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Preface

s ince the pioneering work of Harry Markowitz in the 1950s, mathemati-
cal tools drawing from the fields of standard and stochastic calculus, set
theory, probability theory, stochastic processes, matrix algebra, optimization
theory, and differential equations have increasingly made their way into fi-
nance. Some of these tools have been used in the development of financial
theory, such as asset pricing theory and option pricing theory, as well as like
theories in the practice of asset management, risk management, and financial
modeling.

Different areas of finance call for different mathematics. For example,
asset management, also referred to as investment management and money
management, is primarily concerned with understanding hard facts about fi-
nancial processes. Ultimately, the performance of an asset manager is linked
to an understanding of risk and return. This implies the ability to extract
information from time series data that are highly noisy and appear nearly
random. Mathematical models must be simple, but with a deep economic
meaning. In other areas, the complexity of instruments is the key driver be-
hind the growing use of sophisticated mathematics in finance. There is the
need to understand how relatively simple assumptions on the probabilis-
tic behavior of basic quantities translate into the potentially very complex
probabilistic behavior of financial products. Examples of such products in-
clude option-type financial derivatives (such as options, swaptions, caps, and
floors), credit derivatives, bonds with embedded option-like payoffs (such
as callable bonds and convertible bonds), structured notes, and mortgage-
backed securities.

One might question whether all this mathematics is justified in finance.
The field of finance is generally considered much less accurate and viable
than the physical sciences. Sophisticated mathematical models of financial
markets and market agents have been developed but their accuracy is ques-
tionable to the point that the recent global financial crisis is often blamed
on unwarranted faith on faulty mathematical models. However, we believe
that the mathematical handling of finance is reasonably successful and mod-
els are not to be blamed for this crisis. Finance does not study laws of nature
but complex human artifacts—the financial markets—that are designed to
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be largely uncertain. We could make financial markets less uncertain and,
thereby, mathematical models more faithful by introducing more rules and
collecting more data. Collectively, we have decided not to do so and, there-
fore, models can only be moderately accurate. Still, they offer a valuable
design tool to engineer our financial systems. Nevertheless, the mathemat-
ics of finance cannot be that of physics. It is the mathematics of learning
and complexity, similar to the mathematics used in studying biological and
ecological systems.

In 1960, the physicist Eugene Wigner, recipient of the 1962 Nobel Prize
in Physics, wrote his now famous paper “The Unreasonable Effectiveness
of Mathematics in the Natural Sciences.” Wigner argued that the success of
mathematics in describing natural phenomena is so extraordinary that it is
in itself a phenomenon that needs explanation.! Mathematics in finance is
reasonably effective and the reasons why it is reasonably effective deserve
an explanation. Recently, the world went through the worst financial and
economic crisis since the Great Depression. Many have pointed their fin-
gers at the growing use of mathematics in finance and the resulting math-
ematical models. We would argue that mathematics does not have much
to do with that crisis. In a nutshell, we believe that mathematics is rea-
sonably effective in finance because we apply it to study large engineered
artifacts—financial markets—that have been designed to have a lot of free-
dom. Modern financial systems are designed to be relatively unpredictable
and uncontrolled in order to leave possibilities of changes and innovations.
The level of unpredictability and control is different in different systems.
Some systems are prone to crises. Mathematics does a reasonably good job
to describe these systems. But the mathematics involved is not the same as
that of physics. It is the mathematics of learning and complexity. Mathemat-
ics can be perceived as ineffective in finance only if we insist on comparing it
with physics.

There are differences between finance and the physical sciences. In the
three centuries following the publication of Newton’s Principia in 1687,
physics has developed into an axiomatic theory. Physical theories are ax-
iomatic in the sense that that the entire theory can be derived through math-
ematical deduction from a small number of fundamental laws. Physics is
not yet completely unified but the different disciplines that make the body
of physics are axiomatic. Even more striking is the fact that physical phe-
nomena can be approximately represented by computational structures, so
that physical reality can be mimicked by a computer program.

'E. Wigner, “The Unreasonable Effectiveness of Mathematics in the Natural Sci-
ences,” Communications in Pure and Applied Mathematics 13 (1960): 1-14.
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Though it is clear that finance has made progress and will make addi-
tional progress only by adopting the scientific method of empirical science,
it should be clear that there are significant differences between finance and
physics. We can identify, albeit with some level of arbitrariness, four major
differences between finance and the physical sciences:

1. Finance must study a global financial system without the possibility of
studying simplified subsystems.

Finance is an empirical science, but the ability to conduct experiments in
finance is limited when compared with the experimental facilities built
in the physical sciences.

Finance does not study laws of nature, but it studies a human artifact
that is subject to changes due to human decisions.

Finance systems are self-reflecting in the sense that the knowledge accu-
mulated on the system changes the system itself.

2

.
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None of the above four points is in itself an objection to the scientific
study of finance as a mathematical science. However, it should be clear that
the methods of scientific investigations and the findings of finance might be
conceptually different from those of the physical sciences. It would probably
be a mistake to expect in finance the same type of generalized axiomatic laws
that we find in physics.

One of the major sources of the progress made by physics is due to the
ability to isolate elementary subsystems, to come out with laws that apply to
these subsystems, and then to recover macroscopic laws by a mathematical
process. For example, the study of mechanics was greatly simplified by the
study of the material point, a subsystem without structure identified by a
small number of continuous variables. After identifying the laws that govern
the motion of a material point, the motion of any physical body can be
recovered by a process of mathematical integration. Simplifications of this
type allow one to both simplify the mathematics and to perform empirical
tests in a simplified environment.

In financial economics, however, we cannot study idealized subsystems
because we cannot identify subsystems with a simplified behavior. This is
not to say that attempts have not been made. Drawing on the principles of
microeconomics, financial economics attempts to study the behavior of in-
dividuals as the elementary units of the financial system. The real problem,
however, is that the study of individuals as economic “atoms” cannot pro-
duce simple laws because it is the study of a human financial decision-making
process, which is very complex in itself. In addition, we cannot perform ex-
periments. Instead, we have to rely on how the only financial system we
know develops in itself.
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Note that the possibility to study elementary subsystems does not co-
incide with the existence of fundamental laws. For example, consider the
Schrodinger equation of quantum mechanics formulated in 1926 by the
physicist Erwin Schrodinger. The equation is a partial differential equation
describing how in some physical system a quantum state evolves over time.
Although the Schrodinger equation is indeed a fundamental law, it applies to
any system and not only to microscopic entities. Fundamental laws are not
necessarily microscopic laws. We might be able to find fundamental laws of
finance even if we are unable to isolate elementary subsystems.

There is a strong connection between fundamental laws and the ability
to make experiments. By their nature, fundamental laws are very general
and can be applied, albeit after difficult mathematical manipulations, to any
phenomena. Therefore, after discovering a fundamental law it is generally
possible to design experiments specific to test that same law. In many in-
stances in the history of physics, crucial experiments have suggested rejec-
tion of a theory in favor of a new competing theory. However, in finance the
ability to conduct experiments is limited though important research in this
field has been carried on. In the 1970s, Daniel Kahneman and Amos Tversky
performed groundbreaking research on cognitive biases in decision making.
Vernon Smith studied different types of market organization, in particular
auctions. This type of research has changed the perspective of finance as an
empirical science. Still, we cannot make a close parallel between experimen-
tal finance and experimental physics where we can design experiments to
decide between theories.

Perhaps the deepest difference between finance and physics is the fact
that finance studies a human artifact which is subject to change in function
of human decisions. Physics aims at discovering fundamental physical laws
while finance determines laws that apply to a specific artifact. The level of
generality of finance is intrinsically lower than that of physics. In addition,
financial systems tend to change in function of the knowledge accumulated
so that the object of inquiry is not stable.

As a result of all the above, it is unlikely that the kind of mathemat-
ics used in physics is appropriate to the study of financial theories. For ex-
ample, we cannot expect to find any simple law that might be expressed
with a closed formula. Hence, empirical testing cannot be done by compar-
ing the results of closed-form solutions with experiments but more likely
by comparing the results of long calculations. Thus the mathematical de-
scription of financial systems was delayed until researchers in finance had
high-performance computers to perform the requisite large number of cal-
culations. Nor can we expect a great level of accuracy in our descriptions
of financial phenomena. If we want to compare finance to the natural sci-
ences, we have to compare our knowledge of finance with our knowledge of
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the laws that govern macrosystems. While physicists have been able to de-
termine extremely precise laws that govern subsystems such as atoms, their
ability to predict macroscopic phenomena such as earthquakes or weather
remains quite limited. Parallels between finance and the natural sciences are
to be found more in the theory of complex systems than in fundamental
physics.

In this book, special emphasis has been put on describing concepts
and mathematical techniques, leaving aside lengthy demonstrations, which,
while the substance of mathematics, are of limited interest to the practitioner
and student of financial economics. From the practitioner’s point of view,
what is important is to have a firm grasp of the concepts and techniques so
as to understand the appropriate application. There is no prerequisite math-
ematical knowledge for reading this book: all mathematical concepts used in
the book are explained, starting from ordinary calculus and matrix algebra.
It is, however, a demanding book given the breadth and depth of concepts
covered. Each chapter begins with a brief description of how the tool it cov-
ers is used in finance, which is then followed by the learning objectives for
the chapter. Each chapter concludes with its key points.

In writing this book, special attention was given to bridging the gap be-
tween the intuition of the practitioner and academic mathematical analysis.
Often there are simple compelling reasons for adopting sophisticated con-
cepts and techniques that are obscured by mathematical details. That said,
whenever possible, we tried to give the reader an understanding of the rea-
soning behind these concepts. The book has many examples of how quanti-
tative analysis is used in the practice of asset management.

SERGIO M. FOCARDI
FrANK ]J. FABOZZ1
TuraN G. BALI
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1

Basic Concepts

Sets, Functions, and Variables

In mathematics, sets, functions, and variables are three fundamental
concepts. First, a set is a well-defined collection of objects. A set is
a gathering together into a whole of definite, distinct objects of our
perception, which are called elements of the set. Sets are one of the
most fundamental concepts in mathematics. Set theory is seen as the
foundation from which virtually all of mathematics can be derived.
For example, structures in abstract algebra, such as groups, fields, and
rings, are sets closed under one or more operations. One of the main
applications of set theory is constructing relations. Second, a function
is a relation between a set of inputs and a set of permissible outputs
with the property that each input is related to exactly one output. Func-
tions are the central objects of investigation in most fields of modern
mathematics. There are many ways to describe or represent a func-
tion. Some functions may be defined by a formula or algorithm that
tells how to compute the output for a given input. Others are given
by a picture, called the graph of the function. A function can be de-
scribed through its relationship with other functions, for example, as
an inverse function or as a solution of a differential equation. Finally,
a variable is a value that may change within the scope of a given prob-
lem or set of operations. In contrast, a constant is a value that remains
unchanged, though often unknown or undetermined. Variables are fur-
ther distinguished as being either a dependent variable or an indepen-
dent variable. Independent variables are regarded as inputs to a sys-
tem and may take on different values freely. Dependent variables are
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those values that change as a consequence of changes in other values in
the system.

The concepts of sets, functions, and variables are fundamental to
many areas of finance and its applications. Starting with the mean-
variance portfolio theory of Harry Markowitz in 1952, then the cap-
ital asset pricing model of William Sharpe in 1964, the option pric-
ing model of Fischer Black and Myron Scholes in 1973, and the more
recent developments in financial econometrics, financial risk manage-
ment and asset pricing, financial economists constantly use the con-
cepts of sets, functions, and variables. In this chapter we discuss these
concepts.

What you will learn after reading this chapter:

The notion of sets and set operations

How to define empty sets, union of sets, and intersection of sets.
The elementary properties of sets.

How to describe the dynamics of quantitative phenomena.

The concepts of distance and density of points.

How to define and use functions and variables.

INTRODUCTION

In this chapter we discuss three basic concepts used throughout this book:
sets, functions, and variables. These concepts are used in financial eco-
nomics, financial modeling, and financial econometrics.

SETS AND SET OPERATIONS

The basic concept in calculus and in probability theory is that of a set. A
set is a collection of objects called elements. The notions of both elements
and set should be considered primitive. Following a common convention,
let’s denote sets with capital Latin or Greek letters: A,B,C, Q...and ele-
ments with small Latin or Greek letters: a,b, w. Let’s then consider collections



Basic Concepts 3

of sets. In this context, a set is regarded as an element at a higher level of
aggregation. In some instances, it might be useful to use different alphabets
to distinguish between sets and collections of sets.!

Proper Subsets

An element a of a set A is said to belong to the set A written as a € A. If
every element that belongs to a set A also belongs to a set B, we say that A
is contained in B and write: ACB. We will distinguish whether A is a proper
subset of B (i.e., whether there is at least one element that belongs to B but
not to A) or if the two sets might eventually coincide. In the latter case we
write A C B.

In the United States there are indexes that are constructed based on
the price of a subset of common stocks from the universe of all com-
mon stock in the country. There are three types of common stock (equity)
indexes:

1. Produced by stock exchanges based on all stocks traded on the particular
exchanges (the most well known being the New York Stock Exchange
Composite Index).

2. Produced by organizations that subjectively select the stocks included in
the index (the most popular being the Standard & Poor’s 500).

3. Produced by organizations where the selection process is based on an
objective measure such as market capitalization.

The Russell equity indexes, produced by Frank Russell Company, are
examples of the third type of index. The Russell 3000 Index includes the
3,000 largest U.S. companies based on total market capitalization. It repre-
sents approximately 98% of the investable U.S. equity market. The Russell
1000 Index includes 1,000 of the largest companies in the Russell 3000 In-
dex while the Russell 2000 Index includes the 2,000 smallest companies in
the Russell 3000 Index. The Russell Top 200 Index includes the 200 largest
companies in the Russell 1000 Index and the Russell Midcap Index includes
the 800 smallest companies in the Russell 1000 Index. None of the indexes
include non-U.S. common stocks.

In this book we consider only the elementary parts of set theory which is generally
referred to as naive set theory. This is what is needed to understand the mathematics
of calculus. However, set theory has evolved into a separate mathematical discipline
which deals with the logical foundations of mathematics.
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Let us introduce the notation:

A = all companies in the United States that have issued common
stock

I3000 = companies included in the Russell 3000 Index

L1000 = companies included in the Russell 1000 Index

Ir000 = companies included in the Russell 2000 Index
ITop200 = companies included in the Russell Top 200 Index
Intideap = companies included in the Russell Midcap 200 Index

We can then write the following:

I5000 CA (every company that is contained in the
Russell 3000 Index is contained in the set of
all companies in the United States that have
issued common stock)

L1000 Cl3000 (the largest 1,000 companies contained in
the Russell 1000 Index are contained in the
Russell 3000 Index)

Iideap € T1000 (the 800 smallest companies in the Russell
Midcap Index are contained in the Russell
1000 Index)

Itop200 C T1o00 C I3000 C A

Invideap € Th000 € I3000 C A

Throughout this book we will make use of the convenient logic symbols
V and 3 that mean respectively, “for any element” and “an element exists
such that.” We will also use the symbol = that means “implies.” For in-
stance, if A is a set of real numbers and a € A, the notation Va: a < x means
“for any number a smaller than x” and 3a: a < x means “there exists a
number g smaller than x.”

Empty Sets

Given a subset B of a set A, the complement of B with respect to A written
as BC is formed by all elements of A that do not belong to B. It is useful to
consider sets that do not contain any elements called empty sets. The empty
set is usually denoted by #. For example, stocks with negative prices form
an empty set.
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Union of Sets

Given two sets A and B, their union is formed by all elements that belong to
either A or B. This is written as C = A U B. For example,

L1000 U 000 = 13000 (the union of the companies contained in the
Russell 1000 Index and the Russell 2000 Index
is the set of all companies contained in the
Russell 3000 Index)

Intideap U Itop200 = T1000  (the union of the companies contained in the
Russell Midcap Index and the Russell Top 200
Index is the set of all companies contained in the
Russell 1000 Index)

Let I ong lived be those stocks that existed in the last 30 years.

Intersection of Sets

Given two sets A and B, their intersection is formed by all elements that
belong to both A and B. This is written as C = A N B. For example, let

Isscp = companies included in the S&P 500 Index

The S&P 500 is a stock market index that includes 500 widely held common
stocks representing about 77% of the New York Stock Exchange market
capitalization. (Market capitalization for a company is the product of the
market value of a share and the number of shares outstanding.) Call It ong lived
those stocks that existed in the last 30 years. Then

Isgep N Iong lived = C (the stocks contained in the S&P 500 Index that

. existed for the last 30 years)
We can also write:

T1000 N Tro00 = ¥ (companies included in both the Russell 2000 and
the Russell 1000 Index is the empty set since there
are no companies that are in both indexes)

Elementary Properties of Sets

Suppose that the set 2 includes all elements that we are presently considering
(i.e., that it is the total set). Three elementary properties of sets are given
below:

Property 1. The complement of the total set is the empty set and the
complement of the empty set is the total set:

QC =0, 0“=Q



6 MATHEMATICAL METHODS FOR FINANCE

Property 2. If A,B,C are subsets of , then the distribution properties
of union and intersection hold:
AU(BNC)=(AUB)N(AUC)
AN(BUC)=(ANB)U(ANC)

Property 3. The complement of the union is the intersection of the com-
plements and the complement of the intersection is the union of the
complements:

(BUC)¢ = B“nc®
(BNC)¢ = B“uUcC*

DISTANCES AND QUANTITIES

Calculus describes the dynamics of quantitative phenomena. This calls for
equipping sets with a metric that defines distances between elements. Though
many results of calculus can be derived in abstract metric spaces, standard
calculus deals with sets of n-tuples of real numbers. In a quantitative frame-
work, real numbers represent the result of observations (or measurements)
in a simple and natural way.

An n-tuple, also called an #-dimensional vector, includes 7 components: (a1,
a,...,a,). The set of all n-tuples of real numbers is denoted by R”. The R
stands for real numbers.

For example, suppose the monthly rates of return on a hedge fund port-
folio in 2011 are as shown in Table 1.1 with the actual return for the S&P
500 (the benchmark index for the hedge fund portfolio manager).>

Then the monthly returns, 7,0r, for the hedge fund portfolio can be writ-
ten as a 12-tuple and has the following 12 components:

| 0.41%,1.23%,0.06%,1.48%, —1.20%, —1.18%
"ot =10.23%, —3.21%, —3.89%, 2.67%, —1.29%, —0.43%

2The monthly rate of return on the S&P 500 is computed as follows:

Dividends paid on all the = Change in the index value
stock in the index for the month

Value of the index at the beginning of the period
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TABLE 1.1 Monthly Returns for the Hedge Fund
Composite and S&P 500 Indexes

Hedge Fund
Month Portfolio S&P 500
January 0.41% 2.26%
February 1.23% 3.20%
March 0.06% —0.10%
April 1.48% 2.85%
May —-1.20% —1.35%
June -1.18% -1.83%
July 0.23% —2.15%
August —-3.21% —-5.68%
September —3.89% —7.18%
October 2.67% 10.77%
November -1.29% —-0.51%
December —0.43% 0.85%

Similarly, the return rsgp on the S&P 500 can be expressed as a 12-tuple
as follows:

reen — | 2:26%.3.20%, ~0.10%. 2.85%, —1.35%, ~1.83%
SEP =) 15%, —5.68%, —7.18%,10.77%, —0.51%, 0.85%

One can perform standard operations on #z-tuples. For example, con-
sider the hedge fund portfolio returns in the two 12-tuples. The 12-tuple
that expresses the deviation of the hedge fund portfolio’s performance from
the benchmark S&P 500 index is computed by subtracting from each com-
ponent of the return 12-tuple from the corresponding return on the S&P
500. That is,

Tport — TS&P
_[0.41%,1.23%,0.06%, 1.48%, —1.20%, —1.18%
~10.23%, -3.21%, —-3.89%,2.67%, —1.29%, —0.43%
~12:26%,3.20%, —0.10%, 2.85%, —1.35%, —1.83%
—215%,-5.68%,—7.18%,10.77%, —0.51%, 0.85%
[ -1.86%,-1.96%,0.17%, —1.37%, 0.15%, 0.65%
| 2.37%,2.46%,3.29%, —8.10%, —0.78%, —1.29%

It is the resulting 12-tuple that is used to compute the tracking error of a
portfolio—the standard deviation of the variation of the portfolio’s return
from its benchmark index’s return.
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Coming back to the portfolio return, one can compute a logarithmic re-
turn for each month by adding 1 to each component of the 12-tuple and then
taking the natural logarithm of each component. One can then obtain a geo-
metric average, called the geometric return, by multiplying each component
of the resulting vector and taking the 12th root.

Consider the real line R' (i.e., the set of real numbers). Real numbers in-
clude rational numbers and irrational numbers. A rational number is one
that can be expressed as a fraction, ¢ /d, where ¢ and d are integers and d #
0. An irrational number is one that cannot be expressed as a fraction. Three
examples of irrational numbers are

V2 =1.4142136
Ratio between diameter and circumference
=7 = 3.1415926535897932384626
Natural logarithm = ¢ = 2.7182818284590452353602874713526

On the real line, distance is simply the absolute value of the difference
between two numbers |a — b| which also can be written as

(a—b)*

R” is equipped with a natural metric provided by the Euclidean distance
between any two points

d[(al»a21~"7an)v(bl»b21---vbn)]: Z(ﬂi—bi)z

Given a set of numbers A, we can define the least upper bound of the
set. This is the smallest number s such that no number contained in the set
exceeds s. The quantity s is called the supremum and written as s = supA.
More formally, the supremum is that number, if it exists, that satisfies the
following properties:

Va:aecAs>a
Ve>0,3a:s—a<e¢

where ¢ is any real positive number. The supremum need not belong to the
set A. If it does, it is called the maximum.
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Similarly, infimum is the greatest lower bound of a set A, defined as the
greatest number s such that no number contained in the set is less than s. If
infimum belongs to the set it is called the minimum.

Density of Points

A key concept of set theory with a fundamental bearing on calculus is that
of density of points. In fact, in financial economics we distinguish between
discrete and continuous quantities. Discrete quantities have the property
that admissible values are separated by finite distances. Continuous quan-
tities are such that one might go from one to any of two possible values
passing through every possible intermediate value. For instance, the passing
of time between two dates is considered to occupy every possible instant
without any gap.

The fundamental continuum is the set of real numbers. A continuum can
be defined as any set that can be placed in a one-to-one relationship with the
set of real numbers. Any continuum is an infinite non-countable set; a proper
subset of a continuum can be a continuum. It can be demonstrated that a
finite interval is a continuum as it can be placed in a one-to-one relationship
with the set of all real numbers.

The intuition of a continuum can be misleading. To appreciate this, con-
sider that the set of all rational numbers (i.e., the set of all fractions with
integer numerator and denominator) has a dense ordering, that is, has the
property that given any two different rational numbers a,b with a < b, there
are infinite other rational numbers in between. However, rational numbers
have the cardinality of natural numbers. That is to say rational numbers
can be put into a one-to-one relationship with natural numbers. This can
be seen using a clever construction that we owe to the seventeenth-century
Swiss mathematician Jacob Bernoulli.

Using Bernoulli’s construction, we can represent rational numbers as
fractions of natural numbers arranged in an infinite two-dimensional table
in which columns grow with the denominators and rows grow with the nu-
merators. A one-to-one relationship with the natural numbers can be estab-
lished following the path: (1,1) (1,2) (2,1) (3,1) (2,2) (1,3) (1,4) (2,3) (3,2)
(4,1) and so on (see Table 1.2).

TABLE 1.2 Bernoulli’s Construction
to Enumerate Rational Numbers

1/1 1/2 1/3 1/4
2/1 2/2 2/3 2/4
3/1 3/2 3/3 3/4

4/1 4/2 4/3 4/4
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Bernoulli thus demonstrated that there are as many rational numbers as
there are natural numbers. Though the set of rational numbers has a dense
ordering, rational numbers do not form a continuum as they cannot be put
in a one-to-one correspondence with real numbers.

Given a subset A of R”, a point a € A is said to be an accumulation point
if any sphere centered in a contains an infinite number of points that belong
to A. A set is said to be “closed” if it contains all of its own accumulation
points and “open” if it does not.

FUNCTIONS

The mathematical notion of a function translates the intuitive notion of a
relationship between two quantities. For example, the price of a security is a
function of time: to each instant of time corresponds a price of that security.

Formally, a function f is a mapping of the elements of a set A into the
elements of a set B. The set A is called the domain of the function. The subset
R = f{A) C B of all elements of B that are the mapping of some element in
A is called the range R of the function f. R might be a proper subset of B or
coincide with B.

The concept of function is general: the sets A and B might be any two
sets, not necessarily sets of numbers. When the range of a function is a set
of real numbers, the function is said to be a real function or a real-valued
function.

Two or more elements of A might be mapped into the same element
of B. Should this situation never occur, that is, if distinct elements of A are
mapped into distinct elements of B, the function is called an injection. If a
function is an injection and R = f(A) = B, then f represents a one-to-one
relationship between A and B. In this case the function [ is invertible and we
can define the inverse function g = £ ! such that f(g(a)) = a.

Suppose that a function f assigns to each element x of set A some element
y of set B. Suppose further that a function g assigns an element z of set C to
each element y of set B. Combining functions f and g, an element z in set C
corresponds to an element x in set A. This process results in a new function,
function b, and that function takes an element in set A and assigns it to set
C. The function 5 is called the composite of functions g and f, or simply a
composite function, and is denoted by h(x) = g[f(x)].

VARIABLES

In applications in finance, one usually deals with functions of numerical vari-
ables. Some distinctions are in order. A variable is a symbol that represents
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any element in a given set. For example, if we denote time with a variable ¢,
the letter ¢ represents any possible moment of time. Numerical variables are
symbols that represent numbers. These numbers might, in turn, represent
the elements of another set. They might be thought of as numerical indexes
which are in a one-to-one relationship with the elements of a set. For exam-
ple, if we represent time over a given interval with a variable #, the letter ¢
represents any of the numbers in the given interval. Each of these numbers
in turn represents an instant of time. These distinctions might look pedantic
but they are important for the following two reasons.

First, we need to consider numeraire or units of measure. Suppose, for
instance, that we represent the price P of a security as a function of time ¢:
P = f{t). The function f links two sets of numbers that represent the physical
quantities price and time. If we change the time scale or the currency, the
numerical function f will change accordingly though the abstract function
that links time and price will remain unchanged.

Variables can be classified as qualitative or quantitative. Qualitative (or
categorical) variables take on values that are names or labels. Examples of
qualitative variables would include the color of a ball (e.g., red, green, blue)
or a dummy variable (also known as an indicator variable) taking the values
0 or 1. Quantitative variables are numerical. They represent a measurable
quantity. For example, when we speak of the population of a city, we are
talking about the number of people in the city, which is a measurable at-
tribute of the city. Therefore, population would be a quantitative variable.

Variables can also be classified as deterministic or random. In probabil-
ity and statistics, a random variable, or stochastic variable, is a variable that
can take on a set of possible different values, each with an associated prob-
ability. For example, when a coin is tossed 10 times, the random variable is
the number of tails (or heads) that are noted. X can only take the values 0,
1,...,10, so in this example X is a discrete random variable. Variables might
represent phenomena that evolve over time. A deterministic variable evolves
according to fixed rules, for example an investment that earns a fixed com-
pound interest rate that grows as an exponential function of time. A random
variable might evolve according to chance.

One important type of function is a sequence. A sequence is a mapping
of the set of natural numbers into real numbers.

KEY POINTS

® A set is a collection of objects called elements.

® Empty sets are sets that do not contain any elements.

® The union of two sets is formed by all elements that belong to either of
the two sets.
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The intersection of two sets is formed by all elements that belong to
both of the sets.

® Calculus describes the dynamics of quantitative phenomena.
® Real numbers represent the result of observations (or measurements) in

a simple and natural way.

Discrete quantities have the property that admissible values are sepa-
rated by finite distances.

Continuous quantities are such that one might go from one to any of
two possible values passing through every possible intermediate value.
A function is a relation between a set of inputs and a set of permissi-
ble outputs with the property that each input is related to exactly one
output.

A variable is a value that may change within the scope of a given prob-
lem or set of operations.

® Numerical variables are symbols that represent numbers.
® A deterministic variable is a variable whose value is not subject to vari-

ations due to chance.
A random variable or stochastic variable is a variable whose value is
subject to variations due to chance or randomness.
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Differential GCalculus

inancial market instruments can be divided into two groups. The

first group includes cash market instruments, such as stocks, bonds,
commodities, and foreign currencies, which are referred to as the pri-
mary set of assets. The second group includes financial derivatives,
such as options, futures, forwards, and swaps, which are written on
the primary set of assets. Financial derivatives are claims that promise
some payment or delivery in the future contingent on the underlying
asset’s behavior. Differential calculus is useful to understand and inves-
tigate the changes in prices and riskiness of these financial instruments.
Using differential calculus, one can:

® Determine the sensitivity of bonds to changes in interest rates.

® Measure the sensitivity of an individual stock (or stock market
index) to changes in cash flows (e.g., dividend yields).

® Investigate the sensitivity of an individual stock (or stock market
index) to changes in discount rates (e.g., expected returns).

® Estimate the sensitivity of an individual stock (or stock market
index) to changes in discount rates (e.g., expected returns).

= Estimate the sensitivity of bonds and individual stocks (or stock
market indexes) to changes in macroeconomic variables (e.g., de-
fault spread, term spread, inflation rate, growth rate of industrial
production, and consumption-to-wealth ratio).

= Investigate how the prices of options change as a result of changes
in the price of the underlying asset.

® Investigate how the prices of options change as a result of changes
in the volatility of the underlying asset return.

® Determine the optimal value of a function (minimum or maxi-
mum) faced by an investor.

13
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What you will learn after reading this chapter:

® The notion of limit.

® The essentials of limit theorems.

® The common definitions linking relevant conditions to limits of
functions and sequences.

® The concept of continuity and total variation.

Differentiation and commonly used rules for computing first-order

derivatives.

Computing second-order and higher-order derivatives.

The Chain rule.

Taylor series expansion.

Financial applications of differential calculus.

Duration and convexity of bonds.

INTRODUCTION

Invented in the seventeenth century independently by the British physicist
Isaac Newton and the German philosopher G. W. Leibnitz, calculus—or in-
finitesimal calculus to use its first name—was a major mathematical break-
through that made possible the modern development of the physical sciences.
Calculus introduced two key ideas:

® The concept of instantaneous rate of change.
® A framework and rules for linking together quantities and their instan-
taneous rates of change.

Suppose that a quantity such as the price of a financial instrument varies
as a function of time. Given a finite interval, the rate of change of that quan-
tity is the ratio between the amount of change and the length of the time
interval. Graphically, the rate of change is the steepness of the straight line
that approximates the given curve.! In general, the rate of change will vary
as a function of the length of the time interval.

What happens when the length of the time interval gets smaller and
smaller? Calculus made the concept of infinitely small quantities precise with
the notion of limit. If the rate of change can get arbitrarily close to a definite

I'The rate of change should not be confused with the return on an asset, which is the
asset’s percentage price change.
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number by making the time interval sufficiently small, that number is the
instantaneous rate of change. The instantaneous rate of change is the limit
of the rate of change when the length of the interval gets infinitely small.
This limit is referred to as the derivative of a function, or simply, derivative.
Graphically, the derivative is the steepness of the tangent to a curve.

Starting from this definition and with the help of a number of rules for
computing a derivative, it was shown that the instantaneous rate of change of
a number of functions—such as polynomials, exponentials, logarithms, and
many more—can be explicitly computed as a closed formula. For example,
the rate of change of a polynomial is another polynomial of a lower degree.

The process of computing a derivative, referred to as derivation or dif-
ferentiation, solves the problem of finding the steepness of the tangent to a
curve and is the subject of this chapter. The process of integration solves the
problem of finding the area below a given curve and is the subject of the next
chapter. The reasoning is similar. The area below a curve is approximated
as the sum of rectangles and is defined as the limit of these sums when the
rectangles get arbitrarily small.

As explained in the next chapter, a key result of calculus is the discovery
that integration and differentiation are inverse operations: Integrating the
derivative of a function yields the function itself.

LIMITS

The notion of limit is fundamental in calculus. It applies to both functions
and sequences. Consider an infinite sequence S of real numbers

S=(aq, ar,..., a;,...)

If, given any real number ¢ > 0, it is always possible to find a natural number
i(¢) such that

i >i(e) implies |a; —al| < ¢
then we write

lim a,=a
n— 00
and say that the sequence S tends to @ when # tends to infinity, or that a is
the limit of the sequence S.
Two aspects of this definition should be noted. First, ¢ can be chosen
arbitrarily small. Second, for every choice of ¢, the difference in absolute
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value, between the elements of the sequence S and the limit a is smaller than
¢ for every index 7 above i(e). This translates the notion that the sequence S
gets arbitrarily close to a as the index i grows.

We can now define the concept of limit for functions. Suppose that a real
function y = f(x) is defined over an open interval (a,b), that is, an interval
that excludes its end points. If, for a real number ¢ in the interval (a,b),
there is a real number d such that, given any real number ¢ > 0, it is always
possible to find a positive real number r(¢) such that

|x —c| < r(e) implies | f(x) —d| < ¢
then we write

lim f(x)=d

X—cC

and say that the function f tends to the limit d when x tends to c.

These basic definitions can be easily modified to cover all possible cases
of limits: infinite limits, limits from the left or from the right or finite lim-
its when the variable tends to infinity. Figure 2.1 presents in graphical form

y
12
1k
0.8+ . ) .
This function tends to the limit
0.8325 when x tends to 400 from the
0.6 right; it tends to the limit 0.6325
04 when x tends to 400 from the left.
0 This function tends to a finite limit 0.3 when x
tends to infinity.
-0.2
-0.4
-0.6
-0.8

1 1 1 1 1 1 1 J X
0 100 200 300 400 500 600 700 800
FIGURE 2.1 Graphical Presentation of Infinite Limits, Limits from
the Left or Right, and Finite Limits
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TABLE 2.1 Most Common Definitions Associating the Relevant Condition to

Each Limit

The sequence tends to lim a,=a Ve >0, Fi(e): |a,—al <e
a finite limit e for n > i(e)

The sequence tends to lim a, = 4+o0 vD >0, 3i(D): a, > D
plus infinity e forn > i(e)

The sequence tends to lim a, = —oc0 VD <0, 3i(D): a, < D
minus infinity e forn > i(e )

Finite limit of a lim f(x) = Ve >0, Ir(e): |flx)—d| <e¢
function e for |x — c| < r(e)

Finite left limit of a lim f(x) = Ve >0, Jr(e): |f(x)—d| <e¢
function X for |x — c| <r(e), x<c

Finite right limit of a lim f(x Ve >0, Jr(e): |f(x)—d| <e¢
function et for |x — c| < r( ), xX>c

Finite limit of a lim f(x)= Ve > 0, 3IR(e | f(x)—al<e
function when x rree for x > R(e )
tends to plus infinity

Finite limit of a lim f(x) = Ve >0, 3R(e)>0: |f(x)—a| <e¢
function when x e for x < —R(g)
tends to minus
infinity

Infinite limit of a lim | f(x)| = VD> 0, 3Ir(D): |f(x)| > D
function e for |x — c| < (D)

Infinite limit of a lim f(x)=+00 VD=0, 3R(D): f(x)> D
function when x Fee for x > r(D)

tends to plus infinity

these cases. Table 2.1 lists the most common definitions, associating the rel-
evant condition to each limit.

Note that the notion of limit can be defined only in a continuum. In
fact, the limit of a sequence of rational numbers is not necessarily a rational
number.

CONTINUITY

Continuity is a property of functions, a continuous function being a func-
tion that does not make jumps. Intuitively, a continuous function might be
considered one that can be represented through an uninterrupted line in a
Cartesian diagram. Its formal definition relies on limits.
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A function f is said to be continuous at the point c if

lim f(x) = f(c)

X—cC

This definition does not imply that the function f is defined in an inter-
val; it requires only that ¢ be an accumulation point for the domain of the
function f.

A function can be right continuous or left continuous at a given point
if the value of the function at the point ¢ is equal to its right or left limit
respectively. A function [ that is right or left continuous at the point ¢ can
make a jump provided that its value coincides with one of the two right or
left limits. (See Figure 2.2.) A function y = f{x) defined on an open interval
(a,b) is said to be continuous on (a,b) if it is continuous for all x € (a,b).

A function can be discontinuous at a given point for one of two reasons:
(1) either its value does not coincide with any of its limits at that point or
(2) the limits do not exist. For example, consider a function f defined in the
interval [0,1] that assumes the value 0 at all rational points in that interval,
and the value 1 at all other points. Such a function is not continuous at any
point of [0,1] as its limit does not exist at any point of its domain.

14

12

This function is continuous, no jump.

This function is discontinuous f

X = 400; if f(400) takes the upper value
the function is right continuous, if it
takes the lower value it is left continuous.

0.4

0.2

0 1 1 1 1 1 1 1 J

0 100 200 300 400 500 600 700 800
FIGURE 2.2 Graphical Illustration of Right Continuous and Left
Continuous
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TOTAL VARIATION

Consider a function f{x) defined over a closed interval [a,b]. Then consider
a partition of the interval [4,b] into 7 disjoint subintervals defined by # + 1
points: @ = xg < X1 <...< X,_1 < X, = b and form the sum

T=Y If(x)— flxi1)l
i=1

The supremum of the sum T over all possible partitions is called the total
variation of the function f on the interval [a,b]. If the total variation is finite,
the function f is said to have bounded variation or finite variation. Note
that a function can be of infinite variation even if the function itself remains
bounded. For example, the function that assumes the value 1 on rational
numbers and O elsewhere is of infinite variation in any interval, though the
function itself is finite.

Continuous functions might also exhibit infinite variation. The follow-
ing function is continuous but with infinite variation in the interval [0,1]:

Oforx=0

flx) =
* xsin<£>for0<x§1

X

THE NOTION OF DIFFERENTIATION

Given a function y = f{x) defined on the open interval (a,b), consider its
increments around a generic point x consequent to an increment » of the
variable x € (a,b)

Ay = f(x+h)— f(x)

Consider now the ratio Ay/h between the increments of the dependent
variable y and the independent variable x. Called the difference quotient, this
quantity measures the average rate of change of y in some interval around x.
For instance, if y is the price of a security and # is time, the difference quotient

Ay = y(t+h;— y(1)

represents the average price change per unit of time over the interval [z, ¢
+ b]. The ratio Ay/h is a function of h. We can therefore consider its limit
when b tends to zero.
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If the limit

oy Fh) = f)
fl) = jim ————

exists, we say that the function f is differentiable at x and that its derivative
is [, also written as

df dy

dx " dx

The derivative of a function represents its instantaneous rate of change.
If the function f is differentiable for all x € (a,b), then we say that [ is differ-
entiable in the open interval (a,b).

The notation dy/dx has proved useful because it suggests that the deriva-
tive is the ratio between two infinitesimal quantities and that calculations can
be performed with infinitesimal quantities as well as with discrete quantities.
When first invented, calculus was thought of as the “calculus of infinitesi-
mal quantities” and was therefore called “infinitesimal calculus.” Only at
the end of the nineteenth century was calculus given a sound logical basis
with the notion of the limit. The infinitesimal notation remained, however,
as a useful mechanical device to perform calculations. The danger in us-
ing the infinitesimal notation and computing with infinitesimal quantities is
that limits might not exist. Should this be the case, the notation would be
meaningless.

In fact, not all functions are differentiable; that is to say, not all functions
possess a derivative. A function might be differentiable in some domain and
not in others or be differentiable in a given domain with the exception of
a few singular points. A prerequisite for a function to be differentiable at a
point x is that it is continuous at the point.

However, continuity is not sufficient to ensure differentiability. This can
be easily illustrated. Consider the Cartesian plot of a function f. Derivatives
have a simple geometric interpretation: The value of the derivative of fat a
point x equals the angular coefficient of the tangent of its plot in the same
point (see Figure 2.3). A continuous function does not make jumps, while a
differentiable function does not change direction by discrete amounts (i.e.,
it does not have cusps). A function can be continuous but not differentiable
at some points. For example, the function y = |x| at x = 0 is continuous but
not differentiable. However, there are examples of functions that defy visual
intuition; in fact, it is possible to demonstrate that there are functions that
are continuous in a given interval but never differentiable. One such example
is the path of a Brownian motion which we will discuss in Chapter 10.
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y (x 109)
8 —

The slope of the straight line
0 is the derivative y’ = dff/dx in x =100.
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FIGURE 2.3 Geometric Interpretation of a Derivative

COMMONLY USED RULES FOR
GOMPUTING DERIVATIVES

There are rules for computing derivatives. These rules are mechanical rules
that apply provided that all derivatives exist. The proofs are provided in all
standard calculus books. The basic rules are:

Rule 1: dix(c) = 0, where c is a real constant.

Rule 2: d—(bx”) = nbx""!, where b is a real constant.

Rule 3: af ) + bg(x)) = ai f(x)+ big(x), where a and b are
dx dx

real constants

Rule 3 is called the rule of termwise differentiation and shows that differen-
tiation is a linear operation.
Let’s apply the basic rules to the following function:

y=a+bix+byx* +byx® + -+ bpx"

where a, by, by, bs, ..., b, are the constants.
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The first term is just @ and as per Rule 1 the derivative is zero. The
derivative of byx by Rule 2 is b;. For each term b;x* by Rule 2 the derivative

is ib;x'~1. Thus, the derivative of

byx® is 2byx!
bsxd is 3b3x?
bax* is  4bsxd
etc.

Therefore, the derivative of y is

dy

4 nbyx" !
dx "

_b1+2b2x +3b3X +4b4x + -

There is a special rule for a composite function. Consider a composite
function: h(x) = f[g(x)]. Provided that » and g are differentiable at the point
x and that fis derivable at the point s = g(x), then the following rule, called
the chain rule, applies:

= f’(g(x>)g (x)
h(x) = f(g(
b (i
dx dg dx
Let’s take the first derivative of the following composite function:
y= (d + bix + b2x2 + b3x3 R bnx”)m
where
glx)=a+bix+ bzx2 +b3x3 4ot byx"

and

Applying the chain rule gives

= f'(g(x) - &'(x)
Z—y m(a + bix + byx* + byx® + - —i—bnx")m_]
X (b1 +2byx + 3b3x* + - + nbnxnfl)
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Table 2.2 shows the sum rule, product rule, quotient rule, and chain
rule for calculating derivatives in both standard and infinitesimal notation.
In Table 2.2, it is assumed that a,b are real constants (i.e., fixed real num-
bers), that f, g, and b are functions defined in the same domain, and that all
functions are differentiable at the point x. Table 2.3 lists (without proof) a
number of commonly used derivatives.

Rule 3 or sum rule is explained in the earlier example. We now provide
an example for the product rule.

y=(a+bix+bx +bx’ +- +byx") - (c+dix+ dox” + dsx’ + - -

+d,x")
where
f(x) = (a+ bix+ byx* + b3x’ + - - + byx)
g(x) = (c+ dix+ dbox* + dsx® + - -+ + dux")
and

Applying the product rule gives

h'(x) = f'(x) - g(x)+ f(x)- g'(x)

% = (b1 +2byx 4 3352 + - - - + nbux")

. (c +dix+dox*+dsxd+- + d,,x")
+(a+bix+bx* +bsx® + -+ + byx")
. (d1 +2dyx +3dsx* + - + ndnxnfl)
We now use the same functions, f(x)and g(x), to illustrate the quotient
rule:

(@t bix+ b+ 4 bx")
y= (c+dix+dox?> + - + dyx")

where
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TABLE 2.3 Commonly Used Derivatives

df .
flx) o Domain of P
x" nx"! R,x#0ifn<0
x* ax®! x>0
sin x CoS x R
cos X —sin x R
) 1 T LT T T
an x peTp 5 tny <x<z4n3
In x 1 x>0
x
Al e’ R
)
log (f(x x)#0
g (f(x)) ) fix) #
Note: Where R denotes real numbers.
Applying the quotient rule gives
’ _ /
oy = 1083 = 1) g
g(x)
(b1 +2byx + -+ + nbyx™ 1) - (c + dix + dox? + -+ - + dyx")
dy  —(a+bix+bx?+-+bx") - (di +2dbx + - + nd,x"")
dx (c+d1x+dzx2+-~-+dnx”)2

Given a function f{x), its derivative f’(x) represents its instantaneous
rate of change. The logarithmic derivative

d )
E In P(x) =

for all x such that P(x) # 0, represents the instantaneous percentage change.
In finance, the function p = p(¢) represents prices; its logarithmic derivative
represents the instantaneous returns.

Given a function y = f(x), its increments Af = f(x + Ax) — f(x) can be
approximated by

Af(x) = f(x)Ax

The quality of this approximation depends on the function itself.
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HIGHER-ORDER DERIVATIVES

Suppose that a function f{x) is differentiable in an interval D and its deriva-
tive is given by

dx

The derivative might in turn be differentiable. The derivative of a deriva-
tive of a function is called a second-order derivative and is denoted by

J (df(x))
() d? f(x) dx
= de a dx

Provided that the derivatives exist, this process can be iterated, produc-
ing derivatives of any order. A derivative of order 7 is written in the following

way:
J <df”_1(x))
09 ) = d" f(x) B dxn—1
T odxr dx

Let’s take the first, second, and third derivatives of the polynomial
function:

y=flx )=d+b1x+bzx2+b3x3+..._|_bnxn

fl(x) = jy = by + 2byx + 3b3x* + - - - + nbyx" !
1/ d y n—2
(x) = d—_2b2+6b3x+ At un—1)b,x
X
By
" (x) = d— =6byx+ - +n(n—1)(n—2)b,x"3

Application to Bond Analysis

Two concepts used in bond portfolio management, duration and convexity,
provide an illustration of derivatives. A bond is a contract that provides a
predetermined stream of positive cash flows at fixed dates assuming that the
issuer does not default nor prepay the bond issue prior to the stated maturity
date. If the interest rate is the same for each period, the present value of a
risk-free bond has the following expression:

C C C+M
V= _—, :1,'~',N
A+ g+ttt o
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where V is the value of the bond, C is the coupon interest, M is the bond’s
maturity value, 7 is the interest rate required by investors, and N is the time
until the bond’s maturity.

If interest rates are different for each period, the previous formula be-
comes

C C C+M
+ ..+L i=1,---,N

V= — . : —
(T+i)t (1 44)? (14+inN

In Chapter 10, we introduce the concept of continuous compounding.
With continuous compounding, if the short-term interest rate is constant,
the bond valuation formula becomes?

C C C+M

Application of the First Derivative The sensitivity of the bond price V to
a change in interest rates is given by the first derivative of V with respect to
the interest rate i. The first derivative of V with respect to the interest rate i is
called dollar duration. We can compute dollar duration in each case using the
derivation formulas defined thus far. In the discrete-time case we can write

4 —a\ary Tarir Tt AN

_d[ C d[C+M
—z[m}*“w[m]

Cd [—1, ]+~~+(C+M)i[—1 }

dvi(i) d( C C C+M>

T Udi (i) di | (T+i)N
We can use the quotient rule
dr 1 1,
&)=

to compute the derivatives of the generic summand as follows:

dr 1 7. U i 1
E[(Hz‘)f}"(uivf’( = e

21f the short-term rate is variable:

V = Ce™ fol i(s)ds + Ce—foz i(s)ds NI (C + M)e_fONi(s)ds
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Therefore, the derivative of the bond value V with respect to the interest
rates is

av
di

Using a similar reasoning, we can slightly generalize this formula, allow-
ing the interest rates to be different for each period. Call i; the interest rate
for period z. The sequence of values is called the yield curve.

Now suppose that interest rates are subject to a parallel shift. In other
words, let’s assume that the interest rate for period ¢ is (i, + x). If we compute
the first derivative with respect to x for x = 0, we obtain

dVv(i)

dx

=—(1+i)"CA+i) " +2CA+i) 2+ + NC+ M)(1+i)N]

_d < S C >
o dx \(T+ii+x)! (144 +x)? (1+in+x)N/ |-
= —[C(14i1) 2 4+2C(1+i2) > + -+ N(C+ M)(1 +in)N!

In this case, we cannot factorize any term as interest rates are different in
each period. Obviously, if interest rates are constant, the yield curve is a
straight line and a change in the interest rates can be thought of as a parallel
shift of the yield curve.

In the continuous-time case, assuming that interest rates are constant,
the dollar duration is?

d_V d[Ce Y 4+ Ce ™% + ...+ (C+ M)e~N]
di di
—1Ce ¥ _2Ce™H — ... = N(C + M)e—Ni

3When interest rates are deterministic but time-dependent, the derivative dV/di is
computed as follows. Assume that interest rates experience a parallel shift i(z) + x
and compute the derivative with respect to x evaluated at x = 0. To do this, we need
to compute the following derivative:

ie—fé [i(s)+x]ds _ i I:e—f(; i(s)dse— /'Ot xds] — e /'Ot i(s)ds i (e—xt)
dx dx dx
_ —t€7Xt€7f(§ i(s)ds
d 7ft [i(s)+x]ds —xt 7fti(5)ds| — ['i(s)ds
—e 0 = —fe e 0 x=0 = —fe JO
dx 0
Therefore, we can write the following:
C:ll — _Ce—fol i(s)ds _ Zce—fozi(s)ds —...—N(C+ M)eff(,Ni(s)ds
X |x=0

For i = constant we find again the formula established above.
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where we make use of the rule

Application of the Chain Rule

The above formulas express dollar duration, which is the derivative of the
price of a bond with respect with the interest rate and which approximates
price changes due to small parallel interest rate shifts. Practitioners, however,
are more interested in the percentage change of a bond price with respect to
small parallel changes in interest rates. The percentage change is the price
change divided by the bond value:

av 1
di 'V

The percentage price change is approximated by duration, which is the
derivative of a bond’s value with respect to interest rates divided by the value
itself. Recall from the formulas for derivatives that the latter is the logarith-
mic derivative of a bond’s price with respect to interest rates:

d_Vl_d(log V)
div  di

Duration =

Based on the above formulas, we can write the following formulas for
duration:

Duration for constant interest rates in discrete time:

awvi 1 C 2C N(C + M)
EV“V(1+1’)[(1+1')+<1+1')2 (1+i)N]

Duration for variable interest rates in discrete time:

dxV vV

dv 1 1[ c ., 2 +N<C+M)]
(T+ia)>  (1+i) (14 i)
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Duration for continuously compounding constant interest rate in dis-
crete time:*

dv 1 1

— v =yl + 2Ce™* 4 ... + N(C + M)e N

We will now illustrate the chain rule of derivation by introducing the
concept of effective duration. The bond valuation we presented earlier is for
an option-free bond. But when a bond has an embedded option, such as a call
option, it is more complicated to value. Similarly, the sensitivity of the value
of a bond to changes in interest rates is more complicated to assess when
there is an embedded call option. Intuitively, we know that the sensitivity
of the value of a bond with an embedded option would be sensitive to not
only how changes in interest rates affect the present value of the cash flows
as shown above for an option-free bond, but also how they would affect the
value of the embedded option.

We use the following notation to assess the sensitivity of a callable bond’s
value (i.e., a bond with an embedded call option) to a change in interest rates.
The value of an option-free bond can be decomposed as follows:

Vo = Voo + Vo

where

Vo = value of an option-free bond
V., = value of a callable bond
V.o = value of a call option on the bond

The above equation says that an option-free bond’s value depends on
the sum of the value of a callable bond’s value and a call option on that
option-free bond. The equation can be rewritten as follows:

Vo = Vo — Voo

That is, the value of a callable bond is found by subtracting the value
of the call option from the value of the option-free bond. Both components
on the right side of the valuation equation depend on the interest rate i.

4The duration for continuously compounding variable interest rate in discrete time
is

%% — _% I:Cefjo1 i(s)ds +2Ce—f02i(s)ds ot N(C+ M)e—foNi(s)ds]
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Using linearity to compute the first derivative of the valuation equation with
respect to i and dividing both sides of the equation by the callable bond’s
value gives

dVy 1 _dVoﬂ, 1 _dVCO 1
di Vg di Vg di Vg

Multiplying the numerator and denominator of the right-hand side by
the value of the option-free bond and rearranging terms gives

dVep 1 dVep 1 Vop  dVe 1 Vop
di Voo di Vg Vi di Vo, Vo

The above equation is the sensitivity of a callable bond’s value to changes in
interest rates. That is, it is the duration of a callable bond, which we denote
by Dur,.> The component given by

dVep 1
di Vg

is the duration of an option-free bond’s value to changes in interest rates,
which we denote by Dur,g. Thus, we can have

Voo dVe 1 Vop
Dur, = Durypgy—— — —
b wot Ty, di Vop, Vi

Now let’s look at the derivative, which is the second term in the above
equation. The change in the value of an option when the price of the under-
lying changes is called the option’s delta. In the case of an option on a bond,
as explained above, changes in interest rates change the value of a bond. In
turn, the change in the value of the bond changes the value of the embedded
option. Here is where we see a function of a function and the need to apply
the chain rule. That is,

Veo(i) = F[ Vo (i)]

3 Actually, it is equal to —Dur,,, but because we will be omitting the negative sign for
the durations on the right-hand side, this will not affect our derivation.
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This tells us that the value of the call option on an option-free bond depends
on the value of the option-free bond and the value of the option-free bond
depends on the interest rate. Now let’s apply the chain rule. We get

cho(i) _ df dVofb
di dV., di

The first term on the right-hand side of the equation is the change in the
value of the call option for a change in the value of the option-free bond.
This is the delta of the call option, A¢,. Thus,

de(l) dVOﬂ’

P

Substituting this equation into the equation for the duration and rearranging
terms we get

\%
Dur., = Dur,p, ‘;fb

cb

(1 - Aco)

This equation tells us that the duration of the callable bond depends on the
following three quantities. The first quantity is the duration of the corre-
sponding option-free bond. The second quantity is the ratio of the value of
the option-free bond to the value of the callable bond. The difference be-
tween the value of an option-free bond and the value of a callable bond is
equal to the value of the call option. The greater (smaller) the value of the
call option, the higher (lower) the ratio. Thus, we see that the duration of
the callable bond will depend on the value of the call option. Basically, this
ratio indicates the leverage effectively associated with the position. The third
and final quantity is the delta of the call option. The duration of the callable
bond as given by the above equation is called the option-adjusted duration
or effective duration.

