each of the problems that we have solved graphically had a unique optimal solution. The 
following example shows that it is possible for a linear programming problem to have mul-
tiple solutions that are all equally effective in achieving an objective. Consider the problem 

 

maximize z x 2x

subject to x x 2

x x

x

1

1 2

2

= +

− + ≤

+ ≤

≤

2

1

1

1

2 8

6 3

2

( )

( )

( )

xx  x1 2, ≥ 0  

The feasible region is shown in Figure 2.3. 
The line representing the objective function x1 + 2x2 can be made tangent to the feasible 

region at the origin, but clearly z is maximized by placing the line where the values of 
x1 and x2 are larger. Notice that the objective function line in this case is tangent to the 
feasible region not at a single extreme point, but rather along one of the boundaries of the 
feasible region.
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FIGURE 2.3
Multiple optimal solutions.
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The values 

 
z  = z ,  =  + 2  = 8A
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and 

 z  = z(6,1) = 6 + 2 (1) = 8B ×  

correspond to optimal solutions at points A and B; moreover, all points on the line between 
extreme points A and B are also optimal. Therefore, z* = 8 and the optimal solutions can 
be expressed as a set 

 
x  x x and x and x x1 2 11 2 2
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6 1
10
3

2 8,( ) ≤ ≤ ≤ ≤ + =
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Such a situation may occur whenever the slope of the objective function line is the same as 
that of one of the constraints.

2.3.4 No Optimal Solution

When the feasible region is unbounded, a maximization problem may have no optimal 
solution, since the values of the decision variables may be increased arbitrarily. This can 
be illustrated by the problem: 

 

maximize z = 3x + x

subject to x x 4

x x

x x

1 2

1 2

1 2

1

+ ≥

− + ≤

− +

( )

( )

1

4

2

2

22 4 3

0

≥ −

≥

( )

,x  x1 2  

Figure 2.4 shows the unbounded feasible region and demonstrates that the objective func-
tion can be made arbitrarily large by allowing the values of x1 and x2 to grow within the 
unbounded feasible region. In this case, there is no point (x1, x2) that is optimal because 
there are always other feasible points for which z is larger. 

Notice that it is not the unbounded feasible region alone that precludes an optimal solu-
tion. The minimization of the function subject to the constraints shown in Figure 2.4 would 
be solved at extreme point A.
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In practice, unbounded solutions typically arise because some real constraint, repre-
senting a practical resource limitation, has been omitted from the linear programming for-
mulation. Because we do not realistically expect to be able to achieve unlimited profits 
or productivity, an indication of apparently unbounded solutions as seen in the previous 
example should be interpreted as evidence that the problem needs to be reconsidered more 
carefully, reformulated and re-solved.

2.3.5 No Feasible Solution

A linear programming problem has no feasible solution if the set of points corresponding 
to the feasible region is empty. For example, the constraints 

 − ≥ − ≤ −x + x 4 and x + 2x 41 2 1 1  

where x1, x2 ≥ 0, represent conditions that cannot simultaneously be satisfied by any point. 
Figure 2.5 shows the four half-planes whose intersection is empty. 
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FIGURE 2.4
No optimal solution.
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In small problems, infeasibilities such as this may be discovered visually during an 
attempted graphical solution. In larger problems, it may not be obvious, by inspecting a 
particular set of constraints, that no solution is possible. Fortunately, the general solution 
method to be described in the following sections is not only capable of solving typical 
maximization or minimization problems, but it also provides mechanisms for recognizing 
problems that have multiple optimal solutions, no optimal solution, or no feasible solution.

2.3.6 General Solution Method

We have seen in our graphical solutions that, if an optimal solution exists, it occurs at an 
extreme point of the feasible region. This fundamental property of linear programming 
problems is the foundation for a general solution method called the Simplex method. 
Because only the finitely many extreme points need be examined (rather than all the points 
in the feasible region), an optimal solution may be found systematically by considering 
the objective function values at the extreme points. In fact, in actual practice, only a small 
subset of the extreme points need be examined. The following sections will demonstrate 
how the Simplex method is able to locate optimal solutions with such efficiency.

2.4 Preparation for the Simplex Method

2.4.1 Standard Form of a Linear Programming Problem

In preparation for the use of the Simplex method, it is necessary to express the linear 
programming problem in standard form. For a linear program with n variables and m 
constraints, we will use the following standard form: 
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FIGURE 2.5
No feasible solution.
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maximize z = c x + c x + + c x

subject to a x + a x + 
1 1 2 2 n n

11 1 12

…
…2   + a x = b

a x + a x +  + a x = b

a x + a x + 

1n n 1

21 1 22 2n n 2

m1 1 m2

2

2

…
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…… + a x = bmn n m 

where the variables x1, …, xn are non-negative, and the constants b1, …, bm on the right 
hand sides of the constraints are also non-negative. We can use matrix notation to repre-
sent the cost (or profit) vector c = (c1, c2,…, cn) and the decision variable vector 
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The coefficient matrix is: 
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and the requirement vector is: 
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Then the optimization problem can be expressed succinctly as: 

 

maximize z = cx

subject to Ax = b

x 0

b 0

≥

≥  
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Although this standard form will be required by the Simplex method, it is not necessar-
ily the form that arises naturally when we first formulate linear programming models. 
Several modifications may be necessary in order to transform an original linear program-
ming formulation (as in Section 2.2) into the standard form.

To convert a minimization problem to a maximization problem, we can simply multiply 
the objective function by −1, and then maximize this function. (Recall that there are no 
sign restrictions on the ci.) For example, the problem of minimizing z = 3x1 − 5x2 is equiva-
lent to maximizing z = −3x1 + 5x2. Negative right hand sides of the constraints can be made 
positive by multiplying the constraint by −1 (reversing the sense of the inequality).

Equality constraints require no modification. Inequality constraints can be converted 
to equalities through the introduction of additional variables that make up the differ-
ence in the left and right sides of the inequalities. Less than or equal to (≤) inequalities 
require the introduction of variables that we will call slack variables. For example, a 
constraint such as 3x1 + 4x2 ≤ 7 becomes the equality 3x1 + 4x2 + s1 = 7 when we intro-
duce the slack variable s1, where s1  ≥  0. Greater than or equal to (≥) constraints are 
modified by introducing surplus variables. For example, the constraint 14x1 + 3x2 ≥ 12 
becomes the equality 14x1 +  3x2 −  s2 =  12, where s2 is the non-negative surplus vari-
able. Although our notation (s1 and s2) may suggest otherwise, the slack and surplus 
variables are going to be treated exactly like any other decision variable throughout the 
solution process. In fact, their final values in the solution of the linear programming 
problem may be just as interesting to a systems manager or analyst as are the values of 
the original decision variables.

Finally, all variables are required to be non-negative in the standard form. In the event 
that the actual meaning associated with a decision variable is such that the variable should 
be unrestricted in sign, then that variable may be replaced by the difference of two new non-
negative variables. For example, if x1 is to be an unrestricted variable, then every occur-
rence of x1 in the objective function or in any constraint will be replaced by x1′ − x1″, where 
x1′, x1″, ≥ 0. Then in any solution, the sign of the value of x1 is dependent on the relative 
values of x1′ and x1″.

The reason for placing problems in standard form is that our general solution method 
will be seen to operate by finding and examining solutions to the system of linear equa-
tions Ax = b (i.e., by finding values of the decision variables that are consistent with the 
problem constraints), with the aim of selecting a solution that is optimal with respect to 
the objective function.

2.4.2 Solutions of Linear Systems

We now have a system of linear equations, Ax  =  b, consisting of m equations and n 
unknowns. The n unknowns include the original decision variables and any other vari-
ables that may have been introduced in order to achieve standard form.

It may be useful at this point to review the material in the Appendix on solving systems 
of linear equations. If a system of independent equations has any solution, then m ≤ n. 
If m = n (and if rank (A) = m and A is nonsingular), then there is the unique solution 
x = A−1b. In this case, there is only one set of values for the xi that is not in violation of 
problem constraints. Optimization of an objective function is not an issue here because 
there is only one feasible solution.
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When m < n, there are infinitely many solutions to the system of equations. In this case, 
we have (n − m) degrees of freedom in solving the system. This means that we can arbi-
trarily assign any values to any (n − m) of the n variables, and then solve the m equations 
in terms of the remaining m unknowns.

A basic solution to the system of m equations and n unknowns is obtained by setting 
(n − m) of the variables to zero, and solving for the remaining m variables. The m variables 
that are not set equal to zero are called basic variables, and the (n − m) variables set to 
zero are non-basic variables. The number of basic solutions is just the number of ways we 
can choose n − m variables (or m variables) from the set of n variables, and this number 
is given by: 
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Not all of the basic solutions satisfy all problem constraints and non-negativity constraints. 
Those that do not meet these requirements are infeasible solutions. The ones that do meet 
the restrictions are called basic feasible solutions. An optimal basic feasible solution is a 
basic feasible solution that optimizes the objective function. The basic feasible solutions 
correspond precisely to the extreme points of the feasible region (as defined in our earlier 
discussion of graphical solutions). Because any optimal feasible solution is guaranteed to 
occur at an extreme point (and consequently is a basic feasible solution), the search for an 
optimal basic feasible solution could be carried out by an examination of the at most n

m( ) 
basic feasible solutions and a determination of which one yields the best objective function 
value.

The Simplex method performs such a search, but in a very efficient way. We define 
two extreme points of the feasible region (or two basic feasible solutions) as being adja-
cent if all but one of their basic variables are the same. Thus, a transition from one basic 
feasible solution to an adjacent basic feasible solution can be thought of as exchanging 
the roles of one basic variable and one non-basic variable. The Simplex method per-
forms a sequence of such transitions and thereby examines a succession of adjacent 
extreme points. A transition to an adjacent extreme point will be made only if by doing 
so the objective function is improved (or stays the same). It is a property of linear pro-
gramming problems that this type of search will lead us to the discovery of an optimal 
solution (if one exists). The Simplex method is not only successful in this sense, but it 
is remarkably efficient because it succeeds after examining only a fraction of the basic 
feasible solutions.

2.5 The Simplex Method

The Simplex method is a general solution method for solving linear programming prob-
lems. It was developed in 1947 by George B. Dantzig and, with some modifications for 
efficiency, has become the standard method for solving very large linear programming 
problems on computers. Most real problems are so large that a manual solution via the 
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Simplex method is impractical, and these problems must be solved with Simplex programs 
implemented on a computer. Small problems, however, are quite useful in demonstrating 
how the Simplex method operates; therefore, we will use such problems to illustrate the 
various features of the method.

The Simplex method is an iterative algorithm that begins with an initial feasible solu-
tion, repeatedly moves to a better solution, and stops when an optimal solution has been 
found and, therefore, no improvement can be made.

To describe the mechanics of the algorithm, we must specify how an initial feasible 
solution is obtained, how a transition is made to a better basic feasible solution, and how 
to recognize an optimal solution. From any basic feasible solution, we have the assurance 
that, if a better solution exists at all, then there is an adjacent solution that is better than the 
current one. This is the principle on which the Simplex method is based; thus, an optimal 
solution is accessible from any starting basic feasible solution.

We will use the following simple problem as an illustration as we describe the Simplex 
method: 
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The standard form for this problem is: 

 

maximize z = 8x + 5x + 0s + 0s + 0s
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(Zero coefficients are given to the slack variables in the objective function because slack 
variables do not contribute to z.) The constraints constitute a system of m = 3 equations 
in n = 5 unknowns. In order to obtain an initial basic feasible solution, we need to select 
n − m = 5 − 3 = 2 variables as non-basic variables. We can readily see in this case that by 
choosing the two variables x1 and x2 as the non-basic variables, and setting their values 
to zero, then no significant computation is required in order to solve for the three basic 
variables: s1 = 150, s2 = 250, and s3 = 500. The value of the objective function at this solu-
tion is 0.

In fact, a starting solution is just this easy to obtain whenever we have m variables, each 
of which has a coefficient of one in one equation and zero coefficients in all other equa-
tions (a unit vector of coefficients), and each equation has such a variable with a coefficient 
of one in it. Thus, whenever a slack variable has been added to each constraint, we may 
choose all the slack variables as the m basic variables, set the remaining (n − m) variables 
to zero, and the starting values of the basic variables are simply given by the constants b on 
the right hand sides of the constraints. (For cases in which slack variables are not present 
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and, therefore, do not provide a starting basic feasible solution, further techniques will be 
discussed in Section 2.6.)

Once we have a solution, a transition to an adjacent solution is made by a pivot operation. 
A pivot operation is a sequence of elementary row operations (see the Appendix) applied 
to the current system of equations, with the effect of creating an equivalent system in 
which one new (previously non-basic) variable now has a coefficient of one in one equation 
and zeros in all other equations.

During the process of applying pivot operations to a linear programming problem, it is 
convenient to use a tabular representation of the system of equations. This representation 
is referred to as a Simplex tableau.

In order to conveniently keep track of the value of the objective function as it is affected 
by the pivot operations, we treat the objective function as one of the equations in the sys-
tem of equations, and we include it in the tableau. In our example, the objective function 
equation is written as: 

 1z 8x 5x   0s 0s 0s = 01 2 1 2 3- - - - -  

The tableau for the initial solution is as follows:

Basis z x1 x2 s1 s2 s3 Solution

Z 1 −8 −5 0 0 0 0
s1 0 1 0 1 0 0 150
s2 0 0 1 0 1 0 250

s3 0 2 1  0 0 1 500

The first column lists the current basic variables. The second column shows that z is (and 
will always be) a basic variable; and because these elements will never change, they really do 
not need to be explicitly maintained in the tableau. The next five columns are the constraint 
coefficients of each variable. And the last column is the solution vector; that is, the values of 
the basic variables. Using this representation of a current solution, we can now describe the 
purpose and function of each iteration of the Simplex method for a maximization problem.

Observe that the objective function row represents an equation that must be satisfied 
for any feasible solution. Since we want to maximize z, some other (non-basic) term must 
decrease in order to offset the increase in z. But all of the non-basic variables are already at 
their lowest value, zero. Therefore, we want to increase some non-basic variable that has 
a negative coefficient. As a simple rule, we will choose the variable with the most negative 
coefficient, because making this variable basic will give the largest (per unit) increase in z. 
(Refer to Steps 1 and 2 in the following.)

The chosen variable is called the entering variable, that is, the one that will enter the 
basis. If this variable increases, we must adjust all of the equations. Specifically, increas-
ing the non-basic variable must be compensated for by using only the one basic variable 
in each row (having a coefficient of one). If the non-basic coefficient is negative, the cor-
responding basic variable increases. There is no limit to how much we can increase this. 
Clearly, if all coefficients are negative (or zero), then we can increase the non-basic variable, 
and hence the value of z, indefinitely. In this case, we say that the problem is unbounded, 
and there is no maximum solution.
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If one or more of the coefficients are positive, then increasing the entering variable must 
be offset by a corresponding decrease in the basic variable. Specifically, if aik > 0, for basic 
variable xi the non-basic column of xk, then the new value of xi, after xk is increased, will be 

 x = b a xi i ik k-  

But xi ≥ 0; therefore, we can increase xk only to that point where 

 
x = 

b
a

k
i

ik  

Define θi = bi/aik for all equations i for which aik > 0. Because we want to maximize the 
increase in xk, we increase precisely to the point at which some basic variable first becomes 
zero (the minimum value of θi). That variable now leaves the basis, and is called the leaving 
variable. (Refer to Steps 3 and 4 in the following.)

The Simplex method can be summarized succinctly as follows: 

Step 1: Examine the elements in the top row (the objective function row). If all ele-
ments are ≥0, then the current solution is optimal; stop. Otherwise go to Step 2.

Step 2: Select as the non-basic variable to enter the basis that variable corresponding 
to the most negative coefficient in the top row. This identifies the pivot column.

Step 3: Examine the coefficients in the pivot column. If all elements are ≤0, then this prob-
lem has an unbounded solution (no optimal solution); stop. Otherwise go to Step 4.

Step 4: Calculate the ratios 

 θi i ik ik = b /a for all i = 1, , m for which a  > 0  

where aik is the i-th element in the pivot column k. Then select 

 θ θ=  min { }i
 

This identifies the pivot row and defines the variable that will leave the basis. The 
pivot element is the element in the pivot row and pivot column.

Step 5: To obtain the next tableau (which will represent the new basic feasible 
solution), divide each element in the pivot row by the pivot element. Use this 
row now to perform row operations on the other rows in order to obtain zeros 
in the rest of the pivot column, including the z row. This constitutes a pivot 
operation, performed on the pivot element, for the purpose of creating a unit 
vector in the pivot column, with a coefficient of one for the variable chosen to 
enter the basis.

When we apply these steps to the initial tableau in our example problem, we select x1 (with 
the most negative coefficient on the z row) as the entering variable:

Basis z x1 x2 s1 s2 s3 Solution

z 1 −8 −5 0 0 0 0
s1 0 1 0 1 0 0 150
s2 0 0 1 0 1 0 250
s3 0 2 1 0 0 1 500
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We compute 

 
θ1 = 

150
1

= 150
 

 
θ3  = 

500
2

 = 250
 

and select the minimum θ = θ1. Therefore, the leaving variable is the one corresponding 
to the first basic variable s1. A pivot operation on the pivot element then produces the next 
tableau which shows the new basic feasible solution 

 x  = 1501  

 s = 2502  

 s = 2003  

 x = 02  

 s = 01  

 z = 1200 

Basis z x1 x2 s1 s2 s3 Solution

z 1 0 −5 8 0 0 1200
x1 0 1 0 1 0 0 150
s2 0 0 1 0 1 0 250

s3 0 0 1 −2 0 1 200

In the next iteration, x2 is chosen as the entering variable. Based on the ratios θ2 = 250/1 and 
θ3 = 200/1, we select θ = θ3, and, therefore, the third basic variable s3 leaves the basis. The 
pivot element is shown in the previous tableau. A pivot operation produces the new tableau: 

Basis z x1 x2 s1 s2 s3 Solution

z 1 0 0 −2 0 5 2200
x1 0 1 0 1 0 0 150
s2 0 0 0 2 1 −1 50
x2 0 0 1 −2 0 1 200

The solution represented by this tableau is 

 x  = 1501  

 s  = 502  

 x  = 2002  

 s = 01  

 s  = 03  
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and 

 z is now 2200 

From this tableau, we can now select s1 as the entering variable. We compute θ1 = 150/1 and 
θ2 = 50/2, choose θ = θ2, and, therefore, designate s2 as the leaving variable. The resulting 
tableau after a pivot operation is: 

Basis z x1 x2 s1 s2 s3 Solution

z 1 0 0 0 1 4 2250
x1 0 1 0 0 −1/2 1/2 125
s1 0 0 0 1 1/2 −1/2 25
x2 0 0 1 0 1 0 250

Because all of the objective function row coefficients are non-negative, the current solution 
is optimal. The decision variables are: 

 x  = 1251  

 x  = 2502  

and the optimal objective function value, denoted as z*, is: 

 z x x1* ( ) ( )= + = + =8 5 8 125 5 250 22502  

The values of the slack variables at optimality also provide useful information. The slack 
variable s1 for the first constraint has a value of 25, indicating that there is a difference 
of 25 in the right and left sides of the constraint; thus, x1 = 125 is 25 less than 150. (This 
can typically be interpreted to mean that some resource corresponding to constraint 1 
is not fully consumed at optimality; such a constraint is sometimes referred to as a non-
binding constraint.) Since s2 and s3 are non-basic and, therefore, have a value of zero, 
we can see that the second and third constraints are met as equalities. (These resources 
are used to capacity at optimality, and these constraints are sometimes called binding 
constraints.)

If we examine a graphical representation of the feasible region of this linear program-
ming problem in Figure 2.6, we can observe the progression from extreme point A (initial 
solution) to extreme point B, then C, and finally the optimal solution at point D. Extreme 
points F and G are infeasible, and point E is a basic feasible solution but is not examined 
by the Simplex method. 

In summary, let us briefly review the steps of the Simplex algorithm and the rationale 
behind each step. Negative coefficients, corresponding to non-basic variables, in the objec-
tive function row indicate that the objective function can be increased by making those 
associated variables basic (non-zero). If in Step 1 we find no negative element, then no 
change of basis can improve the current solution. Optimality has been achieved and the 
algorithm terminates.

Otherwise, in Step 2, we select the non-basic variable to enter the basis that has the 
greatest potential to improve the objective function. The elements in the objective 
function row indicate the per unit improvement in the objective function that can be 
achieved by increasing the non-basic variables. Because these values are merely indica-
tors of potential and do not reveal the actual total improvement in z, ties are broken 
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arbitrarily. In actual practice, choosing the most negative coefficient has been found to 
use about 20% more iterations than some more sophisticated criteria, such as are sug-
gested by (Bixby 1994).

The basic variable to be replaced in the basis is chosen, in Step 4, to be the basic vari-
able that reaches zero first as the entering variable is increased from zero. We restrict 
our examination of pivot column elements to positive values only (Step 3) because a 
pivot operation on a negative element would result in an unlimited increase in the 
basic variable. If the pivot column elements are all negative or zero, then the solution 
is unbounded and the algorithm terminates here. Otherwise, a pivot operation is per-
formed as described in Step 5.

The Simplex tableau not only provides a convenient means of maintaining the system 
of equations during the iterations of the algorithm, but also contains a wealth of informa-
tion about the linear programming problem that is being solved. In the following sec-
tion, we will see various computational phenomena (indicating special problem cases) that 
may arise during application of the Simplex method, as well as information that may be 
obtained from an optimal tableau.

500

400

300

200

100

A
B G

F

E D

C

(125, 250)

(150, 200)

100 150 200(0,0)
x1

x2

FIGURE 2.6
Simplex steps.
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2.6 Initial Solutions for General Constraints

2.6.1 Artificial Variables

In the original presentation of the Simplex algorithm in Section 2.5, our sample problem 
was one in which all constraints were of the less-than-or-equal (≤) type. In that case, we 
observed that by adding slack variables (in order to achieve equality constraints), we for-
tuitously also obtained an initial feasible set of basic variables. The coefficients of the slack 
variables provided the required unit vectors, embedded in the matrix of coefficients of 
the linear system of equations. In this section, we will see how to obtain an initial basic 
feasible solution for problems with more general forms of constraints, and to then use the 
Simplex method to solve such problems.

First of all, recall that all right hand sides bi of constraints must be non-negative. Any 
constraint with a negative constant on the right hand side can be multiplied by −1 in order 
to satisfy this requirement. For example, an equality constraint such as: 

 − + = −3 4 62x x1  

can be replaced by the constraint 

 3 4 61 2x x− =  

An inequality such as: 

 5 8 102x x1 − ≤ −  

can be replaced by 

 − + ≥5 8 102x x1  

At this point, it should be clear that typical linear programming problems in standard form 
contain equality constraints involving only the original decision variables as well as constraints 
that include slack variables and surplus variables. Slack variables can conveniently be used 
as basic variables; however, basic variables corresponding to equality constraints and greater 
than or equal (≥) constraints are not always immediately available. Although it may be pos-
sible, by trial and error, to obtain a feasible starting basis for some problems, we prefer to use 
an approach that is straightforward and simple, and that can be used predictably in all cases.

We will deal with this situation by introducing additional variables, called artificial 
variables, solely for the purpose of obtaining an initial basis. These variables have no real 
meaning in the problem being solved, and will not be a part of the final solution. They 
merely provide a mechanism that will allow us to create a starting basic solution configu-
ration, and then to apply the Simplex algorithm to the problem. (Note that it may not be 
necessary to add an artificial variable to every constraint; a constraint with a slack variable 
does not need an artificial variable.)

As an illustration, consider the following linear programming problem: 

 

maximize z = x + 3x
subject to 2x x 1 (1)

x x
x , 

1 2

1 2

1 2

1

− ≤ −
+ = 3 2( )
xx2 ≥ 0  
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We multiply the first constraint by −1, to obtain −2x1 + x2 ≥ 1, and then create an equality 
constraint by adding a (non-negative) surplus variable s1 with a coefficient of −1. Now, the 
set of constraints 

 

− + − =

=

2 1

3

2x x s

x + x

1 1

1 2  

is in standard form, but since there is no obvious starting solution (as there would have 
been if we had added slack variables in each constraint), we will introduce two artificial 
variables, R1 and R2, for this purpose. The constraint set becomes 

 

- -2x + x s + R = 1

x + x + R = 3

1 2 1 1

1 2 2  

where x1, x2, s1, R1, R2 ≥ 0. We now have initial basic variables R1 and R2 for this enlarged 
problem; however, we must realize that the original equality constraint set is satisfied only 
if both R1 and R2 have values of zero. Therefore, the artificial variables must play only a 
temporary role in the solution.

There are two primary approaches that we can use to ensure that the artificial variables 
are not in the final solution. One method, commonly called the Big-M method, achieves 
this end by creating a modified objective function with huge negative coefficients −M on 
the artificial variables. In our example, the modified objective function would be 

 z  = x + 3x + 0s MR MRM 1 1 1 22 - -  

When the Simplex method is applied to maximize this function, the heavy negative weights 
on the artificial variables will tend to drive R1 and R2 out of the basis, and the final solu-
tion will typically involve only the decision variables xi and the slack or surplus variables.

For two reasons, the Big-M method is not considered to be a practical approach. 

 1. If the Simplex method terminates with an optimal solution (or with an indication that 
the linear program is unbounded), and at least one of the artificial variables is basic 
(positive) in the solution, then the original problem has no feasible solution. Moreover, 
in order to discover that no solution exists, we have had to solve an entire large 
(enlarged because of the additional artificial variables) linear programming problem.

 2. A more serious difficulty with this method arises from a computational stand-
point. The value of M must be chosen to be overwhelmingly large relative to 
all other problem parameters, in order to be sure that artificial variables do not 
remain in the basis of a feasible problem. However, as was pointed out in Chapter 1, 
computer arithmetic involving quantities of vastly different magnitudes leads to 
round-off error in which the smaller quantities (such as our original objective 
coefficients) are dwarfed by the artificial coefficients and are completely lost.

Thus, despite its intuitive appeal, the Big-M method is very poorly suited for computer 
implementation, and nowadays is rarely seen in commercial software.

The more practical alternative to solving linear programming problems having artificial 
variables is found in the two-phase Simplex method.
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2.6.2 The Two Phase Method

Suppose we have a linear programming problem in standard form with artificial variables 
in the initial basic solution. Before expending the computational effort to solve the whole 
enlarged problem, it would be useful to know whether a feasible solution to the original 
problem exists. That is, we would like to know whether there is a solution, within the 
enlarged feasible region, in which the artificial variables are zero.

In order to make this determination, we first use the Simplex method to solve the prob-
lem of minimizing the sum of the artificial variables. If this sum can be minimized to zero, 
then there exists a solution not involving the artificial variables, and thus the original 
problem is feasible. Furthermore, in this case, we can use the final solution obtained from 
this computation as a starting solution for the original problem, and dispense with the 
artificial variables. On the other hand, if the optimized sum of the artificial variables is 
greater than zero, then at least one of the artificial variables remains basic, and we, there-
fore, know that the original problem constraint set cannot be satisfied. The two phases of 
this method can be summarized as follows. 

Phase 1: Create a new objective function consisting of the sum of the artificial vari-
ables. Use the Simplex method to minimize this function, subject to the problem 
constraints. If this artificial objective function can be reduced to zero, then each 
of the (non-negative) artificial variables must be zero. In this case, all the original 
problem constraints are satisfied and we proceed to Phase 2. Otherwise, we know 
without further computation that the original problem is infeasible.

Phase 2: Use the basic feasible solution resulting from Phase 1 (ignoring the artificial 
variables which are no longer a part of any solution) as a starting solution for the 
original problem with the original objective function. Apply the ordinary Simplex 
method to obtain an optimal solution.

We will use the sample problem from Section 2.6.1 to illustrate the two phase method. 
In Phase 1, we seek to 

 minimize z = R  + RR 1 2 

which is equivalent to maximizing zR = −R1 − R2. (Note that we minimize this sum regard-
less of whether the original problem is a minimization or a maximization problem.) 
Therefore, the top row of the tableau represents the equation 

 z + R  + R = 0R 1 2  

With artificial variables in the constraints, the initial tableau for this phase is:

x1 x2 s1 R1 R2 Solution

zR 0 0 0 1 1 0
R1 −2 1 −1 1 0 1
R2 1 1 0 0 1 3

Perform row operations to obtain a starting basis (i.e., with zero coefficient for R1 and R2 in 
the top row), and the tableau becomes:
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x1 x2 s1 R1 R2 Solution

zR 1 −2 1 0 0 −4
R1 −2 1 −1 1 0 1
R2 1 1 0 0 1 3

We then apply two iterations of the Simplex method to obtain the following two 
tableaus:

x1 x2 s1 R1 R2 Solution

zR −3 0 −1 2 0 −2
x2 −2 1 −1 1 0 1
R2 3 0 1 −1 1 2

x1 x2 s1 R1 R2 Solution

zR 0 0 0 1 1 0
x2 0 1 −1/3 1/3 2/3 7/3
x1 1 0 1/3 −1/3 1/3 2/3

This is the optimal solution for the Phase 1 problem, and since R1 and R2 are zero 
and non-basic, this solution gives us a basic feasible starting solution for the original 
problem.

In Phase 2, artificial variables need not be considered and can be removed from the tab-
leau. The top row of the starting tableau is replaced with the coefficients for the original 
(maximization) objective function:

x1 x2 s1 Solution

z −1 −3 0 0
x2 0 1 −1/3 7/3
x1 1 0 1/3 2/3

Perform row operations to obtain an appropriate objective function row for a starting 
basis, and the Phase 2 tableau becomes:

x1 x2 s1 Solution

z 0 0 −2/3 23/3
x2 0 1 −1/3 7/3
x1 1 0 1/3 2/3

Now we apply the ordinary Simplex method, and in this case one iteration produces the 
optimal solution shown in the final tableau:

x1 x2 s1 Solution

z 2 0 0 9
x2 1 1 0 3
s1 3 0 1 2



50 Operations Research

It may be useful to look at a graphical solution of the problem we have just solved. Notice 
in Figure 2.7 that the feasible region consists only of points on the line x1 + x2 = 3, between 
the extreme points (0, 3) and (2/3, 7/3). The origin is not a feasible starting point, as was the 
case in several of our previous examples. Instead, we initially use an augmented feasible 
region (not visible in the graphical sketch) and a solution in which R1 and R2 are positive. 
During Phase 1, R1 and R2 become zero while the real variables x1 and x2 become posi-
tive. Phase 1 yielded the initial feasible solution (2/3, 7/3) which can be shown in the two 
dimensional drawing; and Phase 2 found the optimal solution at (0, 3).

2.7 Information in the Tableau

Several of the special cases introduced in Section 2.3 may reveal themselves in the Simplex 
tableau during the iteration phases of the Simplex algorithm. In particular, based on infor-
mation that appears within the tableau, we can deduce certain characteristics of the linear 
programming problem being solved. These include linear programming problems with 
multiple optimal solutions, those with unbounded solutions, and problems having a 
property known as degeneracy. We will also find information in the tableau that provides 
insights concerning the roles played by the various resources in the system being modeled 
as a linear program.
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FIGURE 2.7
Infeasible origin.
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2.7.1 Multiple Optimal Solutions

Recall from our example in Section 2.3.3 that when the line corresponding to the objec-
tive function is parallel to one of the straight lines bounding the feasible region, then the 
objective function can be optimized at all points on that edge of the feasible region. Thus, 
instead of a unique optimal solution, we have infinitely many optimal solutions from 
which to choose, thereby permitting management to select on the basis of secondary fac-
tors that do not appear in the model.

This situation can be recognized in the Simplex tableau during Step 2 of the Simplex 
algorithm. If a zero appears in the objective function row corresponding to a non-basic 
variable, then that non-basic variable can enter the basis without changing the value of 
the objective function. In other words, there are two distinct adjacent extreme points that 
yield the same value of z.

When we apply the Simplex algorithm to the problem illustrated in Figure 2.3, the initial 
solution is x1 = x2 = 0. In the first iteration, x2 enters the basis and s1 leaves, and this solution 
x1 = 0, x2 = 2 yields z = 4. Next, x1 enters the basis and s2 leaves, and we obtain the solution 
designated as point A in the figure where x1 = 4/3, x2 = 10/3, and z = 8. (Observe that s3 
is a basic variable and, therefore, constraint 3 is not binding at this point.) Now, the third 
Simplex tableau is as follows.

z x1 x2 s1 s2 s3 Solution

z 1 0 0 0 1 0 8
x2 0 0 1 1/3 1/3 0 10/3
x1 0 1 0 −2/3 1/3 0 4/3
s3 0 0 0 2/3 −1/3 1 14/3

This solution is optimal since all elements on the top row are non-negative. The zero in the 
top row corresponding to the non-basic variable s1 signals that this problem has multiple 
optimal solutions. And, in fact, if we apply another pivot operation (by bringing s1 into the 
basis and selecting s3 to leave the basis), we obtain the fourth tableau

z x1 x2 s1 s2 s3 Solution

z 1 0 0 0 1 0 8
x2 0 0 1 0 1/2 −1/2 1
x1 0 1 0 0 0 1 6
s1 0 0 0 1 −1/2 3/2 7

This solution corresponds to point B in Figure 2.3 where x1 = 6, x2 = 1, and z = 8; and where 
s1 is basic and consequently constraint 1 is not binding at this point.

2.7.2 Unbounded Solution (No Optimal Solution)

When the feasible region of a linear programming problem is unbounded, then it is also pos-
sible that the objective function value can be increased without bound. Evidence of both of 
these situations can be found in the Simplex tableau during Step 3 of the Simplex algorithm.

If in any tableau the constraint coefficients corresponding to a non-basic variable are all 
either negative or zero, then that non-basic variable can be increased arbitrarily without 
violating any constraint. Thus, the feasible region is unbounded in the direction of that 
variable.
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Furthermore, if that variable is eligible to enter the basis (i.e., if it has a negative ele-
ment in the objective function row), then we know that increasing this variable’s value will 
increase the objective function. And because this variable can be increased indefinitely, 
so can the objective function value. Thus, the Simplex algorithm terminates and we can 
recognize that the problem has an unbounded solution.

The following problem illustrates an unbounded feasible region and unbounded 
solutions: 

 

maximize z = 5x  + 6x

subject to x  + x 2

x 10

x , x 0

1

1 2

2

1 2

2

− ≤

≤

≥  

Figure 2.8 shows the feasible region. The initial tableau is given by:

z x1 x2 s1 s2 Solution

z 1 −5 −6 0 0 0
s1 0 −1 1 1 0 2
s2 0 0 1 0 1 10

The unboundedness of the feasible region is indicated by the absence of positive elements 
in the column corresponding to the non-basic variable x1. The negative coefficient in the 
top row of this column indicates that x1 is eligible to increase (from zero) and that, there-
fore, z can increase indefinitely.
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FIGURE 2.8
Unbounded solution.
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Our Simplex algorithm, as it is stated, would, in fact, choose x2 (with the most negative coef-
ficient) as the entering variable, and we would move from point A to point B in Figure 2.8, and 
then subsequently to point C. At that point, we would be faced again with the inevitable: x1 
can be feasibly increased arbitrarily, producing an arbitrarily large value of z.

As noted earlier, a linear programming formulation with an unbounded objective func-
tion value undoubtedly represents an invalid model of a real system, since we have no real 
expectation of achieving unlimited productivity or profitability. Recognizing such a situa-
tion, we must reformulate the problem with more careful attention to realistic constraints 
on the decision variables.

2.7.3 Degenerate Solutions

A solution to a linear programming problem is said to be degenerate if one or more of the 
basic variables has a value of zero. Evidence of the existence of a degenerate solution is 
found during Step 4 of the Simplex algorithm when there is a tie for the minimum ratio θ, 
that is, a tie for the leaving variable. In this case, the tie may be broken arbitrarily and one 
variable is chosen to leave the basis. However, both variables participating in the tie will, in 
fact, become zero, although one of them remains basic.

The presence of a degenerate solution indicates that the linear programming formula-
tion contains at least one redundant constraint. This situation arises in the following prob-
lem whose graphical solution is shown in Figure 2.9. 
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Degenerate solution.
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maximize z = 3x  + 2x

subject to x 3
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,, x2 ≥ 0  

Note that x1 ≤ 3 is redundant, since the constraint x1 + x2 ≤ 3 ensures that x1 ≤ 3. Similarly, 
the constraint 2x1 + x2 ≤ 6 is redundant as shown in Figure 2.9. In the initial tableau, x1 is 
chosen as the entering variable, and we discover a tie between s1 and s2 to leave the basis 
since θ1 = θ2 = 3. 

z x1 x2 s1 s2 s3 s4 Solution

1 −3 −2 0 0 0 0 0
s1 0 1 0 1 0 0 0 3
s2 0 2 1 0 1 0 0 6
s3 0 0 1 0 0 1 0 2
s4 0 1 1 0 0 0 1 3

Let us arbitrarily select s1 to leave the basis, and create the next tableau.

x1 x2 s1 s2 s3 s4 Solution

0 −2 3 0 0 0 9
x1 1 0 1 0 0 0 3
s2 0 1 −2 1 0 0 0
s3 0 1 0 0 1 0 2
s4 0 1 −1 0 0 1 0

Notice that the basic variables s2 and s4 now have a value of zero. The present solution 
corresponds to a point where three redundant constraints are binding; that is, the slack 
variables in the first, second, and fourth constraints are zero at this point.

When we now select x2 to enter the basis, we have a choice between s2 and s4 to leave. If 
we pick s2, we will discover that the new tableau has a negative cost for s2, and basic vari-
ables x2 and s4 are both zero. Since we can now choose x2 to leave, we could get right back 
to the tableau where we started. This cycling can continue indefinitely.

Note that, for a two variable problem, degeneracy can occur only when there are redun-
dant constraints. However, in three-variable problems, we could construct four or five con-
straints such that they all intersect at a common point, and none of them are redundant. 
(For example, imagine a roof with many sides that all meet at a common peak.) If the prob-
lem contains extreme points of this form, and if the Simplex algorithm happens to land on 
that corner (both rather unlikely in practice), then the algorithm could cycle indefinitely.

Problem degeneracy exposes the only theoretical weakness of the Simplex method: it 
is possible that the algorithm will cycle indefinitely and fail to converge to an optimal 
solution. Once a degenerate solution to a problem arises, it is possible that successive 
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iterations of the Simplex method will yield no improvement in the objective function. 
This phenomenon may be a temporary one, occurring for only one or a few iterations, or 
it may continue indefinitely, generating the same sequence of non-improving solutions. 
If it is temporary, then we have merely lost valuable computation time, but we will even-
tually obtain the desired optimal solution. The more serious possibility, infinite cycling 
and, therefore, failure of the algorithm, is fortunately not a serious practical problem. 
Although problems have been constructed that demonstrate this hazard, such cycling in 
actual problems is so rare that computational modifications to defend against Simplex 
cycling are not considered to be worthwhile. Therefore, although many practical prob-
lems have degenerate solutions, the Simplex algorithm typically cycles only temporar-
ily and reaches the optimal solution without significant degradation in computational 
efficiency.

2.7.4 Analyzing the Optimal Tableau: Shadow Prices

Once the Simplex method has terminated successfully, we find that the optimal tableau 
contains not only the solutions for the decision variables, but also auxiliary information 
that can be of considerable use to the analyst. For example, in the top row of the final 
tableau, the coefficient of the i-th slack variable is the amount by which the final objective 
function could be increased for each additional available unit of the resource associated 
with that slack variable. These values are called shadow prices, and represent the mar-
ginal worth (or incremental value) of making additional units of the various resources 
available.

By examining the optimal tableau at the end of Section 2.5, we find a coefficient of 4 for 
slack variable s3. This means that the final value of z* could be increased by 4 for each addi-
tional unit of the resource associated with the third constraint. Likewise, the coefficient of 
1 for slack variable s2 indicates that z* could be increased at a rate of 1 for each added unit 
of the resource associated with the second constraint.

We are not too surprised to find, in this tableau, a zero marginal worth for the first 
resource (denoted by a zero coefficient for s1 in the top row). Since s1 = 25 in the final solu-
tion, the first inequality constraint is satisfied with a slack of 25; that is, this resource is not 
being completely consumed in this solution. Therefore, we would not expect any increase 
in the objective function to result from adding any more units of a resource that is pres-
ently already under-utilized.

Decision makers and analysts are usually in a position to know whether the resource 
limitations (that appear on the right hand sides of the linear system of constraints) are truly 
fixed or whether resource allocations could be modified by acquiring additional resources. 
Management can determine the economic advisability of increasing the allotment of the 
i-th resource by examining the shadow price: the shadow price is the maximum per unit 
price that should be paid to increase the allotment of that resource by one unit, in order to 
achieve a net gain in the objective.

Having made the earlier observations about the unit worth of resources, it is important 
to point out that the increases in resource allocations must be relatively small increases. 
The economic measure of the value of increasing the availability of any given resource is 
valid only as long as such an increase does not change the optimal basic solution. When the 
right-hand sides of constraints are changed, we do in fact have a different linear program-
ming problem. Analyzing the extent to which resource capacities (or availabilities) can be 
changed without altering the optimal set of basic variables is one of the topics covered in 
the following section of this chapter.



56 Operations Research

2.8 Duality and Sensitivity Analysis

When making an economic interpretation of the objective function of a linear program-
ming problem, an alternative and useful point of view is obtained by computing the col-
lective contributions of all the resources. If we multiply the original availability of each 
resource (shown in the original tableau) by its marginal worth (taken from the final tab-
leau), and form the sum, we obtain precisely the optimal objective function value. In our 
example at the beginning of Section 2.5, we have marginal worth values of 0, 1, and 4, and 
resource availabilities of 150, 250, and 500; therefore, the optimal objective function value 
can be expressed as 

 z* ( ) ( ) ( )= = + +2250 0 150 1 250 4 500  

This apparently equivalent way of viewing the original (or primal) linear programming 
problem is a manifestation of what is called the dual problem. The study of duality pro-
vides the theoretical foundation for practical analysis of optimal solutions obtained with 
the Simplex method. This topic is especially important because the full and effective use 
of many linear programming software implementations requires a familiarity with the 
concepts of duality.

Sensitivity analysis is the study of how a solution to a problem changes when there are 
slight changes in the problem parameters, without solving the whole problem again from 
scratch. It is, therefore, an analysis of how sensitive a solution is to small perturbations 
in the problem data. Objective function coefficients, constraint coefficients, and resource 
capacities are problem data that may be difficult or costly to obtain. These values may be 
introduced into the linear programming model as rough estimates or imperfect observa-
tions, and they might be values that change over time, as costs fluctuate or resources avail-
abilities vary.

If all problem data were certain and constant over time, there would be no need for sen-
sitivity analysis. Each new problem would be based on exact data, and the solution would 
be a perfect one. In practice, such is rarely the case. Thus, the problem formulation that is 
solved initially may not be exactly the right problem, that is, the one that is valid at the time 
resources are actually procured, costs are incurred, or profits are made.

If it could be determined, through the process of sensitivity analysis, which of the prob-
lem parameters are the most critical to the optimality of the original problem solution, 
then analysts could take greatest care in supplying and refining specifically those param-
eters to which the solution is most sensitive. Sensitivity analysis tools are of great value 
to management because they can help to provide a thorough understanding of a problem 
solution, the range of problem parameters over which a solution is valid, and how the solu-
tion can be changed by making changes in costs, profits, or resource availability. Duality 
theory provides the foundation underlying these tools.

2.8.1 The Dual Problem

A linear programming problem and its dual are related in the sense that both problems are 
based on the same problem data, and an optimal solution to either one of the problems pre-
scribes the optimal solution to the other. These companion problems might even be thought 
of as two different views of the same problem, but with different economic or engineering 
interpretations, and possibly with different computational implications.
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Consider any linear programming formulation that is in the form of a maximization 
problem with constraints of the less than or equal type or equality constraints. (A con-
straint in which the inequality is a ≥ type can be multiplied by −1 to reverse the direction 
of the inequality sign, resulting possibly in a negative right-hand-side value.) We will call 
this the primal problem. If all constraints are inequalities and the decision variables are 
non-negative, the primal problem can be written as: 
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where the variables x1, …, xn are non-negative.
In general, the corresponding dual problem is constructed as follows: 

• The dual problem is a minimization problem.
• For every variable xi in the primal problem, there is a constraint in the dual problem.

If xi ≥ 0 in the primal, the constraint is a ≥ inequality in the dual.
If xi is unrestricted in sign, the i-th constraint is an equality in the dual.

• For every constraint in the primal problem, there is a variable yi in the dual.
If the constraint is ≤, then yi ≥ 0 in the dual problem.
If the constraint is an equality, then yi is unrestricted in sign in the dual.

• The right hand sides in the primal are the objective function coefficients in the dual.
• The objective function coefficients in the primal are the right hand sides in the dual.
• The coefficient matrix in the primal is transposed to form the coefficient matrix for 

the dual.

The dual problem corresponding to the earlier primal problem is a problem with m vari-
ables and n constraints and can be written as: 
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and the variables y1, …, ym are non-negative.
Clearly, the dual of the dual problem is the original primal problem, and in many con-

texts, it is not necessary to stipulate which one of the companion problems is the primal one 
and which is the dual one; each is the dual of the other.
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Example 2.8.1

Consider the primal problem: 
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The second constraint can be rewritten as −7x1 + 2x2 − 2x3 ≤ −4. The dual problem is 
then 
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Example 2.8.2

The following primal problem has constraints that include both types of inequalities 
and an equality constraint: 

 

maximize 4x 3x

subject to x x

x x

x x

x x

1

1

1

1

1

−

− ≤

− ≥

+ =

+

2

2

2

2

2

2 4 5

5 6 9

3 8 2

2 ≤≤

≥

1

0and x

and x unrestricted in sign

1

2  

The dual of this problem is formed by rewriting the second constraint as −5x1 + 6x2 ≤ −9, 
and then following the guidelines presented earlier to obtain: 

 

minimize 5y 9y +2y + y
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(Recall that the Simplex method requires that all variables be non-negative. When an 
unrestricted variable arises in a formulation, that variable can be replaced by the differ-
ence of two new non-negative variables, as suggested and illustrated in Section 2.4.1.)

There is a very apparent structural similarity between a primal and dual pair of 
problems, but how are their solutions related? In the course of solving a (primal) max-
imization problem, the Simplex method generates a series of feasible solutions with 
successively larger objective function values (cx). Solving the corresponding (dual) mini-
mization problem may be thought of as a process of generating a series of feasible solu-
tions with successively smaller objective function values (yb). Assuming that an optimal 
solution does exist, the primal problem will converge to its maximum objective function 
value from below, and the dual problem will converge to its minimum objective func-
tion value from above. The primal objective function evaluated at x never exceeds the 
dual objective function evaluated at y; and at optimality, the two problems actually 
have the same objective function value. This can be summarized in the following dual-
ity property:

Duality property: If x and y are feasible solutions to the primal and dual problems, 
respectively, then cx ≤ yb throughout the optimization process; and finally, at optimal-
ity, cx* = y*b.

It follows from this property that, if feasible objective function values are found for a 
primal and dual pair of problems, and if these values are equal to each other, then both 
of the solutions are optimal solutions.

The phenomenon of primal and dual problems sharing the same objective function 
values is not mere coincidence. In fact, the shadow prices, which appear in the top row 
of the optimal tableau of the primal problem, are precisely the optimal values of the 
dual variables. Similarly, if the dual problem were solved using the Simplex method, 
the shadow prices in that optimal tableau would be the optimal values of the primal 
variables.

In the illustrative problem from Section 2.5, the dual objective of minimizing 
150y1 + 250y2 + 500y3 is met when the dual variables (shadow prices) have the values 
y1 = 0, y2 = 1, y3 = 4. Thus, from the dual point of view, 

 z = 150(0) + 250(1) + 500(4) = 2250*     

which is equal to the primal objective value 

 z* 8x 5x = 8 (125) 5(250) 22501 2= + + =  

for optimal x values of x1 = 125 and x2 = 250.
One further characterization relating primal and dual linear programming problems 

is known as complementary slackness. Because each decision variable in a primal 
problem is associated with a constraint in the dual problem, each such variable is also 
associated with a slack or surplus variable in the dual. In any solution, if the primal 
variable is basic (with value ≥0, hence having slack), then the associated dual variable 
is non-basic (with value = 0, hence having no slack). And if the primal variable is non-
basic (with value = 0, hence no slack), then the associated dual variable is basic (with 
value = 0, hence having slack).

This can be observed even in a problem as simple as the one illustrating the Simplex 
method in Section 2.5. In the final tableau, the primal basic variables x1, s1, and x2 have 
positive values, while in the top row we see zero values for their three associated dual 
variables. The non-basic primal variables s2 and s3 have zero values, while their associ-
ated dual variables are basic and have non-zero values.
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This property is described as follows.

Complementary Slackness Property: If in an optimal solution to a linear program-
ming problem, an inequality constraint is not binding, then the dual variable cor-
responding to that constraint has a value of zero in any optimal solution to the dual 
problem.

This is merely a formalization of the intuitive notion that the shadow price of a resource 
associated with a non-binding constraint is zero. That is, there is a zero marginal worth 
for a resource that is not being fully utilized.

The properties described earlier were based on an assumption that optimal solu-
tions to both primal and dual problems exist, but, of course, not all linear program-
ming problems have optimal feasible solutions; infeasible problems and problems with 
unbounded solutions were discussed earlier in this chapter. For corresponding primal 
and dual problems, exactly one of the following mutually exclusive cases always occurs: 

1. Both primal and dual problems are feasible, and both have optimal (and equal) 
solutions.

2. Both primal and dual problems are infeasible (have no feasible solution).
3. The primal problem is feasible but unbounded, and the dual problem is infeasible.
4. The dual problem is feasible but unbounded, and the primal problem is infeasible.

Because the pertinent parameters and goals of any linear programming problem can 
be expressed in either a primal or dual form, and because solving either the primal or 
dual problem yields enough information to easily construct a solution to the other, we 
might reasonably wonder which problem, primal or dual, should we solve when using 
the Simplex method.

From the standpoint of computational efficiency, we might wish to choose to solve the 
problem with the fewer number of constraints. As is discussed further in Section 2.10.3, 
the computation time required for the Simplex method is strongly dependent on the 
number of constraints, and almost independent of the number of variables. Therefore, 
in the absence of other identifiable structural characteristics of a problem that might 
make it amenable to the use of specialized solution methods, we could expect to be able 
to solve most quickly the problem having the smaller number of constraints. This choice 
becomes more compelling when the linear programming problem has thousands of 
constraints, and is of much less importance for more moderate-sized problems of a few 
hundred or less constraints.

An understanding of duality properties and the relation between primal and dual 
problems gives an analyst some flexibility in formulating, solving, and interpreting a 
solution to a linear programming problem. Moreover, duality provides the mathemati-
cal basis for analyzing an optimal solution’s sensitivity to small changes in problem 
data. We now turn our attention to the types of analysis that can be made once an opti-
mal solution to a linear programming problem has been obtained.

2.8.2 Postoptimality and Sensitivity Analysis

After an optimal solution to a linear programming problem has been found, the analyst’s 
next step is to review the problem parameters and the solution, in preparation for put-
ting the solution into practice. This process of postoptimality analysis includes confirm-
ing or updating problem parameters (costs and availability of activities and resources), 
and if there are any changes to the original problem parameters, assessing the effect of 
these changes on the optimality of the solution. If the changes are small, it may not be 
necessary to re-optimize the new problem; instead, some small calculation may suffice to 
identify simple consequences in the previous optimal scenario. Sensitivity analysis is the 
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study of the types, ranges, and magnitude of changes in problem parameters whose effects 
can be determined relatively easily, without the need for solving a new linear program-
ming problem.

In a linear programming model that is relatively insensitive to changes in problem 
parameters, the original optimal solution may not change even when several parameters 
vary widely. Other models may be highly sensitive, and the optimality of the original solu-
tion may be seriously undermined by the smallest change in even one parameter. When 
working with less sensitive models, the expense and effort of acquiring extremely accurate 
data (through extensive sampling, costly tracking, careful observations, etc.) may not be 
justified. On the other hand, a successful analyst knows the necessity of making a special 
effort to obtain the most accurate possible problem data when working with very sensitive 
models.

Sensitivity analysis addresses several different kinds of changes to a linear program-
ming formulation, including: 

• Changes in objective function coefficients
• Increases or decreases in the right hand side of a constraint
• Adding a new variable
• Adding a constraint
• Changes in constraint coefficients

Objective function coefficient range analysis identifies the maximum allowable increase 
and decrease that can occur for each coefficient without changing the current solution. 
Under the assumption that all other parameters remain unchanged, a change within the 
allowable range ensures that the current solution will remain optimal and that the val-
ues of the decision variables remain unchanged. The objective function value would, of 
course, change as the coefficient varies over its range.

Example 2.8.3

Consider a simple two variable example: 
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Using the illustration in Figure 2.10, we can observe that the optimal solution occurs 
at the point (2, 2) with a function value of z = 14. If we change the cost coefficients 
slightly, the optimal solution will stay at the current point. However, if we add 
more than 1 to the coefficient of x2, then the current solution will no longer be opti-
mal. Similarly, if we subtract more than 1 from c2, the solution will change. (See 
Exercise 2.45.) 

Right-hand-side ranging is performed to determine how much the right-hand side 
of a constraint can vary (increase or decrease) without causing the original optimal 
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solution to become infeasible. Changing a constraint alters the feasible region and may 
affect the shape of the feasible region in the vicinity of the optimal point. (If the original 
optimal point is no longer a feasible extreme point, a different optimal solution would 
have to be found.) If a resource is not being completely used (i.e., there is positive slack) 
in the optimal solution, then clearly the right hand side of the constraint corresponding 
to that resource can be increased indefinitely. In general, however, possible increases 
and decreases in right hand sides are measured by analyzing the optimal solution to 
determine how much slack can be created in the constraint without changing the opti-
mal solution.

In the problem depicted in Figure 2.10, consider what happens when we add 1 to the 
right hand side of the second constraint, so that the constraint becomes 2x1 + x2 ≤ 7. 
Now, the active constraints at the optimal solution have changed, but the same set of 
constraints will be active. (The same variables are basic.) As discussed earlier, the objec-
tive function will increase by precisely the value of the dual variable corresponding to 
that constraint. In this example, the objective function will increase by 1.

It is easy to see in the illustration that the right hand side can be increased by 2 with-
out changing the variables in the basis. Beyond that point, the constraint becomes inac-
tive (outside the feasible region). Similarly, the right hand side of constraint 2 can be 
decreased by 0.5 without changing the basis. At that point, the optimal solution would 
occur at the intersection of the other two constraints, at (1.5, 2.5), and decreasing beyond 
that would change the basic variables.

Adding a new variable to a model would require introducing the resource require-
ments of that new activity or product into a current optimal solution. By analyzing 
information already in the optimal tableau, it can be determined whether the new vari-
able would be a basic variable in the optimal solution and what would be the value of its 
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FIGURE 2.10
Illustration of sensitivity analysis.
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coefficient in the objective function. The shadow prices in the optimal solution provide 
information about the marginal worth of resources, and knowing the resource needs 
corresponding to the new variable, the value of bringing in the new variable can be 
computed.

Adding a constraint or changing constraint coefficients amounts to rather compli-
cated changes to the original problem. These types of changes to the linear programming 
model fall logically into the postoptimality analysis framework, but technically these are 
not changes that can be analyzed or effected by merely using information in the optimal 
tableau. Such changes are generally best dealt with by solving the modified problem anew.

Almost all commercial software for linear programming, such as the products men-
tioned in Section 2.10.3, include postoptimality analysis as part of the standard out-
put. Most packages present right-hand-side ranging and objective coefficient ranging 
information; some also include adding a new variable; rarely are constraint changes 
included as part of ordinary postoptimality analysis.

The information and insights obtained through sensitivity analysis are especially 
valuable to management because they provide an indication of the degree of flexibility 
that is inherent in an operating environment. Such knowledge is helpful in planning, 
making decisions, and formulating policies for handling fluctuations and imprecision 
in prices, activities, and resource availabilities used in linear programming models.

2.9 Revised Simplex and Computational Efficiency

The amount of computation required to solve linear programming problems with the 
Simplex method is indeed arduous; in fact, all but the most trivial problems must be solved 
with the aid of a computer. Several decades of experience with computer implementations of 
the Simplex method have led researchers and practitioners to develop various improvements 
and enhancements to the original Simplex method. The result is a refined version of the stan-
dard Simplex, called the Revised Simplex method. This method makes much more efficient 
use of a computer’s most valuable resources: CPU computation time and memory space.

Recall that the standard Simplex method performs calculations, at each iteration, to 
update the entire tableau. Actually, the only data needed at each iteration are the objective 
function row (to determine the entering variable), the pivot column corresponding to the 
non-basic entering variable, and the right-hand-side values of the current basic variables (to 
determine the variable to leave the current basis). Thus, the standard Simplex computes and 
stores many values that are not needed during the present iteration and that may never be 
needed. The Revised Simplex method performs the same iterations as the standard Simplex, 
but the details of its computations have specific advantages for computer implementations.

The standard Simplex method generates each new tableau iteratively, based on the previ-
ous tableau. However, the Revised Simplex method takes advantage of the fact that all of 
the information in any tableau can in fact be obtained directly from the original problem 
equations, if the inverse of the matrix of basic columns for that tableau is known. And that 
inverse can be obtained directly from the original equations if the current basic variables 
for that tableau are known. Note that the Revised Simplex performs the usual selection of 
an entering and leaving variable at each iteration, but it carries out only those computa-
tions necessary to register that selection and to record the current solution configuration.

Readers acquainted with numerical computation will be aware that matrix inversion 
is itself a nontrivial task, in terms of both computation time and numerical accuracy. 
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Therefore, instead of recomputing a basis inverse at each iteration, a product form of 
inverse can be used that allows a new inverse to be computed simply from the previous 
one. This procedure calls for premultiplying the previous inverse by a matrix that is an 
identity matrix except in one column. (Only that one column and an indicator of its posi-
tion in the matrix need be stored explicitly.) Some of the more advanced references listed 
at the end of this chapter provide a more complete description of product form inverse 
computation, and of how re-inversion can help to maintain accuracy and save storage 
space.

Although the Revised Simplex method requires some additional bookkeeping that 
would not be needed if the full tableau were maintained, the method typically requires 
less computation, uses less storage space, and obtains greater numerical accuracy than the 
standard Simplex method.

Because only the essential data are computed, Revised Simplex has an advantage, with 
respect to computation time, over the standard Simplex. This advantage is particularly 
pronounced when the number of constraints is much less than the number of variables 
because the size of all the essential data (basic columns and right-hand-side constants) is 
determined by the number of constraints. (Refer to [Simmons 1972] for a detailed operation-
count for the Revised and standard Simplex methods.)

Revised Simplex storage requirements are minimal because it is necessary to store only 
the basic variables, the basis inverse or its product form, and the constants. The origi-
nal constraint matrix and objective coefficients can be stored efficiently by the computer’s 
memory manager on conveniently placed storage devices, along with the premultipliers 
for the product form inverse, if desired.

Perhaps the most attractive advantage offered by the Revised Simplex method is increased 
numerical accuracy. As discussed in Chapter 1, an algorithm is called numerically unstable 
if small errors (through round-off in intermediate computations, for example) can lead to 
very large errors in the final solution. Both the standard and Revised Simplex methods 
are numerically unstable, but Revised Simplex avoids some of the potential for instability. 
There is less accumulated round-off error because calculations are performed on a column 
only when it is to enter the basis, not at every iteration. Furthermore, computations are 
applied to original problem data, not to data that have already undergone (possibly unnec-
essary) computation.

Typical large linear programming problems have constraint matrices that are very sparse, 
with a large proportion (often in the range of 95%) of zero values. Revised Simplex performs 
fewer multiplications involving non-zero elements, since Revised Simplex operates on original 
(sparse) data, whereas standard Simplex operates repeatedly on the entire tableau and quickly 
creates a dense matrix out of a sparse one. Thus, by taking advantage of sparsity, the Revised 
Simplex can reduce the amount of computation and therefore maintain numerical accuracy.

The advantages described earlier have been observed so consistently that almost all 
commercial software for linear programming is based on the Revised Simplex method 
(with product form inverse) for both phases of the two phase method.

2.10 Software for Linear Programming

Now that we are familiar with linear programming models and a fundamental method 
for solving these problems, we will turn our attention to some practical considerations 
necessary for solving large linear programming problems on a computer. Because there 



65Linear Programming

is quite a selection of commercially available software for linear programming, anyone 
in a position to choose a software system for personal use (and certainly anyone con-
templating developing their own software) should be aware of the various features to be 
mentioned in this section. In particular, we will briefly describe some important exten-
sions often found appended to the usual Simplex techniques, and some actual commer-
cial systems that are available. We also include a discussion of interior methods that 
now play an increasingly important role in the practical solution of linear programming 
problems.

2.10.1 Extensions to General Simplex Methods

The majority of commercial software for linear programming is based on the Revised 
Simplex method, and most implementations employ the product form inverse. For effi-
ciency and accuracy on a computer, a variety of additional features may also be incorpo-
rated. We merely mention a few of them here, and the interested reader can obtain a more 
thorough understanding using the references cited at the end of the chapter.

The method used for computing and maintaining tableau information has a strong bear-
ing on the size of problem that can be successfully attempted. More complicated imple-
mentations require greater skill and effort but operate with greater speed so that larger 
problems can be solved.

The explicit inverse method is straightforward and can be efficient and useful for prob-
lems involving a few hundred rows. The product form inverse allows for problems in 
the range of 1000 or so rows. For problems with tens of thousands of rows, LU decom-
position techniques have been developed, for use both in the iteration phases and dur-
ing re-inversion of the basis. In simple terms, any basis matrix B can be rewritten as the 
product of two triangular matrices, L and U where L is lower triangular (with zeros above 
the main diagonal) and U is upper triangular (with zeros below the diagonal). This format 
enables very efficient inverse computation and solution of the system.

In a linear program with many variables, it is very time consuming to examine every 
non-basic variable at each iteration to determine the one to enter the basis. Many linear 
programming implementations do not go to the effort to select the non-basic variable cor-
responding to the most negative top row coefficient, but rather one corresponding to any 
negative coefficient (i.e., any variable that will improve the objective function). Although 
this strategy may increase the total number of iterations, it is actually a time-saving and 
very rational approach because the negative top row coefficients only specify a per-unit 
improvement in z, and not an absolute overall improvement. Thus any good entering vari-
able can be quickly selected for the next basis.

In many linear programming models, there are upper bound constraints (xj ≤ uj) for 
some or all of the variables. Constraints such as these, as well as generalized upper bounds 
(∑xj ≤ uj), can be dealt with using a method, introduced by Dantzig and Van Slyke (1967), 
that handles these constraints implicitly without enlarging the basis. (Recall that for each 
explicit constraint, there must be a basic variable; therefore, any additional constraints 
generally contribute to the amount of work and storage required by the Revised Simplex 
method.) Handling upper bound constraints implicitly does take time, but practice has 
shown that this is an advantageous trade-off that serves to keep the problem size from 
increasing.

Very large linear programming models often result in a constraint matrix A in which the 
non-zero elements appear in patterns or blocks. When a problem exhibits such a high degree 
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of structure, it may be possible to apply a decomposition technique (Dantzig and Wolfe 
1960). The original model is partitioned, and the subproblems are then solved individually.

Not only do non-zero elements of A often appear in patterns, but more generally, we find 
the matrix A to be very sparse. A sparse matrix is one with a very large proportion of zero 
elements. A rule of thumb is that large linear programming models typically have only 
about 10% non-zero elements; some practitioners claim that 1%–5% is a more realistic range. 
This sparsity is not a surprising phenomenon when we consider that in any large orga-
nization, certain sets of products, people, or processes tend to operate in groups, and are 
therefore subject to local constraints. When such a problem is formulated, a sparse matrix 
results because each variable is involved in a relatively small number of the constraints.

In order to make better use of available memory, sparse matrices should be stored in 
some type of a compressed format, using methods such as those described by (Murtagh 
1981). For example, each non-zero element could be stored along with an encoded form 
of its row and column indices. The term super sparse has been used to describe matrices 
that are not only sparse but in which many of the non-zero elements are the same. (e.g., in 
many applications, the vast majority of non-zero coefficients have a value of one.) In that 
case, each distinct value need be stored only once, and elements are found via a table of 
addresses into a table of distinct element values. Sparse matrix handling techniques have 
been shown to be worthwhile even if the coefficient matrix A is stored on a peripheral 
memory device. Because transfer time is slow relative to computation time, it is prudent to 
maintain such large data structures in as compact a form as possible.

Round-off error is a natural consequence of using finite precision computing devices. As 
was pointed out in Chapter 1, this inability to store computed results exactly is particularly 
pronounced when we perform arithmetic operations on numeric values of very different 
magnitudes, where we are often unable to record that portion of a result contributed by 
the smaller value. In an attempt to remove the source of some of these numerical inaccu-
racies, most commercial linear programming systems apply some kind of scaling before 
beginning the Simplex method. Rows and columns of the matrix A may be multiplied by 
constants in order to make the largest element of each row and column the same (Murtagh 
1981). To improve the condition of a matrix (and, therefore, obtain greater accuracy of its 
inverse), all the elements of A should be kept within a reasonable range, say within a factor 
of 106 or 108 of each other (Orchard-Hays 1968). More elaborate and specific mechanisms 
for scaling have been devised. In general, a healthy awareness of the limitations of com-
puter arithmetic and numerical computation is essential in understanding and interpret-
ing computed results.

In a problem of any practical size, the elimination of artificial variables from an initial 
solution can take a considerable amount of computation time. The term crashing refers 
generally to any kind of technique that gives the Simplex method a head start and elimi-
nates some of the early iterations. Crashing sometimes consists of choosing a set of (non-
artificial) non-basic variables to enter the basis and replace the artificial variables, even 
at the expense of temporarily degrading the objective function or making the solution 
infeasible (Cooper and Steinberg 1974). An even better way to give a boost to the Simplex 
method is to obtain, from the user or analyst, problem specific information about which 
variables are likely to be basic variables in a final solution. Many commercial systems 
(particularly those for larger powerful computers) provide a means for introducing such 
information along with other problem data. It may also be possible to restart Simplex itera-
tions using solutions from previous (incomplete) attempts at optimization.

Many commercial systems contain algorithms for sensitivity analysis (also called 
ranging procedures or postoptimality analysis). These techniques are applied after the 



67Linear Programming

Simplex method has already produced an optimal solution. Sensitivity analysis allows the 
user to determine the effect that changes in various problem parameters would have on 
the optimal solution. Changes in the objective (cost/profit) coefficients and in the resource 
levels (right hand sides of constraints) are commonly dealt with; some systems consider 
the addition of decision variables to the original model, but most systems do not handle 
changes in the constraint coefficients or the addition of new constraints.

The relationship between sensitivity analysis and the dual to a linear programming 
model was described in Section 2.8. It is not uncommon for commercial software to include 
subroutines embodying a method known as the dual Simplex method. During sensitivity 
analysis, if problem parameters are changed, the current (optimal) solution may become 
infeasible. However, the problem is then dual feasible, and can be reoptimized using the 
dual Simplex algorithm.

2.10.2 Interior Methods

The complexity of linear programming problems was for many years one of the most 
important open questions in theoretical computer science. Efforts were made to prove 
that Dantzig’s Simplex method would always stop sooner than n

m( )  iterations, but instead, 
problems were devised which drive the Simplex method through the combinatorial explo-
sion of basic solutions. On the other hand, the linear programming problem did not seem 
to be NP-hard either.

The question was first answered in 1979 when the Russian mathematician Leonid B. 
Khachiyan published an algorithm for solving linear programming problems in polyno-
mial time. Initial confusion over the importance of Khachiyan’s discovery arose for two 
reasons. First, his results appeared in a very short article in a Russian journal and went 
unnoticed for months because of its obscurity as well as the fact that the report was written 
in the Russian language. After some time, Eugene Lawler at the University of California 
at Berkeley brought the article to the attention of the computer science community. The 
explanation that Khachiyan himself presented was so abbreviated that mathematicians 
had little inkling of its content. Finally, through Lawler’s efforts, Khachiyan’s work was 
expanded upon (and the details of the proof reconstructed) by Gacs and Lovasz (1981), 
who not only filled in the gaps in the proof but improved on the efficiency of the algo-
rithm. Only then was the new idea available to the general mathematics community for 
consideration and discussion. Almost nothing was known about Khachiyan himself, and 
it was generally assumed, even by Gacs and Lovasz, that he had never published any pre-
vious works. However, as it turns out, (Aspvall and Stone 1980) cite four publications by 
Khachiyan prior to his famous one in 1979.

The second misunderstanding arose because Khachiyan’s algorithm was designed for 
linear programming problems in which c, A, and b are integers. Careless reporters publi-
cized incorrectly that Khachiyan had developed a polynomial-time algorithm for integer 
programming problems (such as the traveling salesman problem). Because this part of the 
story was untrue, there was skepticism concerning just what Khachiyan really had done. 
Major newspapers around the world contributed to the notoriety (but sadly not to the 
clarification) of this remarkable discovery.

Because linear programming problems had been suspected of having borderline 
complexity—neither being NP-hard nor having a polynomial algorithm—Khachiyan’s 
demonstration of a polynomial-time algorithm was somewhat surprising and of immense 
importance. Even George Dantzig, who developed the (worst-case exponential-time) 
Simplex algorithm, graciously offered the comment that, “A lot of people, including myself, 
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spent a lot of time looking for a polynomial-time algorithm for linear programming. I feel 
stupid that I didn’t see it” (Kolata 1979).

Khachiyan’s method operates by defining a sequence of ellipsoids (ellipses in a multi-
dimensional space), each smaller than the previous ellipsoid, and each containing the fea-
sible region. The method generates a sequence of points x0, x1, x2, …, which form the centers 
of the ellipsoids. At each iteration, if the center xk of the ellipsoid is infeasible, a hyperplane 
parallel to a violated constraint and passing through xk is used to cut the ellipsoid in half. 
One half is completely infeasible, but the other half contains the feasible region (if it exists), 
so a smaller ellipsoid is constructed that surrounds this half. Eventually, some xk will lie 
in the feasible region.

From a practical standpoint, Khachiyan’s ellipsoid method lacked the many years of 
fine-tuning that had been directed toward improving the efficiency of the Simplex method. 
Therefore, although it was a polynomial-time algorithm, in practice the Simplex method 
was the preferred method because typically it performed quite well, and software imple-
mentations were readily available. It should be noted, however, that whereas the computa-
tion time for the Simplex method is most strongly dependent on the number of constraints 
m, Khachiyan’s method is relatively insensitive to m and more strongly dependent on the 
number of decision variables n. Thus, it was supposed at the time that Khachiyan’s ellip-
soid method might eventually be superior, in practice, to the Simplex method for prob-
lems with numerous constraints. In any case, just five years later in 1984, yet another new 
method appeared.

Narendra Karmarkar, a young mathematician at AT&T Bell Laboratories, announced 
an algorithm for solving linear programming problems that was even more efficient than 
Khachiyan’s method. Karmarkar’s method is called an interior point method since it oper-
ates from within the polyhedron of feasible points of the linear programming problem. The 
algorithm uses a series of projective transformations in which the polyhedron is first made 
smoother (normalized), then an arbitrary point is selected which is re-mapped to the center, 
and a sphere is inscribed in the polyhedron. Then a new point is selected, near the edge 
of the sphere and in the direction of the optimal solution. The space is then transformed 
or warped again so that this new point is in the center. The process is repeated until the 
selected point is the optimal solution to the linear programming problem. Karmarkar’s 
method of projective transformations demonstrates a polynomial-time complexity bound 
for linear programming that was better than any previously known bound.

Karmarkar’s original announcement claimed that his method was many times faster 
than the Simplex method. But since AT&T Bell Laboratories’ proprietary interests pre-
cluded disclosure of the details of its implementation, it was not at first possible to test 
Karmarkar’s claims. In fact, for several years, the scientific community remained some-
what annoyed because no one outside Bell Laboratories was in a position to duplicate 
Karmarkar’s computational experiments—and hence the traditional scientific peer review 
process could not take place.

Whereas Karmarkar had claimed computation times 50 times faster than Simplex based 
codes, outside researchers were implementing Karmarkar’s method and observing com-
putation times 50 times worse. Eventually, however, over the next 10 years, it became evi-
dent that by using special data structures, efficient methods for handling sparse matrices, 
and clever Cholesky factorization techniques, the performance of Karmarkar’s method 
could become quite competitive with Simplex implementations.

An important side effect of the controversy over the validity of Karmarkar’s claims is 
that it sparked a great deal of interest in examining and refining Simplex implementations. 
Consequently, there are now many very efficient implementations of both approaches. 
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An overview (Lustig et al. 1994) indicated that small problems, in which the sum of the num-
ber of decision variables plus the number of constraints is less than 2000, can generally be 
solved faster with the Simplex method. For medium sized problems, in which that sum is less 
than 10,000, Simplex and interior methods compete evenly. And there are several extremely 
large linear programming problems that have now been solved by interior point methods 
which have never been solved by any Simplex code. An increasing number of commercial 
software products contain both interior point methods and Simplex methods that can be 
used together or separately in solving large or difficult problems. Each of these approaches 
has its advantages, and hybrid software that combines these complementary methods con-
stitutes a powerful computational tool for solving linear programming problems.

As the methods suggested originally by Karmarkar became more widely understood, 
numerous researchers made their own various contributions to the practical implemen-
tation of interior point algorithms. A very thorough summary of theoretical and imple-
mentational developments, as well as computational experimentation, may be found in 
a feature article by (Lustig et al. 1994). Bixby (1994) presents an enlightening description 
of commercial interior point methods, options, and performance on benchmark problem 
instances. Saigal (1995) is a comprehensive reference that includes a large section on inte-
rior point methods. Mitra et al. (1988) report experimental studies with hybrid interior/
Simplex methods. Thus, the theoretical merits of Karmarkar’s new approach, which had 
never been doubted, have finally been balanced by considerable practical computational 
experience. As an illustration of this, recall that interior point methods must remain in the 
interior of the feasible region. Yet computational experience shows that choosing a step 
length that gets very close to (and nearly outside of) the boundary of the region is actually 
most efficient. So-called barrier parameters are used to control the interior search in the 
feasible region.

The interior and barrier methods were inspired by (and incorporate) many of the more 
general methods of nonlinear programming. It should be noted that interior point meth-
ods did not originate with Karmarkar; in fact, the approach had been used since the 1950s 
for nonlinear programming problems. However, Karmarkar can be credited with demon-
strating that interior point methods could also be practical for solving linear program-
ming problems. Therefore, a student who wishes to fully understand these methods might 
well begin by reading the introductory notions presented in Chapter 5 on Nonlinear 
Optimization, and then be prepared to embark on a serious study of the mathematics and 
numerical analysis underlying general optimization procedures.

2.10.3 Software for Solving Linear Programming

The Simplex method is theoretically not an efficient algorithm because its worst case 
performance is exponential in the size of the problem being solved. However, empirical 
evidence, observed over many years and many practical problem instances, shows the 
Simplex method to be consistently very efficient in practice.

The computational effort required for solving a linear program with the Simplex method 
is strongly dependent on the number of constraints m, and almost independent of the num-
ber of variables n. In typical problems, we find that the number of constraints is much less 
than the number of variables, and in just such cases, the Revised Simplex has great computa-
tional advantage over the standard Simplex. In practical experience, the number of Simplex 
iterations required, on average, to solve a problem with m constraints, is 2m. A practical, 
although not strict, upper bound on the number of iterations is 2(m + n) (Ravindran et al. 
1987). Total computation time has been observed to increase roughly in the order of m3. 
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Thus, a 1000-constraint problem may require a million times as much computation time 
as a 10-constraint problem. In practice, we can generally expect to obtain solutions to lin-
ear programming problems very efficiently, despite the lack of any attractive performance 
guarantees.

To give some perspective to the notion of problem size (and to dispel any mispercep-
tions that may have been created by the very small illustrative examples used earlier in 
this chapter), we should indicate just what is considered a large linear programming prob-
lem. Problem size is usually expressed in terms of the number of constraints, the number 
of decision variables (which may or may not include the slack and surplus variables), and 
perhaps the number of non-zero coefficients in the matrix. In the early 1950s, when the first 
linear programming software was being developed, an inversion of a matrix of order 100 
was considered state of the art in numerical computation. Nowadays, a linear program-
ming problem with thousands of constraints is routine, and problems with tens to hun-
dreds of thousands of constraints are computationally manageable. Advances in hardware 
technology have delivered dramatically increased processing speeds, and corresponding 
hardware and software developments in storage capacities and memory management 
techniques have facilitated computations on the data representing very large problems.

Software for linear programming has been under development for many decades, first 
using Simplex and related techniques and now including interior point implementations, 
decomposition, and barrier methods, among other advances, all having evolved together 
into standard forms. One might think that there is little room, or need, for any significant 
changes in LP solver technology. But with steady advances in processor speed and storage 
capabilities, computational mathematics, algorithm engineering, potentials for parallel 
and distributed computing, and powerful and convenient modeling systems that encour-
age analysts to attack ever larger and more challenging problems, we are seeing even more 
remarkable developments in software.

Software vendors typically offer a variety of versions of their packages. The options 
may be based on the choice of modeling language and the input/output interfaces, the 
hardware platform and the underlying operating system. Some of these options and char-
acteristics are presented clearly and succinctly in a very useful series of survey articles 
by (Sharda 1995, 1992) and (Fourer 2015, 2017) that describe many of the most popular 
software products now available. We mention a few of them here to provide a glimpse of 
what is currently in use by practitioners who need to solve linear programming problems.

Many advanced modeling languages and systems, such as those mentioned in Chapter 1, 
provide interfaces with linear programming solvers. For example, AMPL, GAMS, and 
MPL facilitate linear optimization with advanced features for large-scale problems and 
parallel simplex methods by offering access to CPLEX, MINOS, and OSL.

IBM ILOG CPLEX Optimizer (commonly referred to as CPLEX) is designed to solve 
large, difficult linear programming (and other) problems which some other LP solvers 
cannot solve efficiently. It has been developed to be fast, robust, and reliable, even for 
poorly scaled or numerically difficult problems. This software uses a modified primal 
and dual Simplex algorithm, along with interior point methods. CPLEX is currently used 
to solve some of the largest problems in the world, some with millions of variables, con-
straints, and non-zeros. Options include a preprocessor for problem reduction, as well as 
parallel implementations that have demonstrated record-breaking performance. CPLEX is 
portable across Windows PCs, Unix/Linux, and Mac OS platforms.

MINOS offers numerically stable implementations of primal Simplex, using sparse LU 
factorization techniques. This system originated with (Murtagh and Saunders 1987) with 
versions for PCs, Windows, Unix, and mainframe systems.
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LINDO (Linear INteractive and Discrete Optimizer), originally developed by Linus 
Schrage (1991), is one of the oldest and now among the most popular commercial systems 
for solving linear programming problems. LINDO API and the LINGO modeling system 
offer powerful solvers for linear programs, based on methods including primal and dual 
simplex for speed and robust computations.

SAS provides an integrated package, with capabilities for solving a wide variety of 
Operations Research problems. SAS/OR subroutines for solving linear programming 
problems use two phase Revised Simplex, primal and dual simplex, and interior point 
methods, and employ decomposition algorithms and efficient sparse-matrix techniques.

Gurobi Optimization solves linear programming problems through the use of advanced 
algorithms taking advantage of various modern powerful hardware architectures.

IMSL has an established reputation in the field of numerical problem-solving software, 
known for accuracy and dependability. IMSL contains literally thousands of mathemati-
cal and statistical library routines including linear programming routines based on the 
Revised Simplex method. Routines are implemented on a wide variety of platforms.

This selection of commercial software products is by no means exhaustive; we have 
merely mentioned several representative packages that are in popular use. With new 
product enhancements constantly under development, our readers should have no trouble 
finding many additional sources of software for solving linear programming problems.

2.11 Illustrative Applications

2.11.1 Forest Pest Control Program (Rumpf et al. 1985)

The Maine Forest Service operates a program of aerial pesticide spraying to mitigate the 
destruction of spruce-fir forests by the spruce budworm. Yearly spraying of the 5  million 
acre infestation takes place in early summer during a specific stage of insect develop-
ment, and must be done in dry weather under moderate wind conditions. Spraying is 
done by aircraft teams consisting of a spray aircraft, a guide plane with a pilot and 
navigator, and a monitor plane with a pilot and observer. The entire program includes 
analysis of insect damage and danger assessment of treatment requirements, and cost 
of chemicals, but one third of the total cost of the program is for aircraft and crews. The 
Forest Service has therefore wisely investigated the use of quantitative methods to maxi-
mize the efficiency of aircraft assignments and to reduce aircraft needs.

The aircraft operate out of eight airfields, and preliminary models were developed to 
partition the infested area into over 300 regions (spray blocks) about each airfield, and to 
then assign spray blocks to airfields and aircraft to airfields.

This initially seemed like a natural problem to be formulated as a network problem or 
integer programming model (see Chapters 3 and 4); but some of the realistic elements of this 
problem could not be incorporated into the network models, and the integer programming 
formulation turned out to be prohibitively large. Finally, a linear programming formulation 
was developed that models the problem realistically and that can be solved quite efficiently.

The decision variables are the times allocated to each aircraft team flying out of each 
airfield to spray each block. The objective function includes only those variables associated 
with allowable combinations of blocks, aircraft, and airfields; that is, blocks within operat-
ing range of the airfield, aircraft capable of spraying the type of pesticide prescribed for 
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a certain block, and the specified type of aircraft team (planes and crew) stationed at the 
given airfield. The aim is to minimize total spraying cost.

Constraints are imposed to guarantee sufficient time to completely spray each block 
(and this depends on the geometrical shape of the block, the speed of the aircraft, the 
pesticide capacity of the plane, and the availability of chemicals at the airfield). A second 
category of constraints accounts for the time windows during which weather conditions 
and budworm development are appropriate for effective aerial spray.

The use of this model has saved time and reduced the cost of the aerial spraying program. 
It has also provided a framework from which to analyze major modifications to the program, 
such as loss of an airfield or the availability of a new long-range aircraft, and, in response to 
environmental concerns, to re-evaluate the actual need for spraying certain areas.

2.11.2 Aircraft and Munitions Procurement (Might 1987)

The US Air Force uses a linear programming model to decide annually how much of its 
procurement budget should be spent on various different aircraft (such as the F-16, A-10, 
F-111, and F-15E) and on various conventional munitions. It has been argued that quan-
titative methods are inapplicable for strategic decisions that are highly unstructured. 
However, senior level decision makers are rotated frequently and often lack long experi-
ence and judgment on which to base procurement decisions. For this reason, quantitative 
analytical decision support has proved to be of great benefit.

The decision involves analyzing the cost-effectiveness of each aircraft carrying each 
of several possible munitions. The difficulty arises because the attrition of the aircraft is 
dependent on the munitions being delivered, and an aircraft may be vulnerable to differ-
ent types of attack, depending on the weapon it is carrying. Likewise, an aircraft must fly 
at different altitudes with different munitions and thus anti-aircraft weapons vary in effec-
tiveness. And when the loss rate varies only a few percent, there is considerable variation 
in the number of attacks an aircraft can make during a conflict; thus, the cost-effectiveness 
of an aircraft-munitions combination is difficult to measure subjectively.

The data used by the linear program include: 

• The effectiveness of each aircraft munitions combination against each target type 
in each of six different weather conditions

• The attrition (probability of loss) of each aircraft for each aforementioned condition
• The number of munitions delivered on each sortie for each condition
• The number of sorties per day for each aircraft munitions combination
• Current inventory of aircraft and munitions
• Number and value of each type of target
• Cost of each new aircraft and munitions type

Thus, the decision variables are the total number of sorties flown by each aircraft muni-
tions combination against each target type in each of six types of weather. The objective is 
the sum of these variables, each multiplied by the probability of a successful sortie times 
the value of the target type.

Five categories of constraints are defined for aircraft, munitions, targets, weather, and 
budget. The current implementation has pre- and post-processors for data formatting, 
and can be run with different databases. Output includes listings, tables, and graphical 
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displays indicating, for example, trade-offs of funds expended on aircraft versus muni-
tions, target value destroyed versus expenditure on individual munitions or a mixture of 
munitions. This linear programming approach to procurement has received enthusiastic 
acceptance within the military procurement community.

2.11.3  Grape Processing: Materials Planning and 
Production (Schuster and Allen 1998)

Welch’s grape processing company has successfully employed linear programming 
models for optimizing its management of raw materials in its production and distribu-
tion of grape juice products. Welch’s, Inc. is owned by a cooperative, the National Grape 
Cooperative Association, involving 1400 growers of Concord and Niagara grapes in the 
northern United States. Membership in the cooperative is attractive to grape growers 
because Welch’s offers a reliable and consistent market for grapes, despite fluctuations in 
agricultural productivity.

Welch’s plants comprise a vertically integrated industry, handling the acquisition and 
pressing of raw grapes, the storage of pasteurized grape juice and concentrates, production 
of jams, jellies, and juice products, and the warehousing and distribution of finished prod-
ucts. The company wishes to maintain consistent taste in its products, although weather 
and geography account for great variations in grape characteristics (sweetness, color, etc.) 
from year to year.

Welch’s had a comprehensive materials requirement planning system to estimate all the 
resources needs, from juicing raw grapes to the completion of manufactured products. 
This, along with a minicomputer based cost accounting system have proved useful, but 
do not provide optimal cost solutions for the very important juice blending operation; 
and each run of the system takes so much computational time that interactive real-time 
use of the system is impractical. Furthermore, whereas most industries try to sched-
ule capacities first and then project their materials requirements, the existing system at 
Welch’s did not incorporate any consideration of capacities such as juice concentrations 
or transportation between plants. Without use of operational constraints such as these, 
it was not possible to choose effectively from among a large set of feasible product reci-
pes and to efficiently schedule inter-plant transfers. Optimal movement of raw materials 
among plants and optimal blending of raw materials into products was not supported by 
any formal system, and was dealt with by trial-and-error and with input from the simple 
cost-accounting system.

An initial attempt at modeling this problem resulted in a linear programming formulation 
with 8000 decision variables. Preliminary testing of this juice logistics model indicated the 
workability of the formulation. But management, lacking understanding of the model and 
fearing major software management problems, did not fully support the use of the model.

In response to this, analysts dealt with the software maintenance difficulty by choosing 
economical spreadsheet software (What’s Best!), which provided convenient interfaces for 
the model, the analysts, and management. Unfortunately, the 8000 variables overwhelmed 
this software package. Analysts revised the model by forming aggregate product groups 
rather than dealing with individual products (e.g., all purple-juice products could be treated 
as a single aggregate, from a materials standpoint). In this way, the model was streamlined 
into one having only 324 decision variables. This aggregate view invoked suspicion of 
yielding misleading and overly simplified inventory projections. Although such concern 
is probably justified in production planning and disaggregation of end products, it turned 
out that for purposes of materials planning, this is a perfectly acceptable simplification.
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Once this very tractable model was put into regular use, it was realized that the model 
not only offered a much better structured approach to planning and resulted in signifi-
cant cost improvements, but it also functioned effectively as a communication tool. Rather 
than being treated as a piece of special offline data, the optimal solution produced by this 
linear programming model became a central point of discussion in management meetings 
and an essential operational tool for the planning committee. The complete acceptance of 
the model as a legitimate component in decision-making placed Welch’s in a position to 
make key decisions quickly. A profitable decision was made, for example, on whether to 
purchase raw grapes on the open market (outside the cooperative) during lean crop years; 
and the system permits rapid decisions on carrying over inventories of grape juice during 
record-breaking production years (such as happened in 1991 through 1995), and success-
fully meeting demand after the harsh winter of 1996 by adjusting product recipes.

The analysts at Welch’s attribute the acceptance and successful use of the linear pro-
gramming model to their having reduced the original model to a size compatible with 
spreadsheet optimization. This alleviated difficulties with software support. Furthermore, 
the resulting smaller model was more understandable to people having various levels of 
mathematical interest, ability, and appreciation. Thus, the simpler model proved to be the 
most workable one in actual practice. Future plans call for development of a more com-
prehensive model, capable of incorporating changes in material characteristics over time.

2.12 Summary

Linear programming is a special type of mathematical programming, in which the objec-
tive function and the constraints can be expressed as linear functions of the decision vari-
ables. Once a problem is formulated as a linear program, it is possible to analyze the model 
and investigate the nature of the solutions to the problem. Graphical solutions for small 
problems can be illustrative of some of the characteristics of the solutions. In general, lin-
ear programming problems may have a unique optimal solution, multiple optimal solu-
tions, or no optimal feasible solution.

For linear programming problems of practical size, the most widely used technique for 
obtaining solutions is the Simplex method. Applicable to essentially all linear program-
ming models, the Simplex method provides an efficient and effective means of either solv-
ing the problem, or discovering that there is no solution.

Every linear programming problem has a dual problem, which often provides a useful 
alternative interpretation of the solution to the original problem. The theory of duality 
also suggests ways in which analysts can determine how sensitive a solution is to minor 
changes in problem parameters.

Relatively recent research has led to the development of new computational 
approaches, known as barrier methods, or interior point methods. These techniques 
can in some cases be used effectively to solve the isolated few problems that had never 
been successfully dealt with using the Simplex method alone. But more importantly, 
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these newer ideas have been integrated skillfully together with older Simplex algo-
rithms to produce new hybrid software that performs better than any one method used 
independently.

Key Terms

adjacent extreme points
artificial variables
basic solution
basic variables
Big-M method
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complementary slackness
constraints
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duality property
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Revised Simplex method
right-hand-side ranging
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Simplex method
Simplex tableau
sensitivity analysis
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solution
standard form
surplus variable
two phase method
unbounded solution
upper bound constraints

Exercises

2.1 An academic computing center receives a large number of jobs from students 
and faculty to be executed on the computing facilities. Each student job requires 
six units of space on disk, and three units of time on a printer. Each faculty job 
requires eight units of space on disk, and two units of time on a printer. A mixture 
of jobs is to be selected and run as a batch, and the total disk space and printer time 
available for a batch are 48 units and 60 units, respectively. The computer center 
is paid three times as much for running a student job as for running a faculty job. 
Formulate a linear programming problem to determine the mixture of jobs to be 
run as a batch that will maximize computer center income.

2.2 A tree farm cultivates Virginia pine trees for sale as Christmas trees. Pine trees, 
being what they are, require extensive pruning during the growing season to 
shape the trees appropriately for the Christmas tree market. For this purpose, the 
farm manager can purchase pruning hooks for $16.60 each. He also has a ready 
supply of spears (at $3 each) that can be bent into pruning hooks. This conversion 
process requires one hour of labor, whereas final assembly of a purchased prun-
ing hook takes only 15 minutes of labor. Only 10 hours of labor are available to the 
manager. With labor rates at $8.40 per hour, the farm manager intends to spend no 
more than $280 on buying or making pruning hooks this year. In all, how many 
pruning hooks can he acquire (from outright purchase and through conversion), 
given these limitations? Formulate this as a linear programming problem.
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2.3 A plant has five machines, each of which can manufacture the same two models of 
a certain product. The maximum number of hours available on the five machines 
during the next production period are, respectively, 60, 85, 65, 90, and 70. The 
demand for products created during this next production period is expected to be 
850 units of model 1 and 960 units of model 2. The profits (in dollars per hour) and 
production rates (per hour) are given in tabular form: 

Profit Production Rate

Model Model

Machine 1 2 Machine 1 2

1 2 5 1 7 9
2 8 3 2 5 4
3 3 6 3 6 3
4 5 3 4 4 8
5 4 7 5 5 6

 Let xij be the number of hours machine i is scheduled to manufacture model j, 
for i = 1, …, 5 and j = 1, 2. Formulate a linear programming model to maximize 
profits.

2.4 Metallic alloys A, B, and C are to be made to customer specifications from four dif-
ferent metals (W, X, Y, and Z) that are extracted from two different ores. The cost, 
maximum available quantity, and constituent parts of these ores are: 

Ore Cost ($/ton)
Maximum Tons 

Available

Percentage of Constituents

W X Y Z

I 150 2800 40 10 15 25
II 95 3100 30 20 10 20

 Customer specifications and selling price for the three alloys are: 

Alloy Specifications Selling Price ($/ton)

A At least 30% of X
At least 50% of W
At most 10% of Y

600

B Between 30% and 40% of Z
At least 40% of X
At most 70% of W

500

C At least 40% of Y
At most 60% of W

450

 Formulate a linear programming model that meets the specified constraints and 
maximizes the profits from the sale of the alloys. (Hint: Let xijk be the amount of the 
i-th metal extracted from the j-th ore and used in the k-th alloy.)
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2.5 Show graphically the feasible region corresponding to the following set of 
constraints:
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 Give the coordinates of each of the extreme points of the feasible region.
2.6 What is the feasible region corresponding to the following set of constraints?
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 Evaluate the objective function z = 2x1 + 5x2 at each of the extreme points of this 
feasible region.

2.7 Solve the following linear programming problem graphically.

 

maximize z = x x

subject to x x 1

x

x x

x

x ,

1 2

1 2

2

1 2

1

1

−

+ ≥

≤

+ ≤

≤

3 9

2 4

3
2

  x2 ≥ 0  

 Give the optimal value of z and the optimal solution (x1, x2).
2.8 Solve the following linear programming problem graphically:
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 Outline the feasible region, and give the optimal values of z, x1, and x2.
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2.9 Examine the following formulation, and comment on the nature of its solution:
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2.10 Examine the next formulation, and comment on the nature of its solution:
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2.11 Examine the following formulation, and comment on the nature of its solution:
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2.12 Place the following linear programming model in standard form:

 

maximize z 16x 2x x
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2.13 Place the following linear programming model in standard form:
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2.14 Give all of the basic solutions and basic feasible solutions of the problem in 
Exercise 2.9.

2.15 Give the coordinates of all of the basic solutions and basic feasible solutions of the 
problem in Exercise 2.10.

2.16 Use the Simplex algorithm to solve the linear programming formulation from 
Exercise 2.1. What is the percentage utilization of the disk and printer resources 
at optimality? Comment on how the university community is likely to react to the 
optimal solution to this problem.

2.17 Solve the following problem using the Simplex method:
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2.18 Solve the following problem using the Simplex method:

 

maximize z = 4x x

subject to (1) 3x x = 3
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2.19 Apply the Simplex algorithm to each of the following problems. Observe the 
behavior of the Simplex method and indicate which problems display degeneracy, 
multiple optima, infeasibility, or an unbounded solution.

 a. maximize 3x x

subject to  x
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2.20 Create a linear programming problem formulation that has unbounded solu-
tions but in which no evidence of unboundedness appears in the initial Simplex 
tableau.

2.21 Perform as many Simplex iterations as possible on the example problem in Section 
2.7.2. Observe that the algorithm terminates when there are no ratios θi from which 
to choose a variable to leave the basis.
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2.22 Solve the following linear programming problem using the Two Phase Simplex 
method.
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2.23 Examine this linear programming formulation:
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 Comment on the nature of its solution(s). How does this change if the first con-
straint is removed from the problem?

2.24 Solve the following linear programming problem graphically.
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2.25 What determines the number of basic variables in a linear programming problem 
solution?

2.26 What is the value of a non-basic variable in a feasible solution of a linear program-
ming problem?

2.27 In an optimal Simplex tableau, what is the economic interpretation of the objective 
function row entry corresponding to the i-th slack variable?

2.28 In a Simplex tableau, what is the interpretation of the entries in the right-hand-side 
column?

2.29 What is the consequence of a tie for the entering basic variable?
2.30 What if there is a tie for the leaving basic variable?
2.31 What if, in the objective function row of a final tableau, there is a zero in a column 

corresponding to a non-basic variable?
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2.32 What happens in the Simplex algorithm if you choose, as the entering variable, 
a variable with a negative objective row coefficient but not the most negative 
coefficient?

2.33 Solve the following problem using the Simplex method:
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2.34 Use the Two Phase Simplex method to solve the following problem:
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2.35 A business executive has the option of investing money in two plans. Plan A guar-
antees that each dollar invested will earn 70 cents a year hence, and plan B guar-
antees that each dollar invested will earn $2 two years hence. Plan A allows yearly 
investments, while in plan B, only investments for periods that are multiples of two 
years are allowed. How should the executive invest $100,000 to maximize the earn-
ings at the end of three years? Formulate this problem as a linear programming 
problem.

2.36 An investment portfolio management firm wishes to develop a mathematical 
model to help decide how to invest $1 million for one year. Municipal bonds are to 
be bought in combinations that balance risk and profit. Three types of bonds are 
being considered: 
• AAA rated bonds yielding 6% annually and which must be purchased in units 

of $5000
• A rated bonds yielding 8% annually and which must be purchased in units of 

$1000, and
• J rated (junk) bonds yielding 10% annually and which must be purchased in 

units of $10,000.
 The Board of Directors has specified that no more than 25% of the portfolio should 

be invested in (risky) junk bonds, and at least 40% should be invested in AAA rated 
bonds. Bonds are to be purchased with the objective of maximizing earnings at the 
end of the year. It may be assumed that the stated yield dividend is paid at the end 
of the year, and that no other distributions are made during the year. Formulate 
this problem as a linear programming problem.

2.37 A philanthropist wishes to develop a mathematical model to help him decide how 
to donate his spare cash to several worthy causes. He has $10 million to distribute 
among the recipients, and he would like to donate in units of thousands of dollars. 
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Three organizations would like to receive funds: Our Great State University, 
the Friends of the Grand Opera, and the Save the Humuhumunukunukuapua‘a 
Society. The philanthropist wants to give at most 50% of his cash to any one orga-
nization. The desirability of the philanthropist’s giving to any particular recipient 
is to be measured in terms of the number of tax credits he will receive. The value of 
giving to an educational institution is rated at 10 credits for every $1000 donation, 
while the value of $1000 donation to the music lovers is rated at 8 credits, and each 
$1000 donation to the wildlife conservation is rated at 6 credits. Write a linear pro-
gramming model to help this philanthropist maximize the number of tax credits 
that can be achieved by contributing among these three groups.

2.38 Solve the following problem graphically:
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2.39 Write the dual of the primal linear programming problem in Exercise 2.7.
2.40 Write the dual of the primal problem in Exercise 2.8. Solve the dual problem, and 

identify the shadow prices.
2.41 Solve the dual problem corresponding to the primal problem in Exercise 2.12. 

Determine whether optimal solutions exist. If so, describe the relation between the 
primal shadow prices and dual variables at optimality.

2.42 Describe the nature of the solutions of the primal problem in Exercise 2.10 and its 
dual problem.

2.43 Each of the following statements refers to the Simplex algorithm. Fill in the blanks 
with an appropriate letter from the following choices:

 1. If all slack and surplus variables are zero in an optimal solution, then _______.
 2. If a basic variable has the value zero in an optimal solution, then ________.
 3. If an artificial variable is non-zero in an optimal solution, then ________.
 4. If a non-basic variable has zero coefficient in the top row of an optimal tableau, 

then _______.
  Completion alternatives:
 A. There are multiple optimal solutions.
 B. The current solution is degenerate.
 C. All constraints are equalities at optimality.
 D. The shadow prices are inverses of the dual variables.
 E. No feasible solution exists.
 F. The solution is unbounded.
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2.44 The following statements are intended to describe the relationship between 
 primal and dual linear programming problems. For each statement, fill 
in the blank to indicate the most appropriate choice from the alternatives shown 
in the  following list.

 1. The optimal objective function value in the primal problem corresponds to 
__________.

 2. The shadow prices in the optimal primal tableau correspond to ___________.
 3. Basic variables in the optimal primal tableau correspond to ___________.
 4. The variables in the primal problem correspond to ___________.
 5. Shadow prices in the optimal dual tableau correspond to __________.
  Completion alternatives:
 A. The primal non-basic variables
 B. The dual non-basic variables
 C. The primal constraints
 D. Optimal basic variables in the dual problem
 E. The optimal objective function value in the dual
 F. The shadow prices in the dual
 G. Basic variables in the optimal primal problem
 H. The constraints in the dual problem
2.45 Recall Example 2.8.3 and verify the range within which changes in objective func-

tion coefficient c2 can vary without affecting the optimal solution.
2.46 What was the theoretical significance of the algorithm developed by Khachiyan for 

solving linear programming problems?
2.47 What is the practical significance of the interior point methods, as originated by 

Karmarkar, for solving linear programming problems? How do these methods 
compare in practice with the traditional Simplex-based methods?
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3
Network Analysis

Network analysis provides a framework for the study of a special class of linear program-
ming problems that can be modeled as network programs. Because such a vast array of 
problems can be viewed as networks, this is one of the most significant classes of applica-
tions in the field of Operations Research. Some of these problems correspond to a physi-
cal or geographical network of elements within a system, while others correspond more 
abstractly to a graphical approach to planning or grouping or arranging the elements of a 
system.