Application of the Second Derivative We can now compute the second
derivative of the bond value with respect to interest rates. Assuming cash
flows do not depend on interest rates, this second derivative is called dollar
convexity. Dollar convexity divided by the bond’s value is called convexity.
In the discrete-time fixed interest rate case, the computation of convexity is
based on the second derivatives of the generic summand:

27 1 1 d(d[ 1 _df_, 1
ﬁ[umf} ‘E{E[uw)’“ _E’[_ <1+z'>f+1]

= td ! =1l+1¢
il R e



Differential Calculus 33

Therefore, dollar convexity assumes the following expression:

a2 d|a+y Taxr Ty

d? 1 42 1
- Cﬁ |:(1+—i)11|+m+(C+M)ﬁ |:(1 ‘H)N]
=[2C(1+i)3+2-3C(1+i)*+ -

+ N(N+ 1)(C + M)(1 4 1)~ N+

d*v(i)  d? |: C C C—l—M}

Using the same reasoning as before, in the variable interest rate case, dollar
convexity assumes the following expression:

d* V(i)

2
dx x=0

=[2C(A+i1) 7 +2-3-C(1+iy)™*
4+ NN+ 1)(C+ M)(1 +in) N2
This scheme changes slightly in the continuous-time case, where, assum-

ing that interest rates are constant, the expression for convexity is®

d?V _ dP[Ce” +Ce ¥ +--- +(C+ M)e N]
diz di?
=12 Ce " +2°-Ce® 4+ .+ N* - (C+ M)e ™™

where we make use of the rule

2
£ s

dx

X

We can now write the following formulas for convexity:
Convexity for constant interest rates in discrete time:

vt 1 2C (3)2)C N(N+ 1)(C + M)
W\_/_V(1+i)2[(1+i) (142 (14)N }

For variable interest rates this expression becomes

dv

. — 12Celo i5Ms 4 2o Joils)ds 4. 4 NA(C + M)e—ja\]i(s)ds
x

x=0
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Convexity for variable interest rates in discrete time:

#V1 17 20 B)Rc N(N+1)(C + M)
dxlv_v[(1+z‘1)3 (1+i)* (1 + i) N2 }

Convexity for continuously compounding constant interest rate in discrete
time:’

d*v 1 1

TV = T/[Ceﬂ' +22Ce™ % 4. 4 NZ(C + M)e—Ni]

TAYLOR SERIES EXPANSION

An important relationship used in economics and finance theory to approx-
imate how the value of a function, such as a price function, will change
is the Taylor series expansion. We begin by establishing Taylor’s theorem.
Consider a continuous function with continuous derivatives up to order n
in the closed interval [a,b] and differentiable with continuous derivatives in
the open interval (a,b) up to order n + 1. It can be demonstrated that there
exists a point £ € (a,b) such that

1 _\2 (n) —a)?
a)+M+...+M+Rﬂ

fb) = fla)+ fla)b— - -

where the residual R,, can be written in either of the following forms:

fr(E) (b —a)t!
(n+1)!

Lagrange’s form: R, =

Fr () (b — )b — a)

n!

Cauchy’s form: R, =

"The convexity for continuously compounding variable interest rate in discrete time
is

d*v 1

A % [Ce’fﬁl i)ds 4 920 fais)ds 4 4 N2(C + M)e—foNi(s)ds:I
i



Differential Calculus 39

In general, the point & € (a,b) is different in the two forms. This result
can be written in an alternative form as follows. Suppose x and x( are in
(a,b). Then, using Lagrange’s form of the residual, we can write

R [ TGN A o Lt

f(x) = flxo) + f'(x)(x — x0 21 n!

Fr(E) (x — xo)"
(n+ 1)

+

If the function f is infinitely differentiable, that is, it admits derivatives
of every order and if

lim R,=0

n—0o0

the infinite series obtained is called a Taylor series expansion (or simply Tay-
lor series) for f(x). If xo = 0, the series is called a Maclaurin series.

Such series, called a power series, generally converge in some interval,
called the interval of convergence, and diverge elsewhere.

The Taylor series expansion is a powerful analytical tool. To appreciate
its importance, consider that a function that can be expanded in a power
series is represented by a denumerable set of numbers even if it is a contin-
uous function. Consider also that the action of any linear operator on the
function f can be represented in terms of its action on powers of x.

The Maclaurin expansion of the exponential and of trigonometric func-
tions are given by:

2 n
x x
e=1+x+7++—+R,
2! n!
) X3 +x5 P (—1)mx2+1 LR
sinx=x——+—+- +———— -
3t 5 (2n+ 1)!
2 4 121
x x (—1)"x
cos x=1—2—!+4—!+~-~+W+Rn

Application to Bond Analysis

Let’s illustrate a Taylor and Maclaurin power series by computing a second-
order approximation of the changes in the present value of a bond due to a
parallel shift of the yield curve. This information is important to portfolio
managers and risk managers to control the interest rate risk exposure of a
position in bonds. In bond portfolio management, the first two terms of the
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Taylor expansion series are used to approximate the change in an option-
free bond’s value when interest rates change. An approximation based on the
first two terms of the Taylor series is called a second order approximation,
because it considers only first and second powers of the variable.

We begin with the bond valuation equation, again assuming a single
discount rate. We first compute dollar duration and convexity, that is, the
first and second derivatives with respect to x evaluated at x = 0, and we
expand in Maclaurin power series. We obtain

1
V(x) = V(0) — (Dollar duration)x + Z(Dollar convexity)x® 4+ Rj
where Rj is the residual in the Lagrange form as defined above. The subscript

3 means that it is the residual after the first two terms.
We can write this expression explicitly as

Vi = —— 4y & 4. M
(1441 (144)? (1+4)N
C N(C + M)
x[<1+z‘>2+(1+z>3+ <1+z'>N+1]
1, 2C 3.2.C (N(N+ 1) (C+ M)
+§x[<1+i>3+(1+z>4+”' 1+ ]
3 1 x3|: 3.2-C +4~3-2-C
3:27 [(1+i+&* (14i+§)

N(N+ 1)(N+2)(C + M)]
(L+i+ &N

Bond portfolio managers, however, are primarily interested in percent-
age price change. We can now compute the percentage price change as fol-
lows:

AV V(x)—V(0)

VT T V()
C C N(C + M)
:_x[[uwz+<1+z’>3+"'+m}
1
X—C C C+M
A+ tarr b Yo

.2-C N(N+1) (C+ M)
¥ [[(1 PR T 1+ )N }
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1
T C C C+M
[(14—1’)1+(l+i)2+m+(l+i)N]_
1 x3[[ 3.2.C +._.+N(N+1)(N+2)(C+M)}
3.2 (14+i+¢&)* (14i+§&)N+3
1
T C C C+M
[(1+i)1+(1+z‘)2+"'+(1+i)N]_

The first term in the square brackets on the right-hand side of the equation
is the first approximation and is the approximation based on the duration
of the bond. The second term in the square brackets on the right-hand side
is the second derivative, the convexity measure, multiplied by one half.
The third term is the residual. Its size is responsible for the quality of the
approximation.

The residual is proportional to the third power of the interest rate shift
x. The term in the square bracket of the residual is a rather complex function
of C,M,N, and i. A rough approximation of this term is N(N + 1)(N + 2).
In fact, in the case of zero-coupon bonds, that is, C = 0, the residual can be
written as

1 <N(N+1)(N+2)M> 1
R; = [

3x2” 1 +ite)N M }
(14i)N

(1+i)N

which is a third order polynomial in N.

Therefore, the error of the second order approximation is of the order
[1/(3 x 2)](xN)>. For instance, if x = 0.01 and N = 20 years, the approx-
imation error is of the order 0.001. The following numerical example will
clarify these derivations.

In our illustration to demonstrate how to use the Taylor series, we use an
option-free bond with a coupon rate of 9% that pays interest semiannually
and has 20 years to maturity. Suppose that the initial yield is 6%. In terms
of our bond valuation equation, this means C = $4.5, M = $100, and i =
0.06. Substituting these values into the bond valuation equation, the price
of the bond is $134.6722.
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Suppose that we want to know the approximate percentage price change
if the interest rate (i.e., 7) increases instantaneously from 6% to 8%. In the
bond market, a change in interest rates is referred to in terms of basis points.
One basis point is equal to 0.0001 and, therefore, 1 percentage point is 100
basis points. In our illustration, we are looking at an instantaneous change
in interest rates of 200 basis points. We will use the two terms of the Taylor
series to show the approximate percentage change in the bond’s value for a
200 basis point increase in interest rates.

We do know what the answer is already. The initial value for this bond
is $134.6722. If the interest rate is 8%, the value of this bond would be
$109.8964. This means that the bond’s value declines by 18.4%. Let’s see
how well the Taylor series using only two terms approximates this change.

The first approximation is the estimate using duration. The duration
for this bond is 10.66 found by using the formula above for duration. The
convexity measure for this bond is 164.11 The change in interest rates, di, is
200 basis points. Expressed in decimal it is 0.02. The first term of the Taylor
series gives

—10.66 x (0.02) = —0.2132 = -21.32%

Notice that this approximation overestimates the actual change in value,
which is —18.4% and means that the estimated new value for the bond is
underestimated.

Now we add the second approximation. The second term of the Taylor
series gives

1
5(164.11) x (0.02)*> = 3.28%

The approximate percentage change in the bond’s value found by using the
first term of the Taylor series and the second term of the Taylor series is
-21.32% + 3.28% = -18.0%. The actual percentage change in value is
—-18.4%. Thus the two terms of the Taylor series do an excellent job of ap-
proximating the percentage change in value.

Let’s look at what would happen if the change in interest rates is a de-
cline from 6% to 4%. The exact percentage change in value is +25.04%
(from 134.6722 to 168.3887). Now the change in interest rates di is —0.02.
Notice that the approximate change in value due to duration is the same
except for a change in sign. That is, the approximate change based on the
first term (duration) is +21.32%. Since the percentage price change is un-
derestimated, the new value of the bond is underestimated. The change due



Differential Calculus 39

to the second term of the Taylor series is the same in magnitude and sign
since when —0.02 is squared, it gives a positive value. Thus, the approxi-
mate change is 21.32% + 3.28% = 24.6%. Using the terms of the Taylor
series does a good job of estimating the change in the bond’s value.

We used a relatively large change in interest rates to see how well the
two terms of the Taylor series approximate the percentage change in a bond’s
value. For a small change in interest rates, duration does an effective job. For
example, suppose that the change in interest rates is 10 basis points. That
is, di is 0.001. For an increase in interest rates from 6% to 6.1% the actual
change in the bond’s value would be —1.06% ($134.6722 to $133.2472).
Using just the first term of the Taylor series, the approximate change in the
bond’s value gives the precise change:

—10.66 x 0.001 = —1.066%

For a decrease in interest rates by 10 basis points, the result would be
1.066%.

What this illustration shows is that for a small change in a variable, a
linear approximation does a good job of estimating the change in the value of
the price function of a bond. A different interpretation, however, is possible.
Note that in general convexity is computed as a number, which is a function
of the term structure of interest rates as follows:

Dollar convexity = [2C(1 +41) > 4+2-3-C(14+i)* +--.
+N- (N4 1) - (C+ M)(1 +in) N2

This expression is a nonlinear function of all the yields. It is sensitive to
changes of the curvature of the term structure. In this sense, it is a measure
of the convexity of the term structure.

Let’s suppose now that the term structure experiences a change that can
be represented as a parallel shift plus a change in slope and curvature. In
general both duration and convexity will change. The previous Maclaurin
expansion, which is valid for parallel shifts of the term structure, will not
hold. However, we can still attempt to represent the change in a bond’s value
as a function of duration and convexity. In particular, we could represent the
changes in a bond’s value as a linear function of duration and convexity. This
idea is exploited in more general terms by assuming that the term structure
changes are a linear combination of factors.



40 MATHEMATICAL METHODS FOR FINANCE

GALCULUS IN MORE THAN ONE VARIABLE

The previous concepts of calculus can be extended to a multivariate environ-
ment, that is, they can be extended to functions of several variables. Given a
function of n variables, y = f(x1, ..., x,,), we can define n partial derivatives

Af (x1, ...\ Xn)
8x1-

i=1,...,nholding constant # — 1 variables and then using the definition
for derivatives of univariate functions:

af('xlv-"s xn) f(xl»'--v Xi+h,..., xn)_ f(xls"'v Xisenns xn)
X h—0 h

Repeating this process we can define partial derivatives of any order.
Consider, for example, the following function of two variables:

flay) = oo

Its partial derivatives up to order 2 are given by the following formulas:
o _ —(2x 4 gy)e WHowH)
ax

of
ay
o f

9x%

= —(2y + ox)e” oY)

_ _ze—(x2+oxy+y2) + (2x+ay)2 e—(x2+axy+y2)
32f —(x24oxy+y?) 2 —(x*+oxy+y?)
W:—Ze +(2y+ox) e i

9% f

=2x+o0y)2y+ox) o~ (P Foxy ) _ o= roxy+y?)
0x0y

In bond analysis, we can also compute partial derivatives in the case
where each interest rate is not the same for each time period in the bond
valuation formula. In that case, derivatives can be computed for each time
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period’s interest rate. When the percentage price sensitivity of a bond to
a change in the interest rate for a particular time period is computed, the
resulting measure is called rate duration or partial duration.?

KEY POINTS

® Through the concept of the limit, calculus has rendered precise the no-
tion of infinitesimally small and infinitely large.

® A sequence or a function tends to a finite limit if there is a number to
which the sequence or the function can get arbitrarily close; a sequence
or a function tends to infinity if it can exceed any given quantity. Starting
from these simple concepts, rules for computing limits can be established
and limits computed.

® A derivative of a function is the limit of its incremental ratio when the
interval tends to zero. Derivatives represent the rate of change of quan-
tities.

® The derivative of the product of a constant and a function is the product
of the constant and the derivative of the function.

® The derivative of a sum of functions is the sum of derivatives and called
termwise differentiation.

® The derivative of a product of functions is the derivative of the first
function times the second plus the first function times the derivative of
the second and is called the product rule.

® The derivative of a function of functions is the product of the outer
function with respect to the inner function times the derivative of the
inner function and is called the chain rule.

= A derivative of order 7 of a function is defined as the function that results
from applying the operation of derivation 7 times.

® A function that is differentiable to any order at a given point a can be
represented as a series of the powers of (x — a) times the n-th derivative
at a times the reciprocal of n!; this expansion is called a Taylor series
expansion.

= A Taylor series expansion series is used to approximate the value of a
function.

® Taylor series truncated to the first or second terms are called first- and
second-order approximations, respectively.

8There is a technical difference between rate duration and partial duration but the
difference is not important here.
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" A special case of the Taylor series is a Maclaurin series. The McLaurin
series is the Taylor series computed around x = 0.

m Differentiation can be extended to functions of more than one variable.

= A function of 7 variables has # first derivatives, n-square second deriva-
tives, and so on.
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ntegration is an important concept in mathematics and, together

with its inverse, differentiation, is one of the two main operations in
calculus—and the term integral can also refer to the notion of the anti-
derivative. Using integral calculus, one can compute the area under
an explicit function or approximate the area under highly nonlinear
functions:

® Integral calculus is useful for pricing financial derivatives.

® The price of a derivatives contract is calculated as the present value
of expected future payoffs that depend on the future asset price
distribution.

® To deal with the non-normality features of asset return distribu-
tions, one has to use integral calculus to approximate the area un-
der a skewed fat-tailed density function when computing option
prices.

® Integral calculus is useful for Monte Carlo simulations that are
widely used for pricing derivative instruments with option-type
features.

® When pricing options with Monte Carlo simulation, it is neces-
sary to generate a large sample of possible future asset prices that
will produce possible future payoffs. To do so, one has to draw
a large number of random variables from a specific distribution.
From random number generator, one may have to rely on integral
calculus depending on the choice of a probability distribution for
underlying assets.

43
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What you will learn after reading this chapter:

® The meaning of integration and its relationship to differentiation.

® What a Riemann integral is and its properties.

® What a Lebesque-Stieltjes integral is and its relationship to a Rie-
mann integral.

® What are indefinite and proper integrals.

® That the fundamental theorem of calculus is that integration is the
inverse operation of derivation.

® What integral, Laplace, and Fourier transforms are and how they
are used.

INTRODUCTION

As explained in the previous chapter, differentiation addresses the problem
of defining the instantaneous rate of change. Integration, the subject of this
chapter, addresses the problem of calculating the area of an arbitrary figure.
Areas are easily defined for rectangles and triangles, and any plane figure that
can be decomposed into these objects. While formulas for computing the
area of polygons have been known since antiquity, a general solution of the
problem was arrived at first in the seventeenth century with the development
of calculus.

RIEMANN INTEGRALS

Let’s begin by defining the integral in the sense of Riemann, so called af-
ter the German mathematician Bernhard Riemann who introduced it. Con-
sider a bounded function y = f(x) defined in some domain which includes
the interval [a,b]. Consider the partition of the interval [a,b] into 7 disjoint
subintervals a = xp < x1 < ... < x,_1 < x, = b, and form the sums

SV =" M) (x — xi1)
i—1
where fM(x;) = sup f(x), x € [x;_1, x;], and
Sy = Z fon( %) (26 — X 1)
i=1

where f,(x;) =inf f(x)and x € [x;,_1, x;]
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FIGURE 3.1 Riemann Sums

Figure 3.1 illustrates this construction. SV, S are called, respectively,
the upper Riemann sum and lower Riemann sum. Clearly an infinite number
of different sums SU, S& can be formed depending on the choice of the
partition. Intuitively, each of these sums approximates the area below the
curve y = f(x), the upper sums from above, the lower sums from below.
Generally speaking, the more refined the partition the more accurate the
approximation.

Consider the sets of all the possible sums {SU} and {SL} for every possi-
ble partition. If the supremum of the set {S}} (which in general will not be
a maximum) and the infimum of the set {SU} (which in general will not be a
minimum) exist, respectively, and if the minimum and the supremum coin-
cide, the function fis said to be “Riemann integrable in the interval (a,b).”

If the function fis Riemann integrable in [a,b], then

b
I= / flx)dx = sup(SL) = inf(SV)

is the proper integral of f on [a,b] in the sense of Riemann.
An alternative definition of the proper integral in the sense of Riemann
is often given as follows. Consider the Riemann sums

Su= > fa)x — xe 1)
=1
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where x* is an arbitrary point in the interval [x1,x;_1]. Call Ax; = (% — x;_1)
the length of the ith interval. The proper integral I between a and b in the
sense of Riemann can then be defined as the limit (if the limit exists) of the
sums S,, when the maximum length of the subintervals tends to zero:

I= lim S,

max Ax;—¢

In the above, the limit operation has to be defined as the limit for any
sequence of sums S,, as for each #n there are infinitely many sums. Note that
the function f need not be continuous to be integrable. It might, for instance,
make a finite number of jumps. However, every function that is integrable
must be of bounded variation.

Properties of Riemann Integrals

Let’s now introduce a number of properties of the integrals (we will state
these without proof). These properties are simple mechanical rules that apply
provided that all integrals exist. Suppose that a,b,c are fixed real numbers,
that f,g,h are functions defined in the same domain, and that they are all
integrable on the same interval (a,b). The following properties apply:

Properties of Riemann Integrals
Property 1: [, f(x)dx =

Property 2: [¢ fxdx:f flx)dx+ [ f(x)dx, a<b=c

Property3 b —af x) + Bg(x) = f h(x)dx = ozfab f(x)dx
+8 [ glx

Property 4: fab f’(x)g(x)dx = f(x)g(x) |8 — f flx

® Properties 1 and 2 establish that integrals are additive with respect to
integration limits.

® Property 3 is the statement of the linearity of the operation of integra-
tion.

® Property 4 is the rule of integration by parts.

Now consider a composite function: h(x) = f(g(x)). Provided that g
is integrable on the interval (a,b) and that f is mtegrable on the interval
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corresponding to all the points s = g(x), the following rule, known as the
chain rule of integration, applies:

b g ()
[ fdy= [ pletang wids
a g '(a)
Integrals compute the area under a function for a specific interval. To
illustrate, we now compute the integral of f(x) = /x from 0 to 1:

folﬁdx

The fundamental theorem of calculus is the fundamental link between
the operations of differentiating and integrating. Applied to the square root
curve, f(x)= x'/2, it says to look at the antiderivative F(x) = (2/3) x3/2,
and simply take F(1) — F(0), where 0 and 1 are the boundaries of the inter-
val [0,1]. So, the exact value of the area under the curve is computed as

1 1 2
/ Jxdx = / x?dx = (—) x3/?
0 0 3

2

_ (§> (132 = 032) = %

1
— F(1) — F(0)
0

If we generalize, the integral of f(x) = x” with n # —1, is computed as

b n+1
/ x"dx = <x )
p n+1

LEBESGUE-STIELTJES INTEGRALS

b Pl _ gl
f( n+1 >

Most applications of calculus require only the integral in the sense of Rie-
mann. However, a number of results in probability theory with a bearing on
economics and finance theory can be properly established only in the frame-
work of the Lebesgue-Stieltjes integral. Let’s therefore extend the definition
of integrals by introducing the Lebesgue-Stieltjes integral.

The integral in the sense of Riemann takes as a measure of an interval
its length, also called the Jordan measure. The definition of the integral can
be extended in the sense of Lebesgue-Stieltjes by defining the integral with
respect to a more general Lebesgue-Stieltjes measure.
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Consider a nondecreasing, left-continuous function g(x) defined on a
domain which includes the interval [x; — x;_{] and form the differences
mr; = g(x;) — g(x;_1). These quantities are a generalization of the concept
of length. They are called Lebesgue measures. Suppose that the interval
(a,b) is divided into a partition of n disjoint subintervals by the points
a=xy<x1 <...<2x,=>band form the Lebesgue-Stieltjes sums

n—Zf ympi, x € (%, x-1)

where x is any point in ith subinterval of the partition.

Consider the set of all possible sums {S,}. These sums depend on the
partition and the choice of the midpoint in each subinterval. We define the
integral of f{x) in the sense of Lebesgue-Stieltjes as the limit, if the limit exists,
of the Lebesgue-Stieltjes sums {S,} when the maximum length of the inter-
vals in the partition tends to zero. We write, as in the case of the Riemann
integral,

b
I =/ f(x)dg(x) =1lim S,

The integral in the sense of Lebesgue-Stieltjes can be defined for a
broader class of functions than the integral in the sense of Riemann. If f
is an integrable function and g is a differentiable function, the two integrals
coincide. In the following chapters, all integrals are in the sense of Riemann
unless explicitly stated to be in the sense of Lebesgue-Stieltjes.

INDEFINITE AND IMPROPER INTEGRALS

To this point, we have defined the integral as a real number associated with
a function on an interval (a,b). If we allow the upper limit b to vary, then
the integral defines a function
X
= / f(u)du
a

which is called an indefinite integral.
Given a function £, there is an indefinite integral for each starting point.
From the definition of integral, it can be seen that any two indefinite integrals
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of the same function differ only by a constant. In fact, given a function f,
consider the two indefinite integrals:

Folx) = / Flu)du, Fy(x) = /b Flu)du

If a < b, we can write

x b x
Fi(x) = / fu)du = f f(u)du +/h f(u)du = constant + Fj(x)

We can now extend the definition of proper integrals by introducing
improper integrals. Improper integrals are defined as limits of indefinite in-
tegrals either when the integration limits are infinite or when the integrand
diverges to infinity at a given point. Consider the improper integral

/ " fldx

This integral is defined as the limit

/OO f(x)dx = lim ’ f(u)du

X—00 a

if the limit exists. Consider now a function [ that goes to infinity as x ap-
proaches the upper integration limit b. We define the improper integral

/ " flxids

as the left limit

/ " flwdx = lim [ fuods

A “proper” Riemann integral assumes the integrand is defined and fi-
nite on a closed and bounded interval, bracketed by the limits of integra-
tion. An improper integral occurs when one or more of these conditions are
not satisfied. In some cases, such integrals may be defined by considering
the limit of a sequence of proper Riemann integrals on progressively larger
intervals.
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Consider, for example, the function 1/((x + 1) {/x) integrated from 0
to co. At the lower bound, as x goes to 0 the function goes to oo, and the
upper bound is itself oo, though the function goes to 0. Thus, it is a doubly
improper integral. Integrated, say, from 1 to 3, an ordinary Riemann sum
suffices to produce a result of 7/6. To integrate from 1 to 0o, a Riemann sum
is not possible. However, any finite upper bound, say ¢ (with ¢t > 1), gives
a well-defined result, 2 arctan(+/z) — n/Z. This has a finite limit as # goes to
infinity, namely /2. Similarly, the integral from 1/3 to 1 allows a Riemann
sum as well, coincidentally again producing /6. Replacing 1/3 by an arbi-
trary positive value s (with s < 1) is equally safe, giving 7 /2 — 2 arctan(+/7).
This, too, has a finite limit as s goes to zero, namely /2. Combining the
limits of the two fragments, the result of this improper integral is 7:

/00 —dx —lim/1 —dx + lim /t—dx

o (x+1)Vx  s=0)g (x+1)Jx ey (x+1)Vx
=lim (= -2 J5) + lim (2 Vi-Z
= SE)% (E — 2 arctan s) + tiglo( arctan+/t — 5)

=%+(n—%):n

This process does not guarantee success; a limit may fail to exist, or may
be unbounded. For example, over the bounded interval 0 to 1, the integral of
1/x does not converge; and over the unbounded interval 1 to oo, the integral
of 1//x does not converge.

The improper integral

1afx_6
a2

is unbounded internally, but both left and right limits exist. It may also hap-
pen that an integrand is unbounded at an interior point, in which case the
integral must be split at that point, and the limit integrals on both sides must
exist and must be bounded. Thus,

b odx _ S dx . L odx
-1 x2/3 _sgr(l) 1 x2/3+t£% ' x2/3

. 173 : _41/3
=lim3(1—s )+}£1(1)3(1 t'73)

s—0

—3+3=6
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A similar definition can be established for the lower integration limit.
Improper integrals exist only if these limits exist. For instance, the integral

1
/ —dx = lim [——2] = lim (lz — 1)
x—0* X< o x—0+ \ X

does not exist.

THE FUNDAMENTAL THEOREM OF CALCULUS

The fundamental theorem of calculus shows that integration is the inverse
operation of derivation; it states that, given a continuous function £, any of
its indefinite integrals F is a differentiable function and the following rela-
tionship holds:

dF(x) d [ f(u)du
dx dx

= f(x)

If the function f is not continuous, then the fundamental theorem still
holds, but in any point of discontinuity the derivative has to be replaced with
the left or right derivative dependent on whether or not the function f is left
or right continuous at that point.

Given a continuous function f, any function F such that

dF(x)
dx

= f(x)

is called a primitive or an indefinite integral of the function f. It can be
demonstrated that any two primitives of a function f differ only by a con-
stant. Any primitive of a function f can therefore be represented generically
as an indefinite integral plus a constant.

As an immediate consequence of the fundamental theorem of calculus
we can now state that, given a primitive F of a function f, the definite integral

Lb f(x)dx

can be computed as
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TABLE 3.1 Commonly Used Integrals

flx) / f(x)dx Domain

x" nilx”“ n#—-1, Rx#£0ifn<0

o 1 a+1

x X x>0
a+1

sin x —COoS X R

cos x sin x R

1

- log x x>0

x

e~ e’ R

f'(x)
lo x x) >0

(%) g [f(x)] f(x)

All three properties—the linearity of the integration operation, the chain
rule, and the rule of integration by parts—hold for indefinite integrals:

h(x) =af(x)+ bg(x) = /b(x)dx = a/ f(x)dx + b/g(x)dx
/ Flxgxdx = flx)glx) - f Flx)g (x)dx
y=g(x) = / f(y)dy=/ f(x)g (x)dx

The differentiation formulas established in the previous chapter can now be
applied to integration.
Table 3.1 lists a number of commonly used integrals.

INTEGRAL TRANSFORMS

Integral transforms are operations that take any function f(x) into another
function F(s) of a different variable s through an improper integral

F(s) = / G(s, x) f(x)dx

The function G(s,x) is referred to as the kernel of the transform. The asso-
ciation is one-to-one so that f can be uniquely recovered from its transform
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E For example, linear processes can be studied in the time domain or in the
frequency domain: The two are linked by integral transforms. We will see
how integral transforms are applied to several applications in finance. The
two most important types of integral transforms are the Laplace transform
and Fourier transform. We discuss both in this section.

Laplace Transforms

Given a real-valued function £, its one-sided Laplace transform is an operator
that maps f to the function L(s) = £( f(x)) defined by the improper integral

[ee]

Lis) = 2] f(x)] = f e f(x)dx

0

if it exists.

The Laplace transform of a real-valued function is thus a real-valued
function. The one-sided transform is the most common type of Laplace
transform used in physics and engineering. However, in probability theory,
Laplace transforms are applied to density functions. As these functions are
defined on the entire real axis, the two-sided Laplace transforms are used.
In probability theory, the two-sided Laplace transform is called the moment
generating function. The two-sided Laplace transform is defined by

(o]

Lis) = 21 f(x)] = / ¢ f(x)dx

—0Q

if the improper integral exists.

Laplace transforms “project” a function into a different function space,
that of their transforms. Laplace transforms exist only for functions that are
sufficiently smooth and decay to zero sufficiently rapidly when x — oco. The
following conditions ensure the existence of the Laplace transform:

" f(x) is piecewise continuous.
" f(x) is of exponential order as x— o0, that is, there exist positive real
constants K, a, and T, such that | f(x)| < Ke?*, for x > T.

Note that the above conditions are sufficient but not necessary for
Laplace transforms to exist. It can be demonstrated that, if they exist,
Laplace transforms are unique in the sense that if two functions have the
same Laplace transform they coincide pointwise. As a consequence, the
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Laplace transforms are invertible in the sense that the original function can
be fully recovered from its transform. In fact, it is possible to define the in-
verse Laplace transform as the operator £ '(F(s)) such that

L7 [L(s)] = f(x)
The inverse Laplace transform can be represented as a Bromwich inte-

gral, that is, an integral defined on a contour in the complex plane that leaves
all singularities of the transform to the left:

1 y+ioo
f(X)= — / e**L(s)ds
2ri )
y —ioo

The following conditions ensure the existence of an inverse Laplace
transform:

lim F(s) =0
lim sF(s)is finite

We now demonstrate (without proof) some key properties of Laplace
transforms; and both the one-sided and two-sided Laplace transforms have
these similar properties. The Laplace transform is a linear operator in the
sense that, if f,g are real-valued functions that have Laplace transforms and
a,b are real-valued constants, then the following property holds:

Llaf(x)+ bg(x)] = /e *(af(x) + bg(x))dx

—00

o0

—a/ e f(x dx—l—b/ “*g(x)dx

—00

= al| f(x)] + bLlg(x)]

Laplace transforms turn differentiation, integration, and convolution
(defined below) into algebraic operations. For derivatives the following
property holds for the two-sided transform:

[d’;x ] s f(x)]
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and

r [df(x)

P8 = satrion - roo

for the one-sided transform. For higher derivatives, the following formula
holds for the two-sided transform:

LU )] = "L ) =" F(0) = "2 f1(0) = ... — f1(0)

An analogous property holds for integration for one-sided transforms:

-, _
£ / flx)| = %4[ f(x)] for the one-sided transform
Lo i

N

-, Z
£ / flx)| = 14’[ f(x)] for the two-sided transform
Lo i

Consider now the convolution. Given two functions f and g, their con-
volution h(x) = f(x) * g(x) is defined as the integral

o]

h(x) = (f % g)(x) = f Flx — glt)de

—00

It can be demonstrated that the following property holds:

L[h(x)] = L[ f = g] = £[ f (x)]<£[g(x)]

As we will see in Chapter 9 when we cover differential equations, these
properties are useful in solving differential equations, turning them into al-
gebraic equations. These properties are also used in representing probability
distributions of sums of variables.

The Laplace transform can be used to solve a differential equation. Con-
sider the following first-order linear differential equation:

dN

~—=_\AN
dt
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where A is a decay constant. Rearranging the equation to one side, we have

dN
— +AN=
7 + 0

Next, we take the Laplace transform of both sides of the equation
(sKi(s) — Np) + AKi(s) = 0
where N(s) = L{N(¢)} and Ny = N(0). Solving, we find

N(s) - sI—\i-b)»

Finally, we take the inverse Laplace transform to find the general solu-
tion

Fourier Transforms

Fourier transforms are similar in many respects to Laplace transforms. Given
a function f, its Fourier transform f(w) = 7[ f(x)] is defined as the integral

+00

Pw) = 7 f(x)] = / 21005 f(x)dx

—0Q

if the improper integral exists, where i is the imaginary unity. The Fourier
transform of a real-valued function is thus a complex-valued function. For
a large class of functions the Fourier transform exists and is unique, so that
the original function, £, can be recovered from its transform, 7.

The following conditions are sufficient but not necessary for a function
to have a forward and inverse Fourier transform:

n /oo | f(x)|dx exists.

—0Q
® The function f{x) is piecewise continuous.
® The function f(x) has bounded variation.
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The inverse Fourier transform can be represented as

[e.¢]

Fix) = 7 F()] = / 7 f(o)daw

—00
Fourier transforms are linear operators. The Fourier transform of the

convolutions is the product of Fourier transforms; the Fourier transform of
derivatives and integrals have similar properties to the Laplace transform.

GALGCULUS IN MORE THAN ONE VARIABLE

The definition of the integral can be obtained in the same way as in the one
variable case. The integral is defined as the limit of sums of multidimensional
rectangles. Multidimensional integrals represent the ordinary concept of vol-
ume in three dimensions and 7-dimensional hypervolume in more than three
dimensions. A more general definition of the integral that includes both the
Riemann and the Riemann-Stieltjes as special cases, will be considered in
Chapter 5 where we cover the basics of probability.

KEY POINTS

® Integrals represent the area below a curve; they are the limit of sums
of rectangles that approximate the area below the curve. Furthermore,
integrals can generally be used to represent cumulated quantities, such
as cumulated gains.

® The fundamental theorem of calculus proves that integrals and deriva-
tives are inverse operations insofar as the derivative of the integral of a
function returns the function.

® The integral of the product of a constant and a function is the product
of the constant and the integral of the function.

® The integral of a sum of functions is the sum of the integrals.

® An integral transform is a particular kind of mathematical operator.

® There are numerous useful integral transforms. Each is specified by a
choice of the kernel function.

® An integral transform maps an equation from its original domain into
another domain.

® Manipulating and solving an equation in the target domain can be
much easier than manipulating and solving in the original domain. The
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solution is then mapped back to the original domain with the inverse of
the integral transform.

® Laplace and Fourier transforms of a function are the integral of that
function times an exponential.

= Laplace and Fourier transforms are useful because they transform differ-
entiation and integration into algebraic operations, thereby providing a
method for solving linear differential equations.

= Integration can be extended to functions of more than one variable.
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Matrix Algebra

In mathematics, a matrix is a rectangular array of numbers, symbols,
or expressions, arranged in rows and columns. Matrix algebra gen-
eralizes classical analytical notions such as derivatives and exponen-
tials to higher dimensions. Matrix algebra collects the various partial
derivatives of a single function with respect to many variables, and of a
multivariate function with respect to a single variable, into vectors and
matrices that can be treated as single entities. This greatly simplifies op-
erations, such as finding the maximum or minimum of a multivariate
function and solving systems of differential equations. Calculations in
portfolio theory, financial economics, and financial econometrics rely
on the use of matrix algebra because of the need to manipulate large
data inputs.

® Matrix algebra is used for optimal portfolio selection.

® Matrix algebra is useful for computing expected return of a port-
folio that contains many assets.

® Matrix algebra is useful for computing the variance (or risk) of a
portfolio that contains many assets.

® Optimal portfolio weights are calculated by maximizing the risk-
adjusted return of a portfolio or by maximizing expected utility of
a risk-averse investor. For either case, matrix algebra is useful for
determining optimal asset allocation.

® Matrix algebra is used in financial risk management.

® A matrix is used to describe the outcomes or payoff of an invest-
ment or venture.

® Matrix algebra is used for computing value-at-risk and expected
shortfall of a portfolio that contains many assets.
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® More generally, matrix algebra is used in financial econometrics
that has many applications to asset pricing, risk management, and
option pricing.

® Matrix algebra is used in finance theory to define a complete mar-
ket in which the complete set of possible gambles on future states-
of-the-world can be constructed with existing assets without fric-
tion.

® In complete markets, every agent is able to exchange every good,
directly or indirectly, with every other agent without transaction
costs. In this setting, goods are state-contingent; that is, a good
includes the time and state of the world in which it is consumed. To
test whether a particular market is complete or not, one generally
needs matrix algebra.

What you will learn after reading this chapter:

Basic concepts and essentials of vectors and matrices.

Square matrices and their different types.

Definitions of identity and diagonal matrices and their properties.
How to compute the determinant of a matrix.

The concepts of linear independence and rank.

How to compute the rank of a matrix.

Explanations of vector and matrix operations such as transpose,
addition, and multiplication of matrices.

= How to compute eigenvalues and eigenvectors.

INTRODUCTION

Ordinary algebra deals with operations such as addition and multiplication
performed on individual numbers. In many applications in finance, how-
ever, it is useful to consider operations performed on ordered arrays of num-
bers. This is the domain of matrix algebra. Ordered arrays of numbers are
called vectors and matrices while individual numbers are called scalars. In
this chapter, we will discuss the basics of matrix algebra.
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VECTORS AND MATRICES DEFINED

Let’s now define precisely the concepts of a vector and a matrix.

Vectors

An n-dimensional vector is an ordered array of # numbers. Vectors are gen-
erally indicated with boldface lowercase letters. Thus a vector x is an array
of the form

X = [x1...%,]

The numbers x; are called the components of the vector x.

A vector is identified by the set of its components. Consider the vectors
X =[x1...x,] and y = [y1 ... ¥u]. Two vectors are said to be equal if and
only if they have the same dimensions # =  and the same components:

x=y&xi=y,i=1,..., n

Vectors can be row vectors or column vectors. If the vector components
appear in a horizontal row, then the vector is a row vector, such as, for
instance, the vector

x=[1 2 8 7]

Here are two examples. Suppose that we let w,, be a risky asset’s weight
in a portfolio. Assume that there are N risky assets. Then the following vec-
tor, w, is a row vector that represents a portfolio’s holdings of the N risky
assets:

As a second example of a row vector, suppose that we let 7, be the excess
return for a risky asset. (The excess return is the difference between the return
on a risky asset and the risk-free rate.) Then the following row vector is the
excess return vector:

r=[riry ......... Nl

If the vector components are arranged in a column, then the vector is
called a column vector. For example, in finance a portfolio’s excess return is
assumed to be affected by what can be different characteristics or attributes
or, more popularly, factors that affect all asset prices. A few examples would
be the price-earnings ratio, book-to-value ratio, market capitalization, and
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industry. We can denote for a particular factor a column vector, f, that shows
the exposure of each risky asset’s excess return to that factor:

fi
f

I

fn

where f,, is the exposure of asset # to factor f.

Vector components can be either real or complex numbers. In most fi-
nance applications, vector components are real numbers. Returning to the
row vector w of a portfolio of holdings, a positive value for w, would mean
that risky asset 7 is held in the portfolio. This is referred to as a long position.
A value of zero would mean that risky asset 7 is not held in the portfolio. If
the value of w,, is negative, this means that there is a short position in risky
asset 7.

The (Euclidean) length of a vector x, also called the norm of a vector,

denoted as ||x|, is defined as the square root of the sum of the squares of its
components:

X[ =/ 4+ + %2

Matrices

An n x m matrix is a bidimensional ordered array of # x m numbers. Matri-
ces are usually indicated with boldface uppercase letters. Thus, the generic
matrix A is an 7 x m array of the form

a - ai; - Am
A=|a1 - aj - aim
an1 N an,j © Aum

Note that the first subscript indicates rows, while the second subscript
indicates columns. The entries a;—called the elements of the matrix A—are
the numbers at the crossing of the ith row and the jth column. The commas
between the subscripts of the matrix entries are omitted when there is no risk
of confusion: a;; = a;. A matrix A is often indicated by its generic element
between brackets:

A= {ai/'}nm or A= [ai/]nm

where the subscripts 77 are the dimensions of the matrix.
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We assume that elements are real numbers unless explicitly stated oth-
erwise. If the matrix entries are real numbers, the matrix is called a real
matrix.

Two matrices are said to be equal if they are of the same dimensions and
have the same elements. Consider two matrices A = {a;j},,, and B = {bjj }
of the same order 7 x m:

A = B means {aij}um = {bij}um

SQUARE MATRICES

There are several types of matrices. First there is a broad classification of
square and rectangular matrices. A rectangular matrix can have a different
numbers of rows and columns; a square matrix is a matrix with the same
number 7 of rows as of columns.

Diagonals and Antidiagonals

An important concept for a square matrix is the diagonal. The diagonal
includes the elements that run from the first row, first column to the last
row, last column. For example, consider the following square matrix:

ar - arj - A
A= a1 az,/ Ain
an1 an,; An.n

The diagonal terms are the a;; terms.

The antidiagonals of a square matrix are the other diagonals that do not
run from the first row, first column to the last row, last column. For example,
consider the following 4 x 4 square matrix:

S 9 14 8
2 6 12 11
17 21 42 2
19 73 7 8

The diagonal terms include 3, 6, 42, 8. One antidiagonal is 2, 9. Another an-
tidiagonal is 17, 6, 14. Note that there are antidiagonal terms in rectangular
matrices.
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Identity Matrix

The 7 x n identity matrix, denoted by I,,, is a square matrix whose diagonal
elements are equal to one while all other terms are zero:

o1 - - -0
I, =
0 0 1

A matrix whose entries are all zero is called a zero matrix.

Diagonal Matrix

A diagonal matrix is a square matrix whose elements are all zero except the
ones on the diagonal:

an 0 0
0 [75%) 0
A= '
0 0 Ann

Given a square 7 x 7 matrix A, the matrix dg A is the diagonal matrix
extracted from A. The diagonal matrix dg A is a matrix whose elements are
all zero except the elements on the diagonal that coincide with those of the
matrix A:

air an - - - a ap 0 --- 0

an an - - - 0 ap---0
A= =dgA=

anl A2 - - Au 0o 0 .- Ann

The trace of a square matrix A is the sum of its diagonal elements:

n
trA= Zd,‘,‘
i=1
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A square matrix is said to be a symmetric matrix if the elements above
the diagonal are equal to the corresponding elements below the diagonal:
ajj = aj;. A matrix is called skew-symmetric if the diagonal elements are zero
and the elements above the diagonal are the opposite of the corresponding
elements below the diagonal: a;; = —aj;, i # j, a;; = 0.

The most commonly used symmetric matrix in finance and econometrics
is the covariance matrix, also referred to as the variance-covariance matrix.!
For example, suppose that there are N risky assets and that the variance
of the excess return for each risky asset and the covariances between each
pair of risky assets are estimated. As the number of risky assets is N there
are N? elements, consisting of N variances (along the diagonal) and N* —
N covariances (the antidiagonal terms). Symmetry restrictions reduce the
number of independent elements. In fact the covariance o(¢) between risky
asset 7 and risky asset j will be equal to the covariance between risky asset j
and risky asset i. We can therefore arrange the variances and covariances in
the following square matrix V:

01,1 01,i O1,N
V= 01,i Oii Oi N
O|,N ° OiN * ONN

Notice that V is a symmetric matrix.

Upper and Lower Triangular Matrix

A matrix A is said to be an upper triangular matrix if a;; = 0, i > ;. In other
words, an upper triangular matrix is a matrix whose elements in the triangle
below the diagonal are all zero as is illustrated below:

a1 - adii - A
A=| 0 - a,; - a, | |upper triangular]
0 O an n

"Variances and covariances are described in Chapter 6.
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A matrix A is called lower triangular if a; = 0, i < j. In other words, a
lower triangular matrix is a matrix whose elements in the triangle above the
diagonal are zero as is illustrated below:

arr 0 . 0
A=} - - a; - 0 [lower triangular]
an1 An,i An.n

DETERMINANTS

Consider a square, 7 x 1, matrix A. The determinant of A, denoted |A], is
defined as follows:

|A| — Z (_1)t(/1q'“, Jn) ﬁai/
i=1

where the sum is extended over all permutations (jy,..., j,) of the set (1,
2,...,n) and t(j1,..., j,) is the number of transpositions (or inversions of
positions) required to go from (1,2, ..., 7) to (j1,. .., ju).

Otherwise stated, a determinant is the sum of all different products
formed by taking exactly one element from each row with each product
multiplied by

(_1)t(i1,~~, Jn)

Consider, for instance, the case 7 = 2, where there is only one possible
transposition: 1,2 = 2,1. The determinant of a 2 x 2 matrix is therefore
computed as follows:

0 1
[Al = (=1)"a1a2 + (=1) ana21 = anazxn — annan
The determinant of a 3 x 3 matrix is calculated as follows:
ain a2 a3

a1 Ay A3 | = daii
as1 4asy 4ass

az) a3
asy ass

axr  ax

2
asy  ass asy  asn

ax 23’4—4

= a11 (a22a33 — a23a32) — a12 (421433 — a23a31)
+ai3 (a21a32 — axazi)
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Consider a square matrix A of order 7. Consider the matrix M;; obtained
by removing the ith row and the jth column. The matrix M;; is a square
matrix of order (7 - 1). The determinant [M;| of the matrix Mj; is called the
minor of g;.. The signed minor

(— 1) M|

is called the cofactor of a;; and is generally denoted as «j;. The 7-minors
of the n xm rectangular matrix A are the determinants of the matrices
formed by the elements at the crossing of r different rows and r different
columns of A.

A square matrix A is called singular if its determinant is equal to zero.
An n x m matrix A is of rank 7 if at least one of its (square) r-minors
is different from zero while all (» + 1)-minors, if any, are zero. A non-
singular square matrix is said to be of full rank if its rank 7 is equal to its
order 7.

The easiest way to compute the rank of a matrix A is given by the Gauss
elimination method. The row-echelon form of A produced by the Gauss al-
gorithm has the same rank as A, and its rank can be read off as the number of
Nnonzero rows.

Consider for example the 4 x 4 matrix

o

o
DN ==
“Ln o O W

We see that the second column is twice the first column, and that the
fourth column equals the sum of the first and the third. The first and the
third columns are linearly independent, so the rank of A is two. It produces
the following row echelon form of A:

S o O
(= el V)
SO = O
OO = =

which has two nonzero rows. Hence, the rank of A is two.
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SYSTEMS OF LINEAR EQUATIONS

A system of 7 linear equations in 72 unknown variables is a set of 7z simulta-
neous equations of the following form:

ayax1+ -+ atmXm = b1

ap1X1 + -+ AL mXm = bm

The 7 x m matrix

a - ai; - Am
A=|ain - aij - aim
an1 - Aunj * Aum

formed with the coefficients of the variables is called the coefficient matrix.
The terms b; are called the constant terms.

The augmented matrix [A b]—formed by adding to the coefficient ma-
trix a column formed with the constant term—is represented below:

ar - a1 ﬂl,mbl
[Abl=|ai1 - aij - aimbi
a1 . an.j . an,mbn

If the constant terms on the right side of the equations are all zero, the
system is called homogeneous. If at least one of the constant terms is different
from zero, the system is called nonhomogeneous.

A system is called consistent if it admits a solution, that is, if there is a
set of values of the variables that simultaneously satisfy all the equations.
A system is called inconsistent if there is no set of numbers that satisfy the
system equations.

Let’s first consider the case of nonhomogeneous linear systems. The fun-
damental theorems of linear systems state that:

Theorem 1. A system of # linear equations in 72 unknowns is consistent
(i.e., it admits a solution) if and only if the coefficient matrix and
the augmented matrix have the same rank.
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Theorem 2. 1f a consistent system of 7z equations in 71 variables is of rank
r < m, it is possible to choose 7n— unknowns so that the coefficient
matrix of the remaining » unknowns is of rank » When these m—r
variables are assigned any arbitrary value, the value of the remaining
variables is uniquely determined.

An immediate consequence of the fundamental theorems is that (1) a
system of 7 equations in 7 unknown variables admits a solution; and (2)
the solution is unique if and only if both the coefficient matrix and the aug-
mented matrix are of rank 7.

Let’s now examine homogeneous systems. The coefficient matrix and the
augmented matrix of a homogeneous system always have the same rank and
thus a homogeneous system is always consistent. In fact, the trivial solution
X1 =...= x,, = 0 always satisfies a homogeneous system.

Consider now a homogeneous system of 7 equations in # unknowns. If
the rank of the coefficient matrix is 7, the system has only the trivial solution.
If the rank of the coefficient matrix is # < 7, then Theorem 2 ensures that
the system has a solution other than the trivial solution.

LINEAR INDEPENDENCE AND RANK

Consider an 7 x m matrix A. A set of p columns extracted from the
matrix A

ati, - a1,

Aniy i,

is said to be linearly independent if it is not possible to find p constants
Bs, s = 1,..., p such that the following # equations are simultaneously sat-

isfied:

ﬁlan,il + -+ ﬂpan,ip =0
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Analogously, a set of g rows extracted from the matrix A are said to be
linearly independent if it is not possible to find g constants A;, s = 1,..., g,
such that the following 72 equations are simultaneously satisfied:

Maiy 1+ -+ Agdi 1 = 0

Alail,m + -+ )\qaiq,m =0

It can be demonstrated that in any matrix the number p of linearly inde-
pendent columns is the same as the number g of linearly independent rows.
This number is equal, in turn, to the rank  of the matrix. Recall that an
n x m matrix A is said to be of rank r if at least one of its (square) r-minors
is different from zero while all (» + 1)-minors, if any, are zero. The constant,
p, is the same for rows and for columns. We can now give an alternative def-
inition of the rank of a matrix:

Given an 7 x m matrix A, its rank, denoted rank (A), is the number 7 of
linearly independent rows or columns. This definition is meaningful
because the row rank is always equal to the column rank.

HANKEL MATRIX

In financial econometrics, a technique called an autoregressive integrated
moving average (ARIMA) is often estimated in studying time series data.
To understand this technique, it is important to understand a special type
of matrix, a Hankel matrix. A Hankel matrix is a matrix where, for each
antidiagonal term, the element is the same.

For example, consider the following square Hankel matrix:

17 16 15 24
16 15 24 33
15 24 33 72
24 33 72 41

Each antidiagonal has the same value. Now consider the elements of the an-
tidiagonal running from the second row, first column and first row, second
column. Both elements have the value 16. Consider another antidiagonal
running from the fourth row, second column to the second row, fourth col-
umn. All of the elements have the value 33.
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An example of a rectangular Hankel matrix would be
72 60 55 43 30 21

60 55 43 30 21 10
55 43 30 21 10 80

Notice that a Hankel matrix is a symmetric matrix.>
Consider an infinite sequence of square 7 x 7 matrices:

HO? Hlv T Hiv"'

The infinite Hankel matrix H is the following matrix:

Hy, H, H
H H

H=| H

The rank of a Hankel matrix can be defined in three different ways:

1. The column rank is the largest number of linearly independent sequence
columns.

2. The row rank is the largest number of linearly independent sequence
rows.

3. The rank is the superior of the ranks of all finite matrices of the type:

Hy H; - Hxy
H, H

HN’ N’ = . 1 . 2 . .
Hy - - Hagw

2 A special case of a Hankel matrix is when the values for the elements in the first
row of the matrix are repeated in each successive row such that its value appears one
column to the left. For example, consider the following square Hankel matrix:

41 32 23 14
32 23 14 41
23 14 41 32
14 41 32 23

This type of Hankel matrix is called an anticirculant matrix.
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As in the finite-dimensional case, the three definitions are equivalent in the
sense that the three numbers are equal, if finite, or they are all three infinite.

VECTOR AND MATRIX OPERATIONS

Let’s now introduce the most common operations performed on vectors and
matrices. An operation is a mapping that operates on scalars, vectors, and
matrices to produce new scalars, vectors, or matrices. The notion of oper-
ations performed on a set of objects to produce another object of the same
set is the key concept of algebra. Let’s start with vector operations.

Vector Operations

The following operations are usually defined on vectors: (1) transpose, (2)
addition, and (3) multiplication.

Transpose The transpose operation transforms a row vector into a column
vector and vice versa. Given the row vector x = [x1...x,] its transpose,
denoted as x” or x/, is the column vector:

X1

Xn

Clearly the transpose of the transpose is the original vector:

Addition Two row (or column) vectors x = [x1 ... X,], ¥y = [¥1 ... V.| with
the same number 7 of components can be added. The addition of two vectors
is a new vector whose components are the sums of the components:

X+y =[x 4y X+ Yl
This definition can be generalized to any number N of summands:
N

N N
> = | T Lo
1 i=1 i=1

i=
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The summands must be both column or row vectors; it is not possible to add
row vectors to column vectors.

It is clear from the definition of addition that addition is a commutative
operation in the sense that the order of the summands does not matter: x +
y =y + x. Addition is also an associative operation in the sense that x +
(y+z)=x+y) +z

Multiplication We define two types of multiplication: (1) multiplication of
a scalar and a vector and (2) scalar multiplication of two vectors (inner
product).

The multiplication of a scalar A and a row (or column) vector x, denoted
as Ax, is defined as the multiplication of each component of the vector by
the scalar:

AX = [Axg - AX,]

As an example of the multiplication of a vector by a scalar, consider the
vector of portfolio weights w = [w; ... w,]. If the total portfolio value at a
given moment is P, then the holding in each asset is the product of the value
by the vector of weights:

Pw = [Pw; --- Pw,]

A similar definition holds for column vectors. It is clear from this defi-
nition that

llax|| = la| [Ix]]
and that multiplication by a scalar is associative as
a(x+y) =ax+ay

The scalar (or inner) product of two vectors of the same dimensions x,
y, denoted as x -y, is defined between a row vector and a column vector.
The scalar product between two vectors produces a scalar according to the
following rule:

X y=) Xy
i=1
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For example, consider the column vector f of a particular attribute dis-
cussed earlier and the row vector w of portfolio weights. Then w - f is a
scalar that shows the exposure of the portfolio to the particular attribute.
That is,

= Zwan

n=1

As another example, a portfolio’s excess return is found by taking vec-
tor of portfolio weights w and multiplying it by the transpose of the excess
return vector, r. That is,

1
)
werl =[wywy - wnl | -
N
N
= ZLUNT,,
n=1

Two vectors x, y are said to be orthogonal if their scalar product is zero.
The scalar product of two vectors can be interpreted geometrically as an
orthogonal projection. In fact, the inner product of vectors x and y, divided
by the square norm of y, can be interpreted as the orthogonal projection of
x onto y. The following two properties are an immediate consequence of the
definitions:

IxIl = VXX
(ax) - (by) = abx -y

Matrix Operations

Let’s define the following five operations on matrices: (1) transpose, (2) ad-
dition, (3) multiplication, (4) inverse, and (5) adjoint.
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Transpose The definition of the transpose of a matrix is an extension of
the transpose of a vector. The transpose operation consists in exchanging
rows with columns. Consider the 7 x 7 matrix

A = {ajj}um

The transpose of A, denoted AT or A/, is the 7 x n matrix whose ith row is
the ith column of A:

AT ={a;i}m
The following should be clear from this definition:
(AT =A
and that a matrix is symmetric if and only if
AT=A
Addition Consider two 7 x m matrices
A = {aijlum
and
B = {bij}ym

The sum of the matrices A and B is defined as the 7 x m matrix obtained by
adding the respective elements:

A+B= {d,‘/‘ + bt;}nm

Note that it is essential for the definition of addition that the two matrices
have the same order 7 x m.