The diversity of problems that fall quite naturally into the network model is striking. 
Networks can be used to represent systems of highways, railroads, shipping lanes, or avia-
tion patterns, where some supply of a commodity is transported or distributed to satisfy 
a demand. Pipeline systems or utility grids can be viewed as fluid flow or power flow 
networks, while computer communication networks represent the flow of information, 
and an economic system may represent the flow of wealth. In some cases, the problem may 
call for routing a vehicle or a commodity between certain specified points in the network; 
other applications may require that some entity be circulated throughout the network.

By using the network model more abstractly, we can solve problems that require assign-
ing jobs to machines, or matching workers with jobs for maximum efficiency. Network 
methods can also be applied to project planning and project management, where various 
activities must be scheduled in order to minimize the duration of a project or to meet 
specified completion dates, subject to the availability of resources.

All of these apparently different problems have underlying similarities: all consist of a 
set of centers, junctions, or nodes that are interconnected (logically or physically) by links, 
channels, or conveyances. Because of this, a study of general network models and tech-
niques will provide us with tools that can be applied to a variety of applications. As we 
study these models, we will see that it is the mathematical structure or form of the problem 
that is important and not necessarily the application. Furthermore, the successful use of 
network models is largely dependent on a skillful analyst’s ability to perceive the structure 
of a problem and to assess whether the network framework is an appropriate approach 
to a solution. We will see examples in which there is more than one way to represent the 
problem as a network model, and one formulation may be superior to others.

This chapter begins with some basic definitions and properties of graphs and networks. 
Algorithms are then presented for finding the maximum flow in a network, optimally 
transporting a commodity from supply points to demand points, matching or pairing 
appropriate elements in a system, and efficiently designing a network such that every pair 
of points has some connecting path. Methods are described for finding the shortest route 
between points in a network, and then these methods are applied to multistage decision-
making processes and project-planning problems.
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3.1 Graphs and Networks: Preliminary Definitions

A graph is a structure consisting of a set of nodes (vertices, points, or junctions) and a set 
of connections called arcs (edges, links, or branches). Each connection is associated with a 
pair of nodes and is usually drawn as a line joining two points. If there is an orientation or 
direction on the arcs, then the graph is said to be directed, otherwise it is undirected. The 
degree of a node is the number of arcs attached to it. An isolated node in a graph is one 
that has no arc attaching it to any other node, and therefore such a node is of degree zero.

In a directed graph, if there is an arc from node A to node B, then node A is said to be a 
predecessor of node B, and node B is a successor of node A. The arc is often designated by 
the ordered pair (A, B).

For certain applications, it is useful to refer to a path from some given node to another. 
Let x1, x2, …, xn be a sequence of distinct nodes, such that nodes adjacent to each other in 
the sequence are connected to each other by an arc in the graph. That is, if the sequence 
contains xi, xi+1, then either the arc (xi, xi+1) or the arc (xi+1, xi) exists in the graph. Then we 
say there is a path from x1 to xn, that consists of the nodes and their connecting links. 
In Figure 3.1, there is a path from node A to node G that can be described by A, (A, B), B, 
(B, C), C, (E, C), E, (E, G), G. When the arc connecting nodes xi and xi+1 in a path is (xi, xi+1), 
it is called a forward arc; if the connecting arc is (xi+1, xi), it is a backward arc.

In the illustration, the path contains the three forward arcs (A, B), (B, C), and (E, G) and 
one backward arc (E, C). If all the arcs in a path are forward arcs, then the path is called 
a directed chain or simply a chain. If the graph is undirected, then the terms path and 
chain are synonymous. If x1 = xn in the path, then the path is called a cycle or a cyclic path. 
In the illustration, we see the cyclic path 

 B, (B, C), C, (E, C), E, (E, G), G, (G, B), B 

although this is not a cyclic chain because it includes the backward arc (E, C). A connected 
graph is a graph that has at least one path connecting every pair of nodes.

A graph is a bipartite graph if the nodes can be partitioned into two subsets S and T, 
such that each node is in exactly one of the subsets, and every arc in the graph connects a 
node in set S with a node in set T. Such a graph is a complete bipartite graph if each node 
in S is connected to every node in T. The graph in Figure 3.2 is a complete bipartite graph 
in which nodes A and B are in one subset, and nodes C, D, and E are in the other.

A

D

F

B C

E

G

FIGURE 3.1
Paths in a graph.
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A tree is a directed connected graph in which each node has at most one predecessor, 
and one node (the root node) has no predecessor. In an undirected graph, we have a tree if 
the graph is connected and contains no cycles. (If there are n nodes, there will be n − 1 arcs 
in the tree.) Figure 3.3 contains illustrations.

A network is a directed connected graph that is used to represent or model a system or 
a process. The arcs in a network are typically assigned weights that may represent a cost 
or value or capacity corresponding to each link in the network.

A node in a network may be designated as a source (or origin), and some other node may 
be designated as a sink (or destination). A network may have multiple sources and sinks. 
A cut set (or simply a cut) is any set of arcs which, if removed from the network, would 
disconnect the source(s) from the sink(s). Because networks are commonly used to repre-
sent the transmission of some entity from a source node to a sink node, we introduce the 
concept of flow through a network. Flow can be thought of as the total amount of an entity 
that originates at the source, makes its way along the various arcs and passes through 
intermediate nodes, and finally arrives at (or is consumed by) the destination (sink) node. 
The study of network flow is the subject of the next section.

A

D

B

C

E

FIGURE 3.2
A complete bipartite graph.

(a) (b)

FIGURE 3.3
Trees (n  = 11): (a) directed tree and (b) undirected tree.
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3.2 Maximum Flow in Networks

Maximum flow problems arise in networks where there is a source and a sink connected by 
a system of directional links, each having a given capacity. The problem is to determine the 
greatest possible flow that can be routed through the various network links, from source 
to sink, without violating the capacity constraints. The commodity flowing in the network 
is generated only at the source and is consumed only at the sink. The source node has only 
arcs directed out of it, and the sink node has only arcs directed into it. Intermediate nodes 
neither contribute to nor diminish the flow passing through them.

As an example, consider a data communication network in which processing nodes are 
connected by data links. In Figure 3.4, data being collected or generated at site A must 
be transmitted through the network as quickly as possible to a destination processor at 
site G where the data can be archived or processed. Each data link has a capacity (prob-
ably some function of baud rate and availability or band width) that effectively limits the 
flow of data through that link. Alternatively, one can envision a power generation and 
distribution system as a network flow model in which power is generated at the source 
and conducted through transform stations to end users. Capacities are shown as labels 
on the arcs.

The maximum flow problem can be stated precisely as a linear programming formula-
tion. Let n be the number of nodes, and let nodes 1 and n be designated as source and sink, 
respectively. The decision variables xij denote the amount of flow along the arc from node 
i to node j (i, j = 1, …, n). The capacity of the arc from node i to node j is the upper limit on 
the flow through this arc, and is denoted uij. If we let f denote the total flow through the 
network, then to maximize the total flow, we would want to 
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FIGURE 3.4
Data communications network.
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Constraints (1) and (2) state that all the flow is generated at the source and consumed at the 
sink. Constraint (1) ensures that a flow of f leaves the source, and because of conservation 
of flow, that flow stops only at the sink. Constraints (3) are the flow conservation equations for 
all the intermediate nodes; nothing is generated or consumed at these nodes. Constraints 
(4) enforce arc capacity restrictions. All flow amounts xij must be non-negative. Actually, 
constraint (2) is redundant.

As with all of the network models in this chapter, this problem could be solved using 
the Simplex method. However, we can take advantage of the special network structure 
to solve this problem much more efficiently. One of the most commonly used methods is 
an iterative-improvement method known as the Ford-Fulkerson labeling algorithm. An 
initial feasible flow can always be found by letting the flow through the network be zero 
(all xij = 0). The algorithm then operates through a sequence of iterations, each iteration 
consisting of two phases: (1) first we look for a way to increase the current flow, by finding 
a path of arcs from source to sink whose current flow is less than capacity (this is called a 
flow augmenting path); and then (2) we increase the current flow, as much as possible, along 
that path. If in phase (1) it is not possible to find a flow augmenting path, then the current 
flow is optimal. We will first outline the basic algorithm, and then fill in the details.

3.2.1 Maximum Flow Algorithm

Initialization: Establish an initial feasible flow. 

Phase 1: Use a labeling procedure to look for a flow augmenting path. If none can be 
found, stop; the current flow is optimal.

Phase 2: Increase the current flow as much as possible in the flow augmenting path 
(until some arc reaches its capacity). Go to Phase 1.

The search for a flow augmenting path in Phase 1 is facilitated by a labeling procedure 
that begins by labeling the source node. We will use a check mark (✓) on our figures to 
indicate that a node has been labeled. From any labeled node i, we must examine outgoing 
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arcs (i, j) and incoming arcs (j, i), for unlabeled nodes j. We label (✓) node j if the current 
flow in outgoing arc (i, j) is less than its capacity uij, or if the current flow in incoming arc 
(j, i) is greater than zero. Labeling a node i means that we could increase the total flow in 
the network from the source as far as node i. If the sink node eventually can be labeled, 
then a flow augmenting path has been found. If more than one flow augmenting path 
exists, choose any one arbitrarily.

In Phase 2, the arcs in the flow augmenting path are first identified. Then by examining 
the differences in current flow and capacity flow on all forward arcs in the path, and the 
current flow in all backward arcs, we determine the greatest feasible amount by which the 
total flow through this path can be increased. Increase the flow in all forward arcs by this 
amount, and decrease the flow in all backward arcs by this amount.

We will now illustrate the maximum flow algorithm by applying it to the network pictured 
in Figure 3.4. Let us assume initially that the flow in all arcs is zero, xij = 0 and f = 0. In the 
first iteration, we label nodes A, B, C, D, and G, and discover the flow augmenting path (A, 
D) and (D, G), across which we can increase the flow by 4. So now, xAD = 4, xDG = 4, and f = 4.

In the second iteration, we label nodes A, B, C, then nodes E, D, and F, and finally node G. 
A flow augmenting path consists of links (A, B), (B, D), (D, E), and (E, G) and flow on this 
path can be increased by 4. Now xAB = 4, xBD = 4, xDE = 4, xEG = 4, and f = 8.

In the third iteration, we see that there remains some unused capacity on link (A, B), so 
we can label nodes A, B, and E, but not G. It appears we cannot use the full capacity of link 
(A, B). However, we can also label nodes C, D, F, and G, and augment the flow along the 
links (A, D), (D, F), and (F, G) by 2, the amount of remaining capacity in (A, D). Now xAD = 6, 
xDF = 2, xFG = 2, and f = 10.

In the fourth iteration, we can label nodes A, B, C, D, F, and G. Along the path from A, 
C, D, F, to G, we can add a flow of 4, the remaining capacity in (F, G). So xAC = 4, xCF = 4, 
xFG = 6, and f = 14.

In the fifth iteration, we can label all nodes except G. Therefore, there is no flow aug-
menting path, and the current flow of 14 is optimal.

Notice that in any network, there is always a bottleneck that in some sense impedes the 
flow through the network. The total capacity of the bottleneck is an upper bound on the 
total flow in the network. Cut sets are, by definition, essential in order for there to be a flow 
from source to sink, since removal of the cut set links would render the sink unreachable 
from the source. The capacities on the links in any cut set potentially limit the total flow. 
One of the fundamental theorems of Ford and Fulkerson states that the minimum cut (i.e., 
the cut set with minimum total capacity) is in fact the bottleneck that precisely determines 
the maximum possible flow in the network. This Max-Flow Min-Cut Theorem provides the 
foundation for the maximum flow labeling algorithm presented earlier. During Phase 1 
of the algorithm, if a flow augmenting path cannot be found, then we can be assured that 
the capacity of some cut is being fully used by the current flow. This minimum cut is the 
set of links that separate the nodes that are labeled (✓) from those that are not labeled. 
Observe that, by definition of the labeling algorithm, every forward arc in the cut set (from 
a labeled to an unlabeled node) must be at capacity. Similarly, every reverse arc in the cut 
set (from an unlabeled to a labeled node) must have zero flow. Therefore, the capacity of 
the cut is precisely equal to the current flow and this flow is optimal. In other words, a 
saturated cut defines the maximum flow.

In the final iteration of the example earlier, the cut set that separates the labeled nodes 
from the unlabeled nodes is the set of links (E, G), (D, G), and (F, G). The capacity of this 
cut set is 4 + 4 + 6 = 14, which is just exactly the value of the optimal flow through this 
network.
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If all of the arcs in a network are forward arcs, it is easy to identify a flow augmenting 
path. Each edge in the path is below capacity and we can increase the flow until some 
edge reaches capacity. To appreciate the idea of reverse arc labeling, consider the situation 
shown in Figure 3.5a. In the diagram, each arc from node i to node j is labeled with (xij, uij).

Suppose our initial path is from node 1 to 2 to 4 to 6, with a flow of 4. At this point, shown 
in Figure 3.5b, there is no direct path from the source node 1 to the sink node 6 that allows 
an increase in flow. However, the algorithm will find the path 

 

(0,4) (0,4) (4,4) (0,4) (0,4)

1 3 4 2 5 6
 

Increase the flow on each forward arc by 4, and decrease the flow on the reverse arc. The 
resulting flow is shown in Figure 3.5c with a total flow of 8. Notice that the net effect, 
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FIGURE 3.5
Maximum flow example: (a) original network, (b) path augmenting, and (c) optimal maximum flow.
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with respect to the reverse arc, is that we decided to take the flow out of node 2 and send 
it somewhere else (namely to nodes 5 and 6). Similarly, we decided to use the new flow at 
node 4, coming from node 3, instead of the flow from node 2. Therefore, if we can label 
node 4, we can effectively divert the flow at node 2 to create additional flow through the 
entire network.

3.2.2 Extensions to the Maximum Flow Problem

There are several interesting extensions to the maximum flow problem. The existence of 
multiple sources and multiple sinks requires only a minor change in our original net-
work model. Suppose, for example, nodes 1A, 1B, and 1C are sources, and nodes nA, nB, 
nC, and nD are sinks, as shown in Figure 3.6a. This network can be modified to include 
a super-source node (which we will call 1S) and a super-sink node (nS). The super source is 
connected to the multiple sources via links unrestricted in capacity, as in Figure 3.6b; and 
likewise, the multiple sinks are connected to the super sink by uncapacitated links, as in 
Figure 3.6c.

Because none of the new uncapacitated links could possibly contribute to any minimum 
cut, the maximum flow from the super-source node 1S to the super-sink node nS will also 
be the maximum flow in the multiple-source multiple-sink problem.

We can use this same construction to handle the situation in which some or all of the 
sources have a limited capacity by simply placing a capacity on the arc from the super-source 
to the capacitated source node. Capacities on the sinks can be handled in the same way.

The basic maximum flow algorithm is normally used to solve a part of a more complex 
problem. For example, in the next section, we will encounter almost the same problem, 
but where there is a per-unit cost associated with each arc in the network, and we want to 
minimize total cost. There are, however, some direct applications of the maximum flow 
algorithm. One of these occurs in network capacity planning. For example, an electric 
utility company may use network flow to determine the capacity of its present system. By 
identifying the cut sets, it can easily determine where additional lines must be installed in 
order to increase the capacity of the existing grid.

The complexity of maximum flow algorithms is dependent on the method used for 
selecting the flow augmenting paths. Because network flow algorithms are used so often 
in practical applications, efforts have been made to develop faster versions. A shortest path 
augmentation method developed by (Edmonds and Karp 1972) is used in an algorithm 
having complexity O(ne2), where n is the number of nodes and e is the number of edges. 

(a) (b) (c)
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FIGURE 3.6
Multiple sources and sinks: (a) original network, (b) super source, and (c) super sink.
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Dinic’s method (Dinic 1970) of using so-called blocking flows requires O(n2e) computation 
time, while Karzanov’s method (Karzanov 1974) based on the idea of preflows is dependent 
solely on the number of nodes, and requires O(n3) time.

Extensions to the maximal flow problem include multi-commodity problems, maximal 
dynamic flow problems, and cost effective increases in network capacity. These topics are 
discussed fully in the references by Battersby (1970), Hu (1970), and Price (1971).

3.3 Minimum Cost Network Flow Problems

When there are costs associated with shipping or transporting a flow through a network, 
the goal might be to establish a minimum cost flow in the network, subject to capacity con-
straints on the links. The minimum cost flow problem is interesting not only because the 
general model is so comprehensive in its applicability, but also because special cases of 
the model can be interpreted and applied to quite a variety of resource distribution and 
allocation problems.

3.3.1 Transportation Problem

One of the simplest minimum cost network flow problems is one in which every node is 
either a source (supply) or a sink (demand). For example, we could imagine a distributor 
with several warehouses and a group of customers. There is a cost associated with serving 
each customer from any given warehouse.

In this model, we have m supply nodes, each with an available supply si, and n demand 
nodes, each with a demand of dj. And we assume that the total supply in the network is 
equal to the total demand: 
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The objective is to satisfy all the demands, using the available supply, and to accomplish 
this distribution using minimum cost routes. The formulation of the problem is as follows: 
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Because the set of supply nodes is distinct from the set of demand nodes, and all nodes 
in the network belong to one of these sets, this transportation model can be pictured as 
a bipartite graph, with the addition of a super-source node S and a super-sink node D. In 
Figure 3.7, arcs connecting supply nodes to demand nodes represent the actual distribu-
tion routes. Each arc in the drawing is labeled with a triple, indicating a lower bound on 
the flow, an upper bound on the flow, and a per unit cost for the flow along the arc. Arcs 
from the super source S impose the (upper bound) supply limits, and, of course, carry no 
cost. Similarly, arcs to the super sink D enforce the (lower bound) demand requirements. 
It should be clear that finding a minimum cost flow from node S to node D in this network 
precisely solves the transportation problem that we have formulated, and the resulting 
minimum cost is the cost of the optimal distribution of the commodity through the trans-
portation network.

To illustrate the solution approach, we will use a simple example of a distributor with 
three warehouses and five customers. Because of the simple structure of the transportation 
problem, it is probably easier to visualize the problem in matrix form, as shown in Table 3.1.

In the table, cij in row i and column j of the matrix represents the cost of sending one unit 
of product from source i to sink j. Similarly, xij represents the number of units sent from 
source i to sink j, the current flow solution.

Consider the example problem in Table 3.2. Observe that the total demand of 65 units is 
equal to the total supply. Because most of the xij values will be zero, we will write them in 
only when they are positive.

We will describe how to solve this problem using the Simplex method. After all, this 
is a linear programming problem. However, the special structure of the transporta-
tion problem will allow us to take a number of shortcuts. The Simplex method says 
that we should first find any basic feasible solution, and then look for a simple pivot to 
improve the solution. If no such improvement can be found, the current solution must 
be optimal.

Demand
nodes

Supply
nodes

m

S 3

2

1

2

1

0, ∞, Cmn

0, S3, 0

0, S
m , 0

0, S
2, 

0

0, 
S 1, 

0

0, ∞, C11

0, ∞, C21

0, ∞, C
2n

0, ∞, C12

0, ∞, C
1n

0, ∞, C m30, ∞
, C m2

0, ∞
, C m1

d3, ∞, 0

d
2 , ∞, 0

d
1 , ∞, 0

d n, 
∞, 0

n

D3

FIGURE 3.7
Transportation problem as minimum cost network flow problem.
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The first simplification to the basic Simplex method is that we do not need a complex 
two phase method to find a basic feasible solution. Instead, we present three fast and com-
monly used techniques for obtaining an initial solution.

3.3.1.1 Northwest Corner Rule

If we ignore the total cost, it is trivial to find an initial feasible solution. We simply assign 
the first group of customers to the first warehouse until the capacity is exhausted, and then 
start assigning customers to the second warehouse until it too is at its capacity, and so on.

We begin at the upper left corner of the tableau, the northwest corner. Increase the flow in 
this cell as much as possible until the flow is equal to the supply in this row or the demand 
in this column. Reduce the demand and the supply in this row and column by the amount 
of the flow, since the requirement has now been satisfied. Draw a line through the row or 
column that has zero remaining required. (If both are zero, select either one arbitrarily.) 
Repeat the northwest corner rule on the reduced matrix.

Consider the example in Table 3.2. Begin with row 1 and column 1. Since the demand is 
12 and the supply is 20, the flow can be at most 12. Reduce the limit on row 1 and column 
1 by 12, and draw a line through column 1. The reduced problem is shown in Table 3.3. 
The reduced problem (without column 1) has x12 (row 1, column 2) in the northwest corner. 
We let x12 = 8 because the remaining supply in row 1 is 8. This time, we delete row 1, and 
subtract 8 from supply s1 and demand d2.

TABLE 3.1

Transportation Problem

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply

c11 c12 c13 c14 c15

1 x11 x12 x13 x14 x15 s1

c21 c22 c23 c24 c25

2 x21 x22 x23 x24 x25 s2

c31 c32 c33 c34 c35

3 x31 x32 x33 x34 x35 s3

Demand d1 d2 d3 d4 d5

TABLE 3.2

Transportation Problem Example

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply

28 7 16 2 30

1 20
18 8 14 4 20

2 20
10 12 13 5 28

3 25
Demand 12 14 12 18 9 65
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The final solution is presented in Table 3.4. The reader should verify this result. The 
total cost of this solution is given by (12 · 28) + (8 · 7) + (6 · 8) + (12 · 14) + (2 · 4) + (16 · 5) + 
(9 · 28) = 948.

There are several features of this solution that we should notice. First, it should be clear 
that the procedure always produces a feasible solution. For a solution to be feasible, every 
customer must be receiving all of the necessary demand from some warehouses, and no 
warehouse may exceed its supply. In fact, all of the rows and columns will be satisfied 
at equality. Because this method never transports more than the remaining supply or 
demand, we have only to verify that no customer gets less than what it asked for.

Suppose the last customer did not get all its required demand; then that row will not 
be deleted. Moreover, there must be some excess supply at one of the warehouses, so 
that column has not been deleted. Therefore, there is still one cell left for the northwest 
corner rule to work in. (The technique stops only when every cell in the matrix has been 
deleted.)

The second thing to notice is that we must always start at x11 and we must finish at xmn 
(for m warehouses and n customers). Moreover, at each step, the algorithm will delete one 
row or one column. In the last cell, the remaining demand in column n and the supply in 
row m must be identical. Because there are m rows and n columns, the solution will use 
exactly (m + n − 1) cells and therefore (m + n − 1) of the xij will have a positive value. In our 
example, we have 3 + 5 − 1 = 7 cells that are selected for a positive flow.

TABLE 3.3

Northwest Corner Rule

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply

28 7 16 2 30
1 12 20 8

18 8 14 4 20
2 20

10 12 13 5 28
3 25

Demand 12 0 14 12 18 9

TABLE 3.4

Initial Northwest Corner Solution

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply

28 7 16 2 30
1 12 8 20

18 8 14 4 20
2 6 12 2 20

10 12 13 5 28
3 16 9 25

Demand 12 14 12 18 9 65



101Network Analysis

In the Chapter 2 presentation of the Simplex method, it was stated that the number of 
basic variables is precisely equal to the number of constraints. In the linear programming 
formulation of the transportation problem, there are m equality constraints for the supply 
at the m warehouses, and n constraints for the demands of the n customers. Therefore, one 
would expect (m + n) non-zero (basic) variables. All other (non-basic) variables are zero. 
The apparent discrepancy can be explained by observing that the linear programming 
constraints are not independent. If the last constraint were deleted, and we solved that 
problem, we would find that the solution will have all warehouse supply satisfied at equal-
ity, and the first (n − 1) customers will have their demand satisfied at equality. All remain-
ing demand must be assigned to customer n. Because total supply equals total demand, 
the demand for customer n will automatically be satisfied exactly. In other words, when 
the corresponding linear programming problem is solved with (m + n − 1) constraints, 
there will be exactly (m + n − 1) basic variables, and introducing the additional constraint 
will not change this.

3.3.1.2 Minimum Cost Method

The northwest corner rule is a quick way to find a feasible solution. However, the method 
ignores any cost information; hence, it is unlikely that the initial solution will be a very 
good one.

The same approach can be extended in an obvious way to search for a basic feasible solu-
tion while attempting to minimize the total cost. 

Step 1: Select the cell in the matrix that has the smallest cost, breaking ties arbitrarily.
Step 2: Increase the flow in this cell as much as possible until the flow is equal to the 

supply in the row or the demand in the column.
Step 3: Reduce the supply and the demand in this row and column because the 

requirement has now been satisfied.
Step 4: Draw a line through the row or column that has zero remaining supply or 

demand. If both are zero, select either one arbitrarily. Repeat the procedure from 
Step 1 on the reduced matrix.

This method is very similar to the northwest corner rule in that it selects one cell, saturates 
it, and deletes a row or column. It is also guaranteed to find a basic feasible solution with 
precisely (m + n − 1) selected flow cells. However, unlike the northwest corner rule, this 
method tries to match customers and warehouses, with some consideration of costs.

The method is illustrated in Table 3.5, where we first find the minimum cost cell to be 
c14 = 2. Therefore, we satisfy as much of the customer 4 demand as possible from ware-
house 1. In this case, all 18 units can be supplied. We reduce the remaining supply at ware-
house 1 to 2 units, and delete customer 4.

In the next iteration, the minimum (undeleted) entry is c12 = 7, and we will satisfy as 
much of the demand of customer 2 as possible from warehouse 1. In this case, warehouse 1 
has only 2 units left, so the flow x12 is set at 2, row 1 is deleted, and the demand of customer 
2 is reduced to 12.

The final solution is presented in Table 3.6. The total cost of this solution is given by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 7 18 2 12 8 8 20 12 10 12 13 1 28 610⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =  
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As before, this solution is a basic feasible solution with precisely seven basic variables. 
However, the total cost is considerably lower than the cost of the solution obtained with 
the northwest corner rule. It is important to realize that obtaining the improved initial fea-
sible solution did require more computation time. At the first step of the northwest corner 
rule, the single cell in the top left corner is selected. In the corresponding first step of the 
minimum cost algorithm, it is necessary to search all of the m · n cells in the matrix to find 
the one having the least cost. (When m is 100 and n is 10,000, this additional work takes a 
considerable amount of time.)

There are a wide variety of other algorithms available for finding an initial feasible solu-
tion. Typically, they all exhibit the property that better initial solutions require more com-
putation time. The value of spending a lot of effort searching for better initial solutions 
is somewhat questionable; the Simplex method will enable us to derive the optimal solu-
tion from any initial solution. The only advantage of using good initial solutions is that it 
should reduce the number of pivot operations required later.

3.3.1.3 Minimum “Row” Cost Method

The computational requirements of the minimum cost method can be reduced signifi-
cantly without completely sacrificing the spirit. In Step 1, instead of looking for the mini-
mum cost element in the whole matrix, we simply look for the minimum cost element in 

TABLE 3.5

Iteration 1: Minimum Cost

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply

28 7 16 2 30
1 18 20 2

18 8 14 4 20
2 20

10 12 13 5 28
3 25

Demand 12 14 12 0 9 65

TABLE 3.6

Minimum Cost Final Solution

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply

28 7 16 2 30
1 2 18 20

18 8 14 4 20
2 12 8 20

10 12 13 5 28
3 12 12 1 25

Demand 12 14 12 18 9 65
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the first row. We continue to do this until warehouse 1 is saturated. Step 1 will now require 
scanning n elements instead of m · n elements. However, by assigning the best possible 
customer to warehouse 1, the method still tends to find low cost solutions.

Table 3.7 illustrates the final solution using the minimum row cost method. It has a total 
cost of 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 7 18 2 8 18 12 8 4 10 12 13 9 28 638⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =  

This solution has only a slightly higher cost than the cost of 610 that was obtained with 
the minimum cost method, and it required less work. In general, this is representative of 
the performance one would expect of the two methods, although, of course, it would be 
possible to construct simple examples in which the minimum row cost method produced 
better solutions.

3.3.1.4 Transportation Simplex Method

Before we explain the procedure for finding the optimal solution, it will be useful to 
describe a simple modification that transforms the original problem into an equivalent 
new problem. Consider our example from Table 3.7, which shows the initial basic feasible 
solution obtained using the minimum row cost method. Observe what happens if we sub-
tract $1  from every cost element in the first row. Because warehouse 1 has a supply of 
20 units, every feasible solution will have a total of 20 units in row 1. Reducing the cost of 
each element by $1 will reduce the cost of every feasible solution by exactly $20. In particu-
lar, the cost of the optimal solution will decrease by $20.

The optimal solution to the new reduced problem (in terms of the flow variables xij) is 
exactly the same as the optimal solution of the original problem. We simply solve the new 
problem and then add $20  to the optimal objective function value. Furthermore, if we 
reduce all of the costs in the first row by 2 or 3 or 4, we will not change the problem; we will 
simply reduce the total cost of every solution by $40 or $60 or $80, respectively.

Similarly, consider the first column of the matrix corresponding to customer 1. Clearly, 
every feasible solution will have a total of 12 units distributed somewhere in column 1. If 
every cost element in column 1 were reduced by 1 or 2 or 3, then the total cost of every fea-
sible solution would decrease by $12 or $24 or $36, respectively. The new reduced problem 
is identical to the original one with respect to the optimal flow values xij.

TABLE 3.7

Minimum Row Cost Final Solution

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply

28 7 16 2 30
1 2 18 20

18 8 14 4 20
2 8 12 20

10 12 13 5 28
3 4 12 9 25

Demand 12 14 12 18 9 65
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Now consider our example problem. We will construct an equivalent problem by sub-
tracting constants from the costs in the rows and columns. The reduced problem will have 
the property that the reduced cost corresponding to every basic variable cell will be pre-
cisely zero. This is illustrated, for our example, in Table 3.8. We let ui denote the amount 
subtracted from every cost element in row i and vj represent the amount subtracted from 
every element in column j.

The reader should verify that all the reduced costs c íj in this table obey the relationship: 

 c c  u  vij ij i j′ = − −  

where cij is the original cost. As discussed earlier, finding the optimal solution to this prob-
lem is exactly the same as solving the original problem. Note that u3 = −7. This indicates 
that we added 7 to row 3 instead of subtracting 7. Clearly, we can add a constant to a row or 
column as well as subtract a constant without changing the problem.

The reduced problem has several interesting features. In particular, the total cost of the 
current solution, in terms of c íj, is precisely zero. The reader should verify that we have 
reduced the total cost of the solution by 638. In addition, some of the reduced costs cor-
responding to the non-basic cells are negative. Consider the cell x23, with c 2́3 = −7. If we 
could increase the number of units of flow, from warehouse 2 to customer 3, by one unit, 
we could reduce the total cost by 7. That is, the total cost now is zero, and it would become 
−7. If we increase the flow of units from warehouse 2 to customer 3, it will also be neces-
sary to decrease the flow to some other customer from warehouse 2, and from some other 
warehouse to customer 3. At all times, the total supply and demand constraints must be 
maintained. In the example, if we increase x23 by 1, decrease x21 by 1, increase x31 by 1, and 
decrease x33 by 1, we will maintain all supply and demand equalities, and the total cost 
will be reduced by 7. Moreover, if we restrict ourselves to using only basic variable cells, 
this solution is unique.

If we continue to increase the flow on x23, we will further decrease the cost of the solution 
by 7 per unit. However, we cannot continue to do this indefinitely. Specifically, for every 
unit that we increase x23, it is necessary to decrease x21 and x33 by 1. Because xij must be 
non-negative, we can decrease x21 by 8 and x33 by 12. Therefore, the maximum increase for 
x23 is 8, giving a decrease of $56 in the cost. When x23 = 8, x21 becomes zero and we remove 
x21 from the basis to let x23 enter. The new solution is illustrated in Table 3.9.

TABLE 3.8

Reduced Cost Solution

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply ui

11 0 –4 0 –5 0
1 2 18 20

0 0 –7 1 –16 1
2 8 12 20

0 12 0 0 0 –7
3 4 12 9 25

Demand 12 14 12 18 9 65
vj 17 7 20 2 35
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The cost of this solution is −56. If we put these same flows in the original table, we 
would discover that the total cost is $582, precisely 56 less than the cost of our initial 
solution.

In Table 3.9, the reduced cost is no longer zero for all basic variable cells. The new cell 
x23 has c′23 = −7. In order to make this zero again, we can either add 7 to row 2 or add 7 to 
column 3. (It does not matter which we select.) Suppose we add 7 to column 3 (decrease 
v3 by 7). Then, we will also be forced to subtract 7 from row 3 (in order to keep c′33 at zero) 
and then add 7 to columns 1 and 5 (in order to keep c′31 and c′35 at zero). The new reduced 
cost solution is shown in Table 3.10.

Once again, this new problem is identical to the original. The current basic feasible solu-
tion has a value of zero, and there is an opportunity to further reduce the cost if we can 
increase the flow from warehouse 2 to customer 5.

Before doing this, let’s make one observation: it will be useful for us to depict the prob-
lem in a slightly different way. In Figure 3.8, the problem has been drawn as a network 
with only the basic flow edges shown. Observe that the basic edges form a tree. In other 
words, if we ignore the directions of the edges, there are no circuits.

The network also has the property that there are exactly (m + n − 1) edges. If we had a 
basic solution that had less than this number of edges, then we would arbitrarily add extra 
basic cells with a zero flow to keep the total at (m + n − 1). Because the additional flow is 
zero, the extra basic variables do not affect the total cost.

TABLE 3.9

Transportation Simplex

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply ui

11 0 –4 0 –5 0
1 2 18 20

0 0 –7 1 –16 1
2 0 12 8 20

0 12 0 0 0 –7
3 12 4 9 25

Demand 12 14 12 18 9 65
vj 17 7 20 2 35

TABLE 3.10

New Reduction Cost Solution

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply ui

18 0 3 0 2 0
1 2 18 20

7 0 0 1 –9 1
2 12 8 20

0 5 0 3 0 0
3 12 4 9 25

Demand 12 14 12 18 9 65
vj 10 7 13 2 28
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However, because of these properties, introducing a new edge into the basis will always 
create a single circuit. For example, when we try to introduce the variable x25 into the basis, 
we get the network shown in Figure 3.9. This produces a unique circuit on the variables 
x25, x35, x33, and x23.

If we want to increase the flow on x25 by an amount Δ, and still maintain equality at the 
supply and demand nodes, we must decrease x35, increase x33, and decrease x23, all by 
the amount Δ. In order to maintain feasibility, x35 and x23 must remain non-negative, and 
hence the maximum value of Δ is 8. We set x25 = 8, x35 = 1, x33 = 12, and x23 = 0, thus adding 
x25 to the basis and removing x23. (If two variables become zero simultaneously, we can 
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arbitrarily select one to leave the basis.) The new solution, with the new reduced costs 
computed, is shown in Table 3.11. In order to remove ′c25 = −9, we increased row 2 by 9.

The resulting cost should have decreased by 8 (the new flow in x25) times −9 (the reduced 
cost) = −$72. When we substitute the new flow into the original problem, we discover that 
the new total cost is $510, a reduction of $72 from the previous basic feasible solution cost 
of $582. The following steps summarize the Transportation Simplex method.

3.3.1.5 Transportation Simplex

 I. Compute the reduced costs c′ij such that every basic cell has a zero reduced cost. 
(Initially, assume c′ij = cij, and the ui and vj are all zero.)

 a. Construct the basic variable network (tree) as in Figure 3.9. Select any ui and 
assign to it any arbitrary fixed value.

 b. For each unfixed vj that is adjacent to a fixed ui, adjust vj such that c′ij is zero, 
and then call vj fixed.

 c. For each unfixed ui that is adjacent to a fixed vj, adjust ui such that c′ij is zero, 
and call ui fixed.

 d. Repeat steps 2 and 3 until all ui and vj are fixed.
 e. Compute all non-basic costs as c′ij  = cij − ui − vj.
 II. If any non-basic c′ij is negative, let xij enter the basis. (As in the ordinary Simplex 

method, we can choose any negative c′ij.)
 a. Identify the unique even cycle defined by the edge xij and other basic variable 

edges.
 b. Alternately increase and decrease the flow in the edges in this circuit until at 

least one basic variable has a zero flow. Remove that variable from the basis.
 c. Repeat the algorithm completely from the beginning (Part I) by recomputing 

the reduced costs.

Continuing with our example, in Table 3.11, for Part II of the algorithm, we find c′34 = −6. 
Therefore, x34 can enter the basis. The unique basic cycle is (x34, x35, x25, x22, x12, x24). The 
increase of the flow in this alternating circuit is limited by a decrease of 1 in the flow on x35. 

TABLE 3.11

Transportation Simplex Continued

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply ui

27 0 12 0 11 –9
1 2 18 20

16 0 9 1 0 –8
2 0 12 0 8 20

0 –4 0 –6 0 0
3 12 12 1 25

Demand 12 14 12 18 9 65
vj 10 16 13 11 28
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Therefore, x34, x25, and x12 increase by 1, and x35, x22, and x24 decrease by 1. The variable x34 
enters the basis and x35 leaves the basis.

When we now return to Part I of the algorithm, we can select any basic cell. There are 
some small computational savings to be obtained if we choose the basic variable that just 
entered. Consider the new basic network tree in Figure 3.10. (In the figure, we have reor-
dered the warehouse and customer numbers to eliminate crossing lines.)

Notice the edge corresponding to c′34 = −6. In order to get c′34 = 0, we must decrease either 
u3 or v4. Suppose we decrease v4 by 6. Then, in order to keep all other c′ij = 0 for basic edges, 
we must increase u1 and u2 by 6, and decrease v2 and v5 by 6. The new reduced cost matrix 
is shown in Table 3.12.

The total cost is $6 lower for a total of $604 in the original problem. Moreover, all of the 
reduced costs are now non-negative. Just as in the Simplex method, when the reduced 
costs are all non-negative, the current solution must be optimal.
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TABLE 3.12

Optimal Solution

Sources Sinks (Customers)

(Warehouses) 1 2 3 4 5 Supply ui

21 0 6 0 11 –3

1 3 17 20
10 0 3 1 0 –2

2 11 9 20
0 2 0 0 6 0

3 12 12 1 0 25
Demand 12 14 12 18 9 65

vj 10 10 13 5 22
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3.3.2 Assignment Problem and Stable Matching

Our discussion of transportation models has dealt with the flow of some entity or material 
between nodes of a network. By imposing a few simple assumptions on the transportation 
model, we find that we have an apparently new kind of optimization problem.

Suppose, for example, that we wish to assign n people to n jobs; that is, we wish to associ-
ate each person with exactly one job, and vice versa. Cost parameters cij denote the cost of 
assigning person i to job j. Decision variables now have a completely new meaning, repre-
senting an association or bond between two entities rather than the flow of a commodity 
between two nodes. Specifically, each variable xij is to have a value of either zero or one: 

 

x
1, if person i is assigned to job j

0, otherwise
ij =









 

If in the transportation model we require m = n, and assign all the supply and demand 
parameters a value of 1, then we have the following formulation for the assignment 
problem. 
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Re-examining Figure 3.7 under the current assumptions, we see that we are establishing a 
flow of 1 unit out of each person node and a flow of 1 unit into each job node. The constraints 
corresponding to supply and demand constraints in the transportation model enforce the 
one to one association between persons and jobs. The aforementioned constraints (1) spec-
ify that each person be assigned to exactly one job, while constraints (2) specify that each 
job have exactly one person assigned to it.

Because network problems with integer parameters can be solved using the Simplex 
method to obtain integer solutions, we might simply replace the 0–1 constraint by the 
constraints xij  ≥  0 and xij  ≤  1, and treat this problem as an ordinary linear program-
ming problem. The difficulty here lies in the inefficiency that may result from problem 
degeneracy. (Notice that we have 2n constraints, and only n of the decision variables are 
allowed to have a value greater than zero. Therefore, in any feasible solution, n − 1 basic 
variables are zero; that is, any feasible solution to the assignment problem is degenerate.) 
Fortunately, the highly specialized structure of the assignment model can be exploited 
in an efficient algorithm designed specifically for this problem. The algorithm is known 
as the Hungarian Method, named in honor of the Hungarian mathematicians König and 
Egervary who established the fundamentals upon which the algorithm is based.
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The simple structure of the assignment model leads to a solution that is intuitively easy 
to follow. The key to this method lies in the fact that a constant may be added to or sub-
tracted from any row or column in the cost matrix without affecting the optimal solution. 
Suppose we add a constant k to row p of the cost matrix. Then the new objective function 
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Similarly, if we add a constant k to column q, then 
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We will use this property of the assignment model to modify (repeatedly, if necessary) the 
cost matrix, and thereby create a new matrix in which the location of zero elements indi-
cates an optimal feasible solution.

In order to do this, we wish to create a cost matrix with a zero in every row and every 
column. If we can do this, then our modified objective function value is zero; and since the 
cost cannot be negative, we know a zero value is optimal.

As an example, consider the cost matrix 

 

4 9 8
6 7 5
4 6 9















 

To obtain zero elements, we subtract the smallest element from each row. Subtracting 4, 5, 
and 4 from rows 1, 2, and 3, respectively, we obtain the modified cost matrix 

 

0 5 4
1 2 0
0 2 5















 
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This does not yet identify for us a feasible solution, but if we subtract 2 (the smallest 
element) from the second column, we obtain 

 

0 3 4
1 0 0
0 0 5















 

From this we can make an optimal feasible assignment using the zero elements marked 
with squares. 

 

0 3 4

1 0 0

0 0 5

















 

Assignment variables x11 = x23 = x32 = 1, and all the others are zero. The actual objective 
function cost, based on the original cost matrix, is 4 + 6 + 5 = 15.

Now look at a problem in which the solution is not revealed quite so readily. The cost 
matrix 

 

2 11 2 6
3 10 9 4
8 6 6 6

10 13 15 13


















 

can be immediately reduced to the matrix 

 

0 9 0 4
0 7 6 1
2 0 0 0
0 3 5 3


















 

Now, every row and column contains a zero element, so we cannot subtract any more con-
stants in the obvious way. However, we can make only three feasible assignments. At this 
point, the Hungarian method prescribes that we draw the minimum possible number of 
horizontal and vertical lines so that all zero elements are covered by a line. (The number of 
such lines that will be necessary is just exactly the number of feasible job assignments that 
can be made using the current cost matrix.)

A simple procedure for obtaining the minimum number of lines can be summarized as 
follows. Suppose you have made as many assignments as possible (to zero entries in the 
matrix), but there are less than n assignments: 

 1. Mark every row that has no assignment.
 2. Mark every column that has a zero in a marked row.
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 3. Mark every row that has an assigned zero in a marked column.
 4. Repeat from Step (2) until no new columns can be marked.

In Step (2), if we ever mark a column that has not been assigned yet, we can construct a new 
solution with one additional assignment. Column j was marked because row i was marked. 
Shift the assignment in row i to column j. This frees up another marked column. Assign 
this new marked column in a similar way until, eventually, we can assign a marked row 
that previously had no assignment.

Otherwise, draw a line through every unmarked row and every marked column. It is easy 
to verify that these lines cover every zero and that the number of lines equals the number 
of current assignments. For example, in the modified cost matrix 

 

0 9 0 4

0 7 6 1

2 0 0 0
0 3 5 3




















 

mark row 4, mark column 1, and mark row 2. After drawing the three lines, select the min-
imum uncovered element, subtract this value from all the uncovered elements, and add it 
to all elements at the intersection of two lines. In this case, we select the value 1, subtract 
it from uncovered elements on rows 2 and 4, and add it to the intersection elements in the 
first column. (Although the Hungarian method is popularly described in terms of drawing 
lines and manipulating covered and uncovered elements, observe that these operations 
are just equivalent to subtracting and adding a constant to entire rows and columns. In 
our example, we are subtracting the constant value 1 from rows 2 and 4 and adding 1 to 
column 1.) The result is the further modified cost matrix 

 

1 9 0 4

0 6 5 0

3 0 0 0

0 2 4 2




















 

from which we can make four feasible assignments: x13 = x24 = x32 = x41 = 1. The cost of 
this assignment is obtained from the original cost matrix as c13 + c24 + c32 + c41 = 2 + 4 + 
6 + 20 = 22.

This process ensures that at least one new zero entry will be generated at each iteration, but 
the number of assignments does not necessarily increase. However, the Hungarian method is 
guaranteed to solve the problem; this iterative procedure will be repeated as many times 
as necessary so that a complete feasible assignment is finally obtained.

The Hungarian method is relatively efficient for solving large problems. However, there 
are more efficient commercial codes available that can dramatically reduce computation 
time. This can be very important when an application requires, for example, that several 
thousand assignment problems be solved as subroutines in a larger problem.

In case there is a mismatch between the number of people and the number of jobs, the 
problem is brought into balance by adding either dummy people or dummy jobs, as needed. 
For example, if there are m people and n jobs, and m > n, then there are not enough jobs 
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so we add m − n dummy jobs, and a set of zero-valued cost coefficients for each. Once 
the balanced problem is solved, any person assigned to a dummy job actually has no job. 
Similarly, if m < n, the problem is balanced with dummy people; and in the final solution, 
n − m jobs actually have no one assigned to them.

3.3.2.1 Stable Matching

While the classical assignment problem seeks to find an association of objects that is opti-
mal from a collective, or global, point of view, it does not necessarily consider individual 
preferences or affinities. Suppose the entries in the cost matrix actually represent rankings, 
so that finding a minimum cost assignment actually associates objects according to their 
preferences. Now if the objects being associated with each other are people being assigned 
to machines, the people probably have preferences, while the machines do not. But if we 
have employees (people) being assigned to employers (also people), then most likely there 
are preferences on both sides. Similar situations arise, for example, when medical residents 
are being assigned to hospitals, or when graduate students become associated with certain 
doctoral programs, because in all these cases there are mutual preferences involved, which 
certainly might be different on the side of the employer than on the side of the employee. 
The workers could probably rank their preferences for employers and the employers could 
probably rank their preferences among the pool of potential employees. In this case, there 
are two cost matrices, reflecting the preferences of both groups.

If we wish to treat this as an ordinary assignment model, a single cost matrix can be 
constructed by simply adding corresponding elements of the rank matrices (Exercise 3.9 
at the end of this chapter). Remember, however, that the (i, j)-th element of the employee 
rankings does not get added to the (i, j)-th element of the employer rankings, but rather to 
the (j, i)-th element. Information about employee i and employer j is in the (i, j)-th position 
in the first matrix but in the (j, i)-th position in the second matrix.

The Hungarian method, when applied to this problem, yields a solution that is in some 
sense for the collective good of both employees and employers. But what about the indi-
viduals or employers who do not get their first or even second choices? The behavioral 
reaction of these people is dealt with by using a model that is known as the stable marriage 
problem (so-called because this model hypothetically could be used to represent the prefer-
ences of groups of people who are to be matched for marriage) (Knuth 1976).

For this example, we will use a group of four men and a group of four women. Consider 
the following preference matrices, and the corresponding cost matrix composed in the 
way we described earlier.

Woman Man

W X Y Z A B C D

Man A 2 1 3 4 Woman W 1 3 4 2
B 1 2 3 4 X 3 2 4 1
C 4 1 2 3 Y 1 3 4 2
D 1 3 2 4 Z 4 2 1 3

W X Y Z

Cost = A 3 4 4 8
B 4 4 6 6
C 8 5 6 4
D 3 4 4 7
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The matching A–Y, B–X, C–Z, D–W has a cost of 4 + 4 + 4 + 3 = 15, and is optimal when 
viewed as an ordinary assignment problem; but from an individual perspective, that 
matching leaves something to be desired. Notice that man A and woman W both prefer 
each other over the one they are matched to. A matching is called unstable if two people 
who are not married prefer each other to their spouses. In our example, A and W acting 
according to their preferences would leave Y and D, respectively, for each other. Then there 
would be little choice for Y and D but to get together with each other—a disappointment 
for each, since now each is paired with a second-ranked choice, whereas previously both 
had been matched with their first-ranked choices. (Observe that this rearrangement A–W, 
B–X, C–Z, D–Y has the same cost, z* = 15, as the previous matching when viewed as a 
simple assignment problem.)

Finding stable matchings is a difficult problem, both from a sociological and a compu-
tational standpoint. Even the problem of determining whether a matching is stable is dif-
ficult; and the process of removing instabilities one at a time is not only slow but can lead 
to circularities that prevent the algorithm from terminating.

A better approach seems to be to construct stable matchings from the outset. In fact, 
algorithms exist to construct a stable matching efficiently. However, the overall quality 
(cost) of the assignment may be quite poor (everyone may be unhappy but stable), and 
all known algorithms for this tend to be biased in favor of one group or the other (men 
over women, employers over employees, etc.). A well-known propose and reject algorithm 
constructs a stable assignment in O(n2) time, but unfortunately the matching is done from 
a man-optimal point of view, and in fact a consequence of the method is that each woman 
obtains the worst partner that she can have in any stable matching. The only remedy is 
to create a stable matching from a woman-optimal point of view, with the corresponding 
consequence to each man. We can clearly see here that there are important economic and 
sociological effects involving employment stability and worker satisfaction for which we 
currently have no good solutions (Ahuja et al. 1993).

3.3.3 Capacitated Transshipment Problem

The most general form of the minimum cost network flow problem arises when some 
commodity is to be distributed from sources to destinations. Each node can create a cer-
tain supply or absorb some demand of the commodity. It is not necessary for each unit of 
the commodity to be shipped directly from a source to a destination; instead, it may be 
transshipped indirectly through intermediate nodes on its way to its destination. In fact, 
the total supply could conceivably be routed through any node in transit. Links can have 
upper and lower bounds on the flow that may be assigned to them. The object then is to 
meet the demands without exceeding the available supply, and to do so at minimum cost. 
This model is known as a minimum cost flow problem or as a capacitated transshipment 
problem. We let xij represent the number of units shipped along the arc from node i to 
node j, and cij denote the per unit cost of that shipment. Capacities are specified by lower 
bounds ℓij and upper bounds uij on each arc from node i to node j. Flow balance equa-
tions enforce the constraint for a net supply si at each node i. The net supply at a node is 
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expressed as total flow out minus total flow in. (If si is negative, it will be interpreted as a 
net demand constraint.) The formulation is as follows: 
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Summations are taken over all index values for which the corresponding arcs exist in the 
network. To keep the notation simple, we assume that  ij = uij = 0 for all non-existent arcs.

Most introductory textbooks that describe the transshipment problem, explain how it 
can be modeled as an expanded transportation problem with dummy demands and sup-
plies for each intermediate node. The two models are, in fact, equivalent. And although 
that approach will work for small problems, it is not recommended for any applications of 
practical size.

The minimum cost network flow problem could also be solved using the Simplex 
method presented in Chapter 2. However, the special structure in the formulation makes 
the problem amenable to more efficient solution techniques. The structure is apparent in 
the flow balance equations (constraints [1] in our previous formulation). The variables xij 
appear with coefficients of only 0, +1, and −1 in each equation. And because each arc flows 
into exactly one node and out of exactly one node, each variable appears in exactly two of 
the flow balance equations. This matrix of coefficients is known as a node-arc incidence 
matrix and is fundamental to the methods that have been tailored for use on this problem.

One efficient technique for solving the minimum cost flow problem is a specializa-
tion of Dantzig’s Simplex algorithm, and has been called the Simplex on a graph algorithm 
(Kennington 1980). One implementation of this method is reported to be over 100 times 
faster than a general linear programming code applied to the minimum cost flow problem.

Another method, developed by Fulkerson specifically for the minimum cost flow prob-
lem, is called the out-of-kilter algorithm. Each arc is either in kilter or out of kilter, indicating 
whether that arc could be in a minimum cost solution. Kilter numbers specify how far an arc 
is from being in kilter. Beginning with any maximum feasible flow, the algorithm repeat-
edly selects an out-of-kilter arc, and adjusts the flow in the network so as to reduce the 
kilter number of the chosen arc, while not increasing the kilter number of any other arc, 
and maintaining feasible flow. When all arcs are in kilter, the current solution is the mini-
mum cost flow. Clear and complete descriptions of this method may be found in several 
of the references cited at the end of this chapter, including Kennington (1980), Price (1971), 
Battersby (1967, 1970), Hu (1970), and Tarjan (1983).
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The following example, from Glover and Klingman (1992), illustrates the creative use 
of the transshipment model for production planning and distribution decisions. A major 
U.S. car manufacturer must determine the number of cars of each of three models M1, M2, 
and M3 to produce at the Atlanta and Los Angeles plants, and how many of each model to 
ship from each plant to distribution centers in Pittsburgh and Chicago. Subject to bounds 
on production capacities, demands, and shipment capacities, the objective is to identify a 
minimum cost production-distribution plan. A network model for this problem is given 
in which arcs from plant locations to plant/model nodes are labeled with upper and lower 
bounds on production levels, and with production costs for each model at each plant. 
Similarly, arcs from distribution/model nodes to distribution point nodes are labeled to 
indicate bounds on demands. Links from plant/model nodes to distribution/model nodes 
are labeled with the appropriate transportation costs, and with capacity restriction limits, 
if any.

A solution to this problem determines the production and distribution decision for the 
car manufacturer; but, moreover, it solves a multi-commodity problem with a straightfor-
ward transshipment model. By having distinct nodes for each model type, the production 
and distribution plan for each model is established.

3.4 Network Connectivity

3.4.1 Minimum Spanning Trees

Now consider a network problem in which we wish to select the fewest possible arcs in the 
network that will keep the graph connected. Recall that a graph is connected if there is at 
least one path between every pair of nodes. We furthermore want to select just those arcs 
with the smallest weights or costs. This is called the minimum spanning tree problem.

A typical application for a minimum spanning tree may arise in the design of a data com-
munications network that includes processor nodes and numerous (possibly redundant) 
data links connecting the nodes in various ways. We would like to determine the set of 
data links, with the lowest total cost, that will maintain connectivity, so that there is some 
way to route data between any pair of nodes. Similarly, in any type of utility distribution 
network or transportation network, it may be desirable to identify the minimum set of con-
nections to span the nodes.

Such a minimal set of arcs always forms a tree. Clearly, the inclusion of any arc result-
ing in a cycle would be a redundant arc, and this could not be a minimum spanning tree. 
To see this, suppose that the optimal solution contains a cycle. Select any arc (i, j) in the 
cycle, and delete it. Notice that any two nodes that were connected using arc (i, j) are still 
connected because nodes i and j are still connected by moving the other way around the 
cycle. Therefore, the solution could not have been optimal because we easily constructed 
a better (less costly) one.

We present two algorithms for solving this problem. The choice of which one to use for 
a particular application depends on the density or sparsity of the network in question. 
The two algorithms are quite simple, and are sometimes called greedy algorithms because 
at each stage we make the decision that appears locally to be the best; and in so doing, we 
finally arrive at an overall solution that is optimal. (As has already been suggested, it is a 
rare and wonderful thing when we are able to solve combinatorial problems using simple 
greedy algorithms.)
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Our first solution to the minimum spanning tree problem is Prim’s algorithm, which 
operates by iteratively building a set of connected nodes as follows: 

 1. Arbitrarily select any node initially. Identify the node that is connected to the first 
node by the lowest cost arc. These two nodes now comprise the connected set, and 
the arc connecting them is a part of the minimum spanning tree.

 2. Determine an isolated node that is closest (connected by the lowest cost arc) to 
some node in the connected set. (Break ties arbitrarily.) Add this node to the con-
nected set of nodes and include the arc in the spanning tree. Repeat this step until 
no nodes remain isolated.

Prim’s algorithm is illustrated by the example shown in Figure 3.11a, where the sequence 
of pictures (b) through (e) shows the iterative construction of the minimum spanning tree. 
Node B is arbitrarily chosen as the initial node. Node C is its closest neighbor. Then node E 
is attached, followed by node D and finally node A. In the figure, nodes are outlined boldly 
as they become connected.

The arcs in the spanning tree have weights 1, 2, 4, and 5, yielding a cost of 12 for the 
minimal spanning tree. Note that the choice of initial node B is arbitrary, and any choice 
for the initial node would have yielded a tree whose cost is 12.

The complexity of Prim’s algorithm is O(n2) for an n-node network. If the network is 
sparse (with much less than n2 arcs), the performance of this algorithm on large networks is 
unnecessarily slow. For such cases, we have an alternative algorithm, known as Kruskal’s 
algorithm, whose performance is O(e log e) where e is the number of arcs. Thus, in a sparse 
network where e is much less than n2, Kruskal’s algorithm is superior; whereas in dense 
networks, Prim’s algorithm is preferred.

Kruskal’s algorithm operates by iteratively building up a set of arcs. We examine all the 
arcs, in increasing order of arc cost. For each arc, if the arc connects two nodes that are 
currently not connected (directly or indirectly) to each other, then the arc is included in 
the spanning tree. Otherwise, inclusion of the arc would cause a cycle and therefore could 
not be a part of a minimum spanning tree. This algorithm is another example of a greedy 
method. With Kruskal’s algorithm, we ensure a minimum cost tree by examining and 
choosing the lowest cost spanning arcs first. Figure 3.12 shows the sequence of arcs chosen 
for a minimum spanning tree for the network in Figure 3.12a.

Tarjan provides a historical perspective on solutions to spanning tree problems, and 
describes several efficient variations to Prim’s and Kruskal’s algorithms. In such imple-
mentations, the improved complexity hinges on the use of specialized data structures 
(such as heaps and priority queues). Tarjan also discusses mechanisms for sensitivity 
analysis (Tarjan 1982): an algorithm is available for testing whether a given spanning tree 
is minimal, and it is also possible to determine how much the cost on each arc can be 
changed without affecting the minimality of the current spanning tree.
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It is interesting to note how difficult the minimum spanning tree problem becomes 
when certain constraints are added. If we place limits on the degree of all the nodes in the 
spanning tree, then the minimum spanning tree problem becomes NP-hard. Such restric-
tions might reasonably apply in an actual application, for example, where we could have a 
limited number of I/O ports on each microprocessor in a multiprocessor network.

3.4.2 Shortest Network Problem: A Variation on Minimum Spanning Trees

In the minimum spanning tree problem, we choose a minimum cost subset of arcs that 
connect the vertices. But suppose that, instead of choosing a set of arcs from among those 
already in the network, we allow ourselves to introduce new connections in addition to the 
original arcs. Consider the following common problem. An electrician has decided where 
to place the outlets in a home, and now wants to connect the outlets back to the circuit box 
using the minimum amount of wire. Note that any circuit is a spanning tree. But, as any 
electrician will tell you, to minimize the total length of cable, you should in fact introduce 
new nodes (junction boxes) in the network, and then find the minimum spanning tree.

Consider the simple network in Figure 3.13 in which the nodes are the vertices of an equi-
lateral triangle and the arcs connect each pair of nodes. The length (or weight) of each of the 
arcs is four units. A minimum spanning tree has a length of 8, and is obtained by choosing 
any two of the three arcs as shown in Figure 3.13a–c. But if instead of choosing a subset of 
the given arcs, we judiciously introduce a new node or junction point, we find that we are 
able to span the three nodes with line segments whose total length is only about 6.928. This is 
the shortest network that spans the three original vertices, and is illustrated in Figure 3.13d.

Clearly, this could represent a substantial saving in the cost of links if we were designing 
the connections in communication networks, circuit board layouts, or highway or utility 
distribution networks. This example is an instance of what is called the Steiner tree prob-
lem: where should we introduce new nodes in the network to minimize the corresponding 
spanning tree?

The difficulty of the Steiner tree problem lies in selecting the location of the extra junction 
points. Geometric intuition probably tells us that the solution in Figure 3.13d is better than 
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mum spanning tree, (d) shortest network, and (e) sub-optimal junction point.
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the one in Figure 3.13e. However, consider a slightly larger problem, such as the graph with 
six nodes arranged in a grid in Figure 3.14. Is this an optimal Steiner tree? In fact, there is 
a slightly better set of junction points and connections than the ones shown in the figure, 
but how would we know this? And what about solving much larger problems?

The best known algorithms for solving the Steiner tree problem are based on an algo-
rithm of Melzak (1961); and although numerous modifications to that algorithm have 
improved its efficiency, the algorithms still require exponential computation time.

Although the Steiner tree problem is NP-hard, we still have practical algorithms that 
yield approximations to the solutions that we want. In fact, we even have the guarantee 
that a Steiner tree is at most 17.6% shorter than a minimum spanning tree. Thus, we can 
use an efficient greedy algorithm (such as Prim’s or Kruskal’s) and obtain a spanning tree 
whose length is at most only about 21% greater than that of a Steiner tree whose calculation 
may require exponential effort. Here again, the analyst is faced with the choice of accept-
ing a possibly suboptimal solution that can be obtained easily, versus a provably optimal 
solution that is obtainable only at enormous computational expense. Of course, the house-
hold electrician is probably inserting a few extra junctions at obvious locations and very 
likely feels that his solution is convenient and satisfactory from a practical standpoint. See 
Bern and Graham (1989) for an interesting historical perspective on Steiner problems, exact 
and approximate algorithms.

3.5 Shortest Path Problems

We will now consider a class of network problems in which we try to determine the short-
est (or least costly) route between two nodes. The chosen route need not necessarily pass 
through all other nodes. An obvious application of this type of problem is represented by 
a vehicle traveling from a departure point to a final destination passing through different 
points via the shortest route. Similarly, a distributed computer network that must route 
data along the shortest path between designated pairs of processing nodes. We will also 
see other, less obvious applications that can be solved with shortest path algorithms (see 
exercises) or with methods reminiscent of shortest path algorithms (Sections 3.6 and 3.7).

The shortest path problem can be viewed as a transshipment problem having a single 
source and a single destination. The supply at the source and the demand at the destination 

FIGURE 3.14
Steiner tree problem.
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are each considered to be one unit, and the cost of sending this unit between any two 
adjacent nodes is indicated by the cost (weight or distance) on the arc connecting the two 
nodes. By finding a minimum cost transshipment, we are in fact determining the shortest 
route by which the unit can travel from the source to the destination. Although the short-
est path problem could be dealt with by using the more general transshipment model, the 
structure of the shortest path problem makes it amenable to much more specialized and 
efficient algorithms.

3.5.1 Shortest Path through an Acyclic Network

There are several well-known algorithms for finding the shortest path between certain 
pairs of nodes in a network. We will concentrate first on a particularly simple algorithm 
that is based on the use of recursive computations. This approach to shortest path prob-
lems will also provide us with a foundation for the study of dynamic programming and 
project management in the next two sections of this chapter.

As an illustration, consider the acyclic network in Figure 3.15, where arc labels dij denote 
distance from node i to node j. Notice that in an acyclic graph, it is always possible to name 
the nodes in such a way that an arc is oriented from a lower-numbered node to a higher 
numbered node. (A consequence of this property is that such a network can be represented 
by an adjacency matrix that is upper triangular, requiring only (n2 + n)/2 storage loca-
tions in computer memory instead of n2.) We wish to determine the shortest path from the 
lowest-numbered node to the highest-numbered node.

The algorithm operates by assigning a label to each node, indicating the shortest dis-
tance from that node to the destination. A node is eligible for labeling if all its successors 
have been labeled. 

 1. Initially, the destination node is given a label of zero, indicating that there is no 
cost or distance associated with going from that node to itself.

 2. Choose any eligible node k, and assign it a label pk as follows:
  pk = min {dkj + pj}, the minimum taken over all successors j of node k
 3. Repeat Step 2 until the source node is labeled. The label on the source is the shortest 

distance from the source to the destination.
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FIGURE 3.15
Acyclic network with node labels.
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In the illustration in Figure 3.15, initially p6 = 0. Next, node 5 is eligible and p5 = 6 + 0 = 6. 
The label for node 4 is computed as p4 = min {5 + 0, 4 + 6} = 5. Node 3 is now eligible, and 
p3 = min {1 + 5, 2 + 6, 8 + 0} = 6. The label on node 2 is p2 = min {3 + 5, 3 + 6} = 8, and finally 
p1 = min {3 + 8, 4 + 6} = 10. Thus, the length of the shortest path is 10, and the path itself 
is obtained by tracing back through the computations to find the path containing the arcs 
(1,3), (3,4), (4,6).

This backward labeling procedure has an intuitive appeal when the problem is small 
enough that the labels can be shown in a diagram. For larger problems, we may obtain 
better insight by examining the recursive structure of the computations. For this, we will 
again use the illustrative network from Figure 3.15. We wish to determine a label for node 1; 
but in order to compute p1, we require the labels for nodes 2 and 3. Obtaining these labels 
involves the recursive labeling procedure (twice). Each of these recursive computations in 
turn requires further recursion. The pattern of recursive calls to obtain the label on the first 
node is illustrated as follows, where L(i) denotes pi: 
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Observe that the label on each node summarizes information on higher-numbered nodes. 
In fact, the value of the label on any node is actually the length of the shortest path from 
that node to the destination.

3.5.2 Shortest Paths from Source to All Other Nodes

A more general algorithm that can be applied to any network having all arc labels non-
negative is known as Dijkstra’s algorithm. This algorithm begins with the source node 
and determines the shortest paths from the source to every other node. During the opera-
tion of Dijkstra’s algorithm, the nodes are partitioned into two sets: a set, which we shall 
call S, to contain nodes for which the shortest distance from the source is known, and 
another set T to contain nodes for which this shortest distance is not yet known. A label pi 
is associated with every node i and specifies the length of the shortest path known so far 
from the source (node 1) to node i. Again, we let dij denote the direct distance from node i 
to node j. 

 1. Initially, only the source node is placed in set S, and this node is labeled zero, indi-
cating that there is zero distance from the source to itself.

 2. Initialize all other labels as follows:
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 3. Choose a node w, not in set S, whose label pw is minimum over all nodes not in S, 
add node w to S, and adjust the labels for all nodes v, not in set S, as follows:

 ,p min p  p dv v w wv= +{ } 

 4. Repeat Step 3 until all nodes belong to set S.

In step 3, we assume that pv is the shortest distance from the source to node v directly 
through nodes in S. When we add node w to S, we check whether or not the new dis-
tance through w is shorter, and update if necessary. We will use the network shown in 
Figure 3.16 to illustrate Dijkstra’s algorithm.

Initially S = {1}, and p1 = 0, p2 = 5, p3 = 3, p4 = 8, p5 = ∞, and p6 = ∞. We then choose the 
minimum label 3 on node 3, and S = {1, 3}. Labels are now 
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In the next iteration, we select the label 5 on node 2, so that S = {1, 3, 2} and new labels are 
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From these labels, we break a tie arbitrarily and select the minimum label 7 on node 5. 
Now S = {1, 3, 2, 5} and 
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FIGURE 3.16
Shortest path with Dijkstra’s algorithm.
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Now we choose node 4 and S = {1, 3, 2, 5, 4}, and 

 ,p min 6 10 7 2 9= + ={ }  

Finally, node 6 is added to set S. The final labels are p1 = 0, p2 = 5, p3 = 3, p4 = 7, p5 = 7, and 
p6 = 9, and the values of these labels indicate the lengths of the shortest paths from node 1 
to each of the other nodes.

On a dense graph of n nodes and e arcs, represented by an adjacency matrix, Dijkstra’s 
algorithm executes in time O(n2). In a sparse network where e is much less than n2, it is 
worthwhile to represent the graph as an adjacency list, and to manage the node partitions 
using a priority queue implemented as a partially ordered tree (Aho and Hopcroft 1974). 
In that case, the running time is O(e log n).

The proof of optimality of Dijkstra’s algorithm requires that all the arcs have positive 
labels. But consider a network in which arcs represent stages of a journey. Along certain 
arcs a cost is incurred (positive cost), while on other arcs it is possible to turn a profit (nega-
tive costs). Our objective would be to find a minimum cost path from source to destination 
and, if possible, a path with negative cost (i.e., a profitable path). An algorithm developed 
by Bellman (1958) and Ford Jr. (1956) will solve this problem as long as there is no cycle 
in which the sum of the arc lengths is negative. (Observe that, if there were a cycle with a 
negative total length, then we could simply travel around the cycle indefinitely reducing 
our cost with no lower bound.)

Suppose we have a network for which we would like to know the shortest distance 
between any two nodes. This is called the all-pairs shortest path problem. For this prob-
lem, Dijkstra’s algorithm could be applied n times (using a different node each time 
as the source) to obtain the desired result in time O(n3). Another algorithm known as 
Floyd’s algorithm provides the solution in a more direct way, also in time O(n3) but with 
a much lower constant factor than Dijkstra’s algorithm. However, for large sparse graphs, 
clever use of data structures will allow Dijkstra’s algorithm to operate in O(n e log n) 
time. Algorithms for the second shortest path through a network, the n-th shortest path, 
and for all possible paths between two specified nodes, are described and illustrated in 
Price (1971).

3.5.3 Problems Solvable with Shortest Path Methods

We have shown how shortest path methods can be used to determine the shortest (fast-
est, or least costly) route between two locations in a network. A couple of additional illus-
trations should indicate the great variety of problems that can be modeled and solved 
in this way.

A frequently cited example is one in which we wish to determine the most cost-effective 
schedule for the replacement of equipment over a period of time. Let us suppose circuit 
boards for A/D conversion in a navigation computer are to be replaced at intervals over a 
period of 6 months. Ideally, replacement should occur before an actual breakdown in order 
to maintain an operational system. Frequent replacement incurs capital expenses and costs 
of labor for installation. But infrequent replacement may lead to increased maintenance 
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costs and unacceptably high rates of system downtime. If we collect data on the costs of 
purchase, installation, and maintenance, cost of expected downtime, and salvage value of 
replaced boards, we can arrive at a tabularized summary of these expenses, such as shown 
in Table 3.13.

Any circuit board becomes a candidate for replacement after one month. This problem 
can be represented as a network (Figure 3.17) with nodes representing the months, and 
arcs labeled with the costs shown in the table. By finding the shortest path between node 
Jan and node Jun, we obtain the optimal (least costly) replacement policy. The route Jan → 
Mar → Jun, with minimal cost 6.75 + 9.00 = 15.75, indicates that circuit boards installed in 
January should be replaced in March and again in June.

This approach is often used for practical situations. However, observe that if we add a 
node for July, or August, the optimal solution will change. We can overcome this problem 
by using a rolling horizon. For example, in January, we might use a 24-month formulation 
to decide when to perform the first replacement. That is, we use just the first shortest path. 
When we get to that month chosen for replacement, we formulate a new shortest path 
problem for the next 24 months. Many other practical problems have a similar structure.

An apparently unrelated set of problems is often illustrated in the form of riddles or 
puzzles. The context may involve ferrying missionaries and cannibals, foxes and chick-
ens, monkeys and bananas; or separating a volume of some liquid by using an apparently 

TABLE 3.13

Equipment Replacement Costs

Circuit Board Replaced

Feb Mar Apr May June

Circuit Board 
Installed

Jan 5.00 6.75 8.25 12.50 16.80
Feb 5.25 6.25 9.50 11.50
Mar 5.25 7.25 9.00
Apr 5.50 8.20
May 5.80

Jan MarFeb MayApr Jun5.255.00 5.505.25 5.80

15.75

11.50 9.00 5.808.20 0
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FIGURE 3.17
Equipment replacement schedule.
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inappropriate set of containers or measuring devices; or rearranging the elements of a plas-
tic puzzle. In each of these problems, there is some initial configuration, and a sequence of 
simple one-step moves or operations, concluding eventually in some desired goal configu-
ration. Each of these problems can be solved in the following way. Create a set of nodes in 
which each node represents a possible configuration of the system. Place a directed arc to 
indicate where a transition can be made from one configuration node to another through 
one simple move. Assign a cost of 1 to each arc in the network. If there are multiple goal 
configurations, join those nodes to a common sink node and label these new arcs zero. The 
shortest path from the initial configuration node to the sink or goal configuration node 
represents a solution to the problem, and moreover, this path describes the solution obtain-
able in the smallest number of steps.

3.6 Dynamic Programming

Dynamic Programming is an approach to solving mathematical programming problems 
by decomposing a problem into simpler, interdependent, subproblems, and then finding 
solutions to the subproblems in stages, in such a way that eventually an optimal solution to 
the original problem emerges. Because this approach has been used particularly for appli-
cations that require decisions to be made dynamically over time, the descriptive name 
dynamic programming has come into common use. However, this procedure is applicable to 
any problem that can be dealt with as a staged decision-making process.

In most of the optimization problems that we have seen thus far, all of the decision 
variables have been dealt with simultaneously. Arbitrarily complex interactions among 
decision variables are precisely what make general mathematical programming problems 
difficult. However, many problems have a structure that allows us to break the problem 
into smaller problems that can be dealt with somewhat independently. As long as we are 
able to preserve the original relationship among the subproblems, we may find that the 
total computational effort required to solve the problem as a sequence of subproblems is 
much less than the effort that would be required to attack all components of the problem 
simultaneously.

Unlike linear programming and other specialized mathematical programming formula-
tions, dynamic programming does not represent any certain class of problems, but rather an 
approach to solving optimization problems of various types. Because the procedure must 
be tailored to the problem, the successful application of dynamic programming principles 
depends strongly on the intuition and talent of the analyst. Insight and experience are 
required in order for a problem-solver to perceive just how (or whether) a problem can be 
decomposed into subproblems, and to state mathematically how each stage is to be solved 
and how the stages are related to one another. Exposure to a large number of illustrative 
dynamic programming applications, including discrete and continuous variables, proba-
bilistic systems, and a variety of objective function forms, would be required in order to 
provide truly useful and comprehensive insights into the craft of dynamic programming. 
Even then, it must be admitted that many problems simply do not lend themselves effi-
ciently to the dynamic programming framework.

We will examine some examples, and in the process we will also describe some of the uni-
fying themes and notations of the dynamic programming approach. For further exposure 



126 Operations Research

to this problem-solving tool, refer to the discussions by Bellman (1957), Nemhauser (1966), 
Beightler (1976), and White (1969).

3.6.1 Labeling Method for Multi-Stage Decision Making

Our first example of the use of the dynamic programming approach involves a choice of 
transportation routes. Figure 3.18 shows a system of roads connecting three sources Hi 
that generate hazardous by-products with two sites Dj designated for the disposal of haz-
ardous waste materials. Three political borders (shown by dashed-lines) must be crossed 
in transit. Each straight-line section of road requires one day’s travel time, so it is a four-
day drive from any Hi to any Dj. However, at each border crossing, regulations require 
container inspection and possible recontainerization, and this can cause delays at each 
checkpoint. The number of days delay that can be anticipated is shown in the circle drawn 
at each checkpoint. The problem is to determine the route from generation sites to disposal 
sites that involves the minimum delays.

The stages in this multi-stage decision process correspond to the three borders that must 
be crossed. In the terminology of dynamic programming, the various checkpoints at each 
stage are called states. Thus, there are four states in the first stage, and three states in each 
of the second and third stages.

To solve this problem, we take an approach that is similar to the backward labeling 
method for shortest path through an acyclic graph. Our decisions will be made, beginning 
with the final stage, Stage 3, and moving backward (to the left) through the earlier stages. 
At each stage, we phrase our decision in the following way: for each possible state in the 
current stage, if this state is ever reached, what would be the minimum delay from here to 
the dump sites? If this question can be answered at every stage, then eventually at the first 
stage, we will have established our minimum delay route, as desired.

The mechanism that we will use is a backward node-labeling scheme. When we arrive 
at Stage 3, the delay to the dump site is just the delay at the third border crossing. We label 
each checkpoint node accordingly, as shown in Figure 3.19a.

At stage 2, the delay at the top node is 5 plus either four or three additional days. We 
choose the minimum 3 and label that node with 5 + 3 = 8. The other two nodes are labeled 
in the same way, as shown in Figure 3.19b.
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FIGURE 3.18
Hazardous waste disposal routes.
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Backing up to Stage 1, we similarly compute four labels, as shown in Figure 3.19c. Since 
all four checkpoints at Stage 1 are uniformly accessible from each of the generation sites, 
we can conclude that the minimum delay path goes through the node labeled 9 at the first 
border crossing (with a delay of 3). The optimal path is highlighted in Figure 3.19d, where 
the total delay of 9 is obtained by crossing the second border at the bottom node (where 
delay is 4), and from there crossing the third border at its bottom node (with a delay of 2).

3.6.2 Tabular Method

Dynamic programming problems can usually be represented more succinctly in tabular 
form rather than as a graph. Consider the following problem. A Director of Computing 
Facilities must decide how to allocate five computer systems among three locations: the 
Library, the University Computer Center, and the Computer Science Lab. The number of 
users who can be accommodated through various allocations is shown in Table 3.14.

By viewing this problem as a staged decision process, we can determine the optimal 
allocation that will provide computer access to the greatest number of users. Let Stage 1 
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FIGURE 3.19
Minimum delay path: (a) stage 3, (b) stage 2, (c) stage 1, and (d) optimal path.

TABLE 3.14

Computer Allocation Problem

Number of Users Served at Each Location

Number of Computers 
Allocated Library University Computer Center CS Lab

0 0 0 0
1 3 5 8
2 6 10 12
3 7 11 13
4 15 12 13
5 20 24 18
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denote the decision of how many computers to place in the Library, Stage 2 denote the 
decision for the Computer Center, and Stage 3 for the Computer Science Lab. As before, we 
will begin with the last stage, and work backward.

At the third stage, we do not know how allocations may be made at earlier stages, but 
regardless of what earlier allocations may have been decided, we wish to determine the 
optimal allocation for the remaining available computers. Since this is the last stage, we 
clearly should allocate all remaining computers (i.e., the ones that were not allocated in 
Stage 1 and Stage 2) to the Lab, as shown in Table 3.15.

At the second stage, the alternatives are somewhat more interesting. Again, we do 
not know what allocations may be made at earlier stages (Stage 1); but since this is not 
the last stage, we must consider the possibility of allocating only a portion of what is 
available, leaving some computers for allocation in Stage 3. The various possible alloca-
tions in Stage 2 are shown in Table 3.16. Each entry represented by a sum includes the 
number of users that can be served by placing some computers here at this stage, plus 
the optimal number that could be served by saving the remaining available computers 
for later stages.

We can conclude the solution to this problem now by solving Stage 1. In this case, we do 
not have to consider different numbers of available computers: we know that all five are 
available because there are no preceding stages (during which any could be allocated). We 
do, however, have the option to allocate any number of them, as shown in Table 3.17.

TABLE 3.15

Allocation to Computer Science Lab

Computer Science Lab

Number Available Number to Allocate Optimal Number of Users Served

0 0 0
1 1 8
2 2 12
3 3 13
4 4 13
5 5 18

TABLE 3.16

Allocation to University Computer Center

Number 
Available

Payoff for the Number Allocated to the University 
Computing Center Optimal 

Number of 
Users Served

By 
Allocating0 1 2 3 4 5

0 0 0 0
1 0 + 8 5 + 0 8 0
2 0 + 12 5 + 8 10 + 0 13 1
3 0 + 13 5 + 12 10 + 8 11 + 0 18 2
4 0 + 13 5 + 13 10 + 12 11 + 8 12 + 0 22 2
5 0 + 18 5 + 13 10 + 13 11 + 12 12 + 8 24 + 0 24 5
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The problem is now solved. The optimal number of users, 25, that can be served is 
obtained by allocating one computer to the Library. That leaves 4 available for Stage 2, 
and from the table for Stage 2, we know that the optimal decision is to allocate 2 to 
the Computer Center, leaving 2 for Stage 3, the Computer Science Lab. At Stage 3, we 
allocate both available computers. Thus, by placing 1, 2, and 2 computers, respectively, 
in the Library, Computer Center, and Lab, we can serve 3 + 10 + 12 = 25 computer 
users.

Notice that we could have used a graphical representation of this problem as shown 
in Figure 3.20, and the backward labeling technique, to find the optimal alloca-
tion. However, even in a problem of this size, the number of arcs becomes large and 

TABLE 3.17

Allocation to the Library

Number 
Available

Payoff for the Number Allocated to the Library
Optimal Number of 

Users Served By Allocating0 1 2 3 4 5

5 0 + 24 3 + 22 6 + 18 7 + 13 15 + 8 20 + 0 25 1
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awkward to display. We accomplish exactly the same thing conceptually using the 
more convenient tabular representation.

3.6.3 General Recursive Method

Using dynamic programming, we have now solved two problems—waste-disposal rout-
ing and computer allocation—as staged-decision problems. Each point where a decision 
is made is referred to as a stage of the decision process. In some problems, these stages 
correspond to stages in time; in other cases, they refer to geographical stages; and in oth-
ers, the stages may reflect a more abstract logical decomposition of the larger problem. The 
structuring of a complex problem into simpler stages of decision-making is the fundamen-
tal characteristic of the dynamic programming approach.

Within each stage, states are defined in such a way as to embody all the information 
needed in order to make the current decision and to fully define the ramifications of any 
current decision on future decisions. The specification of states is a critical performance 
factor in any dynamic programming solution. In practical problems, the number of pos-
sible states can quickly become unmanageable. Successful applications usually require 
considerable skill in the definition of the states.

In our illustrative examples, each stage has only one state variable (to specify which 
check-point on a border crossing, or how many computers are available for allocation to the 
current location). Some problems require more than one state variable, and each state of 
the system is represented by each possible combination of state variable values. Clearly, the 
number of possible states increases exponentially as the number of state variables grows, 
and the computational effort involved in solving the problem may become prohibitively 
expensive.

Decision variables in a dynamic programming model define the decisions made at each 
stage. Each decision yields some payoff (or return) that contributes to the objective func-
tion. Because of the staged structure of this method of problem-solving, determining the 
optimal value of a decision variable is a process that cannot be based on the entire problem 
but rather on only those stages of the problem that have already been dealt with. After 
identifying a final stage, and associating a payoff with each state in that stage, we then 
repeatedly move backward to preceding stages using a backward recursive relation, until 
we have finally arrived at an initial stage, and have thus sequentially arrived at a solu-
tion to the entire problem. Decisions at each stage must be made in accordance with the 
dynamic programming principle of optimality, which is stated as follows: regardless of 
the decisions made to arrive at a particular state, the remaining decisions must constitute 
an optimal policy for all successive stages, with respect to the current decision.

Suppose that our problem has N stages, and we are currently trying to compute stage n. 
Let sn denote the state and dn denote the decision made when there are n stages remaining 
in the solution process. Let fn (sn, dn) denote the total payoff or return for the last N − n 
stages, given current state sn and current decision dn. The optimal return for these N − n 
stages is then written as fn

*(sn) = fn(sn, dn
*), meaning that dn

* is the optimal decision for this 
state, regardless of how we arrive at this state. Clearly, if we can work backward to an ini-
tial stage, then f1

*(s1) is the optimal objective function value for an N-stage problem.
The return function for any state is written in terms of the return obtained from 

succeeding stages: 

 
f s max r(s ,d f (s )n

*
n

d
n n n 1
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n 1

n
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where r(sn, dn) is the return resulting from making decision dn while in state sn at the cur-
rent stage, and sn+1 is the new state that we will be in at stage n + 1 if we are in sn now, and 
make decision dn. Observe that we have previously computed the optimal cost for com-
pleting the solution process from all possible states sn+1. This recursive relation identifies 
the optimal policy for each state with N − n stages remaining, based on the optimal policy 
for each state with (N − n) − 1 stages remaining.

In the computer allocation example earlier, the Computer Science Lab location repre-
sents Stage 3, the University Computer Center is Stage 2, and the Library is Stage 1. States 
represent the number of computers available in a stage, and the decision variable speci-
fies how many to allocate in this stage. Therefore, to find the optimal allocation, we must 
compute 

 
f Library max r(s ,d f (s )1

*

d
1 1 2

*
2

1
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where s2 = s1 − d1. For this we need to have computed 
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where s3 = s2 − d2. Finally, f3
* is trivial to compute for all states in Stage 3 because all remain-

ing available computers should be used. The recursive computations for this example are 
shown for Stage 3 in Table 3.18, for Stage 2 in Table 3.19, and for Stage 1 in Table 3.20.

After the backward recursion is applied, the optimal objective function value is known, 
but the sequence of decisions leading to that optimum must be retrieved by tracing forward 

TABLE 3.18

Stage Three

f3(s3, d3)

s3 d3 = 0 1 2 3 4 5 d3* f3*(s3, d3)

0 0 0 0
1 8 1 8
2 12 2 12
3 13 3 13
4 13 4 13
5 18 5 18

TABLE 3.19

Stage Two

f2(s2, d2)

s2 d2 = 0 1 2 3 4 5 d2* f2*(s2, d2)

0 0 0 0
1 0 + 8 5 + 0 0 8
2 0 + 12 5 + 8 10 + 0 1 13
3 0 + 13 5 + 12 10 + 8 11 + 0 2 18
4 0 + 13 5 + 13 10 + 12 11 + 8 12 + 0 2 22
5 0 + 18 5 + 13 10 + 13 11 + 12 12 + 8 24 + 0 5 24
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to identify, at each stage, the decision that was chosen during the backward recursion. In 
the example, s1 = 5 and d1

* = 1. Therefore, s2 = 4. When s2 = 4, d2
* = 2, and hence s3 = 2. 

When s3 = 2, d3
* = 2.

Our discussion of dynamic programming has addressed only the most essential fea-
tures of the method, and we should now mention some variations to this problem-solving 
approach. In our two examples, there were a finite number of states at each stage, repre-
senting discrete roads to choose or whole items to allocate. Applications involving arbi-
trary allocations of money or weight, for example, may be modeled with a continuous 
state-space. In this case, the graphical and tabular methods are useless, but the recursive 
relations readily apply.

In each of our sample problems, the return at any stage was added to cumulative returns 
from succeeding stages. This was appropriate because the time delays and the number 
of users served were additive in nature. Different applications may involve costs that are 
compounded together in arbitrary mathematical ways. For example, in the hazardous 
waste disposal problem, if the checkpoints introduced probabilities of contamination or 
spillage, then the probabilities (of no contamination) at successive stages should be multi-
plied, rather than added, to find the safest route. In that case, 

 , ,( ) ( ) ( )*f s d r s d f sn n n n n n n= ⋅ + +1 1  

where fn+1
* (sn+1) is the minimum probability of contamination from stage n + 1 in state sn+1, 

and sn+1 is the state that we would be in if we were in state sn at stage n and made decision dn.
Our recursive relations have been expressed in the form of backward recursion, based on 

the stages remaining in the decision process. For most problems, it would be equally valid to 
define forward recursive relations, based on completed decision stages. The final result will be 
the same. For example, in the computer allocation problem, our state variables could repre-
sent the number of machines left in backward recursion, or we could define a forward recursive 
model based on the number of machines allocated so far. However, the definition of the state 
variables is often more intuitively appealing in one direction for a particular application.

3.7 Project Management

The planning and coordination of large complex projects, consisting of many tasks or 
activities, is often viewed as less of an optimization problem and more of a management 
procedure aimed at completing a project under certain resource constraints and with 
attention to various cost-time trade-offs. However, certain aspects of project manage-
ment can be dealt with conveniently by using network optimization methods that were 
 discussed earlier in this chapter.

TABLE 3.20

Stage One

f1(s1, d1)

s1 d1 = 0 1 2 3 4 5 d1* f1*(s1, d1)

5 0 + 24 3 + 22 6 + 18 7 + 13 15 + 8 20 + 0 1 25
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During the 1950s, two methodologies were developed—independently and 
simultaneously—for project management, and both approaches were based on network 
models. One method, called the Critical Path Method (CPM), was developed for the man-
agement of construction and production activities; while the other, called the Program 
Evaluation and Review Technique (PERT), was developed for the U.S. Navy in schedul-
ing research and development activities for the Polaris missile program. CPM is based 
on deterministic specifications of task durations, and is therefore appropriate for pro-
duction projects in which previous experience with the subtasks allows management to 
make reliable time estimates. PERT, on the other hand, is based on probabilistic estimates 
of task durations, and thus is most useful in a research and development environment 
where task completion times cannot be known in advance. Because both PERT and CPM 
approach project scheduling using similar network models and methods, the terms PERT 
and CPM are sometimes used interchangeably or collectively as PERT-CPM methods.

Large scale projects generally consist of a set of tasks or activities whose completion 
times are known or can be estimated (using a range of values, for example), and for which 
precedence constraints are specified, indicating that certain activities must be completed 
before others can begin. Simply identifying the distinct activities, and determining their 
durations and interdependencies, is an important part of the planning of any large project. 
PERT-CPM methods then provide for the construction of a network diagram, from which 
we can determine the minimum overall project duration and identify those tasks whose 
timely completion is critical or essential to the minimum project completion time. The 
purpose of this phase is to construct a schedule or time chart with start and finish times for 
each activity. Information may also be available that will allow us to evaluate the effect 
of putting extra money, people, or machines into a particular task in order to shorten the 
project duration. Thus, we can use the network to evaluate cost-time trade-offs. Finally, 
once the project is underway, the network diagram can be used in monitoring or  controlling 
the project, to follow the progress of the various activities, and to make adjustments where 
appropriate. These three phases—planning, scheduling, and controlling—are essential 
to the effective management of any large project. In the following sections, we will see 
how the network methods underlying PERT and CPM help to support these phases of 
management.

3.7.1 Project Networks and Critical Paths

A project network provides a graphical representation of the precedence relations among 
all the activities in a project. Each activity is represented by an arc in the network. The 
nodes in the network denote events corresponding to points in time when one or more 
activities are completed. Directions on the arcs indicate the sequence in which events must 
occur. Additionally, a node is added at the beginning of the network to represent the start 
event for the entire project. Similarly, a final node is introduced to denote the finish event 
for the project.

As an illustration, we will build a project network for a set of six activities with the 
 following precedence constraints: 

 1. A precedes D
 2. A and B precede C
 3. C and D precede F
 4. E precedes F
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The project network diagram is shown in Figure 3.21. Solid arcs denote activities 
A through E. Activities C, D, and E must all precede activity F. Therefore, we use event 4 to 
represent the time at which activities C, D, and E are all finished, and activity F can begin. 
We cannot combine events 2 and 3. We want event 2 to represent that A has finished and 
D can begin. Event 3 represents that A and B are finished and C can begin. To do this, we 
introduce a dummy activity from event 2 to event 3 with zero duration. The sole purpose 
of this is to ensure that event C does not start until event A has finished.

We let the variable ti represent the time at which event i occurs, and dij denote the dura-
tion of the activity represented by the arc between nodes i and j. In this example, suppose 
d12 = 4, d13 = 3, d14 = 4, d23 = 0, d24 = 5, d34 = 3, and d45 = 2. These individual activity lengths 
are shown in Figure 3.21 along the appropriate arcs. Since t1 and t5 are the start and finish 
times, total project length is (t5 − t1).

Now that the activities have been identified and described in the diagram, our 
next objective is to determine a minimum length project schedule; that is, to determine 
when each activity should begin so that precedence constraints are met and so that 
the entire project completes as quickly as possible. We can write the formulation as a lin-
ear programming problem, with constraints to assure that successive events i and j are 
separated from one another by at least the required duration of the event on the arc (i, j): 
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Note that this formulation could be solved with the ordinary Simplex method, but clearly 
there is a special network structure to the problem.

In order to minimize the project duration, we have to realize that actually we must find 
the longest sequence of linearly ordered activities; that is, we must find the longest path 
through the network. This insight gives us a slightly different perspective on the problem.

Consider the following linear programming problem. Let xij = 1 if activity (i, j) is in the 
longest path, and xij = 0 otherwise. This problem can be written as: 
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The objective function adds up the total length of the longest path, while the constraints 
ensure that the solution represents a path from event 1 to event 5. The first constraint states 
that only one edge can leave node 1. The last constraint states that only one edge can enter 
node 5. The other constraints specify that the number of incoming arcs equals the number 
of outgoing arcs in each of the interior nodes. The only feasible solution to this problem is 
a path, and the optimal solution is the longest path.

These two problems are in fact equivalent. The second one is called the dual problem of 
the first. (Recall from the discussion in Section 2.8 that every linear programming problem 
has a dual problem, and typically the two versions represent a different view or interpre-
tation of the same problem parameters.) Notice that the first problem has one constraint 
for each activity and one variable for each event, while the second formulation has a con-
straint for each event and a variable for each activity.

If we inspect the previous dual formulation, we can see that the constraints require that 
one unit of flow is to be routed from node 1 to node 5. We now recognize that this is the 
specialized form of the transshipment model that we dealt with in Section 3.5 to find the 
shortest path through a network. In our project management application, however, we 
minimize project duration by maximizing the path length. We can therefore treat our project 
scheduling problem as a longest path problem.

By finding the longest path through the project network, we are also finding what is 
known as the critical path. A critical path is a path from the start node to the finish node, 
with the property that any delay in completing activities along this path will cause a delay in 
overall project completion. The activities along the critical path are called critical activities.

To describe the PERT-CPM method for identifying critical activities in a project, we need 
two definitions. The earliest time for a node j, denoted Ej, is the time at which event j will 
occur if all previous activities are started as early as possible. The start node 1 has E1 = 0 
since there are no predecessors. Then any other node’s earliest time can be determined as 
long as all its predecessors’ earliest times have been calculated. We can make a forward 
pass through the network, calculating Ej for each event j as 
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where (i, j) are all the arcs entering node j, and dij is the duration of the activity represented 
by arc (i, j). Once we have the earliest time for the finish event, we know the earliest possible 
completion time for the entire project.

The latest time for a node i, denoted Li, is the latest time that event i can occur without 
causing delay in the completion of the project beyond its earliest possible time. Once we 
have made the forward pass to determine the earliest project completion time, we make 
a backward pass through the network. For a network of n nodes, Ln = En, then Li can be 
determined for any node i as long as all of that node’s successors’ latest times have been 
calculated. The general formula is 
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where (i, j) are all the arcs leaving node i.
The slack time for an event is the difference between the latest time and the earli-

est time for that event. Events having a slack time of zero are called critical events. 
The slack time of an activity (i, j) is Lj − Ei − dij. Activities with slack time zero are the 
 critical activities, which must be completed without delay if the minimum feasible proj-
ect  duration is to be achieved.

Now re-examine the project network in Figure 3.21 to determine a critical path and con-
struct a time chart. During the forward pass, we obtain the following earliest times: 
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Therefore, the minimum completion time for the project is 11 time units. In a backward 
pass, we obtain latest times for each event as follows: 
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From these results, we can determine the critical path. Since E1 = L1, E2 = L2, E4 = L4, and 
E5 = L5, the critical events are at nodes 1, 2, 4, and 5; and therefore the critical activities are 
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activities A, D, and F (the activities along the critical path). We also notice that the slack 
times for the activities are 
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and the activities with zero slack time are the critical activities. The noncritical activities B, 
C, and E could be delayed as much as 3, 2, and 5 time units, respectively, without extending 
the duration of the project.

All of this information can be summarized in the time chart shown in Table 3.21. This 
layout provides a clear and convenient tool for management to use in scheduling noncriti-
cal activities, considering possible improvements in the project schedule, or in evaluating 
the effects of delays along the critical path.

3.7.2 Cost versus Time Trade-Offs

The methods presented thus far have dealt solely with scheduling activities in order to 
achieve a minimum project duration, and no consideration has been given to the cost of 
the project. In addition to direct costs associated with each individual activity, there are 
typically indirect costs that may be viewed as overhead costs and that are proportional to 
the duration of the entire project. These costs may include such expenses as administrative 
or supervisory costs, equipment and facilities rental, and interest on capital. A financially 
realistic project manager may be willing to add resources, involving some direct expense, 
to certain activities in order to reduce the duration of those activities, and thereby to reduce 
the project duration and the attendant indirect costs. CPM provides a mechanism for mini-
mizing the total (direct plus indirect) costs of a project.

Suppose that for every activity, we know the normal duration and the budgeted cost 
associated with completing the activity under normal circumstances. Suppose also that, 
through additional expenditures, the duration of each activity can be reduced. This is 
known as crashing. For each activity then, we know the crash completion time and the 

TABLE 3.21

Project Time Chart

Activity Duration Earliest Start Latest Start Earliest Finish Latest Finish Slack Time

A 4 0 0 4 4 0

B 3 0 1 3 4 3
C 3 4 6 7 9 2
D 5 4 4 9 9 0
E 4 0 5 4 9 5
F 2 9 9 11 11 0
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crash cost. By crashing critical jobs, total project length can be reduced. If the cost of crash-
ing is less than the indirect costs that can be saved, then we not only reduce total costs but 
we can also enjoy various subjective benefits associated with completing a project ahead 
of schedule.

Figure 3.22 shows a straight-line relationship that is typically assumed, describing crash 
costs and durations and normal costs and durations. Each activity has its own cost vs. time 
trade-off, represented by the slope of the straight line, and its own crash point (or crash 
limit) beyond which no amount of added resources can reduce the activity’s duration.

We take advantage of cost vs. time trade-offs in the following way. Using normal costs 
and durations for all activities, we first determine a critical path, as before. Then we con-
sider reducing the duration of critical activities.

If we crash all the critical activities simultaneously, then almost certainly the network’s 
critical path will have changed, and we suddenly find that we are working on the wrong 
problem. Instead, we should choose one of the critical activities to crash; in particular, we 
should choose the one that will yield the greatest reduction in schedule length per unit of 
added costs. This choice is easily made by simply selecting the activity having the smallest 
cost vs. time slope.

Having now chosen which critical activity to crash, we must still proceed with caution. 
As the duration of a critical activity is reduced, the activity may cease to be critical (there 
is now a new critical path in the network). At this point, it is useless to further reduce 
this activity, and instead we should be investing in the reduction of some currently critical 
activity. It has been suggested that the least-slope critical activity be crashed by only one 
time unit, then a possibly new critical path found. This process is repeated until all critical 
activities are at their crash limits.

Another consideration in deciding how far to crash an activity is the reduction in indi-
rect costs that can be achieved. Since the aim is presumably to minimize the sum of activity 
costs and indirect costs, every crash operation should be undertaken only if it can be justi-
fied with respect to total project costs.

As an example, consider again the project network of Figure 3.21. The normal and crash 
points for each activity are given in Table 3.22, where Dn denotes the normal duration of 
the activity, Cn denotes the normal cost, Dc denotes the crash limit, and Cc denotes the 

Dn

Cn

Cc

Dc
Duration

Crash point

Normal point

Cost

FIGURE 3.22
Cost versus time trade-off.
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crash cost. The cost versus time slopes for each activity are computed as (Cc − Cn)/(Dn − Dc), 
and are shown in the far right column.

Suppose that indirect costs amount to $220/day; therefore, the total project cost under a 
normal schedule is (400 + 500 + 350 + 300 + 100 + 200) plus ($220/day · 11 days) = 1850 + 
2420 = $4270. If all activities were at their crash point, then the project duration would be 
7 days, and the total project cost would be (820 + 500 + 500 + 700 + 125 + 300) + ($220/
day  · 7 days) = 2945 + 1540 = $4485. Clearly in this case, we are paying crash costs for 
activities that do not contribute to the reduction in project length. So, we would expect the 
optimal schedule to fall somewhere between these two extremes.

Beginning with the normal schedule, where the critical activities are A, D, and F, we find 
that we can crash activity F at a cost of only $100/day; and by crashing activity F to its limit, 
we can reduce total overhead by $220, for a net savings of $120. The total project cost would 
then be $4150, and the project duration is 10 days.

The critical path has not changed, so we now consider critical activities A and D. The 
daily reduction at the least cost is obtained by crashing activity D. Crashing D by one day 
costs $200, but saves $220; therefore, the total cost is now $4130, and project duration is 
nine days. Since the critical path still includes activity D, we can crash it by one additional 
day, to obtain an eight-day project at a total cost of $4110.

Activity A is now the only critical activity that is not at its crash limit, and we can save 
$220 − $210 = $10 by crashing A to three days for a total project cost of $4100. At this point, 
activities A and B are on parallel critical paths; therefore, any crashing must be applied 
simultaneously to both projects. In our case, project B cannot be crashed, and therefore the 
project duration cannot be reduced to less than seven days. (Notice that if project B could 
have been reduced but if the combined cost of crashing activities A and B exceeded $220, 
then crashing them would not have been economical.)

Since critical activities A, B, D, and F are all crashed as far as possible to reduce the 
project duration, the current schedule is optimal. The durations of activities A, B, C, D, E, 
and F, respectively, are 3, 3, 3, 3, 4, and 1. The project cost is (610 + 500 + 350 + 700 + 100 + 
300) + 7(220) = 2560 + 1540 = $4100.

3.7.3 Probabilistic Project Scheduling

For certain types of projects, there may be no previous experience from which to deter-
mine the duration of the individual activities. PERT provides a means of handling such 
uncertainties through the use of probabilities for the completion times of the activities.