The operation of addition can be extended to any number N of sum-
mands as follows:

N N
>a- (S
s=1 s=1

nm

where ag; is the generic 7,/ element of the sth summand.
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The following properties of addition are immediate from the definition
of addition:

A+B=B+A
A+B+C) =(A+B)+C=A+B+C
tr(A+B)=trA+trB

The operation of addition of vectors defined above is clearly a special case
of the more general operation of addition of matrices.

Multiplication Consider a scalar ¢ and a matrix:
A= {aij}nm

The product cA = Ac is the # x m matrix obtained by multiplying each ele-
ment of the matrix by c:

cA = Ac = {cajj}um

Multiplication of a matrix by a scalar is associative with respect to matrix
addition:

c(A+B)=cA+cB
Let’s now define the product of two matrices. Consider two matrices:
A = {ait}np
and
B = {b;} pm

The product C = AB is defined as follows:

p
C=AB = {¢;} = {Zanbﬁ}
t=1

The product C = AB is therefore a matrix whose generic element {c;} is
the scalar product of the ith row of the matrix A and the jth column of
the matrix B. This definition generalizes the definition of scalar product of
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vectors: The scalar product of two n-dimensional vectors is the product of
an 7 x 1 matrix (a row vector) for a 1 x 7 matrix (the column vector).

Following the above definition, the matrix product operation is per-
formed rows by columns. Therefore, two matrices can be multiplied only
if the number of columns (i.e., the number of elements in each row) of the
first matrix equals the number of rows (i.e., the number of elements in each
column) of the second matrix.

Suppose we multiply a 3 x 3 matrix by a 3 x 2 matrix:

1 2 3
A=|4 5 6 B =
7 8 9

3x3

R |\ r

y
b
5 3x2

Using the inner product approach, we obtain

1x+2a+3a 1y+2b+38
A3x3-Bsxo= | 4x+5a+6a 4y+5b+6p
7x+8a+9% Ty+8b+98/, ,
If we generalize, multiplying a k x 7 matrix by a m x 7 matrix yields a
a k x n matrix.
The following two distributive properties hold:

C(A+B)=CA+CB

(A+B)C =AC +BC
The associative property also holds:
(AB)C = A(BC)

However, the matrix product operation is not commutative. In fact, if A and
B are two square matrices, in general AB # BA. Also AB = 0 does not imply
A=0o0rB=0.

Inverse and Adjoint Consider two square matrices of order 7, A and B. If
AB = BA =1, then the matrix B is called the inverse of A and is denoted as

A~'. It can be demonstrated that the two following properties hold:

Property 1. A square matrix A admits an inverse A~! if and only if it is
nonsingular, that is, if and only if its determinant is different from
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zero. Otherwise stated, a matrix A admits an inverse if and only if
it is of full rank.

Property 2. The inverse of a square matrix, if it exists, is unique. This
property is a consequence of the property that, if A is nonsingular,
then AB = AC implies B = C.

Consider now a square matrix of order # A = {a;;} and consider its co-
factors a;;. Recall that the cofactors a;; are the signed minors (—1)%+/)| M;]|
of the matrix A. The adjoint of the matrix A, denoted as Adj(A), is the fol-
lowing matrix:

T
(2275 R 2 Y A S W7 @11 - 021 - Uy
Adj(A) =| ai1 - i - g | = | 01 @ Uy
07781 . an,j © Opn Ul - 02 " Oppy

The adjoint of a matrix A is therefore the transpose of the matrix obtained
by replacing the elements of A with their cofactors.
If the matrix A is nonsingular, and therefore admits an inverse, it can be
demonstrated that
_ _ Adj(A)
|A]

A square matrix A of order 7 is said to be orthogonal if the following
property holds:

AA'=AA =1,

Because in this case A must be of full rank, the transpose of an orthogonal
matrix coincides with its inverse: A™! = A/,

FINANCE APPLICATION

In financial economics, a complete market (or complete system of markets)
is one in which the complete set of possible gambles on future states-of-the-
world can be constructed with existing assets without friction. Every agent
is able to exchange every good, directly or indirectly, with every other agent
without transaction costs. Here goods are state-contingent; that is, a good
includes the time and state of the world in which it is consumed. A state of
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the world is a complete specification of the values of all relevant variables
over the relevant time horizon. A state-contingent claim is a contract whose
future payoffs depend on future states of the world.

Consider the linear system of equations defined for a series of Q, in-
dexed by the state of the world i:

1 1
St 2o o)

Sn,tg z}l Ce z:t’ QI

The left-hand side shows that the vector of current asset prices observed
at time #. The right-hand side has two components. The first is the matrix
of possible values for these prices at time T, and the second is a vector of
constants {Ql e, Q}

The fundamental theorem of asset pricing indicates that the time %
prices for the {Si;,} are arbitrage-free if and only if { O’} exist and are pos-
itive. In fact, the theory works both ways. If {S,, } are arbitrage-free, then
{O'} exist and are all positive. If { O’} exist and are positive, then the { Sk }
are arbitrage-free.

As mentioned above, a complete set of financial assets on future states-
of-the-world can be constructed with existing assets without financial mar-
ket frictions.> We now present an example for this kind of replication. We
will show how a set of elementary insurance contracts can be used in replicat-
ing another set of instruments with arbitrary payoffs. Consider an arbitrary
financial asset, S;, that is worth 2’ in state of the world 7 at time T. Given 7
insurance contracts C;, we can immediately form a replicating portfolio for
this asset. We can consider buying the following portfolio:

{le units of Cy, zzT units of Cy, .. ., 2% units of Cn}

At time T, this portfolio should be worth exactly the same as the S;, since
whatever state occurs, the basket of insurance contracts will make the same
time-T payoff as the original asset. This provides an immediate synthetic for
the S;. Accordingly, if there are no arbitrage opportunities, the value of the
portfolio and the value of the S; will be identical as of time ¢ as well.

3Financial market frictions include transaction costs, taxes, and other factors that
interfere with a trade.
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As an exampl¢, consider four independent assets Sp;, k=1, ...,4 with
different payoffs zj, in the states i = 1,..., 4. We can find one synthetic for
each S, by purchasing the portfolios:

{2} units of Cy, 27 units of Cy, 2 units of C3, 2} units of C4}

Putting these in matrix form, we see that arbitrage-free values, S, of
these assets at time ¢y have to satisfy the matrix equation:

1 1+7’to 1~|—7’t0 1~|—7'to 1+1’to
SRR AR A i
: 1 2 3 4
San | = 9) ) ) 2 o
S3.0 z 3 3 4 o
S4.1 1 2 3 4
z; 2 z3 z

where the first asset above is a risk-free savings deposit account. If $1 is
deposited at time ¢, (1 + 7,) can be earned next period without any risk
of default. The 7, is the rate that is observed as of time #y. Given the prices
of actively traded insurance contracts C;, we can easily calculate the time-¢
cost of forming the portfolio:

COSt=Z%~~C1+Z%-'C2+Z%~~C3+Z‘%'C4

Suppose the S, has the following payoffs in the states of the world i =
1,...,4:

{27 = 10,27 = 1, 23 = 14,2} = 16}
Suppose we observe the following prices for the insurance contracts:
{C;=03,C,=02,C3=04,C4 =0.07}
Then, the total cost of the insurance contracts purchased will be:
cost = 10 - (0.3) + 1-(0.2) + 14 - (0.4) + 16 - (0.07) = 9.92

Hence, the current price of S; should be equal to 9.92 as well.
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EIGENVALUES AND EIGENVEGTORS

Consider a square matrix A of order 7 and the set of all #-dimensional vec-
tors. The matrix A is a linear operator on the space of vectors. This means
that A operates on each vector producing another vector and that the fol-
lowing property holds:

A(ax + by) = aAx + bAy

Consider now the set of vectors x such that the following property

holds:

Ax = Ax
Any vector such that the above property holds is called an eigenvector of the
matrix A and the corresponding value of A is called an eigenvalue.

To determine the eigenvectors of a matrix and the relative eigenvalues,
consider that the equation Ax = Ax can be written as follows:

(A—2ADx =0

which can, in turn, be written as a system of linear equations:

ag— A - A . a1n x1
A-A)x=| a1 - aGi—r -  adin x | =0
an1 . A, j © Apn — A Xn

This system of equations has nontrivial solutions only if the matrix
A — Al is singular. To determine the eigenvectors and the eigenvalues of the
matrix A we must therefore solve the equation

a1 — A - A ‘ a1,n
A-M=| a1 - ai—% - an |=0
ani : Ay, j © Aun — A

The expansion of this determinant yields a polynomial ¢(1) of degree
n known as the characteristic polynomial of the matrix A. The equation
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¢(1) = 0 is known as the characteristic equation of the matrix A. In general,
this equation will have 7 roots & which are the eigenvalues of the matrix A.
To each of these eigenvalues corresponds a solution of the system of linear
equations as illustrated below:

a1 —As - ai,j : a1 X1,
a1 ©oaii—hs - Ain x| =0
an,1 N an,i © Aun — )‘«s X,

Each solution represents the eigenvector x, corresponding to the eigenvector
As.

DIAGONALIZATION AND SIMILARITY

Diagonal matrices are much easier to handle than fully populated matrices.
It is therefore important to create diagonal matrices equivalent (in a sense
to be precisely defined) to a given matrix. Consider two square matrices A
and B. The matrices A and B are called similar if there exists a nonsingular
matrix R such that

B =R 'AR
The following two theorems can be demonstrated:

Theorem 1. Two similar matrices have the same eigenvalues.

Theorem 2. 1f y; is an eigenvector of the matrix B=R~! AR correspond-
ing to the eigenvalue 2;, then the vector x; = Ry, is an eigenvector
of the matrix A corresponding to the same eigenvalue A;.

A diagonal matrix of order »n always has # linearly independent eigenvec-
tors. Consequently, a square matrix of order # has # linearly independent
eigenvectors if and only if it is similar to a diagonal matrix.

Suppose the square matrix of order # has 7 linearly independent eigen-
vectors x; and 7 distinct eigenvalues A;. This is true, for instance, if A is



Matrix Algebra 83

a real, symmetric matrix of order n. Arrange the eigenvectors, which are
column vectors, in a square matrix: P = {x;}. It can be demonstrated
that P~'AP is a diagonal matrix where the diagonal is made up of the
eigenvalues:

M 0 0 0 0
0 0 0 0
P'AP=|0 0 A 0 O
0 0 0 0
0 0 0 0 A,

SINGULAR VALUE DEGOMPOSITION

Suppose that the 7 x m matrix A with 7 > 7 has rank(A) = r > 0. It can be
demonstrated that there exists three matrices U, W, V such that the following
decomposition, called singular value decomposition, holds:

A=UWV

and such that U is #n x r with U U = I,; W is diagonal, with nonnegative
diagonal elements; and V is 7 x r with V'V =1,.

KEY POINTS

® In representing and modeling economic and financial phenomena it is
useful to consider ordered arrays of numbers as a single mathematical
object.

® Ordered arrays of numbers are called vectors and matrices; vectors are
a particular type of matrix.

= Ttis possible to consistently define operations on vectors and matrices in-
cluding the multiplication of matrices by scalars, sum of matrices, prod-
uct of matrices, and inversion of matrices.

® Determinants are numbers associated with square matrices defined as
the sum of signed products of elements chosen from different rows and
columns.

® A matrix can be inverted only if its determinant is not zero.
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The eigenvectors of a square matrix are those vectors that do not change
direction when multiplied by the matrix.

The column rank of a matrix is the maximum number of linearly inde-
pendent column vectors of the matrix.

The row rank of a matrix is the maximum number of linearly indepen-
dent row vectors of the matrix.

A matrix that has a rank as large as possible is said to have full rank;
otherwise, the matrix is rank deficient.
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Basic Concepts

s tandard finance theory generally rules out the conditions that in-
vestors have about uncertainty vis-a-vis the probability distribution
of asset returns. However, Frank Knight in his book Risk, Uncertainty
and Profit, published in 1921, draws a distinction between risk and
true uncertainty and argues that uncertainty is more common in the
decision-making process. He points out that risk occurs where the fu-
ture is unknown, however, the probability of all possible outcomes
is known. Uncertainty occurs where the probability distribution is it-
self unknown. Knight’s distinction between risk and uncertainty im-
plies that risk is related to the objective distribution of return or the
subjective distribution of return commonly agreed on by all investors,
whereas uncertainty is related to the probability distribution unique
to an individual investor. Probability theory is useful to understand
and investigate the changes in prices, riskiness, and uncertainty about
financial instruments. Probability theory is also useful to understand
and investigate the changes in state variables, such as financial fac-
tors and macroeconomic fundamentals, that affect consumption and
investment opportunities for investors. Using probability theory:

® One can examine the empirical return distribution of assets such
as stocks, bonds, currencies, and commodities.

® One can estimate expected return and risk of assets.

® One can determine how expected prices of assets change from one
economic state to another (e.g., moving from economic recessions
to expansions or vice versa).
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® One can come up with a better option pricing model than the stan-
dard Black-Scholes model if it is detected that real market asset
returns significantly depart from the commonly used assumption
of returns being normally distributed.

® One can come up with more accurate predictions of future finan-
cial market downturns.

® One can focus on the tail events and estimate downside risk mea-
sures of a portfolio or a trading position more precisely.

What you will learn after reading this chapter:

® How to interpret probability and how to represent uncertainty
with mathematics.

® How to define probability as a mathematical axiomatic theory.

= How to define probability with space, sigma-algebra, and proba-
bility measure.

® The meaning and statistical use of random variables and random
vectors.

® How to define distribution and density functions of random vari-
ables.

® The meaning and statistical use of stochastic processes.

® Probabilistic representation of financial markets.

INTRODUCTION

Probability is the standard mathematical representation of risk and uncer-
tainty in finance. In this chapter and the next, we provide the fundamentals
of probability theory. Before we delve into the topic of probability theory,
we provide a brief and helpful description of its role in one of the key tasks
in asset management: generating superior returns by producing realistic and
reasonable return expectations and forecasts. Probability, however, is only
part of the analytical toolkit needed to accomplish this task. When we cover
optimization techniques in Chapter 7, we describe the prevailing theory for
the selection of assets to include in a portfolio (i.e., the theory that tells
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investors how to construct an optimal portfolio). This theory of portfolio
selection is the Markowitz mean-variance framework. It says that an in-
vestor’s objective is to construct a portfolio of securities that has the largest
expected return for a given level of risk as measured by the portfolio’s vari-
ance. Another key measure in the Markowitz mean-variance framework is
the covariance. These three measures used in the Markowitz mean-variance
framework—expected return, variance, and covariance—are measures that
draw from probability theory, and we will explain each one in this chapter.
Of course, since investors do not know the true values of the securities’ ex-
pected returns, variances, and covariances, these must be estimated or fore-
casted. This is where the various statistical estimation models that draw from
the field of financial econometrics come into play.

The concept of forecastability rests on how one can forecast the fu-
ture given the current state of knowledge. In probability theory, the state
of knowledge on a given date is referred to as the information set known at
that date. Forecasting is the relationship between the information set today
and future events. The merits of security return forecasting are the subject
of an ongoing debate. Because most of our knowledge is uncertain, forecasts
are also uncertain.

Probability theory provides the conceptual tools to represent and mea-
sure the level of uncertainty. Basically, probability theory assigns a number—
which we refer to as the “probability”—to every possible event. How this
number, the probability, might be interpreted is explained in this chapter.
Because we must rely on probability to understand the concepts of pre-
dictability and unpredictability, we will need other concepts covered in the
next chapter: conditional probability, conditional expectation, independent
and identically distributed random variables, white noise, and martingale.
Conditional probability and conditional expectation are fundamental in the
probabilistic description of financial markets.

REPRESENTING UNCERTAINTY
WITH MATHEMATICS

Because we cannot build purely deterministic models of financial markets we
need a mathematical representation of uncertainty. Probability theory is the
mathematical description of uncertainty that presently enjoys the broadest
diffusion. It is the paradigm of choice for mainstream finance theory. How-
ever, it is by no means the only way to describe uncertainty. Other mathe-
matical paradigms for uncertainty include, for example, fuzzy measures.



88 MATHEMATICAL METHODS FOR FINANCE

Though probability as a mathematical axiomatic theory is well known,
its interpretation is still the subject of debate. There are three basic interpre-
tations of probability:

B Probability as “intensity of belief”?
® Probability as “relative frequency”?
® Probability as an axiomatic system?

The idea of probability as intensity of belief was introduced by John
Maynard Keynes in his Treatise on Probability. In science as in our daily
lives, we have beliefs that we cannot strictly prove but to which we attribute
various degrees of likelihood. We judge not only the likelihood of individual
events but also the plausibility of explanations. If we espouse probability
as intensity of belief, probability theory is then a set of rules for making
consistent probability statements. The obvious difficulty here is that one can
judge only the consistency of probability reasoning, not its truth. Bayesian
probability theory (which we will discuss later in the chapter) is based on
the interpretation of probability as intensity of belief.

Probability as relative frequency is the standard interpretation of prob-
ability in the physical sciences. Essentially, it equates probability statements
with statements about the frequency of events in large samples; an unlikely
event is an event that occurs only a small number of times. The difficulty
with this interpretation is that relative frequencies are themselves uncertain.
If we accept a probability interpretation of reality, there is no way to leap to
certainty. In the physical sciences, we usually deal with very large numbers—
so large that nobody expects probabilities to deviate from their relative fre-
quency. Nevertheless, the conceptual difficulty exists. As the present state
of affairs might be a very unlikely one, probability statements can never be
proved empirically.

The two interpretations of probability—as intensity of belief and as rel-
ative frequency—are therefore complementary. We make probability state-
ments such as statements of relative frequency that are, ultimately, based on
an a priori evaluation of probability insofar as we rule out, in practice, highly
unlikely events. This is evident in most procedures of statistical estimation.

'Keynes, Treatise on Probability (London: Macmillan, 1921).

2Mises, Wahrscheinlichkeitsrechnung, Statistik unt Wabrbeit (Vienna: Julius Spring,
1928). (English edition published in 1939, Probability, Statistics and Truth.)
SKolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung (Berlin: Springer,
1933). (English edition published in 1950, Foundations of the Theory of
Probability.)



Probability 89

A statistical estimate is a rule to choose the probability scheme in which
one has the greatest faith. In performing statistical estimation, one chooses
the probabilistic model that yields the highest probability based on the
observed sample. This is strictly evident in maximum likelihood estimates
but it is implicit in every statistical estimate. Bayesian statistics allow one to
complement such estimates with additional a priori probabilistic judgment.

The axiomatic theory of probability avoids the above problems by inter-
preting probability as an abstract mathematical quantity. Developed primar-
ily by the Russian mathematician Andrei Kolmogorov, the axiomatic theory
of probability eliminated the logical ambiguities that had plagued proba-
bilistic reasoning prior to his work. The application of the axiomatic theory
is, however, a matter of interpretation.

In financial economic theory, probability might have two different mean-
ings: (1) as a descriptive concept and (2) as a determinant of the agent
decision-making process. As a descriptive concept, probability is used in the
sense of relative frequency, similar to its use in the physical sciences: The
probability of an event is assumed to be approximately equal to the relative
frequency of its occurrence in a large number of experiments. There is one
difficulty with this interpretation, which is peculiar to economics: empiri-
cal data (i.e., financial and economic time series) have only one realization.
Every estimate is made on a single time-evolving series. If stationarity (or a
well-defined time process) is not assumed, performing statistical estimation
is impossible.

PROBABILITY IN A NUTSHELL

In making probability statements, we must distinguish between outcomes
and events. Outcomes are the possible results of an experiment or an obser-
vation, such as the price of a security at a given moment. However, proba-
bility statements are not made on outcomes but on events, which are sets of
possible outcomes. Consider, for example, the probability that the price of
a security be in a given range, say from $10 to $12, in a given period.

In a discrete probability model (i.e., a model based on a finite or at most
a countable number of individual events), the distinction between outcomes
and events is not essential as the probability of an event is the sum of the
probabilities of its outcomes. If, as happens in practice, prices can vary by
only one-hundredth of a dollar, there are only a countable number of possible
prices and the probability of each event will be the sum of the individual
probabilities of each admissible price.

However, the distinction between outcomes and events is essential when
dealing with continuous probability models. In a continuous probability
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model, the probability of each individual outcome is zero though the prob-
ability of an event might be a finite number. For example, if we represent
prices as continuous functions, the probability that a price assumes any par-
ticular real number is strictly zero, though the probability that prices fall in
a given interval might be other than zero.

Probability theory is a set of rules for inferring the probability of an event
from the probability of other events. The basic rules are surprisingly simple.
The entire theory is based on a few simple assumptions. First, the universe
of possible outcomes or measurements must be fixed. This is a conceptually
important point. If we are dealing with the prices of an asset, the universe is
all possible prices; if we are dealing with 7 assets, the universe is the set of all
possible 7-tuples of prices. If we want to link 7 asset prices with k economic
quantities, the universe is all possible (z + k)-tuples made up of asset prices
and values of economic quantities.

Second, as our objective is to interpret probability as relative frequencies
(i.e., percentages), the scale of probability is set to the interval [0,1]. The
maximum possible probability is one, which is the probability that any of the
possible outcomes occurs. The probability that none of the outcomes occurs
is 0. In continuous probability models, the converse is not true as there are
nonempty sets of measure zero. In other words, in continuous probability
models, a probability of one is not equal to certainty.

Third, and last, the probability of the union of disjoint events is the sum
of the probabilities of individual events.

All statements of probability theory are logical consequences of these ba-
sic rules. The simplicity of the logical structure of probability theory might
be deceptive. In fact, the practical difficulty of probability theory consists in
the description of events. For instance, derivative contracts link in possibly
complex ways the events of the underlying with the events of the derivative
contract. Though the probabilistic “dynamics” of the underlying phenom-
ena can be simple, expressing the links between all possible contingencies
renders the subject mathematically complex.

Probability theory is based on the possibility of assigning a precise un-
certainty index to each event. This is a stringent requirement that might be
too strong in many instances. In a number of cases we are simply uncertain
without being able to quantify uncertainty. It might also happen that we can
quantify uncertainty for some but not all events. There are representations
of uncertainty that drop the strict requirement of a precise uncertainty index
assigned to each event.*

“Examples include fuzzy measures and the Dempster-Schafer theory of uncertainty.
The latter representations of uncertainty have been widely used in artificial intelli-
gence (Al) and engineering applications, but their use in economics and finance has
so far been limited.
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Let’s now examine probability as the key representation of uncertainty,
starting with a more formal account of probability theory.

OUTGOMES AND EVENTS

The axiomatic theory of probability is based on three fundamental concepts:
(1) outcomes, (2) events, and (3) measure. The outcomes are the set of all
possible results of an experiment or an observation. The set of all possi-
ble outcomes is often written as the set . For instance, in the dice game a
possible outcome is a pair of numbers, one for each face, such as 6 + 6 or
3 + 2. The space € is the set of all 36 possible outcomes.

Events are sets of outcomes. Continuing with the example of the dice
game, a possible event is the set of all outcomes such that the sum of the
numbers is 10. Probabilities are defined on events, not on outcomes. To ren-
der definitions consistent, events must be a class J of subsets of  with the
following properties:

Property 1. J is not empty.
Property 2.1f A € J then A® € J; AC is the complement of A with respect
to ©, made up of all those elements of Q that do not belong to A.

Property 3. 1f A; € Jfori=1,2,... then[ ;A €7.

Every such class is called a o-algebra. Any class for which Property 3 is
valid only for a finite number of sets is called an algebra.

Given a set © and a o-algebra & of subsets of ©, any set A € & is said to
be measurable with respect to &. The pair (2,8) is said to be a measurable
space (not to be confused with a measure space, defined later in this chapter).
Consider a class & of subsets of Q2 and consider the smallest o-algebra that
contains &, defined as the intersection of all the o-algebras that contain .
That o-algebra is denoted by o {&} and is said to be the o-algebra generated
by &.

A particularly important space in probability is the Euclidean space.
Consider first the real axis R (i.e., the Euclidean space R! in one dimen-
sion). Consider the collection formed by all intervals open to the left and
closed to the right, for example, (a,b]. The o-algebra generated by this set is
called the 1-dimensional Borel o-algebra and is denoted by B. The sets that
belong to B are called Borel sets.

Now consider the 7-dimensional Euclidean space R”, formed by n-tuples
of real numbers. Consider the collection of all generalized rectangles open
to the left and closed to the right, for example, ((a1, b1] x -+ X (a,, b,]).
The o-algebra generated by this collection is called the 7-dimensional Borel
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o-algebra and is denoted by 98”. The sets that belong to 95" are called -
dimensional Borel sets.

The above construction is not the only possible one. The B”, for any
value of 7, can also be generated by open or closed sets. As we will see later
in this chapter, 8" is fundamental to defining random variables. It defines a
class of subsets of the Euclidean space on which it is reasonable to impose
a probability structure: the class of every subset would be too big while
the class of, say, generalized rectangles would be too small. The 8" is a
sufficiently rich class.

PROBABILITY

Intuitively speaking, probability is a set function that associates to every
event a number between 0 and 1. Probability is formally defined by a triple
(©2,7,P) called a probability space, where Q is the set of all possible outcomes,
J the event o-algebra, and P a probability measure.

A probability measure P is a set function from J to R (the set of real
numbers) that satisfies three conditions:

Condition 1. 0 < P(A), for all A € 7.
Condition 2. P(Q) = 1.

Condition 3. P(U A;) = ZP(A;) for every finite or countable collection
of disjoint events {A;} such that A; € J.

J does not have to be a o-algebra. The definition of a probability space
can be limited to algebras of events. However it is possible to demonstrate
that a probability defined over an algebra of events X can be extended in a
unique way to the o-algebra generated by .

Two events are said to be independent if:

P(AN B) = P(A)P(B)

The (conditional) probability of event A given event B, written as
P(A|B), is defined as follows:

P(AN B)

P(A|B) = 20

It is possible to deduct from simple properties of set theory and from
the disjoint additivity of probability that

P(AUB) = P(A)+ P(B) — P(AN B) < P(A) + P(B)
P(A) =1 — P(AC)
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Bayes’ theorem is a rule that links conditional probabilities. It can be
stated in the following way:

_ P(ANB) _ P(ANB)P(A) _ P(A)
PAB)=—55 = smra P s

~

Bayes’ theorem allows one to recover the probability of the event A given
B from the probability of the individual events A, B, and the probability of
B given A.

Discrete probabilities are a special instance of probabilities. Defined over
a finite or countable set of outcomes, discrete probabilities are nonzero over
each outcome. The probability of an event is the sum of the probabilities of
its outcomes. In the finite case, discrete probabilities are the usual combina-
torial probabilities.

MEASURE

A measure is a set function defined over an algebra or o-algebra of sets,
denumerably additive, and such that it takes value zero on the empty set
but can otherwise assume any positive value including, conventionally, an
infinite value. A probability is thus a measure of total mass 1 (i.e., it takes
value 1 on the set Q).

A measure can be formally defined as a function M(A) from an algebra
or a o-algebra J to R (the set of real numbers) that satisfies the following
three properties:

Property 1. 0 < M(A), for every A € 7.
Property 2. M(J) = 0.

Property 3. M(U A;) = X M(A;) for every finite or countable collection
of disjoint events {A;} such that A; € 7.

If M is a measure defined over a o-algebra 7, the triple (2,J,M) is called
a measure space (this term is not used if J is an algebra). Recall that the
pair (£2,J) is a measurable space if J is a o-algebra. Measures in general,
and not only probabilities, can be uniquely extended from an algebra to the
generated o-algebra.

RANDOM VARIABLES

Probability is a set function defined over a space of events; random variables
transfer probability from the original space  into the space of real numbers.
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Given a probability space (£2,7,P), a random variable X is a function X(w)
defined over the set 2 that takes values in the set R of real numbers such that

(w: X(w) <x) €T

for every real number x. In other words, the inverse image of any interval
(—o0,x] is an event. It can be demonstrated that the inverse image of any
Borel set is also an event.

A real-valued set function defined over Q2 is said to be measurable with
respect to a o-algebra J if the inverse image of any Borel set belongs to 7.
Random variables are real-valued measurable functions. A random variable
that is measurable with respect to a o-algebra cannot discriminate between
events that are not in that o-algebra. This is the primary reason why the ab-
stract and rather difficult concept of measurability is important in probabil-
ity theory. By restricting the set of events that can be identified by a random
variable, measurability defines the “coarse graining” of information relative
to that variable. A random variable X is said to generate & if & is the smallest
o-algebra in which it is measurable.

INTEGRALS

In Chapter 3 where we discussed integral calculus we defined the integral of
a real-valued function on the real line. However, the notion of the integral
can be generalized to a general measure space. Though a bit technical, these
definitions are important in the context of probability theory.

For each measure M, the integral is a number that is associated to every
integrable function f. It is defined in the following two steps:

Step 1. Suppose that f is a measurable, nonnegative function and con-
sider a finite decomposition of the space €2, that is to say a finite
collection of disjoint subsets A; C  whose union is Q:

A; Cc Qsuchthat AN A =¢@fori#jand U A =Q
Consider the sum

Zinf(f(w) cw e A))M(A;)

The integral

Q/ M
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is defined as the supremum, if it exists, of all these sums over all
possible decompositions of €. Suppose that f is bounded and non-
negative and M(2) < oo. Let’s call

S_ng(i:gwwwmm>

i

the lower integral and

_ (sup f(w)M(A;))
St = inf (Z e )

1

the upper integral. It can be demonstrated that if the integral exists
then ST = S_. It is possible to define the integral as the common
value S = St = S_. This approach is the Darboux-Young approach
to integration.’

Step 2. Given a measurable function f not necessarily nonnegative, con-
sider its decomposition in its positive and negative parts f = f T —
f~. The integral of fis defined as the difference, if a difference exists,
between the integrals of its positive and negative parts.

The integral can be defined not only on € but on any measurable set G.
In order to define the integral over a measurable set G, consider the indi-
cator function I, which assumes value 1 on each point of the set G and 0
elsewhere. Consider now the function f - I. The integral over the set G is

defined as

ZmM:!}tkﬂa

The integral [ fdM is called the indefinite integral of f.
G

Given a o-algebra J, suppose that G and M are two measures and that
a function f exists such that for A € J

qm:/mM

A

3See Billingsley, Probability and Measure, 2nd ed. (New York: John Wiley & Sons,
1985).
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In this case G is said to have density f with respect to M.

The integrals in the sense of Riemann and in the sense of Lebesgue-
Stieltjes (see Chapter 3) are special instances of this more general defini-
tion of the integral. Note that the Lebesgue-Stieltjes integral was defined in
Chapter 3 in one dimension. Its definition can be extended to 7#-dimensional
spaces. In particular, it is always possible to define the Lebesgue-Stieltjes in-
tegral with respect to a n-dimensional distribution function. We omit the
definitions which are rather technical.®

Given a probability space (£2,3,P) and a random variable X, the expected
value of X is its integral with respect to the probability measure P

E[X] = / XdP
Q
where integration is extended to the entire space.

DISTRIBUTIONS AND DISTRIBUTION FUNGTIONS

Given a probability space (£2,J,P) and a random variable X, consider a set
A € B!, Recall that a random variable is a real-valued measurable function
defined over the set of outcomes. Therefore, the inverse image of A, X~! (A)
belongs to J and has a well-defined probability P(X~! (A)).

The measure P thus induces another measure on the real axis called
distribution or distribution law of the random variable X given by ux(A) =
P(X~' (A)). It is easy to see that this measure is a probability measure on the
Borel sets. A random variable therefore transfers the probability originally
defined over the space €2 to the set of real numbers.

The function F defined by F(x) = P(X < x) for x € R is the cumulative
distribution function (c.d.f.), or simply distribution function (d.f.), of the
random variable X. Suppose that there is a function f such that

F(x) = / fdy

or F'(x) = f(x), then the function f is called the probability density function
of the random variable X.

®For details, see Chow and Teicher, Probability Theory, 2nd ed. (New York: Springer,
1988).
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RANDOM VEGTORS

After considering a single random variable, the next step is to consider not
only one but a set of random variables referred to as random vectors. Ran-
dom vectors are formed by n-tuples of random variables. Consider a proba-
bility space (£2,7,P). A random variable is a measurable function from € to
R'; a random vector is a measurable function from € to R”.

We can therefore write a random vector X as a vector-valued function

f@) =[fi(0) fa(@) - fulw)]

Measurability is defined with respect to the Borel o-algebra 8”. It can
be demonstrated that the function fis measurable 7 if and only if each com-
ponent function ¢;(w) is measurable J.

Conceptually, the key issue is to define joint probabilities (i.e., the prob-
abilities that the # variables are in a given set). For example, consider the
joint probability that the inflation rate is in a given interval and the eco-
nomic growth rate in another given interval.

Consider the Borel o-algebra 8" on the real n-dimensional space R”.
It can be demonstrated that a random vector formed by # random vari-
ables X;, i = 1,2,..., n induces a probability measure over B”. In fact, the
set (w € Q: (Xi(w), Xo(w), -+, X,(w)) € H; H € B") € T (i.e., the inverse
image of every set of the o-algebra B” belongs to the o-algebra 7). It is
therefore possible to induce over every set H that belongs to 98" a proba-
bility measure, which is the joint probability of the # random variables X;.
The function

F(xlv"'vxn):P(Xllev"'anSxH)

where x; € R is called the n-dimensional cumulative distribution function
or simply n-dimensional distribution function (c.d.f. or d.f.). Suppose there
exists a function f{x1, ..., x,,) for which the following relationship holds:

F(xl’...’xn)z/‘.../‘f(ul’...,un)dul...dun

The function f(x1, ..., x,,) is called the #-dimensional probability density
function (p.d.f.) of the random vector X. Given a n-dimensional probability
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density function f(x1,...,x,), if we integrate with respect to all variables
except the jth variable, we obtain the marginal density of that variable:

fx/(y)=/~'~/ f(u1,...,un)du1~du,_1du/+1-du,,

Given an n-dimensional d.f., we define the marginal distribution func-
tion with respect to the jth variable, F;(y) = P(X; < y) as follows:

Fx](y):!‘gl;lo F(xls"'axjfl» ya xj+1»"'s xn)
i#]

If the distribution admits a density we can also write

y
Fxi(y) = / i w)d

These definitions can be extended to any number of variables. Given an
n-dimensional p.d.f., if we integrate with respect to k variables (x;,, ..., x;,)
over R¥, we obtain the marginal density functions with respect to the remain-
ing variables. Marginal distribution functions with respect to any subset of
variables can be defined taking the infinite limit with respect to all other
variables.

Any d.f. Fxj(y) defines a Lebesgue-Stieltjes measure and a Lebesgue-
Stieltjes integral. For example, as we have seen in Chapter 3 in the 1-dimen-
sional case, the measure is defined by the differences Fx;(x;) — Fx;j(xi—1). We
can now write expectations in two different, and more useful, ways. In an
earlier section in this chapter, given a probability space (€2,73,P), we defined
the expectation of a random variable X as the following integral

E[X] :Q/XdP

Suppose now that the random variable X has a d.f. Fx(«). It can be
demonstrated that the following relationship holds:

o0

E[X] =Q/XdP = /udFX(u)

—00
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where the last integral is intended in the sense of Riemann-Stielgjes. If, in
addition, the d.f. Fx;j(u) has a density fx(u) = Fy(u), then we can write the
expectation as follows:

E[X] =§2/XdP =_£ udFx(u) =_£ uf(u)du

where the last integral is intended in the sense of Riemann. More in general,
given a measurable function g the following relationship holds:

E[g(X)] = / glu)d Exu) = / g(u) flu)du

This latter expression of expectation is the most widely used in practice.

In general, however, knowledge of the distributions and of distri-
bution functions of each random variable is not sufficient to determine
the joint probability distribution function. The joint distribution is deter-
mined by the marginal distributions plus a statistical concept known as a
copula function.

Two random variables X, Y are said to be independent if

P(Xe A, Ye B)=P(Xe AP(Y € B)

for all A € B, B € B. This definition generalizes in obvious ways to any
number of variables and therefore to the components of a random vector. It
can be shown that if the components of a random vector are independent,
the joint probability distribution is the product of distributions. Therefore,
if the variables (X, ...,X,,) are all mutually independent, we can write the
joint d.f. as a product of marginal distribution functions:

Fx, - ) = [ ] Fxilx))
j=1

It can also be demonstrated that if a d.f. admits a joint p.d.f., the joint
p.d.f. factorizes as follows:

flxt, -, x,) = 1_[ fxj(x;)
i=1
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Given the marginal p.d.f.s, the joint d.f. can be recovered as follows:

F(xl’...7xn)=f.../ f(ul’...yun)dul...dun
Zf/ fof(”/) duy ---du,
—00 “x L=t

n

=[1 [ foudn;
E/ Xj\#j j

—00
n

=[] Fxi(x)
j=1

STOCHASTIC PROCESSES

Given a probability space (£2,J3,P), a stochastic process is a parameterized
collection of random variables {X,}, ¢ € [0,T] that are measurable with
respect to J. The parameter ¢ is often interpreted as time. The interval
in which a stochastic process is defined might extend to infinity in both
directions.

When it is necessary to emphasize the dependence of the random vari-
able from both time ¢ and the element w, a stochastic process is explicitly
written as a function of two variables: X = X(t,w). Given w, the function
X = X,(w) is a function of time that is referred to as the path of the stochas-
tic process.

The variable X might be a single random variable or a multidimensional
random vector. A stochastic process is therefore a function X = X(t,w) from
the product space [0,T] x € into the n-dimensional real space R”. Because
to each w corresponds a time path of the process—in general formed by a set
of functions X = X;(w)—it is possible to identify the space  with a subset
of the real functions defined over an interval [0,T].

Let’s now discuss how to represent a stochastic process X = X(#,w) and
the conditions of identity of two stochastic processes. As a stochastic process
is a function of two variables, we can define equality as pointwise identity for
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each couple (¢,w). However, as processes are defined over probability spaces,
pointwise identity is seldom used. It is more fruitful to define equality mod-
ulo sets of measure zero or equality with respect to probability distributions.
In general, two random variables X,Y will be considered equal if the equal-
ity X(w) = Y(w) holds for every w with the exception of a set of probability
zero. In this case, it is said that the equality holds almost everywhere (de-
noted a.e.).

A rather general (but not complete) representation is given by the fi-
nite dimensional probability distributions. Given any set of indices ¢4, . . . ,Z,,,,
consider the distributions

t. o (H) = P[(X,..., X,) € H HeB"]

These probability measures are, for any choice of the #;, the finite-
dimensional joint probabilities of the process. They determine many, but
not all, properties of a stochastic process. For example, the finite dimen-
sional distributions of a Brownian motion do not determine whether or not
the process paths are continuous.

In general, the various concepts of equality between stochastic processes
can be described as follows:

Property 1. Two stochastic processes are weakly equivalent if they have
the same finite-dimensional distributions. This is the weakest form
of equality.

Property 2. The process X = X(t,w) is said to be equivalent or to be a
modification of the process Y = Y(t,w) if, for all 7,

Property 3. The process X = X(t,w) is said to be strongly equivalent to
or indistinguishable from the process Y = Y(t,w) if

P(X, =Y, forallt) =1

Property 3 implies Property 2, which in turn implies Property 1. Impli-
cations do not hold in the opposite direction. Two processes having the same
finite distributions might have completely different paths. However, it is
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possible to demonstrate that if one assumes that paths are continuous func-
tions of time, Properties 2 and 3 become equivalent.

PROBABILISTIC REPRESENTATION OF
FINANCIAL MARKETS

We are now in the position to summarize the probabilistic representation
of financial markets. From a financial point of view, an asset is a contract
which gives the right to receive a distribution of future cash flows. In the
case of common stock, the stream of cash flows will be uncertain. It includes
the common stock dividends and the proceeds of the eventual liquidation
of the firm. A debt instrument is a contract that gives its owner the right to
receive periodic interest payments and the repayment of the principal by the
maturity date. Except in the case of debt instruments of governments whose
risk of default is perceived as extremely low, payments are uncertain as the
issuing entity might default.

Suppose that all payments are made at the trading dates and that no
transactions take place between trading dates. Let’s assume that all assets
are traded (i.e., exchanged in the market) at either discrete fixed dates, vari-
able dates or continuously. At each trading date there is a market price
for each asset. Each asset is therefore modeled with two time series, a se-
ries of market prices and a series of cash flows. As both series are sub-
ject to uncertainty, cash flows and prices are time-dependent random vari-
ables (i.e., they are stochastic processes). The time dependence of random
variables in this probabilistic setting is a delicate question and will be
examined shortly.

Following Kenneth Arrow” and using a framework now standard, the
economy and the financial markets in a situation of uncertainty are described
with the following basic concepts:

® It is assumed that the economy is in one of the states of a probability
space (£2,3,P).

® Every security is described by two stochastic processes formed by two
time-dependent random variables S,(w) and d;(w) representing prices
and cash flows of the asset.

7 Arrow, “The Role of Securities in the Optimal Allocation of Risk Bearing,” Review
of Economic Studies 32, no. 2 (1964): 91-96.
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This representation is completely general and is not linked to the as-
sumption that the space of states is finite.

INFORMATION STRUCTURES

Let’s now turn our attention to the question of time. The previous discussion
considered a space formed by states in an abstract sense. We must now in-
troduce an appropriate representation of time as well as rules that describe
the evolution of information, that is, information propagation, over time.
The concepts of information and information propagation are fundamental
in economics and finance theory.

The concept of information in finance is different from both the intuitive
notion of information and that of information theory in which information
is a quantitative measure related to the a priori probability of messages.®
In our context, information means the (progressive) revelation of the set of
events to which the current state of the economy belongs. Though some-
what technical, this concept of information sheds light on the probabilistic
structure of finance theory. The point is the following. Assets are represented
by stochastic processes, that is, time-dependent random variables. However,
the probabilistic states on which these random variables are defined repre-
sent entire histories of the economy. To embed time into the probabilistic
structure of states in a coherent way calls for information structures and
filtrations (a concept we explain in the next section).

Recall that it is assumed that the economy is in one of many possible
states and that there is uncertainty on the state that has been realized. Con-
sider a time period of the economy. At the beginning of the period, there
is complete uncertainty on the state of the economy (i.e., there is complete
uncertainty on what path the economy will take). Different events have dif-
ferent probabilities, but there is no certainty. As time passes, uncertainty is
reduced as the number of states to which the economy can belong is progres-
sively reduced. Intuitively, revelation of information means the progressive
reduction of the number of possible states; at the end of the period, the re-
alized state is fully revealed. In continuous time and continuous states, the
number of events is infinite at each instant. Thus its cardinality remains the
same. We cannot properly say that the number of events shrinks. A more
formal definition is required.

8There is indeed a deep link between information theory and econometrics embodied
in concepts such as the Fisher Information Matrix.
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The progressive reduction of the set of possible states is formally ex-
pressed in the concepts of information structure and filtration. Let’s start
with information structures. Information structures apply only to discrete
probabilities defined over a discrete set of states. At the initial instant T,
there is complete uncertainty on the state of the economy; the actual state is
known only to belong to the largest possible event (that is, the entire space
Q). At the following instant T, assuming that instants are discrete, the states
are separated into a partition, a partition being a denumerable class of dis-
joint sets whose union is the space itself. The actual state belongs to one of
the sets of the partitions. The revelation of information consists in ruling
out all sets but one. For all the states of each partition, and only for these,
random variables assume the same values.

Suppose, to exemplify, that only two assets exist in the economy and that
each can assume only two possible prices and pay only two possible cash
flows. At every moment there are 16 possible price-cash flow combinations.
We can thus see that at the moment Ty all the states are partitioned into
16 sets, each containing only one state. Each partition includes all the states
that have a given set of prices and cash distributions at the moment T;. The
same reasoning can be applied to each instant. The evolution of information
can thus be represented by a tree structure in which every path represents a
state and every point a partition. Obviously the tree structure does not have
to develop as symmetrically as in the above example; the tree might have a
very generic structure of branches.

FILTRATION

The concept of information structure based on partitions provides a rather
intuitive representation of the propagation of information through a tree of
progressively finer partitions. However, this structure is not sufficient to de-
scribe the propagation of information in a general probabilistic context. In
fact, the set of possible events is much richer than the set of partitions. It
is therefore necessary to identify not only partitions but also a structure of
events. The structure of events used to define the propagation of informa-
tion is called a filtration. In the discrete case, however, the two concepts—
information structure and filtration—are equivalent.

The concept of filtration is based on identifying all events that are known
at any given instant. It is assumed that it is possible to associate to each
trading moment ¢ a o-algebra of events J, C J formed by all events that are
known prior to or at time ¢. It is assumed that events are never “forgotten,”
that s, that J; C Jg, if t <s. An ordering of time is thus created. This ordering
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is formed by an increasing sequence of o-algebras, each associated to the
time at which all its events are known. This sequence is a filtration. Indicated
as {J;}, a filtration is therefore an increasing sequence of all o-algebras J;,
each associated to an instant 7.

In the finite case, it is possible to create a mutual correspondence be-
tween filtrations and information structures. In fact, given an informa-
tion structure, it is possible to associate to each partition the algebra gen-
erated by the same partition. Observe that a tree information structure
is formed by partitions that create increasing refinement: By going from
one instant to the next, every set of the partition is decomposed. One can
then conclude that the algebras generated by an information structure form
a filtration.

On the other hand, given a filtration {J;}, it is possible to associate a
partition to each J,. In fact, given any element that belongs to €, consider
any other element that belongs to @ such that, for each set of J;, both ei-
ther belong to or are outside this set. It is easy to see that classes of equiv-
alence are thus formed, that these create a partition, and that the algebra
generated by each such partition is precisely the J, that has generated the
partition.

A stochastic process is said to be adapted to the filtration {J,} if the
variable X; is measurable with respect to the o-algebra J;. It is assumed that
the price and cash distribution processes S;(w) and d,(w) of every asset are
adapted to {J;}. This means that, for each #, no measurement of any price or
cash distribution variable can identify events not included in the respective
algebra or o-algebra. Every random variable is a partial image of the set of
states seen from a given point of view and at a given moment.

The concepts of filtration and of processes adapted to a filtration are
fundamental. They ensure that information is revealed without anticipation.
Consider the economy and associate at every instant a partition and an al-
gebra generated by the partition. Every random variable defined at that mo-
ment assumes a value constant on each set of the partition. The knowledge
of the realized values of the random variables does not allow identifying sets
of events finer than partitions.

One might well ask: Why introduce the complex structure of o-algebras
as opposed to simply defining random variables? The point is that, from
a logical point of view, the primitive concept is that of states and events.
The evolution of time has to be defined on the primitive structure—it can-
not simply be imposed on random variables. In practice, filtrations become
an important concept when dealing with conditional probabilities in a con-
tinuous environment. As the probability that a continuous random variable
assumes a specific value is zero, the definition of conditional probabilities
requires the machinery of filtration.
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KEY POINTS

® Probability is a set function defined over a class of events where events
are sets of possible outcomes of an experiment.

= A probability space is a triple formed by a set of outcomes, a o-algebra
of events, and a probability measure.

® A random variable is a real-valued function defined over the set of out-
comes such that the inverse image of any interval is an event.

® n-dimensional random vectors are functions from the set of outcomes
into the n-dimensional Euclidean space with the property that the in-
verse image of n-dimensional generalized rectangles is an event.

® Stochastic processes are time-dependent random variables.

® An information structure is a collection of partitions of events associated
to each instant of time that become progressively finer with the evolution
of time.

= A filtration is an increasing collection of o-algebras associated to each
instant of time.

® The states of the economy, intended as full histories of the economy, are
represented as a probability space.

® The revelation of information with time is represented by information
structures or filtrations.

® Prices and other financial quantities are represented by adapted stochas-
tic processes.
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Random Variables and Expectations

he rapid globalization of financial and product markets, innova-

tions in the design of derivative instruments, and the spectacular in-
vestor losses associated with derivatives over the past two decades have
made financial institutions recognize the growing importance of risk
management. A primary tool for financial risk assessment is the value-
at-risk (VaR) measure, which is defined as the potential loss in value a
portfolio of risky assets over a certain holding period at a given confi-
dence level (probability). The use of VaR and its variants in risk man-
agement has exploded over the past decade because of its endorsement
by bank regulators. Financial institutions now routinely use VaR tech-
niques in managing their trading risk. Many implementations of VaR
assume that asset returns are normally distributed. This assumption
simplifies the computation of VaR considerably. However, it is incon-
sistent with the empirical evidence of asset returns, which finds that the
distribution of asset returns is skewed and fat tailed. This implies that
extreme events are much more likely to occur in practice than would
be predicted by the symmetric thinner-tailed normal distribution. This
also suggests that the normality assumption can produce VaR numbers
that are inappropriate measures of the true risk faced by financial insti-
tutions. In addition to departures from normality, there is substantial
evidence for time-varying probability distributions suggesting dynamic
modeling of conditional mean, volatility, and higher-order moments.
Under these conditions, an alternative approach that approximates the
tail areas asymptotically is more appropriate than imposing an explicit
functional form like the normal or lognormal on the distribution. The

107
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traditional VaR models estimate the potential loss of an institution
under normal market conditions. Therefore, the standard VaR mea-
sures cannot be used during highly volatile periods corresponding to
financial crises. The concepts of random variables and expectations
discussed in this chapter can be used as follows:

® One can introduce conditional time-varying measures of down-
side risk that provide good predictions of catastrophic market risks
during extraordinary periods.

® One can estimate time-varying conditional expected returns and
volatilities of assets such as stocks, bonds, currencies, and com-
modities.

® One can introduce a new asset allocation framework in the condi-
tional mean—a conditional VaR framework that produces optimal
portfolio weights leading to higher risk-adjusted portfolio returns
during economic downturns.

® One can compare the relative performance of static versus dynamic
asset allocation models that take into account time-series variation
in the probability distribution of asset returns.

® One can come up with future forecasts of the time-varying mean,
variance, and correlation measures.

® One can introduce a more accurate option pricing model since the
discrete-time stochastic processes of underlying assets can be mod-
eled more accurately with the time-varying skewed fat-tailed prob-
ability distributions.

What you will learn after reading this chapter:

® What is a conditional probability.

® How to describe financial markets with conditional probabilities
and conditional expectations.

® The meaning and statistical use of distributional moments and cor-
relations.

® What is meant by an independent and identically distributed
sequence.
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® The problems with the correlation measure.

® How the copula function provides an alternative to the correla-
tion.

® What is meant by convergence in probability theory.

How to approximate the tails of a probability distribution using

the Cornish-Fisher expansion and Hermite polynomials.

What the normal or Gaussian distribution is.

What a regression function is.

What is meant by the tail of a distribution

What is meant by fat-tailed and light-tailed distributions.

What are the classes of fat-tailed distributions.

What are the subexpontial, Pareto, and stable distributions.

INTRODUGTION

In the previous chapter, we provided an introduction to probability theory,
setting forth the conceptual tools to represent and measure the level of un-
certainty. In this chapter, we cover the topics of conditional probability, con-
ditional expectation, independent and identically distributed random vari-
ables, white noise, and martingale. Conditional probability and conditional
expectation are fundamental in the probabilistic description of financial mar-
kets. A conditional probability of some random variable X is the probabil-
ity for X given a particular value for another random variable Y is known.
Similarly, a conditional probability distribution can be determined. For the
conditional probability distribution, an expected value can be computed and
is referred to as a conditional expected value or conditional mean or, more
commonly, a conditional expectation. The statistical concept of independent
and identically distributed variables means two conditions about probabil-
ity distributions for random variables. First consider “independent.” This
means if we have a time series for some random variable, then at each time
the random variable has a probability distribution. By “independently dis-
tributed,” it is meant that the probability distributions remain the same re-
gardless of the history of past values for the random variable. “Identically”
distributed means that all returns have the same distribution in every time
period. These two conditions entail that, over time, the mean and the vari-
ance do not change from period to period. In the parlance of the statistician,
we have a stationary time-series process.
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CONDITIONAL PROBABILITY AND
CONDITIONAL EXPECTATION

Conditional probabilities and conditional averages are fundamental in the
stochastic description of financial markets. For instance, one is generally
interested in the probability distribution of the price of an asset at some
date given its price at an earlier date. The widely used regression models are
an example of conditional expectation models.

The conditional probability of event A given event B was defined
in the previous chapter as

P(AN B)

PUAIB) = —5

This simple definition cannot be used in the context of continuous ran-
dom variables because the conditioning event (i.e., one variable assuming
a given value) has probability zero. To avoid this problem, we condition
on o-algebras and not on single zero-probability events. In general, as
each instant is characterized by a o-algebra J,, the conditioning elements
are the J,.

The general definition of conditional expectation is the following. Con-
sider a probability space (£2,J,P) and a o-algebra & contained in J and
suppose that X is an integrable random variable on (22,73,P). We define the
conditional expectation of X with respect to &, written as E[X |®], as a
random variable measurable with respect to & such that

/ﬂmmwzlxw

G

for every set G € &. In other words, the conditional expectation is a random
variable whose average on every event that belongs to & is equal to the
average of X over those same events, but it is -measurable while X is not.
It is possible to demonstrate that such variables exist and are unique up to
a set of measure zero.

Econometric models usually condition a random variable given another
variable. In the previous framework, conditioning one random variable X
with respect to another random variable Y means conditioning X given o { Y}
(i.e., given the o -algebra generated by Y). Thus E[X | Y] means E[X | o {Y}].