TABLE 3.22

Crash Costs

Normal Crash
Crashing 

Cost per DayActivity Dn Cn Dc Cc

A 4 400 2 820 210
B 3 500 3 500 —
C 3 350 2 500 150
D 5 300 3 700 200
E 4 100 3 125 25
F 2 200 1 300 100
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The project manager is required to provide three time estimates for each activity: an 
optimistic duration, denoted as a, specifying the minimum reasonable completion time 
if all goes well; a pessimistic duration, denoted as b, specifying the maximum duration if 
things go badly; and a most probable duration, denoted as m.

To apply critical path methods to a project layout based on probabilistic completion time 
estimates, we need to know two statistics for each activity. The expected time to complete 
each activity can be used as the actual time in order to find a critical path (as in the deter-
ministic case), and the variance will give an indication of the amount by which the project 
might deviate from its expected project duration. These statistics are obtained, in PERT, by 
assuming that activity durations follow a Beta distribution.

Based on this assumption, the expected time μ for an activity is approximated as 

 
µ =

+ +( )a b m4
6  

because the midpoint (a + b)/2 is given about half the weight of the mode m. Illustrative 
distributions are shown in Figure 3.23. In many probability distributions, the tails (a and b 
in our case) are considered to lie about three standard deviations from the mean μ; there-
fore, the standard deviation σ = (b − a)/6, and the variance σ2 = [(b − a)/6]2.

These statistics are now used in the following straightforward way. The activity means μ 
are used as activity durations, and the critical path method is used to determine the critical 
activities. The expected project duration D is the sum of all the means of the activities on 
the critical path. Likewise, the variance V of the project duration is the sum of the vari-
ances of the activities on the critical path.

Under PERT assumptions, the Central Limit Theorem implies that the project duration 
(being the sum of independent random variables) is normally distributed with mean D 
and variance V. Using tables for a normal distribution, we can, for example, determine the 
probability that the actual project duration will fall in a certain range, or the probability of 
meeting certain specified deadlines. For a more detailed discussion of probabilistic project 
scheduling, refer to the textbook by Ravindran et al. (1987).

a b b

a b

μ    m μ

μ   m

a      m   

a      m    μ b

FIGURE 3.23
Expected time for activity.
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3.8 Software for Network Analysis

Many network problems can be solved with software developed for ordinary linear 
programming problems. But more specialized software for network problems has been 
developed that takes advantage of the distinctive structure of network formulations, 
and can be used to solve network problems very efficiently. Real network problems may 
involve hundreds of thousands of nodes and millions of arcs, and fortunately there is 
software available for solving such large problems on a variety of hardware platforms. 
Some of the more noteworthy ones are mentioned here.

IBM CPLEX Optimization Studio has a network optimizer available through a call-
able library for various platforms.

SAS/OR OPTNET is a system for analyzing various characteristics of networks and 
solving network optimization problems and related models having network-structured 
data. This software handles general assignment problems, performs critical path anal-
ysis, determines minimum cost network flows, finds shortest paths, and solves trans-
portation problems. It performs cycle detection and analyzes connectivity in networks, 
and does project scheduling and resource-constrained scheduling. OPTNET interfaces 
with OPTMODEL, described earlier in Chapter 1.

TransCAD is an integrated system of Geographic Information System (GIS) and 
transportation modeling capabilities, designed to help transportation professionals 
plan, organize, manage, and analyze transportation data. It offers a complete toolbox 
of analytical methods for mapping, assignment, site location, minimum cost distribu-
tion, transportation, vehicle routing and scheduling, planning, logistics, and market-
ing. TransCAD supplies state-of-the-art data collection tools for accessing data from the 
Global Positioning System (GPS).

COIN-OR, the open source OR software website (www.coin-or.org), offers software 
tools for network optimization. Sifaleras (2015) summarized these tool into Coin Graph 
Classes (Cgc), the Efficient Modeling and Optimization in Networks (LEMON), and 
VRPH. Cgc is a collection of network representations and algorithms aiming to facilitate 
the development and implementation of network algorithms; LEMON is a C++ tem-
plate library providing efficient implementations of network optimization algorithms 
and common graph structures; and VRPH constitutes an open source C++ package in 
a software library containing tools to create metaheuristic algorithms for the Vehicle 
Routing Problem.

Mascopt (Mascotte Optimization) is an open source project that provides a set of 
Java-based tools for network optimization problems to help implementing solutions to 
network problems by providing a data model of the network and the demands, libraries 
to handle networks and graphs, and ready to use implementation of existing algorithms 
or linear programs. It also provides some graphical tools to display graph results. For 
more detail, Lalande et al. (2004).

Google-OR Tools provides open source solvers for network flow problems in its graph 
libraries.

Finally, More and Wright (1993) published a guide to optimization software that 
included descriptions of older computer programs including network optimization soft-
ware such as GENOS, LNOS, LSNNO, NETFLO, and NETSOLVE.

http://www.coin-or.org
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3.9 Illustrative Applications

3.9.1  DNA Sequence Comparison Using a Shortest Path Algorithm 
(Waterman 1988; Wagner and Fischer 1974)

A problem that arises frequently in the field of cell biology is the comparison of DNA 
sequences and the analysis of how one sequence is transformed into another. A sequence 
is a finite succession of symbols from a finite alphabet. In the case of deoxyribonucleic 
acid (DNA), sequences are composed from the set of nucleotide bases, denoted {A (ade-
nine), C (cytosine), G (guanine), T (thymine)}. Although biologists are not in complete 
agreement over the mechanisms by which one DNA sequence evolves into another, it is 
generally assumed that the transformation consists of a series of the following types of 
changes: 

 1. Insertion of a character (nucleotide)
 2. Deletion of a character
 3. Substitution of one character for another

The similarity between two DNA sequences S and T can then be measured by assessing a 
cost for each of these three types of changes, and then finding the least expensive transfor-
mation of S into T. The cost corresponding to this transformation is called the evolutionary 
distance from DNA sequence S to DNA sequence T.

Transitions can be modeled by defining a node to represent a DNA sequence, and cre-
ating other neighboring nodes to represent all DNA sequences obtainable from the origi-
nal one by making one of the three types of changes. Arcs are labeled with the cost of 
the change. Then a shortest path algorithm applied from the original node to any other 
desired node will yield the evolutionary distance between the two DNA sequences.

DNA sequences are quite long (millions of nucleotide bases), so for practical imple-
mentations, parallel computer hardware known as systolic architectures have been devel-
oped for research purposes. This approach involves a specialized spatial arrangement 
of processors and an appropriate flow or pulsing of data among the processors, in order 
to obtain the desired computational results much more quickly than could be achieved 
using general-purpose computing hardware. For further discussion of systolic archi-
tectures incorporating shortest path and other network based algorithms, refer to the 
work of (Lopresti 1987). A completely different but effective approach to this problem is 
based on dynamic programming methods; see Wagner and Fischer (1974) for a detailed 
description of this concise solution to the DNA sequencing problem.

3.9.2 Multiprocessor Network Traffic Scheduling (Bianchini and Shen 1987)

In the design of real-time signal processing computer systems, one of the most important 
issues is the efficient scheduling of data communication traffic among special-purpose 
processing elements. For example, certain types of digital filters can be implemented on a 
small set of specialized functional modules, and the determination of filter functionality 
lies in the specification of intermodule communication.

The process of mapping consists of first placing functional data operators onto pro-
cessing elements. This is easily accomplished using well-known placement algorithms. 
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The second and more difficult phase of the problem is the design of the network data 
traffic. This requires routing each unit of traffic onto a path of network links between the 
source and destination processing elements, with the objective of maximizing the aggre-
gate flow of network traffic that can be maintained in a system.

Traffic management is viewed as a multi-commodity fluid flow problem. The multi-
commodity aspect arises because of the need to maintain the identity of data traffic 
between different source/destination pairs, although the traffic may simultaneously 
occupy the same data link. An optimal traffic pattern is obtained when a cut set of satu-
rated links is formed.

The network formulation results in an extremely large linear program because of the 
exponential number of network paths that contribute explicitly to the size of the prob-
lem. An alternative is a policy iteration method that successively improves current traffic 
patterns by re-routing certain data units. To improve a traffic pattern, under-utilized 
paths are determined between each source/destination pair, and then it must be decided 
whether re-routing along the proposed new path is cost-effective. To do this, a minimum 
spanning tree for the network is found. It can be shown that the least cost path con-
necting any two nodes in a network lies on the minimum spanning tree. Therefore, if 
a minimum spanning tree is known, the traffic scheduler can examine each processing 
element adjacent to a saturated link, and if traffic can be re-routed away from the satu-
rated link and onto a minimum spanning tree link, then the cost of the traffic pattern can 
be reduced, while at the same time smoothing congestion and perhaps creating capacity 
for flow of additional data.

3.9.3 Shipping Cotton from Farms to Gins (Glover et al. 1992; Klingman et al. 1976)

At a time when cotton production had decreased by 50% in the Upper Rio Grande River 
Valley of Texas and New Mexico, it was necessary to determine how best to utilize the 
processing capacity available in the area’s 20 cotton gins. Analysts began by mapping the 
150  farms producing cotton, and charting the distances to the gins that were scattered 
throughout the Valley.

The efficiency of the industry had been brought into question because of the excess 
ginning capacity that resulted from the decrease in cotton crop production. Local farm-
ers and gin operators had resorted to individual, fragmented decisions and actions that 
did not contribute to overall prosperity or profitability in the region. A mathematical 
model was constructed that represented the entire system, with the hope that a com-
prehensive approach would encourage joint cooperation among all farmers and gin 
operators.

Because of the excess gin capacity, there were fears that some gins may have to close 
down and, indeed, such reductions were found to contribute favorably to profitability. 
Gin operation involves annual fixed charges to activate the gin, such as electrical connec-
tions, cleaning, and salaried personnel. Variable costs of operation then include regular 
time and overtime labor costs. If the regular shift capacity of a gin is consumed, any 
additional cotton must be processed at the overtime rate; but this use of the more expen-
sive overtime capacity can be justified if it avoids the fixed activation costs of starting up 
an additional gin.

The problem was first viewed as a shipping cost problem, to identify the particular gin 
that should service each farmer’s needs. But it was quickly discovered that the real issue 
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was the need to quantify the utilization of the cotton gins. This information could provide 
justification for some tough decisions related to the closing of certain gins which simply 
could not operate economically. The model grew into a fixed-charge transshipment formu-
lation that included: 

Production levels at each farm
Shipping costs from each farm to each gin
Holding costs for storing cotton at each farm
Seasonal gin activation costs
Two levels of operating capacity at each gin

The network model initially involved around 5000 nodes and over 2  million arcs, but 
refinements reduced this to around 100,000 arcs. The solution indicated that substantial 
cost savings (a 20% reduction in ginning costs) could be achieved by closing some gins 
and working as a cooperative. Implementation was allowed to evolve over several seasons 
in order to obtain the full cooperation of all the farmers and gin operators in the region.

3.10 Summary

Network analysis is applicable to an enormous variety of problems that can be mod-
eled as networks and optimized using network algorithms. Some of the systems repre-
sent physical networks for transportation or flow of commodities, while others are more 
abstract and can be used to model processes or plan and manage projects.

A maximum flow algorithm optimizes the total flow of an entity through a network in 
which links have capacities that limit the flow. This algorithm not only determines the 
greatest possible flow, but in so doing also locates and identifies the bottlenecks in the 
network.

Transportation models find the minimum cost flow from an origin, through a net-
work, to a destination, subject to supply and demand requirements. The transportation 
Simplex algorithm is often used for this optimization problem. A slight refinement in 
the interpretation of the transportation model results in an assignment problem, which 
is used to model the matching or assignment of two sets of entities in the most advanta-
geous way.

Maintaining network connectivity has important practical implications. Minimum cost 
spanning trees provide a simple and useful means of addressing the connectivity issue. 
When appropriate connections between nodes do exist in a network, it is often useful 
to find the shortest route between two specified nodes. Simple labeling algorithms pro-
vide solutions to this problem, and also inspire a broader approach known as dynamic 
programming. Dynamic programming has far-ranging applications, but generally can be 
viewed as a way to model decisions that take place in stages over a period of time.

Project activity networks are used to plan and coordinate large complex projects consist-
ing of many tasks. Critical paths in networks determine the minimum project completion 
time, and identify those tasks or activities whose timely completion is critical to achieving 
this minimum project duration.
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Key Terms

activity
acyclic graph
arcs
assignment problem
backward pass
bipartite graph
capacitated transshipment
chain
connected graph
critical activity
critical event
critical path
critical path method
crash completion time
crash cost
crash limit
crashing
critical event
cut
cut set
cycle
cyclic path
decision variable
degree of a node
demand
Dijkstra’s algorithm
directed chain
directed graph
dynamic programming
dynamic programming principle of optimality
earliest time
events
expected project duration
expected time
flow
Ford-Fulkerson algorithm
forward pass
graph
Hungarian method
isolated node
latest time
longest path
maximum flow
minimum cost method
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minimum row cost method
minimum spanning tree
multiple sinks
multiple sources
network
node-arc incidence matrix
nodes
northwest corner rule
path
PERT
predecessor
Prim’s algorithm
project management
shortest network problem
shortest path
sink
slack time
source
spanning tree
stable matching
stages
states
Steiner tree
successor
supply
transportation problem
transportation Simplex
tree
undirected graph
unstable matching
variance

Exercises

3.1 Find the maximum flow through the networks shown in Figure 3.24. Identify the 
edges in the minimum cut set. In each case, assume node 0 is the source, and the 
highest-numbered node is the sink. Arc capacities are shown in boxes.

3.2 A data communications network can be described by the diagram in Figure 3.25. 
Every data link from node i to node j has a capacity which is denoted as a label on 
the data link in the diagram. Non-existent links have zero capacity. Data is being 
generated at node 1 and is to be routed through the network (not necessarily pass-
ing through all other nodes) to node 6 where the data will be used. The amount of 
data generated at node 1 is exactly the amount of data consumed at node 6. No data 
is generated or used at intermediate nodes, so all data that enters an intermediate 
node must leave it, and vice versa.
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 a. What is the maximum feasible amount of data that can flow through this 
network?

 b. What is the flow on each of the data links in order to achieve this maximum?
 c. Which links comprise the bottleneck in this network?
 d. What is the complexity of the Ford-Fulkerson algorithm for maximum network 

flow?
3.3 Formulate and solve the following distribution problem to minimize transporta-

tion costs, subject to supply and demand constraints. Two electronic component 
fabrication plants, A and B, build radon-cloud memory shuttles that are to be dis-
tributed and used by three computer system development companies. Following 
are the various costs of shipping a memory shuttle from fabrication plants to the 
system development sites, the supply available from each fabrication plant, and the 
demand at each system development site.

 Fabrication plant A is capable of creating a supply of 160 shuttles; and the cost to 
ship to site 1, 2, and 3 is $1000, $4000, and $2500, respectively. Fabrication plant B 
can produce 200 shuttles, and the shipping costs are $3500, $2000, and $4500 to the 
three sites. The demand at site 1 is 150, at site 2 is 120, and at site 3 is 90 memory 
shuttles.

 a. Identify the decision variables, write the objective function, and give the con-
straints associated with this problem.

 b. Solve this distribution problem.
3.4 Suppose that the countries of Agland, Bugland, and Chemland produce all 

the wheat, barley, and oats in the world. The world demand for wheat requires 
125 million acres of land devoted to wheat production. Similarly, 60 million acres 
of land are required for barley, and 75 million acres of land are needed for oats. 
The total amount of land available for these purposes in Agland, Bugland, and 
Chemland is 70 million, 110 million, and 80 million acres of land, respectively. 
The number of hours of labor needed in the three countries to produce an acre 
of wheat is 18 hours, 13 hours, and 16 hours, respectively. The number of hours 
of labor needed to produce an acre of barley is 19 hours, 15 hours, and 10 hours 
in the three countries, respectively. And the labor requirements for an acre of 
oats are 12 hours, 10 hours, and 16 hours in the three countries, respectively. The 
hourly labor cost to produce wheat is $6.75 in each of the countries. The labor cost 
per hour in producing barley is $4.10, $6.25, and $8.50 in the three countries. To 
produce oats, the labor cost per hour is $8.25 in each country. The problem is to 
allocate land use in each country so as to meet the world food requirements and 
minimize the total labor cost. Formulate this problem as a transportation model, 
letting decision variable xij denote the number of acres of land allocated in coun-
try i for crop j.

3.5 Four workers are to be assigned to machines on the basis of the worker’s rela-
tive skill levels on the various machines. Five machines are available, so one 
machine will have no worker assigned to it. In order to maximize profitability, 
we wish to minimize the total cost of the assignment. Use the cost matrix given 
in the following, and the Hungarian assignment algorithm, to determine the 
optimal assignment of workers to machines, and give the cost of the optimal 
assignment.
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Machines

Workers 1 2 3 4 5

1 10 9 8 12 7
2 3 4 5 14 6
3 2 1 1 10 2
4 4 3 5 12 6

3.6 Four federally funded research projects are to be assigned to four existing research 
labs, with one project being allotted to each lab. The costs of each possible place-
ment are given in the following table. Use the Hungarian method to determine the 
most economical allocation of projects.

Project Sandy Lab Furrmy Lab Xenonne Lab Liverly Lab

Cryogenic cache memory 12 15 10 14
Spotted owl habitat 8 10 6 9
Pentium oxide depletion 20 22 18 12
Galactic genome mapping 10 12 8 16

3.7 To solve a maximization assignment problem, first convert it to a minimization 
problem by multiplying each element in the cost matrix by −1, then adding suf-
ficiently large constants to rows and column so that no element is negative. Then 
apply the Hungarian method to the new problem. Suppose the following matrix 
elements represent the value or productivity of associating certain workers with 
machines. Solve this assignment problem to maximize the productivity.

Machines

Workers 1 2 3 4

1 6 7 6 7
2 4 3 8 8
3 5 8 9 8
4 9 5 4 3

3.8 The following matrix contains the hazard insurance premiums that a company must 
pay in order for employee i to operate machine j. It is assumed that a low insurance pre-
mium implies that a worker can safely and proficiently operate a machine. Determine 
an assignment of workers to machines that will be the safest (least hazardous).

 

36 24 36 12
14 28 40 26
12 22 28 38
28 22 38 38


















 

 What is the total insurance premium corresponding to the optimal assignment?
3.9 Prospective employees are to be assigned to jobs by the following mechanism: 

Each employee ranks his job preferences (rank 1 means highest preferences) and 
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this information is contained in an array P where pij denotes employee i’s ranking 
of job j. Similarly, each prospective employer ranks his preferences of employees, 
and matrix R is such that rij denotes employer i’s ranking of employee j. Formulate 
this problem to determine an assignment of n jobs to n employees that optimizes 
the mutual satisfaction of employers and employees. (Assume that each employer 
 corresponds to a different job.)

3.10 A group of m people, where m ≤ 40, is to be organized into teams of at most four 
people. Each team is associated with a workstation, of which ten are available. 
People may not express preferences for teammates; however, each ranks his work-
station preference, and these preferences appear in a 40 × 10 matrix P where pij 
denotes the preference of person i for workstation j (low numbers in P indicate 
high preference). This is a variation of the classical assignment model. Formulate 
this problem to optimize the association of people to workstations.

3.11 Use Kruskal’s algorithm to find the minimum cost spanning tree for the undi-
rected graph in Figure 3.26. Identify the arcs in the tree, and state the cost of the 
minimum spanning tree.

3.12 Use Prim’s algorithm to find the minimum cost spanning tree for the graph in 
Figure 3.26. Identify the arcs that comprise the minimum spanning tree, and state 
the cost of the minimum spanning tree for this graph.

3.13 Consider a graph in which the four nodes are located at the corners of a unit square, 
and the shortest possible arcs connect all pairs of nodes.

 a. Find the minimal spanning tree of this graph.
 b. Construct the Steiner tree obtained by placing a junction point in the center of 

the square. Is this an optimal Steiner tree?
 c. Determine the total length of the connections in this Steiner tree, and compare 

it with the length of the connections in the minimum spanning tree.
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FIGURE 3.26
Minimum spanning tree.
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3.14 How many different spanning trees are there in a fully connected undirected 
graph of five nodes?

3.15 How many arcs are there in a spanning tree of a fully connected undirected graph 
with 1000 nodes?

3.16 Use the backward labeling algorithm to find the shortest path from node 1 to node 
9 in the graph in Figure 3.27. The labels shown on the arcs denote costs or distances 
between nodes.

 a. What are the arcs in the shortest path through this network?
 b. What is the length (cost) of the shortest path?
3.17 Following is the connectivity matrix of a graph. Use the shortest path labeling 

algorithm to find the shortest route from node 1 to node 6. The symbol ∞ denotes 
the absence of a path.
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3.18 Formulate the general problem of finding the minimum cost (shortest) path from 
node 1 to node n in a directed acyclic network of n nodes, where the distance from 
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node i to node j is denoted dij. Hint: Let the decision variables be restricted to have 
only the values zero or one, with the following interpretation:

 

x  means the arc from node i to node j is in the shortij = 1 eest path

 otherwise= 0  

 Give the objective function and the constraints, in terms of these decision variables.
3.19 Six thousand dollars is to be applied to a student’s educational expenses in the fol-

lowing way:
 Between $1000 and $3000 for books
 Between $2000 and $4000 for tuition
 Between $1000 and $2000 for tutors
 The allocation is to be made in whole thousands of dollars. An analyst has quanti-

fied the anticipated payoffs (perhaps in terms of increased future earnings) as:

Books Tuition Tutors

Return Return Return

Invested
$1K $5K $2K $6K $1K $2K
$2K $8K $3K $8K $2K $3K
$3K $10K $4K $9K

 Use dynamic programming to determine the optimal allocation of the $6000. Show 
the tables you build as you solve this problem.

3.20 A student must select ten elective courses out of four different departments. From 
each department, at least one and no more than three courses must be chosen. The 
selection is to be made in such a way as to maximize the combined general knowl-
edge from the four fields. The following chart indicates the knowledge acquired as 
a function of the number of courses taken from each field. Solve this as a dynamic 
programming problem. Show each of your tables in this staged decision-making 
process.

Number of courses taken

1 2 3

Anthropology 25 50 60
Art 20 30 40
Economics 20 40 50

Physics 50 60 60

3.21 A space telescope being launched aboard a space shuttle is to be deployed and 
immediately will be transmitting data to earth-bound data processors at a prodi-
gious rate. Suppose there are four teams of technical experts that can be allocated 
among two projects: one aimed at collecting and compressing data, and another 
whose responsibility is to catalog and store data. Because this data is extremely 
valuable and virtually irreplaceable, it is essential that you allocate the teams 
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optimally to the two projects. Each of the two projects must have at least one team 
assigned to it. Use a dynamic programming table-oriented method to allocate the 
four teams. The following information is available:

Payoff for Assigning Teams to Projects

Number of Teams 
Allocated

Collecting and 
Compression Project

Cataloging and 
Storage Project

1 5 4
2 9 10
3 12 15

3.22 A small project consists of ten jobs whose durations in days are shown on the arcs 
in the activity diagram in Figure 3.28:

 a. Calculate early and late occurrence times for each event.
 b. What is the minimal project duration?
 c. Which activities are critical?
3.23 Suppose that for the aforementioned project, we have the following crash times 

and costs:

Task (i, j) Minimum (Crash) Duration Crash Cost ($/day)

(1, 2) 2 20
(2, 3) 3 15
(2, 4) 5 25
(3, 5) 2 20
(3, 6) 1 —
(4, 6) 3 20
(4, 7) 2 —
(5, 8) 5 15
(6, 8) 5 15
(7, 8) 3 20
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FIGURE 3.28
Activity diagram.
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 a. What is the minimum (crashed) project duration?
 b. Determine the minimum crashing costs of schedules ranging from normal 

length down to the minimal length.
 c. If overhead costs amount to $75 per day, what is the optimal schedule length 

with respect to both crashing and overhead costs? Indicate the scheduled dura-
tion of each activity in this optimal schedule.
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4
Integer Programming

4.1 Fundamental Concepts

Mathematical programming problems in which the variables are constrained to have inte-
ger values are called integer programming (IP) problems. Many engineering, industrial, 
and financial applications involve integer constraints. For example, in a manufacturing 
scenario, it would be difficult to implement a solution that specifies producing 10.4 cars 
or 7.2 tables. Fractional values are infeasible. For integer programming problems, the fea-
sible region is neither continuous nor convex, as illustrated in Figure 4.1 for a simple two-
dimensional integer problem. Observe that the feasible points for this problem do not lie 
at the extreme points of the region, or even on the boundaries; and in fact, the elegant 
solution techniques that have been developed for solving linear programming problems 
generally do not find solutions to integer problems. The Simplex method for linear pro-
gramming converges to a solution at an extreme point which is typically a point with 
fractional variables.

Although the formulations of integer programming problems often look remarkably 
similar to those of continuous mathematical programming problems, the resemblance is 
in some ways deceptive. The algebraic expression of the objective function and the con-
straints in the two types of models may appear to have a similar form, but the additional 
constraint requiring that some or all of the variables have integer values generally makes 
solving the integer problem vastly more difficult, from a computational standpoint. Most 
integer programming problems are classified as hard optimization problems, and many 
integer programming problems belong to the class of NP-hard problems (described in 
Chapter 1). So, while a general linear programming problem may be solvable in polyno-
mial time, finding an optimal integer solution to the same formulation usually requires an 
exponential amount of computation time.

Most integer programming problems are notoriously difficult, yet some integer problems 
are easy to solve. In particular, many linear network problem solutions, such as assign-
ment and matching problems, transportation and transshipment problems, and network 
flow problems, always produce integer results, provided that the problem bounds are inte-
gers. In these problems, all of the extreme points of the feasible region represent integer 
solutions; therefore, if these problems are formulated and solved as linear programming 
problems, we find that the Simplex method yields integer solutions. Unfortunately, this 
occurs only for problems that have a network structure, and for the majority of integer 
problems, the linear programming formulation does not suggest an easy solution.
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For integer programming problems with linear objective and constraints, one may won-
der why we cannot simply solve the linear program (LP) and then round the answer to the 
nearest integer. The rounding approach turns out to be more difficult than it may seem. 
For example, if we have equality constraints, and we round down some variables, we will 
probably have to round up some others, and selecting which ones go up and which ones go 
down is itself an integer decision problem. Even when there are no equality constraints, it is 
easy to construct examples in which rounding up or down or to the nearest integer does not 
result in a feasible solution. Thus, in general, rounding does not yield satisfactory solutions.

That being said, there are some problems for which rounding can be effective. For exam-
ple, in solving a problem for manufacturing tires, if the LP solution specifies making 1296.4 
tires of a particular style, it is probably safe to round the answer down to 1,296 without 
drastically affecting feasibility or the objective function. In contrast, if the product being 
manufactured is a multi-million dollar aircraft, rounding is probably a poor solution. 
Rounding down a half a plane here or there could put a company right out of business. 
In some cases, a simple guideline for deciding whether rounding is an appropriate option 
might be to assess the damage (expressed as a percentage) to the objective function that 
results from rounding. In our examples, rounding down 1296.4 tires will almost certainly 
have a negligible impact on total profit, whereas rounding a small number of would prob-
ably have a significant effect.

An even more dramatic difficulty arises when using rounding for integer problems in 
which the variables are further constrained to have values of either zero or one. Consider 
a production planning problem for a large auto manufacturer such as General Motors, 
where it must be decided at which plants each car model should be built. A formulation 
for this problem might involve variables xij, each having a value of one or zero, depending 
on whether model i is produced at plant j, or not. Suppose there are ten plants, and each 
model can be assigned to only one location. An LP solution could easily recommend a 
small fraction of each model at each plant, yet rounding could produce a solution in which 
no models are produced anywhere. This situation is frequently encountered in integer 
programming; and in such cases, the LP solution gives virtually no insight into how to 
solve the integer problem.
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4.2 Typical Integer Programming Problems

Mathematical programming problems in which all decision variables must have positive 
integer values are called general integer programming problems. If all the decision vari-
ables are restricted to have only the value zero or one, the problem is then called a zero–
one programming (or binary integer programming) problem. In that case, the constraints 
on the variables are sometimes called binary or Boolean constraints, and the model is often 
referred to in abbreviated form as a 0–1 problem. Variations on the aforementioned prob-
lems arise if some of the variables must be integer, others must be zero or one, while still 
others may have real values. Any problem involving such combinations is described as a 
mixed integer programming (MIP) problem. This section illustrates each of these types of 
integer problems with typical practical examples.

4.2.1 General Integer Problems

An illustration of general integer programming can be found in a simple version of the port-
folio selection problem. An investor wishes to purchase a portfolio of financial instruments 
that will provide a maximum expected return. Many investment products, such as on the 
futures market for example, must be purchased in large lot sizes. We can define variables 
xi to denote the number of units of security i in the portfolio. The objective function mea-
sures the expected return, and the problem will often have constraints limiting the amount 
of risk that the investor is willing to accept. In the simplest form of the problem, we could 
assume that the only constraint on the portfolio is a limit on the number of dollars that can 
be invested. Problems that have this basic underlying structure involve selecting as many 
investments as possible and figuratively packing them into a portfolio of limited size.

A three-dimensional view of this same idea is seen in a problem known as the cargo load-
ing problem. Consider trying to pack boxes into trucks or shipping containers. The variables 
xij represent the number of boxes of type i to be loaded into container j. The constraints for 
this type of problem are complicated because they must define a spatially feasible packing.

The employee scheduling problem can also be formulated as a general integer problem, 
in which we define a number of shift patterns for workers. For example, a pattern could be 
to have a person work the day shift on Monday, Tuesday, and Wednesday, have two days 
off, and then work Saturday and Sunday evening. We then define variables xi to specify the 
number of employees who are assigned to work using pattern i. The objective is to minimize 
total salary costs while ensuring that there are sufficient employees available in each shift.

4.2.2 Zero–One (0–1) Problems

Zero–one (0–1) problems are among the most common integer problems. All of the vari-
ables in the problem are required to take on a value of zero or one. Often, the variables 
have an abstract interpretation; they simply indicate whether or not some activity occurs, 
or whether or not some particular matching or assignment takes place.

One of the simplest 0–1 examples is the capital budgeting problem. Suppose we have a 
number of possible projects from which we must choose. Each project has a known value, 
and requires some level of resources such as funding, space, time, or services. We define the 
variables xi to have a value 1 if project i is selected. The objective is to maximize total value 
subject to a constraint on total budget. (This problem at first appears to be another form of 
packing problem; but in this case, each project is to be chosen just once or not at all.)
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Many scheduling problems can be formulated using 0–1 variables. For example, in a 
production scheduling environment, we could define variables xik to have a value 1 if 
job i is assigned to machine k, and zero otherwise. Or we might define variables yij = 1 
if job i immediately precedes job j on an assembly line. We can then use these variables to 
develop constraints on the time available for resources, on due dates for individual jobs, 
and on total schedule costs.

A simple example of a scheduling problem is examination timetabling. Variable xij is 
given a value of 1 if examination i is assigned to period j. Conflicts are not allowed, so 
constraints are included to prevent two examinations from being assigned to the same 
period if any students need to be present at both exams. Additional constraints may reflect 
limits on the number of exams per period, or the total number of seats in an exam location. 
The objective function must in some way measure the quality of a given timetable.

Another popular variation is the vehicle routing problem. Suppose that a fleet of trucks 
on a given day must deliver goods from a central warehouse to a set of customers. The 
objective is to minimize the total cost of making all deliveries. The cost is normally approx-
imated based on minimizing the number of trucks used and the total mileage and/or total 
hours of delivery time. One common formulation of this problem defines variables xijk 
to have a value 1 if customer i is assigned to truck j and is delivered immediately before 
 customer k. Constraints are included to ensure that the assignment is feasible (perhaps 
based on the drivers’ expertise, or on contractual agreements or regulations).

One of the most successful practical applications of integer programming has been in the 
airline crew scheduling problem. The airlines first design a flight schedule composed of a 
large number of flight legs. A flight leg is a specific flight on a specific piece of equipment, 
such as a 747 from New York to Chicago departing at 6:27 a.m. A flight crew is a complete 
set of people, including pilots, navigator, and flight attendants who are trained for a specific 
airplane. A work schedule or rotation is a collection of flight legs that are feasible for a flight 
crew, and that normally terminate at the point of origin. Variables xij have value 1 if flight leg 
i is assigned to crew j. The objective is to ensure that all flight legs are covered at minimum 
total cost. Most of the major world airlines now use integer programming to assign crews 
to flight legs, and many claim to be saving millions of dollars annually in operating costs.

A distributed computing problem arises in a multiprocessor computing environment 
where the programs and data files must be allocated to various machines in different loca-
tions. Variables xij have a value 1 if module i is assigned to processor j. The objective is to 
minimize the total execution costs (which may depend on the choice of processor) and com-
munication costs (that are incurred when one processor needs to communicate with another).

4.2.3 Mixed Integer Problems

Section 4.1 introduced the problem of production planning at General Motors. In that 
 problem, there are two sets of variables: it is necessary to decide which products are 
assigned to each plant, and then to determine production levels at each plant. We could 
define 0–1 variables xij = 1 if product i is assigned to plant j. We might then define variables 
yij to represent the number of units of product i to produce at plant j. If production levels 
are fairly high, we might treat the yij variables as real valued, and round them to integers 
in the end. Additional constraints must prevent a product from being produced if it is not 
assigned to the plant. The problem can be modeled as a large mixed integer problem with 
both 0–1 and real-valued variables.

A related problem involves warehouse location: given a set of potential locations for 
warehouses for a distributor, select the locations that will minimize total delivery costs. 
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We can define 0–1 variables xj to have a value 1 if location j is selected. Once it is decided 
which locations are going to be used, then we must solve some kind of a transportation 
problem to get the products from the producers to the warehouses, and from the ware-
houses to the customers. Real-valued variables yij are defined to represent the amount of 
product transported from supplier i to warehouse j, and real-valued variables zjk denote 
the amount of product distributed from warehouse j to customer k. The total cost is a func-
tion of the distances that the products must travel.

A further variation, which can be considered as a general version of warehouse location, 
is called the fixed charge problem. Suppose there is a fixed cost (with a 0–1 variable) for 
opening a warehouse. Once the warehouse is open, the remaining costs are essentially 
continuous. There are a number of practical problems that lend themselves to this type of 
formulation. For example, when a telecommunications company installs fiber optic cable, 
there is a fixed cost for actually laying the cable, but then there is a real-valued cost cor-
responding to the capacity of the cable. This leads to a related problem called capacity 
planning.

4.3 Zero–One (0–1) Model Formulations

This section presents a few examples of mathematical formulations of some classical 0–1 
programming problems. These basic formulations frequently occur in actual practice, 
often in the form of subproblems within larger practical applications. We emphasize these 
models because many of the most practical advances in integer programming in recent 
years have been in the area of 0–1 models.

4.3.1 Traveling Salesman Model

Suppose you want to visit a number of cities and then come back to your point of  origin. 
This is one of the most challenging and most extensively studied problems in the field 
of combinatorics. The formulation is deceptively simple, and yet it has proven to be 
notoriously difficult to solve. Define 0–1 variables xij = 1 if city i is visited immediately 
prior to city j. Let dij represent the distance between cities i and j. Suppose that there 
are n cities that must be visited. Then the traveling salesman problem (TSP) can be 
expressed as: 
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The first constraint says that you must go in to city j exactly once, and the second constraint 
says that you must leave every city i exactly once. These constraints ensure that there are 
two edges adjacent to each city, one in and one out, as we would expect. However, this does 
not prevent so-called sub-tours. A sub-tour occurs when there is a loop containing a subset 
of the cities. Instead of having one tour of all of the cities, the solution can be composed of 
two or more sub-tours. The third constraint eliminates sub-tours; it states that no proper 
subset of cities, S, can have a total of |S| edges.

The TSP has many practical industrial applications. Consider the problem of placing 
components on a circuit board. To minimize the time required to produce a board, one of 
the primary considerations is often the distance that a placement head must travel between 
components. Another example occurs in routing trucks or ships delivering products to 
customers. (When we allow multiple trucks, this problem becomes the vehicle routing 
problem described earlier.) Another application occurs in a production environment when 
it is desired to minimize sequence-dependent setup times. When multiple jobs are to be 
processed on a machine, the total setup time for each job frequently depends on which job 
preceded it. This situation can be modeled as a TSP, where we sequence jobs rather than 
sequencing the order in which cities are visited.

4.3.2 Knapsack Model

Two versions of the knapsack problem have been discussed in Section 4.2 when portfolio 
selection and the capital budgeting problem were reviewed. Assume that we have a num-
ber of items, and we must choose some subset of the items to fill our knapsack, which has 
limited space. Each item, i, has a value vi and takes up wi units of space in the knapsack. 
Let the 0–1 variables xi = 1 if item i is selected, and let b represent the total space in the 
knapsack. Then we can formulate the knapsack problem as follows: 
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The 0–1 version of the knapsack problem states that every item is unique, and that each 
can either be selected or not (as in the capital budgeting problem). A slight generalization 
of the knapsack problem states that you can choose more than one copy of each item, so 
that the variables can take on general integer values (probably with upper bounds on each 
variable), as with the portfolio selection problem.

4.3.3 Bin Packing Model

Bin packing is a generalization of the knapsack problem. Suppose that we are given a set 
of m bins of equal size, b; and a set of n items that must be placed in the bins. Let wi be 
the size of item i. We define the 0–1 variable xij = 1 if item i is placed in bin j. Bin packing 
is usually expressed as a problem of minimizing the number of bins required to pack 
all of the items. We can let yj = 1 if we need to use bin j. (Note that if yj = 0, then the cor-
responding bin has no capacity.) The objective function minimizes the number of bins 
required 
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Bin packing has applications in industry where, for example, there is a limited amount 
of work that can be assigned to each person working at stations on an assembly line. 
This model may also be applicable when deciding which products should be produced 
at each of several possible manufacturing plants, or which customer should be assigned 
to each delivery truck. Of course, each of these problems involves additional criteria and 
constraints.

4.3.4 Set Partitioning/Covering/Packing Models

Many problems in combinatorial optimization include (as subproblems) partitioning a 
group of items into optimal subsets. For example, vehicle routing requires that we allocate 
customers to vehicles. Airline crew scheduling requires that we allocate flight legs to a crew. 
Municipal garbage pickup requires that we allocate specific street blocks to trucks. Each of 
these subproblems can be modeled in the following form as a set partitioning problem: 
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where aij = 1 if item i is included in (potential) subset j. Each column of the m × n constraint 
matrix A represents a feasible combination of items. For example, each column might rep-
resent the items that could feasibly be loaded into a truck for delivery to customers; or 
the items could be road segments that require garbage collection, and a column would 
represent a feasible route for a truck to pick up garbage. The cost cj represents the cost of 
delivering (or traveling, or producing) that subset of items. A variable xj = 1 if we decide to 
include that particular subset in our solution.

In the set partitioning problem, all of the items must be included exactly once. In vehicle 
routing, for example, we might typically require that exactly one truck travel to each cus-
tomer. In a slightly different problem, the set covering problem, we require that each item 
be selected at least once. For example, in the garbage collection problem, and in the crew 
scheduling problem, every street (every flight leg) must be covered at least once; but it is 
also feasible to cover the same street (flight leg) twice, if this turned out to be the most 
efficient solution. (The second truck would not pick up any garbage, and the second flight 
crew would ride as passengers.) Set covering differs from set partitioning in that the con-
straints are “≥” inequalities instead of equalities.
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The set packing problem describes another similar situation. In some production 
scheduling problems, we are given a list of orders, and we have possible subsets of orders 
that can be combined on different machines. In some cases, there may not be sufficient 
resources to satisfy all of the demand. The problem is to select the optimal subset of orders 
to maximize some profit function, pj. This problem can be formulated as: 
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We select as many items as possible, but we are not allowed to process any items more than 
once. We will revisit this type of problem in greater detail in Section 4.8, where we discuss 
column generation.

4.3.5 Generalized Assignment Model

Section 3.3 described the assignment problem, which is considered to be one of the easiest 
combinatorial problems to solve. The assignment problem can be formulated as follows: 
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This classical representation can be illustrated by a set of jobs that must be allocated to a 
group of workers. The term cij represents the cost of assigning job i to employee j. The first 
constraint requires every job to be assigned to exactly one employee; and the second con-
straint states that every employee must do exactly one job.

The generalized assignment problem is a simple extension in which every job must be 
assigned to one employee, but each employee has the capacity to perform more than one 
job. In particular, suppose that each employee, j, has a limited amount of time, (bj hours) 
available, and that job i will take employee j a total of aij hours. Then, the generalized 
assignment problem can be formulated as: 
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As discussed earlier, the generalized assignment problem has applications in the vehicle 
routing problem, where every customer order must be assigned to one truck, but a single 
truck can hold more than one customer order, subject to capacity constraints.

4.4 Branch-and-Bound

4.4.1 A Simple Example

Branch-and-bound algorithms are widely considered to be the most effective methods for 
solving medium-sized general integer programming problems. These algorithms make 
no assumptions about the structure of a problem except that the objective function and 
the constraints must be linear. Even these restrictions can be relaxed without changing the 
basic framework of the technique.

In its simplest form, branch-and-bound is just an organized way of taking a hard prob-
lem and splitting it into two or more smaller (and hence easier) subproblems. If these 
subproblems are still too hard, we branch again and further subdivide the problems. The 
process is repeated until each of the subproblems can be easily solved. Branching is done 
in such a way that solving each of the subproblems (and selecting the best answer found) 
is equivalent to solving the original problem.

Consider the following simple example in two variables. A manufacturer has 300 person-
hours available this week and 1,800 units of raw material. These resources can be used to 
build two products, A and B. The requirements and the profit for each item are given as 
follows:

Product Person-Hours Raw Material Profit ($)

A 150 300 600
B 10 400 100

Let x1 and x2 represent the integer number of units of products A and B, respectively. We 
can formulate this problem as an integer linear programming problem: 
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This problem is illustrated in Figure 4.1. The feasible region is given by the discrete set of 
integer points within the constraint region. The optimal LP solution occurs at x1 = 1.789 
and x2 = 3.158 with a profit of z = 1,389.47. Unfortunately, we cannot sell a fractional num-
ber of items. One obvious alternative is to round down both values to x1 = 1 and x2 = 3, for 
a profit of $900. We will call the feasible integer solution xI = (1, 3) the current incumbent 
solution, which is the best answer found thus far. When we find a better integer solution, 
we will update the current incumbent. Before reading any further, try to locate the optimal 
integer solution to the problem in Figure 4.1, and consider how integer solutions might be 
found in general.
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The basic branch-and-bound algorithm results from the following observations: 

• The feasible integer solution x =  (1, 3) with z = 900 was fairly easy to find. The 
optimal integer solution cannot have a lower value of z than $900. Thus, we write 
zI = 900 and call this a lower bound on the optimal solution. Each time we find a 
higher valued integer solution, we replace the lower bound zI. This is the bound 
part of branch-and-bound methods.

• Over the whole feasible region, the largest possible value of z = 1389.47, which is 
the real valued solution obtained from the LP. We call this an upper bound on the 
optimal integer function value.

• The graphical solution shows that x2 = 3.158. This is infeasible because it is a frac-
tional solution. Since x2 must be an integer, then clearly either x2 ≤ 3 or x2 ≥ 4. This 
is equivalent to saying that x2 cannot lie part way between 3 and 4.

Consider the following two subproblems: 
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Observe that if we find the best integer solution of both of these subproblems, then one of 
them must be the optimal solution to the original problem. These subproblems are repre-
sented graphically in Figure 4.2, where the diagram is identical to Figure 4.1 except that 
the range of values for x2 between 3 and 4 is now infeasible. We say that we have separated 
on variable x2.

Consider problem [A] first. The LP solution occurs at x = (0.667, 4) with an objective func-
tion value of z = $800. Notice that x2 is now integer valued. We will see that each time we 
separate, the chosen variable will always be integer, although it does not necessarily stay 
integer on subsequent iterations.

By definition, the linear programming solution is the largest value possible for the prob-
lem. Therefore, the value z = 800 is an upper bound on all possible solutions in the feasible 
region for problem [A]. Any integer solution to [A] must be ≤800. However, we already 
have a feasible integer solution with zI = 900. Therefore, problem [A] can be ignored as it 
cannot contain any answer better than 900. In branch-and-bound terminology, we say that 
problem [A] has been fathomed.

In general, a subproblem is called fathomed whenever it is no longer necessary to branch 
any further. A subproblem is fathomed when the LP solution is less than the current lower 
bound for a maximization problem, when the LP solution is infeasible, or when the LP 
produces an integer solution.
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Problem [B] has its optimal LP solution at x = (1.8, 3) with a function value of z = 1,380. 
This value gives us a new upper bound on the optimal integer solution. At each iteration of 
the branch-and-bound process, the upper and lower bounds can be revised until they even-
tually converge to the optimal solution. We now know that the optimal value lies between 
900 and 1,380. Variable x2 is integer valued, but x1 is still fractional. We can now further 
divide problem [B] into two subproblems based on the fact that x1 ≤ 1 or x1 ≥ 2 as follows: 
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For problem [B1], it is easy to see that the optimal LP solution occurs at point x =  (1, 3) 
with a function value z = 900. Since x is now integer valued, it must be optimal for this 
subproblem. This subproblem is considered to be fathomed because it gives us an integer 
solution: there is no need for further branching as the solution cannot get any better below 
this node. It is also considered fathomed because the solution of 900 is no better than the 
one we already obtained earlier. In either case, problem [B1] is finished.
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FIGURE 4.2
Separate into two subproblems.
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Problem [B2] consists of the single point x =  (2, 0) with a function value of z = 1,200. 
This solution is both integer, and better than the previous lower bound. Since x is integer, 
subproblem [B2] is fathomed and no further branching is required. Our new lower bound 
increases to zI = 1,200 and xI = (2, 0) becomes the new current incumbent.

At this point, we observe that all of our subproblems have been fathomed. Therefore, 
xI = (2, 0) is the optimal integer solution, and zI = $1,200 is the optimal function value.

It is often convenient to display this procedure in the form of a branch-and-bound tree. 
The tree corresponding to the previous example is illustrated in Figure 4.3. Each subprob-
lem is represented by a node in the tree. Each node must either be fathomed or split into 
subproblems, which are shown by lower level nodes.

In Figure 4.3a, node 0 represents the original problem. We construct nodes 1 and 2 (for 
subproblems [A] and [B], respectively) by constraining x2 in Figure 4.3b. Node 1 is fath-
omed and node 2 is further subdivided into nodes 3 and 4 in Figure 4.3c, corresponding to 
problems [B1] and [B2].

z* = 1390
x* = (1.789, 3.158)
zI = 900
xI = (1, 3)

(a)

z* = 800
(fathomed)

z* ≤ 900 (b)

x* = (1.8, 3)

z* = 1380

z* = 1390

z* = 800

zI = 1200
xI = (2.0)

(c) New incumbent (fathomed)

0

0

x2 ≥ 4

x2 ≥ 4

x1 ≥ 2

x2 ≤ 3

x2 ≤ 3

x1 ≤ 1

1 2

0

1 2
z* = 1380

z* = 900
(fathomed) 

3 4

x* = (    , 4)2
3

FIGURE 4.3
Branch-and-bound example: (a) node 0: original problem, (b) subproblems [A] and [B], and (c) subproblems [B1] 
and [B2].
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4.4.2 A Basic Branch-and-Bound Algorithm

We will now give a more precise description of the previous procedure. The problem is 
expressed with a maximization objective, and a similar framework can be followed with 
minimization problems. A node in the tree is called an active node if it has not been fath-
omed and we have not separated on it yet. 

Step 0: Initialize
Let the set A denote the list of currently active nodes. A node in the tree is active if 

we have not either solved it or subdivided it yet. Initially, the set A = {the original 
problem}, node 0, and zI = −∞.

Step 1: Done?
If the set A is empty, then stop. The current incumbent, xI is optimal.
Step 2: Branching

Select a node, j, from the active list A (and remove it from A) according to some 
Branching Rule.

Step 3: Solve

Solve the LP relaxation of node j. (That is, relax/ignore the integer restrictions.)
Let z* denote the optimal LP solution at point x*.

Step 4: Fathoming Criterion 1

If the LP has no feasible solution, then node j is fathomed; go to Step 1.
Step 5: Fathoming Criterion 2

If z* ≤ zI, then this subproblem cannot contain any integer solution better than the 
current incumbent: node j is fathomed; go to Step 1.

Step 6: Fathoming Criterion 3

If x* is integer, then it becomes the new incumbent. Set xI = x* and zI = z*. Node j is 
fathomed; go to Step 1.

Step 7: Separation

Otherwise, we must separate node j into two or more subproblems (according to 
some Separation Rule.) Select some fractional variable in x* and construct two new 
subproblems. Add these new nodes to the set A and go to Step 1.

4.4.3 Knapsack Example

The manager of an Operations Research department in a large company has a list of proj-
ects that she would like to initiate. Each project has an expected payback expressed (in 
thousands of dollars) as the net present value over a 10-year period. Although all of the 
projects would be beneficial, there are simply not enough resources (in person days) avail-
able this month to do all of them. The estimates of resources and return are:

Project 1 2 3 4 5 6 7 8

Estimated value 15 20 5 25 22 17 30 4

Days 51 60 40 62 63 50 70 10

There are 250 person-days available this month. Which projects should be selected? 
At the end of this month, the manager must write a report summarizing the results from 
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completed projects; any projects that are not completed cannot be included among the 
successful projects in the report.

Define xj = 1 if project j is selected, and 0 otherwise. The “node 0” problem can be 
modeled as: 

 

maximize 15x 20x 5x 25x 22x 17x 30x 4x

subject to

1 2 3 4 5 6 7 8+ + + + + + +

 51x 60x 40x 62x 63x 50x 70x 10x1 2 3 4 5 6 7+ + + + + + + ≤8 250

x 0 or 1j =
 

When the 0–1 constraints are relaxed to solve the LP, we replace them with the linear con-
straints: 0 ≤ xj ≤ 1 

Step 0: A = {0}, and zI = −∞.
Step 1: A is not empty.
Step 2: Select node 0 from A. (A is now empty.)
Step 3: z* = 96.3 at the optimal LP solution at point x* = {0, 0, 0, 1, 1, 0.9, 1, 1}.
Step 4: The solution is feasible.
Step 5: z* > zI.
Step 6: x* is not an integer.
Step 7: Separate node 0 on a fractional variable (x6 is the only fractional value). 

Construct node 1, the same problem as node 0 with the additional constraint that 
x6 = 0. Similarly, construct node 2, the same problem as node 0 with the constraint 
that x6 = 1. Let A = {1, 2}.

Step 1: A is not empty.
Step 2: Select a node from A. Suppose we choose node 2; A =  {1}. Add constraint 

x6 = 1.
Step 3: z* = 96.25 at the optimal LP solution at point x* = {0, 0, 0, 1, 0.92, 1, 1, 1}.
Step 4: The solution is feasible.
Step 5: z* > zI.
Step 6: x* is not an integer.
Step 7: Separate node 2 on a fractional variable. (x5 is the only fractional value). 

Construct node 3, the same problem as node 2 with the additional constraint that 
x5 = 0. Similarly, construct node 4, the same problem as node 2 with the constraint 
that x5 = 1. Let A = {1, 3, 4}.

Step 1: A is not empty.
Step 2: Select a node from A. If we choose node 4, then A =  {1, 3}. Add constraint 

x5 = 1.
Step 3: z* = 96 at the optimal LP solution at point x* = {0, 0, 0, 1, 1, 1, 1, 0.5}.
Step 4: The solution is feasible.
Step 5: z* > zI.
Step 6: x* is not an integer.
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Step 7: Separate node 4 on a fractional variable. (x8 is the only fractional value). 
Construct node 5, the same problem as node 4 with the additional constraint that 
x8 = 0. Similarly, construct node 6, the same problem as node 4 with the constraint 
that x8 = 1. Let A = {1, 3, 5, 6}.

The algorithm continues until the set A is empty. The complete branch-and-bound tree for 
this problem is illustrated in Figure 4.4.

4.4.4 From Basic Method to Commercial Code

It is possible to construct examples in which the basic algorithm explicitly enumerates all 
possible integer solutions. If we assume, for simplicity, that there are n variables, and that 
each variable has m possible integer values, then our branch-and-bound tree could have 
as many as mn nodes at the lowest level of the tree. The amount of computation required 
increases exponentially and the problem would become computationally intractable for 
even moderate values of m and n. For example, when m = 3 and n = 20, the number of 
potential integer solutions is over 3 billion. Of course, we hope that the vast majority of 
potential nodes will be implicitly eliminated using the various fathoming criteria. A good 
branch-and-bound algorithm will try to find the optimal solution as quickly as possible; 
but if we hope to solve problems of any practical size, the algorithms must be designed 
very carefully. In particular, the three components of the algorithm that are most critical to 
the performance of various branch-and-bound implementations are: 

 1. Branching strategy: Selection of the next node (in the active list) to branch on in 
Step 2.
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FIGURE 4.4
Branch-and-bound tree for the knapsack example.
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 2. Bounding strategy: Many techniques have been suggested for improving the LP 
bounds (in Step 5) on the solution of each subproblem.

 3. Separation rule: The selection of which variable to separate on in Step 7.

4.4.4.1 Branching Strategies

To control the selection of the next node for branching, it is typical to restrict the choice of 
nodes from the list of currently active nodes in one of the following ways.

The Backtracking or LIFO (Last In, First Out) Strategy

Always select a node that was most recently added to the tree. Evaluate all nodes in one 
branch of the tree completely to the bottom, and then work back up to the top following all 
indicated side branches. A typical order of evaluating nodes is illustrated in Figure 4.5a. 
The numbers inside each node represent the order in which they are selected.

The Jumptracking (Unrestricted) Strategy

As the name implies, each time the algorithm selects a node, it can choose any active node 
anywhere in the tree. For example, it might always choose the active node corresponding 
to the highest LP solution, z*. A possible order of solving subproblems under jumptracking 
is illustrated in Figure 4.5b.

At first glance, the backtracking procedure appears to be unnecessarily restrictive. The 
major advantages are conservation of storage required and a reduction in the amount of 
computation required to solve the corresponding LP at each node. Observe that the num-
ber of active subproblems in the list at any time is equal to the number of levels in the 
current branch of the tree. Using jumptracking, the size of the active list can grow expo-
nentially. Each node in the active list corresponds to a linear programming problem with 
its own set of constraints. Consequently, storage space for subproblems is an important 
consideration.

Computation time is an even more serious issue with jumptracking. Observe that each 
time we solve a subproblem, we solve an LP complete with a full Simplex tableau. When 
we move down the tree, we add one new constraint to the LP. This can be done relatively 
efficiently if the old tableau is still available.

To do this using the jumptracking strategy, we would have to save the Simplex tab-
leau for each node (or at least enough information to generate the tableau easily). Hence, 
backtracking can save a large amount of LP computation time at each node. The effi-
ciency of solving subproblems is crucial to the success of a branch-and-bound method 
because practical problems will typically generate trees with literally thousands of 
nodes.

The major advantage of jumptracking is that, by judicious selection of the next active 
node, we can usually solve the problem by examining far fewer nodes. Observe that when 
we find the optimal integer solution, many of the nodes can be eliminated by the bounding 
test. Jumptracking will normally find the optimal solution sooner than backtracking. To 
illustrate this, suppose that the integer solution is represented by a node at the bottom of 
the branching tree. With backtracking, each time we choose a branch, one is correct and the 
other is wrong. If we choose the wrong branch, we must evaluate all nodes in that branch 
before we can get back on the correct branch. Using jumptracking, we can return to the 
correct branch as soon as we realize that we may have made a mistake. When we find the 
optimal solution, many of the nodes in the wrong branch will be fathomed at a higher level 
of the tree by the bounding test.
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In short, there is a trade-off between backtracking and jumptracking, and many commer-
cial algorithms use a mixed strategy. Backtracking is used until there is a strong indication 
of being in the wrong branch; then there is a jump to a more promising node in the tree 
and a resumption of a backtracking strategy from that point. The amount of jumptracking 
is determined by the definition of wrong.
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FIGURE 4.5
Branching strategies: (a) back tracking and (b) jump tracking.
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4.4.4.2 Bounding Strategies

In the branch-and-bound algorithm, suppose we have selected a node (subproblem) to 
branch on. We must now choose a fractional basic variable to separate on. Whether we 
round the variable up or down, the objective function value will normally decrease. The 
up and down penalties for each basic variable give us an estimate (lower bound) on the 
reduction in the value of z that would occur if we were to add the integer constraint. We 
can then use this information to pick the most promising basic variable.

Consider the example in Section 4.4.1. The optimal LP tableau is:

Basis x1 x2 x3 x4 Solution

z 0 0 3 13
19

3
9 1389 9

19

x1 1 0 2
285

-1
5700 115

19

x2 0 1 -1
190

1
380 3 3

19

Define fi to be the fractional part of each basic variable. In the example, f1 =  15/19 and 
f2 = 3/19, are the fractional parts of x1 and x2, respectively. Define aij  to be the element of 
the optimal LP tableau; and define cj to be the j-th reduced cost from the tableau. We define 
the down penalty Di to be the decrease in the objective function that would result from 
decreasing the variable to the next lower integer value. The down penalty for branching 
down on the basic variable in the i-th row is: 
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Similarly, we can derive a formula for the up penalty for variable xi, which will indicate 
the amount by which the objective function would decrease if we increased the basic vari-
able in the i-th row to the next highest integer. The up penalty, Ui, is given by: 
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In the example, the down penalty corresponding to branching down on basic variable x1 
is given by: 
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Consider the row of the tableau corresponding to x1. We can show that decreasing x1 by 
f1 = 15/19 implies we must increase x3 by 15

19
2

285( ) ( )  to maintain the equation. This, in 
turn, would produce the given decrease in the objective function row. (See Salkin and 
Mathur [1989] for a detailed proof.) Similarly, D2 = 9 9

19, U1 = 1899
19, and U2 = 589 9

19. The 
potential effect on the new branch-and-bound tree is shown in Figure 4.6.

4.4.4.3 Separation Rules

We can think of up and down penalties as a kind of look-ahead feature, in that they give us 
an estimate of the LP objective function value for separating on each basic variable with-
out actually solving all of the possible LP problems. We could, of course, improve these 
estimates by actually solving the corresponding LP tableaus, but this would be far more 
expensive. With branch-and-bound algorithms, we will always be faced with the trade-off 
between better (more accurate) bounds and computational cost.

Consider the two potential branch-and-bound trees in Figure 4.6. Which tree allows a 
more efficient solution? One simple general rule is to construct, at each node, a good branch 
and a bad one. Hopefully, we can follow the good branch, find the optimal integer solution, 
and then fathom the bad branch without having to separate further.

Thus, an effective separation rule is to separate on the variable that has the largest up 
or down penalty; then branch to the active node with the highest lower bound on the new 
function value; that is, the one most likely to lead to an optimal integer solution.

In the example, we would separate on variable x2 and then branch to subproblem [B] 
with x2 ≤ 3. When we solve [B], we will find the optimal integer with a function value of 
1,200. Because problem [A] has an upper bound of z ≤ 800, it will be fathomed without 
solving the corresponding LP.

4.4.4.4 The Impact of Model Formulation

For linear programming models, it does not make much difference how the original 
 problem is formulated, provided that the objective function and the constraints are correct. 
In integer programming, however, the formulation itself can have a dramatic effect on 
algorithm performance. As an example, consider the original problem formulation: 

Either: Separate on X1 or: Separate on X2

z = 1389 9
19

z = 1389 9
19

x1 ≤ 1 x1 ≥ 2 x2 ≤ 3 x2 ≥ 4

x = 1 5
19 , 3 3

19 x = 1 5
19 , 3 3

19

z ≤ 975 z ≤ 1200 z ≤ 1380 z ≤ 800

0

1 2

0

1 2

FIGURE 4.6
Up and down penalties for fractional basic variables and the corresponding potential branches.
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:

maximize z 600x 100x

subject to 150x 10x x 300

300x

1 2

1 2 3

1

= +

+ + =

++ + =

≥

400x x 1800

x , x  and integer

2 4

1 2 0

 

Observe that, for any feasible integer solution to this problem, x3 must be a multiple of 10, 
and x4 must be a multiple of 100. Suppose we first reduced the original problem to lowest 
common terms (before adding the slack variables): 

 

maximize z 6x x

subject to: 15x x x 30

3x

1 2

1 2 3

1

= +

+ + =

+ 44x x 18

x , x  and integer

2 4

1 2

+ =

≥ 0  

This new problem is identical to the original as far as the LP is concerned, but it is not the 
same integer problem! The new optimal Simplex tableau is:

Basis x1 x2 x3 x4 Solution

z 0 0 7
19

3
19 13 17

19

x1 1 0 4
57

-1
57 115

19

x2 0 1 -1
19

5
19 3 3

19

The most obvious immediate consequence of this new formulation is simply that z must 
be an integer multiple of 100. The upper bound on z denoted z is now 1,300. The reduction 
has no effect on the up and down penalties except that we get the decrease in the reduced 
units of z. Because the optimal value of z must be integer, the up and down penalties 
can be strengthened. For example, D1 in the old version reduced z to 975. Using the new 
 tableau, z will become 9.75, which can be replaced by 9 as an upper bound on the down 
problem. Since the initial rounded solution is z =  9, the corresponding branch is fath-
omed, that is, we can branch up on x1 for free. The complete revised branch-and-bound 
tree with up and down penalties is illustrated in Figure 4.7.

Notice also that the slack variables, x3 and x4 are integer valued in both problems 
and they will be candidates for branching. The slack and surplus variables (and the 
objective function variable z) will always be integer valued (in a pure integer prob-
lem) if all of the problem coefficients are integer. Thus, for example, if one of the con-
straint coefficients is 0.5, it would be advantageous to multiply the corresponding 
constraint by 2 to produce all integer coefficients. In general, any rational fractions 
can be removed by multiplying by the denominator. Refer to Johnson et al. (2000) for 
additional formulations.
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4.4.4.5 Representation of Real Numbers

In Chapter 2 on linear programming, we mentioned some of the problems associated 
with round-off error and numerical stability. The Simplex tableau will normally contain 
imperfect machine-representations of real numbers that have a limited number of signifi-
cant digits. As the algorithm proceeds, this inaccuracy in the representation of problem 
parameters will be compounded during each iteration so that the results can eventually 
become very inaccurate. This problem becomes much more critical in the context of integer 
programming because we often solve the LP several thousand times. Most commercial LP 
codes include a re-inversion feature that computes a new basis inverse matrix after a speci-
fied number of iterations.

We have the additional problem that it is difficult even to recognize when we have found 
an integer solution. The values of xi will not yield exact integer answers. We must assume 
that they are actually integers when they get close enough to an integer value within some 
prespecified tolerance.

In the example earlier, we expressed all of our calculations in the form of precise rational 
fractions to avoid any rounding error. Unfortunately, this is not a very practical approach 
in large-scale problems.

4.5 Cutting Planes and Facets

There is an extensive literature concerning the use of cutting planes to solve integer pro-
gramming problems. Early algorithms were theoretically intriguing, but not very effec-
tive in practice. However, some recent developments in the application of special cutting 
planes for problems with specific structure have produced some rather surprising results. 
One example is presented in Section 4.6 for the pure 0–1 problem. This section briefly dis-
cusses the general concepts and provides some background.

z∗ = 13
0

21

17
19 z = 13

z ≤ 8

x2 ≥ 4

z ≤ 9
z ≤ 12

x1 ≤ 1

x1 ≥ 2

zI = 12
xI = {2, 0} 43

x2 ≤ 3

x∗ = 1 15
19 , 3 3

19

z ≤ 13

4
5z∗ = 13

4
5x∗ = {1   , 3}

FIGURE 4.7
A complete branch-and-bound tree for the example problem using all penalty information.
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Given any integer programming problem, consider the set of feasible integer points. 
If the extreme points of the LP are all integers, then the problem is easy; the LP solution 
will be an integer solution. If the extreme points are not integer, then we can always tighten up 
the constraints (and possibly add new ones) in such a way that the new reduced LP does 
have integer extreme points.

For an intuitive motivation of this statement, suppose that the LP has an optimal extreme 
point solution that is not an integer. Then, it should be possible to add a new constraint that 
makes that extreme point infeasible (by at least a small amount) without excluding any 
feasible integer solutions. (We will illustrate shortly that this is always possible.) We can 
repeat this process until all extreme points are integers.

The general idea is illustrated in Figure 4.8. Given a feasible region defined by the con-
straints of a linear programming formulation, we are interested in only the integer points 
inside the region. In the figure, the outside polygon defines the LP feasible region: the inside 
polygon defines a unique tightened region that does not exclude any integer solutions. We 
call the reduced region the convex hull of the set of feasible integers. It is also referred to 
as the integer polytope of the problem. (A polytope is an n-dimensional polygon.)

A constraint is called a face or facet of the integer polytope if it defines an 
(n − 1)- dimensional set of points on the surface of the convex hull. In the two-dimensional 
example, a facet is a line of feasible points between two integer extreme solutions. In a 
three-dimensional cube, for example, the facets are simply the two-dimensional faces of 
the cube. A constraint that meets the cube along only an edge (one dimension) is not a 
facet. Clearly (at least in three dimensions), there must be one facet constraint for each face, 
and no others are needed to define the integer polytope.

If we could find all the facets of an integer problem, then all of the extreme points would 
be integers and the LP solution method would easily find the optimal integer solution. 
Unfortunately, for general problems, it is extremely difficult to find the facets of the convex 
hull. Much of the current research in integer programming is devoted to finding some 
facet-defining constraints for very specific problems.

1

1

2

2

3

3

4

4

A

CB

D

A: 2x1 + 2x2 ≥ 1
B: −2x1 + 2x2 ≤ 3
C: 4x1 + 5x2 ≤ 20
D: 4x1 − x2 ≤ 10

x2

x1

FIGURE 4.8
The convex hull of the set of integer solutions.
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The preceding observations have led many researchers to try to develop algorithms that 
would try to approximate the convex hull of the integer polytope. In particular, it is not 
necessary to find all of the facets—only the ones that define the integer optimum. Consider 
the following general algorithm: 

 1. Solve the LP.
 2. If the solution is integer, then it must be optimal.
 3. Otherwise, generate a cutting plane that excludes the current LP solution, but 

does not exclude any integer points, and then return to Step 1.

By our definition, a cutting plane is not necessarily a facet. A cutting plane is only guar-
anteed to take a slice of non-integer solutions out of the feasible region. In general, facets 
are hard to find, while cutting planes are easy; but, of course, the best cutting plane would 
be a facet.

Consider the example problem from Section 4.4.4.4, the branch-and-bound example after 
the coefficients have been reduced. The optimal Simplex tableau is:

Basis x1 x2 x3 x4 Solution

z 0 0 7
19

3
19 13 17

19

x1 1 0 4
57

-1
57 115

19

x2 0 1 -1
19

5
19 3 3

19

As a simple example of a cutting plane, observe that one row of the tableau can be written as: 

 
x x x1 + − =4

57
1

57
13 4

15
19 

Every feasible solution to this problem must satisfy this constraint, which is derived by 
elementary row operations on the original constraints. To obtain an integer solution for x1, 
at least one of the non-basic variables will have to increase, and these must also be integer. 
This leads to the simple cutting plane: 

 x x3 4+ ≥ 1 

At the current LP optimum, x3 and x4 are both equal to zero. Therefore, this constraint 
must make the current point infeasible. Furthermore, every feasible integer solution must 
satisfy this constraint, so no integers have been excluded. That is, this constraint satisfies 
the criteria for a cutting plane.

Notice that there is no branching involved here; at each iteration, we define a smaller 
feasible region, solve the new LP, and repeat the process, continuing until all of the basic 
variables are integers.

This procedure looks intuitively appealing because the cuts are easy to find and there 
are none of the complicated storage and bound problems associated with branch-and-
bound methods. However, it is not a very efficient or effective technique. As an exercise, 
the reader should try a few iterations on the example problem. Convergence is generally 
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very slow, which means that we have to generate a large number of new constraints. In fact, 
for this particular cut, we cannot even prove that the procedure is always finite.

A wide variety of better cutting planes have been proposed, of which the best known is 
called a Gomory fractional cut. This method is based on the premise that, in any integer 
solution, all of the fractional parts (in the tableau) must cancel one another. Consider the 
previous example for x1. From the tableau: 

 
x

4
57

x x1 3+ − =1
57

1
15
19

4
 

We first separate each coefficient into two parts: an integer component and a positive frac-
tional part: 

 
x 0x

4
57

x x
56
57

x = 1
15
19

1 3 3 4 4+ + − + +
 

Grouping all of the integer parts together on the right-hand side, we obtain: 

 
4

57
x

56
57

x x x3 4 1 4+ = − + + +1
15
19

   

Observe that, for any integer solution, the part in square brackets must also be integer. 
Moreover, because the variables must be non-negative, the left-hand side has to be 
positive. In fact, the left-hand side must be equal to: 15

19 or 115
19  or 215

19  or 315
19 , and so 

on. In other words: 

 
4

57
x

56
57

x3 4+ ≥ 15
19  

This is the Gomory fractional cut. Because the non-basic variables, x3 and x4 are equal to 
zero at the current LP solution, the Gomory cut always cuts off the corner of the feasible 
region containing the optimal solution. If any variable has a fractional solution, it is always 
possible to construct a Gomory cut. This method has the property that it will converge in 
a finite number of iterations.

The main disadvantages associated with the Gomory fractional cut method are: (1) the 
method can converge slowly; and (2) unlike branch-and-bound methods, integer solutions 
are not obtained until the very end. Pure cutting plane methods are therefore not consid-
ered to be very practical for large problems.

4.6 Cover Inequalities

One of the most successful approaches to 0–1 problems has been the introduction of cover 
inequalities (Crowder et al. 1983). A cover inequality is a specialized type of cutting plane. 
It defines a constraint that is added to the original problem in the hope that the extreme 
point solutions will occur at 0–1 points. After generating as many cover inequality con-
straints as possible, the reduced problem is solved using a standard branch-and-bound 
algorithm. This technique was able to dramatically decrease computation time on large, 
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sparse 0–1 programming problems, and practical problems with over 10,000 0–1 variables 
were solved to optimality. Prior to the introduction of this method, problems with 500 0–1 
variables were considered very difficult.

As before, the problem is formulated as a standard linear program with the additional 
restriction that all variables must be either 0 or 1. The constraints are partitioned into two 
types. Type I constraints are called Special Ordered Set (SOS) constraints. Type II con-
straints are simply all of the non-SOS inequalities. The simplest form of SOS constraint is 
as follows: 

 
x for some subset L of the variablesj

j L
≤

∈
1∑

 

In practical problems, we will often find that the vast majority of constraints are SOS. For 
example, if the variables xij are equal to 1 if resource i is assigned to location j, then we will 
have a number of SOS constraints which state that each resource can be assigned to at most 
one location. We may also get SOS equality constraints if resource i must be assigned to 
exactly one location.

SOS constraints have a very useful property with respect to 0–1 integer programming. 
Observe that, when we consider only one constraint (plus the non-negativity constraints 
on the variables), every extreme point solution occurs at a 0–1 point. For example, consider 
a simple system: x1 + x2 + x3 = 1; x1, x2, x3 ≥ 0. The extreme points occur at (1,0,0), (0,1,0), 
(0,0,1), and (0,0,0). Unfortunately, when several SOS constraints intersect, fractional LP 
solutions are introduced, but the property of having many 0–1 extreme points is still very 
attractive.

In a sense, SOS constraints produce easy problems, while the remaining inequalities 
are difficult. In general, the vast majority of extreme points using non-SOS constraints 
will lead to fractional solutions. Cover inequalities can be considered a simple tech-
nique for converting an individual non-SOS constraint into a set of equivalent SOS 
inequalities.

Before we present a precise definition, consider the following simple constraint as an 
example: 

 3x 4x 5x1 2 3+ + ≤ 6 

Observe that if we consider only 0–1 solutions, no two of these xj’s are allowed to have a 
value equal to 1. In particular, we can express this as: 

 

x x

x x

x x

1 2

1 3

2 3

+ ≤

+ ≤

+ ≤

1

1

1  

All of these constraints are cover inequalities; if any two variables are equal to 1, then the 
left-hand side will be greater than (or cover) the right-hand side. As an example, if x1 and 
x2 = 1, then 3x1 + 4x2 = 7 > 6. In fact, we can represent all three of these constraints in one 
by observing that only one of these xj’s can equal 1 in any feasible 0–1 solution: 

 x x x1 2 3+ + ≤ 1  
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Here, we can replace the original non-SOS inequality with its cover. As far as any 0–1 solu-
tions are concerned, the two constraints are equivalent. With respect to the LP solution, 
however, the cover inequality is much more restrictive. For example, the point (1, 0.75, 0) is 
feasible for the LP but infeasible under the cover.

As a more general illustration, consider the inequality: 

 3x 4x 5x 6x 7x 9x1 2 3 4 5 6+ + + + + ≤ 12 

Any subset of xj’s that results in a sum greater than 12 can be eliminated by a cover inequal-
ity such as x2 + x3 + x4 ≤ 2 because we cannot have all three of these variables equal to one. 
(The sum would be at least 15.)

A cover for a single inequality is a subset of variables, the sum of whose (positive) 
coefficients is greater than (or covers) the right-hand side value, b. A cover assumes 
that the inequality is in less than or equal (≤) form, and that all of the coefficients are 
positive (or zero). We can convert a greater than or equal to constraint into less than 
or equal to form by multiplying through by −1. We can also represent an equality 
constraint by two inequalities (one ≥ and a ≤) and then multiply the ≥ by −1. Each of 
these would be considered separately. If the constraint has a negative coefficient for 
variable xj, we can perform a temporary variable substitution of xj = 1 − xj′ to make all 
coefficients positive.

Suppose, for example, that a problem contains the constraint: 

 4x 5x 3x 4x 7x 5x1 2 3 4 5− + − − + =6 1 

We can replace this constraint with two inequalities: 

 

4x 5x 3x 4x 7x 5x

4x 5x 3x 4x 7x 5x

1 2 3 4 5 6

1 2 3 4 5 6

− + − − +

− + − − +

≤

≥

1

1 

(We do not really replace the constraint. We simply transform it for the purpose of finding 
cover inequalities.) The second (≥) constraint can be written as: 

 − ≤4 5 12x 5x 3x 4x 7x x1 3 4 5 6+ − + + − −  

Substitute x1 = 1 − x1′, x3 = 1 − x3′, and x6 = 1 − x6′ to get 

 4 5 111 3 6x x 3x 4x 7x 5x2 4 5′ ′ ′ ≤+ + + + +  

Similarly, for the first inequality, we get: 

 4x 5x x x 7x x1 3 6+ + + + +2 4 53 4 5 17′ ′ ′ ≤  

We can then use each of these independently to construct cover inequalities. The preced-
ing constraint implies (among others) that: 

 (x x x x that is, the variables cannot all have th1 3+ + +4 5 3′ ′ ≤ ee value 1) 

Converting back to original variables, we get: 

 x x x x1 4 5+ − −3 1≤  
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and we could add this new SOS constraint to the original LP, and resolve it.
In general, any non-SOS constraint can be written in the form: 

 j K

j ja x b
∈

∑ ≤

 

where K refers to the subset of non-zero coefficients and we can assume that aj > 0. We 
have deleted the subscript i for the row to simplify the notation.

Let S be any subset of K such that: 

 j S

ja b
∈

∑ >

 

The set S defines a cover. S is called a minimal cover if: 

 j S

j ka a b for all k S
∈

∑ < ∈−

 

that is, every element of S must cover b. In our example, for 

 4 3 7 5 172 4 5x 5x x 4x x x1 3 6+ + + + +′ ′ ′ ≤  

we could say that the set S = {1, 2, 3, 4, 5, 6} is a cover. The sum of the coefficients is greater 
than 17. However, there are a number of smaller covers. If we remove x2′, the set is still a 
cover. If we also remove x3, the result, S = {1, 4, 5, 6} is still a cover. However, if we remove 
any other element, S is no longer a cover; the sum will not be greater than 17. This set is 
called a minimal cover, and the cover inequality is: 

 x x x x1 + + +4 5 6 3′ ′ ≤  

or, equivalently, 

 x x x x1 4 5 6− − + ≤ 1 

If the set S is a cover, then every 0–1 solution must satisfy the cover inequality: 

 j S

jx S
∈

∑ ≤ − 1
 

There is a simple procedure for finding a minimal cover. Begin with S = K. Pick any index 
to delete from S such that the remaining indices still form a cover. Repeat until no index 
can be deleted without making the coefficient sum less than or equal to b. By repeating this 
process several times in a systematic way, we could generate all possible minimal cover 
inequalities. However, for large practical problems, the number of cover inequalities can 
be exponential. Therefore, we need a method for efficiently finding a good cover.

Unfortunately, the approach described earlier is not very practical for large prob-
lems. Suppose that one of the non-SOS constraints contains 50 variables, and each 
cover inequality has approximately 25 variables; then the constraint allows only half 
of the variables to be used in any 0–1 solution. The number of potential minimal cover 
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inequalities is 50
25( ) ≈ 1.26 × 1014. Generating all possible covers is not a very practical 

strategy, for even if we could generate all covers, we would discover that most of 
them were unnecessary in the following sense. The original purpose behind construct-
ing these constraints was to force the LP into a 0–1 extreme point. Most of the covers, 
although perfectly valid, will have no effect on the current optimal solution to the LP. The 
preferred approach would be to solve the LP, and then, if the solution contains fractional 
values, to look for a single cover inequality that makes the current LP solution infeasible.

To illustrate this process, consider the following simple problem: 

 

maximize z 12x 13x 11x 10x

subject to: 12x 13x 12x 11x

1 2 3 4

1 2 3

= + + +

+ + + 44

jx or

≤ 29

0 1=  

Solving this problem as an LP (with constraints 0 ≤ xj ≤ 1), we find that x* = (1, 1, 0.333, 0), 
with z* = 28.667. We want to find a set S such that: 

 1. The set S forms a cover of the constraint:

 j S

ja b
∈

∑ >

 

therefore,

 j S

jx S
∈

∑ ≤ − 1

 

 2. The current LP solution violates the cover inequality: 

 j S

j
*x S

∈
∑ > − 1

 

It is fairly easy to show that, if xj* = 0, then j will never occur in the set S. Because every 
xj* ≤ 1, if any of them are zero, the constraint will never violate the cover inequality. It is 
also easy to prove that, if xj* = 1, then we can always include it in the set S. If the corre-
sponding j is not in a set S that satisfies the aforementioned criteria, then adding j to S will 
still be a cover. Therefore, in our example, we will include x1 and x2 and ignore x4. The only 
question is whether to include x3. Observe that when we do not include it, we do not get a 
cover; but, when we do add it to S, we get a cover and the current solution violates the cover 
inequality, as required: 

 x x x1 2 3+ + ≤ 2  

We now add this constraint to the original problem and solve the LP again. If the new solu-
tion is fractional, we look for another cover inequality.

We now present a simple algorithm for finding effective cover inequalities. Let x* be the 
optimal solution to the linear programming problem with 0 ≤ xj ≤ 1, and suppose that we 
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want to find a valid cover inequality for one of the non-SOS constraints that will cut off the 
current LP solution. Consider any non-SOS constraint of the form: 

 j K

j ja x b
∈

∑ ≥ + 1
 

(We will repeat this procedure for each of the non-SOS constraints separately.)
Define the elements of S using the 0–1 variables sj, where: 
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We claim that this problem is equivalent to solving the following 0–1 knapsack problem: 
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subject to a x b
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The constraint ensures that the solution will be a cover. If the optimal value of z in this 
problem is less than 1, then the corresponding cover inequality will make the current 
LP solution infeasible. For a proof of this claim, refer to the work of Crowder et al. 
(1983).

In this subproblem, we do not actually require the optimal value of z. It is only necessary 
to find a z value less than 1, so we can use a variation of the biggest bang for your buck heu-
ristic, which will be described in the following, to find an approximate solution efficiently. 
This method may miss a valid cover; but if it does find one, it will be acceptable.

We present a method for finding an approximate solution to the following 0–1 knapsack 
problem: 

 

maximize z t x

subject to a x b
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The LP version of the knapsack problem is very easy to solve optimally. The algorithm sorts 
all of the variables in decreasing order of bang for buck. The cost coefficient tj represents the 
value (bang) that we get from each xj, while aj represents the cost (buck) or weight associ-
ated with the limited resource b. Process the variables in decreasing order of {tj/aj}, and set 
xj = 1 as long as the constraint is still satisfied. Let k be the index of the first variable that 
will not fit in the knapsack. Define the amount of space left in the knapsack (the residual) as: 

 

r b aj

j k
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<
∑
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and set xk equal to the fraction just large enough to use all remaining capacity: 

 
x

r
a

k
k

=
 

The rest of the xj’s for j > k are set to 0.
This simple one-pass assignment gives the optimal objective function for the LP and has 

only one possible fractional variable. Let z* be the objective function value. The optimal 
value z for the 0–1 knapsack problem will be less than or equal to z*. If z* is not integer 
valued, we can round it down, and use it to approximate the 0–1 knapsack solution. Thus, 
we do not actually solve the 0–1 knapsack problem.

The bang for buck heuristic also gives us a lower bound on the 0–1 knapsack problem. If we 
ignore the fractional variable xk, we have a feasible 0–1 solution and, therefore, the optimal 
0–1 solution is bounded below by z* − tkxk and above by z*. In particular, if the LP has no 
fractional variable, the solution zI must be optimal.

Our situation presents a type of reverse knapsack problem: minimize a cost function and 
have at least (b + 1) selected for inclusion in the knapsack. We can apply the same bang for 
buck heuristic; only we select the variable with the smallest ratio first, and keep selecting 
until the solution is feasible.

Consider the previous example: 12x1 + 13x2 + 12x3 + 11x4 ≤ 29 and x* = (1, 1, 0.333, 0). 
The knapsack problem becomes: 

 

minimize z 0s 0s 0.667s 1s

subject to 12s 13s 12s 11s

1 2 3 4

1 2 3 4

= + + +

+ + + ≥≥ 30 

The heuristic solution is: s1 = s2 = s3 = 1 or S = {1, 2, 3} with the value of z = 0.667, which is 
less than 1. Therefore, the corresponding cover inequality, x1 + x2 + x3 ≤ 2 cuts off the cur-
rent LP solution, as required.

Cover inequalities are included, as an option, in most of the higher quality commercial 
packages. These implementations usually develop as many cover inequalities as possible 
in a preprocessor, and then solve the reduced problem using branch-and-bound or other 
techniques. Some implementations may use the technique repeatedly, after each iteration 
of branch-and-bound.

In large practical test problems, Crowder et al. (1983) have discovered that the main 
advantage of cover inequalities does not rely on getting 0–1 extreme points. However, 
the objective function value for the resulting LP is much closer to the final integer 
optimum. In other words, the cover inequalities appear to be defining very strong cuts 
into the feasible region. This has a dramatic effect on the branch-and-bound routine 
because tree nodes will now be fathomed much earlier, and the bounds will tend to 
be considerably stronger. As mentioned at the outset, it is possible to solve pure 0–1 
problems with up to 10,000 0–1 variables to optimality in a reasonable amount of 
computer time.

Since then, many other inequalities have been developed and incorporated into com-
mercial software. We are now solving problems with millions of 0–1 variables routinely. 
See Johnson et al. (2000) for several additional examples.
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4.7 Lagrangian Relaxation

4.7.1 Relaxing Integer Programming Constraints

At each node of the branch-and-bound algorithm, we solved a relaxation of the corre-
sponding integer programming problem, relaxing the hard constraints to produce an easy 
subproblem. Namely, we relaxed the integer constraints, and solved the resulting LP. The 
solution to the easier problem is an upper bound on the original (maximization) problem 
because we have ignored some of the original restrictions.

With Lagrangian relaxation, we find that it is not always necessary to relax the integer 
constraints. In some special problem instances, we could relax other constraints and leave 
the integer restrictions in the problem, and still produce an easy integer problem. Recall 
from Chapter 3 that some integer problems, such as network problems, can be easy to 
solve.

Consider the following general definition of an integer programming problem: 

 

maximize z c x

subject to Ax b

Dx e

x intege

T=

≤

≤

 

 

rr  

This formulation is the same as before except that we have divided the set of constraints 
into two groups. Assume that the constraints of the form Ax ≤ b are relatively easy, while 
the constraints Dx ≤ e are hard. If we could ignore the second set of constraints, then the 
integer problem would be easy to solve.

Unlike the LP relaxation, we will not ignore the hard constraints completely. Instead, we 
will add a penalty term to the objective function that adds a cost for violating these restric-
tions. This penalized function is called the Lagrangian and is written in the form: 

 

maximize L x,u c x u Dx e

subject to Ax b

x integer

u

T T( ) ( )=

≤

≥

− −

0  

The vector u contains one entry for each of the constraints in the set Dx ≤ e. The variable 
ui represents the penalty associated with violating constraint i in this group. Observe that, 
if we choose any fixed values for these penalties, then the resulting function becomes a 
linear function of x, and because the remaining constraints are easy, we can maximize this 
function with respect to x.

To simplify the discussion, suppose that there is only one hard constraint: 

 
–d x ej j

j

n
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=
∑ 0

1  
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and therefore, the penalty u is a single scalar term. Initially, set u = 0 and solve the easy 
integer problem ignoring the hard constraint. Having done this, we are likely to discover 
that the solution violates the hard constraint, which means that: 

 

–d x ej j

j

n

>
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∑ 0

1  

If we now keep x fixed and increase u, we will decrease or penalize the Lagrangian function.
Suppose we now choose some fixed positive penalty value for u, and rewrite the 

Lagrangian as a function of x: 

 

maximize L x,u c ud x ue

subject to Ax b

x integer

j j j

j
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≤
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=
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This problem is, once again, an easy integer problem for any fixed value of u. The penalty 
on the hard constraint will eventually force the LP to move to an integer solution that is 
feasible when u is large enough.

If we make u too large, the term (dx − e) becomes negative. That is, if we put too much 
emphasis on satisfying the constraint, it will be over-satisfied, and we will have gone too 
far. The value of u is no longer penalizing the objective function. Larger values of u will 
now increase L(x, u). At this point, we can penalize the objective function by using a smaller 
value of u.

The optimal value of the Lagrangian function is expressed as a min-max problem: 

 

(x,u)minimize maximum L

u≥0 xx integer  

which means that we want to find the value of u that has the greatest penalty effect on 
L(x, u). This problem in itself is rather difficult; however, we can take advantage of the fact 
that, when we fix u and maximize over x, the problem is easy. Similarly, when we fix x, and 
minimize over u, the problem becomes an unconstrained linear function of u, and is also 
easy to solve. More accurately, it is easy to decide whether u should increase or decrease (if 
possible) to minimize L(x, u).

4.7.2 A Simple Example

Consider the following example problem, which is illustrated in Figure 4.9: 

 

maximize z x x

subject to x x

x x  or 
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= +
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Observe that, if a 0–1 problem does not have any constraints, it is trivial to maximize. That 
is, if the objective function coefficient cj is positive, then set xj = 1; otherwise, set xj = 0. We 
can express the problem in Lagrangian form as: 

 

minimum maximum x 2x u 2x x1 2 1 2

u

– –+ +( )
≥

2

0 ,x∈( )0 1  

We begin with u = 0, and note the maximum of the problem is L(x, 0) = 3 with x1, x2 = 1. 
However, this point violates the constraint, so we substitute these values of x into the 
Lagrangian, and consider the result as a function only of u. 

 

–minimum u

u

3

0≥  

This function can be minimized by choosing u as large as possible. We could try u = 5, for 
example; and when we substitute this value into the original Lagrangian, we get: 

 

maximum x 2x 2x x
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The optimal solution to this problem is to set both decision variables to zero. The corre-
sponding function value is L(x, 5) = 10. This time, when we substitute x into the Lagrangian 
in terms of u, we find:
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max z = x1 + 2x2

FIGURE 4.9
Simple Lagrangian problem.
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This subproblem tells us to decrease u as far as possible. We already know however that 
when u =  0, it will tell us to increase u. So, the correct value of u must lie somewhere 
between these two extremes.

Observe that, for any value of u, we can solve for x and find the value of L(x, u). Figure 4.10 
illustrates what we have learned so far about L(x, u) as a function of u.

Recall that we want to minimize L(x, u) as a function of u. When u = 0, we found x = (1, 1) 
and the function was defined by the decreasing line as u increases. This expression is valid 
as long as x = (1, 1); but then at some point, the optimal solution for x changes, and we get 
a new linear function describing L(x, u). We now know what that linear function is when 
u = 0 and u = 5, yet we do not know how it behaves in between these two points. The two 
line segments in Figure 4.10 represent our best guess at the moment. In particular, it looks 
as if the minimum value of the Lagrangian will be found when u = 1, so we try that next.

Substituting u = 1 into the Lagrangian gives:
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The maximum of this function is L(x, 1) = 3 when x = (0, 1). If we substitute x = (0, 1) into 
the original function, we get: 

 ( , ) – –L x u u( ) u= = +2 1 2  

This new section of the Lagrangian is added to the previous approximation to get the func-
tion illustrated in Figure 4.11.

From this function, we obtain a new estimate of the minimum value of u = 0.5. Once 
again, we substitute this value into the Lagrangian and solve for x.

3 5421 6
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L (x∗, u)

u

x = (0, 0)

x = (1, 1)

FIGURE 4.10
L(x*, u) as a function of u.
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The maximum of L(x, 0.5) = 2.5 occurs at x = (0, 1) or x = (1, 1). It is easy to verify that this 
is the true minimum of the Lagrangian. That is, we will not find any new solutions that we 
have not already described in Figure 4.11.

Let us summarize a number of very useful properties of the Lagrangian, and indicate 
how we can make use of these properties. 

• The Lagrangian method always finds an integer solution, although the solution 
found is not necessarily feasible.

• If the solution, xI is feasible, and if the original function, zI at xI is equal to the value 
of the Lagrangian, then xI is optimal for the original integer problem.

• Most important, if z* is the solution of the relaxed LP, L(x, u) is the optimal solution 
to the Lagrangian, and zI is the (unknown) optimal integer function value, then

 ( ) *z L x, u zI ≤ ≤   

A proof of these relationships can be found in Fisher (1985).
In other words, the value of the Lagrangian always gives a bound on the optimal integer 

solution that is at least as good as the LP. Therefore, if we use the Lagrangian instead of the 
LP in any branch-and-bound algorithm, we may get better results. The LP bound is never 
better than the bound from the Lagrangian. In our simple example problem, the optimal 
integer function value zI = 2 when zI = (0, 1). The LP solution occurs at x = (0.5, 1) with 
z* = 2.5. The LP and the Lagrangian both give the same upper bound.

4.7.3 The Integrality Gap

Let LI be the optimal solution to the Lagrangian when the integer variables are forced to take 
integer values, and let L* be the optimal solution to the Lagrangian when the integer variables 

1 32
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FIGURE 4.11
L(x*, u) as a function of u.
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are allowed to take on real values (i.e., when we drop the integer constraint on the Lagrangian). 
It can be proved that the optimal solution for L* is precisely equal to the optimal solution z* 
to the LP. (In fact, the penalty terms u in the Lagrangian will be identical to the corresponding 
dual variables in the constraints.) Therefore, we can expand the preceding inequality to be: 

 z L L zI I≤ ≤ =* * 

We use the term integrality gap to describe the difference between LI and L* which is 
the amount by which the Lagrangian decreases when we add the integer constraints. In 
the example problem, when we solved the Lagrangian without integer restrictions, we 
obtained integer solutions anyway. Adding the integer constraints does not change the 
function value. There is no integrality gap. Because the optimal solution to the Lagrangian 
is equal to the LP solution in this example, the Lagrangian will never give a better bound. 
Indeed, we saw that z* = 2.5, and LI = 2.5. When we construct the Lagrangian to get an 
easy integer problem, we actually do not want it to be too easy; we want an integrality gap 
so that the Lagrangian bound is better than the LP bound. We provide an example of this 
type of Lagrangian function in the next section.

4.7.4 The Generalized Assignment Problem

Consider the generalized assignment problem which was introduced and formulated in 
Section 4.3.5. This problem is similar to the standard assignment problem, where we want 
to assign jobs to machines for example, except that, in this case, we can assign more than 
one job to the same machine subject to some capacity limitations.

The generalized assignment problem has a wide variety of practical applications. We 
could, for example, be assigning computer programs to a set of processors, or customer 
orders to a set of delivery vehicles, or university students to sections of a course. The 
capacity might represent a space restriction (in the truck) or a limit on total available time. 
The problem formulation can be written as follows: 
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where there are n jobs and m machines. The variables xij = 1 if job i is assigned to machine j. 
The payoff for assigning job i to machine j is cij. Each machine has a capacity bj, and each 
job requires ai units of machine capacity. The first set of constraints forces each job to 
be assigned to exactly one machine, while the second set of constraints ensures that no 
machine has its capacity exceeded.

In the standard assignment problem, the size of each job and the capacity of each machine 
are equal to one. We have already seen in Chapter 3 that the basic assignment problem is 
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relatively easy to solve. Surprisingly, when we generalize the machine capacity constraint, 
we create an integer programming problem that is difficult to solve. The LP solution is not 
necessarily an integer solution.

A straightforward formulation of the Lagrangian is to move the capacity constraints into 
the objective function: 
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When uj = 0, this problem is trivial to solve. We can consider each job independently, and 
simply put it on the best machine (with the highest cij). This solution will generally violate 
some of the capacity constraints, so we can increase the corresponding penalty terms, uj, 
and construct a new simple problem with: 

 c c u aij ij j i= −  

This penalizes placing all jobs on the machines whose capacities are exceeded. Now, 
we solve this new problem where we again place each job on the best possible machine 
using the values cij. Unfortunately, this formulation is a little too easy. The solution of the 
Lagrangian (in terms of x) would give 0–1 answers even if we solved it as an LP. Therefore, 
there is no integrality gap and the optimal Lagrangian function value will be the same as 
the LP function value for the original problem. The corresponding Lagrangian will not 
produce better bounds than the LP.

The same problem could also be formulated in the following way as a Lagrangian: 
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This formulation can be interpreted as considering each machine separately. Initially, we 
start with u = 0 and assign the best possible jobs to each machine without violating the 
capacity restrictions. Each machine can be thought of as defining an independent knapsack 
problem. Although the knapsack problem is not as easy as the simple assignment solu-
tion that we used in the previous formulation, it is still a relatively easy problem in many 
practical situations.

The solution obtained will generally assign some jobs to more than one machine and 
other jobs will be unassigned, which are both infeasible because every job must be assigned 
to exactly one machine in any feasible solution. When a job i is assigned to more than one 
machine, the corresponding penalty term will be positive and we can use a positive value 
of ui to penalize the Lagrangian. However, when a job i is unassigned, the term will be 
equal to −1, and we use a negative value of ui to penalize the infeasibility. Thus, we do not 
restrict ui to have a non-negative value.
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In this formulation, if we solve the Lagrangian as an LP, we will get a fractional solution. 
In particular, each knapsack (machine) may have one fractional part of a job assigned to it. 
By solving the Lagrangian as a sequence of knapsack problems, we get an integer solution, 
and therefore, the problem will, in general, have an integrality gap. The integer restriction 
on the Lagrangian will decrease the objective function value. Hence, the Lagrangian will 
give a better upper bound than the standard LP bound.

This approach has been used successfully by Fisher et al. (1986) to obtain practical solu-
tions to the vehicle routing problem, in which a given set of customer orders must be 
assigned to delivery trucks. Each order takes a fixed amount of space in the truck, and 
there is a capacity restriction on the size of each vehicle.

4.7.5 A Basic Lagrangian Relaxation Algorithm

A succinct general description of a Lagrangian relaxation algorithm is given in the follow-
ing. We omit implementation details because specific implementations vary considerably, 
depending on the application. 

 1. Select an initial value for u0 (say u0 = 0), and find the maximum of the Lagrangian 
with respect to x with u fixed. Suppose the solution is L0 at x0. Define k = 0 to be 
the current iteration.

 2. Substitute the current solution xk into the Lagrangian objective function to get a lin-
ear function of u. If the i-th coefficient of u is negative, then the Lagrangian can be 
reduced by increasing the i-th component of uk. If it is positive, then we can decrease 
the Lagrangian by decreasing the i-th component of uk provided it is feasible to do so.

 3. Determine a value of uk+1 such that the Lagrangian Lk+1  <  Lk. (There are many 
methods for doing this, some of which rely on trial and error.)

 4. If no decrease can be found, stop. Otherwise, set k = k + 1, and go back to step 2.

4.7.6 A Customer Allocation Problem

We will illustrate the basic method of Lagrangian relaxation by solving a distribution 
problem. Many companies operate multiple distribution warehouses to supply products 
to their customers. One of the common problems facing such companies is to determine 
which set of customers should be assigned to each warehouse. Because of the additional 
delivery costs, it usually does not make economic sense to have a customer’s demand 
satisfied by more than one warehouse. This is referred to as a single sourcing constraint.

Consider a delivery problem in which four customers must be served from three ware-
houses. The cost of satisfying each customer from each warehouse is illustrated in the fol-
lowing table. Each customer has a demand that must be met, and each warehouse has a 
maximum capacity.

Warehouses

Customers 1 2 3 Demand di

1 475 95 665 19
2 375 150 375 15
3 360 180 180 12
4 360 180 360 18

Capacity bj 18 27 20
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The problem can be formulated as a generalized assignment problem where xij  =  1 
if customer i is served by warehouse j. Every customer must be served by exactly one 
warehouse, and every warehouse has a capacity constraint on the set of customers it can 
service. 
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If we solve the problem as an LP with (0 ≤ xi ≤ 1), we get a total cost of 890, but two of 
the customers are served from two warehouses. This violates the 0–1 constraint on the 
variables.

We construct a Lagrangian function by penalizing the customer constraints: 
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or, equivalently: 
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Observe that because this problem is a minimization in x, we construct the Lagrangian as 
a maximization in u. When we substitute any fixed value of u into the Lagrangian, this 
problem becomes a simple multiple knapsack problem. We can treat each warehouse as 
an independent knapsack problem, and find the least expensive customers for that ware-
house. However, because we have dropped the customer constraint, there is no reason 
why a customer cannot be assigned to more than one warehouse, or in fact, to no ware-
house. In particular, if we set u = 0 initially, we discover that the optimal solution is x = 0. 
(No customers are assigned to any warehouse!) To make customers attractive to the ware-
houses, at least some of the costs must be negative; that is, we must choose initial values for 
the u vector to be negative enough to make some of the Lagrangian costs negative. We will 
choose u = (−475, −375, −360, −360), a somewhat arbitrary choice, but one in which the 
new Lagrangian costs have at least one negative cost for every customer. We can subtract 
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the second smallest cost in each row to ensure that the smallest cost will be negative. (In the 
first row, we can subtract 475 from each element.) Now, every customer is desired by at least 
one warehouse. The new Lagrangian costs are:

Warehouses

Customers 1 2 3 Demand di

1 0 −380 190 19

2 0 −225 0 15

3 0 −180 −180 12

4 0 −180 0 18

Capacity bj 18 27 20

When we solve the knapsack problem for each warehouse we find: 

Warehouse 1: Does not take any customers (all costs are zero).
Warehouse 2: Would like to take all of them, but can take only customers 2 and 3 due 

to capacity constraints for a cost of −405.
Warehouse 3: Takes customer 3 for a cost of −180.

The value of the Lagrangian function is the sum of these costs minus the sum of the penal-
ties, ui: 0 − 405 − 180 − (−1570) = 985. This first approximation is already a better bound on 
the solution than the LP solution, which has a value of 890.

When we now examine the customer constraints, we see that no warehouse took customer 
1 or 4, and two warehouses took customer 3. To encourage at least one warehouse to take cus-
tomers 1 and 4, we want to decrease the cost for those customers (that is, decrease u1 and u4).

In order to decrease the number of warehouses that want customer 3, we increase the 
cost slightly. There are many popular methods for doing this, but they all essentially 
involve trial and error. We can change all three ui values at once, or we can change them 
one at a time. We can take small steps, and keep increasing them until the Lagrangian 
stops increasing, or we can take large steps (too far) and then back up. Without elaborating 
on details, we will briefly illustrate the first couple of steps.

Suppose we decide to change the three ui values by 200. (A small change by 1 or 2 does 
in fact increase the Lagrangian.) Then, the new u values are (−675, −375, −160, −560) and 
the costs will be:

Warehouses

Customers 1 2 3 Demand di

1 −200 −580 −10 19

2 0 −225 0 15

3 200 20 20 12
4 −200 −380 −200 18

Capacity bj 18 27 20
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The three knapsack problem solutions are: 

Warehouse 1: Takes customer 4 (customer 1 will not fit) for a cost of −200.
Warehouse 2: Takes customer 1 for a cost of −580.
Warehouse 3: Takes customer 4 for a cost of −200.

The value of the Lagrangian is: −200 − 580 − 200 − (−1770) = 790. We thought that we were 
moving in a direction that increased the Lagrangian; and, in fact, the Lagrangian will 
increase for the fixed previous value of x. Unfortunately, as we continue to increase the 
change in u, we eventually get a new minimum solution x, and the Lagrangian starts to 
decrease. Apparently, we have gone too far; so let us try again, using a smaller change for 
the values of u by 10. The new u vector is: (−485, −375, −350, −370), and the resulting cost 
matrix is:

Warehouses

Customers 1 2 3 Demand di

1 −10 −390 180 19

2 0 −225 0 15

3 10 −170 −170 12

4 −10 −190 −10 18

Capacity bj 18 27 20

The knapsack solutions are: 

Warehouse 1: Takes customer 4 for a cost of −10.
Warehouse 2: Takes customers 2 and 3 for a cost of −395.
Warehouse 3: Takes customer 3 for a cost of −170.

The Lagrangian function is: −10 − 395 − 170 − (−1580) = 1005. At this stage, customer 1 is 
still unserved, and customer 3 is still served by two warehouses. Decreasing u1 further 
and increasing u3 should lead to a further increase in the Lagrangian.

In fact, the value of the optimal solution to the Lagrangian for this problem is 1,355, 
which also happens to be the optimal integer function value (with customer 4 assigned to 
warehouse 1; customers 2 and 3 to warehouse 2, and customer 1 to warehouse 3). Thus, for 
this particular example problem, the Lagrangian bound is tight.

4.8 Column Generation

Many integer programming problems can be stated as a problem of determining what 
patterns or combinations of items should be assigned to each of a set of orders. Problems 
of this type arise frequently in some of the most important industrial and organizational 
applications, and are typified by the following examples.
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In problems involving vehicle routing, customer orders are to be assigned to trucks and 
routes. A pattern might be a set of customers that could feasibly fit on one truck load (and 
be delivered by a driver without violating any workday or time delivery constraints).

In airline crew scheduling, work pieces (flight legs) must be assigned to airline crews 
(teams including pilots, navigators, flight attendants, etc.). A pattern might be one (or sev-
eral) day(s) of work for one crew consisting of several feasible flight legs (with constraints for 
required rest time between flights, layovers, constraints on legal flying hours per day, etc.).

Various cutting stock problems involve choosing which orders should be cut from each 
piece of stock material. In this context, a pattern would include a set of orders that could be 
cut from one piece of material. The orders might be pieces of fabric cut out for dresses, or 
large rectangular sheets of paper cut from a large roll.

An example of a shift scheduling problem is determining how to assign hospital work 
shifts to nurses or doctors. In shift scheduling, a pattern might consist of a feasible set of 
shifts that a nurse could work over a two week rotation.

Each of these problems could be solved in the following way: 

 1. Construct all possible feasible assignment patterns.
 2. Define xi = 1 if we decide to use pattern i.
 3. Define ci to be the total cost of using pattern i.
 4. Define aij  =  1 if customer/order/leg/shift j is included in pattern/route/work-

stretch i.

To simplify the discussion, we will use the example of vehicle routing. Given a set of cus-
tomer orders that will be assigned to one truck, we can calculate the (minimum) cost of 
paying a driver to visit all of the locations and return to the warehouse. We could then 
solve the following 0–1 integer programming problem: 
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Customer j may be included in many different possible routes. We want to find a mini-
mum cost set of routes such that every customer is covered exactly once. This type of 
problem, called a set partitioning problem, has very special structure; and there are a 
number of specialized software codes for this problem that can solve extremely large prob-
lem instances (with millions of variables) optimally (Barnhart et al. 1998).

For small enough problem instances, the exhaustive enumeration or construction proce-
dure suggested earlier might be a reasonable way to find optimal solutions. Unfortunately, 
the number of possible routes is an exponential function of the number of customers. 
Count the number of ways you can feasibly select a subset of customers, and you will dis-
cover that this approach is not at all practical.

Instead, we are going to begin by constructing a small subset of potential routes. It is 
important here that the number of routes be greater than the number of customers, but not 
exponential. These routes should include each customer at least a couple of times; but the 
routes do not have to be particularly good ones. The usual procedure is to use a simple 
heuristic to construct reasonable routes.



199Integer Programming

We now solve this problem as a linear programming problem (with 0  ≤  xi  ≤  1), and 
then use the dual values to help us find a new route (column). We add this new column to 
the problem and solve the linear program again. We continue this process until no new 
column can be added, and we then solve the 0–1 integer problem optimally. This final 
problem does not give the optimal solution to the original problem because it typically 
accounts for only a small fraction of the possible feasible routes. However, the solution to 
the linear program is optimal in the sense that there is no new column that can be added 
that could reduce the cost of the linear programming problem. Because the LP is a lower 
bound on the IP, the true integer solution is bounded by the optimal LP and the IP solution 
that we obtain.

Consider the following simple vehicle routing example. Suppose that a fleet of trucks 
must travel on a square grid road network, and each edge in the road network takes one 
hour of travel time. Each driver can travel at most 10  hours. Each truck must begin at 
the depot (marked with the letter “D”), visit one or more customers (marked with num-
bers from “1” through “6”), and then return to the depot. The network is illustrated in 
Figure 4.12. In this network, for example, the route from “D” to “1” to “D” will take six 
hours; the route from “D” to “4” to “5” to “D” will take eight hours; and the route from “D” 
to “1” to “2” to “D” will take 10 hours.

To initiate the procedure, select at least six feasible routes, and compute the cost of each 
route. These routes form the initial set of columns. We have chosen the following set of 
columns, where each customer is in two routes. (We intentionally chose poor routes to 
illustrate that the quality of these routes does not matter at this point, although normally, 
reasonable routes should be selected.)

Cost

10 8 10 10 10 10

Customer x1 x2 x3 x4 x5 x6 RHS

1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1
5 1 1 1
6 1 1 1

4

6

5

3 2

1D

FIGURE 4.12
Vehicle routing example.
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Solving this as a linear program gives: z = 28; x2, x4, x6 = 1. The solution is integral by 
coincidence (with 0 ≤ xi ≤ 1). The dual variables are (−2, −10, 0, −8, −10, 0). First, we will 
illustrate how we solve this problem. Later, we will illustrate why it works.

The duals (one for each row implies one for each customer) represent the sensitivity of 
the objective function to changes in the RHS. (Increasing the RHS by 1 would result in an 
increase in the objective function of the corresponding dual variable). In our case, it would 
decrease the objective function because the duals are negative.

Consider the following special problem of finding a single route that starts at the depot, 
visits some customers, and returns to the depot in at most 10 hours. The cost of the route 
is the total time; however, for every customer that is visited, increase the cost by the cor-
responding dual variable. For example, a route that goes from “D” to “4” to “5” to “D” will 
cost 8 − 8 − 10 = −10. We claim that if we had initially added a column with customers 4 and 
5, and then computed the Simplex tableau for the current basic feasible solution, the new 
reduced cost would be precisely −10. Since it is negative, it can immediately enter the basis.

Cost

10 8 10 10 10 10 8

Customer x1 x2 x3 x4 x5 x6 x7 RHS

1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1 1
5 1 1 1 1
6 1 1 1

Solving this as a linear program again gives: z = 28; x2, x4, x6 = 1. However, the dual variables 
are now (−10, 0, −10, 0, 0, −8). Again, by inspection, we find a route with a negative reduced 
cost. The new column corresponds to “D” to “1” to “3” to “D” for a cost of 8 − 10 − 10 = −12.

Solving this as a linear program again gives: z = 27; x2, x3, x5, x6, x7, x8 = 0.5. The new dual 
variables are now (−4, −6, −4, −3, −5, −5). By inspection again, we find a route with a nega-
tive reduced cost. The best new column corresponds to “D” to “5” to “4” to “6” to “D” for 
a cost of 10 − 5 − 3 − 5 = −3.

After a few more iterations, we find a solution with z = 20 and x9, x10 = 1 corresponding 
to two routes: customers {1, 2, 3} and {4, 5, 6}. The final dual variables are: (0, −2, −8, 0, −2, 
−8). The reader should verify that there are no feasible routes with a negative reduced cost, 
and therefore, this is the optimal solution to the LP. In fact, because this is by chance an 
integer solution, it is also the optimal integer solution.

Cost

10 8 10 10 10 10 8 8 10 10

Customer x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

1 1 1 1 1 1
2 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1
5 1 1 1 1 1
6 1 1 1 1
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Normally, column generation produces a fractional LP solution, and no new column can 
be created with a negative reduced cost. This means that no such column exists. Column 
generation is an optimal procedure for the linear programming problem. Moreover, the 
optimal solution to the LP is a lower bound on the optimal solution to the corresponding 
integer programming problem.

Current software packages with column generation use specialized software to solve 
the resulting partitioning problem optimally. Methods have been designed that use the 
special structure of the problem to solve very large problems to optimality. The solution 
is optimal for the given set of columns. There is no guarantee that there is no new column 
that could be added to produce a lower integer answer. However, the integer function 
value is often quite close to the linear function value. In general practice, column genera-
tion tends to produce very good solutions.

4.9 Software for Integer Programming

An essential component in any solver for integer programs or mixed integer programs is 
the underlying linear programming solver used for generating lower bounds, separating 
and selecting subproblems. Dramatic improvements in LP solvers, coupled with faster, 
more powerful hardware, have led to a wide range of software for integer programs, 
incorporating a variety of the techniques discussed earlier in this chapter. Performance 
enhancements have been remarkable, but software solvers for integer programming prob-
lems still are often characterized by their requirements for significant amounts of memory 
and computation time.

No one strategy works for all integer programming models. The cutting plane methods 
that successfully exploit the special structure of the traveling salesman problem are not 
the same techniques that would be effective on an integer problem having a different 
structure. Commercial codes have the advantage of ease of use, but for many practical 
(large-scale) integer problems, successful solution may require a skillful analyst to develop 
a customized solver, based on just the right branching strategy, bounding strategy, or tai-
lored cutting plane mechanism.

AIMMS software offers an integrated modeling system for solving pure integer, mixed 
integer, and 0–1 programming problems. Input and output are supported by the alge-
braic modeling language and graphical user interface for which AIMMS is well-known. 
AIMMS modeling and optimization platform supports building and solving problems for 
applications such as workforce and financial portfolio optimization, production planning 
and scheduling, logistics, and transportation. AIMMS allows analysts to evaluate mul-
tiple action plans and assess the impact of different and continuously changing scenarios. 
LINDO Integrated Modeling Language is a comprehensive tool for expressing integer 
optimization models. LINDO API includes an integer solver that works together with 
linear, nonlinear, and quadratic solvers.

IBM ILOG CPLEX Optimizer (commonly referred to as CPLEX) is a powerful suite of 
solvers including solvers for integer and mixed programming that can run on different 
platforms. The CPLEX solvers have been used to solve large real-life optimization prob-
lems with millions of variables and constraints. They are often integrated with convenient 
and powerful modeling languages, such as GAMS and AMPL modeling systems for large-
scale optimization of linear and nonlinear mixed integer programs, a combination that 
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offers advanced features for solving difficult integer programming problems for which 
other software systems may be inadequate.

SAS/OR systems, described in previous chapters, also have capabilities for solving pure, 
mixed, and 0–1 integer programming problems. SAS OPTMODEL provides an integrated 
modeling environment, with special features for solving mixed integer problems by using 
parallel branch-and-bound techniques with cutting planes and heuristics, and decomposi-
tion algorithms for mixed integer programming problems.

MIPIII Mixed-Integer Optimizer from Ketron Management Science allows the user to 
match the problem structure to an appropriate solver, and exploits the user’s knowledge of 
the model through the use of pre-solvers, special approaches for knapsack problems, the 
use of branching priority lists, and a choice of stopping criteria.

Gurobi Optimizer provides solvers for mixed integer solutions of linear, and quadratic 
programs. It uses advanced implementations of new MIP algorithms using parallel non-
traditional search techniques and cutting planes.

Google OR Tools offers an interface to several MIP solvers. By default, it uses COIN-OR 
branch and cut implementation, an open source solver from the Computational 
Infrastructure for Operations Research project (COIN-OR). However, one can also use 
other MIP solvers (such as Gurobi) with Google OR Tools wrapper. Google’s OR Tools are 
offered for various platforms (Windows, Mac OS and Linux) and languages (C++, Java, 
and Python).

Software for specialized applications often provides unique and convenient user inter-
faces as well as efficient solution techniques directed specifically to the type of application. 
For example, software for scheduling systems may yield a competitive edge in manufac-
turing and production environments. The underlying scheduling methodology forming 
the backbone of such software systems may be based on a classical 0–1 programming 
model (matching activities to time slots subject to constraints) or may perform priority or 
rule based scheduling with release dates, deadlines, or due dates. Other considerations 
include ease of modeling the processes and operations in a production scheduling system, 
and the ability to incorporate materials handling, quality assurance, shop floor data, and 
production activity control subsystems (Seyed 1995).

Many integer programming problems can be viewed as routing problems, and numer-
ous software packages are available to solve problems cast into this framework (Hall and 
Partyaka 2016, Horner 2018). For an overview of approaches, see Bosch and Trick (2014).

4.10 Illustrative Applications

4.10.1 Solid Waste Management (Antunes 1999)

Along with extensive political, social, and economic changes in Portugal during the past 
several decades, urban population growth has increased dramatically. Authorities are 
faced with the resulting problem of disposing of significant amounts of municipal solid 
waste generated in population centers such as Lisbon, Coimbra, and Oporto. By the 1990s, 
the Centro Region Coordination Agency was looking at growth rate projections that indi-
cated that the waste management problem would rapidly extend beyond the major urban 
centers to affect smaller municipalities and rural areas as well.
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The collection of waste was already being handled effectively; in fact, by 1991, approxi-
mately 90% of households were served by modern fleets of vehicles collecting garbage. But 
disposal of the collected waste was being dealt with using the worst possible techniques: 
huge open air dumps that periodically burned the waste. And whereas hazardous, dan-
gerous, and toxic waste was being managed and monitored by the national government 
under a separate initiative, the massive amounts of ordinary solid waste were the respon-
sibility of regional authorities. The Centro Region needed to develop a clear view of how 
solid waste would be managed, from the time it is generated, through the phases of col-
lection and reduction, until it is finally disposed of in a sanitary landfill that is built and 
operated according to strict and appropriate regulations.

Storage space for solid waste is a major consideration. Volume reduction based on com-
posting is effective only on the organic portion of the waste, which is a small and decreas-
ing proportion of total waste in the Centro Region. Subsequent separation from glass, 
metal, and plastics represents an added expense in the composting regimen. Incineration 
is the most effective way of reducing waste volume, but set-up costs are extremely high, 
and the environmental concerns over fly-ash and hazardous bottom-ash combine to argue 
against the use of incineration on a large scale.

Compaction is less effective than incineration, but it is cheaper and has the additional 
advantage that it can be applied early in the process, during either the generation or the col-
lection phases. Thus, compaction can substantially decrease transportation costs between 
collection points, transfer stations, and landfills.

With these issues in mind, an analyst developed a mixed integer programming model 
having nearly 10,000 variables, about 100 of which were 0–1 variables, and about 10,000 
constraints. The model combines elements of a p-median problem with a capacitated 
facility location problem. The model included 18 possible sites for sanitary landfill 
locations, and 86 possible sites for transfer station locations. Problem parameters were 
based on projections for the year 2014 in order to accommodate anticipated population 
growth rates.

Multiple objectives were considered during the development of this solid waste manage-
ment model. On the one hand, it is aesthetically desirable to locate sanitary landfills as far 
as possible from urban centers (subject to the very legitimate not-in-my-backyard reaction of 
rural residents). But it is also expeditious to keep the landfills as close as possible to waste 
producers, to minimize costs of transportation.

The minimum cost objective was ultimately given greater weight. In achieving this 
objective, a number of constraints were imposed. Landfills and transfer stations have a 
minimum capacity (in tons per day) to take advantage of economies of scale. There is a 
maximum distance to be traveled by the trucks during their daily collection and transfer 
trips. Landfills are placed in the municipalities with the largest populations. Finally, col-
lection and transfer trucks are routed to avoid mountainous regions with narrow winding 
roads, both for economic reasons and out of respect for the fragility of natural resources 
in the national parks.

Because of the complexity of the model, the analyst initially assumed that it would not 
be possible to solve the mixed integer problem using a general exact method on the PC 
equipment available for this study. A greedy heuristic based on capacitated transshipment 
methods was developed, and the results obtained in this way were included in the initial 
reports presented to the Centro Region Coordination Agency for consideration. However, 
a new version of XPRESS-MP software running on slightly faster processors allowed the 
model to be solved exactly with reasonable computational effort.
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The final solution developed in conjunction with the Agency called for eight land-
fills, each with a specified capacity, and eight transfer stations, also each having a 
specified capacity. It was possible to delay the capital investment needed for three of 
the transfer stations (without violating the maximum truck trip distance constraints) 
so that initial expenditures could be concentrated on the more urgently needed sani-
tary landfills.

The results of this study brought some credible and rational order to a previously 
chaotic situation. The solution developed during this study led the representatives from 
throughout the Centro Region to adopt a Strategic Municipal Solid Waste Plan that 
serves as a guide during the present process of implementing the proposed waste man-
agement system.

4.10.2 Timber Harvest Planning (Epstein et al. 1999)

The Chilean forestry industry consists primarily of large private firms that own pine and 
eucalyptus plantations and are vertically integrated, comprising pulp plants, sawmills, 
and paper market operations. Short-term harvest scheduling (over a three-month period) 
amounts to matching stands of timber, of a given age and quality, to market demands 
that are typically defined by the length and diameter of each piece of timber. The process 
of cutting harvested trees into products having required lengths and diameters is called 
bucking. Bucking sequences are expressed in terms of lengths to be cut from timbers of 
decreasing diameters.

Different types of harvesting equipment are used in different terrains. Steep slopes 
require towers or cables, while flat areas can be harvested using tractors or skidders. 
In either case, bucking can be done on the ground and the resulting pieces transported 
to their respective destinations, or entire logs can be delivered to a central location 
for bucking. Transportation costs (which can include road building costs) play a sig-
nificant role in the decisions that select timber from a certain origin and assign it to a 
destination.

Determining an optimal harvest plan is a difficult combinatorial problem that involves 
selecting mature timber stands available at specified locations, and assigning them accord-
ing to product demand; obtaining optimal bucking patterns to utilize the timber itself in 
the most valuable way; and minimizing transportation costs, subject to the firm’s harvest-
ing equipment limitations and trucking capacities.

A principal component of the harvest plan is the specification of optimal bucking pat-
terns, from among exponentially-many possible patterns. The solution is based on an LP 
model, and incorporates a branch-and-bound approach using column generation to create 
the bucking sequences. In the branch-and-bound tree for generating bucking patterns, a 
path from the root node to the bottom of the tree represents a bucking sequence; the termi-
nal node in the tree represents the product (a piece of timber having a certain diameter cut 
to required length); and the terminal node’s level in the tree denotes the product’s position 
in the bucking process.

The column-generation technique improved the harvest value by 3% to 6% over the 
fixed bucking patterns that had been in use previously when harvest planning was done 
manually by experienced human planners. Furthermore, transportation costs were cut 
substantially when the model solution revealed the savings that could be obtained by 
bucking and shipping directly to market destinations rather than transshipping through 
intermediate central bucking locations.
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Other applications of operations research in the Chilean forestry industry include sys-
tems for: 

• Scheduling trucks among timber stands, mills, and destination ports.
• Selecting stands for harvest, and partitioning the timber for logs, sawtimber, and 

pulpwood, using mixed integer LP models.
• Determining the optimal placement of harvesting equipment and the optimal 

locations of access roads within the forest.
• Long-term planning over a 50-year horizon to maintain steady and consistent 

supplies of timber, which involves the purchase, sale, and rental of timber lands; 
choosing appropriate silviculture regimes for different plantations; and planning 
for mills and other industrial processing plants.

4.10.3 Propane Bottling Plants (Sankaran and Raghavan 1997)

During recent years, the importation, bottling, and distribution of liquefied petroleum gas 
(LPG) in India has transitioned from a government-controlled operation into a private-
sector enterprise. Two major import and storage facilities (ports), already in place, provide 
supplies of LPG. Industrial customers acquire LPG in bulk directly from these locations, 
but the needs of other domestic residential and commercial establishments are supplied 
through a network of dealer agencies. Customers use LPG contained in cylinders, and 
when empty, these cylinders are picked up by dealers and replaced by filled cylinders. 
Each dealer town must have a bottling plant where empty cylinders can be replenished for 
future distribution to customers.

Because the sources of LPG and the customer market are already established, the prob-
lem was to determine the pattern and mechanisms for distributing LPG from the two stor-
age facilities to the customers. Tanker trucks can transport LPG from the source to dealer 
locations for bottling, but it is also feasible to operate mobile bottling plants. Considerations 
for mobile operations include not only capital investment and operating and distribution 
costs, but also public safety and firefighting capabilities at all intermediate storage points.

Strategic decisions for dealer and bottling facility location are complicated by the fact 
that any necessary future increases in capacity at a given location can be undertaken only 
if such increases are provided for in the original layout. Thus, a significant portion of 
expansion costs are incurred during original construction, although the payoff from such 
expansion will not be realized until the projected market growth actually takes place.

The problem facing the Shri Shakti company is optimally locating the bottling plants, 
determining the long-run size of each facility, and projecting the target date at which each 
facility will commence operating at full (expanded) capacity. The integer programming 
model used for this problem involves about 400 dealer towns and 2,500 constraints, and 
seeks to minimize total cost of operations in the target year. Costs include: 

• Fixed annual costs that are independent of volume throughput at the plants
• Costs of transporting LPG from the two ports to the plants
• Cost of bottling
• Costs of transporting bulk and cylinder LPG and empty cylinders among bottlers, 

dealers, and customers
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Determining the amounts of LPG to be distributed through the network dictates the 
location and size (capacity) of each proposed facility. Complicating the problem were 
uncertainties about competition, corporate takeovers, market growth, and initially some 
inaccuracies in data defining the distances between sites.

A solution to this problem was developed using a linear programming-based branch-
and-bound method. Subsets of the problem were originally solved in which the subprob-
lems were defined by geographical or political boundaries. Combining these separate 
solutions, however, often resulted in certain customers being served by distant in-area 
suppliers instead of by closer plants just across a boundary. In order to remedy this inef-
ficiency, a novel and indirect method was designed for solving the full-scale problem. 
Specially tailored software routines in Fortran were linked to extended versions of LINDO 
software for mathematical programming.

Analysts working on this application created a well formulated model, developed a 
comprehensive and accurate database, and engaged in illuminating discussions with Shri 
Shakti’s board of directors, government advisors, and financial experts during develop-
ment of these solutions. The credibility of the resulting model and the proposed solutions 
provided a much-needed foundation for successful planning, negotiating, and funding for 
this newly privatized industry in India.

4.11 Summary

Many important engineering, industrial, organizational, and financial systems can be 
modeled as mathematical programming problems in which the variables are restricted to 
integer values, 0–1 values, or a mixture of integer and real values. Solving integer prob-
lems usually requires significantly more computational effort than is needed for solving 
continuous (real) linear programming problems.

Certain 0–1 models have become rather famous because their structures seem to arise in so 
many different kinds of practical applications. Specialized methods for solving such problems 
have been devised that take advantage of the mathematical structure inherent in the problems. 
These classical models include the traveling salesman problem, knapsack and bin packing 
problems, set partitioning, and generalized assignment problem. Many complex problems can 
be solved by identifying subproblems that have the characteristics of these well-known models, 
and creating a solution to the large and difficult problem by solving some simple subproblems.

Among the most effective methods for solving general integer programming prob-
lems are branch-and-bound algorithms. These methods repeatedly break large problems, 
which are not yet solved, into easier subproblems, imposing integer constraints along the 
way, until a solution to the original problem is finally found. Solutions to real-valued LP 
problems are used to guide the process, so that the computation does not escalate into an 
enumeration of exponentially many possible solutions.

A number of other approaches have been developed and refined over the years. Cutting 
plane and cover inequality methods repeatedly introduce new constraints into integer 
problems in order to exclude non-integer extreme points from the feasible region, and 
then use simple LP solutions to locate the optimum, which then occurs at an integer point. 
Lagrangian relaxation incorporates constraints into the objective function by placing a 
penalty on any violated constraint. Any solution that violates a constraint has a lower value 
than a solution with no constraint violation. The penalties must be chosen appropriately 
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for the given problem. The technique of column-generation is applicable to problems such 
as vehicle routing and workforce scheduling, in which customers or workers must be 
assigned to trucks or work patterns. Incomplete initial solutions are iteratively built up 
into complete optimal solutions.

Most methods for solving integer programming problems rely on solving linear sub-
problems using a standard technique such as the Simplex method. Thus, the performance 
of many integer solution methods depends greatly on the efficiency of the underlying LP 
methods. Recent improvements in LP solvers have contributed substantially to our present 
capabilities for solving large practical integer problems efficiently.

Key Terms

active node
airline crew scheduling
assignment problem
backtracking
bin packing problem
binary integer programming
branch-and-bound
branch-and-bound tree
branching strategy
bounding strategy
capacity planning
capital budgeting problem
cargo loading problem
column-generation
convex hull
cover
cover inequality
current incumbent
cutting plane
cutting stock problem
employee scheduling problem
examination timetabling
facet
fathomed
fixed charge problem
flight crew
flight legs
general integer programming
generalized assignment problem
Gomory fractional cut
integer polytope
integer programming
integrality gap
jumptracking
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knapsack problem
Lagrangian
Lagrangian relaxation
minimal cover
mixed integer programming
portfolio selection problem
production planning
production scheduling
relaxation
rotation
separate
separation rule
set covering
set packing
set partitioning
shift scheduling
single sourcing
sub-tour
traveling salesman problem
vehicle routing
warehouse location
work schedule
zero–one (or 0–1) programming

Exercises

4.1 A certain single-processor computer is to be used to execute five user programs. 
These programs may be run in any order; however, each requires a specific set of 
files to be resident in main memory during its execution. Furthermore, a certain 
amount of time is required for each file to be brought into main memory prior to 
use by a user program. The facts are summarized as follows:

User Program Files Needed for Its Execution

1 B, C, E
2 A, B, C
3 A, B, D
4 A, D, E
5 B, C

File Name
Amount of Time Required to 

Bring It into Memory

A 30
B 20
C 25
D 35
E 50
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 Initially, no files are in memory. The five user programs are to run in sequence, but 
any order is feasible. At most, three files will fit in memory at one time. Clearly, 
because some of the files are used by multiple programs, it would be wise to try 
to schedule the programs to take advantage of files already in memory, so as to 
minimize the change-over (setup) times between programs. Define decision vari-
ables and formulate this problem to sequence the five user programs to minimize 
total change-over times. Note the similarity of this problem to one of the classical 
integer programming models discussed in this chapter.

4.2 Suppose you have a directed acyclic graph having n nodes, in which node 1 is 
designated as an origin and node n is designated as a destination. In Chapter 3, we 
described the problem of finding the shortest path from the origin to the destina-
tion. Formulate this problem as a 0–1 integer programming problem. (Hint: Let 
decision variable xij = 1 if the arc from node i to node j is in the shortest path.)

4.3 A small university computer laboratory has a budget of $10,000 that can be used to 
purchase any or all of the four items described in the following. Each item’s value 
has been assessed by the lab director, and is based on the projected utilization of the 
item. Use a branch-and-bound technique to determine the optimal selection of items 
to purchase to enhance the computing laboratory facilities. Show your branch-and-
bound tree, and give the total cost and total value of the items chosen for purchase.

Item Cost Value

NanoRobot $4,000 8
WinDoze simulator $2,500 5
Network pods $3,000 12
BioPrinter $4,500 9

4.4 Bruno the Beach Bum wishes to maximize his enjoyment of the seashore by taking 
along an assortment of items chosen from the following list. Help Bruno pack his 
beach bag with the most valuable set of items by using a branch-and-bound tech-
nique. Bruno’s beach bag is rated for a 20-pound load.

Item Weight Value

Coconut oil 4 16
Sun shades 2 10
Snorkel and fins 8 16
Folding chair 10 30
Bummer magazine 5 30

 Enumerate the number of packings (sets of items) for this problem, and draw a 
complete tree of possibilities. How many of these sets are feasible packings? How 
many subproblems are actually solved by your branch-and-bound procedure? 
What is the optimal feasible set of items?

4.5 If a problem formulation has n variables and each variable has m possible integer 
values, then a branch-and-bound tree could have as many as mn terminal nodes. 
Verify this for the case m = 4 and n = 3.
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4.6 Consider the following 0–1 integer programming problem:

 

maximize 5x 7x 10x 3x 4x

subject to x 3x 5x x x 3
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1 2 3 4 5

1 2 3 4 5

− − −
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2x 2x 2x x 3

x 0 or 1 for all i

1 2 3 4 5

2 3 4 5

i
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−

+ ≤

+ + ≤

=
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 Solve this problem completely, using a branch-and-bound algorithm.
4.7 Suppose you wish to solve the following general integer programming problem 

using branch-and-bound techniques.

 

maximize 3x 5x 2x

subject to x 5x 3x 8

2x x 5x 7

4x

1 2 3

1 2 3

1 2 3

1

+ +

+ + ≤

+ + ≤

+ 22x 3x 8

x 3x 3x 6

x x x 0 and integer

2 3

1 2 3

1 2 3

+ ≤

+ + ≥

≥, ,  

 Use up and down penalties to determine which variable would be branched on 
first. (Note: There is no correct answer, but you should be able to justify your 
choice.)

4.8 Consider the following integer programming problem:

 

maximize 4x 5x

subject to x 4x 5

3x 2x 7

x ,x 0 and i

1 2

1 2

1 2

1 2

− −

+ ≥

+ ≥

≥ nnteger  

 Calculate the penalties for branching up and down on variables x1 and x2.
4.9 Solve the problem given in Exercise 4.8 using Gomory fractional cuts.
4.10 Consider the following integer programming problem:

 

maximize 3x 4x

subject to 2x x 1

x 3x 4

x x 0 and inte

1 2

1 2

1 2

1 2

− −

+ ≥

+ ≥

≥, gger 
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 a. Compute the up and down penalties for branching on variable x2. Which way 
would you branch first? Explain why.

 b. What can you say about variable x3, the surplus variable on constraint 1, with 
respect to up and down penalties? Explain.

4.11 Suppose that you are solving a large 0–1 linear programming problem, and the LP 
solution has

 * . , . , . , . , . , . , . , . , . ,x          = ( )0 3 0 9 0 1 0 9 0 9 0 8 0 9 0 9 0 7 0  

 One of the constraints in the problem is:

 –1 10x 2x 4x 7x 6x 11x 9x 3x x 12x1 2 3 4 5 6 7 8 9 10− − − − −+ + + + + ≤   

 In Section 4.6, we used a knapsack model to find a cover inequality that cuts off the 
current LP solution. Describe the knapsack for this particular problem.

4.12 Suppose we are given a 0–1 linear programming problem in which one of the con-
straints is

 3x 4x 7x 3x 5x 6x 3x1 2 3 4 5 6 7+ + + ≥− − − 0 

 Find a cover inequality that cuts off the current LP solution x*  =  (0, 1
2 , 0, 1, 

1,  2
3 , 0)

4.13 A certain 0–1 linear programming problem involves the constraint 

 x 3x 4x 5x1 2 3 4+ + + ≤  6  

 and the current LP optimum occurs at x* = (0.3, 0.3, 0.2, 0.8).
  Find a minimal cover inequality that cuts off the point x*.
4.14 Solve the problem in Exercise 4.6 again by first constructing cover inequalities, and 

then using branch-and-bound if necessary.
4.15 We wish to assign three customers to two warehouses having limited capacity. 

Each customer must be assigned to precisely one warehouse. The assignment 
costs and the capacities are given in the following table. Solve this problem using 
Lagrangian relaxation.

Warehouse 1 Warehouse 2 Demand

Customer 1 2 8 18
2 5 3 15
3 7 3 14

Capacity 30 18
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4.16 Suppose that you are the manager of a small store that is open seven days per 
week. You require the following minimum number of staff to work each day:

Sunday 5
Monday 3
Tuesday 4
Wednesday 4
Thursday 5
Friday 7
Saturday 7

 Each employee can work only five days per week, and must have the weekend off 
(Saturday and Sunday) once every two weeks. The objective is to meet the demand 
using the minimum number of employees. Describe a formulation of this problem 
using column-generation. (Hint: Try to construct a work pattern for a two week 
period.) Describe the meaning of the rows and columns in the master problem. 
Provide an initial formulation of the LP; that is, pick a starting set of columns, and 
write out the LP. Perform a few iterations of column generation. Describe how you 
would formulate the subproblem.

4.17 In Section 4.8, it was suggested that column generation can be used to solve the 
cutting stock problem. The simplest (one-dimensional) cutting stock problem can 
be illustrated by the following example. Suppose we have a large supply of steel 
reinforcing bars to be used in the construction of concrete pillars. The bars are all 
50 feet long. We have a set of orders for re-bars of the following lengths:

Length Quantity

15 feet 3
10 feet 2
13 feet 5
18 feet 4
19 feet 5
23 feet 1

 These orders are to be cut from some of the 50  feet long pieces. It is not eco-
nomical to keep an inventory of the leftover pieces, so we sell them as scrap. We 
want to minimize the total cost of scrap for cutting this set of orders. Suppose 
that it costs (net) 0.50 per inch to throw away a scrap piece of re-bar. Formulate 
this as a column-generation problem. Generate the initial solution, and per-
form one iteration of column generation. Explain your algorithm for solving the 
subproblem.

4.18 Big City Wheel Trans (for disabled public transit users) has a large list of clients 
who must be picked up and delivered to locations around the city. Each client has 
a specific required pick-up time, and we assume that each customer travels alone. 
Describe how to formulate this problem using column-generation. Suppose that 
the primary objective is to minimize the number of vehicles required to satisfy 
all demand. Describe what the subproblem would look like and what algorithm 
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you could use to solve it. Recall that the subproblem we solved in Section 4.8 was 
solved by inspection, but in this exercise, you should define an algorithm to solve 
the subproblem.

4.19 Formulate the examination timetabling problem as a 0–1 programming problem. 
Let cik be the number of students who must take both exams i and k. Define a 
penalty of (100 × cik) for having examinations i and k in the same time period, 
and a penalty of (5 × cik) for having examinations i and k in adjacent time periods. 
The objective is to minimize the total penalty costs. Let n denote the number of 
examinations to be scheduled, and m denote the number of time periods avail-
able for exams.
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5
Nonlinear Optimization

Nonlinear optimization involves finding the best solution to a mathematical program-
ming problem in which the objective function and constraints are not necessarily linear. 
Because nonlinear models include literally all kinds of models except linear ones, it is not 
surprising that this category is a very broad one, and nonlinear optimization must incor-
porate a wide variety of approaches to solving problems.

The world is full of systems that do not behave linearly. For example, allowing a tree 
to grow twice as long does not necessarily double the resulting timber harvest; and tri-
pling the amount of fertilizer applied to a wheat field does not necessarily triple the yield 
(and might even kill the crop!). In a distributed computing system networked for inter-
processor communication, doubling the speed of the processors does not mean that all 
distributed computations will be completed in half the time, because interactions among 
processors now could foil the anticipated speedup in throughput.

This chapter examines optimization from a very general point of view. We will consider 
both unconstrained and constrained models. Unconstrained optimization is often dealt 
with through the use of differential calculus to determine maximum or minimum points 
of an objective function. Constrained models may present us with systems of equations to 
be solved. In either case, the classical underlying theories that describe the characteristics 
of an optimum do not necessarily provide the practical methods that are suitable for effi-
cient numerical computation of the desired solutions. Nevertheless, a thorough grasp of 
the  subject of nonlinear optimization requires an understanding of both the mathematical 
foundations of optimization as well as the algorithms that have been developed for obtaining 
solutions. This chapter is intended to provide insights from both of these perspectives. 
We will first look at an example of a nonlinear programming problem formulation.

Example 5.1

Suppose we want to determine a production schedule over several time periods, where 
the demand in each period can be met with either products in inventory at the end of 
the previous period or production during the current period. Let the T time periods be 
indexed by i = 1, 2, …, T, and let Di be the known demand at time period i. Equipment 
capacities and material limitations restrict production to at most Ei units during period i. 
The labor force Li during period i can be adjusted according to demand, but hiring 
and firing is costly, so a cost CL is applied to the square of the net change in labor force 
size from one period to the next. The productivity (number of units produced) of each 
worker during any period i is given as Pi. The number of units of inventory at the end of 
period i is Ii, and the cost of carrying a unit of inventory into the next period is CI. The 
production scheduling problem is then to determine feasible labor force and inventory 
levels in order to meet demand at minimum total cost. The decision variables are the Li 
and Ii for i = 1, …, T. The initial labor force and inventory levels are given as L0 and I0, 
respectively. Therefore, we wish to 
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This nonlinear model has a quadratic objective function, but linear constraints, and it 
happens to involve discrete decision variables. Other nonlinear models may involve 
continuous processes that are represented by time-integrated functions or flow prob-
lems described by differential equations.

5.1 Preliminary Notation and Concepts

A nonlinear function is one whose terms involve transcendental functions of the decision 
variables or in which there are multiplicative interactions among the variables, or in which 
there are other operations such as differentiation, integration, vector operations, or more 
general transformations applied to the decision variables. Examples include sin (x), tan (y), 
ex, ln(x + z), x2, xy, xey, and xy. When an objective function or problem constraint involves 
such nonlinearities, we lose the guarantee that permitted us so conveniently to solve linear 
programming problems: namely that we could operate on a system of linear equations 
and if a solution existed, it could be found at one of the (finite number of) extreme points 
or vertices of the feasible region. In dealing with nonlinear programming models, we will 
see that points of optimality can occur anywhere interior to the feasible region or on the 
boundary.

We will also see that there are no general methods suitable for application to all the dif-
ferent types of nonlinear programming problems. Indeed, many of the diverse types of 
problems already presented in this book can be cast as nonlinear optimization problems: 
integer programming problems can be expressed as nonlinear models; systems of dif-
ferential equations (as might be needed in continuous simulation models) can be viewed 
as nonlinear programming problems; and interior point methods for solving linear pro-
gramming problems have a nonlinear aspect. So, it comes as no surprise that no single 
algorithm can be expected to cover the entire class of nonlinear optimization. Instead, 
special forms of nonlinear models have been identified, and algorithms have been devel-
oped that can be used on certain ones of these special cases. We will begin by describing 
and discussing the most significant properties of nonlinear models that will lead us to an 
understanding of some of these methods.

A nonlinear function may have a single maximum point, as seen at the point x = a in 
Figure 5.1, or multiple maximum or minimum points, as seen in Figure 5.2. If we suppose 
the region of interest to be the interval [a, f], then there is a global maximum at the point 
x = f, but also local maxima at the points x = a and x = c. A local minimum occurs at x = b 
and a global minimum occurs at x = d. Notice in the figure that local optima may occur 
where the slope of the function is zero or at a boundary of the region.
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More formally, a local maximum of the function f(x) occurs at a point x* in a feasible 
region R if there is a small positive number ε such that 

 f x*  > f x  for all x R for which x x* < ( ) ( ) ∈    − ε  

A global maximum of the function f(x) occurs at a point x* if 

 f x*  > f x  for all x R( ) ( ) ∈  

Corresponding definitions for local and global minima can be given.
Clearly, the shape or curve of the function will play an important role in optimization. 

Two useful characteristics of the shape are convexity and concavity. For a convex function, 
given any two points x1 and x2 in a region of interest, it will always be true that 

 f x + 1 x f x 1  f x  for 0 11 2 1 2( ( ) ) ( ) ( ) ( )α − α α − α α≤ + ≤ ≤  

In Figure 5.3, let x  =  b be a linear combination of points x1 and x2, corresponding to 
αx1 + (1 – α)x2 in the definition earlier. Notice that any function value f(b) is always less 
than (or below) any point on the straight line connecting f(x1) with f(x2). This is precisely 
the characteristic of a convex function that will be useful in mathematical optimization. 
An alternate description of convexity is that the first derivative is non-decreasing at all 
points. As x increases, the slope of the function is increasing or curving upward.

For a concave function, the inequality is reversed, and any point on the function is 
always greater than (or above) the point on the straight line connecting f(x1) and f(x2). In 
Figure 5.4, the derivative of the function is always non-increasing or curving downward. 

a x

f (x)

FIGURE 5.1
Single maximum point.

a b c d e f

f(x)

x

FIGURE 5.2
Multiple optima.
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Notice that a straight-line function is both convex and concave. Definitions of convexity 
and concavity can be extended mathematically to include functions of multiple variables, 
but the concepts of curving upward and curving downward, respectively, are still preserved.

If a convex nonlinear function is to be optimized and there are no constraints, then 
a global minimum (if one exists) is guaranteed to occur at the point x* where the first 
derivative f’(x) of f(x) is zero. Figure 5.3 illustrates an unconstrained convex function with 
a minimum at x*. Figure 5.5 presents an example of a convex function (e–x) with no mini-
mum. Similarly, for a concave function, a global maximum is guaranteed to occur where 
f’(x*) = 0.

If there are constraints, then the shape of the feasible region is also important. Recall 
that a convex region or convex set is one in which the line segment joining any two points 

f(x)

xx1 x2b

FIGURE 5.4
Concave function.

x

f(x)

FIGURE 5.5
Convex function with no minimum.

f(x)

xx1 x∗ x2b

FIGURE 5.3
Convex function.
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in the set is contained completely within the set. If the feasible region forms a convex set, 
then the guarantees for global maxima and minima remain in effect, as described earlier.

More generally, the feasible region for a nonlinear programming problem is convex 
whenever each of the constraint functions is convex, and the constraints are of the form 
gi(x) ≤ bi. For example, the reader should verify that the function f(x) = x2 is convex; but 
the regions defined by x2 = 4, or by x2 ≥ 9, are not convex. A local minimum is guaranteed 
to be a global minimum for a convex objective function in a convex feasible region, and a 
local maximum is guaranteed to be a global maximum for a concave objective function in 
a convex feasible region.

Many functions that arise in nonlinear programming models are neither convex nor 
concave. The function pictured in Figure 5.2 is a good example of a function that is con-
vex in one region and concave in another region, but neither convex nor concave over the 
entire region of interest. Local optima are not necessarily global optima. Furthermore, 
a point x for which f’(x) = 0 may be neither a maximum nor a minimum. In Figure 5.2, the 
function f(x) at the point x = e has a zero slope. When viewed from the direction of x = d, it 
appears that x = e may be a maximum; whereas when viewed from the direction of x = f, 
the function appears to be decreasing to a minimum. In fact, x = e is an inflection point. 
For example, the function f(x) = x3 has an inflection point at x = 0.

For unconstrained problems with just one variable x, necessary and sufficient condi-
tions for local optima of a twice differentiable function f(x) at x = x* can be summarized 
as follows: 

Necessary conditions:
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Sufficient conditions:
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When the second derivative is equal to zero, the existence of a local optimum is not certain.
For unconstrained problems involving multiple variables x = (x1, x2, …, xn), the necessary 

condition for a point x = x* to be optimal is for the partial derivative of the objective func-
tion f(x), with respect to each variable xi, to be zero at x = x*; that is, 
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We define the gradient of a function f(x1, x2, …, xn) to be the vector of first partial deriva-
tives, and denote it as 
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Then the necessary conditions can be stated more succinctly as 

 ∇ = =f(x) 0 at x x* 

This condition is also sufficient for a minimization problem if f(x) is convex (and for a 
maximization problem if f(x) is concave). In fact, for a convex (concave) function, x* is also 
a global optimum.

To determine whether a function f(x1, x2, …, xn) is convex or concave, it is useful to examine 
the Hessian matrix Hf corresponding to f. The Hessian matrix Hf is an n × n symmetric matrix 
in which the (i, j)-th element is the second partial derivative of f with respect to xi and xj. That is, 
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The function f is a convex function if Hf is positive definite or positive semidefinite for all 
x; and f is concave if Hf is negative definite or negative semidefinite for all x.

If the convexity (or concavity) criterion is met, then optimization may be as simple as 
setting the n partial derivatives equal to zero and solving the resulting system of n equa-
tions in n unknowns. However, since these are generally nonlinear equations, this system 
may not be at all simple to solve. And if the objective function is not convex (or concave), 
we lose the sufficiency condition, and x = x* could be a local minimum, a local maximum, 
or a stationary point instead of an optimum.

The search for an optimal solution to a general nonlinear programming problem 
must find and examine many candidate solutions to rule out local optima and inflec-
tion points. And it is not sufficient to examine just those points at which first derivatives 
are zero, for an optimum could occur at a point where there is a discontinuity and the 
derivatives do not exist. For example, in Figure 5.6, the function |x| has a minimum at 0, 

x∗ x

f(x)

FIGURE 5.6
f(x) = |x|.
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a non-differentiable point. Or the optimum could occur anywhere on the boundary of 
the feasible region. For constrained problems, the shape of the feasible region (which 
certainly may be non-convex) merely contributes further to the difficulty of the search.

Clearly, a single algorithm capable of making all of these considerations could not 
operate efficiently. Therefore, the remaining sections of this chapter present a number of 
different algorithms that have been developed for solving special classes of nonlinear pro-
gramming problems.

5.2 Unconstrained Optimization

The simplest unconstrained optimization problem occurs when the objective function f 
involves just a single variable, is differentiable, and is concave for a maximization problem 
or convex for a minimization problem. In that case, the equation df/dx = 0 can be solved 
analytically to obtain the optimum value x* because the necessary and sufficient condi-
tions for optimality are met. If, however, this equation cannot be solved easily, it may be 
reasonable to resort to an iterative search procedure. Because there is only one variable, a 
one-dimensional search suffices.

5.2.1 One-Dimensional Search

The process begins by establishing an upper limit xu and a lower limit xl, within which an 
optimum is known to exist, and choosing an initial trial solution x to be halfway between 
the bounds: 

 
x =

x + xu l( )
2  

Suppose a function f(x) is to be maximized and that f(x) is concave between xu and xl. Then the 
general idea is to examine the slope of f(x) at the current trial solution x. If the slope is positive, 
then f(x) is increasing and the optimum x* is greater than x, so x is a new lower bound on the 
set of trial solutions to be examined. If the slope is negative, then f(x) is decreasing and the 
optimum x* is less than x, so x is a new upper bound. Each time a new bound is established, 
a new trial solution is computed (and choosing the midpoint is but one of several sensible 
rules). The sequence of trial solutions thus generated converges to the maximum at x*. In prac-
tice, the process terminates when the bounds xu and xl enclose an interval of some predeter-
mined size ε, denoting an error tolerance. The algorithm can be stated succinctly as follows.

5.2.1.1 One-Dimensional Search Algorithm

 1. Establish an error tolerance ε. Determine an xu such that df(xu)/dx ≤ 0 and an xl 
such that df(xl)/dx ≥ 0.

 2. Compute a new trial solution x = (xu + xl)/2.
 3. If xu – xl ≤ ε, then terminate. The current approximation is within the established 

error tolerance of x*.



224 Operations Research

 4. If df(x)/dx ≥ 0, set xl = x.
 5. If df(x)/dx ≤ 0, set xu = x.
 6. Go to Step 2.

Example 5.2

The algorithm can be illustrated by the problem of maximizing 

 f(x) x 16x 91x 216x 1804 3 2= + +− −  

over the range 3.2 ≤ x ≤ 5.0, which is shown in Figure 5.7. The function is certainly con-
cave in the range 3.2 ≤ x ≤ 5.0, so we will apply the search to that range.

The derivative df(x)/dx = 4x3 – 48x2 + 182x – 216 will be used during the procedure. 

1. xu = 5.0, xl = 3.2, and let ε = 0.15
2. x = (5.0 + 3.2)/2 = 4.1
3. 5.0 – 3.2 = 1.8 > ε
4. df(x)/dx at x = 4.1 is equal to –0.996 < 0, so set xu = 4.1 and leave xl = 3.2
2. x = 3.65
3. 4.1 – 3.2 = 0.9 > ε
4. df(x)/dx at x = 3.65 is equal to 3.328 > 0, so set xl = 3.65 and leave xu = 4.1
2. x = 3.875
3. 4.1 – 3.65 = 0.45 > ε
4. df(x)/dx at x = 3.875 is equal to 1.242 > 0, so set xl = 3.875 and leave xu = 4.1
2. x = 3.988
3. 4.1 – 3.875 = 0.225 > ε

x

1

2

3

4

3.4 3.6 3.8 4.0 4.2 4.43.2 4.84.6 5.0

f(x)

FIGURE 5.7
f(x) = x4 – 16x3 + 91x2 – 216x + 180.
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4. df(x)/dx at x = 3.988 is equal to 0.12 > 0, so set xl = 3.988 and leave xu = 4.1
2. x = 4.044
3. 4.1  –  3.988  =  0.112  <  ε, so the process terminates with the current trial solution 

x = 4.044 and a function value of 3.99
Notice that at the point x = 4.044, the derivative of f(x) is –0.44 (close to zero); and at the 
true optimum of x = 4, where f(x) = 4, the derivative is exactly zero, a necessary condi-
tion for optimality.

Other methods for a one-dimensional search include the Fibonacci method and a 
related technique called the golden section method. These methods are discussed and 
compared in Wilde (1964). The golden section search is based strictly on the use of func-
tion evaluations, and is particularly useful when first derivatives are not available. (See 
Exercise 5.6.)

While a single-variable search method may seem too simplistic for practical nonlinear 
optimization problems, such methods are often incorporated into more elaborate mul-
tivariate search procedures, and therefore warrant our awareness and understanding.

5.2.2 Multivariable Search: Gradient Method

If our objective is to maximize a function f(x) where x = (x1, x2, …, xn), then the previous 
single-variable search is not applicable. Recalling the necessary and sufficient conditions 
for the optimality of a solution x*, the necessary condition is that 
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and this is sufficient if f(x) is also concave. So, it is tempting simply to approach the problem 
as being that of solving a system of n equations, setting all the partial derivatives equal to 
zero. This would allow us to find the stationary points by solving the equations ∇f(x) = 0. 
However, f(x) and its partial derivatives are general nonlinear functions, and unless this 
system of equations has some special structure, this system cannot be solved analytically. 
So again, we turn to the use of iterative methods. And while the one dimensional search 
technique does not apply directly, it does provide a framework for how to proceed.

In a one dimensional search, at each iteration we examined the derivative of the function 
in order to decide whether to increase or decrease the current approximation to x*. There 
were only the two choices along one dimension. Now, in an n-dimensional search space, 
at each iteration there are infinitely many directions to change the current (x1, x2, …, xn), 
and we can examine the partial derivatives to choose to move in that direction that yields 
the fastest possible improvement in f(x). Whereas in a one dimensional search, we tried 
to reach a point x at which df(x)/dx = 0, now our aim is ultimately to reach a point 
x = (x1, x2, …, xn) at which all the partial derivatives of f(x) are equal to zero.

The method described here is known as the gradient search procedure. Recall that the 
gradient of a function f(x) at a point x = x’ is: 
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and the gradient will be used here as an indication of the direction of the fastest rate of 
increase of the function f(x), viewed from the point x = x’. The gradient method will gener-
ate successive points by repeatedly moving in the direction of the gradient at each point.

The next question is how far to move in the direction of the gradient. A move from an 
initial point x0 all the way to a solution x* for which ∇f(x*) = 0 would involve a circuitous 
route that would require constant re-evaluation of the gradient along the way. Because this 
would be computationally unreasonable, our method will instead move in a straight line in 
the direction of the gradient, and the distance to the next point will be: as long as f(x) keeps 
increasing. At that new point where f(x) is no longer increasing, the gradient is re-evaluated 
to determine the next direction to move, a distance for the next move is determined, and 
the next point is computed. This process repeats until two successive points are essentially 
the same, or ∇f(x) is within numerical tolerance of zero at one of the points.

This approach bears a resemblance to the method one might follow when climbing a 
mountain. At a given point, look around and select the direction of steepest ascent in 
the terrain, and follow that direction until the path is no longer ascending. At this point, 
look around again and select the direction of steepest ascent, and continue to repeat this 
process until arriving at a point at which none of the surrounding terrain is ascending. 
Assuming the mountain is concave, the climber has now reached the peak.

This analogy is only a two variable case in which the two variables represent the hori-
zontal plane and the function value represents the vertical height of the surface of the 
mountain. Let us now describe this steepest ascent process for maximizing an n-variable 
function.

An initial approximation x0 is chosen, then successively a point xj+1 is found from the 
current point xj as follows: 

 x x d f xj+1 j j j= + ∇• ( ) 

where dj specifies the distance to be moved in this iteration.
The value of dj must be found so as to maximize the function f at the new point; therefore, 

we wish to 

 maximize f x d f(x )( )j j j+ ∇•  

with respect to dj. Because all the other variables are now playing the role of constants in 
this context, we actually are merely faced with the problem of maximizing a function of a 
single variable. For this, we can take the derivative with respect to dj, set it equal to zero, 
and solve for dj; or use a one dimensional search method such as described in Section 5.2.1. 
The multivariable steepest ascent algorithm can now be stated succinctly as follows.

5.2.2.1 Multivariable Gradient Search

 1. Establish an error tolerance ε. Determine an initial approximation or trial solution 
x0 = (x1

0, x2
0, …, xn

0). Set j = 0.
 2. Determine the value of dj that maximizes

 f(x d f(x ))j j j+ ∇•  

  and use that value of dj to evaluate xj+1.
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 3. Compute the next trial solution:

 x = x + d f xj+1 j j j
• ( )∇  

 4. If |xj+1 – xj| ≤ ε, then terminate.

 ∇f x  must be very close to zeroj+1( )  

 5. Set j = j + 1 and go to Step 2.

The gradient search always eventually converges to a stationary point as long as 
f(xj+1) >  f(xj) at every iteration. Note that a line search algorithm finds a local optimum. 
Therefore, it is possible for a naïve line search algorithm to find a solution f(xj+1) < f(xj), in 
which case convergence is not guaranteed. Consider the example in Figure 5.8. If the ini-
tial distance is long enough, then a search such as a bisection search could easily  converge 
to a worse solution than the initial solution, and the process could conceivably even cycle 
back to xj.

It has been observed that the gradient method often overshoots. By going as far as pos-
sible while f(x) is increasing, excessive zig-zagging toward the optimum typically occurs. 
Several modifications improve performance (Simmons 1975), but the simplest is to use 
0.9dj instead of dj as the distance. This practice has been observed to double the conver-
gence rate.

It might be pertinent to mention here that not all methods for multi-variable optimiza-
tion rely on the use of derivatives. There are a number of methods that do not require 
explicit first derivative information. For example, the gradient vector is composed of 
n elements each of which measures the slope or the rate of change of the function if we 
take a small step in each of the coordinate directions. Therefore, one simple method of 
 approximating the gradient at xj is to perform n additional function evaluations at each 

f(x)

xxj xj+1

Search direction

FIGURE 5.8
Potential problem for line searches.
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of the points f(xj + δi) for each i, simply perturbing the i-th component of xj by some small 
constant. The terms of the gradient measure the per-unit difference in the function value. 
This same concept can be extended to approximating the second derivatives of a function. 
Normally, it is preferable to provide an explicit function for the derivatives. However, if 
that is not practical, and if function evaluations are not too expensive, the approximation 
methods may be valuable.

5.2.3 Newton’s Method

A criticism that could be made of the gradient search method is that, although the gradient 
direction is the best direction to move, viewed from the current trial solution, as soon as 
we begin moving away from the current point, that direction is immediately not the best 
direction any longer. And the farther we move, the worse the chosen direction becomes. 
The gradient direction is an especially poor choice in the neighborhood of the optimum. 
Therefore, convergence is not easily predictable.

This behavior is explained by the fact that the gradient search method follows the gradi-
ent direction dictated by a linear approximation to f(x) near the current trial solution xj. 
Whereas a straight line is generally a poor approximation to a nonlinear function, most 
general nonlinear functions can be reasonably well approximated by a quadratic function, 
in the vicinity of the maximum.

Newton’s method is an iterative technique that makes use of this fact by choosing 
as its next trial solution that point that maximizes the quadratic approximation to f(x). 
Specifically, given a current trial solution xj, the next point xj+1 is computed as 

 x x d H x f(x )( )j+1 j j 1 j j= + ∇− −
•( )  

where:
H(x) is the Hessian matrix of f(x) evaluated at the point x
H–1(x) is its inverse

The optimizing distance dj can be chosen just as it was in the gradient search. Convergence 
occurs when the direction vector becomes close to zero.

Newton’s method generally requires fewer iterations for convergence than the gradient 
search method because it uses a better direction of movement from one point to the next. 
However, there is little else to recommend this method from a practical standpoint. First, 
of course, the function f must be twice continuously differentiable, and the Hessian matrix 
must be nonsingular. The computational effort associated with inverting the Hessian 
matrix is excessive. (For economy of computation, it is reasonable to use the same inverse 
for several consecutive iterations. This slows convergence, but simplifies each iteration so 
much that overall performance is actually improved.)

Even so, the calculations are more extensive than for the gradient search method, and 
the efficiency diminishes rapidly as the number of variables increases because the matrix 
H becomes quite large. Moreover, Newton’s method may fail to converge in general. The 
formula for computing a new point xj+1 from xj does not necessarily imply an increase in 
the function value, for it could be that f(xj+1) < f(xj). In particular, if the Hessian is posi-
tive definite, Newton’s method will approximate a quadratic minimum. If it is negative 
definite, it approximates a quadratic maximum. When the Hessian is indefinite, Newton’s 
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method takes us to a saddle point solution of the approximation. Certainly, if f(x) were 
quadratic and H(x) were negative definite, then the method would converge in one itera-
tion. In general, convergence to a local maximum is guaranteed, and occurs quite rapidly 
for any smooth, continuous nonlinear function once we get close enough to the maximum. 
However, close enough can be a very small region.

5.2.4 Quasi-Newton Methods

The computational demands of repeatedly inverting the n × n Hessian matrix H motivated 
the development of a large number of modifications to the original Newton’s method. 
These modifications differ from one another primarily in the way that the second deriva-
tives are approximated from one iteration to the next.

These Quasi-Newton methods begin with an arbitrary negative definite approximation 
to H, or its inverse, and through a succession of improvements, eventually converge to the 
true matrix H. For example, the methods could begin with H = –I, a negative identity matrix 
at some initial point, x0. The Newton direction corresponds to a simple gradient direction. 
We first perform a line search to get a new point, x1. Then, based on the new point and the 
function value, we perform a rank 1 update to the matrix H (and H–1) which fits the current 
points with a quadratic. In so doing, we correct the estimate of H in one dimension, but we 
also maintain a negative definite approximation. This process is repeated using the new 
estimate of H to perform a line search and get a new maximum at x2. After n iterations on 
a negative definite quadratic function, the approximation is exact.

The first such method was introduced by Davidon (1959), and shortly thereafter was 
improved upon by Fletcher and Powell (1963). The combined technique was known as 
the DFP method. A few years later, minor variations were proposed independently by 
Broyden (1970), Fletcher (1970), Goldfarb (1969), and Shanno (1970) and these became 
known collectively as the BFGS update formula. This is the method upon which almost all 
commercial software for nonlinear unconstrained optimization is based. The mathemati-
cal foundations and the precise formula typically used for updating the Hessian matrix is 
given in Beale (1959) and Avriel (1976).

5.3 Constrained Optimization

General nonlinear objective functions with general nonlinear constraints are the subject of 
this section. The methods to be applied will differ, depending on the nature of the con-
straints. Equality constraints can be dealt with using the method of Lagrange multipliers. 
Inequality constraints require the more comprehensive Karush–Kuhn–Tucker theory, which 
is central to the entire subject of mathematical programming. We will conclude with a short 
discussion of some popularly used techniques.

5.3.1 Lagrange Multipliers (Equality Constraints)

The method of Lagrange multipliers is named after the 18th century French mathematician 
Joseph-Louis Lagrange, and applies to nonlinear optimization problems with equality 
constraints, which can be expressed in the form: 
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where x = (x1, x2, …, xn).
We wish to find a solution such that each gi(x) = bi, so we are going to rewrite the original 

problem as: 

 
maximize F x, f x g (x) bi i( ) ( ) ( )λ − −=

=
∑λi

i

m

1  

The quantities λi are called Lagrange multipliers, and it is clear that if all the equality con-
straints are met precisely, then F(x, λ) = f(x) for any values of λ1, λ2, …, λm. We wish to find 
values of λ1, λ2, …, λm and x1, x2, …, xn that maximize F(x, λ) and also satisfy gi(x) = bi for 
i = 1, …, m. Such a solution would solve our original equality constrained problem.

We already know that a necessary condition for an optimum of F(x, λ) is that δF/δxj = 0 
for j = 1, …, n and δF/δλi = 0 for i = 1, …, m. Taking (m + n) partial derivatives of F, with 
respect to the components of xj and the λi, and setting each equal to zero, we can write the 
necessary conditions as 
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We now have a set of (m + n) equations in (m + n) variables, which may be solvable by 
some iterative technique such as Newton–Raphson. There may be more than one critical 
point, but if so, the global optimum will be among them.

As a final observation, it is interesting to apply the method of Lagrange multipliers to the 
standard linear programming problem with constraints expressed as Ax = b, and to see 
that the Lagrange multipliers are precisely equivalent to the dual variables. This is merely 
a special case of a further generalization which will be examined next.

5.3.2 Karush–Kuhn–Tucker Conditions (Inequality Constraints)

The most general nonlinear programming problem can be defined as 

 

maximize f(x)
subject to g x 0 for i 1, , mi( ) ≤ =   

where x = (x1, x2, …, xn). Clearly, any mathematical programming problem can be expressed 
in this form. It is tempting to introduce slack variables and convert all the inequality con-
straints into equalities, then apply the method of Lagrange multipliers. However, the m 
extra variables introduce an unwelcome computational expense, and we have more attrac-
tive alternatives that we will now consider.

Actually, we do try to extend the idea of Lagrange multipliers by recognizing that if 
the unconstrained optimum of f(x) does not satisfy all the inequality constraints indicated 



231Nonlinear Optimization

earlier, then when the constraints are imposed, at least one of the constraints will be sat-
isfied as an equality. That is, the constrained optimum will occur on a boundary of the 
feasible region.

This observation suggests an algorithm for solving the problem. We begin by solving the 
unconstrained problem of maximizing f(x). If this solution satisfies the constraints, stop. 
Otherwise, we repeatedly impose increasingly larger subsets of constraints (converted to 
equalities) until either a feasible solution is found via the method of Lagrange multipliers, 
or until it is determined that no feasible solution exists.

Unfortunately, this method is very computationally demanding (and consequently 
essentially useless on most problems of practical size), as well as not guaranteeing that 
a solution found is globally optimal. Still, the Lagrange multiplier idea leads to what are 
known as the Karush–Kuhn–Tucker conditions that are necessary at a stationary point, 
corresponding to x and λ, of a maximization problem. The Karush–Kuhn–Tucker condi-
tions can be stated as: 
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The Karush–Kuhn–Tucker conditions correspond to the optimality conditions for linear 
programming where the λ’s represent the dual variables. The gradient of the objective 
function at the optimal solution, x, can be written as a non-negative linear combination 
of the gradients (normal vectors) of the active constraints. The second condition states 
that x must be feasible. The third condition is non-negativity, and the fourth condition 
corresponds to complementary slackness: λ can be positive only if the corresponding con-
straint is active (gi(x) = 0). If the i-th constraint is satisfied as a strict inequality, then the i-th 
resource is not scarce and there is no marginal value associated with having more of that 
resource. This is indicated by λi = 0.

The Karush–Kuhn–Tucker necessary conditions are also sufficient for a maximiza-
tion problem if the objective function f(x) is concave and the feasible region is convex. 
Establishing the convexity and concavity and applying the Karush–Kuhn–Tucker neces-
sary conditions do not yield procedures that are reasonable for direct practical numerical 
application. However, the Karush–Kuhn–Tucker conditions do form the very foundation 
of the theory of general mathematical programming, and will be seen again in the next 
section where—at last—we will see some efficient computational methods.

5.3.3 Quadratic Programming

Quadratic programming comprises an area of mathematical programming that is sec-
ond only to linear programming in its broad applicability within the field of Operations 
Research. While quadratic objective functions are not as simple to work with as lin-
ear objectives, we can see that the gradient of a quadratic function is a linear function. 
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Consequently, the Karush–Kuhn–Tucker conditions for a quadratic programming prob-
lem have a simple form that can make solutions to these problems considerably easier to 
obtain than for general nonlinear programming problems.

The quadratic programming problem can be expressed in the following form: 
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The problem can be expressed more succinctly, using matrix notation, as: 

 

maximize z c x x Dx
subject to Ax b

T T= +
=

 x 0≥  

where:
x and c are n-component vectors
A is an m × n matrix
b is m × 1
D is an n × n symmetric matrix.

Several algorithms have been developed to solve certain forms of quadratic functions, and 
we will describe some of the best known and most widely used ones. Because of the com-
plexity of these procedures, we will give only brief overviews. The curious reader is urged 
to consult a more advanced reference such as Simmons (1975) or Nash and Sofer (1996) for 
a deeper appreciation of these methods.

One of the earliest and simplest methods for solving quadratic programs is Wolfe’s algo-
rithm (Wolfe 1959), which is still widely used today. In this method, a sequence of feasible 
points is generated via a modified Simplex pivoting procedure that terminates at a point 
x* where the Karush–Kuhn–Tucker conditions are satisfied. Because the Karush–Kuhn–
Tucker conditions represent a system of linear equations when the objective function is 
quadratic, the problem reduces to finding a feasible solution to a system of equations. 
Wolfe’s algorithm uses phase 1 of the Simplex algorithm to find a feasible solution. The 
complementary slackness conditions are not linear, but the algorithm simply maintains a 
set of active constraints, and allows only the corresponding λi dual variables to be greater 
than zero. Wolfe’s method, like most of the later procedures, moves along an active con-
straint set.

When D is negative definite, Wolfe’s algorithm converges to an optimal solution, or dem-
onstrates infeasibility within a finite number of iterations, assuming that the possibility of 
infinite cycling due to degeneracy is excluded.
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Beale’s method (Beale 1959), introduced by E.M.L. Beale as early as 1955, is based on clas-
sical calculus rather than on the Karush–Kuhn–Tucker conditions. This method is appli-
cable to any quadratic program of the form described earlier except that Beale does not 
require D to be negative definite or negative semidefinite (i.e., the objective function need 
not be concave). Thus, this algorithm will generally yield local optima and the first solu-
tion generated will be the global optimum when the objective is concave.

Beale’s method partitions matrices and uses partial derivatives to choose pivots until it 
is no longer possible to improve the objective value by any permitted change in a non-basic 
variable. Initially, all redundant constraints are eliminated and an initial basic feasible 
solution is determined via a Phase 1 Simplex process. The matrices are partitioned in such 
a way that a new system of equations is developed in which the basic variables, along with 
the associated constraints, are separated from the non-basic variables and their associated 
constraints. Partial derivatives determine which non-basic variable to increase or decrease.

When an apparent solution is achieved, an examination of the second partial derivative 
will determine whether the solution is a false optimum or not. If the second partial deriva-
tive is positive for some x, then the current solution is a minimum (rather than a maxi-
mum). In this case, the objective function can be improved by bringing x into the basis.

A slightly less popular, but more recent and more sophisticated method was origi-
nally presented by Lemke (1962). It is applicable to any quadratic problem, but is typically 
described in terms of solving problems expressed in the form 
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where D is not only symmetric but also positive definite. This new restriction on D is 
critical and is used throughout the procedure. Lemke’s formulation of the constraints in 
terms of inequalities rather than equations causes the Karush–Kuhn–Tucker conditions to 
assume a particularly simple form which is exploited by the algorithm. These constraints 
also include any non-negativity restrictions.

Lemke’s algorithm first formulates the Karush–Kuhn–Tucker conditions for the original 
problem, then defines a new set of variables, from which a second quadratic program is 
constructed. This new problem is solved and from its solution is obtained a solution to 
the original problem. The basic strategy is to generate a sequence of feasible points until a 
point is reached at which a certain gradient satisfies two specific restrictions. Three situa-
tions may arise, each of which is handled differently but results in a matrix being updated 
via the usual Simplex transformation technique. When the algorithm terminates with an 
optimal solution to the second quadratic program, the optimal solution to the original 
quadratic program is constructed based on the definitions of the new set of variables.

Historically, we find that Beale’s method is used less extensively in practice than the 
other two algorithms mentioned here. Computational experiments (Ravindran and Lee 
1981) have shown that Lemke’s algorithm outperforms Wolfe’s and four other lesser-
known algorithms. Although Lemke’s algorithm can fail to converge, when convergence 
does occur, it occurs more quickly than in the other methods.

Quadratic programming models are important for a number of reasons. General nonlinear 
problems with linear constraints are sometimes solved as a sequence of quadratic program 
approximations. Many nonlinear relations occurring in nature are not quadratic, but can 
be approximated by quadratic functions and then solved with the methods just described. 
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However, a wide variety of problems fall naturally into the form of quadratic programs. The 
kinetic energy of a projectile is a quadratic function of its velocity. The least-squares problem 
in regression analysis has been modeled as a quadratic program. Certain problems in pro-
duction planning, econometrics, activation analysis in chemical mixture problems, and in 
financial portfolio management are often treated as quadratic problems. We will elaborate 
on this last problem in the following example.

Example 5.3

A classical problem that is often used to illustrate the use of the quadratic programming 
model is called portfolio selection. A portfolio is a collection of assets, all of which 
have positive present values (called prices) and which also have positive future values 
that are currently unknown. Analysts often use the term rate of return on investment to 
describe future value as follows: 

 Future value Price 1 Rate of return on investment= × +( ) 

Future values are positive but certainly may be less than present values (prices).
Rates of return are not known nor are they guaranteed. A very high expected return 

on an asset is usually accompanied by great variability. The future values can be esti-
mated, but because such estimates are subject to error, there is a risk associated with any 
portfolio. The risk of a portfolio can be reduced by diversification, the extent of which 
is determined by the number of assets in the portfolio and the proportion of the total 
investment that is in each asset. It is generally easier to predict the future value of the 
portfolio than to predict the future values of the individual assets.

The portfolio manager is responsible for assigning a weight to each asset held in the 
portfolio. The weight of the i-th asset is the ratio of the dollar amount invested in that 
asset, divided by the total dollar value of the portfolio. The sum of the weights must be 
one, and all weights are non-negative. A portfolio p is defined by this set of weights. We 
will see that these weights determine the portfolio’s expected future value as well as 
the portfolio’s risk.

The portfolio manager generally begins his decision making process with 

• A fixed amount of money to be invested.
• A list of n assets to invest in.
• The expected return of each asset.
• The variance of each asset return.
• All covariances.

If risk were of no concern, the manager would undoubtedly just invest all the money in 
the one asset offering the greatest expected return, that is, assigning a weight of 1 to that 
asset and 0 to all the others, regardless of risk. But risk almost always is a consideration, 
and most investors are risk-averse.

It is desirable to maximize return and minimize risk, but in a competitive market, 
prices fluctuate so that the safer investments are more expensive than the riskier ones. So, 
in general, it is not possible to simultaneously achieve both goals of maximizing return 
and minimizing risk. Instead, we define a class of efficient portfolios. A portfolio is 
said to be efficient if either 
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• There is no other less risky portfolio having as high a return.

or
• There is no other more profitable portfolio having as little risk.

Thus, the problem of efficient portfolio selection can be viewed as having primal and 
dual expressions: to minimize variance subject to a specified expected return, or to 
maximize expected return subject to a specified variance.

Let n be the number of assets being considered, and let ri be the expected return on 
the i-th asset. We will let W denote a column vector of n asset weights, indicating what 
fraction of the portfolio should be allocated to each asset. We use a variance-covariance 
matrix V in which diagonal element vii is the variance of the i-th asset, and the off-
diagonal elements vij = vji denote the covariance between the i-th and j-th assets. Then, 
risk is defined as the variance σ2 of the portfolio p as: 

 risk (p) (p) W VW 2 T= =σ  

The expected return of the portfolio p is given by: 

 E(p) = W RT
 

where R is a column vector of expected asset returns. So the portfolio selection problem 
can be expressed as 
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where P is a desired minimum return on investment.
Equivalently, we could 
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where Q is a desired maximum risk. The first of these formulations is clearly in the form 
of a quadratic programming problem with linear constraints. The noted economist 
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Harry Markowitz (1959) is credited with formulating the portfolio selection problem as 
a quadratic programming model.

5.3.4 More Advanced Methods

Quadratic programming models represent one special case of nonlinear programming 
problems, but there are many additional methods that have been developed for solving 
various other special types of nonlinear problems. Gradient methods are based on the 
ideas presented previously in Section 5.2.2, but must include special provisions to restrict 
the search within the feasible region. One of the best-known of these is the reduced 
gradient method (Wolfe 1967, Lasdon and Warren 1978, Murtagh and Saunders 1978). In 
particular, the Lasdon and Waren algorithm, GRG2 (Generalized Reduced Gradient) is 
available in standard spreadsheet packages using the Solver tool. It is based on a Simplex 
scheme, but instead of improving a current solution by a change of one non-basic variable 
at a time, the reduced gradient method simultaneously changes as many non-basic vari-
ables as can change and yield an improvement, but at different rates, proportional to their 
respective partial derivatives.

Unconstrained optimization techniques have also been adapted for constrained optimi-
zation by the imposition of penalty functions or barrier functions (Bazaraa et al. 2013).

5.4 Software for Nonlinear Optimization

Linear programming models require only the coefficients for objective and constraint 
functions, and it is easy to enter this input to software by using well-established input 
formats that have been in use for many years. By contrast, nonlinear models come in many 
different forms. In some cases, the model itself may actually be very complicated. In oth-
ers, the model may be fairly simple, but just does not conform to any particular standard 
model, and therefore finding and using the right software is difficult. This lack of any stan-
dard form (resulting from the fact that nonlinear programming includes every imaginable 
form of mathematical programming except linear!) has always made the selection and use 
of appropriate software cumbersome.

As modeling languages such as AIMMS, AMPL, and GAMS have become more sophis-
ticated, software use has become accessible to a larger community of analysts. Software 
for nonlinear programming often requires that the derivatives of functions be explicitly 
entered along with other components of the problem. But even this obstacle has been alle-
viated by software, which analyzes nonlinear formulae and generates software that can 
evaluate derivatives (a process much more sophisticated than the symbolic differentiation 
that is available in some mathematical packages). In light of these advances, why are non-
linear programming problems still considered difficult to solve? 

 1. In many problems, it is computationally difficult to determine whether or not the 
objective function is concave (convex) in the feasible region; hence, it is difficult to 
guarantee convergence to a global optimum.

 2. If a method finds a solution, it is often difficult to know whether it is local or 
global.
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 3. Existence of feasible solutions for a problem having nonlinear constraints is dif-
ficult to determine, which means there is no guarantee of finding an initial feasible 
point (starting solution) even when one exists.

 4. Special-purpose software may need to be used in conjunction with more general 
nonlinear programming optimization packages.

 5. Software often employs some variation on Newton or Quasi-Newton methods. 
This works well if the current point is close to the optimal, but the results are 
unpredictable when the initial point is far away from the optimal solution.

 6. Some algorithms require more global knowledge about their nonlinear functions 
to give satisfactory performance.

For these reasons, although modeling languages and convenient software interfaces seem 
to invite a wide audience of users, it must be recognized that for nonlinear programming, 
friendly software is no substitute for a savvy and mathematically astute analyst. Yet non-
linear programming is a valuable tool for many applications in science, engineering, and 
finance, and there is a wide selection of powerful and ingenious software available.

Choosing software for nonlinear optimization problems is difficult because no one algo-
rithm is efficient and effective for finding a global optimum for general nonlinear prob-
lems. Because no method is invariably superior to others, many software products include 
a number of methods, with the hope that one of the methods will suffice for a given prob-
lem. All methods will typically require repeated computation of the objective function, 
the gradient vector, and an approximation to the Hessian matrix. For many problems, 
evaluating the gradient requires more time than evaluating the objective function, and 
approximating the Hessian matrix can take an enormous amount of processing time as 
well as memory. It is tempting to seek a technique that does not rely on the Hessian, but 
such techniques (because they are poorly guided) may require many more iterations and 
in the end are therefore slower.

Software for nonlinear optimization in general has always been characterized by its 
variety. Some algorithms seem to perform exceptionally well on problems having con-
straints that are nearly or mostly linear, while a very different approach may be effective 
on problems that are highly nonlinear but that have relatively few variables or constraints. 
And some recent progress has been made by extending interior point methods for linear 
programming problems to quadratic and even general nonlinear problems.

MINOS is one of several linear and nonlinear optimizers offered within the AIMMS, 
APMonitor, GAMS, TOMLAB, and AMPL modeling systems and the NEOS Server, but it 
also can be used as a stand-alone package. The MINOS system is a general-purpose opti-
mizer, designed to find locally optimal solutions involving smooth nonlinear objective 
and constraint functions. It takes advantage of sparsity in the constraint set, is economical 
in its use of storage for the reduced Hessian approximation, and is capable of solving large-
scale linear and nonlinear programs.

NPSOL is sometimes offered as a companion to MINOS, and the two systems share a 
number of features such as computer platforms and languages. However, NPSOL is espe-
cially designed for dense linear and nonlinear programs, and for small models involving 
nonlinear constraints or whose functions are highly nonlinear and expensive to evaluate. 
It does not exploit sparsity (its Hessian is always stored in full form); it requires fewer 
evaluations of the nonlinear functions than does MINOS; it is more robust than MINOS if 
constraints are highly nonlinear; and convergence is assured for a large class of problems 
(particularly some for which MINOS fails to converge).
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MATLAB Optimization Toolbox includes a wide variety of methods for linear and non-
linear optimization on various platforms (Beck 2015). The MATLAB language facilitates 
problem input. Constraints and objective functions must be differentiable. TOMLAB is a 
modeling environment in MATLAB that has a unified input-output format and integrates 
automatic differentiation. It works with MATLAB solver algorithms as well as other solvers.

SAS Institute, Inc. provides a general nonlinear optimization package that runs on vari-
ous platforms. SAS offers several techniques including Newton–Raphson, Quasi-Newton, 
conjugate gradient, Nelder-Mead simplex, hybrid Quasi-Newton, and Gauss–Newton 
methods, which comprise special routines for quadratic optimization problems. The Quasi-
Newton methods use the gradient to update an approximation to the inverse of the Hessian 
and is applicable where the objective function has continuous first and second derivatives 
in the feasible region. SAS OPTMODEL provides a general nonlinear optimization problem 
solver. SAS/OR handles nonconvex nonlinear optimization problems that may have many 
locally optimal solutions that are not globally optimal. SAS/OR applies multiple global and 
local search algorithms in parallel to solve difficult optimization problems such as those 
having discontinuous or non-differentiable functions, to identify global optima.

IMSL libraries comprise an extensive set of subroutines and procedures for a variety of 
mathematical and statistical purposes that are supported across a wide range of languages 
as well as hardware and operating system environments including Windows, Linux, and 
many UNIX platforms. It includes routines to solve nonlinear problems whose size is 
limited only by the available memory, and is generally successful on problems involving 
smooth functions.

LINGO modeling language and solver and LINDO API combine large-scale linear, non-
linear, and integer optimizers through an interactive modeling environment. The primary 
underlying technique is a generalized reduced gradient algorithm, and the system incor-
porates a global solver, multi-start capability, and a quadratic solver.

Gurobi Optimization has a reputation for their robust and high performance software 
for solving difficult and complex problems. Gurobi products can be embedded in existing 
development environments or can run in stand-alone mode. They offer advanced imple-
mentations of the newest algorithms including parallel algorithms running in innovative 
shared memory hardware contexts.

IBM CPLEX Optimizer can solve both convex and non-convex quadratic to global opti-
mality. It can find the unique solution to a concave maximization problem and a first-order 
solution to a non-concave problem. CPLEX has both barrier and simplex algorithms for 
solving convex quadratic programs and a barrier algorithm for solving non-convex prob-
lems. It can also solve problems with convex quadratic constraints.

Frontline Solvers is the developer of MS-Excel Solver that comes with Excel but it is 
limited in its capability for solving large problems. The company offers a more powerful 
(premium) solver that works as an add-in to Excel but is capable of solving larger linear 
and nonlinear problems. The Solver’s SDK (software developer kit) can be used with mul-
tiple modern programming languages such as C++, Java and Python. Solver uses the GRG 
nonlinear method for nonlinear optimization.

NEOS Server is a free internet-based service for solving numerical optimization prob-
lems including nonlinear problems. It offers several nonlinear constrained programming 
solvers such as CONOPT, Knitro, MINOS, LOQO among others. These solvers can be 
accessed by using modeling languages such as AMPL and GAMS.

COIN-OR (COmputational INfrastructure for Operations Research), is an open-source 
community for the development and deployment of operations research software includ-
ing nonlinear optimization solvers such as DFO and FilterSD.
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Valuable reference material for serious practitioners and analysts can be found in Gill 
et al. (1981, 1984). These volumes do not necessarily stress the intuitive appeal of the meth-
ods discussed, but rather they realistically present the details pertinent to the practical 
performance of some of the most powerful and advanced methods and implementations. 
Additional recommended sources of information include Fourer (1998, 2017), Moré and 
Wright (1993), and Nash (1998).

Finally the Nonlinear Programming Frequently Asked Questions (FAQ) web page offers 
many resources on nonlinear programming, software and solvers.

5.5 Illustrative Applications

5.5.1 Gasoline Blending Systems (Rigby et al. 1995)

Texaco’s most important refinery product is gasoline. Crude oil entering a refinery is 
distilled and split into various components, which can then be reformed or cracked into 
lighter compounds that may be of greater commercial value. The resulting stocks (hav-
ing varied and unanticipated properties) must then be blended to achieve certain quality 
specifications. The greatest profitability will result if the refinery can maximize its produc-
tion of higher octane gasoline blends from the available stocks.

Gasoline blend qualities include familiar properties such as octane (measured as 
research, motor, and road octanes) and lead content, but also other characteristics such 
as Reid vapor pressure (RVP), sulfur and aromatic contents, and volatilities (the tempera-
tures at which certain percentages of the blend boil away). Other qualities are important 
because of federal and state agency emission standards. While some properties of gasoline 
blending can be (and have been for decades) modeled as linear optimization problems, it 
is known that octane, RVP, and volatilities are highly nonlinear functions of volume and 
weight.

Prior to the late 1970s, gasoline blending was a simple mixture of various stocks, and 
octane requirements were met by injecting tetraethyl lead into the blend. Blending recipes 
were based on hand calculations that did not significantly affect the overall economies of 
the plant. Tetraethyl lead was inexpensive and available in ample supplies, so the octane 
requirement was not a binding constraint in the model.

However, during the 1970s, governments mandated that lead be phased out of the blend-
ing recipe; and by the early 1980s, the federal government also clamped down on volatility 
specifications for gasoline. These two changes had a drastic effect on the economics of 
refining, and Texaco responded by developing a nonlinear gasoline blending optimization 
system. The first version of the system resulted in an estimated annual savings of $30 million, 
improved quality control, and increased the ability to plan refining operations and market 
the products, and perform sensitivity analysis on current operations schedules.

The blending model was coded in the GAMS modeling language, and uses MINOS solv-
ers. Subsequent versions of the system allowed additional flexibility in handling blending 
stocks, increased the number of constraints that could be modeled, and permitted compu-
tations to be placed on more sophisticated client server network hardware.

The system is used for both immediate, short-range, and long-range planning. Refinery 
planners make use of the system to generate the recipe for the next blending operation. 
For short-term planning purposes, it is important to be able to examine the multi-period 
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model covering the next few days, to ensure that components consumed in today’s blends 
do not render tomorrow’s schedule infeasible. And finally, refinery operations planners 
must anticipate all the activities associated with gearing up plants for gasoline reformula-
tion. Estimates produced by older linear programming planning models must be checked 
for consistency with larger nonlinear models, and the system allows planners to identify 
errors and restructure problem formulations where necessary.

5.5.2 Portfolio Construction (Bertsimas et al. 1999)

A large investment firm in Boston manages assets in excess of $26 billion, for clients that 
include pension funds, foundations, educational endowments, and several leading invest-
ment institutions. This firm employed the widely used classical theory of portfolio opti-
mization (Markowitz 1959), in which managers determine the proportion of total assets to 
invest in each available investment to minimize risk (variability of return) subject to con-
straints that require the expected total return to meet a certain target. This famous model 
includes an objective that is a quadratic function of the decision variables and constraints 
that are linear.

For a variety of reasons, large clients typically subdivide their asset classes and allow 
each portion to be managed by different analysts who have distinctly unique investment 
styles. This strategy ensures that the composite return will be a linear combination of the 
returns resulting from the different investment styles. Because this linear diversification 
approach is generally accepted by clients, the investment firm applies the technique within 
its individual funds. Portfolios are partitioned into subportfolios, each characterized by a 
different investment style. Quadratic optimization can still be used for the multiple sub-
portfolio problem, but the number of decision variables increases dramatically because 
each subportfolio can conceivably invest in any of the securities available to the composite 
portfolio. (One of the firm’s funds is partitioned into 50 subportfolios.)

A notable advantage of this partitioned portfolio framework is the ability to reduce 
trading costs by swapping shares internally among subportfolios, thereby often avoiding 
the costs of trading on the open market. Globally optimizing multiple subportfolios thus 
makes it possible to sharply increase the turnover within each subportfolio without neces-
sarily increasing turnover for the composite portfolio. This portfolio construction method-
ology produces funds with good performance, high liquidity, relatively low turnover, use 
of multiple investment styles, and diversification over time.

The desired diversification that is achieved through multiple subportfolios unfortunately 
gives rise to certain complications that are not handled within the standard quadratic pro-
gramming model. With risk management through diversification, the number of different 
stocks (or other investments) in the portfolio becomes very large, and as the portfolio is 
rebalanced over time, the number of transactions also grows, resulting in increased custo-
dial fees and transaction costs. These phenomena can sometimes be dealt with by adding a 
post-processing step to the quadratic optimization phase, simply to prohibit positions and 
trades smaller than a given threshold. But this firm’s strategy specifically included invest-
ing in small market capitalization stocks, so merely eliminating small positions would be 
inconsistent with established investment criteria. Additionally, post-processing that elimi-
nates many small but key positions can interfere with optimization objectives and can 
violate constraints.

On the basis of these considerations, the investment firm decided to modify its quadratic 
optimization approach so that it could simultaneously optimize its multiple subportfo-
lios and maintain control over the number of positions and transactions in the composite 
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portfolio. These stock position levels and transaction counts are inherently integer-valued 
quantities, and the quadratic model therefore had to be expanded to include integer com-
ponents, resulting in a mixed-integer programming model. The solution was implemented 
using ILOG CPLEX 4.0 as the underlying mixed-integer solver. The mixed integer solution 
allowed the firm to reduce its average number of different holdings by approximately 50%, 
and its average number of transactions by about 80%, significantly decreasing its opera-
tional costs and trading costs while maintaining essentially the same originally targeted 
expected returns on investment.

5.5.3 Balancing Rotor Systems (Chen et al. 1991)

Large steam turbine generators, high speed gas turbine engines, and other machinery 
with flexible rotating shafts must be balanced to reduce vibration. Minimizing vibra-
tion is important in extending the life of the machine, improving operating efficiency, 
and maintaining a safe operating environment. The design and fabrication of rotating 
machinery has undergone evolutionary changes over time, in particular being influenced 
by increased energy costs and safety and maintenance concerns. The use of lighter weight 
materials in rotors and faster rotating speeds necessitates more accurate manufacturing 
processes, which result in improved balancing characteristics in the rotors.

One of the most popular techniques for flexible rotor balancing treats the rotordynamic 
system as a linear system in calculating balance correction weights. The primary disad-
vantage of this approach is that it typically requires a large number of actual trial runs to 
collect enough data to estimate accurately the required balance corrections. The linear pro-
gramming approach seems attractive from a computational standpoint, but in many appli-
cations, such as for utility companies, the costs of shutdown, installation of trial weights, 
startup, and data collection are prohibitive.

Using a recently developed nonlinear programming model, it is now possible to deter-
mine an optimal system balance without the necessity of trial runs. In place of actual trial 
runs, this new technique requires developing a mathematical model of the system dynam-
ics that can be used to simulate rotor response to balance corrections.

The unbalance of a rotor is continuously distributed along the axis of the rotor. However, 
in the nonlinear model, this continuous distribution is discretized into a finite number of 
balance planes to which corrections can be applied. Similarly, measurements are taken 
at only a limited number of points (in some cases, as few as two points is sufficient). The 
nonlinear optimization process then seeks to find the unbalance vector that minimizes a 
least-squares difference between the adjusted analytical model and the measured experi-
mental model. In the nonlinear solver for this constrained least-squares problem, a search 
direction is found using a steepest descent method, and a constrained line search is used 
to determine the step size. Gradients of the objective function, with respect to all the 
design variables, determine the search direction; and at each gradient evaluation, the rotor 
model must be solved to obtain the system response. The computations are frequently 
complicated by ill-conditioned gradients, but normalization procedures are employed 
effectively against this difficulty. Because the rotor systems being balanced often have 
multiple possible operating speeds, the optimization objective function includes weights 
(coefficients) associated with each different operating speed of the rotor, with the largest 
weights applied to the most critical operating speeds.

In test rigs, significant improvements in vibration levels were observed through the use 
of this model. And in the numerical computations, convergence to an optimum solution 
took place in less than a minute of mainframe processing time.
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5.6 Summary

Nonlinear optimization models are used for mathematical programming problems in 
which the objective function and constraints are not necessarily linear. This class of prob-
lems is very broad, encompassing a wide variety of applications and approaches to solv-
ing the problems. No single algorithm applies equally to all nonlinear problems; instead, 
special algorithms have been developed that are effective on certain types of problems.

Unconstrained optimization can often be dealt with through the use of calculus to 
find maximum and minimum points of a function. Constrained optimization typically 
requires solving systems of equations. As helpful as the mathematical theories are that can 
be used to describe the characteristics of optimal solutions to nonlinear problems, such 
insights nevertheless often fail to suggest computationally practical methods for actually 
finding the desired solutions.

Iterative search techniques are frequently used for nonlinear optimization. A one-
dimensional search suffices for finding the optimum value of a function of one variable; at 
each step, the slope, or derivative, of the function is used to guide and restrict the search. 
Although such a technique seems much too elementary for a realistic nonlinear optimiza-
tion problem, single-variable search methods are often incorporated into more sophisti-
cated multi-variable search procedures.

For finding the optima of functions of many variables, gradient search methods are 
guided by the slope of the function with respect to each of the variables. At each step, the 
method follows the direction indicated by the sharpest improvement from the current 
point. For this reason, techniques that operate in this way are often referred to as steepest 
ascent methods. Straight-line searches can be improved upon by using Newton’s method, 
which is based on quadratic approximations to nonlinear functions.

Constrained optimization methods differ depending on the nature of the constraints. 
The method of Lagrange multipliers is applicable to problems with equality constraints. 
For problems with inequality constraints, Karush−Kuhn−Tucker theory describes neces-
sary and sufficient conditions for optimality and forms the foundation of general math-
ematical programming.

Key Terms
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concave function
constrained optimization
convex function
convex region
convex set
DFP method
efficient portfolio
Fibonacci method
global maximum
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global minimum
golden section method
gradient search
Hessian matrix
inflection point
Karush–Kuhn–Tucker conditions
Lagrange multipliers
local maximum
local minimum
multivariable search
necessary conditions
Newton’s method
one dimensional search
portfolio selection
quadratic programming
Quasi-Newton methods
reduced gradient method
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Exercises

5.1 Consider the function f(x, y) = 3x2 − 2xy + y2  + 3e–x. Is this function convex,  concave, 
or neither? Explain your answer.

5.2 Consider the function f(x) = x4 – 8x3 + 24x2 – 32x + 16. Is this function convex, con-
cave, or neither? Explain your answer.

5.3 Consider the following nonlinear problem. Is the feasible region convex?

 

minimize f x, y = x – 2xy + 2y
subject to  x + 3y 102 2
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5.4 Consider the following nonlinear problem. Is the feasible region convex?

 

minimize f x, y 3x 2xy y
subject to x 12x y 0
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5.5 Use the one dimensional search described in Section 5.2.1 (also known as a bisec-
tion search) to find a minimum of the function

 

f(x) x 3x 2x 2x 7

over the range 1 x 10. Use = 0.1.

4 3 2= + +

≤ ≤

− −

ε  

5.6 The golden section search is similar to the bisection search for one dimensional prob-
lems, except that it uses only function values and it does not require calculating 
derivatives. This is particularly useful when the function does not have first deriva-
tives defined, or when computing the first derivatives is very expensive computa-
tionally. Suppose you are given two initial end-points, a ≤ x ≤ d, and the minimum 
of f(x) is known to lie in this range. Evaluate the function at two points c = a + 0.618 • 
[d – a], and b = d – 0.618 • [d – a]. Note that a < b < c < d, but they are not evenly 
spaced. If f(b) < f(c), then let [a, c] be the new interval, and repeat the calculation. 
Otherwise, let [b, d] be the new interval. The magic aspect of the golden section is 
that when you have to compute the new interior points between [a, c], you discover 
that b is precisely 0.618 of the distance between a and c. In other words, you only 
need to make one additional function evaluation. Similarly, if the new interval is 
[b, d], then point c is already lined up with one of the new required points.

 Use the method of golden section to find the minimum of the function in the previ-
ous problem with ε = 0.1.

5.7 Consider the unconstrained problem:

 minimize f(x, y) 3x 2xy y 3e2 2 x= + +− −
 

 Starting from the solution (x, y) = (0, 0), and an initial step length of 2, perform two 
iterations of the gradient search algorithm to find a minimum. That is, compute 
the gradient at the point (0, 0), and perform a one dimensional line search to find a 
minimum along the line. From this new point, perform a second line search.

5.8 Repeat Exercise 5.7, but use Newton’s method to find the solution.
5.9 Rosenbrock’s function is a particularly difficult problem that looks deceptively sim-

ple. Consider the unconstrained function:

 minimize f x, y 100 y x 1 x2 2 2( ) ( ) ( )= +− −  

 The function has a unique minimum at the point (1, 1) (where f(1, 1) = 0). This path-
ological example has also been called the banana function. If you plot the function, 
it follows a narrow banana-shaped valley from the point (–1, 1) to the minimum 
(1, 1). Because the valley has quite steep sides, anytime an algorithm tries to follow 
the downward slope in a straight line, the line almost immediately starts going up, 
resulting in very short steps. It is very difficult for any algorithm to find the way 
around the banana.

  Try using both a gradient search and Newton’s method beginning at the point 
(–1,  1). Perform several iterations. You will likely observe rather poor progress 
along a narrow zig-zag path.
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5.10 Consider the problem:

 

minimize f x, y = x y
subject t

2( )
oo x + y 12 2 ″  

 Use the method of Lagrange multipliers to express this problem as an uncon-
strained minimization problem, and solve the problem using both the gradient 
method and Newton’s method.

5.11 Consider the following nonlinear problem with linear constraints:

 

maximize f x, y x y + 2y
subject to x + 3y 9

2 2( ) =
≤

 x + 2y 8
3x + 2y 18

≤
≤

0 x 5
  0 y 2

≤ ≤
≤ ≤  

 Solve this problem graphically. Begin at the point (0, 0), and check the gradient. If 
the Karush–Kuhn–Tucker conditions are not satisfied, you should be able to find 
an improving direction in the feasible region.
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6
Markov Processes

Certain complex systems exhibit characteristics that evolve randomly over time. A Markov 
process is a mathematical model, based on principles developed by the Russian probabil-
ity theorist A.A. Markov, that allows systems engineers and analysts to describe and pre-
dict the behavior of such systems. Probabilities and uncertainties arise in the most diverse 
applications, and in many cases, Markov analysis provides a framework in which to study 
the behavior of these systems.

For example, a Markov model was developed for aircraft landing decisions and was 
used to study data collected from the Pittsburgh Airport. Aircraft arriving at an airport 
are supplied with information describing the congestion, and based on that information, 
must decide whether to join the queue of planes waiting to land or to instead fly on to a 
different airport (Rue and Rosenshine 1985). In a very different context, a Markov decision 
process framework has been applied in the fishing industry to determine what proportion 
of a salmon population to catch in a given season, and what proportion to leave and allow 
to spawn and thus build up the population for the next season (White 1985, 1988).

In the passenger airline industry, decisions must be made continuously by airline book-
ings managers about how many reservations to accept for a specific flight up until the day 
of departure. The objective is to maximize passenger revenues while minimizing pas-
senger rejections. A Markov model to assist with this decision process was applied to data 
from Scandinavian Airlines (Alstrup et al. 1986). And when a fire alarm is received at a 
fire station, a dispatcher must make decisions about how many fire engines to send out in 
response to the alarm, to minimize long run average fire losses. A Markov model helps 
with such decisions, based on the type of alarm and the number of fire engines currently 
out on calls (Swersey 1982).

Markov analysis has been found to be useful in areas as disparate as population dynam-
ics, inventory management, equipment maintenance and replacement problems, market 
share analysis, and economic trend analysis. Our study of Markov processes will begin 
with some preliminary definitions, and we will then investigate the types of analysis that 
can be performed.

Suppose we let xt denote some observable system characteristic at time t. The charac-
teristic is seen to change probabilistically as time progresses; therefore, xt is not known 
with certainty until time t, and can be thought of as a random variable. The sequence of 
random variables x0, x1, x2, …, xt, … represents a stochastic process in which the value 
of xt typically depends on the values of the previous random variables in the sequence. 
If primarily interested in studying the changes in the system, then we may merely index 
the points in time when significant events occur. (We may even wish to assume that the 
time between changes is a constant, and label the points in time as 0, 1, 2, …) Such a pro-
cess is called a discrete-time stochastic process. If, on the other hand, we wish to mea-
sure the actual progress of absolute clock time and study the time between transitions, 
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then we have a continuous-time stochastic process in which the system is viewed at 
 arbitrary times rather than at discrete instants in time. We will restrict our discussion to 
discrete-time stochastic processes, and in particular to a special type of process known 
as a Markov process.

6.1 State Transitions

In the systems we will study, the observed characteristic or condition of the system at any 
given time is referred to as the state of the system. We will assume that there is a finite 
number of states, numbered 1,…, N, and that at any time the system occupies (or is com-
pletely described by) exactly one of these states. When a change occurs in the system, we 
say that the system makes a transition.

A discrete-time stochastic process is called a Markov process if a transition from one 
state to another depends only on the current state of the system and not on previous states 
that the system may have occupied. More formally, this property can be expressed in 
terms of conditional probabilities:

 

P x s  x s , x s , , x s , x s
P x s

( | )
(

t+1 t+1 t t t 1 t 1 1 1 0 0

t+1 t+1

= = = = =
= =

− − 

|| ) x st t=

The state at time t + 1 depends only on the state the system was in at time t and not on the 
values of any of the random variables xt–1, …, x0. This is called the Markov property. And 
because each xt depends only on xt–1 and has an effect only on xt+1, the process is some-
times called a Markov chain. Since we assume there are finitely many states, the process 
is called a finite state Markov chain.

An additional assumption fundamental to the analysis of Markov processes is that the 
probability of a transition from any state i to any state j is the same for any time t. That is, 

 P x j x i p( | )t+1 t ij= = =  

is independent of the time index t. The property that a Markov process’s transitional 
behavior does not change over time is called the stationarity property.

The probability pij described earlier is called the transition probability of a system 
changing from state i at some time t to state j at time t + 1. Transition probabilities are 
defined for all states i, j = 1, 2,…, N that the system may occupy, and are usually written as 
a transition probability matrix 
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The elements pij are sometimes called one-step transition probabilities because they refer 
to system changes that can occur directly in one time period. And because the system must 
be in some state after each transition, each row of probabilities must sum to one; that is, 

 j

N

ijp
=
∑ =

1

1
 

The values of these transition probabilities define the probability distributions of the 
Markov chain {xt} and therefore describe the evolutionary behavior of the system.

A Markov process begins at some initial time t = 0. If the state x0 is not known with cer-
tainty, then we must specify the probabilities with which the system is initially in each of 
the N states. We denote this as P(x0 = i) = pi(0) for each state i, and we use the vector 

 p(0) p (0) p   p( )1 2 N= ( ) ( )0 0  

to describe the initial probability distribution for the system.
In summary, a system can be modeled as a Markov process if it has the following four 

properties: 

Property 1: A finite number of states can be used to describe the dynamic behavior of 
the system.