This notion might seem to be abstract and to miss a key aspect of condi-
tioning: intuitively, conditional expectation is a function of the conditioning
variable. For example, given a stochastic price process, X;, one would like
to visualize conditional expectation E[X, | X], s <  as a function of X that
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yields the expected price at a future date given the present price. This intu-
ition is not wrong insofar as the conditional expectation E[X | Y] of X given
Y is a random variable function of Y. For example, a regression function is
a function that yields the conditional expectation.

However, we need to specify how conditional expectations are formed,
given that the usual conditional probabilities cannot be applied as the
conditioning event has probability zero. Here is where the above definition
comes into play. The conditional expectation of a variable X given a variable
Y is defined in full generality as a variable that is measurable with respect
to the o-algebra o(Y) generated by the conditioning variable Y and has the
same expected value of Y on each set of o (Y). Later in this section we will see
how conditional expectations can be expressed in terms of the joint p.d.f. of
the conditioning and conditioned variables.

One can define conditional probabilities starting from the concept
of conditional expectations. Consider a probability space (2,J,P), a
sub-o-algebra & of J, and two events A € J, B € J. If I4,Ip are the indi-
cator functions of the sets A,B (the indicator function of a set assumes value
1 on the set, 0 elsewhere), we can define conditional probabilities of the event
A, respectively, given & or given the event B as

P(A|®) = E[14|®8] P(A|B) = E[Ia|Ip]

Using these definitions, it is possible to demonstrate that given two random
variables X and Y with joint density f{x,y), the conditional density of X given
Yis

flx,y)

flxly) = fr(y)

where the marginal density, defined as

is assumed to be strictly positive.

In the discrete case, the conditional expectation is a random variable
that takes a constant value over the sets of the finite partition associated
to J;. Its value for each element of @ is defined by the classical concept of
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conditional probability. Conditional expectation is simply the average over
a partition assuming the classical conditional probabilities.

An important econometric concept related to conditional expectations is
that of a martingale. Given a probability space (22,73,P) and a filtration {J,},
a sequence of J;-measurable random variables X; is called a martingale if the
following condition holds:

E[Xit1|3i] = Xi

A martingale translates the idea of a “fair game” as the expected value
of the variable at the next period is equal to the present value of the same
variable.

MOMENTS AND CORRELATION

If X is a random variable on a probability space (€2,7,P), the quantity E[| X|?],
p > 0 is called the pth absolute moment of X. If k is any positive integer,
E[X*], if it exists, is called the kth moment. In the general case of a proba-
bility measure P we can therefore write:

m E[|X)?] = / |X|? dP, p > 0, is the pth absolute moment.
Q

= E[X{] = / X* dP, if it exists for k positive integer, is the kth moment.
Q

In the case of discrete probabilities p;, ¥p; = 1, the above expressions
become

E[IXI?] =) |x|"pi
and
E[X] =) xp
respectively. If the variable X is continuous and has a density p(x) such that
/ plx)dx =1

—0Q
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we can write

E[1X|"] = / x| plx)dx

and
E[X} = / x* p(x)dx

respectively.

The centered moments are the moments of the fluctuations of the vari-
ables around its mean. For example, the variance of a variable X is defined
as the centered moment of second order:

var(X) = o2 = o*(X) = E[(X — X)*|
o0 oo [o¢] 2
/ X — (x)dx = / x% p(x)dx — / xp(x)dx
where X = E[X].

The positive square root of the variance, o is called the standard devi-
ation of the variable.

We can now define the covariance and the correlation coefficient of a
variable. Correlation is a quantitative measure of the strength of the depen-
dence between two variables. Intuitively, two variables are dependent if they
move together. If they move together, they will be above or below their re-
spective means in the same state. Therefore, in this case, the product of their
respective deviations from the means will have a positive mean. We call this
mean the covariance of the two variables.

The covariance divided by the product of the standard deviations is a
dimensionless number called the correlation coefficient.

Given two random variables X,Y with finite expected values and finite
variances, we can write the following definitions:

® cov(X, Y) =oxy = E[(X— X)(Y — Y)] is the covariance of X,Y.
B Xy = ol i i

The correlation coefficient can assume values in the interval [-1,1]. If
two variables X,Y are independent, their correlation coefficient vanishes.
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However, uncorrelated variables, that is, variables whose correlation coeffi-
cient is zero, are not necessarily independent.
It can be demonstrated that the following property of variances holds:

var ZXi = ZVar(Xi) +ZCOV(X1', X;)

i#]
Further, it can be demonstrated that the following properties hold:
oxy = E[XY] - E[X]E[Y]
OxX,y = 0Y,X
oax.by = aboyx

OX+Y,z=0xz+t0yZz

Ccov Za,‘x, Zb/Y7 :ZZd,‘b/ COV()(,‘, Y,)

z ]

GOPULA FUNCTIONS

Understanding dependences or functional links between variables is a key
theme of financial econometrics. In general terms, functional dependences
are represented by dynamic models. Many important models are linear mod-
els whose coefficients are correlation coefficients. In many instances, in par-
ticular in risk management, it is important to arrive at a quantitative measure
of the strength of dependencies.

The correlation coefficient provides such a measure. In many instances,
however, the correlation coefficient might be misleading. In particular, there
are cases of nonlinear dependencies that result in a zero correlation coeffi-
cient. Moreover, the correlation cannot explain joint extreme events, since it
can deal only with linear dependencies. From the point of view of risk man-
agement this situation is particularly dangerous as it leads to substantially
underestimated risk.
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Different measures of dependence have been proposed, in particular
copula functions. We will give only a brief introduction to copula functions.'
Copula functions? are based on Sklar’s Theorem. Sklar demonstrated® that
any joint probability distribution can be written as a functional link, i.e., a
copula function, between its marginal distributions. Let’s suppose that F(x1,
X2,...,Xy) is a joint multivariate distribution function with marginal distri-
bution functions Fi(x1), F2(x2), ..., Fu(x,). Then there is a copula function
C such that the following relationship holds:

F(x1,x,...,%,) = C[F1(x1), Fa(x2), ..., Fu(x,)]

The joint probability distribution contains all the information related to
the co-movement of the variables. The copula function allows one to capture
this information in a synthetic way as a link between marginal distributions.
The concept of copula functions is used in risk modeling. There are many
types of bivariate copula function based on the assumption about the dis-
tribution of the two variables. Probably the one most commonly used is the
Gaussian copula model where both variables are assumed to follow a normal
distribution. However, the global financial crisis that began in the summer
of 2007 highlighted the failure of this copula model in measuring depen-
dencies for structured products known as collateralized debt obligations.*
The realization was that a copula model that accounted for extreme values
or fat tails (discussed later in this chapter) would be more suitable in finan-
cial modeling. In practice, the alternative to the normal copula model that is
used is the Student t-copula model. When the copula approach is applied to

I'The interested reader might consult the following reference: P. Embrechts, F. Lind-
skog, and A. McNeil, “Modelling Dependence with Copulas and Applications to
Risk Management,” Chapter 8 in S.T. Rachev (ed.), Handbook of Heavy Tailed Dis-
tributions in Finance (Amsterdam: North Holland, 2003). Patton [37] reviews the
use of copulas in econometric modeling.

2 According to Cassell’s Latin Dictionary, in Latin, “copula” is a noun that means a
link, a tie, or a bond.

3A. Sklar, “Random Variables, Joint Distribution Functions and Copulas,” Kyber-
netika 9 (1973), pp. 449-460.

“In fact, in one article, the author writes that the “Gaussian copula formula
will go down in history as instrumental in causing the unfathomable losses that
brought the world financial system to its knees.” See F. Salmon, “Recipe for Dis-
aster: The Formula That Killed Wall Street,” Wired Magazine, February 23, 2009.
(http://www.wired.com/techbiz/it/magazine/17-03/wp_quant?currentPage=all) The
use of the normal copula function for the risk assessment of collateralized debt obli-
gations was in D. Li, “On Default Correlation: A Copula Function Approach,” Jour-
nal of Fixed Income 9 (2001), pp. 43-54.


http://www.wired.com/techbiz/it/magazine/17-03/wpquant?currentPage=all
http://www.wired.com/techbiz/it/magazine/17-03/wpquant?currentPage=all
http://www.wired.com/techbiz/it/magazine/17-03/wpquant?currentPage=all
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the more than two variables (i.e., the multivariate copula), there have been
several models suggested for dealing with tail risk behavior.’ Despite the crit-
icism regarding the misapplication of the normal copula function in finance,
the advantages of the copula approach it that it can (1) capture non-linear
dependence, (2) quantify dependence for fat-tail distributions, and (3) be
used to investigate asymptotic properties of dependence structures. In prac-
tice for financial modeling, the copula approach involves the following two
steps: identifying the marginal distributions and then determining the most
suitable copula function to represent the dependence structure.

SEQUENCES OF RANDOM VARIABLES

Consider a probability space (Q,3,P). A sequence of random variables is an
infinite family of random variables X; on (Q,J,P) indexed by integer num-
bers: i =0,1,2,...,n... If the sequence extends to infinity in both directions,
it is indexed by positive and negative integers: i = ...,~,..., 0,1,2,... 7. ...

A sequence of random variables can converge to a limit random vari-
able. Several different notions of the limit of a sequence of random variables
can be defined. The simplest definition of convergence is that of pointwise
convergence. A sequence of random variables X;, 7 > 1 on (£,73,P), is said to
converge almost surely to a random variable X, denoted

X, > X
if the following relationship holds:

Pl{w: lim Xj(w) = X(w)} =1

11— 00

In other words, a sequence of random variables converges almost surely to a
random variable X if the sequence of real numbers X;(w) converges to X(w)
for all  except a set of measure zero.

A sequence of random variables X;, i > 1 on (2,7,P), is said to converge
in mean of order p to a random variable X if

lim E[|Xj(w) — X(w)|”] =0

1—>00

3See H. Joe, Multivariate Models and Dependence Concepts (London: Chapman and
Hall, 1997).
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provided that all expectations exist. Convergence in mean of order one and
two are called convergence in mean and convergence in mean square, re-
spectively.

A weaker concept of convergence is that of convergence in probability.
A sequence of random variables X;, i > 1 on (2,73,P), is said to converge in
probability to a random variable X, denoted

X 5 X
if the following relationship holds:

lim Plw: [Xi(0) — X(w)| <e}=1, Ve >0

11— 00

It can be demonstrated that if a sequence converges almost surely then
it also convergences in probability while the converse is not generally true. It
can also be demonstrated that if a sequence converges in mean of order p >
0, then it also convergences in probability while the converse is not generally
true.

A sequence of random variables X;, i > 1 on (2,J,P) with distribution
functions Fy, is said to converge in distribution to a random variable X with
distribution function Fy, denoted

X — X
if

lim Fyx (x) = Fx(x), x€ C

1—>00

where C is the set of points where all the functions Fx, and Fx are
continuous.

It can be demonstrated that if a sequence converges almost surely (and
thus converges in probability) it also converges in distribution while the con-
verse is not true in general.

INDEPENDENT AND IDENTICALLY
DISTRIBUTED SEQUENCES

Consider a probability space (22,3,P). A sequence of random variables X;
on (£,7,P) is called a sequence of independent and identically distributed
(IID) sequence if the variables X; have all the same distribution and are all
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mutually independent. An IID sequence is the strongest form of white noise:
it embodies the notion of a completely random sequence of variables. Note
that in many applications white noise is defined as a sequence of uncorrelated
variables. This is a weaker definition as an uncorrelated sequence might be
forecastable.

An IID sequence is completely unforecastable in the sense that the past
does not influence the present or the future in any possible sense. In an IID
sequence all conditional distributions are identical to unconditional distri-
butions. Note, however, that an IID sequence presents a simple form of re-
version to the mean. In fact, suppose that a sequence X; assumes at a given
time ¢ a value larger than the common mean of all variables: X, > E[X]. By
definition of mean it is more likely that X; be followed by a smaller value:
P(Xi41 < Xy) > P(Xi 41 > Xi).

Note that this type of mean reversion does not imply forecastability as
the probability distribution of asset returns at time ¢ + 1 is independent
from the distribution at time #.

SUM OF VARIABLES

Given two random variables X(w), Y(w) on the same probability space
(22,3,P), the sum of variables Z(w) = X(w) + Y(w) is another random vari-
able. The sum associates to each state @ a value Z(w) equal to the sum of
the values taken by the two variables X,Y. Let’s suppose that the two vari-
ables X(w), Y(w) have a joint density p(x,y) and marginal densities px(x) and
py(x), respectively. Let’s call H the cumulative distribution of the variable Z.
The following relationship holds:

H(u) = P[Z(w) < u] = p(x, y)dxdy
/]

A={y < —x+u}

In other words, the probability that the sum X + Y be less than or equal
to a real number u is given by the integral of the joint probability distribution
function in the region A. The region A can be described as the region of the
x,y plane below the straight line y = —x + u.

If we assume that the two variables are independent, then the distribu-
tion of the sum admits a simple representation. In fact, under the assumption



Probability 119

of independence, the joint density is the product of the marginal densities:
p(x,y) = px(x)py(x). Therefore, we can write

[e’s] u—y
H(u) = P[Z(w) < u] = plx, y)dxdy = [ Px(x)dx} py(y)dy
[ [ ]|

—00 —0o0

We can now use a property of integral called the Leibnitz rule, which
allows one to write the following relationship:

dH [
- = pz(u) = / px(u—y)py(y)dy

Recall from Chapter 3 that the above formula is a convolution of the
two marginal distributions. This formula can be reiterated for any number of
summands: the density of the sum of 7 random variables is the convolution
of their densities.

Computing directly the convolution of a number of functions might be
very difficult or impossible. However, if we take the Fourier transforms of
the densities, Pz(w), Px(w), Py(w) computations are substantially simplified
as the transform of the convolution is the product of the transforms:

o0

palu) = / px(t — V) py(y)dy = Pz() = Px(e) x Pyls)

—00

This relationship can be extended to any number of variables.
In probability theory, given a random variable X, the following expec-
tation is called the characteristic function (c.f.) of the variable X

ox(t) = E[e"™] = E[costX] + i E[sin tX]

If the variable X admits a d.f. Fx(y), it can be demonstrated that the
following relationship holds:

oo

ox(t) = E[e™] :/eithFX(x) :/ cos tx dFx(x)+ / sin tx dFx(x)

—00 —0Q
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In this case, the characteristic function therefore coincides with the
Fourier-Stieltjes transform. It can be demonstrated that there is a one-to-
one correspondence between c.d.s and d.f.s. In fact, it is well known that
the Fourier-Stieltjes transform can be uniquely inverted.

In probability theory convolution is defined, in a more general way, as
follows. Given two d.f.s Fx(y) and Fy(y), their convolution is defined as

o0

F*(u) = (Fx * Fy)(u) = / Fx(u — y)dFy(3)

—00

It can be demonstrated that the d.f. of the sum of two variables X,Y with
d.f.s Fx(y) and Fy(y) is the convolution of their respective d.f.s:

P(X+Y < u) = Fxyy(u) = F*(u) = (Fx % Fy)(u) = / Fx(u — y)dFy(y)

If the d.f.s admit p.d.f.s, then the inversion formulas are those established
earlier. Inversion formulas also exist in the case that the d.f.s do not admit
densities but these are more complex and will not be given here.®

We can therefore establish the following property: the characteristic
function of the sum of # independent random variables is the product of
the characteristic functions of each of the summands.

GAUSSIAN VARIABLES

Gaussian random variables are extremely important in probability theory
and statistics. Their importance stems from the fact that any phenomenon
made up of a large number of independent or weakly dependent variables has
a Gaussian distribution. Gaussian distributions are also known as normal
distributions.

Let’s start with the univariate case. A normal variable is a variable whose
probability distribution function has the following form:

1 _ 2
flali, 0%) = —= exp [—%}

®Y.-S. Chow and H. Teicher, Probability Theory, 2nd ed. (New York: Springer, 1988).
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The univariate normal distribution is a distribution characterized by
only two parameters, (u,02), which represent, respectively, the mean and the
variance of the distribution. We write X ~ N(u,0%) to indicate that the vari-
able X has a normal distribution with parameters (u,0%). We define the stan-
dard normal distribution as the normal distribution with zero mean and unit
variance. It can be demonstrated by direct calculation that if X ~ N(u,02)
then the variable

is standard normal. The variable Z is called the score or Z-score. The cumu-
lative distribution of a normal variable is generally indicated as

where ®(x) is the cumulative distribution of the standard normal.

It can be demonstrated that the sum of # independent normal distri-
butions is another normal distribution whose expected value is the sum of
the expected values of the summands and whose variance is the sum of the
variances of the summands.

The normal distribution has a typical bell-shaped graph symmetrical
around the mean. Figure 6.1 shows the graph of a normal distribution.

Multivariate normal distributions are characterized by the same expo-
nential functional form. However, a multivariate normal distribution in 7
variables is identified by 7 means, one for each axis, and by a # x n symmetri-
cal variance-covariance matrix. For instance, a bivariate normal distribution
is characterized by two expected values, two variances and one covariance.
We can write the general expression of a bivariate normal distribution as

follows:
1
exp { — z Q}

2noxoyy 1 — p?

1 _ 2 _ _ _ 2
o= (5%) -2 (557) () (%)
1—0p ox ox oy oy

where p is the correlation coefficient.

flx,y) =
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FIGURE 6.1 Graph of a Normal Variable with Zero Mean and o =
100

This expression generalizes to the case of 7 random variables. Using
matrix notation, the joint normal probability distributions of the random 7
vector V= {X;},i=1,2,..., n has the following expression:

V={(X}~ Ny(u, %)
where
wi = E[Xi]
and X is the variance-covariance matrix of the {X;},
T =E[(V-p)(V-p)]
fv) =210 expl(—1/2)(v — ) =7 (v — )]

where |X| = detX, the determinant of X.
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For n = 2 we find the previous expression for the bivariate normal,
taking into account that variances and correlation coefficients have the fol-
lowing relationships:

Oij = pij0i0]

It can be demonstrated that a linear combination
n
WoYax
i=1

of 7 jointly normal random variables X; ~ N(u;, o7) with cov(X;,X;) = o
is a normal random variable W ~ N(uw, o) where

n
v =Y e,
i=1

n n
2 § o O
o= E Q; A 0

i=1 j=1

APPPROXIMATING THE TAILS OF A PROBABILITY
DISTRIBUTION: CORNISH-FISHER EXPANSION AND
HERMITE POLYNOMIALS

Two methods for approximating the tails of a probability distribution are
the Cornish-Fisher expansion and Hermite polynomials.

Cornish-Fisher Expansion

The Cornish-Fisher expansion is a formula for approximating quantiles of a
random variable based only on its first few cumulants.” In finance, it is often
used in the calculation of a popular risk measure, value-at-risk (VaR). De-
fined as a confidence interval, VaR is the maximum loss that can be incurred
with a given probability.® Suppose we choose a confidence level of 95%. We

’E. A. Cornish and R. A. Fisher, “Moments and Cumulants in the Specification of
Distributions,” Extrait de la Revue de I'Institute International de Statistique 4 (1937):
1-14.

$When JP Morgan released its RiskMetrics model in 1994, VaR was the risk measure
it proposed. As a measure of risk, VaR has many drawbacks. It does not specify the
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say, for example, that a financial position has a given VaR, say $1 million, if
there is a 95% probability that losses above $1 million will not be incurred.
This does not mean that the given the financial position cannot lose more
than $1 million, it means only that losses above $1 million will happen with
a probability of 5%.

The cumulants of a random variable X are conceptually similar to its
moments. They are defined as those values «, such that the identity

2. iyt > E(X")¢
exp (Z Kr! ) :Z r!

r=1 r=1

holds for all  where r is a moment index (i.e., r = 1 refers to the first moment,
r = 2 refers to the second moment, and so on). Cumulants of a random vari-
able X can be expressed in terms of its mean u = E(X) and central moments
u, = E[(X —r)"].” Expressions for the first five cumulants are

K1 = [
K2 = U2
K3 = |43
K4 = i — 35

ks = s — 1032

Suppose X has a mean of 0 and a standard deviation one of 1. Cornish
and Fisher provide an expansion for approximating the g-quantile, ®;(q),
of X based upon its cumulants. Using the first five cumulants, the expansion
is

;1 (g)? -1 @ (q)® — 30, (q)

o (g) ~ @ (q) + = c K3+ —= 5 K4
_20.(9P — 50 Hg) 5 P Na) 69 gl +3
36 3 120 3
M (q)t — 5D (g)* +2 1207 (q)* — 530 (q)* + 17
- 24 K3k4 + 324 K3

amount of losses exceeding VaR. Different distributions might have the same VaR but
totally different distributions of extreme values. Perhaps the most serious drawback
of VaR is the fact that is that the VaR of aggregated financial portfolios might be
larger than the sum of individual VaRs. This is unreasonable as one expects risk to
decrease in aggregate due to diversification.

9A. Stuart and K. Ord, Kendall’s Advanced Theory of Statistics, Distribution Theory,
vol. 1 (Hoboken, NJ: John Wiley & Sons, 2010).
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where ®_!(q) is the g-quantile of a standard normal random variable Z. Al-
though the previous equation applies only if X has a mean of 0 and a standard
deviation of 1, one can still use it to approximate quantiles if X has some other
mean u and standard deviation o. Simply use the Z-score defined in the previous
section

X—pn

o

Z =

which has a mean of 0 and a standard deviation of 1. Central moments i, of
Z can be calculated from central moments of X with
- Mr
My = —
oy
Apply the Cornish-Fisher expansion to obtain the g-quantile & of X. The
corresponding g-quantile x of X is then x = X - o + .

Hermite Polynomials

The Hermite polynomials H,(x) are a set of orthogonal polynomials over the
domain (—oo, 0o) with weighting function e=*".!° The Hermite polynomial
H,(x) can be defined by the contour integral

n!

Hn(Z) = e—t2+21zt—n—1dt

27i
where the contour encloses the origin and is traversed in a counterclockwise
direction. The first few Hermite polynomials are as follows:

Hy(x) =1

Hi(x) = 2x

Hy(x) = 4x* -2

H;(x) = 8x% — 12x

Hy(x) = 16x* — 48x? + 12

Hs(x) = 32x° — 160x> + 120x

Hs(x) = 64x° — 480x* + 720x* — 120

Hy(x) = 128x7 — 1344x° + 3360x° — 1680x

Hg(x) = 256x% — 3584x° + 13440x* — 13440x> + 1680
Hy(x) = 512x° — 9216x7 + 48384x° — 80640x> + 30240x
Hio(x) = 1024x'° — 23040x® + 161280x° — 403200x* + 302400x> — 30240

19C. Hermite, “Sur un nouveau développement en série de fonctions [On a New
Development in Series for Functions],” Compt. Rend. Acad. Sci. Paris 58 (1864):
93-100; 266-273.
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The values H,(0) are called Hermite numbers:

Hy=1

H =0
H=-2

H; =0

Hy = +12
Hs =0

Hg = —120
H;, =0

Hy = 41680
Hy =0

Hip = —30240

The Hermite polynomials are a Sheffer sequence with

glr) = e/t
f(t) = %t

giving the exponential generating function

oo

Hn "
exp th — t Z
n=0

Using a Taylor series shows that

2 dn 2
Hn(x) = (_1)nex %e_x
Hy(x) = /2 <x— di) e /2

Two interesting identities involving H,(x + y) are given by

n

> (Z) Hilx) Hyx(9) = 272 H, (2712 (x 4 )

k=0
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and

(1) Heo 297 = x4 3)
k=0
Another identity is

H,(x+y)=(H+2y)"

where H* = Hy(x). They also obey the sum

S (=1t (Z) H,(k) = 2"n!

k=0

A class of generalized Hermite polynomials y,”(x) satisfies the following
condition:

A class of related polynomials is defined as

2x

with generating function
o0
ert—t’” — Zhn,m(x)tn
n=0

that satisfies the following condition:
Hn(x) = n!bn,Z(x)

A modified version of the Hermite polynomial is sometimes defined as

He,(x) = 2~"/*H, (%)
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The first few of these polynomials are given by

Heq(x) = x

Hes(x) = x> — 1

Hes(x) = x> — 3x

Hes(x) = x* — 6x* +3
Hes(x) = x> — 10x° + 15x

Cornish-Fisher Expansion with
Hermite Polynomials

We now define the Cornish-Fisher expansion using Hermite polynomials.
yRm+ow
where

w = x+ [y1h1(x)] + [12h2(x) + yLh11(x0)] + [v3h3(x) + yiv2bi2(x) + v b1 (x)]
= [yaha(x) + y3ho(x) + nivshi3(x) + yivabiia(x) + yihiin (x)]

where x = ®;(q) is the g-quantile of a standard normal random variable, y,was

defined earlier, and the combinations of Hermite polynomials are

hi(x) = %Hf,’z(x)
by (x) = %Ha@(x)
bia(x) =~ [2Hes(x) + He ()]
h3(x) = %H&;(x)
bia(x) = —ﬁ [Hes(x) + Hes(x)]
b (x) = 3% [12Hes(x) + 19 Hes(x)]
ha(x) = %He@(x)
ha(x) = —ﬁ [3Hes(x) + 6 Hes(x) + 2Heq(x)]
hi3(x) = —i [2Hes(x) + 3Hes(x)]

180
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1
hiia(x) = 788 [14 Hes(x) + 37 Hez(x) + 8 Hey (x)]
1
hi1(x) = ~77 [252Hes(x) + 832 Hes(x) + 227 Heq(x)]

THE REGRESSION FUNCTION

Given a probability space (2,3,P), consider a set of p + 1 random vari-
ables. Let’s suppose that the random vector {X Z; ... Z,} = {X Z},
Z ={Z1...Z,} has the joint multivariate probability density function:

flxzi...2p) = flx,z),2={21...2p}

Let’s consider the conditional density

f(x|zlv ~'-»zp) = f(x,|l)

and the marginal density of Z,

o0

mn=[umw

—00

Recall from an earlier section that the joint multivariate density f(x,z) fac-
torizes as

f(x.z) = [(xlz) f(z)

Let’s consider now the conditional expectation of the variable X given Z =
z={z1...3}:

o0

ﬂﬂ=ﬂmz=ﬂ=/vmmwv

—00

The function g, that is, the function which gives the conditional expecta-
tion of X given the variables Z, is called the regression function. Otherwise
stated, the regression function is a real function of real variables which is the
locus of the expectation of the random variable X given that the variables Z
assume the values z.
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Linear Regression

In general, the regression function depends on the joint distribution of
[X Zi...Z]. In financial econometrics it is important to determine what
joint distributions produce a linear regression function. It can be demon-
strated that joint normal distributions produce a linear regression function.
Consider the joint normal distribution

1 1
F3) = (27 15117% exp [—Ew - v - u)]

where parameters are those defined in an earlier section in this chapter. Let’s
partition the parameters as follows:
_ [9xx Ozx
Oxz 2z

= () =)

where ., 1, are respectively a scalar and a p-vector of expected values, o,
Oxz, Oz, and T, are respectively a scalar, p-vectors and a p x p matrix of
variances and covariances and oy = 0, 0, ., = 0. It can be demonstrated
that the variable (X|Z = z) is normally distributed with the following param-
eters:

(X|Z = Z) ~ N[Mx - (Eglaz,x)/ (//Lz - Z>7 Ox,x — Ux,zE;laz,x+]

From the above expression we can conclude that the conditional expec-
tation is linear in the conditioning variables. Let’s call

o= Ux — (Eglaz,x)/ Mz and ,8 = E;1(72,x
We can therefore write
g2)=E[XZ=7]=a+p2

If the matrix ¥ is diagonal, the random variables (X, Z1,..., Zp) are
independent, such that o, = 0 and g = £, !0, , = 0 and therefore the re-
gression function is a constant that does not depend on the conditioning
variables. If the matrix ¥, is diagonal but o ,, 0, » do not vanish, then the
linear regression takes the following form

P
gz) = E[X|IZ=12] = us - 3 2y,

i=1 Zr i
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In particular, a bivariate normal distribution factorizes in a linear regres-
sion as follows:

Ox,z 2 (Ux,z>2
(X|Z:Z)NN|:Mx_ Uzz( 2 — %), 05 — 622
[oF
8(2) = E[XIZ=2) = jta — 25 o+ —22
z z

FAT TAILS AND STABLE LAWS

Most models of stochastic processes and time series examined thus far in this
chapter assume that distributions have finite mean and finite variance. Now
we describe fat-tailed distributions with infinite variance. Fat-tailed distri-
butions have been found in many financial economic variables ranging from
forecasting returns on financial assets to modeling recovery distributions in
bankruptcies.!

The failure of financial models has been identified by some market ob-
servers as a major contributor—indeed some have argued that is it the single
most important contributor—for the latest global financial crisis. The alle-
gation is that financial models used by risk managers, portfolio managers,
and even regulators simply did not reflect the realities of real-world finan-
cial markets. More specifically, the underlying assumption regarding asset
returns and prices failed to reflect real-world movements of these quanti-
ties. Pinpointing the criticism more precisely, it is argued that the underly-
ing assumption made in most financial models is that distributions of prices
and returns are normally distributed, popularly referred to as the “normal
model.”

In this section, we review the different but related concepts and proper-
ties of fat tails and stable laws. These two concepts appear frequently in the
financial economic literature, applied to both random variables and stochas-
tic processes.

See S. T. Rachev and S. Mittnik, Stable Paretian Models in Finance (New York: John
Wiley & Sons, 2000); S. T. Rachev (ed.), Handbook of Heavy-Tailed Distributions
in Finance (Amsterdam: Elsevier/North-Holland, 2003); and S.T. Rachev, C. Menn,
and E J. Fabozzi, Fat Tails and Skewed Asset Returns Distributions (Hoboken, NJ:
John Wiley & Sons, 2005).
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Fat Tails

Consider a random variable X. By definition, X is a real-valued function
from the set  of the possible outcomes to the set R of real numbers, such
that the set (X < x) is an event. Recall from Chapter 5 that if P(X < x)
is the probability of the event (X < x), the function F(x) = P(X < x) is
a well-defined function for every real number x. The function F(x) is the
cumulative distribution function, or simply the distribution function, of the
random variable X. Note that X denotes a function € — R, x is a real
variable, and F(x) is an ordinary real-valued function that assumes values in
the interval [0,1]. If the function F(x) admits a derivative

_ dF(x)
fla) = =7

As explained in the previous chapter, the function f(x) is the probability den-
sity of the random variable X. The function F(x) =1 — F(x) is the tail of
the distribution F(x). The function F(x) is called the survival function.

Fat tails are somewhat arbitrarily defined. Intuitively, a fat-tailed distri-
bution is a distribution that has more weight in the tails than some reference
distribution. The exponential decay of the tail is generally assumed as the
borderline separating fat-tailed from light-tailed distributions. In the liter-
ature, distributions with a power-law decay of the tails are referred to as
heavy-tailed distributions. It is sometimes assumed that the reference dis-
tribution is the Gaussian distribution (i.e., normal distribution), but this is
unsatisfactory; it implies, for instance, that exponential distributions are fat
tailed because Gaussian tails decay as the square of an exponential and thus
faster than an exponential.

These characterizations of fat tailedness (or heavy tailedness) are not
convenient from a mathematical and statistical point of view. It would be
preferable to define fat tailedness in terms of a function of some essential
property that can be associated to it. Several proposals have been advanced.
Widely used definitions focus on the moments of the distribution. Defini-
tions of fat tailedness based on a single moment focus either on the second
moment, the variance, or the kurtosis, defined as the fourth moment divided
by the square of the variance. In fact, a distribution is often considered fat
tailed if its variance is infinite or if it is leptokurtic (i.e., its kurtosis is greater
than 3). However, as remarked by Bryson'? definitions of this type are too
crude and should be replaced by more complete descriptions of tail behavior.

12ZM.C. Bryson, “Heavy-Tailed Distributions,” in Encyclopedia of Statistical Sci-
ences, vol. 3, ed. N. L. Kotz and S. Read (New York: John Wiley & Sons, 1982),
598-601.
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Others consider a distribution fat tailed if all its exponential moments
are infinite, E[e’X] = oo for every s > 0. This condition implies that the
moment-generating function does not exist. Some suggest weakening this
condition, defining fat-tailed distributions as those distributions that do not
have a finite exponential moment of first order. Exponential moments are
particularly important in finance and economics when the logarithm of vari-
ables, for instance the logarithm of stock prices, are the primary quantity to
be modeled."

Fat tailedness has a consequence of practical importance: the probability
of extremal events (i.e., the probability that the random variable assumes
large values) is much higher than in the case of normal distributions. A fat-
tailed distribution assigns higher probabilities to extremal events than would
anormal distribution. For instance, a “six-sigma event” (i.e., a realized value
of a random variable whose difference from the mean is six times the size of
the standard deviation) has a near zero probability in a Gaussian distribution
but might have a nonnegligible probability in fat-tailed distributions.

The notion of fat tailedness can be made quantitative as different distri-
butions have different degrees of fat tailedness. The degree of fat tailedness
dictates the weight of the tails and thus the probability of extremal events.
The field of extreme value theory attempts to estimate the entire tail region,
and therefore the degree of fat tailedness, from a finite sample. A number of
indicators for evaluating the size of extremal events have been proposed.

The Class 2 of Fat-Tailed Distributions

Many important classes of fat-tailed distributions have been defined; each
is characterized by special statistical properties that are important in given
application domains. We will introduce a number of such classes in order of
inclusion, starting from the class with the broadest membership: the class ¥,
which is defined as follows. Suppose that F is a distribution function defined
in the domain (0, oo) with F < 1 in the entire domain (i.e., F is the distribution
function of a positive random variable with a tail that never decays to zero).
It is said that F € ¥ if, for any y > 0, the following property holds:

lim —9)

x—>00 F(x)

=1,Vy>0

13See G. Bamberg and D. Dorfleitner, “Fat Tails and Traditional Capital Market The-
ory,” Working Paper, University of Augsburg, August 2001.
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We can rewrite the above property in an equivalent (and perhaps
more intuitive from the probabilistic point of view) way. Under the same
assumptions as above, it is said that, given a positive random variable X, its
distribution function F € ¥ if the following property holds for any y > 0:

F
lim P(X>x+y|X>x)= lim M:l, Vy >0

X—00 X—>00 F(x)

Intuitively, this second property means that if it is known that a random vari-
able exceeds a given value, then it will exceed any bigger value. Some authors
define a distribution as being heavy-tailed if it satisfies this property.'*

It can be demonstrated that if a distribution F(x) € ¥, then it has the
following properties:

® Infinite exponential moments of every order: E[e*X] = oo for every s >

0

" lim F(x)e* =00, VA >0
X—> 00

As distributions in class & have infinite exponential moments of every
order, they satisfy one of the previous definitions of fat tailedness. However
they might have finite or infinite mean and variance.

The class ¥ is in fact quite broad. It includes, in particular, the two classes
of subexponential distributions and distributions with regularly varying tails
that are discussed in the following sections.

Subexponential Distributions A class of fat-tailed distributions, widely
used in insurance and telecommunications, is the class S of subexponential
distributions.

Subexponential distributions can be characterized by two equivalent
properties: (1) the convolution closure property of the tails and (2) the prop-
erty of the sums."

The convolution closure property of the tails prescribes that the shape
of the tail is preserved after the summation of independent and identically

14Gee, for example, K. Sigman, “A Primer on Heavy-Tailed Distributions,” Queueing
Systems, 1999.

15See, for example, C. M. Goldie and C. Kluppelberg, “Subexponential Distribu-
tions,” in A Practical Guide to Heavy Tails: Statistical Techniques and Applications,
ed. R. J. Adler, R. E. Feldman, and M. S. Taqqu (Boston: Birkhauser, 1998), 435-
459; and P. Embrechts, C. Kluppelberg, and T. Mikosch, Modelling Extremal Events
for Insurance and Finance (Berlin: Springer, 1999).
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distributed variables. This property asserts that, for x — oo, the tail of a sum
of independent and identically distributed variables has the same shape as
the tail of the variable itself. As the distribution of a sum of # independent
variables is the z-convolution of their distributions, the convolution closure
property can be written as

lim — =n

x—>00 F(x)

Note that Gaussian distributions do not have this property although
the sum of independent Gaussian distributions is again a Gaussian distri-
bution. Subexponential distributions can be characterized by another im-
portant (and perhaps more intuitive) property, which is equivalent to the
convolution closure property: In a sum of z variables, the largest value will
be of the same order of magnitude as the sum itself. For any 7, define

=1

as a sum of independent and identically distributed variables X; and call M,,
their maxima. In the limit of large x, the probability that the tail of the sum
exceeds x equals the probability that the largest summand exceeds x:

- P(Sy > x)

lim ——~ =1

x—o00 P(M, > x)

The class S of subexponential distributions is a proper subset of the class

L. Every subexponential distribution belongs to the class & while it can be

demonstrated (but this is not trivial) that there are distributions that belong

to the class ¥ but not to the class S. Distributions that have both properties

are subexponential as it can be demonstrated that, as all distributions in &,
they satisfy the property

lim F(x)e’™ =00, VA >0
xX—> 00

Note, however, that the class of distributions that satisfies the latter
property is broader than the class of subexponential distributions; this is
because the former includes, for instance, the class .1

16See Sigman, “A Primer on Heavy-Tailed Distributions.”
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Subexponential distributions do not have finite exponential moments of
any order, that is, E[e*X] = oo for every s > 0. They may or may not have a
finite mean and/or a finite variance. Consider, in fact, that the class of subex-
ponential distributions includes both Pareto and Weibull distributions. The
former have infinite variance but might have finite or infinite mean depend-
ing on the index; the latter have finite moments of every order (see below).

The key indicators of subexponentiality are (1) the equivalence in the
distribution of the tail between a variable and a sum of independent and
identically distributed variables and (2) the fact that a sum is dominated by
its largest term.

The class of subexponential distributions is quite large. It includes
not only Pareto and stable distributions but also log-gamma, lognormal,
Benkander, Burr, and Weibull distributions.!” Pareto distributions and stable
distributions are a particularly important subclass of subexponential distri-
butions; these will be described in some detail below.

Power-Law Distributions Power-law distributions are a particularly im-
portant subset of subexponential distributions. Their tails follow approxi-
mately an inverse power law, decaying as x~*. The exponent « is called the
tail index of the distribution. To express formally the notion of approximate
power-law decay, we need to introduce the class R(«), equivalently written
as N, of regularly varying functions.

A positive function f is said to be regularly varying with index « or
f € R(a) if the following condition holds:

(%) _ o

% )

A function f € R(0) is called slowly varying. It can be demonstrated that a
regularly varying function f(x) of index « admits the representation f(x) =
x*[(x) where I(x) is a slowly varying function.

A distribution F is said to have a regularly varying tail if the following
property holds:

F = x7%l(x)

7These distributions are discussed in most statistics textbooks.
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where [ is a slowly varying function. An example of a distribution with a
regularly varying tail is Pareto’s law. The latter can be written in various
ways, including the following:

F(x) = P(X> x) = - ¢

aforsz
x

Power-law distributions are thus distributions with regularly varying
tails. It can be demonstrated that they satisfy the convolution closure
property of the tail. The distribution of the sum of # independent variables
of tail index « is a power-law distribution of the same index «. Note that this
property holds in the limit for x — oco. Distributions with regularly varying
tails are therefore a proper subset of subexponential distributions.

Being subexponential, power laws have all the general properties of fat-
tailed distributions and some additional ones. One particularly important
property of distributions with regularly varying tails, valid for every tail in-
dex, is the rank-size order property. Suppose that samples from a power law
of tail index « are ordered by size, and call S, the size of the rth sample. One
then finds that the law

_1
S, =ar~«

is approximately verified. The well-known Zipf’s law is an example of this
rank-size ordering. Zipf’s law states that the size of an observation is in-
versely proportional to its rank. For example, the frequency of words in an
English text is inversely proportional to their rank. The same is approxi-
mately valid for the size of U.S. cities.

Many properties of power-law distributions are distinctly different in
the three following ranges of @: 0 <« < 1,1 < @ < 2, @ > 2. The threshold
a = 2 for the tail index is important as it marks the separation between
the applicability of the Central Limit Theorem that we discuss next. The
threshold « = 1 is important as it separates variables with a finite mean
from those with infinite mean. Let’s take a closer look at the Law of Large
Numbers and the Central Limit Theorem.

The Law of Large Numbers and the
Central Limit Theorem

There are four basic versions of the Law of Large Numbers (LLN), two Weak
Laws of Large Numbers (WLLN), and two Strong Laws of Large Numbers
(SLLN).
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The two versions of the WLLN are formulated as follows:

1. Suppose that the variables X; are IID with finite mean E[X;] = E[X] = p.
Under this condition it can be demonstrated that the empirical average
tends to the mean in probability:

> Xi
< i=1 P
X — E[X]=pn

n n—00

2. If the variables are only independently distributed (ID) but have finite
means and variances (u;, o;), then the following relationship holds:

n

n _ n
> Xi DX X
X _ i=1 _P> i=1 _ i=1
" n n—oo00 n n

In other words, the empirical average of a sequence of finite-mean finite-
variance variables tends to the average of the means.

The two versions of the SLLN are formulated as follows:

1. The empirical average of a sequence of IID variables X; tends almost
surely to a constant g if and only if the expected value of the variables
is finite. In addition, the constant a is equal to u. Therefore, if and only
if |[E[X;]| = |E[X]| = || < oo the following relationship holds:

> Xi

X,==— = E[X]=u
n n— 00

where convergence is in the sense of almost sure convergence.
2. If the variables X; are only independently distributed (ID) but have finite
means and variances (u;, o;) and

1 n

lim — E of < oo
n—-oo 1 i—1
1=

then the following relationship holds:

n
> X
< = AS.
Xn _ i 1 a9 i
n n— 00

n o n
Xi Y
=1 i=
n n
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Suppose the variables are IID. If the scaling factor # is replaced with /7,
then the limit relation no longer holds as the normalized sum

> Xi
i=1
Jn

diverges. However, if the variables have finite second-order moments, the
classical version of the Central Limit Theorem (CLT) can be demonstrated.
In fact, under the assumption that both first- and second-order moments are
finite, it can be shown that

Sy —niL D
—%

o/n
Sn = Xn:sz
i=1

D

where u, o are respectively the expected value and standard deviation of X,
and ® the standard normal distribution.

If the tail index o > 1, variables have finite expected value and the SLLN
holds. If the tail index o > 2, variables have finite variance and the CLT in
the previous form holds. If the tail index o < 2, then variables have infinite
variance: The CLT in the previous form does not hold. In fact, variables
with o < 2 belong to the domain of attraction of a stable law of index «
as explained in the next section. This means that a sequence of properly
normalized and centered sums tends to a stable distribution with infinite
variance. In this case, the CLT takes the form

Sn_ .
#BGQ, fl<a<2

Na

Su

1

Na

LG, if0o<a<1

where G are stable distributions as defined below. Note that the case a =
2 is somewhat special: variables with this tail index have infinite variance
but fall nevertheless in the domain of attraction of a normal variable, that
is, G,. Below the threshold 1, distributions have neither finite variance nor
finite mean. There is a sharp change in the normalization behavior at this
tail-index threshold.
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Stable Distributions

Stable distributions are not, in their generality, a subset of fat-tailed dis-
tributions as they include the normal distribution. There are different,
equivalent ways to define stable distributions. Let’s begin with a key prop-
erty: the equality in distribution between a random variable and the (nor-
malized) independent sum of any number of identical replicas of the same
variable. This is a different property than the closure property of the tail
insofar as (1) it involves not only the tail but the entire distribution and
(2) equality in distribution means that distributions have the same func-
tional form but, possibly, with different parameters. Normal distributions
have this property: The sum of two or more normally distributed vari-
ables is again a normally distributed variable. But this property holds for
a more general class of distributions called stable distributions or Levy-
stable distributions. Normal distributions are thus a special type of stable
distributions.

The above can be formalized as follows: Stable distributions can be de-
fined as those distributions for which the following identity in distribution
holds for any number 7 > 2:

S % 26X+ D,

i=1

where X; are identical independent copies of X and the C,,, D,, are constants.
Alternatively, the same property can be expressed stating that stable dis-
tributions are distributions for which the following identity in distribution
holds:

AXi + BX, 2CX+ D

Stable distributions are also characterized by another property that
might be used in defining them: a stable distribution has a domain of at-
traction (i.e., it is the limit in distribution of a normalized and centered sum
of identical and independent variables). Stable distributions coincide with
all variables that have a domain of attraction.

Except in the special cases of Gaussian (@ = 2), symmetric Cauchy
(e =1, B =0), and stable inverse Gaussian (« = %, B = 0) distributions, sta-
ble distributions cannot be written as simple formulas; formulas have been
discovered but are not simple. However, stable distributions can be char-
acterized in a simple way through their characteristic function, the Fourier
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transform of the distribution function. In fact, this function can be written
as

O x(2) = expliyt — clt|” [1 —iB sign (£)z(, )]}
wheret e R,y e R, ¢ > 0,a € (0,2), B € [-1,1], and
z(t, a):tan% ifa#1

z(t, o) = —2loglt|ifa =1

It can be shown that only distributions with this characteristic function
are stable distributions (i.e., they are the only distributions closed under sum-
mation). A stable law is characterized by four parameters: «, B, ¢, and y.
Normal distributions correspond to the parameters: « =2, 8 =0, y = 0.

Even if stable distributions cannot be written as simple formulas, the
asymptotic shape of their tails can be written in a simple way. In fact, with the
exception of Gaussian distributions, the tails of stable laws obey an inverse
power law with exponent a (between 0 and 2). Normal distributions are
stable but are an exception as their tails decay exponentially.

For stable distributions, the CLT holds in the same form as for inverse
power-law distributions. In addition, the functions in the domain of attrac-
tion of a stable law of index @ < 2 are characterized by the same tail index.
This means that a distribution G belongs to the domain of attraction of a
stable law of parameter o < 2 if and only if its tail decays as «. In particular,
Pareto’s law belongs to the domain of attraction of stable laws of the same
tail index.

Normal vs. Stable Distribution and Its Extensions The normal distribu-
tion has found many applications in the natural sciences and social sciences.
However, there are those who have long warned about the misuse of the
normal distribution, particularly in the social sciences.'® In finance, where
the normal distribution was the underlying assumption in describing asset
returns in major financial theories such as the capital asset pricing theory

18See T. Goertzel and J. Fashing, “The Myth of the Normal Curve: A Theoretical Cri-
tique and Examination of its Role in Teaching and Research,” Humanity and Society
5(1981): 18-23; and R. Herrnstein and C. Murray, The Bell Curve: Intelligence and
Class Structure in American Life (New York: Free Press, 1994).
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and option pricing theory, the attack came in the early 1960s from Benoit
Mandelbrot, a mathematician at IBM’ Thomas J. Watson Research Cen-
ter. Although primarily known for his work in fractal geometry, the finance
profession was introduced to his study of returns on commodity prices and
interest rate movements that strongly rejected the assumption that asset re-
turns are normally distributed.

The mainstream financial models at the time relied on the work of Louis
Bachelier, a French mathematician who at the beginning of the twentieth
century was the first to formulate random walk models for stock prices.
Bachelier’s work assumed that relative price changes followed a normal dis-
tribution. Mandelbrot, however, was not the first to attack the use of the nor-
mal distribution in finance. As he notes, Wesley Clair Mitchell, an American
economist who taught at Columbia University and founded the National Bu-
reau of Economics Research, was the first to do so in 1914. The bottom line
is that, in the findings of Mandelbrot, empirical distributions do not follow a
normal distribution. This led a leading financial economist, Paul Cootner of
MIT, to warn the academic community that Mandelbrot’s finding may mean
that “past econometric work is meaningless.” However, the overwhelming
empirical evidence of asset returns in real-world financial market since the
publication of Mandelbrot’s work is that they are not normally distributed.
In Mandelbrot’s attack on the normal distribution, he suggested that asset
returns are more appropriately described by a nonnormal stable distribution
referred to as a stable Paretian distribution or alpha-stable distribution, so
named because the tails of this distribution have Pareto power-type decay.
The reason for describing this distribution as “nonnormal stable” is that,
as noted earlier, the normal distribution is a special case of the stable dis-
tribution. Because of the work by Paul Lévy, a French mathematician, who
introduced and characterized the nonnormal stable distribution, this distri-
bution is also referred to as the Lévy stable distribution and the Pareto-Lévy
stable distribution.

Despite the empirical evidence rejecting the normal distribution and in
support of the stable distribution, there have been several barriers to the
application of stable distribution models, both conceptual and technical.
The major problem is that the variance of the stable nonnormal distribu-
tions is infinite as noted earlier. As a result, it is difficult to use this distri-
bution within the Markowitz mean-variance framework. A second criticism
of the stable distribution concerns the fact that without a general expression
for stable probability densities—except the four cases (the normal distribu-
tion and three other distributions—one cannot directly implement estima-
tion methodologies for fitting these densities. However, today because of
advances in computational finance, there are methodologies for fitting den-
sities for stable distributions.
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Although the empirical evidence of observed market returns is incon-
sistent with the normal distribution and better explained by the stable
distribution, the empirical suggests that there may be better models than
the traditional stable distribution for describing return distributions. More
specifically, the empirical evidence suggests that the tails of the distribution
for asset returns are heavier than the normal distribution but thinner than
the stable distribution.” To overcome the drawbacks of the stable distribu-
tion, the tails can be appropriately tempered or truncated in order to obtain
a proper distribution that can be utilized to better price financial deriva-
tives. Several alternatives to the stable distribution have been proposed in
the literature. One alternative is the classical tempered stable distribution—
introduced under the names truncated Lévy flight distribution,”® KoBoL
distribution,*! and CGMY distribution*>—and its extension, the KR distri-
bution.?* The modified tempered stable (MTS) distribution is another alter-
native.?* These distributions, sometimes called the tempered stable distribu-
tions,> have not only heavier tails than the normal distribution and thinner
than the stable distribution, but also have finite moments for all orders and
exponential moments of some order.

M. Grabchak and G. Samorodnitsky, “Do Financial Returns Have Finite or Infi-
nite Variance? A Paradox and An Explanation,” Technical Report, ORIE, Cornell
University, 2008.

201. Koponen, “Analytic Approach to the Problem of Convergence of Truncated Lévy
Flights Towards the Gaussian Stochastic Process,” Physical Review E 52 (1995):
1197-1199.

218 1. Boyarchenko, S.Z. Levendorskii, “Option Pricing For Truncated Lévy Pro-
cesses,” International Journal of Theoretical and Applied Finance 3 (2000): 549-
553.

22P, Carr, H. Geman, D. Madan, and M. Yor, “The Fine Structure of Asset Returns:
An Empirical Investigation,” Journal of Business 75 (2002): 305-332.

23Y. Kim, S. T. Rachev, M. Bianchi, and F. J. Fabozzi, “A New Tempered Stable Dis-
tribution and Its Application to Finance,” in Risk Assessment: Decisions in Banking
and Finance, ed. G. Bol, S. T. Rachev, and R. Wurth (Berlin: Physika Verlag/Springer,
2008), 51-84.

24Y. Kim, S.T. Rachev, D. Chung, and M. Bianchi, “The Modified Tempered Stable
Distribution, GARCH Models and Option Pricing,” Probability and Mathematical
Statistics 29 (2009): 91-117.

2SRosinski extended the CTS distribution under the name of the tempered stable
distribution. (See J. Rosinski, “Tempering Stable Processes,” Stochastic Processes and
Their Applications 117 (2007): 677-707.) Note that the KR distribution is included
in this extension, but MTS distribution is not. (See M. L. Bianchi, S. T. Racheyv, Y. S.
Kim, and EJ. Fabozzi, “Tempered Infinitely Divisible Distributions and Processes,”
Theory of Probability and Its Applications 55 (2010): 59-86.)



144 MATHEMATICAL METHODS FOR FINANCE

KEY POINTS

® Conditioning means the change in probabilities due to the acquisition
of some information. In general terms, conditioning means conditioning
with respect to a filtration or an information structure.

® Jt is possible to condition with respect to an event if the event has
nonzero probability.

® A martingale is a stochastic process such that the conditional expected
value is always equal to its present value. It embodies the idea of a fair
game where today’s asset price is the best forecast of the asset’s future
price.

® The correlation coefficient between two variables is a number that mea-
sures how the two variables move together. It is zero for independent
variables, plus/minus one for linearly dependent deterministic variables.

® There are applications in finance where the correlation coefficient might
be misleading. In particular, there are cases of nonlinear dependencies
that result in a zero correlation coefficient. Different measures of de-
pendence have been proposed. One such measure is the copula function
which allows one to capture nonlinearities in a synthetic way as a link
between marginal distributions.

® Three advantages of the copula approach for dealing with dependencies
over the correlation measure are that it can (1) capture non-linear de-
pendence, (2) quantify dependence for fat-tailed distributions, and (3)
be used to investigate asymptotic properties of dependence structures.

® A sequence of random variables is referred to as a sequence of inde-
pendent and identically distributed sequence if the variables have all the
same distribution and are all mutually independent.

® An infinite sequence of random variables might converge to a limit ran-
dom variable.

® Different types of convergence can be defined: pointwise convergence,
convergence in probability, or convergence in distribution.

® Random variables can be added to produce another random variable.

® The characteristic function of the sum of two random variables is the
product of the characteristic functions of each random variable.

® The Gaussian distribution, also referred to as the normal distribution,
is an extremely important probability distribution in probability theory
because of the fact that any phenomenon made up of a large number of
independent or weakly dependent random variables has this distribu-
tion. There are criticisms of the misuse of this distribution in financial
market applications.

® The Cornish-Fisher expansion and Hermite polynomials can be used to
approximate the tails of a probability distribution.
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® Given a multivariate distribution, the regression function of one random
variable with respect to the others is the conditional expectation of that
random variable given the values of the others.

® Joint normal distributions admits a linear regression function.

= Although somewhat arbitrarily defined, a fat-tailed distribution is a dis-
tribution that has more weight in the tails than some reference distribu-
tion such as the normal distribution.

® Fat tailedness has a consequence of practical importance: the probability
of external events (i.e., the probability that the random variable assumes
large values) is much higher than in the case of normal distributions.

® Fat-tailed laws have been found in many variables studies in finance
such as asset returns.

® There exist many important classes of fat-tailed distributions, with each
characterized by special statistical properties that are important in given
application domains.

® Power-law distributions are thus distributions with regularly varying
tails.