Property 2: Initial probabilities are specified for the system.
Property 3: Markov property—We assume that a transition to a new state depends 

only on the current state and not on past conditions.
Property 4: Stationarity property—The probability of a transition between any two 

states does not vary in time.

It should be noted that the validity of any study using the tools of Markov analysis 
hinges on the extent to which the Markov and stationarity assumptions are met by the 
actual system under investigation. We certainly realize that processes involving human 
choice are often affected, if only subtly, by past experiences and are not based just on a 
current scenario. Strictly speaking, this violates the Markov property. Furthermore, sea-
sonal variations and political cycles may interfere with the stability or constancy with 
which probabilistic transitions occur, and therefore the stationarity of the transition 
probabilities may be questionable. In light of this, we must emphasize the importance of 
the analyst’s understanding of the system being modeled and of the assumptions upon 
which Markov analysis is predicated. Almost as important as the mathematical model 
itself is the role that keen judgment plays in applying these procedures and in interpret-
ing the results.

If an analyst determines that a Markov analysis is appropriate for the system being stud-
ied, then the techniques for analyzing Markov processes may provide answers to such 
questions as the following: 

• How many transitions (steps) will it likely take for the system to move from some 
specified state to another specified state?

• What is the probability that it will take some given number of steps to go from one 
specified state to another?
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• In the long run, which state is occupied by the system most frequently?
• Over a long period of time, what fraction of the time does the system occupy each 

of the possible states?
• Will the system continue indefinitely to move among all N states, or will it eventu-

ally settle into a certain few states?

We will look briefly at an example of a very simple Markov chain. Then in the following 
sections, we will show how questions such as the above can be answered for systems that 
can be modeled as Markov processes.

Example 6.1

Consider using Markov chains to model changes in weather at a ski resort, and try 
to use the model to help describe the operation and maintenance of the ski mountain 
equipment and the ways in which the skiers respond to the weather. Suppose that win-
ter days can be described as either sunny, cloudy, or snowing. We can arbitrarily denote 
that state 1 corresponds to a sunny day, state 2 corresponds to a cloudy day, and state 3 
corresponds to a day with snowfall. Suppose that after studying historical weather pat-
terns in this particular ski location, we believe that if we know the weather condition on 
any given day, the weather on the next day can be described according to the following 
transition probabilities: 

 
P =


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
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0 2 0 7 0 1
0 5 0 2 0 3

. . .

. . .
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So, for example, the probability that a clear day is followed by a snowy day is p13 = 0.2, and 
the probability that if today is cloudy then tomorrow will also be cloudy is p22 = 0.7. (Note 
that pii is the probability of no change from one day to the next.) We realize that the ski 
season probably lasts only a few months and that these weather patterns certainly do 
not endure into the summer. Nevertheless, within the winter season, these probabilities 
are stationary.

These one step transition probabilities can be illustrated in a state transition diagram 
in which the nodes of a graph represent system states, and arcs represent possible 
transitions and are labeled with transition probabilities. Figure 6.1 shows the transition 
diagram for our example, indicating the one step transitions that can be made. If we are 
interested in the probability that a certain weather condition will prevail after two days, 
we can use a two-step transition tree, as shown in Figure 6.2.

Suppose that on a given day, the ski area is experiencing sunny weather, and we wish 
to know the probability that in two days there will again be sunny weather. There are 
three ways in which a sunny ski resort can, two days later, be sunny again (that is, be 
in state 1 again): the weather may never change, and this happens with probability (0.7)
(0.7) = 0.49; it may change to cloudy then change back to sunny, with probability (0.1)
(0.2) = 0.02; or it could snow the next day then return to sunny conditions on the second 
day with probability (0.2)(0.5) = 0.10. The probability of the second day being sunny is 
then the sum of these probabilities 0.49 + 0.02 + 0.10 = 0.61. Similarly, the probability 
of a cloudy day two days after a sunny day is (0.7)(0.1) + (0.1)(0.7) + (0.2)(0.2) = 0.18, and 
the probability of a snowy day two days after a sunny day is (0.7)(0.2) + (0.1)(0.1) + (0.2)
(0.3) = 0.21. Notice that we are assuming that the weather at the ski resort must be in some 
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state after two days, and indeed the three probabilities sum to one: 0.61 + 0.18 + 0.21 = 1. 
Similar trees could be drawn for projecting weather two days beyond a cloudy day or 
a snowy day.

The transition tree is a handy way of illustrating the pattern of paths through the 
states, as long as the number of transition periods is small. But this technique becomes 
quite cumbersome if we want to examine weather behavior over many days. Fortunately, 
there is a much simpler and more direct way to obtain this information.

Sunny Cloudy

Snowing

0.1

0.1

0.2

0.2
0.2

0.7
0.7

0.3

0.5

FIGURE 6.1
Transition diagram.
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FIGURE 6.2
Transition tree.
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Let us denote by p(n)
ij the probability of a transition from state i to state j in n steps. 

Above, we calculated p(2)
11 = 0.61, p(2)

12 = 0.18, and p(2)
13 = 0.21. Our calculation of p(2)

11 is 

 

0.7 0.7 0.1 0.2 0.2 0.5
p p p p p( )( ) ( )( ) (

( )( ) ( )( ) ( )( )+ +
= + +11 11 12 21 113 31)( )p  

which simply accounts for the three possible ways of making the transition from state 
1 and back again. This is precisely the inner product of the first row of P with the first 
column of P; the first row defining probabilities for leaving state 1 together with the 
first column giving probabilities for re-entering state 1. From this observation, we can 
generalize that for any i and j, p(2)

ij is the inner product of the i-th row of P with the j-th 
column of P. 

 
p p pij

(2)

k

N

ik kj=
=

∑
1  

Because this is exactly matrix multiplication, we find that we can compute P(2) = 
P2 = P ∙ P, and that each element of P(2) is just the two-step transition probability p(2)

ij. In 
our example, 

 

P2

0 61 0 18 0 21
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0 54 0 25 0 21

=
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We can further generalize that n-step transition probabilities can be obtained from 

 P P P Pn n n 1( ) = = ⋅ −  

and 
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Then, 

 

P3

0 568 0 229 0 203
0 407 0 432 0 161
0 533 0 271 0 196

=
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and from this, for example, we can see that the probability that, if any given day is 
cloudy, then snowy weather will occur three days later, is 0.161, because p(3)

23 = 0.161.
Table 6.1 shows the matrices Pn for n values of from 1 to 50. We will have occasion to 

refer again to these computational results when we discuss related topics in Section 6.5.
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TABLE 6.1

n-Step Transition Probability Matrices for 1 ≤ n ≤ 50

P1 = 0.7000000
0.2000000
0.5000000

0.1000000
0.7000000
0.2000000

0.2000000
0.1000000
0.3000000

P18 = 0.5135283
0.5134839
0.5135191

0.2972783
0.2973344
0.2972900

0.1891930
0.1891813
0.1891906

P2 = 0.6100000
0.3300000
0.5400000

0.1800000
0.5300000
0.2500000

0.2100000
0.1400000
0.2100000

P19 = 0.5135220
0.5134963
0.5135167

0.2972862
0.2973187
0.2972930

0.1891913
0.1891846
0.1891899

P3 = 0.5680000
0.4070000
0.5330000

0.2290000
0.4320000
0.2710000

0.2030000
0.1610000
0.1960000

P20 = 0.5135184
0.5135035
0.5135153

0.2972908
0.2973097
0.2972948

0.1891904
0.1891864
0.1891895

P4 = 0.5449000
0.4518000
0.523000

0.2577000
0.3753000
0.2822000

0.1974000
0.1729000
0.1925000

P21 = 0.5135163
0.5135076
0.5135145

0.2972935
0.2973044
0.2972958

0.1891898
0.1891875
0.1891893

P5 = 0.5316700
0.4777700
0.5204000

0.2743600
0.3424700
0.2885700

0.1939700
0.1797600
0.1910300

P22 = 0.5135150
0.5135100
0.5135143

0.2972950
0.2973013
0.2972960

0.1891895
0.1891882
0.1891892

P6 = 0.5240260
0.4928130
0.5175090

0.2840130
0.3234580
0.2922450

0.1919610
0.1837290
0.1902460

P23 = 0.5135143
0.5135114
0.5135137

0.2972959
0.2972996
0.2972967

0.1891893
0.1891885
0.1891891

P7 = 0.5196013
0.5015252
0.5158283

0.2896039
0.3124477
0.2943716

0.1907948
0.1860271
0.1898000

P24 = 0.5135139
0.5135122
0.5135135

0.2972964
0.2972985
0.2972969

0.1891892
0.1891887
0.1891891

P8 = 0.5170390
0.5065707
0.5148541

0.2928418
0.3060713
0.2956029

0.1901190
0.1873579
0.1895428

P25 = 0.5135136
0.5135127
0.5135135

0.2972967
0.2972979
0.2972970

0.1891891
0.1891888
0.1891890

P9 = 0.5155552
0.5094927
0.5142899

0.2947169
0.3023785
0.2963160

0.1897277
0.1881286
0.1893939

P26 = 0.5135135
0.5135130
0.5135134

0.2972969
0.2972976
0.2972970

0.1891890
0.1891889
0.1891890

P10 = 0.5146959
0.5111849
0.5139631

0.2958029
0.3002400
0.2967290

0.1895010
0.1885749
0.1893077

P27 = 0.5135134
0.5135131
0.5135133

0.2972970
0.2972974
0.2972970

0.1891890
0.1891889
0.1891890

P11 = 0.5141982
0.5121649
0.5137738

0.2964318
0.2990014
0.2969681

0.1893697
0.1888334
0.1892578

P28 = 0.5135134
0.5135132
0.5135133

0.2972970
0.2972973
0.2972971

0.1891890
0.1891890
0.1891890

P12 = 0.5139100
0.5127325
0.5136642

0.2967960
0.2982842
0.2971066

0.1892937
0.1889831
0.1892289

P29 = 0.5135133
0.5135132
0.5135133

0.2972970
0.2972972
0.2972971

0.1891890
0.1891890
0.1891890

P13 = 0.5137431
0.5130611
0.5136008

0.2970070
0.2978688
0.2971868

0.1892497
0.1890698
0.1892121

P30 = 0.5135133
0.5135133
0.5135133

0.2972971
0.2972971
0.2972971

0.1891890
0.1891890
0.1891890

P14 = 0.5136464
0.5132515
0.5135640

0.2971291
0.2976282
0.2972333

0.1892242
0.1891200
0.1892024

P31 = 0.5135133
0.5135133
0.5135133

0.2972971
0.2972971
0.2972971

0.1891890
0.1891890
0.1891890

P15 = 0.5135904
0.5133617
0.5135427

0.2971998
0.2974889
0.2972602

0.1892094
0.1891491
0.1891968

P32 = 0.5135133
0.5135133
0.5135133

0.2972971
0.2972971
0.2972971

0.1891890
0.1891890
0.1891890

P16 = 0.5135580
0.5134256
0.5135304

0.2972408
0.2974082
0.2972757

0.1892008
0.1891659
0.1891935

P33 = 0.5135133
0.5135133
0.5135133

0.2972971
0.2972971
0.2972971

0.1891889
0.1891890
0.1891889

P17 = 0.5135392
0.5134625
0.5135235

0.2972645
0.2973615
0.2972848

0.1891959
0.1891757
0.1891917

P34 = 0.5135133
0.5135133
0.5135133

0.2972970
0.2972971
0.2972970

0.1891889
0.1891889
0.1891889

(Continued)
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6.2 State Probabilities

We have already seen notation to describe the initial probability of the system being in each 
of the possible states. We used the vector 

 p(0) p (0) p (0) p (0)( )1 2 N=   

where each pi(0) = P(x0 = i) is the probability that the system is initially in state i. We can 
extend this notation and define a state probability vector 

 p(t) p (t) p (t)  p (t)( )1 2 N=   

where pi(t) is the probability that the system will occupy state i at any time t if the state 
probabilities at time 0 are known.

State probabilities can be defined recursively as follows: 

 

p(1) p(0) P

p(2) p(1) P p(0) P

p(3) p(2) P p(1) P p(0) P

2

2 3

= ⋅

= ⋅ = ⋅

= ⋅ = ⋅ = ⋅  

P35 = 0.5135133
0.5135133
0.5135133

0.2972970
0.2972971
0.2972970

0.1891889
0.1891889
0.1891889

P43 = 0.5135132
0.5135132
0.5135132

0.2972970
0.2972970
0.2972970

0.1891889
0.1891889
0.1891889

P36 = 0.5135133
0.5135133
0.5135132

0.2972970
0.2972970
0.2972970

0.1891889
0.1891889
0.1891889

P44 = 0.5135132
0.5135132
0.5135132

0.2972970
0.2972970
0.2972970

0.1891889
0.1891889
0.1891889

P37 = 0.5135132
0.5135132
0.5135132

0.2972970
0.2972970
0.2972970

0.1891889
0.1891889
0.1891889

P45 = 0.5135132
0.5135132
0.5135132

0.2972969
0.2972970
0.2972970

0.1891888
0.1891888
0.1891888

P38 = 0.5135132
0.5135132
0.5135132

0.2972970
0.2972970
0.2972970

0.1891889
0.1891889
0.1891889

P46 = 0.5135132
0.5135132
0.5135132

0.2972969
0.2972970
0.2972969

0.1891888
0.1891888
0.1891888

P39 = 0.5135132
0.5135132
0.5135132

0.2972970
0.2972970
0.2972970

0.1891889
0.1891889
0.1891889

P47 = 0.5135132
0.5135132
0.5135132

0.2972969
0.2972969
0.2972969

0.1891888
0.1891888
0.1891888

P40 = 0.5135132
0.5135132
0.5135132

0.2972970
0.2972970
0.2972970

0.1891889
0.1891889
0.1891889

P48 = 0.5135132
0.5135132
0.5135132

0.2972969
0.2972969
0.2972969

0.1891888
0.1891888
0.1891888

P41 = 0.5135132
0.5135132
0.5135132

0.2972970
0.2972970
0.2972970

0.1891889
0.1891889
0.1891889

P49 = 0.5135132
0.5135132
0.5135132

0.2972969
0.2972969
0.2972969

0.1891888
0.1891888
0.1891888

P42 = 0.5135132
0.5135132
0.5135132

0.2972970
0.2972970
0.2972970

0.1891889
0.1891889
0.1891889

P50 = 0.5135132
0.5135132
0.5135132

0.2972969
0.2972969
0.2972969

0.1891888
0.1891888
0.1891888

TABLE 6.1 (Continued)

n-Step Transition Probability Matrices for 1 ≤ n ≤ 50
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and, in general, 

 p(n) p(0) P for n 0, 1, 2,n= ⋅ =  

Returning to our example of weather patterns, suppose that on a certain day at the 
beginning of a series of weather observations, the weather is sunny. The initial state prob-
ability vector is 

 p(0) (1.0 0 0)=  

Then, the state probabilities after one day are: 

 

p 1 p 0 P 1.0 0 0( ) ( ) ( )
. . .
. . .
. . .

= ⋅ = ⋅















0 7 0 1 0 2
0 2 0 7 0 1
0 5 0 2 0 3

= ( ). . .0 7 0 1 0 2  

 

After two days, the probabilities are: 

 p(2) p(1) P 0.7 0.1 0.2 P= ⋅ = ⋅( )  

but because we have already computed P2 we can more directly obtain p(2) as: 

 

p(2)  p(0) P = 1.0 0 02= ⋅ ⋅( )
. . .
. . .
. .

0 61 0 18 0 21
0 33 0 53 0 14
0 54 0 25 00 21

61 18 210
.

. . .( )
















=  0  0

 

Likewise, 

 

p 3  = p 0 P = 1.0 0 0  3( ) ( ) ( )
. . .
. . .⋅ ⋅

0 568 0 229 0 203
0 407 0 432 0 161
00 533 0 271 0 196

568 0 229 0 2030
. . .

. . .( )
















=   

 

 

p(4) p(0) P 1.0 0 04= ⋅ = ⋅( )
. . .
. . .

0 5449 0 2577 0 1974
0 4518 0 3753 0 17299
0 5253 0 2822 0 1925

5449 0 2577 0 19740
. . .

. . .( )
















=   

 

 

p(5) p(0) P 1.0 0 05= ⋅ = ⋅( )
. . .
. . .

0 5317 0 2744 0 1940
0 4778 0 3425 0 17988
0 5204 0 2886 0 1910

5317 0 2744 0 19400
. . .

. . .( )
















=   

 

 p(6) p(0) P 1.0 0 06= ⋅ = ⋅( )
. . .
. . .

0 5240 0 2840 0 1920
0 4929 0 3235 0 18377
0 5175 0 2922 0 1902

5240 0 2840 0 19200
. . .

. . .( )
















=  
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If we performed the same calculations under the assumption that on day 1 the weather 
is cloudy and therefore p(0) = (0  1.0  0), we would find: 

 

p(1) 0  1.0 0  P 0.2 0.7 0.1

p(2) 0.33 0.53 0.14

p(3) 0

= =

=

=

( ) ( )

( )

( ..407 0.432 0.161

p(4) 0.4518 0.3753 0.1729

p(5) 0.4778 

)

( )

(

=

= 00.3435 0.1798

p(6) 0.4928 0.3235 0.1837

)

( )=  

Now suppose that, instead of actually observing the weather on the first day, we assume 
that on that day it is equally likely to be sunny, cloudy, or snowing; that is, p(0) = (1/3  1/3 
1/3). Then, 

 

p(1) /  /  / P   
p(2) /  /  /

= ⋅ =
=

( )
(
1 3 1 3 1 3 0 467 0 333 0 200
1 3 1 3 1 3

( . . . )

))
( )

⋅ =
= ⋅ =

P   
p(3) /  /  / P  

2

3

0 493 0 320 0 187
1 3 1 3 1 3 0 503 0 31

( . . . )
( . . 00 0 187

1 3 1 3 1 3 0 507 0 305 0 188
1 3

4

 
p(4) /  /  / P   
p(5) /

. )
( . . . )= ⋅ =

=
( )

  /  / P   
p(6) /  /  / P

1 3 1 3 0 510 0 302 0 188
1 3 1 3 1 3 0

5

6

( )
( )

⋅ =
= ⋅ =

( . . . )
( .. . . )511 0 300 0 189   

What we can observe in this particular example is that after several transitions, the 
probabilities of the system being in given states tend to converge, or become constant, 
independent of the initial state. (We will see in later sections that not all Markov sys-
tems behave in this way.) In our example, however, it appears that after six days, the 
probability of a sunny day occurring at the ski area is roughly 0.51, the probability 
of a cloudy day is roughly 0.30, and the probability of a snowy day is roughly 0.19. 
And these state probabilities hold, regardless of the actual or expected initial weather 
conditions.

We have no precise way of knowing how long it will take a Markov chain to stabilize, as 
we have seen above; but, if there are not many P entries very near to zero or one, this stabi-
lization will be achieved fairly quickly. For our example, the rows of the matrix Pn become 
almost indistinguishable from one another for n > 10. (Refer back to Table 6.1.) Thus, after 
about 10 days, the effects of the initial distribution of weather probabilities will have disap-
peared. We can assume that since this stabilization appears to occur within 10 days (transi-
tion steps), then surely this technique will be of some use in modeling weather patterns 
during a ski season of, say, 120 days. (Exercise 6.4 provides some further insight into the 
contrast in rates of convergence.)

When we say that the state probabilities become constant, this does not mean that 
after a long period of time, the system does not change states any longer. Rather, as 
transitions continue to occur, the system’s occupancy of each state is in some sense 
predictable.
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Based on information such as this, we could, in our example, answer such questions as: 

• Should we plan more (or less) mid-slope barbecues to entertain skiers on sunny days?
• Do we need better canopies on the chairlifts to shield the skiers from falling snow?
• Should we sell special ski goggles to improve skiers’ visibility during cloudy 

conditions?

In Section 6.5, we discuss just what characteristics a Markov chain must have that will 
permit us to make this kind of analysis of long-range behavior of the system. We will see 
that long-term trends can be studied directly without our having to compute state prob-
abilities for huge values of n.

6.3 First Passage Probabilities

In a typical Markov chain, we frequently observe that states are left and re-entered again 
and again. We have developed a means of computing the probability p(n)

ij that a system 
will leave state i and be in state j after n transitions. But this does not give us any informa-
tion about whether the system entered state j at any time before the n-th transition. Suppose 
we are specifically interested in the probability that a system leaves state i and enters state 
j for the first time after n steps. This is called the first passage probability, and it is clearly 
related to the n-step probability. However, we must exclude all the ways in which the sys-
tem may have entered state j before the n-th transition. For example, if we know the prob-
ability of a cloudy day on the slopes being followed three days later by a sunny day, we 
realize that this three-step transition can occur in several ways: 

 

cloudy cloudy cloudy sunny
cloudy cloudy sunny sunny
cloudy

→ → →
→ → →
→ ssunny sunny sunny

cloudy cloudy snowy sunny
cloudy snowy sn

→ →
→ → →
→ → oowy sunny

cloudy snowy sunny sunny
cloudy sunny snowy sunny

→
→ → →
→ → →

ccloudy sunny cloudy sunny
cloudy snowy cloudy sunny

→ → →
→ → →

 

The probability p(3)
21 accounts for all of these possible paths. By contrast, the first passage prob-

ability will account for only those paths in which a sunny day does not occur until the third 
step. Thus, we want to measure the probability that one of the following paths will occur: 

 

cloudy cloudy cloudy sunny
cloudy cloudy snowy sunny
cloudy

→ → →
→ → →
→ ssnowy snowy sunny

cloudy snowy cloudy sunny
→ →

→ → →  
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The first passage probability f(n)
ij is computed as p(n)

ij minus the probabilities of the n-step 
paths in which state j occurs before the n-th step. In one transition, p(1)

ij = f(1)
ij. Then for larger n, 

 

f p f p

f p f p f

(2) (2) (1) (1)

(3) (3) (1) (2) (2)

ij ij ij jj

ij ij ij jj i

=

=

−

− − jj jj

(n)
ij ij ij jj ij jj

(1)p

.

.

.

f p f p f p  = (n) ( ) (n ) (n )( )− − − −− −1 1 22
 ff p(n 1)

ij jj
− ( )1

 

or, more succinctly, 

 
f p f p(n)

ij
(n)

ij ij
(n k)

jj

k

n

=
=

∑− −
−

(k)

1

1

 

Returning to our example, we will illustrate f(n)
ij for n = 1, 2, and 3. 

 

F P( )

. . .

. . .

. . .

1

0 7 0 1 0 2
0 2 0 7 0 1
0 5 0 2 0 3

= =














 

 

F( )

. ( . )( . ) . ( . )( . ) . ( . )( . )

. (2

0 61 0 7 0 7 0 18 0 1 0 7 0 21 0 2 0 3
0 33 0=

− − −
− .. )( . ) . ( . )( . ) . ( . )( . )

. ( . )( . ) .
2 0 7 0 53 0 7 0 7 0 14 0 1 0 3

0 54 0 5 0 7 0 25
− −

− −− −( . )( . ) . ( . )( . )

. . .

.
0 2 0 7 0 21 0 3 0 3

0 12 0 11 0 15
0 19 0

















= .. .
. . .

04 0 11
0 19 0 11 0 12















 

 

F( )

. ( . )( . ) ( . )( . )

. ( . )( . ) ( . )3

0 568 0 7 0 61 0 12 0 7

0 407 0 2 0 61 0 19=

− −

− − (( . )

. ( . )( . ) ( . )( . )

. ( . )

0 7

0 533 0 5 0 61 0 19 0 7

0 229 0 1

− −



















− (( . ) ( . )( . )

. ( . )( . ) ( . )( . )

. ( .

0 53 0 11 0 7

0 432 0 7 0 53 0 04 0 7

0 271 0 2

−

− −

− ))( . ) ( . )( . )

. ( . )( . ) ( . )(

0 53 0 11 0 7

0 203 0 2 0 21 0 15 0

−



















− − .. )

. ( . )( . ) ( . )( . )

. ( . )( . ) ( . )(

3

0 161 0 1 0 21 0 11 0 3

0 196 0 3 0 21 0 12

− −

− − 00 3

0 057 0 099 0 116
0 152 0 033 0 107
0 095 0 088

. )

. . .

. . .

. .



















=
00 097.
















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And, just to check our intuition, let us re-examine f(3)
21. This should be f(3)

21 = p(3)
21 

 

– Probability cloudy cloudy sunny sunny

– Probability 

( )

(

→ → →

ccloudy sunny sunny sunny

– Probability cloudy snowy sun

)

(

→ → →

→ → nny sunny

– Probability cloudy sunny snowy sunny

– Prob

)

( )

→

→ → →

aability cloudy sunny cloudy sunny

= 0.407 – 0.098 – 0.098

( )→ → →

  – 0.035 – 0.020 – 0.004

= 0.152  

which is exactly the value we computed earlier as the element f(3)
21 in the matrix F(3).

6.4 Properties of the States in a Markov Process

Before continuing with our analysis of the long-term behavior of Markov processes, we 
must define some of the properties of the states that can be occupied by a Markov process. 
As we will see, the particular patterns with which transitions occur into and out of a state 
have a great deal to do with the role which that state plays in the eventual behavioral 
trends of a system.

A state j is reachable from state i if there is a sequence of transitions that begins in 
state i and ends in state j. This is, p(n)

ij > 0 for some n.
An irreducible Markov chain is one in which every state is reachable from every other 

state. That is, in an irreducible chain, it is not possible for the process to become trapped and 
thereafter to make transitions only within some subset of the states.

A set of states is said to be closed if no state outside of the set is reachable from any state 
inside the set. This means that once the system enters any state in the set, it will never leave 
the set. In an irreducible chain, all the states constitute a closed set and no subset of the 
states is closed.

A particularly interesting case arises if a closed set contains only one state. This state i is 
called an absorbing state, and pii = 1. The system never leaves an absorbing state.

A state i is a transient state if there is a transition out of state i to some other state j from 
which state i can never be reached again. Thus, whenever a transient state is left, there is 
a positive probability it will never be occupied again. And therefore, the long-term prob-
ability of a system being in a transient state is essentially zero because eventually, the state 
will be left and never entered again.
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A recurrent state is any state that is not transient. In an irreducible finite-state Markov 
chain, all states are recurrent. A special case of a recurrent state is an absorbing state, from 
which no other state can be reached.

The various state characteristics just defined can be illustrated by the Markov process 
whose one-step transition probability matrix is given by: 

 

P =

/ / /
/ /
/ /
/ / /

1 3 1 3 0 0 0 1 3
0 0 9 10 0 0 1 10
0 0 1 3 2 3 0 0
0 0 1 2 1 4 1 4 0
0 0 1 0 0 0
0 0 0 00 0 1

























 

and which is illustrated by the transition diagram in Figure 6.3. In this example, state 6 is 
an absorbing (and therefore recurrent) state because there is only one arc out of state 6, and 
p66 = 1. States 1 and 2 are transient because after each state is left, it is never re-entered. 
In the case of state 2, there is no possible way to return. On the other hand, it is possible 
for state 1 to recur as the system changes from state 1 directly again to state 1; but once 
a transition is made out of state 1, that state is never entered again. States 3, 4, and 5 are 
recurrent states.

A state is said to be periodic if it is occupied only at times which differ from one another 
by multiples of some constant greater than 1. In Figure 6.4a, all three states are periodic 
with period 2; and in Figure 6.4b, all states are periodic with period 4. In general, the 
period t of a periodic state i is the smallest integer such that all transition sequences from 
state i back to itself take some multiple of t steps, and t > 1.

1

2 6

3 4

5
1

1
3–

1
3–

1
3–

1
3–

1
4–

1
4–

1
2–

2
3–

1
10—

9
10—

1

FIGURE 6.3
Transition diagram with transient and recurrent states.
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If a state can be occupied at any time, then it is said to have period 1, or to be aperiodic. 
In an irreducible chain, all states are either aperiodic, or are periodic and all have the same 
period. An irreducible finite-state Markov chain in which all states are aperiodic is called 
an ergodic Markov chain.

In the limit, as time goes to infinity, the occupancy of periodic states never stabilizes 
because these states are likely to be occupied at certain times and yet cannot be occupied at 
other times. Similarly, in the long run, transient states are not of interest because they are 
eventually left and not re-entered. If we eliminate periodic and transient states from our 
consideration, and focus on ergodic processes, we find that we can further characterize 
the limiting behavior of a Markov process. In the following sections, we will describe the 
calculations for two such behavioral characteristics observed in Markov processes.

6.5 Steady-State Analysis

In Section 6.2, we noticed, while computing successively higher powers of the transition 
probability matrix, that state probabilities tended to stabilize regardless of the initial state 
of the system. This behavior is typical of ergodic Markov chains and is found in most 
practical applications. When we say that state probabilities become stable, what we really 
mean is that as the time parameter n becomes large, P(n+1) is essentially the same as P(n). 
Furthermore, the rows of P(n) begin to look identical as n grows large, which means that, 
independent of the initial state of the system, the probabilities of having evolved into each 
state after any large number of steps do not change. Mathematically, if P is the one-step 
transition probability matrix, then the powers of P approach a matrix [𝒫] where 

 𝒫 =
→∞

lim
n

nP  

in which 

 1. Each row of 𝒫 is an identical probability vector called Π, and

 Πj
n

(n)
ijp independent of i=

→∞
lim .  

 2. All elements of Π are positive.

1 2 3

(b)

1 2

34

(a)

FIGURE 6.4
(a,b) Periodic states.
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 3. Π has the property that Π P = Π; that is,

 
Π Πj

i

N

i ijp for all j N= = …
=

∑
1

1 2, , ,

 4. The elements of Π represent a probability distribution and therefore 

 j

N

j

=
∑ =

1

1Π
 

The vector Π is called the steady-state probability vector, and each Πj denotes the steady-
state probability that the process is in state j after a large number of steps (long after the 
effects of the initial state have eroded away).

As we cautioned at the end of Section 6.2, when we establish the steady-state (or long-
term or equilibrium) behavior of a system, we are not determining that the dynamic system 
has finally come to rest in some particular state. On the contrary, transitions continue to 
occur with exactly the probabilities that governed the transitions early in the chain (this 
is the stationarity assumption). What the steady state probabilities do tell us can be inter-
preted in several ways: 

• Πj is the probability that, if we inspect the system at any instant (long after the 
process has begun), we will find the system in state j.

• Πj is the percentage of time the system spends in state j in the long run.
• If the Markov chain models the behavior of a large number of entities that all obey 

the same transition probabilities, then Πj is the fraction (or proportion) of entities 
that occupy state j at any given time.

Solving the system of equations Π ∙ P = Π is much more satisfactory computationally than 
raising P to higher and higher powers (see Exercise 6.2). However, to obtain the solutions 
needed, we must note that the rank of the matrix P is N – 1, where N is the number of 
states in the process. (That is, if we add together any N – 1 rows, we get the remaining row.) 
Therefore, we have a system of N dependent equations in N unknowns, and consequently 
infinitely many solutions. We want to obtain that unique solution for which the unknowns 
are a probability distribution; therefore, we discard any one of the first N equations in 
Π ∙ P = Π and introduce the equation 

 j

N

j

=
∑ =

1

1Π
 

We now have a system of N independent equations in which we can uniquely solve the N 
unknowns Πj for j = 1, 2, …, N.

To illustrate this, we can re-examine the daily changes in the weather system at the ski 
resort. This process is ergodic, so we can apply a steady state analysis: 

 

Π Π Π Π Π Π1 2 3 1 2 3

0.7 0.1 0.2
0.2 0.7 0.1
0.5 0.2 0.3

 

















=  
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The three dependent equations are: 

 

Π Π Π Π
Π Π Π Π
Π Π Π

1 1 2 3

2 1 2 3

3 1 2

= 0.7 + 0.2 + 0.5
= 0.1 + 0.7 + 0.2
= 0.2 + 0.1 + 0.3ΠΠ3  

We can arbitrarily choose to discard any one of the three (how about the first one?), and 
use instead the normalizing equation ∑ Πj = 1 to obtain the system: 

 

0.1 0.3 0.2 0
0.2 + 0.1 0.7 0

1

1 2 3

1 2 3

1 2 3

Π Π Π
Π Π − Π

Π Π Π

− + =

+ + =
=

 

The solution to this system of simultaneous linear equations is 

 

Π
Π
Π

1

2

3

0.5135135
0.2972973
0.1891892

=
=
=  

If we compare these results with the elements in the higher powers of P that 
we computed in Section 6.2 (as shown in Table 6.1), we find that indeed the value 
Π1 = 0.5135135 appears in all rows of column 1, the value Π2 = 0.2972973 appears in 
all rows of column 2, and the value Π3 = 0.1891892 appears in all rows of column 3. 
However, this pattern does not stabilize until we compute Pn for n values around 26 
or 27. (The pattern becomes apparent at about P10, but small changes continue to be 
evident as we compute successively higher powers, up to about P27, after which no 
significant changes in Pn occur.)

The computational effort required to raise P to the 27-th power is considerably 
greater than the effort required to solve the system of three equations. Furthermore, 
we have no way of knowing in advance just exactly what power of P needs to be com-
puted. Exercise 6.2 will allow you to observe this contrast for yourself. Solving the 
steady-state equations is clearly the preferred method for determining the steady-state 
probabilities.

6.6 Expected First Passage Times

We have defined the first passage time of changing from state i to state j to be the number 
of transitions made by a Markov process as it goes from state i to state j for the first time. If 
i = j, then first passage time is the number of steps before the process returns to the same 
state, and this is called the first recurrence time. We will denote the first passage time 
from state i to state j as Tij.

If the Markov process is certain to go from state i to state j eventually (given that the 
process ever enters state i), then Tij is a random variable. In Section 6.3, we discussed the 
first passage probability f(n)

ij, which is the probability that Tij = n.
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If a process in state i is not certain to ever reach state j, then 

 
f ij

n

(n) <
=

∞

∑ 1
1  

Otherwise, the f(n)
ij are a probability distribution for the first passage times Tij, and 

 
f ij

n

(n) =
=

∞

∑ 1
1  

We can then write the expected first passage times mij from state i to state j as 

 
E T m n f( )ij ij ij

n

= =
=

∞

∑ (n)

1  

(If i = j, this is called expected recurrence time.) Using these results, we could answer such 
questions as: 

• How many days might we expect to wait for snowy weather to become sunny?
• After how many days on the average will snowy weather conditions again be 

snowy, after possibly changing to sunny or cloudy in the meantime?

From a computational standpoint, obtaining expected first passage times using the previ-
ous formula is difficult because we have to compute f(n)

ij for all n. However, in the case of 
expected recurrence time from state i back to itself, we can simply take the reciprocal of the 
steady-state probability to obtain 

 
m

 
ii

i
= 1

Π  

(For example, if a process is in state i 1/4 of the time during steady-state, then Πi = 1/4 and 
mii = 4. That is, we would expect that an average of four steps are required to return to 
state i.)

For general i and j, we need a practical way of computing mij. Suppose a Markov process 
is currently in state i. Then with probability pij, the process will make a transition to state j 
for the first time in one step. Otherwise, the first move will be to some state k other than j; 
and for each k = 1, …, N, k ≠ j, this will happen with probability pik. In each of these cases, 
the first passage time will be 1 (the transition from state i to state k) plus the expected first 
passage time from the state k to state j. Therefore, 

 

m (p )(1) p 1 m( )( )ij ij ik kj

k
k j

N

= + +
=

∑
1

≠  

which can be expressed as

 

m p p p mij ij ik

k
k j

N

ik kj

k
k j

N

= +

















+
= =

∑ ∑
1 1

≠ ≠  
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to obtain 

 

m p mij ik kj

k
k j

N

= +
=

∑1
1

≠  

Thus, mij is defined in terms of other expected first passage times mkj. Since the pik are 
known constants, we simply have a linear equation involving N – 1 expected first passage 
times. However, this formula can be used to obtain an equation describing each of the mkj 
involved in the first equation. The resulting system of N – 1 simultaneous linear equations 
in N – 1 unknowns can be solved to obtain unique values for all N – 1 expected first pas-
sage times into state j.

To answer the question: how many days might we expect to wait before snowy ski con-
ditions change to sunny conditions, we need to compute the expected first passage time 

 m 1 p m p m31 32 21 33 31= + +  

Since m31 is defined in terms of m21, we also need the equation:

 m 1 p m p m21 22 21 23 31= + +  

These two equations can be solved simultaneously to obtain m31 = 2.6316 and m21 = 4.2105. 
Therefore, on the average, it is 2.6316 days before snowy weather first becomes sunny. In 
the process of finding this result, we also observe that it is an average of 4.2105 days before 
cloudy conditions become sunny.

If we wish to know the first recurrence time m22 to answer the question: after how many 
days on the average will cloudy weather again become cloudy?, then we solve 

 m 1 p m p m22 21 12 23 32= + +  

To do this, we also need

 m 1 p m p m12 11 12 13 32= + +  

and 

 m 1 p m p m32 31 12 33 32= + +  

We solve this system to find that m12 = 8.1818, m32 = 7.2727, and m22 = 3.3636. Recall that we 
can also find m22 more quickly as 1/Π2 = 1/.2972973 = 3.3636, if we have already computed 
the steady-state probabilities. Thus, cloudy conditions that change to sunny or snowy can 
be expected to return to cloudy after 3.3636 days.

6.7 Absorbing Chains

The ergodic Markov chains that we have been studying represent processes which con-
tinue indefinitely and whose behavior at arbitrary future times is characterized through the 
steady state analysis presented in Section 6.5. Yet another interesting class of Markov chain 
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applications arises when the process arrives, after a finite number of transitions, at some 
state from which it never leaves. Such a process evolves initially through (or within) a set 
of transient states (according to one-step transition probabilities), but eventually is certain 
to leave these states and enter one of the absorbing states. A Markov chain with at least one 
absorbing state is called an absorbing chain. By analyzing the behavior of absorbing chains, 
we can model processes whose stochastic behavior eventually terminates rather than con-
tinuing indefinitely.

Consider the non-ergodic Markov chain depicted in Figure 6.5. In this simple example, 
it is clear that if the process begins in state 1 or state 2, it may alternate between those two 
transient states for some time, but eventually a transition will occur—either from state 1 
or 2—into state 3 (an absorbing state). Then, since p33 = 1, this system will never again enter 
state 1 or state 2. It might be imagined that this Markov model represents the conditions of 
patients in a hospital ward for trauma victims, in which states 1 and 2 denote critical and 
serious conditions and state 3 denotes terminal conditions. Whereas critical patients may 
be upgraded to serious, and serious patients may turn critical, no improvements are made 
by those classified as terminal.

Steady state conditions for such systems are not determined in the same way as for ergo-
dic chains. If we wish to define steady-state probabilities to describe the situation shown in 
Figure 6.5, we should recognize that in the long run, the transient states will not be occu-
pied at all, and Πi = 0 for all transient states i. In this example, Π1 = Π2 = 0. The absorbing 
state, on the other hand, will always be occupied in the long run, and thus its steady-state 
probability is 1. In this example, Π3 = 1. In a process that has more than one absorbing state 
(only one of which will ever eventually be occupied), steady-state probabilities do not exist.

There is an interesting distinction between ergodic chains and absorbing chains. While 
initial conditions do not affect steady-state probabilities in an ergodic chain, the initial state 
of an absorbing chain has a strong effect on which absorbing state is eventually entered. 
For example, in the transition diagram in Figure 6.6, we can examine the transition prob-
abilities and see that, if the process begins in state 2, it is most likely to be absorbed into 
state 4; whereas if the process is initially in state 1, then the most likely absorbing state to 
be entered is state 3. The probability that an absorbing state will be entered is called its 
absorption probability. Absorption probabilities are conditional probabilities, dependent 
on the initial state of the process. In this section, we will learn how to analyze the ways in 
which transient states are occupied before an absorbing chain enters an absorbing state, 
and we will see how to compute the probabilities with which each absorbing state will be 
entered.

1 2

3

1

1
3–

1
4–

2
3–

3
4–

FIGURE 6.5
Absorbing chain.
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We first rearrange the one-step transition probability matrix, if necessary, so that both 
rows and columns are indexed by transient states first, and then absorbing states. Then, 
if we have r transient states and N – r absorbing states, the matrix P has the following 
structure.

r rows
N – r rows

r columns
Q
0

R
I

N – r columns

P =

In this form, the submatrix Q contains the one-step transition probabilities from transient 
states to transient states, and R contains transition probabilities from transient states to 
absorbing states. The lower-left submatrix of zeros indicates the impossible transitions 
from absorbing states to transient states, and the identity matrix I indicates the certain 
transitions from each absorbing state to itself.

The Markov chain in Figure 6.6 has the one-step transition probability matrix 

 

P =



















0 1 4 1 2 1 4
1 8 1 4 1 8 1 2
0 0 1 0
0 0 0 1

 

with

 
Q =











0 1 4
1 8 1 4

 
and

 
R =











1 2 1 4
1 8 1 2

Now, the matrix (I – Q) is always non-singular, so we can obtain its inverse F = (I – Q)–1. The 
matrix F is called the fundamental matrix of the Markov chain, and its elements specify the 
expected number of times the system will be in its various transient states before absorp-
tion occurs. More precisely, the element fij tells us, for a system initially (or currently) in 
state i, the expected number of times the system will occupy state j before absorption into 
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FIGURE 6.6
Absorbing chain with two absorbing states.
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some state. (The fundamental matrix F does not directly provide any information about 
which absorbing state will eventually be the one that is entered.)

In our example, 

 
I Q− =

−
−









( )

1 1 4
1 8 3 4   

and

 
F (I Q)= − =











−1 24 23 8 23
4 23 32 23  

From this we can determine that if the process begins in state 1, we can expect it to enter 
state 1 24/23 times and state 2 8/23 times. Therefore, the total expected number of transi-
tions before absorption is 24/23 + 8/23 ≈ 1.39. Similarly from initial state 2, we would expect 
to occupy state 1 4/23 times and state 2 32/23 times, and to undergo 4/23 + 32/23 ≈ 1.565 
transitions before absorption into state 3 or 4. In general, from initial state i, the total num-
ber of transitions through transient states before absorption is 

 
T fi

j

r

ij=
=
∑

1  

that is, the sum of the elements in the i-th row of the fundamental matrix F. This essentially 
characterizes the duration of the finite stochastic process.

While the matrix F alone does not indicate which absorbing state will be entered, we can 
easily obtain absorption probabilities by multiplying the fundamental matrix F by the 
matrix R to obtain the matrix A: 

 A F Rrxr rx(N r)= ⋅ −  

The element aij tells us, for a system initially (or currently) in state i, the probability of the 
system being absorbed into state j. In our example, 

 

A
absorbing st

=
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















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0 5653
0 2608

0 4347
0 7390
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.
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which tells us that from initial state 1, the absorption probability into state 3 is 0.5653 
and into state 4 is 0.4347. And from initial state 2, the absorption probability into state 3 
is 0.2608 and into state 4 is 0.7392. (Notice that each row in A sums to 1 because, from any 
initial state, one of those absorbing states will eventually be entered.)

Recall our intuitive observation of Figure 6.6 concerning the effect of initial states on 
absorption: that from state 2, absorption into state 4 seemed more likely; while from state 1 
absorption into state 3 seemed more likely. And indeed, in our calculations earlier, a24 > a23 
while a13 > a14.
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The matrix method for obtaining absorption probabilities can be explained by exam-
ining the equations for the individual elements aij. Given a system in state i, absorption 
into state j can happen in two ways. There could be a one-step transition into state j that 
could happen with probability pij. Otherwise, there could be a one-step transition to some 
transient state k (where k = 1, …, r) for which the probability is pik, followed by eventual 
absorption into state j, for which we have the absorption probability akj. Because one of 
these will certainly occur, we can compute the absorption probability aij as 

 
a p p aij ij ik kj= +

=
∑
k

r

1  

This gives us one equation in many unknowns; and if we apply the same formula for all k, 
we will obtain a uniquely solvable system of equations that will give us all of the absorp-
tion probabilities for a system initially in state i.

If we are interested in only one or a few initial states i, solving these systems of equa-
tions would probably be simpler computationally than performing the matrix inversion 
required to obtain the fundamental matrix F and then the matrix multiplication by R. 
However, if all the absorption probabilities are desired, it is more succinct to note that the 
formula for all the aij is just the matrix equation 

 A R Q A= + ⋅  

This can be rewritten as 

 A (I Q) R F R1= − = ⋅−
 

as given earlier.

6.8 Software for Markov Processes

The calculations required for finding steady-state probabilities and expected first passage 
times are just the standard procedures for solving systems of linear equations. Software 
for solving linear systems has already been mentioned in previous chapters, and these 
routines are included in many software products such as the IMSL and SAS libraries. 
The SAS/IML (Interactive Matrix programming Language) system provides an exten-
sive library of numerical methods for solving linear algebra problems. LINGO Integrated 
Modeling Language and Solvers systems now incorporate matrix functions that support 
solving linear systems.

Calculating the n-step transition probabilities requires matrix multiplication, which is 
trivial to implement in any general-purpose programming language, but standard subrou-
tine libraries typically supply this function. There are also several mathematical software 
packages in which a matrix is the fundamental data object, which may be of particular use 
in manipulating transition probability matrices.

MATLAB is an integrated software package in which the procedural language is built 
around the concept of a matrix. The language includes a rich set of matrix functions that 
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allow a user to express algorithms involving matrix operations much more succinctly than 
would be possible using a general-purpose language. MATLAB versions run on PCs and 
Macintosh systems, with larger versions for higher performance platforms. Data file for-
mats are compatible across all these platforms and problem sizes are limited only by the 
amount of memory available on the system. Further details are described in Gilat (2004), 
and Quarteroni and Saleri (2006).

R is now among the most powerful and commonly used statistical computing, graph-
ics and analytics software. It includes routines for generating Markov chains, computing 
stationary distributions, calculating empirical transition matrices among others. R is a free 
open source package with a large community of developers and users, and it is compat-
ible with all common operating systems. There are many R packages for specific statistical 
methods and applications, including packages for advanced Markov models. We mention 
here DTMCPack (Nicholson 2013) and the markovchain (Spedicato et al. 2017) R Packages 
for basic Markov chains computations.

O-MATRIX is a matrix-based scripting language which originated as an object- 
oriented analysis and visualization tool for Windows computing environments. Data and 
procedures are built with a text editor, and computations are expressed via a  powerful, 
but small and easy-to-learn, language in which all operations are performed on matrix 
objects. This integrated technical computing environment is now aimed at providing 
high performance capabilities for solving computationally intensive mathematical 
and engineering problems. O-MATRIX is compatible with a version of MATLAB from 
MathWorks. See the software’s website and user manual for a more detailed description 
of O-MATRIX.

6.9 Illustrative Applications

6.9.1 Water Reservoir Operations (Wang and Adams 1986)

The operation of a water reservoir is determined by a sequence of decisions concerning the 
volume of water to be released during a time period. Optimizing the operations involves 
finding a set of optimal release decisions over successive time periods to maximize the 
expected total reward associated with long-term operation of the reservoir. This process 
can be viewed as a Markov system by discretizing reservoir storage volumes into a finite 
number of states, and treating the release events as transitions among the storage states 
from one time period to the next.

An optimization method developed for general water reservoir management was applied 
to the Dan River Issue Reservoir on a tributary of the Yangtze River. A two stage analysis 
framework involved a real-time model followed by a steady-state model. Each time period 
was analyzed by using information about the current reservoir storage state and histori-
cal information (gathered over a period of 30 years) of inflow into the reservoir. Thus, the 
Markov process is derived from transition probabilities based on stochastic inflow data, 
coupled with operational decisions for releasing water from the reservoir.

The objectives in this Yangtze River case were flood control, production of  hydroelectric 
power, and the ability to augment the flow of water during low seasons. Analysts devel-
oped operational standards for each activity. The rewards obtained through operation of 
the reservoir were measured as revenues resulting from electric power production minus 
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penalties to account for failures to meet targeted standards of operation. Average annual 
rewards computed in this way are the primary performance criterion for this system, 
but additional indicators of performance include average annual energy production and 
probabilities of the occurrence of various undesirable scenarios associated with floods 
and low flow.

The optimal operating strategies derived from the Markov analysis represented signifi-
cant performance improvements of 14% for average annual reward, and 3.6% for average 
annual power production, when compared with conventional strategies or the results of 
deterministic optimization. Steady state optimization yielded increases in both power 
production and the effectiveness of flood control.

Because of the magnitude of the annual revenues from the operation of such a major 
reservoir, the modest percentage improvements represent substantial actual increases 
in economic returns. Furthermore, the analysis undertaken for the Yangtze River 
project was intended to be used for real-time operational decisions, so it was especially 
valuable that this optimization method turned out to execute in a reasonable amount 
of time. This computational efficiency, together with the profitability obtained through 
the optimization process, indicate that the steady-state Markov analysis is an effective 
component in this decision system for real-time operation of a multi-purpose, large-scale 
water reservoir.

6.9.2 Markov Analysis of Dynamic Memory Allocation (Pflug 1984)

Computer operating systems are responsible for the management of computer storage 
facilities (memories) during execution of programs. Dynamic memory allocation tech-
niques are widely used to promote economical and adaptive use of memory in computing 
environments where exact storage requirements are not specified in advance. Memory 
managers respond to requests for memory from executing programs by selecting a free 
block of memory, allocating it to the requesting program, and eventually taking a released 
block back and returning it to the pool of available space.

Allocation methods, such as first-fit, best-fit, worst-fit, and the buddy method, have been 
used and are well-known to computer scientists; however, little mathematical analysis of 
the performance of these methods has been done. Instead, simulation results have pro-
vided most of the reliable insights into the behavior of systems using these various alloca-
tion strategies.

A unique application of a Markov model has been used to describe the essential char-
acteristics of a dynamic memory allocation system, and to provide a means of comparing 
different allocation methods. The states in this model correspond to storage configura-
tions, and the Markov analysis describes how these configurations vary over time.

More specifically, the state of the process is completely described by two vectors that 
indicate the ordered sequences of the lengths of allocated and free blocks: 

 x x , , x  and y y , , y( ) ( )1 B 1 B= =   

where:
xi is the length of the i-th allocated block
yi is the length of the free block following the i-th
B is the number of allocated blocks
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Thus, the configuration shown in Figure 6.7 can be described by the vectors 

 x (3, 4, 2, 4) and y (2, 0, 6, 2)= =  

Various assumptions are made in order to permit an analysis using Markov models. In 
particular, every request for memory is assumed to be followed by a release, so that the 
number of allocated blocks B remains a constant, and therefore the Markov states are sim-
ple to describe.

Furthermore, the probability that a given request is for a block of size i is independent 
of the current configuration. A one-step transition probability matrix is developed for a 
random fit allocation strategy, which results in a Markov chain that is ergodic. (The set of 
states for this model is enormous and, for practical reasons, the size of the state space is 
reduced, at the expense of some loss of resolution.)

Steady state probabilities are computed and, for a large memory size, the expected num-
ber of free memory locations is close to constant. To study the efficiency and performance 
of general dynamic memory allocation systems, the methods outlined in this study can be 
extended to apply to other strategies and to allow for memory requests of arbitrary size.

6.9.3  Markov Models for Manufacturing Production Capability 
(Foster and Garcia-Diaz 1983)

A Markov analysis has been used to identify the steady-state production capability of 
manufacturing systems. For specified reliability and maintainability characteristics, the 
model tracks failures in a multi-unit manufacturing system. Certain assumptions are nec-
essary. First, although the manufacturing system is a continuous-time process, in this case, 
it is assumed that it can be accurately modeled as a discrete-time Markov chain if the 
time increments are small enough. Second, the issue of stationarity must be addressed. 
It is assumed that the probability that a functioning element in the system becomes non-
operational in a given interval is independent of the length of time it has been functioning.

In this analysis, the term failure refers to any activity, event, or condition causing a decrease 
in production rate (breakdown, policy change, supply shortage, etc.), while the term repair 
refers to any condition causing an increase in production rate. Each element in the multi-unit 
system can be classified as either catastrophic (one whose failure causes the entire system to 
shut down immediately), dependent (one that cannot be repaired while other elements are 
in operation), or independent (one that can be repaired while other elements are operating).

Three models are developed. For the model consisting of only catastrophic elements, 
each element has a constant probability of failure and a constant probability of repair. In 
the model consisting of only dependent elements, all elements have the same probability 
of failure. The system fails when a specified number of elements have failed, and the prob-
ability of system repair is constant over time. Once the system is repaired, all units are 
functioning again. In the third model, all elements are independent, with the same prob-
ability of failure. A specified number of elements can be considered for repair at any given 
time, and the probability that an element is repaired is constant.

FIGURE 6.7
Memory configuration (B = 4).
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For each of these cases, a transition probability matrix specifies how an initially, fully 
operational system evolves through stages of element failure, system failure, and repair 
phases. A steady-state analysis is used to determine such characteristics as the expected 
steady-state production rate for each specified number of element failures, and the prob-
ability of the entire system being down for repairs. As applied to a bottling machine, this 
analysis led to an optimal repair policy; in particular, it was determined that 2 of the 24 
elements should be allowed to fail before the system is shut down for repairs. Under this 
policy, a system with a peak production capability of 1,200 bottles per minute can achieve 
an expected production rate of 879 bottles per minute.

6.9.4  Markov Decision Processes in Dairy Farming (Rukav et al. 2014, 
Suvak et al. 2016)

Dairy and cattle farmers throughout the world face similar problems: namely aiming to 
produce more and richer milk, handling increases in the price of corn or other feed, vary-
ing the diet and conception rate in milk cows, and managing herd growth. Collaborations 
between researchers in a university mathematics department in Croatia and an enterpris-
ing IT solutions provider for agricultural businesses have resulted in a new business envi-
ronment that can help farmers address the questions earlier. Through the use of Operations 
Research techniques and analytical software tools, analysts were inspired to apply Markov 
chains to minimize the expected long term cost of milk production at dairy cow farms.

In this Markov model, each dairy cow is considered to be in a state that indicates the quality 
of her milk (milk fat, lactose, and proteins) and the quantity (with respect to a targeted level 
considered to be optimal, based on previous studies of lactation). Farmers and veterinarians 
consider the discrete-time homogeneous Markov chain to be an accurate and appropriate 
probabilistic model for correctly classifying a dairy cow’s transitions from one state to another.

The one step transition probability matrix was constructed by estimating observed and 
simulated data for particular representative cows over a period of time. The initial distri-
bution puts every cow initially in her best state, producing the most favorable quantities 
and qualities of milk. This and the transition probability matrix describe the transitions of 
a dairy cow from one lactation state to another over time. However, in the dairy business, 
the dairy farmer is on site and is therefore in a position to intervene, making a decision to 
take some action when the cow is seen to be in certain states.

By incorporating into the Markov chains the finite set of possible decisions or actions that 
may be taken in each state, the basic Markov chain is expanded into a broader stochastic model 
known as a Markov decision process. For example, for a cow in a given state, the farmer may 
choose to take no action (milk produced is of acceptable quality and quantity), take action to 
increase lactation (if quantity is too low), take action to improve quality, or replace the dairy 
cow with a new one who is initialized as being in the best state. With any action, there is an 
associated cost, and our dairy farmer’s aim is to minimize cost over the long term.

In the Markov decision process, not every decision is allowable in every state nor with 
every possible state transition. Because the action decisions are limited, the cow being in 
only certain states can transition into only particular other states, and the effects of the 
action decision apply to only particular states. Also the effects of the action decision alter 
future transitions in only limited ways; steps to improve lactation result in slow results, so 
that a transition occurs into only a slightly better lactation state in a single transition, rather 
than entering a greatly improved state in only one transition.

With the addition of decision actions that affect transition probabilities, it might seem 
that the Markov properties have not been preserved. However because the impact of the 
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actions is controlled, analysts are able to build the stochastic model so that each possible 
decision policy results in a new homogeneous Markov chain which can be analyzed in the 
conventional way.

6.10 Summary

Markov processes are used to represent systems in which events take place according to 
specified probabilities. The characteristics of such systems evolve over time, but in many 
cases, the probabilities themselves can be used to predict some of these system charac-
teristics. Markov analysis provides a framework in which to study the behavior and the 
emergent properties of these systems.

As events take place in a Markov process, the system makes transitions from one state 
to another, and these transitions occur according to transition probabilities. If it is known 
that a system initially is in a given state, then by using these transition probabilities, it is 
possible to predict the patterns with which the system passes among states and perhaps 
re-enters states previously occupied by the system.

Some processes involving uncertain or probabilistic transitions exhibit restricted pat-
terns of behavior that tend to dictate the ultimate disposition of the system. However, 
other systems range more freely among their states indefinitely, and under certain cir-
cumstances it is possible to characterize the long-term behavior or status of these systems. 
Knowing this steady-state behavior of systems is very valuable to analysts in planning or 
budgeting resources or projecting costs or profits in systems whose events take place in an 
environment of uncertainty.
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Exercises

6.1 Suppose

 

P =

0 080 0 184 0 368 0 368
0 632 0 368 0 0
0 264 0 368 0 368 0
0 080 0 1

. . . .

. .

. . .

. . 884 0 368 0 368. .


















 

 Obtain the steady state probabilities for the Markov chain whose one-step prob-
abilities are given by P.

6.2 Write a computer program to compute the state probabilities p(50) for a five state 
system whose initial probabilities are (0.2  0.2  0.2  0.2  0.2) and whose one step 
transition probabilities are:

 

P =

0 1 0 1 0 1 0 1 0 6
0 2 0 2 0 3 0 1 0 2
0 2 0 2 0 2 0 2 0 2
0 5 0 1 0 1 0

. . . . .

. . . . .

. . . . .

. . . .11 0 2
0 3 0 3 0 1 0 2 0 1

.
. . . . .






















 



278 Operations Research

 by raising P to the 50-th power.
 a. Do the elements in your result vector Π sum to 1?
 b. After how many steps do the state probabilities cease to change observably?
 c. If your state probabilities stabilize, but then exhibit small changes as you 

continue to compute higher powers of P, how would you explain this?
 d. Compare your result with the steady state probabilities you obtain by 

solving the system ΠP = Π and ∑ Π = 1. Do these steady state probabilities 
sum to 1?

 e. Which method of establishing state probabilities takes greater computation 
time? (Use a timing function on your computer to determine this.)

 f. Which method appears to yield more accurate results? (How can you make this 
determination?)

6.3 Why is the Markov process described by the following transition probability 
matrix not an ergodic process?

 

P =



















0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0  

 What do you discover if you try to establish steady state probabilities by solving 
the steady-state equations for this process?

6.4 Raise the following transition probability matrices to successively higher powers, 
and note the difference in the number of steps required to reach steady state in 
each case:

 

P PA B=
















=
. . .
. . .
. . .

. .0 3 0 3 0 4
0 4 0 3 0 3
0 5 0 2 0 3

0 90 0 055 0 05
0 05 0 95 0

0 0 10 0 90

.
. .

. .















 

6.5 Try to establish steady state probabilities by solving the steady-state equations cor-
responding to the Markov system shown in Figure 6.3. Is there any computational 
difficulty caused by the transient and recurrent states?

6.6 A doubly stochastic matrix is one whose row elements sum to 1 and whose 
column elements also sum to 1. Find the steady-state probabilities for the chain 
whose one-step transition probabilities are given by the doubly stochastic 
matrix

 

P =
















1 3 2 3 0
1 6 1 3 1 2
1 2 0 1 2  
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 In general, for any doubly stochastic matrix, it is true that:

 Πj = 1/n for j = 1, …, n

 where n is the number of states.
6.7 In a hospital for seriously ill patients, each patient is classified as being either in 

critical, serious, or stable condition. These classifications are updated each morn-
ing as a physician makes rounds and assesses the patients’ current conditions. The 
probabilities with which patients have been observed to move from one classifica-
tion to another are shown in the following table, where the (i, j)-th entry represents 
the probability of a transition from condition i to condition j.

Critical Serious Stable

Critical 0.6 0.3 0.1
Serious 0.4 0.4 0.2
Stable 0.1 0.4 0.5

 a. What is the probability that a patient who is in critical condition on Tuesday 
will be in stable condition on the following Friday?

 b. How many days on average will pass before a patient in serious condition will 
be classified as being in stable condition?

 c. What is the probability that a patient in stable condition on Monday will expe-
rience some sort of reversal and will not become stable again for three days?

 d. What proportion of the patient rooms should be designed and equipped for 
patients in critical condition? In serious condition? In stable condition?

 Discuss the validity of the Markov assumption and the stationarity assumption, in 
the context of this problem.

6.8 Construct a transition probability matrix to model the promotion of high school 
students through grades 10–12. Ninety-two percent of tenth graders are passed on 
to the next grade, 4% fail and repeat the tenth grade, and 4% fail and drop out of 
school. At the end of the eleventh grade, 88% pass to the next grade, 7% fail and 
repeat, and 5% fail and drop out. Of the twelfth graders, 96% graduate from high 
school successfully, 3% fail and repeat the twelfth grade, and 1% fail and do not 
ever complete high school. Students may repeat a grade any number of times, but 
no student ever returns to a lower grade. Comment on the structure of the tran-
sition probability matrix. Of 1,000 students entering the tenth grade, how many 
are expected to graduate after three years in high school? What other information 
about the high school students can be obtained from the data given earlier?

6.9 What is the name given to a Markov state that is reachable from the initial state and 
whose steady-state probability is zero? What is the name given to a Markov state 
whose steady-state probability is 1?

6.10 What is the interpretation of the element aij in the matrix A, where A is the product 
of the matrices F and R? What is the interpretation of the element fij in the funda-
mental matrix F of a Markov process?
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6.11 Suppose the following one-step transition probability matrix describes a Markov 
process:

States 1 2 3

1 0.2 0.7 0.1
2 0 0.3 0.7
3 0 0.1 0.9

 a. Determine the steady-state probabilities for this process.
 b. What is the probability that a first passage from state 2 to state 3 will occur after 

exactly two transition steps?
 c. What is the expected number of transitions that will occur for the system in 

state 2 to return again to state 2?
6.12 A machine maintenance problem can be modeled as a Markov process. Each day, 

the machine can be described as either excellent, satisfactory, marginal, or inopera-
tive. For each day the machine is in excellent condition, a net gain of $18,000 can 
be expected. A machine in satisfactory condition yields an expected $12,000 per 
day. A marginal machine can be expected to bring a daily net gain of $4,000, and 
an inoperative machine causes a net loss of $16,000 a day. An excellent machine 
will be excellent the next day with probability 90%, satisfactory the next day with 
probability 4%, and marginal with probability 2%, and inoperative with probability 
4%. A satisfactory machine will the next day be satisfactory with probability 80%, 
marginal with probability 12%, and inoperative with probability 8%. A marginal 
machine will be marginal again the next day with probability 70%, and inopera-
tive with probability 30%. Repairs are made without delay, but only on inoperative 
machines, and the repairs take exactly one day. (The day long repair process costs 
$16,000, which accounts for the daily net loss stated earlier.) A machine having 
undergone repair is 90% likely to be in excellent condition the next day, but in 10% 
of cases the repairs are ineffective and the inoperative machine will remain out of 
commission, necessitating a repeat of the repair process on the following day (at an 
additional cost of $16,000). Find the steady state probabilities for the four states of 
this machine. Then, assuming that this machine is active (in one of its four states) 
365 days per year, find the long-term annual profitability of this machine?

6.13 Given the one step transition probability matrix in the following, compute the 
expected first passage times from state i to state j, for all i and j.

 

0 0 0 5 0 5
1 0 0 0
0 1 0 0
0 0 5 0 5 0

. .

. .


















 

6.14 A computer network is observed hourly to determine whether the network is 
operational (up) or not (down). If the network is up, there is a 98% probability that 
it will be up at the next observation. If it is down, there is a 30% probability that 
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effective repairs will have been completed by the next hourly observation, but a 
70% chance that repairs are still in progress and the network is still down the 
next hour. Analyze the expected first passage times for this computer network. 
Comment on the performance of the network in general, and in particular inter-
pret and comment on the first passage probabilities. In what type of network envi-
ronment would the performance of this network be acceptable?

6.15 Customers are often faced with the option of purchasing an extended warranty 
for a new appliance. Suppose that GalleyKleen dishwashers offer a warranty plan 
that covers the first three years of ownership of a dishwasher. During the first year 
of operation, 5% of dishwashers fail. During the second year of operation, 8% fail. 
And 11% of dishwashers in their third year of service fail. The basic warranty from 
GalleyKleen covers replacement only when failures occur during the first year. 
If a failure occurs, a repair during the second year is expected to cost the owner 
(customer) $150, and during the third year is expected to cost $200. For $80, the 
customer can purchase an extended warranty that provides free repairs or replace-
ment in case of failures any time within the first three years. Use a Markov model 
to track the progression of dishwashers through their first three years of service.

 a. Is the extended warranty a good buy for the customer?
 b. By what amount should GalleyKleen increase the sales price of the dishwasher 

so that the basic (no charge) warranty could be extended to cover three years?
 c. If the basic warranty did cover two years, what is a fair price for the customer 

to purchase a one-year extension, providing a total of three years of warranty 
coverage?

6.16 Two companies, one selling Ol’ Boy Biscuits and the other selling Yuppy Puppy 
Pleasers, have cornered the market for dog treats. Each product is packaged to 
contain a four-week supply of treats, and customers always purchase treats as soon 
as necessary so as to never run out. For a customer whose last purchase was Ol’ 
Boy, there is a 75% chance of a brand change on the next purchase; and for a cus-
tomer who most recently bought Yuppy Puppy, there is an 85% chance of a brand 
change on the next purchase. Ol’ Boys are sold at a per unit profit of 60¢, and 
Yuppy Puppys yield a per unit profit of 70¢.

 a. What proportion of the market is held by each of these two products?
 b. If 30 million customers regularly purchase these products, what are the annual 

expected profits for each company?
6.17 Consider the assumptions that were made in analyzing the memory allocation pro-

cesses described in Section 6.9.2. Can you provide arguments that these assump-
tions are justified in practice?
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7
Queueing Models

We have already been introduced to several modeling tools, such as linear programming, 
network models, and integer programming techniques, which allow us to optimize sys-
tems. Other techniques, such as Markov analysis, allow us to observe and analyze the prob-
able behavior of systems over time; and the information gained from these observations 
may be used indirectly to modify or improve system performance. In this chapter, we will 
study further mechanisms by which we may observe and characterize the performance of 
systems. In particular, we will concentrate on the wide variety of systems whose elements 
include waiting lines (queues), and we will study how such waiting lines interact with other 
activities or entities in the system toward achieving certain goals for system throughput.

The study of systems involving waiting lines traces its origin to work done many decades 
ago by A.K. Erlang. Working for the Danish telephone company, this mathematician devel-
oped techniques to analyze the waiting times of callers in automatic telephone exchanges. 
In such systems, waiting is caused by a lack of resources (not enough servers), and system 
designers must develop ways to balance the value of customer convenience against the 
cost of providing servers.

Waiting lines inherently create inconvenience, inefficiency, delay, or other problems. Waiting 
lines represent people waiting for service, machines waiting for a repairman, parts wait-
ing to be assembled, and so on; and these situations cost time and money. Of course, wait-
ing lines can be virtually eliminated by simply adding lots of servers, repairmen, and 
assembly stations, but this can be very expensive. To make intelligent decisions about how 
many servers to hire, or how many workstations to build, we must first understand the 
relationship between the number of servers and the amount of time spent in the queue, so 
that we can evaluate the trade-off between the various costs of servers and queues.

In this chapter, we will study systems that are simple enough to be modeled analytically 
and precisely using queueing models. These methods have been found to be surprisingly 
successful in estimating the performance of many kinds of systems. Unfortunately, despite 
the popularity of analytical techniques, they may be too cumbersome to use (or technically 
inapplicable) for modeling some very complex systems. These more difficult systems can 
often be analyzed using simulation; therefore, in Chapter 8 we will study the techniques 
of using computers to simulate the operation of complex systems.

7.1 Basic Elements of Queueing Systems

A queueing system consists of a flow of customers into and through a system, who are to 
be processed or dealt with by one or more servers. If there are fewer customers than serv-
ers, customers are handled immediately and some servers may be idle. If there is an excess 
of customers, then they must wait in a line or queue until a server becomes available. After 
being served, the customer leaves the system.



286 Operations Research

Waiting lines and systems involving waiting lines are so pervasive in real life that it 
is not at all surprising that the analysis of the operation of such systems forms a major 
subfield of Operations Research. We expect to see waiting lines at, for example, the book-
store, grocery store, restaurant, bank, gas station, and hospital emergency room. You may 
even have to queue up to visit your professor or to pick up a parcel from the postal service. 
Queues also form for telephone calls, which must wait for an available circuit in order to 
complete a connection. Messages or data packets may have to be queued at a processing 
node of a computer network before they can be forwarded on toward their destinations. 
Airplanes must wait to take off or land on a particular runway. Manufactured items on an 
assembly line may have to wait to be worked on by a line worker, a programmed robot, 
or other machine. And computer programs often wait in a queue to be executed in a large 
central computing facility. All of these represent systems whose inefficient or improper 
operation could cause inconvenience, economic loss, or even safety risks. Therefore, engi-
neers and decision analysts are keenly interested in understanding and improving the 
operation of queueing systems.

The principal elements in a queueing system are the customer and the server. Queues 
arise only as a result of the servers’ inability to keep pace with the needs of the customers. 
From the customers’ point of view, there should be as many servers as there are customers 
at any given time, but this of course is not economically feasible. It would not make sense 
to hire enough bank tellers or build enough drive-through teller stations to handle the 
peak load of customers because, obviously, most of those tellers would be idle during most 
of the business day. Customers therefore expect to wait some reasonable amount of time 
for service. The meaning of a reasonable wait varies with the context.

If a customer arrives and sees that all the queues look very long, the customer may 
decide not to wait at all (known as balking), and the system loses a customer. A customer in 
one queue may perceive that a different queue is moving more quickly, so he may abandon 
his position in the first queue and join the apparently more advantageous one (known as 
jockeying). Or a customer may wait in a line, become discouraged at the slow progress, and 
leave the queue and the system (known as reneging).

This type of behavior certainly complicates the analytical study of queueing systems. 
Furthermore, customers differ in their perception of queueing patterns. What seems to be 
a hopelessly long wait to one customer may not seem so to another. A family with several 
small children in tow might find a 20-minute wait for a seat in their favorite restaurant 
intolerable, whereas a group of adults might be willing to enjoy conversation during a 
lengthy wait. An airplane with a nearly empty fuel tank may gladly endure a short wait for 
a local runway rather than fly to an alternate airport some distance away, whereas an anx-
ious bank customer may change lines several times in the possibly vain hope of receiving 
more prompt service. Circumstances and personalities strongly influence systems involv-
ing human customers.

For our purposes, customers are characterized primarily by the time intervals that sepa-
rate successive arrivals. (Arrival rates will be discussed in the next sections.) In more com-
plex systems, customers may arrive in groups, such as a group of people wishing to be 
served together in a restaurant, or a busload of tourists arriving at a museum. Often, the 
group is treated as a single customer, and these are called bulk queues.

Another key characteristic of a queueing system is the type and length of service required 
by each customer. We will confine our studies to cases in which each customer requires 
the same type of service, but the server may take a different amount of time for each cus-
tomer. Human behavior again becomes a factor here. If the server is a machine, it may take 
exactly the same amount of time for each customer service. More generally, however, the 
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time required for service may be random and will vary from one customer to the next. 
Moreover, it is easy to envision a human server (a bank teller or an air traffic controller, 
for example) who sees the queue becoming long, becomes nervous, and makes mistakes, 
causing the service to take longer. On the other hand, a more adroit server may observe 
the crowded condition and work more quickly and efficiently. Or an immigration officer 
at a border crossing may ask fewer questions when the lines get long. Our discussion of 
service rates, in the next section, will attempt to account for these various considerations.

The following characteristics summarize the main elements of queueing systems. 

 1. The pattern of customer arrivals is typically described by a statistical distribution 
involving uncertainty.

 2. The lengths of service times (and therefore the departure times for each customer) 
likewise are described by a statistical distribution.

 3. The number of identical servers (sometimes called channels because in some 
of the earliest systems studied, the servers were information paths) operating 
in parallel is an important characteristic. If there is more than one server, each 
may have its own queue or all servers may select customers from a single queue. 
In more general systems, such as assembly lines, the customer (the item being 
manufactured) may pass through a series of queues and service facilities. The 
most general systems include both series and parallel queues and are termed 
network queues.

 4. The method by which the next customer is selected from the queue to receive 
service is called queue discipline. The most common queue discipline is first-in, 
first-out (FIFO), in which the customer selected for service is the one that has been 
in the queue for the longest time. Customers could also be selected at random, or 
according to certain priority schemes such as highest-paying customer, the most 
urgent customer, or the customer requiring the shortest service time.

 5. In some systems, there is a maximum number of customers allowed in the queue 
at one time; this is called the system capacity. If a system is at capacity, new arriv-
als are not permitted to join the system. This could occur in a drive-in bank where 
the queue of cars is not allowed to extend into the street, or in a computer network 
where the buffer space can contain only a certain number of queued data packets. 
In a bottling plant, there is a certain amount of space between the filling station 
and the packing lines. When the space fills up, the filling station must be shut 
down.

 6. A final factor in characterizing a queueing system is the population or source from 
which potential customers are generated. This calling source may be finite or infi-
nite in size. In a bank, for example, the calling source would be assumed infinite 
for all practical purposes because it is unlikely that all possible customers would 
ever be in the bank and that no others could conceivably arrive. On the other hand, 
in a computer system with a relatively few number of authorized users, it is cer-
tainly possible that all users might be logged on at some time and that there could 
be no new arrivals. A finite calling source thus can have an effect on the rate of 
new arrivals.

Once a queueing system has been modeled by specifying all of these characteristics, it may 
be possible for an analyst to learn a great deal about the behavior of the system by answer-
ing questions such as the following. 
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• How much of the time are the servers idle? Servers usually cost money, and under-
utilized servers might need to be removed.

• How much time does a customer expect to spend waiting in line? And is this a 
reasonable amount of time, considering the context? Is it likely that customers are 
being lost due to long queues?

• What is the average number of customers in the queue? Should servers be added 
in order to try to reduce the average queue length?

• What is the probability that the queue is longer than some given length at any 
point in time?

These are questions facing system designers who must try to get optimal utilization from 
their service facilities while providing an acceptable level of convenience or safety for 
customers. Keep in mind that queue analysis normally occurs before a system is built. A 
primary purpose of queueing theory may be to determine how many service facilities 
(such as operating rooms or checkout counters) to build before it is too late or too costly 
for modifications to be undertaken. The remainder of this chapter presents some tools for 
answering just such questions as these.

7.2 Arrival and Service Patterns

7.2.1 The Exponential Distribution

In queueing systems, we generally assume that customers arrive in the system at random and 
that service times likewise vary randomly. Our intuitive notion of random is closely associ-
ated with the exponential distribution of lengths of time intervals between events; that is, 
intervals between arrivals or durations of services. Suppose we generate a random number 
n of arrival times over some fixed time period T by selecting n numbers from a uniform dis-
tribution from 0 to T. This process coincides with our intuitive idea of independent random 
events. It can be shown that the distances between these points are exponentially distributed.

The assumption underlying the exponential distribution is that the probability of an 
arrival occurring in any small interval of time depends only on the length of the interval 
and not on the starting point (time of day, week, etc.) of the interval or on the history of 
arrivals prior to that starting point. The probability of an arrival in a given time interval 
is unaffected by arrivals that have or have not occurred in any of the preceding intervals.

Restating these properties of the exponential distribution in terms of service times: the 
duration of a given service does not depend on the time of day (e.g., it does not depend 
on how long the service facility has been in operation), nor on the duration of preceding 
services, nor on the queue length or any other external factors.

Note that the stationary and memoryless properties that we observe here are precisely 
the assumptions that we made in order to model processes using Markov analysis, as 
discussed in the preceding chapter. In fact, we will return to exactly these same ideas in 
developing our analytical queueing models in the next section.

The exponential density function (sometimes called the negative exponential density 
function) is of the form 

 f t e t( ) = λ −λ
 



289Queueing Models

where 1/λ is the mean length of intervals between events. Therefore, λ is the rate at which 
events occur (the expected number of occurrences per unit time).

That is, f(t) represents the probability of an event occurring within the next t time units. 
The curves shown in Figure 7.1 illustrate the shape of the exponential distribution for dif-
ferent values of the parameter λ, shown as λ1, λ2, and λ3 on the vertical axis. Because the 
area under each of these curves must be one (as for any probability density function), a 
larger value of λ implies a more rapid decrease and asymptotic convergence to zero. As 
indicated by the exponential distribution curves in the figure, the most likely times are 
the small values close to zero, and longer times are increasingly unlikely. The exponential 
distribution times are more likely to be small than above the mean. However, there will 
occasionally be very large times.

We should mention here that there are clearly some cases that are not represented by 
the exponential distribution function. A machine (or even a human) service facility that 
performs each service with the identical constant service time yields a service distribution 
in which all service times are essentially equal to the mean service time, which is inconsis-
tent with the exponential distribution. The exponential distribution also precludes cases 
where a customer arrives but does not join the queue because he sees another customer 
arrive just ahead of him, or when the server tries to speed up as the queue length increases. 
It is easy to imagine other scenarios that cannot be correctly or realistically described 
by the exponential distribution; however, experience in system modeling has shown that 
many systems exhibit a typical pattern of random, independent arrivals of customers, 
most of whom can be served in a short length of time while relatively few require longer 
service. For example, most bank customers arrive to conduct simple transactions that can 
be handled quickly, while the few irregular cases require more time. In a hospital emer-
gency room, a large number of the arriving cases require relatively simple first-aid, while 
serious trauma cases requiring longer attention are less frequent. Thus, the assumption 
of exponentially distributed interarrival times and service times has been found in many 
practical situations to be a reasonable one.

An exponential interarrival distribution implies that the arrival process is Poisson dis-
tributed. If the interarrival times are exponential, then the number of arrivals per unit time 
is a Poisson process. A Poisson distribution describes the probability of having precisely 
n arrivals in the next t time units as: 

 
Probability X t n

t e
 n!

{ }
( )n t

( ) = = λ λ−

 

t

λ1

λ2

λ3

f(t)

FIGURE 7.1
Exponential distribution.
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Notice that when n = 0, the probability 

 Probability X t e{ t( ) }= =0 −λ
 

is precisely the exponential distribution that the next arrival will not occur until after t 
time units. However, in describing queueing systems, people often refer to Poisson arriv-
als and exponential service times because it seems more natural to describe customer 
arrivals by stating how many arrivals per unit time, whereas service times are more conve-
niently described by stating the duration of the service.

7.2.2 Birth-and-Death Processes

Because of our assumption that interarrival and service times are exponentially dis-
tributed, this class of queueing models can be viewed as special cases of continuous 
time Markov processes. When such a system initially begins operation, performance 
measures are strongly affected by the system’s initial conditions (its initial state) and 
by how long the system has been in operation. Eventually, however, the state of the 
system becomes independent of initial conditions, and we say the system has reached 
steady-state. Our queueing models will deal primarily with a steady-state analysis of 
the queueing system.

To facilitate our development of formulae for performance analysis of queueing systems in 
steady-state, we will illustrate the system by using a particular type of transition diagram 
known as a birth-and-death process model. The states in this system are characterized 
by the number of customers in the system, and thus correspond to the set of non-negative 
integers. This number includes the number in queue plus the number in service. The term 
birth refers to a customer arrival, and the term death refers to a departure.

Only one birth or death may occur at a time; therefore, transitions always occur to the 
next higher or next lower state. The rates at which births and deaths occur are prescribed 
precisely by the parameters of the exponential distributions that describe the arrival and 
service patterns. In queueing theory, the mean customer arrival rate is almost universally 
denoted by λ and the mean service rate (departure rate) is denoted by μ, where λ and μ are 
the exponential distribution parameters.

We can illustrate all the possible transitions using the rate diagram shown in Figure 7.2. 
An arrival causes a transition from a state i into state i + 1, and the completion of a service 
changes the system’s state from i to i – 1, for a given i. No other transitions are considered 
possible. Using this diagram, we can now begin to derive the formulae that describe the 
performance of simple queueing systems.

μ

0 1 2 3 N – 1 N + 1N

μ

λλ λ λ λ λ

μ μ μ μ

FIGURE 7.2
Rate diagram for a birth-and-death process.
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7.3 Analysis of Simple Queueing Systems

7.3.1 Notation and Definitions

Although we will concentrate on only the simplest of queueing models, we will make use 
of a notational scheme that was developed by Kendall and Lee and that is commonly used 
to describe a variety of types of queueing systems (Lee 1966). The system characteristics 
are specified by the symbols 

 A / B / C / D / E / F 

where:
A and B are letters that denote the interarrival time distribution and the service time 

distribution, respectively.
C is a number that denotes the number of parallel servers or channels.
D and E denote the system capacity and size of the calling source, respectively.
F is an abbreviation identifying the queue discipline.

The codes used to denote arrival and service patterns are as follows: 

M for exponential (Markovian) interarrivals and service times
D for constant (deterministic) times
Ek for Erlang distributions with parameter k
GI for general independent distribution of interarrival times
G for general service times

The code for queue discipline may be FCFS (first-come, first-served), SIRO (service in 
random order), or any other designated priority scheme.

So, for example, a queueing system described as

 M / M / 1 / /  / FCFS∞ ∞  

is a single server system with exponential arrivals and departure patterns, infinite queue 
capacity and calling source, and a first-come, first-served queue discipline. This is the type 
of system we will study most thoroughly in this chapter. Of course, a variety of combina-
tions of characteristics can be defined, but only a relatively small number of systems have 
been solved analytically.

Beyond this seemingly cryptic notation describing the essential characteristics of a 
queueing system, we need some additional definitions and notation to describe vari-
ous performance measures. Determining these performance measures is, after all, our 
 primary reason for creating analytical models of queueing systems. The following 
abbreviations are used almost universally and can be found in any textbook on queue-
ing analysis. 

λ = Arrival rate (expected number of arrivals per unit time).
μ = Departure rate for customers of each server in the system (expected number of 

customers completing service and departing the system per unit time).
s = Number of parallel servers.
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ρ = λ/sμ = Utilization factor of the service facility (the expected fraction of time the 
servers are busy); sometimes called traffic intensity. Note that ρ < 1 in order for the 
system to reach steady-state; otherwise, the customer load on the system grows 
increasingly large without bound.

pn = Steady state probability of the system being in state n, that is, of there being exactly n 
customers in the system. (Recall from our study of steady state Markov processes that 
this may be interpreted as the fraction of the time the system has exactly n customers.)

L = Expected number of customers in system.
Lq = Expected number of customers in queue; mean length of queue.
W = Expected waiting time for each customer in the system (includes time spent in 

queue as well as service time).
Wq = Expected waiting time spent in queue.

Certain relationships have been established between L, Lq, W, and Wq. Little’s formula (Little 
1961) states that L = λW and also that Lq = λWq. Also, because expected waiting time in the 
system equals expected time in queue plus expected service time, we have the formula 
W = Wq + 1/μ. Therefore, if we can compute any one of these four performance measures, we 
can use these relationships to compute the other three. But in order to do this, we need a way 
to compute the probabilities pn. For this, we return to our birth-and-death process diagrams.

7.3.2 Steady State Performance Measures

If we consider any state in the rate diagram shown in Figure 7.2, and assume the system to 
have reached steady state, then it must be true that the mean rate at which transitions are 
made into the state must equal the mean rate at which transitions are made out of the state. 
In fact, we can write an equation for each state that expresses this fact and that accounts for 
all possible ways in which transitions into and out of the state can occur. The set of equa-
tions that results from doing this are called flow balancing equations, and we can write 
them in the following way.

First consider state 0, the simplest case, because there is only one path leading in and one 
path leading out. The mean rate out of state 0 is the probability of being in state 0 times the 
rate of departures from state 0, p0λ. The mean rate in is the probability of being in state 1 
times the rate of transitions from state 1 to state 0, p1μ. Therefore, the equation for state 0 is 

 p p0 1λ µ=  

For all other states, there are two arcs leading in and two arcs leading out. Still, the rate-in = 
rate-out principle holds and we can write for state 1: 

 

Rate in: p p

Rate out: p p

 p p p ptherefore

0 2

1 1

0 2 1 1

λ µ

λ µ

λ µ λ µ

+

+

+ = +  

And similarly for state 2, 

 p + p p + p1 3 2 2λ µ λ µ=  
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and for state n 

 p p p pn 1 n 1 n n− λ µ λ µ+ = ++  

By first solving the state 0 equation for p1 in terms of p0, we can proceed to the state 1 equa-
tion and solve for p2 in terms of p0, and successively solve for all pn as follows:
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So, for the birth-and-death process model in which all arrivals are characterized by the 
parameter λ and all departures by the parameter μ, any of the pi can be computed in terms 
of the parameters λ and μ and the probability p0. To obtain the value of p0, we just observe 
that the sum of all the pi must equal to one: 

 p p p  … p  … 10 1 2 n+ + + + + =  

Then, 
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The series in square brackets converges, if (λ/μ) < 1, to the quantity 

 

1
1 /− λ µ( ) 

Therefore, 
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and 

 
p 10 = −
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µ  

More intuitively, you may also recall that ρ = λ/sμ is the probability of the service facility 
being in use at any given time. For a single service facility in which the same parameter μ 
characterizes service times (as in Figure 7.2), regardless of the number of customers requiring 
service, we let s = 1. Therefore, ρ = λ/μ is the probability of a busy service facility, and thus 
1 – (λ/μ) = 1 – ρ is the probability of an idle service facility. This is exactly what is meant by the 
probability of there being zero customers in the system, so it is reasonable that p0 = 1 – (λ/μ).

We can now express all of the system state probabilities in terms of λ and μ as follows: 
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Our original purpose in developing these formulae was so that we could compute system 
performance measures such as the expected number of customers in the system L, and the 
expected amount of time each customer spends in the system. By defining the expected 
number of customers, we know 
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From this we can use Little’s formula L  =  λW to obtain the expected time in the 
system W. Because W = Wq + 1/μ, we can then compute the expected time a customer 
spends in queue, Wq. And from this we can obtain the expected queue length Lq using 
Lq = λWq.

Example 7.3

Suppose computer programs are submitted for execution on a university’s central 
computing facility, and that these programs arrive at a rate of 10 per minute. Assume 
average run-time for a program is five seconds, and that both interarrival times and 
run-times are exponentially distributed. During what fraction of the time is the CPU 
idle? What is the expected turnaround time of a job in this system? What is the average 
number of jobs in the job queue?

This system is assumed to be an M/M/1 queueing system with λ = 10 jobs per minute 
and μ = 12 jobs per minute. We will also assume that job queues may become arbitrarily 
long and that there is an infinitely large user population. Since ρ = 10/12 < 1, the system 
will reach steady-state and we can use the formulae developed earlier to answer these 
questions. Since the utilization factor ρ = 5/6, the CPU will be idle 1/6 of the time, or for 
10 seconds out of every minute. (Since 10 jobs each take an average of five seconds, the 
CPU is busy for 50 seconds each minute.)

Turnaround time is defined to be waiting time plus execution time, which we 
call W. We know L  =  ρ/(1  –  ρ)  =  (5/6)/(1/6)  =  5, and from this we can calculate, 
using Little’s formula, W  =  L/λ=  5/10  =  1/2  minute. The average queue length is 
Lq = λWq. Since we have just computed W to be 1/2 minute, we can use the formula 
Wq =W – 1/μ = 1/2 – 1/12 = 5/12 minutes (or 25 seconds) for expected waiting time 
spent in the queue. Then the average number of jobs in the queue is Lq = 10 · 5/12 =41/6 
jobs. (Because the job queue itself occupies some computer memory, this tells how 
much space is typically devoted to this system function, and it also indicates how many 
jobs are experiencing delay.)

Now suppose we want to know the probability that the number of jobs in the system 
becomes 4 or more. This can be calculated as 1 minus the probability that there are 
fewer than 4 (i.e., 0, 1, 2, or 3) customers in the system:

 Probability 4 jobs = 1 p p p p .[ ] 0 1 2 3≥  − + + +  
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Therefore, 

 Probability 4 jobs 1 0.1667 .1389 .1158 0.0965 .48[ ]≥ = [ ] =− + + +0 0 0 2225 



296 Operations Research

In general, the probability that there are at least k jobs in the system is given by: 
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In our example, ρ = 5/6, and k = 4, so the probability of at least four jobs in the system 
is (5/6)4 = 0.48225.

The formulas developed earlier are valid only in queueing systems that eventually 
reach steady-state. Our underlying assumption that the arrival rate λ be less than the 
service rate μ is sufficient to guarantee that the system will stabilize. Notice that as ρ 
approaches 1, both W and Wq become large. Clearly, for ρ > 1, arrivals are occurring 
faster than a constantly busy service facility can keep up with the demand. When ρ = 1, 
the sequence is undefined. However, if we look back at the original state equations, we 
discover that (λ/μ) = 1 implies that p0 = p1 = p2 = p3 = … There are infinitely many states, 
all equally likely, which means that the actual probability of being in any given state is 
zero in the limit.

We have also assumed that the system has an infinite capacity. If this were not the 
case, then arriving customers would occasionally encounter a full system, and although 
they would arrive at the system according to the arrival parameter λ, they would not be 
permitted to join the system at rate λ. Thus, the effective arrival rate would not be con-
stant and would vary in time, according to whether the system is at capacity. For this 
case, the pn formulae remain valid as before. However, if we let N denote the system 
capacity, the steady-state equation for state N is simply 

 p pN–1λ µ= Ν  
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just as before. However, there is no state N + 1. We now have a finite set of states whose 
probabilities must sum to 1: 
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when λ ≠ μ; therefore,
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When λ = μ, we get λ/μ = 1 and p0 = 1/(1 + N).
Other system measures can be computed as before. It can be shown that, when ρ ≠ 1:
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When ρ = 1, L = N/2. Moreover, if a customer arrives when the system is full (with 
probability pN), the customer will not enter the system. Therefore, the effective arrival 
rate λe is 
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These formulas are still valid when λ > μ. As the arrival rate increases relative to the service 
rate, the system just loses more customers. It is interesting to note that, even in a saturated 
system in which the arrival rate is greater than the service rate, there is always still some 
probability p0 that the system will be empty and the server will experience some idle time.

We have derived performance measures for single-server (M/M/1) systems. For mul-
tiple server systems (where s > 1), the actual service rate depends on the number of 
customers in the system. Obviously, if there is only one customer present, then service 
is being rendered at rate μ. But if there are two customers present, and s ≥ 2, then the 
system service rate is 2μ. Likewise, if s = 3, then the system service rate is 3μ. However, if 
there are s service facilities, the maximum system service rate is sμ, even if there are more 
than s customers. This is illustrated by the rate diagram in Figure 7.3.
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The results obtained from a birth-and-death process model for an M/M/s system, for 
s > 1, differ from our previous results because service rates are sensitive to the current 
customer load. Under the assumption that ρ < 1, that is λ < sμ, it can be shown that: 
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The expected number in queue can be shown to be: 
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where ρ = λ/sμ and, as before, 
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7.3.3 Practical Limits of Queueing Models

In the previous sections, we attempted to give a very brief introduction to the simplest 
Queueing models and to the mathematical foundations underlying these models. When 
the systems being studied are more complex, we find that the analytical approach to 
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FIGURE 7.3
Rate diagram for multiple servers (s = n).
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modeling their behavior grows dramatically in complexity. And for some systems, no ana-
lytical models have been developed that are applicable at all.

In selected applications, decomposing or partitioning the system may be a reasonable 
approach. For example, in a very complex multiple server system, we might simplify the 
analysis by just considering the servers that create the bottlenecks in the system, and in 
that way decompose the system into more manageable parts.

The problem of scheduling operating rooms in a hospital provides another good exam-
ple. We may be able to learn much about the system by treating the operating rooms as a 
set of parallel identical servers. However, in reality the operating rooms are not identical; 
each one could be characterized by the unique equipment installed in the room. Therefore, 
it might be useful to partition the patients into several parallel streams of customers, each 
requiring a different group of identical operating theaters.

There are many examples of systems that involve certain characteristics of queueing mod-
els, but whose components do not fit into the standard roles of customers and servers as we 
have defined them, or whose customers and servers do not behave according to the simple 
paradigms to which the equations of analytical queueing models are applicable. In such sys-
tems, although we cannot directly and easily compute system characteristics such as average 
queue length, average time spent in a queue, server utilization, and so on, we might instead 
be able to write a computer program to play out and mimic the behavior of the entities in the 
system. By enacting this behavior under the control of a computer program, we can then also 
observe the performance of the simulated system, and, within the computer program, accumu-
late enough information about the system to then quantify the observed system characteris-
tics. When this is done properly and skillfully, the results may be just as valuable and reliable 
as the analytical results that can be directly derived for simpler systems.

Although queueing analysis and simulation are often used to accomplish similar goals, 
the two approaches are quite different. Chapter 8 describes how to develop a simulation 
of a system, how to cause events to happen in the simulated system, how to make observa-
tions and gather data about the effects of these events in the simulated system, and thereby 
infer how the real system being modeled would behave and what some of its essential 
characteristics are.

7.4 Software for Queueing Models

Application tools for queueing and simulation studies are abundant. While there are a 
number of software products specifically designed for analytical modeling of queueing-
systems, many queueing systems are studied through simulation, and in that case analysts 
can choose from a variety of software packages and languages for general simulation, as 
will be described in Chapter 8.

Matlab from MathWorks includes queueing blocks such as queues, servers, and switches 
as part of its discrete-event simulation engine SimEvents.

GNU Octave, a Scientific Programming Language that is similar to, and largely compati-
ble with, Matlab also has a queueing package that provides functions for queueing networks 
and Markov chains analysis. It can be used to compute steady state performance measures 
for open, closed and mixed networks with single or multiple job classes. Furthermore, sev-
eral transient and steady state performance measures for Markov chains can be computed, 
such as state occupancy probabilities, and mean time to absorption. Both discrete and 
continuous time Markov chains are supported.
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R has a freely available queueing package called Queuecomputer that implements com-
putationally efficient methods for simulating queues with arbitrary arrival and service 
times (Ebert 2017).

We have noticed in recent years that there are a number of web based systems that 
accept input from users to certain queueing models via a web browser, solve the prob-
lem and display the solution back on the browser without the need for the user to install 
any software. A quick web search can easily find systems such as Solutions to Queueing 
Systems, and Queueing Theory Calculator. Hlynka (2017) maintains a comprehensive list 
of queueing theory software.

7.5 Illustrative Applications

7.5.1 Cost Efficiency and Service Quality in Hospitals (Green 2002)

An important factor in evaluating cost efficiency in hospitals is the average percentage of 
beds that are occupied in a hospital, known as the average bed occupancy level. This measure 
has been for many years the criterion that most often determines bed capacity decisions in 
U.S. hospitals. The original aim of occupancy level targets has been to manage the supply 
of hospital beds, limiting the number of unoccupied beds and thereby controlling costs. 
A widely adopted occupancy target is 85%. Even with such high occupancy levels, health 
policy planners, government officials, and hospital administrative decision makers have 
reacted to this figure with the perception that there were too many hospital beds (an aver-
age of say 15% unoccupied beds), a situation which they interpreted as a costly and there-
fore unpopular over-supply of medical resources.

The issue of facility utilization is a complex one. Major changes in health care networks, 
insurance plans, shorter hospital stays, more outpatient procedures, and fewer inpa-
tient admissions all require a careful reconsideration of efficiency in hospital resource 
utilization. But based on the measure of average bed occupancy levels, decision mak-
ers continue to infer that there is an excess of hospital beds which contributes to high 
and ever-increasing health care costs. Decisions to reduce the total number of beds in 
a hospital, or in a specialized unit within a hospital, were almost always based on the 
long-established measure of average occupancy level targets, which seemed simple to 
understand and easy to compute, but which inevitably influenced human nature and 
led to reductions in bed count. Pressure to be more cost-efficient led some managers and 
administrators to set occupancy targets higher than 90%.

However, a closer look into the broader decision process reveals that the well-meaning 
but narrow focus on cost efficiency often detracts from much-needed attention to patient 
service performance quality. Analysts began to look more seriously at the delays experi-
enced when patients cannot be provided with an appropriate bed as needed, either upon 
initial arrival at a hospital unit or for example when a patient is transitioning from a sur-
gery unit into a recovery unit. Queueing analysts have studied bed unavailability in par-
ticular at intensive care units (ICUs) at hospitals in New York state (Green 2002). These 
hospital units serve the most critically ill patients, and the cost per day is several times 
as much as for regular inpatient units because of the technology and highly skilled staff 
required for treatment and monitoring patients. The analysts began with the assumption 
that standards and practices should be in place that provide the ability to place patients 
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in beds appropriate to their needs without unsafe or unreasonable delays; that is, the pur-
pose of a hospital or unit is to provide appropriate and timely care to patients. Little data 
had been accumulated to support this study, and furthermore, it was quickly recognized 
that there were several ill-defined and poorly understood issues and concepts raised by 
the analysts that directly affected the quality of patient care, and that deserved some pre-
liminary discussion before decision factors could be analyzed.

First of all, the beds themselves are characterized as being of a special type officially 
approved for a specific need, such as for inpatient use, outpatient use, fitted with telem-
etry or other technological capabilities. Certain specialized beds may be certified but not 
necessarily staffed with appropriately trained personnel; thus, availability of such a bed 
depends on the specific needs of an arriving patient.

Next is the question of what is meant by the term occupied bed. Hospital census is typi-
cally taken at midnight for billing purposes. But a census at that hour of the day usually 
measures the lowest occupancy of the day. Patients may arrive or depart for day treatment 
procedures. This day use may not be shown as contributing to the average bed occupancy 
level, even though each patient did in fact occupy a bed for the duration of the stay. In 
addition, few procedures are scheduled for weekends and holidays, which may have the 
effect of shifting the patient load to other days. Thus, daily average occupancy level is not 
a simple and perfect indicator of bed utilization.

For their study of cost efficiency and service quality, analysts proceeded to construct 
an M/M/s queueing model to describe systems having a single queue, patients arriving 
according to a Poisson distribution, exponential service times (bed occupancy times), 
unlimited queue length, and s identical servers (beds appropriate to the hospital or unit). 
This model was chosen because of its simplicity and tractability, as system performance 
problems need to be solved quickly; and this model required only data that was already 
publicly available.

Measures of performance efficiency and effectiveness in such systems include the prob-
ability that an arrival has any wait; that is, the probability of delay. These systems have the 
property that greater occupancy levels cause longer delays for service; and also relatively 
small increases in occupancy level can cause very large increases in delays. In general, 
larger service systems can operate at higher utilization levels than smaller ones in achiev-
ing the same level of delays, and indeed it was noted that smaller hospitals or units such 
as might be located in rural areas may need to operate using lower occupancy levels in 
order to provide good service. When system utilization is high, queueing delays are highly 
sensitive to even temporary increases in arrival rates. Rural units are often small units, so 
are particularly stressed by surges in the arrivals.

When the ICUs in the state of New York were analyzed, the average occupancy levels 
were 75% in the units studied. This could be seen as indicating under-utilization of the 
beds in these units, but the results of applying the M/M/s queueing study shed some 
light on the delays associated with this average occupancy level. The probability of delay 
depends on size s (number of beds) and server utilization. The queueing study revealed 
that over 90% of the ICUs currently had too few beds and were unable to achieve a pro-
posed goal of a 1% probability of delay. And at half of the ICUs being studied, beds were 
over-utilized and even the less ambitious goal of a 10% probability of delay could not be 
reached. So, even at the relatively low average occupancy level, these facilities were far 
from being able to achieve low probability of delays for their patients.

We have seen that patient service quality should include avoiding delays in providing 
the patient with a bed. To emphasize the importance of the delay probabilities, let’s con-
sider the consequences of there not being a bed available. It has been observed that there 
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are increasing numbers of hospitals turning away arriving patients in ambulances, divert-
ing them to other hospitals, due to lack of available beds. There are increases in the time 
patients spend in emergency rooms and hallways while waiting for a bed. Bed unavail-
ability is a reality, and long delays and over-crowding are reported routinely. Patients 
experiencing delays may become agitated or uncomfortable, or they may be in urgent 
need of critical treatment. Therefore, not surprisingly, there is no standard definition of an 
acceptable delay.

In the study of the New York ICUs, average length of stay was nearly 18 days, so if a 
delay is encountered, it is likely to be a long delay (awaiting the departure of an existing 
patient). This could lead to high incidence of ambulance diversions or even to adopting the 
practice of bumping a current occupant to a different unit (likely one with fewer critical 
care resources, less telemetry, or lower level of staffing). Clearly, delays can result in poorer 
service and care of patients. But adding more beds to enlarge the facility is costly, and the 
acquisition of excess beds is often criticized even though patient service may be improved.