® The nonnormal distribution often proposed for modeling extreme
events is the stable Paretian distribution. The normal distribution is a
special case of the general stable distribution. In only three cases does the
density function of a stable distribution have a closed-form expression.
In the general case, stable distributions are described by their character-
istic function.






7

Optimization

n mathematics and statistics, optimization means the selection of a

best element (with regard to some criteria) from some set of avail-
able alternatives. In the simplest case, an optimization problem con-
sists of maximizing or minimizing a function by choosing input values
from within an allowed set and computing the value of the function.
The generalization of optimization theory and techniques to other for-
mulations comprises a large area of applied mathematics. In finance,
optimization is widely used in asset allocation, bond portfolio man-
agement, and derivative pricing. Using optimization:

® One can determine the mean-variance efficient frontier by maxi-
mizing expected return of a portfolio subject to a risk constraint.
Alternatively, one can minimize the portfolio’s risk subject to an
expected return constraint.

® One can find the optimal portfolio weights by maximizing ex-
pected utility of a risk-averse investor defined as the expected re-
turn of a portfolio minus the product of the risk aversion param-
eter and the portfolio’s variance.

® One can construct an immunized portfolio, which means a portfo-
lio created so as to have an assured return for a specific time hori-
zon irrespective of interest rate changes, one can deal with cash
flow matching, also referred to as a dedicated portfolio strategy or
the problem of matching a predetermined set of liabilities with an
investment portfolio that produces a deterministic stream of cash
flows.

® One can compute the optimal profit of a company given the
sources of earnings and cost structure.

® One can rebalance a portfolio so as to minimize transaction costs.

147
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What you will learn after reading this chapter:

= The general concept of optimization and mathematical program-
ming.

® How to use a Hessian matrix and Hessian determinants to find
the maxima and minima.

® How to use Lagrange multipliers to find a local optimum.

® What linear, quadratic, and stochastic programming techniques
are.

® What are calculus of variations and optimal control theory.

® How to deal with bond portfolio management and portfolio im-
munization.

® How to determine optimal portfolio weights in portfolio construc-
tion.

INTRODUCTION

The concept of optimization is intrinsic to finance theory. The seminal
work of Harry Markowitz demonstrated that financial decision making
is essentially a question of an optimal trade-off between risk and return.
In modern terminology, an optimization problem is called a mathematical
programming problem.

From an analytical perspective, a static mathematical program attempts
to identify the maxima or minima of a function f(x1, ..., x,) of n real-valued
variables, called the objective function, in a domain identified by a set of
constraints. The latter might take the general form of inequalities gj(x1, . . .,
X,) > b;. Linear programming is the specialization of mathematical program-
ming to instances where both f and the constraints are linear. Quadratic pro-
gramming is the specialization of mathematical programming to instances
where f is a quadratic function. The Markowitz mean-variance approach
leads to a quadratic programming problem.

A different, and more difficult, problem is the optimization of a dynamic
process. In this case, the objective function depends on the entire realization
of a process, which is often not deterministic but stochastic. Decisions might
be taken at intermediate steps on the basis of information revealed up to that
point. This is the concept of recourse, that is, revision of past decisions. This
area of optimization is called stochastic programming.

From an application perspective, mathematical programming is an
optimization tool that allows the rationalization of many business or
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technological decisions. The computational tractability of the resulting ana-
lytical models is a key issue in mathematical programming. The simplex al-
gorithm, developed in 1947 by George Dantzig, was one of the first tractable
mathematical programming algorithms to be developed for linear program-
ming. Its subsequent successful implementation contributed to the accep-
tance of optimization as a scientific approach to decision making and initi-
ated the field known as operations research.

Optimization is a highly technical subject, which we will not fully de-
velop in this chapter. Instead, our objective is to give the reader a general
understanding of the technology. We begin with an explanation of maxima
or minima of a multivariate function subject to constraints. We then discuss
the basic tools for static optimization: linear programming and quadratic
programming. After introducing the idea of optimizing a process and defin-
ing the concepts of the calculus of variations and control theory, we briefly
cover the techniques of stochastic programming.

MAXIMA AND MINIMA

Consider a multivariate function f{x1, . . ., x,,) of # real-valued variables. Sup-
pose that f is twice differentiable. Define the gradient of f, gradf also written
V{, as the vector whose components are the first-order partial derivatives of /

grad[f(xh...,xn)]va:(a_f 8f>

ax1’ 7 Ax,

Given a multivariate function f(x1, ..., x,), consider the matrix formed
by the second-order partial derivatives. This matrix is called the Hessian
matrix and its determinant, denoted by H, is called the Hessian determinant
(see Chapter 4 for definition of a matrix and determinants):

9 f o* f
8x12 0x1 0,
H= : - :
o* f o* f
9x10x, dx2

A point (ay,..., a,) is called a relative local maxima or a relative local
minima of the function f if the relationship

flag+hy,....x,+hy) < flay,....a,), |k <d>0
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or, respectively,
f(dl +h1’--~vxn+hn) z f(ala"'aan>7 |h| §d> 0

holds for some real positive number d > 0.

A necessary, but not sufficient, condition for a point (x1,..., x,) to be
a relative maximum or minimum is that all first-order partial derivatives
evaluated at that point vanish, that is, that the following relationship holds:

grad[f(xl,...,xn)]:(a—f-~- af):(O,...,O)

0x1 0x;,

A point where the gradient vanishes is called a critical point.
A critical point can be a maximum, a minimum, or a saddle point. For
functions of one variable, the following sufficient conditions hold:

® If the first derivative evaluated at a point a vanishes and the second
derivative evaluated at a is positive, then the point a is a (relative) min-
imum.

m If the first derivative evaluated at a point a vanishes and the second
derivative evaluated at g is negative, then the point a is a (relative) max-
imum.

® If the first derivative evaluated at a point a vanishes and the second
derivative evaluated at a also vanishes, then the point a is a saddle point.

In the case of a function f{x,y) of two variables x,y, the following con-

ditions hold:

® If Vf =0 at a given point a and if the Hessian determinant evaluated at
a is positive, then the function f has a relative maximum in a if f, < 0
or fyy < 0 and a relative minimum if £, > 0 or f,, > 0. Note that if the
Hessian is positive the two second derivatives fy, and f,, must have the
same sign.

= If Vf= 0 at a given point a and if the Hessian determinant evaluated at
a is negative, then the function f has a saddle point in a.

® If Vf = 0 at a given point a and if the Hessian determinant evaluated
at a vanishes, then the point a is degenerate and no conclusion can be
drawn in this case.

The above conditions can be expressed in a more compact way if we con-
sider the eigenvalues (see Chapter 4) of the Hessian matrix. If both eigen-
values are positive at a critical point g, the function has a local minimum
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at a; if both are negative the function has a local maximum; if they have
opposite signs, the function has a saddle point; and if at least one of them is
0, the critical point is degenerate. Recall that the product of the eigenvalues
is equal to the Hessian determinant.

This analysis can be carried over to the three-dimensional case. In this
case, there will be three eigenvalues, all of which are positive at a local min-
imum and negative at a local maximum. A critical point of a function of
three variables is degenerate if at least one of the eigenvalues of the Hessian
determinant is 0 and has a saddle point if at least one eigenvalue is positive,
at least one is negative, and none is 0.

In higher dimensions, the situation is more complex and goes beyond
the scope of our introduction to optimization.

LAGRANGE MULTIPLIERS

Consider a multivariate function f(x1, ..., x,) of n real-valued variables. In
the previous section we saw that, if the 7 variables are unconstrained, a local
optimum of f can be found by solving the 7 equations:

vf:(ﬂ N a’(>=(o,...,0)

dx1’ 7 Ax,

Let’s now discuss how to find maxima and minima when the opti-
mization problem has equality constraints. Suppose that the 7 variables
(x1, ..., x,) are not independent, but satisfy 7 < 7 constraint equations

g1(xt, ..., x,) =0

gm(xl,'-wxn):O

These equations define, in general, an (1-m)-dimensional surface. For
instance, in the case of two variables, a constraint g1 (x,y) = 0 defines a line.
In the case of three variables, one constraint g{(x,)%z) = 0 defines a two-
dimensional surface while two constraints g (x,,z) = 0, g2(x,),z) = 0 define
a line in the three-dimensional space, and so on.

Our objective is to find the maxima or minima of the function f for the
set of points that also satisfy the constraints. It can be demonstrated that,
under this restriction, the gradient Vf of f need not vanish at the maxima
or minima, but need only be orthogonal to the (7-72)-dimensional surface
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described by the constraint equations. That is, the following relationships
must hold

V= ATVg, for some A = (Aq,...,A,)

or, in the usual notation,
9 T dgi .
—f =Z)Liﬁ, i=1,...,n
8.’)6,‘ st Bx,»

The coefficients (A1, ..., A;,) are called Lagrange multipliers.
If we define the function

m
F(xl"'-vxn’ )"1"~~7)\'m)= f(x1”xﬂ)_z)"]gl
j=1

the above equations together may be written as
VF =0

or

oF OF 9F oF

oxt  09x. 0h 0hm

In other words, the method of Lagrange multipliers transforms a constrained
optimization problem into an unconstrained optimization problem. The
method consists in replacing the original objective function f to be optimized
subject to the constraints g with another objective function

F=f=) hg
j=1

to be optimized without constraints in the variables (x1, ..., X,y A1, ..., Am).
The Lagrange multipliers are not only a mathematical device. In many ap-
plications they have a useful physical or economic interpretation:

Example 1. Suppose we wish to maximize f(x,y)= x4+ y subject to
a constraint x> + y?> = 1. Using the method of Lagrange multipliers, we
have g(x, y) — ¢ = x> + y*> — 1. Hence, the constrained optimization can be
written as:

Alx,y,0) = flx, y) + r(glx,y) —¢) = x + y+ r(x* +y* = 1)
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Maximizing A(x, y, A) with respect to x, y, and A yields the system of
equations:

A
—=14+2x=0
0x

oA

— =142xy=0
dy

oA 5 5

— = —-1=0
m X"ty

where the last equation is the original constraint.

The first two equations yield x = —1/21 and y = —1/21, where A #
0. Substituting into the last equation yields 1/(4A%)+1/(41%) =1, so A =
F+/2/2, which implies that the optimal solutions are (+/2/2,+/2/2) and
(=+/2/2, —+/2/2). Evaluating the objective function f at these points yields

f(v2/2.4272) =2

and

f(—ﬁ/z, —ﬁ/z) 5

thus the maximum is /2, which is attained at (v/2/2, +/2/2), and the mini-
mum is —/2, which is attained at (—v/2/2, —v/2/2).

Example 2. A firm uses two inputs, denoted by x and y, to produce one
output. Its production function is

flx.y) ="y
The price of output is p, and the prices of the inputs are w, and w,.
Suppose the firm is constrained by a law that says it must use exactly the

same number of units of both inputs. Thus the firm’s optimization problem
is to maximize profit:

[px“ yh — WX — wyy]

subject to y — x = 0.
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The Lagrangian is
A%y, 2) = px'y’ —wex — wyy — Ay — x)

so the first-order conditions are

apx* 'y —w,+1=0

bh—
bpx®y* ™t —w, +1 =0
y—x=0

These equations have a single solution, with

wy + wy
(p(a + b)) /@D
bw, — aw,
a+b

X = =

Given the values of @ and b in the production function, the prices of
inputs (w, and w,), and the price of output (p), we can find the optimal
values of inputs (x, y) that maximize profit.

Example 3. Consider the following utility maximization problem:

maxcicy 0
c1,C2

subject to y; = $1,000, y, = $648, and r = .08, so that

% 648

= =9%$1,000 + — = $1,600
wy y1+l+r+r $1, +1.08 $1,

Here we have assumed a specific form of the utility function and spe-
cific values for incomes and the interest rate, so that we can obtain a numer-
ical answer to the consumption-investment problem. The function ¢;¢,%®
is the utility function; ¢;c;%® = constant represents the equation of an
indifference curve.
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The consumer’s problem is to maximize utility by finding the optimal
consumption pattern (cj, ¢;) with a present value of $1,600. That is, the
solution to the problem must satisfy’

e
2 _ 41
ca+ 103 $1,600

We can rewrite the last condition as
¢ = ($1,600 — ¢1)(1.08)
Then, substitution into the original maximization problem gives

max ¢1[($1,600 — ¢;)(1.08)]%¢

A solution to the last problem can be found by setting the derivative
taken with respect to ¢; equal to zero. Taking the derivative gives

(81,600 — ¢1)*® — ¢1(0.6)($1,600 — ¢1)** =0
We then have
($1,600 — ¢1)* = 0.6¢1($1,600 — ¢1)~%*

or

($1,600 — ¢1) = 0.6¢4
so that

1.6¢1 = $1,600

and hence the solution for time 1 consumption is

¢; = $1,000

! Actually, it cannot exceed $1,600. But since spending more money on consumption
is assumed to give greater satisfaction, the consumer will always spend all available
funds. Incidentally, some of this spending can be interpreted as a bequest, so the
consumer, while a materialist, need not be lacking in altruism.
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Moreover, since

I S _
6+ 7o = 81,600, o =$600

so that
¢t = $600(1.08) = $648
This consumer is atypical in neither borrowing nor lending; that is,

the optimal consumption pattern is exactly the same as the income stream.
Formally,

and

NUMERICAL ALGORITHMS

The method of Lagrange multiplers works with equality constraints, that
is, when the solution is constrained to stay on the surface defined by
the constraints. Optimization problems become more difficult if inequal-
ity constraints are allowed. This means that the admissible solutions must
stay within the boundary defined by the constraints. In this case, ap-
proximate numerical methods are often needed. Numerical algorithms or
“solvers” to many standard optimization problems are available in many
computer packages.

Linear Programming

The general form for a linear programming (LP) problem is as follows. Min-
imize a linear objective function

f(X1,...,xn):C1X1+'~-+ CnXy
or, in vector notation,

f(xl,...,xn):ch, c=(Cly ., Cn),X=(x1,...,%,)
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subject to the constraints

<
ai71x1+"'+ai7nxn - b171_1’25 , m
>
or, in matrix notation,
<
Ax| =1|b
>

with additional sign restrictions such as x; < 0, x; > 0, or x; unrestricted

in sign.
The largest or smallest value of the objective function is called the opti-
mal value, and a vector [x ... x,] that gives the optimal value constitutes an

optimal solution. The variables x1, ..., x, are called the decision variables.
The feasible region determined by a collection of linear inequalities is the
collection of points that satisfy all of the inequalities. The optimal solution
belongs to the feasible region.

The above formulation has the general structure of a mathematical pro-
gramming problem as outlined in the introduction to the chapter, but is
characterized, in addition, by the fact that the objective function and the
constraints are linear.

LP problems can be transformed into standard form. An LP is said to be
in standard form if (1) all constraints are equality constraints and (2) all the
variables have a nonnegativity sign restriction. An LP problem in standard
form can therefore be written as follows

min c’x

subject to constraints

Ax=b

x>0

where A is an m x n matrix and b is an m-vector.
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Every LP can be brought into standard form through the following trans-
formations:

1. An inequality constraint

ai,1X1+ -+ ain Xy

IV I IA
S

can be converted into an equality constraint through the introduction
of a slack variable, denoted by S, or an excess variable, denoted by E,
such that

aiaxi+-+aia %+ S=0b
or
agiix1+-+ai.x,—E=b
2. A variable with negative sign restriction x; < 0 can be substituted by

x; = —x/,x/ > 0 while an unrestricted variable can be substituted by
X =x —x/,x,x] > 0.

Quadratic Programming

The general quadratic programming (QP) problem is a mathematical pro-
gramming problem where the objective function is quadratic and constraints
are linear as follows:

1
minimize f(xi,...,%,) =c x+ ZXTDX

wherec=(cq, ..., ¢s),x=(x1,...,x,)are n-vectors, and D is a # x # matrix,
subject to

aixfbi,iel
aix=bi,ieE

x>0

where b is an m-vector b = (b4, ...,b,,), A = [a;] is an m x n matrix, and |
and E specify the nonequality and equality constraints respectively.
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The major classification criteria for these problems come from the char-
acteristics of the matrix D as follows:

® If the matrix D is positive semidefinite or positive definite, then the QP
problem is a convex quadratic problem. For convex quadratic prob-
lems, every local maximum is a global maximum. The Markowitz mean-
variance optimization problem is of this type.

® If the matrix D is negative semidefinite, that is, its eigenvalues are all
nonpositive, then the QP problem is a concave quadratic problem. All
solutions lie at some vertex of the feasible regions. There are efficient
algorithms for solving this problem.

® If the matrix D is such that the problem is bilinear, that is, the variables
x can be split into two subvectors such that the problem is linear when
one of the two subvectors is fixed, then the QP problem is bilinear. There
are efficient algorithms for solving this problem.

® If the matrix D is indefinite, that is, it has both positive and negative
eigenvalues, then the QP problem is very difficult to solve. Depending on
the matrix D, the complexity of the problem might grow exponentially
with the number of variables.

Many modern software optimization packages have solvers for several
of these problems.

The Markowitz mean-variance optimization provides a maximum ex-
pected return of a portfolio subject to a risk constraint or provides a mini-
mum portfolio risk subject to an expected return constraint. To illustrate we
assume a two-asset portfolio with a short-sale constraint.?

Suppose that expected returns on assets A and B are given by E(R4) and
E(Rp), respectively. The standard deviations are o4 and op, and the corre-
lation between assets A and B is denoted by p. Then, investors maximize
expected return of a portfolio:

max,, wy) E(Rp) = waE(Ry) 4+ wpE(Rp)

subject to a risk constraint

2H. M. Markowitz, “Portfolio Selection,” Journal of Finance 7 1 (1952): 77-91.
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where w4 and wp are the portfolio weights or proportion of wealth invested
on assets A and B, respectively. The risk of the portfolio is measured by the
standard deviation:

2 2 2
op = \/wAaA + w%aB + 2w wpgpo aop

Alternatively, investors may choose to minimize risk of the portfolio

MiNy, wy) Op = \/wioﬁ +whod + 2wawgpoaop
subject to an expected return constraint
E(R,) > R,

Since we impose a short-sale constraint as well, the Markowitz opti-
mization is formulated as

MaxX(u, gy E(R,) = waE(Ra) + wy E(Rp)
s.t.,
0p <6p,wa>0,wp >0
and
wa+wp =1
For example, if E(Rs) = 10%, E(Rg) =20%, 04 =25%, op = 35%,
p =—0.5, and 5, = 15%, the constraint optimization yields the portfolio

weights wy = 53.77% and wp = 46.23%.
Similarly, if we minimize the portfolio risk:

1 2 2 2
M, 0p) Op = \/W%XUA + wpog + 2WAWBPO A0
s.t.,

E(Rp) > Ry, wa >0, wg >0
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and
wa+wp =1
For example, if E(R4) = 10%, E(Rp) = 20%, 04 =25%, o = 35%,

p=—0.5, and R, = 12%, the constraint optimization gives the portfolio
weights wy = 61.01% and wp = 38.99%.

CALCULUS OF VARIATIONS AND OPTIMAL
GCONTROL THEORY

We have thus far discussed the problem of finding the maxima or minima of
a function of 7 real variables. The solution to these problems is typically one
point in a domain. This formulation is sufficient for problems such as finding
the optimal composition of a portfolio for a single period of a finite horizon:
An investment is made at the initial time and a payoff is received at the end
of the period. However, many other important optimization problems in
finance require finding an optimal function or path throughout time and
over multiple periods.

The mathematical foundation for problems whose solution requires
finding an optimal function or path of this kind is the calculus of variations.
The basic setting of the calculus of variations is the following. An infinite
set of admissible functions y = f(x), xo < x < x1 is given. The end points
might vary from curve to curve. Let’s assume all curves are differentiable in
the given interval [x0,x1]. A function of three variables F(x,y,z) is given such
that the integral

X1

Iy = f F(x, y,)dx

X0

is well defined where ¥ = dy/dx. The value of | depends on the curve y. The
basic problem of the calculus of variations is to find the curve y = f{x) that
minimizes J. This problem could be easily reformulated in many variables.

One strategy for solving this problem is the following. Any solution
y = f(x) has the property that, if we slightly displace the curve v, the integral
assumes higher values. Therefore if we parameterize parallel displacements
with a variable ¢ (denoting by {y.} the collection of all such displacements
from the optimal y such that y. [.—o = ), the derivative of | with respect to
& must vanish for ¢ = 0.
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If we compute this derivative, we arrive at the following differential
equation that must be satisfied by the optimal solution y:

0F(x.y.y) doF(xy.y) _,
dy dx ay’ N

First established by Leonard Euler in 1744, this differential equation is

known as the Euler equation or the Euler-Lagrange equation.

Though fundamental in the physical sciences, this formulation of vari-
ational principles is rarely encountered in finance theory. In finance theory,
as in engineering, one is primarily interested in controlling the evolution of
a process. For instance, in investment management, one is interested in con-
trolling the composition of a portfolio in order to attain some objective. This
is the realm of control theory. Let’s now define control theory in a determin-
istic setting. The following section will discuss stochastic programming—a
computational implementation of control theory in a stochastic setting.

Consider a dynamic process which starts at a given initial time ¢y and
ends at a given terminal time #;. Let’s suppose that the state of the system
is described by only one variable x(¢) called the state variable. The state of
the system is influenced by a set of control variables that we represent as
a vector u(t) = [uy(#),...,u,(t)]. The control vector must lie inside a given
subset of a Euclidean r-dimensional space, U which is assumed to be closed
and time-invariant. An entire path of the control vector is called a control. A
control is admissible if it stays in U and satisfies some regularity conditions.

The dynamics of the state variables are specified through the differential
equation

% = filx(z), u(z)]

where f; is assumed to be continuously differentiable with respect to both
arguments. Suppose that the initial state is given but the terminal state is
unrestricted.

The problem to be solved is that of maximizing the objective functional:

t

Ty = f folt, x(2), u(#)lde + Sitr, x(1)]

to

A functional is a mapping from a set of functions into the set of real numbers;
it associates a number to each function. The definite integral is an example
of a functional.
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To solve the above optimal control problem, a useful strategy is to find a
set of differential equations that must be satisfied by the control. Two major
approaches for solving this problem are available: Bellman’s Dynamic Pro-
gramming’® and Pontryagin’s Maximum Principle.* The former approach is
based on the fact that the value of the state variable at time # captures all the
necessary information for the decision-making from time ¢ and onward: The
paths of the control vector and the state variable up to time ¢ do not make
any difference as long as the state variable at time ¢ is the same. Bellmann
showed how to derive from this observation a partial differential equation
that uniquely determines the control. Pontryagin’s Maximum Principle in-
troduces additional auxiliary variables and derives differential equations via
the calculus of variations that might be simpler to solve than those of Bell-
mann’s dynamic programming.

STOCHASTIC PROGRAMMING

The model formulations discussed thus far assume that the data for the
given problem are known precisely. However, in financial economics, data
are stochastic and cannot be known with certainty. Stochastic programming
can be used to make optimal decisions under uncertainty. The fundamental
idea behind stochastic programming is the concept of stages and recourse.
Recourse is the ability to take corrective action at a future time, that is, a
decision stage, after a random event has taken place.

To formulate problems of dynamic decision making under uncertainty
as a stochastic program, we must first characterize the uncertainty in the
model. The most common method is to formulate scenarios and to assign
to each scenario a probability. A scenario is a complete path of data. To
illustrate the problem of stochastic programming, let’s consider a two-stage
program that seeks to minimize the cost of the first-period decision plus the
expected cost of the second-period recourse decision. In the next section, we
provide an example related to bond portfolio management.

To cast the stochastic programming problem in the framework of LP,
we need to create a deterministic equivalent of the stochastic problem. This
is obtained introducing a new set of variables at each stage and taking ex-
pectations. The first-period direct cost is ¢'x while the recourse cost at the

3R. Bellman, Dynamic Programming (Princeton, NJ: Princeton University Press,
1957).
“For a discussion of Pontryagin’s Maximum Principle see, for instance: E. B. Lee and
L. Marcus, Foundations of Optimal Control Theory (New York: John Wiley & Sons,
1967).
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second stage is d]y; where i = 1,...,S represents the different states. The
first-period constraints are represented as Ax = b. At each stage, recourse
is subject to some recourse function Tx + Wy = h. This constraint can be,
for example, self-financing conditions in portfolio management. It should be
noted that in stochastic programs the first-period decision is independent of
which second-period scenario actually occurs. This is called the nonantici-
pativity property.
A two-stage problem can be formulated as follows:

N
minimize ¢x + Z pidlyi
i=1

subject to

Ax=Db
Tix+W,«y,~=hi, i=1,...,8
x>0

yi >0

where § is the number of states and p; is the probability of each state such
that

Notice that the nonanticipativity constraint is met. There is only one first-
period decision whereas there are S second-period decisions, one for each
scenario. In this formulation, the stochastic programming problem has been
reduced to an LP problem. This formulation can be extended to any number
of intermediate stages.

APPLICATION TO BOND PORTFOLIO:
LIABILITY-FUNDING STRATEGIES

In bond portfolio management, liability-funding strategies are strategies
whose objective is to match a given set of liabilities due at future times.
These strategies provide the cash flows needed at given dates at a minimum
cost and with zero or minimal interest rate risk. However, depending on the
universe of bonds that are permitted to be included in the portfolio, there
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may be credit risk and/or call risk. Liability-funding strategies are used by
(1) sponsors of defined benefit pension plans (i.e., there is a contractual lia-
bility to make payments to beneficiaries); (2) insurance companies for single
premium deferred annuities (i.e., a policy in which the issuer agrees for a
single premium to make payments to policyholders over time), guaranteed
investment contracts (i.e., a policy in which the issuer agrees for a single pre-
mium to make a single payment to a policyholder at a specified date with a
guaranteed interest rate); and (3) municipal governments for prerefunding
municipal bond issues (i.e., creating a portfolio that replicates the payments
that must be made for an outstanding municipal government bond issue),
and, for states, payments that must be made to lottery winners who have
agreed to accept payments over time rather than a lump sum.

There are two types of solutions to the problem of liability funding cur-
rently used by practitioners: (1) numerical/analytical solutions based on the
concept of duration and convexity and (2) numerical solutions based on op-
timization methodologies. Ultimately, all methodologies can be cast in the
framework of optimization, but duration and convexity play an important
role from the practical as well as conceptual point of view. We will begin
by discussing the cash-flow matching approach in a deterministic context
and then successively discuss strategies based on duration and convexity (see
Chapter 2) and lastly a full stochastic programming approach.

Cash Flow Matching

Cash flow matching (CFM), also referred to as a dedicated portfolio strat-
egy, in a deterministic environment is the problem of matching a predeter-
mined set of liabilities with an investment portfolio that produces a deter-
ministic stream of cash flows.’ In this context, fluctuations of interest rates,
credit risk, and other sources of uncertainty are ignored. There are, how-
ever, conditions where financial decisions have to be made. Among them we
will consider:

= Reinvestment of excess cash
® Borrowing against future cash flows to match liabilities
® Trading constraints such as odd lots

SFor an illustration of cash flow matching applied to pension fund liabilities,
see E ]. Fabozzi and P. E Christensen, “Dedicated Bond Portfolios,” Chapter 45
in The Handbook of Fixed Income Securities, ed. F. ]. Fabozzi (New York:
McGraw-Hill, 2000).
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To formulate the model, consider a set of m dates {to,t1,...,t,} and a
universe U of investable assets U = {1,2,... ,n}. Call {Kj0,..., Ki,u} the
stream of cash flows related to the ith asset. We will consider only bonds
but most considerations that will be developed apply to broader classes of
assets with positive and negative cash flows. In the case of a bond with unit
price P; per unit par value 1, with coupon ¢;, and with maturity &, the cash
flows are

{=Pi,cis1,..Cip—1,6r+1,0,...,0}

Let’s call L, the liability at time ¢. Liabilities must be met with a portfolio

Z OliP,'

ieU

where «; is the amount of bond 7 in the portfolio. The CFM problem can be
written, in its simplest form, in the following way:

Minimize Z a; P;, subject to the constraints,

ieU
E oK, > L,
ieU

o >0

The last constraint specifies that short selling is not permitted.

The above formulation of the CFM as an optimization problem is too
crude as it takes into account only the fact that it is practically impossible
to create exactly the required cash flows. In fact, in this formulation at each
date there will be an excess of cash not used to satisfy the liability due at
that date. If borrowing and reinvesting are allowed, as is normally the case,
excess cash can be reinvested and used at the next date while small cash
shortcomings can be covered with borrowing.

Suppose, therefore, that it is possible to borrow in each period an
amount b, at the rate 8, and reinvest an amount 7; at the rate p,. Suppose that
these rates are the same for all periods. At each period we will require that the
positive cash flow exactly matches liabilities. Therefore, coupon payments of
that period plus the amount reinvested in the previous period augmented by
the interest earned on this amount plus the reinvestment of that period will
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be equal to the liabilities of the same period, plus the repayment of borrow-
ing in the previous period plus the eventual new borrowing of the period.
The optimization problem can be formulated as follows:

Minimize Z a; P;, subject to the constraints,
ieU

Y i+ (L+p)rea+bo= Lo+ (1+ B)bi +1
ieU
b,=0
o 20,1 e U

The CFM problem formulated in this way is a LP problem discussed earlier
in this chapter. Problems of this type can be routinely solved on desktop
computers using standard off-the-shelf software.

The next step is to consider trading constraints, such as the need to pur-
chase “even” lots of assets. Under these constraints, assets can be purchased
only in multiples of some minimal quantity, the even lots. For a large orga-
nization, purchasing smaller amounts, “odd” lots, might be suboptimal and
might result in substantial costs and illiquidity.

The optimization problem that results from the purchase of assets in
multiples of a minimal quantity is much more difficult. It is no longer a rel-
atively simple LP problem but it becomes a much harder mixed-integer pro-
gramming (MIP) problem. An MIP problem is conceptually more difficult
and computationally much more expensive to solve than an LP problem.

The next step involves allowing for transaction costs. The objective of
including transaction costs is to avoid portfolios made up of many assets
held in small quantities. Including transaction costs, which must be divided
between fixed and variable costs, will again result in an MIP problem which
will, in general, be quite difficult to solve.

In the formulation of the CFM problem discussed thus far, it was implic-
itly assumed that the dates of positive cash flows and liabilities are the same.
This might not be the case. There might be a small misalignment due to the
practical availability of funds or positive cash flows might be missing when
liabilities are due. To cope with these problems, one could simply generate a
bigger model with more dates so that all the dates corresponding to inflows
and outflows are properly considered. In a number of cases, this will be the
only possible solution. A simpler solution, when feasible, consists in adjust-
ing the dates so that they match, considering the positive interest earnings
or negative costs incurred to match dates.
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In the above formulation of the CFM problem, the initial investment
cost is the only variable to optimize: The eventual residual cash at the end
of the last period is considered lost. However, it is possible to design a
different model under the following scenario. One might try to maximize
the final cash position, subject to the constraint of meeting all the liabil-
ities and within the constraint of an investment budget. In other words,
one starts with an investment budget which should be at least sufficient to
cover all the liabilities. The optimization problem is to maximize the final
cash position.

We have just described the CFM problem in a deterministic setting. This
is more than an academic exercise as many practical dedication problems
can be approximately cast into this framework. Generally speaking, how-
ever, a dedication problem would require a stochastic formulation, which in
turn requires multistage stochastic optimization.® Later we discuss dedica-
tion in a multistage stochastic formulation, as well as other bond portfolio
optimization problems. Let’s now discuss portfolio immunization, which is
the numerical/analytical solution of a special dedication problem under a
stochastic framework.

Portfolio Immunization

The actuary generally credited with pioneering the immunization strategy
is Reddington, who defined immunization in 1952 as “the investment of
the assets in such a way that the existing business is immune to a gen-
eral change in the rate of interest.”” The mathematical formulation of the
immunization problem was proposed by Fisher and Weil in 1971.% The
framework is the following in the single liability case (which we refer to as
single-period immunization): Given a predetermined liability at a fixed time
horizon, create a portfolio able to satisfy the given liability even if interest
rates change.

The problem would be simple to solve if investors were happy to invest
in U.S. Treasury zero-coupon bonds (i.e., U.S. Treasury strips) maturing at

®For a discussion of the stochastic case, see H. Dahl, A. Meeraus, and S.A. Zenios,
“Some Financial Optimization Models,” in Financial Optimization, ed. S. A. Zenios
(Cambridge: Cambridge University Press, 1993).

’F. M. Reddington, “Review of the Principle of Life-Office Valuations,” Journal of
the Institute of Actuaries 78, no. 3 (1952): 286—340.

8L. Fisher and R. L. Weil, “Coping with the Risk of Interest-Rate Fluctuations: Re-
turns to Bondholders from Naive and Optimal Strategies,” Journal of Business 44,
no. 4 (1971): 408-431.
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exactly the given date of the liability. However, investors seek to earn a re-
turn greater than the risk-free rate. For example, the typical product where a
portfolio immunization strategy is used is a guaranteed investment contract
(GIC) offered by a life insurance company. This product is typically offered
to a pension plan. The insurer receives a single premium from the pension
sponsor and in turn guarantees an interest rate that will be earned such that
the payment to the policyholder at a specified date is equal to the premium
plus the guaranteed interest. The interest rate offered on the policy is greater
than that on existing risk-free securities, otherwise a potential policy buyer
can do the immunization without the need for the insurance company’s ser-
vice. The objective of the insurance company is to earn a higher rate than
that offered on the policy (i.e., the guaranteed interest rate).’

The solution of the problem is based on the fact that a rise in interest
rates produces a drop in bond prices but an increase in the reinvestment in-
come on newly invested sums, while a fall of interest rates increases bond
prices but decreases the reinvestment income on newly invested sums. One
can therefore choose an investment strategy such that the change in a port-
folio’s value is offset by changes in the returns earned by the reinvestment of
the cash obtained through coupon payments or the repayment of the prin-
cipal of bonds maturing prior to the liability date.

The principle applies in the case of multiple liabilities. To see how
multiple-period immunization works, let’s first demonstrate that—given a
stream of cash flows at fixed dates—there is one instant at which the value
of the stream is insensitive to small parallel shifts in interest rates. Consider
a case where a sum V) is initially invested in a portfolio of risk-free bonds
(i.e., bonds with no default risk) that produces a stream of N deterministic
cash flows K; at fixed dates t;. At each time ¢; the sum K; is reinvested at the
risk-free rate. Suppose that there is only one interest rate » common to all
periods. The following relationship holds:

N

Vo= Kie

i=1

where we have used the formula for the present value in continuous time.

?For a discussion of the implementation issues associated with immunization, see F. J.
Fabozzi and P. F. Christensen, “Bond Immunization: An Asset/Liability Optimization
Strategy,” Chapter 44 in The Handbook of Fixed Income Securities, 6th ed.
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As each intermediate payment is reinvested, the value of the portfolio at
any instant ¢ is given by the following expression:

N
V, = Z Kie—r(t—t,) — ¢V,
i=1

Our objective is to determine a time ¢ such that the value V; at time ¢ of
the portfolio is insensitive to parallel shifts in the interest rate. The quantity
V, is a function of the interest rate r. The derivative of V, with respect to r
must be zero so that V; is insensitive to interest rate changes. Let’s compute
the derivative:

N
= =2 Kile —g)ert
r

i=1

N
Z K; t,'eirt’

S VAR v/l S
t t ‘/O

N )
K,-e‘”’
=V|t—- th <TO)

i=1
From this expression it is clear that the derivative

dv
dr

is zero at a time horizon equal to the portfolio duration. In fact, the quantity

is the portfolio’s duration expressed in continuous time.

Therefore, if the term structure of interest rates is flat, we can match a
given liability with a portfolio whose duration is equal to the time of the
liability and whose present value is equal to the present value of the liability.
This portfolio will be insensitive to small parallel shifts of the term structure
of interest rates.

We can now extend and generalize this reasoning. Consider a stream of
liabilities L;. Our objective is to match this stream of liabilities with a stream
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of cash flows from some initial investment insensitive to changes in interest
rates. First we want to prove that the present value of liabilities and of cash
flows must match. Consider the framework of CFM with reinvestment but
no borrowing:

Z oa;Kiy+(1+p)ric1=Li+1,
ieU

Z%‘Ki,t -L;>0

ieU

a; >0;1eU

We can recursively write the following relationships:

Z%‘Ki,l - Li=n
ieU

Z ;i Ki» + (1 + p2) Z aiKit=(14+p)Li+ L+
ieU ieU

Z|:Ol,'K,"11_[(l +pz)+"'+aiKi,m:| :L1H(1+Pt)+"'+Lm
t=2

i=1 t=2

a;>0;1eU

If we divide both sides of the last equation by

s

(14 pr)

-
Il
o

we see that the present value of the portfolio’s stream of cash flows must
be equal to the present value of the stream of liabilities. We can rewrite the
above expression in continuous-time notation as

n

Z [ai Ki,l + - 4o Kl-!me_rmt’”] = L1 + -+ Lme_rmtm
i=1
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As in the case of CFM, if cash flows and liabilities do not occur at the same
dates, we can construct an enlarged model with more dates. At these dates,
cash flows or liabilities can be zero.

To see under what conditions this expression is insensitive to small par-
allel shifts of the term structure, we perturb the term structure by a small
shift » and compute the derivative with respect to 7 for » = 0. In this way,
all rates are written as 7, + r If we compute the derivatives we obtain the
following equation:

n
d [Ol,' K,',1 + 4o Ki,me_(r"’-w)tm]
; B dlLi+---+ Lme—(rm-t-r)tm]

dr dr

=Y eiKin 4+ 4 & Kiputyye™ "] = —[Ly + -+ + Lygtye™ 7]
i=1

which tells us that the first-order conditions for portfolio immunization are
that the duration of the cash flows must be equal to the duration of the
liabilities. This duration is intended in the sense of effective duration which
allows for a shift in the term structure. This condition does not determine
univocally the portfolio.

To determine the portfolio, we can proceed in two ways. The first is
through optimization. Optimization calls for maximizing some function sub-
ject to constraints. In the CFM problem there are two constraints: (1) The
initial present value of cash flows must match the initial present value of
liabilities, and (2) the duration of cash flows must match the duration of
liabilities. A typical objective function is the portfolio’s return at the final
date. It can be demonstrated that this problem can be approximated by an
LP problem.

Optimization might not be ideal as the resulting portfolio might be par-
ticularly exposed to the risk of nonparallel shifts of the term structure. In
fact, it can be demonstrated that the result of the yield maximization un-
der immunization constraints tends to produce a barbell type of portfolio. A
barbell portfolio is one in which the portfolio is concentrated at short-term
and long-term maturity securities. A portfolio of this type is particularly ex-
posed to yield curve risk, that is, to the risk that the term structure changes
its shape.

One way to control yield curve risk is to impose second-order convex-
ity conditions. In fact, reasoning as above and taking the second derivative
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of both sides, it can be demonstrated that, in order to protect the portfolio
from yield curve risk, the convexity of the cash flow stream and the con-
vexity of the liability stream must be equal. (Recall from Chapter 2 that
mathematically convexity is the derivative of duration.) This approach can
be generalized' by assuming that changes of interest rates can be approxi-
mated as a linear function of a number of risk factors. Under this assumption
we can write

k
A7’z = Zlgl’tAf/ =+ Et

j=1

where the f; are the factors and &, is an error term that is assumed to be nor-
mally distributed with zero mean and unitary variance. Factors here are a
simple discrete-time instance of the factors in the term structure in continu-
ous time. In continuous-time finance, both interest rate processes and factors
are It6 processes. Here we assume that changes in interest rates, which are a
discrete-time process, are a linear function of other discrete-time processes
called “factors.” Each path is a vector of real numbers, one for each date.

Ignoring the error term, changes in the present value of the stream of
cash flows are therefore given by the following expression:

n

AV =— Z [a;Ki1+ -+ Ki,mtme_"”t'”Arm]
i=1

k

==Y | @Kii+ -+ aiKiutue "B Af

i=1

The derivative of the present value with respect to one of the factors is
therefore given by

—F = Z ;K i1+t Ki,mtmﬂ/,tme_rmtm]
afl i=1

19Gee S. Zenios, Practical Financial Optimization: Decision Making for Financial
Engineers (Boston: Blackwell-Wiley, 2008)
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The factor duration with respect to the jth factor is defined as the relative
value sensitivity to that factor:

_ 19V
"V

The second derivative represents convexity relative to a factor:

0 192V
I = Y ag2

Vof,
First- and second-order immunization conditions become the equality of fac-
tor duration and convexity relative to cash flows and liabilities.

Scenario Optimization

The above strategies are based on perturbing the term structure of interest
rates with a linear function of one or more factors. We allow stochastic be-
havior as interest rates can vary (albeit in a controlled way through factors)
and impose immunization constraints. We can obtain a more general formu-
lation of a stochastic problem in terms of scenarios.!’ Let the variables be
stochastic but assume distributions are discrete. Scenarios are joint paths of
all the relevant variables. A probability number is attached to each scenario.
A path of interest rates is a scenario. If we consider corporate bonds, a sce-
nario will be formed, for example, by a joint path of interest rates and credit
ratings. How scenarios are generated will be discussed later in this chapter.
Suppose that scenarios are given. Using an LP program, one can find the
optimal portfolio that (1) matches all the liabilities in each scenario and (2)
minimizes initial costs or maximizes final cash positions subject to budget
constraints. The CFM problem can be reformulated as follows:

Minimize Z a; P;, subject to the constraints,

ieU
DK+ (L)) + b =L+ (1+B)bi_y +7;
ieU
b =0
a;>0;ieU

HR. Dembo, “Scenario Immunization,” in Financial Optimization.
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In this formulation, all terms are stochastic and scenario-dependent except
the portfolio’s weights. Each scenario imposes a constraint.

Scenario optimization can also be used in a more general context. One
can describe a general objective, for instance expected return or a utility
function, which is scenario-dependent. Scenario-dependent constraints can
be added. The optimization program maximizes or minimizes the objective
function subject to the constraints.

Stochastic Programming

Strategies discussed thus far are static (or myopic) in the sense that deci-
sions are made initially and never changed. As explained in this chapter,
stochastic programming (or multistage stochastic optimization) is a more
general, flexible framework in which decisions are made at multiple stages,
under uncertainty, and on the basis of past decisions and information then
available. Both immunization and CFM discussed above can be recast in the
framework of stochastic programming. Indeed, multistage optimization is a
general framework that allows one to formulate most problems in portfolio
management, not only for bonds but also for other asset classes including
stocks and derivatives.

Stochastic programming is a computerized numerical methodology to
solve variational problems. A variational principle is a law expressed as the
maximization of a functional, with a functional being a real-valued func-
tion defined over other functions. Most classical physics can be expressed
equivalently through differential equations or variational principles.

Variational methodologies also have important applications in engineer-
ing, where they are used to select a path that maximizes or minimizes a
functional given some exogenous dynamics. For example, one might want
to find the optimal path that an airplane must follow in order to minimize
fuel consumption or flying time. The given dynamics are the laws of motion
and eventually specific laws that describe the atmosphere and the behavior
of the airplane.

Economics and finance theory have inherited this general scheme. Gen-
eral equilibrium theories can be expressed as variational principles. How-
ever, financial applications generally assume that some dynamics are given.
In the case of bond portfolios, for example, the dynamics of interest rates
are assumed to be exogenously given. The problem is to find the optimal
trading strategy that satisfies some specific objective. In the case of immu-
nization an objective might be to match liabilities at the minimum cost
with zero exposure to interest rate fluctuations. The solution is a path of
portfolio weights. In continuous time, it would be a continuous trading
strategy.
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Such problems are rarely solvable analytically; numerical techniques,
and in particular multistage stochastic optimization, are typically required.
The key advantage of stochastic programming is its ability to optimize on the
entire path followed by exogenously given quantities. In applications such
as bond portfolio optimization, this is an advantage over myopic strategies
which optimize looking ahead only one period. However, because stochas-
tic programming works by creating a set of scenarios and choosing the sce-
nario that optimizes a given objective, it involves huge computational costs.
Only recently have advances in IT technology made it feasible to create
the large number of scenarios required for stochastic optimization. Hence
there is a renewed interest in these techniques both at academia and inside
financial firms.'?

The generation of scenarios (i.e., joint paths of the stochastic variables)
is key to stochastic programming. Until recently, it was imperative to create
a parsimonious system of scenarios. Complex problems could be solved only
on supercomputers or massively parallel computers at costs prohibitive for
most organizations. While parsimony is still a requirement, systems made of
thousands of scenarios can now be solved on desktop machines.

Multistage Stochastic Programming After creating scenarios one can ef-
fectively optimize, taking into account that after initial decisions there will
be recourses (i.e., new decisions eventually on a smaller set of variables) at
each subsequent stage. Here we provide a brief description of multistage
stochastic optimization.!3

The key idea of stochastic programming is that at every stage a deci-
sion is made based on conditional probabilities. Scenarios form an informa-
tion structure so that, at each stage, scenarios are partitioned. Conditional
probabilities are evaluated on scenarios that belong to each partition. For
this reason, stochastic optimization is a process that runs backwards. Op-
timization starts from the last period, where variables are certain, and then
conditional probabilities are evaluated on each partition.

To apply optimization procedures, an equivalent deterministic prob-
lem needs to be formulated. The deterministic equivalent depends on
the problem’s objective. Taking expectations naturally leads to determin-
istic equivalents. A deterministic equivalent of a stochastic optimization

12 A presentation of stochastic programming in finance can be found in Zenios, Prac-
tical Financial Optimization.

BFor a full account of stochastic programming in finance, see Zenios, Practical Fi-
nancial Optimization.



Optimization 177

problem might involve maximizing or minimizing the conditional expecta-
tion of some quantity at each stage.

We will illustrate stochastic optimization in the case of CFM as a two-
stage stochastic optimization problem. The first decision is made under con-
ditions of uncertainty, while the second decision at step 1 is made with cer-
tain final values. This problem could be equivalently formulated in a -
period setting, admitting perfect foresight after the first period. This two-
stage setting can then be extended to a true multistage setting. At the first
stage there will be a new set of variables. In this case, the new variables will
be the portfolio’s weights at stage 1. Call S the set of scenarios. Scenarios are
generated from an interest rate model. A probability p, s € S is associated
with each scenario s. The quantity to optimize will be the expected value of
final cash. The two-stage stochastic optimization problem can be formulated
as follows:

Maximize Z pshs, subject to the constraints,

ses

ZaiKi,0+bO+B:70
ieU

DK, + (L)) + b =L+ (1+ B))b;_y +7;

ieU
Z OliPiS = Z )/,'Pis

ieU ieU
S
b, =0
rs,=h°

Ol,‘,)/,'zo;i e U

The first condition is the initial budget constraint, which tells us that the
initial investment (which has a negative sign) plus the initial borrowing plus
the initial budget B is equal to the first surplus. The second condition is the
liability-matching condition. The third condition is the self-financing condi-
tion. Note that as interest rates are known in each scenario, bond prices are
also known in each scenario. The fifth and sixth conditions are the state-
ments that there is no borrowing at the final stage and that the objective
is the final cash. The seventh condition is the constraint that weights are
nonnegative at each stage

This formulation illustrates all the basic ingredients. The problem is for-
mulated as a deterministic equivalent problem, setting as its objective the
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maximization of final expected cash. The final stage is certain and the pro-
cess is backward. With this objective, the stochastic optimization problem
is recast as an LP problem.

This formulation can be extended to an arbitrary number of stages. For-
mulating in full generality a multistage stochastic optimization problem is
beyond the scope of this chapter. In fact, there are many technical points that
need a careful handling.!*

KEY POINTS

® Optimizing means finding the maxima or minima of a function or of a
functional.

® Optimization is a fundamental principle of financial decision-making
insofar as financial decisions are an optimal trade-off between risk and
return.

® The partial derivatives of an unconstrained function vanish at maxima
and minima.

® The maxima and minima of a function subject to equality constraints
can be found by equating to zero the derivatives of the corresponding
Lagrangian function, which is the sum of the original function and of a
linear combination of the constraints.

® If constraints are linear inequalities, the problem can be solved numer-
ically with the techniques of linear programming, quadratic program-
ming, or nonlinear mathematical programming.

® Quadratic and, more in general, nonlinear optimization problems are
more difficult to solve and more computationally intensive.

® Functionals are functions defined on other functions.

® Calculus of variations deals with the problem of finding those functions
that optimize a functional.

= Control theory deals with the problem of optimizing a functional by
controlling some of the variables while other variables are subject to
exogenous dynamics.

® Bellmann’s Dynamic Programming and Pontryagin’s Maximum Princi-
ple are the key mathematical tools of control theory.

® Multistage stochastic programming is a set of numerical techniques for
finding the maxima and minima of a functional defined on a stochastic
process.

14See, for example, P. Kall and S. W. Wallace, Stochastic Programming (Chichester,
U.K.: John Wiley & Sons, 1994).
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® Multistage stochastic optimization is based on formalizing the rules for
recourse, that is, how decisions are made at each stage and on describing
possible scenarios.

® Liability-funding strategies are strategies whose objective is to match a
given set of liabilities due at future times.

® Cash flow matching in a deterministic environment is the problem of
matching a predetermined set of liabilities with an investment portfolio
that produces a deterministic stream of cash flows.

® Cash flow matching problems can be solved with linear programming
or mixed-integer programming algorithms.

® The objective of an immunization strategy is to construct a portfolio
that is insensitive to small parallel shifts of interest rates.

= A given stream of liabilities can be matched with a portfolio whose du-
ration is equal to the duration of the liabilities and whose present value
is equal to the present value of the liabilities.

® Matching duration and present value makes portfolios insensitive only
to small parallel shifts of interest rates; in order to minimize the effects
of nonparallel shifts, optimization procedures are needed.






Difference Equations

In mathematics and statistics, a difference equation refers to a recur-
rence relation, or an equation that recursively defines a sequence,
once one or more initial terms are given. Each further term of the
sequence is defined as a function of the preceding terms. Difference
equations are extensively used in financial economics. For example, in
a theoretical asset pricing framework, one might develop a model of
various broad sectors of the economy in which some agents’ actions
depend on lagged variables. The model would then be solved for cur-
rent values of key variables (interest rate, output growth, etc.) in terms
of exogenous variables and lagged endogenous variables. Difference
equations are also useful in financial econometrics. For example, time-
series forecasting uses a recursive model to predict future values of
financial and economic indicators based on the previously observed
values of these variables. In finance, difference equations are also used
to model persistence structure of asset returns and asset return volatil-
ity. Using difference equations:

® One can determine the serial correlation structure of asset returns
in the context of a dynamic econometric model.

® One can examine the stochastic behavior of asset prices ex-
pressed as a linear difference equation with random disturbances
added.

® One can understand the joint dynamics and dependencies of two
persistent financial and macroeconomic variables.

® One can provide a better understanding of the continuous-time
processes in a discrete-time framework.

181
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What you will learn after reading this chapter:

® How to use a lag operator to define dependence of future values
of a variable on its past values.

" How to define homogeneous difference equations as linear
conditions that link the values of variables at different time
lags.

® How to solve first- and second-order difference equations.

® How to find real and complex roots of a homogeneous difference
equation.

" How to describe and solve nonhomogeneous difference
equations.

® How to transform and solve systems of linear difference
equations.

INTRODUCTION

A difference equation is an equation that involves differences between suc-
cessive values of a function of a discrete variance. Linear difference equa-
tions are important in the context of dynamic econometric models. Un-
derstanding the behavior of solutions of linear difference equations helps
develop intuition about the behavior of these models. (A related mathe-
matical topic is differential equations covered in the next chapter.) The
relationship between difference equations (the subject of this chapter)
and differential equations is as follows. Differential equations are great
for modeling situations in finance where there is a continually chang-
ing value. The problem is that not all changes in value occur continu-
ously. If the change in value occurs incrementally rather than continu-
ously, then differential equations have their limitations. Instead, in financial
modeling, one can use difference equations, which are recursively defined
sequences.

The theory of linear difference equations covers three areas: (1) solving
difference equations, (2) describing the behavior of difference equations, and
(3) identifying the equilibrium (or critical value) and stability of difference
equations. In this chapter, we cover these areas. Because operations with time
series involves a temporal dimension, a convenient notation has been used
to denote lags, as well as leads, in time series. A discussion of this notation,
the lag operator, begins the chapter.
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THE LAG OPERATOR L

The lag operator L is a linear operator that acts on doubly infinite time series
by shifting positions by one place:

Lxy = x4

The difference operator Ax; = x; — x,_1 can be written in terms of the
lag operator as

Axt = (1 - L)xt
Products and thus powers of the lag operator are defined as follows:
(Lx L)x; = L*x, = L(Lx;) = x,_»

From the previous definition, we can see that the ith power of the lag
operator shifts the series by i places:

Lixt = Xy
The lag operator is linear, that is, given scalars a and b we have
(al' + bLx, = ax,_; + bx;_;

Hence we can define the polynomial operator:

p
AL =(1-a;L—---—apl?) = (1 - Za,ﬂ')
i=1

HOMOGENEOUS DIFFERENGE EQUATIONS

Homogeneous difference equations are linear conditions that link the values
of variables at different time lags. Using the lag operator L, they can be
written as follows:
AL)x, =(1—a1L—---—apLP)x
=(1-2ML)x--x(1=2,L)x,=0

where the A;, i =1, 2,..., p are the solutions of the characteristic equation:

P —azPt— .. —ap_jz—ap
=(R=2M) % x(2=24p) =0
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Suppose that time extends from 0 = oo, t = 0,1, 2,... and that the initial
conditions (x_1, X_2,..., X_p) are given.

Consider first the case of real roots. In this case, as we see later in this chapter,
solutions are sums of exponentials. First, suppose that the roots of the char-
acteristic equation are all real and distinct. It can be verified by substitution
that any series of the form

Xy = C(Ai)t

where C is a constant, solves the homogeneous difference equation. In fact,
we can write

(1 =2 L)(CA) = CAl —,CA 7 =0
In addition, given the linearity of the lag operator, any linear combina-
tion of solutions of the homogeneous difference equation is another solution.