The quantitative results of an M/M/s queueing study provided health experts and man-
agers valuable data to support decisions about increasing or decreasing the size of the 
facility. But in addition, fruitful discussions produced several common sense ideas that 
also proved effective and relatively inexpensive. Whereas certain ICUs may need more 
beds in order to deliver good service performance, there may be other units in the same 
hospital that have too many beds. It may be possible to reallocate beds among units as 
needed. Another practical solution may be to keep overflow beds on hand and hope that 
they can be staffed when the need materializes. As a further example, the Province of 
Ontario in Canada has a province-wide system known as CritiCall that keeps track of ICU 
bed utilization in 150 hospitals. When ambulances are looking for available beds, they 
call CritiCall and take their patients to the recommended location that has available beds. 
This improves bed capacity by increasing the relative size of the individual hospitals and 
spreading the risk of a shortage of beds.

Cross-training nurses or re-purposing selected telemetry equipment could also be 
possible, especially in large hospitals; done considerately, temporarily increasing the 
staff might increase patient satisfaction and peace of mind. Management should creatively 
investigate various options for improving operational efficiency. Goals should respect ser-
vice performance standards and clinical care quality rather than cost alone.

Queueing analysis has been shown to be one very important aspect of evaluating and 
improving the efficiency and effectiveness of health care systems. Analysis of delays and 
the needs for equipment and staff can also be applied in many other areas such as telecom-
munications, airlines, and agencies providing police, fire, ambulance and other emergency 
services. In each case, analytical results of queueing studies can help to identify problems 
and establish a balance in cost of service vs. customer delays and consequences.

7.5.2 Queueing Models in Manufacturing (Suri et al. 1995)

The application of queueing models to the analysis of manufacturing processes began as 
early as the 1950s, but the extent of use of analytical queueing tools was at times limited, 
and it varied with trends in the manufacturing industry itself. Queueing models are used 
to study discrete manufacturing systems, in which products flow through a sequence of 
machines or workstations, where they are worked on either individually or in batches 
of individual pieces (as contrasted with a continuous flow process such as oil refining). 
Products must wait to be worked on at each station, so the entire process can be viewed 
as a network of queues. In the 1960s, it was shown that, under appropriate assumptions, 



303Queueing Models

the performance of general networks of queues can be predicted just by using the simple 
formulae that apply to individual queues.

Automated manufacturing systems were traditionally designed and tooled to produce 
a single product, an approach appropriate only for high-volume production. During the 
1970s, the advent of programmable machines made it possible to tailor any machine to 
make any product within its range of capabilities, instead of being physically limited to a 
single product. These so-called flexible manufacturing systems allowed profitability with 
lower volume productions. Flexible manufacturing systems usually consisted of numeri-
cally controlled automated machines that operated with the support of a materials han-
dling system to move the products between machines.

Interactions among the entities in complex flexible manufacturing systems made it very 
difficult to predict the performance of these systems. One approach was the very expen-
sive and time consuming process of building a simulation model to predict performance, 
identify bottlenecks, and analyze the complicated dynamics of such systems. A much 
more efficient approach was the use of queueing models for analyzing flexible manufac-
turing systems, and it was during this time that the first queueing software packages were 
developed for manufacturing systems. These packages were comparatively easy to learn 
and to use, and the models could be developed and analyzed in a fraction of the time that 
would have been needed to do a simulation-based study.

As manufacturing strategies matured during the era of flexible manufacturing sys-
tems, researchers discovered new and more effective ways to use queueing analysis to 
predict, manage, and improve performance, giving attention to such issues as resource 
utilization, queueing bottlenecks, lead times, and productivity. Numerous software 
packages were available to support such analyses. Companies, such as Alcoa, IBM, 
Pratt and Whitney, DEC, and Siemens, all reported using queueing packages to achieve 
improvements in their manufacturing processes. Pratt and Whitney was prepared to 
spend up to six weeks developing a simulation model to study a preliminary design 
of a proposed new manufacturing division, but instead turned to the use of queueing 
software to get the answers it needed much more quickly. Similarly, IBM initiated a 
progressive project for manufacturing printed circuit boards. An experienced analyst 
realized that a simulation model of the 200 machines and 50 products would be pro-
hibitively time consuming. A convenient and sufficiently powerful queueing package 
provided the means of developing the factory model easily within the time available 
for the analysis.

Throughout the 1980s, manufacturing companies used performance measures based 
on efficiency of equipment utilization and on cost reduction. Factories had always been 
sensitive to set-up costs, and attempted to manage such costs by running large lot sizes. 
However, queueing studies revealed that large lot sizes contribute to long lead-times. By 
the mid-1980s, there was a shift away from traditional cost reduction and quality improve-
ment objectives toward a strategy of lead-time reduction. Simple techniques collectively 
known as just-in-time scheduling strategies became the vogue, and offered vastly improved 
productivity over more complex automated systems.

The 1990s saw a new emphasis on speed and bringing new products into a time-
competitive market (which coincidentally also contributed to increased quality and 
improvements in costs), but this new emphasis presented new challenges to managers and 
analysts. Queueing models turned out to be just the right analytical tool: as manufacturers 
worked on ways to reduce lead-time, they discovered how much time their products spent 
waiting in queues. In some cases, it was not unusual for parts to spend up to 99% of their 
time, not being processed, but rather waiting to be processed. Thus, reducing the time spent 
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waiting in queues was the most effective approach to managing lead-times. Once again, 
queueing theory provided the ideal analytical tools.

More recently, Ingersoll Cutting Tool Company began to analyze its manufacturing sys-
tems with the goal of reducing set-ups, and quickly discovered that their complex manufac-
turing processes offered thousands of opportunities for such reductions. Unable to study 
each possibility, management decided to try to identify just those critical set-ups that could 
contribute to reducing lead-times by 50% or more. For this analysis, they selected a soft-
ware package to develop a manufacturing model based on queueing network theory. In 
just two months, they created a model of a large factory process and were able to make spe-
cific recommendations not only to reduce specific set-ups but also to manufacture smaller 
lot sizes and thereby reduce lead-times. This experience demonstrates the applicability 
and effectiveness of queueing-based decision software in manufacturing.

7.5.3 Nurse Staffing Based on Queueing Models (De Véricourt and Jennings 2011)

The analytical tools of Operations Research have long been used to study and improve 
health care delivery systems, principally through better management of available resources 
such as facilities, staff, and supplies in order to provide healthcare services to patients. 
A great deal of study has addressed specifically how best to manage and utilize the 
critical skills of nurses. One very important aspect of managing nursing care focuses on 
establishing appropriate nurse staffing levels; that is, determining just how many nurses 
should be on staff at any given time in medical units such as hospitals and clinics. A com-
monly used guideline for nurse staffing is to use the ratio of nurses to patients, which is to 
set a minimum number of nurses that should be on staff in a hospital that currently has a 
given number of patients. Advocates of the ratio policy concept seem to believe that good 
patient outcomes can be achieved simply by increasing nursing ratios, although this posi-
tion deserves further formal investigation.

California, for example, made a move toward enacting laws to enforce nurse-to-patient 
ratios in hospitals. But in practice, state policies for nurse staffing levels were influenced by 
the state health department, hospital administrators, and representatives of nurses unions, 
all of whose conflicting perspectives on the issue required negotiated compromises not 
consistent with any documented unbiased analysis. Managing patients’ diverse and often 
unpredictable needs and controlling delays in nurses’ response to patients is actually 
quite a complex problem, and simple ratio guidelines are now known to be inadequate in 
practice.

Recent research has involved the development of a queueing model to help establish 
policies for nurse staffing that are efficient and that also meet performance expectations 
for medical units. In this approach a medical unit is modeled as a closed M/M/s//n/FCFS 
queueing system in which s nurses serve a fixed-size population of n patients. The expo-
nential arrival and service distributions are commonly used in hospital capacity planning 
and policy making, and these are considered to be valid assumptions for purposes of this 
particular study. Arrivals into the system represent patients who will be either in a stable 
state or in a needy state. A stable patient becomes needy after an exponentially distributed 
time interval with mean 1/λ. A needy patient is served in first-come first-served order by 
a nurse who attends to the patient for a service duration that is exponentially distributed 
with mean 1/μ, whereupon the patient reverts to a stable condition.

The purpose for developing this model is to determine how many nurses should be 
present in the medical unit at any time. In this context, the performance of the medical 
unit is defined in terms of the probability of excessive delay, that is, the probability that 
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the delay between a patient becoming needy and the arrival of a nurse to administer care 
exceeds a given time threshold T. (It is generally agreed that excessive delays are related to 
the possibility of adverse events.)

The M/M/s//n/FCFS queueing model permits a sophisticated calculation of the likeli-
hood that a needy patient waits for a time longer than T before being attended to by a 
nurse. The mathematics underlying this result represents an advanced and elegant exten-
sion of the single server probabilities of waiting, which were presented in Section 7.3 of 
this book, and the calculations are based just on the values of s, n, λ, and μ. Nurse staffing, 
in this context, consists of finding the minimum staffing level that guarantees a certain 
bound on the probability of excessive delays.

The queueing model and related analyses in this research are aimed at providing safe 
service for patients. It is recognized that in any given medical unit, it would be desirable 
to introduce various additional considerations. For example, nurses may be qualified and 
certified to offer different levels of care, nurses may have different types and amounts 
of experience, nurse’s service to a needy patient may have to be interrupted in favor of a 
more urgent need and replaced by a different nurse who completes the service, and so on. 
All of these complications contribute to the difficulty of analyzing nurse staffing policies, 
and certainly illustrate the need for guidelines that improve broadly upon the simple ratio 
rules that have been used in many nurse staffing applications.

The robust queueing system derived in this research provides a framework within which 
the previous variations can be considered and in which some of the underlying statistical 
assumptions concerning patient transitions and service times can be relaxed. Experience 
with this and related queueing models will inevitably raise new issues in healthcare coor-
dination that will require healthcare system decision makers to address new questions, 
such as: 

• How does a given time threshold value T ultimately influence the actual quality of 
care offered in specific types of medical units? And at what cost?

• What kind of response time constitutes an acceptable level of safety for various 
types of patients?

• What are appropriate scheduling policies for assigning individual nurses to spe-
cific shifts and duties, given a particular level of nurse staffing in a medical unit?

Queueing analysis provides valuable analytical tools that can be used to design effective 
and efficient healthcare facilities and services. However, more comprehensive studies 
to assess performance characteristics in actual or proposed health care systems often 
make use of Simulations, a topic that will be introduced and discussed in Chapter 8 of 
this book.

7.6 Summary

Queueing models provide a set of tools by which we can analyze the behavior of systems 
involving waiting lines, or queues. Queueing systems are characterized by the distribu-
tion of customers entering the system and the distribution of times required to service the 
customers.
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In the simplest models, these arrival and service patterns are most often assumed to be 
Poisson arrivals and exponential service times. By viewing queueing systems as Markov 
birth-and-death processes, and solving flow balancing equations that describe the flow 
of customers into and out of the system, it is then straightforward to measure the perfor-
mance characteristics of the system at steady state. These performance criteria include 
the expected amount of time the customer must wait to be served, the average number of 
customers waiting in a queue, and the proportion of time that the service facility is being 
utilized.

For more complicated queueing systems involving different statistical distributions of 
arrivals and departures, or complex interactions among multiple queues, or multiple serv-
ers, the applicability of analytical queueing models may be limited. In such cases, analysts 
often find that simulation is a more practical approach to studying system behavior.
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Exercises

7.1 Cars arrive at a toll gate on a highway according to a Poisson distribution with a 
mean rate of 90 miles per hour. The times for passing through the gate are exponen-
tially distributed with mean 38 seconds, and drivers complain of the long waiting 
time. Transportation authorities are willing to decrease the passing time through 
the gate to 30 seconds by introducing new automatic devices, but this can be justi-
fied only if under the old system the average number of waiting cars exceeds five. 
In addition, the percentage of gate’s idle time under the new system should not 
exceed 10%. Can the new device be justified?
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7.2 A computer center has one multi-user computer. The number of users in the cen-
ter at any time is ten. For each user, the time for writing and entering a program 
is exponential with mean rate 0.5 per hour. Once a program is entered, it is sent 
directly to the ready queue for execution. The execution time per program is expo-
nential with mean rate of six per hour. Assuming the mainframe computer is oper-
ational on a full-time basis, and neglecting the possibility of down-time, find

 a. The probability that a program is not executed immediately upon arrival in the 
ready queue

 b. Average time until a submitted program completes execution
 c. Average number of programs in the ready queue
7.3 The mean time between failures of a computer disk drive is 3,000 hours, and fail-

ures are exponentially distributed. Repair times for the disk drive are exponen-
tially distributed with mean 5.5 hours, and a technician is paid $15.50 per hour. 
Assuming that a computing lab attempts to keep all drives operational and in 
service constantly, how much money is spent on wages for technicians in one year?

7.4 Printer jobs are created in a computing system according to a Poisson distribution 
with mean 40 jobs per hour. Average print times are 65 seconds. Users complain 
of long delays in receiving their printouts, but the computing lab director will be 
willing to purchase a faster printer (twice as fast as the present one) only if it can be 
demonstrated that the current average queue length is four (or more) jobs, and only 
if the new printer would be idle for at most 20% of the time. Will the lab director be 
able to justify the acquisition of the new printer?

7.5 Computer programs are submitted for execution according to a Poisson distribu-
tion with a mean arrival rate of 90 miles per hour. Execution times are exponen-
tially distributed, with jobs requiring an average of 38 seconds. Users complain of 
long waiting times. Management is considering the purchase of a faster CPU that 
would decrease the average execution time to 30 seconds per job. This expense can 
be justified only if, under the current system, the average number of jobs waiting 
exceeds five. Also, if a new CPU is to be purchased, its percentage of idle time 
should not exceed 30%. Can the new CPU be justified? Explain all considerations 
fully. Make the necessary calculations, and then make an appropriate recommen-
dation to management.

7.6 Customers arrive at a one-window drive-in bank according to a Poisson distribu-
tion with mean 10 per hour. Service time per customer is exponential with mean 
five minutes. The space in front of the window, including that for the car in service, 
can accommodate a maximum of three cars. Other cars can wait outside this space.

 a. What is the probability that an arriving customer can drive directly to the 
space in front of the window?

 b. What is the probability that an arriving customer will have to wait outside the 
designated waiting space?

 c. How long is an arriving customer expected to wait before starting service?
 d. How many spaces should be provided in front of the window so that at least 

20% of arriving customers can go directly to the area in front of the window?
7.7 Suppose two (independent) queueing systems have arrivals that are Poisson dis-

tributed with λ = 100, but one system has an exponential service rate with μ = 120 
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while the other system has μ = 130. By what percentage amount does the average 
waiting time in the first system exceed that in the second system?

7.8 Jobs are to be performed by a machine that is taken out of service for routine main-
tenance for 30 minutes each evening. Normal job arrivals, averaging one per hour, 
are unaffected by this lapse in the service facility. What is the probability that no 
jobs will arrive during the maintenance interval?

 Suppose the average service time is 45 minutes. How long do you think the system 
will take to recover from this interruption and return to a steady-state? Will it recover 
before the next evening? Does the recovery take a substantial part of the 24-hour day, 
so that the system essentially never really operates in a steady-state mode?

7.9 Fleet vehicles arrive at a refueling station according to a Poisson process at 20-minute 
intervals. Average refueling time per vehicle is 15  minutes. If the refueling sta-
tion is occupied and there are two additional vehicles waiting, the arriving vehicle 
leaves and does not enter the queue at this facility. What percentage of arriving 
vehicles do enter this facility? What is the probability that an arriving vehicle finds 
exactly one vehicle being refueled and none waiting in the queue?

7.10 Customers arrive according to a Poisson distribution with mean six per hour to 
consult with a guru who maintains a facility that operates around the clock and 
never closes. The guru normally dispenses wisdom at a rate that serves ten cus-
tomers per hour.

 a. What is the expected number of customers in the queue?
 b. If there are three chairs, what is the probability that arriving customers must 

stand and wait?
 c. What is the probability that the guru will actually spend more than ten minutes 

with a customer?
 d. An idle guru naps. How long in a typical day does this guru nap?
  Infrequently, but at unpredictable times, the guru himself takes off and climbs 

a nearby mountain to recharge his own mental and spiritual resources. The 
excursion always takes exactly five hours.

 e. How many chairs should be placed in the waiting room to accommodate the 
crowd that accumulates during such an excursion?

 f. Customers seeking wisdom from a guru do not want their waiting time to be 
wasted time, so they always want to bring an appropriate amount of reading mate-
rial, in case of a wait. What is the normally anticipated amount of waiting time?

7.11 A bank, open for six hours a day, five days a week, gives away a free toaster to 
any customer who has to wait more than ten minutes before being served by one 
of four tellers. Customer arrivals are characterized by a Poisson distribution with 
mean 40 per hour; service times are exponential with mean four minutes. How 
many toasters does the bank expect to have to give away in one year of 52 weeks?

7.12 Select a system in your university, business, or community that involves queues of 
some sort, and develop a queueing model that describes the system. Identify the 
customers and servers. Observe the system and collect data to describe the arrival 
and service patterns. Apply the appropriate queueing formulae presented in this 
chapter to quantify the performance characteristics of this system. Are your com-
puted results consistent with your observations?
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8
Simulation

Simulation is the process of studying the behavior of an existing or proposed system by 
observing the behavior of a model representing the system. Simulation is the imitation 
of a real system or process operating over a period of time. By simulating a system, we 
may be able to make observations of the performance of an existing system, hypothesize 
modifications to an existing system, or even determine the operating characteristics of a 
nonexistent system. Through simulation, it is possible to experiment with the operation of 
a system in ways that would be too costly or dangerous or otherwise infeasible to perform 
on the actual system itself. This chapter introduces simulation models and describes how 
they can be used in analyzing and predicting the performance of systems under varying 
circumstances.

8.1 Simulation: Purposes and Applications

Simulation has traditionally been viewed as a method to be employed when all other 
analytical approaches fail. Computer simulations have been used profitably for several 
decades now, and simulation seems to have outlived its early reputation as a method of last 
resort. Some systems are simple enough to be represented by mathematical models and 
solved with well defined mathematical techniques such as the calculus, analytical formu-
las, or mathematical programming methods. The simple queueing systems discussed in 
Chapter 7 fall into this category. Analytical methods are clearly the most straightforward 
way to deal with such problems. However, many systems are so complex that mathemati-
cal methods are inadequate to model the intricate (and possibly stochastic) interaction 
among system elements. In these cases, simulation techniques may provide a framework 
for observing, predicting, modifying, and even optimizing a system.

The use of a computer makes simulation techniques feasible. Information obtained 
through observing system behavior via simulation can suggest ways to modify a system. 
And while simulation models remain very costly and time consuming to develop and 
to run on a computer, these drawbacks have been mitigated significantly in recent times 
by faster computers and special purpose simulation languages and software products. 
Indeed, simulation packages have become so widely available and easy to use, and simula-
tion itself has such an intuitive appeal and seems so simple to understand, that a word of 
caution is in order.

Simulation languages and packages are as easy to misuse as to use correctly. Computer 
outputs produced by simulation packages can be very impressive. Particularly when other 
analytical approaches to a problem have been unsatisfactory, it is tempting to embrace 
whatever output is obtained through a sophisticated simulation process. Nevertheless, 
there is a great deal to be gained through successful simulation. Proper use of simula-
tion methodology requires good judgment and insight and a clear understanding of the 
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limitations of the simulation model in use, so that valid conclusions can be drawn by the 
analyst. This chapter presents some guidelines that should be helpful in developing the 
ability to understand and build simulation models. The advantages that may be derived 
from the use of simulation include: 

 1. Through simulation it is possible to experiment with new designs, policies, and 
processes in industrial, economic, military, and biological settings, to name a few. 
In the controlled environment of a simulation, observations can be made and 
preparations can be made to deal appropriately with the outcomes predicted in 
the experiment.

 2. Simulation permits the analyst to compress or expand time. For example, collisions 
in a particle accelerator may occur too rapidly for instruments to record, while ero-
sion in a riverbed may take place too slowly to permit any effective intervention in 
the process. By simulating such processes, a time control mechanism can be used 
to slow down or speed up events and place them on a time scale that is useful to 
human analysts.

 3. While a simulation may be expensive to develop, the model can be applied repeat-
edly for various kinds of experimentation.

 4. Simulation can be used to analyze a proposed system or experiment on a real 
system without disturbing the actual system. Experimentation on real systems, 
particularly systems involving human subjects, often causes the behavior of the 
system to be modified in response to the experimentation. Thus, the system being 
observed is then not the original system under investigation; that is, we are mea-
suring the wrong system.

 5. It is often less costly to obtain data from a simulation than from a real system.
 6. Simulations can be used to verify or illustrate analytical solutions to a problem.
 7. Simulation models do not necessarily require the simplifying assumptions that 

may be required to make analytical models tractable. Consequently, a simulation 
model may well be the most realistic model possible.

Application areas that have been studied successfully using simulation models are numer-
ous and varied. Problems that are appropriate for simulation studies include: 

• Activities of large production, inventory, warehousing, and distribution centers: To deter-
mine the flow of manufactured goods

• Operations at a large airport: To examine the effects of changes in policies, proce-
dures, or facilities on maintenance schedules, hangar utilization, or even runway 
throughput

• Automobile traffic patterns: To determine how to build an interchange or how to 
sequence traffic lights at an existing intersection

• Computer interconnection networks: To determine the optimum capacity of data 
links under time varying data traffic conditions

• Meteorological studies: To determine future weather patterns

The process of building a simulation of a system is not entirely unlike the process of 
creating other types of models that have been discussed in this book. The problem 
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formulation phase of a simulation study involves defining a set of objectives and 
designing the overall layout of the project. Building a model of the actual system 
being studied involves abstracting the essential features of the system and making 
basic assumptions in order to obtain first a simple model, then enriching the model 
with enough detail to obtain a satisfactory approximation of the real system. Albert 
Einstein’s advice that things should be made as simple as possible, but not simpler might 
be augmented by the complementary advice that a model need be only complex 
enough to support the objectives of the simulation study. Real objects and systems 
have a variety of attributes (physical, technical, economic, biological, social, etc.). In the 
process of modeling, it is not necessary to identify all system attributes, but rather to 
select just those that efficiently and specifically contribute to the objectives of the model 
and serve the needs of the modeler or analyst. (For example, if we were studying the 
structural properties of certain materials to be used in an aircraft, we would include 
such attributes as tensile strength and weight. And although we might also know the 
cost or reflectivity of the materials, these latter attributes do not contribute directly to 
the structural model at hand.) If unnecessary detail and realism are incorporated into 
the model, the model becomes expensive and unwieldy (although perhaps correct) 
and the advantages of simulation may be lost. Various types of simulation models are 
discussed in Section 8.2.

The analyst must then collect data that can be used to describe the environment in 
which a system operates. These data may describe observable production rates, aircraft 
landings, automobile traffic patterns, computer usage, or air flow patterns, and may be 
used later in experimentation. Extensive statistical analysis may be required in order to 
determine the distribution that describes the input data and whether the data are homo-
geneous over a period of time. 

Coding the simulation often involves developing a program through the use of simula-
tion languages or packages, as described in Section 8.4.

Verification of the simulation is done to ensure that the program behaves as expected 
and that it is consistent with the model that has been developed.

Validation tests whether the model that has been successfully developed is in fact a 
sufficiently accurate representation of the real system. This can be done by compar-
ing simulation results with historical data taken from the real system, or by using the 
simulation to make predictions that can be compared to future behavior of the real 
system.

Experimental design is closely related to the original objectives of the study and is 
based on the nature of the available data. Once the nature and extent of the experimenta-
tion is fully defined, the production phase begins. Simulation runs are made, and system 
analysis is performed. In some cases, an optimization algorithm is coupled with the 
simulation model to find the optimal values for certain variables in the simulation that 
would produce optimal values for certain performance measures. For example, finding 
the optimal resource levels that would maximize throughput subject to some constraints 
such as allocated budget. This is known as simulation–optimization. Upon completion 
of these phases, final reports are made of observations and recommendations can be 
formulated.
Although we will not fully discuss all of these phases, we will look more carefully 
now at some specific techniques for creating discrete simulation models. We will 
also discuss the design of simulation experiments, the use of the results, and some of 
the software systems and languages that are commonly used as tools in developing 
simulations.
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8.2 Discrete Simulation Models

A computer simulation carries out actions within a computer program that represent activ-
ities in some real system being modeled. The purpose of the simulation is to make obser-
vations and collect statistics to better understand the activity in the simulated system and 
possibly to make recommendations for its improvement.

Simulations can be categorized as either discrete or continuous. This distinction refers to 
the variables that describe the state of the system. In particular, the variable that describes 
the passage of time can be viewed as changing continuously or only at discrete points in 
time. In models of physical or chemical processes, for example, we might be interested in 
monitoring continuous changes in temperature or pressure over time, and in that case a 
continuous simulation model would be appropriate. These models generally consist of sets 
of differential equations; the rate of change in each variable is dependent on the current 
values of several other variables. Examples include process control systems, the flight of 
an airplane, or a spacecraft in orbit continuously balancing the forces of gravity, velocity, 
and booster rockets.

On the other hand, in queueing systems, events such as customer arrivals and service 
completions occur at distinct points in time, and a discrete event simulation model should 
be chosen. Continuous simulation will be mentioned again in Section 8.4, and the topic is 
thoroughly discussed in many of the references cited at the end of this chapter, particu-
larly Roberts et al. (1994). We will concentrate on discrete simulation models throughout 
the remainder of this chapter.

8.2.1 Event-Driven Models

A simulation model consists of various components and entities. The dynamic objects in 
the system are called entities. Other main components include processes, resources and 
queues. In a customer queueing system, for example, the entities may be the customers. 
Each entity possesses characteristics called attributes. The attributes of a customer include 
the customer’s arrival time and the type of service required by the customer. The servers 
would be characterized by the type of service they render, the rate at which they work, and 
the amount of time during which they are busy. Queue attributes would include the queue 
length and the type of service for which the queue is designated. Some attributes such as 
type of service required or work rate are set at the beginning of the simulation, while other 
attributes are assigned and updated as the simulation proceeds.

The system state is defined by the set of entities and attributes, and the state of the sys-
tem typically changes as time progresses. Processes that affect the system state are called 
activities. An activity in a queueing system may be a customer waiting in line, or a server 
serving a customer.

Any activity in a simulation will eventually culminate in an event, and it is the 
occurrence of an event that actually triggers a change in the system state in a discrete 
simulation model. For this reason, certain discrete simulation models are referred to 
as event-driven models. Although other views such as process oriented simulation and 
object oriented simulation are found in some of the languages that will be described in 
Section 8.4, the event-driven view is probably the most widely used discrete simulation 
approach.
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To track the passage of time in a simulation model, a simulation clock variable is initially 
set to zero and is then increased to reflect the advance of simulated time. The increment 
may be fixed or variable. One such time advance mechanism calls for repeatedly increas-
ing the clock by a fixed unit of time, and at each increment, checking the system to deter-
mine whether any event has occurred since the last increment. The disadvantage of this 
mechanism is the difficulty in selecting an appropriate interval for the clock increment. If 
the interval is too small, a great deal of uninteresting and inefficient computation occurs as 
the clock is advanced repeatedly and no events have taken place. If the interval is too large, 
several events may have occurred during the interval and the precise ordering of events 
within the interval is not registered, since all these events are assumed to have taken place 
at the end of the interval. In this way, key information may be lost. Because systems are not 
necessarily uniformly eventful throughout the duration of the simulation (i.e., there will be 
busy times and quiet times), it is virtually impossible to choose the correct or best interval 
for incrementing the simulation clock throughout the entire simulation.

An alternative, and more popular, time advance mechanism is to allow the simulation 
clock to be advanced only when an event actually occurs. The bookkeeping required to 
maintain a list of events that will be occurring, and when they will occur, is straightfor-
ward. The mechanism checks the list to determine the next event, and advances the clock 
to the time of that event. The event is then registered in the simulation. This variable incre-
ment mechanism is efficient and easy to implement.

An effective way to learn just exactly what a computer simulation does is to work through 
a simulation manually. In the following example, we will perform an event driven simula-
tion of a queueing system.

Example 8.2.1

The system we will simulate is one in which the customers are computer programs that 
are entered into a system to be executed by a single central processing unit (CPU), which 
is the service facility. As a computer program enters the system, it is either acted upon 
immediately by the CPU or, if the CPU is busy, the program is placed in a job queue 
or ready queue maintained in FIFO (first in first out) order by the computer’s operating 
system.

The service facility (the CPU in this case) is always either busy or idle. Once in the 
system, the customer (computer program in this case) is either in a queue or is being 
served. The queue is characterized by the number of customers it contains. The status of 
the server, the customers, and the queue collectively comprise the state of the queueing 
system, and the state changes only in the event of an arrival or departure of a customer. 
The input data for this simulation example are given in Table 8.1.

The first program arrives for execution at time 0. This event starts the simulation clock 
at 0. The second program arrives four time units later. The third customer arrives one 
time unit later at clock time 5, and so forth. Program execution times are two, three, 
five, and so on, time units. A quick glance at the arrival and service times shows that in 
some cases a program is executed completely before its successor arrives, leaving the 
CPU temporarily idle, whereas at other times a program arrives while its predecessors 
are still in execution, and this program will wait in a queue.

Table 8.2 shows the clock times at which each program enters the system, begins 
execution, and departs from the system upon completion of execution. Notice that the 
CPU is idle for two time units between Programs 1 and 2, for three time units between 
Programs 5 and 6, and for five time units between Programs 6 and 7. Program 9 arrives 
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just exactly as its predecessor is completing, so there is no CPU idle time nor does 
Program 9 have to join the queue and wait. Programs 3, 4, 5, 8, and 10 must wait in the 
queue before beginning execution. Table 8.3 shows the chronological sequence of events 
in this simulation.

The primary aim of a simulation is to make observations and gather statistics. 
In this particular example, we will be interested in determining the average time 
programs spend in the system (job turnaround time), the average time spent waiting, 
the average number of programs in the queue, and the amount or percent of time 
the CPU is idle. We return to this example in Section 8.3.1 to illustrate making these 
observations.

Before continuing, however, we should note that the single server queueing system 
we have just observed fails in several respects to match the M/M/1 model developed in 
Section 7.3. First of all, arrivals and service times were given deterministically in table 
form rather than being drawn from the more typical Poisson and exponential distribu-
tions. Second, the system was tracked through only ten customers and over a period of 
only 38 time units (probably a short time relative to the life of the system). Thus, because 
of the deterministic customer and service behavior and the short duration of the simu-
lation, it would be unjustifiable to claim that these results are in any way typical of the 

TABLE 8.1

Arrival and Service Times

Customer Number Arrival Time Length of Service

1 0 2
2 4 3
3 5 5
4 9 1
5 10 2
6 18 2
7 25 3
8 26 4
9 32 5

10 33 1

TABLE 8.2

Simulation Event Clock Times

Customer 
Number Arrival Time

Time Execution 
Begins

Time Execution 
Completes

1 0 0 2
2 4 4 7
3 5 7 12
4 9 12 13
5 10 13 15
6 18 18 20
7 25 25 28
8 26 28 32
9 32 32 37

10 33 37 38
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normal operation of the system. The most common way to overcome these deficiencies 
is to generate numerical values representing a large number of customers with random 
arrival patterns and service times. We require that these random values be representa-
tive of events and activities that occur in the real system. One mechanism for doing this 
is described in the following.

8.2.2 Generating Random Events

In a discrete event simulation, once an event of any type has been simulated, the most 
important piece of information we need to know, in order to advance the simulation is: 
how long until the next event? Once a customer has arrived, we need to know when the 
next arrival will occur so that we can schedule that event within the simulation. Similarly, 
upon completion of a service or upon arrival of a customer to an idle server, we need to 
know the length of time this next service will take so that we can schedule this customer’s 
departure from the system.

If we are assuming that interarrival times and service times come from some par-
ticular probability distributions, then we must have a mechanism within the simulation 
program to generate the lengths of these intervals of time and therefore to generate the 
next events in the simulated system. The general procedure will be first to generate a 
random number from the uniform distribution, to apply a mathematical transformation 

TABLE 8.3

Chronological Sequence of Events

Clock Time Customer Number Events

0 1 Arrival and begin service
2 1 Departure
4 2 Arrival and begin service
5 3 Arrival and wait
7 2

3
Departure
Begin service

9 4 Arrival and wait
10 5 Arrival and wait
12 3

4
Departure
Begin service

13 4
5

Departure
Begin service

15 5 Departure
18 6 Arrival and begin service
20 6 Departure
25 7 Arrival and begin service
26 8 Arrival and wait
28 7

8
Departure
Begin service

32 8
9

Departure
Arrival and begin service

33 10 Arrival and wait
37 9

10
Departure
Begin service

38 10 Departure
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to the uniform deviate to obtain a random number from the desired distribution, and 
then to use this random number in the simulation (perhaps as the interval of time until 
the next event).

A great deal of effort has been put into the study and development of computer programs 
to generate random numbers. Truly random numbers are typically obtained from some 
physical process, but sequences of numbers generated in this way are unfortunately not 
reproducible. Pseudorandom numbers are numbers that satisfy certain statistical tests for 
randomness but are generated by a systematic algorithmic procedure that can be repeated if 
desired. The purpose of generating pseudorandom numbers is to simulate sampling from 
a continuous uniform distribution over the interval [0,1].

The most frequently implemented algorithms belong to the class of congruential 
generator methods. These generators are fully described in books by Knuth (1981), 
Graybeal and Pooch (1980), Banks et al. (1984), Marsaglia (2003) and most introductory 
texts on simulation; and they are almost always available in any computer installation 
through simple subroutine calls. Because of the easy accessibility of these pseudorandom 
number generators, it is doubtful that a simulation analyst would need to develop 
software from scratch for this purpose. Yet, from a practical standpoint, analysts are 
encouraged to heed the following warning. Because almost every computer system offers 
at least one means of generating uniform random variates, most computer users employ 
these capabilities with faith, assume their correctness, and feel happy with the results. 
Nevertheless, blatantly bad random number generators are prevalent and may fail some 
of the standard theoretical or empirical statistical tests for randomness, or may generate 
strings of numbers exhibiting detectable regular patterns (Marsaglia 1985, Park and 
Miller 1988, Ripley 1988, L’Ecuyer 1990).

Although many simulation models appear to work well despite these defects in 
the stream of random numbers, there have been simulation studies that yield totally 
misleading results because they are more sensitive to the quality of the generators. And 
although such failures are rare, they can be disastrous; therefore, researchers are still 
actively investigating better ways to generate random numbers.

In any case, it is quite unlikely that a simulation analyst would need to develop his own 
software for this purpose. Instead we will discuss how to use a uniform deviate from the 
interval [0,1] to produce a random number from an exponential distribution, thus simulat-
ing a sampling from an exponential distribution.

A commonly used method for doing this, called the inverse transform method, can be 
applied whenever the inverse of the cumulative distribution function of the desired distri-
bution can be computed analytically.

Recall that the probability density function for the exponential distribution is given by: 
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Figure 8.1 illustrates that the range of F(x) is the interval (0,1), and suggests that uniform 
random numbers from (0,1) can be transformed into exponentially distributed numbers 
as follows. Let R denote the uniform random number from (0,1), and set F(x) = R. Then, 
x = F–1(R) and x can be solved in terms of R by evaluating: 
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This formula is called a random variate generator for the exponential distribution. It is 
often simplified by replacing (1 – R) by R, since both R and (1 – R) are uniformly distrib-
uted on (0,1), to obtain the generating formula 

 
x ln R= − 1

λ  

Therefore, whenever a simulation program requires a sample from an exponential dis-
tribution, R is obtained from a standard pseudorandom number generator, and x is com-
puted by this formula and used in the simulation.

The inverse transform method is not necessarily the most efficient method, but it is 
straightforward and can be used to generate deviates from a variety of statistical distri-
butions other than the exponential. Unfortunately, for most distributions (including the 
normal), the cumulative probability function does not have a closed form inverse. In par-
ticular, the distribution may be derived from an empirical study of the actual system. 
In practice, the distributions may not fit any of the theoretical functions. For example, 
consider a server who can perform several different types of service depending on the 
customer’s need (doctor, bank teller, mechanic). Each type of service has a non-zero mini-
mum required time plus a random variable time. However, when all types of service are 
aggregated, the resulting distribution is likely to be multi-modal, and very non-standard.

In these situations, it is common to approximate the cumulative distribution by a 
piecewise linear function, and then to apply the inverse transform method using linear 

0
0

1 − e−λx = R

F(x) = 1 − e−λx

1

x1
λ

x = −    ln (1 – R)

FIGURE 8.1
Inverse transform method.
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interpolation on each segment. Consider the example in Figure 8.2. We can construct a 
piecewise linear approximation for this cumulative distribution, as shown in Figure 8.3.

Internally, this distribution can be stored in table form, as in Table 8.4. Then, when we 
want to generate a random variate from this distribution, we select a uniform random 
number r, then search for the entry ri in the table such that ri ≤ r < ri+1. The corresponding 
service time is obtained using standard linear interpolation:

x

1

R

FIGURE 8.2
Example of non-standard cumulative service time distribution.

x

1

R
(x7, r7)(x6, r6)

(x5, r5)
(x4, r4)

(x3, r3)

(x2, r2)
(x1, r1)

FIGURE 8.3
Piecewise linear approximation of non-standard cumulative service time distribution.

TABLE 8.4

Piecewise Linear Approximation of Cumulative 
Service Time Distribution

Inflection Point
x

Service Time
F(x)

Cumulative Probability

1 x1 r1 = 0
2 x2 r2

3 x3 r3

4 x4 r4

5 x5 r5

6 x6 r6

7 x7 r7 = 1.0
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Clearly, by using a large number of piecewise linear segments, it is possible to achieve 
any desired level of accuracy. However, there is a trade-off between accuracy and the time 
required to search repeatedly through large tables.

For further and more general discussions of this method, see the books by Ravindran 
et al. (1987), Schmeiser (1980), and Law (2007). These references also contain descriptions 
of other methods, such as the rejection method, the composition method, a derivation 
technique, and approximation techniques.

8.3 Observations of Simulations

Now that we have discussed some of the techniques for generating the events that 
push a simulated system through time, let’s consider what observations can be made 
during the simulation that would help to characterize or understand the system being 
studied.

8.3.1 Gathering Statistics

Because we are currently concerned primarily with the simulation of queueing systems, 
it is reasonable that the information we would like to obtain from the simulation is just 
exactly the same type of information that we would calculate with analytical queueing for-
mulae, if we could (i.e., if we had a queueing system in steady-state with known distribu-
tions describing arrival and departure patterns). In particular, we might like to determine 
the average time a customer spends in the system and waiting, the average number of 
customers in the queue, and the utilization factor of the service facility.

We can return to Example 8.2.1 and show how such information can be gathered. It is 
important to realize, however, that as we determine these measures of system behavior, 
we are doing so only for the specific system with the particular arrivals and departures 
given in the table, and only for the particular time interval covered by these events. No 
generalization can be drawn about typical behavior of the system over the long term. (If it 
is desirable to make inferences about the steady state characteristics of a simulated system, 
then a number of issues need to be considered. We will return to this subject after we work 
through our Example.)

8.3.1.1 Average Time in System

For every customer i, compute 

 

T Time spent in the system

Time of service complet

i =

= iion Time of arrival−  
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Then accumulate the sum of these Ti and divide by the number of customers N: 

 
Average time in system

T

N

i

i=1

N

=









∑
 

In the simulation, initialize the sum to zero; then at every service completion event, com-
pute the Ti for this customer and add it to the sum. At the end of the simulation, perform 
the division. In the Example 8.2.1, we can obtain the Ti from Table 8.2 and compute the sum 

 2  3  7  4  5  2  3  6  5  5 42+ + + + + + + + + =  

Then the average time in the system for these ten programs is 42/10 = 4.2 time units.

8.3.1.2 Average Waiting Time

For every customer i in the system, compute 
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Then accumulate the sum of these Wi and divide by the number of customers N: 
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In the simulation, initialize the sum to zero; then at every event corresponding to service 
beginning (or a departure event), compute the Wi for this customer and add it to the sum. 
At the end of the simulation, perform the division. In our example, from Table 8.2 again, 
we obtain the waiting time sum: 

 0  0  2  3  3  0  0  2  0  4 14+ + + + + + + + + =  

Then the average waiting time for these ten programs is 14/10 = 1.4 time units.

8.3.1.3 Average Number in Queue

If we let Li denote the number in the queue during the i-th time interval, then over U time 
units, 
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Rather than making an observation of Li at every time unit, it is more practical to observe 
the queue length at every event, and to multiply that queue length by the number of 
time units that have elapsed since the most recent event that affected the queue length. 
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This bookkeeping requires that we maintain a time duration only for every queue length 
that occurs during the simulation. In our example, Figure 8.4 charts the queue length 
during each of the 38 intervals of time. Note that the queue length in this case is always 
either 0, 1, or 2:

 

Queue length 0 for 26 time units

1 for 10 time units

2 fo

 =

=

= rr 2 times units

Then, over U = 38 time units, 
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8.3.1.4 Server Utilization

Upon every event, determine the service facility status (busy or idle) and record it. Then, 

 
Server utilization factor =

Number time units busy
Total number tiime units  

As illustrated in Figure 8.5, our CPU is busy executing programs during 28 time intervals 
and is idle during 10 time intervals. Therefore, the 

 
Server utilization factor
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FIGURE 8.4
Queue length.
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Note that the same information on server utilization can be obtained from Figure 8.5 by 
computing the shaded area under this step function.

Observations such as these allow us to make judgments concerning, for example, the 
advisability of acquiring an additional CPU to reduce waiting time. In this example, with 
an average waiting time of 1.4 time units (a fairly small fraction of average execution time), 
a queue that is empty more often than not, and a CPU that is idle 26% of the time, it seems 
unlikely that an additional CPU would be warranted in a general purpose computing 
environment.

8.3.2 Design of Simulation Experiments

In designing a system simulation in which events are to be generated randomly (rather 
than introduced into the system deterministically), several questions arise: 

• How to start the simulation?
• What to measure?
• What data to gather?
• How long to run the simulation?
• How to recognize whether the system has reached equilibrium?
• How many simulation runs to make?
• What recommendations to make concerning modification of the system being 

simulated?

We do not necessarily intend to offer answers to these questions, but rather merely to raise 
the issues that must be considered by the analyst or system designer.

Once a simulation program is developed, and is ready to run, the initial system status 
must be determined. It may be reasonable to initialize a system as having idle servers and 
no customers, and let customers begin to arrive randomly. Eventually, there will emerge 
a certain pattern of queue utilization and service utilization, but when exactly does the 
real pattern emerge? For example, when a bank opens its doors at 9 a.m., it makes sense to 
assume that the system is empty when it starts. However, if we are simulating a hospital, 
we probably should run the simulation in start-up mode for several days before enough 
patients have been accumulated so that the apparent simulated demand on the system 
becomes realistic.

When is it then appropriate to begin observing the system and collecting data about 
queue length, waiting time, and server utilization? It is not valid to start collecting sta-
tistics until the system has reached its steady state, but this point is difficult to identify 

0 5
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Busy

10 15 20 25 30 35 38
Time

FIGURE 8.5
CPU (server) utilization.
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precisely. How long should the simulation run after initialization? It would be useful to 
somehow acquire information in advance (perhaps from previous similar simulations) 
that describes the system after the initial irregular system behavior patterns have disap-
peared. It is, however, often difficult to know this in advance.

The questions of what to measure and what data to gather depend of course on the 
original purpose of performing the simulation. In simulating waiting line systems, there 
are several obvious performance criteria of common interest. In simulating more general 
systems, a great deal of data is potentially available; yet gathering all this data is costly 
and may complicate the simulation program. The efficiency of a simulation may depend 
on the clear-headed analyst’s decision to measure only the behaviors that are relevant to 
the study.

Perhaps the most important, and most expensive, question is how long to run a simula-
tion, and how to know when additional computation is not going to yield additional infor-
mation. Recall from our study of Markov and queueing systems that not all systems ever 
reach a steady state. Some display periodic behavior or other unstable patterns. It may be 
difficult to know in advance whether the system being simulated is guaranteed to reach a 
steady state. If it does eventually stabilize, we know that the length of time it takes for this 
to occur depends on the initial conditions. The only way to make the decision of how long 
to run a simulation is to gather data, accumulate performance measures (such as average 
queue length), and compare these measures with those measured earlier in the simulation. 
When they cease to change significantly, it might be reasonable to surmise that a steady 
state has been reached. (It could of course be a temporary phenomenon. How can we know 
for sure?)

Once a simulation program is developed and all the design parameters for a single 
run have been established, the next question is how many runs to make. Presumably 
there will be some statistical variations in the system performance measures obtained 
during each run. So how many samples do we need in order to be confident that we 
have captured the reality of the system being modeled? Do we make a fixed number of 
runs? Or enough runs that the variance in outcomes is acceptably low? And if we make 
numerous runs, should they all cover the identical span of simulated time, or should the 
simulated time intervals be varied or shifted? Should the various runs involve differ-
ent system parameters? (For example, we might wish to compare the performance of a 
computer system with one CPU with that of a system having two CPUs, each with 60% 
of the speed of the single CPU.) To make such comparisons, it is likely that a battery of 
experiments would have to be performed for each case. Based on such observations, 
recommendations could be made for alternative systems having different strengths, 
advantages, or costs.

8.4 Software for Simulation

Simulation studies can be facilitated by a wide variety of software packages and languages. 
Specialized computer programming languages have been introduced over the past several 
decades to assist simulation analysts in the development and use of simulations of real 
systems. Simulation models have also been implemented in various traditional general 
purpose programming languages such as Fortran, C, C++, Java, and Python, among oth-
ers. Simulations developed directly in general purpose, high level languages often execute 
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more efficiently than those implemented in specialized simulation languages. However, 
most analysts find that it is much more efficient and beneficial to use a special simulation 
language rather than to try to develop a simulation program from scratch. A competent 
analyst may lack extensive programming skill, and may prefer to concentrate instead on 
the system being modeled, using the most convenient tools possible.

Various criteria will determine an analyst’s choice of a simulation language or software 
package. A first consideration is likely to be the analyst’s own programming capabilities 
and whether a given language is easy to learn and complements the analyst’s skills and 
experience. A non-programmer may choose a language that is easier to learn, has greater 
built-in support, and provides less flexibility, whereas a highly skilled programmer may 
be more adept at learning a language that gives him more power and flexibility; and this 
additional control permits the ability to model unusual systems in specialized applica-
tions. The nature of the system being modeled can also influence the choice of software; 
some systems allow the user to add customized subroutines to model non-standard types 
of activities.

Most simulation software products provide automatic mechanisms for collecting statis-
tics, generating reports, and even debugging the simulation. Additional considerations 
may include the standardization or portability of the language among machines and other 
software environments. In this section we examine some of the features of several widely 
used simulation languages and software packages. Further information may be found in 
published surveys of simulation software (Swain 2017), which review and chart the capa-
bilities of many software packages for simulation.

One of the earliest languages for simulating the dynamic performance of systems is 
GASP (General Activity Simulation Program), a collection of Fortran subroutines devel-
oped by Pritsker (1974). GASP subroutines support the development of event-driven and 
continuous simulations and require subroutines for system initialization, time advance 
mechanisms, scheduling future events, random variate generators, routines to collect sta-
tistics, and report generators. Most of these are supplied as a part of the GASP package; 
however, the programmer must create a main (driver) routine and fill in the details of 
initialization and event management.

SIMSCRIPT (SIMple-SCRIPT) was developed at the RAND Corporation during the 
1960s and was originally an easy to use, Fortran based, system for discrete event simula-
tion and modeling. Over time, the system underwent numerous revisions, evolving into a 
high level language available for most platforms, and capable of supporting event driven 
and process oriented simulations, with extensions for continuous simulations and can run 
on different platforms (Russell 1993, Rice et al. 2005).

GPSS (General Purpose Simulation System) was originally developed at IBM around 
1960, and because of its early origin and ease of learning, was among the most widely 
used simulation languages, especially in the 1970s and 1980s (Schriber 1974, Gordon 1978, 
Solomon 1983). GPSS was then succeeded by GPSS/H with additional features and is typi-
cally applied to general queueing analysis, manufacturing, and scheduling and can be 
used under Windows platforms. The most modern version of GPSS is aGPSS which comes 
with a graphical user interface and can run on both Windows and Macintosh (See Schriber 
[1993] and Hendriksen [1993]).

ARENA is currently among the most widely used software packages for discrete-
event simulation. It started as a command language SIMAN and then SIMAN became 
the engine around which ARENA was built as its Graphical User Interface which 
allows the user to drag and drop simulation objects and libraries. It includes input anal-
ysis and output analysis tools as well as simulation optimization add-in (OptQuest). 
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It is a general modeling language that is mostly used for process modeling and it works 
under Windows only at this point.

AnyLogic is a modeling environment that is written in Java and has become very popu-
lar in the recent years especially as it allows building not only discrete-event models but 
also agent based models and system dynamics models. Hybrid models of these three para-
digms can also be developed using this object oriented modeling environment which runs 
on Windows, Mac and Linux.

FlexSim is another object oriented process modeling environment with an outstanding 
3D animation capability. It is written in C++ and allows users to augment their models 
with C++ functional code if necessary. It includes ExpertFit for statistical distribution fit-
ting and has analysis tools.

SAS is a widely used software system that provides support for large models and com-
plex simulation experiments. The graphical user interface offers convenient tools for creat-
ing, executing and analyzing simulations. It integrates with SAS Simulation Studio for 
source data and for presenting results of simulation studies. It runs on Windows, Mac and 
Linux workstations.

Many simulation tools and development environments have emerged over the past 
50 years and we recognize that we cannot explore all of them in this book. Additional 
examples of such packages include AutoMod, ExtendSim, ProModel, Simio, SimProcess, 
Simula8, and Witness. The reader is referred to the regularly published surveys of simula-
tion software (Swain 1997, 1999, 2001, 2003, 2005, 2007, 2009, 2011, 2013, 2015, 2017), which 
review and chart the capabilities of many software packages for modeling and simulation. 
Many simulation languages and software packages had emerged and vanished over the 
years as more efficient, convenient, and powerful packages were developed. The reader 
can compare the surveys published by Swain over the years to see which ones have been 
removed from the list, and which are still on.

Furthermore, a list of open source and commercial simulation packages can be found 
on the Internet by running a quick web search. For example, a comprehensive list 
of simulation software is available on Wikipedia at https://en.wikipedia.org/wiki/
List_of_discrete_event_simulation_software.

In recent years, cloud computing has started to change the long standing tradition of 
having software installed locally on computers. Instead, software is installed in the cloud 
on servers hosted by computing farms, and users access the software application via 
web browser most of the time. It seems that this phenomenon is on its way to becoming 
the standard for most software systems, including simulation software. An example of 
this trend is ClouDES, a web based, cloud deployed, discrete event simulation platform 
developed at the Virginia Modeling, Analysis and Simulation Center (VMASC) at Old 
Dominion University. This cloud based system can be accessed via a web browser without 
the need to install simulation software on the client side. Instead, users can develop mod-
els and execute them through a web browser.

Because simulation studies have traditionally had the reputation of consuming a great deal 
of computer time for execution of large simulations, substantial amounts of research have 
been devoted to the development of technologies to use parallel computers to increase the 
execution speed of simulation programs. This effort has been accelerated and made easier 
by advances in computer technology where more processing power can now be packed 
in smaller computers, making it possible to run multiple parallel processors on the same 
machine. Despite the significant progress made in computer hardware and software, develop-
ing simulation models is still a time consuming process for developers and analysts starting 
with the conceptual development, to implementation and finally validation of simulations.

https://en.wikipedia.org/wiki/List_of_discrete_event_simulation_software
https://en.wikipedia.org/wiki/List_of_discrete_event_simulation_software
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8.5 Illustrative Applications

8.5.1 Finnish Air Force Fleet Maintenance (Mattila et al. 2008)

The aircraft in Finland’s Air Force fleet typically require several hours of maintenance for 
every hour of flight activity. Depending on the type of aircraft, maintenance involves a 
variety of policies and procedures, task times, workforce personnel, and equipment, parts 
and materials handling. Maintenance system performance has an effect on aircraft avail-
ability, which is defined to be the number of aircraft that can be used in flight missions. 
Therefore, an understanding of all aspects of aircraft maintenance decision making is 
essential to measuring and maintaining the operational capability of the fleet. Analysts 
determined that discrete event simulation was the most appropriate analytical tool for 
studying the fleet maintenance system and its effect on aircraft availability.

An adequate model of a maintenance system for flight operations must address the 
types and number of aircraft, planned and unplanned maintenance, air bases and repair 
and maintenance sites, levels of maintenance staff, and scenarios for normal flight mis-
sion assignments as well as missions involving conflict and hence increased exposure to 
damage. The fleet in this case consisted of F-18 Hornet fighters, Hawk Mk 51 jet trainers, 
and certain other aircraft used in transportation, surveillance, and flight training. Various 
Air Force operational units have facilities for basic inspections, routine maintenance, or 
specialized shops for more complex tasks or repairs.

The goal of aircraft maintenance during normal peacetime is to preserve the long term 
operational readiness of the fleet. Enough aircraft must be available for routine training 
and reconnaissance missions. Everyday maintenance varies greatly based on the type of 
aircraft, but consists generally of preflight inspections, inspections following completed 
missions, periodic scheduled maintenance based on accumulated hours in flight, and com-
ponent replacements or repairs.

Maintenance during conflict conditions must respond to incidences of specific battle 
damage in which repairs often require unique skills, materials, or replacement parts not 
needed under normal conditions. The goal of this type of maintenance is restoring failed or 
damaged aircraft and returning them to mission-capable status as quickly as possible. In 
order to achieve this goal, it may be judicious to reduce or suspend normal periodic main-
tenance in favor of keeping aircraft available for high intensity operations. Conflict condi-
tions may include relocation or decentralization of maintenance facilities, and increased 
durations of various maintenance or repair tasks.

The simulation model for the Finnish Air Force fleet was designed to be capable of rep-
resenting all the possible events related to different types of aircraft, and including the 
expected durations and frequencies of each type of maintenance, and materials or part 
requirements. The task requirements for time, personnel, and materials are estimated or 
represented by probability distributions. Maintenance operations are simulated under 
both normal and conflict scenarios. The time advance mechanism in the simulation must 
account for time spent by an aircraft awaiting maintenance or in transit to an appropriate 
maintenance site; time waiting for materials, spare parts, or tools, and time waiting for 
available maintenance mechanics or other crew.

In this simulation, the Finnish Air Force provided much of the actual flight operation 
and maintenance data and statistical parameters needed for the study. In cases where data 
were not directly available, analysts interviewed Air Force expert personnel who cooper-
ated ably by offering estimates, insights, and suggestions that contributed significantly to 
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an accurate and successful simulation project. The simulation was developed with ARENA 
software based on the SIMAN language. The implementation of the model was validated 
by running it using actual input data and parameters, and observing that the simulation 
yielded results that were consistent with outcomes that had been observed in actual opera-
tional performance in the past. Following validation, numerous simulation experiments 
allowed analysts to vary the inputs and parameters, and predict system performance under 
conditions not yet experienced but that may face the Air Force in future operations.

In this simulation project, analysts created a tool that helped study how maintenance 
resources, policies and operating conditions influenced aircraft availability. This tool 
facilitated forecasting aircraft availability, analyzing and planning maintenance resource 
requirements, and studying the feasibility of making modifications to periodic mainte-
nance programs and changes to other operational parameters. For example, planners and 
representatives from various levels within the Air Force wanted to maximize the opera-
tional capability of the fleet under conflict conditions. To this end, the simulation provided 
information on the expected number of aircraft available and the maximum number of 
flight missions that can be conducted during conflict conditions. In particular, simulation 
results revealed that a maintenance system sized for normal operating conditions is likely 
to encounter difficulties in conducting the maintenance needed during conflict, even if 
battle damage is small. Simulation studies can guide the Air Force in planning how main-
tenance resource needs can be met in conflict scenarios, including possibilities of suspend-
ing certain normal maintenance activities temporarily.

In addition to meeting the goals discussed earlier, unanticipated benefits accrued from 
the simulation project. Creating the maintenance model required extensive cooperation 
and discussions involving the simulation researchers, flight experts, mission specialists, 
and maintenance professionals. This interaction contributed significantly to a more thor-
ough understanding of the entire fleet command, and it opened up potential for improved 
communication among personnel throughout the Air Force. The simulation model has 
been shared with other units in the Finnish Air Force for related maintenance studies. And 
the simulation also was found to be useful for training purposes, in which graduates of 
the Finnish Air Force Academy learned to use the simulation and applied it to their own 
projects in various other areas of study.

8.5.2 Simulation of a Semiconductor Manufacturing Line (Miller 1990)

Turnaround time is often defined to be the elapsed time from start to completion of a 
manufacturing process. Turnaround time may be more important in semiconductor fabri-
cation than in any other industry because the longer a device is in the fabrication process, 
the greater the opportunity for contamination. And even in strict clean room environ-
ments, particulate contamination onto wafer surfaces over time has a negative effect on 
product yields.

Variation in the time between steps in the fabrication process is also a source of lower 
product yields, because certain sequential processes performed minutes apart produce 
very different results from the same processes performed hours apart, just simply because 
the physical properties of the materials change over time.

Slow turnaround also means delays in recognizing problems on the assembly line 
because the functional characteristics of the manufactured devices cannot be tested until 
the fabrication of the circuits is complete. The correctness of large numbers of items in 
progress therefore may be unknown, pending completion of initial manufacturing lots.
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Just as important as turnaround time is throughput, defined to be the number of 
manufactured items completed per unit time. Semiconductor manufacturing facilities 
cost hundreds of millions of dollars to build, equip, and operate, and it is essential to 
obtain maximum utilization of these resources to attain a competitive cost per wafer.

Assembly line loading, the amount of work in progress, affects both turnaround time 
and throughput. Standard throughput analysis techniques suggest that heavy line loading 
(to maximize throughput) ensures that the expensive tools and other manufacturing 
resources never starve for work. On the other hand, queueing theory analysis demonstrates 
that turnaround time is minimized by having minimal line loading, as this will eliminate 
the time spent in queues waiting for manufacturing resources.

These conflicting indications make it difficult to determine the most advantageous level 
of work in progress. Wafer fabrication involves hundreds of different tools and the manu-
facturing process associated with each tool depends on many variables. Because of the 
complexity of the semiconductor manufacturing process, one of IBM’s facilities found 
that analytical methods of analysis were inadequate. Analysts there turned instead to 
the development and use of a simulation model to analyze their stochastic, discrete event 
system.

Wafer products manufactured in this assembly line required more than 300 processing 
steps on 100 different tools. The average turnaround time in the original system was not 
adequate to support the requirements of new product development. It was therefore desir-
able to cut this time in half, but using only the fabricator’s existing tools, human resources, 
and control capabilities. Thus, the only allowable modifications were to center around 
assembly line scheduling policies to achieve the desired turnaround time and throughput.

Early in the study, it was discovered that critical data about the system were either not 
available or outdated. This then necessitated a systematic analysis and review of current 
processes and tools, flow times, equipment capabilities, and reliabilities, that resulted in an 
extensive database which would prove to be of immense value both during and after the 
simulation study. (The importance of having accurate and up to date information about 
any system being studied cannot be over-emphasized.)

The simulation model had to accurately represent such key characteristics as process 
flows, tool capabilities and options, tool failures, rework levels, process yields, opera-
tors, priority rules, lot sizes, and storage areas for work in progress. An initial attempt 
to use a generic, pre-developed simulation package proved unsatisfactory in represent-
ing all of these details, and did not allow customized logic needed for this study. The 
requirements of this project were met when the analysts chose the Systems Modeling 
Corporation’s SIMAN simulation language which is currently known as ARENA (refer 
to Pegden et al. [1991] for a readable introduction to SIMAN and Kelton et al. [2014] for 
ARENA).

In this study, the experimental frame defined key parameters describing processes, 
resources (tools), routings and layouts, scheduling policies, and stochastic events. Most 
of the information required for the experimental frame structures was obtained from the 
database developed for this simulation. Not only are input parameters specified in the 
experimental frame, but also output statistics such as queue time, queue length, tool and 
operator utilization, throughput, and yield. Depending on the process being described 
and the desired output, experimental frames in this simulation study contained from sev-
eral hundred to tens of thousands of entries.

The model frame contained all the control logic necessary to describe the manufactur-
ing process, including the movement of wafers through the hundreds of operations and 
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their associated tools, as well as subsidiary activities such as the transporting of wafer lots 
between operations and the storage and queueing of lots waiting for resources. The model 
was run on both personal computers and mainframes, but extremely large experimental 
frames were not well-supported on PCs due to memory limitations.

Simulation experiments were performed to analyze line-scheduling policies, line-
loading levels, and lot priorities. The most significant finding was that a 30% reduction in 
line loading (from current levels) would produce a 17% reduction in turnaround time, with 
no deterioration to line-throughput performance. This improvement was achievable with 
no additional tooling, staffing or change in product mix—a surprise to many analysts 
who did not believe that line scheduling policies alone could lead to major performance 
enhancements without additional investments in resources.

Further scrutiny of simulation results revealed a number of other (minor) inefficiencies 
such as bottleneck points and lot-sizing levels, which could be remedied to obtain certain 
secondary improvements to the system.

Almost all of the recommendations made by the analysts on the basis of the simulation 
results were implemented, and over a six month period, line turnaround times improved 
25%, while throughput rates increased slightly and the number of operators assigned to 
the line decreased. The study also fostered several advantageous side effects, including 
improved manufacturing process descriptions, better information for planning, and more 
thorough measurements and reporting capabilities, as well as identifying improvements 
that could be made in the future in case it became desirable to acquire additional resources 
or make further line-scheduling policy changes.

This successful simulation project provided insights into general semiconductor manu-
facturing performance in addition to the specific information about the actual semicon-
ductor line modeled. It serves as an illustration of the ability of simulation techniques to 
profitably analyze complex real-world applications.

8.5.3 Simulation of Eurotunnel Terminals (Salt 1991)

In December 1990, Britain and France were linked by a tunnel that was built by a consor-
tium of companies working cooperatively to construct this underground/undersea link. 
Eurotunnel is the company responsible for operating the tunnel.

Two separate tunnels actually carry two distinct types of rail traffic. High speed pas-
senger service provides connections between London, Paris, and other major European 
cities. Shuttle trains carry cars and other vehicles whose drivers and passengers accom-
pany their vehicles between Folkestone in the United Kingdom and Coquelles (near 
Calais) in France. These vehicles pass through immigration, customs, and security 
checks upon entering a terminal, and drive away immediately upon arrival at their 
destination.

To optimize procedures at the terminals, it was first necessary to fully understand the 
pattern of day to day activities in each terminal. It was decided that a simulation model 
of a terminal would provide the most valuable basis for studying how a terminal han-
dles the predicted demand. This study began with an interesting process of selecting the 
appropriate simulation tools. The final product was to be placed directly in the hands of 
management, and needed to be developed quickly and within existing guidelines and 
standards.

Several languages were considered on the basis of their various strengths. SIMULA 
was favored because of its object oriented approach, but the SIMGRAPHICS package in 
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SIMSCRIPT II.5 was attractive because of the graphics presentation capabilities that would 
appeal to the managers who would ultimately be using the system.

The winning contender was MODSIM II, an object oriented language that also fully 
supports process based simulations. The analysts noted that MODSIM II supports mul-
tiple active methods and multiple inheritance, both of these being popular language 
features among proponents of object oriented programming. The language was easy to 
modularize, and also had a completely integrated graphics package. In short, MODSIM 
II was deemed to offer a practical combination of object oriented power and a good user 
interface.

A simulation of the Folkestone terminal was developed to model the flow of vehicle traf-
fic through queues and service facilities to pay tolls, pass British and French customs and 
immigration, undergo security checks, and eventually to be placed on a shuttle train. The 
goal of this phase of simulation was to establish expected queue lengths and throughput 
times, and estimate the adequacy of overflow parking lots and waiting areas. Vehicles 
are classified as tourist vehicles or heavy goods vehicles and these two categories are tracked 
through the system via separate service facilities.

Vehicles are the objects that are acted upon by various methods for paying tolls and 
passing through checkpoints. Some methods deliver constant time service, while others 
(such as security) have service times modeled with exponential distributions (because most 
security checks are brief, but a few are much more extensive and require a longer time). 
Each service facility has the capability to reject a vehicle, so that the vehicle is removed 
from the system and not passed on to the next service facility. The simulation provides 
information on average queue lengths and average waiting times for vehicles.

Animated output and presentation graphics were used successfully in giving compre-
hensible output to managers, but were also helpful during the program debugging stages. 
The original simulation was developed on a DEC station, but networked so that managers 
can easily access the simulation from their own desktops with output delivered to their 
local printers.

8.5.4 Simulation for NASA’s Space Launch Vehicles Operations (Kaylani et al. 2008)

For over three decades, NASA’s Space Shuttle had been the only Reusable Launch Vehicle 
(RLV) used to deliver cargo to space. Almost a decade prior to the end of the Space Shuttle 
program in 2011, NASA started evaluating options and approaches for replacement pro-
grams that were more effective in terms of cost, reliability, safety and availability. It was 
well understood that it was necessary to study and compare future competing designs 
consistently to improve upon the Space Shuttle’s cost, performance and turnaround time 
before pursuing the large undertaking of a new RLV. Previous estimates of the Shuttle’s 
operational performance proved overly optimistic, when NASA predicted originally 
50–100 flights per year at $6 million per flight. These estimates were off by an order of 
magnitude for the flight rate and by two orders of magnitude for cost (the Shuttle flew 
five to ten times a year at a cost of about $600 million per flight). One of the problems of 
most estimates was that they tended to assume best-case scenarios and failed to take into 
account factors that can cause operations to take longer, flights to be delayed and costs to 
increase.

As simulation emerged as a viable tool to model complex systems, many industries, 
including NASA, started using it to make more accurate predictions. Discrete Event 
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Simulation (DES) has been widely used for studying processes and has been frequently 
used in many NASA studies, including those for the Space Shuttle (Mollaghasemi et al. 
2000, Cates et  al. 2001, 2002). In order to compare RLV design alternatives fairly and 
consistently, NASA funded the development of the Generic Simulation Environment 
for Modeling Future Launch Operations (GEM-FLO) to predict processing turnaround 
times and other effectiveness criteria and to support making key business and pro-
gram  decisions. The  primary motivation behind the development of GEM-FLO is 
to reduce the time and effort required to study the different system designs using 
simulation.

The underlying simulation model was developed using ARENA discrete event mod-
eling software and was generically designed to be easily configured for the specific 
characteristics of each proposed RLV and the underlying processes needed for their 
operations. It accepts design characteristics and operational inputs from the user, and 
uses them to configure a simulation model that properly reflects the ground processing 
flow and requirements of that RLV. For example, every RLV is expected to start with 
mission planning and go through ground processing, vehicle integration, launch, mis-
sion execution, and landing. Each vehicle is expected to have multiple Flight Hardware 
Elements (FHEs), such as orbiters, boosters and fuel tanks. For a certain vehicle design, 
the number of FHEs, the necessary processing facilities and flow are entered by the 
user via a graphical interface and the simulation model is configured accordingly. The 
elements are then expected to merge into an integrated vehicle at an integration facility 
according to a specific flow and requirements before it moves to the next stage. Process 
information for all stages that a certain vehicle must go through is defined by a user 
who is expected to be involved in the vehicle design but not necessarily a simulation 
expert.

There is a trade-off between how generic and how detailed a model can be; the more 
detailed the requirements are, the less generic the model will be. In this application of 
DES, however, RLVs have common core processes that do not deviate drastically from 
each other, and a generic model can account for variant designs. For example, in case 
of the Space Shuttle, the solid rocket boosters, which are one of the FHEs, fall into the 
ocean after they burn out and then they go through a retrieval process. On the other 
hand, if a new RLV concept uses boosters that fly back on their own as a hypothetical 
example, we can still consider that there is a retrieval process but it uses different times 
and resources (instead of falling into the ocean and taking certain amount of time for 
divers to retrieve them, they land on a runway and take a different amount of time and 
resources for example).

When the simulation model is executed, it provides a number of performance measures 
including operations turnaround time, expected flight rate, and resource utilizations, thus 
enabling users to fairly assess multiple future vehicle designs using the same generic tool. 
Of course there is a limit to how refined the granularity of a generic model can be; if a 
model must be very detailed, then it might be more effective to develop separate models 
for each RLV instead of one generic model for all of them.

Since simulation validation of future systems is in general challenging due to nonexis-
tence of historical data, the output produced by GEM-FLO from the ARENA software was 
validated using the Space Shuttle historical data. GEM-FLO was used by several NASA 
programs including the Next Generation Launch Technology (NGLT) Program, the Orbital 
Space Plane (OSP) Program, and the Crew Exploration Vehicle (CEV) Program.
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8.6 Summary

Simulation techniques permit analysts to study the behavior or performance of sys-
tems by creating a computer based model or imitation of a real system or process 
operating over a period of time. Simulation further allows for experimental studies 
and analyses in a hypothetical context that would be too expensive or too dangerous 
to carry out in an actual system.

Building a simulation is itself a complex process. After a problem is formulated and a 
mathematical or conceptual model built, data must be collected that typifies the actual 
environment in which the simulated system operates. Modeling the activities of the real 
system and generating random events that could occur in the real system are among the 
most critical aspects of simulation development.

Simulation would be an arduous and impractical analysis to perform manually; there-
fore, the process is automated by developing computer programs to perform the simulation. 
Steps must be taken to ensure that these programs are correct and appropriate for the study 
at hand. After simulation experiments are designed, the simulation study enters its produc-
tion phase, during which the scenarios of interest are carried out via execution of the com-
puter program. Analysts observe the computer simulation and gather statistics to compose 
a comprehensive picture of various aspects of the simulated system’s performance.

By simulating a system, it is possible to make observations of the performance of an 
existing system, to determine the operating characteristics of a nonexistent system, or to 
project modifications to an existing system.

Key Terms
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attributes
collecting data
coding
discrete simulation
entities
event
experimental design
inverse transform method
problem formulation
production
pseudorandom numbers
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simulation models
simulation–optimization
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validation
verification
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Exercises

8.1 Select three appropriate applications of simulation analysis—one each from a busi-
ness, engineering, or environmental setting. In each case, explain why analytical 
models might be inappropriate or infeasible; justify how simulation could success-
fully allow a useful and valid analysis of your chosen systems; and speculate on 
what might be learned from such a simulation study.

8.2 Consider simulating the operation of an emergency health clinic. Identify what 
issues should be studied, the questions to be investigated, uncontrollable charac-
teristics and constraints within the clinic, controllable aspects of the operation of 
the clinic, and measures of performance of the clinic.

8.3 Suggest an appropriate method of gathering data for use in simulating the opera-
tion of the clinic described in the previous question.

8.4 Write a computer program that generates a sequence of random numbers that are 
Poisson distributed, with λ = 10.

8.5 Select a favorite bookstore or grocery store, and observe the pattern of customer 
arrivals at the checkout facility. Develop a simulation of the customer arriv-
als by writing a computer program that starts a software clock at time zero, 
then prints the times at which customers arrive over a four-hour period of time. 
Analyze the times, and determine the longest, shortest, and average interarrival 
times.

8.6 Select a traffic intersection that is convenient for you to observe. Identify the physi-
cal entities that characterize this intersection (such as lanes, directions of traffic 
flow, stoplights, pedestrian walks, and any obstructions). Observe the operation 
of the intersection and notice its operating characteristics (such as number of vehi-
cles, patterns of arrival of vehicles at the intersection, speed of traffic, pedestrian or 
other types of arrivals). Design a model that could be used to simulate the activities 
of this intersection.

8.7 Simulation can be used to study and predict weather patterns. Using the transition 
probabilities given in Example 6.1, simulate the most likely daily weather condi-
tions at a ski resort during a winter holiday season beginning December 20 and 
continuing through January 10, assuming that it was snowy on December 19.

8.8 Develop a computer simulation of a system in which cars arrive at a toll gate on a 
highway according to a Poisson distribution with mean rate of 90 miles per hour. 
The times for passing through the gate are exponentially distributed with average 
38 seconds.

 a. Make a chart that displays enough information so that you can analyze the 
waiting times experienced by the cars going through this facility.

 b. How long must you run this simulation program to get reliable information 
about the queueing characteristics of your system?

 c. Modify your simulation program so that it automatically gathers statistics, and 
reports the average number of cars waiting and the average waiting time of 
each car.
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8.9 A computer center has one multi-user computer. The number of users in the cen-
ter at any time is ten. For each user, the time for writing and entering a program 
is exponential with mean rate 0.5 per hour. Once a program is entered, it is sent 
directly to the ready queue for execution. The execution time per program is expo-
nential with mean rate of six per hour. Assuming the mainframe computer is oper-
ational on a full-time basis, and neglecting the possibility of down-time, develop a 
computer simulation that allows you to find:

 a. The probability that a program is not executed immediately upon arrival in the 
ready queue

 b. The average time until a submitted program completes execution
 c. The average number of programs in the ready queue

State any assumptions that you made about the computer center or the multi-user 
computer in the system you have analyzed.

8.10 The mean time between failures of a computer disk drive is 3,000 hours, and fail-
ures are exponentially distributed. Write a computer program that generates these 
failure events until 25 disk drive failures have occurred. Print out the number of 
hours separating successive failures that occur in your experiment.

8.11 Printer jobs are created in a computing system according to a Poisson distribution 
with a mean of 40 jobs per hour. Average print times are 65 seconds. Users com-
plain of long delays in receiving their printouts, but the computing lab director 
will be willing to purchase a faster printer (twice as fast as the present one) only 
if it can be demonstrated that the current average queue length is four (or more) 
jobs, and only if the new printer would be idle for at most 20% of the time. Will the 
lab director be able to justify the acquisition of the new printer? You have already 
answered this question (in Exercise 7.4) using queueing formulas; now develop 
and run a simulation model to test your answer.

8.12 Computer programs are submitted for execution according to a Poisson distribution 
with mean arrival rate of 90 per hour. Execution times are exponentially distributed, 
with jobs requiring an average of 38 seconds. Users complain of long waiting times. 
Management is considering the purchase of a faster CPU that would decrease the 
average execution time to 30 seconds per job. This expense can be justified only if, 
under the current system, the average number of jobs waiting exceeds five. Also, if a 
new CPU is to be purchased, its percentage of idle time should not exceed 30%. Can 
the new CPU be justified? You made the necessary calculations to make a recommen-
dation (in Exercise 7.5). Now develop a simulation of the aforementioned scenario 
that might provide an even more convincing explanation to users or to management.

8.13 Develop a simulation of the vehicle refueling system described in Exercise 7.9. 
Determine how long you must run your simulation to obtain performance mea-
sures that are reasonably consistent with the ones you computed when you worked 
the problem using queueing analysis.

8.14 In Exercise 7.12, you were asked to select a system in your university, business, or 
community that involves queues, to develop a queueing model that describes that 
system, and to describe the performance characteristics of this system. Write a 
computer program to simulate the system you studied, and compare the statistics 
gathered by your simulation program to the analytical performance results that 
you computed with the formulas.
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9
Decision Analysis

9.1 The Decision-Making Process

Decision analysis is as much of an art as a science. Mathematical decision analysis must 
be considered in the context of an individual decision-maker. The techniques that have 
been developed in this area can be described as tools that encourage and assist people in 
making rational decisions. They are not intended as substitutes for the individual. Most 
of the techniques incorporate some interactive dialogue with the decision-maker to try to 
determine personal preferences and attitudes.

To truly appreciate this interaction, it is useful to try to imagine actually being faced 
with a particular problem. To illustrate this idea, consider the decision to buy a new car. 
We can easily develop a set of criteria that define a good car (price, mileage, maintenance, 
horsepower, etc.), and then we can devise a system of weights that measures the relative 
importance of each criterion. The car with the highest score is clearly the one to buy. Most 
people would agree that this sounds like a reasonable model. They might even be willing 
to recommend this selection to someone else. But imagine for a moment that you are mak-
ing a decision concerning your own car. Would you be willing to accept the advice of this 
model without question? In fact, the majority of intelligent decision-makers tend to have 
reservations about accepting a strict mathematical interpretation and recommendation for 
their problem.

Decision analysis differs from the mathematical structure of many other areas of 
Operations Research in that it contains a high degree of uncertainty. The uncertainty is, in 
part, a by-product of any long range planning function. Traditional Operations Research 
problems in production planning and inventory analysis, for example, are concerned with 
a monthly sales forecast that may vary according to some probability distribution. In deci-
sion analysis, we may be deciding whether to develop and market a new product, build 
a new plant, or create a new government agency, or diversify our business interests. For 
example, the demand for an existing product next month is relatively predictable in most 
industries, but the demand for a new and unfamiliar product in five years’ time is virtu-
ally impossible to estimate. Such issues as these can have a major impact, and an analysis 
of the effect of any current decision will not be fully appreciated for five or ten years into 
the future. The factors that must be considered in the decision process often involve a dra-
matic degree of uncertainty simply by virtue of the extended time frame.

Decision analysis can usually be expressed as a problem of selecting among a set of 
possible alternatives or courses of action. After making a choice, and at some future time, 
there will be a number of external, uncontrollable variables that will influence the final 
outcome. These external variables are often referred to as states of nature or state vari-
ables. An underlying assumption in decision analysis is that, if it were possible to predict 
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accurately the result of these external variables, then the final outcome would also be pre-
dictable and the correct alternative would become obvious.

This section discusses a simple decision-making problem. Despite its simplicity, it illus-
trates many of the difficulties inherent in the decision-making process. Imagine yourself 
in the following situation. It is midnight on a Sunday night and you have just remembered 
that you were supposed to prepare a report for your boss for next week. Unfortunately, 
you cannot remember whether you were supposed to meet with him first thing on Monday 
morning, or if it was required for next Thursday. You are faced with a decision: should you 
stay up and work on the report for two or three hours, or should you take your chances 
and go to bed? This statement defines the alternative courses of action for the problem, 
which we will refer to as the decision variables.

The unknown external factor or state of nature is whether or not the report is due on 
Monday. If you knew that the report was not due until Thursday, you could go to bed and 
sleep peacefully. We will assume that, if it were known that the report was due tomor-
row, the decision maker would feel obliged to stay up and work on it. Otherwise, there 
is no decision problem because the preferred action would be to go to bed independent of 
whether it is due on Monday or Thursday.

Having defined the alternatives (decision variables) and the external factors (state vari-
ables), the next aspect of decision analysis is to consider the possible outcomes or payoffs 
that would result from each possible combination of decision and state variables. In this 
example, as with many large practical problems, the outcome is not clearly defined. There 
may be a monetary component in the outcome (because the decision may affect future 
promotion potential and merit pay increases), but there are also a number of other less 
tangible consequences.

One method of concisely describing this type of problem is called a payoff matrix. 
The rows correspond to the possible states, the columns represent alternatives, and the 
entries in the matrix describe the outcomes associated with each possible combination 
of the problem variables. In traditional decision problems, an outcome is described by a 
single numerical value representing an associated profit, loss, or value of the result. For the 
moment, we address such problems using informal, verbal descriptions of the outcomes.

Alternatives

States a1: Stay up, do it a1: Go to bed

ϴ1: Report due Tired, but happy
• Lost some sleep
• Guessed correctly

Miserable
• Guessed wrong
• The boss will be annoyed

ϴ2: Report not due Depressed
• Lost sleep for 

nothing

Relieved
• Guessed right
• Did you worry?
• Sleep well?

This simple example illustrates some of the most difficult and frustrating aspects of deci-
sion making. Several observations can be made concerning the difficulties in quantifying 
the elements of decision-making: 

Outcomes are often verbal descriptions. The problem of comparing outcomes is often 
complicated by the fact that the entries can be descriptive rather than numeric. 
In our example, is Depressed worse than Miserable? How much worse? Twice as 
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bad? Is Tired but happy better than Relieved? Is the negative feeling of Depressed 
greater than the positive result of Relieved? The answers to these questions depend 
on the individual. For some people, the prospect of having to face the boss in the 
morning and admitting failure is unthinkable. Other people may do it regularly, 
presumably armed with a battery of excuses.

The outcomes often involve several conflicting criteria. The previous example illustrates 
the effect of multiple objectives that are commonly associated with practical deci-
sions. The objectives of getting a good night’s sleep and of maximizing one’s cred-
ibility at the office are, in this case, conflicting goals. The same is true of corporate 
decision-making. Companies must distinguish between immediate profits and 
long-term advantages. For example, an investment today for upgrading present 
facilities will decrease this year’s net profit, but may lead to increased future rev-
enue. In addition, intangible costs and benefits such as worker attitudes, safety, 
environmental issues, legal liability, and customer satisfaction are difficult to 
quantify.

Even numeric outcomes are difficult to compare. Consider a decision problem in which 
all of the payoff matrix entries are described in simple terms of dollars of profit or 
loss. Most people do not consider a profit of $20,000 to be twice as good as a profit 
of $10,000. In economic theory, this principle is known as the Law of Diminishing 
Marginal Returns. The classic illustration of this concept says that three loaves of 
bread are not three times as valuable as one loaf of bread. If you had one loaf, you 
would eat it and satisfy your hunger. If you had three loaves, the third one would 
likely be unused.

  The same logic applies to profits. People (perhaps unconsciously) normally 
employ some implicit ordering of the alternative ways of spending their money. 
The first dollar will be used for the most important item, while the last dollar may 
just go in the bank. The true value of the first dollar in terms of benefit or enjoy-
ment is considerably greater than that of the last one.

  This line of reasoning seems even more valid when comparing profits against 
potential losses. For most people, the negative feeling associated with losing 
$10,000 is much greater than the corresponding positive benefit of winning an 
equal amount. The profit would be very pleasant, but the loss would be terrible. 
Losses are generally viewed as being more dramatic consequences than gains. 
An important aspect of decision analysis concerns the determination of an indi-
vidual’s attitude toward risk. We introduce some approaches for dealing with these 
questions in Section 9.4 on Utility Theory.

The relative likelihood of the uncertain state variables must be considered. In the earlier 
example, suppose that you believed that the report is most likely due on Monday. 
In that case, you would be inclined to stay up and write it. However, the situation 
changes dramatically if you felt that the report was probably not expected until 
Thursday. If you trusted your judgment, you would go to bed. To make a choice, 
the decision-maker must try to associate a subjective probability value with each 
of the possible states. What is your best approximation of the likelihood of each 
uncertain event? We distinguish between three different approaches to defining 
probability.

  Risk describes a situation for which an objective probability can be calcu-
lated. This includes most events that are repeated frequently as historical data is 
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available. Based on past information, it is possible to compute a reasonably accu-
rate probability assessment of the state variable. For example, there is a certain 
amount of risk associated with drilling oil wells, but using land form data and 
other inputs, the probability of success can be predicted and this information can 
then be used in drilling decisions.

  Uncertainty normally applies to events for which there is limited historical or 
repetitive information. When attempting to estimate the probability of success of 
a new product, it is difficult to predict how the public will react. This is espe-
cially true when there have been no similar products introduced in the market. 
Although there is no data that allows precise computation of objective probabilities 
of success, an analyst may have some feeling or intuition or experience or limited 
history that allows at least a subjective assessment of the probability. In the decision 
example earlier, you might say that you are 60%–80% sure that the report is due on 
Monday. Note that the real distinction between risk and uncertainty is that risk is 
generally more precise. Under uncertainty, it may be possible to specify a range for 
the probability.

  Complete ignorance describes a decision-maker who has no prior information 
of any kind with regard to the likelihood of a state variable. Such a person refuses 
to specify a subjective, intuitive probability range. Anything could happen and he 
would not be surprised. Many people feel uncomfortable about specifying sub-
jective probabilities for state variables. Section 9.2 introduces the topic of Game 
Theory, and describes several methods that can be applied in the face of complete 
ignorance. It will become clear that the use of subjective probability assessments 
is often preferable.

Decision-makers are irrational. There is a rapidly growing literature describing the 
rather curious phenomenon of the irrational decision-maker in all of us. For the 
present, consider one simple example of this behavior: decision-makers will often 
lie about their true objectives. When middle managers are asked about their objec-
tives in decisions, they will stress the importance of corporate profit and the over-
all benefit of the company. Their true objectives are often more selfish and reflect 
the desire that their own work centers look good. University students might claim 
that they are primarily interested in the quality of their education when, in fact, 
their main objective may be to get a diploma with the least amount of effort pos-
sible. A new car buyer will often rank safety as a high priority and then select the 
fastest and raciest sports model. We all have a tendency toward specifying objec-
tives that we believe we should be using or that we think our boss would like to 
hear rather than being honest about them. We consider these and related issues 
when we discuss the psychology of decision-making in Section 9.5.

In summary, the foregoing example contains many of the underlying features that com-
plicate decision analysis. In the remainder of this chapter, these features are presented in 
further detail. It should be mentioned from the outset that the amount of time and money 
invested in a decision should be a small fraction of the value of the potential outcome. As a 
general rule, one should spend about 1% of the potential value of a decision on the decision 
process itself. In the given example, the decision process should not take more than a few 
minutes. A detailed study of the options is unwarranted. However, in making the decision 
to buy a $200,000 house, it might be worth spending $2,000 in time and money on analyz-
ing the alternatives and making a good selection.
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9.2 An Introduction to Game Theory

Game theory addresses possible approaches to decision-making under the assumption 
of complete ignorance. It is described in terms of players, payoffs, and strategies. Consider a 
two-person game: the decision-maker (player one) selects an alternative and then nature 
(player two) selects a state. The payoff is given by the corresponding entry in a payoff 
matrix. Player two is assumed to be indifferent to the choices of player one (except when 
the decision-maker is slightly paranoid). Player one will make a selection based on some 
strategy intended to make the most of the opportunity. Throughout this discussion, we 
refer to the following payoff matrix:

Alternatives

States a1 a2 a3 a4 a5 a6

ϴ1 5 3 0 3 2 3

ϴ2 5 3 8 6 7 3

ϴ3 0 3 0 1 2 2

ϴ4 4 3 0 2 2 1

Most decision-makers employ a process of elimination to reduce the number of alterna-
tives. The simplest form of elimination is called dominance. An alternative ak is said to 
dominate an alternative aj if, for every possible state, ϴi, alternative ak is at least as good as 
alternative aj. Alternative aj can be eliminated from consideration.

In the example matrix, consider alternatives a2 and a6. Observe that, no matter which 
state eventually occurs, alternative a2 is always at least as good as a6. Therefore, alternative 
a6 is dominated and can be eliminated from further consideration. By inspection, we can 
verify that no other alternatives are dominated.

A variety of strategies can be employed in making the selection of alternatives. We 
describe a few of the more common ones and, as they are introduced, we identify each 
one with a corresponding personality trait. The selection depends on the decision-maker’s 
attitude toward risk. Because each choice has a different degree of risk associated with it, 
different people will make different selections. It is important to realize that there is no 
absolutely correct answer to this problem.

9.2.1 Maximin Strategy

For each alternative, aj, pick the worst possible outcome (the minimum). Choose the alter-
native that has the maximum value of this minimum.

The Maximin strategy is associated with the eternal pessimist; the person who believes 
that, whatever they do will always turn out badly, and that nature is working directly 
against them. In the example, the worst outcomes for each of the first five alternatives are 
0, 3, 0, 1, and 2, respectively. By choosing alternative a2, the worst possible outcome is 3. 
The maximin player chooses this alternative to guarantee a payoff of at least 3 no matter 
what state occurs.

This strategy is characteristic of the conservative decision-maker. The given decision has 
the lowest risk. However, it also usually has the lowest variance. Not only will the decision-
maker never make less than 3, they will never make more than 3 either. This strategy is 
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commonly observed in people who invest all of their money into savings bonds with a 
guaranteed interest rate rather than participating in riskier forms of investment. They don’t 
really believe that nature is out to get them; they just don’t want to take any chances.

9.2.2 Maximax Strategy

For each alternative, aj, pick the best possible outcome (the maximum). Choose the alterna-
tive which has the maximum value of this maximum.

The Maximax player represents the eternal optimist. Such people believe that anything 
they do will turn out right. They are gamblers by nature and are willing to take risks for a 
chance at the greatest possible prize. In the example, the maximum payoff of the first five 
strategies is given by 5, 3, 8, 6, and 7, respectively. The maximum possible outcome is 8, and 
the Maximax player will therefore select option a3 and hope for state ϴ2.

This strategy is commonly identified with incurable gamblers who have an unrealistic 
or even unhealthy level of optimism. However, there is also a group of successful busi-
ness people who regularly employ this strategy, but they do not rely on blind luck. These 
decision-makers will look for the best possible outcome, and determine the state(s) that 
must occur in order for the maximum profit to be realized. These people have great con-
fidence in their ability to make things happen; they believe that they can influence and even 
control the state variables. There is often some truth in this when the decision involves 
the success of a new product, the potential market, and the ability of competition to react. 
Presumably, these people are using a modified form of Maximax in which they first elimi-
nate any states that are unlikely or uncontrollable. They choose the maximum outcome 
corresponding to any state over which they believe they can exercise some influence.

9.2.3 Laplace Principle (Principle of Insufficient Reason)

Assume that every state is equally likely and calculate the expected payoff for each alterna-
tive. The alternative with the highest expected payoff is selected.

Because we have assumed Complete Ignorance with respect to the likelihood of each pos-
sible state, it is reasonable to assume that each state is equally likely. We have no reason to 
assume that any one state is more likely than any other. In our example, each state would 
be assigned a probability of 0.25 because there are four possible states.

The expected payoff for a given alternative is computed by taking each element in the cor-
responding column of the payoff matrix, and multiplying each payoff by the correspond-
ing state probability. The expected payoff is the sum of these values. The expected payoff 
for each of the five alternatives in the example is given by 3.5, 3, 2, 3, and 3.25, respectively. 
Therefore, alternative a1 has the highest expected payoff.

Observe that if each state really has equal probability, and we repeat the game a large 
number of times, the average payoff from selecting alternative a1 will be 3.5. Unfortunately, 
in a real decision-making environment, we will be allowed to play the game only once. We 
will discuss expected value decision-making at greater length in subsequent sections.

9.2.4 Hurwicz Principle

Define 0 ≤ α ≤ 1 to be the Decision-maker’s Degree of Optimism between the two extremes of 
Maximin (α = 0) and Maximax (α = 1). For each alternative, aj, define the Hurwicz measure: 

 
h max p + min pj i ij i ij= { } ( ){ }α 1− α
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where pij represents the payoff associated with alternative aj and state ϴi. Select the alterna-
tive with the highest value of hj.

The Hurwicz principle is based on the assumption that the decision-maker is nei-
ther totally pessimistic (as with the Maximin strategy), nor totally optimistic (as with 
Maximax). Each individual decision-maker can select his own degree of optimism some-
where between these two extremes. Observe that when α = 1, then hj will simply be the 
maximum payoff for alternative, aj, and Hurwicz will be equivalent to the optimistic 
Maximax rule. Similarly, when α = 0, hj will be the minimum payoff for alternative aj. In 
this case, by selecting the largest hj, the decision-maker is choosing the pessimistic, con-
servative Maximin alternative. However, when some intermediate value of a is chosen, we 
get an alternative that balances the risk against the potential gains. In the example, sup-
pose we choose α = 0.6. For alternative a5, the maximum payoff is 7, the minimum payoff 
is 2, and the corresponding Hurwicz value is h5 = 0.6 ∗ {7} + 0.4 ∗ {2} = 5. The values of the 
Hurwicz measure for the first five alternatives are 3, 3, 4.8, 4, and 5, respectively. By pick-
ing the maximum of these, we determine that the best strategy is to choose alternative a5.

9.2.5 Savage Minimax Regret

Define the regret matrix by rij = pi* – pij where pi* denotes the best outcome which could 
occur under state ϴi. For each alternative, find the maximum regret. Select the alternative 
that minimizes this maximum regret.

This strategy is associated with insecure decision-makers. Such people are not primarily 
interested in making the highest profit; they are more concerned with how disappointed 
they are going to feel after the fact. To illustrate this, suppose that alternative a3 is selected, 
and then state ϴ1 occurs. In hindsight, the decision-maker will wish he had chosen alter-
native a1 for a payoff of 5 instead of the actual profit of 0. He will regret making the wrong 
choice, and the amount of this regret can measured by the difference between what he actu-
ally received and what he could have earned if he had known that state ϴ1 would result. 
He will experience a regret of 5 − 0 = 5. The complete regret matrix for the example is:

Alternatives

States a1 a2 a3 a4 a5

ϴ1 0 2 5 2 3

ϴ2 3 5 0 2 1

ϴ3 3 3 3 2 1

ϴ4 0 1 4 2 2

The maximum possible regret for each of the five alternatives is given by 3, 5, 5, 2, and 3, 
respectively. The best strategy to minimize the possible regret is to select alternative a4 
with a maximum regret of 2. No matter which state occurs, the decision-maker will not 
regret his choice by more than 2. The decision-maker is protecting himself against the 
future prospect of someone coming along after the fact and telling him that he should have 
anticipated that the final state would result. Observe that, although this behavior does 
minimize regret, it also guarantees, at least for this example, that there will be some regret.

The strategies that have been described earlier are all based on logical and rational 
assumptions. Each of them proposes a different alternative as the optimal solution to the 
problem. Each of the alternatives is the correct choice for some decision-makers.
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In practical problems, people have used all of these approaches in an attempt to reduce 
the number of original alternatives down to a small set of distinct options. For example, 
the USSR Siberian Power Institute was asked to make recommendations on the location of 
a new hydroelectric generation facility during the early 1970s (Bunn 1984). Three possible 
locations were being considered. The project would take many years to complete, and the 
potential impact on the economy and environment in the chosen area would be consider-
able, with a high degree of uncertainty. The committee developed 23 different possible 
scenarios concerning future energy supply and demand, potential investment, and oper-
ating costs. Under each scenario, and for each of the three possible sites, they calculated 
a net economic impact. The Institute identified the optimal actions using several criteria, 
including the Maximax, Maximin, and Regret techniques. Their report recommended, 
under each assumption of attitude toward risk, a different location. These results were 
then passed on to a higher political committee for final selection.

Although the methods have a natural and simple appeal, there are some definite prob-
lems having to do with their underlying assumptions. The Laplace principle provides 
an intuitively appealing method of dealing with complete ignorance. It seems logical to 
assume that each state is equally likely. Consider the example that we introduced in the 
previous section. Recall that the two states of nature were: ϴ1: Report due and ϴ2: Report 
not due. The Laplace principle asks us to assume that each has a 50% chance of occurring.

Suppose that we were to reformulate the problem, subdividing state ϴ1 into three dif-
ferent states:

Report due—You are fired.
Report due—But boss forgets to ask.
Report due—But you get an extension.

This new decision problem now has four states instead of two. If we again apply the 
Laplace principle, we discover that the state Report not due has a probability of 25% and the 
aggregate states Report due have a probability of 75%. By changing the descriptions of the 
states, we can cause a change in the recommendations reported by the impartial method 
of Laplace.

The Maximin strategy also presents a problem in that it does not possess the property 
of row linearity. This property asserts that if we add a constant to each outcome in a row 
of the payoff matrix, this should not affect the chosen alternative. If that state occurs, all 
alternatives will be better by exactly the same amount, so this should not influence the 
choice. Consider the problem of deciding whether or not to take your umbrella with you 
in the morning. We assume that carrying an umbrella around all day is a nuisance; but if 
it rains, getting wet is a bigger nuisance. The following payoff matrix might represent the 
total amount of discomfort that you would experience under each condition.

Bring Umbrella Do Not Bring Umbrella

Rain −4 −8
Sun −6 0

The Maximin player will bring an umbrella to avoid the potential discomfort of get-
ting wet (−8). Just before he is about to leave the house, the boss calls and says that if 
it rains today, she will be closing the office in the afternoon. Our decision-maker now 
has a more favorable attitude toward the prospect of rain and therefore increases all 
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outcomes corresponding to the state rain by 4. The revised payoff matrix reflects this 
new attitude to inclement weather.

Bring Umbrella Do Not Bring Umbrella

Rain 0 −4
Sun −6 0

The same player will now decide not to bring an umbrella because he will not mind get-
ting wet quite as much. This is not really rational. The Laplace rule is the only strategy 
introduced here that maintains row linearity.

All of the rules, except Laplace, are concerned exclusively with the extreme outcomes (the 
best or the worst values), and ignore intermediate results. Consider the following payoff 
matrix:

a1 a2

ϴ1 0 1
ϴ2 1 0
ϴ3 1 0
ϴ4 1 0
ϴ5 1 0
. . .
. . .
. . .
ϴn 1 0

Under the rules, the two alternatives are equivalent: the maximum outcome is 1, the mini-
mum outcome is 0, and the maximum regret is 1. It would be reasonable to assume that 
unless it were fairly certain that ϴ1 would occur, alternative a1 is a much better option than 
alternative a2.

The Savage Minimax regret strategy displays an additional, rather surprising, logi-
cal anomaly. It is possible to construct an example such that, if the decision-maker must 
choose between two alternatives, a1 and a2, he will choose a2. But, upon adding a third, 
useless alternative a3, he will now prefer alternative a1. Suppose that this person, when 
choosing between a Ford or a Chevrolet, picks the Chevrolet. However, by offering him the 
additional option of a Volvo, he will now take the Ford.

This behavior is clearly irrational. The decision-maker who persistently applies the 
Savage regret method can be turned into a Perpetual Money-Making Machine. Consider the 
following example:

a1 a2 a3

ϴ1 1 9 5
ϴ2 9 5 1
ϴ3 5 1 9

Clearly, the three alternatives are identical. However, if this decision-maker were offered 
only alternatives a1 and a2, he would choose a2. Moreover, if he currently has a1, he might 
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be willing to pay us $1 to exchange a1 for a2. Similarly, when considering options a2 and 
a3, if he has a2, he would be willing to pay $1 to exchange it for a3. Finally, now that he has 
a3, he will pay $1 to exchange it for a1, and the cycle can continue indefinitely, or at least 
until our victim adopts a new strategy. (It is left as an exercise to construct and verify these 
pairwise regret matrices.)

In summary, game theory provides an interesting framework for classifying and analyz-
ing general types of human behavior in the presence of uncertainty. It does not provide a 
very practical set of rules for solving decision-making problems. In particular, recall that 
our discussion of game theory has been based on the assumption of complete ignorance. 
The decision-maker was unwilling or unable to make any subjective probability assump-
tions. However, in reality, each of the approaches described in this section is equivalent to 
making very specific probability statements: 

Maximin: The worst outcome for each alternative has probability 1.
Maximax: The best outcome for each alternative has probability 1.
Laplace: All states have equal probability.
Hurwicz: The best outcome has probability α and the worst outcome has 

 probability (1 − α).
Savage: The highest regret outcome for each alternative has probability 1.

In every case, by claiming complete ignorance and then selecting a particular strategy, the 
decision-maker has implicitly assigned probabilities to the outcomes. Realizing this, the 
decision-maker would likely prefer to trust his or her own judgment about probabilities.

9.3 Decision Trees

Practical decision-making usually involves a sequence of simple decisions. For example, 
when corporate decision-makers consider developing a new product, they will normally 
first do a market survey and a feasibility study. If both of these are encouraging, they may 
decide to invest more time and money in the design and development of a prototype. If the 
model is successful, they will try limited production and possibly introduce the product 
in a test market. If the response in the test market is favorable, they might decide to pro-
ceed to full scale production and a national sales campaign. They will generally allow for 
a review of their progress after six months or a year to decide whether or not to continue. 
The simple payoff matrix methods introduced in the previous sections are inadequate for 
sequential decision-making.

Observe that even a simple personal decision such as buying a new car is really a sequen-
tial type of problem. The true cost of a new car depends on how long the owner decides to 
keep it, which in turn depends on the car’s performance. The present decision is a function 
of future state variables and a sequence of future possible decisions.

Decision trees provide a method for representing sequential decisions and evaluating 
the alternatives. A decision tree is composed of the following basic building blocks: 

 1. Decision fork. A point in the tree where a decision-maker must choose one of 
several paths, or alternatives: represented by a square box in our diagrams.
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 2. Chance fork. A point in the tree where nature will choose a path according to 
some probability: represented by a circle.

 3. Gate or toll. A branch of the tree where a cost will have to be paid if that path is 
selected: represented by a bar across a path.

Throughout our discussion on decision trees, we assume that the reader is familiar with 
basic probability theory.

Consider an example of the vice-president of sales for a medium sized manufacturer who 
must decide whether to market a potential new product. After consultation with people 
from the accounting and the marketing departments, she decides to consider three pos-
sible scenarios: high demand (1,000 sales per year), medium demand (500 sales per year), 
and low demand (100 sales per year). For each of these states, she estimates the expected 
annual net profit of $1 million, $200,000 and −$500,000 respectively.

The corresponding decision tree for this problem, shown in Figure 9.1, is organized 
chronologically from left to right. We begin at the extreme left and move along the path 
until a fork is encountered. At a decision fork, we must pick the best possible alternative 
according to some decision strategy; at a chance fork, a path is randomly selected for us, 
according to some probability function. Eventually, we arrive at some unique outcome at 
the extreme right-hand side of the decision tree.

Suppose that the decision-maker has determined subjective probabilities for each of 
the three possible states: high demand (0.2), medium demand (0.4), and low demand (0.4). 
Based on this assumption, we can calculate the expected monetary value (EMV) of the 
chance fork in the tree: 

 EMV 0.2 $1,000,000 0.4 $200,000 0.4 $500,000 $80,00= × + × + × =( ) ( ) ( )− 00  

High (0.2)
$1,000,000

demand

Market
product

Don’t
market

Medium
demand

Low
demand

(0.4)

(0.4)
$200,000

−$500,000

$0

FIGURE 9.1
Decision tree.
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The decision fork now becomes a choice between a chance fork with an expected value 
of $80,000 or a certain outcome of $0. We assume that the decision-maker will choose to 
market the product with an expected profit of $80,000.

This process is known as folding back the decision tree. Beginning at the extreme right-
hand side, for each chance fork, we calculate the expected monetary value. For each deci-
sion fork, we select the branch with the highest EMV. The value of the decision fork is this 
maximum expected profit. Eventually, we arrive at the left-hand side of the tree. Each 
decision fork in the tree has a preferred branch. The set of preferred branches is called a 
decision strategy. In the example, the preferred strategy is to market the product with an 
expected profit of $80,000.

This approach, although intuitively appealing, is based on some implicit underlying 
assumptions that must be considered. A particular concern for most decision-makers is 
the issue of relying on expected monetary values. In the example, the suggested strat-
egy involves a 40% chance of losing half a million dollars. This could have serious conse-
quences on the future of the company, and many people would consider the risk too high 
when weighed against the potential gain. In the next section on utility theory, we illustrate 
how decision trees can be modified to incorporate attitudes toward risk.

Another issue involves the use of a discrete set of state variables. At the chance fork, we 
have assumed that the demand will either be high, medium, or low. In fact, the demand 
for the product is a continuous variable in our problem. The eventual outcome is drawn 
from a distribution anywhere between $1,000,000 and –$500,000. By limiting this range to 
three possible values, we have simplified the real problem. We have developed a model 
of the decision process that has lost some of the detailed structure of the original. At the 
same time, however, we can now ask the decision-maker to determine subjective prob-
abilities and potential outcomes for a limited number of distinct possibilities. By adding 
more options, we could make the model more realistic, but the decision-maker would find 
it increasingly difficult to distinguish between the various scenarios. The model builder 
must be conscious of the delicate balance between model realism and the practical impli-
cations of too many subjective evaluations.

Now suppose that the decision-maker has the option of performing a market survey 
before making his final decision. The survey will cost $20,000 and will provide an esti-
mate of the potential success of the product. We assume, for simplicity, that the survey 
results will be either favorable or unfavorable. This new problem can be represented by the 
decision tree shown in Figure 9.2. This example contains several additional interesting 
features. Observe that the decision to survey immediately costs $20,000 represented by a 
gate. When we fold back the tree, we must subtract $20,000 from the expected value of the 
survey chance fork to evaluate the decision fork.

The intended purpose of doing a survey is to improve our estimates of the probabilities 
of product demand. We would expect that a favorable survey result should increase the 
probability of high demand. To determine how these probabilities change, we must first 
know how much confidence we should have in the survey results. The company that does 
the surveys claims the following levels of accuracy based on its past experience:

Favorable (F) Unfavorable (UNF)

If high demand (HI) 70% 30%
If medium demand (MED) 60% 40%
If low demand (LOW) 30% 70%
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Unfortunately, the marketing company has given us the probabilities in the reverse 
direction for our decision tree, saying that “The probability of ‘favorable’ response 
given ‘high demand’ is 0.70.” This can be abbreviated as Pr{F|HI} = 0.70. In our deci-
sion tree, we need to know the probability of high demand given a favorable survey 
response. Recall that we have already assumed that Pr{HI}  =  0.20. We can calculate 
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FIGURE 9.2
Decision tree with market survey.
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the probability of getting a favorable survey response by adding up all of the favorable 
conditional probabilities: 

 

Pr F Pr F HI Pr HI Pr F MED Pr MED Pr F LOW Pr LOW| | |{ } { } { } { } { } { } { }= × + × + ×

= (( . ) ( . ) ( . ) ( . ) ( . ) ( . )

. . .

0 70 0 20 0 60 0 40 0 30 0 40

0 14 0 24 0 12

× + × + ×

= + +

= 00 50.  

Similarly, the probability of an unfavorable result is given by: Pr{UNF} = 0.50.
We can use this information to derive the required conditional probability using 

Bayes Rule: 

 
Pr A B = Pr B A Pr A Pr B| | { }{ } { }  { }× ÷

 

This version of the formula is derived from a standard result in probability theory which 
states that 

 Pr A&B Pr A B Pr B|{ } { } { }= ×  

and similarly, 

 Pr A&B Pr B A Pr A|{ } { } { }= ×  

Equating the right-hand side of both expressions and dividing by Pr{B} produces the 
desired result.

By applying Bayes rule, we can now derive the required conditional probabilities. For 
example: 

 

Pr HI F Pr F HI Pr HI Pr F

0.70 0.20 0.50
0.28
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= × ÷
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The complete table of conditional probabilities can be calculated in an analogous way:

High Demand 
(HI)

Medium Demand 
(MED)

Low Demand 
(LOW)

If favorable (F) 28% 48% 24%
If unfavorable (UNF) 12% 32% 56%

The corresponding decision tree is shown in Figure 9.3.
With a favorable survey result, the expected value of the Market decision increases from 

$80,000 to $256,000. An unfavorable result decreases the value of the Market decision to a loss 
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of $96,000. In the latter case, the decision-maker would not market the product, and the $20,000 
spent on the survey is written off as an inexpensive way to avoid the potential loss of $96,000.

The optimal strategy for this decision can be summarized as follows:

Do the survey;
If favorable,

Market the product (expected value: $256,000)
If unfavorable,

Do not Market (expected value $0)
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FIGURE 9.3
Completed decision tree with survey information.
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This strategy is highlighted on the decision tree at each decision fork.
In a sense, the survey information is not very reliable. Even when the demand is low, we 

still have a fair chance of getting a favorable survey response. However, the adjusted prob-
abilities are still sufficient to dramatically affect the expected profit. This leads us to con-
sider the question of the value of survey or sample information. In the example, the survey 
increases the expected value of the market decision from $80,000 to $128,000. Therefore, 
we could say that the Expected Value of the Sample Information is $48,000. The decision-maker 
might be willing to pay up to $48,000 for the survey.

At any stage of a decision-making process, the decision-maker usually has the option of 
requesting more information. He could ask for a more detailed survey, or could try distrib-
uting the product in a small test market before making the final decision. One of the most 
important and difficult decisions is deciding when to stop collecting data.

A useful measure of the potential value of additional information assumes the existence 
of a source of perfect information. The expected value of perfect information (EVPI) is 
obtained from the decision tree by adding a chance fork at the beginning of the tree that 
tells us whether demand will be high, medium, or low. We then decide to market the prod-
uct or not. This process is illustrated in Figure 9.4.

If there were a perfect survey that could accurately predict the true product demand, 
the expected value of our decision would change from $80,000 (with no information) to 
$280,000. The expected value of perfect information (EVPI) is $200,000. Sources of perfect 
information are rare, and they certainly are not free. However, the EVPI gives an indica-
tion of the potential value of looking for better surveys and tests.

Consider the position of the decision-maker in our example. Recall that the conditional 
probabilities for the survey results are presented as objective information. They are based 
on historical data from previous surveys and we have a reasonable degree of confidence 
in their accuracy. However, the estimates for the probabilities of the three levels of market 
demand are highly subjective. These are based on intuition, some past experience, and an 
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$0
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FIGURE 9.4
The expected value of perfect information.
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educated guess. The decision-maker can have only as much confidence in the final strategy 
as he does in these estimates.

For this reason, it is important to perform some sensitivity analyses on the final decision. 
For example, the decision-maker in our example might be interested in knowing what the 
best strategy would be if the probability of high demand was only 10% and the chance of 
low demand increased to 50%. The revised decision tree is given in Figure 9.5. We discover 
that the expected value of the decision without the survey is now –$70,000. However, the 
value of the survey is $43,000. After subtracting the $20,000 cost of the survey, the expected 
profit is $23,000, and the optimal strategy still suggests marketing the product if the survey 
results are favorable. Because these new demand estimates are presumably pessimistic, 
our decision-maker’s confidence in going ahead with the survey increases significantly.
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(UNF) (0.54)
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(0.46)
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FIGURE 9.5
Decision tree with pessimistic estimation of demand.
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The example given was of course deliberately simplified. Practical problems would have 
several decision forks and a large number of state variables with which to contend. The 
calculations required to evaluate even a moderate-sized decision tree can be very tedious. 
Fortunately, there are many software packages available that can handle large practical 
problems and relieve the decision-maker of considerable computational burden.

One of the most valuable uses of decision trees is simply for organizing and modeling 
decision problems. As a first stage, the decision tree can be drawn with only the decision 
forks and a few of the main chance forks. This preliminary tree is useful in determining 
the possible decision options in the decision process.

The decision-maker can then consider which of the possible environmental state vari-
ables could have a significant impact on the final outcome. In a practical setting, there will 
be a large number of state variables that can influence the final outcome. The art of decision 
analysis is deciding which of these variables are likely to change the optimal strategy. For 
example, in a production problem, the likelihood of a union strike would have a significant 
impact on expected profit. However, it may have no impact on the best decision selection 
if the strike reduces all outcomes proportionally.

An excellent example of the art of using decision trees is presented by Byrnes (1973). 
He describes an actual case study of a decision by a major soap manufacturer in England 
of whether to market a new deodorant bath soap in the 1960s, at a time when many com-
panies were experimenting with the idea. The case is interesting because decision trees 
were used as a vehicle for understanding the problem. Although the final tree was used to 
predict expected profit, there was a sequence of decision trees that reflected the changes 
in the attitudes of management as they learned more about the decision at each stage. The 
case study describes each step, and, in particular, the mistakes and guesses that actually 
took place along the way.

9.4 Utility Theory

In Section 9.3, we made the assumption that people will choose the alternative that exhib-
its the highest expected value. Such people will be called EMVers for their use of expected 
monetary value. If a particular decision is to be repeated many times, then the EMV 
approach is perfectly sound. In the long run, the actual profit will be very close to the EMV 
sum of the individual decisions. Unfortunately, most practical decision processes apply to 
a single decision-making event.

For this reason, the vast majority of decision-makers do not rely solely on EMV, and will 
also make a subjective evaluation of the amount of risk involved in a decision. They will 
attempt to incorporate their attitude toward risk in a trade-off against the potential ben-
efits of taking a chance.

As an experiment illustrating attitudes toward risk, we have tried the following game in 
our classes. We place $100 on the table at the front of the room. We tell the class that we are 
going to flip a coin with one student. If a head comes up, the student wins the $100; but if 
a tail occurs, we keep the money. We then ask the students what is the maximum amount 
that they would be willing to pay to play this game. (We will keep the money that they pay 
regardless of the flip.)

The EMV of this game is $50, and from a strictly mathematical point of view, people 
should be willing to play for any amount up to $50. However, students are generally not 
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wealthy people. They begin to think of the consequences of the gamble. If they lose, they 
might not eat tonight, or they might not have enough money to pay the rent. If they win, 
they could take their friends out to dinner, but the value of winning does not compensate 
them for the risk of losing $50. Over the years, we have observed that the average amount 
that students are willing to risk for this gamble is around $20. (One student was willing to 
play for $75, but he was probably independently wealthy.)

People’s willingness to use an EMV decision rule depends on their ability to absorb the 
potential loss. For relatively small values, they can afford to rely on EMV; but as the stakes 
increase, most people exhibit an aversion to risk. For example, few corporate decision-mak-
ers (in medium sized companies) would be willing to risk $400,000 for a 50–50 chance of 
earning $1,000,000. The prospect of such a substantial loss would be considered too risky.

It is important to distinguish between gambling and decision-making. The previous exam-
ple with the students was clearly a gambling situation. It was a game, and the students 
had a choice of whether or not they wanted to play the game. However, in the real world of 
decision-making, the decision-maker is forced to pick one of several uncertain alternatives. 
Another distinction between gambling and decision-making is illustrated by the student 
who was willing to pay $75 to play the game. This student was a gambler, whereas the oth-
ers were making a rational decision about their ability to pay versus the potential gains. 
In the quest for success, we cannot avoid taking some chances, but we can certainly avoid 
being foolish. In casino gambling, for example, the odds, in the long run, always favor the 
house.

Utility theory gives us a tool for characterizing an individual’s attitude toward risk. It 
is based on the idea that people will associate an implicit value or utility with any given 
outcome that is not necessarily proportional to the associated dollar (monetary) value. For 
example, a particular individual may feel that the negative value associated with a loss of 
$100 is compensated by the positive value of a gain of $500. He would consider the utility 
or value of the two outcomes to be equal and opposite. A 50–50 chance of losing $100 or 
gaining $500 would be fair within his personal value system. Utility theory allows us to 
assign values to these outcomes which reflect this attitude.

9.4.1 The Axioms of Utility Theory

Utility theory depends on four basic assumptions or axioms. If we accept the validity of 
these axioms, then the subsequent material follows as a logical consequence. In the axi-
oms, we use the term lottery to mean a single chance fork in a decision tree where one out-
come is randomly chosen from several possible outcomes, each having a given probability. 
We first state the axioms, and then we discuss some of their more controversial aspects.

Axiom 1: Every pair of outcomes can be compared.
  There is a preference ordering (possibly indifferent) associated with all out-

comes. Moreover, this ordering is transitive: if outcome A is preferred to B, and B 
is preferred to C, then A is preferred to C. Similarly, if A is indifferent to B, and B 
is indifferent to C, then A is indifferent to C.

Axiom 2: We can assign preferences to lotteries involving prizes in the same way that we 
assign preferences to outcomes.

  Consider a lottery L with probability p of an outcome A and probability (1 – p) 
of outcome B. This lottery itself has a value in our preference ordering, and we can 
decide whether or not we prefer lottery L to a third outcome C.
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Axiom 3: There is no intrinsic reward in lotteries.

  There is no fun in (or fear of) gambling.
Axiom 4: Continuity Assumption.
  Given any three outcomes where A is preferred to B is preferred to C, then there 

exists some probability p such that we would be indifferent to getting outcome B 
for certain, or getting a lottery L with probability p of outcome A and probability 
(1 – p) of outcome C.

These assumptions are the subject of considerable controversy among decision theory 
authors. The first assumption implies that all outcomes can be measured by a single scalar 
value in order of preference. In decisions involving only dollar values, this appears reason-
able. However, for decisions with multiple objectives, these axioms become less obvious. 
Consider the simple problem of choosing a new car. There are several conflicting attributes 
that define the best car. Utility theory assumes that we have some underlying value system 
that allows us to rank all possible car models in order of preference. The decision problem 
is reduced to one of explicitly determining this value structure.

Figure 9.6 illustrates the concept of assigning values to lotteries. In Figure 9.6a, a particu-
lar decision-maker might be indifferent to the decision fork alternatives when X = $230. In 
this case, the Certain Monetary Equivalent (CME) of the lottery (the chance fork) is $230. 
If X is greater than $230, he will take the certain cash. If X is less than $230, he will prefer 
the lottery. The lottery itself has a value equivalent to the utility of $230.

In Figure 9.6b, suppose that the same decision-maker is indifferent to the decision fork 
when Y = $220. Now, the lottery at the chance fork has a CME of $220. If this person were 
asked to choose between the two lotteries, he would select the first one, because it has a 
higher perceived value for him. Note that the EMVs of the two lotteries are $300 and $275, 
respectively. But, in both cases, the decision-maker puts a lower monetary value on the 
lotteries, because the cash values are certain, while the lotteries have an element of risk.

It is not always true that the CME values are in the same order as the corresponding 
EMVs. For example, our decision-maker could attach a very high value to having at least 
$150 when he is finished. The lottery in Figure 9.6a has some risk because he could finish 
with only $100. Figure 9.6b has very little risk because he can always be certain of earn-
ing $150. He might therefore be more inclined to use the EMV for the second lottery, and 
choose Y = $260. For this decision-maker, the CME of the second lottery is higher than that 
of the first, although the EMV is lower.

The third assumption—that there is no fun in gambling—refers to the attraction that some 
people have to the thrill of taking a chance. When people buy a lottery ticket, they get the 
chance of winning; but they also get the fun of just playing the game. They can watch the 
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FIGURE 9.6
(a,b) Examples of the value of lotteries.
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numbers being selected and cheer for their sequence. These people get an added positive 
value simply by being at a chance fork in a decision tree.

Consider the two simple lotteries depicted in Figure 9.7. Both of these lotteries are math-
ematically equivalent. However, the problem in Figure 9.7b has two chance forks, while 
the tree in Figure 9.7a has only one. A person who enjoys gambling might actually prefer 
the former because he would have the opportunity to gamble twice. The reverse is true for 
people who fear gambling. Utility theory assumes that people have neither an attraction 
nor an aversion to the opportunity of taking a chance.

Consider the following extreme example of the continuity assumption:

A $1
B $0
C Death

The continuity axiom, when applied to these outcomes, states that we can find a value 
of p such that outcome B ($0) is equivalent to a lottery with a probability p of A ($1) and 
probability (1 – p) of C (Death). In other words, there exists some probability p such that 
you would be willing to risk death for a dollar. For example, suppose that you are walk-
ing along the street and you notice a 1-dollar bill on the opposite sidewalk. Many people 
would cross the street to pick up the bill although there is a remote chance of being killed 
on the way. The difficulty with the continuity axiom is not in the existence of a probability 
p, but rather in determining a value for it.

9.4.2 Utility Functions

If we accept the validity of these axioms, then it is possible to define a preference function 
or a utility function, u(A), with the properties that: 

 1. For any two outcomes, A and B, u(A) > u(B) if and only if outcome A is preferred 
to outcome B.

 2. If an outcome C is indifferent to a lottery L with probability p of outcome A and 
probability (1 – p) of outcome B, then 

 u(C) p u(A) p u(B)= × + ×( )1−  

That is, we can define a utility function such that the utility of the lottery is equal to the 
mathematical expectation of the utilities of the prizes.
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FIGURE 9.7
(a,b) Example of the effect of fun in gambling.
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A utility function that satisfies these properties is invariant under linear scaling. If we 
add a constant to all utility values, or if we multiply all utilities by a constant, the new 
function will still satisfy both of the aforementioned properties. Therefore, we can assume 
any convenient scale for our function. In particular, we will assume that the best possible 
outcome has a utility, u(Best) = 1, and the worst possible outcome has a utility, u(Worst) = 0. 
Note that we could use any convenient scale (e.g., from 1 to 100, or from 0 to 10).

Consider the decision problem from the previous section which is displayed in 
Figure 9.8. We wish to repeat the analysis, but this time, we will incorporate the decision-
maker’s attitude toward risk using utility theory. Note that the gate associated with pay-
ing for the survey has been removed. Instead, the $20,000 cost of the survey has been 
subtracted from the final outcomes for all corresponding tree branches. This does not 
affect the EMV of the decision, but, in order to evaluate utilities, all outcomes must be 
expressed as a net effect of that complete branch.
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FIGURE 9.8
Marketing decision problem with survey information.
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In this decision problem, the best possible outcome is $1,000,000 and the worst possible 
outcome is –$520,000. Therefore, we can arbitrarily assign utilities: 

 u $ , ,1 000 000 1( ) =  

and 

 u $520,000−( ) = 0 

There are two commonly used methods for determining the utilities of the inter-
mediate values. As seen in Figure 9.9, each will give us one new point for the utility 
function. In Figure 9.9a, the decision-maker is asked, “For what value of X are you 
indifferent to the alternatives at the decision fork?” Observe that the expected utility 
of the lottery is: 

 ( ). $ , , ( . ) $ , .0 5 1 000 000 0 5 520 000 0 5× + × = u( ) u( )−  

By the definition of a utility function, the utility of X must be u(X) = 0.5. Thus, the decision-
maker is essentially saying that the utility of the lottery is equal to the utility of X.

In the approach illustrated in Figure 9.9b, the decision-maker is asked, “For what value 
of p are you indifferent to the options at the decision fork?” The expected utility of the lot-
tery, in this case, is given by 

 ( ) $ , , ( ) $ ,p u( ) p u( ) p× + × =1 000 000 1 520 000− −  

We conclude that u($200,000) = p, again relying on the definition. There are a variety of 
other assessment techniques, but the two approaches described here are the simplest, and 
the most common.

Suppose that we decide to use the first method, and our decision-maker selects a value of 
X = –$100,000. For this person, u(–$100,000) = 0.5. This decision-maker is very risk averse. 
Given a 50–50 chance of earning $1,000,000 or losing $520,000, he would prefer not to play. 
The chance of a loss of $520,000 is simply too great. In fact, he would prefer a certain loss 
of up to $100,000 to the lottery. Presumably, this decision maker feels that the smaller loss 
could be absorbed, while the potential large loss would be nearly intolerable. This rather 
dramatic behavior is not uncommon among actual decision-makers, and we will consider 
other examples later.

(0.5)

$1,000,000

−$520,000
$X

(0.5)

(1 − P)

$1,000,000

−$520,000
$200,000

(P)

(a) (b)

FIGURE 9.9
(a,b) Utility value assessment techniques.
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Let us now repeat the utility assessment procedure using the two lotteries shown in 
Figure 9.10. Observe in Figure 9.10a that, when the decision-maker specifies a value for X at 
which he is indifferent, the utility of X is equal to the expected utility of the lottery:

 

u(X) u( ) u( )= × + ×

= × +

( . ) $ , ( . ) $ ,

( . ) ( . ) ( .

0 5 100 000 0 5 520 000

0 5 0 5 0

− −

55 0 0 25) ( ) .× =  

Similarly, in Figure 9.10b, when a value of Y is selected, we find that the u(Y) = 0.75.
Suppose that values of X = –$350,000 and Y = $250,000 are selected. We therefore have 

five sample points for the utility function. By plotting these points, the remaining values 
can be estimated by drawing a smooth curve through them, as shown in Figure 9.11.

Using this admittedly approximate utility function, we can now answer several lot-
tery questions. For example, suppose he were faced with a lottery having a 50–50 chance 
of $500,000 or –$200,000. From the curve, u($500,000) ≈ 0.86 and u(–$200,000) ≈ 0.41. The 
expected utility of this lottery is (0.5) × (0.86) + (0.5) × (0.41) = 0.635. Again using the utility 
curve, we find that the u($80,000) ≈ 0.635. Therefore, the lottery is approximately equiva-
lent to a certain outcome of $80,000. Hence, our decision-maker should be indifferent to a 
certain outcome of $80,000 or a 50–50 lottery of either $500,000 or –$200,000.

Beginning with this simple function, we would then ask a variety of somewhat redun-
dant lottery questions to validate the utility curve and adjust the shape at each iteration to 
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FIGURE 9.10
(a,b) Utility assessment.
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best reflect the answers. We would then present the decision-maker with several examples 
of how the utility function would interpret his preferences for simple lotteries. In prac-
tice, this process is frequently implemented using an interactive dialogue between the 
decision-maker and a computer.

Finally, when the decision-maker is satisfied that the current estimate represents a rea-
sonable approximation of the utility function, the function can be applied to the origi-
nal decision problem. Each outcome is translated into its corresponding utility value. The 
expected utility of each chance fork in the decision tree represents the relative value of 
the lottery for the decision-maker. Averaging out and folding-back the decision tree in the 
usual manner produces a decision strategy that maximizes the expected utility. The mar-
keting example is illustrated in Figure 9.12.

Hi (0.28)

Market

Don’t
market

Don’t
market

Med (0.48)

Low (0.24)

0.997

0.705

0.0

0.997

0.705

0.0

0.575

0.575

0.585

Hi (0.12)

Med (0.32)

Low (0.56)

1.0

0.72

0.045

Hi (0.2)

Med (0.4)

Low (0.4)

Market

Don’t
market

Market

F (0.5)

UNF (0.5)

Don’t survey

Survey

0.506

0.575

0.585

0.597

0.597

0.618

0.618

0.345

FIGURE 9.12
Marketing decision tree with utilities.
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Observe that the use of a utility function did not change the optimal strategy. The 
decision-maker should still do the survey, and then market the product if the results are 
favorable. However, the expected utility of this decision is 0.597, while the expected utility 
of doing nothing is 0.585. This difference is very small, especially when we consider that 
the numbers are approximate. The decision-maker should probably consider these two 
options as being of equal value. Perhaps other criteria could be used to resolve the tie.

When we based our decision on expected monetary value in the previous section, the 
survey strategy produced an expected profit of $128,000. If we decided to market the prod-
uct without a survey, the expected profit was $80,000. Both alternatives were clearly pre-
ferred to Do Not Market. When we consider the decision-maker’s attitude toward risk, the 
survey strategy is only marginally preferred, while the alternative of marketing without a 
survey is definitely dominated by all other options.

9.4.3 The Shape of the Utility Curve

The primary types of utility curves are illustrated in Figure 9.13. For the EMVer, each 
additional dollar has the same utility value. The utility curve is a straight line indicating 
that the marginal value of each dollar is constant. The risk averse (RA) decision-maker 
has a curve with a decreasing slope, indicating a decreasing value of each additional dol-
lar. Observe that this person derives 60% of the total utility from simply breaking even. 
Conversely, the risk seeking (RS) gambler has a curve with an increasing rate of change. 
The marginal value of each additional dollar is increasing. This individual is happy only 
when he is very close to the top of the scale. Breaking even has a very low utility. It is 
important to recognize that a person’s attitude toward risk is reflected by the rate of change 
of the slope of the curve—not by the absolute value of the slope.

The gambler in a business environment is not the same personality that one would expect 
to find gambling in a casino. Such people are typically found at the head of a new venture. 
There is considerable risk associated with starting a new company, but these people have 
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enough confidence in their own abilities that they believe that they can succeed. They are 
willing to take chances for the large potential profits that they visualize in the near future. 
They are not depending on pure luck because they honestly believe that they can control 
and influence the final outcome.

The risk averse decision-maker is commonly associated with more established, conser-
vative companies. These individuals have already developed a successful enterprise and 
they have no desire to jeopardize this position in a risky adventure.

There have been a number of psychological studies that suggest that people’s degree of 
risk aversion is directly related to their personal feelings concerning luck and fate. People 
who approach life, friendship, business, and so on with their fingers crossed, hoping that 
they will be lucky, are often risk averse. They believe that external forces are controlling 
events and that the consequences are unpredictable. Risk seekers tend to believe that they 
have considerable control over their lives, and that their destinies are not completely con-
trolled by external forces. Most people lie somewhere between these two extremes.

In reality, people are risk averse at certain levels and risk seeking at others. Consider the 
utility curve illustrated in Figure 9.14, which describes an attitude which is risk averse for 
values below $4,000, and above $25,000, but risk seeking for values between $4,000 and 
$25,000. This type of behavior is seen in people who have established a financial goal for 
themselves. For example, this person may have decided that, if he had $25,000, then he 
could open his own business, or buy some new equipment. The $25,000 figure has a very 
high utility, relative to say $10,000. As such individuals get close to their target, they are 
willing to take an extra risk to attain it. Outside of this perceived range, they are generally 
risk averse. A person with several financial goals could have a number of risk seeking seg-
ments in his utility curve.

Earlier in this chapter, it was stated that decision-makers are generally irrational. A prime 
example of this behavior can be found in the way that people assess their utility curve. 
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A set of experiments was performed by Kahneman and Tversky (1979) in which subjects 
were asked to develop a utility function in the standard way. It was discovered that the 
typical curve of the majority of cases resembled the form shown in Figure 9.15. Most 
respondents exhibited RA behavior above zero, but they became gamblers when the val-
ues were negative. Apparently, people have a financial target of breaking even and are 
willing to take considerable risks to avoid a loss.

In decision analysis, this behavior is called The Zero Illusion. The problem is that the zero 
point is relative to the scale that has been defined in the choice of units. For example, if 
we use net profit as the outcome measure, zero represents the point at which the company 
makes or loses money on the product. If we use net assets to measure the effect of a mar-
keting decision, we have not changed the problem, but zero now represents the point at 
which the company is in the black or in the red. Profit could be described in terms of this 
year’s profit-and-loss statement. In each case, the method used to calculate outcome values 
has no effect on the real decision problem, but the scale has simply been shifted.

When a decision-maker produces a curve with this structure, he can usually be con-
vinced to abandon the zero target by reformulating the questions in terms of a few differ-
ent scales. He will soon adjust his answers to a more consistent behavior. Zero is indeed 
an imaginary target. We will come back to this notion when we discuss the framing effect 
in Section 9.5.5.

A classic example of apparently irrational behavior with respect to utility theory is 
known as the Allais Paradox. Consider the two decision problems shown in Figure 9.16. 
For the problem in Figure 9.16a, most people prefer to choose the certain outcome of 
$500,000 because the lottery branch looks too risky. Although there is a 10% chance of get-
ting $1,000,000, there is also a 1% chance of getting nothing, so why take the risk?

In Figure 9.16b, the two lotteries look very similar, except that the second one has a pay-
off of $1,000,000 while the first gives only $500,000. In this case, the majority of people will 
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choose the second lottery with a chance at $1,000,000. In both lotteries, the probability of a 
zero payoff is about the same.

Consider an individual who plays the aforementioned two lotteries as described for the 
majority. Not everyone will agree with this person, but the selections certainly appear to 
be logical. The paradox arises when we attempt to develop a utility function for this per-
son: it cannot be done.

Without loss of generality, we can assume a utility value of u($0) = 0, u($1,000,000) = 1, 
and u($500,000) = p for some value of p. We wish to find a value of p such that the utilities 
of the two decision problems correspond with the choices of our decision-maker.

In the first problem, the utility of $500,000 certain is simply p. The utility of the lottery is 

 0 89 0 10. .× +p  

Because our subject chose the certain branch, we conclude that 

 p 0.89 p 0.10> × +  

or 

 0.11 p 0.10× >  

Similarly, for the second problem, the utility of the first branch is given by 0.11 × p, while 
the utility of the second branch is 0.10. Because the second branch is preferred, we con-
clude that 

 0.11 p 0.10× <  

In other words, no matter how the utility function is defined, the decision-maker must 
either select the first branch in both problems, or the second branch in both problems.

There is no rational way to explain this dilemma. In the first problem, the decision-maker 
is frightened away from the lottery because there is a 0.01 chance of obtaining a zero. 
However, in the second problem, there is an extra 0.01 chance of getting zero in the second 
lottery. This additional risk apparently is not recognized. The decision-maker is effectively 
saying that a probability of 0.01 is significant enough to avoid the risk, but, at the same 
time, probabilities of 0.89 or 0.90 are essentially equivalent. A difference in probability of 
0.01 should either deter a person in both cases or not at all. Even when we point this out, 
many people will stick with their original, irrational selections. We will discuss this and 
other aspects of irrational behavior in the following section.

(a) (b)
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Many practitioners believe that utility theory is the only solution to decision-making 
problems. Others argue that, although it is reasonable to assume that people have an 
implicit personal utility function, it is not a practical tool for decision analysis. The main 
objection, in addition to the problems already mentioned, is that the assessment proce-
dures for determining a person’s utility function are basically artificial. When people are 
asked to play lottery games, the prizes are not representative of real decision problems. 
Therefore, it is difficult for people to treat the answers seriously, especially as the number 
of questions increases. Despite these criticisms, utility theory has been used in a wide vari-
ety of practical decision situations, some of which are described and discussed in Raiffa 
(1968) and Keeney and Raiffa (1976).

9.5 The Psychology of Decision-Making

By now, it should be clear that decision analysis is an artful combination of mathematical 
logic and human intuition. Unfortunately, human decision-makers are prone to a number 
of misconceptions and idiosyncrasies that can severely limit their ability to make rational 
choices. We have already alluded to a few of the problems, and we will now expand on 
that theme in this section. Many of the examples are based on the research of Tversky and 
Kahneman (1982) and Kahneman (2013).

9.5.1 Misconceptions of Probability

Suppose that you are in Reno and that you have been casually watching people play rou-
lette. You notice that red has come up 40 times in a row. Would you now bet everything 
you own on black? We know that getting red 41 times in a row is highly unlikely (a prob-
ability of approximately 4.5 × 10–14), and therefore, for many people, black seems highly 
probable. But in fact, assuming that the wheel is fair, the probability of red on the forty-first 
spin, given that we already have 40 reds, is 0.50.

This assumption is known as the Gambler’s Fallacy. The same behavior can be observed 
in more practical decision-making situations. When people observe a sequence of events 
with a high proportion of failures, they assume that the probability of success must be 
increasing, and they adjust their decisions and their attitude toward risk accordingly. As in 
the game of roulette, this is not rational when the individual observations are independent.

There is a popular lottery in which people pick six numbers between 1 and 49. Every 
week, six numbers are drawn at random, and anyone who matches all six wins the grand 
prize (usually in the millions of dollars). There is considerable speculation about “Which 
numbers are more likely?” Many people apparently believe that some combinations must 
surely be more likely than others. “You will never see the sequence 1,2,3,4,5,6” for example. 
If we try to explain that 1,2,3,4,5,6 is just as likely as any other, many people respond by 
telling us that we do not understand the basic laws of probability and true randomness. 
One can even purchase software to help us select six numbers that are truly random (and 
hopefully lucky).

Consider the following experiment: suppose that we ask people to select colored marbles 
from a large opaque jar, one at a time with replacement. The subjects are told that the jar 
contains two colors, red and white, and that two-thirds of the marbles are one color, while 
one third are the other color. The first individual draws six marbles and finds four red and 
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two white. He concludes that the jar is two-thirds red. The second individual (drawing 
from a different jar) selects 20 marbles, of which 11 are red and 9 are white. She concludes 
that her jar is also two-thirds red. After making their draws, we ask the subjects how much 
confidence they have in their assessment.

Most people agree that the first person has a higher probability of guessing correctly. 
His draw corresponds precisely to the expected distribution if two-thirds of the marbles 
are red. The second subject found the colors to be almost equally divided and feels that 
the probability of guessing correctly is only slightly better than 50%. In fact, in both cases, 
the probability of two-thirds red is exactly 0.80. The larger number of draws in the second 
experiment greatly increases the accuracy of the conclusions. Generally, people do not 
appreciate the significance of sample size information. The same principle is true for mar-
ket surveys and opinion polls. Assuming that the selection procedure is unbiased, even 
small samples can be very accurate predictors.

As already discussed with reference to the Allais Paradox in the previous section, people 
are inconsistent in their application of small probabilities. Probabilities with an obvious 
physical interpretation, such as a 50% chance of getting a head when tossing a coin, are 
easy to understand. However, probabilities of 0.48 and 0.52 are both considered close to 
0.50, and we perform this substitution in our minds when we analyze a problem. The 4% 
difference is often essentially ignored.

At the same time, a probability of 0.01 is too small to visualize. Consequently, people 
have a tendency to either exaggerate the probability, or to decide that it is essentially zero. 
Down to a certain level, people will treat probabilities of 0.01 or 0.02 as if they were closer 
to 0.05 or 0.10. At some point, the associated probability is taken as being effectively zero. 
The same behavior is true for probabilities close to 1.0. The perceived probability is less 
than the actual probability up to some point at which people assume that the event is cer-
tain. This behavior, although understandable, is mathematically irrational.

Another common error in the appreciation of probability concerns the net effect of a 
series of conjunctive (or disjunctive) events. Consider a decision-maker who is respon-
sible for a large project composed of a series of small components. The project could be 
the design and installation of a computer system, an office tower, or a nuclear reactor. 
We assume that each part must be successful in order for the project to succeed. This is a 
conjunctive event in that the probability of success of the project is the product of the prob-
abilities of success of the components.

Let us suppose that the decision-maker and his staff investigate each component, and 
they determine that each has a 99% chance of success. They conclude that the success of 
the project is highly likely. In actual fact, if there are 1,000 components, the probability of 
a successful project is less than 0.00005. This problem is compounded by the fact that the 
people responsible for the individual components are not likely to estimate a 99% chance 
of success. At that level of certainty, they will usually say that they are sure that their part 
will work properly.

As a final example, consider the following problem based on the format of a popular 
television game show. Contestants are shown three doors and told that behind one door is 
a two week, all expense paid vacation to Hawaii, or something equally valuable. The other 
two doors conceal a consolation prize. Suppose the contestant selects door number 2, and 
then the host opens door 3 and shows the contestant that it contains one of the consolation 
prizes. (Doors 1 and 2 are not opened.) The host then asks the contestant if he/she wants to 
change his/her initial choice (from door 2 to door 1 in this case). Based on the probabilities, 
and on this new information, should he/she change doors? We will leave this question for 
the reader to ponder, and come back to it later in this chapter.
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9.5.2 Availability

When decision-makers are asked to make subjective probability assessments of uncertain 
future events, their judgment depends on their personal available store of information. 
Unfortunately, the availability of information is often influenced by subjective external 
events. People make decisions based on the experiences related to them by a trusted friend, 
events they read about in the morning newspaper, or what they saw on the way to work.

To illustrate, suppose that we ask people to estimate the probability of an airline acci-
dent. Some people may actually go to the trouble of collecting statistics on flight accident 
rates over the past few years, but most would simply use their intuition. Their probability 
estimates would be strongly influenced by recently reading about an accident or by know-
ing someone who was involved in a crash. People who actually witness this kind of disas-
ter often conclude that the risk is so high that they will decide never to fly again. Observe 
that none of these events reflects the true probability of an accident. People often make 
probability assessments based on very limited personal experiences.

The same logic applies in business decision-making. An executive who has previously 
been involved in a risky venture that failed will be very reluctant to try anything like it in 
the future. His own estimation of the probability of success has been greatly reduced. The 
availability and use of such highly subjective input can produce very irrational behavior.

9.5.3 Anchoring and Adjustment

When people make subjective assessments, they often begin with an initial estimate 
based on their previous experiences, or perhaps even based on ideas suggested by the 
wording of the question at hand. When they try to make a prediction, they can become 
anchored to their original estimate, even when they know it should not affect their deci-
sion. This produces insufficient or conservative adjustment in the direction of the new 
assessment.

Consider a rather dramatic example, described by Tversky and Kahneman (1982), of an 
experiment in which people were asked to estimate the percentage of African countries 
that are members of the United Nations. The experimenter would first spin a wheel of 
fortune in the presence of the subject. The wheel would randomly pick a number between 
1 and 100. If the number was 10, the experimenter would ask, “Is it 10%?” The average 
response of subjects was, “No, it is closer to 25%.” When the random number was 65, the 
experimenter would ask, “Is it 65%?” The average response was, “No, it is more like 45%.” 
When people were given a number that they knew was irrelevant, they used it anyway. 
They were anchored to the initial wording of the question and then performed insufficient 
adjustment. Moreover, their performance did not improve when they were offered money 
for guessing correctly. Apparently, if people are given no information, they will use com-
mon sense, intuition, and/or statistical estimates. When people are given useless informa-
tion, they will use it and ignore logic.

In one experiment, 32 judges were shown the case background for a patient. Eight of the 
judges were clinicians. The patient’s file was divided into four sections and the judges 
were asked to give their opinion on the diagnosis after reading each section. The study 
showed that the accuracy of the diagnoses did not increase significantly with the amount 
of information. However, the judges’ confidence in their diagnoses increased dramatically. 
Presumably, people became anchored to their initial impressions.

The same is true in management decision-making. When a manager has access to a 
great deal of data and reports, he will have a correspondingly high confidence in his 
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ability to make decisions. This attitude does not necessarily depend on the quality of his 
information. People have a tendency to be influenced by the sheer volume of data available 
to them.

Expertise itself can be a source of the anchoring bias. Professionals, such as doctors, 
lawyers, managers, or stockbrokers, may develop a system of standard operating procedures 
based on years of training and experience. Expertise produces efficient responses to envi-
ronmental signals and symptoms. When you describe your ailments to your family prac-
titioner, he does not usually need to spend hours consulting his medical reference books. 
He will quickly identify a few possible diseases that match your symptoms and prescribe 
further tests or medication. The value of expertise is that we can get quality advice quickly.

Unfortunately, experts can become anchored to their own standard procedures. If some 
of the symptoms and signals are incompatible with their standard procedures, they tend 
to be ignored or re-interpreted by the expert to fit their existing models. Experts will put 
greater emphasis on information that is consistent with their own previous experience, 
and thus become anchored to their own expertise.

People can also be anchored to the mean of a distribution. Suppose that we asked a 
decision-maker to estimate the expected value of sales for a product next year, or to fore-
cast the inflation rate. We then ask him to specify an upper and lower limit for the distribu-
tion, with a probability of 99%. In experiments with experts, people tend to specify a range 
that is accurate 70% of the time. They are conservative in their estimates of high and low 
values and are anchored to their initial estimate of the expected value.

9.5.4 Dissonance Reduction

Consider the decision to buy a new car. Most people will begin this exercise with total 
objectivity. They will develop a list of desirable features and decide on a budget limitation. 
After visiting several dealers, test driving the cars, talking to people and collecting bro-
chures, they will compile a mental catalog of the possibilities, and start objectively remov-
ing certain alternatives that are too expensive, too slow, or too small.

As this process continues, the decision-maker reduces the set of options to some small 
group of items that are all, in some sense, equally acceptable. It becomes difficult to choose 
between them, and the decision-maker enters a phase called dissonance. A choice must be 
made; and at this point, the decision-maker will become very subjective, and simply pick 
one alternative. This is perfectly rational because all of the options have been judged to be 
of equal utility to him.

Having now made a choice, the majority of psychologically stable decision-makers then 
enter a completely irrational phase called dissonance reduction, in which they try to con-
vince themselves that the alternative they selected was, in fact, the very best one by far. 
They will exaggerate favorable qualities and down-play the less attractive ones.

This type of justification after the fact is irrational, but it is also necessary in order to 
dispel the feeling of dissonance. People who do not enter this phase may spend the rest of 
their lives doubting themselves and worrying about whether they made the right decision, 
and they might never really be satisfied with their decision.

This behavior is important in decision analysis in a practical environment because busi-
ness decision-makers will also subconsciously employ dissonance reduction. Once they 
have made their decision, they become increasingly stubborn about it. They will tend to 
discredit any new information that does not confirm the wisdom of their original choice. 
It may be very difficult to return to the initial objective context of decision-making after 
having mentally justified the choice that was made.
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9.5.5 The Framing Effect

It has been observed that people sometimes change their answers when we simply alter 
the wording of the question. This framing effect is closely related to the idea of the zero 
illusion discussed earlier.

In one study, two groups of physicians were given the following decision problem. 
Suppose that a rare Asian flu is expected to hit the country next winter. If nothing is done, 
we expect that 600 people will die. The first group of physicians was told that there are two 
possible inoculation programs that could be used. Program A has been used in other coun-
tries and the results are highly predictable. Program B is a new, experimental treatment.

Program Expected Result Probability

A 200 people saved 1.00
B 600 people saved 0.333

0 people saved 0.667

Observe that the two programs are equivalent in terms of the expected number of people 
who will be saved. The majority of the physicians preferred program A. They were being 
risk averse and preferred to save 200 lives for certain, rather than take a chance of saving 
all or none.

The second group of doctors was given the same problem, except that they were told that 
there are two possible inoculation programs, C and D.

Program Expected Result Probability

C 400 people die 1.00
D 600 people die 0.667

0 people die 0.333

The majority of the subjects in this group preferred program D. Presumably, the thought of 
having 400 deaths on their conscience was too much, and they preferred to gamble.

In this experiment, both groups answered the same question, but changing the wording 
of the question changed the way they responded. The first group looked at the problem 
in terms of positive results (lives saved) and were risk averse, while the second group 
became more risk seeking for negative results (death). This is precisely the effect of the 
zero illusion.

In another experiment, subjects were asked to imagine that one of their friends had 
contracted a fatal, contagious disease. The disease has no symptoms that can be detected; 
people who have it will simply die in two weeks. There is a remote probability of 0.0001 
that you have contracted the disease from your friend. Fortunately, there is an antidote 
that you can take now as a precautionary measure. What is the maximum amount that you 
would be willing to pay for this antidote? The average response was $200. If the drug cost 
more than $200, they would prefer to take their chances.

A second group of subjects was asked if they would be willing to volunteer for a medical 
research experiment. They were told that there was a remote chance (probability 0.0001) 
that they might contract a fatal disease. There is no antidote and, if they got the disease, 
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they would suddenly and painlessly die in two weeks. What is the minimum amount 
that we would have to pay you to volunteer for this program? The average response was 
$10,000.

This is a dramatic example of the zero illusion. People are unwilling to pay more than 
$200 to avoid the risk of death. But these same people will not take less than $10,000 to face 
the same risk. Notice that the $200 is a loss, while the $10,000 is a gain. We can interpret 
this to mean that the positive utility of $10,000 is the same as the negative value of –$200. 
We can also assert that people are gamblers for losses and highly risk averse for profits. 
This attitude appears perfectly rational until people realize how easily we can move their 
zero.

Consider yourself in this simple situation. Someone sends you a card on your birthday 
with a $100 bill inside. A few days later, they come up to you, terribly embarrassed, and 
tell you that it was a mistake. They put the money in the wrong envelope, and could you 
please give it back—which you do reluctantly. Observe that, not counting the insult, the net 
effect of this pair of transactions is very negative. Receiving the $100 had a certain positive 
utility. However, once you had it in your pocket, and had already decided how to spend it, 
giving it back is a loss with a much higher negative utility. After you receive the $100, you 
move your zero.

Companies will often use the framing effect to their advantage in marketing strategies. 
Some years ago, credit card companies banned their affiliated stores from charging higher 
prices to credit card users. A bill was once presented to the U.S. Congress to outlaw this 
practice. Lobbyists for the credit card bloc realized that some bill would be passed, and 
they preferred that the new legislation call for a discount for cash rather than a credit card 
surcharge. The two options are identical because merchants simply add the surcharge to 
the cost of the merchandise. However, customers see the discount for cash as a positive 
gain (low utility), whereas the added cost of a surcharge would have much higher value, 
and many more people would pay cash.

A common marketing ploy is the “two week trial with a money back guarantee.” People 
must make two decisions: one at the beginning and a second decision at the end of the two 
weeks. In the first decision, people will compare the value of a two-week trial against the 
transaction costs (pick-up, delivery, etc.). The cost of the item is not included because they 
can get it back. In the second decision, they compare the value of keeping the item to the 
utility of the positive refund. But, as we have seen, the utility of a refund is much smaller 
than the utility of a payment if we had bought the item outright in the first place. People 
are more likely to keep things that they would never have purchased otherwise. The mail 
order purchasing industry thrives on this principle.

There are examples of the framing effect that do not rely on the zero illusion. Consider 
the following two scenarios. Sam is waiting in line at a theater. When he gets to the win-
dow, the manager comes out and says, “Congratulations. You are our 100,000th customer, 
and you win two free tickets to the show!”

Sally is at a different theater. When the man in front of her gets to the window, the man-
ager comes out and tells him, “Congratulations sir! You are our 1,000,000th customer, and 
you win $1,000.” The manager then turns to Sally and gives her $100 as a consolation prize 
for being number 1,000,001.

Which of these two people had a better experience? Although Sam’s net gain has a much 
smaller value (around $20), many people feel that Sally experienced a great loss at almost 
(but not) getting $1,000. By framing the question in terms of what could have happened, 
we can change the perceived value of Sally’s $100 profit.



376 Operations Research

9.5.6 The Sunk Cost Fallacy

The sunk cost fallacy is really a specific variation of the framing effect. The relevant aspects 
are illustrated in Figure 9.17. Let us assume that, at some past time t0, a decision was made 
to initiate a project. We are now at time t1, and we must decide whether to continue the 
partially completed project or to quit now and cut our losses. We further assume that we 
have already invested some amount $S in the development. The question is: should the 
value of S, the sunk cost, be considered when the decision is made at time t1?

An example of this issue occurs in a so-called Continue/Discontinue decision, where x 
represents the potential profit of successful completion with probability p, y represents the 
potential cost of failure with probability (1 – p), and z denotes the expected cost of discon-
tinuing the project. We will assume that x > z > y. The same decision tree structure occurs 
in an Asset Disposal problem. At time t0, we purchased an asset for $S, and at time t1, we 
must decide to either keep it with a risky future cost or dispose of it and take the current 
salvage value.

The question is: how does the value of S, the consequence of previous decisions, affect 
the current decision at time t1? Authors in mathematical and economic theory refer to this 
question as the sunk cost fallacy. They argue that nothing can be done about S, and the 
decision at time t1 should depend on the real options currently available.

Consider a man who joins a tennis club and pays a $300 annual membership fee. After 
two weeks, he develops tennis elbow, but continues to play (in pain) because he does not 
want to waste the $300. If the same man had been given a free annual membership, valued 
at $300, he would likely quit. The sunk cost directly affects future decisions.

Empirical studies have shown that the rate of betting on longshots increases during the 
course of a racing day. Presumably, people have not adapted to earlier losses and they are 
trying somewhat desperately to compensate for them.

This type of behavior is common in the business world. A manager initiates a project at 
time t0 with an expected cost of $100,000, to be completed in one year, and a 50% probabil-
ity of revenues of $500,000. At the end of the year, time t1, he has already spent $150,000, 
and he estimates another six months and $50,000 to finish with a 10% chance of $200,000 
revenue. There were unexpected delays and the market conditions have experienced an 
unfortunate decline. The project is no longer profitable. The decision tree is illustrated in 
Figure 9.18.

Figure 9.18b is the same as 9.18a except that the costs of both gates have been moved to 
the end nodes of the tree. In the first diagram, paying $50,000 for a 10% chance of mak-
ing $200,000 is clearly a very risky proposition. However, when we consider Figure 9.18b, 
the prospects of losing either $200,000 or $150,000 are both considered almost equally 
bad outcomes by the risk seeking decision-maker. By defining zero in terms of time t0 in 
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Figure 9.18b instead of time t1 as in Figure 9.18a, we can change the decision-maker’s utility 
function from risk averse to risk seeking.

This behavior is a form of entrapment in which a manager stays committed to his origi-
nal course of action long after it ceases to be justified by any rational analysis. There is a 
strong psychological motivation to appear consistent in decisions made over time. People 
often feel that they cannot abandon a course of action without admitting that their previ-
ous decisions were wrong. In 1968, Lockheed started development of the L-1011 Tristar 
jumbo jet. At that time, they were predicting 10% annual increases in airline traffic. By 
1971, actual increases were closer to 5%, and their expected sales were now well below 
the projected break-even point. Lockheed needed federal guarantees for $250 million of 
additional bank credit. (The banks did not consider Lockheed to be a good risk.) At the 
subsequent congressional hearings, Lockheed and the Treasury Secretary proposed that 
federal guarantees were in the national interest because it would be the height of folly to 
abandon a project on which close to $1 billion had already been spent. The continuation of 
the project was being justified on the basis of the sunk cost alone. In fact, the real question 
was whether the expected future income would be worth the additional expenditure of 
$250 million. The sunk cost argument is often used to explain many political decisions to 
support an apparent lost cause.

9.5.7 Irrational Human Behavior

Reconsider the game show problem described earlier. The contestant was asked to pick 
one of three doors and he chose door number 2. The host now opens door 3 to reveal a 
consolation prize and asks the contestant if he would like to switch his selection from door 
2 to door 1. What is the probability that the grand prize is behind door number 1? Many 
people (and many actual contestants) believe that the probability has been reduced to a 
50–50 proposition between the two remaining doors, and they will agonize over this new 
decision, often sticking to their original choice.

In actual fact, they should always switch. The probability that the door initially selected, 
door number 2, was the one that concealed the grand prize, was one third and it still is 
one third. Whether or not the initial choice was correct, it is certain that at least one of the 
other two doors contains a consolation prize. The host, who knows where the grand prize 
is, simply verified the fact that one of the two doors was wrong, and he has not really 
given any new probability information. The probability that the door initially selected 
was the right door is still only one third, and therefore, the probability that door num-
ber 1 is correct must be two-thirds. Consequently, the contestant should always switch. 
The reader who is still skeptical should try the experiment outlined in Exercise 9.1. As 
has been stated already, people often feel that additional information must improve the 
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validity of their probability estimates. But, in fact, more information is not always helpful 
to an irrational human decision-maker.

9.5.7.1 What Can We Do about Irrational Behavior?

 1. One of the most important tools for combating irrational behavior and biases is 
through proper training. Simply making people aware of the biases described 
earlier can improve their understanding of the decision process, and they can 
avoid making some of the common mistakes.

 2. A decision simulator works on the same principle as the jet aircraft simulator for 
training pilots. The decision-maker is presented with a large number of differ-
ent situations (one at a time) and asked to choose a course of action. The simula-
tor immediately gives him the consequences of his decisions and, if possible, the 
results of the optimal decision. The cases used in the simulator can be actual his-
torical problems with known outcomes. (e.g., Lembersky and Chi [1986] describe 
a computer simulator that helps decision-makers at Weyerhauser to decide more 
effectively how trees should be cut in order to maximize profit.)

 3. A less-expensive form of training is feedback. Decision-makers will estimate 
probabilities of various market parameters in predicting the success of a product, 
but they seldom get any direct feedback on the quality of their intuition. If the 
product is successful, they must be doing something right. By comparing their 
original estimates with the actual results, it is possible to improve their future 
prediction skills.

 4. Another method of reducing bias is by automatic correction procedures. For 
example, when we must forecast future sales, we could use an expert and a sim-
ple linear regression model, and then split the difference between the two. The 
assumption here is that the expert will have more information than the regression 
model, but that the human has a tendency to overreact.

 5. A common approach to eliminating bias is to ask a number of redundant ques-
tions. In particular, we can reduce the effect of the zero illusion by rephrasing 
the same question in several different ways with the zero shifted to make people 
aware of the effect.

 6. We must recognize the limitations of the human decision-maker as well as the 
strengths. Dawes (1982) compares human judgment with linear regression in a 
variety of selection processes and concludes that the linear models are generally 
superior to expert decision-makers. Human experts were often found to be much 
better at gathering and encoding information than they were at integrating it and 
using it effectively in decision-making.

9.6 Software for Decision Analysis

A large variety of software is available to support various aspects of decision-making. For 
a comprehensive survey of decision support software, refer to Oleson (2016). A few repre-
sentative packages are mentioned here.
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SAS/OR offers decision making support that allows users to create, analyze, and inter-
actively modify decision tree models, incorporates utility functions and attitudes toward 
risk, and identifies optimal decision strategies.

Oracle’s Crystal Ball and Crystal Ball Decision Optimizer provide advanced optimiza-
tion capabilities to support predictive modeling, forecasting, optimization and simulation, 
with insights into critical factors affecting risk.

Palisade Corporation has acquired a reputation as a leading provider of fully integrated 
and comprehensive risk analysis and decision analysis software known as the DecisionTool 
Suite Risk and Decision Analysis software. The Suite includes a component called @RISK 
for risk analysis and another component called Precision Tree that supports visual deci-
sion analysis by building decision trees. Precision Tree incorporates the decision maker’s 
attitude toward risk by creating a risk profile that illustrates the payoff and risks associated 
with different decision options, and also performs sensitivity analysis to track changes in 
the expected value of the decision tree when values of variables are modified.

Analytica is a spreadsheet-based visual software environment for building, exploring, 
and sharing quantitative decision models. It runs under Windows and has a web-based 
implementation for collaborative decision making. It has a Monte Carlo simulation capa-
bility to handle uncertainty and risk. It has also an automatic optimizer to find the best 
decisions. Decision trees can be developed and sensitivity analysis can be conducted. 
Graphical representations such as tornado diagrams, influence diagrams, and decision 
trees can be generated.

DPL has a family of decision analysis software packages that run under Windows, Mac 
and online with various capabilities to quantify uncertainties and enumerate options 
Influence diagrams, decision trees, tornado diagrams and rainbow diagrams can be 
produced. It has Monte Carlo simulation, risk tolerance, utility functions, and graphical 
sensitivity analysis capabilities. It has a component to compute the value of imperfect 
information.

TreePlan is among the early packages for decision analysis, and specifically for develop-
ing decisions trees. It is now an Excel Add-in that can generate decision trees for analyzing 
sequential decision problems under uncertainty and it runs under Windows and MacOS. 
TreePlan creates formulas for summing cash flows to obtain outcome values and for calcu-
lating rollback values to determine the optimal strategy. Although it lacks many of the deci-
sion analysis features that other packages include, TreePlan is included in many textbooks 
specifically for decision trees, which makes it quite well known among other packages.

Analytic solver platform is a suite of tools that are used for risk analysis, Monte Carlo 
simulation, optimization, forecasting and data mining. It works with Excel and it can han-
dle uncertainty, risk tolerance, decision trees, and sensitivity analysis. It can also produce 
tornado diagrams and decision trees.

9.7 Illustrative Applications

9.7.1  Decision Support System for Minimizing Costs in 
the Maritime Industry (Diz et al. 2014)

International maritime transportation is responsible for shipping the majority of com-
mercial goods in world trade transport. Because crude oil and its derivatives account for 
approximately one third of this total cargo, scheduling the global fleet of petroleum tanker 
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ships is a critically important component in managing the cost of this huge transportation 
enterprise. The ship scheduling process involves allocating tankers from a given fleet to 
a set of cargoes, with the aim of minimizing costs. Significant academic research efforts 
over many years have resulted in the creation of new mathematical models, with details 
adequate to represent realistic situations, and new algorithms to optimize the ship sched-
uling models. However, the system described in this section is somewhat unique in that it 
is one of the few research studies which demonstrates a substantial and successful applica-
tion of such analytical tools to control costs in actual industry ship scheduling problems.

In this application, we will see both the details and the broad scope of a successful 
decision support system. The development and implementation of this decision support 
system encompasses the difficulty of collecting reliable and critical data, the use and 
adaptation of powerful optimization techniques, the initial resistance of human experts 
to accept new methodologies, and the eventual inclusion and integration of the new deci-
sion support system into traditional corporate processes. The use of this decision support 
system provided a comprehensive approach for minimizing costs without compromising 
the service level standards set by the company. Moreover, the implementation of the new 
system also represents a turning point for this large corporation in the use of analytical 
support tools which ultimately fostered stronger cooperation among engineers, research-
ers, and managers.

The large multinational energy company Petrobras is a prominent player in global 
petroleum transport. Over a long period of time, Petrobras worked with a long-haul ship 
scheduling system to handle both importing and exporting crude oil for Brazil through 
numerous ports in five continents. In their system, the logistics department received 
information about cargoes when they were acquired or traded, and this data were con-
stantly updated as cargoes were exchanged in open trade. The cargoes are defined by a 
narrow range of standard volumes of approximately a million barrels. Export cargoes 
must be loaded at ports on the Brazilian coast and transported to discharging ports 
in various parts of the world. The complicated pattern of importation and exportation 
involves transport both into and out of Brazil as dictated by Petrobras and customer sup-
ply demands.

The scheduling operation at this company assigns vessels to cargoes which are to be 
loaded, transported, and discharged. The size of the cargoes is consistent with the capac-
ity of the Suez Max class of ships in their fleet. The assignment is subject to commercially 
negotiated time frames and operational constraints at ports and underway, and aims to 
minimize overall transportation costs. Petrobras maintains a fleet consisting of long-term 
chartered ships. For economic reasons, the capacity of this semi-permanent fleet is less 
than what is usually required for transporting all the cargoes. It is therefore routinely 
necessary to engage extra vessels on a per voyage charter basis in order to meet immediate 
demands for moving cargoes.

The scheduling process in use was practical, being based on the expertise gained 
through experience. For example, one heuristic rule used by the schedulers was to attempt 
to avoid idle time of long-term chartered ships; another strategy tried where possible to 
assure that a ship underway is loaded with cargo so that ships are used efficiently and not 
traveling empty unless necessary. The schedulers manually chose what they considered to 
be efficient routes. However, the methods employed merely generated several alternative 
feasible schedules, from which a few could be manually compared and selected based on 
low cost. The process did not produce an optimal minimum cost schedule.

Because of the very high and increasing costs anticipated in the maritime transport 
industry, the company undertook a thorough study of its long haul shipping operations 
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for the transportation of crude oil. Until 2012, skilled and experienced schedulers manu-
ally carried out the ship scheduling processes, but the company hoped that a careful study 
would reveal cost savings that could be achieved by an automated decision support system 
(DSS) that would largely take over the scheduling process, and that would also evaluate 
and report the actual economic advantage of implementing the improved scheduler.

The study resulted in the creation of a DSS that provides a minimum cost schedule for 
transporting a set of cargoes on a given fleet of ships. The new system systematically veri-
fies and confirms or updates all the original input data pertinent to a schedule, such as 
operational costs, unexpected restrictions, changes in vessel speed or capabilities, port cir-
cumstances, distances, freight rates, vessel availability and location, and cargo character-
istics. Once the DSS determines a minimum cost schedule, any of the earlier unexpected 
changes can occur, and must be incorporated to produce a new feasible schedule.

The DSS operates as follows. First, an algorithm is applied to generate a complete set 
of feasible schedules based on the most recently updated cargo, fleet, and port data. The 
method used for this is to generate all possible routes for the cargoes that adhere to the 
specified loading and unloading times in port; then to match each route to a time char-
tered vessel, adding voyage chartered ships if needed. A cost is then computed for each 
route to vessel assignment; that is, the total cost for each voyage (which includes ship oper-
ating cost, port taxes and fees, and current market freight rates). Next, the DSS uses the 
previous set of voyages and costs as input parameters for an integer programming model, 
formulated to minimize the overall cost for the entire fleet. An efficient commercial solver 
based on the AIMMS optimization platform with CPLEX is then used to solve the integer 
programming problem, thus yielding the minimum cost fleet schedule.

The integer programming model in this case was a straightforward formulation, using 
binary decision variables to denote whether vessel v is assigned to route r; and other 
binary decision variables to flag an idle vessel or a cargo that will have to be assigned to a 
voyage charter vessel and thus not assigned to any time-chartered ship.

The DSS was thoroughly tested, then fully implemented, with positive outcomes 
including an average 7.5% savings representing hundreds of millions of dollars in costs. 
Furthermore, the new system solved more complex and complete problem models, and 
did so within measured computation times of approximately five seconds. With this new 
DSS, the importance of acquiring accurate data and the ability to deal with unforesee-
able restrictions, mechanical degradations and weather conditions were recognized as 
being critical. In this respect, a key factor was the interaction between the user and the 
system that included the skillful and experienced manual schedulers to handle changes 
that could not always be dealt with during execution of the DSS. This interaction cre-
ated a healthy environment of cooperation and promoted acceptance of the new system 
by Petrobras employees. The schedulers had, through experience, acquired a rich under-
standing of many subjective aspects of ship scheduling. Their ability and willingness to 
integrate their knowledge in dealing with last minute changes in the scheduling environ-
ment contributed significantly to the successful implementation of the DSS and to contin-
ued improvements in the economics of marine transportation.

9.7.2 Refinery Pricing under Uncertainty (Keefer 1995)

During the 1980s, when crude oil prices were fluctuating dramatically and refining over-
capacity made the profitability of operating refineries unpredictable, an oil company 
shut down a large overseas refinery. Management’s opinion of how best to dispose of 
this non-performing investment varied considerably: some thought it would not even be 
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possible to give away a shut down refinery, while others hoped to sell the defunct facility 
for a substantial sum.

For purposes of price negotiations, management needed to develop some idea of what 
the refinery would be worth to a variety of types of potential buyers. Because the current 
owner had been unable to operate this refinery profitably (nor did it foresee being able 
to do so in the near future), presumably a likely buyer would not be a company just like 
the current owner. Instead of the buyer being a major international oil company, it was 
expected that the buyer would be a small, well-capitalized company, perhaps a newcomer 
to the industry, in the business of trading, refining, or marketing oil, and which would 
take a short term, entrepreneurial approach to using this refinery.

In the process of determining how to price the refinery for sale, the decision analyst 
drafted four operating scenarios describing how each of four categories of potential buyers 
could use the refinery profitably: 

 1. In the first scenario, the new owner would not actually operate as a refinery, but 
would instead use the facilities as a terminal, berthing ships, storing and trans-
shipping crude oil, storing and blending certain products, and selling to local 
customers.

 2. The second scenario consists of all the aforementioned activities plus operating 
the refinery itself opportunistically during periods of advantageous refining mar-
gins. (This posed some problems because positive refining margins in the near 
term were possible but very unpredictable.)

 3. In a third scenario, the operation of the facilities as in the first scenario would be 
supplemented by refining under a so-called netback agreement with a crude oil 
producer. Under such an arrangement, the refinery agrees to buy and refine crude 
oil, at an agreed-upon steady supply rate for a prespecified refining margin. The 
predictability of throughput arising from this scenario is of considerable value, 
but this advantage is offset by the uncertainty of what netback margin could be 
negotiated with a crude oil producing country.

 4. The fourth scenario is a combination of the first three: use of facilities for storing, 
transshipping, blending, a netback agreement to support a steady refining opera-
tion, and stepped-up refining activity during periods of positive refining margins.

The current owner of the refinery had traditionally analyzed and evaluated uncertain-
ties using deterministic methods to calculate net present value, then applying sensitivity 
analysis. This simple approach turned out to be inadequate for pricing the refinery. Net 
present value (NPV) calculations were based on large and uncertain ranges for parameters 
such as margins and throughputs. These estimates led to discrepancies in NPVs that fluc-
tuated too widely (over hundreds of millions of dollars) to give management much insight 
into how to price the refinery for purposes of negotiating a sale.

Rather than a deterministic model that allowed small changes in parameters, the analyst 
chose to utilize decision analysis techniques, treating the heretofore unwieldy parameters 
as random variables and basing much of the uncertain data on judgmental probability 
assessments.

The expected NPV was calculated using a decision structure known as a probability tree. 
This differs from a conventional decision tree in that the branches in the tree do not repre-
sent a timeline of sequentially made decisions in response to specific uncertainties. There 
are no decision nodes per se; rather, the branches associated with uncertainties denote the 
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possible outcomes of the uncertainties. Working from the extremities of the tree back to 
the root of the tree, the probability-weighted average NPV was simple to calculate, and the 
entire model and computational process were easily understood by management.

Calculations for the fourth scenario showed the highest expected value of $53 million, 
while lower expectations were associated with all the other scenarios (as low as $23 mil-
lion for the first scenario). The analyst’s recommendation to management that it would be 
reasonable for certain prospective buyers to pay in the range of $23 million to $53 million 
for the shut down refinery constituted a hopeful alternative to the sad prospect of having 
trouble giving it away. As a result, a decision was made to wait for a reasonable offer, and 
indeed, a sale was eventually made for a price in excess of $50 million.

9.7.3 Decisions for Radioactive Waste Management (Perdue and Kumar 1999)

High-level radioactive waste resulting from spent nuclear fuel is sometimes dealt with by 
encapsulating the waste in glass, using a process known as vitrification. But just how much 
nuclear waste cleanup is necessary, desirable, and cost-effective. Determining the appro-
priate extent of this technologically difficult undertaking has proven to be quite a complex 
decision process. In a joint effort of the U.S. Department of Energy, the New York State 
Energy Research and Development Authority, and Westinghouse Electric Company, deci-
sion analysis techniques have been used to help analyze how this cleanup process should 
be properly accomplished.

The contaminated waste is contained in underground tanks. Waste is removed from the 
tanks, sealed in glass containers, and the tanks cleaned and rinsed. This process is repeated 
until the tanks are no longer classified as high-level radioactive waste, but the declassification 
criterion is not perfectly defined and includes safety issues, and technical capabilities, as 
well as social and economic considerations. Decision analysis tools were used to study 
alternative clean up processes based on expected monetary benefits and societal costs.

The different cleanup regimens studied range from one extreme in which only currently 
used technologies are employed, to the other extreme which assumes availability of all 
technologies under development. For each scenario, numerous levels of waste removal 
are considered, ranging up to 99.9% cleanup of the known initial radioactivity measured.

For each combination of technology and radiation removal level, the analysts develop 
projections of benefits and costs. Societal benefits are quantified by estimating the mon-
etary value of an avoided radiation dose plus the value of not having to undertake con-
struction of additional containers. Costs include operating expenses for the vitrification 
process, tank cleanup, and technology deployment. The decision model includes a time 
factor that addresses the time it takes to clean a tank, which would be important in case 
key equipment failures caused interruptions or delays at critical times during the cleaning 
process.

Sensitivity analysis was applied to determine the robustness of the projections and to 
reveal just which of several uncertainties are the ones that most critically affect the esti-
mated outcomes. Results of this study are being examined by the U.S. Nuclear Regulatory 
Commission as it works toward establishing standards and requirements for nuclear 
waste management.

9.7.4 Investment Decisions and Risk in Petroleum Exploration (Walls et al. 1995)

The exploration division of Phillips Petroleum Company must routinely evaluate a broad 
range of exploration investments, determine an appropriate level of participation in each 
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project available to the firm, and select the most advantageous mix of investments con-
sistent with the division’s budget. Petroleum exploration is an industry characterized by 
financial risk and uncertainty. There are often investment opportunities with high prob-
abilities of small losses, and others with small probabilities of ruinous losses, not reflected 
in expected values. The expected value concept that had guided Phillips investment deci-
sions in the past did not adequately address how sensitive managers are to exposure to 
the chance of substantial capital losses. There is a general perception in the petroleum 
industry that this exposure can be dealt with by entering into smaller capital allocations 
in more different projects, thereby spreading the risk. Yet Phillips Exploration had no formal 
way to quantify the value of such diversification. Their methods for controlling risk were 
often informal, and based strongly on the intuition of individual managers.

Attitudes toward risk interfered with traditional decision-making processes because 
managers at Phillips needed to look beyond expected values and consider downside risks 
as an integral up-front part of the investment picture. Management had evidently never 
realized how strongly risk averse they were (and in fact needed to be), and how poorly 
their decision-making framework had supported this position on risk.

A software package was developed to assist management in the process of deciding how 
to allocate investment capital across a set of possible exploration projects. Using some of the 
standard tools of decision analysis, this software not only provided a means of organizing 
the data associated with each investment opportunity, but it also offered a way of incorpo-
rating the company’s attitudes toward risk and allowing decisions to reflect these attitudes.

The new decision software package met several of the company’s needs. One require-
ment was to have a relatively consistent measure of risk to be used over the entire range 
of investment alternatives. Management needed to be able to compare the risk and upside 
potential of two projects; for example, one with an unlikely but large payoff versus one 
with a highly probable lower payoff, both of which may have equal expected values. The 
methodology incorporated into the software package facilitated this comparison between 
alternatives.

The package also allowed Phillips Exploration division to determine the optimal level 
of participation in each of many diverse projects having a desirable mix of risk character-
istics. There are typically more investment opportunities than can be afforded with the 
scarce investment capital available; so rather than merely choosing projects to invest in, the 
company must also allocate and balance its investment capital.

In the exploration business, a prospect is a geological structure thought (or known) to 
contain petroleum potential, and a play is a collection of geologically similar prospects 
located in the same geographic locale. The decision software package assumes probabilis-
tic independence among individual projects. But because prospects within the same play 
have, by definition, similar physical characteristics, they may not be independent at all. To 
deal with this interdependence, the package allows users to specify whether they wish to 
evaluate investment projects on a prospect basis or on a play basis.

Each new investment opportunity presents new alternatives to consider. And over time, 
there emerge decision patterns of which no one is really consciously aware. The decision 
support package measures the firm’s risk tolerance by reviewing past decisions and encod-
ing this information as a utility function. In so doing, the package thus captures the user’s 
subjective (and perhaps unrecognized) perceptions about probabilities and risks associ-
ated with specific exploration outcomes. By creating a historical risk personality for the 
decision-maker, the system provides an integrated capability for ensuring a consistent risk 
attitude in evaluating and ranking projects for capital investment and determining partici-
pation levels in different prospects or plays that are consistent with attitudes toward risk.
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This software package does not require the user to have any specialized technical 
knowledge of decision analysis, risk profiles, or utility theory. Instead, the user selects 
from several input formats and enters available data; then the software interprets the input 
and constructs a decision tree.

User reaction to this decision support system has been mixed. Management has dis-
played some initial reluctance to accept the utility functions generated by the software. 
And although the users acknowledge that they are not risk-neutral, there remains some 
hesitation on their part to quantify their risk aversion. Nevertheless, the use of this tool 
has raised awareness of the issues of risk tolerance and the importance of its role in capital 
investment allocation. Phillips has used this package to support companywide analysis 
of all exploration projects. This same software is also used by several other petroleum 
exploration firms, both to assist with small-scale individual decision-making and for com-
prehensive organizational decisions.

9.8 Summary

Decision analysis involves aspects of both mathematics and psychology. Because of the 
uncertainty that often surrounds decision-making, it is important to analyze the deci-
sion process as objectively as possible, and yet to realize the important role played by the 
human psyche.

Human attitudes toward risk and uncertainty often interfere with rational decision-
making. Strategies in game theory help to identify and explain these attitudes, and several 
principles have been proposed that attempt to characterize human perspectives on risk. 
Utility theory gives us a mechanism for quantifying human attitudes toward risk.

Decision trees provide a framework for representing sequential decisions in which there 
is a response or some type of feedback at every stage in the decision process. Through the 
use of probabilistic information, optimal strategies can be identified and evaluated, using 
such measures as expected monetary value.

Decision-makers are prone to a variety of misconceptions and idiosyncratic behavior 
that can severely limit their ability to make rational choices. The availability of informa-
tion can influence people in surprising ways. People are often unwilling to modify their 
decisions even when additional relevant information or evidence becomes available to 
them; or they may feel trapped by earlier decisions. Proper training and education can 
often help analysts develop an awareness of the psychological difficulties associated with 
decisions. Such an awareness, along with an understanding of the quantitative methods 
that are available to facilitate decision-making, can encourage and foster more rational 
approaches toward dealing with decisions.
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Exercises

9.1 Imagine that you are the contestant in the game show described in Section 9.5.1, 
choosing a door in hopes of getting the grand prize. If you were allowed to repeat 
the game 30 times, you would expect to pick the right door 10 times. And if you 
always switch when given the option, you should be right 20 times. Write a com-
puter program to simulate this process.

9.2 An enterprising computer science student plans to provide computing services 
for clients, and is considering several alternatives. He can work all the problems 
given him by hand, which will cost him nothing; but he estimates his income in 
this case will only be $20,000 annually. He can buy an unknown brand desktop 
computer for $2,500. There is a 90% probability that this machine will be soft-
ware compatible as advertised, but there is a 10% chance that our entrepreneur 
will have to spend $6,000 on software modifications to achieve a working sys-
tem. In any case, he figures his income with this machine will be $100,000. His 
third alternative is to purchase a famous brand workstation computer that is 
certain to run the necessary software, and this system will cost $3,600 to pur-
chase. With this system, he gets a maintenance contract but there is a 70% prob-
ability that hardware modifications and repairs will still cost him $1,000. His 
projected income from this system is $120,000. Draw a decision tree, and deter-
mine the course of action that yields the greatest expected net income for the 
entrepreneur.

9.3 A marketing strategist at the Complete Feet Shoe Company must decide whether 
to introduce a new product. At most, one type of new product will be introduced, 
either:
Product A (shearling lined vinyl thongs).
Product B (velcro closure ankle mufflers).
Product C (truck tread knee-highs).

 If no new product is introduced, the company’s public relations officer figures that 
the damage to the company’s image as a dependable supplier of trendy footwear 
can be estimated at a value of $100,000. The cost of advertising any new product 
will be $150,000. Analysts predict the following probabilities of sales:

Product Probability Sales

A 0.80
0.10
0.10

$180,000
$40,000
$20,000

B 0.50
0.50

$100,000
$200,000

C 0.60
0.40

$120.000
$100,000
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 If product A is introduced, there is a 50–50 chance that the Save-the-Sheep Society 
will launch a smear campaign that will cause damages of $60,000 to the shoe com-
pany. If product B is introduced, there is a 50–50 chance that the inventor of velcro 
will sue the shoe company for misapplication of technology and such a lawsuit would 
cost the company $50,000. If product C is introduced, nobody will likely object. 
Draw the decision tree to display all of these options and the expected effects. 
Indicate what course of action should be recommended by the marketing strategist 
on the basis of the information given here, and state the expected loss or gain for 
your recommendation.

9.4 A long range planning committee is considering proposing that a new building be 
built on the campus of a university. The construction cost for the new building will 
be $30,000,000. If the new building is built, there is a 25% probability that publicity 
associated with the new facility will cause increased enrollment, which will result 
in $2,500,000 in revenues for the university. If the new building is not built, there 
is a 75% probability that some students will choose to attend another university, 
resulting in $10,000,000 in lost revenues. Even if there is no loss in enrollment, the 
overcrowded conditions will be such that there is a 50% chance of faculty rebellion, 
which can be quieted only by increased employee benefits, costing the university 
$2,000,000. Draw the decision tree to display all these options and the expected 
effects. Indicate what course of action should be taken, and state the expected loss 
or gain from this decision.

9.5 Recall from Section 9.5.1 the experiment involving selecting colored marbles 
from a large opaque jar. Both subjects conclude, based on different experiences 
drawing marbles from their jar, that two-thirds of the marbles in their jar are red. 
Prove, in both cases, just what is the probability that two-thirds of the marbles 
are red.

9.6 Suppose that your Operations Research mid-term exam will consist of one ques-
tion worth 10 points, and you have only three hours to study for it. You are told 
that the instructor will pick the question from one of three possible topics: deci-
sion trees (D), utility theory (U), or game theory (G). If you spend your three 
hours studying one topic, and that question occurs on the exam, you will prob-
ably get 10 out of 10 points. For two hours studying, you expect to get 8; for one 
hour, you would get 5; and if you do not study the correct topic at all, you will 
get 2 points. By taking a quick look at past exams, you discover the following 
frequency of each topic:

Topic Number of Times

Decision trees (D) 8
Utility theory (U) 7
Game theory (G) 5

 a. Use decision tree analysis to determine your best study strategy. How many 
hours should you spend on each topic, and what is your expected grade on the 
exam?
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 b. Your friend Steve says he has inside information that he will sell to you for $5. 
Steve’s hot tips have not been very accurate in the past and you estimate the 
conditional probability of his information being correct as follows:

Given: Actual Question

D U G

Steve D 0.8 0.2 0.3
says   U 0.1 0.7 0.2
           G 0.1 0.1 0.5

  You decide that you need the points, so you pay him and he tells you that the 
exam question will be a game theory question. How does this influence your 
study strategy and what is your new expected grade on the exam?

 c. Suppose that you find the idea of failing your exam particularly unattractive, 
so you decide to do an analysis of your utility for points:

 i. You would consider a grade of 5 to be the same as a 50–50 chance between 
getting 2 or 10.

 ii. You are indifferent between a grade of 4 for certain and a 50–50 chance of 
either 2 or 5.

 iii. You are indifferent between a grade of 7 for sure and a 50–50 chance of 
either 5 or 10.

 Based on this information, how would you reevaluate your decision in part (a)? 
Forgetting about Steve for now; what is your optimal strategy and what is your 
expected utility?

9.7 Suppose that you are in the position of having to buy a used car, and you have 
narrowed down your choices to two possible models: one car is a private sale 
and the other is from a dealer. You must now choose between them. The cars 
are similar, and the only criterion is to minimize expected cost. The dealer car is 
more expensive but it comes with a one year warranty. You decide that if the car 
will last for one year, you can sell it again and recover a large part of your invest-
ment. If it falls apart, it will not be worth fixing. After test driving both cars and 
checking for obvious flaws, you make the following evaluation of probable resale 
value:

Car
Purchase 

Price
Probability of 

Lasting One Year
Estimated 

Resale Price

A: Private $800 0.3 $600
B: Dealer $1,500 0.9 $1,000

 Which car would you buy? What is the value of perfect information?
 Suppose you have the opportunity to take car A to an independent mechanic, who 

will charge you $50 to do a complete inspection and offer you an opinion as to 
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whether the car will last one year. For various subjective reasons, you assign the 
following probabilities to the accuracy of the mechanic’s opinion:

The Mechanic Will Say:

Given: Yes No

A car that will last one year 70% 30%
A car that will not last one year 10% 90%

 Assuming that you must buy one of these two cars, formulate this problem as a 
decision tree problem. What is the true value of the mechanic’s advice? Is it worth 
asking for the mechanic’s opinion? What is your optimal decision strategy? (Note: 
It is not necessary to ask for advice on car B because its problems could be repaired 
under the warranty.)

9.8 Give two examples of the framing effect.
9.9 Consider the following payoff matrix:

Actions

States a1 a2 a3 a4 a5 a6

ϴ1 2 6 4 4 5 7

ϴ2 8 2 5 2 4 2

ϴ3 0 5 2 4 3 3

ϴ4 3 5 2 5 3 2

 a. Suppose that the decision-maker claims complete ignorance of the probabilities 
of occurrence of the four states. Can any alternatives be eliminated? What is 
the optimal action under each of the strategies: Laplace, Maximin, Maximax, 
Savage Minimax regret? What types of decision-makers should use each of 
these strategies?

 b. Under the Hurwicz principle, the decision-maker is assumed to have some level 
of optimism α between 0 and 1. Characterize the optimal decision for the range 
of all possible values of α. At what values of α does the optimal solution change?

9.10 The product manager of a large firm is faced with the decision of whether to pro-
ceed with a national marketing campaign for a new product. The monetary return 
from sales generated by the campaign will depend on prevailing market condi-
tions. The manager believes there is a 40% chance of good market conditions and a 
60% chance of bad conditions. The monetary returns (in thousands of dollars) for 
each condition are summarized in the following:

Good Conditions Bad Conditions

Market $800 –$400
Do nothing $0 $0
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 The manager may decide to purchase the services of a marketing firm that will 
do a survey for $75,000. The firm claims that their results are 75% reliable. (That is, 
when conditions are good, they correctly identify it 75% of the time, and similarly 
for bad conditions.)

 a. The manager must decide whether to accept the survey and whether to pro-
ceed with national marketing. Construct the corresponding decision tree and 
compute the optimal strategy and expected payoff.

 b. What is the expected value of perfect information for this problem? How do you 
interpret this value?

9.11 Consider the following apparent paradox.
 a. The average person is risk averse at all levels of money.
 b. The average person will insure his house for $5 per week, which is risk averse 

because the insurance company is making a profit.
 c. The average person may buy a lottery ticket for $5 per week, which is a gamble.
 If we let X be the insured value of the house and Y be the prize in the lottery, then 

the two situations can be described as shown in Figure 9.19. Let p and q denote 
the small probabilities of losing the house and winning the lottery, respectively. 
The outcomes depicted are expressed in terms of net change to assets in a given 
week. Is this normal or average person irrational? Can this behavior be described by 
a reasonable utility function? Discuss the possible motivations or perspectives of 
this person.

−$5.00

−$X

$0.00

Buy

Don’t
buy

p

(1 – p)

Insurance

$0.00

$(Y–5.00)

−$5.00

Play

Don’t
play

q

(1 − q)

Lottery

FIGURE 9.19
Apparent paradox.
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10
Heuristic and Metaheuristic Techniques 
for Optimization

Combinatorial optimization involves determining how best to arrange (or group, sequence, 
or assign) the controllable elements in large complex systems to achieve a specified objec-
tive or goal. Combinatorial optimization models have been used to describe problems as 
diverse as vehicle routing, workforce scheduling, manufacturing plant layout, portfolio 
selection, production scheduling, supply chain problems, aircraft scheduling, computer 
CPU job scheduling among many others. Combinatorial problems are ubiquitous, aris-
ing commonly in engineering, financial, industrial, computing, and social and human 
services applications.

Many combinatorial optimization problems are remarkably simple to state and intui-
tively easy to understand, requiring little mathematical sophistication. As an example, 
there is a famous problem popularly known as the knapsack problem in which a hiker 
considers which of n objects to pack into a knapsack. Each object has a weight and a value. 
The goal is to select a subset of the objects that have the greatest combined value and 
whose total weight does not exceed the capacity of the knapsack.

The knapsack model could be applied to as obvious a problem as packing suitcases for 
a trip without exceeding the baggage weight limitations imposed by airline regulations. 
Or the model could be used to select experiments and instrumentation packages to 
include in a deep space probe. Each candidate package has a potential value (technical 
payoff or social merit), but each package also requires certain resources such as electric-
ity, cooling, oxygen for the mice, carbon dioxide for the soybean sprouts, space (volume) 
needs, weight, or waste disposal. For these requirements, one might imagine a multidimen-
sional knapsack capacity which can supply only a limited amount of each of the resources 
(electricity, air, heat dissipation, space, and weight).

The simple knapsack problem can be formulated using n decision variables, xi, where 
xi = 1 if object i is to be included in the knapsack and xi = 0 if not. Knapsack capacity is 
denoted as c. For each object, there is an associated weight wi and a value vi. Then, to 
select the most valuable feasible subset of objects, it is necessary to find the values of the 
variables to 

 

maximize v x

subject to w x c

i i

i 1

n

i i

i 1

n

=
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x 1 or 0i =  
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Another famous combinatorial optimization problem, known as the traveling salesman 
problem, seeks to find the least costly route for a salesman who must visit n cities each 
exactly once, returning finally to his city of origin. Assume that the distances between 
cities are recorded in an n × n matrix D, where dij is the distance (or cost) to travel from 
city i to city j. Let decision variables xij = 1 if the route contains the road from i to j, and 
xij = 0 if not. If the salesman enters and leaves every city exactly once, it appears that his 
tour would be a feasible one, and the optimal tour can be determined by finding values of 
the variables to: 

 

minimize d x

subject to x 1 for every j,

ij ij

j 1

n

i 1

n

ij

==
∑∑

=   salesman enters city j exactly once

x

i 1

n

=
∑

iij

j 1

n

for every i, salesman leaves city i exactly once=
=
∑ 1

xx 1 or 0ij =  

At first glance, this familiar formulation (which is precisely that of the assignment problem 
discussed in Section 3.3.2) might tempt us to try to solve the traveling salesman problem 
using the Hungarian method for the assignment problem. Indeed, if the solution found by 
the Hungarian method really were a feasible tour, then it would be an optimal tour for the 
salesman. However, the solution obtained in this way may fail to represent the kind of tour 
needed by the salesman, although he enters and leaves each city exactly once. For example, 
suppose the salesman begins at city 1, and must visit cities 2, 3, and 4 in any order, and 
finally return to city 1. Then, all of the following tours are feasible: 

 

1 2 3 4 1

1 2 4 3 1

1 3 2 4 1

1

        

        

        

 

- - - -

- - - -

- - - -

-         

        

        

3 4 2 1

1 4 2 3 1

1 4 3 2 1

- - -

- - - -

- - - -  

However, notice that the constraints written in the previous formulation would permit 
decision variable values that describe not only those six feasible tours but also sub-tours 
(round trips that do not visit every city) such as: 

 

1 2 1 and 3 4 3

1 3 1 and 4 2 4

1 4 1 and 2 3 2

- - - -

- - - -

- - - -  
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These latter solutions do not meet the salesman’s requirements. Thus, the Hungarian 
Method cannot be relied upon to yield feasible traveling salesman problem solutions; 
additional constraints must be imposed in our formulation so that subtours are excluded.

As simple and easy to understand as these two famous combinatorial problems are, it 
is surprising that no efficient algorithms have been developed that are guaranteed to find 
optimal feasible solutions. In fact, both the hard problem and the traveling salesman prob-
lem belong to the set of NP-hard problems, and in that set, they are in good company with 
hundreds of other important practical problems.

For many practical problems in science, engineering, and management, the only way 
to be sure of finding an optimal solution is to search completely through the whole set of 
possible solutions. If there are infinitely many possible solutions, we know right away that 
this approach is unsatisfactory. But if there is a very large but finite number of possible 
solutions, the idea of a complete search is tempting, and often is quite easy to express as 
an algorithm and to implement in software. The difficulty is of course that the time required 
to carry out such an exhaustive search is, although finite, far greater than most mortals 
can afford. (Look again at Table 1.1 in Chapter 1 to be reminded just how many centuries 
such a computation might take. Clearly, technological advances, such as increasing CPU 
chip speed by several orders of magnitude, do not provide adequate computational tools 
against these formidable computational demands.)

The question then is to try to find short cuts that will allow us to organize the search 
process so that it is no longer a complete search over all possible solutions, but rather it 
becomes an affordable search that is likely to discover a good, or near-optimal, solution. 
Such methods are called heuristic methods. They are most often applied to the computa-
tionally intractable NP problems, simply because otherwise the best (most efficient) meth-
ods we know of for solving these problems exactly (or optimally) can take an exponential 
amount of computation time. Heuristic methods are usually rather problem specific, and 
often are based on simple common-sense ideas inspired by, or tailored to, the type of prob-
lem being solved. They are, however, vulnerable to falling into local optima (i.e., subopti-
mal solutions). As a result, metaheuristics emerged as more intelligent search techniques 
that can help heuristics escape such solutions. This chapter examines some heuristic and 
metaheuristic methods that are currently popular, effective, and practical.

10.1 Greedy Heuristics

Greedy heuristics are probably the simplest type of heuristics in which a partial solution 
is constructed step by step towards a complete solution based on basic known informa-
tion of a problem instance. This can be accomplished by adding elements based on certain 
attribute(s) and in some cases based on the best contribution an element makes to the 
objective function at the point at which the element is selected. They also must make sure 
that the constraints on the problems are not violated. In their most basic form, greedy 
heuristics do not account for long term consequences of the decision made, but they rather 
consider the immediate impact in the short term; hence the term used is greedy.

As an example, consider again the traveling salesman problem discussed earlier. A greedy 
way of constructing a complete tour is to select the closest unvisited city next until all cities 
are visited. Suppose the distance matrix for a four city example is as given in Table 10.1. 
A greedy solution using this heuristic would be 1–3–2–4–1 with a total distance  of 52. 
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Note  that even for a small example like this, the greedy heuristic obtained a reasonable 
solution; yet it is suboptimal as the optimal tour for this instance is 1–2–4–3–1 with a total 
distance of 50.

It is very common to use greedy heuristics as a starting solution followed by a local 
search heuristic in which a better solution is sought by iteratively attempting to improve 
the greedy solution. This concept is discussed next.

10.2 Local Improvement Heuristics

Local iterative improvement techniques begin by placing the system being optimized in 
a known configuration; usually, any simple to obtain greedy or arbitrary configuration 
will do. Then some simple rearrangement or reorganization of the problem elements is 
performed repeatedly to various local parts of the system until a configuration is dis-
covered whose objective function value is better than that of the previous configuration. 
When this occurs, the better configuration becomes the current configuration, and the 
process is repeated until no better configuration can be found by means of simple local 
rearrangements.

Because at each iteration, only simple changes involving neighboring elements are con-
sidered, the method is often referred to as a local search procedure. From any given con-
figuration, only nearby configurations are considered, that is, configurations that differ 
from the current one by minor modification to the problem elements (variables). As might 
be guessed from this, local search heuristics can easily, and typically do, get stuck in (or 
converge to) a local but not global optimum. Therefore it is customary, and not terribly 
time-consuming, to carry out the entire procedure several times, beginning each time 
with a different arbitrarily chosen initial configuration. Having repeated the process many 
times and therefore likely having found many different solutions, the problem-solver would 
use the best result that was ever discovered during any of the searches.

To illustrate the kinds of rearrangements of problem elements that have been found to 
be effective, we look at a few classical combinatorial optimization problems. In the travel-
ing salesman problem, a solution is any sequence of cities that includes each city exactly 
once, in the order visited. A very effective local improvement mechanism for generating a 
new configuration, known as 2-opt, is to select a pair of (directed) edges (i,j) and (m,n) and 
replace them with the crossing edges, (i,m) and (j,n) in such a way that the result is a new 
tour. For example, the tour shown on the left in Figure 10.1 is represented by the sequence 
1–2–3–4–5–6–1. If we select the edges (1,2) and (4,5), the resulting sequence 1–4–3–2–5–6–1 
represents the tour shown on the right in the figure. The quality of these two tours could 

TABLE 10.1

Traveling Salesman Problem Example

City 1 2 3 4

1   20 4 25
2 20   8 15
3 4 8   11
4 25 15 11  
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be compared, and the better one selected by the heuristic. Clearly, if the length of the 
two edges added is less than the two removed, then the new tour is an improvement. 
This simple method was introduced by Lin and Kernighan (1973), and extended as a k-opt 
method. Remove any k edges and replace them with (the best possible) crossing edges. It 
is easy to implement, and usually executes in a very reasonable and affordable amount of 
computation time. The 2-opt requires O(n2) operations each iteration, and 3-opt requires 
O(n3). Solutions for k = 3 are typically very good for practical applications.

Many combinatorial problems can be described as placement problems. For example, the 
placement of electrical components on a circuit board can be designed with the goal of 
minimizing the length of wiring required. The placement of equipment in a manufactur-
ing plant would likely be done to facilitate the flow of manufactured products through the 
various pieces of equipment. Or the placement of data files in a computer network might 
be based on the amount of memory space available at the various workstations as well 
as the cost of transmitting files from one workstation to another. Also, another applica-
tion is the placement of facilities in different locations in supply chains to optimize some 
objective(s) such as minimizing the transportation cost. In any of these applications, a 
local improvement heuristic would begin with any arbitrary feasible placement of the 
elements, then repeatedly consider the effects of exchanging any two elements: any two 
electrical components, any two manufacturing machines, any two files or two facilities. 
These are often called local exchange heuristics.

A minor modification to the exchange or swap idea is to arbitrarily select three objects 
and consider various ways to move, shift, or rotate the three objects around to different 
places in the system, continuing until no advantageous local rearrangement can be found. 
This approach belongs to a class of methods that have been termed k-opt heuristics (in this 
case, k = 3). These methods have been shown to give somewhat better results than just 
moving two objects at a time (Carter and Price 1988), and they do not take appreciably 
more computation time than simple swaps or exchanges.

Local iterative improvement heuristics are generally conceptually simple, easy to pro-
gram, efficient to execute, and give reasonably good results. However, like greedy heu-
ristics, they are susceptible to reaching suboptimal solutions as they search within their 
local search region. Therefore, another class of search methods known as metaheuristics 
is used to guide heuristics out of local optima. Among the most common methods are 
simulated annealing, genetic algorithms, and tabu search, which are discussed later in 
this chapter. Figure 10.2 demonstrates the concepts of local versus global minima where 
a greedy and local search algorithms may reach a local minimum and stop there as they 

1
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1 3
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2

FIGURE 10.1
Sub-sequence reversal.
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cannot see any further improvement beyond their local neighborhood; while a meta-
heuristic can guide them out by occasionally accepting worse solutions in the hope of 
escaping the local optimum.

10.3 Simulated Annealing

Simple local improvement heuristic techniques for optimization typically suffer from a 
tendency to converge to a local optimum that may not be a global optimum. This phe-
nomenon is a natural consequence of a computational process that moves monotonically 
in an improving direction, from an arbitrary starting point, as was discussed in Chapter 5 
on nonlinear optimization. Simulated annealing is a local improvement mechanism with 
a probabilistic twist, in which non-improving moves are occasionally made, and therefore 
offers chances to escape from local optima, in the hope of arriving at a global optimum. 
This metaheuristic is based loosely on concepts from thermodynamics, which deal with 
how a liquid substance is slowly cooled into a solid to produce a stronger, more stable 
(less brittle) final product. The use of simulated annealing as an optimization tool is due 
to the work of several researchers who were actually working in different disciplines at 
different times.

In the field of statistical mechanics, methods were developed in the 1950s to model the 
evolution of a physical system through a series of slowly decreasing temperatures (an 
annealing process) into a state of high order and low energy. During the annealing process, 
the temperature is reduced slowly to maintain system equilibrium with respect to tem-
perature. Both positive and negative energy fluctuations are allowed, in contrast to a rapid 
quenching that would result in a disordered or unstable system.

About 30  years later, researchers interested in mathematical optimization had the 
breadth of scope and keen insight to perceive an analogy between the behavior of a 
physical substance in low energy states and the nature of the iterative improvement that 
can be made in a large and complex mathematical system that is in a nearly optimal con-
figuration. States of low energy in the physical system are viewed as being analogous to 

Global minimum Greedy algorithms get stuck in
local minimum

x

f(x)

FIGURE 10.2
Escaping local optima.
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the nearly optimum configuration (as measured by a very low objective function value) 
in a minimization process.

The analogy with combinatorial optimization is really just a variation on conventional 
iterative improvement methods that begin with an initial feasible solution, repeatedly 
generate and consider changes in the current configuration, and accept only those that 
improve the objective function. To avoid the characteristic convergence to a local opti-
mum that typifies deterministic local heuristic methods, simulated annealing methods 
probabilistically accept configurations that temporarily deteriorate the quality of the sys-
tem being optimized. An acceptance probability is computed, based on the change in 
the objective function and a temperature parameter. As the temperature is appropriately 
reduced (this is called an annealing schedule or a cooling schedule), fewer non-improving 
moves are accepted; thus, a coarse global search evolves into a fine local search for opti-
mality, and the probabilistic jumps provide avenues to avoid sinking into non-global 
optima.

Let us now look more carefully at simulated annealing as it applies to statistical mechan-
ics, and then we will investigate more precisely how to make use of the analogy to combi-
natorial optimization. All physical systems are composed of large numbers of atoms, and 
only the most probable behavior of the system is observed when the system is in thermal 
equilibrium at a constant temperature. This behavior is characterized by the average small 
fluctuations of the atoms or molecules about their mean positions within the substance. To 
observe different behaviors of a substance (or system), atoms are allowed to change their 
atomic positions by altering the temperature and then letting the system attain thermal 
equilibrium again. The most stable state of a system is the state associated with the lowest 
energy level. Under the assumption that atoms with configurations close to ground states 
dominate the properties of the system at low temperature, the temperature of the system 
is lowered in search of the ground state.

The process of lowering temperature slowly so that thermal equilibrium is always 
maintained is called an annealing process. A mathematical model has been developed to 
describe a system in a stable state, that is, the most probable state with respect to tempera-
ture. Each possible configuration of the system is defined by the Boltzmann probability 
factor 

 P(r ) = ei

E r
kT
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
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where each configuration ri belongs to the set of all possible atomic configurations, and
P(ri) is the probability of a configuration ri

E(ri) is the energy (in joules) of the system in configuration ri

k is the Boltzmann constant (in joules per degree Kelvin)
T is the temperature in degrees Kelvin

As is shown by the nature of the curve in Figure 10.3, when the temperature approaches 
a very low value, the probability of the occurrence of a new configuration approaches 
zero because the system is already in a nearly stable state. At low temperatures (i.e., when 
the system is in either liquid or solid state), the exponent becomes very large and nega-
tive, and hence P(ri) approaches zero. On the other hand, at higher temperatures, there is 
more atomic movement within the substance, hence more different configurations occur, 
and therefore the probability of occurrence of any given ri becomes greater as temperature 
increases.
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In the 1950s Metropolis et al. (1953) developed an algorithm known as simulated anneal-
ing, which is used as a computational tool for efficiently simulating a collection of atoms 
in equilibrium at a given temperature. In each step of the algorithm, an atom is hypotheti-
cally given a small displacement. Before a displacement is admitted, initial energy Ei of 
the system is noted, and final energy Ef is measured after the displacement. The difference 
between these two energy states is calculated as 

 ∆E E Ef i= −  

If Ef is less than Ei, then the system has moved from a high energy level (state) to one at a 
lower energy level that is more stable than the previous one, and hence this displacement 
is accepted. (The system now assumes this new configuration.) In short, the new configura-
tion is unconditionally accepted when ∆E ≤ 0.

But if ∆E is positive, the new configuration may be rejected and the current (more stable) 
configuration maintained. The acceptance criterion is based on the Boltzmann distribu-
tion, thus, the probability that the new configuration is accepted is 

 P E e
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At any given temperature, the simulation must continue long enough for the system to 
reach a steady state. In other words, at a given temperature, the system at equilibrium 
is characterized by a certain distribution of configurations, and the precise distribution 
emerges as the simulation takes place.