We can therefore state that the following series solves the homogeneous dif-
ference equation:

4
t
Xy = Z Cj)\.i
i=1
By solving the linear system
P
-1
X1 = Z Ci)‘i
i=1
4
_ AP
X_p = Z Cix;
i=1
that states that the p initial conditions are satisfied, we can determine the p
constants Cs.
Suppose now that all 72 roots of the characteristic equation are real and
coincident. In this case, we can represent a difference equation in the follow-

ing way:

AL)=1-aiL—---—apLt = (1 —AL)"
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It can be demonstrated by substitution that, in this case, the general
solution of the process is the following:

x = Ci(A) + Cot(A) + -+ CptP 1 (1)

In the most general case, assuming that all roots are real, there will be
m < p distinct roots ¢;, i = 1, 2,..., m each of order n; > 1,

and the general solution of the process will be

x = Cl(m) + COa) + -+ CL " () 4
+an()»m)t + Cznt(km)t 4+ .4 C:Z”tnm_l()xm)t

We can therefore conclude that the solutions of a homogeneous differ-
ence equation whose characteristic equation has only real roots is formed
by a sum of exponentials. If these roots have modulus greater than unity,
then solutions are diverging exponentials; if they have modulus smaller than
unity, solutions are exponentials that go to zero. If the roots are unity, so-
lutions are either constants or, if the roots have multiplicity greater than 1,
polynomials.

Figure 8.1 illustrates the simple equation

A(L)x; = (1 —-0.8L)x;, =0, , =0.8,
t=1,2,...,m,...

whose solution, with initial condition x; = 1, is
x = 1.25(0.8)"

The behavior of the solution is that of an exponential decay.
Figure 8.2 illustrates the equation

A(L)Yx; = (1+0.8L)x, =0, » = —0.8,
t=1,2,..., n,...
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Variable x(i)

0 1 1 1 1 L 1 1 1 ]
0 10 20 30 40 50 60 70 80 90 100

Time i

FIGURE 8.1 Solution of the Equation (1 — 0.8L)x, = 0 with Initial
Condition xq = 1
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Variable x(/)
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Time i

FIGURE 8.2 Solution of the Equation (1 + 0.8L)x, = 0 with Initial
Condition x; =1
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25r

Variable x(i)
o

—_

0.5

0 10 20 30 40 50 60 70 80 90 100
Time i

FIGURE 8.3 Solution of the Equation (1 — 1.7L + 0.72L%)x, =0
with Initial Conditions x; = 1, x, = 1.5

Simulations were run for 100 time steps whose solution, with initial
condition x; =1, is

x = —1.25(—0.8)

The behavior of the solution is that of an exponential decay with oscillations
at each step. The oscillations are due to the change in sign of the exponential
at odd and even time steps.

If the equation has more than one real root, then the solution is a sum
of exponentials. Figure 8.3 illustrates the equation

AL)x, = (1 —=1.7L+0.721*)x, =0, 2 = 0.8,
Mm=09, =12 ..., n,...

whose solution, with initial condition x; = 1, x, = 1.5, is
x, = —7.5(0.8)" + 7.7778(0.9)"

The behavior of the solution is that of an exponential decay after a peak.
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FIGURE 8.4 Solution of the Equation (1 — 1.9L + 0.88L?)x, =0
with Initial Conditions x; = 1, x; = 1.5

Figure 8.4 illustrates the equation

AL)x; = (1 —1.9L+0.881%)x, = 0,
M =08 A =11 t=1,2,..., n,...

whose solution, with initial condition x; = 1, x; = 1.5, is
x = —1.6667(0.8)" +2.1212(1.1)"

The behavior is that of exponential explosion due to the exponential
with modulus greater than 1.

Complex Roots

Now suppose that some of the roots are complex. In this case, solutions
exhibit an oscillating behavior with a period that depends on the model
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coefficients. For simplicity, consider initially a second-order homogeneous
difference equation:

AL)x = (1 —a1L — ar L*)x
Suppose that its characteristic equation given by
AR) =2 —a1z—a, =0
admits the two complex conjugate roots:
M=a+ib, M=a-—ib
Let’s write the two roots in polar notation:

—iw

A= rele, rM=re
22 b
r=+a*+b* =arctan—
a

It can be demonstrated that the general solution of the above difference
equation has the following form:

x; =1'(Cy cos(wt) 4+ C; sin(wt)) = Cr’ cos(wt + 9)

where the C; and C, or C and ¥ are constants to be determined in function of
initial conditions. If the imaginary part of the roots vanishes, then w vanishes
and a = r, the two complex conjugate roots become a real root, and we find
again the expression x; = Cr'.

Consider now a homogeneous difference equation of order 27. Suppose
that the characteristic equation has only two distinct complex conjugate
roots with multiplicity 7. We can write the difference equation as follows:

AL)x = (1—aL—-- — a3, L"),
=[(1 =ALy"(1 = AL)"]x = 0

and its general solution as follows:

x; = r'(C{ cos(wt) + C sin(wt)) + - - -
+t"'r!(C} cos(wt) + CJ sin(wt))
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FIGURE 8.5 Solutions of the Equation (1 — 1.2L + 1.0L%)x, = 0 with
Initial Conditions x; = 1, x, = 1.5

The general solution of a homogeneous difference equation that admits
both real and complex roots with different multiplicities is a sum of the
different types of solutions. The above formulas show that real roots cor-
respond to a sum of exponentials while complex roots correspond to os-
cillating series with exponential dumping or explosive behavior. The above
formulas confirm that in both the real and the complex case, solutions decay
if the modulus of the roots of the inverse characteristic equation is outside
the unit circle and explode if it is inside the unit circle.

Figure 8.5 illustrates the equation

AL)x, = (1 —12L+1.0L*)x, =0,
t=1,2,..., n,...

which has two complex conjugate roots,
2 =06+i0.8, 1, =0.6-i0.8

or in polar form,

A = 09273, = 09273
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Time ¢

FIGURE 8.6 Solutions of the Equation (1 — 1.0L 4 0.89L%)x, =0
with Initial Conditions x; = 1, x, = 1.5

and whose solution, with initial condition x; = 1, x, = 1.5, is
x, = —0.3c0s(0.9273¢) + 1.475 sin(0.9273¢)
The behavior of the solutions is that of undamped oscillations with fre-
quency determined by the model.

Figure 8.6 illustrates the equation

A(L)x, = (1 —1.0L+0.891%)x, = 0,
t=1,2,..., n,...

which has two complex conjugate roots,
21 =05+i0.8, 1, =05-i0.8
or in polar form,

A= 09434610122 ) — 0.9434,7 10122
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and whose solution, with initial condition x1 = 1, x, = 1.5, is

x; = 0.9434'(—0.5618 cos(1.0122¢)
+1.6011 sin(1.0122¢))

The behavior of the solutions is that of damped oscillations with fre-
quency determined by the model.

RECURSIVE CALCULATION OF VALUES
OF DIFFERENCE EQUATIONS

In the previous sections, we studied the properties of the solutions of homo-
geneous difference equations. In this section, we discuss how to simulate the
solution of a difference equation and how to determine its parameters. To
calculate the values of x for all values of ¢, it is sufficient to know any p con-
secutive values of x. These p values are starting values or initial conditions.
If we know the starting values x(1), ..., x(p) for a difference equation, then
we can find x(p + 1), ..., x(n) recursively by

p
X(p+j)=> ax(p+j—k)
k=1

j=1,...,n—p

Note that x(1), ..., x(p) are used to find x(p + 1), which is in turn used
in finding x(p + 2), and so on. For example, the homogeneous first-order
difference equation x(¢) — a1x(¢t — 1) = 0, thus, ¢t > 1, can be solved recur-
sively

x(t) = a1x(t — 1) = aq[a1x(t — 2)]
= = [a1]'x(0)

that is, x(¢) = [a1]'x(0), which is a solution to the difference equation. Fur-
ther, from this expression for x(¢), we can see that:

1. If |a1| < 1, then x(¢) — 0.

2. If a; = —1, then x(#) — O alternates between £x(0) for all ¢, while if
a; = 1, then x(¢) = x(0) for all .

3. If a; > 1, then x(¢) — oo.

4. If a; < 0, then x(¢) — 0 alternates between positive and negative values
that are getting larger and larger in absolute value.
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Solving Homogeneous Higher-Order
Difference Equations

Consider the following second-order difference equation:
x(t) —arx(t — 1) —axx(t —2) =0

Given the findings in the first-order case above, we can conjecture that
the homogeneous solution has the form x(z) = AB’. Substitution of this trial
solution into the second-order difference equation gives

AB' — a1 A —  ABTT =0

Clearly, any arbitrary value of Ais satisfactory. If we divide this equation
by AB*~2, the problem is to find the values of 8 that satisfy

p*—aip—ar=0

Solving this quadratic equation, called the characteristic equation, yields
two values of B, called the characteristic roots. Using the quadratic formula,
we find that the two characteristic roots are

Bi, B2 = (m :i:,/af+4a2)/2= (al—i—\/g>/2

Each of these two characteristic roots yields a valid solution for the
second-order difference equation. Again, these solutions are not unique. In
fact, for any two arbitrary constants A; and A, the linear combination
A1(B1)" + Ax(B2)" also solves the second-order difference equation. As proof,
simply substitute z(¢) = A1(B1)" + A2(B)" into the difference equation to ob-
tain:

A1) + A (Ba) = ai[A(B) " + Aa(B) T+ @ Ai(B1) TE 4 Av(Ba)
Now, regroup terms as follows:

Al(B1) — a1 Ai(B) T — @ Al(B1) ]+ Adl(Ba) —an(Ba) ! — aa(Ba) P =0

Since B1 and B, each solve the difference equation, both terms in brack-
ets must equal zero. As such, the complete homogeneous solution in the
second-order case is

x(t) = Ai(B1) + A (Br)



194 MATHEMATICAL METHODS FOR FINANCE

Without knowing the specific values of a; and a,, we cannot find the
two characteristic roots 81 and 8,. Nevertheless, it is possible to characterize
the nature of the solution; there are three possible cases that are dependent
on the value of d:

Case 1: If the second-order difference equation is x(¢) — 0.2x(¢ — 1) — 0.35
x(t —2) = 0, we have a; = 0.2 and a, = 0.35. Since d = a? + 4a, = 1.44 >

0, the characteristic roots will be real and distinct. Let the trial solution have
the form x(z) = B’. Substitute into the homogeneous equation

Bt — 02871 —-035872=0

Divide by ‘72 in order to obtain the characteristic equation 8% —
0.28 — 0.35 = 0. Compute the two characteristic roots:

B =0.5- <a1 +JE) —07

Br=0.5- <a1 — ﬁ) - 05

The homogeneous solution is A;(0.7)" + A(—0.5)".

Case 2: 1f d = a} + 4a, = 0, it follows that 81 = f2 = a1/2. Hence, a ho-
mogeneous solution is a1 /2. However, when d = 0, there is a second homo-
geneous solution given by # (a1 /2)". To demonstrate that x(t) = ¢ (a1 /2)" is a
homogeneous solution, substitute it into the second-order difference equa-
tion to determine whether

/2 oo /] a2 7] =0
Divide by (21/2)"* and form
—[(a?/4) + 2]t + [(a}/2) + 2a,] = 0

Since we have d = a7 +4a, = 0 each bracketed expression is zero.
Hence, x(t) = ¢ (a1/2)" solves the second-order difference equation. Again,
for arbitrary constants A; and A, the complete homogeneous solution is

x(t) = Atla1[2)' + Ayt(ar /2)
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Clearly, the system is explosive if |a1| > 2.1f |aq| < 2, the term A;(a;/2)
converges, but one might think that the effect of the term #(a;/2)" is ambigu-
ous since the diminishing (a1/2)" is multiplied by #. The ambiguity is correct
in the limited sense that the behavior of the homogeneous solution is not
monotonic.

Case 3: 1f d = a} +4a, < 0, then the characteristic roots are imaginary.
Since a? > 0, the imaginary roots can only occur only if @, < 0. In this case,
the characteristic roots are

pr=0.5- (a1 +iv=d)
By =0.5- (a1 _ i\/—_d>

where i = /—1.

NONHOMOGENEOUS DIFFERENCE EQUATIONS

Consider now the following nth order difference equation:
AL)xy =(1—a1L—---—apLP)x, = y

where vy, is a given sequence of real numbers. Recall that we are in a deter-
ministic setting, that is, the y, are given. The general solution of the above
difference equation will be the sum of two solutions x1, + x2,, where x1,,
is the solution of the associated homogeneous equation,

ALx,=(1—-aL—--—a,LP)x, =0

and X5 solves the given nonhomogeneous equation.

Real Roots

To determine the general form of x,, in the case of real roots, we begin by
considering the case of a first-order equation:

A(L)x; = (1 —a1L)x; =y,
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We can compute the solution as follows:

1 ad .
= — = L ]
X2t 1—arl) Vi ; (@ L) |
which is meaningful only for |a;| < 1. If, however, y, starts at t = —1, that
is, if y, = 0 for t = —2, —3,..., n, we can rewrite the above formula as
1 t+1
X2t 1—al) Ve Z{: (@ L) | »

This latter formula, which is valid for any real value of ay, yields

X2,0 = Yo +a1y-1
X1 =9y1+a1y + d%y—l
X =Yt arya+-+aitly

and so on. These formulas can be easily verified by direct substitution. If
y; = y = constant, then

X =y(1+al+---+a™)
Consider now the case of a second-order equation:

AlL)x, = (1 —a1L —ar,L?)x,
=1 =ML)(1-2L)x =y
where A1, Ay are the solutions of the characteristic equation (the reciprocal

of the solutions of the inverse characteristic equation). We can write the
solution of the above equation as

1 1
A—al—al2) = A=D1 —nL

X2t = )yz

Recall that, if |A;| < 1,i =1, 2, we can write:

1 B 1 A A2
(1— ML)l =2L) A —ia ((1 —mL) (1 —A2L>>
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so that the solution can be written as

o0
X = (A L
2.t )Ll — )Lz ZO 1 Vi

)\’ o0
(A L
M ~ ,X(; 2 YVt

If the two solutions are coincident, reasoning as in the homogeneous
case, we can establish that the general solutions can be written as follows:

1 s .
X2,z=m3’t= ;WL)’ Vi

oo

Z alL YVt

=0

If y; starts at t = —2, that is, if y, = 0 for t = =3, —4,..., —n,..., we
can rewrite the above formula respectively as

. 42
= ML)
X2t M — Z( L) |y
j=0
» 42 _
_ o L)
M — Ao Z( 2 L) Ve
j=0
if the solutions are distinct, and as
1 t+2
= —— — a L j
X2t 1—a L)2 Vi lgo( 1L) |
42 .
+t (Y (@l) | n
j=0

if the solutions are coincident. These formulas are valid for any real value
Of )\1 .
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The above formulas can be generalized to cover the case of an nth or-
der difference equation. In the most general case of an nth order difference
equation, assuming that all roots are real, there will be 72 <  distinct roots
Aiyi=1,2,...,m,each of order n; > 1,

and the general solution of the process will be

o0

200 = Y (ML) 4 i LY 4o+ ALY 4o
i=0
(L) 4 i (A L) + -+ - + " (A, L))y,

if M <1,i=1,2,...,m,and

t+m

X0 =Y (L) +i(al) + -4+ L) + -
i=0
+()\4mL)l + l()\,mL)Z + 4 i”m*l()\’mL)i)yt

if y; starts at t = —n, thatis, if y, = 0 fort = —(n + 1), —(n + 2),... for
any real value of the 2.

Therefore, if the roots are all real, the general solution of a difference
equation is a sum of exponentials. Figure 8.7 illustrates the case of the same
difference equation as in Figure 8.3 with the same initial conditions x; = 1,
x, = 1.5 but with an exogenous forcing sinusoidal variable:

(1—=1.7L40.72L*)x, = 0.1 x sin(0.4 x t)

The solution of the equation is the sum of x;,=—7.5(0.8)" +
7.7778(0.9)" plus

x20= > [((0-8) +(0.9))0.1 x sin(0.4 x (t — i))]

After the initial phase dominated by the solution of the homogeneous
equation, the forcing term dictates the shape of the solution.
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FIGURE 8.7 Solutions of the Equation (1 — 1.7L + 0.72L%)x; = 0.1
x sin(0.4 x t) with Initial Conditions x; =1, x, = 1.5

Complex Roots

Consider now the case of complex roots. For simplicity, consider initially a
second-order difference equation:

ALx=(1-aiL—a*)x =,
Suppose that its characteristic equation,
AlR)=2—a1z—a, =0
admits the two complex conjugate roots,
rMm=a+ib, rm=a-—ib
We write the two roots in polar notation:

A o=re?, A =re’?

b
r =+a*+ b?, = arctan —
a
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FIGURE 8.8 Solutions of the Equation (1 — 1.2L + 1.0L%)x; = 0.5
x sin(0.4 x t) with Initial Conditions x; =1, x, = 1.5

It can be demonstrated that the general form of the x,, of the above
difference equation has the following form:

[e.0]

X0 = Y (r'(cos(wi) + sin(wi))y,;)
i=1

which is meaningful only if |7| < 1. If y, starts at t = —2, that is, if y, = 0
fort= -3, —4,..., —n,... we can rewrite the previous formula as

t+2

X0 = Y (r'(cos(wi) + sin(wi))y—)
=1

This latter formula is meaningful for any real value of 7. Note that the
constant w is determined by the structure of the model while the constants
Ci, C, that appear in x1, need to be determined in the function of initial
conditions. If the imaginary part of the roots vanishes, then w vanishes and
a = r, the two complex conjugate roots become a real root, and we again
find the expression x, = Cr.
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Figure 8.8 illustrates the case of the same difference equation as in Figure
8.7 with the same initial conditions x; = 1, x, = 1.5 but with an exogenous
forcing sinusoidal variable:

(1—-1.2L+1.0L%)x, = 0.5 x sin(0.4 x ¢)

The solution of the equation is the sum of x1, = —0.3c0s(0.9273¢) +
1.475 sin(0.9273¢) plus

t—1
X0 =Y [(cos(0.9273i)
i=0
+5in(0.92731))0.5 sin(0.4 x (z — i))]

After the initial phase dominated by the solution of the homogeneous
equation, the forcing term dictates the shape of the solution. Note the model
produces amplification and phase shift of the forcing term 0.1 x sin(0.4 x
t) represented by a dotted line.

SYSTEMS OF LINEAR DIFFERENGE EQUATIONS

In this section, we discuss systems of linear difference equations of the type

X1 =aX1—1+ -+ akXp—1 + Vit
Xpt = Ap1X1,0—1 + -+ AekXpt—1 + Vet

or in vector notation:
Xy = Axt—l +y:

Observe that we need to consider only first-order systems, that is, sys-
tems with only one lag. In fact, a system of an arbitrary order can be trans-
formed into a first-order system by adding one variable for each additional
lag. For example, a second-order system of two difference equations,

Xip = a11%1,-1 + a12%2,0-1 + br1x1,,-2
+b12x20-2 + Y1

X2y = A21X1,-1 + A22%2 11 + br1 X142
+b22%24-2 + Vot
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can be transformed in a first-order system adding two variables:

X1 = a11X1,0-1 + d12%2,4—1 + bi1x1 41
+b12x2 -1 + Y14

Xop = A21%1,—1 + A% -1 + br1x1 11
+by2x2 11+ Vot

21, = X1,t-1

2.t = X211

Transformations of this type can be generalized to systems of any order
and any number of equations.

A system of difference equations is called homogeneous if the exogenous
variable y, is zero, that is, if it can be written as

X; = Axy g

while it is called nonhomogeneous if the exogenous term is present.

There are different ways to solve first-order systems of difference equa-
tions. One method consists in eliminating variables as in ordinary algebraic
systems. In this way, the original first-order system in k equations is solved
by solving a single difference equation of order k£ with the methods explained
above. This observation implies that solutions of systems of linear difference
equations are of the same nature as those of difference equations (i.e., sums
of exponential and/or sinusoidal functions). In the following section, we will
show a direct method for solving systems of linear difference equations. This
method could be used to solve equations of any order, as they are equiva-
lent to first-order systems. In addition, it gives a better insight into vector
autoregressive processes.

SYSTEMS OF HOMOGENEOUS LINEAR
DIFFERENCE EQUATIONS

Consider a homogeneous system of the following type:

x(t) =Ax(t—1), t=0,1,..., n,...



Difference Equations 203

where Aisa k x k, real-valued, nonsingular matrix of constant coefficients.
Using the lag operator notation, we can also write the above systems in the
following form:

I-ALx, =0, t=1,...,n,...

If a vector of initial conditions x(0) is given, the above system is called
an initial value problem.

Through recursive computation, that is, starting at # = 0 and computing
forward, we can write

The following theorem can be demonstrated: Any homogeneous system
of the type x(¢) = Ax(t — 1), where A is a k x k, real-valued, nonsingular
matrix, coupled with given initial conditions x(0) admits one and only one
solution.

A set of k solutions x;(t), i = 1,..., k, t = 0,1, 2,... are said to be
linearly independent if

k
> cixi(t) =0
i=1

t=20,1,2,... implies¢; = 0,i=1,..., k. Suppose now that k linearly
independent solutions x;(¢), i = 1,..., k are given. Consider the matrix

@(t) = [x1(2) - - - xx(2)]
The following matrix equation is clearly satisfied:
®(t) = Ad(r—1)
The solutions x;(¢), i = 1,..., n are linearly independent if and only if
the matrix ®(¢) is nonsingular for every value ¢ > 0, that is, if det[®(z)] # 0,
t=0,1,....Any nonsingular matrix ®(¢), =0, 1, ... such that the matrix

equation

®(t) = Ad(t — 1)
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is satisfied is called a fundamental matrix of the system x(#) = Ax(¢ — 1),
t=1,...,n,... and it satisfies the equation

®(t) = A'®(0)

In order to compute an explicit solution of this system, we need an ef-
ficient algorithm to compute the matrix sequence A’. We will discuss one
algorithm for this computation.! Recall that an eigenvalue of the k x k real
valued matrix A = (a;;) is a real or complex number 2 that satisfies the matrix
equation:

(A—D)E =0

where & € CF is a k-dimensional complex vector. The above equation has a
nonzero solution if and only if

(A —AD)| =0
or
ar—Ar - ak
det : : =0
Ak cee g — A

The above condition can be expressed by the following algebraic equa-
tion:

zle +ay zk—l

+ a1zt a
which is called the characteristic equation of the matrix A = (a;).

To see the relationship of this equation with the characteristic equations
of single equations, consider the k-order equation:

(1—a1L—-- —aplR)x(t) =0
x=ax(t—1)+ - +apx(t — k)

I'This discussion of systems of difference equations draws on S. Elaydi, An Introduc-
tion to Difference Equations (New York: Springer Verlag, 2002).
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which is equivalent to the first-order system,

X =aiXe—1+ -+ asz:ll
ztl = Xt—1
] =Xk
The matrix
a a ap—1 A4k
1 0 0 0
A—=| 0 1 0 0
0 0 1 0

is called the companion matrix. By induction, it can be demonstrated that
the characteristic equation of the system x(¢) = Ax(t — 1), ¢ =1,...,n,...
and of the k-order equation above coincide.

Given a system x(¢) = Ax(¢t — 1),t=1,...,n,..., we now consider sep-
arately two cases: (1) All, possibly complex, eigenvalues of the real-valued
matrix A are distinct, and (2) two or more eigenvalues coincide.

Recall that if A is a complex eigenvalue with corresponding complex
eigenvector &, the complex conjugate number A is also an eigenvalue with
corresponding complex eigenvector .

If the eigenvalues of the real-valued matrix A are all distinct, then the
matrix can be diagonalized. This means that A is similar to a diagonal ma-
trix, according to the matrix equation

A 0
A=E : et
0 A
2= [gl . En]
and

Al =

[
[l
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We can therefore write the general solution of the system x(¢) = Ax(¢ —
1) as follows:

x(t) = ari& + -+ g,

The ¢; are complex numbers that need to be determined for the solu-
tions to be real and to satisfy initial conditions. We therefore see the parallel
between the solutions of first-order systems of difference equations and the
solutions of k-order difference equations that we have determined above.
In particular, if solutions are all real they exhibit exponential decay if their
modulus is less than 1 or exponential growth if their modulus is greater than
1. If the solutions of the characteristic equation are real, they can produce
oscillating damped or undamped behavior with period equal to two time
steps. If the solutions of the characteristic equation are complex, then so-
lutions might exhibit damped or undamped oscillating behavior with any
period.

To illustrate the above, consider the following second-order system:

X1, = O.6x1,,_1 —0.1x 1 — 0.7x1,,_2 + 0.15x2,t_2
Xt = —0.12x1,t,1 + O.7xlt,1 + O.22x1,t,2 — 0.85x2¢,2

This system can be transformed in the following first-order system:

X1, = O.6x1,t,1 — 0.1x2,t,1 — 0.7x1,t—2 + 0.15x2,t,2
X = —O.12x1,t,1 + 0.7x2.¢,1 + O.22x1,t,2 + O.85x2,t,2
21t = X1,t-1

.t = X211
with matrix

0.6 -01 -0.7 0.15
-0.12 0.7 022 -0.8
1 0 0 0
0 1 0 0

A:

The eigenvalues of the matrix A are distinct and complex:

A =0.2654+0.7011i, 2y =1 =0.2654—0.7011i
A3 =0.3846 + 0.8887i, 14 =2A3 =0.3846 — 0.8887i
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The corresponding eigenvector matrix E is

0.1571+0.4150;  0.1571 — 0.4150; —0.1311 —0.3436; —0.1311 + 0.3436:

—0.0924 4+ 0.3928; 0.0924 —0.3928; 0.2346 4+ 0.5419;  0.2346 — 0.5419:
0.5920 0.5920 —0.3794 — 0.0167i —0.3794 +0.0167:

0.5337+0.0702;  0.5337 — 0.0702 0.6098 0.6098

o]

Each column of the matrix is an eigenvector. The solution of the system
is given by

X(t) = c1Mi§1 + M €1 + c3M5E3 + cadEs

0.1571 + 0.4150:

0.0924 + 0.3928:
0.5920 51

0.5337+0.0702:

0.1571 — 0.4150:
0.0924 — 0.3928;
0.5920
0.5337 — 0.0702:

—0.1311 + 0.3436i
0.2346 + 0.5419i
—0.3794+0.0167i | 53

0.6098

—0.1311 — 0.3436i
0.2346 — 0.5419:
—0.3794 — 0.0167:
0.6098

= ¢1(0.2654 + 0.7011:)’

+6,(0.2654 — 0.7011i)

+¢3(0.3846 + 0.8887:)"

+¢4(0.3846 — 0.8887i)

The four constants ¢ can be determined using the initial conditions:
(1) = 1; x(2) = 1.2 y(1) = 1.5; y(2) = —2. Figure 8.9 illustrates the be-
havior of solutions.

Now consider the case in which two or more solutions of the charac-
teristic equation are coincident. In this case, it can be demonstrated that the
matrix A can be diagonalized only if it is normal, that is if

ATA = AAT

If the matrix A is not normal, it cannot be diagonalized. However, it can
be put in Jordan canonical form. In fact, it can be demonstrated that any
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FIGURE 8.9 Solution of the System

nonsingular real-valued matrix A is similar to a matrix in Jordan canonical
form,

A =Pjp!

where the matrix J has the form J = diag[J4,. .., Jk], that is, it is formed by
Jordan diagonal blocks:

Ji - 0
I=| o
0 - Ji
where each Jordan block has the form
M1 - 0
0 A
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The Jordan canonical form is characterized by two sets of multiplic-
ity parameters, the algebraic multiplicity and the geometric multiplicity. The
geometric multiplicity of an eigenvalue is the number of Jordan blocks corre-
sponding to that eigenvalue, while the algebraic multiplicity of an eigenvalue
is the number of times the eigenvalue is repeated. An eigenvalue that is re-
peated s times can have from 1 to s Jordan blocks. For example, suppose a
matrix has only one eigenvalue A = 5 that is repeated three times. There are
four possible matrices with the following Jordan representation:

5 00 S 10 5 00 510
0O S5S 0,0 S5 0,10 5 1,10 5 1
0 0 5 00 5 0 0 5 0 0 5

These four matrices have all algebraic multiplicity 3 but geometric mul-
tiplicity from left to right 1, 2, 2, 3, respectively.

KEY POINTS

® Homogeneous difference equations are linear conditions that link the
values of variables at different time lags.

® In the case of real roots, solutions are sums of exponentials. Any lin-
ear combination of solutions of the homogeneous difference equation is
another solution.

® When some of the roots are complex, the solutions of a homogeneous
difference equation exhibit an oscillating behavior with a period that
depends on the model coefficients.

® The general solution of a homogeneous difference equation that admits
both real and complex roots with different multiplicities is a sum of the
different types of solutions.

® A system of difference equations is called homogeneous if the system’s
exogenous variable is zero, and nonhomogeneous if the exogenous term
is present.

® One method of solving first-order systems of difference equations is by
eliminating variables as in ordinary algebraic systems; another way is
a direct method that can be used to solve systems of linear difference
equations of any order.






Differential Equations

differential equation is a mathematical equation for an unknown

function of one or several variables that relates the values of the
function itself and its derivatives of various orders. Differential equa-
tions play a prominent role in financial economics. Differential equa-
tions arise in many areas of financial economics, that is, whenever
a deterministic relation involving some continuously varying quanti-
ties (modeled by functions) and their rates of change in time or some
other variable (expressed as derivatives) is known or postulated. Dif-
ferential equations are mathematically studied from several different
perspectives, mostly concerning their solutions—the set of functions
that satisfy the equation. Only the simplest differential equations ad-
mit solutions given by explicit formulas; however, some properties of
solutions of a given differential equation may be determined without
finding their exact form. If a self-contained formula for the solution
is not available, the solution can be numerically approximated using
computer algorithms. Using differential equations:

® One can come up with a closed-form solution for the prices of
options, as in the case of the Black-Scholes model.

® One can introduce the key idea behind the Black-Scholes model
to perfectly hedge the option by buying and selling the underlying
asset in just the right way and consequently eliminate risk.

® One can compute the quantities (popularly referred to as the
“Greeks”) representing the sensitivities of the price of options to a
change in underlying parameters on which the value of an instru-
ment or portfolio of financial instruments is dependent.

® One can deal with Itd calculus to find the differential of a time-
dependent function of a stochastic process.

211
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What you will learn after reading this chapter:

= How to define a differential equation.

® How to define an ordinary differential equation, and the order and
degree of an ordinary differential equation.

® How to solve an ordinary differential equation.

® How to combine differential equations to form systems of differ-
ential equations.

®» How to find a closed-form solution to an ordinary differential
equation.

® How to find a numerical solution to an ordinary differential equa-
tion.

= How to apply the finite difference method to find a solution to an
ordinary differential equation.

® How to find a closed form and numerical solution to partial dif-
ferential equations.

INTRODUCTION

In nontechnical terms, differential equations are equations that express a
relationship between a function and one or more derivatives (or differen-
tials) of that function. The highest order of derivatives included in a differ-
ential equation is referred to as its order. In financial modeling, differential
equations are used to specify the laws governing the evolution of price dis-
tributions, deriving solutions to simple and complex options, and estimat-
ing term structure models. In most applications in finance, only first- and
second-order differential equations are used.

Differential equations are classified as ordinary differential equations
and partial differential equations depending on the type of derivatives in-
cluded in the differential equation. When there is only an ordinary deriva-
tive (i.e., a derivative of a mathematical function with only one independent
variable), the differential equation is called an ordinary differential equa-
tion. For differential equations where there are partial derivatives (i.e., a
derivative of a mathematical function with more than one independent vari-
able), then the differential equation is called a partial differential equation.
Typically in differential equations, one of the independent variables is time.
A differential equation may have a derivative of a mathematical function
where one or more of the independent variables is a random variable or a
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stochastic process. In such instances, the differential equation is referred to
as a stochastic differential equation.

The solutions to a differential equation or system of differential equa-
tions can be as simple as explicit formulas. When an explicit formula is not
possible to obtain, various numerical methods can be used to approximate
a solution. Even in the absence of an exact solution, properties of solutions
of a differential equation can be determined. A large number of properties
of differential equations have been established over the last three centuries.
In this chapter, we provide only a brief introduction to the concept of differ-
ential equations and their properties, limiting our discussion to the principal
concepts. We do not cover stochastic differential equations.

DIFFERENTIAL EQUATIONS DEFINED

A differential equation is a condition expressed as a functional link between
one or more functions and their derivatives. It is expressed as an equation
(that is, as an equality between two terms).

A solution of a differential equation is a function that satisfies the given
condition. For example, the condition

Y'(x)+aY(x)+ BY(x) — b(x) =0

equates to zero a linear relationship between an unknown function Y(x), its
first and second derivatives Y'(x), Y (x), and a known function b(x). (In
some equations, we denote the first and second derivatives by a single and
double prime, respectively.) The unknown function Y(x) is the solution of
the equation that is to be determined.

There are two broad types of differential equations: ordinary differen-
tial equations and partial differential equations. Ordinary differential equa-
tions are equations or systems of equations involving only one independent
variable. Another way of saying this is that ordinary differential equations
involve only total derivatives. In contrast, partial differential equations are
differential equations or systems of equations involving partial derivatives.
That is, there is more than one independent variable.

ORDINARY DIFFERENTIAL EQUATIONS

In full generality, an ordinary differential equation (ODE) can be expressed
as the following relationship:

Flx, Y(x), Y'(x),....,Y"(x)] =0
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where Y")(x) denotes the mth derivative of an unknown function Y(x). If
the equation can be solved for the nth derivative, it can be put in the form:

Y™ (x) = G[x, Y(x), YP(x),..., Y" V(x)]

Order and Degree of an ODE

A differential equation is classified in terms of its order and its degree. The
order of a differential equation is the order of the highest derivative in the
equation. For example, the above differential equation is of order n since
the highest order derivative is Y (x). The degree of a differential equation
is determined by looking at the highest derivative in the differential equation.
The degree is the power to which that derivative is raised.

For example, the following ordinary differential equations are first-
degree differential equations of different orders:

YM(x) = 10Y(x) + 40 = 0 (order 1)
4Y5) () + Y (x) + Y (x) — 0.5Y(x) + 100 = 0
(order 3)

The following ordinary differential equations are of order 3 and fifth
degree:

ALY + Y2 0P + Y0 (x) — 0.5Y(x) + 100 = 0
AV + Y20 + Y (x) — 0.5Y(x) + 100 = 0

When an ordinary differential equation is of the first degree, it is said to
be a linear ordinary differential equation.

Solution to an ODE

Let’s return to the general ODE. A solution of this equation is any function
y(x) such that:

Flx, y(x), yV(x), ..., y"(x)] = 0

In general there will be not one but an infinite family of solutions. For ex-
ample, the equation

Y (x) = aY(x)
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admits, as a solution, all the functions of the form
y(x) = C exp(ax)

To identify one specific solution among the possible infinite solutions
that satisfy a differential equation, additional restrictions must be imposed.
Restrictions that uniquely identify a solution to a differential equation can
be of various types. For instance, one could impose that a solution of an nth
order differential equation passes through 7 given points. A common type
of restriction—called an initial condition—is obtained by imposing that the
solution and some of its derivatives assume given initial values at some initial
point.

Given an ODE of order #, to ensure the uniqueness of solutions it will
generally be necessary to specify a starting point and the initial value of
n — 1 derivatives. It can be demonstrated, given the differential equation

Flx, Y(x), YV (x),..., Y"(x)]=0

that if the function F is continuous and all of its partial derivatives up to
order 7 are continuous in some region containing the values yp, ..., y(()”_l),
then there is a unique solution y(x) of the equation in some interval [ =
(M < x < L) such that yg = Y(x0), ..., yo"~! = Y"D(x().! Note that this
theorem states that there is an interval in which the solution exists. Existence
and uniqueness of solutions in a given interval is a more delicate matter and
must be examined for different classes of equations.

The general solution of a differential equation of order 7 is a function
of the form

y=90(x,C1,...,Cn)
that satisfies the following two conditions:

Condition 1. The function y = ¢(x, Cy, ..., C,) satisfies the differential
equation for any n-tuple of values (Cy, ..., C,).

Condition 2. Given a set of initial conditions y(x0) = y0,...,
Y D(x9) = """ that belong to the region where solutions of the
equation exist, it is possible to determine 7 constants in such a way
that the function y = ¢(x, Cy, ..., C,) satisfies these conditions.

!The condition of existence and continuity of derivatives is stronger than neces-
sary. The Lipschitz condition, which requires that the incremental ratio be uniformly
bounded in a given interval, suffices.
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The coupling of differential equations with initial conditions embodies
the notion of universal determinism of classical physics. Given initial con-
ditions, the future evolution of a system that obeys those equations is com-
pletely determined. This notion was forcefully expressed by Pierre-Simon
Laplace in the eighteenth century: A supernatural mind who knows the laws
of physics and the initial conditions of each atom could perfectly predict the
future evolution of the universe with unlimited precision.

In the twentieth century, the notion of universal determinism was chal-
lenged twice in the physical sciences. First, in the 1920s, the development
of quantum mechanics introduced the so-called “indeterminacy principle”
that established explicit bounds to the precision of measurements. Later, in
the 1970s, the development of nonlinear dynamics and chaos theory showed
how arbitrarily small initial differences might become arbitrarily large: The
flapping of a butterfly’s wings in the southern hemisphere might cause a tor-
nado in the northern hemisphere.

SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

Differential equations can be combined to form systems of differential equa-
tions. These are sets of differential conditions that must be satisfied simul-
taneously. A first-order system of differential equations is a system of the
following type:

d
% = fl(xf yla"-9yn)

d
dyz = fz(xa yla Ty D}n)
X

dy,
d).’:C = fn(x’ y19""yn)

Solving this system means finding a set of functions y, ..., y, that satisfy
the system as well as the initial conditions:

Y1(x0) = Y105 - - -» Yu(X0) = Yno

Systems of orders higher than 1 can be reduced to first-order systems
in a straightforward way by adding new variables defined as the derivatives
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of existing variables. As a consequence, an nth order differential equation
can be transformed into a first-order system of 7 equations. Conversely, a
system of first-order differential equations is equivalent to a single nth order
equation.

To illustrate this point, let’s differentiate the first equation to obtain

d? 0 0f1 d of1 dy,
n_df dfidn | 0hdy

dx2  dx = Oy dx Ay, dx

Replacing the derivatives

dy dy

dx’ 7 dx

with their expressions f1,. .., f, from the system’s equations, we obtain

d*y
W = Fl(x7y1,-~-,J’n)

If we now reiterate this process, we arrive at the nth order equation:

af(ﬂ)y1
dx<”) = F?Z(‘x’ y17 ety yﬂ)

We can thus write the following system:

dy,

dx - fl(‘xs y17 L] yn)
d2y1

W = FZ(X, Vis oo )’n)
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We can express ys,...,y, as functions of x, y1, y;, ..., yi"il) by solving, if
possible, the system formed with the first 7 — 1 equations:

— / (n—1))
V= @2(X, Vi, Ve Y

= / (n—1))
V3 =@3(%, Y1, ¥, .- Y

yﬂ = @n(x, yl’ yiv ] y:([n_l))

Substituting these expressions into the zth equation of the previous system,
we arrive at the single equation:

d" oy
_ / (n—1)
T = D(x, yi .-, )

Solving, if possible, this equation, we find the general solution

yl = yl(xa Cl’ AR Cﬂ)

Substituting this expression for y; into the previous system, y,, . . .,y, can be
computed.

GCLOSED-FORM SOLUTIONS OF ORDINARY
DIFFERENTIAL EQUATIONS

Let’s now consider the methods for solving two types of common differential
equations: equations with separable variables and equations of linear type.
Let’s start with equations with separable variables. Consider the equation

dy
o = [Ws)

x
This equation is said to have separable variables because it can be written as
an equality between two sides, each depending on only y or only x. We can
rewrite our equation in the following way:
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This equation can be regarded as an equality between two differentials in y
and x respectively. Their indefinite integrals can differ only by a constant.
Integrating the left side with respect to y and the right side with respect to
x, we obtain the general solution of the equation:

/%:/f(x)dx—}-c

For example, if g(y) = y, the previous equation becomes

whose solution is

/d—;):/f(x)dx+C:>

10gy=ff(x)dx+C:>y:Aexp(/ f(x)dx)

where A = exp(C).

A differential equation of this type describes the continuous compound-
ing of time-varying interest rates. Consider, for example, the growth of cap-
ital C deposited in a bank account that earns the variable but deterministic
rate 7 = f(¢). When interest rates R; are constant for discrete periods of time
At;, compounding is obtained by purely algebraic formulas as follows:

C(t) — Clti—az)
Clti—as,)

R AL =
Solving for C(#):
Ct) = (1 4+ RAL)C(; — At)

By recursive substitution we obtain

Ct;)) = (1+ RAL) 1+ Ri1Atiq). ..
(1+ RiA#)Clto)
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However, market interest rates are subject to rapid change. In the limit
of very short time intervals, the instantaneous rate 7(¢) would be defined as
the limit, if it exists, of the discrete interest rate:

C(t + At) — C(t)
a0 ARC()

The above expression can be rewritten as a simple first-order differential
equation in C:

dC(t)
H)C(t) = ——
rcin = =
In a simple intuitive way, the above equation can be obtained considering
that in the elementary time d¢ the bank account increments by the amount
dC = C(t)r(t)dt. In this equation, variables are separable. It admits the family
of solutions:

C=A exp(fr(t)dt)
where A is the initial capital.

Linear Differential Equation

Linear differential equations are equations of the following type:
an(x)y" + @y 1 (x)y" "V 4 a ()Y + ao(x)y + b(x) = 0

If the function b is identically zero, the equation is said to be homogeneous.

In cases where the coefficients a’s are constant, Laplace transforms pro-
vide a powerful method for solving linear differential equations. Laplace
transforms are one of two popular integral transforms—the other being
Fourier transforms—used in financial modeling. Integral transforms are op-
erations that take any function into another function of a different variable
through an improper integral. (Laplace and Fourier transforms are described
in Chapter 3.)
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Consider, without loss of generality, the following linear equation with
constant coefficients:

ap Y + a1y + -+ aryV + agy = bix)
together with the initial conditions: yo = y0, ..., y"~1(0) = yi" . In cases
in which the initial point is not the origin, by a variable transformation we
can shift the origin.

Laplace Transform Recall from Chapter 3 that for one-sided Laplace
transforms the following formulas hold:

4(@”§=mzwwn—ﬂm
X

J(d:zf(nx)> — "L f(x)] — "L F(0) — --- — F1(0)
x

Suppose that a function y = y(x) satisfies the previous linear equation
with constant coefficients and that it admits a Laplace transform. Apply one-
sided Laplace transform to both sides of the equation. If Y(s) = L[y(x)], the
following relationships hold:

L (any<") + a1y o ay + apy) = L[b(x)]
a,[s"Y(s) = s" 1y 1(0) — - — ¥ 1(0)]
Fan-1[s" Y (s) = "2y (0) — - — Y2 (0)]
+---4a0¥(s) = B(s)

Solving this equation for Y(s), that is, Y(s) = g[s,y(0), ...,y 1(0)], the
inverse Laplace transform y(¢) = £ '[Y(s)] uniquely determines the solution
of the equation.

Because inverse Laplace transforms are integrals, with this method,
when applicable, the solution of a differential equation is reduced to the
determination of integrals. Laplace transforms and inverse Laplace trans-
forms are known for large classes of functions. Because of the important
role that Laplace transforms play in solving ordinary differential equations
in engineering problems, there are published reference tables. Laplace trans-
form methods also yield closed-form solutions of many ordinary differential
equations of interest in economics and finance.
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NUMERICAL SOLUTIONS OF ORDINARY
DIFFERENTIAL EQUATIONS

Closed-form solutions are solutions that can be expressed in terms of known
functions such as polynomials or exponential functions. Before the advent
of computers, the search for closed-form solutions of differential equations
was an important task. Today, thanks to the availability of high-performance
computing, most problems are solved numerically. This section looks at
methods for solving ordinary differential equations numerically.

The Finite Difference Method

Among the methods used to numerically solve ordinary differential equa-
tions subject to initial conditions, the most common is the finite difference
method. The finite difference method is based on replacing derivatives with
difference equations; differential equations are thereby transformed into re-
cursive difference equations.

Key to this method of numerical solution is the fact that ODEs subject
to initial conditions describe phenomena that evolve from some starting
point. In this case, the differential equation can be approximated with
a system of difference equations that compute the next point based on
previous points. This would not be possible should we impose boundary
conditions instead of initial conditions. In this latter case, we have to solve
a system of linear equations.

To illustrate the finite difference method, consider the following simple
ordinary differential equation and its solution in a finite interval:

f'(x) = f(x)
d =dx

*

\"|\

log f(x) =x+C
f(x) = exp(x + C)

As shown, the closed-form solution of the equation is obtained by separa-
tion of variables, that is, by transforming the original equation into another
equation where the function f appears only on the left side and the variable
x only on the right side.

Suppose that we replace the derivative with its forward finite difference
approximation and solve

f(xig1) = flx

%) — fia)
Xit1 — X

f(xip1) = [14 (x4 — x)] f(xi)
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Euler approximation with 20 iterations,
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FIGURE 9.1 Numerical Solutions of the Equation f = f with the
Euler Approximation for Different Step Sizes

If we assume that the step size is constant for all i:
flx) =1+ Ax]' f(xo)

The replacement of derivatives with finite differences is often called the
Euler approximation. The differential equation is replaced by a recursive
formula based on approximating the derivative with a finite difference. The
ith value of the solution is computed from the i — 1th value. Given the initial
value of the function £, the solution of the differential equation can be ar-
bitrarily approximated by choosing a sufficiently small interval. Figure 9.1
illustrates this computation for different values of Ax.

In the previous example of a first-order linear equation, only one initial
condition was involved. Let’s now consider a second-order equation:

F"(x) = kf(x) = 0

This equation describes oscillatory motion, such as the elongation of a pen-
dulum or the displacement of a spring.
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To approximate this equation we must approximate the second deriva-
tive. This could be done, for example, by combining difference quotients as
follows:

f(x+ Ax) — f(x)

f'(x) ~ X
x
Flat Ax) ~ flx+ 2Ax)A; f(x+ Ax)
1" ~ f/(x—‘f_ Ax) B f/(.X)
f"(x) ~ A
fla+24%) = flx—Ax)  flx— Ax) = f(x)
_ Ax Ax
N Ax
flx+2Ax) —2f(x+ Ax) + f(x)

(Ax)?
With this approximation, the original equation becomes

f(x) + kf (x

f(x—l—ZAx 2 f(x+ Ax) + f(x)
(Ax? + kf(x) =

f(x+2Ax) — 2 f(x 4+ Ax) + (1 + k(Ax)?) f(x) =0

We can thus write the approximation scheme:

f(x+ Ax) = f(x) + Axf'(x)
flx4+2Ax) =2 f(x + Ax) — (1 + k(Ax)?) f(x)

Given the increment Ax and the initial values f(0), /(0), using the above
formulas we can recursively compute f(0 + Ax),/(0 + 2Ax), and so on.
Figure 9.2 illustrates this computation.

In practice, the Euler approximation scheme is often not sufficiently pre-
cise and more sophisticated approximation schemes are used. For example,
a widely used approximation scheme is the Runge-Kutta method. We give
an example of the Runge-Kutta method in the case of the equation f’ +
f = 0 which is equivalent to the linear system:

X' =y
Y =-—x
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1.5

with the Euler

equation f” + f=0.

The circles represent
the numerical solution

approximation of the

I The solid line represents the exact solution
y = sin x of the equation f” + f= 0.
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FIGURE 9.2 Numerical Solution of the Equation f’ + f= 0 with

the Euler Approximation

In this case the Runge-Kutta approximation scheme is the following:

ki = hy(i)
l’)lz—hx(i)
. L
ky =h _)’(i) + zhl_
by = h_ 3 1k_
2= — _x(lH‘z 1_
k —h_ ' 1b-
3 = _y(l)+z 2]
by = —b| x(i) + Lk
3=— _x(1)+z 2|
ks = hy(i) + h3]
by = —h[x(i) + k3]
1
x(i+1)=x(i)+g(k1+2kz+2k3+k4)
1
y(i +1) = y(i) + g(hl +2hy + 2h3 + hy)
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true exponential function. E
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241  Thecircles represent the Runge-Kutta
approximation with 10 iterations.
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FIGURE 9.3 Numerical Solution of the Equation f = f with the Runge-Kutta
Method After 10 Steps

Figures 9.3 and 9.4 illustrate the results of this method in the two cases f =
fand f' +f=0.

As mentioned above, this numerical method depends critically on our
having as givens (1) the initial values of the solution, and (2) its first deriva-
tive. Suppose that instead of initial values two boundary values were given,
for instance the initial value of the solution and its value 1,000 steps ahead,
that is, f(0) = fo, A0 + 1,000Ax) = fi 000. Conditions like these are rarely
used in the study of dynamical systems as they imply foresight, that is,
knowledge of the future position of a system. However, they often appear in
static systems and when trying to determine what initial conditions should
be imposed to reach a given goal at a given date.

In the case of boundary conditions, one cannot write a direct recursive
scheme; it’s necessary to solve a system of equations. For instance, we could
introduce the derivative f(x) = § as an unknown quantity. The difference
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1.5 The solid line represents the exact solution y = sin x.

The circles represents the numerical solution
computed with the Runge-Kutta method.
1 1 1
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FIGURE 9.4 Numerical Solution of the Equation f* +f = 0 with the
Runge-Kutta Method

quotient that approximates the derivative becomes an unknown. We can
now write a system of linear equations in the following way:

f(Ax) = fo+3Ax
f2Ax) =2 f(Ax) — (1 4+ k(Ax)*) fo
f(3Ax) =2 f(2Ax) — (1 + k(Ax)* f(Ax)

.f1000 =2£(999Ax) — (1 + k(Ax)* f(998Ax)

This is a system of 1,000 equations in 1,000 unknowns. Solving the
system we compute the entire solution. In this system two equations, the first
and the last, are linked to boundary values; all other equations are transfer
equations that express the dynamics (or the law) of the system. This is a
general feature of boundary value problems. We encounter it again when
discussing numerical solutions of partial differential equations.

In the previous example, we chose a forward scheme where the deriva-
tive is approximated with the forward difference quotient. One might use
a different approximation scheme, computing the derivative in intervals
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centered around the point x. When derivatives of higher orders are in-
volved, the choice of the approximation scheme becomes critical. Recall
that when we approximated first and second derivatives using forward
differences, we were required to evaluate the function at two points (i,
i +1) and three points (i,i + 1,i + 2) ahead respectively. If purely forward
schemes are employed, computing higher-order derivatives requires many
steps ahead. This fact might affect the precision and stability of numerical
computations.

We saw in the examples that the accuracy of a finite difference
scheme depends on the discretization interval. In general, a finite differ-
ence scheme works, that is, it is consistent and stable, if the numerical so-
lution converges uniformly to the exact solution when the length of the
discretization interval tends to zero. Suppose that the precision of an ap-
proximation scheme depends on the length of the discretization interval Ax.
Consider the difference §f = f(x) — f(x) between the approximate and the
exact solutions. We say that §f — 0 uniformly in the interval [a,b] when
Ax — 0 if, given any ¢ arbitrarily small, it is possible to find a Ax such that
I8f] <&, Vx € [a, b].

NONLINEAR DYNAMICGS AND CHAOS

Systems of differential equations describe dynamical systems that evolve
starting from initial conditions. A fundamental concept in the theory of dy-
namical systems is that of the stability of solutions. This topic has become
of paramount importance with the development of nonlinear dynamics and
with the discovery of chaotic phenomena. We can only give a brief introduc-
tory account of this subject whose role in economics is still the subject of
debate.

Intuitively, a dynamical system is considered stable if its solutions do not
change much when the system is only slightly perturbed. There are different
ways to perturb a system: changing parameters in its equations, changing
the known functions of the system by a small amount, or changing the initial
conditions.

Consider an equilibrium solution of a dynamical system, that is, a so-
lution that is time invariant. If a stable system is perturbed when it is in a
position of equilibrium, it tends to return to the equilibrium position or, in
any case, not to diverge indefinitely from its equilibrium position. For exam-
ple, a damped pendulum—if perturbed from a position of equilibrium—will
tend to go back to an equilibrium position. If the pendulum is not damped
it will continue to oscillate forever.

Consider a system of 7z equations of first order. (As noted above, systems
of higher orders can always be reduced to first-order systems by enlarging
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the set of variables.) Suppose that we can write the system explicitly in the
first derivatives as follows:

d

d—yxl= file, yi, ..oy )
d

d_y;: falx, yi, ooy )
.dn

d_)_; = fn(x’ y17"‘7yn)

If the equations are all linear, a complete theory of stability has been
developed. Essentially, linear dynamical systems are stable except possibly at
singular points where solutions might diverge. In particular, a characteristic
of linear systems is that they incur only small changes in the solution as a
result of small changes in the initial conditions.

However, during the 1970s, it was discovered that nonlinear systems
have a different behavior. Suppose that a nonlinear system has at least three
degrees of freedom (that is, it has three independent nonlinear equations).
The dynamics of such a system can then become chaotic in the sense that
arbitrarily small changes in initial conditions might diverge. This sensitivity
to initial conditions is one of the signatures of chaos. Note that while
discrete systems such as discrete maps can exhibit chaos in one dimension,
continuous systems require at least three degrees of freedom (that is, three
equations).

Sensitive dependence from initial conditions was first observed in 1960
by the meteorologist Edward Lorenz of the Massachusetts Institute of Tech-
nology. Lorenz remarked that computer simulations of weather forecasts
starting, apparently, from the same meteorological data could yield very dif-
ferent results. He argued that the numerical solutions of extremely sensi-
tive differential equations such as those he was using produced diverging re-
sults due to rounding-off errors made by the computer system. His discovery
was published in a meteorological journal where it remained unnoticed for
many years.

Fractals

While in principle deterministic chaotic systems are unpredictable because
of their sensitivity to initial conditions, the statistics of their behavior can be
studied. Consider, for example, the chaos laws that describe the evolution of
weather: While the weather is basically unpredictable over long periods of
time, long-run simulations are used to predict the statistics of weather.
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It was discovered that probability distributions originating from chaotic
systems exhibit fat tails in the sense that very large, extreme events have non-
negligible probabilities.? It was also discovered that chaotic systems exhibit
complex unexpected behavior. The motion of chaotic systems is often asso-
ciated with self-similarity and fractal shapes.

Fractals were introduced in the 1960s by Benoit Mandelbrot, a math-
ematician working at the IBM research center in Yorktown Heights, New
York. Starting from the empirical observation that cotton price time-series
are similar at different time scales, Mandelbrot developed a powerful theory
of fractal geometrical objects. Fractals are geometrical objects that are ge-
ometrically similar to part of themselves. Stock prices exhibit this property
insofar as price time-series look the same at different time scales.

Chaotic systems are also sensitive to changes in their parameters. In a
chaotic system, only some regions of the parameter space exhibit chaotic
behavior. The change in behavior is abrupt and, in general, it cannot be
predicted analytically. In addition, chaotic behavior appears in systems that
are apparently very simple.

While the intuition that chaotic systems might exist is not new, the sys-
tematic exploration of chaotic systems started only in the 1970s. The discov-
ery of the existence of nonlinear chaotic systems marked a conceptual crisis
in the physical sciences: It challenges the very notion of the applicability of
mathematics to the description of reality. Chaos laws are not testable on a
large scale; their applicability cannot be predicted analytically. Nevertheless,
the statistics of chaos theory might still prove to be meaningful.

The economy being a complex system, the expectation was that its ap-
parently random behavior could be explained as a deterministic chaotic
system of low dimensionality. Despite the fact that tests to detect low-
dimensional chaos in the economy have produced a substantially negative re-
sponse, it is easy to make macroeconomic and financial econometric models
exhibit chaos.?> As a matter of fact, most macroeconomic models are non-
linear. Though chaos has not been detected in economic time-series, most
economic dynamic models are nonlinear in more than three dimensions and

2See W. Brock, D. Hsieh, and B. LeBaron, Nonlinear Dynamics, Chaos, and Insta-
bility (Cambridge, MA: MIT Press, 1991); and D. Hsieh, “Chaos and Nonlinear
Dynamics: Application to Financial Markets,” Journal of Finance 46 (1991): 1839-
1877.

3See W. A. Brock, W. D. Dechert, J. A. Scheinkman, and B. LeBaron, “A Test for In-
dependence Based on the Correlation Dimension,” Econometric Reviews 15 (1996):
197-235; and W. Brock and C. Hommes, “A Rational Route to Randomness,”
Econometrica 65 (1997): 1059-1095.
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thus potentially chaotic. At this stage of the research, we might conclude
that if chaos exists in economics it is not of the low-dimensional type.

PARTIAL DIFFERENTIAL EQUATIONS

To illustrate the notion of a partial differential equation (PDE), let’s start
with equations in two dimensions. An 7n-order PDE in two dimensions x,y
is an equation of the form

1
F<xy%%L) =0,0<k<i,0<i<n
dx’ dy k) xd(i—k)y
A solution of the previous equation will be any function that satisfies the
equation.

In the case of PDEs, the notion of initial conditions must be replaced
with the notion of boundary conditions or initial plus boundary conditions.
Solutions will be defined in a multidimensional domain. To identify a solu-
tion uniquely, the value of the solution on some subdomain must be specified.
In general, this subdomain will coincide with the boundary (or some portion
of the boundary) of the domain.

Diffusion Equation

Different equations will require and admit different types of boundary and
initial conditions. The question of the existence and uniqueness of solutions
of PDEs is a delicate mathematical problem. We can only give a brief account
by way of an example.

Let’s consider the diffusion equation. This equation describes the prop-
agation of the probability density of stock prices under the random-walk
hypothesis:

of _ L0 f
— =g —
ot dx2

The Black-Scholes equation, which describes the evolution of option prices,
can be reduced to the diffusion equation.

The diffusion equation describes propagating phenomena. Call f{z,x) the
probability density that prices have value x at time #. In finance theory, the
diffusion equation describes the time-evolution of the probability density
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function f(t,x) of stock prices that follow a random walk.* It is therefore
natural to impose initial and boundary conditions on the distribution of
prices.

In general, we distinguish two different problems related to the diffu-
sion equation: the first boundary value problem and the Cauchy initial value
problem, named after the French mathematician Augustin Cauchy who first
formulated it. The two problems refer to the same diffusion equation but
consider different domains and different initial and boundary conditions. It
can be demonstrated that both problems admit a unique solution.

The first boundary value problem seeks to find in the rectangle 0 < x <
1,0 < ¢t < T a continuous function f{t,x) that satisfies the diffusion equa-
tion in the interior Q of the rectangle plus the following initial condition,

f(0,x) =¢(x),0 <x <1
and boundary conditions,

The functions fi, f> are assumed to be continuous and f;(0) = ¢(0), 2(0) =
o(1).

The Cauchy problem is related to an infinite half plane instead of a finite
rectangle. It is formulated as follows. The objective is to find for any x and
for t > 0 a continuous and bounded function f{#,x) that satisfies the diffusion
equation and which, for ¢ = 0, is equal to a continuous and bounded function

£(0, %) = p(x), Vx.

Solution of the Diffusion Equation

The first boundary value problem of the diffusion equation can be solved
exactly. We illustrate here a widely used method based on the separation
of variables, which is applicable if the boundary conditions on the vertical
sides vanish (that is, if f1(¢) = f2(¢) = 0). The method involves looking for a
tentative solution in the form of a product of two functions, one that depends
only on ¢ and the other that depends only on x:f(t,x) = h(t)g(x).

“In physics, the diffusion equation describes phenomena such as the diffusion of
particles suspended in some fluid. In this case, the diffusion equation describes the
density of particles at a given moment at a given point.
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If we substitute the previous tentative solution in the diffusion equation

of _ 0
— =g°—
ot dx?

we obtain an equation where the left side depends only on ¢ while the right
side depends only on x:

dh(1) d’g(x)
Tg(x) = azh(t)W

dh(t) 1 ,d*g(x) 1

dr br) 7 Td g

This condition can be satisfied only if the two sides are equal to a constant.
The original diffusion equation is therefore transformed into two ordinary
differential equations:

1.dh(t)
priarralalidy)
d*g(x)

G2 = bslx)

with boundary conditions g(0) = g(I) = 0. From the above equations and
boundary conditions, it can be seen that b can assume only the negative
values,

b=— Jk=1,2,...

2
while the functions g can only be of the form

g(x) = By, sin anx

Substituting for b, we obtain

2022
h(t) = B, exp <—#t>
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Therefore, we can see that there are denumerably infinite solutions of the
diffusion equation of the form

2022
frlt, x) = Cp exp (—#t) sin anx

All these solutions satisfy the boundary conditions f(,0) = f(t,[) = 0. By
linearity, we know that the infinite sum

x) =) filt. )
k=1

> ( a’k'n? ) .k
= ch exp | ——5—t|sin —x
p / )

will satisfy the diffusion equation. Clearly f{z,x) satisfies the boundary condi-
tions f(,0) = f(t,]) = 0. In order to satisfy the initial condition, given that ¢(x)
is bounded and continuous and that ¢(0) = ¢(/) = 0, it can be demonstrated
that the coefficients Cs can be uniquely determined through the following
integrals, which are called the Fourier integrals:

L
=2 [ otersin <”—Lks)ds
0

The previous method applies to the first boundary value problem but
cannot be applied to the Cauchy problem, which admits only an initial con-
dition. It can be demonstrated that the solution of the Cauchy problem can
be expressed in terms of a convolution with a Green’s function. In particu-
lar, it can be demonstrated that the solution of the Cauchy problem can be
written in closed form as follows:

G (x — &)
f(f,x)—ﬁfwexp{— 47 }d‘?

for t > 0 and f(0,x) = ¢(x). It can be demonstrated that the Black-Scholes
equation, which is an equation of the form

3f 1223f of
” 2 82+rxa —rf=0
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can be reduced through transformation of variables to the standard diffusion
equation to be solved with the Green’s function approach.

Numerical Solution of PDEs

There are different methods for the numerical solution of PDEs. We illustrate
the finite difference methods, which are based on approximating derivatives
with finite differences. Other discretization schemes such as finite elements
and spectral methods are possible but, being more complex, they go beyond
the scope of this book.

Finite difference methods result in a set of recursive equations when
applied to initial conditions. When finite difference methods are applied to
boundary problems, they require the solution of systems of simultaneous lin-
ear equations. PDEs might exhibit boundary conditions, initial conditions,
or a mix of the two.

The Cauchy problem of the diffusion equation is an example of initial
conditions. The simplest discretization scheme for the diffusion equation re-
places derivatives with their difference quotients. As for ordinary differential
equations, the discretization scheme can be written as follows:

af _ ft+ AL, x)— f(t, x)

— R

at At
*f  flt.x+ Ax)—2f(t, x)+ f(¢, x — Ax)
axr (Ax)?

In the case of the Cauchy problem, this approximation scheme defines
the forward recursive algorithm. It can be proved that the algorithm is stable
only if the Courant-Friedrichs-Lewy (CFL) conditions

(Ax)?
242

At <

are satisfied.

Different approximation schemes can be used. In particular, the forward
approximation to the derivative used above could be replaced by centered
approximations. Figure 9.5 illustrates the solution of a Cauchy problem
for initial conditions that vanish outside of a finite interval. The simulation
shows that solutions diffuse in the entire half space.

Applying the same discretization to a first boundary problem would re-
quire the solution of a system of linear equations at every step. Figure 9.6
illustrates this case.
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FIGURE 9.5 Solution of the Cauchy Problem by the Finite
Difference Method

2

oo

60 O

FIGURE 9.6 Solution of the First Boundary Problem by the Finite
Difference Method
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KEY POINTS

® Basically, differential equations are equations that express a relationship
between a function and one or more derivatives (or differentials) of that
function.

® The two classifications of differential equations are ordinary differential
equations and partial differential equations. The classification depends
on the type of derivatives included in the differential equation: ordinary
differential equation when there is only an ordinary derivative and par-
tial differential equation where there are partial derivatives.

® Typically in differential equations, one of the independent variables is
time.

® The term stochastic differential equation refers to a differential equation
in which a derivative of one or more of the independent variables is a
random variable or a stochastic process.

= Differential equations are conditions that must be satisfied by their so-
lutions. Differential equations generally admit infinite solutions. Initial
or boundary conditions are needed to identify solutions uniquely.

® Differential equations are the key mathematical tools for the develop-
ment of modern science; in finance they are used in arbitrage pricing,
to define stochastic processes, and to compute the time evolution of
averages.

= Differential equations can be solved in closed form or with numerical
methods. Finite difference methods approximate derivatives with differ-
ence quotients. Initial conditions yield recursive algorithms.

® Boundary conditions require the solution of linear equations.
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Stochastic Integrals

s tochastic calculus is a branch of mathematics that operates on
stochastic processes. It allows a consistent theory of integration to
be defined for integrals of stochastic processes with respect to stochas-
tic processes. It is used to model variables that behave randomly. The
best-known stochastic process to which stochastic calculus is applied
is the Wiener process, which is used for modeling Brownian motion
and other diffusion processes subject to random fluctuations. Since the
1970s, the Wiener process has been widely applied in mathematical fi-
nance to model the evolution in time of stock prices and interest rates.
While an ordinary integral is either a number or a function, a stochastic
integral is a random variable or a stochastic process. Stochastic inte-
grals allow financial modelers to differentiate the time-varying behav-
ior of asset returns from the stochastic behavior of asset returns. Using
stochastic integrals:

® One can define random movements and state-dependent nature of
asset prices more rigorously.

® One can convert the physical measure which describes the proba-
bility that an underlying instrument (such as a stock price or inter-
est rate) will take a particular value or values to the risk-neutral
measure which is a useful tool for pricing derivatives on the un-
derlying asset.

® One can convert a financial asset into a martingale, which is useful
for defining expected future prices of underlying assets that deter-
mine the value of derivative products written on these underlying
assets.

® One can take the observed discrete-time stochastic process to
continuous-time Brownian motion by pushing the length of time

239
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interval to close to zero. The continuous-time stochastic processes
are used to generate closed-form solutions for option prices.

® One can convert a complicated continuous-time stochastic process
with a nonlinear drift and diffusion to a new, simplified Brownian
motion that can easily be implemented to find a closed-form solu-
tion for option prices.

What you will learn after reading this chapter:

® What the differences are between ordinary and stochastic inte-
grals.

® How to define stochastic integrals and the intuition behind them.

® How to define a Brownian motion and its stochastic properties.

= How to prove the existence of the standard Brownian motion us-
ing the Kolmogorov extension theorem.

= How to relate the diffusion function of a continuous-time stochas-
tic process to an instantaneous volatility function.

= How to convert a discrete-time stochastic process to a continuous-
time process as the length of the time interval approaches zero.

® What the properties of It stochastic integrals are.

= What the properties of continuous-time martingales are.

® How to convert the physical measure to the risk-neutral measure
using Girsanov theorem.

= How to convert a financial asset into a martingale measure using
Novikov theorem.

INTRODUCTION

In elementary calculus, integration is an operation performed on single, de-
terministic functions; the end product is another single, deterministic func-
tion. Integration defines a process of cumulation: The integral of a function
represents the area below the function. However, the usefulness of deter-
ministic functions in financial modeling is limited. Given the amount of un-
certainty, few laws in financial theory can be expressed through them. It is
necessary to adopt an ensemble view, where the path of economic variables
must be considered a realization of a stochastic process, not a deterministic
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path. We must therefore move from deterministic integration to stochastic
integration. In doing so we have to define how to cumulate random shocks in
a continuous-time environment. These concepts require rigorous definition.
In this chapter we define the concept and the properties of stochastic integra-
tion. Based on the concept of stochastic integration, an important tool used
in finance, stochastic differential equations, the subject of the next chapter,
can be understood.

Two observations are in order. First, although ordinary integrals and
derivatives operate on functions and vyield either individual numbers or
other functions, stochastic integration operates on stochastic processes and
yields either random variables or other stochastic processes. Therefore,
while a definite integral is a number and an indefinite integral is a func-
tion, a stochastic integral is a random variable or a stochastic process.
A differential equation—when equipped with suitable initial or boundary
conditions—admits as a solution a single function while a stochastic differ-
ential equation admits as a solution a stochastic process.

Second, moving from a deterministic to a stochastic environment does
not necessarily require leaving the realm of standard calculus. In fact, all the
stochastic laws of financial theory could be expressed as laws that govern
the distribution of transition probabilities. An example of this mathemati-
cal strategy is the application of the forward Komogorov differential equa-
tion or the Fokker-Planck differential equation to term structure modeling,
which are deterministic partial differential equations that govern the proba-
bility distributions of prices. Nevertheless it is often convenient to represent
uncertainty directly through stochastic integration and stochastic differen-
tial equations. This approach is not limited to finance theory: It is also used
in the domain of the physical sciences. In finance theory, stochastic differ-
ential equations have the advantage of being intuitive: Thinking in terms of
a deterministic path plus an uncertain term is easier than thinking in terms
of abstract probability distributions. There are other reasons why stochas-
tic calculus is the methodology of choice in economics and finance but easy
intuition plays a key role.

For example, a risk-free bank account, which earns a deterministic in-
stantaneous interest rate f(z), evolves according to the deterministic law:

y= A exp (/ f(t)dt)

which is the general solution of the differential equation:
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The solution of this differential equation tells us how the bank account cu-
mulates over time.

However, if the rate is not deterministic but is subject to volatility—that
is, at any instant the rate is f{¢) plus a random disturbance—then the bank ac-
count evolves as a stochastic process. That is to say, the bank account might
follow any of an infinite number of different paths: Each path cumulates the
rate f(¢) plus the random disturbance. In a sense that will be made precise in
this chapter and, with an understanding of stochastic differential equations
covered in the next chapter, we must solve the following equation:

dy = f(t)dt plus random distrubance

Here is where stochastic integration comes into play: It defines how the
stochastic rate process is transformed into the stochastic account process.
This is the direct stochastic integration approach.

It is possible to take a different approach. At any instant ¢, the instan-
taneous interest rate and the cumulated bank account have two probability
distributions. We could use a partial differential equation to describe how
the probability distribution of the cumulated bank account is linked to the
interest rate probability distribution.

Similar reasoning applies to stock and derivative price processes. In
continuous-time finance, these processes are defined as stochastic processes
that are the solution of a stochastic differential equation. Hence, the im-
portance of stochastic integrals in continuous-time finance theory should be
clear.

Following some remarks on the informal intuition behind stochastic in-
tegrals, we proceed to define Brownian motion and outline the formal math-
ematical process through which stochastic integrals are defined. A number
of properties of stochastic integrals are then established. After introducing
stochastic integrals informally, we go on to define more rigorously the math-
ematical process for defining stochastic integrals.'

'A history of stochastic integrations and financial mathematics is provided by R.
Jarrow and P. Protter, “A Short History of Stochastic Integration and Mathematical
Finance: The Early Years, 1880-1970,” IMS Lecture Notes Monograph 45 (2004):
1-17. For a more detailed discussion of stochastic integration, see P. Protter, Stochas-
tic Integration and Differential Equations (New York: Springer, 1990).
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THE INTUITION BEHIND STOCHASTIC INTEGRALS

Let’s first contrast ordinary integration with stochastic integration. A definite
integral

b
A= / f(x)dx
is a number A associated to each function f{x) while an indefinite integral

) = [ flsids

is a function y associated to another function f. The integral represents
the cumulation of the infinite terms f{s)ds over the integration interval. A
stochastic integral, which we will denote by

b
W - f XtdBt
or

b
W:thOdBt
a

is a random variable W associated to a stochastic process if the time interval
is fixed or, if the time interval is variable, is another stochastic process W;.
The stochastic integral represents the cumulation of the stochastic products
X,dB;. As we will see in the next chapter when we discuss stochastic differ-
ential equations, the rationale for this approach is that we need to represent
how random shocks feed back into the evolution of a process. We can cu-
mulate separately the deterministic increments and the random shocks only
for linear processes. In nonlinear cases, as in the simple example of the bank
account, random shocks feed back into the process. For this reason, we de-
fine stochastic integrals as the cumulation of the product of a process X by
the random increments of a Brownian motion.

Consider a stochastic process X; over an interval [S,T]. Recall that a
stochastic process is a real variable X(w), that depends on both time and the
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state of the economy w. For any given w, X(-); is a path of the process from
the origin S to time T. A stochastic process can be identified with the set
of its paths equipped with an appropriate probability measure. A stochastic
integral is an integral associated to each path; it is a random variable that
associates a real number, obtained as a limit of a sum, to each path. If we
fix the origin and let the interval vary, then the stochastic integral is another
stochastic process.

It would seem reasonable, prima facie, to define the stochastic integral of
a process X(w), as the definite integral in the sense of Riemann-Stieltjes asso-
ciated to each path X(-); of the process. If the process X(w); has continuous
paths X(-, w), the integrals

T
W(w) :/X(s, w)ds

exist for each path. However, as discussed in the previous section, this is
not the quantity we want to represent. In fact, we want to represent the
cumulation of the stochastic products X;dB,. Defining the integral

b
WZ / XtdBt

pathwise in the sense of Riemann-Stieltjes would be meaningless because the
paths of a Brownian motion are not of finite variation. If we define stochastic
integrals simply as the limit of X;dB; sums, the stochastic integral would be
infinite (and therefore useless) for most processes.

However, Brownian motions have bounded quadratic variation. Using
this property, we can define stochastic integrals pathwise through an approx-
imation procedure. The approximation procedure to arrive at such a defi-
nition is far more complicated than the definition of the Riemann-Stieltjes
integrals. Two similar but not equivalent definitions of stochastic integral
have been proposed, the first by the Japanese mathematician Kiyoshi Ito,
the second by the Russian physicist Ruslan Stratonovich in the 1960s.? The
definition of stochastic integral in the sense of It6 integral or of Stratonovich

2See K. Itd, “On Stochastic Differential Equations,” Memoirs, American Mathemat-
ical Society 4 (1951): 1-51. The publications of Stratonovich can be found in Y. M.
Romanovski, Professor R. L. Stratonovich: Reminiscences of Relatives, Colleagues
and Friends (Moscow-Izhevsk: Publishing House of Computer Research Institute,
2007).
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stochastic replaces the increments Ax; with the increments AB; of a fun-
damental stochastic process called Brownian motion. The increments AB;
represent the “noise” of the process.

The definition proceeds in the following three steps:

Step 1. The first step consists in defining a fundamental stochastic
process—the Brownian motion. In intuitive terms, a Brownian mo-
tion B,(w) is a continuous limit (in a sense that will be made precise
in the following sections) of a simple random walk. A simple ran-
dom walk is a discrete-time stochastic process defined as follows.
A point can move one step to the right or to the left. Movement
takes place only at discrete instants of time, say at time 1,2,3,... .
At each discrete instant, the point moves to the right or to the left
with probability 1.

The random walk represents the cumulation of completely uncer-
tain random shocks. At each point in time, the movement of the
point is completely independent from its past movements. Hence,
the Brownian motion represents the cumulation of random shocks
in the limit of continuous time and of continuous states. It can be
demonstrated that a.s. each path of the Brownian motion is not of
bounded total variation but it has bounded quadratic variation.

Recall that the total variation of a function f{x) is the limit of the
sums

D 1) = flxia)l

while the quadratic variation is defined as the limit of the sums

D 1fl) = )

Quadratic variation can be interpreted as the absolute volatility of
a process. Thanks to this property, the AB; of the Brownian motion
provides the basic increments of the stochastic integral, replacing
the Ax; of the Riemann-Stieltjes integral.

Step 2. The second step consists in defining the stochastic integral for
a class of simple functions called elementary functions. Consider
the time interval [S,T] and any partition of the interval [S,T] in N
subintervals: S=ty <# <...t; <...tx = T. An elementary function
¢ is a function defined on the time ¢ and the outcome w such that it
assumes a constant value on the ith subinterval. Call I[t; .1, ;) the
indicator function of the interval [t; 11, ;). The indicator function
of a given set is a function that assumes value 1 on the points of the
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set and O elsewhere. We can then write an elementary function ¢ as
follows:

¢(t, ) =Y ei(@)[ti1, 1)

In other words, the constants &;(w) are random variables and the
function ¢(t,w) is a stochastic process made up of paths that are
constant on each ith interval.

We can now define the stochastic integral, in the sense of Ito, of
elementary functions ¢(t,w) as follows:

T
W= | ¢(t, )d B/(w)
/
= ZSi(C())[Bi+1<CU) - B;((l))]

where B is a Brownian motion.

It is clear from this definition that W is a random variable v —
W(w). Note that the It6 integral thus defined for elementary func-
tions cumulates the products of the elementary functions ¢(¢,w) and
of the increments of the Brownian motion B;(w).

It can be demonstrated that the following property called Ito
isometry, holds for It6 stochastic integrals defined for bounded ele-
mentary functions as above:

T 2 T
E Sf¢(t, w)d B,(w) =E S/¢(t, o) dt

The It6 isometry will play a fundamental role in Step 3.

Step 3. The third step consists in using the It6 isometry to show that

each function g which is square-integrable (plus other conditions
that will be made precise in the next section) can be approximated
by a sequence of elementary functions ¢,(f,w) in the sense that

T
E /[g—(;ﬁn(t,a))]zdt -0
S
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If g is bounded and has a continuous time-path, the functions ¢,(¢,w)
can be defined as follows:

$alt, 0) =) glti, o)[tis1, 1)

where I is the indicator function. We can now use the It6 isometry to define
the stochastic integral of a generic function f{(t, ) as follows:

T T
[ fit.o1dBio) = lim [ o.(t.01d Bio
S S

The Itd isometry ensures that the Cauchy condition is satisfied and that
the above sequence thus converges.

In outlining the above definition, we omitted an important point that
will be dealt with in the next section: The definition of the stochastic in-
tegral in the sense of Ito requires that the elementary functions be without
anticipation—that is, they depend only on the past history of the Brownian
motion. In fact, in the case of continuous paths, we wrote the approximating
functions as follows:

$ult, ) =) g(ti, ®)[Biy1(w) — Bi(w)]

taking the function g in the left extreme of each subinterval.

However, the definition of stochastic integrals in the sense of
Stratonovich admits anticipation. In fact, the stochastic integral in the sense
of Stratonovich, written as follows

T
[ fit.orodBio
N
uses the following approximation under the assumption of continuous paths:

$ult, ) =Y glt, ®)[Biy1(w) — Bi(o)]

where

s
=T

is the midpoint of the ith subinterval.
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Whose definition—Itd’s or Stratonovich’s—is preferable? Note that nei-
ther can be said to be correct or incorrect. The choice of the one over the
other is a question of which one best represents the phenomena under study.
The lack of anticipation is one reason why the Itd integral is generally pre-
ferred in finance theory.

We have just outlined the definition of stochastic integrals leaving aside
mathematical details and rigor. The following two sections will make the
above process mathematically rigorous and will discuss the question of an-
ticipation of information. While these sections are a bit technical and might
be skipped by those not interested in the mathematical details of stochas-
tic calculus, they explain a number of concepts that are key to the modern
development of finance theory.

BROWNIAN MOTION DEFINED

The previous section introduced Brownian motion informally as the limit
of a simple random walk when the step size goes to zero. This section de-
fines Brownian motion formally. The term “Brownian motion” is due to the
Scottish botanist Robert Brown who in 1828 observed that pollen grains
suspended in a liquid move irregularly. This irregular motion was later ex-
plained by the random collision of the molecules of the liquid with the pollen
grains. It is therefore natural to represent Brownian motion as a continuous-
time stochastic process that is the limit of a discrete random walk.

Let’s now formally define Brownian motion and demonstrate its exis-
tence. Let’s first go back to the probabilistic representation of the economy
explained in Chapter 4. The economy can be represented as a probability
space (2, J, P), where Q is the set of all possible economic states,  is the
event o-algebra, and P is a probability measure. The economic states w €
are not instantaneous states but represent full histories of the economy for
the time horizon considered, which can be a finite or infinite interval of time.
In other words, the economic states are the possible realization outcomes of
the economy.

In this probabilistic representation of the economy, time-variable eco-
nomic quantities—such as interest rates, security prices, or cash flows as
well as aggregate quantities such as economic output—are represented as
stochastic processes X;(w). In particular, the price and dividend of each stock
are represented as two stochastic processes S;(w) and d;(w).

Stochastic processes are time-dependent random variables defined over
the set Q. It is critical to define stochastic processes so that there is no an-
ticipation of information, that is, at time ¢ no process depends on variables
that will be realized later. Anticipation of information is possible only within
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a deterministic framework. However, the space € in itself does not contain
any coherent specification of time. If we associate random variables X;(w) to
a time index without any additional restriction, we might incur the problem
of anticipation of information. Consider, for instance, an arbitrary family of
time-indexed random variables X;(w) and suppose that, for some instant ¢,
the relationship X;(w) = X;41(w) holds. In this case, there is clearly antic-
ipation of information as the value of the variable X, . (w) at time ¢t + 1
is known at an earlier time ¢. All relationships that lead to anticipation of
information must be treated as deterministic.

The formal way to specify in full generality the evolution of time and
the propagation of information without anticipation is through the concept
of filtration that was introduced in Chapter 5. Recall from Chapter 4, the
concept of filtration is based on identifying all events that are known at
any given instant. It is the propagation of information assuming that it is
possible to associate to each moment ¢ a o-algebra of events 3§, C Y formed
by all events that are known prior to or at time #. It is assumed that events
are never “forgotten,” that is, that 3, C 3., if # < s. An increasing sequence
of o-algebras, each associated to the time at which all its events are known,
represents the propagation of information. This sequence (called a filtration)
is typically indicated as ;.

The economy is therefore represented as a probability space (2, 3, P)
equipped with a filtration {J; }. The key point is that every process X;(w) that
represents economic or financial quantities must be adapted to the filtration
{3:}, that is, the random variable X;(w) must be measurable with respect to
the o-algebras ;. In simple terms, this means that each event of the type
X,(w) < x belongs to &, while each event of the type X (w) <y fort < s
belongs to ;. For instance, consider a process P;(w), which might represent
the price of a stock. Any coherent representation of the economy must ensure
that events such as {w: Ps(w) < c} are not known at any time ¢# < s. The
filtration {3, } prescribes all events admissible at time .

Why do we have to use the complex concept of filtration? Why can’t
we simply identify information at time ¢ with the values of all the variables
known at time ¢ as opposed to identifying a set of events? The principal rea-
son is that in a continuous-time continuous-state environment any individ-
ual value has probability zero; we cannot condition on single values as the
standard definition of conditional probability would become meaningless.
In fact, in the standard definition of conditional probability (see Chapter 4),
the probability of the conditioning event appears in the denominator and
cannot be zero.

It is possible, however, to reverse this reasoning and construct a filtra-
tion starting from a process. Suppose that a process X,(w) does not ad-
mit any anticipation of information, for instance because the X,(w) are all
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mutually independent. We can therefore construct a filtration 3, as the
strictly increasing sequence of o-algebras generated by the process X;(w).
Any other process must be adapted to ;.

Let’s now go back to the definition of the Brownian motion. Suppose
that a probability space (€2, I, P) equipped with a filtration 3, is given.
A one-dimensional standard Brownian motion is a stochastic process B;(w)
with the following properties:

® B;(w) is defined over the probability space (22, J, P).

B,(w) is continuous for 0 < # < oo.

Bo(w) = 0.

B(w) is adapted to the filtration .

The increments B;(w) — Bs(w) are independent and normally distributed
with variance (¢ — s) and zero mean.

The above conditions state that the standard Brownian motion is a
stochastic process that starts at zero, has continuous paths and normally
distributed increments whose variance grows linearly with time.? Note that
in the last condition the increments are independent of the o-algebra I and
not of the previous values of the process. As noted above, this is because
any single realization of the process has probability zero and it is therefore
impossible to use the standard concept of conditional probability: Condi-
tioning must be with respect to a o-algebra Js. Once this concept has been
firmly established, one might speak loosely of independence of the present
values of a process from its previous values. It should be clear, however, that
what is meant is independence with respect to a o-algebra 5.

Note also that the filtration <, is an integral part of the above definition
of the Brownian motion. This does not mean that, given any probability
space and any filtration, a standard Brownian motion with these char-
acteristics exists. For instance, the filtration generated by a discrete-time
continuous-state random walk is insufficient to support a Brownian motion.
The definition states only that we call a one-dimensional standard Brownian
motion a mathematical object (if it exists) made up of a probability space, a
filtration, and a time dependent random variable with the properties speci-
fied in the definition.

However, it can be demonstrated that Brownian motions exist by con-
structing them. Several construction methodologies have been proposed,

3The set of conditions defining a Brownian motion can be more parsimonious. If a
process has stationary, independent increments and continuous paths almost surely
it must have normally distributed increments. A process with stationary independent
increments and with paths that are continuous to the right and limited to the left (the
cadlag functions) is called a Lévy process.
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including methodologies based on the Kolmogorov extension theorem or
on constructing the Brownian motion as the limit of a sequence of discrete
random walks. To prove the existence of the standard Brownian motion, we
will use the Kolmogorov extension theorem.

The Kolmogorov theorem can be summarized as follows. Consider the
following family of probability measures

Mt1..__tm(H1 X ... X Hm) = P[(th S Hl, ey Xtm S I_Ln), I_Il S _Bn]

for all t1,..., t € [0, 00), k € N and where the Hs are n-dimensional Borel
sets. Suppose that the following two consistency conditions are satisfied

/’Lto(l).....to(m)(Hl X ... X I_Im) = MUy tm(HT’l(l) X ... X H7*1(m))
for all permutations o on {1,2,..., k}, and

Mo g (Hyp X ... x Hp)
(Hy x...x Hyx R" x ... x R")

= R g, m

for all m. The Kolmogorov extension theorem states that, if the above con-
ditions are satisfied, then there is (1) a probability space (22, J, P) and (2) a
stochastic process that admits the probability measures

My, (Hy X ... x Hy,)
= P[(th eH,...,Xyn € Hm)’ H e _Bn]

as finite dimensional distributions.

The construction is lengthy and technical and we omit it here, but it
should be clear how, with an appropriate selection of finite-dimensional dis-
tributions, the Kolmogorov extension theorem can be used to prove the ex-
istence of Brownian motions. The finite-dimensional distributions of a one-
dimensional Brownian motion are distributions of the type

M. te(Hh X ... X Hp)
= [plt. x. x1)p(ts —t1. x1. x2)...
p(tk — 1, Xp—1, xk)dxl . ..dkal X ...x H

where

o=

p(t, x, y) = (2nt)”

Ix — yI?
CXP _—Zt
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and with the convention that the integrals are taken with respect to the
Lebesgue measure. The distribution p(#, x, x1) in the integral is the initial
distribution. If the process starts at zero, p(t, x, x1) is a Dirac delta, that is,
it is a distribution of mass 1 concentrated in one point.

It can be verified that these distributions satisfy the above consistency
conditions; the Kolmogorov extension theorem therefore ensures that a
stochastic process with the above finite dimensional distributions exists. It
can be demonstrated that this process has normally distributed independent
increments with variance that grows linearly with time. It is therefore a one-
dimensional Brownian motion. These definitions can be easily extended to
an n-dimensional Brownian motion.

In the initial definition of a Brownian motion, we assumed that a fil-
tration J, was given and that the Brownian motion was adapted to the fil-
tration. In the present construction, however, we reverse this process. Given
that the process we construct has normally distributed, stationarl?r, indepen-
dent increments, we can define the filtration <, as the filtration J,” generated
by B;(w). The independence of the increments of the Brownian motion guar-
antees the absence of anticipation of information. Note that if we were given
a filtration Y, larger than the filtration Sf , B;(w) would still be a Brownian
motion with respect to ;.

In stochastic differential equations, there are two types of solutions of
stochastic differential equations—strong and weak—depending on whether
the filtration is given or generated by the Brownian motion. The implications
of these differences for economics and finance will be discussed in the same
section.

The above construction does not specify uniquely the Brownian motion.
In fact, there are infinite stochastic processes that start from the same point
and have the same finite dimensional distributions but have totally different
paths. However, it can be demonstrated that only one Brownian motion has
continuous paths a.s. (a.s. means almost surely; i.e., for all paths except a
set of measure zero). This process is called the canonical Brownian motion.
Its paths can be identified with the space of continuous functions.

The Brownian motion can also be constructed as the continuous limit
of a discrete random walk. Consider a simple random walk W; where i are
discrete time points. The random walk is the motion of a point that moves
Ax to the right or to the left with equal probability % at each time incre-
ment Ax. The total displacement X; at time 7 is the sum of i independent
increments each distributed as a Bernoulli variable. Therefore, the random
variable X has a binomial distribution with mean zero and variance:

Ax
At
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Suppose that both the time increment and the space increment approach
zero: At — 0 and Ax — 0. Note that this is a very informal statement. In fact
what we mean is that we can construct a sequence of random walk processes
W, each characterized by a time step and by a time displacement. It can be
demonstrated that if

Ax
— =0
At

(i.e., the square of the spaced interval and the time interval are of the same
order) then the sequence of random walks approaches a Brownian motion.
Though this is intuitive as the binomial distributions approach normal distri-
butions, it should be clear that it is far from being mathematically obvious.

Figure 10.1 illustrates 100 realizations of a Brownian motion approx-
imated as a random walk. The exhibit clearly illustrates that the standard
deviation grows with the square root of the time as the variance grows lin-
early with time. In fact, as illustrated, most paths remain confined within a
parabolic region.

30
20

10

-30 1 L 1 L 1 L 1 L 1 1
0 10 20 30 40 50 60 70 80 90 100

FIGURE 10.1 Illustration of 100 Paths of a Brownian Motion
Generated as an Arithmetic Random Walk
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PROPERTIES OF BROWNIAN MOTION

The paths of a Brownian motion are rich structures with a number of surpris-
ing properties. It can be demonstrated that the paths of a canonical Brow-
nian motion, though continuous, are nowhere differentiable. It can also be
demonstrated that they are fractals of fractal dimension . The fractal di-
mension is a concept that measures quantitatively how a geometric object
occupies space. A straight line has fractal dimension one, a plane has frac-
tal dimension two, and so on. Fractal objects might also have intermedi-
ate dimensions. This is the case, for example, of the path of a Brownian
motion, which is so jagged that, in a sense, it occupies more space than a
straight line.

The fractal nature of Brownian motion paths implies that each path
is a self-similar object. This property can be illustrated graphically. If we
generate random walks with different time steps, we obtain jagged paths. If
we allow paths to be graphically magnified, all paths look alike regardless of
the time step with which they have been generated. In Figure 10.2, sample
paths are generated with different time steps and then portions of the paths
are magnified. Note that they all look perfectly similar.
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Note: Five paths of a Brownian motion are generated as random walks with
different time steps and then magnified.

FIGURE 10.2 Tllustration of the Fractal Properties of the Paths of a
Brownian Motion
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This property was first observed by Mandelbrot in sequences of cotton
prices in the 1960s.* In general, if one looks at asset or commodity price
time series, it is difficult to recognize their time scale. For instance, weekly
or monthly time series look alike. (Recent empirical and theoretical research
work has made this claim more precise.)

Let’s consider a one-dimensional standard Brownian motion. If we wait
a sufficiently long period of time, every path except a set of paths of measure
zero will return to the origin. The path between two consecutive passages
through zero is called an excursion of the Brownian motion. The distribution
of the maximum height attained by an excursion and of the time between
two passages through zero or through any level have interesting properties.
The distribution of the time between two passages through zero has infi-
nite mean. This is at the origin of the so-called St. Petersburg paradox de-
scribed by the Swiss mathematician Bernoulli. The paradox consists of the
following. Suppose a player bets increasing sums on a game that can be
considered a realization of a random walk. As the return to zero of a ran-
dom walk is a sure event, the player is certain to win—but while the proba-
bility of winning is one, the average time before winning is infinite. To stay
the game, the capital required is also infinite. Difficult to imagine a banker
ready to put up the money to back the player.

The distribution of the time to the first passage through zero of a Brow-
nian motion is not Gaussian. In fact, the probability of a very long waiting
time before the first return to zero is much higher than in a normal distri-
bution. It is a fat-tailed distribution in the sense that it has more weight in
the tail regions than a normal distribution. The distribution of the time to
the first passage through zero of a Brownian motion is an example of how
fat-tailed distributions can be generated from Gaussian variables.

STOCHASTIC INTEGRALS DEFINED

Let’s now go back to the definition of stochastic integrals, starting with one-
dimensional stochastic integrals. Suppose that a probability space (€2, I, P)
equipped with a filtration 3, is given. Suppose also that a Brownian motion
B,(w) adapted to the filtration J, is given. We will define It6 integrals fol-
lowing the three-step procedure outlined earlier in this chapter. We have just
completed the first step defining Brownian motion. The second step consists
in defining the It6 integral for elementary functions.

“B. Mandelbrot, “The Variation of Certain Speculative Prices,” Journal of Business
36 (1963): 394-419.
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Let’s first define the set ®(S, T) of functions ®(S, T) = {f(¢, »): [(0, 00)
x Q — R]} with the following properties:

= Each fis jointly —B x § measurable.
® Each f(t,w) is adapted to 3,.

T
" E |:f f2(t, w)dt | < oo (this condition can be weakened).
S

This is the set of paths for which we define the It6 integral.
Consider the time interval [S,T] and, for each integer #, partition the
interval [S,T] in subintervals: o < #; <...f; <...t, <...ty = T in this way:

27" if S<k2"<T
S if R27"<S
T if R2">T
This rule provides a family of partitions of the interval [S,T] which can
be arbitrarily refined.
Consider the elementary functions ¢(t,w) € ® which we write as

Z si(w)[tiv1 — 1)

As ¢(t,w) € @, g;(w) are J, measurable random variables.
We can now define the stochastic integral, in the sense of Ito, of elemen-
tary functions ¢(¢, w) as

T
W= /¢ (t, w)d By(w Zs, Bi11(w) — Bi(w)]
S

>0

where B is a Brownian motion. Note that the ¢;(w) and the increments B;(w)
—B;(w) are independent for j > i. The key aspect of this definition that was
not included in the informal outline is the condition that the ¢;(w) are 3,
measurable.

For bounded elementary functions ¢(#,w) € ® the It6 isometry holds

T 2 T
(/ o(t, w)d Bt(w)) =E |:/qb(t, w)zdt:|
S s
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The demonstration of the Itd isometry rests on the fact that

0 ifi#]

E[Si 8/'(Bti+l - Bt1) (Bt,-+1 - Bt,-)] = { E(Sz) lfl ;é ]

This completes the definition of the stochastic integral for elementary
functions.

We have now completed the introduction of Brownian motions and de-
fined the It6 integral for elementary functions. Let’s next introduce the ap-
proximation procedure that allows us to define the stochastic integral for
any ¢(t,w). We will develop the approximation procedure in the following
three additional steps that we will state without demonstration:

Step 1. Any function g(t,w) € ® that is bounded and such that all its time
paths ¢(-, ) are continuous functions of time can be approximated

by

$ult, 0) =) glt, )[ti41 — 1)
in the sense that:

T
E / [(g — $u)dt] > 0, n— oo, Yo
S

where the intervals are those of the partition defined above. Note
that ¢,(¢, w) € ® given that g(¢, w) € .

Step 2. We release the condition of time-path continuity of the ¢,(z,
w). It can be demonstrated that any function h(t, w) € ® which is
bounded but not necessarily continuous can be approximated by
functions g,(t, @) € ®, which are bounded and continuous in the
sense that

T
E /w_gyw -0
S



258 MATHEMATICAL METHODS FOR FINANCE

Step 3. It can be demonstrated that any function f{¢, ) € ®, not neces-
sarily bounded or continuous, can be approximated by a sequence
of bounded functions b, (t, w) € ® in the sense that

T
E| | (f=hy)?dt| -0
/

We now have all the building blocks to complete the definition of Itd
stochastic integrals. In fact, by virtue of the above three-step approxima-
tion procedure, given any function (¢, w) € ®, we can choose a sequence of
elementary functions ¢, (¢, @) € ® such that the following property holds:

T
E f(f—wdt ~0
S
Hence we can define the It6 stochastic integral as follows:

T
I fl(w :/fta)dBt —hm /¢ntw
S
The limit exists as
T
[ #utt.01d Bl
S

forms a Cauchy sequence by the It6 isometry which holds for every bounded
elementary function.

Let’s now summarize the definition of the It6 stochastic integral: Given
any function f(z, w) € ®, we define the Itd stochastic integral by

T

I[f] =/fta)dBt = lim /gb,,ta)

n—00
N
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where the functions ¢, (¢, w) € ® are a sequence of elementary functions such

that
T
E {/(f—wazt} =0

S

The multistep procedure outlined above ensures that the sequence ¢,,(2,
) € ® exists. In addition, it can be demonstrated that the Ito isometry holds
in general for every f(t, w) € ®

T 2 T
E (S/ f(t, a))dBt(a))) =EL/ flt, a))zdt:|

SOME PROPERTIES OF ITO STOCHASTIC INTEGRALS

Suppose that f,g € (S, T) and let 0 < S < U < T. It can be demonstrated
that the following properties of It6 stochastic integrals hold:

T U T
/detszdBt—i—/ fd B, for a.a.w
S s U

EUM&}ZO

T T T
/(cf+dg)dBt=c/ det—i-d/gdBt
S S S

for a.a. w, ¢, d constants
If we let the time interval vary, say (0, ), then the stochastic integral
becomes a stochastic process:

It(w)j fd B
0
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It can be demonstrated that a continuous version of this process exists.
The following three properties can be demonstrated from the definition of
integral:

(=)
(=}

The last two properties show that, after performing stochastic integra-
tion, deterministic terms might appear.

MARTINGALE MEASURES AND
THE GIRSANOV THEOREM

In probability theory, the Girsanov theorem (named after Igor Vladimirovich
Girsanov) describes how the dynamics of stochastic processes change when
the original measure is changed to an equivalent probability measure.’ The
theorem is especially important in the theory of financial mathematics as it
tells how to convert from the physical measure which describes the proba-
bility that an underlying instrument (such as a stock price or interest rate)
will take a particular value or values to the risk-neutral measure which is a
very useful tool for pricing derivatives on the underlying asset.

SL. V. Girsanov, “On Transforming a Certain Class of Stochastic Processes by Abso-
lutely Continuous Substitution of Measures,” Theory of Probability and its Appli-
cations 5, no. 3 (1960): 285-301; and M. Musiela and M. Rutkowski, Martingale
Methods in Financial Modeling, 2nd ed. (New York: Springer, 2005).
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The theorem was first proved by Cameron and Martin in the 1940s and
by Girsanov in 1960.¢ They have been subsequently extended to more gen-
eral classes of process by Lenglart.” Girsanov’s theorem is important in the
general theory of stochastic processes since it enables the key result that
if O is a measure absolutely continuous with respect to P then every P-
semimartingale is a Q-semimartingale.

Risk-Neutral Measure

A risk-neutral measure is used in the pricing of financial derivatives due to
the fundamental theorem of asset pricing, which implies that in a complete
market a derivative’s price is the discounted expected value of the future
payoff under the risk-neutral measure.®

Prices of assets depend crucially on their risk as investors typically de-
mand more return for bearing more risk. Therefore, today’s price of a claim
on a risky amount realized tomorrow will generally differ from its expected
value. Typically, investors are risk-averse and today’s price is below the ex-
pectation. To price assets, the calculated expected values need to be adjusted
for an investor’s risk preferences. Unfortunately, the discount rates would
vary among investors and an individual’s risk preference is difficult to quan-
tify.

It turns out that in a complete market with no arbitrage opportunities
there is an alternative way to do this calculation. Instead of first taking the
expectation and then adjusting for an investor’s risk preference, one can
adjust the probabilities of future outcomes such that they incorporate all
investors’ risk premia, and then take the expectation under this new prob-
ability distribution. The resulting expectation is the risk-neutral measure.
The main benefit of the risk-neutral measure stems from the fact that once
the risk-neutral probabilities are found, every asset can be priced by simply
taking its expected payoff. Note that if we used the actual real-world prob-
abilities, every asset would require a different adjustment (as they differ in
riskiness).

°R. H. Cameron and W. T. Martin, “Transformations of Wiener Integrals under
Translations,” Annals of Mathematics 45 (1940): 386-396.

’E. Lenglart, “Transformation de martingales locales par changement absolue con-
tinu de probabilities [Transformation of Local Martingales for Changing Continuous
Absolutes of Probability],” Zeitschrift fiir Wabrscheinlichkeit 39 (1944): 65-70.
8As explained in Chapter 4, a complete market is one in which the complete set
of possible gambles on future states-of-the-world can be constructed with existing
assets.
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The lack of arbitrage is crucial for the existence of a risk-neutral mea-
sure. In fact, by the fundamental theorem of asset pricing, the condition of
no-arbitrage is equivalent to the existence of a risk-neutral measure. Com-
pleteness of the market is also important because in an incomplete market
there are a multitude of possible prices for an asset corresponding to different
risk-neutral measures. It is usual to argue that market efficiency implies that
there is only one price; the correct risk-neutral measure to price with must
be selected using economic, rather than purely mathematical, arguments.

Continuous-Time Martingales

Let’s begin with two definitions. Let S; be a random price process during a
finite time interval ¢ € [0, T]. S, is said to be adapted to the filtration if S,
is a F;-measurable function V¢ € T. It is also said to be a nonanticipating
process, or one that cannot see into the future.

Definition

A process S; is said to be a martingale with respect to F; and probability
measure P if Vi > 0:

Property 1: S, is I;—adapted.
Property 2: E|S;| < oo.
Property 3: E,[St]| = SVt < T with probability 1.

Property 3 is of vast importance. It means that the best forecast of an
unobserved future value of a martingale is its last observation. This will
turn out to be extremely useful if we can convert a financial asset into a
martingale. There are two general steps:

Step 1: Find a probability distribution P such that bond or stock prices
discounted by the risk-free rate become martingales. This can be
done with Doob-Meyer decomposition and similar detrending tech-
niques.

Step 2: Transform the probability distribution.
For example, in Step 2 if one had

EtP [exp (—ru) Sivu] > S,



Stochastic Integrals 263

we can try to find an equivalent probability P such that
EtP [exp (—ru) Sipu] = S,

and thus we have a martingale. These are called equivalent martingale mea-
sures and can be done by using the Girsanov theorem.

Girsanov Theorem Before stating the theorem, some additional back-
ground needs to be provided. We can summarize two methods for changing
the mean of a random variable.

1. Subtraction. For example, given a random variable Z ~ N(u, 1), we can

define

- 7 —
7=2"F N0 1)

a transformed variable with zero mean and standard deviation of unity.
2. Using equivalent measure. Given a random variable Z with probabil-
ity measure P, Z ~ P = N(u, 1), we obtain a new probability via the
Radon-Nikodym derivative ¢(Z) and obtain a new probability P such
that Z~ P = N(0, 1).°
The Girsanov theorem attempts to do both by defining the condi-
tions under which the Radon-Nikodym derivative exists. It then con-
structs a new probability distribution and a new transformed variable
that eliminates the stochastic drift term. The Girsanov theorem and the
Radon-Nikodym derivative are defined in the next sections.

Girsanov Theorem Defined

Let W, be a Wiener process on the probability space {Q2, F, P}. Let X; be
a measurable process adapted to the natural filtration of the Wiener pro-
cess { F,"}. Given an adapted process X; with X = 0 define the stochas-
tic exponential of X with respect to W:

t t
o= w (X, =exp | [ Xaw,— 3 [ X
0 0

0. Nikodym, “Sur une Généralisation des Intégrales de M. J. Radon [On the Gen-
eralization of Integrals],” Fundamenta Mathematicae 15 (1930): 131-179.
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Under certain conditions, ¢ is a martingale. Then, the probability mea-
sure P can be defined on {2, F} such that we have Radon-Nikodym
derivative:

dp

d_Pzé‘t

Then W; = W, — fot X, du is a Wiener process with repsect to F; and the
probability measure Pr given by Pr(A) = EP [14¢7], with A being an
event determined by Fr and 14 the indicator function for the event.

Novikov Theorem Defined
If the condition

T
1
E | exp §/|XM|2du < 0
0

is true then the stochastic exponential
t 1 t
&=V (X), =exp /&Mm—i/ﬁw
0 0

is a martingale under the probability measure P and filtration F.'°

The Girsanov theorem implies that if we are given a Wiener process
W;, multiplying the probability distribution of this process by the stochastic
exponential, we can obtain a new Wiener process W, with probability distri-
bution P. The two processes are related to each other through the following
partial differential equation:

dW, = dW, — X,dt
That is, the new Wiener process is the same as the old one minus an

I, -adapted drift. Note that this drift term is stochastic, in contrast to the
overly simple subtraction of means we saw in the first example in this section.

19A. Pascucci, PDE and Martingale Methods in Option Pricing (Berlin: Springer-
Verlag, 2011).
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Application of Girsanov Theorem to a Brownian Motion Assume that S;
is modeled as Brownian motion with constant drift and constant diffusion
function,

dS, = udt + od W, (W = 0)
where W} is assumed to have the following probability distribution:

1 1

Clearly S, is not a martingale if its drift term p # 0. Taking the integrals
of both sides, we have

dP (W) =

St =ut+oW,
and hence we can write

E[S4518:] = u(t +s) + 0 E[Wers — WiISe] + 0 W,
=8, 4+ us

The drift term is deterministic and the middle term indicates the ex-
pected change in the diffusion process W, while under F;. Hence, S, is not a
martingale, but this suggests the variable S, = S, — u# is a martingale.

We could also come up with a function ¢(S;) and multiply it with the
original probability measure associated with S; such that while S; is a sub-
martingale under P, that is,

EP [StsIS:] > S
it will be a martingale under P, that is,

EP[S,4418] =S,

We calculate ¢(S;), the stochastic exponential:

t t
£(5) = exp (/ Sd W, - %/Sﬁdu)
0 0

1 1
== exp (;LS, — iuzt)
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This is the Radon-Nikodym derivative, and thus
dP (S;) = ¢ (S))dP (S:)

1 1, 1 1 2
——gexp </LSt —5H t) X mexp (_2021‘ (S; — ut) ) ds;
1

1 2
= —27_[0__21. exp (__Zo'zt (St) ) dSt

which is the probability measure of a normally distributed process with zero
drift and diffusion term o. Basically, we have arrived at a new Wiener vari-
able dW subject to dS = o0d W, using Girsanov theorem.

KEY POINTS

® Stochastic integration provides a coherent way to represent that instan-
taneous uncertainty (or volatility) cumulates over time. It is thus fun-
damental to the representation of financial processes such as interest
rates, security prices, or cash flows as well as aggregate quantities such
as economic output.

® Stochastic integration operates on stochastic processes and produces
random variables or other stochastic processes.

® Stochastic integration is a process defined on each path as the limit of a
sum. However, these sums are different from the sums of the Riemann-
Lebesgue integrals because the paths of stochastic processes are gener-
ally not of bounded variation.

® Stochastic integrals in the sense of 1td are defined through a three-step
process that involves (1) defining Brownian motion (which is the con-
tinuous limit of a random walk), (2) defining stochastic integrals for
elementary functions as the sums of the products of the elementary
functions multiplied by the increments of the Brownian motion, and
(3) extending this definition to any function through approximating se-
quences.

® A risk-neutral measure is used in the pricing of financial derivatives. The
lack of arbitrage is crucial for the existence of a risk-neutral measure.

® A derivative’s price is the discounted expected value of the future payoff
under the risk-neutral measure.

® Physical probability measures are converted to risk-neutral probability
measures using the Girsanov theorem.

® A financial asset is converted into a martingale measure using the
Novikov Theorem.



11

Stochastic Differential Equations

n the previous chapter, we explained stochastic integrals, a mathe-

matical concept used for defining stochastic differential equations,
the subject of this chapter. Stochastic differential equations solve the
problem of giving meaning to a differential equation where one or
more of its terms are subject to random fluctuations. In nontechnical
terms, differential equations are equations that express a relationship
between a function and one or more derivatives (or differentials) of
that function. It would be difficult to overemphasize the importance of
differential equations in financial economics where they are used to ex-
press laws that govern the evolution of price probability distributions,
intertemporal portfolio optimization, and conditions for continuous
hedging such as in the Black-Scholes option pricing model.

The two broad types of differential equations are ordinary dif-
ferential equations and partial differential equations. The former are
equations or systems of equations involving only one independent vari-
able; the latter are differential equations or systems of equations in-
volving partial derivatives. When one or more of the variables is a
stochastic process, we have the case of stochastic differential equations
and the solution is also a stochastic process. An assumption must be
made about a noise term (or random variable) in a stochastic differen-
tial equation. In most applications in financial economics, it is assumed
that the noise term follows a Gaussian random variable, although dif-
ferent types of random variables can be assumed.

Using stochastic differential equations:

® One can model the evolution of price probability distributions.
® One can deal with portfolio optimization in an intertemporal asset
pricing framework.