In case it seems that we have wandered afar from the business of combinatorial optimi-
zation, let us now restate the simulated annealing procedure, using terminology that is 
applicable to optimization, as Kirkpatrick et al. (1983) so ingeniously did in the early 1980s. 
In this context, a configuration means some assignment of values to the decision variables. 
The temperature is indicated by a simpler parameter which we will call θ (theta), because 
physical temperature has no absolute meaning in the optimization scenario. We will gener-
ate a sequence of classes of configurations. Within each class, a parameter θ determines the 
magnitude of objective function value fluctuations that occur within that class. Each class 
is asymptotically distributed as a Boltzmann distribution, and the process of determining 
this distribution for any given value of θ is called equilibration. The optimization process 

0

Probability
P(ri)

10−10−20−30
Temperature (°C)

20 30

FIGURE 10.3
Boltzmann probability.
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is actually comprised of a series of equilibrations; each equilibration is associated with a 
temperature parameter θ, and equilibrations are done at successively lower temperatures.

Each equilibration begins with the system in some initial configuration, and carries out 
the following process until a stable distribution of configurations has been generated: 

Generate a new configuration arbitrarily.
Calculate ∆F = new objective function value—current objective function value.
If ∆F ≤ 0, then accept new configuration unconditionally.

If ∆F > 0, then accept new configuration only with probability e−( )∆F/θ .

When it is reasonably obvious that further iterations of this process will have no significant 
effect on the distribution of configurations, the equilibration at the current temperature is 
complete. The most frequently occurring configuration is chosen as the initial configu-
ration for the next equilibration process that will take place using a lower temperature 
parameter θ.

Equilibrations are carried out until it is observed that practically no configurations are 
being generated (and accepted) that have a better (lower) objective function value than the 
current configuration (i.e., until the acceptance ratio or probability of acceptance is essentially 
zero). At this point, the heuristic optimization process is complete, and the best configura-
tion seen so far is taken as the result. The entire process is illustrated in Figure 10.4.

Thus, in the same way that physical substances are cooled in a controlled manner (per-
haps to attain a crystalline structure instead of an amorphous glass structure), so can com-
binatorial systems be first stirred up and then slowly sloshed around until they congeal into 
an orderly (perhaps nearly optimal) configuration having a low objective function value. 
Conceptually, the simulated annealing process can be presented as shown in Figure 10.5.

Simulated annealing is a technique that can be quite easy to implement. Specific details 
of an implementation often depend on the type of problem being solved. 

• The annealing schedule (or cooling schedule) is usually determined by trial and 
error, or dynamically through real-time observation during the process itself. The 
practitioner must choose the initial value of the temperature parameter θ and the 
amount by which θ is to be decreased at each equilibration.

• It must be decided how to generate new random configurations, what decision 
variables to change, and whether to check feasibility of each new configuration. 
And if infeasible configurations are allowed, a means must be invented to mea-
sure the objective function (quality) of an infeasible configuration.

• How many new configurations should be generated and considered during each 
equilibration? It may be some fixed number of new configurations, or until the 
configurations that occur have appeared some specified number of times. Perhaps 
every entity (decision variable) should be changed, or at least have had a chance to 
be changed at least once. This issue has a strong impact on the computation time 
required for the simulated annealing process to execute.

• Implementation of the probabilistic decision of whether to accept a bad move is 
simple, and usually done in the following way. Generate a random number r in the 
interval (0, 1); if r is less than e−( )∆F/θ , then make the change; otherwise maintain the 
current configuration.
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• At the end of each equilibration, some implementations choose the best configura-
tion seen, rather than the most frequently occurring one, to use as the initial configu-
ration in the next equilibration. Although this practice may seem to accelerate the 
convergence process, it can also be argued that it tends to drive the process more 
rapidly toward a non-global optimum.

Although there are some theoretical results that describe the performance and con-
vergence properties of optimization by simulated annealing (Kirkpatrick 1984, Anily 
and Federgruen 1985, Lundy and Mees 1986), the most valuable guidelines for the ana-
lyst are gained through experience and observations of empirical results on specific 
application problems. Simulated annealing generally takes somewhat longer (more 
computation time) than simple local-improvement heuristics, but there is typically 
some performance advantage that results from the structured randomness of simulated 
annealing.

Example 10.3

Let’s consider the Capital Budgeting problem in which we have a limited budget to 
execute projects from a set of possible projects as given in Table 10.2. Each project con-
tributes a certain value vi and the objective is to select the set of projects that will maxi-
mize the total value.

This problem is in essence a knapsack problem similar to what was discussed earlier 
in this chapter. Although this small instance can be modeled and solved as an integer 
program as in Section 4.3.2, we will use it to demonstrate how simulated annealing 
works. We first define xi to be 1 if a project is selected and 0 otherwise. The energy func-
tion becomes the objective function and the only constraint is not to exceed the total 
budget of $450 million.

Suppose that a neighbor (or a move) can be generated by switching one project selec-
tion from 0 to 1 or from 1 to 0. If we start with an initial solution So based on a greedy 
rule that selects the project with the highest value first (without violating the budget 
constraint), So would be represented by 01100100 with an objective function value of 
950 and total expense of 437, which is feasible because it is below the maximum budget 
(see Table 10.3). If we randomly select a binary digit to switch from 0 to 1 or from 1 to 0 
and it happened to be the second digit, then the new neighbor to evaluate would be 
00100100 for which the total value would be 750.

The next step is to decide whether to move to this neighbor or not by computing 
the difference in the objective function ∆F, which is in this case a reduction of 200 in 
the total value. In local search, such a solution would be immediately rejected, but not 
in simulated annealing as we must first evaluate the probability of acceptance Pa  = 
e F−( )∆ /θ . Here, the temperature θ is assumed to be 180, and therefore Pa = 0.329. To decide 
whether to accept or reject this move, we generate a random number r ~ U(0, 1), which 

TABLE 10.2

Capital Budgeting Problem Example

Project 1 2 3 4 5 6 7 8 Budget

Expense ($M) 50 92 144 22 67 201 88 112 450
Value vi 120 200 300 84 150 450 180 220
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happened to be 0.251. Since r < Pa, we accept this move and S1 becomes the current 
solution. In another iteration, the neighbor S2 is generated by randomly selecting a digit 
to switch, which happened to be the first digit resulting in the neighbor 10100100 with 
F(s) = 870. Since this is an improvement of 120 over S1, it is accepted without computing 
Pa, and S2 becomes the current solution. Similarly, S3 becomes the next neighbor to move 
to without checking Pa.

However, when S4 is generated by unselecting project 6, the objective function value 
drops by 450 to 504, making the probability of accepting such a solution quite small 
(Pa = 0.082) and that move is rejected, which means the search algorithm stays at S3 and 
another neighbor (S5 in this example) is generated from S3. Note that although S5 also 
has a lower objective function, r happened to be less than Pa; hence this worse solution 
is accepted. Continuing this way, solutions S6 and S7 are generated with better objective 
function values. This process is summarized in Table 10.3.

It turns out that S7 is actually optimal and using this neighborhood generation 
scheme (switching 0 to 1 or a 1 to 0), the simulated annealing could not have reached 
this solution from where it had started at So without accepting worse solutions such 
as S1 and S5. It is important to recognize that the simulated annealing cannot tell that 
it has reached the optimal, but after running many more iterations, it should stop 
trying when no further improvement is achieved. Also, after attempting new neigh-
bors at the same temperature θ with no improvement (or if the maximum number of 
iterations is reached), the temperature at iteration i is reduced (usually via a decay 
function such as θi = α∗θi−1) where 0 < α < 1. We did not do this in this basic example, 
but one can easily see that Pa depends on the amount of deterioration in the objective 
function and the current temperature where the larger the value of ∆F, and/or the 
lower the temperature, the smaller the probability to accept a new worse neighbor 
solution. Therefore, at higher temperatures, the simulated annealing accepts neigh-
bors more frequently and as the temperature drops, it becomes more selective like a 
greedy algorithm.

It is noteworthy that the greedy rule used in this example is very simple and was 
used to demonstrate the simulated annealing process rather than solving the knapsack 
problem efficiently. A better rule would be to select the project with the maximum ratio 
of value to expense first until no more projects can be selected due to exceeding the 
allocated budget. If this rule were used instead, the optimal solution would have been 
found in one iteration. In fact, this rule is optimal if we allow the last unit selected to 
be fractional.

TABLE 10.3

Simulated Annealing Iterations with θ = 180

Solution Neighbor Evaluation F(s) Expense Δ r Pa Outcome

S0 01100100 950 437
S1 00100100 750 395 −200 0.251 0.329 Accept
S2 10100100 870 345 120 Accept
S3 10110100 954 417 84 Accept
S4 10110000 504 216 −450 0.813 0.082 Reject
S5 10010100 654 273 −300 0.157 0.189 Accept
S6 11010100 854 365 350 Accept
S7 11011100 1004 432 350 Accept
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10.4 Parallel Annealing

The good quality solutions obtained by simulated annealing heuristic methods are often 
paid for with substantial computational effort. Although the staged cooling regimen seems 
to be an inherently sequential process, recent research has been aimed at the development 
of models to reduce computation time through parallel processing.

In conventional simulated annealing, each new random configuration is typically gener-
ated by changing the value of one (or a very few) decision variables at a time. But imagine 
instead a multiple-processor computer in which there is a processing unit associated with 
every decision variable in the problem being solved. Then the processing units could inde-
pendently and asynchronously consider changing the values of their individual associ-
ated decision variables, each applying a simulated annealing process to evaluate the merit 
of such a change.

As long as processing elements consider their changes only one at a time, asymptotic 
convergence to a global optimum is guaranteed (Aarts and Korst 1989). Unfortunately, 
processing units operating in parallel are basing their simulated annealing decisions on 
information that is unstable, because other variables may be simultaneously undergoing 
changes that are not currently recorded in any centrally accessible location.

If some element of centralized control were introduced into this asynchronous system, 
then statistical convergence guarantees could be preserved. Examine Figure 10.6, in which 
it is assumed that there are N processing units, one for every decision variable, each indi-
vidually carrying out a simulated annealing process, but unaware of decisions being made 
by any other processing unit. In the figure, the portion of the computation that could be 
performed by parallel processors is outlined in dashed lines. After all processing units 
have either accepted or rejected their proposed changes (based on a first level temperature 
parameter θ1), a centralized control component then assimilates the individual changes 
and constructs a new global configuration. This new configuration now must pass through 
a global filter, which is another simulated annealing acceptance test based on a global 
temperature parameter θ2. In this way, the computational power of many free-wheeling 
asynchronous processors is checked at intervals by the centralized control, which ensures 
eventual convergence (Lucas and Price 1992).

Parallel annealing systems such as just described have been given the name Boltzmann 
machines. Boltzmann machines have taken many forms, depending on the problem at 
hand and the analyst’s viewpoint, goals, and experience. In most cases, although there 
is parallelism, an element of sequentiality has been maintained because of the inher-
ent requirement for monotonic cooling, and hence monotonic reduction of temperature 
parameters. More recent research has revealed that collapsing the timeline to a point, and 
randomly activating processing units at different temperatures (acceptance parameters) 
also works remarkably well, while alleviating any need for centralized control over the 
synchrony of the processing units. Cascading Boltzmann machines together in this way, 
with data-sharing among corresponding processing units at different temperatures, has 
proven to be an effective means of overcoming the time dimension through the use of 
multiple processors (Coughlin and Baran 1995, Price and Wahsheh 1999). Through this 
mechanism, spatial complexity is employed to compensate for temporal complexity—a 
common trade-off in the world of parallel computing that may serve us well in the realm 
of combinatorial optimization. Examples of parallel simulated annealing applications can 
be found in Wang et al. (2015), Ferreiro et al. (2013), and Santé et al. (2016).
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10.5 Genetic Algorithms

Analogies between computational processes and natural phenomena seem to be quite 
appealing to problem-solvers, and simulated annealing is but one such analogy that has 
been effective and therefore popular. Biological analogies are particularly fascinating, and 
over the past 50 years have sparked many debates over whether machines can think or rea-
son, and what techniques could and should be used to make machines compute in clever 
ways. Genetic algorithms (GA) are a type of search algorithm for finding optimal solu-
tions to computationally difficult problems, and are based on analogies to biological repro-
ductive processes. Computers and biological genes are similar to each other in the sense 
that both are able to record, copy, and disperse information. Genetic algorithms operate 
iteratively, over many generations, in such a way that only the fittest solutions survive, and 
thus these algorithms function as mechanisms for optimization.

The basic ideas for these methods were developed by Holland (1975), Goldberg and 
Holland (1988) during their investigations on how to build computing machines that are 
capable of learning. Inspired by the flexibility and adaptability that he observed in biologi-
cal systems, he contended that rather than using and refining a single learning strategy, it 
was more advantageous for a machine to use a breeding of multiple strategies. The term 
genetic algorithm was popularized in a 1975 publication of Holland’s work. Immediately 
thereafter, genetic algorithms began to be used successfully in scores of applications, which 
now include job-shop scheduling, pipeline systems, vehicle routing, keyboard design, and 
variations of the traveling salesman problem, to mention just a few. More important, these 
successes have prompted active research into the study of how various biological analogies 
can influence computing, as well as how computational models can give insight into the 
workings of biological systems.

Genetic algorithms operate by maintaining a population of feasible solutions to a problem. 
Each solution is evaluated (for example by using its associated objective function value). 
The best solutions are selected for reproduction and are grouped into pairs. Solutions that 
are less fit tend to not be selected and therefore die off and get replaced by other solutions. 
Then, within each pair of solutions, genetic modifications take place, which are described in 
terms of mutations and crossovers, resulting in a new breeding population that can repeat 
the process. The goal of optimization is served by selecting the best solutions for breeding, 
and introducing possible improvements through genetic crossovers, while mutations are 
introduced occasionally to prevent rapid convergence to a local non-global optimum.

Biological terminology abounds, although the adaptation of terminology is not always 
completely consistent with the corresponding biological meaning. Within the breeding 
population, individual solutions (encoded as strings) are referred to as chromosomes; the 
individual features in each chromosome are called genes; and the value of a feature in a 
given chromosome is called an allele. Using this terminology, we can now describe the 
entire process in greater detail.

First, a method is devised for mapping each feasible problem solution into a string (usu-
ally a binary string). The encoding mechanism depends entirely on the type of problem 
being solved, but usually it involves the values of the decision variables. Then it must 
be decided how many of these chromosomes to include in the breeding pool; a large pool 
increases diversity, but will have the effect of slowing the operation of the algorithm. An 
initial population is typically chosen arbitrarily, although other ways exist.
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Next, the fitness of each string (chromosome) is evaluated, based on the objective func-
tion value corresponding to the encoded solution, and possibly also on problem con-
straints. For uniformity, the fitness values are typically normalized into the range of 0–1.

The selection of chromosomes (solutions) that will participate in reproduction is inspired 
by Darwin’s (1859) survival-of-the-fittest theme. A proportional selection scheme favors a 
larger number of fit solutions, and allows fitter solutions to be chosen more than once, and 
weaker solutions to be possibly excluded entirely. A roulette wheel model provides a simple 
mechanism for this. Each string is associated with a sector on the wheel whose angle is 
proportional to the string’s fitness. A random number is generated and assigned a point on 
the wheel. If the point falls within a particular string’s sector, then that string is selected.

After selection, pairs of chromosomes are formed at random and are subjected to certain 
genetic manipulations; that is, modifications to the genes in the parent chromosomes. 
A process called crossover swaps a part of the genetic information contained in two 
chromosomes. Typically, a substring position in the chromosome is randomly chosen and 
the genes (string elements) within that substring are exchanged, forming two new offspring 
to replace the parents. The exact nature of crossovers is application specific, and must be 
done in such a way that resulting strings correspond to meaningful and feasible problem 
solutions. The recombination process can introduce improved genetic building blocks but 
will, on occasion, inadvertently disrupt favorable genetic structures. This (together with 
the selection of the fittest) may have the effect of driving the evolutionary process toward 
a local optimum. To overcome this, mutations are allowed to occur.

A mutation is simply a random reversal of one or more bits in a chromosome. Mutations 
are infrequent, but have the effect of reintroducing bits into the string that may be essen-
tial for an optimal solution and that may be currently absent in the breeding population. 
A higher probability of mutation tends to make the genetic search more broadly random, 
which can slow the convergence of the algorithmic process.

The offspring strings produced through these genetic manipulations may either replace the 
entire previous population (generation replacement method) or just the less fit members of 
the population (steady-state replacement method). In either case, the cycle of creation, evalu-
ation, selection, and manipulation is repeated until a stopping criterion is met such as a speci-
fied number of generations have passed or until acceptable problem results are achieved.

Example 10.4

Consider the knapsack problem presented earlier in Table 10.2 and suppose that an ini-
tial population with six chromosomes (i.e., population size = 6) is randomly generated 
as shown in Table 10.4. The fitness of each solution is considered the same as the objec-
tive function in this case. To compute the probability of selection for each string, its fit-
ness is divided by the population’s total fitness. Strings with higher fitness would have 
higher chance of being selected. For example, String 2 with selection probability Pselect of 
0.27 is about twice as likely to be selected as String 1 which has a Pselect of 0.151. The prob-
abilities are shown in the table and are reflected in Figure 10.7. To select parent strings 
for the mating pool, imagine spinning a biased Roulette wheel like the one shown in the 
figure. It is more likely to land on strings with higher fitness proportionate to the area 
they occupy on the wheel. To select strings using this roulette wheel process in a sys-
tematic way, the cumulative probability is computed as shown in Table 10.4. A random 
number r ~ U(0,1) is then generated, and depending on where it falls on the cumulative 
probability spectrum, the corresponding string will be selected. Suppose for example 
that six random values for r are generated as follows: 0.39, 0.68, 0.21, 0.64, 0.04, and 0.97. 
This will result in selecting strings 2 and 4 twice each, strings 1 and 6 once each and 
strings 3 and 5 not selected at all as shown in Table 10.5. Of course, if six other random 
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numbers were generated, the outcome will likely be different, but we can easily see that 
strings with higher fitness will have a higher chance of being selected.

The next step is to randomly select parents from the mating pool for reproduction to 
create a new generation of solutions. Suppose that we randomly select the pairs of par-
ents (2, 4), (4, 6), and again (2, 4). Note that a parent can be selected multiple times as the 
process is random. We then need to decide whether to perform a crossover operation 
or simply pass the parents as they are. This is done in a probabilistic way via the prob-
ability of crossover (Pc) which usually ranges between 0.5 and 1.0. A random number 
U~ (0,1) is generated and if u ≤ Pc, crossover is performed; otherwise, exact copies of the 
parents are passed to the new generation. In this example, assuming that the pair (2, 4) 

TABLE 10.4

GA Initial Population

String Fitness Pselect Cumulative Probability

1 1 0 1 1 0 0 0 0 504 0.151 0.15
2 1 0 1 1 0 0 1 1 904 0.270 0.42
3 0 1 0 0 0 0 0 1 420 0.126 0.55
4 0 0 1 0 1 0 1 0 630 0.188 0.73
5 1 0 1 1 0 0 1 0 684 0.204 0.94
6 1 0 0 1 0 0 0 0 204 0.061 1.00

Total 3,346 1.0
Avg fitness 557.6657
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FIGURE 10.7
Roulette wheel selection.

TABLE 10.5

GA Mating Pool

String Mating pool Fitness

2 1 0 1 1 0 0 1 1 904
4 0 0 1 0 1 0 1 0 630
2 1 0 1 1 0 0 1 1 904
4 0 0 1 0 1 0 1 0 630
1 1 0 1 1 0 0 0 0 504
6 1 0 0 1 0 0 0 0 204
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undergoes a single-point crossover at a randomly selected location like gene 5 (along 
the line in Table 10.5), the second part of parent 2 (the last 3 genes) is swapped with 
second part of parent 4 resulting in two new strings as shown in Table 10.6 for strings 
7 and 8. Similarly, if the pair (4, 6) is selected for single-point crossover at gene 3, along 
the line, the strings 9 and 10 will result as given in Table 10.6. Assuming that the last two 
parents 2 and 4 were again selected for crossover but failed the crossover test, they will 
then be passed to the new generation as they are. The new 4 strings (7, 8, 9, and 10) and 
copies of strings 2 and 4 in Table 10.6 represent Generation 1 with their fitness values 
and probabilities of selection for the next iteration.

It is important to note that any string included in any generation along the process 
must be feasible. In this example, a solution that violates the knapsack constraint should 
be precluded from competing. Another approach is to heavily penalize the fitness of 
infeasible solutions to make them very unlikely to be selected for future iterations.

Following the same Roulette wheel selection process, suppose that the values of the 
randomly generated number r were 0.01, 0.41, 0.60, 0.70, 0.79, and 0.63. This means that 
out of Generation 1, strings 7, 9, 10 and three copies of string 2 will be selected for 
mating, respectively (Table 10.7). If the pair (9, 2) is randomly selected for crossover at 
the location indicated in Table 10.7, the offspring strings 13 and 14 in Table 10.8 will be 
produced. Similarly crossing over the pair (7, 2) will produce the offspring strings 15 and 
16 as shown in Generation 2 of Table 10.8. It is assumed that the parent strings 10 and 2 
failed the crossover test and they were passed unchanged to Generation 2.

Randomly generating six new values for r (0.37, 0.89, 0.25, 0.96, 0.84, 0.50) will result 
in a mating pool from Generation 2 as given in Table 10.9. Assuming that only strings 
15 and 14 were selected for crossover and the rest were passed as copies of string 2, 
Generation 3 would result as given in Table 10.10.

TABLE 10.7

GA Mating Pool from Generation 1

String Mating pool Fitness

7 1 0 1 1 0 0 1 0 684
9 0 0 1 1 0 0 0 0 384
10 1 0 0 0 1 0 1 0 450
2 1 0 1 1 0 0 1 1 904
2 1 0 1 1 0 0 1 1 904
2 1 0 1 1 0 0 1 1 904

TABLE 10.6

GA Generation 1

Parents String Fitness Pselect

Cumulative 
Probability

2 and 4 7 1 0 1 1 0 0 1 0 684 0.175 0.18
2 and 4 8 0 0 1 0 1 0 1 1 850 0.218 0.39
4 and 6 9 0 0 1 1 0 0 0 0 384 0.098 0.49
4 and 6 10 1 0 0 0 1 0 1 0 450 0.115 0.61
2 (No crossover) 2 1 0 1 1 0 0 1 1 904 0.232 0.84
4 (No crossover) 4 0 0 1 0 1 0 1 0 630 0.16 l.00

Total 3,902
Generation 1 Avg fitness 650.33
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This process continues for hundreds or thousands of generations until the genetic 
algorithm converges. Even with three iterations only (with a small population of six 
individuals), note how almost all individuals converged to identical copies of string 
2—an indication that the genetic algorithm is about to converge on this solution. The 
optimal solution for this problem can be obtained by solving via integer programming, 
which turns out to be 1 1 0 1 1 1 0 0 with an objective function value of 1004. Although 
the genetic algorithm did not obtain this optimal solution, note how the average fitness 
value for the population has steadily increased from one generation to the next and can 
potentially reach to the optimum. However, in this simple example, it is not very likely 

TABLE 10.8

GA Generation 2

Parents String Fitness Pselect

Cumulative 
Probability

9 and 2 13 0 0 1 1 0 0 1 1 784 0.185 0.19
9 and 2 14 1 0 1 1 0 0 0 0 504 0.119 0.30
7 and 2 15 1 0 1 1 0 0 1 1 904 0.214 0.52
7 and 2 16 1 0 1 1 0 0 1 0 684 0.162 0.68
10 (No crossover) 10 1 0 0 0 1 0 1 0 450 0.106 0.79
2 (No crossover) 2 1 0 1 1 0 0 1 1 904 0.21 1.00

Total 4,230
Generation 2 Avg fitness 705

TABLE 10.10

GA Generation 3

Parents String Fitness Pselect

Cumulative 
Probability

15 and 14 19 1 0 1 1 0 0 1 0 684 0.136 0.14
16 and 14 20 1 0 1 1 0 0 0 1 724 0.144 0.28
2 (No crossover) 2 1 0 1 1 0 0 1 1 904 0.180 0.46
2 (No crossover) 2 1 0 1 1 0 0 1 1 904 0.180 0.64
2 (No crossover) 2 1 0 1 1 0 0 1 1 904 0.180 0.82
2 (No crossover) 2 1 0 1 1 0 0 1 1 904 0.180 1.00

Total 5,024
Generation 3 Avg fitness 837.33

TABLE 10.9

GA Mating Pool from Generation 2

String Mating pool Fitness

15 1 0 1 1 0 0 1 1 904
2 1 0 1 1 0 0 1 1 904
14 1 0 1 1 0 0 0 0 504
2 1 0 1 1 0 0 1 1 904
2 1 0 1 1 0 0 1 1 904
15 1 0 1 1 0 0 1 1 904
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that the optimal solution will be obtained even if it continues for more iterations due to 
the population size and possibly the initial population used. In fact, the only hope one 
would have in this case is for a mutation to make a change to one of the genes to kick the 
genetic algorithm out of its premature convergence. Since the probability of mutation Pm 
is typically small, after many iterations one of the genes can randomly be selected and 
switched from 0 to 1 or vice versa. In this example, mutation is the only way for item 2 
to be selected since all strings in Generations 1, 2, and 3 had unselected this item, and a 
crossover operation would not have reversed this choice.

Note that although this example implied a trivial encoding of the eight binary deci-
sion variable values into a chromosome string, other more elaborate problem solu-
tion encodings may be necessary for different problems. For example, a mathematical 
programming problem with continuous decision variables may require many bits to 
encode a binary representation of each of many decision variables, resulting in long 
strings of thousands of bits for each solution (chromosome).

Genetic algorithms often seem to work quite well, no matter how they are designed. 
Yet, during the 1980s, genetic algorithms were recognized as having certain short-
comings that rendered them suspect as optimization tools. Practitioners introduced a 
number of modifications that improved the performance of genetic algorithms while 
preserving the attractive image of the concept of evolution by combination. Variations 
such as combining more than two parents simultaneously, using multiple point cross-
overs, and generating local improvements (rather than merely random mutations) in the 
breeding population, all seem to challenge the integrity of the biological model but do 
contribute to the quality of optimization results. One easily gets the impression that 
our experience with genetic algorithms is entirely empirical and unfounded in theory. 
However, error bounds have been developed, indicating some recent theoretical prog-
ress (Goldberg 1989, Goldberg et al. 1992, Goldberg 1994). A good overview of recent 
work on genetic algorithms is found in Reeves (1997) and Sivanandam and Deepa (2007).

Genetic algorithms lend themselves readily to computational parallelism at several 
levels. Because optimization is typically being performed within a large search space, 
different processors could be used to search different neighborhoods simultaneously. 
Alternatively, different processors could operate on different breeding populations over 
the entire search space at the same time. At a lower level, once pairs are selected, genetic 
manipulations are independent of each other, so multiple processors could perform 
crossovers and mutations simultaneously. Then, offspring would migrate across the 
network into either centralized or distributed selection processes in the next generation.

10.6 Tabu Search

Tabu search (TS) is a metaheuristic that utilizes a memory capability in escaping local 
optimal search regions by forbidding previously made moves from being revisited for 
a certain number of iterations. Tabu search was introduced by Glover (1989) and since 
then many extensions and variants of the method have been published in various areas of 
applications. The core concept of tabu search is similar to local search where it starts with 
a single solution and, using some neighborhood generation scheme, identifies a candi-
date list of moves (neighbors) whose contributions to the objective function are evaluated. 
The move with the greater contributions is selected and the reverse of the move (put it 
back) is placed on the tabu list to prohibit returning to the previous solution for a certain 
number of iterations as imposed by the size of the tabu list. Once a move is off the list, it 
becomes permissible to be revisited in future iterations. An exception to the rule is when 
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a move passes the aspiration criterion which is commonly when a tabu move can identify 
a solution that is better than the best-found-so-far. The rationale in temporarily forbidding 
moves that had been tried is to allow other moves to be visited even if they are worse than 
the best local solution. This lets the search algorithm escape local optimal search regions 
to potential global search regions.

Example 10.5

Consider again the knapsack problem presented earlier in Table 10.2 and suppose that a 
new move or neighbor is created by switching a 0 to 1 or 1 to 0 representing the selection 
or unselection of an item respectively. The neighborhood size is therefore |n| and each 
move must comply with the maximum allowable budget of 450 for all items; otherwise 
it will be considered infeasible. Assuming a tabu list size of 3, Table 10.11 includes an 
initial solution (S1) followed by ten tabu search iterations. The initial solution can in 
general be selected randomly or via some other method or heuristic. In this example, 
S1 was created based on the simple heuristic of item with the largest value is selected first. 
Z is the objective function value and ∆Z is the change in the objective function if a 
move or neighbor is selected. X means that a move produces an infeasible solution due 
to exceeding the maximum allowable budget, and the tabu list (TL) represents the 
number of future iterations for which a move is prohibited (unless it passes the aspira-
tion criterion).

Starting with S1, the only possible moves are to unselect items 2, 3, or 6, which will 
reduce the objective function value by 200, 300, or 450 respectively.

Although all three moves will worsen the current value of Z, the algorithm must pick 
one as it may be the path to a better solution in future iterations; otherwise, the algo-
rithm will be stuck in its current solution. The least damaging move is to unselect item 
2 which will deteriorate Z by 200 as identified by the box around it. This move leads to 
S2 with Z = 750 and puts item 2 on the tabu list for the coming three iterations. In S2, 
the best move is to put item 2 back into the solution as it adds the maximum value of 200 
to Z; however, this move is tabu and therefore the next best move is to select item 7 that 
adds 180 to the objective, resulting in a Z value of 930 as shown for S3. Note that item 7 
is now tabu for the coming three iterations, while item 2 will remain prohibited for the 
coming two. The process continues in this fashion until a stopping criterion is met. For 
this small example, our stopping criterion was to run it for 10 iterations after the initial 
solution, which happened to produce the optimal solution in S11. An important point 
to note is that as long as a move is on the tabu list, it cannot be taken unless it passes 
the aspiration criterion, which did not occur in this example. After a certain number of 
moves defined by the tabu list length (3 in this case) a move is off the list and it can be 
selected again. In this example, item 2 could not be selected in S1, S2, and S3 as it was on 
the tabu list. But after that it was off the list and was indeed selected again in S7 at which 
time it became tabu once again for three more iterations. Of course, the best found solu-
tion will be updated as better solutions are obtained and will be reported at the end.

The tabu list is used to explore new search areas where larger list size would force the 
search algorithm to move to new neighborhoods that might not otherwise be explored. 
The tabu list is a form of short-memory that is used to explore the space based on search 
recency and its length or tenure can be either static (e.g., 3) or dynamic where it can 
be randomly selected between two values (e.g., between 3 and 7). Tabu search can be 
extended to include intensification. The algorithm can use intermediate term memory to 
keep track of the frequency that certain solution components have occurred. During 
intensification, the method will fix some of those components that have occurred fre-
quently during past iterations, and then do a more intense search, for example, by 
expanding the size of the search neighborhood. This tends to accelerate the movement 
toward a local optimum. The method may also incorporate diversification. Tabu search 
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TABLE 10.11

Tabu Search Iterations for the Knapsack Problem

Solution                 Z

S1 0 1 1 0 0 1 0 0 950
Neighbor 1 0 0 1 1 0 1 1
ΔZ X −200 −300 X X −450 X X
TL   3              

S2 0 0 1 0 0 1 0 0 750
Neighbor 1 1 0 1 1 0 1 1
ΔZ 120 200 −300 84 150 −450 180 X
TL   2         3    

S3 0 0 1 0 0 1 1 0 930
Neighbor 1 1 0 1 1 0 0 1
ΔZ X X −300 X X −450 −180 X
TL   1 3       2    

S4 0 0 0 0 0 1 1 0 630
Neighbor 1 1 1 1 1 0 0 1
ΔZ 120 200 300 84 150 −450 −180 220
TL     2       1 3  

S5 0 0 0 0 0 1 1 1 850
Neighbor 1 1 1 1 1 0 0 0
ΔZ X X X 84 X −450 −180 −220
TL     1 3       2  

S6 0 0 0 1 0 1 1 1 934
Neighbor 1 1 1 0 1 0 0 0
ΔZ X X X −84 X −450 −180 −220
TL       2     3 1  

S7 0 0 0 1 0 1 0 1 754
Neighbor 1 1 1 0 1 0 1 0
ΔZ 120 200 X 84 150 −450 180 −220
TL   3   1     2    

S8 0 1 0 1 0 1 0 1 954
Neighbor 1 0 1 0 1 0 1 0
ΔZ X −200 X −84 X −450 X −220
TL   2         1 3  

S9 0 1 0 1 0 1 0 0 734
Neighbor 1 0 1 0 1 0 1 1
ΔZ 120 −200 X −84 150 −450 180 220
TL   1     3     2  

S10 0 1 0 1 1 1 0 0 884
Neighbor 1 0 1 0 0 0 1 1
ΔZ 120 −200 X −84 −150 −450 X X
TL 3       2     1  

S11 1 1 0 1 1 1 0 0 1004
Neighbor 0 0 1 0 0 0 1 1
ΔZ −120 −200 X −84 −150 −450 X X
TL 2 3     1        
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is intended to enable the search to escape local solutions. Under diversification, we use 
long term memory to track solution components that have not been explored. We begin a 
new search by incorporating some of these components, thereby forcing the algorithm 
to cover the space more broadly. Further detail and nuance of tabu search is available 
in Glover and Laguna (1997), Aarts and Lenstra (1997), Du (2010), and Taillard (2016).

10.7 Constraint Programming and Local Search

Constraint programming assumes that the problem can be described as a set of variables 
and a set of constraints that restrict the feasible solutions for a problem. Each variable has a 
domain: a set of feasible values. The constraints can be logical relations (for example, only 
one of a set of variables can be true), mathematical constraints (e.g., x ≤ 5), integer, Boolean, 
real valued, and so on. Constraint programming defines the problem independent of the 
solution method.

Disjunctive constraints: When the domain consists of discrete values, a disjunctive 
constraint states that only one of a set of conditions can be true. When the vari-
ables are real valued ranges, the constraint states that the ranges must not overlap.

Conjunctive constraints: These are similar to disjunctive constraints, but in this case, 
there is a limit on the number of conditions that can be true.

Temporal constraints: In scheduling applications, these constraints specify that one 
activity must precede another activity by at least some amount of time. For exam-
ple, job B cannot start until job A has ended.

To illustrate the concept, consider the popular Sudoku puzzle. The game consists of a 9 × 9 
square. Each row and column must have the numbers from 1 to 9 exactly once. The board 
is also divided into nine 3 × 3 squares, each of which must also contain the digits from 1 to 
9 exactly once. The initial puzzle has some of the squares filled in, and the challenge is to 
complete the design with a unique solution.

Consider the following example in Figure 10.8:

a 1 3
3 8
9 7 b 4 c 1

9 7 6
y 9 6 2 8 5 x
6 8 7

7 3 1 4
2 6

6 7

FIGURE 10.8
Sudoku puzzle example.
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For each square in the puzzle, we can create a variable and the initial domain is the set 
[1, 2, …, 9]. For example, the square marked “a” begins with 9 elements. It is involved in 
three sets of disjunctive constraints for the row, the column and the 3 × 3 square. The first 
row already has a 1 and a 3; the first column already has a 6; and the 3 × 3 square already 
has 1, 3, 7, and 9. Therefore, we can reduce the feasible domain of “a” to the set [2, 4, 5, 8]. 
This process is referred to as constraint propagation. If any square only has one possible 
entry, we can fill in the square. For example, the square marked ”x” can only be 3.

Constraint propagation can also be used to identify variables that must be set. When you 
look at the middle row, the square marked “y” is the only one that can be 7. By repeated 
application of these two rules, you can solve the puzzle. Square “b” is the only one in row 
3 that can be 3. Then, square “c” is the only cell in row 3 that can be 6.

One of the original applications of constraint based programming was for scheduling 
problems. Given a set of n jobs, where job i has processing time pi, ready time, ri, a set of 
precedence constraints (where job i must finish before job j begins), and perhaps resource 
constraints (where job i requires resource Rk that has limited capacity).

Typically, the methods for solving these problems, after the problem has been reduced 
as much as possible using constraint propagation, involve some form of local search heu-
ristic. As the heuristic proceeds, further applications of propagation can be used to speed 
up convergence.

Note that constraint based methods are searching for a feasible solution as contrasted 
with an optimal one. Many implementations of constraint based methods have been 
proposed to create a minimization procedure. For example, once we have identified 
a feasible solution, we can add a new constraint that we are only interested in better 
solutions. For a detailed description of the topic, readers may refer to Hentenryck and 
Michel (2009).

10.8 Other Metaheuristics

In the last few decades, the area of heuristics exploded with algorithms especially with 
the advances in computer technology and programming languages. Du and Swamy (2010) 
classified the most common metaheuristics into four approaches:

 1. Evolution-based methods such as:
• Genetic algorithms
• Genetic programming
• Evolutionary strategies
• Differential evolution

 2. Swarm-based methods:
• Particle swarm optimization
• Artificial immune systems
• Ant colony optimization
• Bee metaheuristics
• Swarm intelligence
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 3. Sciences-based methods:
• Simulated annealing
• Biomolecular computing
• Quantum computing

 4. Human-based methods
• Memetic Algorithms
• Tabu search
• Scatter search

Many metaheuristics are based on the idea of introducing randomness into the search pro-
cess as a mechanism to escape local optima where random solutions are sometimes selected 
over greedy solutions. Examples of such methods include GRASP (Greedy Randomized 
Adaptive Search Procedure) (Resende and Ribeiro 2003) and Meta-RaPS (Metaheuristic 
for Randomized Priority Search) (Rabadi et al. 2006, Garcia and Rabadi 2011, Kaplan and 
Rabadi 2013, Moraga 2016).

Finally, there could be many different variants of metaheuristics that fall under 
a class of metaheuristics. For example, Swarm Intelligence algorithms include fire-
fly, frog, bat, monkey, fish, cuckoo search algorithms among some other ones. More 
elaborate material on metaheuristics and their types is available in Glover and 
Kochenberger (2006), Du (2010), Burke and Kendall (2014), Gendreau and Potvin 
(2010), and Siarry (2016).

10.9 Software for Metaheuristics

Software implementation of greedy, local, and metaheuristic algorithms is commonly 
developed in general-purpose programming languages such as C, C++, Java, Python, 
and so on. Appropriate data structures can easily be chosen that represent not only a cur-
rent problem configuration, but also proposed modifications to the current configuration. 
Standard library functions for generating random numbers are convenient for effecting 
the probabilistic acceptance of such modifications, as required in simulated annealing and 
genetic algorithms. Because of the ease of developing such programs, and because the 
details of the implementation are often very application specific, commercial software is 
not typically needed for these heuristic techniques. Furthermore, even when (meta)heuris-
tic algorithms are implemented in software systems for specific applications or industry, 
the design details tend to be hidden from the user for proprietary and competitive reasons.

Among the limited offerings of metaheuristic software tools is Evolver, spreadsheet-
based product from Palisade Corporation which works as an Add-in to Microsoft Excel 
in which models are implemented in a spreadsheet, and solved as constrained optimiza-
tion problems using genetic algorithms. Microsoft Excel itself comes with an Evolutionary 
Solver (a simpler form of genetic algorithms) to solve models that are implemented as 
spreadsheets.

MATLAB from MathWorks offers a Global Optimization Toolbox that includes genetic 
algorithms, simulated annealing, and particle swarm solvers. While using program-
ming languages to implement metaheuristics might be computationally more efficient, 
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MATLAB’s toolbox can reduce the implementation effort significantly with the tool boxes 
and functions it offers. It also gives the user some control over algorithm design. For 
example, the user can select the type of crossover and mutation to use with the genetic 
algorithms, and in simulated annealing, the user can decide on the temperature schedule 
and acceptance criteria among other things. Furthermore, developers can use MATLAB 
as a platform to develop software environments and tools including optimization envi-
ronments. For example, TOMLAB, a general purpose development and modeling envi-
ronment, implements a real-coded genetic algorithm called TOMLAB/GENO that can be 
used with various optimization problems.

Metaheuristic algorithms are typically used for problems that are computationally 
complex and messy to model and solve using structured modeling approaches such as 
mathematical programming. Hence, they often need to be tailored to the problem at hand. 
Therefore, it is no surprise that there are not many canned metaheuristic software sys-
tems as they need to be customized to specific problems. Nevertheless, the internet is 
full of codes and binaries in different computer languages that can be utilized in soft-
ware development, the vast majority of which are freely available for download. COIN-OR 
(Computational Infrastructure for Operations Research), for example, includes some open 
source libraries and frameworks for metaheuristic development. Similarly, Google offers 
a suite of portable software called Google Optimization Tools for solving combinatorial 
problems. It is almost impossible to list all software sources that pertain to various meta-
heuristics and the readers are encouraged to refer to the book’s website and conduct their 
own online search. The website GitHub.com contains open source code for several algo-
rithms of interest.

10.10 Illustrative Applications

10.10.1 FedEx Flight Management Using Simulated Annealing (Campbell et al. 1997)

Federal Express (FedEx) is one of the world’s largest express transportation company. 
Handling 3.4 million packages in over 220 countries every working day, with 650 aircraft 
and over 4,700 pilots, it is not surprising that the company must rely on a variety of analyti-
cal tools for scheduling and coordinating its activities.

In 1993, during negotiations involving pay rates and work rules with the Air Line Pilots 
Association, the 20-year-old company recognized the need to be able to evaluate alterna-
tives to its traditional methods for scheduling work for its pilots. In particular, they needed 
a way to automatically build individual trips (flight legs) into lines of work (called bid lines). 
The method needed to be sufficiently fast and efficient that many alternatives could be 
generated, compared, and considered during, as well as after, negotiations with the pilots’ 
association.

The scheduling questions demanded the use of a so-called bid-line generator, software 
that could compose units of work for pilots to bid on. The goal is to maximize the amount 
of flying assigned to bid lines and minimize the number of bid lines. Pilots submit bids by 
listing their preferred sequences of flights, and work assignments are made according to 
the pilot’s seniority.

The number of inputs and constraints for generating the bid lines make the problem 
almost overwhelming. Considerations include 
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• Aircraft type.
• Crew size and requirements.
• Origin and destination cities.
• Layover cities.
• Number of trips in a line.
• Scheduled times and days.
• FAA regulations governing flight periods and rest periods.
• FAA day off and maximum duty length regulations.
• Crew turnarounds.
• International/domestic mixtures (generally undesirable).
• Week on/week off mixtures (generally desirable).

The bid line generator should generate bid lines that not only meet the hard constraints 
but that maximize line value (desirability to the pilots and productivity for FedEx) and 
minimize cost over all bid lines.

Details were kept to a minimum, but so many factors contribute to the composition of 
bid lines that the 0-1 integer programming model, with all its constraints, quickly became 
unwieldy—even to formulate, and much more so to actually solve. Simulated annealing 
proved to be the solution method of choice for this problem. Implementation was in C++ 
on a Unix workstation. The random changes to a current configuration involved arbitrarily 
selecting two bid lines, then in each, selecting a trip (flight leg) and exchanging them. The 
exchanges were accepted according to the usual probabilistic threshold until, as tempera-
ture parameters were lowered, there were no new changes accepted.

It is not especially surprising that FedEx analysts chose simulated annealing as their 
optimization heuristic, nor that simulated annealing eventually served their needs suc-
cessfully. The real lessons to be learned here are first to notice how very awkward the 
analysts found this real-world problem to be. The sheer number of constraints from 
federal agencies, labor organizations, company resources, and normal crew preferences, 
were a serious challenge that had not been adequately faced throughout the previous 
20-year history of FedEx. Second, although simulated annealing appears on the surface 
to be a relatively straightforward heuristic, the practical implementation presented sev-
eral hitches.

Some of the drawbacks of simulated annealing were anticipated. Performance is very 
sensitive to the control parameters and the annealing (cooling) schedule. Extensive 
experimentation was done to fine-tune the system, and the maximum number of 
equilibrations was finally set to 300. Also, the heuristic can be fairly time-consuming 
to execute and there is no guarantee of optimal solutions. And because it generates 
potential changes randomly, it does not easily incorporate strategies for directed search. 
Nevertheless, despite these obstacles, some of the analysts had prior experience in using 
simulated annealing to solve problems in aircraft container loading and personnel and 
task scheduling, and they had great confidence in this heuristic method. Yet unantici-
pated difficulties followed.

The heuristic tended to produce too few valid lines and too much unassigned open time. 
This was remedied by tacking on a greedy algorithm (as a second pass after simulated 
annealing) to distribute open time into new lines (without modifying the high quality 
lines built during the annealing phase).
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It was discovered that the initial heuristic did not give proper consideration to coordina-
tion of morning and afternoon trips, an important element in the minds of the pilots. The 
introduction of weighting factors addressed this problem satisfactorily.

One surprising observation was the critical importance of the initial solution in the 
behavior of the simulated annealing algorithm, which had previously been thought to be 
irrelevant and arbitrary. It became necessary to jumpstart the process by concocting initial 
lines by putting trips to the same first layover city on the same line, and making fewer 
lines.

There were other problems as well. The bid line generator was first built for the FedEx 
Boeing 727 fleet of aircraft. When initial implementations seemed stable, additional fleets 
were introduced, but the process then immediately yielded poor results. The problem was 
studied, and analysts found that the difficulty lay in the fact that different types of aircraft 
flew different length trips. When the process was tuned in favor of shorter trip aircraft 
such as Boeing 727 and DC10, the longer Boeing 747 flight legs became problematic. The 
solution to this issue involved some fundamental changes to the simulated annealing pro-
cess based on categorizing the fleet according to average trip lengths.

It was also recognized along the way that the system needed additional data about its 
trips and lines that simply were not readily available. And some data files were found to 
be erroneous. A time consuming effort to upgrade the underlying databases proved neces-
sary and beneficial, and taught the analysts to be extremely cautious about blindly assum-
ing that input data files are complete and free of errors.

Finally, in this implementation, the simulated annealing process did not always con-
verge at all. The churning behavior resulted when proposed changes having a net cost of 
zero were accepted, and the phenomenon was worst when a large proportion of the pro-
posed changes had no impact on the objective function value but nevertheless involved 
complicated changes to the bid lines being constructed. No direct solution to this difficulty 
ever materialized, and the analysts viewed this as evidence of the limitations of any heu-
ristic method in solving very complex real-world combinatorial problems.

Run times for the simulated annealing heuristic vary with fleet size, requiring 30 min-
utes for the smaller fleets and up to 10 hours of SPARCstation time for the largest (Memphis 
based) fleet. Churning can affect all of these run-times.

FedEx generally considers this system to be a valuable and practical analytical tool, 
which can automatically produce bid lines of a quality comparable to those produced 
laboriously by other methods. As is typical of many heuristic methods, simulated anneal-
ing clearly cannot build a tidy solution out of a messy problem, but it does appear to be 
a practical tool for effectively handling problems that heretofore could not be dealt with 
at all.

10.10.2  Ecosystem Management Using Genetic Algorithm 
Heuristics (Hughell and Roise 1995)

Managing a forest with the aim of profitable timber production and wildlife preserva-
tion is a good example of a multi-objective problem, in an environment of uncertainty, 
for which no single conventional optimization technique is adequate. A decision support 
system developed for ecosystem management in a North Carolina pine forest couples a 
wildlife behavior simulation model with an integer programming model that is solved 
using a genetic algorithm.

Foresters in the Croatan National Forest needed to address the question of how best to 
manage a 3,000-hectare region to sustain a dependable flow of timber while not destroying 
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the foraging territories and nesting sites of the endangered red-cockaded woodpecker spe-
cies. Conventional management schemes are typically based on optimal activity schedules; 
but in this case, the planning horizon covered 20-year harvesting cycles over a period of 
up to 200  years, during which there would be considerable environmental uncertainty 
as well as normal periodic re-evaluation. A strictly optimal harvesting schedule could 
easily become infeasible over time. What was needed was a decision support system that 
permits flexibility and presents a selection of good harvest schedules that could still be 
implemented in the face of environmental changes.

Stochastic wildlife group behavior simulation models have become valuable tools in the 
study of wildlife species viability. The red-cockaded woodpecker (RCW) model involves 
groups of individual birds having given attributes and foraging and breeding character-
istics in five year cycles. The complex behavioral activities of RCW groups are abstracted 
down to fit into a lattice of 4-hectare forest landscape stands. Nesting and foraging suit-
abilities are calculated at the beginning of the cycle, and then simulations are carried out 
to determine the probabilities of various eventualities, including: 

• Migration or mortality of RCW groups with inadequate or unsuitable foraging 
and nesting resources.

• Sharing of landscape by multiple groups of RCW.
• RCW group splits.
• Successful breeding and nesting.
• RCW extinction.

Simulation results are stored for subsequent incorporation into the larger decision process.
The timber stand model covers successive 20-year cycles of harvesting and regenera-

tion. Details of the model include appropriate intermediate cuts, understory management 
through controlled burns, and primary stand harvests (which leave around 15 trees per 
hectare, 6 trees per acre). The overall management decision is the selection of a harvest 
schedule that maximizes the minimum timber volume harvested in any one management 
period and that supports the RCW proximity constraints. It is known that the optimal 
stand age for timber production is around 60 years, while the optimal stand age for wood-
pecker foraging is over 100 years. To represent this apparent mismatch, buffers are defined 
around each RCW nesting group, and parameters are introduced into the model to specify 
the minimum harvest age inside the buffer and outside the buffer. Through these con-
straints, the harvest schedule can respond to changes in the location of RCW groups; and 
herein lies the multi-objectivity of the optimization problem and the need for a feedback 
management policy.

The most obvious way to solve a two objective problem is to perform a series of single-
objective optimizations with one objective fixed and the other optimized. Because neither 
timber nor endangered wildlife are to be treated as fixed constraints in this ecosystem, 
this traditional approach is not appropriate. Instead, varying the parameters in the RCW 
proximity constraints permits the development of management policies that balance the 
benefits for both timber production and woodpecker viability.

The resulting optimization model takes the form of an integer linear programming 
problem. The problem was solved with a conventional branch-and-bound algorithm but 
it was recognized that in the natural world of uncertainty and changing assumptions, the 
concept of optimality may itself be problematic. The harvesting schedule deemed to be 
optimal at one time may turn out to be infeasible in the long run.
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To achieve the flexibility needed to make the decision support system workable, the 
forest managers turned to the use of a genetic algorithm. The genetic algorithm heuris-
tic starts with a random set of feasible harvest schedules (a population of solutions) that, 
based on their quality, are copied into the next generation. Genetic operations of crossover 
and mutation take place, and then the process repeats. (Here, the quality of a solution is the 
minimum one-period wood volume harvested, which is to be maximized.)

In this evolutionary algorithm, each feasible harvest schedule (i.e., each configuration of 
decision variable values) is a chromosome, which is comprised of genes (decision variables asso-
ciated with individual stands), each of which is assigned an allele (a set of decision variable val-
ues prescribing a harvest schedule for the stand). After initially random schedules are created, 
chromosomes are copied into the next generation in such a way that those of superior quality 
contribute multiple copies at the expense of under-representation by those chromosomes with 
inferior quality. Randomly chosen chromosomes are paired for crossover; and for each pair, 
a certain percentage of the genes are selected and their alleles switched. Mutations occur as a 
certain percentage of chromosomes are chosen and in each a randomly selected gene (stand) is 
assigned an arbitrary feasible set of decision variable values (stand harvest schedule).

By allowing this genetic process to repeat over many generations, a population of good 
harvest schedules is generated in a small fraction of the time that it takes a branch-and-
bound algorithm to generate a single optimal solution. Croatan National Forest managers 
are convinced that a set of good choices, for a system fraught with uncertainty, is much 
more valuable than one optimal solution whose feasibility may become suspect in a chang-
ing ecological environment. In this context, the set of stands chosen for harvesting in the 
current management period is that set of stands represented in the largest number of good 
harvest schedules in the evolved solution population.

The decision support system that incorporates the wildlife behavior model, the stand 
characteristics, and the RCW proximity constraints together with the genetic heuristic 
search process, identifies the best solutions and displays the critical solutions for which 
an improvement in one objective (timber or woodpeckers) is gained only at the expense 
of the other. As had been expected, those schedules specifying longer rotations support 
larger populations of woodpeckers, while shorter rotations increase timber production. 
Feedback at 20-year cycles allows for the selection of a harvest plan, followed by adjust-
ments to the RCW simulation model, followed by another timber harvesting decision, 
repeated throughout the 200-year horizon.

The set of options produced by this system allows forest managers to dynamically 
achieve a sustainable flow of timber production throughout the long planning horizon, 
which can be modified in response to the requirements for successful co-existence with 
wildlife. The system was developed in C++ with object oriented programming techniques, 
and run on a PC prior to being ported to a workstation platform. The ORSYS Operations 
Research System was used to obtain the branch-and-bound solutions.

10.10.3 Efficient Routing and Delivery of Meals on Wheels (Manikas et al. 2016)

Meals on Wheels America is an organization dedicated to combatting hunger and pov-
erty by delivering around a million prepared meals every day to individuals in need. 
Apart from food preparation activities, the major challenge each day is to efficiently route 
delivery vehicles to approximately 30 destinations per vehicle, deliver the appropriate 
meals to each recipient, and return to the point of origin to return coolers and heaters 
for use on the following day. Finding near optimal delivery routes is a complex problem 
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that is often addressed by using mathematical optimization tools such as CPLEX. But in a 
low-budget humanitarian organization staffed in large part by volunteers, it is unrealistic 
to incur the high cost of such tools, and to engage skilled and experienced analysts to  
develop routing solutions.

Other humanitarian operations had previously created tools and efficient solutions such 
as for scheduling and routing in home healthcare delivery programs. Transportation is 
an expensive and critical aspect of humanitarian logistics and operations in general, and 
indeed Meals on Wheels discovered its own similarities to other relief operations. These 
organizations typically rely on volunteers who have various levels of abilities and quali-
fications, must operate with limited time and financial resources, are expected to provide 
time-critical delivery of goods and services, and in practice often have only limited access 
to technological support.

Meals on Wheels deliveries generally originate at an institutional kitchen. Specific loca-
tions for delivery are pre-determined and are roughly clustered according to neighborhood 
proximity with at most 30 delivery points in a cluster for a given driver (the limitation being 
due to space in the volunteer’s car and the need to get the fresh meals delivered in a timely 
manner). Manually routing vehicles and preparing delivery instructions for individual driv-
ers is an extremely time-consuming process that must be completed for each day’s unique 
pattern of deliveries. The vehicle routing problem encountered in delivering meals has been 
recognized by operations researchers as a computationally difficult problem for which no 
simple solution is known; dealing with such a challenge manually is far too time-consuming.

A local branch of Meals on Wheels in Boise, Idaho, wisely undertook to develop a much 
more practical approach. An affordable solution was found through the use of a Microsoft 
Excel spreadsheet and an Application Programming Interface (API) that connected older 
personal computers at no cost to an existing Internet connection providing access to map-
ping services from MapQuest and Google. Researchers familiar with the old manual system 
of delivering meals analyzed this system and made some recommendations for improving 
efficiency of meal delivery. Excel spreadsheets were already available; Excel’s Visual Basic for 
Applications was used to write programs to access mapping data and build a travel matrix to 
store information about travel times and distances in the meal delivery area.

However, for the routing process itself, Excel’s Solver would have required customized 
optimization models for each route. Instead the system was built so that a VBA proce-
dure could use publically accessible time and distance information from MapQuest and 
Google. Researchers and analysts then developed customized code for a solver to provide 
all the vehicle routing processes needed for meal delivery.

In the system developed, users are able to input the addresses for each day’s deliveries. 
Then in preparation for vehicle routing, the system constructs an accurate and up-to-date 
travel matrix that contains the travel time (or distance) between each possible pair of loca-
tions in the system. With the information from this matrix, the system then creates driving 
information for all routes, that is, for all possible pairings of delivery stops. Finally, the 
system applies a genetic algorithm to select for each vehicle the optimal or near optimal 
route for that vehicle’s deliveries for the day.

The researchers created this genetic algorithm, customized to meet the requirements of 
the meal delivery application. The algorithm was initialized with a population of chromo-
somes, encodings of possible routes consisting of a series of stops in the order to be visited. 
Then through crossovers and mutations, alternative routes are chosen and evaluated with 
the aim of identifying the route with the least driving time. A crossover is accomplished 
by considering the next stop in the route represented by one parent and the corresponding 
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next stop in another parent, and then randomly (50% chance) choosing the next stop from 
either parent. In this way a new offspring chromosome (route) is constructed with repre-
sentative components from each parent. Mutation occurs by selecting a chromosome and 
exchanging two stops in the route sequence, thereby creating a slightly different chromo-
some representing a slightly different route driving time.

The best performance within the Meals on Wheels routing application was achieved by con-
ducting multiple runs of the GA process, each run starting with unique random initial popu-
lation of routes. Multiple runs of course require more computation time, but users agreed that 
the increased wait time was reasonable in order to obtain a faster route for delivery of meals.

At this Meals on Wheels site, a centralized planning location coordinates kitchen 
operations, special dietary needs of recipients and delivery logistics. Route coordinators 
found this system simple and convenient to use, and route drivers found the driving 
instructions to be accurate and easy to follow. With the application of this vehicle routing 
system, route driving time reductions range from 2% to 27% for each route. Therefore 
vehicle operating costs were substantially reduced, and volunteer driving commitments 
were met more easily.

This application is organized into a comprehensive package for ease and convenience of 
use. The delivery scheduling and routing system reviews the list of customers requesting 
meals each day, and accordingly updates the list of stops to be made and the specific meals 
to be delivered at each stop. It makes updates to mapping data related to delivery stop loca-
tions, optimizes the route using the GA algorithm, and finally automatically prints driving 
directions to be given to each driver.

For a long route with 30 stops, the route sequencing and instruction generation takes 
about 15 minutes which is a welcome improvement over the manual system in which route 
coordinators spent over an hour every day planning a single route. The system continues 
in use, and plans are underway for several enhancements, as well as sharing the system 
with Meals on Wheels organizations in other localities.

10.11 Summary

Heuristic and metaheuristic techniques are efficient and practical methods that can be 
used to find good (but not necessarily optimal) solutions to a wide variety of difficult com-
binatorial problems. Such techniques are employed to find acceptable solutions to prob-
lems, when otherwise the best-known algorithms for finding optimal solutions take far 
too much computation time to be usable in practice or when problems are too complex to 
model using the traditional methods.

The simplest of these heuristic methods operates by making local improvements to a fea-
sible solution, merely by rearranging randomly a few elements in the solution, to achieve 
a slightly better feasible solution. While there are seldom any guarantees of reaching an 
optimal solution in this way, remarkably good results can be obtained quickly with mini-
mal computational effort.
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Heuristic techniques guided entirely by opportunities for improvement often con-
verge rapidly to a local optimal solution. To broaden the search in hopes of finding a 
global optimum, metaheuristic techniques such as simulated annealing, genetic algo-
rithms, and tabu search rearrange the entities in the solution so that not only better 
solutions but occasionally also worse ones are admitted. The algorithms for doing this 
bear a resemblance to science based processes such as the process of annealing in 
physical substances, or are inspired by nature such as the biological processes as we 
have seen in genetic algorithms. Many more promising metaheuristics have emerged 
in the last a few decades and have demonstrated effectiveness at solving challenging 
problems.

Key Terms

annealing process
Boltzmann machine
capital budgeting
chromosome
constraint programming
constraint propagation
crossover
equilibration
genetic algorithm
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heuristic methods
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local exchange heuristic
local improvement heuristic
local search
metaheuristics
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Exercises

10.1 One of the recurring themes in Operations Research is how best to explore a 
range of possible actions in pursuit of well-defined goals. The use of heuristic 
search methods has been suggested. Define the term heuristic search. and indicate 
why such methods are attractive.

10.2 Develop a local improvement technique for the knapsack problem described at 
the beginning of this chapter. 

 a. Design several possible methods for creating initial feasible solutions.
 b. Develop a method for computing the objective function value for a current 

solution.
 c. Design an exchange or swap technique, using a random number generator 

to select the items to be swapped. For each proposed exchange, compute the 
new objective function to determine whether to accept the change. Decide how 
many iterations of this exchange step you think would be necessary for a knap-
sack problem with n objects.

10.3 Implement your design in Exercise 10.2 by developing a computer program. 
 a. Demonstrate the results by running your program on a problem instance with 

n = 17 objects to be considered for a knapsack having a capacity of 3,876. The 
weights and values of the objects are shown in Table 10.12.

 b. Try different numbers of iterations of the exchange process, such as 100, 
1,000, and 10,000. Chart the improvements in the objective functions that take 
place throughout the execution of your algorithm, and determine how many 

TABLE 10.12

Knapsack Data

Object Number Object Description Weight Value

1 Life raft 800 900
2 Shark knife 050 550
3 Sun shades 010 475
4 Reef runners 240 850
5 Canteen 080 600
6 Iodine pills 350 350
7 OR book 738 900
8 Gnat spray 548 290
9 Nylon cord 310 500
10 Carrot cake 200 010
11 Firewood 300 800
12 Solar blanket 850 215
13 Dried apricots 490 285
14 Parachute 500 630
15 Space suit 300 320
16 Alien bane 480 850
17 Dry matches 150 400
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iterations is a reasonable number. Would 1,000,000 iterations improve the qual-
ity of solution obtained by your algorithm?

10.4 Reconsider Exercise 10.2b. Is it necessary to recompute the objective function at 
each local improvement step? Refine your program so that objective function re-
evaluations are as simple as possible.

10.5 Design and implement an algorithm that exhaustively enumerates all feasible 
packings of n objects in a knapsack having a given capacity. Use the results 
obtained from this algorithm as a benchmark to gauge the quality of the solutions 
generated by your exchange heuristic.

10.6 Design a simulated annealing heuristic algorithm for the knapsack problem. Use 
your local improvement exchange heuristic, and modify it so that it probabilisti-
cally accepts bad exchanges. 

 a. Design a cooling schedule for your algorithm. What should be the initial tem-
perature parameter? By what amount should this parameter be reduced after 
each equilibration? At what temperature should the annealing process cease?

 b. Apply your algorithm to the knapsack problem data shown in Table 10.12.
 c. How many exchanges actually take place at each temperature? How many 

exchanges take place at the coolest temperature?
10.7 Compare the local improvement heuristic and the simulated annealing heuristic 

on the basis of the computation time required for each method to execute and the 
quality of the solutions obtained by each method.

10.8 Design a local improvement heuristic technique for solving the traveling sales-
man problem described at the beginning of this chapter. For purposes of this 
exercise, assume that we wish to find the least costly tour from city 1 through all 
the other cities and back to city 1. 

 a. Design a method for establishing an initial tour.
 b. Develop a method for computing the objective function for a given tour.
 c. Design a swap or exchange mechanism for local improvements, involving just 

two cities. After each proposed exchange, compute the change in the objective 
function value.

10.9 Implement your traveling salesman problem heuristic, and apply it to the prob-
lem instance with n = 10 cities, in which the cost of traveling from city i to city 
j is shown as the entry in the i-th row and j-th column of the following cost (or 
distance) matrix.

0 99 45 55 10 15 86 90 33 41
97 0 10 15 18 93 56 23 84 75
88 22 0 35 46 57 68 79 99 90
75 64 53 0 14 63 74 77 54 20
32 53 64 86 0 97 94 91 90 10
24 35 46 57 68 0 98 96 95 99
55 79 26 10 96 65 0 35 49 22
30 50 80 50 86 53 81 0 28 65
35 57 26 11 14 76 25 89 0 30
40 50 60 23 41 11 18 90 47 0
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10.10 Modify your traveling salesman heuristic, replacing the exchange mechanism by 
a subtour reversal mechanism. Use a random number generator to select the end-
points of a subtour of cities, and then create a new tour with that subtour reversed. 
Compute the objective function value associated with this new tour, and accept 
the new tour if it is an improvement over the previous one.

10.11 Extend your algorithms from Exercises 10.9 and 10.10 to include possible accep-
tance of a new tour having a worse objective function value than that of the previ-
ous tour. 

 a. Design a cooling schedule for this simulated annealing method.
 b. Determine the other operational parameters necessary to complete an imple-

mentation of simulated annealing for the traveling salesman problem.
10.12 Write a computer program that exhaustively enumerates all feasible traveling 

salesman tours. 
 a. Apply this algorithm to the ten-city problem data given in Exercise 10.9. 

Compare the quality of solutions and the computation time performance 
characteristics of your exchange heuristic, your implementation of simulated 
annealing, and the complete enumeration algorithm.

 b. Estimate the amount of time your exhaustive enumeration method would 
require to find the optimal tour among 100 cities.

10.13 Collect or create data for a large routing problem that involves approximately 
100 locations. For example, consider routing delivery trucks, ordering the pick-
ups and deliveries in a campus mail or courier service, or sequencing the safety 
inspection sites in a large complex of buildings. Construct the 100 × 100 matrix of 
distances. This problem is significantly larger than the 10-city problem addressed 
in previous exercises. Experiment with your local improvement and simulated 
annealing programs to determine how effectively and efficiently they solve this 
larger problem.
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Appendix: Review of Essential 
Mathematics—Notation, Definitions, 
and Matrix Algebra

A.1 Vectors

A vector is generally considered to be a quantity having both magnitude and direction. 
In some cases, it is convenient to think of a vector as a line segment beginning at the origin 
of an n-dimensional rectangular coordinate system and terminating at a point in the n-space. 
The components, or elements, of the vector are the projections of the vector onto each of the 
coordinate axes. These projections form an n-tuple and completely describe the vector.

More typically, a vector is described simply as a point X in n-space and is denoted as 

 X (x , x , x )1 2 n= …   

The set of all possible points, or n-tuples of real numbers, forms the real n-space, which is 
denoted by Rn.

If X = (x1, x2, …, xn) and Y = (y1, y2, …, yn) are vectors in Rn, then the sum X + Y is an 
n-dimensional vector defined as 

 X Y (x y , x y , , x y )1 1 2 2 n n+ = + + … +   

A vector X can be multiplied by a real number scalar a to obtain

 α α α αX = x , x , , x1 2 n…( )  
A vector space over the set of real numbers is a set of vectors for which addition and scalar 
multiplication are defined. Additionally, the operations in the vector space must satisfy a 
certain set of axioms, including commutative, associative, and distributive laws. The set of 
vectors must include an identity element, that is, the zero vector (0, 0, …, 0); and for every 
vector X, there must be an inverse –X, for which X + (–X) is the zero vector.

A vector Y is a linear combination of vectors X1, X2, …, Xn if it can be expressed as 

 Y X X X1 1 2 2 n n= + +…+α α α   

where the αi are real numbers.
An n-dimensional vector space is said to be spanned by the set of vectors {X1, X2, …, Xn} 

if every vector in the space is some linear combination of X1, X2, …, Xn. The set {X1, X2, …, 
Xn} is then called a spanning set for the vector space.

A set of vectors {X1, X2, …, Xn} is linearly independent if no one vector can be expressed 
as a linear combination of the other vectors in the set; that is, if the equation 

 α α α1 1 2 2 n nX X X = 0+ +…+   
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can be satisfied only by setting all the αi equal to zero. A set of vectors that is not linearly 
independent is linearly dependent. For example, two non-zero vectors X1 and X2 are lin-
early dependent if one of them is a non-zero scalar multiple of the other one; that is, if 
α1X1 + α2X2 = 0 for some scalars α1 and α2 not both zero.

A set of vectors {X1, X2, …, Xn} is a basis for an n-dimensional vector space if the set 
spans the space and is linearly independent. The standard basis of an n-dimensional 
space consists of a set of unit vectors that comprise a basis; that is, a set of vectors in which 
the i-th vector ui has a 1 as the i-th element and zeros in all other positions. This standard 
basis is useful because of its simplicity and because of its obvious role as a basis for an 
n-dimensional vector space.

A.2 Matrices and Matrix Operations

A real matrix is a rectangular array of real numbers. Subscripts, such as i and j, can be used 
to index the rows and columns, respectively. A matrix A of m rows and n columns is called 
an m × n (“m by n”) matrix and is written as: 

 

A (a )

a a a
a a a

a a a

ij

11 12 1n

21 22 2n

m1 m2 mn

= =



















…
…

…
� � �

 

where aij denotes the element in the i-th row and the j-th column. Any matrix A can be 
multiplied by a scalar α with the result that every element aij in A becomes the value αaij 
in the scalar product matrix.

Two matrices Am×n and Bp×q can be added if m = p and n = q. The sum C = A + B is a 
matrix Cm×n in which the element cij is computed as (aij + bij). Two matrices Am×n and Bp×q 
may be multiplied if n = p. The product C = AB is defined to be a matrix Cm×q in which the 
element cij is computed as: 

 
c a bij ik kj

k

n

=1

= ∑  
 

For the special case in which m = q = 1, we actually have just the product of two vectors. 
This product is called the inner product or dot product, and the dot product of two 
 vectors X = (x1, x2, …, xn) and Y = (y1, y2, …, yn) is denoted and defined by: 

 X Y x y x y x y( )1 1 2 2 n n•  = + + … +  

which is consistent with the definition of general matrix multiplication.
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Matrix addition and multiplication exhibit some of the properties of real arithmetic 
operations. For example, for matrices A, B, and C, the following properties hold: 

 

A + B = B + A
A + B  + C = A + (B + C)

A (B + C) = AB + AC
( )

(AAB C = A(BC))  

However, note that, in general, matrix multiplication is not commutative, so AB ≠ BA in 
general, and in fact these products may not even exist.

The transpose of an m × n matrix A is the n × m matrix AT obtained by interchanging 
the roles of the rows and columns in A. Thus, if A is the matrix shown earlier, then AT is 
the matrix whose elements have the same values as those in A, but arranged in the form

 

a a a
a a a

a a a

m

m

n n mn

11 21 1

12 22 2

1 2

�

� � �
�

…


















Reversing the roles twice simply yields the original matrix, so for any matrix A, (AT)T = A.
For example, the following two matrices are the transpose of each other:

 

3 2 4
7 1 5

3 7
2 1
4 5



























A property of matrix multiplication and transposition is that (AB)T = BT AT.
A square matrix is one for which m = n. The main diagonal of a square matrix A is the 

set of elements aij for which i = j, that is, a11, a22, …, ann. An n × n matrix A is symmetric 
about the main diagonal if every element aij is equal to the element aji. A square matrix A 
is triangular (or upper triangular) if all the elements below the main diagonal have value 
zero; that is, aij = 0 for all i > j. For example, the following matrix is upper triangular:

 

4 6 2 5
0 7 1 2
0 0 4 3
0 0 0 8



















A matrix is lower triangular if all the elements above the main diagonal have value zero.
The identity matrix I is an n × n matrix whose columns are the standard basis, and 

in which the i-th column contains the i-th unit vector. The identity matrix contains ones 
along the main diagonal (aii = 1 for all i) and zeros elsewhere (aij = 0  for all i ≠  j). This 
matrix has the property that AI = IA = A for any n × n real matrix A.
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The rank of a matrix A is the number of linearly independent rows (or columns) in A, 
and is denoted as rank (A). A square matrix An×n having rank n ( full rank) is called a non-
singular matrix.

A square matrix A may have an inverse matrix A–1 such that AA–1 = A–1A = I. Such an 
inverse exists if and only if rank (A) = n (or equivalently, if and only if A is non-singular), 
and in that case, the inverse A–1 is unique. The inverse of the inverse of a matrix A is the 
original matrix A; thus, (A–1)–1 = A. And if two matrices A and B have inverses A–1 and B–1, 
respectively, then 

 ( )AB B A1− − −= 1 1
 

A.3 Linear Equations

A set of m linear equations in n variables is expressed as 

 

a x a x a x b

a x a x a x b

a x a

11 1 12 2 1n n 1

21 1 22 2 2n n 2

m1 1 m2

+ +…+ =

+ +…+ =

+

 

 

  

xx a x b2 mn n m+…+ =   

The coefficients of the variables can be written as a matrix A, where 

 

A
a a a

a a a

n

m1 m mn

=
















…

…

11 12 1

2

   

 

The variables and right-hand sides of the equations can be written as column vectors, thus, 
X = (x1, x2, …, xn) and b = (b1, b2, …, bm). In this context, the matrix A can be viewed as an 
operation or transformation on the vector X, yielding the resulting vector b. This can be writ-
ten as AX = b, and has the same meaning as the set of linear equations depicted earlier.

A solution to this set of linear equations is any vector X that satisfies the equations 
AX = b. A unique solution to a set of m independent linear equations in n variables exists 
if m = n and if the inverse of A exists. If m > n, there may be no solution. And if m < n, 
there are infinitely many solutions.

Techniques for solving a system of linear equations may involve the use of so-called 
elementary row operations on the equations. The application of any of the following row 
operations yields an equivalent system of equations and may simplify the solution process: 

• Any two rows (equations) may be interchanged.
• Any row (equation) may be multiplied by a non-zero constant.
• Any row (equation) may be added to any other row (equation).
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When m = n, if it is possible to transform the matrix of coefficients A into a triangular 
matrix by performing elementary row operations, then the system can be solved easily. For 
example if the system of equations appears as
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then we know that amn · xn = bm, so we can easily find a value for xn. Using this, we can then 
solve for xn-1 in the next to the last equation, and so on until finally we have a value for x1.

An alternative approach to the solution process is to create an augmented matrix B con-
sisting of the coefficient matrix A with one additional column containing the elements bi. 
Then this new matrix B is an m row by (n + 1) column matrix, and each row of B represents 
one equation of the system of equations. Next apply the necessary elementary row opera-
tions to B that transform the original A portion of B into the identity matrix I. This will 
have the effect of causing the b portion of B to be transformed into a vector representing 
the solution to the system of equations.

A.4 Quadratic Forms

Let An×n be a symmetric matrix, and X be an n-element vector. The function f(X) defined as 

 f(X) = X AXT
 

is called a quadratic form. Since XT is of order 1 × n and A is n × n and X is n × 1, the 
product 
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exists and can be computed. Clearly, f(X) is a scalar value, and can be written as 

 
f(X) = a x xij i j

j

n

i 1

n

==
∑∑

1  

Thus, f(X) is a sum of quadratic terms, and hence the name quadratic form.
In this context, the matrix A has one of the following characteristics: 

Positive definite: If f(X) > 0 for all X ≠ 0
Positive semidefinite: If f(X) ≥ 0 for all X and there exists an X ≠ 0 for which f(X) = 0
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Negative definite: If f(X) < 0 for all X ≠ 0
Negative semidefinite: If f(X) ≤ 0 for all X and there exists an X ≠ 0 for which f(X) = 0
Indefinite: If none of the above
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Accumulated round-off error, 9
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Adjacent extreme points, 39
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Algorithm, 5
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Analytic solver platform, 379
Anchoring, 372–373
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Annealing schedule, 401, 403
AnyLogic software, 327
Aperiodic state, 263
Applications, network analysis, 142

cotton production, 143–144
DNA sequence, 142
multiprocessor network traffic scheduling, 

142–143
Arcs, 90
ARENA software package, 326–327, 330
Arrival and service patterns, queueing models

birth-and-death processes, 290, 290f
exponential distribution, 288–290, 289f

Artificial variables, 46
Assembly line loading, 330
Assignment problem, 109, 136, 164
Attributes, simulation model, 314
Automated manufacturing systems, 303
Automatic correction, 378

Average bed occupancy level, 300
Average case performance, algorithm, 7

B

Backtracking, 172
Backward arc, 90
Balancing rotor systems, 241
Balking behavior, queues, 286
Banana function, 244
Bang for buck, 186
Basic feasible solutions, 39
Basic solution, 39
Basic variables, 39
Bayes rule, 354
Beale’s method, 233
Best case performance, algorithm, 7
BFGS update formula, 229
Bid-line generator, 420–422
Big-M method, 47
Big-Oh notation, 7
Binary/Boolean constraints, 159
Binary integer programming problem, 159
Binding constraints, 44
Bin packing, 162–163
Bipartite graph, 90
Birth-and-death process model, 290, 290f
Boltzmann machine, 407
Boltzmann probability factor, 401, 402f
Bounding strategies, 174–175, 175f
Branch-and-bound, 165

active node, 169
basic, 169
bounding strategies, 174–175, 175f
branching strategies, 172–173, 173f
current incumbent solution, 165
fathomed, 166
impact of model formulation, 175–177, 177f
Knapsack, 169–171, 171f
method to commercial code, 171–177
real numbers representation, 177
separation rules, 175
subproblems separation, 167f
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Branch-and-bound tree, 168
Branching strategies, 172–173, 173f
Bucking, 204
Bulk queues, 286

C

Capacitated transshipment problem, 114–116
Capacity planning, 161
Capital budgeting problem, 159, 405, 405t
Cargo loading problem, 159
Catastrophic elements, 274
Certain Monetary Equivalent (CME), 360
Chain, 90
Chance fork, 351–352
Channels, 287
Chilean forestry industry, 204–205
Chosen variable, 41
Chromosome, 409–410
Churning behavior, 422
Class NP problems, 6
Class P problems, 6
Closed set of states, 261
CME (Certain Monetary Equivalent), 360
Coding simulation, 313
COIN-OR (Computational Infrastructure for 

Operations Research), 141, 238, 420
Collecting data, 324
Column-generation, 204
Combinatorial optimization problem, 

395–396, 401
Complementary slackness, 59, 60
Complete bipartite graph, 90, 91f
Complete ignorance, 344
Computational Infrastructure for Operations 

Research (COIN-OR), 10–14
Computer allocation problem, 127–130, 127t, 

128t, 129f
Concave function, 219, 220f
Concavity, 219–220, 222, 231
Conjunctive constraints, 417
Connected graph, 90
Constraint programming, 417
Constraint propagation, 418
Constraints, 23
Continuous-time stochastic process, 249–250
Conventional simulated annealing, 407
Convex function, 219, 220f
Convex hull, 179f
Convexity, 219–220, 222, 231
Convex region/set, 220–221
Cooling schedule, 401, 403

Cost efficiency/service quality in hospitals, 
300–302

Cover, 182
Cover inequality, 180–186
CPLEX, 201
CPM (Critical Path Method), 133
Crash completion time, 137–138
Crash cost, 137–138
Crashing, 66, 137
Crash limit, 138
Critical activities, 135, 136
Critical events, 136
CritiCall, province-wide system, 302
Critical path, 135
Critical Path Method (CPM), 133
Crossover process, 409–410, 425
Current incumbent, 165
Cut set/cut, 91
Cutting plane, 179
Cutting stock problems, 198
Cycle, 90
Cyclic path, 90

D

Dairy farming, Markov processes in, 275–276
Decision analysis, 341

decision-making process, 341–344, 370–378
decision trees, 350–358
game theory, 345–350
investment decisions and petroleum 

exploration risk, 383–385
minimizing costs in maritime industry, 

379–381
radioactive waste management, 383
refinery pricing under uncertainty, 

381–383
software for, 378–379
utility theory, 358–370

Decision fork, 350–352
Decision-making process, 4, 341–344

anchoring and adjustment, 372–373
availability, 372
dissonance reduction, 373
elements, 342
framing effect, 374–375
versus gambling, 359, 361f
irrational, 344
irrational human behavior, 377–378
probability, misconceptions, 370–371
psychology, 370–378
sunk cost fallacy, 376–377, 376f, 377f
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Decision problem, 362, 362f
Decision simulator, 378
Decision strategy, 352
Decision support system (DSS), 381

development and implementation, 380
in maritime industry, 379–381
operations, 381
uses, 380

DecisionTool Suite software, 379
Decision tree, 350–358, 351f

market survey, 353f
pessimistic estimation, 357f
survey information, 355f
uses, 358
utilities, 365f

Decision variables, 130, 342
Degeneracy, 50
Degenerate solution, 53–55
Degree of node, 90
Degrees of freedom, 39
Dependent elements, 274
DES (Discrete Event Simulation), 333
DFP method, 229
Dijkstra’s algorithm, 121
Dinic’s method, 97
Directed chain, 90
Directed graph, 90
Directed tree, 91f
Discrete Event Simulation (DES), 333
Discrete manufacturing systems, 302
Discrete simulation models, 313–314

event-driven models, 314–317, 316t
generating random events, 317–321, 

320f, 320t
Discrete-time stochastic process, 249–250
Disjunctive constraints, 417
Dissonance, 373
Dissonance reduction, 373
Dominance, 345
Down penalty, 174
DPL software, 379
DSS (decision support system), 381
Duality analysis, 56
Duality property, 57–60
Dual problem, 56
Dual Simplex method, 67
Dynamic memory allocation techniques, 

273–274, 274f
Dynamic programming, 125–126

decision variables, 130
hazardous waste disposal routes, 126f
minimum delay path, 127f

multi-stage decision making, 126–127
objective function, 130
principle of optimality, 130

E

Earliest time, 135
Edges/links/branches, 90
Efficient portfolio, 234–235
Einstein, A., 313
Ellipsoid method, 68
Employee scheduling problem, 159
EMV (expected monetary value), 351–352, 358
Encoding mechanism, 409
Entering variable, 41
Entities, simulation model, 314
Entrapment behavior, 377
Equality constraints, 229–230
Equilibration process, 402
Ergodic Markov chain, 263
Erlang, A. K., 285
Eurotunnel Folkestone terminal, simulation, 

331–332
Event-driven models, 314–317, 316t
Event in simulation, 314

chronological sequence, 317t
clock times, 316t
generating random, 317–321, 320f, 320t

Evolutionary distance, 142
EVPI (expected value of perfect information), 

356, 356f
Examination timetabling problem, 160
Excessive delay probability, 304–305
Expected monetary value (EMV), 351–352, 358
Expected project duration, 140
Expected recurrence time, 266
Expected time, 140
Expected value of perfect information (EVPI), 

356, 356f
Experimental design, 313
Exponential density function, 288
Exponential distribution, 288–290, 289f
Exponential service times, 290
Exponential-time algorithms, 6
Extreme points, 31, 39

F

Face/facet, 178
Feasible space/feasible region, 30
Federal Express (FedEx), 420–422
Feedback, 378
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FHEs (Flight Hardware Elements), 333
Fibonacci method, 225
FIFO (first-in, first-out), 287
Finite state Markov chain, 250
Finnish Air Force fleet maintenance, 328–329
First-in, first-out (FIFO), 287
First passage probability, 259–261
First passage time, 265–267
First recurrence time, 265
Fixed charge problem, 161
Flexible manufacturing systems, 303
FlexSim software, 327
Flight crew, 160
Flight Hardware Elements (FHEs), 333
Flight legs, 160
Flow, 91
Flow balancing equations, 292
Folding back, 352
Ford-Fulkerson labeling algorithm, 93
Forward arc, 90
Forward pass, 135–136
Framing effect, 368, 374–375
Frontline Solvers software, 238
Fundamental matrix, 269

G

GA (genetic algorithm), 399, 409–414
Gambler’s fallacy, 370
Game theory, 345

Hurwicz principle, 346–347
Laplace principle, 346
maximax strategy, 346
maximin strategy, 345–346
Savage minimax regret, 347–350

GAMS programming language, 13
Gasoline blending systems, 239–240
Gate, 351
GEM-FLO (Generic Simulation Environment 

for Modeling Future Launch 
Operations), 333

General Activity Simulation Program 
(GASP), 326

General constraints, initial solution, 46
artificial variables, 46–47
Big-M method, 47
infeasible origin, 50f

General integer programming problems, 159
Generalized assignment problem, 164–165, 

192–194
Generalized Reduced Gradient (GRG2), 236
General recursive method, 130–132, 131t
General solution method, 36

Generic Simulation Environment for 
Modeling Future Launch Operations 
(GEM-FLO), 333

Genetic algorithm (GA), 399, 409–414
ecosystem management using, 422–424
generation, 412t, 413t
initial population, 411t
mating pool, 411t, 412t, 413t

Geographic Information System (GIS), 141
Global maximum, 218–219
Global minimum, 218, 220
Global Positioning System (GPS), 141
GNU Octave programming language, 299
Golden section method, 225
Gomory fractional cut, 180
Google-OR Tools, 141, 202
GPS (Global Positioning System), 141
GPSS (General Purpose Simulation System), 326
Gradient method, 225–228
Gradient search procedure, 225
Grape processing, 73–74
Graph, 90, 90f
Graphical solution, linear programming model, 

30, 31f
definition, 30
extreme points, 31
multiple optimal solutions, 33–34, 33f
no feasible solution, 35–36, 36f
no optimal solution, 34–35, 35f
unbounded feasible region, 32f

Greedy algorithms, 116
Greedy heuristics, 397–398
GRG2 (Generalized Reduced Gradient), 236
Gurobi Optimization problem, 71, 238
Gurobi Optimizer, 202

H

Hard optimization problems, IP, 157
Hessian matrix, 222, 228, 237
Heuristic methods, 397

greedy heuristics, 397–398
local improvement, 398–400
simulated annealing, 399–406

Hungarian method, 109, 396–397
Hurwicz measure, 346–347
Hurwicz principle, 347

I

IBM CPLEX Optimization Studio, 141
IBM ILOG CPLEX Optimizer, 70, 201, 238
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IML (Interactive Matrix programming 
Language), 271

IMSL libraries, 238
IMSL software system, 12
Independent elements, 274
Inequality constraints, 229–231
Inflection point function, 221
INFORMS (Institute for Operations Research 

and the Management Sciences), 2
Ingersoll Cutting Tool Company, 304
Institute for Operations Research and the 

Management Sciences (INFORMS), 2
Insufficient reason, principle, 346
Integer and nonlinear models, 30
Integer polytope, 178
Integer programming (IP), 157–158, 158f

applications, 202–206
cutting planes and facets, 177–180
problems, 67
software, 201–202

Integrality gap, 192
Interior point method, 68
Intermediate term memory, 415
Inverse transform method, 318–319, 319f
IP (integer programming), 157–158, 158f
Irrational human behavior, 377–378
Irreducible Markov chain, 261
Isolated node, 90
Iterative algorithm, 40

J

Jockeying behavior, queues, 286
Jumptracking strategy, 172–173
Just-in-time scheduling, 303

K

Karmarkar, N., 68
Karush–Kuhn–Tucker conditions, 230–232
Karzanov’s method, 97
Khachiyan’s ellipsoid method, 67, 68
Knapsack problem, 162, 395, 410, 415
Kruskal’s algorithm, 117, 118f

L

Lagrange, J. -L., 229
Lagrange multipliers, 229–230
Lagrangian, 187
Lagrangian relaxation, 187

basic algorithm, 194
column generation, 197–201

customer allocation problem, 194–197
example, 188–191
generalized assignment problem, 

192–194
integrality gap, 191–192
relaxing integer programming constraints, 

187–188
single sourcing constraint, 194

Laplace principle, 346, 348
Lasdon and Waren algorithm, 236
Last In, First Out (LIFO) strategy, 172
Latest time, 136
Leaving variable, 42
Lemke’s algorithm, 233
LIFO (Last In, First Out) strategy, 172
LINDO (Linear Interactive and Discrete 

Optimizer), 71
LINDO Integrated Modeling Language, 201
LINDO programming language, 12–13
Linear equations, 436–437
Linear Interactive and Discrete Optimizer 

(LINDO), 71
Linear programming (LP), 158

application, 71–74
duality and sensitivity analysis, 56–63
general constraints, initial solution, 

46–50
general solution method, 36
graphical solution, 30–36
model, 23–24, 39
problem formulation, 24–30
problems, 218
revised simplex, 63–64
rule of thumb, 66
simplex method, 36–46
software, 64–71
standard form, 36–38
tableau information, 50–55

LINGO software, 238
Liquefied petroleum gas (LPG), 205
Little’s formula, 292, 295
Local exchange heuristic, 399
Local improvement heuristic, 398–400
Local maximum, 219
Local minimum, 221
Local optimum, necessary/sufficient 

conditions, 221–222
Local search procedure, 398, 418
Local versus global minima, 399, 400f
Longest path, 135
Lottery, axioms, 359–360, 360f
LP (linear programming), 158
LPG (liquefied petroleum gas), 205
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M

Maine forest service, 71–72
Management science, 1
Marginal worth, 55
Markov, A. A., 249
Markov chain, 250
Markov decision process, 275
Markov processes, 249–250

absorbing chains, 267–271, 268f, 269f
dairy farming, 275–276
dynamic memory allocation, 273–274, 274f
expected first passage times, 265–267
first passage probabilities, 259–261
for manufacturing production capability, 

274–275
properties, 251
software, 271–272
state probabilities, 256–259
states, properties, 261–263
steady-state analysis, 263–265
transitions state, 250–256
water reservoir operations, 272–273

Markov property, 250
Mascopt (Mascotte Optimization), 141
Mathematical models, 3
Mathematical optimization, 3
Mathematical programming language (MPL), 3
MATLAB optimization toolbox, 238
MATLAB software, 271–272, 299, 419–420
Matrices and matrix operations, 434–436
Max-flow min-cut theorem, 94
Maximax strategy, 346
Maximin strategy, 345–346
Maximization problem, 31

extreme points, 31
graphical solution, 31f
optimal solution, 33
unbounded feasible region, 32f

Maximum flow problem, 92–93
algorithm, 93–96
capacity, 92
data communications network, 92f
example, 95f
extension, 96–97
flow augmenting path, 93
max-flow min-cut theorem, 94
multiple sinks and sources, 96, 96f

Metaheuristics, 399, 418–419
approaches, 418–419
software for, 419–420
TS, 414–417, 416t

Minimal cover, 183

Minimum cost method, 101–103
Minimum cost network flow problems, 97, 114

assignment problem, 109–113
capacitated transshipment problem, 114–116
Kilter algorithm, 115
method, 101–103, 102t

Minimum row cost method, 103
Minimum spanning tree problem, 116–118
MINOS software, 70, 237
MIPIII Mixed-Integer Optimizer, 202
Mixed integer programming (MIP) problem, 159

capacity planning, 161
fixed charge problem, 161
production planning, 160
warehouse location, 160–161

M/M/s queueing model, 301–302
Model, 3
MODSIM II object oriented language, 332
Monte Carlo simulation, 379
MPL (mathematical programming language), 3
MPL programming language, 12
Multiple optimal solutions, 30, 219f
Multiple sinks/sources, 96
Multivariable search, 225–228, 227f
Mutations, 410, 424

N

Negative exponential density function, 288
NEOS (Network-Enabled Optimization 

System), 13
NEOS Server, 238
Net present value (NPV), 382
Network, 91

maximum flow problem, 92–97
minimum spanning tree, 116–118

Network analysis, 89
applications, 142–144
software, 141

Network connectivity, 116
Network-Enabled Optimization System 

(NEOS), 13
Network queues, 287
Newton’s method, 228–229
Node-arc incidence matrix, 115
Nodes, 90
Non-basic variables, 39
Nonbinding constraint, 44
Nonlinear optimization, 217–218

balancing rotor systems, 241
constrained optimization, 229–236
gasoline blending systems, 239–240
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notation and concepts, 218–223, 222f
portfolio construction, 240–241
single maximum point, 218, 219f
software for, 236–239
unconstrained optimization, 223–229

Nonlinear programming problems, 69, 218, 221
Northwest corner rule, 99–101, 100t
NP-complete, 6
NP-hard, 6
NPSOL software, 237

O

Objective function, 23
O-MATRIX scripting language, 272
One-dimensional search, 223–225, 224f
One-step transition probabilities, 251, 262
Operations research, 1

algorithm efficiency and problem 
complexity, 6–9

applications, 14–18
food and agribusiness, 14–15
humanitarian relief operations, 15–17
mathematical models, 3–5
mining industry, 17–18
optimality and practicality, 9–10
origins and applications, 1–2
software, 10–14

Operations Research Society of America 
(ORSA), 2

Optimal feasible solution, 30
Optimal solution, 30
ORSA (Operations Research Society of 

America), 2
Outcomes, 342

conflicting criteria, 343
numeric, 343
verbal descriptions, 342–343

P

Palisade Corporation, 419
Parallel annealing, 407, 408f
Path, 90
Payoff matrix, 342
Periodic state, 262–263, 263f
PERT (Program Evaluation and Review 

Technique), 133
Petrobras company, 380
Petroleum exploration industry, 384
Phillips Exploration, 384–385
Piecewise linear approximation, 320f, 320t

Pivot column, 42
Pivot element, 42
Pivot operation, 41–44
Pivot row, 42
Poisson arrivals, 290
Poisson distribution, 289–290
Policy iteration method, 143
Polynomial-time algorithms, 6
Polytope, 178
Portfolio construction, 240–241
Portfolio selection, 234–236
Portfolio selection problem, 159
Postoptimality analysis, 60

constraint/changing constraint 
coefficients, 63

new variable, 62–63
objective function coefficient range 

analysis, 61
right-hand-side ranging, 61–62

Pratt and Whitney company, 303
Precision tree, 379
Predecessor node, 90
Preference function, 361
Primal linear programming problem, 56
Primal problem, 57
Prim’s algorithm, 117, 117f
Probability

approaches, 343–344
misconceptions, 370–371
tree, 382

Problem formulation phase, 312–313
Problem size, 6
Product form, 64
Production

phase, 313
planning, MIP, 160
scheduling environment, 160
scheduling problem, 217

Program Evaluation and Review Technique 
(PERT), 133

Project management, 132–140
Propane bottling plants, 205–206
Proportionality constant, 7
Pseudorandom numbers, 318

Q

Quadratic forms, 437–438
Quadratic programming model, 231–236
Quasi-Newton methods, 229, 238
Queue, 285
Queuecomputer, 300
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Queue discipline, 287
Queueing analysts, 300
Queueing models, 285

analysis, 291–299
arrival and service patterns, 288–290
characteristics, 287
cost efficiency and service quality, 300–302
elements, 285–288
in manufacturing, 302–304
notation and definitions, 291–292
nurse staffing on, 304–305
practical limits, 298–299
software for, 299–300
steady state performance measures, 292–298

Queueing system, 314
Queue length, 323, 323f

R

Radioactive waste management, 383
RAND Corporation, 326
Random fit allocation strategy, 274
Range analysis, 61
Ranging procedures, 66
Rate diagram

birth-and-death process, 290f
multiple servers, 298f

RCW (red-cockaded woodpecker) model, 423
Reachable state, 261
Recurrence time, 265
Recurrent state, 262, 262f
Red-cockaded woodpecker (RCW) model, 423
Reduced gradient method, 236
Redundant questions, 378
Refinery planners, 239–240
Re-inversion, 65
Relaxation integer problem, 187
Reneging behavior, queues, 286
Reusable Launch Vehicle (RLV), 332–333
Revised simplex method, 63–64
Right-hand-side ranging, 61–62
Risk, 343–344
Risk averse (RA), 366–367
@RISK component, 379
Risk, portfolio, 234–235
Risk seeking (RS), 366–367
RLV (Reusable Launch Vehicle), 332–333
Robust queueing system, 305
Rosenbrock’s function, 244
Rotation, 160
Roulette wheel model, 410, 411f
Round-off error, 9
Row linearity property, 348

R package, 300
RS (risk seeking), 366–367
R software package, 272

S

SAS, 71
SAS/IML system, 271
SAS Institute, Inc., 238
SAS OPTMODEL, 202
SAS/OR OPTMODEL programming language, 13
SAS/OR OPTNET, 141
SAS/OR software, 238, 379
SAS/OR systems, 202
SAS Simulation Studio, 327
SAS software, 327
Savage minimax regret, 347–350
SDK (software developer kit), 238
Semiconductor manufacturing process, 

simulation, 329–331
Sensitivity analysis, 56

duality, 56–60
postoptimality analysis, 60–63

Separation rules, 175
Server utilization factor, 323–324, 324f
Service times, 287
Set covering problem, 163
Set packing problem, 164
Set partitioning problem, 198
Shadow prices, 55
Shift scheduling problem, 198
Shortest network problem, 118–119, 118f
Shortest path problem, 119–120

acyclic network, 120–121, 120f
Dijkstra’s algorithm, 121–123, 122f

SIMAN command language, 326, 330
SIMple-SCRIPT (SIMSCRIPT), 326
Simplex method, 30, 103–108

Big-M method, 47
general solution method, 39–45
iterative algorithm, 40
linear systems solutions, 38–39
shadow prices, 55
standard form, 36–38
two phase method, 48–50

Simplex on graph algorithm, 115
Simplex tableau, 41, 45f

adjacent extreme points, 51
degenerate solution, 53–55, 53f
information, 50
multiple optimal solutions, 51
no optimal solution, 51–53
unbounded solution, 51–53
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SIMSCRIPT (SIMple-SCRIPT), 326
Simulated annealing, 399–406

algorithm, 404f
conventional, 407
drawbacks, 421
FedEx flight management using, 420–422
iterations, 406t

Simulation, 285, 311
advantages, 312
clock variable, 315
design, 324–325
efficiency, 325
Eurotunnel terminals, 331–332
event clock times, 316t
Finnish Air Force fleet maintenance, 328–329
models, 313
for NASA’s Space Launch Vehicles 

Operations, 332–333
observations, 321–325
purposes and applications, 311–313
semiconductor manufacturing line, 329–331
software for, 325–327
statistics, 321–324

Simulation–optimization, 313
Single/multiple server systems, 297
Single sourcing, 194
Sink, 91
Slack variables, 38
Software

for decision analysis, 378–379
IP, 201–202
linear programming model, 64–71
for Markov processes, 271–272
for nonlinear optimization problems, 236–237
operations research, 10–14
for queueing models, 299–300
for simulation, 325–327

Software developer kit (SDK), 238
Solid waste management, IP, 202–204
Solvable problems, 5
Solvers, 11
Spanning tree problem, 116–118
Sparse matrix, 66
Special Ordered Set (SOS) constraints, 181
Stable marriage problem, 113
Standard form, 36
State, 250
State probability, 256–259
States, 126, 130
States of nature, 341
State transitions, 250–256
State transitions diagram, 252
State variables, 341

Stationarity property, 250–251
Steady-state analysis, 263–265, 275
Steady state performance measures, 292–298
Steady-state probability vector, 264
Steepest ascent process, 226
Steiner tree problem, 118–119, 119f
Stochastic process, 249–250
Sub-sequence reversal, 399f
Sub-tour, 162
Successor node, 90
Sudoku puzzle game, 417–418, 417f
Sufficient conditions, 221
Sunk cost fallacy, 376–377, 376f, 377f
Surplus variables, 38
Swarm intelligence algorithms, 419
System capacity, 287
System state, 314
Systolic architectures, 142

T

Tabu list (TL), 415
Tabu search (TS), 399, 414–417, 416t
Temporal constraints, 417
The Institute of Management Science (TIMS), 2
Throughput analysis, 330
Timber harvest planning, 204–205
Time advance mechanism, 315, 328
TIMS (The Institute of Management 

Science), 2
TL (tabu list), 415
Toll, 351
TransCAD, 141
Transient state, 261, 262f
Transition, 250
Transition diagram, 252, 253f, 262f
Transition probability, 250

matrix, 250, 255t–256t, 275
one-step, 251, 262

Transition tree, 252–253, 253f
Transportation problem, 97–99, 98f, 99t

assignment problem, 109–113
minimum cost network flow problems, 97–99
simplex method, 103–108, 104t, 105t, 106f, 

107t, 108f
stable matching, 113–114

Traveling salesman problem (TSP), 161–162, 
396–398, 398t

Tree, 91
TreePlan software package, 379
TS (tabu search), 399, 414–417, 416t
TSP (traveling salesman problem), 161–162, 

396–398, 398t
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Turing, A., 5
Turnaround time, 295, 329
Two phase method, 48–50

U

Unbounded solution, 35, 50
Uncertainty, 344

refinery pricing, 381–383
Unconstrained optimization, 217, 223

multivariable search, 225–228
Newton’s method, 228–229
one-dimensional search, 223–225
quasi-Newton methods, 229

Undirected graph, 90
Undirected tree, 91f
Unrestricted strategy, 172–173
Unsolvable/undecidable problems, 5
Unstable matching, 114
Up penalty, 174
Upper bound constraints, 65
Utility curve, 364

shape, 366–370
with target level, 367f
zero-illusion, 368f

Utility function, 361–366
Utility theory, 358–359

assessment, 364f
axioms, 359–361
curve. See Utility curve
functions, 361–366, 364f
value assessment techniques, 363f

V

Validation test, 313
Vector probability, 256, 264

Vectors, 433–434
Vehicle routing problem, 160, 198, 199f, 425
Verification, simulation, 313
Vertices/points/junctions, 90
Vitrificastion process, 383

W

Wafer fabrication process, 330
Waiting lines (queues), 285–286
Warehouse location, 160–161
Water reservoir operations, 272–273
Wheels America, routing and meals on, 

424–426
Wolfe’s algorithm, 232
Word length, 9
Work schedule, 160
Worst case performance, algorithm, 7

Y

Yangtze River case, 272–273

Z

Zero illusion problem, 368
Zero–one (0–1) problems, 159–160

assignment problem, 164–165
bin packing, 162–163
generalized assignment problem, 164–165
knapsack problem, 162–163
mathematical formulations, 161–165
set covering problem, 163
set packing problem, 164
set partitioning problem, 163
TSP, 161–162
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