267
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® One can introduce the idea of a replicating portfolio that is made
up of a risky asset plus a risk-free asset whose payoff perfectly
replicates the payoff of an option. Forming a replicating portfolio
is the backbone of no-arbitrage conditions in an option pricing
framework. The Black-Scholes model is developed based on the
absence of arbitrage implying that the price of the original financial
instrument coincides with the price of the replicating portfolio.

® One can use the idea of delta hedging in a continuous-time frame-
work to derive the well celebrated Black-Scholes option pricing
model.

® One can compute the arbitrage-free value of an option.

® One can determine how the option prices change as the variables
or the parameters that impact an option’s value change.

® One can monitor the sensitivity of option positions with respect to
changes in the underlying asset’s price, volatility, interest rate, and
time.

What you will learn after reading this chapter:

® The differences between ordinary and stochastic differential equa-
tions.

® The uses of stochastic differential equations.

How to define a stochastic differential equation and the intuition

behind it.

How to define It6 processes and their stochastic properties.

How to generalize a one-dimensional It6 formula.

How to solve stochastic differential equations.

The differences between arithmetic and geometric Brownian mo-

tion.

How to derive Itd’s lemma.

® How to derive the Black-Scholes option pricing formula using
stochastic differential equations.

INTRODUCTION

Stochastic differential equations solve the problem of giving meaning to a
differential equation where one or more of its terms are subject to random
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fluctuations. For instance, consider the following deterministic equation:

dy
A t
5 = [0y

We know from differential equations that, by separating variables, the
general solution of this equation can be written as follows:

y= A exp [/ f(t)dti|

A stochastic version of this equation might be obtained, for instance, by
perturbing the term f, thus resulting in the stochastic differential equation

d—yy =[f(#) + &]dt

where ¢ is a random noise process.

As with stochastic integrals, in defining stochastic differential equations
it is necessary to adopt an ensemble view: The solution of a stochastic differ-
ential equation is a stochastic process, not a single function. In this chapter,
we first provide the basic intuition behind stochastic differential equations
and then proceed to formally define the concept and the properties.

THE INTUITION BEHIND STOCHASTIC
DIFFERENTIAL EQUATIONS

Let’s go back to the equation

d
= =Lf0)+ely

where ¢ is a continuous-time noise process. It would seem reasonable to
define a continuous-time noise process informally as the continuous-time
limit of a zero-mean, IID sequence, that is, a sequence of independent and
identically distributed variables with zero mean. In a discrete time setting, a
zero-mean, IID sequence is called a white noise. We could envisage defining
a continuous-time white noise as the continuous-time limit of a discrete-time
white noise. Each path of ¢ is a function of time &(-, w). It would therefore
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seem reasonable to define the solution of the equation pathwise, as the family
of functions that are solutions of the equations

dy
dt
where each equation corresponds to a specific white noise path.

However, this definition would be meaningless in the domain of ordinary
functions. In other words, it would generally not be possible to find a family
of functions y(-, w) that satisfy the above equations for each white-noise path
and that form a reasonable stochastic process.

The key problem is that it is not possible to define a white-noise process
as a zero-mean stationary stochastic process with independent increments
and continuous paths. Such a process does not exist in the domain of ordi-
nary functions. In discrete time the white noise process is obtained as the
first-difference process of a random walk. Random walk is an integrated
nonstationary process, while its first-difference process is a stationary IID
sequence.

The continuous-time limit of the random walk is the Brownian motion.
However, the paths of a Brownian motion are not differentiable. As a conse-
quence, it is not possible to take the continuous-time limit of first differences
and to define the white noise process as the derivative of a Brownian motion.
In the domain of ordinary functions in continuous time, the white noise pro-
cess can be defined only through its integral, which is the Brownian motion.
The definition of stochastic differential equations must therefore be recast
in integral form.

A sensible definition of a stochastic differential equation must respect
a number of constraints. In particular, the solution of a stochastic differ-
ential equation should be a “perturbation” of the associated deterministic
equation. In the above example, for instance, we want the solution of the
stochastic equation

[£(t) +e(t, w)]y

dy _
dt

to be a perturbation of the solution

y= A exp (/ f(t)dt>

of the associated deterministic equation

[f(2) + elt, w)]dt
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In other words, the solution of a stochastic differential equation should
tend to the solution of the associated deterministic equation in the limit of
zero noise. In addition, the solutions of a stochastic differential equation
should be the continuous-time limit of some discrete-time process obtained
by discretization of the stochastic equation.

A formal solution of this problem was proposed by Kiyoshi It6 and, in a
different setting, by Ruslan Stratonovich in the 1960s." 1t6 and Stratonovich
proposed to give meaning to a stochastic differential equation through its
integral equivalent. The Itd definition proceeds in two steps: In the first step,
It6 processes are defined; in the second step, stochastic differential equations

are defined.

Step 1: Definition of It6 processes. Given two functions ¢(¢, w) and V¥ ¢(z,
w) that satisfy usual conditions to be defined later, an It6 process—
also called a stochastic integral—is a stochastic process of the form:

t

Z(t, ») :/go(s,w)ds—}—/I/I(S,a))st(s,a))
0

0

An Ito process is a process that is the result of the sum of two sum-
mands: The first is an ordinary integral, the second an Ito integral.
[t6 processes are stable under smooth maps, that is, any smooth
function of an It6 process is an Itd process that can be determined
through the It6 formula (discussed in the next section).

Step 2: Definition of stochastic differential equations. As we have seen,
it is not possible to write a differential equation plus a white-noise
term that admits solutions in the domain of ordinary functions.
However, we can meaningfully write an integral stochastic equation
of the form

t t

X(t, w) = /(p(s, X)ds +/1ﬁ(s, X)dB,
0

0

1See K. Itd, “On Stochastic Differential Equations,” Memoirs, American Mathemat-
ical Society 4 (1951): 1-51. The publications of Stratonovich can be found in Y. M.
Romanovski, Professor R. L. Stratonovich: Reminiscences of Relatives, Colleagues
and Friends (Moscow-Izhevsk: Publishing House of Computer Research Institute,
2007).
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It can be demonstrated that this equation admits solutions in the sense
that, given two functions ¢ and v, there is a stochastic process X that satisfies
the above equation. We stipulate that the above integral equation can be
written in differential form as follows:

dX(t, w) = ¢(t, X)dt + ¥ (¢, X)dB,

Note that this is a definition; a stochastic differential equation acquires
meaning only through its integral form. In particular, we cannot divide both
terms by dt and rewrite the equation as follows:

dX(t.w) dB,
— = o(t, X) + ¥t X)E

The above equation would be meaningless because the Brownian motion is
not differentiable.

This is the difficulty that precludes writing stochastic differential equa-
tions adding white noise pathwise. The differential notation of a stochastic
differential equation is just a shorthand for the integral notation.

However, we can consider a discrete approximation:

AX(t, ®) = ¢*(t, X)At+y*(t, X)AB,

Note that in this approximation the functions ¢*(z, X), ¥*(z, X) will
not coincide with the functions ¢(z, X), ¥ (¢, X). Using the latter would (in
general) result in a poor approximation.

The following section defines It6 processes and stochastic differential
equations and studies their properties.

ITO PROCESSES

Let’s now formally define Itd processes and establish key properties, in par-
ticular the It6 formula. In the previous section, we stated that an It6 process
is a stochastic process of the form

t

Z(t,w) = | a(s,w)ds + | b(s, w)dB(s, w)
[ i |

To make this definition rigorous, we have to state the conditions under
which (1) the integrals exist, and (2) there is no anticipation of information.
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Note that the two functions @ and b might represent two stochastic pro-
cesses and that the Riemann-Stieltjes integral might not exist for the paths
of a stochastic process. We have therefore to demonstrate that both the 1t6
integral and the ordinary integral exist. To this end, we define It processes
as follows.

Suppose that a one-dimensional Brownian motion B; is defined on a
probability space (€2, ¥, P) equipped with a filtration J;. The filtration might
be given or might be generated by the Brownian motion B,. Suppose that
both a and b are adapted to J; and jointly measurable in J x 9R. Suppose, in
addition, that the following two integrability conditions hold:

¢
P /bz(s,w)d5<ooforallt20 =1

LO

and

t
P /|a(s,w)|ds<ooforallt20 =1

LO

These conditions ensure that both integrals in the definition of It6 pro-
cesses exist and that there is no anticipation of information. We can therefore
define the It6 process as the following stochastic process:

t

Z(t,w) = | a(s,w)ds + | b(s, w)dBs(s, o)
o]

Itd processes can be written in the shorter differential form as
d Z; = adt + bdB,

It should be clear that the latter formula is just a shorthand for the in-
tegral definition.

STOCHASTIC DIFFERENTIAL EQUATIONS

An It6 process defines a process Z(#, @) as the sum of the time integral of
the process a(t, o) plus the Itd integral of the process b(t, w). Suppose that
two functions ¢(#, x), ¥ (¢, x) that satisfy conditions established below are
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given. Given an It6 process X(¢, ), the two processes ¢(z, X), ¥ (¢, X) admit
respectively a time integral and an It6 integral. It therefore makes sense to
consider the following Itd process:

t

Z(t, w)= | ¢ls, X(s, 0)lds + [ ¥[s, X(s, w)]d Bs
[ [

The term on the right side transforms the process X into a new process
Z. We can now ask if there are stochastic processes X that are mapped into
themselves such that the following stochastic equation is satisfied:

t

X(t, w) = f¢[s, X(s,w)]ds—i—/tﬁ[s, X(s, w)]d B
0

0

The answer is positive under appropriate conditions. It is possible to
prove the following theorem of existence and uniqueness. Suppose that a
one-dimensional Brownian motion B; is defined on a probability space (€2,
3, P) equipped with a filtration 3; and that B; is adapted to the filtration §,.
Suppose also that the two measurable functions ¢(¢, x), ¥ (¢, x) map [0,T]
x R— R and that they satisfy the following conditions:

lo(2, x)|* + ¥ (t, x)* < C(1+ |x])%,
tel0,T], xe R

and

|(p(ts x)' - w(tv 3’) + |w(tv 'x)| - W(t’ J’)
<D(x—yl|), te[0,T], x€ R

for appropriate constants C, D. The first condition is known as the linear
growth condition, the last condition is the Lipschitz condition. Suppose that
Z is a random variable indepenent of the o-algebra 3, generated by B, for
t > 0 such that E(|Z|*) < oo. Then there is a unique stochastic process X,
defined for 0 < ¢ < T, with time-continuous paths such that Xy = Z and such
that the following equation is satisfied:

t

X(t, o) =X ~|—[<p[s, X(s, w)]ds + f ¥[s, X(s, w)]dBs
0 0

The process X is called a strong solution of the above equation.
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The above equation can be written in differential form as follows:

dX(t, w) = ¢[t, X(t, w)]dt + ¥[t, X(t, w)]dB;

The differential form does not have an independent meaning; a differential
stochastic equation is just a short albeit widely used way to write the integral
equation.

The key requirement of a strong solution is that the filtration J, is given
and that the functions ¢, ¥ are adapted to the filtration J;. From the eco-
nomic (or physics) point of view, this requirement translates the notion of
causality. In simple terms, a strong solution is a functional of the driving
Brownian motion and of the “inputs” ¢, . A strong solution at time ¢ is de-
termined only by the “history” up to time ¢ of the inputs and of the random
shocks embodied in the Brownian motion.

These conditions can be weakened. Suppose that we are given only the
two functions ¢(¢, x), ¥ (¢, x) and that we must construct a process X;, a
Brownian motion B, and the relative filtration so that the above equation
is satisfied. The equation still admits a unique solution with respect to the
filtration generated by the Brownian motion B. It is, however, only a weak
solution in the sense that, though there is no anticipation of information, it
is not a functional of a given Brownian motion.? Weak and strong solutions
do not necessarily coincide. However, any strong solution is also a weak
solution with respect to the same filtration.

Note that the solution of a differential equation is a stochastic process.
Initial conditions must therefore be specified as a random variable and not
as a single value as for ordinary differential equations. In other words, there
is an initial value for each state. It is possible to specify a single initial value
as the initial condition of a stochastic differential equation. In this case the
initial condition is a random variable where the probability mass is concen-
trated in a single point.

We omit the detailed proof of the theorem of uniqueness and existence.
Uniqueness is proved using the It6 isometry and the Lips chitz condition. One
assumes that there are two different solutions and then demonstrates that
their difference must vanish. The proof of existence of a solution is similar
to the proof of existence of solutions in the domain of ordinary equations.

2See, for example, 1. Karatzas and S. E. Shreve, Brownian Motion and Stochastic
Calculus (New York: Springer, 1991).
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The solution is constructed inductively by a recursive relationship of the
type

X% (s, w) = /ga[s, XK (s, w)]ds

0
t

+/ Vs, X*(s, )]d B

0

It can be shown that this recursive relationship produces a sequence of
processes that converge to the unique solution.

GENERALIZATION TO SEVERAL DIMENSIONS

The concepts and formulas established so far for Ito (and Stratonovich) in-
tegrals and processes can be extended in a straightforward but often cum-
bersome way to multiple variables. The first step is to define a d-dimensional
Brownian motion.

Given a probability space (€2, J, P) equipped with a filtration {J;}, a
d-dimensional standard Brownian motion B,(w), is a stochastic process with
the following properties:

Bi(w) is a d-dimensional process defined over the probability space (€2,
3, P) that takes values in R,

B,(w) has continuous paths for 0 < ¢ < oo.

B;(w) = 0.

Bi(w) is adapted to the filtration J;,.

The increments B;(w) — B(w) are independent of the o-algebra J; and
have a normal distribution with mean zero and covariance matrix (¢t —
s)I,, where I; is the identity matrix.

These properties state that the standard Brownian motion is a stochastic pro-
cess that starts at zero, has continuous paths, and has normally distributed
increments whose variances grow linearly with time.

The next step is to extend the definition of the It6 integral in a multi-
dimensional environment. This is again a straightforward but cumbersome
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extension of the one-dimensional case. Suppose that the following r x d-

dimensional matrix is given:

where each entry v;; = vjj, (t,») satisfies the following conditions:

1. Vj; are B¢ x I measurable.
2. Vj; are J;-adapted.

3. P| [(vj)*ds < oo forallt >0 =1.

o o

Then, we define the multidimensional It6 integral

t t . dB,

v V1id
/VdB _ [ S .
dBy

0 0 Ur1 - Upd

as the r-dimensional column vector whose components are the following

sums of one-dimensional Itd integrals:

d t
Z/v”s w)dBj(s, o)
i=1

Note that the entries of the matrix are functions of time and state: They
form a vector of stochastic processes. Given the previous definition of Itd
integrals, we can now extend the definition of Itd processes to the multidi-
mensional case. Suppose that the functions # and v satisfy the conditions
established for the one-dimensional case. We can then form a multidimen-

sional Itd process as the following vector of 1td processes:
dXi\ =wdt +v11dBy + - - +v14d By
;iﬁ(l, =u,dt +v,1dB1 + -+ + v,4dBy
or, in matrix notation,

dX = udt + vdB
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After defining the multidimensional It6 process, multidimensional
stochastic equations are defined in differential form in matrix notation as
follows:

dX(t, w) = ult, Xi(t, w), ..., X4(t, w)|dt
+v[t, Xi(t, ®), ..., X4(t,w)dB

Consider now the multidimensional map: g(¢, x) = [g1(¢, x),... , g4(t,
x)], which maps the process X into another process Y = g(¢, X). It can be
demonstrated that Y is a multidimensional It6 process whose components
are defined according to the following rules:

9gk(t, X) Oge(t, X)
T dt+y dX;

dY, =
3 39X

i

3% gu(t, X)
X:dX;
2Z IX;0X; axax, %X

dBidB; =1ifi =7, 0ifi # j, dBidt = dtdB; =0

SOLUTION OF STOCHASTIC
DIFFERENTIAL EQUATIONS

It is possible to determine an explicit solution of stochastic differential equa-
tions in the linear case and in a number of other cases that can be reduced
to linear equations through functional transformations. Let’s first consider
linear stochastic equations of the form:

dX, = [At)X; +a(t)]dt + o (t)dB;, 0 <t < o0
Xo=¢§

where B is an r-dimensional Brownian motion independent of the d-
dimensional initial random vector & and the (d x d), (d x d), (d x 7)
matrices A(t), a(t), o (t) are nonrandom and time dependent.

The simplest example of a linear stochastic equation is the equation of
an arithmetic Brownian motion with drift, written as follows:

dX; = pdt + odB;
0<t<oo

Xo = &, u, o constants
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In linear equations of this type, the stochastic part enters only in an
additive way through the terms o ;;(t)dB;. The functions o (¢) are sometimes
called the instantaneous variances and covariances of the process. In the
example of the arithmetic Brownian motion, u, is the drift of the process
and o the volatility of the process.

It is intuitive that the solution of this equation is given by the solution
of the associated deterministic equation, that is, the ordinary differential
equation obtained by removing the stochastic part, plus the cumulated ran-
dom disturbances. Let’s first consider the associated deterministic differential
equation

d_x =Alt)x+a(t), 0<t<oo
dt
where x(t) is a d-dimensional vector with initial conditions x(0) = £.

It can be demonstrated that this equation has an absolutely continuous
solution in the domain 0 < ¢t < co. To find its solution, let’s first consider the
matrix differential equation

do

E=A(t)¢’,0§t<00

This matrix differential equation has an absolutely continuous solution
in the domain 0 < # < oco. The matrix ®(¢) that solves this equation is the
fundamental solution of the equation. It can be demonstrated that ®(¢) is a
nonsingular matrix for each ¢. Lastly, it can be demonstrated that the solu-
tion of the equation:

dx

= = AlDx+alr), 0=t <o

with initial condition x(0) = &, can be written in terms of the fundamental
solution as follows:

Let’s now go back to the stochastic equation

dX, = [A)X; +a(t)]dt +o(t)dB;, 0 <t < o0
Xo=§&
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Using [t6’s formula, it can be demonstrated that the above linear stochas-
tic equation admits the following unique solution:

X(t) = ®(t) §+/qr1(s)a(s)ds

0
t

+/c1>*1(s)a(s>st ,0<t<oo
0

This effectively demonstrates that the solution of the linear stochastic
equation is the solution of the associated deterministic equation plus the
cumulated stochastic term

/ & !(s)o (s)dBs
0

To illustrate this, we now specialize the above solutions in the case of
arithmetic Brownian motion, Ornstein-Uhlenbeck processes, and geometric
Brownian motion:

The Arithmetic Brownian Motion
The arithmetic Brownian motion in one dimension is defined by the fol-
lowing equation:
In this case, A(z) = 0, a(t) = u, o(t) = o and the solution becomes
X=ut+oB
The Ornstein-Uhlenbeck Process
The Ornstein-Uhlenbeck process in one dimension is a mean-reverting

process defined by the following equation:

dXt = —OéXtdt + UdBt
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It is a mean-reverting process because the drift is pulled back to zero
by a term proportional to the process itself. In this case, A(¢) = —a,
a(t) = 0, o(t) = o and the solution becomes

t
X,=Xo+e*+o / e =) 4B,
0

The Geometric Brownian Motion

The geometric Brownian motion in one dimension is defined by the fol-
lowing equation:

dX = uXdt + o XdB

This equation can be easily reduced to the previous linear case by
the transformation:

Y=1log X

Let’s apply It6’s formula

where

t, :1 ’—ZO’—z—’—:__
g(t. x) =log x ot ot x  ox? x2

We can then verify that the logarithm of the geometric Brownian
motion becomes an arithmetic Brownian motion with drift

1
M/=M:ZUZ

The geometric Brownian motion evolves as a lognormal process:

1
X = xoexp{<u— 502> t—i—oBt}
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DERIVATION OF ITQ'S LEMMA

In mathematics, It6’s lemma is an identity used in It calculus to find the
differential of a time-dependent function of a stochastic process. It serves
as the stochastic calculus counterpart of the chain rule. It is best described
using the Taylor series expansion of the function up to its second derivatives
and identifying the square of an increment in the stochastic process with an
increment in time.? The lemma is widely employed in mathematical finance,
and its best known application is in the derivation of the Black-Scholes for-
mula for option prices.

Consider a continuous and differentiable function, G, of a variable x.
If Ax is a small change in x and AG is the resulting small change in G, a
well-known result from ordinary calculus is

AG~ 99 ax (11.1)
dx

In other words, AG is approximately equal to the rate of change of G
with respect to x multiplied by Ax. The error involves terms of order Ax?.
If more precision is required, a Taylor series expansion of AG can be used:

iG 16, 148G
AG—EAX—F EWA.X‘ +EWAx + - (11.2)

For a continuous and differentiable function, G, of two variables, x and
y, the result analogous to equation (11.1) is

AG%d—GAx+d—GAy (11.3)
dx dy

and the Taylor series expansion of AG is

A G, +8GA +182GA2+132GA2+82G
= — _— ——FAX —
ax ay YT R 2 9y? Y dxdy

AxAy+--- (11.4)
In the limit as Ax and Ay tend to zero, equation (11.4) becomes

3See Chapter 2 for the Taylor series expansion.
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We now extend equation (11.5) to cover functions of variables following
It6 processes. Suppose that a variable, x, follows the It process in equation
(11.5):

dx = a(x, t)dt + b(x, t)dW (11.6)

and that G is some function of x and of time ¢. By analogy with equation
(11.4), we can write:

3G
AG = —Ax +—At+f—A +f— 2+—Axm+ (11.7)

Equation (11.6) can be discretized to
Ax = a(x, t)At + b(x, t)e/ At (11.8)

where AW = ¢+/At is the Wiener process with ¢ is a standard normal ran-
dom variable, that is, ¢ ~ N(0,1). If we drop arguments in equation (11.8),
we have

Ax = alAt + bev/ At (11.9)

This equation reveals an important difference between the situation in
equation (11.7) and the situation in equation (11.4). When limiting argu-
ments are used to move from equation (11.4) to equation (11.5), terms in
Ax? are ignored because they are second-order terms. From equation (11.9),
we have

Ax? = b?¢? At + terms of higher order in At (11.10)

This shows that the term involving Ax? in equation (11.7) has a component
that is order of At and cannot be ignored.
The variance of a standardized normal distribution is one, that is,

E(¢) =0, var(e) = E(¢?) — [E(e)]* = 1

where E denotes expected value. The expected value of e2At is, therefore,
At. It can be shown that the variance of 2 At is of order A#? and that as a
result of this, we can treat £2 At as nonstochastic and equal to its expected
value of At as At tends to zero. It follows from equation (11.10) that Ax?
becomes nonstochastic and equal to b>dt as At tends to zero. Taking limits
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as Ax and At tend to zero in equation (11.7), and using this last result, we
obtain

3G 3G 19°G ,

= — — - 11.11

dG 3xdx+ 8tdt+28x2bdt ( )

This is [t6’s lemma. Substituting for dx from equation (11.6), equation
(11.11) becomes

G 3G 134G
dG =
<8x ot 3 0x2

—a+ — ——bz) dt + %bd\xl (11.12)

DERIVATION OF THE BLACK-SCHOLES OPTION
PRICING FORMULA

The first formal solution of the option pricing model was developed inde-
pendently by Fischer Black and Myron Scholes in 1976, working together,
and in the same year by Robert Merton.* The solution of the option pricing
problem proposed by Black, Scholes, and Merton was simple and elegant.
Suppose that a market contains a risk-free bond, a stock, and an option.
Suppose also that the market is arbitrage-free and that stock price pro-
cesses follow a continuous-time geometric Brownian motion as described
in the previous section.’ Black, Scholes, and Merton demonstrated that it
is possible to construct a portfolio made up of the stock plus the bond that
perfectly replicates the option. The replicating portfolio can be exactly deter-
mined, without anticipation, solving a partial differential equation. The idea
of replicating portfolios has important consequences. Whenever a financial
instrument (security or derivative instrument) process can be exactly repli-
cated by a portfolio of other securities, absence of arbitrage requires that
the price of the original financial instrument coincide with the price of the
replicating portfolio. Most derivative pricing algorithms are based on this
principle: to price a derivative instrument, one must identify a replicating
portfolio whose price is known.

“F. Black and M. Scholes, “The Pricing of Options and Corporate Liabilities,” Jour-
nal of Political Economy 82 (1973): 637-654; and R. C. Merton, “Theory of Ratio-
nal Option Pricing,” Bell Journal of Economics and Management Science 4 (1973):
141-183.

SIn this context, arbitrage-free means that after eliminating uncertainty about a port-
folio of option and the underlying stock, the rate of return on this portfolio must be
the risk-free interest rate.
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Black and Scholes assume that stock price movements are described by
the following continuous-time stochastic process:

dS = puSdt + o SdW (11.13)

where 1 and o are the constant drift and diffusion parameters of the geomet-
ric Brownian motion. Suppose that f is the price of a call option on stock
price S. The variable f must be some function of stock price S and time ¢.
Hence, from Itd’s lemma discussed earlier in this chapter, we have

f oo of 182f22> of
df = ( S+ o+ 550 S di+ ocoSdW  (11.14)

The discrete versions of equations (11.13) and (11.14) are

AS = puSAt+oSAW (11.15)

of o 1 o), O
Af = ( uS+ 5o+ 35550 S>At+BSaSAW (11.16)
where AS and Af are changes in S and [ in a small time interval Az. Recall
from the discussion of It6’s lemma that the Wiener processes underlying fand
S are the same. In other words, the AW (= e+/At) in equations (11.15) and
(11.16) are the same. It follows that by constructing a portfolio that includes
both the stock and the call option, the Wiener process can be eliminated.
The appropriate portfolio comprising the stock and the call option is

—1 = Call option
of

+ﬁ Number of shares

The holder of this portfolio is short one call option and long an amount
S ! shares of the underlylng stock. Hence, the value of the portfolio, which
we denote byl , is given by

of ¢

M=-f+73gS

(11.17)
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The change ATI in the value of the portfolio in the time interval At is
given by

8f

ATl = —Af+ (11.18)

Substituting equations (11.15) and (11.16) into equation (11.18) yields

(LA 1P 50N,
AH_<—8t—2852 S (11.19)

Because this equation does not involve AW, the portfolio must be risk-
less during the time interval Az. Hence, the portfolio must earn the risk-free
interest rate. If it earned more than the risk-free rate, arbitrageurs could
make a riskless profit by shorting the risk-free securities and using the pro-
ceeds to buy the portfolio; if it earned less than the risk-free rate, they could
make a riskless profit by shorting the portfolio and buying risk-free securi-
ties. Therefore, we have

ATl =rITAt (11.20)

where 7 is the risk-free interest rate. Substituting from equations (11.19) and
(11.20), we obtain

f 19*f , 0 f
(5~ 2ggrs)ar=r (r-ggs)ar
so that
af of o2 2% f
Lorsttt 2 sl =rf (11.22)

Equation (11.22) is the familiar Black-Scholes stochastic differential
equation. Although we have derived the formula using a call option, it has
many solutions, corresponding to all the different derivatives that can be
defined with S as the underlying variable.® The particular derivative that is
obtained when the equation is solved depends on the boundary conditions
that are used. These specify the values of the derivative at the boundaries of

®The derivation of Black-Scholes is valid for European styles call and put options
written on individual stocks, stock index, and currency.
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possible values of S and . In the case of a European call option,” the key
boundary condition is

f=max(S — X,0) whent=T
In the case of a European put option, it is
f=max(X—S,0) whent=T

Solving equation (11.22) with the boundary conditions gives the Black-
Scholes option pricing formula:

¢ = SoN(di) — Xe " N(d>)
p=Xe"TN(=d») — SoN(—d))

where

In(So/X)+ (r+0%/2) T

di =
! o T

CIn(So/X)+(r—02/2) T .
dy = - =di —ovT

and N(x) is the cumulative probability distribution function for a variable
that is normally distributed with a mean of zero and a standard deviation
of one (i.e., it is the probability that such a variable will be less than x). Sy
is the stock price at time zero, X is the strike price, 7 is the continuously
compounded risk-free interest rate, o is the stock return volatility, and T is
the time to maturity of the option.

To illustrate the Black-Scholes option pricing model, suppose we have
an options trader (Trader A) who expects volatility of the underlying stock
return to be 30% per annum. Assuming that the risk-free interest rate is 6 %
per annum, Trader A computes the prices of six-month European call and
put options written on a stock currently trading at $45 and with a strike
price of $43.

7A European call option is one in which the option can only be exercised at the
expiration date.
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First, Trader A computes d; and d;:

g In(So/X)+ (r+0%/2) T In(45/43) +(0.06 +0.30%/2) 0.5 04618
1= o T - 0.30v/0.5 o

g — In(So/X)+ (r —0?/2) T
1= T

=d, — T =0.2497

Following Black-Scholes, he then assumes that the underlying stock re-
turn follows a Normal distribution, which gives

N(di) = N(0.4618) = 0.6779
N(d>) = N(0.2497) = 0.5986

Since the Normal distribution is symmetric around the mean, N(—d;) =
1— N(d)) = 0.3221 and N(—dy) = 1 — N(d>) = 0.4014.

Substituting So = 45, X = 43,7 = 0.06, 0 = 0.30, N(d;) and N(d,) into
the Black-Scholes option pricing formula gives the prices of six-month Eu-
ropean call and put options:

¢ = SoN(dy) — Xe "TN(dy) = 45 - (0.6779) — 43 - £(7000005) . (0.5986) = $5.53
p = Xe"TN(—dy) — SoN(—d,) = 43 - /700909 . (0.4014) — 45 . (0.3221) = $2.26

According to Trader A’s expectation of 30% volatility, the six-month
call and put options should be trading at $5.53 and $2.26, respectively. We
should note that the prices of call and put options are sensitive to the volatil-
ity estimate. If two traders in the market have a different volatility estimate
for the same underlying asset, they will have different option prices. For ex-
ample, if we had another trader (Trader B) with a volatility expectation of
50% per annum, she would think the call and put options should be trading
at $7.86 and $4.59 (following the same procedure described above). At that
point in time, if the market prices of call and put options were $6.00 and
$3.50, respectively, there would be a trade. Trader A would be willing to
sell call option and Trader B would be willing to buy at the market price of
$6.00 because Trader A would think the call is expensive, whereas Trader B
would think the call is cheaper than their own estimates. Similarly, Trader A
would be willing to sell put option at the market price of $3.50 and Trader
B would be willing to buy it. These different volatility expectations generate
demand and supply pressures that move the option prices in the market.
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The Greeks

The Black-Scholes formula gives the value of European call and put options
under some specific assumptions. Clearly, this is useful for computing the
arbitrage-free value of an option. However, a derivatives trader needs meth-
ods for determining how the option premium changes as the variables or the
parameters in the formula change in the market. Since market conditions
change quite frequently, traders and risk managers must constantly moni-
tor the sensitivity of their options portfolio with respect to changes in stock
price, volatility, interest rate, and time.

Delta: Sensitivity to Underlying Price Change In the Black-Scholes frame-
work, delta determines how much the theoretical price would change if the
underlying asset price moved by an infinitesimal amount:

delta = 9C(S:, tg; oT.X = N(d1)
t

Suppose that the delta of a call option on a stock is 0.7. This means that
when the stock price changes by a small amount, the option price changes
by about 70% of that amount. Assume that the stock price is $100 and the
option price is $10. Suppose an investor who has sold 20 option contracts,
that is, options to buy 2,000 shares. The investor’s position could be hedged
by buying 0.7 x 2,000 = 1,400 shares. The gain (loss) on the option posi-
tion would then tend to be offset by the loss (gain) on the stock position. For
example, if the stock price goes up by $1 (producing a gain of $1,400 on the
shares purchased), the option price will tend to go up by 0.7 x $1 = $0.70
(producing a loss of $1,400 on the options written); if the stock price goes
down by $1 (producing a loss of $1,400 on the shares purchased), the op-
tion price will tend to go down by $0.70 (producing a gain of $1,400 on the
options written).

In this example, the delta of the investor’s option position is 0.7 x
(—=2,000) = —1,400. In other words, the investor losses 1,400 - AS on the
short option position when the stock price increases by AS. The delta of
the stock is 1.0 and the long position in 1,400 shares has a delta of 1,400.
Hence, the delta of the investor’s overall position is zero. The delta of the
stock position offsets the delta of the option position. A position with a delta
of zero is referred to as being delta neutral.

Suppose a financial institution has sold for $600,000 a European call
option on 100,000 shares of a stock. Assume that the stock price is $45, the
strike price is $43, the risk-free rate is 6% per annum, and the volatility is
30% per annum, and the time to maturity is six months.
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As presented above, the Black-Scholes price of the option is about
$553,000. The financial institution has, therefore, sold the option for
$47,000 more than its theoretical values. It is faced with the problem of
hedging its exposure.

Based on the values Sg =45, X=43,r =0.06,0 =0.30,and T = 0.5
(26 weeks), the initial value of delta is N(d;) = 0.678. This means that as
soon as the option is written, $3,051,000 must be borrowed to buy 67,800
shares at a price of $45. Assume that the hedge is assumed to be adjusted or
rebalanced weekly. Since the interest rate is 6% per annum (or about 0.12%
per week), interest rate costs totaling $3,520 are incurred in the first week.

Suppose the stock price falls to $44 by the end of the first week. Delta
is recomputed at the end of the first week using Sy = 44, X =43, r = 0.06,
o =0.30,and T = 0.48 (25 weeks), and is equal to 0.638. A total of 3,996
shares must be sold to maintain the hedge (67,800 — 63,803 = 3,996). This
realizes $175,863 in cash and the cumulative borrowings at the end of the
first week are reduced to $2,875,137.

Vega: Sensitivity of Volatility Vega is the rate of change of the value of a
call (put) option with respect to the volatility of the underlying asset:

oC(S;, tlr, o, T, X
do

) _ Sov/TN (dy)

vega =

Rho: Sensitivity to Interest Rate Rho determines how much the price of
a call (put) option would change as a result of changes in the interest rate:

aC(St! t|rv o, T7 X)
or

rho =

= XTe "TN(d,)

Theta: Sensitivity to Time Theta is the rate of change of the value of a call
(put) option with respect to time when all else remains the same:

BC(Stﬂ t|rv o, Ta X) _ SON/(dl)U
ot - 2JT

theta =

—rXe "TN(dy)

where d; and d, are defined above and
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KEY POINTS

® Stochastic differential equations give meaning to ordinary differential
equations where some terms are subject to random perturbation.

® Following It6 and Stratonovich, stochastic differential equations are de-
fined through their integral equivalent: The differential notation is just
a shorthand.

® [t processes are the sum of a time integral plus an It6 integral.

® [td processes are closed with respect to smooth maps: A smooth function
of an Itd process is another Ito process defined through the It6 formula.

® Stochastic differential equations are equations established in terms of
It6 processes.

® Linear equations can be solved explicitly as the sum of the solution of
the associated deterministic equation plus a stochastic cumulative term.
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40-41
continuity, 17-18
derivative rules, 21-25
higher-order derivatives, 26-34
key points, 41-42
limits, 15-17
notion of differentiation, 19-20
Taylor series expansion, 34-35
total valuation, 19
Differential equations
about, 211-213
closed-form solutions of ordinary
differential equations, 218-221
defined, 213
key points, 237
nonlinear dynamics and chaos, 228-231
numerical solutions of ordinary
differential equations, 222-228
ordinary differential equations (ODEs),
213-216
partial differential equations (PDEs),
231-236
systems of ordinary differential equations,
216-218
Differentiation, 14-15, 19-21, 42-44, 52,
54,57
Diffusion equation, 231-235
Dirac Delta, 252
Discontinuous function, 18
Discrete probabilities, 93, 104, 112
Discrete quantities, 8, 12, 20
Discretization, 235
of stochastic equation, 270
Distances and quantities, 6-10
Distribution function, 96, 135
Distribution law, 96
Distributions and distribution functions, 96
Dollar convexity, 32-33, 36, 39
Dollar duration, 27-29, 36

Domain, 10
frequency, 52
multi-dimensional, 231
ordinary function, 269-271, 277
original, 57
target, 52
time, 52
Domain of attraction, 141-143
Doob-Meyer decomposition, 261
Drift, 239, 262, 264-265, 280-281, 283,
287
Duration, 14, 26, 29-32, 36-39, 41, 165,
170, 172-174, 179
Dynamic Programming (Bellman), 163
Dynamical system, 226, 228-229

Economic variable, 13, 133, 181, 240
Effective duration, 30, 32, 172
Eigenvalues, 81-83, 150-151, 159,
204-206, 209
Eigenvectors, 81-84, 205, 207
Elementary function, 245-247, 255-259,
266
Elementary properties of sets, 5-6
Elements, 1-2, 4, 6, 10-11, 62-67, 70, 75,
77, 83,235
Euclidean space, 91, 106
Euler approximation, 223-224
Euler-Lagrange equation, 162
European options, 289-291
Events
and algebra of, 92, 104, 106, 249
disjoint, 90, 92-93
external, 146
extreme, 135
frequency of, 88
individual, 88-90, 93
vs. outcome, 89, 91
possible, 104
probabilities, 90-91, 93, 103
Excess return, 61, 65, 74
Excess variable, 158
Extremal events, 135

Factors, 39, 61, 67, 78, 85, 127,173

Fat tails, 133-135, 230

Fat tails and stable laws, 133-135, 139-145

Fat-tailed distributions, 133-139, 141, 146,
255

Feasible region, 157, 159
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Filtration, 103-106, 111, 146, 249-250,
252,255,261,263,272,276-278
Finance application, matrix algebra, 78-80

Finite difference method, 222-228

Finite variation, 19, 244

First derivative application, 27-29

First-order system of differential equations,
216

Fokker-Planck differential equations, 241

Forecastability, 87, 122

Fourier integrals, 234

Fourier transforms, 44, 52, 56-57, 123, 142,
220

Fractal dimension, 254

Fractals, 229-231, 254

Full rank, 67, 78, 84

Function, 1, 10-20, 110

Functional, 162

Functional form, 107, 125, 142

Functional link, 212-213

Functions, 10

Functions of variable, 285

Fundamental matrix, 204

Fundamental theorem of calculus, 51-52

Fuzzy measures, 87, 90 n4

Gaussian distribution, 124, 133-135, 137,
143

Gaussian tails, 134

General solution, 44, 56, 185, 189-190, 195,
197-198, 206, 209, 215, 218-219, 241

Generalization to several dimensions,
278-280

Girsanov theorem, 240, 260-265

Greeks, 211, 291

Hankel matrix, 70-72
Heavy-tailed distributions, 134
Hedging, 267-268, 292
Hermite numbers, 130
Hermite polynomials, 108, 129-133
Hessian determinants, 148-151
Hessian matrix, 148-150
Higher-order derivatives, 26-34
Homogeneous difference equations,
182-190, 202
complex roots, 188-192
higher-order, 193-195
real roots, 184-188
Homogeneous system, 69, 202-203

Identity matrix, 64
Improper integrals, 48-50, 52-53, 56,
220
Inconsistent system, 68
Indefinite integrals, 48-51, 95, 219, 240,
242-243
Independent and identically distributed (IID)
sequence, 122-140, 269
Independent variables, 1, 19, 112-113, 137,
139, 142, 146, 237, 257
Indeterminacy principle, 216
Indexes, 3-5, 10, 13
Indicator variable, 11
Infimum, 8, 45
Infinite non-countable set, 9
Infinite variation, 19
Information propagation, 103
Information structures, 103-106, 146, 176
Initial conditions, 28-29, 215-216,
222223, 226,228, 231-232, 234-235,
237,240, 277,281-285
Initial value problem, 203, 231-232
Injection, 10
Inner product, 73-74, 77
Instantaneous rate of change, 14135, 20, 25,
44
Integral calculus
about, 43-44
calculus in more than one variable, 57
fundamental theorem of calculus, 51-52
indefinite and improper integrals, 48-50
integral transforms, 52-57
key points, 57-58
Lebesgue-Stieltjes intervals, 47-48
Riemann integrals, 44-47
Integral transforms
about, 52
Fourier transforms, 56-57
Laplace transforms, 53-56
Integrals, 41, 43, 94-96. See also Indefinite
integrals; It6 integrals; Stochastic
integrals
definite, 51, 62, 240, 242-243,271-272
Fourier, 234
improper, 48-50, 52-53, 56, 220
Lebesque-Stieltjes, 43, 96, 98
ordinary, 239-240, 271-272
proper, 44-45, 49
Riemann, 43, 46, 48-49
Riemann-Stieltjes, 244-245, 272
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Integration, 15, 43-44, 51-52, 54-55,
57-58,95-96, 239. See also Chain rule
limits, 46, 49-50
ordinary, 242-243
by parts, 46, 51
stochastic, 240-241, 260, 265
Intersection of sets, 5, 11, 91
Interval of convergence, 35
Intuition behind stochastic differential
integrals, 269-272
Intuition behind stochastic integrals,
242-248
Inverse and adjoint matrix operations,
77-78
Inverse function, 10
Inverse Laplace transform, 53-54, 221
Irrational number, 7-8
It0 integrals, 244-246, 248, 255-257,
271-272,278-279, 293
[t6 isometry, 258, 277
1t6 processes, 173, 271-279, 285, 293
It6 stochastic integral, 246, 258-260
1t6’s formula, 273-275, 282-283
1t6’s Lemma, 284-287

Jordan canonical form, 207-209
Jordan diagonal blocks, 208
Jordan measure, 47

Kernel of the transform, 52

Key variables, 181

KoBoL distribution, 145

Kolmogorov differential equations, 241

Kolmogorov extension theorem, 240,
250-252

KR distribution, 145

kth moment, 112

Lag operator L, 182-183
Lagrange multipliers, 151-156
Lagrange’s form, 34-35
Laplace transforms, 53-58, 200, 220-221
inverse, 53-54, 56, 221
one-sided, 53, 221
two-sided, 53-54
Law of Large Numbers (LLN) and the
Central Limit Theorem, 139-141
Lebesgue measure, 47, 252
Lebesgue-Stieltjes integrals, 47, 96, 98
Lebesgue-Stieltjes intervals, 47-48

Lebesgue-Stieltjes measure, 47, 98
Lebesgue-Stieltjes sums, 48
Left continuous, 18
Leibnitz rule, 123
Length of vector, 62
Lévy flight distribution, 145
Lévy process, 250 n3
Lévy stable distribution, 142, 144
Liability-funding strategies
about, 164
cash flow matching, 165-168
portfolio immunization, 168-174
scenario optimizations, 174-175
stochastic programming, 175-178
Limit. See also 1td’s Lemma
cases of, 16, 93
and continuity, 17
existence of, 18, 20, 50
finite, 41, 49-50
from the left, 18, 50
from the right, 18, 50
improper integrals, 49-50
infinite, 16
of integration, 46, 49
notion of, 14-17
Limit random variable, 120, 146
Linear difference equations, 181-182
homogeneous, 202-209
systems of, 201-202
Linear differential equation, 220-221
Linear independence and rank, 69-70
Linear objective function, 156
Linear programming (LP), 148-149,
156-158, 167, 178-179
Linear stochastic equation, 280, 282
Lipschitz condition, 215, 276
Logarithm of variables, 135
Log-gamma distributions, 138
Lognormal distributions, 138
Long position, 62, 291
Lower Riemann sum, 44-45

Maclaurin series, 35

Macroeconomic variables, 181

Marginal density, 98-99, 111

Marginal distribution function, 98-99

Market beta, 115

Market capitalization, 3, 5, 61

Markowitz mean-variance framework, 86,
144
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Martingale, 87, 109, 111, 146, 239-240,
260-265
Mathematical programming, 148, 157-158,
178
Matrix algebra
about, 59-60
determinants, 66—67
diagonization and similarity, 82-83
eisenvalues and eisenvectors, 81-82
finance application, 78-80
Hankel matrix, 70-72
key points, 83-84
linear independence and rank, 69-70
singular value decomposition, 83
square matrices, 63-66
systems of linear equations, 59-69
vector and matrix operations, 72-78
vectors and matrices defined, 60-63
Matrix operations, 74-78
about, 74
addition, 75-76
inverse and adjoint, 77-78
multiplication, 76-77
transpose, 75
Matrix/matrices. See also Determinants;
Hankel matrix
addition, 75
adjoint of, 78
antidiagonals, 63
associative property, 77
augmented, 68
coefficient, 68
cofactor, 67
covariance, 65
defined, 60-63
diagonal, 63-65, 82
dimensions, 57, 59, 61-63, 73, 151,
230-231, 254, 278-280
distributive properties, 77
elements of, 62
identity, 82
identity matrix, 64
inversion, 77, 83
lower triangle, 65-66
multiplication, 76
operations, 74-78, 83
product of two, 76
rank of, 67
real, 62

scalars, 76, 83
similar, 82
skew-symmetric, 65
square, 63-65, 77, 82-83
sum of, 75
symmetrical, 71
upper triangular, 65-66
variance-covariance, 65
Maxima and minima, 149-151
Maximum, 8, 13, 45, 59, 88, 90, 150-151
Mean-variance framework, 114-120
Mean-variance portfolio theory and the
capital asset pricing model, 114-120
Measurable space, 91, 93
Measure space, 90, 93-94
Minimum, 8, 13, 45, 59, 70, 73, 150151,
153
Minor, 67, 70, 78
Mixed integer programming (MIP), 167,
179
Modified tempered stable (MTS)
distributions, 145
Moment generating function, 53, 135
Moments and correlation, 111-113
Multiple-period immunization, 169
Multiplication, 60, 72-74, 76-77, 83

n partial derivatives, 40

Naive set theory, 2 nl

n-dimensional Borel sets, 91

n-dimensional cumulative distribution
function (c.d.f), 97

n-dimensional cumulative function (d.f), 97

n-dimensional probability density function
(p.d.f), 97

n-dimensional vector, 6, 60

Nonanticipativity property, 164

Non-empty sets, 90

Nonhomogeneous difference equations,
195-202

Nonhomogeneous system, 68

Nonlinear dynamics and chaos, 228-231

Norm of vector, 62

Normal distributions, 124

Normal vs. stable distribution and its
extensions, 143-145

Novikov theorem, defined, 263-264

n-tuples, 6-7

Numeraire, 11
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Numerical algorithms
linear programming, 156-158
optimization, 156-161
quadratic programming, 158-161
Numerical solutions
of ordinary differential equations (ODEs),
222-228
of partial differential equations (PDE’),
235-236

Objective function, 148
One-dimension It6 formula, 273-275
One-dimensional standard Brownian
motion, 250, 273
One-sided Laplace transform, 53
Operations, 72
of matrix/matrices, 83
vector, 72
Optimal solution, 157
Optimal value, 157
Optimization
about, 147-149
bond portfolio application, 164-178
calculus of variations and optimal control
theory, 161-163
key points, 178-179
Lagrange multipliers, 151-156
liability fund strategies, 164-178
maxima and minima, 149-151
numerical algorithms, 156-161
stochastic programming, 163-164
Option contracts, 291
Option-adjusted duration, 32
Order(s)
first order, 42, 135-137, 149-150, 154,
172, 174, 182, 193, 196, 201-202,
205-206, 209, 216-217, 220, 223,
228
second order, 112, 141, 149, 172, 174,
182, 189, 193-194, 196, 199, 201-202,
206, 212,223,285
third order, 37
of commutative operators, 73
of conclusion, 135
and degree of an ODE, 214
of derivatives, 193-195, 211-212
difference equations, 215-217
exponential, 53
exponential moments for all, 145

finite moments, 138, 145
higher order of derivatives, 193-195
highest order, 228, 285
highest order of derivatives, 212
k-order, 204-206
linear equations, 223
matrices, 69, 77-78, 81-83
nth order, 215, 217, 220, 231
order k, 202
order n, 215
order one convergence, 121
order p, 121
of ordinary differential equations, 212,
217
of partial derivatives, 149-150, 204-206
of partial differential equations (PDE),
231
rank size, 138
reduction of, 216
Ordinary differential equations (ODEs),
212-216, 267
about, 213
closed-form solutions, 220-221
order and degree of an ODE, 214
solution to an ODE, 214-216
Ornstein-Uhlenbeck process, 282
Orthogonal vectors, 74
Outcomes, 89
Qutcomes and events, 90-91

Paretian distribution, 144, 146
Pareto distributions, 138
Pareto-Lévy stable distribution, 144
Pareto’s law, 138, 143
Partial differential equations (PDEs), 212,
267
diffusion equation, 231-232
numerical solutions of partial differential
equations (PDE’), 235-236
solution of diffusion equation, 232-235
Partial duration, 41
Partition, 104
Path, 100
Perturbation, 270
Pontryagin’s Maximum Principle, 163
Portfolio immunization, 168-174
Power series, 35
Power-law distributions, 138-139
Primary set of assets, 13
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Primitive, 51
Probabilistic representation of financial
markets, 102-103
Probability, basic concepts
about, 85-87
axiomatic theory of, 88
defined, 92-93
distributions and distribution functions,
96
filtration, 104-105
information structures, 103-104
integrals, 94-96
key points, 106
measure of, 93
in a nutshell, 89-90
outcomes and events, 90-91
probabilistic representation of financial
markets, 102-103
probability in a nutshell, 89-90
probability space, 92
random variables, 93-94
random vectors, 97-100
representing uncertainty with
mathematics, 87-89
stochastic processes, 100-102
Probability, random variables and
expectations, 107-148
about, 107-109
conditional probability and conditional
expectation, 109-111
Cornish-Fisher expansion, 127-129,
132-133
fat tails and stable laws, 133-145
Gaussian variables, 124-127
Hermite polynomials, 129-133
independent and identically distributed
sequences, 122
key points, 146
mean-variance portfolio theory and the
capital asset pricing model, 114-120
moments and correlation, 111-113
sequences of random variables,
120-121
sum of variables, 122-124
Product rule, 23
pth absolute moment, 111

Quadratic equation, 244
Quadratic programming, 148, 158-161
Quotient rule, 23, 27

Radon-Nikodym derivative, 262-263, 265

Random variables, 11-12, 43, 85-87, 91,
93-94, 96-111, 113, 117, 120-128,
132-136, 142, 146, 212, 237, 239-240,
243,245, 248-250, 252, 256, 262, 265,
267,276-277, 285

Random vectors, 97-100

Random walk, 232, 253, 270

Range, 10

Rank, 67, 70-71

Rank-size order property, 139

Rate duration, 41

Rational numbers, 7

Real function, 10

Real numbers, 7

Real roots, 184-188, 195-199

Real-valued function, 10

Recourse, 148, 163

Recursive calculation of values of difference
equations, 192-195

Regularly varying tail, 138

Relative local maxima, 149

Relative local minima, 149

Replicating portfolio, 286

Representing uncertainty with mathematics,
87-89

Rho (sensitivity to interest rate), 292

Riemann integrals, 44-47, 57

Riemann-Stieltjes integrals, 57, 99, 243-245,
272

Right continuous, 18

Risk factors, 173

Risk-free interest rate, 288

Row rank, 71

Row vectors, 61

Runge-Kutta method, 224

Saddle point, 150
Scalar product, 73
Scalars, 60, 76, 93
Scenario optimizations, 174-175
Score (Z-score), 125
Second derivative application, 32-34
Second order approximation, 36
Second-order derivative, 26
Sequence, 11
Sequences of random variables, 120-121
Sets and set operations

basic concepts, 2-6

Borel, 91, 94, 96, 257
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elementary properties of sets, 5-6
empty sets, 2, 4-5, 11, 93
infinite non-countable, 9
intersection of sets, 5, 11, 91
non-empty, 90
primary, of assets, 13
proper subsets, 3—4
theory, naive, 2 n1
union of sets, 4
Sharpe ratio, 114
Sheffer sequence, 130
Sign restriction, 157
Single-period immunization, 168
Singular matrix, 67
Singular value decomposition, 83
Six-sigma events, 135
Skew-symmetric matrix, 65
Slowly varying function, 138
Solution of diffusion equation, 232-235
Square matrices, 63—66
St. Petersburg paradox, 255
Stable distributions, 138, 141-145
Stable inverse Gaussian distributions, 142
Stable law parameters, 143
Standard form, 157
Standard normal distribution, 125
State variables, 85, 162-163
Stationarity, 89
Stochastic differential equations, 212,
267-268
Black-Scholes option pricing formula
derivation, 286-292
generalization to several dimensions,
278-280
intuition behind stochastic differential
integrals, 269-272
It6 processes, 272-278
1td’s Lemma derivation, 284-286
purpose of, 268-269
solution of, 280-283
Stochastic integrals, 239-267, 269, 271
Stochastic integration, 240, 242
Stochastic processes, 100-102
Stochastic programming, 148, 163-164,
175-178
Stratonovich stochastic, 244
Strong Laws of Large Numbers (SLLN),
139-140
Strong solution, 276-277
Subexponential distributions, 136-138

Sum of variables, 122-124
Sum rule, 23
Supremum, 8
Survival functions, 134
Symmetric Cauchy case, 142
Symmetric matrix, 65
Systems
of homogenous linear difference
equations, 202-209
of linear difference equations, 201-202
of linear equations, 59-69
of ordinary differential equations,
216-218

Tail index, 138

Taylor series, expansion, 34-35, 284

Taylor’s theorem, 34

Tempered stable distributions, 145

Termwise differentiation, rule of, 21

Theta (sensitivity to time), 292

Time scale, 255

Time-dependent variables, 102-103, 106,
248,250, 280, 284

Total valuation, 19

Total variation, 19

Tracking error, 7

Transpose, 72, 75

Value at risk (VaR), 107, 127
Variable interest rate, 29-30, 33-34
Variables, 10-11. See also Dependent
variables; Independent variables;
Random variables; State variables;
Time-dependent variables
auxiliary variable, 163
categorical variable, 11
control variable, 162
decision variables, 157
distributed variable, 109, 142, 269
dummy variable, 11
endogenous variable, 181
Gaussian variables, 124-127, 255
multiple variables, 278
new variable, 177,216
normal variables, 124-126, 141
numerical variables, 10, 12
qualitative variable, 111
real-valued variable, 148-149, 151
separable variable, 218
single variables, 59
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Variables (Continued) Vega (sensitivity of volatility), 292
sinusoidal variable, 193, 201 Volatility expectations, 290
slack variables, 158
underlying variables, 288 Weak Laws of Large Numbers (WLLN), 139
univariate variables, 124 Weak solution, 277
unrestricted variables, 158 Weibull distributions, 138
Variance, 112 White noise, 269, 271-272
Variance-covariance matrix, 65, 125-126, ‘Wiener process, 239, 263-264, 285, 287
278 Wiener variable, 265
Variation principle, 175
Vector operations, 72-74 Zipf’s law, 139

Vectors, 60-62 Z-score, 125
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